SHOOTER

EPROM Programmer

User's Manual

LOGICAL DEVICES, INC.

1321 E Northwest 65th Place, Fort Lauderdale, FL 33309 305-974-0967 Return Programmer > KModem 1E

Return KModem > CP/M (PM < RET)

Zen Link COM Port 2- COM2 1200 BAUD WORD 8-61/5 Parity None Stop Bit 2-Bits Glass-TTY Termina XON/XOFF Disabled Disabled Disabled Local CD Host Enesled Echo

Release Information

This manual describes the operation of Logical Devices' SHOOTER (Prompro-4) EPROM Programmer. Logical Devices, Inc. reserves the right to modify, ammend, or in any other way change the contents and/or product described herein, at any time, without notification.

The information contained in this manual has been reviewed for accuracy, clarity, and completeness. Logical Devices, Inc. will not be responsible for errors, misinterpretation of contents, or use inconsistant with the information contained in this manual.

Please report, in writing, any errors to Logical Devices, Inc., 1321 NW 65th Place, Fort Lauderdale, FL 33309. Logical Devices, Inc. reserves the right to use and distribute any information supplied, without obligation.

Copyright c 1986 by Logical Devices, Inc.

All rights reserved. Printed in the United States of America. No part of this book covered by the copyrights hereon may be reproduced or copied in any form or by any means - graphic, electronic, or mechanical (including photocopying, taping, or information storage and retrieval systems) - without the prior agreement and written permission of Logical Devices, Inc.

TABLE OF CONTENTS

SECTION	ЗE
1.0 UNPACKING 1-	-1
2.0 OPERATION	
3.0 COMMAND DICTIONARY 3.1 Checksum 3.2 Fill RAM 3.3 Hexadecimal Upload 3.4 Hexadecimal Download 3.5 Binary Upload 3.6 Binary Download 3.7 Blank Check 3.8 Program 3.9 Read EPROM 3.10 Formatted Hexadecimal Download 3.11 Formatted Hexadecimal Upload 3.12 Verify 3.13 Upload With Wait 3.14 Examine 3.15 Menu 3.16 Intel Hexadecimal Format 3.17 Motorola Hexadecimal Format 3.18 Offset 3.18 Offset	-1 -1 -2 -2 -3 -3 -4 -5 -6 -6
4.0 INDICATORS AND ERROR CODES	-1 -1
	-1
6.0 DEVICE DICTIONARY	-1
8.0 SOFTWARE INTERFACE	-2
9.0 OPERATING TROUBLE GUIDE 9-	-1
10.0 PERIODIC CALIBRATION CHECK	-1

CN40186

SHOOTER USER'S MANUAL

APPENDICIES

APPENDIX	Α.	HEX FO	RMATS		•		•	 •	•	•	•	•	A-1
APPENDIX	В.	SOFTWA	RE DRI	VERS	•		•	 •	•	•	•	•	B-1
APPENDIX	C.	EPROMs			•		•	•	•	•	•	•	C-1
APPENDIX	D.	HOW TO	INSEF	RT EP	ROM	s.	•	 •	•	•	•	•	E-1
APPENDIX	F.	CONFIG	URATOR	RS .				 			_		F-1

1.0 UNPACKING

- Carefully unpack unit from the shipping container and inspect for possible shipping damage.
- 2. Check for the following items:
 - a) SHOOTER EPROM programmer
 - b) Set of 10 configurators (for 2716, 2732, 2732A, 2532, 2764, 2764A, 27128, 27128A, 27256, 27256 [21 volt])
 - c) Warranty registration
 - d) Serial communication cable (without RS-232 connector)

2.0 OPERATION

The SHOOTER programmer is a complete stand-alone unit with an RS232 interface capability. All operating controls and indicators are contained on the front panel and at the back of the unit as shown in Figure 2-1. There are three basic modes of operation: stand-alone, terminal controlled, and computer controlled.

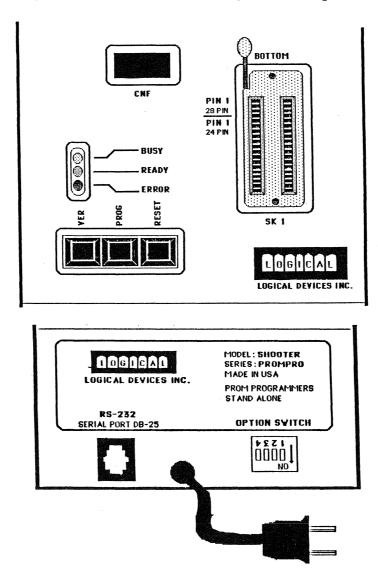


Figure 2-1. SHOOTER Front Panel and Rear Panel Controls and Indicators.

2.1 STAND ALONE MODE

In the stand-alone mode of operation, you copy and verify EPROMs using the front panel function switches. There is no need for a computer or terminal interface in this mode of operation.

NOTE

220 volt operation requires a 220 volt modification option.

- Plug the unit into the appropriate AC outlet. The front panel status LEDs will light in sequence (red ERROR, yellow BUSY, green READY). The red will flash briefly, the yellow will flash for a short while, and then the green LED will stay on to indicate that the unit is ready to accept a command.
- 2. Refer to Section 5.0 to choose the proper configurator plug. With the white dot to the left, insert the proper Configurator plug in the CNF socket.
- 3. Insert the master EPROM (the one you wish to copy) into the ZIF socket. Align the EPROM so that pin 1 is in the upper left corner of the ZIF socket (the same side as the ZIF handle) and the ground pin (pin 12 of 24-pin EPROMS, pin 14 of 28-pin EPROMS) is in pin 14 of the ZIF socket. Refer to Appendix E for additional EPROM insertion instructions.
- 4. Press the front panel RESET switch to reset the system and automatically read the entire contents of the master EPROM into the programmer RAM buffer.

NOTE

The front panel LED status indicators will light in sequence as in the power-up procedure.

5. Remove the master EPROM and replace it with an erased ${\tt EPROM}$ of the same type.

NOTE

To verify that an EPROM is properly erased in the stand-alone mode:

- a. Insert a known blank EPROM in the unit and press the RESET switch.
- b. Insert the EPROM in question into the unit.
- c. Press the VERIFY switch. If the red LED status indicator lights, the EPROM is not completely erased.

6. Be sure both the EPROM and the configurator plug are inserted correctly in their respective sockets. This is a very important step to prevent damage to the device.

---- CAUTION ----

Before continuing, be sure all previous steps have been performed correctly or you may damage the device.

- 7. Depress the PROG switch on the front panel (the yellow BUSY indicator will remain on during programming). When the program cycle is complete, the green READY indicator will light. If the EPROM does not program properly, the red ERROR indicator will light.
- 8. To insure that every location has been programmed properly, initiate the Verify feature by pressing the VERIFY switch on the front panel. This will initiate a comparison of every data byte in the EPROM against the programmer RAM. If there is any discrepancy, the red ERROR indicator will light.

2.2 TERMINAL MODE/COMPUTER MODE

NOTE

Generally, the serial cabling to a computer is different from the serial cabling to a CRT terminal. Refer to Section 6.0 for wiring details.

2.2.1 Terminal

SHOOTER has the ability to operate directly with a terminal. An internal communications program allows you to use the terminal to control SHOOTER operation. Refer to Section 6.0 for interface connection and baud rate setting information.

 Connect the unit to a serial terminal or a computer through the serial communication connector located on the back of the unit. Set the dip switches on the rear panel for the the desired baud rate. 2. Upon power up, SHOOTER sends a command menu to the terminal followed by a * prompt. A command may be entered after the prompt appears. Refer to Section 3.0 for detailed descriptions of the following commands:

X = EXAMINE W = UPLOAD WITH WAIT

? = MENU O = OFFSET xx

I = INTEL
M = MOTOROLA

NOTE

An * appears beside either Intel Hex or Motorola Hex to indicate in which mode SHOOTER is currently.

NOTE

You may display the menu at any time by typing a question mark.

4. After completing any command, SHOOTER transmits either the character sequence `F*EOJ* or `U*EOJ*. The character `preceding any character indicates the control code for that character. A `F (HEX 06) indicates an ACK (Acknowledge) meaning that all went well in the previous instruction. A `U (HEX 15) transmitted indicates a NAK (Negative Acknowledge) meaning that an error was encountered on the previous instruction. The codes \$06 or \$15 are typically non-displaying characters that would only be used when connected to a host computer.

NOTE

^U*EOJ* transmission sequence means a control U, followed by ASCII characters *EOJ* is sent.

5. Files may be uploaded to the terminal screen from the SHOOTER for viewing. Files may also be sent directly to the SHOOTER RAM by manually keying in the data from the terminal keyboard.

2.2.2 Computer

The SHOOTER also has the ability to communicate with a computer, in one of two ways, if the computer is executing the appropriate software.

- 1. COMPUTER EMULATING A TERMINAL (Host terminal) To make your computer function as a terminal, you must instruct your computer via a software program. This type of software program is generally referred to as a Terminal or Modem program. Generally these are available commercially under various names; e.g. CROSS-TALK, MODEM-7, ASCII EXPRESS. Many such commercial programs have a capture function that allows uploaded files to be saved to a disk file. Frequently, a send file function, which allows a disk file to be downloaded to the SHOOTER, is also available.
- 2. COMPUTER OPERATING THE SHOOTER (File transfer) A custom program may be written in either Basic or any other language that utilizes any or all of the commands supported by the SHOOTER. This allows the transfer of a HEX file to the SHOOTER or the reading of a HEX file from the SHOOTER (refer to Appendix A for details on hex formats). In this way, a turnkey operation may be created.

NOTE

The RAM buffer size on the SHOOTER is 128 Kbits, or 16 Kbytes.

3.0 SHOOTER COMMAND DICTIONARY

C CHECKSUM : H HEX LOAD F FILL RAM : G HEX DUMP N BLANK CHECK : L BINARY LOAD P **PROGRAM** : K BINARY DUMP R : T DOWNLOAD READ EPROM V VERIFY : U UPLOAD

: W Χ EXAMINE MEMORY UPLOAD WITH WAIT

OFFSET ØØ MEMU : I Ι

MOTOROLA HEX

INTEL HEX *

Following are descriptions of the command character sequences sent via RS232 serial interface port.

NOTE

The identifier should not be sent. No carriage return should be sent after the command character(s). Lower case xx indicates a two digit hexadecimal number. All characters sent must be uppercase.

3.1 C = CHECKSUM ACD

Directs the SHOOTER to calculate a checksum of the RAM data specified by the CNF plug. The resulting 16-bit sum is sent to the terminal or computer. The checksum is calculated by adding memory contents byte by byte and truncating the result to two bytes.

3.2 FXX = FILL RAM

Directs the SHOOTER to fill the entire RAM (as specified by the configurator plug) with any desired pattern. The function is followed by two hex digits representing the desired pattern.

3.3 G = HEXADECIMAL UP-LOAD

Directs the SHOOTER to transmit the contents of it's internal RAM to the terminal or computer. The amount that will be transmitted will be automatically determined by the configurator plug in the CNF socket.

For example: 2716 = 2K byte file

Data A2 (Hex) = 10100010 (binary)

2 Characters sent: Al(Hex) and 32(Hex)

3.4 H = HEXADECIMAL DOWN-LOAD

- 1. Directs the SHOOTER to enter the Hex DOWN-LOAD mode. All succeeding character values are stored beginning at location 0000.
- 2. If no character is received within approximately seven seconds, the unit will exit the DOWN-LOAD mode and return to the READY state. This is the normal way to exit this command.

For example: 2 Characters sent: A and 2
Data stored A2 (hex) = 10100010 (binary).

3.5 K = BINARY UP-LOAD

Directs the SHOOTER to transmit the contents of it's internal RAM to the terminal or computer. The data is sent as a character, byte by byte. The amount to be be transmitted will be determined automatically by the configurator plug in the CNF socket.

For example: 2716 = 2K
Data sent A2 (hex) = " (ASCII)
(Double quotes, MSB set)

3.6 L = BINARY DOWN-LOAD

- 1. Directs the SHOOTER to enter the DOWN-LOAD mode. The character's ASCII value is stored as data beginning at location 0000.
- 2. If no character is received within approximately seven seconds, the unit will exit the DOWN-LOAD mode and return to the READY state. This is the normal exit of this command.

For example: Data sent A and Z (ASCII)
Data stored location 0000 = 41,
Data stored location 0001 = 32.

3.7 N = BLANK CHECK

The BLANK CHECK command directs the SHOOTER to check an unknown EPROM for the blank data pattern. If the EPROM is not erased the SHOOTER will respond with the character sequence NB ERROR and light the ERROR indicator. If the target EPROM contains all FF's, the characters *EOJ* will be sent.

