
I
I
I

I
i

I
f

I
I
I
,
I
I

GETTING STARTED
WITH BATCH (TOPS-20)

Order Number: AA-C781 B-TM

August 1978

This document describes to the reader how to get
started with the TOPS-20 GALAXY Batch System.

This document supersedes the document Getting Started
With Batch, Order Number DEC·20-0BGSA·A·D, and
its update DEC·20·0BGSA·A·DN 1.

OPERATING SYSTEM: TOPS·20 Version 3A

SOFTWARE VERSION: GALAXY Version 3

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

r
I
I

First Printing, November 1976
Revised: January 1978
Revised: August 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1976, 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-ll

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-ll
TMS-ll
ITPS-10

,I

CONTENTS

Page

PREFACE v

REFERENCES vi

CONVENTIONS USED IN THIS MANUAL vii

SYMBOLS USED IN THIS MANUAL viii

GLOSSARY Glossary-l

CHAPTER 1

1.1
1.2
1. 2.1
1. 2.2
1. 2.3
1.3

CHAPTER 2

2.1
2.1.1
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.4

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7

3.2.7.1
3.2.7.2

INTRODUCTION

WHAT BATCH IS
HOW TO USE BATCH

Running Your Job
Receiving Your Output
Recovering from Errors

SUMMARY

ENTERING A BATCH JOB FROM A TERMINAL

CREATING THE CONTROL FILE
Format of Lines in the Control File

SUBMITTING THE JOB TO BATCH
Switches
Examples of Submitting Jobs

BATCH COMMANDS
The @IF Command
The @ERROR Command
The @NOERROR Command
The @GOTO Command
The @BACKTO Command

SPECIFYING ERROR RECOVERY IN THE CONTROL
FILE

ENTERING A BATCH JOB FROM CARDS

BATCH CONTROL CARD FORMAT CONVENTIONS
BATCH CONTROL CARD COMMANDS

Starting a Job - The $JOB Card
Identifying Yourself - The $PASSWORD Card
Ending a Job - The $EOJ Card
Creating a File - The $CREATE Card
Compiling a Program - The $-language Card
Executing a Program - The $EXECUTE Card
Executing a Program with Data - The $DATA
Card
Reading from a Spooled Card-Reader File
Naming Data Files on the $DATA Card

iii

1-1

1-1
1-2
1-2
1-3
1-3
1-3

2-1

2-2
2-3
2-4
2-5
2-6
2-8
2-8
2-9
2-9
2-10
2-11

2-12

3-1

3-2
3-2
3-2
3-5
3-6
3-6
3-7
3-10

3-10
3-12
3-14

r
!

CHAPTER

CHAPTER

INDEX

FIGURE

3.2.8
3.2.9
3.2.10

3.3
3.4

3.4.1

3.5

4

4.1
4.2
4.3
4.4
4.4.1
4.4.2

5

5.1
5.2

3-1
3-2
3-3
3-4
3-5

3-6
3-7
3-8
4-1
5-1
5-2
5-3

5-4

CONTENTS (CONT.)

Page

End of Data Input - The $EOD Card 3-16
System Commands - The $TOPS20 Card 3-16
Error Recovery - The $ERROR and $NOERROR
Cards 3-18

SETTING UP YOUR CARD DECK 3-20
PUTTING COMMANDS INTO THE CONTROL FILE FROM
CARDS 3-21

Card Decks for Programs that Do Not Have
Special Control Cards 3-22

SPECIFYING ERROR RECOVERY IN THE CONTROL
FILE 3-26

INTERPRETING YOUR PRINTED OUTPUT 4-1

OUTPUT FROM YOUR JOB 4-1
BATCH OUTPUT 4-1
OTHER PRINTED OUTPUT 4-2
SAMPLE BATCH OUTPUT 4-2

Sample Output of a Job from a Terminal 4-2
Sample Output of a Job on Cards 4-5

EXAMPLES OF COMMON TASKS WITH BATCH 5-1

USING THE TERMINAL TO ENTER JOBS 5-1
USING CARDS TO ENTER JOBS 5-11

Index-l

FIGURES

Batch Card Deck Using TOPS-20 Commands
Typical Program Card Deck
Use of Control Cards to Compare Two Card Decks
BASIC Program Card Deck with Integral Data
BASIC Program Card Deck with Provisions
for Terminal Data Input
Card Deck with Error Statement
Card Deck with Error Recovery Program
Card Deck Using GOTO Statement
COBOL Print Program Card Deck
ALGOL Job Entry Card Deck
BASIC Job Entry and Run Card Deck
FORTRAN Card Deck That Prevents
Execution on Error
COBOL Program Card Deck Using Data
From Magnetic Tape

iv

Page

3-18
3-20
3-22
3-24

3-25
3-26
3-28
3-30
4-5
5-11
5-14

5-17

5-21

",--",.

I
I
!
I,

I

PREFACE

Getting Started With Batch (TOPS-20) has been written for you, if you
have a rudimentary knowledge of Batch processing or are familiar with
at least one of the following:

1. a programming language

2. the timesharing services of the DECSYSTEM-20

3. card processing on other systems

HOW TO USE THIS MANUAL

If you input your jobs through interactive terminals, the following
chapters are recommended:

Chapter 1 Introduction

Chapter 2 Entering a Batch Job from a Terminal

Chapter 4 Interpreting Your Printed Output, Section 4.4.1

Chapter 5 Using the Terminal to Enter Jobs, Section 5.1

If you input your jobs from cards, the following chapters are
recommended:

Chapter 1 Introduction

Chapter 3 Entering a Batch Job from Cards

Chapter 4 Interpreting Your Printed Output, Section 4.4.2

Chapter 5 Using Cards to Enter Jobs, Section 5.2

v

REFERENCES

Not all of the commands and card formats for Batch are described in
this manual. If you want to know more about Batch you can refer to
the DECSYSTEM-20 (TOPS-20) Batch Reference Manual. In addition, all
components of Batch processing are referred to as Batch in this
manual. For a complete description of these components, refer to the
DECSYSTEM (TOPS-20) Batch Reference Manual.

An elementary description of the basic TOPS-20
found in the document Getting Started with
The DECSYSTEM-20 (TOPS-20) User's Guide
descriptions of the TOPS-20 commands available

system commands can be
DECSYSTEM-20 (TOPS-20).

contains additional
to you.

Error messages that occur while Batch is processing but which are not
defined in this manual are explained in applicable system manuals.
For example, if your FORTRAN program fails to compile successfully,
the error message you receive from the FORTRAN compiler can be found
in the DECSYSTEM-20 (TOPS-20) FORTRAN Reference Manual. For errors
that may occur in a Batch process but not in the source program being
used, you can refer to the DECSYSTEM-20 (TOPS-20) Batch Reference
Manual.

vi

CONVENTIONS USED IN THIS MANUAL

The following is a list of symbols and conventions used in this
manual.

dd-mmm-yy hh:mm

filename.typ.gen

hh:mm:ss

jobname

n

t

x

A set of alphanumeric characters that indicates
date and time1 e.g., 2-APRIL-78 15:30 or 2-APR-78
13:30. Time of day is represented by a 24-hour
notation1 15:30 means 3:30 P.M.

The name, type, and generation number of a file.
The name can be 1 to 39 alphanumeric characters in
length and the type can also be 1 to 39
alphanumeric characters in length. The name and
type must be separated by a period. The
generation number can be any positive integer, up
to and including 2(17-1). The type and the
generation numbers are optional, but if both are
present, they must be separated by a period.
Refer to the Glossary for the definitions of these
terms.

A set of numbers representing time in the form
hours:minutes:seconds. Leading zeros can be
omitted, but colons must be present between two
numbers. For example, 5:35:20 means 5 hours, 35-
minutes, and 20 seconds.

The name that is assigned to a job. It can
contain up to six characters. Refer to the
Glossary for the definition of a job.

A number that specifies either a required number
or an amount of things such as cards or
line-printer pages. This number can contain as
many digits as are necessary to specify the amount
required, e.g., 5, 13, 219, etc.

A number representing an amount of time, usually
in minutes. This number can contain as many
digits as are necessary to specify the amount of
time required, e.g., 7, 40, 120, etc.

An alphanumeric character.

vii

r
I

I
I
I
I

Symbol

@TYPE

~

~

~

~

OQ

[]

()

SYMBOLS USED IN THIS MANUAL

Meaning

Anything you type on your terminal appears in red.
Anything the system prints on your terminal appears
in black.

Press the key labeled RETURN or CR.

Press the key labeled DELETE or RUBOUT.

Press the key labeled ESC, ESCAPE, ALT, or PRE.

Press the key labeled TAB.

Press the space bar once.

Brackets enclose all optional arguments.

Parentheses enclose the name or value of an argument.

viii

~

Term

ALGOL

Alphanumeric

ASCII. Code

Assemble

Assembler

Assembly Language

Assembly Listing

BASIC

Batch Processing

GLOSSARY

Definition

ALGOrithmic Language. A scientifically oriented
language that contains a complete syntax for
describing computational algorithms.

Any of the letters of the alphabet (uppercase A
through Z and lowercase a through z) and the
numerals (0 through 9).

American Standard Code for Information
Interchange. Its 7-bit code is used to create a
series of alphanumeric or special symbols.

To prepare a machine-language program from a
symbolic-language program by substituting
absolute operation codes for symbolic operation
codes and absolute or relocatable addresses for
symbolic addresses.

A program which accepts symbolic code and
translates it into machine instructions, item by
item. The assembler for TOPS-20 is called the
MACRO assembler.

The machine-oriented symbolic programming
language. The assembly language for TOPS-20 is
MACRO. MACRO statements are equivalent to one
or more machine instructions.

A printed list which is the byproduct of an
assembly run. It lists in logical-instruction
sequence all details of a routine showing the
coded and symbolic notation next to the actual
assigned notations established by the assembly
procedure.

Beginner's All-pu~pose
Code. A timesharing
language that is used for
between terminal units
computer centers~ BASIC
terms, is relatively easy
range of applications.

Symbolic Instruction
computer programming
direct communication

and remotely located
employs English-like

to use, and has a wide

The technique whereby a computer executes one or
more programs in your absence.

Glossary-l

Term

Card

Card Column

Card Field

Card Row

Central Processing
Unit (CPU)

Character

COBOL

Command

Compile

Compiler

Computer

Computer Operator

Continuation Card

Definition

A punched card with 80 vertical columns
representing 80 characters. Each column is
divided into two sections, one with character
positions labeled 0 through 9, and the other
with positions 11 and 12. The 11 and 12
positions are not labeled and are also referred
to as the X and Y zone punches, respectively.

One of the vertical lines of punch positions on
a punched card.

A fixed number of consecutive card columns
assigned to a unit of information.

One of the horizontal lines of punch positions
on a punched card.

The portion of the computer that contains the
arithmetic, logical, control, and I/O interface
circuits.

One symbol of a set of elementary symbols such
as those corresponding to the keys on a
typewriter. The symbols usually include the
decimal digits 0 through 9, the letters A,a
through z,z, punctuation marks, a space,
operation symbols, and any other special symbols
which a computer may read, store, or write.

COmmon Business Oriented Language.
source language widely used in
commercial applications.

A high-level
business or

An instruction that causes the computer to
execute a specified operation.

To produce a machine- or intermediate-language
routine from a routine written in a high-level
language. A high-level language is
user-oriented and one in which single statements
may result in more than one machine-language
instruction, e.g., FORTRAN, COBOL or ALGOL.

A system program which translates a high-level
source language into a language suitable for a
particular machine. A compiler converts a
source-language program into intermediate- or
machine-language. Some compilers used on
TOPS-20 are: ALGOL, COBOL, FORTRAN.

A device with self-contained memory capable of
accepting information, processing the
information, and outputting results.

A person who has access to all software elements
of a system and performs operational functions
such as: loading a tape transport, placing
cards in the card reader input hopper, removing
printouts from the printer rack, etc.

A punched card which contains information that
was started on a previous punched card.

Glossary-2

Term

Control File

CPU

Cross-Reference
Listing

Data

Debug

Disk

Execute

File

Filename

File Type

FORTRAN

Generation Number

Job

Definition

The file made by you that directs Batch in the
processing of your job.

See Central Processing Unit.

A printed listing that identifies each reference
of an assembled program with a specific label.
This listing is provided immediately after a
source program has been assembled.

A general term used to denote any or all
numbers, letters, and symbols, or facts that
refer to or describe an object, idea, condition,
situation, or other factors. It represents
basic elements of information which can be
processed or produced by a computer.

To locate and correct any mistakes in a computer
program.

A form of a mass-storage device in
information is stored in named files.

which

To interpret
instructions
operation(s) •

an instruction or
and perform the

set of
indicated

An ordered collection of 36-bit words composing
computer instructions and/or data. A file can
be of any length, limited only by the available
space on the storage device and your maximum
space allotment on that device.

A name of I to 39 alphanumeric characters chosen
by the user to identify a file. Note that some
commands only accept up to 6-character
filenames.

A string of I to 39 alphanumeric characters,
usually chosen to describe the class of
information in a file. The file type must be
separated from the filename by a period, e.g.,
FOROI.DAT. Note that some commands only accept
up to 3-character file types.

FORmula TRANslator. A procedure-oriented
programming language that was designed for
solving scientific problems. The language is
widely used in many areas of engineering,
mathematics, physics, chemistry, biology,
phychology, industry, the military, and
business.

A number associated with a file within the file
directory that is incremented each time the file
is changed through editing, etc.

The entire sequence of tasks performed between
login and logout at an interactive terminal,
with a card deck, or at an operator's console.

Glossary-3

Term

Label

Log File

MACRO

Mounting a Device

Object Program

Password

Peripheral Device

Program

Programming

Queue

Software

Source Deck

Source Language

Definition

A symbolic name used to identify a statement in
the control file or in a magnetic tape file or
in a volume.

A file into which Batch writes a record of your
entire job. This file may be printed as the
final step in Batch's processing of a job.

See Assembly Language.

A request to assign an I/O device via the
operator.

The program which is the output of compilation
or assembly. Often the object program is a
machine-language program ready for execution.

The secret word assigned to you that, along with
your user name, uniquely identifies you to the
system.

Any unit of equipment, distinct from the central
processing unit, which can provide the system
with outside storage or communication.

The complete sequence of
and routines necessary
computational tasks.

machine instructions
to resolve one or more

The science of translating a problem from its
physical environment to a language that a
computer can understand and obey: also, the
process ' of planning the procedure for solving a
problem. This may involve, among other things,
the analysis of the problem, preparation of a
flowchart, coding of the problem, establishing
input~output formats, establishing testing and
checkout procedures, allocation of storage,
preparation of documentation, and supervision of
the running of the program on a computer.

A list of jobs to be scheduled or run according
to system-, operator-, or user-assigned
priorities, for example, the Batch input queue
is the list of jobs to be processed by Batch.

The totality of programs and routines used by a
computer. Examples include compilers,
assemblers, operator programs, service routines,
utility routines, and subroutines.

A card deck that constitutes a computer program
in symbolic language.

The original form in which a program is prepared
prior to its processing by the computer to
produce the object-language program.

Glossary-4

Term

Source Program

System

System Command

System Program

Terminal

User Name

Definition

A computer program written in a language
designed for humans to use to express procedures
or problem formulations. A translator
(assembler, compiler, or interpreter) is used to
perform the mechanics of translating the source
program into an object- or machine-language
program that can be run on a computer.

The collection of programs which schedules and
controls the computing facility.

An instruction to the
operation. The system
are described in the
User's Guide.

system to perform an
commands for the TOPS-20

DECSYSTEM-20 (TOPS-20)

A program generally available to users,
administrators, or operators for performing some
specific function. Examples are a FORTRAN
compiler or a text editor.

A device containing a keyboard, similar to a
typewriter, and a printing or display mechanism
employed to establish communications with a
computer.

A name composed of from 1 to 39 alphanumeric
characters (normally your surname) that
identifies you and your logged-in directory.

Glossary-5

CHAPTER 1

INTRODUCTION

1.1 WHAT BATCH IS

Many data processing jobs may require long running times and may make
few demands of you. Ideally these jobs should be run in your absence
when the computer is not busy with other tasks. This ideal is met by
the TOPS-20 Batch system.

Batch is a group of programs that allows you to submit a job to the
TOPS-20 system on a leave-it basis. (Refer to the DECSYSTEM-20
(TOPS-20) Batch Reference Manual for a complete description of
programs that constitute the Batch system.) You may build and submit
your job in one of two ways:

1. By entering your data directly to an interactive computer
system by means of a timesharing terminal.

2. By entering your data from punched-cards to the interactive
system. The cards are given to an operator who, at an
appropriate time in his schedule, enters them into the
computer through a card reader.

One advantage of Batch processing with an interactive system is that
the interactive capabilities may be employed to greatly reduce the
amount of time required to prepare the job for entry. By using a
terminal to enter and edit the program items and data to be processed,
you can bypass the tedious chore of preparing card decks. However, if
desired, you can prepare traditional card decks by employing the
punched card facilities of the system. In either case, the
information to be entered is prepared as if it were to be processed as
a normal job from an interactive terminal. The only added requirement
is that special commands are entered with the job to direct the system
in your absence. In other words, you anticipate the questions the
system normally asks and you answer them when you enter the
interactive job.

After preparing the job, you are free to leave the system. Upon
accepting the job, the system classifies it in terms of size, running
time, the need for peripherals, etc. This classification is used as
the basis for determining when the job is to be run. Large jobs may,
therefore, be set aside until smaller or more urgent jobs are
finished.

Some of the jobs that are commonly processed through the TOPS-20 Batch
system are those that:

1. are frequently run for production

2. are large and long running

1-1

INTRODUCTION

3. require large amounts of data

4. need no actions by you when the jobs are running

Batch allows you to submit your job to the computer through either an
operator or a timesharing terminal, and to receive your output from
the operator when the job has finished. Output is never returned to
your timesharing terminal even if your job is entered from one.
Instead, it is sent to a peripheral device (normally the line printer)
at the computer site and returned to you in the manner designated by
the installation manager.

1.2 HOW TO USE BATCH

To use the Batch system to process your job, you must create a control
file. A control file consists of various commands that tell the
TOPS-20 system what you want to process. The control file commands
can be created as a disk file or as card input and can consist of:

1. System commands (see the DECSYSTEM-20 (TOPS-20)
Guide),

2. System program commands to system programs, and

3. Batch commands (see Chapters 2 and 3).

User's

These commands, when submitted to the operating system, must be in a
particular order so that your Batch job will execute correctly.

The steps that you must take to create a control file from a
timesharing terminal are described in Chapter 2. The steps to take to
create a control file from cards are described in Chapter 3.

1.2.1 Running Your Job

After you submit the job, it waits in a queue with other jobs until
Batch schedules it to run under guidelines established by the
installation manager. Several factors affect how long your job waits
in the queue, for example, its estimated execution time and the
priority of your job compared with other waiting jobs.

