GETTING STARTED
WITH BATCH (TOPS-20)

Order Number: AA-C781B-TM

August 1978

This document describes to the reader how to get
started with the TOPS-20 GALAXY Batch System.

This document supersedes the document Getting Started
With Batch, Order Number DEC-20-OBGSA-A-D, and
its update DEC-20-OBGSA-A-DN1.

OPERATING SYSTEM: TOPS-20 Version 3A

SOFTWARE VERSION: GALAXY Version 3

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, November 1976
Revised: January 1978
Revised: August 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (C) 1976, 1978 by Digital Equipment Corporation

The postage~prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL - DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM~20 TMS~11

ASSIST-11 RTS-8 ITPS-10

CONTENTS

PREFACE
REFERENCES
CONVENTIONS USED IN THIS MANUAL

SYMBOLS USED IN THIS MANUAL

Page

v
vi
vii

viii

GLOSSARY Glossary-1
CHAPTER 1 INTRODUCTION 1-1
1.1 WHAT BATCH IS 1-1
1.2 HOW TO USE BATCH 1-2
1.2.1 Running Your Job 1-2
1.2.2 Receiving Your Output 1-3
1.2.3 Recovering from Errors 1-3
1.3 SUMMARY 1-3
CHAPTER 2 ENTERING A BATCH JOB FROM A TERMINAL 2-1
2.1 CREATING THE CONTROL FILE 2~2
2.1.1 Format of Lines in the Control File 2-3
2.2 SUBMITTING THE JOB TO BATCH 2-4
2.2.1 Switches 2-5
2.2.2 Examples of Submitting Jobs 2-6
2.3 BATCH COMMANDS 2-8
2,3.1 The @IF Command 2-8
2.3.2 The @ERROR Command 2-9
2,3.3 The @NOERROR Command 2-9
2.3.4 The @GOTO Command 2-10
2.3.5 The @BACKTO Command 2-11
2.4 SPECIFYING ERROR RECOVERY IN THE CONTROL
FILE 2-12
CHAPTER 3 ENTERING A BATCH JOB FROM CARDS 3-1
3.1 BATCH CONTROL CARD FORMAT CONVENTIONS 3-2
3.2 BATCH CONTROL CARD COMMANDS 3-2
3.2.1 Starting a Job - The $JOB Card 3-2
3.2.2 Identifying Yourself - The $PASSWORD Card 3-5
3.2 3 Ending a Job - The $EOJ Card 3-6
3.2.4 Creating a File - The S$CREATE Card 3-6
3.2.5 Compiling a Program - The $-language Card 3-7
3.2.6 Executing a Program ~ The S$EXECUTE Card 3-10
3.2.7 Executing a Program with Data - The $DATA
Card 3-10
3.2.7.1 Reading from a Spooled Card-Reader File 3-12
3.2.7.2 Naming Data Files on the $DATA Card 3-14

iii

CHAPTER

CHAPTER

INDEX

FIGURE

o Wwww

(8]

[T I T |
WNHHHFONO

>

CONTENTS (CONT.)

End of Data Input - The $EOD Card
System Commands - The $TOPS20 Card
Error Recovery - The $ERROR and $NOERROR
Cards
SETTING UP YOUR CARD DECK
PUTTING COMMANDS INTO THE CONTROL FILE FROM
CARDS
Card Decks for Programs that Do Not Have
Special Control Cards
SPECIFYING ERROR RECOVERY IN THE CONTROL
FILE

INTERPRETING YOUR PRINTED OUTPUT

OUTPUT FROM YOUR JOB

BATCH OUTPUT

OTHER PRINTED OUTPUT

SAMPLE BATCH OUTPUT
Sample Output of a Job from a Terminal
Sample Output of a Job on Cards

EXAMPLES OF COMMON TASKS WITH BATCH 5-1
USING THE TERMINAL TO ENTER JOBS 5~1
USING CARDS TO ENTER JOBS 5-11

Index-1

FIGURES
Page

Batch Card Deck Using TOPS-20 Commands 3-18
Typical Program Card Deck 3-20
Use of Control Cards to Compare Two Card Decks 3-22
BASIC Program Card Deck with Integral Data 3-24
BASIC Program Card Deck with Provisions
for Terminal Data Input 3-25
Card Deck with Error Statement 3-26
Card Deck with Error Recovery Program 3-28
Card Deck Using GOTO Statement 3-30
COBOL Print Program Card Deck 4-5
ALGOL Job Entry Card Deck 5-11
BASIC Job Entry and Run Card Deck 5-14
FORTRAN Card Deck That Prevents
Execution on Error 5-17
COBOL Program Card Deck Using Data
From Magnetic Tape 5-21

iv

PREFACE

Getting Started With Batch (TOPS-20) has been written for you, if you
have a rudimentary knowledge of Batch processing or are familiar with
at least one of the following:

1. a programming language

2. the timesharing services of the DECSYSTEM-20

3. card processing on other systems

HOW TO USE THIS MANUAL

If you input your jobs through interactive terminals, the following
chapters are recommended:

Chapter 1 Introduction

Chapter 2 Entering a Batch Job from a Terminal

Chapter 4 Interpreting Your Printed Output, Section 4.4.1
Chapter 5 Using the Terminal to Enter Jobs, Section 5.1

If you input your Jjobs from cards, the following chapters are
recommended:

Chapter 1 Introduction

Chapter 3 Entering a Batch Job from Cards

Chapter 4 Interpreting Your Printed Output, Section 4.4.2
Chapter 5 Using Cards to Enter Jobs, Section 5.2

REFERENCES

Not all of the commands and card formats for Batch are described in
this manual. If you want to know more about Batch you can refer to
the DECSYSTEM-20 (TOPS-20) Batch Reference Manual. In addition, all
components of Batch processing are referred to as Batch in this
manual. For a complete description of these components, refer to the
DECSYSTEM (TOPS-20) Batch Reference Manual.