3.8 P = PROGRAM

Directs the SHOOTER to program the EPROM. A simple transfer takes place when the contents of the RAM are programmed into the coinciding locations of the EPROM.

NOTE

The EPROM being programmed must be blank or previously erased using a QUV-T8 EPROM eraser or equivalent.

- Type a P on the terminal. The BUSY indicator will light.
- 2. After the EPROM has been completely programmed, all locations are then compared to the RAM. If any errors are found, (see VERIFY) the ERROR indicator will light. If you are using the Intellegent Programming Algorithm, the program cycle will stop at the first unprogrammable location.
- If an error occurs, check the configurator plug for proper type and proper insertion in the CNF socket.

3.9 R = READ EPROM

The READ command directs the SHOOTER to read the EPROM into the SHOOTER internal RAM. Make sure that the EPROM is inserted correctly and the proper configurator plug is inserted in the CNF socket before issuing the READ command.

3.10 T = FORMATTED HEXADECIMAL DOWN-LOAD

- 1. Directs the SHOOTER to enter the DOWN-LOAD mode. The unit is now expecting the header character of the specified format, either an S for MOTOROLA or an: for INTEL. At this point all other characters will be ignored until the header is received. The most significant bit of an address will be ignored and any references to address space from 4000H to 7FFFH will not write to RAM. When the address is received, the contents of the offset register (see OFFSET command) will be subtracted from it and the result will be the actual RAM address where the data will be stored.
- 2. If no header character is received within approximately seven seconds, the unit will exit the DOWNLOAD mode and return to the READY state.

3. The checksum is compared at the end of each data record. If an error is detected, the ERROR indicator will light but the data will still be stored in RAM and the unit will still remain in this mode either until the end of the record is found or until transmission stops.

3.11 Uxx = FORMATTED HEXIDECIMAL UP-LOAD

1. Directs the SHOOTER to transmit the contents of it's internal RAM to the terminal or computer. The amount that will be transmitted will be automatically determined by the configurator plug in the CNF socket.

For example: 2716 = 2 Kbytes

The SHOOTER is now expecting two more characters. These characters will be two hexidecimal digits which are added to the SHOOTER addresses to form the address field in each record. Later, when the uploaded hex file is used on the host computer, it will be located at a valid memory location and not '0', which on many host computers is not usable as a data area.

For example: A 4 Kbyte Up-Load from a 2732

	-	
UPLOAD WITH OFFSET COMMAND	STARTING ADDRESS	FINAL ADDRESS
U00 U30 U96 UCF	ØØØØ 3ØØØ 96ØØ CGØØ	ØFFF 3FFF A5FF DEFF

Range of addresses in file

RAM buffer beginning at location 0000 in the hexidecimal record format previously specified. If you do not change the format after power up, INTEL format will be used. A seven second delay before transmission is incorporated in order to allow setup time for the host computer.

3.12 V = VERIFY

This feature, whether directed from the terminal or the front panel switch, initiates a location-by-location comparison of the RAM buffer against the EPROM. If a discrepancy occurs, the red LED indicator will light. If all data compares, the green LED indicator lights. This is a very useful feature for comparing a large number of EPROMs against a known master.

3.13 W = UPLOAD WITH WAIT

This function is useful mainly when using the CPM PIP command or custom programs to UPLOAD to a host computer. The WAIT option causes a 25-second delay before transmission to allow the PIP command (or equivalent). In addition to a delay, the transfer is terminated with a control Z (lA hex), which is necessary to correctly close the file.

$3.14 \quad X = EXAMINE$

The EXAM command allows you to gain direct access to a specific memory location in the SHOOTER internal RAM and, if desired, change the contents of that location.

- 1. To use this command type X.
- 2. A space will then be displayed.
- 3. The SHOOTER is now waiting for a 4-digit hex address. The specified address must be within the range of the EPROM being programmed.
- 4. After the address has been entered, the SHOOTER will display the address, an = sign, and the contents of this location.
- 5. If no change is to be made to this location enter a space (space bar) to increment the address and display the contents of the next location. To change the data, simply enter new data (two Hex digits).
- 6) To terminate the EXAM command, type a CR.

For example: Examine location 0200 and change location 0201 from 67 to 55 verify that location 201 contains 55.

User entry is in bold type.

* x Ø2ØØ

Ø2ØØ=45 <SPACEBAR>
Ø2Ø1=67 55

Ø2Ø2=7A <CR>

*

* x Ø2Ø1

Ø2Ø1=55 <CR>

3.15 ? = MENU

You may recall the SHOOTER command menu at any time by entering a question mark from the terminal.

3.16 I = INTEL HEXADECIMAL FORMAT An I entered via the RS-232C port will direct all file transfer communications to be carried out in the INTEL hexadecimal format. See Appendix A for details and examples.

NOTE

The SHOOTER will default to INTEL upon power up.

3.17 M = MOTOROLA HEXADECIMAL FORMAT

An M entered via the RS-232C port will direct all communications to be carried out in the MOTOROLA hexadecimal format. See Appendix A for details and examples.

$3.18 \quad O = OFFSET$

The OFFSET function is used in conjunction with the DOWNLOAD command and, once set, will retain its value until another OFFSET command is issued. When downloading formatted hex records the OFFSET value is subtracted from the most significant byte of each record.

NOTE

The OFFSET value defaults to 00 on power up.

4.0 INDICATORS AND ERROR CODES

4.1 Status Indicators

There are three LED Status Indicators on the SHOOTER front panel. These Status Indicators are used in both stand-alone mode and RS-232 mode.

ERROR (Red LED Status Indicator)

Lights when the following faults occur:

- A. An EPROM did not program correctly. Try erasing the EPROM again for a longer period of time. Also, check the configurator plug.
- B. An error was found when performing a DOWNLOAD. Check baud-rate selection. Check for non-valid data in the host computer's hex file.

BUSY (Yellow LED Status Indicator)

Lights whenever the SHOOTER CPU is engaged in a command.

**** CAUTION ****

DO NOT remove or install an EPROM at any time when the BUSY (yellow status indicator) is lit or the device may be destroyed.

READY (Green LED Status Indicator)

Lights when the unit is in idle state. All power, address, and data lines have been taken low (i.e. less than 1 volt) making it safe to remove or install the EPROMs at this time.

4.1 ERROR CODES

Some commands will send an error message, indicating a failed condition, to the terminal. Following is a list of these errors and the coresponding error message.

After each command is completed, the SHOOTER will send the character sequence *EOJ* preceded by either a hex 06 (the code for ACK) if the function passed or a hex 15 (code for NAK) if it failed.

5.0 DEVICE CONFIGURATION

In order to configure SHOOTER for a particular device type, you must plug one of the small DIP configurator plugs supplied with SHOOTER into the front panel CNF socket. These plugs are coded with a generic number representing the device type.

The configurator plug can be changed while power is on without damage to the unit but not while the BUSY (yellow status indicator) is lit. It is possible to edit the RAM buffer without the configurator plug inserted.

Data can be transferred from one EPROM device type to another by changing configurator plugs after the READ operation is complete. To avoid damage, do not insert any other type of hardware into the CNF socket. If additional or replacement Configurators are required, they can be obtained from LOGICAL DEVICES, INC.

NOTE

For some EPROMs the DIP switch located on the back of the unit (SWITCH #3) must also be set in addition to using the proper configurator. This switch controls the VCC voltage (5V or 6V) and the type of programming algorithm (standard or intelligent) used. For these devices, the DIP switch setting is indicated in the Device Dictionary under the column marked DIP SWITCH 3. ON (Down) is for intelligent programming and OFF (Up) is for standard programming. If you are using the 27256 EPROM, switch #4 will be used as the upper address bit (A14). The reason for this is that the 27256 EPROM is a 256 K-bit device and SHOOTER has only 128 K-bits of RAM buffer; therefore, programming must be done in two passes. The position of switch 4 is OFF (up) for the lower half (low bytes) of the 27256 and ON (down) for the upper half (high bytes) of the 27256.

To use the Device Dictionary simply locate the device type or its equivalent in the left column. Determine the number for the configurator plug you must insert in the CNF socket under the CNF column. Insert the EPROM in the ZIF socket.

6.0 DEVICE DICTIONARY

NOTE

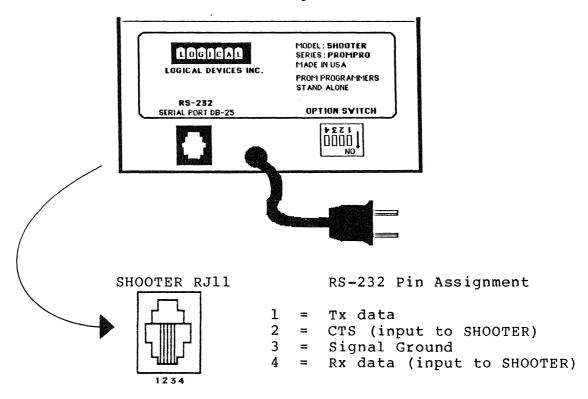
SHOOTER supports all of the devices listed in this Device Dictionary. Due to continual upgrading though, all supported devices may not be listed. For specific device requirements not listed, please call Logical Devices, Inc.

DEVICE SIZE	DEVICE TYPE		CNF #	STANDARD SUPPORT		SWITCH #4	
AMD (Adva	nced Micro	Devices)					
2K x 8 :	AM2716DC,		#2716	YES	OFF	OFF	
4K x 8 :	AM2716nDC	(all)	#2732	YES	OFF	OFF	
	AM2732A		#2732A		OFF	OFF	
8K x 8 :			#2764		ON	OFF	
	AM2764A		#2764A		ON	OFF	
	AM27128		#27128		ON	OFF	
	AM27128A		#27128A		ON	OFF	
	AM27256		#27256		ON	OFF (low) ON (high)	
Fairchild	•						
4K x 8 :	F2732		#2732	YES	OFF	OFF	
Fujitsu:							
2K x 8 :	MBM2716		#2716	YES	OFF	OFF	
4K x 8 :			#2732			OFF	.20
	MBM2732A		#2732A		OFF	OFF	
8K x 8 :	MBM2764		#2764	YES	ON	OFF	
8K x 8 :	MBM27C64		#2764	YES	ON	OFF	
	MBM27128		#27128A	YES	ON	OFF	
	MBM27C128		#27128		ON	OFF	
32K x 8 :	MBM27C256	(21V)	#256-21	YES	ON	OFF (low) ON (high)	
Hitachi:							
2K x 8 :	HN462716G		#2716	YES	OFF	OFF	
	HN462732G		#2732	YES	OFF	OFF	
4K x 8 :	HN462732AC		#2732A	YES	OFF	OFF	
8K x 8 :	HN482764G		#2764	YES	ON	OFF	
16K x 8 :			#27128	YES	ON	OFF	
16K x 8 :			#27128	YES	ON	OFF	
32K x 8 :	HN27256		#27256	YES	ON	OFF (low) ON (high)	
32K x 8 :	HN27C256		#27256	YES	ON	OFF (low) ON (high)	

		D 1000 4000 4000 1000 4000 4000 4000 400	- 1846 - 1850 - 1850 - 1850 - 1850 - 1850 - 1850	AND AND 1855 AND AND AND AND EAST ONE AND AND THE	
DEVICE DEVICE SIZE TYPE	CNF #	STANDARD SUPPORT	SWITCH #3	SWITCH #4	
Intel Corp.:					
2K x 8 : 2716	#2716	YES	OFF	OFF	
4K x 8 : 2732	#2732	YES	OFF	OFF	
4K x 8 : 2732A	#2732A	YES	OFF	OFF	
8K x 8 : 2764	#2764	YES	ON	OFF	
8K x 8 : 2764A, 27C64	#2764A	YES	ON -	OFF	
16K x 8 : 27128	#27128		ON	OFF	
16K x 8 : 27128A	#128A	YES	ON	OFF	
32K x 8 : 27256	#27256	YES	ON	OFF (low)	
3 2 3 7 2 ,233				ON (high)	
Mitsubishi:					
2K x 8 : M5L2716K	#2716	YES	OFF	OFF	
4K x 8 : M5L2732K	#2732	YES	OFF	OFF	
4K x 8 : M5L2732A	#2732A	YES	OFF	OFF	
8K x 8 : M5L2764K	#2764	YES	ON	OFF	
16K x 8 : M5L27128K	#27128	YES	ON	OFF	
32K x 8 : M5L27256K	#27256	YES		OFF (low)	
	"			ON (high)	
Mostek:					
2K x 8 : MK2716-n (all)	#2716	YES	OFF	OFF	
Motorola:					
2K x 8 : MCM2716, MCM27L16	#2716	YES	OFF	OFF	•
4K x 8 : MCM2532	#2532	YES	OFF	OFF	
4K x 8 : MCM2732	#2732	YES	OFF	OFF	
National Semiconductor:					
2K x 8 : MM2716E, MM2716M, MMC2716M	#2716	YES	OFF	OFF	•
4K x 8 : MMC27C32	#2732	YES	OFF	OFF	
			OFF	OFF	
4K x 8 : MM27C32A	#27C32A	YES			
8K x 8 : MM2764	#2764	YES	ON	OFF	
8K x 8 : MM27C64	#2764A	YES	ON	OFF	
32K x 8 : MM27C256 (21V)	#256-21	YES	ON	OFF (low) ON (high)	
NEC					
32K x 8 : 27256	#256-21	YES	ON	OFF (low)	. (
200 - 0 - 2702563	#070FC	VDO	011	ON (high)	
32K x 8 : 27C256A	#27256	YES	ON	OFF (low) ON (high)	