When the job is started, Batch reads the control file to determine
what actions are necessary to complete the job. For example, if there
are commands to the system programs, Batch issues the commands to
those programs. Any output produced as a result of those commands is
stored in a log file for listing later. With adequate planning, the
control file can also provide for corrective actions in the event of
errors.

AS each step in the control file is performed, Batch records it in a
log file. For example, if a system command such as COMPILE is
executed, Batch passes it to the system and writes it in the log file.
The system response is also written in the log file. Batch writes in
the log file any response from your job that would have been written
on the terminal if the job were run interactively.

1-2

I

INTRODUCTION

1.2.2 Receiving Your Output

Your program output will be returned to you in the form that you
specified by the commands in your control file. This is normally the
line-printer listing, but may also be output on magnetic tape or disk.
When your output is directed to the line printer, you may specify, in
the SUBMIT command to the Batch process, the approximate number of
pages (/PAGE: switch) that you require (to help Batch restrain runaway
programs) •

If your Batch job is submitted through a timesharing terminal, the log
file is written and saved on disk in your directory and printed on the
line printer. If your Batch job is submitted on card input, the log
file is written on disk in your directory, printed on the line
printer, and then deleted from your directory.

1.2.3 Recovering from Errors

If an error occurs in your job, either within a program that is
executing or within the control file, Batch writes the error message
in the log file and usually terminates the job. You can, however,
include commands in the control file to direct Batch to branch to
recovery sequences in the event of an error and thereby allow
completion of the job. The effectiveness of error recovery is
dependent on your ability to predict potential trouble spots within
the program or within commands used in the control file. (Refer to
the DECSYSTEM-20 (TOPS-20) Batch Reference Manual for detailed
descriptions on error recovery for Batch jobs.)

1.3 SUMMARY

The steps that you must perform to enter a job to the computer through
Batch are as follows:

1. Create a control file either on cards or from a terminal.

2. Submit the job to Batch, either indirectly via the operator
(for a card job) or directly from a terminal.

3. Obtain and examine the log file listing and the job output to
determine if the desired results were obtained.

Sample jobs run through Batch from cards and from a terminal are shown
in Chapter 5.

1-3

CHAPTER 2

ENTERING A BATCH JOB FROM A TERMINAL

When you submit a job to Batch from a timesharing terminal, you must
create a control file that Batch can use to run your job. The control
file contains all the commands that you would use to run your job if
you were running under timesharing. For example, if you wanted to
compile and execute a program called MYPROG.CBL, the typeout on a
timesharing terminal would appear as follows:

cp
@COH PILE (FROM) HYPROG.CBL~
C090L:MYPROG [HYPROG.CBL]

EXIT

~ ,
@EXE CUTE (FROH) HYPROG.CBL~
LINIOLOADING
[LNKXCT HYPROG EXECUTION]

EXIT
@

(Your reauest)

(The s~stem's repl~)

(Your reauest)

To create a control file to tell Batch to run the same, you would
create the following:

~ ,
@CREA TE
INPUT:
00100
00200
00300

(FILE) HYFILE.CTL~
HYFILE.CTL.l
@COHPILE HYPROG.CBL~
@EXECUTE HYPROG.CBL~

• t
G)

[HYFILE.CTL.1]

When the job is run, the commands are passed to the system to be
executed. The commands and their replies from the system are written
in the log file so that the entire dialogue shown in the first example
above appears in the log file.

2-1

i
I
I
!

I
I
!
I
!

I
!

I
I
!

ENTERING A BATCH JOB FROM A TERMINAL

2.1 CREATING THE CONTROL FILE

To create a control file and submit it to Batch from a terminal, you
must perform the following steps:

1. LOGIN to the system as a timesharing user

2. Create a control file on disk using EDIT

-3. Submit the job to Batch using the system command SUBMIT

You can then wait for your output to be returned at the designated
place.

After you have logged into the system as you normally would to start a
timesharing job, you can use EDIT so that you can create your control
file.

The control file can contain TOPS-20 EXEC commands, program commands,
data that would normally be entered from a terminal, and Batch
commands. The Batch commands are described in Section 2.3. What you
write in the control file depends on what you wish your job to
accQmplish. An example of a job that you can enter for Batch
processing is as follows:

1. Compile a program that is on disk.

2. Load and execute the program using data from a file
on disk.

3. Print the output on the line printer.

4. Write the output into a disk file also.

5. Compile a second program.

6. Load and execute the second program using the data
from the first program.

7. Print the output from the second program.

The control file that you would create for
appear as follows:

the preceding job

@:) ,
9CREATE
INPUT:
00100
00200 .
00300
00400
00500

(FILE) MYFILE.CTL~
MYFILE.CTL.1
9COMPILE MYPROG.FOR/COMPILE~
9EXECUTE MYPROG.FORC§)
9COMPILE PROG2.FOR/COMPILE@)
@EXECUTE PROG2.FOR~

1
GJ

[MYFILE.CTL.1J

already

output

would

Include statements in your
to read the data from
printer and the disk. The
with your log file as part

programs (rather than in the control file)
the disk files and write the output to the
output to the line printer is written along
of the total output of your job.

2-2

-~

ENTERING A BATCH JOB FROM A TERMINAL

If an error occurs in your job, Batch will not continue but will
terminate the job. To avoid having your job terminated because an
error occurs, you can specify error recovery in the control file using
special Batch commands. Error recovery is described in Section 2.4.

Any system command that you can use in a timesharing job can be used
in a Batch job with the following exceptions. The ATTACH and SET
TIME-LIMIT commands are illegal in a Batch job. If you include either
of these commands in your job, Batch will process the command and the
TOPS-20 command processor (the EXEC) will place an error message into
your log file. Your Batch job will terminate unless you specify error
recovery.

Do not include a LOGIN command in your control file since Batch logs
the job for you. If you put in a LOGIN command, your job will be
terminated. In addition, you do not need to include a LOGOUT command.
Batch will log out your job automatically when it reaches the end of
your control file.

2.1.1 Format of Lines in the Control File

Since you can put TOPS-20 EXEC commands, program commands, and Batch
commands, as well as data, into the control file, you have to tell
Batch what kind of line it is reading. Batch determines the line it
is reading as a command, data, or comment by the first nontab or
nonblank character. The first character in each line should be one of
the characters described below.

To put a system command or Batch command into your control file, you
must put an at sign (@) in the first column and follow it immediately
with the command.

To put a command string of a system program or user program into your
control file, put an asterisk (*) in column 1 and follow it
immediately with the command string. For the format of command
strings, refer to the manual for the specific program that you wish to
use.

If you want to include in the control file a command to a system
program that does not accept carriage return as the end of the line,
e.g., DDT, you must substitute an equal sign (=) for the asterisk so
that Batch will suppress the carriage return at the end of the line.

To include in the control file data for your program, write it as you
would data that is read from a separate file. If your program prompts
you with an asterisk (during timesharing) for data input, then you
should include the asterisk as the first character before the data in
your control file. If your program does not require an asterisk (*)
prompt, you do not have to include it with your data.

Comments can also be included in the control file either as separate
lines or on lines containing other information. To include a comment
on a separate line, you must put an exclamation point (1) in column 1
and follow it with the comment. To add a comment to a line after your
data, you must precede the comment with an exclamation point (I).

If you put in the first column of the line any special characters
other than those described, you may get unexpected results because
Batch interprets other speeial characters in special ways.

2-3

ENTERING A BATCH JOB FROM A TERMINAL

The following example illustrates a control file, using some of the
characters described above, and the resulting log file. The example
uses the TOPS-20 FILCOM utility to compare two files.

,fbi' bateb jOb ,enerate' a 'I~COM of two f11e',
,~un rILCOM and tben olve it • eo~mand,
~'ILCOM
.TTYI.'ILE,QXT,'ILE.fXT .-e
Ul11102 IlJOIL
U I tt 102 UrIL
1I1HI02 IlA'IL
1 Ja 11102 BUUM

1] at 1I 02 MONTII
un tl02 .. OllTII
U III I 02 ICONT ..
t) I ttl 06 ICONT"
lJ 1111 01 MONT"
lJ at 11 01 MONT ..
1] at 11 01 MO"TII
U I It 109 ICONTII

U at l'I09 MONT ..
U I tt I t4 USE"
U .11.14 US!II
1]1'1114 USER
11111114 USE"
U 11IIU unit
III I I IU USE"
11 .11115 USE"
UI \l115 U,E"
UnllllJ u .. r
UIIIIIIJ u .. r
IUliin u .. r
U. ttlllJ USEIt
UI11I16 USE"
II 11111'7 MONTII
U I" . tt 140NTII
lJ.ll.I' 140'1'"
11 .111 U MONTII
U III I 20 MONTII
1 Ja 111 20 140NTII

BATCON ver.10n 101(JOOO) runn1no EXAM2 'equenee 6t52 1n .tream I
Input fro- 'SICSMITH)EXAM2.CTL,1
OutPut to PIICIMITW.'XAM2. LOG
JOb "aUllleuu
11111e.00105100 uniqUelYtl lte.t.rtINo OUtputlNOLOG

SYITEM 2102 OEVELOPMENT SYSTEM, TOPS-1I0 Mon1tor 4(1707)
.LOCtN .MITH J41

JOb 40 on TTY225 24-May.l1 1]'11106

• CCONNECTtO TO PICIMITH»)
'.ET TIME.LIMIT lOO ,
IThl, bateb job ,enerate. a rlLCOM of two 'lie.,
Illun rILCOM and tben G1V. it a command,
"!Lc:OM

•• TTYI.rlLE.QXT,rILE.TXT
rlle " DS~lrtLE,QXT cre.tedl 1]07 24.MAY-,971
,11e 2) OIKlrILt,TXT ere.ted. 1)01 24.MAY_197.

1)1 Tbi. flle cont.ln' •• p.llnO error.
•••• 2'1 Thi. file doe. not cont.in •• pel11no error.
••••••••••••••
,file •• re different

•• ·C
.e: ,
'''e
.f,CIGoUT
Killed Job 40, u.er 'MITK, ACCount J41, TTY 225,

at 1I4.May.7. IJ111119, U.ed 01010 1n OIOlt]

2.2 SUBMITTING THE JOB TO BATCH

After you have created the control file and saved it on disk, you must
enter it into the Batch queue so that it can be run. All programs and
data that are to be processed when the job is run must be made up in
advance or be generated during the running of the job. You can have
them on magnetic tape, but if you do, you must include the TOPS-20
commands TMOUNT, UNLOAD, and DEASSIGN in your control file so that the
operator will mount and dismount the tape(s) to be read. (Refer to
Chapter 5, for examples of a control file with these three commands.)

If your programs and data reside on an on-line disk, you need not
include the TMOUNT, UNLOAD or DEASSIGN command as there is no action
required by the operator.

2-4

"--

' ,------"

ENTERING A BATCH JOB FROM A TERMINAL

You enter your job in Batch's queue by means of the TOPS-20 SUBMIT
command. This command has the form:

~ ,
@SUBMIT (BATCH JOB) control-file-specification/switches~

control-file-specification is the name you have given to the
control file you created. you must
specify the filename of the control
file. You can specify a file type
or, if you do not, the EXEC
(TOPS-20 command processor) will
assume a file type of .CTL.

/switches

2.2.1 Switches

are switches to Batch to tell it
how to process your job and what
your output will look like. Some
of the switches that can be used
with the SUBMIT command are
described in the following section.
(Refer to the DECSYSTEM-20
(TOPS-20) Batch Reference Manual
for a complete description of all
available switches.)

You use the switches to define limits for your job. Such limits as
pages of output and the time that your job will run can be specified
as switches. Each switch can be specified only once in a SUBMIT
command. You can put a switch anywhere in the command string.

/AFTER:hh:mm Switch

If you do not want Batch to run your job until after a certain time or
until after a certain number of minutes have elapsed since the job was
entered, you can include the /AFTER switch in the SUBMIT command
string. To run the job after a specified time of the day, you must
specify the time in the form hh:mm (for example, /AFTER:12:00 to run a
job after noon). To run the job after a given amount of time has
elapsed, specify the time in the form +hh:mm (for example,
/AFTER:+l:OO to run the job an hour from now). If you omit the
switch, Batch will schedule your job as it normally would using its
defaults. If you omit the colon and/or value, the EXEC will respond
with an error message and terminate the SUBMIT command.

/PAGE:n Switch

Normally, Batch allows your job to print up to 200 pages. Included in
this number are the log file and any compilation listings that you may
request. If you need more than 200 pages for your job, you must
include the /PAGE switch in the SUBMIT command to indicate the
approximate number of pages that your job will print. If you include
the switch without the colon and a value, The EXEC will assume that
you will print up to 2000 pages. If your output exceeds the number
that you specified in the /PAGE switch, the excess output will be lost
and the message ?LPTPLE PAGE LIMIT EXCEEDED will be printed.

2-5

ENTERING A BATCH JOB FROM A TERMINAL

However, even if you exceed the maximum, the first 10 pages of the log
file will be printed.

/TIME:hh:mm:ss Switch

Normally, Batch allows your job to use up to five minutes of central
processor time. Central processor (CPU) time is the amount of time
that your job runs, not the amount of time that it takes Batch to
process your job. If you need more than five minutes of CPU time, you
must include the /TIME switch in the SUBMIT command to indicate the
approximate amount of time that you will need. If you specify the
switch without the colon and a value, Batch will assume that you need
one hour of CPU time. If you do not specify enough time, Batch will
terminate your job when the time is up.

The value in the /TIME switch is given in the form hh:mm:ss
(hours:minutes:seconds). If you specify only one number, Batch
assumes that you mean minutes. Two numbers separated by a colon are
assumed to mean hours and minutes. All three numbers, separated by
colons, mean hours, minutes, and seconds. For example:

/TIME:25
/TIME:l:25
/TIME:l:25:00

means 25 minutes
means 1 hour and 25 minutes
means 1 hour and 25 minutes and no seconds

2.2.2 Examples of Submitting Jobs

The following are sample jobs entered to Batch by means of the SUBMIT
command.

Example 1:

This control file consists of commands to compile FORTRAN
program, print a listing, and execute it.

~

• ~CREA TE

INPUT:
00100
00200
00300

(FILE) MYFILE.CTL~
MYFILE.CTL.l
@COMPILE MYPROG.FOR/LIST/COMPILE~
@EXECUTE MYPROG.FOR~

f
~

[MYFILE.CTL.1J

After the control file to compile and execute the FORTRAN program
has been created and saved, you must submit the job to Batch.

G) ,
~SUBMIT MYFILE.CTL~

2-6

ENTERING A BATCH JOB FkOM A TERMINAL

When the EXEC reads this SUBMIT command, it assumes
following:

1. The control filename and type are MYFILE.CTL.

2. The name of the job is MYFILE.

3. The log file will be named MYFILE.LOG.

the

4. Both the control file and the log file will be saved in your
disk area.

5. 200 is the maximum number of pages to be printed (/PAGE:200).

6. The maximum amount of CPU time is 5 minutes (/TIME:5:00).

Example 2:

The next example shows the control file that was created at the
beginning of this chapter being submitted to Batch.

cp
e TYF'E MYFILE.CTL~
00100 eCOMPILE MYPROG.FOR/COMPILE
00200 eEXECUTE MYPROG.FOR
00300 eCOMPILE PROG2.FOR/COMPILE
00400 eEXECUTE PROG2.FOR
e

After you have saved the control file, you can submit the job to
Batch.

T
eSUBMIT MYFILE/JOBNAME:MYJOB/TIME:20/F'AGE:750/AFTER:10:00~

When the EXEC reads this request, it assumes the following:

1. The name of the job is MYJOB.

2. The name of the control file is MYFILE.CTL.

3. The log file will be named MYFILE.LOG.

4. The log file will be left in your disk area after it is
printed.

5. The control file will be left in your disk area.

6. 750 is the maximum number of pages that can be printed
(/PAGE:750) •

7. The maximum amount of CPU time that the job can use is 20
minutes (/TIME:20:00) •

8. The job will process only after 10:00 in the A.M.

If you made an error in the SUBMIT command when you submitted either
of these jobs, the EXEC will type an error message on your terminal to
explain your error so that you can correct it.

2-7

BNTBRING A BATCH JOB FROM A TBRMINAL

2.3 BATCH COMMANDS

You can write certain Batch commands in the control file to tell Batch
how to process your control file. Each of these commands must be
preceded by an at sign (@) so that Batch will recognize it. The most
commonly used Batch commands are described in the following sections,
but not all Batch commands are described here. For a description of
all commands, refer to the DECSYSTEM-20 (TOPS-20) Batch Reference
Manual.

2.3.1 The @IF Command

You can include the @IF command in your control file to specify an
error-recovery procedure to Batch or to specify normal processing if
an error does not occur. The @IF statement has the forms:

@IF (ERROR) statement

@IF (NOERROR) statement

where .

(The parentheses must be included.)

(The parentheses must be included.)

statement is a command to the system, to a program, or to
Batch.

An example of the @IF (ERROR) command follows:

!DO A DIRECTORY IF AN ERROR OCCURS
@IF (ERROR) @VDIRECTORY

An example of the @IF (NOERROR) command follows:

!IF NO ERROR OCCURS, GIVE A SECOND LINE OF INPUT
@IF (NO ERROR) *FILE.SCM-A.TXT,B.TXT

The @IF command can be used in two ways as shown in its two forms.
You can include the @IF (ERROR) command in your control file at the
place where you suspect an error may occur. The @IF (ERROR) command
must be the next command in your control file (that is, the next line
which begins with an at sign (@)) after an error occurs; otherwise,
Batch will terminate your job. In the @IF (ERROR) command, you direct
Batch to either go back or forward in your control file to find a line
that will perform some task for you or that will direct the system or
any other program to perform some task for you.

You can use the @IF (NOERROR) command to direct Batch or the system to
perform tasks for you when an error does not occur at the point in
your control file where you place the @IF (NOERROR) command. Thus, if
you expect that an error will occur in your program, you can include
an @IF (NOERROR) command to direct Batch in case the error does not
occur, and then put the error-processing lines immediately following
the command. Refer to Section 2.4 for more examples of using @IF
(NOERROR) and @IF (ERROR).

If an error occurs and Batch does not find an @IF command as the next
command line in the control file, Batch terminates the job.

2-8

",----"

ENTERING A BATCH JOB FROM A TERMINAL

2.3.2 The @ERROR Command

With the @ERROR command, you can specify to Batch the character that
you wish to be recognized as the beginning of an error message.
Normally, when Batch reads a message that begins with a question mark
(?), it assumes a fatal error has occurred and terminates the job,
unless you have specified error recovery (refer to Section 2.4). If
you wish Batch to recognize another character (in addition to the
question mark) as the beginning of a fatal error message, you must
specify the character in the @ERROR command. The character specified
may not be a control character, an exclamation point (1) or a
semicolon(;). The exclamation point will be interpreted as the
comment character and will not function as the error signal character.
This command has the form:

@ERROR character

where

character is a single ASCII character

If you do not specify a character in the @ERROR command, Batch uses
only the standard error character, the question mark. When a line
that begins with the character you specify in the @ERROR command is
output to the Batch job by the system, a system program, or is issued
by Batch itself, Batch treats the line as a fatal error and terminates
the job, exactly as it would if the line were preceded by a question
mark. Any messages preceded by other characters will not be
recognized by Batch as errors.