An elementary description of the basic TOPS-20 system commands can be
found in the document Getting Started with DECSYSTEM-20 (TOPS-20).
The DECSYSTEM-20 (TOPS-20) User's Guide contains additional
descriptions of the TOPS-20 commands available to you.

Error messages that occur while Batch is processing but which are not
defined in this manual are explained in applicable system manuals.
For example, if your FORTRAN program fails to compile successfully,
the error message you receive from the FORTRAN compiler can be found
in the DECSYSTEM-20 (TOPS-20) FORTRAN Reference Manual. For errors
that may occur in a Batch process but not in the source program being
used, you can refer to the DECSYSTEM-20 (TOPS-20) Batch Reference
Manual.

vi

CONVENTIONS USED IN THIS MANUAL

The following is a list of symbols and conventions used in this

manual.

dd-mmm-yy hh:mm

filename.typ.gen

hh:mm:ss

jobname

A set of alphanumeric characters that indicates
date and time; e.g., 2-APRIL-78 15:30 or 2-APR-78
13:30. Time of day is represented by a 24-hour
notation; 15:30 means 3:30 P.M,

The name, type, and generation number of a file.
The name can be 1 to 39 alphanumeric characters in
length and the type can also be 1 to 39
alphanumeric characters in length. The name and
type must be separated by a period. The
generation number can be any positive integer, up
to and including 2(17-1). The type and the
generation numbers are optional, but if both are
present, they must be separated by a period.
Refer to the Glossary for the definitions of these
terms.

A set of numbers representing time in the form
hours:minutes:seconds. Leading zeros can be
omitted, but colons must be present between two

numbers. For example, 5:35:20 means 5 hours, 35

minutes, and 20 seconds.

The name that 1is assigned to a job. It can
contain up to six characters. Refer to the
Glossary for the definition of a job.

A number that specifies either a required number
or an amount of things such as cards or
line-printer pages. This number can contain as
many digits as are necessary to specify the amount
required, e.qg., 5, 13, 219, etc.

A number representing an amount of time, usually
in minutes. This number can contain as many
digits as are necessary to specify the amount of
time required, e.qg., 7, 40, 120, etc.

An alphanumeric character.

vii

SYMBOLS USED IN THIS MANUAL

Symbol Meaning

@TYPE Anything you type on your terminal appears in red.
Anything the system prints on your terminal appears
in black.

Press the key labeled RETURN or CR.

Press the key labeled DELETE or RUBOUT.

Press the key labeled ESC, ESCAPE, ALT, or PRE.

Press the key labeled TAB.

Press the space bar once.

L —

Brackets enclose all optional arguments.

Parentheses enclose the name or value of an argument.

viii

Term

ALGOL

Alphanumeric

ASCII.Code

Assemble

Assembler

Assembly Language

Assembly Listing

BASIC

Batch Processing

GLOSSARY

Definition

ALGOrithmic Language. A scientifically oriented
language that contains a complete syntax for
describing computational algorithms.

Any of the letters of the alphabet (uppercase A
through 2 and 1lowercase a through z) and the
numerals (0 through 9).

American Standard Code for Information
Interchange. Its 7-bit code is used to create a
series of alphanumeric or special symbols.

To prepare a machine-language program from a
symbolic~language program by substituting
absolute operation codes for symbolic operation
codes and absolute or relocatable addresses for
symbolic addresses.

A program which accepts symbolic code and
translates it into machine instructions, item by
item. The assembler for TOPS-20 is called the
MACRO assembler.

The machine-oriented symbolic programming
language. The assembly language for TOPS-20 is
MACRO. MACRO statements are equivalent to one
or more machine instructions.

A printed list which 1is the byproduct of an
assembly run. It lists in logical-instruction
sequence all details of a routine showing the
coded and symbolic notation next to the actual
assigned notations established by the assembly
procedure.,

Beginner's All-purpose Symbolic Instruction
Code. A timesharing computer programming
language that is used for direct communication
between terminal wunits and remotely located
computer centers. BASIC employs English-like
terms, is relatively easy to use, and has a wide
range of applications.

The technique whereby a computer executes one or
more programs in your absence.

Glossary-1

Term

Card

Card Column

Card Field

Card Row

Central Processing
Unit (CPU)

Character

COBOL

Command

Compile

Compiler

Computer

Computer Operator

Continuation Card

Definition

A punched card with 80 vertical columns
representing 80 characters. Each column is
divided into two sections, one with character
positions 1labeled 0 through 9, and the other
with positions 11 and 12. The 11 and 12
positions are not labeled and are also referred
to as the X and Y zone punches, respectively.

One of the vertical lines of punch positions on
a punched card.