DEVICE SIZE	DEVICE TYPE	CNF #	STANDARD SUPPORT	SWITCH #3	SWITCH #4
scs					
4K x 8 :	M2732A	#2732A	YES	OFF	OFF
Texas Ins	truments:				
16K x 8 :	TMS 2532 TMS 2732 TMS 2732A TMS 2764 TMS 27C64	#2716 #2532 #2732 #2732A #2764 #2764A #27128 #27128A #27128A #27256	YES	OFF OFF OFF ON ON ON ON ON	OFF
Toshiba					
4K x 8 : 4K x 8 : 8K x 8 : 16K x 8 : 32K x 8 :	2732A 2764 27128	#2732 #2732A #2764 #27128 #27256-21V		OFF OFF ON ON ON	OFF OFF OFF OFF (low) ON (high)
	2816	#2816	AR6 MODULE	e off	OFF (low) ON (high)

SHOOTER USER'S MANUAL


CN40186

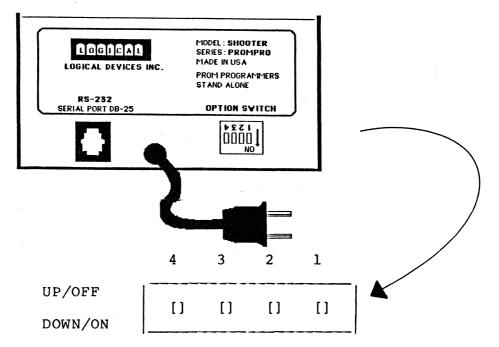
7.0 COMMUNICATIONS

7.1 SERIAL INTERFACE

SHOOTER has a built-in serial I/O. The serial communication connector is located on the rear of the SHOOTER. See Appendix C for more information about the connector wiring.

The serial I/O can be directly connected to a CRT terminal (with pin 5 left disconnected). For most computer interfaces RS232 pins 2 and 3 must be reversed. It is always a good idea to refer to the pin-out of the serial interface for each terminal or computer to make sure that the wiring is correct.

(View of RJ 11 socket from the back of SHOOTER)


Figure 7-1. SHOOTER RS-232C Pin Assignment

NOTE

SHOOTER provides an, internal pull-up resistor for the CTS line providing a user option to exercise this handshake line. Certain development systems may require long delays in responding to the serial port, in which case the CTS line to SHOOTER must be used. If CTS line is not activated by the computer or terminal, disconnect pin 5 from the RS232 connector cable to avoid accidently exercising this handshake line.

7.2 BAUD RATE SETTING

Prior to establishing communications between a terminal or computer and the SHOOTER, the baud rate switches on the SHOOTER rear panel must be set for the same baud rate as the terminal or computer. The baud rate switches are switches 1 and 2 of the four position DIP switch on the rear of the unit.

(View from rear of unit)

Figure 7-2. Baud Rate Setting Switches

BAUD	SW	SW	
RATE	1	2	
110	DN/ON	DN/ON	
300	UP/OFF	DN/ON	
1200	DN/ON	UP/OFF	
2400	UP/OFF	UP/OFF	

SERIAL DATA FORMAT:

Half-Duplex One start bit 8 data bits Two stop bits No parity

SERIAL SIGNAL LEVELS; +12V,-12V (CTS ENABLED = +12V, NOT CTS = ON -12V)

8.0 SOFTWARE INTERFACE

In order to establish communication between SHOOTER and a computer, a computer RS-232C serial port at either 110, 300, 1200, or 2400 baud must be provided. In a typical development cycle the user assembles the program into an object file and then transfers that object file from either memory or disk to SHOOTER via the RS-232 interconnect. Some software development tools, such as assemblers and compilers, generate the assembled program output file in the form of INTEL or MOTOROLA hex formats. In such a case the job of sending the program information to the SHOOTER is only a matter of instructing the computer to transfer that output file to SHOOTER via the RS-232 interface.

Most operating systems provide a utility command to facilitate file transfer operations. For example, under the CPM operating system the PIP command is used to do such a task. Under PC DOS the COPY command is used. If your development system does not generate the standard formats, then a program to convert a binary or straight ASCII file into the standard HEX formats must be provided. The following software drivers are available, on floppy disk, from Logical Devices, Inc.:

IBM PC software driver (Part No. SD-PC)
APPLE -II software driver (Part No. SD-APPLE)
CPM 2.2 8" SS SD (Part No. SD-CPM)
Commodore 64 (Part No. SD-C64)

It is very important to insure that the serial interface is working properly. If using the computer serial interface for the first time, there is always a possibility that it is not functioning properly. Read the instruction manual for your serial port very carefully. Monitor both the transmit and the receive line with an osciloscope to insure that data is being sent and received. In debugging any system always islolate each unknown and deal with one unknown at a time.

It is also necessary to understand how the serial communication for a particular computer is accomplished. Each system uses a slightly different hardware for the Serial/Modem port. For many systems a simple Terminal/Modem program is all that is required to operate the SHOOTER in the conversational mode. These programs are readily available for most systems.

A terminal program is basically a program that makes the computer look like a CRT terminal. All console entries are directed to the serial port and all data received from your serial port is

displayed on the screen. Prior to sending and receiving data to and from the serial port you must set the following parameters:

Start Bits 1
Stop Bits 2
No. Data Bits 8

Parity Ignored

Baud 110, 300, 1200, 2400

Mode Half Duplex

This format is software selectable in certain systems. For example, in a Radio Shack TRS-80 Model II with CPM 2.2 DOS, the SETUP command can be used to set parameters. If you do not have a terminal program and wish to write your own, there are three basic ways to write such programs.

- 1. Terminal program written in BASIC language.
- Terminal program using the callable routines in Bios or System Monitor.
- 3. Assembly language program with your own Serial Port Drivers.

NOTE

All communication is done in ASCII Format. That is, when directing the programmer to program an EPROM, the ASCII equivalent of P (50H) is stored in the data register of the serial controller.

The I/O addresses in many systems are memory mapped. In other words, transferring a byte to and from the I/O port is similar to transferring a byte to and from a memory location. If your system is not I/O memory mapped, you must use the Input/Output instructions of your microprocessor with the corresponding I/O number assignment. Most serial controller chips have two internal registers, one Data and one Control/Status register. If you are writing directly to the serial controller you must always test the condition of the ready status bit to insure that you do not overrun previous data.

8.1 CREATING CUSTOM SOFTWARE INTERFACES

Software drivers consist of two distinct parts: a simple communications (terminal) mode and a Hex converter mode. The software drivers listed in Section 8.0 include either one or both parts. into them. If your system has either a terminal mode or a terminal program, a software driver may not be required. For example, the APPLE II software drivers do not have terminal mode because the APPLE II computer can function as a terminal by using a few simple control characters.

Appendix A lists several programs used to generate the Intel or Motorola Hex formats. In some instances the listing (6809 routines) is only part of a larger program. This partial listing is provided only as an illustration of how it is accomplished. An example of a TRS-80 color computer software driver is also provided. These routines can be used as a guide to develop your own program for any other computer system (refer to Appendix B).

NOTE

A file formatted as Intel or Motorola Hex is not required, but using formatted files allows error checking of records to be done.

Before attempting to analyze the program code it is a good idea to know what the general structure of the software program should look like. The following list defines the driver software structure (a slightly modified version of a standard TERMINAL program).

- 1. Initialize Serial port.
- 2. Scan Serial port for input.
- 3. If input, display on terminal.
- 4. Scan terminal for user entry.
- 5. If no entry, go to step 2.
- 6. Output user entry to serial port.
- 7. If user entry is T go to download routine.
- 8. If user entry is U go to upload routine, or go to step 2.

8.1.1 Download Routine

- 1. Prompt the user with the file name or memory addresses where the data is located.
- 2. Send either an I or an M command to set the programmer in the proper hex mode.
- 3. Send an ASCII T (54H) to the serial port to signal the programmer that the next entry is going to be a valid hex file.
- 4. Send Hex file to the serial port.

8.1.2 Upload Routine

- 1. Prompt the user for a disk file name or a memory address where the uploaded data is to be stored.
- Send to the serial port an ASCII U followed by two hex digits indicating the page offset for the load address in system RAM.
- 3. Go to the Hex load routine.
- 4. Return.

NOTE

The driver routine address space must not coincide with the same address space as the upload file.

8.2 USING CP/M

Since CP/M is the most common operating system for microcomputers, the following are a few examples of its use with SHOOTER. For the sake of explanation it is assumed that a terminal program for your CP/M system has either been written or purchased for use. The name of this ficticious program will be MODEM.COM. Once power is applied to SHOOTER, the CP/M prompt A> should appear on the screen.

Next type MODEM and enter a carriage return <cr>. The screen will show:

A>MODEM

Once the program is activated it will provide prompts for several options. Select the Terminal option. If your SHOOTER is properly connected to the serial port and the serial port is operational, the menu should appear either when a power up procedure is performed or when a question mark is sent via the computer/terminal.

To set the programmer in the Intel hexadecimal mode, type I.

SHOOTER will respond with:

EOJ

. .

To examine and change a location in the SHOOTER RAM buffer, type an X, after the * prompt, followed by a four digit hex address of the location to be examined and/or changed. For this example use:

*x 0001

SHOOTER will respond with:

0001 = hh

NOTE

The hh is a two digit hex value representing the contents of location 0001).

Either type new data or a space to skip:

ØØØ1=hh [SPACEBAR]
ØØØ2=hh [55] (as an example)
ØØØ3=hh [RETURN] Return to prompt *

Now go back and examine location 0002. It should contain the data value 55.

Once the edit of the RAM buffer is complete, you can exit the terminal mode program and return to the CP/M operating system.

8.2.1 Using CP/M Submit To Download

Use the editor to create two permanent files. Each file should contain only one character — one file the I and the other file the T. Then using the SUBMIT facility of CP/M, send the files containing the I, the T, and your Hex file with only one command.

If you want to modify the format mode in the SHOOTER, create another permanent file containing either an I or an M. Then, using the SUBMIT facility, send this file as shown in the example below.

Example Submit File for downloading:

PIP PUN: = I.DWN PIP PUN: = T.DWN PIP PUN: = DATA.HEX

The file I.DWN contains only an I.
The file T.DWN contains only a T.
The file DATA.HEX contains data in Intel format to be transferred to the shooter RAM.

Many software development tools, such as assemblers or cross assemblers, have an option that allows the Hex address specification to be different than the actual assembly (ORIGIN) address. SHOOTER loads the Intel Hex file in its RAM buffer at the specified address of the Hex format. Since the programmer always programs the EPROM from location 0000, you must make sure that

the starting address of your file is directed to location 0000 of the SHOOTER RAM buffer. This is accomplished by creating another file that contains the character O (OFFSET COMMAND) followed by two hex digits equal to the PAGE number where your hex file will start. Next, simply send this file to the programmer before the hex file transfer.

Some 8080 Assemblers do no generate the proper Intel Hex Format End of File character. Instead, ten 00 characters are generated. If this last line of zeros is encountered, SHOOTER will generate an error. The easiest way to eliminate this condition is to delete the last line of the Hex File (ten 00's) using the Editor. SHOOTER will then simply time out 7 seconds after the file transfer is completed. Another method is to use the I parameter of the PIP command to ignore the ":00" records of Hex Format. The correct end of file record for Intel format is (:00000001FF). The correct end of file record for Motorola format is (S9030000FC).

8.2.2 Using CP/M PIP Command To Upload

The CP/M PIP command can also be used to UPLOAD a file to a host computer. However, instead of using the character U to initiate the UPLOAD function, the character W should be used (see UPLOAD with WAIT command). This causes a 25 second delay before transmission to allow time for the CP/M PIP command to execute. It will also terminate the transmission with a control Z, which is necessary for CP/M to close the file correctly.