If you do not include the @ERROR command in your control file, Batch
will recognize only the question mark as the beginning character of a
fatal error message.

An example of the @ERROR command follows.

@ERROR %

@ERROR

In this example, you specify in the middle of the control file that
you want Batch to recognize the question mark (?) and the percent sign
(%) as the beginning character of a fatal error from that point in the
control file. Further on in the control file, you tell Batch to go
back to recognizing only the question mark as the beginning of a fatal
error message.

2.3.3 The @NOERROR Command

You can use the @NOERROR command to tell Batch to ignore all error
messages issued by the system, system programs, and Batch itself. The
@NOERROR command has the form:

@NOERROR

When Batch reads the @NOERROR command, it ignores any
that would normally cause it to terminate your

2-9

error
job.

messages
The only

ENTERING A BATCH JOB FROM A TERMINAL

exception is the message ?TIME LIMIT EXCEEDED. Batch will always
recognize this as an error message, give you an extra 10% of your
allotted time, and terminate your job.

You can use @NOERROR commands in conjunction with @ERROR commands in
the control file to control error reporting. For example, if you wish
to ignore errors at the beginning and end but not in the middle of the
control file, place @ERROR and @NOERROR commands at the appropriate
places in the control file. In addition, you can also specify which
messages must be treated as fatal errors.

@NOERROR

@ERROR %

@ERROR

@NOERROR

The first command tells Batch to ignore all errors in your job. The
second command tells Batch to recognize as errors any message that
starts with a question mark (?) and a percent sign (%). You change
the error reporting with the next command to tell Batch to go back to
recognizing only messages that begin with a question mark as fatal.
The second @NOERROR command tells Batch to ignore all error messages
again. If the ?TIME LIMIT EXCEEDED message is issued at any time,
Batch will print the message, extend the time by 10%, and then
terminate the job.

2.3.4 The @GOTO Command

You can include the @GOTO command in your control file to direct Batch
to skip over lines in the control file to find a specific line. The
@GOTO command has the form:

where

@GOTO label

label is a one- to six-character alphanumeric label for a
statement. It must be followed by two colons (::).

An example of the @GOTO command follows.

@GOTO ABC

.
ABC::@DIRECTORY

2-10

ENTERING A BATCH JOB FROM A TERMINAL

You can use the @GOTO command as the statement in an
(refer to Section 2.3.1) to aid you in error processing.

@IF (ERROR) @GOTO ABC

ABC::@TYPE MYPROG

@IF command
For example:

When Batch encounters a @GOTO command in the control file, it searches
forward in the control file to find the label specified in the @GOTO
command. Batch then resumes processing of the control file at the
line which has the specified label. If the label is not found, Batch
will issue the message

? BTNCNF COULD NOT FIND LABEL xxx xxx

and the job will be terminated.

If you do not include a @GOTO command in the control file, Batch reads
the control file sequentially from the first statement to the last.

2.3.5 The @BACKTO Command

You can use the @BACKTO command to direct Batch to search back in the
control file for a line with a specified label. The @BACKTO command
has the form:

where

@BACKTO label

label is a one- to six-character alphanumeric label for a
statement. It must be followed by two colons (::).

An example of the @BACKTO command follows.

ABC::@DIRECTORY

@BACKTO ABC

Normally, Batch reads the control file line by line and passes the
commands and data to the system and your program. When you put a
@BACKTO command into the control file, you tell Batch to interrupt the
normal reading sequence and to search back in the control file to find
a line containing the label specified in the @BACKTO command. The
@BACKTO command searches for the label you specified, starting from
the beginning of the file and ending at the place the command was
given. When the labeled line is reached, Batch executes the line and
conti~ues from that point.

If Batch cannot find the labeled line, it terminates your job.

2-11

ENTERING A BATCH JOB FROM A TERMINAL

2.4 SPECIFYING ERROR RECOVERY IN THE CONTROL FILE

If you do not specify error recovery when an error occurs in your job,
Batch terminates the job. You can specify error recovery in the
control file by means of the Batch commands, especially the @IF Batch
command. You must put the @IF command at the point between programs
in the control file where an error may occur. When an error occurs,
Batch skips over all lines in the control file until it encounters a
line beginning with an at sign (@). If this line contains an @IF
command, the @IF command is processed and the job continues. If this
line does not contain an @IF command, the job is terminated.
Therefore, if a Batch job is to recover from an error successfully,
the @IF command must be placed in the control file where the error is
expected to occur but before any other commands preceded by the @
sign. Thus, if you have a program that you are not sure is error
free, you can include an @IF command to tell Batch what to do if an
error occurs, as shown in the following example.

@COMPILE MYPROG.FOR
@IF (ERROR) statement

In either the @IF (ERROR) or the @IF (NOERROR) command, you should
include a statement that tells Batch what to do. You can use any
monitor command or Batch command. If you wish to simply ignore the
error without taking any special action, you may use a comment as the
statement. The @GOTO and @BACKTO commands are also commonly used for
this purpose. Refer to Sections 2.3.4 and 2.3.5 for descriptions of
these commands. Be sure, if you use @GOTO or @BACKTO in the @IF
command, that you supply a line in the control file that has the label
that you specified in the @GOTO or @BACKTO command.

Two sample jobs are shown below. The first shows the @IF (ERROR)
command and the @GOTO command to specify error recovery. The second
example shows the use of the @IF (NOERROR) and @GOTO commands.

If you have a program that you are not sure will compile without
errors, you can include another version of the same program in your
job (that hopefully will compile) and tell Batch to compile the second
program if the first has an error. You write the control file as
follows.

up
@CREA TE
INPUT:
00100
00200
00300
00400
00500
00600
00700
00800
00900

(FILE) MYFILE.CTL~
MYFILE.CTL.1
@COMF'ILE ICOMF'ILE MYF'ROG.FOR/LIST~
@IF (ERROR) @GOTO A~
@EXECUTE MYf'ROG.FOR~
@GOTO B~
A: : ! CONTINUE ~
@COMf'ILE ICOMF'ILE F'ROG2.FOR/LIST~
@EXECUTE PROG2.FORG!!)
B::'CONTINUE~

T
~

[MYFILE.CTL.ll

2-12

I

ENTERING A BATCH JOB FROM A TERMINAL

When the job is run, Batch reads the control file and passes commands
to the system. If an error occurs in the compilation of the first
program, Batch finds the @IF (ERROR) command and executes the @GOTO
command contained in it. The @GOTO command tells Batch to look for
the line labeled A::. Thus, Batch skips lines in the control file
until it finds label A and then passes commands to the batch job from
that point. If an error does not occur while compiling MYPROG, the
@GOTO A statement is not executed. Instead, MYPROG is executed and
then Batch skips to the line labeled B::.

A variation of the above procedure is shown below using the @IF
(NOERROR) command and the @GOTO command. The difference is that Batch
skips the @IF (NOERROR) command if an error does occur, and performs
it if an error does not occur. The following is the control file that
you would create.

~

• @CREATE (FILE) HYFILE.CTL~
INPUT: HYFILE.CTL.1
00100 @COHPILE ICOHf'ILE HYPROG.FOR/LIST~
00200 @IF (NOERROR) @GOTO A~
00300 @COHF'ILE ICOHPILE PROG2.FOR/LIST~
00400 @EXECUTE PROG2.FOR~
00500 @GOTO B~
00600 A::!CONTINUE~
00700 @EXECUTE HYPROG. FOF.~
00800 B::!CONTINUE~

00900 ck
*E~

[HYFILE.CTL.1J

When the job is run, Batch passes the COMPILE command to the system to
compile the first program. If an error does not occur, the @IF
(NOERROR) command and the @GOTO command are executed, Batch skips to
the line labeled A, which is a comment, and passes commands to the
Batch job from that point. The program MYPROG.FOR is executed and the
end of the job is reached. If an error occurs while compiling MYPROG,
Batch skips the @IF (NOERROR) command and continues reading the
control file. PROG2.FOR is compiled and then executed. Batch is then
told to go to the line labeled B, which is a comment line. The end of
the job follows.

The examples shown above illustrate only two ways that you can use the
@IF commands to specify error recovery in the control file. You can
use any of the Batch commands or any system command that you choose to
recover from errors in your job.

However,
job is
messages
run your

you do not have to attempt to recover from errors while
running. You can correct your errors according to the
in the log file when your job is returned to you, and
job again. The log file is described in Chapter 4.

2-13

your
error

then

',,---,

'----'

CHAPTER 3

ENTERING A BATCH JOB FROM CARDS

When you enter a job to Batch from card input, you must create a
control file on cards that is somewhat similar to a control file
created on a timesharing terminal, but that contains some additional
Batch commands. The card control file must tell Batch to start your
job, the tasks or steps your job must take, and when to stop your
Batch job. The tasks or steps in your Batch job can consist of calls
to a system program, can identify and protect the control file, and
can establish error recovery.

Your control card input to Batch may contain any combination of
commands. These commands are in four groups as follows:

1.

2.

3.

4.

TOPS-20 system commands, which consist
format similar to what you would issue
on a timesharing terminal. Examples of
@COPY, @DEASSIGN, @PRINT, and @RENAME.

of commands in a
for the same command
these commands are

System program commands, which
pertain to a system or user
command to the FILCOM program
compared.

consist of commands that
program. An example is the

to specify files to be

Batch commands, as described in Chapter 2, Section 2.3.

Batch control card commands, some of which are listed below.

$JOB (See Section 3.2.1)
$PASSWORD (See Section 3.2.2)
$EOJ (See Section 3.2.3)
$CREATE (See Section 3.2.4)
$-language (See Section 3.2.5)
$EXECUTE (See Section 3.2.6)
$DATA (See Section 3.2.7)
$EOD (See Section 3.2.8)
$TOPS20 (See Section 3.2.9)
$ERROR (See Section 3.2.10)
$NOERROR (See Section 3.2.10)

Not all of the available Batch control commands are listed
above and described in Section 3.2. Refer to the
DECSYSTEM-20 (TOPS-20) Batch Reference Manual for a complete
description of all available Batch control card commands.

3-1

ENTERING A BATCH JOB FROM CARDS

3.1 BATCH CONTROL CARD FORMAT CONVENTIONS

The Batch control cards must contain a dollar sign ($) in column 1 and
a command that starts in column 2. The command must be followed by at
least one space, which can then be followed by other information.
(Refer to the individual description of each card for more information
about it.)

A card with a TOPS-20 system command must contain an at sign (@) in
column 1 followed immediately by the command. Any information that
follows the command is in the format shown for the command in the
DECSYSTEM-20 (TOPS-20) User's Guide. The $TOPS20 Batch control card
command must precede TOPS-20 system commands in your card deck.
(Refer to Section 3.2.9 for the format and description of the $TOPS20
card.)

A card with a command to a system program must contain an asterisk (*)
in column 1 followed immediately by the command string.

I

Batch commands are formatted in the same manner as system commands;
that is, an at sign (@) is punched in column 1 and the command
immediately follows it. You must also place a $TOPS20 card before
Batch commands in the card deck to enable execution of these commands.

If you put any special characters other than those described above in
the first column of a card, you may get unexpected results because
Batch interprets other special characters in special ways.

If you have more information than will fit on
hyphen (-) as the last nonspace character
continue the information on the second card.

one card, insert a
on the first card and

Comments can also be included either on separate cards or on cards
containing other information. If the entire card is to contain a
comment, the card should contain a dollar sign ($) in column 1 and an
exclamation point (I) in column 2. The exclamation point (1) is
called the comment character. If the card contains a command followed
by a comment, only the exclamation point (1) should precede the
comment. If the comment is too long to be contained on a single card,
begin the next card with a dollar sign ($) in column 1 and the
exclamation point (I) in column 2 and then continue the comment.

3.2 BATCH CONTROL CARD COMMANDS

Eleven Batch control card commands are described in the following
sections. Additional Batch control card commands are available and
can be referred to in the Batch Reference Manual.

3.2.1 Starting a Job - The $JOa Card

The $JOB card is the first card in your card deck. The
tells Batch whose job it is processing and, optionally,
the job, and any constraints that you want to place on the
Batch reads the $JOB card, it begins the log file for your

3-2

$JOB card
the name of
job. When
job.

ENTERING A BATCH JOB FROM CARDS

The $JOB card has the form:

user-name

/switches

$JOB user-name/switches

is the name assigned to you by the installation to
allow you to gain access to the DECSYSTEM-20.
Normally, your user-name is your surname.

are optional switches to Batch to
constraints that you have placed
They are described below.

/AFTER:dd-mmm-yy hh:mm Switch

tell it the
on your job.

If you do not want Batch to run your job until after a certain time
and/or a certain day, you can include the /AFTER switch on your $JOB
card. The date and time are specified in the form dd-mmm-yy hh:mm
(e.g., l6-APR-78 17:15). If you omit this switch, Batch schedules
your job as it normally does: that is, Batch schedules your job based
on the time required and other parameters.

/AFTER:+hh:mm Switch

If you do not want Batch to run your job until after a certain amount
of time has elapsed since the job was entered, include this form of
the /AFTER switch on the $JOB card. The amount of time that the job
must wait after it has been entered is specified in the form +hh:mm
(e.g., +1:30). If this switch is not included, Batch will schedule
the job as it normally does.

/JOBNAME:xxx Switch

You can set the name of the job by inserting this switch on your $JOB
card. The name can be 1 to 6 alphanumeric characters in length. If
you omit this switch, Batch will create a unique name for your job.
The name created by Batch is assigned to both your control file and
your log file. Batch adds the file type .CTL to the control file and
the type .LOG to the log file.

/PAGES:n Switch

Normally, Batch allows your job to print up to 200 pages. Included in
this number are the log file and any compilation listings that you may
request. If you need more than 200 pages for your job, you must

3-3

ENTERING A BATCH JOB FROM CARDS

include the /PAGES switch on the $JOB card to indicate the approximate
number of pages that your job will print. If your output exceeds
either the maximum that Batch allows or the number that you specified
in the /PAGES switch, the excess output will not be printed and the
message ?LPTPLE PAGE LIMIT EXCEEDED will be written in the log file.
However, even if you exceed the maximum, the first 10 pages of the log
file will be printed.

NOTE

Do not arbitrarily enter a large PAGES
value as this may delay execution of
your Batch job.

/TIME:hh:mm:ss Switch

Normally, Batch allows your job to use up to five minutes of central
processor (CPU) time. CPU time is the amount of time that your job
runs ~n memory, not the amount of time that it takes Batch to process
your job. If you need more than five minutes of CPU time, you must
include the /TIME switch on the $JOB card to indicate the approximate
amount of time that you will need. If you do not specify enough time,
Batch will terminate your job when the time is up. However, if you
specify a large amount of time, Batch may hold your job in the queue
until it can schedule a large amount of time for it.

The value in the /TIME switch is given in the form hh:mm:ss
(hours:minutes:seconds). If you specify only one number, Batch
assumes that you mean minutes. Two numbers separated by a colon (:)
are assumed to mean hours and minutes. All three numbers, separated
by colons mean hours, minutes, and seconds. For example:

/TIME:25
/TIME:l:25
/TIME:l:25:00

means 25 minutes
means 1 hour and 25 minutes
means 1 hour, 25 minutes, and no seconds

The following rules apply to all switches in the above list that
require a time and/or date to be specified:

When you specify the time of day (hh:mm:ss)

1. You must not omit the colon (:) or colons.

When you specify a date (dd-mmm-yy)

1. You must not omit the hyphens.

2. You must specify both the day and the month as a minimum
requirement.

3. You can abbreviate the month to a minimum of three letters,
e.g., JUL for July.

4. If you omit the year, the current year will be used.

3-4

I

ENTERING A BATCH JOB PROM CARDS

5. If you omit the time from a date specification, the time is
assumed to be midnight on the specified date. In the example
below a current date and time of 20 April, 1978, lOAM will
be assumed.

/AFTER:18:00
/AFTER:3-May
/AFTER:19-Apr 20:00

means 6 P.M. on April 20, 1978
means midnight on May 3, 1978
means 8 P.M on April 19, 1978

3.2.2 Identifying Yourself - The $PASSWORD Card

You put the password that has been assigned to you on the $PASSWORD
card to tell Batch that you are an authorized user of the system.

In conjunction with the $JOB card, the $PASSWORD card identifies you
to Batch and tells Batch to process your job. If you put a password
on the $PASSWORD card that does not match the password stored in the
system for you, Batch will terminate your job. The $PASSWORD card
must be present and must immediately follow the $JOB card.

The$PASSWORD card has the form:

password

$PASSWORD password

is a 1- to 39-character password that is stored in
the system to identify you. There must be exactly
one space between the end of the card name
($PASSWORD) and the first character of your
password.

3-5

ENTERING A BATCH JOB FROM CARDS

3.2.3 Ending a Job - The $EOJ Card

You must put the $EOJ card at the end of the deck containing your
complete job to tell Batch that it has reached the end of your job.
If you omit the $EOJ card, an error message will be issued. However,
your job will still be scheduled and may be processed if another job
follows it. The form of the $EOJ card is shown below.

$EOJ

3.2.4 Creating a File - The $CREATE Card

You can put the $CREATE card in front of any program, data,
set of information to make Batch copy the program,
information into a disk file. If the appropriate switch is
Batch will also print this file on the line printer.

or other
data, or
included,

The form of the $eREATE card is:

filename.typ

/switches

$CREATE filename. tvp/switches

specifies the optional filename and type you
want Batch to put on the file it creates for
your program or data. If you omit the filename
and type, Batch will create a unique name for
your file of the form CRxxxx, where xxxx
represents a unique name generated by Batch.

are switches to Batch to tell it how to read the
cards in your deck. The switches are described
below.

3-6

I

ENTERING A BATCH JOB FROM CARDS

/WIDTH:n Switch

Normally, Batch reads 80 columns on every card in your deck. You can
make Batch stop reading at a specific column by means of the /WIDTH
switch, where you indicate the number of column at which to stop.
Thus, if you have no information in the last 10 columns of each card
in your deck, you can tell Batch to read only up to column 70 by
specifying

/WIDTH: 70

/SUPPRESS Switch

When Batch reads the cards in your deck, it normally copies everything
on the card up to column 80 (or up to any column you may specify on
the /WIDTH switch). However, if you do not want trailing spaces
copied (to save space on the disk, for example), you can tell Batch,
by means of the /SUPPRESS switch, not to copy any trailing spaces into
the disk file.