A fixed number of consecutive card columns
assigned to a unit of information.

One of the horizontal lines of punch positions
on a punched card.

The portion of the computer that contains the
arithmetic, logical, control, and I/0 interface
circuits.

One symbol of a set of elementary symbols such
as those corresponding to the keys on a
typewriter., The symbols wusually include the
decimal digits 0 through 9, the letters A,a
through 2,z, punctuation marks, a space,
operation symbols, and any other special symbols
which a computer may read, store, or write.

COmmon Business Oriented Language. A high-level
source language widely used in business or
commercial applications.

An instruction that causes the computer to
execute a specified operation.

To produce a machine- or intermediate-language
routine from a routine written in a high~level
language. A high-level language is
user-oriented and one in which single statements
may result in more than one machine-language
instruction, e.g., FORTRAN, COBOL or ALGOL.

A system program which translates a high-level
source language 1into a language suitable for a
particular machine. A compiler converts a
source-language program into intermediate- or
machine-language. Some compilers used on
TOPS-20 are: ALGOL, COBOL, FORTRAN.

A device with self-contained memory capable of
accepting information, processing the
information, and outputting results.

A person who has access to all software elements
of a system and performs operational functions
such as: loading a tape transport, placing
cards in the card reader input hopper, removing
printouts from the printer rack, etc.

A punched card which contains information that
was started on a previous punched card.

Glossary-2

i
|
(
|
|
!
|
K
i
!
x
|
(
.
:
,
:
|
i
|
i
i
J
]

Term

Control File

CPU

Cross—-Reference
Listing

Data

Debug
Disk

Execute

File

Filename

File Type

FORTRAN

Generation Number

Job

Definition

The file made by you that directs Batch in the
processing of your job.

See Central Processing Unit.

A printed listing that identifies each reference
of an assembled program with a specific label.
This 1listing is provided immediately after a
source program has been assembled.

A general term used to denote any or all
numbers, letters, and symbols, or facts that
refer to or describe an object, idea, condition,
situation, or other factors. It represents
basic elements of information which can be
processed or produced by a computer.

To locate and correct any mistakes in a computer
program.

A form of a mass-storage device in which
information is stored in named files,

To interpret an instruction or set of
instructions and perform the indicated
operation(s).

An ordered collection of 36-bit words composing
computer instructions and/or data. A file can
be of any length, limited only by the available
space on the storage device and your maximum
space allotment on that device.

A name of 1 to 39 alphanumeric characters chosen
by the user to identify a file. Note that some
commands only accept up to 6-character
filenames.

A string of 1 to 39 alphanumeric characters,
usually chosen to describe the <class of
information in a file. The file type must be
separated from the filename by a period, e.g.,
FORO1.DAT. Note that some commands only accept
up to 3-character file types.

FORmula TRANslator. A procedure-oriented
programming language that was designed for
solving scientific problems. The language is
widely used in many areas of engineering,

mathematics, physics, chemistry, biology,
phychology, industry, the military, and
business.

A number associated with a file within the file
directory that is incremented each time the file
is changed through editing, etc.

The entire sequence of tasks performed between

login and 1logout at an interactive terminal,
with a card deck, or at an operator's console.

Glossary-3

:
|
i
i

Term

Label

Log File

MACRO

Mounting a Device

Object Program

Password

Peripheral Device

Program

Programming

Queue

Software

Source Deck

Source Language

Definition

A symbolic name used to identify a statement in
the control file or in a magnetic tape file or
in a volume.

A file into which Batch writes a record of your
entire job. This file may be printed as the
final step in Batch's processing of a job.

See Assembly Language.

A request to assign an I/0 device via the
operator.

The program which is the output of compilation
or assembly. Often the object program is a
machine-~language program ready for execution.

The secret word assigned to you that, along with
your user name, uniquely identifies you to the
system.

Any unit of equipment, distinct from the central
processing unit, which can provide the system
with outside storage or communication.

The complete sequence of machine instructions
and routines necessary to resolve one or more
computational tasks.

The science of translating a problem from its
physical environment to a language that a
computer can understand and obey; also, the
process ' of planning the procedure for solving a
problem. This may involve, among other things,
the analysis of the problem, preparation of a
flowchart, coding of the problem, establishing
input-output formats, establishing testing and
checkout procedures, allocation of storage,
preparation of documentation, and supervision of
the running of the program on a computer.

A list of jobs to be scheduled or run according
to system-, operator-, or user-assigned
priorities, for example, the Batch input gqueue
is the list of jobs to be processed by Batch.

The totality of programs and routines used by a
computer. Examples include compilers,
assemblers, operator programs, service routines,
utility routines, and subroutines.

A card deck that constitutes a computer program
in symbolic language.

The original form in which a program is prepared

prior to its processing by the computer to
produce the object-language program.

Glossary-4

Term

Source Program

System

System Command

System Program

Terminal

User Name

Definition

A computer program written in a language
designed for humans to use to express procedures
or problem formulations. A translator
(assembler, compiler, or interpreter) is used to
perform the mechanics of translating the source
program into an object- or machine-language
program that can be run on a computer.

The collection of programs which schedules and
controls the computing facility.

An instruction to the system to perform an
operation. The system commands for the TOPS-20
are described in the DECSYSTEM-20 (TOPS-20)
User's Guide.