Create a permanent file as described earlier containing only a U and name the file U.UPL. Create another submit file similar to the file described for downloading.

Example Submit File for uploading:

PIP PUN: = I.DWN PIP PUN: = U.UPL PIP PUN: = DATA.HEX

9.0 OPERATING TROUBLE GUIDE

If you have a problem when using SHOOTER, refer to the following Trouble Guide to determine whether the problem is either in operating the unit or a functional failure of the unit. The Trouble Guide is catagorized by general problem types. Each type is then listed by basic problem, the problem condition, and the possible remedy.

OPERATING TROUBLE GUIDE

General Problem Conditions:

UPON POWER-UP THERE IS NO LED INDICATION.

Assure that the line cord is inserted properly.

EPROM DOES NOT VERIFY AFTER READ.

If, after you have read the EPROM into the SHOOTER internal RAM buffer and depressed the VER switch, the red LED goes on, the following problems may exist:

Configurator plug inserted improperly or incorrect type. Remove the configurator plug and check for bent pins and proper internal connections (refer to CNF diagrams).

EPROM inserted improperly. Make sure that the EPROM pin 1 is in the proper position.

Defective EPROM, replace.

EPROM DOES NOT VERIFY AFTER PROGRAMMING

If, after the program cycle, the red LED goes on, it is an indication that the EPROM did not program properly. The following reasons could account for this program failure:

Check the configurator plug for proper type, bent pins, and proper insertion.

EPROM was not completely erased.

Defective EPROM, replace.

EPROM type is incorrect.

EPROM inserted backward.

Communications Problems:

MENU DOES NOT APPEAR ON THE SCREEN AFTER POWER UP

Chances are your cabling is incorrect. Refer to the cabling information in the serial interface section.

NOTE

In order to force the handshake lines to the proper levels, your terminal/computer may require that the following jumpers be installed on the terminal/computer side of the cable.

Jumper pin 4 to pin 5.
Jumper pins 6, 8, and 20.

MENU APPEARS ON SCREEN BUT UNIT HANGS-UP.

This is an indication that the SHOOTER serial handshake line CTS (pin 5) is at low signal level. This line is internally pulled up to +5V.

LED FLICKER ON DOWNLOAD

If no character is received within 7 seconds, the programmer will time-out. If you do not wish to send the I command manually in terminal mode, you may send it automatically:

Create a file with only the character I in the file and create another file with only the character T. Now use the command chain capability of your operating system to send the above files and the Hex file to the programmer with one simple command.

NOTE

This procedure applies to most systems with the exception that certain command names and system parameters may vary. In all cases, the important fact to remember is, if the computer sends any character other than the

SHOOTER commands (with the exception of nulls), the SHOOTER will respond in half duplex with an *. Suppose, when sending the character I, that the computer actually precedes it with a control character. Then SHOOTER is going to miss the I because it is busy sending the *. To avoid this, allow several character times for response. If you encounter error problems during transmission, check the ground connection in your cable. Also, make sure your system is configured for:

ONE START BIT 8 DATA BITS 2 STOP BITS NO PARITY

10.0 PERIODIC CALIBRATION CHECK

SHOOTER is calibrated and tested for proper programming voltages at the factory, prior to shipment. Typically, additional calibration is not required. However, since even a small program voltage change can result in damage to an EPROM, it is recommended that periodic program voltage calibration checks be made.

NOTE

Program voltage changes only occur when the configurator plug or an IC is not inserted properly or in the instance of a limited number of certain component failures.

The following equipment is required for the programming voltage calibration check:

Digital Voltmeter 3 1/2 digit Small clip leads 2 Test pins 2 Resistor 1K, 1 watt

Voltage checks are performed on the ZIF socket using a lK, l watt resister in the proper ZIF socket pin locations. The DVM clip leads are then attached to this resistor for VPP voltage measurements. One end of the resister is always used for the ground connection (pin l4 on the ZIF socket). The other end is inserted into the corresponding program voltage socket pin.

10.1 25 VOLT PROGRAM VOLTAGE CHECK

The following procedure verifies the calibration voltage for all EPROM's requiring a 25 volt programming voltage.

- 1. Insert configurator plug #2716 in the CNF socket.
- 2. Insert a 1K resister into the ZIF socket between pins 23 and 14 (close the ZIF socket handle for firm grip).
- 3. Connect the DVM ground lead to pin 14 of the ZIF socket. Connect the positive lead to pin 23 of the ZIF socket.
- 4. Depress the RESET button to reset SHOOTER. When the BUSY (yellow LED) indicator goes out, the DVM should read less than +2 VDC.
- 5. Depress the PROG button. The BUSY indicator should light and the DVM should read between +24.5 and +25.5 VDC.

10.2 21 VOLT PROGRAM VOLTAGE CHECK

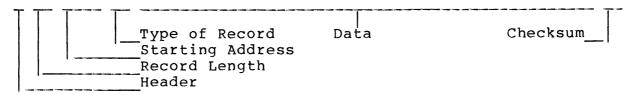
The following procedure verifies the calibration voltage for all EPROM's requiring a 21 volt programming voltage (VPP) such as the 2732A EPROM.

- 1. Insert configurator plug #2732A in CNF socket.
- 2. Insert test pins in ZIF socket pins 14 and 22.
- 3. Connect the DVM ground lead to pin 14 of the ZIF socket. Connect the positive lead to pin 22 of the ZIF socket.
- 4. Depress the RESET button to reset SHOOTER. When the BUSY (yellow LED) indicator goes out, the DVM should read less than +2 VDC.
- 5. Depress the PROG button. The BUSY indicator should light and the DVM should read between +20.5 and +21.5 VDC.

APPENDIX A

HEX FORMATS

I	NΤ	EL	· F	ΗEΣ	Κ	FO	RI	1A	\mathbf{T}	DE	SC	II	PT:	I 01	N	•	•	•	•	•	•	A-1
S	AΜ	PL	Ε	I	ľΥ	ΕL	· F	ΙE	XA	DE	CI	MA	ΑL	R	EC	OF	RD	•	•	•	•	A-3
M	ОТ	OR	10	ĹΑ	Н	ΕX	E	30	RM	AT	D	ES	SCI	RI:	РΤ	IC	N	•	•	•	•	A-4
S	AΜ	PL	Ε	M(ΤС	OR	10	Ā	Н	ΕX	AD	EC	CI	MA	Ĺ,	RE	CC	RD)	•	•	A-6
8	Ø8	Ø	R	יטכ	ΓI	ΝE]	L	ТО	G	EN]	N'	re:	L	HE	X	•	•	•	•	A-7
8	Ø 8	Ø	R	יטכ	ΓI	NΕ	1	2	ТО	G	ΕN]	N'	re:	[HE	X	•		•		A-10
6	8 X	X	SZ	1MA	2 L	E	PI	RO	GR	AM	Т	0	G)	EN:	ΕR	A.	ľΕ					
			M(ንጥ(٦R	OT.	Α	Н	ΕX	F	OR	MZ	TΥ		_	_		_	_	_		A-12


INTEL LOAD MODULE FORMAT

FORMAT DESIGNATION	No. of ASCII CHARS.	CONTENT DESCRIPTION
Header Character	1	Always a colon "1" (HEX 3A)
Record Length	2	A two-digtit HEX value specifiying the number of data bytes in the record. A record length of Ø indicates the last record in the file.
Starting Address	4	Four HEX digits representing the address of the memory location where the first Data Byte will be located.
Type of Record	2	<pre>ØØ-Normal data record Øl-End of file record</pre>
Checksum	2	Two-digit HEX number representing two's complement of the sum, modulo 256 of the preceding eight bit bytes.

EXAMPLE:

:10000000027040DA8189327D75BF8C043A9A8FA83F

: 10 0000 00 27 04 0D A5 15 93 27 D7 D5 BF 8C 04 3A 9A 8F A8 3E

AN EXAMPLE OF A 1K BYTE INTEL OBJECT MODULE:

- :1000000027040DA5159327D7D5BF8C043A9A8FA83E
- :10001000A999CF54170A7221347902346B961804C7
- :1000200035994F14F59ACF088A209A7F0214EF363B
- :1000300032E7D99625D5ABBF43B5343514423428C1
- : 10004000043C65C589DF9AA08A802702A8A9AA8AEC
- :100050009023C03A865405093792B6850AD2629534
- :1000600004B676575455D5535FAF99CF9ABF03B3B3
- :100070009674AB930304967BBB029303F5C59682FB
- :1000800064060796A9C5AE54CE47AABC60541BECC3

:100090008D54708A080A729EBE4026A004A226A231 :1000A000BE80D5FBC532CD24E607C65F03FE96B2FF :1000B00064BF030896069A8F99CF54178A080A726C :1000C000C3243BB6CB26C9248744282406233A54AC :1000D000872310AB54A527547854B1175412EECD92 :1000E000233A54872754A52301547823EF4412C59B :1000F00018F896F519C58AA09AEFF802F943B03AB4 :100100009AEF8023089389485417997F541727C57D :10011000A98A0814F59ACF08AF8A209A7F54FF1451 :10012000EF3624E7D9961593BF8509B2312306240B :1001300033231554891FFFE39633939A8FF8B65FE4 :1001400002F93A43103A3A3A8002997F238F3923D1 :100150005C541D8940997F8980346B8A20963BA826 :10016000A93479AF54FF346B9661938A8018F8965E :10017000781923043677E7D983F802F943803A3AAD 100180008AB080089A4F83C514F59A6F800299B798 :100190008A88541B9AF718F8968819F972062488E9 :1001A000BAC8D0DBBCCAD5E089060953067703A0DC :1001B000B389060953067703A4B334BCD5BCF0EC6D :1001C000BFECC1BC1BECC59334CAD5BCBCECCD9311 :1001D000D5BC29ECD3D5BC2AECD893D5BC11ECDE28 : 1001E000D5BC10ECE39323535487BB002331540850 *1001F000EEE62353548723395487230354782**754**36 : 100200007827547823FC44125487231354FA54A5B6 :1002100054B154785470935419541D238362551665 :1002200021542316274423838AA09AEFF802F94326 :10023000303A800299B79ADF541B8A2018F8962822 :1002400019F93792282406EC530406864BD505BCD1 :10025000DC16477651D5B515BA01B90034B19734DB :10026000A8FAF72A49F66C866AA9445F34B1F99373 :10027000230D5489230A4489C5AD47547EFD530F8D :1002800003305717D287075687D5A8BA019799FE2A :100290000834A8F69FFAF72A58C68E890144918936 :1002A0000134A824A85478C5F96A54ADF854FA4426 :1002B0007814F5BF109A6F0854FA547814EFEFB51C : 1002C000FB3793544BC554D047AE54CE4E93544B4A *1002D00003D0F2E3975792DBB2DB9303EFF2E30331 :1002E000FAF2E6892093031093C554EF530FA954F3 :1002F000C354FAA89354C39A6F02C52B6B2B93086F :10030000DFC605892093D555FB3291544BD35396C4 :100310000B85544B530FC5C60BBB00D503F7962175 :100320009554C354FA03FDAD54E9D5FDC63814F510 :10033000643414EF54F5ED3254C3C537DBD5740182 :1003400095B60B93111A0D0A65285829616D0D0A8F :10035000496E74656C0D0A4D6F746F726F6C610D30 :100360000A50726F6772616D0D0A5472616E736626 :1003700065720D0A55706C6F61640D0A566572697D :1003800066790D0A2A000D0A2A454F4A2A0D0A2AC3 1003900000544BD33A96918554C3ADC5AB54E9D5BF :1003A00054C354FAC6AA95FDC6B414F564B014EF4C :1003B00054F5EDAE54C3C56BD5740195B691932336 :1003C00020548754E9D55470C5230F59A9D554A793 :1003D000233D546714F59A6F08547823205487548A :1003E0004B03E0C6FC0313C6BEF999DF54C5AC0944 :1003F000B2C6FC9008DCC6FC233F548714EF64C6E9 :0000001FF

77 88

D2

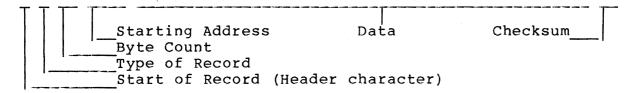
```
.0
                                                                                              6
Sample Intel hexadecimal record :
                                                                                       2
                          :080AB8001122334455667788D2
Description of sample Intel Record
            record header charcter
Ø8
            number of data bytes (in hexadecimal)
            address where first data byte will be loaded
ØAB8
                                                                                     9
            (not including any offset specified)
record type - 00 is data, 01 is end of file
  (types 02 and 03 not supported by PromPro 8)
                                                                                     A
                                                                                             10
ØØ
                                                                                     B
                                                                                             0
11
             data byte
22
                                                                                             13
33
                                                                                     E
                                                                                             14.
44
                                                                                             15
55
66
```

Calculating the Intel record checksum

checksum value

data byte

```
Ø8
          ØA
          B·8
          ØØ
          11
                                                 100
Step 1
          22
                                   Step 2
                                                   2 E
          33
          44
                                                  \overline{D2} = 2's complement of 2E
          55
          66
                              (Intel checksum value for this record)
          77
          88
          \overline{2E}
               = sum modulo 256
```


MOTOROLA LOAD MODULE FORMAT

FORMAT DESIGNATION	NO. of ASCII CHARS.	CONTENT DESCRIPTION
Start of Record	1	Always an "S" (HEX53)
Type of Record	~ 1	Ø-Header record (sometimes not used)1- Normal data record9-End of file record
Byte Count	2	A two-digit HEX value specifying the number of data bytes in the record, including the address and checksum. Each byte is represented as two HEX characters.
Address	4	Four HEX digits representing the address of the memory location where the first Data Byte will be located.
Checksum	2	Two-digit HEX number representing one's complement of the sum, modulo 256, of the Byte Count, Address, and the Data Byte.