/PRINT Switch

The file currently being created on disk by Batch is listed on the
line printer.

Examples

The simplest form of the $CREATE card is:

$CREATE

This card causes Batch to copy your deck into a disk file and to
assign a unique name to it. All 80 columns of the cards are read and
trailing spaces are copied into the file. The file is not printed.

The following is an example of a $CREATE card.

$CREATE MYFILE.CDS/WIDTH:50/PRINT

The deck that follows this card is copied into a disk file named
MYFILE.CDS. When Batch reads the cards in the deck, it copies
trailing spaces into the file, reading up to 50 columns. The disk
file created from your cards will be printed on the line printer.

3.2.5 Compiling a Program - The $-language Card

The $-language card specifies the source program language of your
program on cards. It is placed in front of your program. The
$-language card may be any of the following:

1. $COBOL

2. $FORTRAN

3. $MACRO

4. $ALGOL

3-7

BNTBRING A BATCH JOB PROM CARDS

The $-language card causes Batch to copy your source program into a
disk file and compile it. You may then execute your program by using
the $EXECUTE card (Section 3.2.6) or the $DATA card (Section 3.2.7).
Optional information (/switches) may be included on the $-language
card to tell Batch how to read and compile your program.

When Batch copies your source program file onto disk, Batch assigns an
unique filename for your program in the form of LNxxxx. Depending on
the type of $-language card, the appropriate file type is also
assigned to this file. When your Batch job completes successfully,
the LNxxxx' file is deleted automatically.

The $-language card has any of the following forms:

$ALGOL/switches $COSO L/switches

$FORTRAN/switches $MACRO/switches

/switches are switches to Batch to tell it how to read your
program and whether or not to request a
compilation listing when the program is compiled.
The switches can be put on the card in any order.
The following three switches may be used with any
of the $-language cards. Additional switches are
available and can be referenced in the Batch
Reference Manual.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of the source
program. You can make Batch stop reading at a specific column by
means of the /WIDTH switch. You indicate the number of a column at
which to stop. Thus, if you have no useful information in the last 10
columns of each card of your program, you can tell Batch to read only
up to column 70 by specifying

/WIDTH: 70

3-8

ENTERING A BATCH JOB FROM CARDS

/NOLIST Switch

Normally, the $-language card tells Batch to ask the compiler to
generate a compilation listing of your source program. The listing is
then printed as part of your job's output. If you do not want this
listing, you can include the /NOLIST switch on the $-language card to
stop generation of the listing.

/SUPPRESS Switch

When Batch reads the cards of your source program it normally copies
everything on the card up to column 80 or any column you may specify
in the /WIDTH switch. However, if you do not want trailing spaces
copied (to save space on the disk, for example), you can tell Batch,
by means of the /SUPPRESS switch, not to copy any trailing spaces into
the disk file.

Examples

The simplest form of the $-language card is shown in the following
example using ALGOL.

$ALGOL

This card causes Batch to copy your ALGOL card program into a disk
file. The cards in the program are read up to column 80 and trailing
spaces are not suppressed. A listing file is produced when the
program is compiled. The listing is written as part of the job's
output.

The following is an example of a $ALGOL card with switches.

$ALGOL/NOLIST/SUPPRESS/WIDTH:72

with this card, Batch copies your program onto disk and inserts a
COMPILE command into the control file. When the program is compiled,
no listing is produced. The cards in the program are read up to
column 72, and trailing spaces up to column 72 are not copied into the
file.

3-9

ENTERING A BATCH JOB FROM CARDS

3.2.6 Executing a Program - The $EXECUTE Card

The $EXECUTE card is used to execute the program that has been
compiled using the $-language card. This card is used when the
program requires no data or uses data already existing on disk. The
form of the $EXECUTE card is shown below.

$EXECUTE/switch

/switch is a switch to Batch to tell it what to include in
the command it inserts in the control file.

/MAP Switch

If you want a loader map to be generated and printed for you when your
program is run, you can specify the /MAP switch on the $EXECUTE card
to tell Batch to request one for you.

An $EXECUTE card following another $EXECUTE card in the control file
without intervening $-language cards causes the program executed by
the first EXECUTE card to be loaded and executed again.

3.2.7 Executing a Program with Data - The $DATA Card

The $DATA card is used when you want to execute a program that uses
data from cards. The $DATA card must be in front of the input data
cards. When Batch reads the $DATA card, Batch copies the data cards
that follow it onto a spooled card-reader file and then inserts an
EXECUTE command into your control file to execute your program.

When your job is run, any programs are executed that were entered
$-language cards that came before the $DATA card. The spooled
reader file becomes the input to the currently executing program,
your program may reference this file by using the card reader as
input device.

with
card

and
the

If your input control file contains more than one program and input
data, Batch will execute the first program with the input data, spool
the results to be printed, and then compile the second program when
Batch reads the second $-language card. Again, when Batch reads the
second $DATA card, a spooled card-reader file 1S created for your
input data cards and an EXECUTE command is inserted in your control
file.

A $DATA card (with its associated card deck) followed by another $DATA
card (with its deck), without intervening $-language cards, causes the
program to be loaded and executed twice. The first deck is used as
data on the first execution and the second deck is used as data on the
second execution.

3-10

ENTERING A BATCH JOB FROM CARDS

If your data is included in the program or is already on disk (so that
you do not have cards with data on them), use the $EXECUTE card
(Section 3.2.6) to execute the program.

The form of the $DATA card is:

filename.typ

/switches

$DATA filename. typ/switches

specifies a name for the input data file (see
Section 3.2.7.1). If omitted, a spooled
card-reader file is created. You may reference
this file by using the card reader as the input
device in the source program. If included, a
disk file is created, and you may reference this
file by using the disk as the input device.

are switches to Batch to tell it how to read
your data cards. The switches are described
below.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every
You can make Batch stop reading at a specific
/WIDTH switch, where you indicate the number of
stop. Thus, if you have no useful information
of each card of your data, you can tell Batch
column 70 by specifying

card of your data.
column by means of the
a column at which to
in the last 10 columns
to read only up to

/WIDTH: 70

/SUPPRESS Switch

When Batch reads the cards of your data, it normally copies everything
on the card up to column 80 or up to any column you may specify on the
/WIDTH switch. However, if you do not want trailing spaces copied (to
save space on the disk, for example), you can tell Batch, by means of
the /SUPPRESS switch, not to copy any trailing spaces into the disk
file.

3-11

ENTERING A BATCH JOB FROM CARDS

/MAP Switch

If you want a loader map to be generated and printed for you when your
program is run, you can specify the /MAP switch on the $DATA card to
tell Batch to request one for you.

Examples

The simplest form of the $DATA card is:

$DATA

This card causes Batch to copy your data into a spooled card-reader
file. A spooled card-reader file is a file that Batch creates on disk
so that when your program reads from the card reader, that file is
read. All 80 columns of the carOE are read and trailing spaces are
copied into the file.

The following example shows a $DATA card with switches.

$DATA MYDAT.DAT/WIDTH:72

The data that follows this card is copied into a file named MYDAT.DAT
and an EXECUTE command is inserted into the control file. When Batch
reads the cards of the data, it reads only up to column 72 and copies
trailing spaces into the data file.

3.2.7.1 Reading from a Spooled Card-Reader File - If you let Batch
assign a name to your data file, you will not know the name that your
data file will have: you should, therefore, assign your data file,
without a name, to the card reader. The following examples illustrate
how to do this.

NOTE

The $DATA card can be used for data of
programs written in ALGOL, COBOL,
FORTRAN, and MACRO. It can also be used
for programs that are in relocatable
binary form. However, data for BASIC
programs cannot be copied by means of
the $DATA card because BASIC programs
are not compiled and executed. For
BASIC programs, use the $CREATE card as
described in Section 3.2.4.

3-12

.----./.

ENTERING A BATCH JOB FROM CARDS

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

COBOL Example

SELECT SALES, ASSIGN TO CDR.

DATA DIVISION.
FILE SECTION.
FD SALES, LABEL RECORDS ARE OMITTED.

$DATA (in the control file)

FORTRAN Example

To read your data from the card reader, you use the unit number 2 or
no unit number, as shown below.

READ (2,f), list

END
$DATA

READ f, list

END

3-13

ENTERING A BATCH JOB FROM CARDS

$DATA

ALGOL Example

In an ALGOL program, you assign the desired channel
to the card reader and select the desired channel.
open the named file on the channel because the file
name that is known to you.

INPUT (c, "CDR")
SELECT INPUT (c)

$DATA

(signified by c)
Do not explicitly

does not have a

3.2.7.2 Naming Data Files on the $DATA Card - If you want to name
your data file on the $DATA card rather than letting Batch name it for
you, you must, in your program, assign that file to disk as shown in
the following examples.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

COBOL Example

SELECT SALES, ASSIGN TO DSK.

DATA DIVISION.
FILE SECTION.
FD SALES, VALUE OF IDENTIFICATION IS "SALES CDS".

3-14

I

ENTERING A BATCH JOB FROM CARDS

The $DATA card would then appear as follows.

$DATA SALES.CDS

FORTRAN Examples

You can assign your data to disk in several ways when you use FORTRAN.
You can read from unit 1, which is the disk, in your program and use
the name FOROl.DAT as the filename on your $DATA card, as shown in the
following statements.

READ (1, f), list

.
$DATA FOROl.DAT

You can also tell FORTRAN to read from logical unit 2, which is
normally the card reader, and assign unit 2 or the card reader (CDR)
to disk (DSK). You can use the name FOR02.DAT on the $DATA card in
this case.

OPEN (UNIT=2,DEVICE='DSK')
READ (2,f), list

@DEFINE CDR: DSK: (in the control file)
$DATA FOR02.DAT

ALGOL Example

To read your data from the disk in an ALGOL program, you would use the
following statements. You can assign your data to any channel
(signified by c) and you can give your data file any name as long as
the name that you use in your program is the same as that put on the
$DATA card.

3-15

ENTERING A BATCH JOB FROM CARDS

INPUT (c, "DSK")
SELECT INPUT (c)
OPENFILE (c, "MYDAT.DAT")

$DATA MYDAT.DAT

This is done to ensure that your program finds your data in the disk
file under the name that you have assigned to it.

3.2.8 End of Data Input - The $EOD Card

The $EOD card terminates the card input that was preceded by either a
$CREATE or $DATA card.

The form of the $EOD card is:

$EOD

If the $EOD card does not follow the card input that was preceded by a
$CREATE card, Batch recognizes the next card with a dollar sign ($) in
column one as a new Batch command and as the end of the card input;
that is, an EOD card is assumed if one is not present.

3.2.9 System Commands - The $TOPS20 Card

You can include system commands, commands to system or user programs,
and Batch commands in your deck by inserting a $TOPS20 card
immediately before these commands. The $TOPS20 card directs Batch to
copy all cards following it into the Batch control file. Therefore, a
single system or Batch command or a group of consecutive system and/or
Batch commands must be preceded by a $TOPS20 card. The copying
process is terminated by the next control card in the deck.

3-16

ENTERING A BATCH JOB FROM CARDS

The form of the $TOPS20 card is:

/switches

$TOPS20/switches

are switches to Batch to tell it how to read and
interpret your input.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your system or
Batch commands. You can make Batch stop reading at a specific column
by using the /WIDTH switch, where you indicate the column number at
which Batch is to stop reading. Thus, if you have no useful
information in the last 10 columns of each card, you can tell Batch to
read only up to column 70 by specifying

/WIDTH:70

/SUPPRESS Switch

When Batch reads your cards, it normally copies everything on the card
up to column 80 or up to any column you may specify on the /WIDTH
switch. However, if you do not want trailing spaces copied (to save
space on the disk, for example), you can tell Batch, by means of the
/SUPPRESS switch, not to copy any trailing spaces into the disk file.

Figure 3-1 illustrates a sample Batch input card deck using only
TOPS-20 commands.

3-17

ENTERING A BATCH JOB FROM CARDS

$EOJ

@VOIRECTORY

@INF AVAILABLE DEVICES

@INF STRUCTURE PS:

@INFORMATION BATCH

Figure 3-1 Batch Card Deck Using TOPS-20 Commands

3.2.10 Error Recovery - The $ERROR and $NOERROR Cards

You can use the $ERROR card and the $NOERROR card to recover from
errors that mayor may not occur while your Batch job is running. If
an error occurs during your job (for example, a program fails to
compile), Batch will normally terminate your job. However, if a
$ERROR or $NOERROR card is included in your card deck immediately
after the point at which the error occurs, Batch will proceed as
indicated on the $ERROR or $NOERROR card and will not terminate the
job.

3-18

ENTERING A BATCH JOB FROM CARDS

The $ERROR card has the form:

$ERROR statement

The $NOERROR card has the form:

statement

$NOERROR statement

is a system command or a special Batch command
(for example, @GOTO or @BACKTO) such as you would
include following a $TOPS20 card. The Batch
commands are described in Section 2.3 (of Chapter
2). The statement may also be a comment (begun
with the exclamation point(!)) if you wish Batch
to simply ignore the error.

If an error occurs in your Batch job and the $ERROR card is then
encountered, the statement on the $ERROR card is executed and the job
continues. If the $ERROR card is encountered when an error has not
occurred, the card is ignored.

If an error occurs in your Batch job and the $NOERROR card is
encountered, no action will be taken, with the exception that Batch
will not terminate your job as it would have if the card had not been
found. If the $NOERROR card is encountered when no error has
occurred, the statement on the $NOERROR card is executed.

The $ERROR card
$NOERROR card
Section 3.5 for
cards.

is equivalent to the Batch command @IF(ERROR). The
is equivalent to the Batch command @IF(NOERROR). See
examples of Batch jobs using the $ERROR and $NOERROR

3-19

ENTERING A BATCH JOB PROM CARDS

3.3 SETTING UP YOUR CARD DECK

Batch enters commands into the control file when you use certain
control cards. Where you put these control cards in your card deck
determines their position in the control file. Batch reads your card
deck in sequential order, copying commands into the control file as
they or the special control cards are read. However, when Batch reads
a control card that tells it to copy a program or data into a disk
file, the disk file is created immediately, before the remainder of
the job is processed. Every succeeding card is copied until another
control card is read. .

A Batch job can do almost anything a timesharing job can do. If you
wish to perform complicated tasks, you may include system commands in
your deck to direct Batch to execute these tasks. Section 3.4
describes the way to include system commands for the desired control.

The $JOB card, the $PASSWORD card, and the $EOJ card are required for
all jobs. The $JOB card must be the first card in the deck and must
be immediately followed by the $PASSWORD card. The $EOJ card must be
the last card in the deck.

The control cards used to compile and execute p~ograms written in
ALGOL, COBOL, FORTRAN, and MACRO are shown in Figure 3-2. The
following card deck does not apply to control card decks for BASIC.
Refer to Section 3.4.1 for information regarding BASIC.

$EOJ

data for program

ALGOL source program

Figure 3-2 Typical Program Card Deck

3-20

NOTE :
For other languages use
$COBOL,
$FORTRAN,
$MACRO, etc.

I

ENTERING A BATCH JOB FROM CARDS

The typical card deck shown in Figure 3-2 includes a language card
($ALGOL, $COBOL, etc.) immediately prior to the source program. This
language card informs Batch of the system program to be employed for
processing (compiling) the succeeding cards. The $DATA card likewise
immediately precedes the data cards to inform Batch that the
succeeding cards contain data for the program. In both cases, the
information is stored (on a spooled card-reader file) to establish
program files and data files. The $DATA card also causes Batch to
execute the program, using the data cards as input. The $EOJ card
informs Batch that all cards pertaining to the job have been entered.
At this time Batch has access to the program to be compiled and the
data to be used by the program; it knows what compiler or assembler
is to be used, and has built a control file containing the TOPS-20
@EXECUTE command so that the program will be run.

3.4 PUTTING COMMANDS INTO THE CONTROL FILE FROM CARDS

Batch enters commands into the control file when you use certain
control cards such as $EXECUTE and $DATA. However, only a small
number of operations, such as compilation and execution of programs,
can be put into the control file using control cards. To perform
operations in your control file other than compilation or execution,
you must include commands in your card deck for Batch to copy into
your control file. If you want to include Batch commands or system
commands in your card deck, you must insert a $TOPS20 card immediately
before these commands in your deck. The $TOPS20 card directs Batch to
copy all succeeding commands into the control file until the next
control card is encountered. The commands will later be executed by
Batch in the same order that they appear in your card deck.

For example, in order to compare two card decks and produce a list of
the differences, you could include the cards shown in Figure 3-3 in
your deck.

3-21

ENTERING A BATCH JOB FROM CARDS

seOJ

*LPT:=FILE.ONE,FILE.TWO

Figure 3-3 Use of Control Cards to Compare Two Card Decks

The only system commands that you cannot use in a Batch job are ATTACH
and SET TIME-LIMIT. Batch will send these commands to the EXEC, the
EXEC will give an error, and Batch will detect the error and terminate
your job. Also, you cannot use the LOGIN command in your Batch job
because you will get an error that will terminate your job. Batch
logs in your job in accordance with your $JOB and $PASSWORD cards.

3.4.1 Card Decks for Programs that Do Not Have Special Control Cards

By using system commands and the $CREATE control card, you can process
any program that does not have special control cards. You put a
$CREATE card in front of a program, data, or any other group of cards
to make Batch copy the cards into a disk file and, if you request, to

3-22

.. ---.../ .

. --.,/.

ENTERING A BATCH JOB FROM CARDS

print the file on the line printer. The $CREATE card is described in
detail in Section 3.2.4. You put the $TOPS20 card in front of monitor
and Batch commands to cause Batch to copy these commands into the
control file. The $TOPS20 card is described in detail in Section
3.2.9.

For example, a BASIC program does not have a specific control card.
To run a BASIC program under Batch from cards, you can combine the
$CREATE card and the $TOPS20 card with system commands. You can also
use a $CREATE card to copy the data which a BASIC program will use.
The $DATA card cannot be used, because the $DATA card puts an EXECUTE
command into the control file, and BASIC does not use the EXECUTE
command to run. The $TOPS20 card causes Batch to copy the monitor
commands into the control file.

Figure 3-4 shows a card deck that enters a BASIC program for running
under Batch.

3-23

ENTERING A BATCH JOB FROM CARDS

·OLD MVPROG

@BASIC

$TOPS20/switches

Figure 3-4 BASIC Program Card Deck with Integral Data

The BASIC program contains statements that read data from disk file
FILE.ONE. You answer OLD to the BASIC question

NEW OR OLD-

because the program file is on disk and can be retrieved by BASIC.

If your BASIC program reads data that is to be input from
during the running of the program, enter the data in the
so that it will be passed to your program by Batch. This
Figure 3-5.