A program generally available to users,
administrators, or operators for performing some
specific function. Examples are a FORTRAN
compiler or a text editor.

A device containing a keyboard, similar to a
typewriter, and a printing or display mechanism
employed to establish communications with a
computer.

A name composed of from 1 to 39 alphanumeric

characters (normally your surname) that
identifies you and your logged-in directory.

Glossary-5

CHAPTER 1

INTRODUCTION

1.1 WHAT BATCH IS

Many data processing jobs may require long running times and may make
few demands of you. Ideally these jobs should be run in your absence
when the computer is not busy with other tasks. This ideal is met by
the TOPS-20 Batch system.

Batch is a group of programs that allows you to submit a job to the
TOPS-20 system on a leave-it basis. (Refer to the DECSYSTEM-20
(TOPS-20) Batch Reference Manual for a complete description of
programs that constitute the Batch system.) You may build and submit
your job in one of two ways:

1. By entering your data directly to an interactive computer
system by means of a timesharing terminal.

2. By entering your data from punched-cards to the interactive
system. The cards are given to an operator who, at an
appropriate time in his schedule, enters them into the
computer through a card reader.

One advantage of Batch processing with an interactive system 1is that
the interactive capabilities may be employed to greatly reduce the
amount of time required to prepare the job for entry. By using a
terminal to enter and edit the program items and data to be processed,
you can bypass the tedious chore of preparing card decks. However, if
desired, you can prepare traditional card decks by employing the
punched card facilities of the system, In either case, the
information to be entered is prepared as if it were to be processed as
a normal job from an interactive terminal. The only added requirement
is that special commands are entered with the job to direct the system
in your absence. In other words, you anticipate the guestions the
system normally asks and you answer them when you enter the
interactive job.

After preparing the job, you are free to leave the system. Upon
accepting the job, the system classifies it in terms of size, running
time, the need for peripherals, etc. This classification is used as
the basis for determining when the job is to be run. Large jobs may,
therefore, be set aside until smaller or more urgent Jjobs are
finished.

Some of the jobs that are commonly processed through the TOPS-20 Batch
system are those that:

1. are frequently run for production

2. are large and long running

1-1

INTRODUCTION

3. require large amounts of data
4., need no actions by you when the jobs are running

Batch allows you to submit your job to the computer through either an
operator or a timesharing terminal, and to receive your output from
the operator when the job has finished. Output is never returned to
your timesharing terminal even if your Jjob is entered from one.
Instead, it is sent to a peripheral dévice (normally the line printer)
at the computer site and returned to you in the manner designated by
the installation manager.

1.2 HOW TO USE BATCH

To use the Batch system to process your job, you must create a control
file. A control file consists of various commands that tell the
TOPS-20 system what you want to process. The control file commands
can be created as a disk file or as card input and can consist of:

1. System commands (see the DECSYSTEM-20 (TOPS-20) User's
: Guide),

2. System program commands to system programs, and
3. Batch commands (see Chapters 2 and 3).

These commands, when submitted to the operating system, must be in a
particular order so that your Batch job will execute correctly.

The steps that you must take to create a control file from a
timesharing terminal are described in Chapter 2. The steps to take to
create a control file from cards are described in Chapter 3.

1.2.1 Running Your Job

After you submit the job, it waits in a queue with other jobs until
Batch schedules it to run under guidelines established by the
installation manager. Several factors affect how long your job waits
in the queue, for example, its estimated execution time and the
priority of your job compared with other waiting jobs.

When the job is started, Batch reads the control file to determine
what actions are necessary to complete the job. For example, if there
are commands to the system programs, Batch issues the commands to
those programs. Any output produced as a result of those commands is
stored in a log file for listing later. With adequate planning, the
control file <can also provide for corrective actions in the event of
errors.

As each step in the control file is performed, Batch records it in a
log file. For example, if a system command such as COMPILE is
executed, Batch passes it to the system and writes it in the log file.
The system response is also written in the log file. Batch writes in
the log file any response from your job that would have been written
on the terminal if the job were run interactively.

INTRODUCTION

1.2.2 Receiving Your Output

Your program output will be returned to you in the form that you
specified by the commands in your control file. This is normally the
line-printer listing, but may also be output on magnetic tape or disk.
When your output is directed to the line printer, you may specify, in
the SUBMIT command to the Batch process, the approximate number of
pages (/PAGE: switch) that you require (to help Batch restrain runaway
programs).

If your Batch job is submitted through a timesharing terminal, the log
file is written and saved on disk in your directory and printed on the
line printer. If your Batch job is submitted on card input, the 1log
file is written on disk in your directory, printed on the line
printer, and then deleted from your directory.

1.2.3 Recovering from Errors

If an error occurs in your job, either within a program that is
executing or within the control file, Batch writes the error message
in the log file and usually terminates the job. You can, however,
include commands in the control file to direct Batch to branch to
recovery sequences in the event of an error and thereby allow
completion of the job. The effectiveness of error recovery is
dependent on your ability to predict potential trouble spots within
the program or within commands used in the control file. (Refer to
the DECSYSTEM-20 (TOPS-20) Batch Reference Manual for detailed
descriptions on error recovery for Batch jobs.)

1.3 SUMMARY

The steps that you must perform to enter a job to the computer through
Batch are as follows:

1. Create a control file either on cards or from a terminal.

2, Submit the job to Batch, either indirectly via the operator
(for a card job) or directly from a terminal.