EXAMPLE:

S113000027040DA5159327D7D5BF8C043A9A8FA83A (Normal data record)

S 1 13 0000 27 04 0D A5 15 93 27 D7 D5 BF 8C 04 3A 9A 8F A8 3A

EXAMPLE OF A 1K BYTE MOTOROLA OBJECT MODULE:

\$113000027040DA5159327D7D5BF8C043A9A8FA83A \$1130010A999CF54170A7221347902346B961804C3 \$113002035994F14F59ACF088A209A7F0214EF3637 \$113003032E7D99625D5ABBF43B5343514423428BD \$1130040043C65C589DF9AA08A802702A8A9AA8AE8 \$11300509023C03A865405093792B6850AD2629530 \$11300509023C03A865405093792B6850AD2629530 \$113006004B676575455D5535FAF99CF9ABF03B3AF \$11300709674AB930304967BBB029303F5C59682F7 \$113008064060796A9C5AE54CE47AABC60541BECBF \$11300908D54708A080A729EBE4026A004A226A22D \$\text{S11300A0BE80D5FBC532CD24E607C65F03FE96B2FB} \text{S11300B064BF030896069A8F99CF54178A080A7268} \text{S11300E0C3243BB6cB26C9248744282406233A54A8} \text{S11300E0C3243BB6cB26C9248744282406233A54A8} \text{S11300E0233A54872754A52301547823EF4412C597} \text{S11300E0233A54872754A52301547823EF4412C597} \text{S11300F018F896F519C58AA09AEFF802F943B03AB0} \text{S11301009AEF8023089389485417997F541727C579} \text{S1130110A98A0814F59ACF08AF8A209A7F54FF144D} \text{S1130120EF33C24E7D9961593BF8509B23123062407} \text{S113013033231554891FFFE39633939A8FF8B65FE0} \text{S113014002F93A43103A3A3A8002997F238F3923CD} \text{S11301505C541D8940997F8980346B8A20963BA822} \text{S1130160A93479AF54FF346B9661938A8018F8965A} \text{S113017078192304367723B488018F8965A} \text{S113017078192304367723A4B32F943803A3AA9} \text{S113014008AB060089A4F83C514F59A6F800299B794} \text{S11301408ACB0DBBCAD5E089060953067703A0B8} \text{S11301408BACB0DBBCCAD5E089060953067703A0B8} \text{S1130140BACB0DBBCCAD5E089060953067703A0B8} \text{S1130140BACB0DBBCCAD5E089060953067703A0B8} \text{S1130140BACB0DBBCCAD5E089060953067703A0BS} \text{S11301E0D5BC29ECD3D5BC2AECD893D5BC11ECDE24} \text{S113022007827547823FC44125838AA09AEFF802F94322} \text{S113022007827547823FC44125838AA09AEFF802F94322} \text{S113022007827547823FC44125838AA09AEFF802F94322} \text{S113022007827547823FC44125838AA09AEFF802F94322} \text{S113022007827547823FC44125838AA09AEFF802F94322} \text{S113022007827547823FC44125838AA09AEFF802F94323} \text{S113022007827547823FC44125838AA09AA45F534B1F9734D7} \text{S113022001548792702807075687D5A8BA0197999FE26} \text{S1130220033055717 \$1130260A8FAF72A49F66C866AA9445F34B1F9936F \$1130270230D5489230A4489C5AD47547EFD530F89 \$113029008305717D287075687D5A8BA019799FE26 \$11302900834A8F69FFAF72A58C68E890144918932 \$11302B07814F5BF109A6F0854FA547814EFEFB518 \$11302C0FB3793544BC554D047AE54CE4E93544B46 \$11302D003D0F2E3975792DB82DB9303EFF2E3032D \$11302E0FAF2E6892093031093C554EF530FA9954EF \$11302F0C354FAA89354C39A6F02C52B6B2B93086B \$1130300DFC605892093031093C554EF530FA9954EF \$11303100B85544B530FC5C60BBB00D503F7962171 \$11303100B85544B530FC5C60BBB00D503F7962171 \$1130330643414EF54F5ED3254C3C537DBD574017E \$1130330643414EF54F5ED3254C3C537DBD574017E \$113034095B60B93111A0D0A65285829616D0D0A8B \$1130350496E74656C0D0A4D6F746F726F6C610D2C \$113034095B60B93111A0D0A65285829616D0D0A8B \$113034095B60B93111A0D0A65285829616D0D0A8B \$113034095B60B93115ADD0A454F2616E736622 \$113034095B60B93115ADD0A55472616B54B54E9D5BB \$113034095B60B93155FDC6B414F564B014EF48 \$11303B054F5EDAE54C3C56BD5740195B691932332 \$11303B054F5EDAE54C3C56BD5740195B691932332 \$11303C020548754E9D55470C5230F59A9D554A78F \$11303B0233D548714F59A6F085478232054875486 \$11303B0233D548714F59A6F085478232054875486 \$11303E04B03E0C6FC0313C6BEF999DF54C5AC0940 \$11303F0B2C6FC9008DCC6FC233F548714EF64C6E5 \$9030000FC \$9030000FC

S9030000FC (end of file record)

Sample Motorola hexadecimal record:

S10B0AB81122334455667788CE

Description of sample Motorola record

cord
ksum
nclu

Calculating the Motorola record checksum

```
ØB
        ØA
        B8
        ØØ
        11
                             31(hex) ---> 0011 0001 (binary)
        22
                                           one's complement
                    Step 2
Step 1
        33
        44
                             CE(hex) <--- 1100 1110 (binary)
        55
        66
        77
                        (Motorola checksum value for this record)
```

 $\overline{31}$ = sum modulo 256

Sample Binary download (unformatted):

Character Sent	ASCII Value (decimal)	Order of Sending	PROMPRO-8 RAM location where stored	Data Stored (hex)	Data Stored (binary)
1	49	lst	ØØØØ	31	0011 0001
2	5Ø	2nd	ØØØl	32	0011 001G
3	51	3rd	0002	33	0011 0011
Α	65	4th	0003	41	0100 0001
а	193	5th	0004	A2	1010 0010
carriage re	t 13	6th	0005	ØD	0000 1101
?	47	7th	Ø Ø Ø 6	2F	0010 1111

8080 routine

TO GENERATE INTEL HEX FILE

```
TITLE 'UNLOAD ver 2.1 - Create HEX file from COM file'
        (revised 05/20/81)
:--->Needs MAC and SEQIO.LIB to assemble<---
Originally from CPMUG 29.23
:05/20/81 Modified for 32 bytes/record instead of 16, for less
          overhead in the .HEX output file, by Dav Holle.
;11/07/80 Modified to default to 100H, increase size of buffers,
          add signon message. By Keith Petersen, W8SDI
:To use, type: UNLOAD <FILENAME> <ADDR>
; Where: <FILENAME>.COM is the source file
        <FILENAME>.HEX will be the output file
        <ADDR> is the optional start address in hex (default=100)
        ORG
               100H
        MACLIB SEGIO : DEFINE MACRO LIBRARY USED
                        :GET BASE OF BDOS
        LHLD
        DCX
                        :BACK OFF ONE BYTE
        SPHL
                         :SET STACK THERE
        CALL
                 SIGNON
                 CR.LF, 'UNLOAD ver 2.1', CR, LF, '$'
        DB
        DB
                 '05/20/81' :REVISION DATE (doesn't print)
SIGNON: POP
                        GET MSG ADR
        MVI
                 C.@MSG :PRINT IT
                 @BDOS
        CALL
                 H.100H ; DEFAULT UNLOAD ADRS
        LXI
        LXI
                 D.FCB2+1
        LDAX
                        GET OPTION ADRS
                 D
                 , ,
        CPI
                        : ANY GIVEN?
         JZ
                 INITFL :NO, DEFAULT TO 100H
         LXI
                 H,O
        MVI
                 B.O
ADRLUP: LDAX
                 D
         INX
                 Œ
         SUI
                 ,0,
         JC
                 INITFL
         CPI
                10
         JC
                 ADDNIE
         SUI
                 7
         JC
                 INITFL
         CPI
                 15
         JNC
                 INITEL
ADDNIB: DAD
                                     A-7
```

```
DAD
                 Н
         DAD
                 Η,
        DAD
        MOV
                 C, A
        DAD
                 B
         JMP
                ADRLUP
INITFL: PUSH
                 Н
         FILE
                 INFILE.SOURCE,,1,COM,2048
         FILE
                 OUTFILE, OUTPUT, , 1, HEX, 2048
         POP
ADRDON: SHLD
                 LODADR
UNLOOP: GET
                 SOURCE
         JΖ
                 GEOF
         PUSH
                 PSW
        MVI
                 A.':'
        PUT
                 OUTPUT
         XRA
                 Α
         STA
                 CHEKS
        MVI
                 A,32
                          : was 16
         CALL
                 PUTBYTE
        LDA
                 LODADR+1
        CALL
                 PUTBYTE
        LDA
                 LODADE:
         CALL
                 PUTBYTE
         XRA
         CALL
                 PUTBYTE
         POP
                 FSW
         MVI
                 B.32 : was 16
LINLUP: PUSH
                 В
        CALL
                 PUTBYTE
        POP
                 В
        DCR
                 B
         JΖ
                 NEXTL
         GET
                 SOURCE
         JMP
                 LINLUP
PUTBYTE: MOV
                 C.A
        LDA
                 CHEKS
        SUB
                 С
        STA
                 CHEKS
        MOV
                 A.C
        RRC
        RRC
        REC
        RRC
        CALL
                 PUTNIB
        MOV
                 A.C
PUTNIB: ANI
                 OFH
                  'Q'
        ADI
        CPI
                 797+1
         JC
                 PUTNB1
        ADI
PUTNB1: PUSH
        PUT
                 OUTPUT
        POP
                 В
        RET
NEXTL:
        LDA
                 CHEKS
        CALL
                 PUTEYTE
        MVI
                 A,CR
```

```
PUT
                 OUTPUT
        MVI
                 A.LF
        PUT
                 OUTPUT
        LHLD
                 LODADR
        LXI
                 D.32
                           : was 16
         DAD
                 D
         JMP
                  ADRIDON
SEOF:
        MVI
                  A.':'
         PUT
                  QUTPUT
         MVI
                  B.5
GEOF1:
                  A.
         XRA
                  B
         PUSH
         CALL
                  PUTBYTE
         POP
                  B
         DCR
                  В
         JNZ
                  GEOF 1
         IVM
                  A.CR
         PUT
                  OUTPUT
         MVI
                  A, LF
         PUT
                  OUTPUT
         FINIS
                  OUTPUT
         LXI
                  D. DMSG
         MVI
                  C. MMSG
         SALL
                  BDOS
;
         DB
                  'DONE', CR, LF, '$'
DMSG:
                  2
LODADR: DS
                  1
CHEKS:
         DS
FCB2
         EQU
                  6CH
BUFFERS EQU
                  $
                           : INPUT/OUTPUT BUFFERS GO HERE
         END
```