3-24

a terminal
control file
is shown in

,-",,'

ENTERING A BATCH JOB PROM CARDS

$EOJ

·MONITOR

·3,S.-9,1,8

·S,1,3,4,·7

·1,2,3,2,·7

·RUN

·MYPROG.BAS

·OLD

BASIC source program

$CREATE MYPROG.BAS

$PASSWORD password

Figure 3-5 BASIC Program Card Deck with Provisions
for Terminal Data Input

You can use the same technique to enter programs written in any
language that does not have a specific control card provided that your
installation supports the language. Also, you can run system programs
under Batch using the same technique.

3-25

"

ENTERING A BATCH JOB PROM CARDS

3.5 SPECIPYING ERROR RECOVERY IN THE CONTROL PILE

Normally, when an error occurs in your job, Batch terminates the job.
However, you can specify recovery from errors in the control file by
means of the $ERROR and $NOERROR cards, described in Section 3.2.10.
You must include one of these cards at the point in the control file
where an error may occur. When an error occurs, Batch examines the
next system command level line (skipping over lines that contain data
or command strings of a system program) to find an @IF (ERROR)
statement or @IF(NOERROR) statement to tell it what to do about the
error. If an error does not occur and an @IF (ERROR) statement is
present, the @IF (ERROR) statement is ignored. If an error occurs and
an @IF(NOERROR) statement is present, the statement is ignored with
the exception that Batch does not terminate the job.

Thus, if you have a program that you are not sure is error free, you
can include a $ERROR or $NOERROR card to tell Batch what to do if an
error occurs, as shown in Figure 3-6.

$EOJ

$ERROR statement

Figure 3-6 Card Deck with Error Statement

The above cards would cause Batch to make the following entries in the
control file.

@COMPILE
@IF (ERROR) statement

3-26

''--'"

-----./'

ENTERING A BATCH JOB PROM CARDS

On either the $ERROR or $NOERROR card, you must include a statement
that tells Batch what to do. You can use any system command, a
command to a program, or one of the special Batch commands. The @GOTO
and @BACKTO Batch commands are commonly used for this purpose. Refer
to Sections 2.3.4 and 2.3.5 for descriptions of these commands. If
you use @GOTO or @BACKTO on your $ERROR or $NOERROR card, be sure that
you supply a line for the control file that has the label you
specified in the @GOTO or @BACKTO command.

Two sample jobs are shown on the following pages. The first shows the
use of the $ERROR card and the @GOTO command to specify error
recovery. The second example shows the use of the $NOERROR card and
the @GOTO command.

If you have a program that may compile with errors, you can include
another version of the same program in your job (that hopefully will
compile) and tell Batch to compile the second program if the first has
an error. The cards to enter this job are shown in Figure 3-7 •

. 3-27

ENTERING A BATCH JOB FROM CARDS

SEOJ

A::!CONTINUE

FORTRAN source program

Figure 3-7 Card Deck with Error Recovery Program

3-28

ENTERING A BATCH JOB FROM CARDS

These cards set up the following control file for you.

@COMPILE/COMPILE LNxxxx.FOR/LIST
@IF (ERROR) @GOTO A
@EXECUTE LNxxxx.REL/MAP:MAP.LST
@GOTO B
A: : ICONTINUE
@COMPILE/COMPILE LNxxxx.FOR/LIST
@EXECUTE LNxxxx.FOR
B: : I CONTINUE

The $FORTRAN card told Batch to copy the program into a disk file, to
create · a unique filename for the program in the form LNxxxx.FOR, and
to insert a COMPILE command into the control file. The $ERROR card
told Batch to insert @IF (ERROR) @GOTO A into the control file. The
data was copied into a disk file and an EXECUTE command was put into
the control file because of the $DATA card. The $TOPS20 card told
Batch to start copying cards into the control file, so Batch put the
next two lines into the control file. The second $FORTRAN card told
Batch to copy the program into a disk file, create another unique
filename for the program in the form LNxxxx.FOR, and put a COMPILE
command into the control file. A $EXECUTE card was used instead of a
$DATAcard because the data for the second program was already in a
file on disk. The $TOPS20 card caused the next line to be put into
the control file.

When the job is started, Batch reads the control file and passes
commands to the system. If an error occurs in the compilation of the
first program, Batch executes the @GOTO command within the @IF
statement. The command tells Batch to skip to the line labeled A,
which contains a comment. Batch then proceeds to the next line. The
second program is compiled and executed with the data. The next line
is a .comment, so Batch continues to the end of the control file. If
an error does not occur in the first program, Batch skips the @IF
statement, executes the program with the data, avoids the second
program by skipping to label B, and continues to the end of the
control file.

A variation of the above procedure using the $NOERROR card
command is shown in Figure 3-8. The difference is that
the @IF statement if an error occurs and performs it if an
not occur.

3-29

and @GOTO
Batch skips
error does

ENTERING A BATCH JOB PROM CARDS

$EOJ

B::ICONTINUE

A::ICONTINUE

STOPS20/switches

$PASSWORD password

$JOB user-name

Figure 3-8 Card Deck Using GOTO Statement

3-30

ENTERING A BATCH JOB PROM CARDS

Batch reads the cards and puts the following commands into the control
'~ file.

@COMPILE/COMPILE LNxxxx.FOR/LIST
@IF (NOERROR) @GOTO A
@COMPILE/COMPILE LNxxxx.FOR/LIST
@EXECUTE LNxxxx.FOR
@GOTO B
A: : !CONTINUE
@EXECUTE LNxxxx.FOR
B: : ! CONTINUE

The $FORTRAN card tells Batch to copy the FORTRAN program into a file,
to create a unique filename of the form LNxxxx.FOR, and to insert a
COMPILE command into the control file. The $NOERROR card tells Batch
to insert an @IF command into the control file.

The second $FORTRAN card tells Batch to copy the second program into a
disk file, to create a unique filename of the form LNxxxx.FOR, and to
insert another COMPILE command into the control file. Instead of a
$DATA card, a $CREATE card is used to tell Batch to copy the data into
a disk file named FOR01.DAT. The $DATA card is not used here because
it would have the names of both programs in its list for the EXECUTE
command generation, which would cause an error when the job is run.
To tell Batch to start copying cards into the control file, the
$TOPS20 card comes next. Thus, Batch copies the next five cards into
the control file.

When the job is run, Batch passes the COMPILE command to the system to
compile the first program. If an error does not occur, the @IF
command is read and the @GOTO command is executed. Batch skips to the
line labeled A, which is a comment, and continues reading the control
file. The program LNxxxx.FOR is executed with the data, and the end
of the job is reached. If an error occurs, Batch skips the @IF
statement and continues reading the control file. The second program
is compiled and then executed with the data. Batch is then told to go
to the line labeled B, which is a comment line. The end of the job
follows. The TOPS-20 @EXECUTE command was used in this job rather
than the $EXECUTE card. The $EXECUTE card would have caused the names
of both programs to be included in the @EXECUTE command which would
have resulted in an error when the job was run.

The examples shown above illustrate only two ways that you can specify
error recovery in the control file. You can use the @BACKTO command
or any system command that you choose to help you recover from errors
in your job.

However,
job is
messages
run your

you do not have to attempt to recover from errors while your
running. You can correct your errors according to the error
in the log file when your job is returned to you, and then
job again.

3-31

I

CHAPTER 4

INTERPRETING YOUR PRINTED OUTPUT

You can receive three kinds of printed output from your Batch jobs:

1. Output that you request, i.e., the results of your job.

2. Output from Batch commands, i.e., the log file.

3~ Output that is the result of actions by your job, Batch, the
system, or system programs: examples of this output are
compilation listings, cross-reference listings, and error
messages.

4.1 OUTPUT FROM YOUR JOB

If your job uses the PRINT command to print files on the line printer,
the files will be printed in listings separate from the log file. The
printed output from each program will be preceded by two banner pages
containing your user name and other pertinent information. Following
these pages are two header pages that contain the name of your output
file in block letters: the output follows these header pages. Two
trailer pages follow your output: they contain the same information
that is on the first two pages. The header and trailer pages also
include three rows of numbers (read vertically from 001 to 132) that
represent the character print positions on the line printer.

If your output is usually directed to the terminal, it will be printed
in the log file, not as a separate file. In the sample output shown
in Section 4.4, the output from the program is included in the log
file because it was directed to the terminal rather than the line
printer.

Although this chapter deals mainly with printed output, you can have
output to any device that the installation supports, as long as the
installation allows you to use these devices.

4.2 BATCH OUTPUT

The output from Batch consists of a log file that contains all the
statements in the control file, commands sent to the system from Batch
for you, and the replies to the commands from the system and from
system programs like the compilers. Any error message sent from the
system or system program or from Batch itself is also written in the
log file.

4-1

INTERPRETING YOUR PRINTED OUTPUT

When your Batch card job is printed on the line printer, it will have
a unique filename of JBxxxx and a file type of .LOG. This file is
deleted automatically after it has printed.

4.3 OTHER PRINTED OUTPUT

Other output that you can get as a result of action by your job
includes compiler listings, cross-reference listings, and loader maps
for programs that were successfully loaded.

The compiler and cross-reference listings are those listings generated
by the compiler if you request them. When you enter your job from
cards, Batch requests compilation listing for you unless you specify
otherwise. Cross-reference listings are generated for you only if you
specifically ask Batch for them. When you enter your job from a
terminal, you must request the listings in the COMPILE command. Refer
to the Batch Reference Manual for the switches (/CREF, /MAP) that are
available to generate additional listings for your Batch job process. ..~

If a fatal error occurs in a- program in your job and you
included an error recovery command to Batch, Batch will
recover from the error for you. Instead, it will write
message in the log file and terminate your job.

4.4 SAMPLE BATCH OUTPUT

have not
not try to
the error

Two sample jobs and their output are shown in the following sections.
The first shows a job entered from a terminal, the second shows a job
entered from cards. The log file is somewhat different for the two
types of jobs.

4.4.1 Sample Output of a Job from a Terminal

The following example illustrates a job as it would be entered from a
terminal. You would first create the program as a file on disk.

~ ,
@CREATE (FILE) COBOL1.CBL~
Input: COBOL1.CBL.l
00100 IIIENTIFICATION I1IVISION.~
00200 PROGRAM-III. COBOL1.~
00300 ENVIRONMENT I1IVISION~
00400 DATA [IIVISION.~
00500 PROCEIIURE DIVISION.G!D
00600 START.G!D
00700 [IISPLAY "THIS IS TO SHOW SAMPLE OUTPUT FROM BATCH.".~
00800 DISPLAY "THESE TWO LINES ARE OUTPUT FROM THE PROGRAM.".~
00900 STOP RUN.~
01000 ,

~

[COBOLl.CBL.1J
@

4-2

INTERPRETING YOUR PRINTED OUTPUT

Then you would make up a control file to compile and execute the COBOL
program.

~ ,
eCREA TE (FILE) MYJOB.CTL~
Input: MYJOB.CTL.1
00100 @COMPILE COBOL1.CBL/LIST~
00200 @EXECUTE COBOL1.CBL~
00300 •

*E~

t
@")

[MYJOB.CTL.IJ
@

You would then submit the job to Batch using the SUBMIT command.

~ ,
@SUBMIT (BATCH JOB) MYJOB.CTL~
[INP:MYJOB=/Sea:4453/Time:0:05:00J
@

When the job is run, the
produced. The following
line-printer spooler:

program
listing

is
is

compiled and a
placed in the

p ~ 0 G ~ A M C 0 8 n L 1 COBOL.6. 12(526) BIa
CO~OL1.C8L 05.AP~.7' 14.53

IDENTIFICATION DIVISION.
P~OG~AM.rD. MYP~OG.
ENVIRON~!NT DIVISION.
DATA oIVUION.
P~OCEDURr. DIVISION,
SURT.

listing is
queue of the

0001
0002
000)
0004
OOO!
/)006
0/)07
0009
0009

00100
00200
00)00
00400
00500
00600
00700
001100
00900

DISPLAY -THIS IS TO SHOW SAMPLE OUTpUT FROM BATCH.",
DISPLAY "TNESt TWO LINts ARE OUTPUT '~OM THE P~OGRAMI"I
STOP RtiN.

NO tRRO~5 DETtCTED

The log file below is printed as your job's output. The output from
the program is written in the log file because it is output to the
terminal and the log file simulates the terminal dialogue. The log
file also contains some commands that Batch sent to the system for you
and some additional system information. An annotated log file is
shown on the following page. Note that each line in the log file is
preceded by the time of day when the line was written. Following the
time is a word that describes what kind of information is on each
line. Much of the informati6n is system information and is described
in detail in the DECSYSTEM-20 (TOPS-20) Batch Reference Manual.

4-3

" 1491 09 BAJOB
t'PI 49 I 09 UrIL
"1"109 BA'IL
"149109 ItUU",

" 1491 09 MaNU
1'PI49110 "'OffTR
'''49110 MONT~
"1491" MaNTA
"149114 MaNn
17 I 49114 MaNU
17149 114 IIIONTII
17149 I 15 MONTII
17 I 49111 USEIt
" 1.9 In UIlIt
171"ln USIR
17,491 J2 MONT"
1'PI491H usn
1'P1"I44 USER
1 'PI .,,4' USER
1714914' USER
",49,45 USER
"149,4! unR
",49,45 MONTII
17 ,49,45 "'ON Til
17 '49 It 7 MONTII
''PI 491 t7 MONTII
17,49,49 L.DAT
17149,49 LPDU
1'PI49150 LpMSG
17,50105 LPM,G

INTERPRETING YOUR PRINTED OUTPUT

BATCON v.r.lon 10J(IOOO) runntno MYJOB •• quenee 445) 1n .tre.m 1
Input eroM "ICUSEJI.NAME>IIIYJOB.CTL,1
output to PIICUS!R.NAMI>"'YJOB,LOG
Job ,ara.eun
T1.'IOO,05,OO unlqu"YEI Re.tartlNO Output'LOG

IY.TEM 2102 DEVELOPMENT IIlTEM, TOP'.20 Monitor lA(S475)
'LOGIN "IER_NA"'E J41
Job 6 on TTY225 '.APr_71 17'49111

• [CONNECTED TO 'ScUIEII.NAME»
.'ET TIME-LIMIT JOO
.lcnM.ILE C080Ll,CBL/LIIT
COBOL I eOIOLl [COltOL1,eBLl

UIT
"EXECUTE COBOL1.eaL
LINICi t.oadinCJ
[LNKXCT COIOLl Exeeutton)
THII IS TO .HOW SAMPLE OUT'UT rROM BATCH,
THE., TWO LINE. AAt OUT,UT '11014 THE 'IIOGIIAM.

EXIT ,·e
nOGOUT
Killed Job 6, U.e, U.E"_NAMI, ACCount 141, TTY 225,

at 5.AP,.78 1'1.9147, u.ed 01011 In 010111
tLPTL'J L,TIPL ver.lon 101(2]05) runntno on 'LPTl, 5.A~r.7.J
[LPTSJI 'tartlno JOb MYJDB, 'eq •• 451, requt't created at 5.A,r-7IJ
[L"ST' Itartlno r11t PIICIPOOL>t.,T.226.0.e080Ll,L.T.l2J
Ct."r" rln11hed 'rlntlnCJ '111 PSIC5'OOL)L'T.Z26.0-C080Ll,LIT,12J

4-4

INTERPRETING YOUR PRINTED OUTPUT

4.4.2 Sample Output of a Job on Cards

This example shows a job in which a small COBOL program is compiled
and executed. The card deck is shown in Figure 4-1.

$EOJ

COBOL source program

Figure 4-1 COBOL Print Program Card Deck

The COBOL program is as follows.

IDENTIFICATION DIVISION.
PROGRAM-ID. COBOLI.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
START.
DISPLAY "THIS IS TO SHOW SllMPLE OUTPUT FROM BATCH.".
DISPLAY "THESE TWO LINES ARE OUTPUT FROM THE PROGRAM.".
STOP RUN.

When the job is run, the program is compiled and a compilation listing
is produced. The listing is shown below. Note that the compiler puts
sequence numbers on the program even though they were not in the
original program.

4-5

INTERPRETING YOUR PRINTED OUTPUT

PRO G RAM COB 0 L I
LN2RtC,CBL 01.APR.l. 01101

0001 IDENTIFICATION DlVISION,
0002 PAOGRA~.ID, COBOLI,
O~O) ~NVtPUNM~NT DIVISION,
0004 DlTA OIVrSION,
0005 PROCEDURE DIVIIION,
0006 SUPT,
0001 DISPLAY ~THtS II TO SHOW SAMPL~ OUTPUT FROM BATCH.",
0001 DISPLAY ~T~r.5r TWO LINES APr. OUTPUT rpo~ THt PROGRAM,",
0009 STOP PUN,

NO ERRORS D[TtCTtD

After the program is compiled,· it is loaded and executed. The program
in this example does not have output to the line printer. Instead its
output is written to a terminal. Because this is a Batch job, the
terminal output is written in the log file. The log file is printed
because the end of the job is reached. The log file contains all the
dialogue between your job and the system and system programs, and some
commands that Batch sent to the system for you. An annotated log file
is shown on the following pages. Note that each line in the log file
is preceded by the time of day when the line was written. Following
the time is a word that describes what kind of information is on each
line. Refer to the DECSYSTEM-20 (TOPS-20) Batch Reference Manual for
a description and definition of these words.