3. Obtain and examine the log file listing and the job output to
determine if the desired results were obtained.

Sample jobs run through Batch from cards and from a terminal are shown
in Chapter 5.

S—
e’

i

CHAPTER 2

ENTERING A BATCH JOB FROM A TERMINAL

When you submit a job to Batch from a timesharing terminal, you must
create a control file that Batch can use to run your job. The control
file contains all the commands that you would use to run your 3job if
you were running under timesharing. For example, if you wanted to
compile and execute a program called MYPROG.CBL, the typeout on a
timesharing terminal would appear as follows: :

@COMPILE (FROM) MYPROG.CBLCre) (Your reauest)
COROL ¢MYPROG CMYPROG.CRBL1]
(The sustem’s rerly)

EXIT
Ces)
|
@EXECUTE (FROM) MYPROG.CRLCren) (Your reauest)
LINK:!LOADING

CLNKXCT MYPROG EXECUTION]

(The swstem’s rerlw)
EXIT
]

To create a control file to tell Batch to run the same, you would
create the following:

|
@CREATE (FILE) MYFILE.CTLCer)
INFUT? MYFILE.CTL.1
00100 @COMPILE MYFROG.CELCrer)
00200 @EXECUTE MYPROG.CBLCrer)
00300 ?

*E CreD)

CMYFILE.CTL.11

e
When the job is run, the commands are passed to the system to be
executed. The commands and their replies from the system are written

in the log file so that the entire dialogue shown in the first example
above appears in the log file.

'
i
H

ENTERING A BATCH JOB FROM A TERMINAL

2.1 CREATING THE CONTROL FILE

To create a control file and submit it to Batch from a terminal, you
must perform the following steps:

1. LOGIN to the system as a timesharing user
2, Create a control file on disk using EDIT
3. Submit the job to Batch using the system command SUBMIT

You can then wait for your output to be returned at the designated
place.

After you have logged into the system as you normally would to start a
timesharing 3job, you can use EDIT so that you can create your control
file.

The control file can contain TOPS-20 EXEC commands, program commands,
data that would normally be entered from a terminal, and Batch
commands. The Batch commands are described in Section 2.3. What you
write in the control file depends on what you wish your job to
accomplish. An example of a job that you can enter for Batch
processing is as follows:

1. Compile a program that is on disk.

2. Load and execute the program using data from a file already
on disk.

3. Print the output on the line printer.
4, Write the output into a disk file also.
5. Compile a second program.

6. Load and execute the second program using the data output
from the first program,

7. Print the output from the second program.

The control file that you would create for the preceding job would
appear as follows:

|
@CREATE (FILE) MYFILE.CTL(GD
INPUT: MYFILE.CTL.1
00100 @COMFILE MYFROG.FOR/COMPILE e
00200 BEXECUTE MYPROG.FOR ()
00300 @COMFILE FROGZ2.FOR/COMPILEGH)
00400 @EXECUTE PROG2.FORGED
00500 ?
XEGED

CMYFILE.CTL.11]

@
Include statements in your programs (rather than in the control file)
to read the data from the disk files and write the output to the
printer and the disk. The output to the line printer is written along
with your log file as part of the total output of your job.

2-2

ENTERING A BATCH JOB FROM A TERMINAL

If an error occurs in your job, Batch will not continue but will
terminate the job. To avoid having your job terminated because an
error occurs, you can specify error recovery in the control file using
special Batch commands. Error recovery is described in Section 2.4.

Any system command that you can use in a timesharing job can be used
in a Batch job with the following exceptions. The ATTACH and SET
TIME-LIMIT commands are illegal in a Batch job. If you include either
of these commands in your job, Batch will process the command and the
TOPS-20 command processor (the EXEC) will place an error message into
your log file. Your Batch job will terminate unless you specify error
recovery.

Do not include a LOGIN command in your control file since Batch logs
the job for you. If you put in a LOGIN command, your job will be
terminated. In addition, you do not need to include a LOGOUT command.
Batch will 1log out your job automatically when it reaches the end of
your control file,

2.1.1 Format of Lines in the Control File

Since you can put TOPS-20 EXEC commands, program commands, and Batch
commands, as well as data, into the control file, you have to tell
Batch what kind of line it is reading. Batch determines the 1line it
is reading as a command, data, or comment by the first nontab or
nonblank character. The first character in each line should be one of
the characters described below.

To put a system command or Batch command into your control file, you
must put an at sign (@) in the first column and follow it immediately
with the command.

To put a command string of a system program or user program into your
control file, put an asterisk (*¥) in column 1 and follow it
immediately with the command string. For the format of command
strings, refer to the manual for the specific program that you wish to
use.

If you want to include in the control file a command to a system
program that does not accept carriage return as the end of the line,
e.g., DDT, you must substitute an equal sign (=) for the asterisk so
that Batch will suppress the carriage return at the end of the line.

To include in the control file data for your program, write it as you
would data that is read from a separate file. If your program prompts
you with an asterisk (during timesharing) for data input, then you
should include the asterisk as the first character before the data in
your control file. If your program does not require an asterisk (¥*)
prompt, you do not have to include it with your data.