8080 Program to Generate Intel Hex Format

	READ	COMMAND	READ INTEL HEX FORMAT TAPE (W/BIAS IF DESIRED)
READ:	CALL	EXPRI	GET BIAS INPUT IF DESIRED
	POP	Н	; PLACE BIAS INTO HL (IS 0000 OF NO BIAS)
REDO:	CALL	RI	; READ FROM LOGICAL TAPE READER DEVICE
	RC		; RETURN IF NO BYTE IS AVAILABLE
	ANI	7FH	; MASK OFF POSSIBLE BITS
	SUJ	1:1	CLUMSY COMPARISON FOR START LINE
	JNZ	REDO	; LOOP TIL START OF LINE DELIMINATOR FOUND
	MOV	D,A	; A MUST BE ZERO, SO USE IT TO CLEAR D RFG
	PUSH	H	; SAVE BIAS VALUE ON STACK
	CALL	BYTE	GET FIRST DATA BYTE
	JZ	RED2	; IF ZERO, INDICATES LAST LINE AND LOAD ADDRESS
	MOV	F,A	; LOAD NUMBER OF DATA BYTES IN LINE INDICATOR IN F
	CALL	BYTE	GET FIRST ADDRESS BYTE
	MOV	B, A	; SAVE HIGH ORDER ADDRESS IN B
	CALL	BYTE	GET LOWER ADDRESS BYTE
	MOV	C,A	; SAVE LOW ORDER ADDRESS IN C
	DAD	В	; ADD BIAS TO LOADING ADDRESS FROM LINE
	CALL	BYTE	JUST READ TERMINATOR BYTE
RED1:	CALL	BYTE	; READ DATA BYTE
	VOM	M,A	;STORE DATA BYTE AT LOAD ADDR+BIAS
	INX	Н	;BUMP STORAGE POINTER
	DCR	$\mathbf{r}_{i_1} + \mathbf{r}_{i_2}$, $\mathbf{F} + \mathbf{r}_{i_3}$; DECREMENT BYTE COUNT FOR LINE
	JNZ	RED1	; LOOP TILL BYTE COUNT IS EXHAUSTED
	CALL	BYTE	; READ CHECK BYTE AND DO FINAL SUM
	POP	Н	; RESTORE BIAS FOR NEXT LINE
	JΖ	REDO	; JUMP FOR NEXT LINE IF CHECKSUM=0
	STC		; SET THE CARRY BIT ON AS AN ERROR INDICATOR
	RFT		
RED2:	CALL	BYTE	GET TWO ADDRESS BYTES AND BRANCH THERE
	VOM	H,A	
	CALL	BYTE	
	POP	В	; REMOVE BIAS VALUE FROM STACK
	MOV	L,A	; CHECK THE EXECUTION ADDRESS FOR ZERO
	URA	H	
	RZ		; RETURN TO MONITOR ON A ZERO EXECUTION ADDR
	PCH1		GO TO EXECUTION ADDRESS
BYTE:	CALL	RNBBL	; READ UPPER NIBBLE OF DATA BYTE
	RLC		;SHIFT TO UPPER 4 BITS
	RLC		
	RLC		
	RLC		
	MOV	C,A	; SAVE MS NIBBLE IN C
	CALL	RNBBL	; READ SECOND NIBBLE
	ORA	С	; COMBINE NIBBLES TO FORM HEX BYTE
	MOV	C,A	; SAVE BYTE IN C
	ADD	D	; ADD TO CHECK SUM
	MOV	D,A	; SAVE NEW CHECK SUM
	VOM	A,C	; RESTORE DATA BYTE TO ACCUM

RNBB1:	CALL	RJ	;DO READER INPUT
	JC	RNBER	; IF CARRY SET, ERROR
	ANJ	ZFH	; MASK OFF PARITY BIT
	CALL	NIBBL	; READ NIBBLE FROM ASCII HEX BYTE
	JC	RNBR	; JUMP ON ERROR
	RET		
RNBFR:	POP	Н	; RETURN TO MONITOR ON ERROR
	POP H		
	POP H		
	RET		

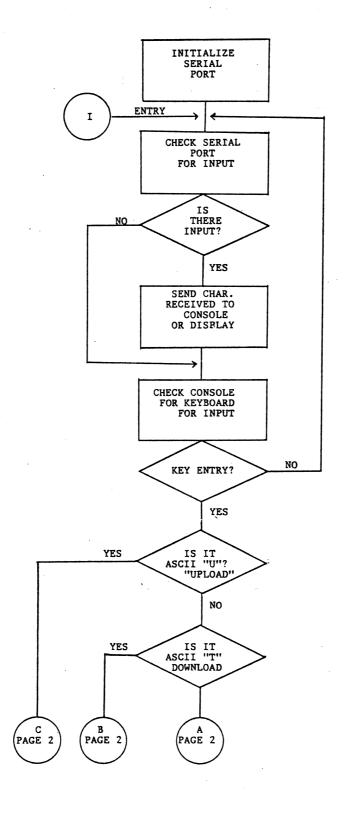
6809 SAMPLE PROGRAM TO GENERATE MOTOROLA HEX FORMAT

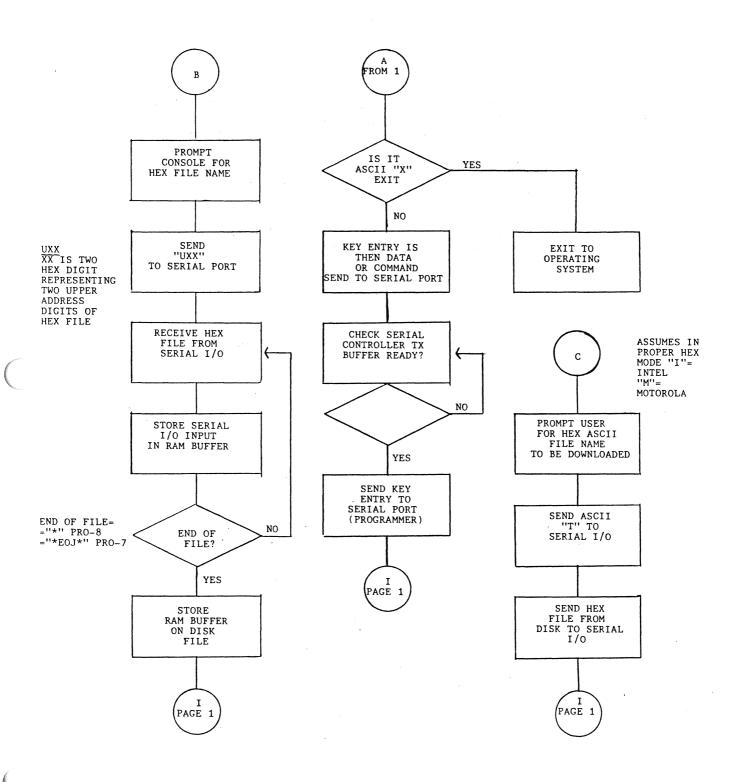
FC11 816 FC14 827 FC14 827 FC18 827 FC18 827 FC18 827 FC19 FC19 FC19 FC19 FC19 FC19 FC19 FC19	01A1 F019 F019 F019 F01000100044444 F F010000000000000000000000000000000000		PBLBYSHBDDCCHSRS SB PSSSSBBB SRS SB PSSSSBBBBBBCCCHSBCBBBBBBBBBBBBBBBBBBBBBB	LODERR A S+ S LOAD16	INPUT BYTE CNT PUSH COUNT ON STK (V)C-CODE SET, ILLEGAL HEX INPUT LOAD ADDR (V) C-CODE SET, ADDR NOT HEX PUSH ADDR ON STK LOAD MSB OF ADDR AS CKSUM BYTE ADD LSB OF ADDR TO CKSUM ADD BYTE COUNT BYTE TO CKSUM \$FC37 DEC BYTE COUNT 2 TO BYPASS ADDRESS BYTES PUSH CKSUM ON STK INPUT DATA BYTE - 2 HEX CHARS POP CKSUM FROM STK (V) SET, DATA BYTE NOT HEX PUSH DATA BYTE ON STK ADD DATA TO CKSUM, AUTO INC STK DEC BYTE COUNT 1 IF BYTE COUNT 1 IF BYTE COUNT ZERO, CHECK CKSUM SAVE DATA BYTE IN MEM GET NEXT DATA BYTE ERR COND, ZERO CKSUM ADJUST STK (REMOVE BYTE CNT) CKSUM OK? IF SO, LOAD NEXT LINE LOAD "?", ERR INDICATOR OUTPUT TO TERM TURN ECHO ON \$FC5F LOAD "DC3" CASS READ OFF COD OUTPUT IT
FC64 6F FC66 17 FC69 34 FC6B 29 FC6D AC FC6F 25 FC71 30 FC73 AF FC75 86	E2 00B7 30 4A 62 46 01 E4 12	PUNCH	* CLR LBSR PSHS BVS CMPX BCS LEAX STX LDA	-S IN2ADR X.Y PUNEXT 2.S PUNEXT 1.X #\$12	CLEAR RES BYTE ON STK GET BEG & END ADDR SAVE ADDR'S ON STK (V) C-CODE SET, EXIT PUNCH CMP BEG TO END ADDR IF BEG>END, EXIT PUNCH INC END ADDR STORE END ADDR ON STK LOAD 'DC2' PUNCH ON CODE

FC77 17 FC7A EC FC7C A3 FC7E 27	0165 E4 62 06	PUNCH2	LBSR LDD SUBD BEQ	OUTCH .S 2.S PUNCH3	OUTPUT TO TERM LOAD END ADDR IN D REG SUB BEG FROM END SAME, PUNCH 32 BYTES OF DEFAULT LESS THAN 32 BYTES?
FC80 1083 FC84 23 FC86 C6 FC88 E7 FC8A 8E FC8D 17 FC90 CB	0020 02 20 64 FEDC 010E 03	PUNCH3 PUNCH4	CMPD BLS LDB STB LDX LSBR ADDB	#\$20 PUNCH4 #\$20 4.S #MSG20 PSTRNG #3	PUNCH THAT MANY BYTES LOAD BYTE CNT OF 32 STORE ON STK AS BYTE CNT POINT TO MSG "S1" PRINT MSG
FC92 1F FC94 17 FC97 AE FC99 17 FC96 EB FCA0 EB FCA2 A6 FCA4 17 FCA7 6A FCA9 26 FCAB 53	98 00DB 62 00CE 62 63 84 80 00CB 64 F5	PUNCHL	ADDB TFR LBSR LBSR ADDB ADDB LDA LBSR DEC BNE COMB	B,A OUT2H 2,S OUT4H 2,S 3,S ,X OUT2H 4,S PUNCHL	ADD 3 BYTES TO BYTE CNT GET BYTE CNT I A-REG TO PUNCH OUTPUT BYTE COUNT LOAD BEG ADDR PUNCH ADDR ADD ADDR MSB TO CKSUM ADD ADDR LSB TO CKSUM ADD DATA BYTE TO CKSUM LOAD DATA BYTE TO PUNCH OUTPUT DATA BYTE DEC BYTE CNT NOT DONE, PUNCH NEXT BYTE
FCAC 1F FCAE 17 FCB1 AF FCB3 AC FCB5 26 FCB7 86 FCB9 17 FCBC 32 FCBC 39	98 00C1 62 E4 C3 14 0123 65	PUNEXT	TFR LBSR STX CMPX BNE LDA LBSR LEAS RTS	B,A OUT2H 2,S ,S PUNCH2 #\$14 OUTCH 5,S	1'S COMPLIMENT CKSUM BYTE PUT IN A REG TO PUNCH OUTPUT CKSUM BYTE SAVE X REG IN STK AS NEW PUNCH ADD COMPARE TO END ADDR \$FCB5 PUNCH NOT DONE, CONT LOAD "DC4" PUNCH OFF CODE OUTPUT IT READJ STK PTR

APPENDIX B

SOFTWARE DRIVERS


TABLE OF STANDARD ASCII CODES	•	•	B-1
GENERALIZED SOFTWARE DRIVER FLOWCHART	•	•	B-2
TRS-80 COLOR SOFTWAER DRIVER			
DOWNLOAD PROGRAM	_		B-4


ASCII CODES (HEXIDECIMAL)

_				B7 B6 B5 B4		0000	0 0 0 1	0 0 1 0	0 0 1 1	0 1 0 0	0 1 0 1	0 1 1 0	0 1 1 1
_	в3	BII B2	VARY B1	вО	HEX \$	0	1	2	3	4	5	6	7
	000000001111111111111111111111111111111		0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1	0123456789ABCDEF	NOKXTOKL STTONKL ENCL BBHLYFRO1	DLE DCC4 NAYBN BC RSS US	P!# #\$%&\()* + • - •/	0123456789:;<=>?	RABCDEFGHHJKLMZO	PQRSTU>WXYZL\I	A B C D E F G H I J K L M N O	P Q R S T U V W X Y Z LJ J \ BUB