4-6

I

,-------

INTERPRETING YOUR PRINTED OUTPUT

0'101,4' ITDAT '.A'R.'I IflTEM 2102 DEVELO,MENT IYITEM, TO, •• 20 ~onltor)A(1475)
0710114' lTCI'D '~Ol UIER.NAME IACCQUNTI141
0'101.4' lTCI'D 'COBOL
0,.01.4' aT~IG rl1. 'SILN2REC,CIL Cr.at.d • 9 Cardl R.ad
0'1011" lTCI'D IEXECUTE
0"01,4' lTCI'D 'EOJ
0'.01.4' I,IUM End 01 JOb Eneount.r.d
0'101.4' ITSUM 14 Cardl R,ad
0,,0114' S,IUM Batth In,ut P.qu.lt Cr.at.d

011 Oll 54 BAJOI
01l0tl54 BArtL
0'101154 IArtL
0,.01154 BliUM

01101114 MONTI'
07101154 MONTI'
01101114 MONTI'
01101 t!'7 MONU
0'7101151 MONTI'
0110115'7 MONTR
01101151 MONTR
0'101161 MONTR
0'7.01161 USER
01102105 U8!R
0"02105 uaER
0,.02105 MONTR
0,.02.06 USER
01102110 UIER
01102111 UIER
0,.02.11 USCR
0'102111 UIER
0'71(12.11 UISER
0'71021 tt MONTR

0'102111 ILAIL
011021 tt "'ONTR
01102111 MONTR
0'7102111 MONTR
011021 tl MONTI'
0'.02111 ~ONTR
0'1021lJ MONTI'
0'7102111 MaNTA
0'102114 L'DAT
01102114 LPDU
01102114 L'''''G
0'102110 LpN.G

IATCON v,rllon 10)()000) rUnnino JB2RED I.qu'ne. 4101 1n Itr.a. 1
InpUt from PSICUSER.NAME»JB2RED.CTL,l
outPut to PIICUIER-NAHE)JI2RED,LOG.1
JOb paUIII.t.,.
T1111'lo0105aOO Uniqu'IYES R.ltartlYES OutputlLOG

If STEM 2102 DEVELOPMENT IYSTEM, TOPI-20 Monitor lA(1475)
'LOGIN UIER.NAME 14t

JOb lion TTY22t '7-A,r.,1 0'101157
• (CONNECT'D TO P'ICUSER-NAME»]
'.ET TIME-LIMIT JOO
"COMPIL ICOMP/COB PSILN2REC,C8L/LIST
COBOLI COBOLt (LN2REC.CBLl

EXIT
.'EX,CUT IREL PSILN2REC.REL
LINKI LoadinO
tLNKXCT COBOL 1 Ex.cutlon]
THI. IS TO IHOW SAMPLE OUTPUT FROM BATCH,
THEIE TWO LINEI ARE OUT'UT FROM THE PROGRAM,

EXU • URRII
.FINII
,DELITE PIILN2~!C,C'L'PIILN2REC,REL

CU'EP-NAME»LN2.EC,CIL,1 (OK]
CUIEP.NAM!)LN2PEC,RIL,1 (OK]

'·C
tloOGOUT
Kill.d Job JI, uI.r USER.NAME, ACCoUnt 141, TTf 221,

at '.A,r." 0"02'lJ, UI.4 01011 In 010115
tLPTL'~ L'TI'L v'rllon 101(2105) runnlno on PLPTO, '.A,r-71]
tL'TSJI 'tartin9 JOb ~'2RED, I.q ,4J01, r.qu'lt cr •• t.d at '7.Apr.'7M]
tLPTSTr It.rtln, rllt ',ICS'00L)LPT.22'_0.LN2PEC.L.t,16J
EL,Trpr 'inilh.d prlntlnO '11' '1ICI'OOL)L'T.22'_0.LN2REC.L.T.16J

4-7

CHAPTER 5

EXAMPLES OF COMMON TASKS WITH BATCH

This chapter shows some sample jobs that are run from a terminal and
from cards. Section 5.1 illustrates entering jobs from a terminal.
Section 5.2 shows entering jobs from cards. The examples are the same
in both cases, the difference is in the way that they are entered.

5.1 USING THE TERMINAL TO ENTER JOBS

ALGOL Example

The first job is a simple ALGOL program that writes output to the
terminal. Since the job is being entered through Batch, the output is
written in the log file instead of on an actual terminal.

~

@CREA~E
INPUT:
00100
00200
00300
00400
00500
00600
00700

(FILE) HYPROG.ALG~
HYPROG.ALG.1
BEGIN(§)

REAL X;INTEGER I;(§)
X:=l;(§)
FOR 1:= 1 UNTIL 1000 DO X :=
PRINT (X);C§)

END(§)

T

CHYPROG.ALG.1J
@

XtI ;G!D

The control file for the program is created as follows.

@ CRE~fE) (FILE) HYFILE(§)
INPUT: HYFILE •• 1
00100 @COHPILE HYPROGRAH.ALG/LIST(§)
00200 @EXECUTE HYPROG.ALu(§)
00300 f
~

CHYFILE •• 13
@

5-1

BXAMPLBS OF COMMON TASKS WITH BATCH

To execute this ALGOL program using the Batch control file, issue the
SUBMIT command.

~

QSUB~IT (BATCH JOB) MYFILE •• ~
tINP:MYFILE=/SEG:4067/TIME:O:OS:OOJ
@

When Batch starts the job, the statements in the control file call the
ALGOL compiler to compile the program. The TOPS-20 EXEC then calls
the loader to load the program for execution. A listing of the
program will be printed with the log file shown below.

0'15915' BAJ08
09159159 BAP'n
09159159 BArn
09159859 ~UUM

09159151 MONTI!
10100100 MONTR
10100100 MONTR
10100104 MONTII
10100104 MONTI'
101(10104 MONTR
101(10104 140NTII
101(10105 MONTI!
10100107 UatP
10100109 US!:P
101(10109 UatFl
, 01 (I III 09 MONTI!
1011)0110 ustR
10100115 USER
10100117 MONTR
\QIOOI17 MONTR
1010"117 MONTI'
10100117 MONTI'
101(10117 MaNTA
tOIOOl1l MONTI'
10100111 MONTI'
10100121 L,DA,
\010012\ LPDAT
10100,21 LP14aG
10100114 LpMaG

BATCON v.rlioft 10)()000) runnlnv MyrlLE
Input frOM '1ICuaER-NAME)MYP'ILE,,1
outPut to '1ICUlr.R-NAME)MYFILE,LOG
JOb ,U.III,UrI
Tl-.ioOIOI,OO unl~u"YEI R'lt'rt,NO

IYITEM 2102 DEVELOPMENT IYSTEM, TOPS-20
'LOGIN uaER-NAMt)41

Job 40 on TTY226 4-Apr-7' 10100104 ,
[CONNECTED TO 'alcUlt"_NAME)]
'lET TIME-LIMIT]00
"COM'ILE MYPROG,ALG/LIST
HGOL' MY'ROG

EXIT
"EXeCUTE MY'ROG,ALG
LINKI LoadlnO
tLNKXCT MY,ROG Ex.cutlon]
',0010000,)

Eftd of .x.cutlon,
'·C
nOGaUT

I.quene. 4066 1n .tr.a~ 1

Output nOG

"'onitor)A(lnO)

~tll.d .10_ 40, uI.r U'ER_NAME, Account)41, TTY 226,
at 4-APr-" 10100111, UI.d 01011 in 010,14

[LPTL.J 1.".,1. v'r,lon 10)(2)05) runnino on 'L,TO, .-Apr-711
ILPT,.1' 'tartln, JOb MyrILE, I.q ,4066, r.qu'lt er.at'd .t 4-.pr-711
IL'T.'P' 'tartln' P'Sl' ",CS'00L)L,T_226_0_MY'"OG.L8T,6)
IL'T"r rinl.htd printin' 'il' ps,C,'OOL)LPT_Z26.0_MYPIIUG,LST,6)

5-2

.,,----.

EXAMPLES OF COMMON TASKS WITH BATCH

BASIC+2 Example

The second example is a BASIC program submitted to Batch. You can
make up the program file .using BASIC and save it on disk. Then make
up a control file that simulates the dialogue with the BASIC system.
The program is shown below.

@BASIC~

READY
NEWG!!)
NEW PROGRAM NAME--MYBAS.BAS~

READY
00100 INPUT D~
00200 IF D = 2 THEN 1100~
00300 PRINT "X VALUE", "SINE", "RESOLUTION"G!D
00400 FOR x=o TO 3 STEP It~
00500 IF SIN(X)<=M THEN 800~
00600 LET XO=X~
00700 LET M=SIN(X)~
00800 NEXT X~
00900 PRINT XO,M,It~
01000 GO TO 100~
01100 END~
SAVE~

READY
MONITOR~
@

The program requests
You include the data
data item must be 2
follows.

data from the your terminal when it is running.
in the control file. For this program, the final
to conclude the program. The control file

GU ,
@CREATE (FILE) BASIC.CTL~
Input: BASIC.CTL.1
00100 @BASIC~
00200 *OLD DSK:MYBAS.BAS~
00300 *RUN~
00400 *.1~
00500 *.01@)
00600 *.001@)
00700 *2~
00800 *MONITOR@)
00900 $

t
GD

[BASIC.CTL.l)
@

5-3

EXAMPLES OF COMMON TASKS WITH BATCH

The output from the program will be printed as part of the control
file listing. The command to submit the job to Batch is executed as
follows.

~ ,
@SUBHIT (BATCH JOB) BASIC.CT~
CINP:BASIC=/Seo:2972/Time:O:OS:OOJ
@

01,49,2' IAJOB BATCON yer.ion 101(1000) runnlnv BAIIC .e~uenee 290' In Itre •• I
01,49.2' IA'IL In,ut frOM P"CUIER.N'ME)."IC,CTL,1
01,49,2' IA'IL out'ut to PI'CUI!~.NAME)'AlrCiLOG
01,49,2' •• ,UM JOb ,ara.tter.

, ••• ,00,05,00 uniqutlYl1 Re.tartlNO out,ut'LOG

01,49,29 MaNU
01.4,,)0 MONTA
01"9, JI MaNU
01.49,14 MON'I'R
01149,14 MONTR
01149114 MONTR
0 .. 49114 MONTR
01'49, J5 MONTJI
01,49,)1 USER
01,49,11 UIEI'
01,49, II UIEI'
0,,49,11 USER
01,49,42 UUR
01149,42 UIER
01,49,42 UeER
01,49,42 uaER
01'49,42 UIE"
01,49,42 unR
0.,49,42 U,EII
0,,49,41 Uatlt
01,49,44 UUR
01 I 49,44 "UIU
01,49i44 U.ER
01"9'44 UaER
01,49,44 uaER
0"49,44 UIER
0,,49,41 UIER
0"49,45 UIEI'
0'''9,45 UIEI'
01,49,46 UIEI'
01,49146 USE'
0"49,46 UIEII
01,49,46 UlEit
011.9,46 U'U
01,49,46 USEA
01,49,46 UU"
0'.49,46 US!"
0"49,4' UI!"
0,,49.46 UIER
0 .. 49.4, UIER
0 .. 4,,41 MOIfTI'
0 4'7 MONU
01,4',U MON!III
0 .. ".51 MONTIII
0"56. U LPDAT
0 .. 56. II LPDAT

IY"EM 2102 DEVELOPMENT IYSTEM, TOPI.20 Monitor 1.(14'5)
.LOGIN UIER.N,M! 141
Job 10 Oft 'TY210 '.A,r.,1 01.49114 • rCONNEc,ED TO P.,CUIER_NAME)J

'IET TIME_LIMIT Ino
... ·UC
• CAN'T TRAP CONT"OL C, UIE CONTROL' IN.TE.D

RUDy
OLD D'~.MY.".820

RUDy
RUN

MYU •• 120
Wedfte.day, ',rl1 " 19" 01'49142

• C.N'T TI'AP CONTROL C,
., .t

• t X V'LUE 'IN! I.' , .01
0,9995'16

,Ot
X VALUE UNE

t .57
., .oot 0,99'"''

.001
x VALUE lIN!

1.571002 t
, 2

2

RUNTIME, 0.'" 'ECI

READy
MONITOR .·C
nOGOUT

UIE CONTROL • INITEAD

R!SOLUTION
0.1

",tOLUTlON
0,01

RElOIiUTION
o.OOt

EL.patD TIME, 0100.04

Killed Job 10, u.tr U.EI'.NAME, ACCoUnt 141, TTY 210,
at S.A,r_" 01149,11, U.,d 0,0'1 in 010'19

tLPTLSJ LPTSPL Y.rlton 101(2)05) runnlnq Gft PIiPTt, '.APr.'ll
tLPTIJI Startlnv Job •• aIC, seq '29o" requ •• t Cr •• ted at '.APr-'11

5-4

"-./'

EXAMPLES OF COMMON TASKS WITH BATCH

FORTRAN Example

The third example is a FORTRAN program that prints output on the line
printer. You want to tell Batch in the control file to delete your
relocatable binary file if an error occurs when your program is
executed. If an error does not occur, you want Batch to save your
relocatable binary file as it normally would. The program is shown
I:,elow.

GD ,
@CREA TE (FILE) MYPROG.FORC!!D
Input: MYPROG.FOR.l
00100 C THIS PROGRAM CALCULATES PRIME NUMBERS.C!!D
00200 DO 10 I ~ 11,50,2C!!D

00300 J= lC!!D
00400 4 J=J+2~
00500 A=J C!!D
00600 A=I/A~
00700 L=I1 JC!!D
00800 B=A-L~
00900 IF (B) 5,10,5C!!D
01000 5 IF (J.LT.SGRT(FLOAT(I») GO TO 4~
01100 PRINT 105,xC!!D
01200 10 CONTINUE C!!D
01300 105 FORMAT (14, 'IS PRIME.'~
01400 ENDC!!D
01500

[MYPROG.FOR.1J
@

5-5

EXAMPLES OF COMMON TASKS WITH BATCH

You create the control file to compile and execute this program,
deleting the relocatable binary file if there is an execution error as
follows.

~ ,
@CREATE (FILE) MYFOR.CTL~
Input.:
00100
00200
00300
00400
OOSOO

MYFOR.CTL.1
@COMPILE MYPROG.FOR~
@EXECUTE MYPROG.REL~
@IF(ERROR) @DELETE MYPROG.FORQ!!)
END::!END OF JOBQ!!)
$

t
~

[MYFOR.CTL.1J
@

You submit this job for execution as follows.

~

~SUB~IT (BATCH JOB) MYFOR.CTLQ!!)
[INP:MYFOR=/Sea:2978/Time:0:OS:00J
@

The program output is as follows.

1 I IS PRI"'!.
I) IS Pill"'!:.
\7 IS PRtME,
t9 IS PRIM!:.
:n IS PRIME.
79 15 PRIM!,:.
31 IS PRIME,
)'7 IS PRIME.
41 IS PRIME,
U IS PRl"'E,
47 I~ PRI"'E,

5-6

I

EXAMPLES OF COMMON TASKS WITH BATCH

The log file produced by the job is as follows.

151411011 BAJOS
1514\101 I3ArJt.
UI41101 "A"IL
15141101 SUUIIf

15141101 MONT~
1'141109 IIfONTR
nl4t 109 IIfONTII
U 14 \t II MONTR
151411U MONTII
nl4tllJ MONTR
1'141113 MONTII
15 141115 MON'I'II
lS14! 1.12 USI!:~
lSlU 21 USER
\'!II41)0 MONTR
1514t II IlstP
15141 U US!:"
lS I 41)5 USER
1514\ n USER
15141 n USER
lSI4t n UIER
15141)5 MONTR
U I 41)5 ",IJE
UI4t n lATCH
lSI41)5 ILUt.

15 141 U5 MONTA
151411)5 1If0NTII
15 1411 n MONTR
15141117 1If0NTII
151571)7 L,DAT
151571 J7 LPDA'!'
t51571)7 LPMIG
15157151 LpMIG

BATCON Y'rllon to)(JOOO) runnln; MyrOR I'qu.ne. 442Z In Itr'am 2
Input frOM PSICU'ER-NAME~MYrO~,CTL,2
OUTPUT TO PStCUSr.R.NAM!:~MYFOR.LOG
JOb ,aram.t.n
T1M,,00105100 UnlqueIYr.' R'ltartlNO out,utlLOG

ayIT!M 2102 DEVELOPM!NT 'Y'TEM, Tops-ao Monltor JA(1415)
'LOGrN UIER.NAME J41
Job 61 on 1TY226 S-APr-71 1514111J
• [CONNECTED TO PllcUlt~-NAME~J
'lET TIME-LIMIT lOO
flfICOMPILE MYPROG,rOR
f'OURANI MYPROG
MUN.
"r.XECUTE "YPROG,REL
LINK I Loadlnlil
[tHKxeT IIfYPROG Ex.eution)

END or EXECUTION
CPU TIMEI 0,11 ELAPIED TIMEI 0,90
[X IT ,
Uf' (NOtRROR)
flGOTO END
ENOl I
,END or .J08
·e
nOGoUT
Kl11.d JOb 61, uI'r UIER_NAME, ACCoUnt J41, TTY 226,

It 5.A,r_71 151411J7, UI.d 01012 ln 01012J
,L"LIJ L"IPL y.rllon 10J(2J05) runnlno on PL"O, S-Apr-71]
[L,raJa Itartlno Job MYrOR, I.q '4420, r.qu'lt cr.at.~ at S-A,r.7IJ
[L"a" atartlno r11' "IC'POOL)LP'.1"-0-'0~L'T,DAT,Jl
[LP"" 'Inllh.d prlntlnO rl1' P'IC'POOL~LPT-164.0.'ORLpT,DA"Jl

5-7

EXAMPLES OF COMMON TASKS WITH BATCH

COBOL Example

The fourth example is a COBOL program that writes record output on a
magnetic tape. To have a tape drive assigned and your magnetic tape
mounted on it, you must make a request to the operator. Since you do
not know which drive will be assigned to your job, you must assign it
in your job with a logical device name. The TMOUNT command assigns
the drive to your job and associates the logical name that you specify
with the physical drive assigned. The TMOUNT command also informs the
operator of the name or IO number that identifies the particular tape
you want mounted. (Your tape should be given to the operator or
stored at the central site before you submit your job.) You create
the program as follows.

~

@CREA~E (FILE) MYPROG.CBL~
Input:
00100
00200
00300
00400
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300
02400
02500
02600

MYPROG.CBL.1
IDENTIFICATION DIVISION.~
ENVIRONMENT DIVISION.~
INPUT-OUTPUT SECTION.~
FILE-CONTROL~

SELECT OUTFIL ASSIGN TPDRIV.~
DATA DIVISION~
FILE SECTION.~
FD OUTFIL LABEL RECORDS ARE STANDARD~

VALUE OF IDENTIFICATION IS "INFIL DAT·~
DATA RECORD IS OUTREC~
BLOCK CONTAINS 20 RECORDS~

01 OUTREC PIC X(80).~
WORKING-STORAGE SECTION.~
77 A PIC 9999 USAGE IS COMP.~
PROCEDURE DIVISION.~
START.~

OPEN OUTPUT OUTFIL.~
MOVE ZEROS TO OUTREC.~
MOVE 1000 TO A.~

LOOP.C!B
WRITE OUTREC~
SUBTRACT 1 FROM A~
IF A IS GREATER THAN ZERO GO. TO LOOP.G!!)
CLOSE OUTFIL.~
STOP RUN.G!D

[MYPROG.CBL.1J
@

5-8

I

EXAMPLES OF COMMON TASKS WITH BATCH

You create the control file (COBJOB) used to run the program
(PROGl.CBL) as follows.

~

@CREA ~E (FILE) COBJOB~
Input: COBJOB •• 1
00100 @TMOUNT TP[lRIV:MAG1,~
00200 @WRITE-ENABLE[I~
00300 @G!)
00400 @COMPILE MYPROG.CBL/LIST~
00500 @EXECUTE MYPROG.CBL~
00600 @UNLOA[I TP[lRIV:@)
00700 @[lEASSIGN TF'DRIV:~
00800 $

t
~

[COBJOB •• 1]
@

You submit the job for execution as follows.

~ ,
@SUB MIT (BATCH JOB) COBJOB •• @)
[INF':COBJOB=/Sea:2981/Time:0:05:00J
@

5-9

EXAMPLES OF COMMON TASKS WITH BATCH

The log file produced by COBJOB is shown below.