Comments can also be included in the control file either as separate
lines or on lines containing other information. To include a comment
on a separate line, you must put an exclamation point (!) in column 1
and follow it with the comment. To add a comment to a line after your
data, you must precede the comment with an exclamation point (!).

If you put in the first column of the 1line any special characters

other than those described, you may get unexpected results because
Batch interprets other special characters in special ways.

2-3

e RN 505 1 530 G 0V O s s

ENTERING A BATCH JOB FROM A TERMINAL

The following example illustrates a control file, using some of the
characters described above, and the resulting log file. The example
uses the TOPS-20 FILCOM utility to compare two files.

{Tnis baten job generates & FILCOM of two tiles,
{Run FILCOM and then give it a command,

PFILCOM

STTY3aFILE ,QXT,FILE, TXT

s*C

13111302 BAJOR BATCON version 103(3000) running EXAM2 sequence 6152 in stream 1}
13111902 BAFIL Inpue from PSICSMITHIEXAM2,CTL, !
13111102 BAFIL Output to PSI<SMITHMEXAM2,LNG
13111302 BASUM Job parameters
Time;0030%300 UyUniquejYESs RestartiND OutputINOLOG

13311302 MONTR
133111102 MONTR SYSTEM 2102 DEVELOPMENT SYSTEM, TOPS«20 Monitor 4(1707)
138111102 MONTR OLOGIN SMITH 34}
13111306 MONTR Job 40 on TTY228 24eMaye?8 13111106
13111307 MONTR @
13111307 MONTR ([CONNECTED TO PS8<SMITH>)
13111307 MONTR B#BET TIMESLIMIT 300
13111809 MONTR @
{This batch job generates & FILCOM of tvo tiles,
JRun FILCOM and then daive it a command,
13111309 MONTR @FILCOM
13111114 USER
13111314 USER ##TTYISFILE,OXT,FILE, TXT
13111914 USER File 1) DSKIFILE,QXT created) 1307 24sMAYe1978
13111314 USER File 2) DSKIFILE TXT ereated! 1308 24aMAY#1978
13111114 USER

13111114 USER 1)1 This tile contains a speling error,
1381111% USER 11223
13541318 USER 201 This tile does not contain a spelling errer,

13011118 uger RSB ENNERNEEY

13111119 user

13811318 uger Sfiles are different

13811319 USER

133111316 USER Y L]

13811117 MONTR *C

13311118 MONTR @

13111110 MONTR #"°C

13111310 MONTR @LOGOUT

13111820 MONTR Killed Job 40, User SBMITH, Account J4i, TTY 225,
13811320 MONTR at 24oMaye?8 13811819, Used 03090 &n 00113

2.2 SUBMITTING THE JOB TO BATCH

After you have created the control file and saved it on disk, you must
enter it into the Batch queue so that it can be run. All programs and
data that are to be processed when the job is run must be made up in
advance or be generated during the running of the job. You can have
them on magnetic tape, but if you do, you must include the TOPS-20
commands TMOUNT, UNLOAD, and DEASSIGN in your control file so that the
operator will mount and dismount the tape(s) to be read. (Refer to
Chapter 5, for examples of a control file with these three commands.)

If your programs and data reside on an on-line disk, you need not
include the TMOUNT, UNLOAD or DEASSIGN command as there is no action
required by the operator.

ENTERING A BATCH JOB FROM A TERMINAL

You enter your job in Batch's queue by means of the TOPS-20 SUBMIT
command. This command has the form:

@SUBMIT (BATCH JOB) control-file-specification/switchesCrr)

control-file-specification is the name you have given to the
- control file you created. you must
specify the filename of the control
file. You can specify a file type
or, if you do not, the EXEC
(TOPS-20 command processor) will

assume a file type of .CTL.

/switches are switches to Batch to tell it
how to process your job and what
your output will look 1like. Some
of the switches that can be used
with the SUBMIT command are
described in the following section.
(Refer to the DECSYSTEM-20
(TOPS-20) Batch Reference Manual
for a complete description of all
available switches.)

2.2.1 Switches

You use the switches to define limits for your job. Such 1limits as
pages of output and the time that your job will run can be specified
as switches. Each switch can be specified only once in a SUBMIT
command. You can put a switch anywhere in the command string.

/AFTER:hh:mm Switch

If you do not want Batch to run your job until after a certain time or
until after a certain number of minutes have elapsed since the job was
entered, you can include the /AFTER switch in the SUBMIT command
string. To run the job after a specified time of the day, you must
specify the time in the form hh:mm (for example, /AFTER:12:00 to run a
job after noon). To run the job after a given amount of time has
elapsed, specify the time in the form +hh:mm (for example,
/AFTER:+1:00 to run the 3job an hour from now). If you omit the
switch, Batch will schedule your job as it normally would using its
defaults. If you omit the colon and/or value, the EXEC will respond
with an error message and terminate the SUBMIT command.

/PAGE:n Switch

Normally, Batch allows your job to print up to 200 pages. Included in
this number are the log file and any compilation listings that you may
request. If you need more than 200 pages for your Jjob, you must
include the /PAGE switch in the SUBMIT command to indicate the
approximate number of pages that your job will print. If you include
the switch without the colon and a value, The EXEC will assume that
you will print up to 2000 pages. If your output exceeds the number
that you specified in the /PAGE switch, the excess output will be lost
and the message ?LPTPLE PAGE LIMIT EXCEEDED will be printed.