NUL	NULL	DLE	DATA LINK ESCAPE
SOH	START OF HEADING	DC 1	DEVICE CONTROL 1
STX	START OF TEXT	DC2	DEVICE CONTROL 2
ETX	END OF TEXT	DC3	DEVICE CONTROL 3
EOT	END OF TRANSMISSION	DC4	DEVICE CONTROL 4
ENQ	ENQUIRY	NAK	NEGATIVE ACKNOWLEDGE
ACK	ACKNOWLEDGE	SYN	SYNCHRONOUS IDLE
BEL	BELL		END OF TRANSMISSION
BS	BACK SPACE	CAN	CANCEL
HŤ LF	HORIZONTAL TABULATION	ĒM	END OF MEMORY
LF	LINE FEED	SUB	SUBSTITUTE
VT FF	VERTICAL TABULATION	ESC	ESCAPE
FF	FORM FEED	FŠ	FILE SEPARATOR
CR	CARRIAGE RETURN	GS	GROUP SEPARATOR
SO ST	SHIFT OUT	RS	RECORD SEPARATOR
ST	SHIFT IN	IIS	INTT SEPARATOR

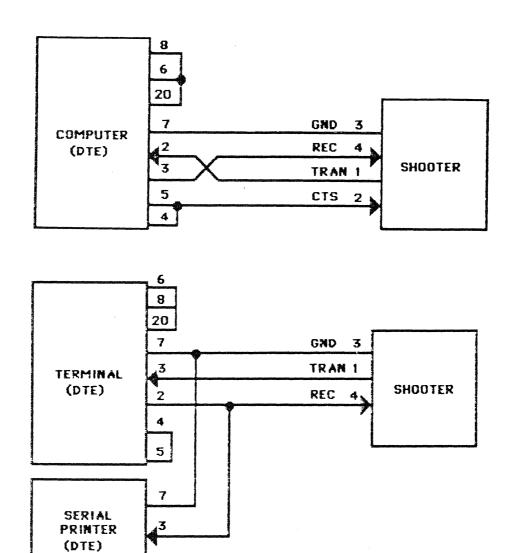
GENERALIZED SOFTWARE DRIVER FLOW CHART

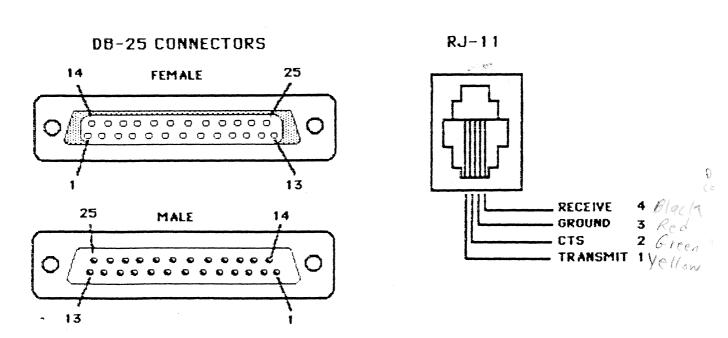
CN40186

TRS-80 COLOR COMPUTER

DOWNLOAD PROGRAM

This basic program will download from RAM (source) addresses as specified with selectable destination address. The "Device Command Line" as entered is sent in front of the Motorola format file (add "T" for DOWNLOAD) to allow control of the PROM Programmer. The file ends with "S9".


The program as supplied should be compatible with Extended or Non-Extended TRS-80 Color Systems. The comment lines show changes which will make the program faster with Extended BASIC.


To use your Color Computer as a terminal, you can utilize standard terminal programs such as the "SUPER COLOR" provided by Microware.

```
10 ' PROGRAM TO DOWNLOAD MEMORY FROM COLOR COMPUTER
20 ' MEMORY IN MOTOROLA HEXADECIMAL FORMAT
30 'THIS PROGRAM IS COMPATIBLE WITH EXTENDED
40 ' OR NON-EXTENDED COLOR BASIC
50 INPUT "BAUD RATE = "; V
60 \text{ V=INT} (.55500/V-4.5)
70 \text{ Vl} = INT(V/256): POKE 149, Vl
80 \text{ V=V-}256*\text{V1:POKE } 150,\text{V}
85 PRINT #-2, "M"
90 INPUT "SOURCE" STARTING ADDRESS (HEX) = "; V$
100 GOSUB 270:SS=V
110 INPUT "SOURCE ENDING ADDRESS (HEX) = "; V$
120 GOSUB 270:SE=V
130 INPUT "DESTINATION START ADDRS (HEX) = ":V$
140 GOSUB 270:DS=V
150 INPUT "DEVICE COMMAND LINE
160 \text{ PRINT } \#-2.\text{V}$
165 FOR I = 1 TO 1000: NEXT I
170 L=SE-SS: IF L>15 THEN L=15 DECIDE LINE LENGTH
180 IF L<0 THEN 260
190 V=L+4:CS=0:PRINT #-2, "S1"; GOSUB 390 'OPEN LINE
200 V=DS:GOSUB 340'DO ADDRESS
210 FOR SS=SS TO SS+L
220 V=PEEK(SS):GOSUB 390:NEXT SS
230 V=256*INT(CS/256)-CS+255
240 GOSUB 390: PRINT #-2
250 DS=DS+L+1:GOTO 170
260 PRINT #-2, "S9030000FC": END
270 ' HEX STRING TO VALUE SUBROUTINE
280 ' FOR EXTENDED COLOR BASIC, USE INSTEAD
290 ' V=VAL ("&H"+V$):RETURN
300 \text{ V} = 0:\text{FOR I} = 1 \text{ TO LEN}(V\$)
310 V1=ASC (MID$ (V$, I, 1)) -48
320 IF V1>16 THEN V1=V1-7
330 V=V*16+V1:NEXT I:RETURN
340 ' PRINT 4 HEX DIGITS SUBROUTINE
350 \text{ Vl} = INT (V/256) : V2 = V - 256 * V1 : V = V1
360 GOSUB 390 'DO 2 DIGITS
370 V=V2:GOSUB 390 'DO OTHERS
380 RETURN
390 ' PRINT 2 HEX DIGITS SUBROUTINE
400 CS=CS+V 'DO CHECKSUM
410 ' WITH EXTENDED BASIC, NOW USE
420 ' IF V<16 THEN PRINT #-2, "0";
430 PRINT #-2, HEX$ (V); : RETURN
440 \text{ Vl} = INT (V/16) : V = V - 16 * V1
450 GOSUB460: V1=V: GOSUB460:RETURN
460 PRINT #-2, MID$ ("0123456789ABCDEF", V1+1,1);:RETURN
```

APPENDIX C SERIAL CONNECTIONS

SERIAL RS-232C WIRING DIAGRAM C-1

Market and apply the first transfer

APPENDIX D

EPROMS

\mathtt{WHAT}	ARE	EPRO	OMs	•	•	•	•	•	•	•	•	•	•	•	•	D-1
EPROM	MAN I	NUFAG	CTUE	RER	(GUI	DE	;	•	•	•	•	•	•	•	D-4
EPROM	TOT	TITOL	CIII	DE												D-6

GENERAL EPROM/EPROM PROGRAMMING HANDBOOK

WHAT ARE EPROMS?

This question may be a very obvious to almost anyone who has puchased a programmer. However for the very recent to the field, EPROMs are MOS semiconductor memories used mostly in conjunction with a microprocessor. The instructions and data for the micro (Z-80, 8080, 6800 as examples) are stored permanently in the EPROM. EPROM is the acronym for ERASABLE PROGRAMMABLE READ ONLY MEMORY. Once a UV EPROM has been programmed, it can only be erased by an ULTRAVIOLET source (Logical Devices QUV-T8 or equivalent). For this reason most computers use EPROMs to store vital computer instructions that cannot be lost after power-down. Since EPROMs cannot be written to by the microprocessor directly, the computer system will need RAM and DISK memory for temporary storage as well as application data and programs.

Many companies use EPROMs to store application progams usch as GAMES or computer utility programs on EPROMs packaged in cartridges. These EPROMs contain machine language instructions for the particular microprocessor used in the computer. User often need not to be concerned with the contents of the EPROMs. However, for the technically inclined, who want to decipher the code and make his version of the program, the EPROM must be read into an EPROM PROGRAMMER (such as the Logical Devices PROMPRO series). Once the EPROM has been read into the programmer, the data can be sent-up to a computer from the serial port for storage on the disk drive.

At this point user must be very familiar with the language of the microprocessor. The uploaded file can be disassembled by a software development tool called a "DISASSEMBLER". This process converts the HEX machine instructions to a series of text instruction mnemonics representing the program code. assembled code can be entered in a text editor or a word processor for alterations. Once the changes have been made to the The program can be converted back to machine code level by using a software development tool called an "ASSEMBLER". output of the assembler that is generally either in an absolute HEX or in a formatted HEX form is stored back on the disk. file now is to be sent back to the programmer by an operation called "DOWNLOAD". The EPROM programmer generally accepts a file in a formatted HEX form. There are two industry standards; INTEL HEX or MOTOROLA HEX. Both formats are similar. After the PROMPRO programmer receives the ASCII HEX file, it automatically extracts the data section (Machine HEX Code) and stores it in its RAM buffer. A blank EPROM (one that contains all "l" pattern) is placed on the programmer socket and the RAM data is programmed on the EPROM.

After program operation the EPROM is removed and placed either in the cartridge or the EPROM socket inside of the computer. Hopefully that you did not hmake any mistakes in writing you program, and after you have powered up your computer everything works to you satisfaction.

You must make sure that anytime that you deal with another company's software program, that you understand all of the copyright laws and by altering those programs you are not violating any of those laws.

EPROMs are fabricated in a variety of memory sizes, however often in an 8-bit organization. The standard memory sizes available today are the following:

GENERIC TYPE	MEMORY SIZE	PACKAGE
2716	2048 X 8	24 PIN
2732	4096 X 8	24 PIN
2764	8192 X 8	28 PIN
27128	16384 X 8	28 PIN
27256	32768 X 8	28 PIN

EPROMs also are available with several choices of access time speeds. The dash number after the generic type designation on the EPROM often indicates the speed. You must consult the data sheet for the particular manufacturer to insure that the EPROM you are using meets the access-time required by your computer. The PROMPRO-8 EPROM programming equipment is indifferent to the EPROM access-time and can program any speed EPROM.

EPROMs can be erased and reprogrammed many times, although as the number of eraser time increases so does the time required to erase them. A new EPROM with a good quality Quartz window can take as little as seven minutes to erase with a QUV-T8/Z EPROM eraser.

Most of the EPROMs today operate with a power supply voltage (VCC) of 4.75 - 5.25 with 5.00 nominal value. VCC is spplied to pin 24 for 24 pin packages and pin 28 for 28 pin packages.

In order to program an EPROM, it is required to supply a high voltage to one of the signal pins (PROG) and pulse one other or the same pin for a period of 50 milliseconds. While applying the proper address and data to the EPROM.

EPROMs are extremely sensitive to static electricity. It is imperative that you always use conductive foam pad when

transporting EPROMs. You must also use a grounding strap or grounding bar whenever working with EPROMs or the programming equipment directly.

Most EPROMs, when shipped from the factory, are already erased (all FF pattern). It is a good idea however, to check all EPROMs for the blank pattern prior to programming.

EPROMs are also very sensitive to power glitches. If either severe storms or unusually high power interruptions are occurring in your area, it is advisable to postpone PROM programming until conditions improve. Remove EPROMs from the equipment during power up and power down operations.

FADING

Fading occurs on EPROMs that are either poorly programmed or defective. EPROMs require a certain minimum number of electrical charges in the floating gate of the FET switches. These charges tend to gradually leak out over an extended period of time, if the EPROM programming equipment does not supply the required amount of charges. The EPROM may initially program and verify and even work in the circuit for several months until the EPROM bits start intermitantly changing state. Some EPROM programming equipment manufacturer's may promise fast programming time on EPROMs to sell their equipment without consideration to the proper programming algorithms. Logical Devices, Inc. very strongly adheres to the manufacturer's specifications to maximize both the field reliability and the longevity of your EPROMs.

EPROM TYPES

Within the same generic family there may be several types of EPROMs that very as far as the programming voltage requirements. Presently there are two common programming voltage levels - 25 volts and 21 volts. Some newer devices require a 12.5 programming voltage.

An example of this is the 2732 EPROM that requires a 25 volt programming voltage while a 2732A EPROM requires a programming voltage of 21 volts. Trying to program using the wrong programming voltage can destroy the device.

FAILURES

EPROMS have a much better programming yield than Bipolar PROMS. A user must have a 5% or less programming yield failure rate for EPROMS. If the failure rate exceeds 5%, the user should suspect either the EPROMS or the equipment.

PURCHASING EPROMS

Logical Devices' recommends that you select reliable sources for your components. To avoid problems, refrain from buying EPROMs from either uncertain origins or questionable surplus establishments. Leading reputable sources are:

Hamilton Avnet Hallmark Arrow Electronics Hammond Electronics

Consult your local telephone directory for local branch offices of the above distributors.