011 291 JI BAJa_
07.291J1 BArIL
071291 JI BArtL
07129 I JI BAiUM

011 atl JI MONTI'
07.29.31 MONTa
0712913' MONTI'
07129141 MONTri
01129141 NONn
07129141 MONn
07179141 MONIR
07.29.41 NONT"
07129.42 NoNn
07129142 NONT"
07129 I 42 NONTII
07.29.42 MONTII
071J0 I 61 MONT"
"7110 I 6'7 MONTA
07130lst UIE'
0713110S un"
07131.05 unR
011 J II 05 NONT"
07.31106 U'ER
01lUll0 USER
071)t I UUIER
07. It 112 USE ..
07.31112 MONU
07.311 U MONTIt
07.3111) NONTIt
01. 3t1 U NONT"
I) 713 tI 14 MONTII
01')1114 140NT"
071J1115 LPDAT
01.Jlll' LPDAT
07131116 LpNSC
07.lt 1)0 LPMSC

BATCON ver.ion 10J(1000) runn1nQ COBJOB .equtnce 4317 1n .tre •• 1
Input frOM PSICuaER-NAME~C08JOB •• I
output to pa.culr.R_NAME~COBJOB.LOG
JOb ",,"Urt
T1Me.0010S.OO UniquelYEa Re.t'rt,NO outputiLOG

IY'TEM 2102 DEVELOPMENT .yaTEM, TO"-20 Monitor lA(1475)
.LOGIN uaIR-NAME 14t
Job 42 on TTY22, ,-Apr-,' 0'129.41
• (CONNECTED TO PIICUIIR-NAME»
•• IT TIME-LIMIT JOO
"TNoUNT T,DRIV.MAG1,
"'WRITE-~NABLED

'"
tOper.tor notified)
[MT A31 "'1Gned)
"COM'IL" MyPROG.CBL/LIIT
COBOLI MAIN [MYPROG.eIL)

un
"IXICUT' MY'''OG.CBL
LINJel Lo.din;
tLNJeXCT MYPIIOG Extcutlon)

EXIT
.. UNLOAD TPD"IV I
"DEAISIGN TPDRIV. ,·e
,J.[1GoUT
Jellied Job 42, u.er UIEIt_NAME, Aeeount 341, TTY 221,

.t 7.Apr-'1 07.31.14, U •• d 0.014 In 01113]
tLPTLSJ LPTSPL ver.lon 10](2)05) runninG on PLPTO, '-Apr-'I)
tL"aJS St.rtlnq JOb COIJOB, Seq ,4)17, ,eque.t er •• ted.t 7-Apr-'81
[L,TIT' It.rtlnG File PSICS'OOL>L,T.5.0.NYPROG.LST,21J
tLPTFPF Flnilned 'rlntlnQ Fl1e 'SICaPOOL>LPTe'eO_MYP.OG.LaT.31J

5-10

"-' ..

EXAMPLES OF COMMON TASKS WITH BATCH

5.2 USING CARDS TO ENTER JOBS

ALGOL Example

The first job is a simple ALGOL program that writes its output into
the log file because it has statements that would cause it normally to
write to the terminal. The program is as follows.

BEGIN

END

REAL X;INTEGER I;
X :=1;
FOR I :=1 UNTIL 1000 DO X :=X+I;
PRINT (X);

The cards to enter this program are shown in Figure 5-1.

SEOJ

ALGOL source program

$PASSWORD password

Figure 5-1 ALGOL Job Entry Card Deck

The output, including the log file, is shown on the following page.

5-11

07'02,27 BAJOB
~7,{l2'77 BArn.
07,02,27 BArIL
1)71(1212' 8ATSUIo4

t
07,02,2' f 1040NTR

~ 0"02,2' "'ONTR
~ "7,(1212' MONTR
~ 0'102,11 MONTR
~ 01,(l2,l1 MONTJI
f 01'021Jl Mr:lNTR ,
• 1)71(121)1 MONTR f 01.(21)t "'ONTII

07107,)2 USEP
"7102,)) USEP
01102.)) USER
011021H MONTR
07.021)4 USER
01,02,)6 USER
(11.02131 "'ONn
0111;17,31 MONTR
t')1t02.)'J "'ONTII
01,02,)1 MONTR

1)7102,)'7 ilLABL
(1"(121)1 ",,,NTR
(l7.021J7 "'aNT"
,,711:'2In "IONTR
1171C!'2,3'J "lONTP
117'''7137 ",,,N!II
')1 1tl'2 , HI MONTP
1)7'02118 MOliTR
01,02119 LPOlT
""02,39 LPOAT

EXAMPLES OF COMMON TASKS WITH BATCH

BATCON V'r,lon 103(3000) runninQ JB2RES "quenc. 4102 In .tr.a~ 1
Input fro~ PSICU8EReNAME>JB2RE8,CTL,1
outPut to PSICUIElleNlMF.>Je2Rr.8,LnG,1
Job p.,a",eUn
Tlme.OO.O!.OO UnlqUe.Ytl "e.tartIYtS Output.LOG

SyaTEM 2102 DEVELOP~ENT SYSTEM, TOP8e20 Monitor JA(14'~)
P~OGtN USER.NAME]41
Jo~)8 on TTY221 7 •• pr.,' 01'021Jl

~

[CONNECTED TO PI,CUStll.NAME»
.IET TIME.LIMIT lOO
•• COMPIL IcaMP/ALG PIILN2I1tA,ALG
ALGOL. LN2REA

FXIT
,aEXECUT IREL PSILN2PtA,REL
LINIC, 1-oadin;
[LNKXCT tN2PEA ExecutlonJ
1,0010(100" 3

End of executlon,
I'
\tRRI'
,'INII
'O~Lr.TE PS,LN2RtA,ALG,PIILN2REA.REL

(USF".UME>LN2AF.:A, ALe.l 1011 J
ClJS£A.NA~£>LN2IIe:A.REL,t 101C) ,·c

9!o(1GoUT
ICllled Job)8. U.er UIER.NAME, Aecount 341, TTY 221,

at 7.APr.1. 07102IJ', U.ed 0,011 In 01017
tLPTLIJ LPTIP~ v~r.lon IOl(230S) runnlno on PLPTt, 1eAPR-7Il
(LPTIJS Startln; JOb J82R£I, Seq .4l02, r.que.t ereated.t 'eApr.' .. J

5-12

.,,-,.

. ",-,.

EXAMPLES OF COMMON TASKS WITH BATCH

BASIC+2 Example

The next example shows how to enter a BASIC program. You must precede
the program commands with a $CREATE card so that the program will be
copied into a file on disk. No $DATA card can be used because BASIC
does not use the EXECUTE command and because the data is entered by
means of the control file: the program requests data when it is
running; it finds the data in th~ control file. For this program the
final data item in the control file must be 2 so that the program can
be concluded. The program is shown below.

5 INPUT D
10 IF D=2 THEN 100
20 PRINT "X VALUE", "SINE", "RESOLUTION"
30 FOR X=O TO 3 STEP D
40 IF SIN(X}=M THEN 80
50 LET XO=X
60 LET M=SIN(X)
70 NEXT X
80 PRINT XO,M,D
90 GO TO 5
100 END

The cards to enter the program and run it are shown in Figure 5-2 •

5-13

EXAMPLES OF COMMON TASKS WITH BATCH

$EOJ

*MONITOR

*RUN

*OLD MYBAS. B20

Figure 5-2 BASIC Job Entry and Run Card Deck

5-14

EXAMPLES OF COMMON TASKS WITH BATCH

The output from the program will be printed in the log file because it
would normally be printed on the terminal. The log file is shown
below.

10'05,52 ITDU
to'05,5' nCIID
lO'05,U nCllo
10'05,54 STICSG
10105154 STCRr
10,1'5,55 ITCRD
10,05,,, nsul4
10,05,55 ST!lUJoI
10,05,55 SrsUM

IO,Ul40 BAJOII
\0115,40 BArn
10,15,40 urn
10115140 BUUM

tOll5,40 MONn
10'15,40 MONTII
10, U ,41 MONT II
10115,44 MaN",
,GIl5," MONTR
lGIlS,44 MONTII
to, U,.. MONTR
1 (I , 15 ,44 MON"
to, t!I,4S USEII
10,\5,45 usn
10,15.4' USER
10115.4, UIE"
101l!5I4' usn
10'15,46 uln
to 115 • 46 USER
to. t!I. 46 UIEII
tOlt5.46 UIER
10115,41 UltII
10'15,41 UIER
10115,41 UIEII
10 ,15.41 uatJl
t01l5,4I UIIII
10,15,41 UIII'
10115.41 UIEIl
10'15,41 UUR
10.15,49 u,n
to,tS,4' UIEII
t0I1S,4' u,n
to'U,4' UIER
to,I5,4' Uatll
lOIl5.49 UltII
10.15.49 uln
10115.49 UIEII
10,15.49 uln
10. IS ,49 U,EII
10115,49 U,ER
t01l5,49 uan
I O. 15 • 49 UUII
to,15.49 USEII
to 1151 49 Uilit
10' 15.49 USEII
10, t!I, 49 UIEII
10 It 5 149 UIEII
101 t!I. 49 USE'
10'lS.50 MONTII

10115150 III0N1II
10,15.50 MONTII
101l!!,S!! Mo"'TR
1 0 It 5." 1040NTII
10116,00 LPDAT
10,16.00 "PDAT

1.A,".11 IYSrE~ 2102 DEVELOPMENT SYSTEM, TUPS.20 Monitor lA(147S)
I"OJ UIER.NAM! IACCOUNT'14t
'CREAT! MY8AS.820
rllt ,.,MY8AS,1I20 Crt.ttd • 11 C.rd, Rt.4
nOPS20
nOJ
En~ of JOb EnCOunttrtd
2S Ce14. R .. 4
Betch Input Pequt.t Cr •• ted

IIATCON v,r,lon 10J(JOOO) runnlnV JB2RDW .tqutnc. 4l5' In .tr.em 1
Input frO. ",CUltR.NAMt>J82RDW,CTL,1
output to ",CU.r.R.NAME>JllaIlDW.LOG.I
JOb peUlIItttra
Tl~t,OO,05,OO Unlqut'YE' IIt.tert,YES output.LOG

IY'TEM 310a DEVELOPMENT 'YSTEN, Tops.aO Monitor JAl147S)
nOGIN U.lEhNAMf: HI
Job)t on TTY210 '.Apr.,' 10'IS'44
• (CONNECTED TO ,.,cUalll.NAIIIE>!
.IET TI~t.LrMIT lOO
"n,IC
- CAN'T TRAP CONTROL C, UIE CONTROL A IN5T~AD
- CAN'T TRAP CONTROL e, Ult CONTROL A INSTEAD

IIUDy
-QUrET WARN

IIUDy
-OLD HYlU.1I20

nADy
_"UN

MYIA •• UO
FridaY, Aprll 1, 1'" 10,15'4'

- CAN'T , TRAP COMTIIOL C, U.E CONTIIO&. A IN.TElD

-.1
X VALUE

° ,
-,01
X VALUE
o ,

_,001
X VALUE
o ,

*2

'tNE
o

UNE
()

lINE
o

IIUNTIMEI 0.4.4 'ECI

UlDy

.MON17011

• \tRill'

RIIOLUTION
0.1

nlOLUTIOM
0,01

IIElOLUTlON
0.001

ELAPIED TIME, 0,00101

.TNEC' End of t~, contrOl 'il' Whil' ".rchin, to, .rlN

·C
nOGOUT
Kill.d Job 14, u •• r USER.NAME. Account 341, TTY 2JO,

.t 1.APf." IOI15'S~, u •• ~ 01011 Sn 010,11
tLPTLIJ LPTSPL vtr.lon 10l(2)05) runnsn9 on PLPTt, 7.Apr.1Il
[~PTSJI It.rtlnq Job JB2RDW, SeQ .4)~!!, rt~ut.t er.eted et 7.Apr.'¥)

5-15

EXAMPLES OF COMMON TASKS WITH BATCH

FORTRAN Example

The third example shows a FORTRAN program that prints output on the
line printer. In the control file, you want to tell Batch to prevent
execution if the program compiles incorrectly.

C THIS PROGRAM CALCULATES PRIME NUMBERS FROM 11 TO 50.
DO 10 1=11,50,2
J=l

4 J=J+2
A=J
A=I/A
L=I/J
B=A-L
IF (B) 5,10,5

5 IF (J.LT.SQRT(FLOAT(I))) GO TO 4
PRINT 105,1

10 CONTINUE
105 FORMAT (14, lIS PRIME. I)

END

The cards used to enter this program are shown in Figure 5-3.

$EOJ

END: : ! END OF JOB

FORTRAN source program

$PASSWORD password

Figure 5-3 FORTRAN Card Deck That Prevents Execution
on Error

5-16

EXAMPLES OF COMMON TASKS WITH BATCH

Batch puts the following commands into the control file as a result of
the cards you entered.

@COMPILE LNxxxx.FOR/COMPILE/LIST
@IF (ERROR) @GOTO END
@EXECUTE
END::!END OF JOB

Program output is as follows.

Ii IS P~IME.
11 IS PIIIM!,
11 IS PIIII4!.
19 IS PRII4!.
n 18 PIIIME,
29 IS PlltIM!.
U IS PRIME,
31 IS PRIME,
41 IS PRIM!,
41 IS PRIM!,
47 IS PIIII4!,

The log fi1e produced by the job is on the following page.

5-17

0,,01153 ITOAT
o"Ot,,, 8Tc~n
01 , (I I • '5J aTC M
01'01155 STMSG
11,,01,55 STC~D
0"Ot,'5 aTC~"
0,,(1115' STCFlD
0"01,55 8TC~l'I
O',ot,'J5 nSUM
07101155 SUUM
O'.OI,'J5 STSUII

01103121 BAJO.
0,,(\),2\ 8ArtL
0'710),21 BArIL
0,,(1).21 SUlJM

0,,0),21 MONT~
"'10).21 MONTII
,,,,01121 140NTII
0"oJl24 "'ONTR
01103,24 MONTII
0',OJ124 MONT~
07'03'24 MONTII
07tOJ,2~ MONTII
0,,0],26 USEII
",.03129 ust~
"7,0)')0 MONTR
"7, OJl)O ratsr.
07,(lJI)0 MONTII
07'(11')0 MONTII
",.O)I)! ustll
07,01,)] USEFI
0'103134 USE~
07103,34 USr.~

",,03.34 USER
.,71011 J4 USEFI
0,.03.34 MONTR
0'7l0Jl34 lIlIUL

0,,01134 ILABL
0"01.34 MONTR
0'7l0llJ4 MONTR
0'.0).34 MONTR
0,,0].34 MONTR
0'103.]5 MONU
0'7l0Jl3'J MONT~
01l03.J! MONTR
0,.0).)6 LPDAT
O"Oll]6 LPDAT
0,.03. J1 L,MSC
O'IOJISO L,MSC
07103151 LpMSC
0'104102 LPMSG

EXAMPLES OF COMMON TASKS WITH BATCH

'-A'R-" SYSTEM DEVELOPMENT SYSTEM, TOPS-20 Monltor JAl14'tJ
.JOR US!FI_NAM! IACCOUNT,)4l
.rI)RTIIIAN/lIUT
'11' PS'~N2I1E7.'OR cr.ated _ 14 Cardl Rlld
ItRAOR ICOTO END
.txtcun:
nOPS70
.r.OJ
End of Job Eneountlrld
22 Cardl llead
pateh Input IIlquelt Crlatld

8ATCON v'rllon 103(3000) runnlnq J82Rti Ilqu.nee 4104 1n Itr.aM 1
l"put fro~ PSlcuaER-NAME)JB2RE8.CTL.t
outPut to PS'CUSEReNAM!)JB2RE8,LOG,1
JOb IPua"'.t,,.
Tl"'I,OO,05100 Uniqu"YES "'ltartIYES OutputlLOC

SySTEM 2102 DEVELOPMENT SySTEM, TOPI-20 Monltor lA(1475)
tLOCtN uaER_NAM! 141
Job JI on TTY221 'eApr_,' 0'101124

t
[CONNECTED TO PSICUSE~-NAME)1
'SET TIMt-LIMIT)no
'ICOMPIL ICOIIP/'OR PS.LN2RE',roR/LIST
P'OlnRlN I LN2"'"
MaIN,
•
'I'(EIIRO~) .GOTO END
,tXECUT IREL PSILNZ,.E',REL
EXr.eUT IREL PSILN2RF.'.REL
LINK, LoadlnlJ
tLNKXCT LNiRE' EXlcutionl

[NO 0' EXECUTION
CPU TIME' 0,10 tLAPIED TIMEI 0,11 nn .
t
END'I
ItND 0' J08
\EIIRil
"UI'
tDELETE "ILN2RE,.'OR,'S.LN2RE',REL
CU't'.NAME~LN2~E,,'0~,1 (OK)
CUSE'.NlM!~LN2RE"REL,t (OKI ,-e

'LOGOUT
Kliled Job JI, u.er USIR.NAME, ACCount l41, TTY 22t,

at '_A,r." 0'10)'35, Ulld 0.012 ln 0.0.10
tL'TL'J L.TIPL vlrllon 103(2J05) runnln; on 'LPTo, 7-Apr-'ll
tLPTSJI Start in; Job JI2Rtl, leq ,4J04, rlqu'lt erlatld at '.A,r.'W)
[LP'sT' StartinG '11' 'SICIPOOL)LPT-ZZ6-0-LNZRI'.,1'1
[L"", 'inllned ,rintlnO '111 'SICS'OOL~L'T.22'_OeLNa~E'I,1'J
[tPTST' Itartin; '111 PSICSPOOL)LPT_Z26.0.'ORLPT.DAT,1IJ [t."., 'lnllned PrlntlnG '111 pa.cS'0~L)LPT-226_0-'ORLPT.D1T,I'J

5-18

EXAMPLES OF COMMON TASKS WITH BATCH

COBOL Example

The fourth example is a COBOL program that writes record output on a
magnetic tape. To have a tape drive assigned and your magnetic tqpe
mounted on it, you must make a request to the operator. Since you do
not know which drive will be assigned to your job, you must assign it
in your job with a logical device name. The TMOUNT command assigns
the drive to your job and associates the logical name that you specify
with the physical drive assigned. The TMOUNT command also informs the
operator of the name or ID number that identifies the particular tape
you want mounted. (Your tape should be given to the operator or
stored at the central site before you submit your job.) The program
is as follows.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT OUTFIL ASSIGN TPDRIV.
DATA DIVISION.
FILE SECTION.
FD OUTFIL LABEL RECORDS ARE STANDARD

VALUE OF IDENTIFICATION IS "INFIL DAT"
DATA RECORD IS OUTREC
BLOCK CONTAINS 20 RECORDS.

01 OUTREC PIC X(80).
WORKING-STORAGE SECTION.
77 A PIC 9999 USAGE IS COMPo
PROCEDURE DIVISION.
START.

OPEN OUTPUT OUTFIL.
MOVE ZEROS TO OUTREC.
MOVE 1000 TO A.