2-5

ENTERING A BATCH JOB FROM A TERMINAL

However, even if you exceed the maximum, the first 10 pages of the log
file will be printed.

/TIME:hh:mm:ss Switch

Normally, Batch allows your job to use up to five minutes of central
processor time. Central processor (CPU) time is the amount of time
that your job runs, not the amount of time that it takes Batch to
process your job. If you need more than five minutes of CPU time, you
must include the /TIME switch in the SUBMIT command to indicate the
approximate amount of time that you will need. If you specify the
switch without the colon and a value, Batch will assume that you need
one hour of CPU time. If you do not specify enough time, Batch will
terminate your job when the time is up.

The value in the /TIME switch 1is given in the form hh:mm:ss
(hours:minutes:seconds). If you specify only one number, Batch
assumes that you mean minutes. Two numbers separated by a c¢olon are
assumed to mean hours and minutes. All three numbers, separated by
colons, mean hours, minutes, and seconds. For example:

/TIME:ZS means 25 minutes
/TIME:1:25 means 1 hour and 25 minutes
/TIME:1:25:00 means 1 hour and 25 minutes and no seconds

2,2.2 Examples of Submitting Jobs

The following are sample jobs entered to Batch by means of the SUBMIT
command.

Example 1:

This control file consists of commands to compile FORTRAN
program, print a listing, and execute it.

=

BCREATE (FILE) MYFILE.CTLCeeD)
INFUT? MYFILE.CTL.1

00100 @COMFILE MYFROG.FOR/LIST/COMPILECED)
00200 @EXECUTE MYPROG.FOR(er)
00300 ?

G0
*ECre)

[MYFILE.CTL.11

@

After the control file to compile and execute the FORTRAN program
has been created and saved, you must submit the job to Batch.

t
@SUBMIT MYFILE.CTL D)

ENTERING A BATCH JOB FROM A TERMINAL
When the EXEC reads this SUBMIT command, it assumes the
following:
1. The control filename and type are MYFILE.CTL.
2. The name of the job is MYFILE.
3. The log file will be named MYFILE.LOG.

4, Both the control file and the log file will be saved in your
disk area.

5. 200 is the maximum number of pages to be printed (/PAGE:200).
6. The maximum amount of CPU time is 5 minutes (/TIME:5:00).
Example 2:

The next example shows the control file that was created at the
beginning of this chapter being submitted to Batch.

@TYFE MYFILE.CTLGE)

00100 @COMPILE MYPROG.FOR/COMPILE
00200 @EXECUTE MYFROG.FOR

00300 @COMPILE PROG2.FOR/COMPILE
00400 @EXECUTE FROG2.FOR

@

After you have saved the control file, you can submit the job to

Batch.

CSUBMIT MYFILE/JOBNAME :MYJOB/TIME$20/FAGE$7S0/AFTER$10¢00(Re)

When the EXEC reads this request, it assumes the following:
1. The name of the job is MYJOB.

2. The name of the control file is MYFILE.CTL.

3. The log file will be named MYFILE.LOG.

4. The log file will be left in your disk area after it is
printed.

5. The control file will be left in your disk area.

6. 750 is the maximum number of pages that can be printed
(/PAGE:750) .

7. The maximum amount of CPU time that the job can use is 20
minutes (/TIME:20:00). i

8. The job will process only after 10:00 in the A.M.
If you made an error in the SUBMIT command when you submitted either

of these jobs, the EXEC will type an error message on your terminal to
explain your error so that you can correct it.

2-17

.
]
3
-
3

ENTERING A BATCH JOB FROM A TERMINAL

2,3 BATCH COMMANDS

You can write certain Batch commands in the control file to tell Batch
how to process your control file. Each of these commands must be
preceded by an at sign (@) so that Batch will recognize it. The most
commonly used Batch commands are described in the following sections,
but not all Batch commands are described here. For a description of

all commands, refer to the DECSYSTEM-20 (TOPS-20) Batch Reference
Manual.

2.3.1 The @IF Command

You can include the QIF command in your control file to specify an
error-recovery procedure to Batch or to specify normal processing if
an error does not occur. The QIF statement has the forms:

QIF (ERROR) statement (The parentheses must be included.)
@IF (NOERROR) statement (The parentheses must be included.)
where,
statement ;stahcommand to the system, to a program, or to
atch.

An example of the @IF (ERROR) command follows:

!DO A DIRECTORY IF AN ERROR OCCURS
@IF (ERROR) @VDIRECTORY

An example of the @IF (NOERROR) command follows:

IIF NO ERROR OCCURS, GIVE A SECOND LINE OF INPUT
@IF (NO ERROR) *FILE.SCM=A,TXT,B.TXT

The @IF command can be used in two ways as shown in its two forms.
You can include the QIF (ERROR) command in your control file at the
place where you suspect an error may occur. The @IF (ERROR) command
must be the next command in your control file (that is, the next line
which begins with an at sign (@)) after an error occurs; otherwise,
Batch will terminate your job. In the @IF (ERROR) command, you direct
Batch to either go back or forward in your control file to find a line
that will perform some task for you or that will direct the system or
any other program to perform some task for you.