EPROM PINOUTS

MANUFACTURERS OF PROGRAMMABLE READ-ONLY MEMORIES

•		
ADVANCED MICRO DEVICES 901 THOMPSON PL SUNNYVALE. CA 94086 (408) 732-2400	AMERICAN MICROSYSTEMS INC 3800 HOMESTEAD RD SANTA CLARA, CA 95051 (408) 246-0330	ELECTRONIC ARRAYS 550 E MIDDLEFIELD RD MT VIEW, CA 94043 (415) 964-4321
FAIRCHILD SEMICONDUCTOR 464 ELLIS ST MT VIEW, CA 94042 (415) 962-5011	FUJITSU MICROELECTRONICS 2945 OAKMEAD VILLAGE CT SANTA CLARA, CA 95051 (408) 729-1700	GEN INSTRUMENT CORP MICROELECTRONIC DIV 600 W JOHNS ST HICKSVILLE, NY 11802 (516) 733-3000
HARRIS SEMICONDUCTOR BOX 883 MELBOURNE, FL 32901 (305) 724-7407	HITACHI AMERICA LTD 1800 BERING DR SAN JOSE, CA 95112 (408) 292-6404	HUGHES AIRCRAFT CO SOLID ST PROD DIV 500 SUPERIOR AVE NEWPORT BCH. CA 9266: (714) 759-2411
INTEL CORP 3065 BOWERS AVE SANTA CLARA, CA 95051	INTERSIL INC 10710 N TANTAU AVE CUPERTINO, CA 95014	MOSTEK CORP 1215 W CROSBY DR CARROLLTON, TX 75006
MITSUBISHI/MEICO 3030 E VICTORIA ST COMPTON. CA 90221 (213) 537-7131	MONOLITHIC MEMORIES INC 1165 E ARQUES AVE SUNNYVALE, CA 94086 (408) 739-3535	MOTOROLA INC INTERGRATED CIRC DIV 3501 ED BLUESTEIN BL AUSTIN, TX 78721 (512) 928-6000
NATIONAL SEMICONDUCTOR 2900 SEMICONDUCTOR DR SANTA CLARA. CA 95051 (408) 737-5000	NEC MICROCOMPUTERS INC 173 WORCESTER ST WELLESLEY, MA 02181 (617) 239-1910	NITRON INC 10420 BUBB RD CUPERTINO, CA 95014 (408) 255-7550

OKI SEMICONDUCTOR SUITE 405 SANTA CLARA, CA 95051 (408) 984-4842

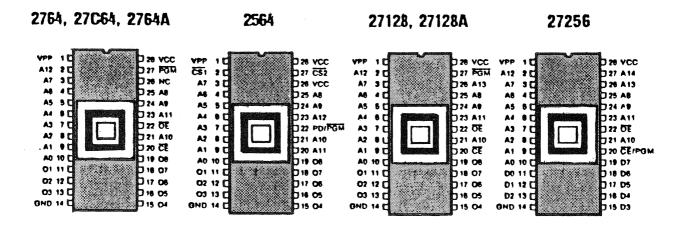
PLESSEY SEMICONDUCTOR 1641 KAISER AVE IRVINE, CA 92714 (714) 540-9979

PANASONIC 1 PANASONIC WAY SECAUCUS, NJ 07094 (201) 348-7276

RAYTHEON SEMICONDUCTOR 350 ELLIS ST MT VIEW, CA 94042 (415) 968-9211

SGS-ATES SEMICONDUCTOR CRP 240 BEAR HILL RD WALTHAM, MA 02154 (617) 890-6688 RCA SOLID STATE DIV RTE 202 SOMERVILLE. NJ 08876 (201) 685-6000

SIGNETICS CORP 811 E ARQUES AVE SUNNYVALE. CA 94086 (408) 739-7000


TEXAS INSTRUMENTS INC BOX 225012, M/S 308 DALLAS, TX 75265 SYNERTEK BOX 552 SANTA CLARA, CA 95051 (408) 988-5611

TOSHIBA AMERICA INC 2151 MICHELSON DR IRVINE. CA 92715 (714) 955-1155

XICOR INC 1221 INNSBRUCK DR SUNNYVALE. CA 94086 (408) 734-3041 ZILOG 10460 BUBB RD SUNNYVALE, CA 94086 (408) 446-4666

EPROM PIN-OUTS

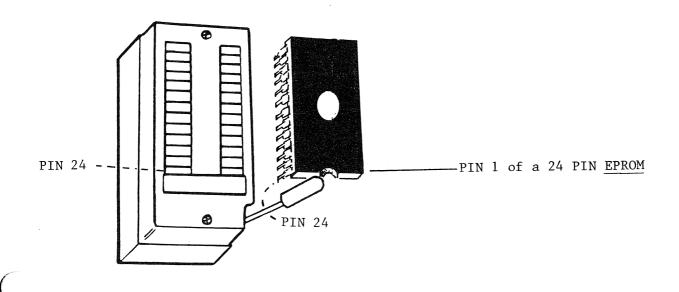
2516, 2716, 27C16 2732, 27C32, 2732A MCM 68764, 68766 25L32, 2532 A7 10 A6 20 A5 30 A7 1 0 D24 VCC D24 VCC 24 VCC D 24 VCC A7 1 A8 2 0 D 23 A8 A6 20 D 23 A8 D23 A8 D 23 AB A6 2 0 A5 3 0 D 22 A9 A5 30 D 22 A8 D 22 AV A5 o d D22 A9 A4 4 C 21 A12 A4 3C 21 VPP A4 4 C 21 A11 A9 4 C 21 VPP A) 5 C D 20 EIVPP 20 DEIVPP D20 PD/PGM A3 5 D 20 OE A3 5 C A3 B C A2 6 C D 10 AID A2 80 D 10 A10 A2 8 C 19 A10 A2 D 19 A 10 A1 7 0 318 A11 A1 70 D 18 CE A1 7 5 18 CE D18 A11 A1 A0 8 C 7 17 OB A0 80 J 17 DE A0 8 E J 17 O8 217 00 A0 81 01 . 16 07 01 9 d 18 07 01 10 16 07 01 9 10 07 02 10 0 D 15 06 O2 10 C D 15 O6 O2 10 D 15 06 O2 10 C D 15 C6 014 OS 013 O4 D14 05 03 11 d 14 05 03 11 0 03 11 1 714 05 OND 12 C D 13 O4 OND 12 0 b 13 04 GND 12 0 13 04 GND 12 0

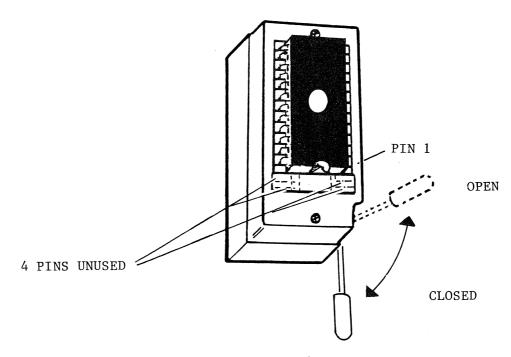
EPROM PIN-OUT GUIDE

EPROM Type	VCC PIN	GRND PIN	VPP PIN	VPP VOLTAGE	PGM PULSE	PGM WITH PULSE	PIN OUTPUT ENABLE
2716	24/26	12/14	21/23	25V ± 1V	18/20	50ms	20/22
2732	24/26	12/14	20/23	25V ± 1V	20/22	50ms	20/22
2732A	24/26	12/14	20/22	21V ± 1V	20/22	50ms	20/22
2764	28	14	1	21V±v	27	50ms	20/22
2564	28	14	1	21V±V	22	50ms	20/22
27128	28	14	1	21V±V	27	50ms	20/22
27256	28	14	1	12.5V ± 5V	27	•	20/22
68764	24/26	12/14	20/22	25V ± 1V	20/22	*	20/22
2532	24/26	12/14	20/22	25 ± 1V	20/25	50ms	20/22

PIN NUMBERS ARE BOTH INDICATED FOR BOTH 24 PIN AND 28 PIN SOCKETS BY THE "/".

2764A, 27128A 12.5 VPP VPP = PROGRAM VOLTAGE


VCC = SUPPLY CURRENT 5V ± .25V


APPENDIX E

HOW TO INSERT EPROMS IN THE ZIF SOCKETS

LOCATOR DIA	AGRAM FOR	24-PIN	EPROMS	IN A	
28-P	IN ZIF SO	CKET			E-1
28-PIN ZIF	SOCKET OF	PERATION	1		
WITH	ZIF LOCK				E-2

INSERTING A 24 PIN DEVICE IN SOCKET A

ZIF SOCKET 1

1.0 DESCRIPTION

To avoid the mis-socketing of 24-pin EPROMs in the 28-pin ZIF socket, a ZIF-LOCK is provide with this EPROM Programmer. When properly installed, the ZIF-LOCK effectively covers pins 1, 2, 27, and 28 of the 28-pin ZIF socket.

1.1 INSTALLATION

NOTE: Refer to Figure 1 when installing the ZIF-LOCK.

- Be sure the ZIF Socket handle is in the up (release) position.
- 2. Snap the ZIF-LOCK in place over pins 1, 2, 27, and 28 by first inserting one end and then the other. The ZIF-LOCK should snap firmly into place.

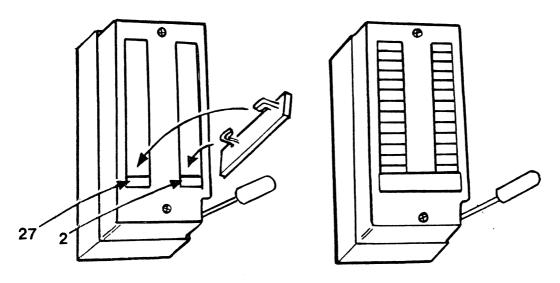


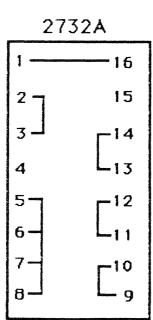
Figure 1. ZIF-LOCK Installation

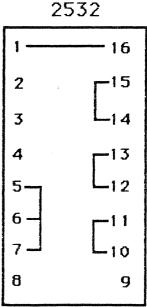
1.2 REMOVAL

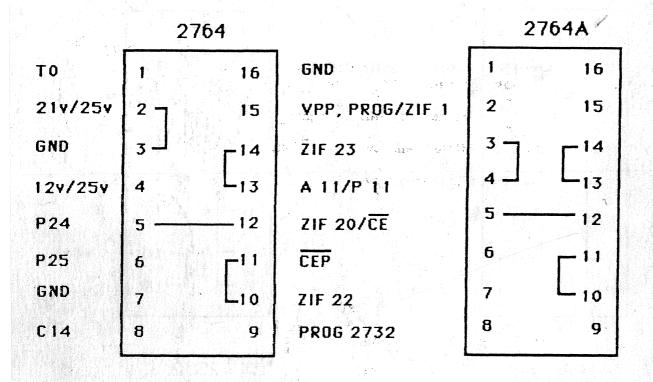
---- CAUTION ----

Be sure the ZIF socket handle is in the release position.

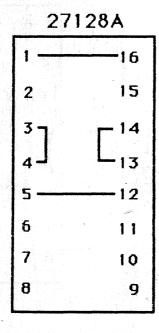
 Remove the ZIF-LOCK simply by lifting one end and then the other. The ZIF-LOCK should lift easily from the socket.

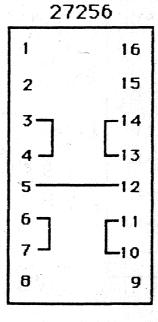

APPENDIX F CONFIGURATORS

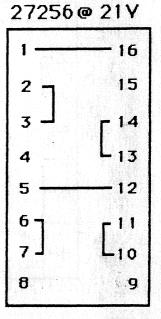

TANDARD CONFIGURATOR	SET				F-1
----------------------	-----	--	--	--	-----


STANDARD CONFIGURATOR SET

	27	16		2732
то.	1	16	GND	116
21v/25v	2	r 15	VPP, PROG/ZIF 1	2 15
GND	3	L ₁₄	ZIF 23	3 - 14
12v/25v	4	- 13	A 11/P 11	4 - 13
P24	5-	_12	ZIF 20/CE	5 7 7 12
P25	6-	<u> </u>	CEP	6 - 11
GND	7_	_10	ZIF 22	7 - 10
C14	8	9	PROG 2732	8 — 6
!	George Control of Cont	ano en		Language and the second
	273	2A		2532




STANDARD CONFIGURATOR SET



1	16
· 2 ¬	15
_з Ј.	۲14
4	L ₁₃
5	12
6	F11
7 8	L10