LOOP.
WRITE OUTREC.
SUBTRACT 1 FROM A.
IF A IS GREATER THAN ZERO GO TO LOOP.
CLOSE OUTFIL.
STOP RUN.

The cards to enter this job are shown in Figure 5-4.

5-19

EXAMPLES OF COMMON TASKS WITH BATCH

$EOJ

@DEASSIGN TPDRIV:

@WRITE-ENABLED

@TMOUNTTPDRIV: MAG1,

$PASSWORD password

Figure 5-4 COBOL Program Card Deck Using Data From Magnetic Tape

Batch puts the following commands into the control file for you.

@TMOUNT TPDRIV:MAGl,
@WRITE-ENABLED
@
@COMPILE/COMP/COB DSK:LNxxxx.REL
@EXECUTE/REL DSK:LNxxxx.REL
@UNLOAD TPDRIV:
@DEASSIGN TPDRIV:

5-20

\'-.-

07134.06 U.JOI
07124.06 UnL
07124.06 u,n
07,24106 UIUI4

07.Z4,06 MONTA
07.24106 "'ONTR
01124.06 MONTII
071241 09 "'ONTA
01,24,09 "'ONTII
0'7124109 MONTII
071241 09 MONTII
07124.10 MONTII
07e24.10 140NTA
01124110 MONTII
Ole 24110 MONTII
0'7124.10 MONTA
07,Z4, J] MONTII
07124 e J] MONTI'
07124.H UII'
07e24.40 UlEfI
07.24.40 UIEA
07.24 e 40 MONTR
/)'7124141 USEfI
0'7,UI45 U.EfI
07124148 UlEfI
01124148U.EfI
01124 I 48 MONTA
071241 48 MONTA
0'7124148 MONT"

0'7124,4' ILlBL
01124 e 48 140NTfI
0'71241 48 MONTfI
07124 e 48 "'ONTII
07e24148 MONTI'
01e24e49 MONTII
07124150 IIONT"
07124150 MONTI'
07124.51 L'DAT
07124151 tPDAT
071U,51 t,MaG
07125,0'7 LPMaG

EXAMPLES OF COMMON TASKS WITH BATCH

BATCON v.r.ion 10JCJOOO) runninG J8ZREO .equenee 4115 ift .trea. I
Input 'roa , •• cUSEfI.NAME)JIZREO,CTt,1
Output to PSICuarR.NAME)JB2REO,LOC,1
"Ob ,aUllleuu
Tl.elo0105,OO Unique,y!s fle.tart'YEI output.LOG

lylTEM ZIOZ DEVELOPMENT IYITEM, TO"-20 Monitor JA(1475)
.LOGrN U'ER.NAME l41

Job 42 on TTY221 '.A,r.7' 0'7'24'09
• [CONNECTED TO ",CUIER_NAME))
"ET TINE-LIMIT JOO
"TMOUNT TPDAIV,MAGI,
"'WpIT!_!NABLEo ...
[O,er.tor notified)
[MTA1' a"19fted]
,.eOMPIL leO"'P/eOI 'I'LN2RDZ,eIL/LIST
COIOL' MAIN (LN2RDZ.CILJ

uu'
"EXECUT IAEL · 'S,LNZRDZ,IIEL
LINKi "oadln9
,"NKXCT LNiRDI E •• cutlonJ

EXIT
.. UNLOAD TPDAIV,
"DEASS'GN T,DRIV, ,
\tU,1
'rINi I
,DELETE 'SILNZRDZ,CIL,'S,LN2RDZ,flEL

CUSE"_NAM!)LN2RDZ,eBL,1 [OK]
CUSER.NAME)LN2RDZ.IIEL,t [OK) ,·e

.LOGOUT
Kill.d Job 42, u.er UIEII_NAME, ACCoUnt J41, TTY 221,

at '7.A,r.7. 07124150, U •• d 01014 In 010140
[LPTLS" LPTIPL v.r.lon IOl(2JOI) runnlnq on PL,TO, 1-Apr.7'J
tLPTSJI .tartln' Job "BaR!O, s.q '4115, requelt cr •• ttd at 7.A,r.7'J
tLPTaT' Startlnq '11t pa,Ca,OOL~LPT.226.0.tN2RDZ.tST.22]
[LPT", 'Inll~ed 'rlntin' rl1. pIICS'OOL)L'T.2Z6.0-LNZ~DZ,LIT,22J

5-21

character, 2-3, 3-2
$ character, 3-2
* character, 2-3, 3-2 - character, 3-2, 3-4

character, 3-4
= character, 2-3
@ character, 2-3, 3-2

$-language card, 3-1, 3-7,
3-8

$-language card examples,
3-9

$-language card /switches,
3-8

/AFTER switch, 2-5, 3-3,
3-5

ALGOL, Glossary-l
$ALGOL, 3-7, 3-8
ALGOL batch log file, 5-2,

5-12
ALGOL card-input example,

5-11, 5-12
ALGOL example, 3-14, 3-15
ALGOL terminal example, 5-1,

5-2
Alphanumeric, Glossary-l
ASCII Code, Glossary-l
Assemble, Glossary-l
Assembly Language, Glossary-l
Assembly Listing, Glossary-l

@BACKTO command, 2-11
@BACKTO label, 2~11
BASIC, Glossary-l
BASIC batch process, 3-23
BASIC program, 3-23
BASIC program in batch,

3-24" 3-25
BASIC+2 batch log file, 5-4,

5-15,
BASIC+2 card-input example,

5-13, 5-14, 5-15
BASIC+2 terminal example,

5-3, 5-4
Batch,

BASIC program in, 3-24,
3-25

common tasks with, 5-1
how to use, 1-2
summary of, 1-3
using the terminal for,

5-1
what is, 1-1

INDEX

Batch card commands, 3-1
Batch commands, 1-2, 2-8,

3-1
Batch control card commands,

3-2
Batch control card format,

3-2
Batch job,

card, 3-1
entering a, 2-1, 3-1
submitting, 1-3, 2-4
terminal, 5-1

Batch output, 4-1
additional, 4-2
sample, 4-2, 4-3

Batch printed output, 4-1
Batch procedure,

terminal, 2-2
Batch process,

BASIC, 3-23
Batch Processing, Glossary-l
Batch system,

TOPS-20, 1-1

Card, Glossary-2
Card,

$-language, 3-1, 3-7, 3-8
$CREATE, 3-1, 3-6
Column, Glossary-2
$DATA, 3-1, 3-10, 3-14
$EOD, 3-1, 3-16
$EOJ, 3-1, 3-6
$ERROR, 3-1, 3-18
$EXECUTE, 3-1, 3-10
Field, Glossary-2
$JOB, 3-1, 3-2
$NOERROR, 3-1, 3-18
$PASSWORD, 3-1, 3-5
Row, G10ssary-2
$TOPS20, 3-1, 3-16

Card batch job, 3-1
Card commands,

batch, 3-1
Card comments, 3-2
Card deck,

commands in the, 3-21
print program, 4-5
program, 3-20
setting up your, 3-20

Card error recovery
procedure, 3-29, 3-30,
3-31

Card error recovery program,
3-28

Index-l

Card file,
error recovery in, 3-26,

3-27
Card format conventions,

3-2
Card input, 1-1, 5-11

output from, 4-5, 4-6,
4-7

Card /switches,
$JOB, 3-3

Card user-name,
$JOB, 3-3

Card-reader file,
spooled, 3-12

Cards to enter jobs,
using, 5-11

Central Processing Unit,
Glossary-2

Character, Glossary-2
Character,

@ERROR, 2-9
Characters,

special, 2-3
COBOL, Glossary-2
$COBOL, 3-7, 3-8
COBOL batch log file, 5-10,

5-21
COBOL card-input example,

5-19, 5-20
COBOL example, 3-13, 3-14
COBOL terminal example, 5-8,

5-9, 5-10
Command, Glossary-2
Command,

@BACKTO, 2-11
@ERROR, 2-9
@GOTO, 2-10
@IF, 2-8
@NOERROR, 2-9
@SUBMIT, 2-5, 2-7

Commands,
batch, 1-2, 2-8
batch control card, 3-2
invalid, 3-22
system, 1-2, 3-16
system program, 1-2
TOPS-20, 2-4
TOPS-20 EXEC, 2-2
using TOPS-20, 3-18

Commands in the card deck,
3-21

Comment card, 3-2
Common tasks with batch,

5-1
Comparing two card decks,

3-22
Compile, Glossary-2
Compiler, Glossary-2
Compiling a program, 3-7

INDEX (CONT.)

Computer, Glossary-2
Computer Operator, Glossary-2
Continuation Card, Glossary-2
Control card commands,

batch, 3-2
Control card file,

batch, 3-21
Control card format,

batch, 3-2
Control cards,

nonspecial, 3-22
special, 3-22

Control File, Glossary-3
Control file, 1-2

creating, 1-3, 2-1, 2-2
error recovery in, 2-12,

2-13
Control file format, 2-3
Control-file-specification,

2-5
Conventions,

card format, 3-2
CPU, Glosssary-3
$CREATE card, 3-1, 3-6
$CREATE card examples, 3-7
$CREATE card filename.typ,

3-6
$CREATE card /switches, 3-6
Creating the control file,

1-3, 2-1, 2-2, 3-6
Cross-Reference Listing,

Glossary-3

Data, Glossary-3
Data,

executing a program with,
3-10

input, 2-2
$DATA card, 3-1, 3-10, 3-14
$DATA card examples, 3-12
$DATA card filename.typ,

3-11
$DATA card format, 3-11
$DATA card /switches, 3-11
Data files,

naming, 3-14
Data input,

end of, 3-16
bebug, Glossary-3
Disk, Glossary-3

EDIT,
using, 2-2

End of data input, 3-16
Ending a job, 3-6

Index-2

I

Enter jobs,
using cards to, 5-11
using terminal to, 5-1

Entering a batch job, 2-1,
3-1

$EOD card, 3-1, 3-16
$EOJ card, 3-1, 3-6
$ERROR card, 3-1, 3-18
$ERROR card format, 3-19
$ERROR card statement, 3-19
@ERROR character, 2-9
@ERROR command, 2-9
Error recovery, 2-3, 3-18
Error recovery,

specifying, 2-12, 2-13,
3-26, 3-27

Error recovery in card file,
3-26, 3-27

Error recovery in control
file, 2-12, 2-13

Error recovery procedure,
card, 3-29, 3-30, 3-31

Error recovery program,
card, 3-28

Errors,
recovering from, 1-3

Examples, 5-1
$-language card, 3-9
ALGOL, 3-14, 3-15
ALGOL card-input, 5-11,

5-12
ALGOL terminal, 5-1, 5-2
BASIC+2 card-input, 5-13,

5-14, 5-15
BASIC+2 terminal, 5-3,

5-4
COBOL, 3-13, 3-14
COBOL card-input, 5-19,

5-20
COBOL terminal, 5-8, 5-9,

5-10
$CREATE card, 3-7
$DATA card, 3-12
FORTRAN, 3-13, 3-15
FORTRAN card-input, 5-17,

5-18
FORTRAN terminal, 5-5,

5-7
log file, 4-7
submitting job, 2-6, 2-7

EXEC commands,
TOPS-20, 2-2

Execute, Glossary-3
$EXECUTE card, 3-1, 3-10
$EXECUTE card /switches,

3-10
Executing a program, 3-10
Executing a program with

data, 3-10

INDEX (CONT.)

FILCOM program,
TOPS-20, 2-4

File, Glossary-3
File,

control, 1-2
control card, 3-21
creating a, 3-6
log, 1-2, 2-2, 4-1

Filename, Glossary-3
Filename. typ,

$CREATE card, 3-6
$DATA card, 3-11

File Type, Glossary-3
Format,

$-language card, 3-8
batch control card, 3-2
control file, 2-3
$CREATE card, 3-6
$DATA card, 3-11
$EOD card, 3-16
$EOJ card, 3-6
$ERROR card, 3-19
$EXECUTE card, 3-10
$JOB card, 3-3
$NOERROR card, 3-19
$PASSWORD card, 3-5
$TOPS20 card, 3-17

Format conventions,
card, 3-2

Format of lines, 2-3
FORTRAN, Glossary-3
$FORTRAN, 3-7, 3-8
FORTRAN batch log file, 5-7

5-18
FORTRAN card-input example,

5-16, 5-17
FORTRAN card-input output,

5-17
FORTRAN example, 3-13, 3-15
FORTRAN terminal example,

5-5, 5-7

Generation Number,
Glossary-3

@GOTO command, 2-10
@GOTO label, 2-10

How to use batch, 1-2

Identifying yourself, 3-5
@IF command, 2-8
@IF (ERROR) statement, 2-8

Index-3

@IF (NOERROR) statement,
2-8

Input data, 2-2
Interpreting your printed

output, 4-1
Introduction, 1-1
Invalid commands, 3-22

Job, Glossary-3
Job,

output from your, 4-1
running your, 1-2

$JOB card, 3-1, 3-2
$JOB card /switches, 3~3
$JOB card user-name, 3-3
/JOBNAME switch, 3-3

Label, Glossary-4
Label,

@BACKTO, 2-11
@GOTO, 2-10

Line-printer output, 4-1
Lines,

format of, 2-3
Log File, Glossary-4,

1-2, 2-2, 4-1
Log file, ,

ALGOL batch, 5-2, 5-12
BASIC+2 batch, 5-4, 5-15,

5-16
COBOL batch, 5-10, 5-21
FORTRAN batch, 5-7, 5-18

Log file example, 4-7

MACRO, Glossary-4
$MACRO, 3-7, 3-8
/MAP switch, 3-10, 3-12
Message,

page limit exceeded, 2-5
?TIME-LIMIT-EXCEEDED,

2-10
Mounting a Device,

Glossary-4

Naming data files, 3-14
$NOERROR card, 3-1, 3-18
$NOERROR card format, 3-19
$NOERROR card statement,

3-19
@NOERROR command, 2-9

INDEX (CONT.)

/NOLIST switch, 3-9
Nonspecial control cards, 3-22

Object Program, Glossary-4
Output,

batch, 4-1
FORTRAN card-input, 5-17
line-printer, 4-1
printed, 4-2, 4-3
receiving your, 1-3

Output from card input, 4-5,
4-6, 4-7

Output from terminal input,
4-2, 4-3, 4-4

Output from your job, 4-1

Page limit exceeded message,
2-5

/PAGE switch, 2-5, 3-3, 3-4
Password, Glossary-4, 3-5
$PASSWORD card, 3-1, 3-5
Peripheral Device,

Glossary-4
Print program card deck,

4-5
/PRINT switch, 3-7
Printed output, 4-2, 4-3
Printed output,

batch, 4-1
interpreting your; 4-1

Procedure,
card error recovery, 3-29,

3-30, 3-31
terminal batch, 2-2

Process,
BASIC batch, 3-23

Program, Glossary-4
Program,

BASIC, 3-23
card error recovery, 3-28
compiling a, 3-7
executing a, 3-10

Program card deck, 3-20
Program commands,

system, 3-1
Program in batch,

BASIC, 3-24, 3-25
Programming, Glossary-4
Program with data,

executing a, 3-10

Queue, Glossary-4, 1-2

Index-4

I

.---./

INDEX (CONT.)

Reading from spooled
card-reader, 3-12

Receiving your output, 1-3
Recovering from errors, 1-3
Recovery,

error, 2-3, 3-18
Running your job, 1-2

Sample batch output, 4-2,
4-3

Setting up your card deck,
3-20

Software, Glossary-4
Source Deck, Glossary-4
Source Language, Glossary-4
Source Program, Glossary-5
Special characters, 2-3
Special control cards, 3-22
Specifying error recovery,

2-12, 2-13, 3-26, 3-27
Spooled card-reader,

reading from, 3-12
Spooled card-reader file,

3-12
Starting a job, 3-2
Statement,

$ERROR card, 3-19
@IF (ERROR), 2-8
@IF (NOERROR), 2-8
$NOERROR card, 3-19

Submit batch job, 1-3
SUBMIT command, 2-5, 2-7
SUBMIT /switches, 2-5
Submitting job examples,

2-6, 2-7
Submitting the batch job,

2-4
Summary of batch, 1-3
/SUPPRESS switch, 3-7, 3-9,

3-11, 3-17
Switches,

$-language card, 3-8
/AFTER, 2-5, 3-3, 3-5
$CREATE card, 3-6
$DATA card, 3-11
$EXECUTE card, 3-10
$JOB card, 3-3
/JOBNAME, 3-3
/MAP, 3-10, 3-12
/NOLIST, 3-9
/PAGE, 2-5, 3-3, 3-4
/PRINT, 3-7
@SUBMIT, 2-5
/SUPPRESS, 3-7, 3-9, 3-11,

3-17
/TIME, 2-6, 3-4
$TOPS20 card, 3-17

Switches (Cont.),
/WIDTH, 3-7, 3-8, 3-11,

3-17
System, Glossary-5
System Command, Glossary-5
System commands, 1-2, 3-16

TOPS-20, 3-1
System Program, Glossary-5
System program commands,

1-2, 3-1

Terminal, Glossary-5
Terminal,

timesharing, 2-1
Terminal batch jobs, 5-1
Terminal batch procedure,

2-2
Terminal for batch,

using the, 5-1
Terminal input, 1-1, 2-1
Terminal input,

output from, 4-2, 4-3,
4-4

/TIME switch, 2-6, 3-4
?TIME-LIMIT-EXCEEDED

message, 2-10
Timesharing terminal, 2-1
TOPS-20 batch system, 1-1
TOPS-20 commands, 2-4

EXEC, 2-2
FILeOM, 2-4
system, 3-1
using, 3-18

$TOPS20 card, 3-1, 3-16
$TOPS20 card format, 3-17
$TOPS20 card /switches,

3-17

User Name, Glossary-5
User-name,

$JOB card, 3-3
Using cards to enter jobs,

5-11
Using EDIT, 2-1
Using the terminal for

batch, 5-1
Using TOPS-20 commands,

3-18

/WIDTH switch, 3-7, 3-8,
3-11, 3-17

Index-5

GETTING STARTED WITH BATCH
(TOPS-20)
AA-C781B-TM

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form. .

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer
[] Other (please specify) __________________________________ __

Name Date ______________________ __

Organization ________________________________ Telephone ________________ __

Street __ ~ __ __

City ___________________________ State _____________ Zip Code ____________ _

or
Country

I
I
I
I
I
I
I

- - - - - - - - -Do Not Tear - Fold Here and Tape - :

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MRl-2/E37
MARLBOROUGH, MASSACHUSETTS 01752

NO Postage

Necessary

if Mailed in the

United States

- - - - - - - - Do Not Tear - Fold Here and Tape -

~
I
J
I
I
I
I
I
I
I
I
I
I

,~

I
I
I
I

r~

I
I
I
I
I
I
I
I
I
I