You can use the @QIF (NOERROR) command to direct Batch or the system to
perform tasks for you when an error does not occur at the point in
your control file where you place the @IF (NOERROR) command. Thus, if
you expect that an error will occur in your program, you can include
an @IF (NOERROR) command to direct Batch in case the error does not
occur, and then put the error-processing lines immediately following
the command. Refer to Section 2.4 for more examples of using @IF
(NOERROR) and @IF (ERROR).

If an error occurs and Batch does not find an @IF command as the next
command line in the control file, Batch terminates the job.

2-8

ENTERING A BATCH JOB FROM A TERMINAL

2.3.2 The @ERROR Command

With the @ERROR command, you can specify to Batch the character that
you wish to be recognized as the beginning of an error message.
Normally, when Batch reads a message that begins with a question mark
(?), it assumes a fatal error has occurred and terminates the job,
unless you have specified error recovery (refer to Section 2.4). If
you wish Batch to recognize another character (in addition to the
question mark) as the beginning of a fatal error message, you must
specify the character in the @ERROR command. The character specified
may not be a control character, an exclamation point (!) or a
semicolon(;). The exclamation point will be interpreted as the
comment character and will not function as the error signal character.
This command has the form:

@ERROR character
where
character is a single ASCII character

If you do not specify a character in the @ERROR command, Batch uses
only -the standard error character, the question mark. When a line
that begins with the character you specify in the @ERROR command is
output to the Batch job by the system, a system program, or is issued
by Batch itself, Batch treats the line as a fatal error and terminates
the 3job, exactly as it would if the line were preceded by a guestion
mark. Any messages preceded by other characters will not be
recognized by Batch as errors.

If you do not include the @ERROR command in your control file, Batch
will recognize only the gquestion mark as the beginning character of a
fatal error message.

An example of the @ERROR command follows.

@ERROR

e o o gPe o o

@ERROR

In this example, you specify in the middle of the «control file that
you want Batch to recognize the question mark (?) and the percent sign
($) as the beginning character of a fatal error from that point in the
control file. Further on in the control file, you tell Batch to go
back to recognizing only the question mark as the beginning of a fatal
error message.

2.3.3 The @NOERROR Command
You can use the @NOERROR command to tell Batch to ignore all error
messages issued by the system, system programs, and Batch itself. The
@NOERROR command has the form:

@NOERROR
When Batch reads the @NOERROR command, it ignores any error messages
that would normally cause it to terminate your Jjob. The only

2-9

P TR N T T T T T

ENTERING A BATCH JOB FROM A TERMINAL

exception is the message ?TIME LIMIT EXCEEDED. Batch will always
recognize this as an error message, give you an extra 10% of your
allotted time, and terminate your job.

You can use @NOERROR commands in conjunction with @ERROR commands in
the control file to control error reporting. For example, if you wish
to ignore errors at the beginning and end but not in the middle of the
control file, place @ERROR and @NOERROR commands at the appropriate
places in the control file., 1In addition, you can also specify which
messages must be treated as fatal errors.

@NOERROR

QERROR %

QERROR

@NOERROR

The first command tells Batch to ignore all errors in your job. The
second command tells Batch to recognize as errors any message that
starts with a question mark (?) and a percent sign (%). You change
the error reporting with the next command to tell Batch to go back to
recognizing only messages that begin with a question mark as fatal.
The second @NOERROR command tells Batch to ignore all error messages
again. If the ?TIME LIMIT EXCEEDED message is issued at any time,
Batch will print the message, extend the time by 10%, and then
terminate the job.

2.3.4 The @GOTO Command
You can include the @GOTO command in your control file to direct Batch
to skip over lines in the control file to find a specific line. The
@GOTO command has the form:

@GOTO label

where

label is a one~ to six-character alphanumeric 1label for a
statement. It must be followed by two colons (::).

An example of the @GOTO command follows.

@GOTO ABC

ABC: : @DIRECTORY

2-10

ENTERING A BATCH JOB FROM A TERMINAL

You can use the @GOTO command as the statement in an @IF command
(refer to Section 2.3.1) to aid you in error processing. For example:

@IF (ERROR) @GOTO ABC

ABC::@TYPE MYPROG

When Batch encounters a @GOTO command in the control file, it searches
forward in the control file to find the label specified in the @GOTO
command. Batch then resumes processing of the control file at the
line which has the specified label. 1If the label is not found, Batch
will issue the message

? BTNCNF COULD NOT FIND LABEL xXxxxxx

and the job will be terminated.

If you do not include a @GOTO command in the control file, Batch reads
the control file sequentially from the first statement to the last.

2.3.5 The @BACKTO Command

You can use the @BACKTO command to direct Batch to search back in the

control file for a line with a specified label. The @BACKTO command
has the form:

@BACKTO label

where

label is a one- to six-character alphanumeric 1label for a
statement. It must be followed by two colons (::).

An example of the @BACKTO command follows.

ABC: : @DIRECTORY

.

@BACKTO ABC

Normally, Batch reads the control file line by 1line and passes the
commands and data to the system and your program. When you put a
@BACKTO command into the control file, you tell Batch to interrupt the
normal reading sequence and to search back in the control file to find
a line containing the label specified in the @BACKTO command. The
@BACKTO command searches for the label you specified, starting from
the beginning of the file and ending at the place the command was
given. When the labeled line is reached, Batch executes the line and
continues from that point.

If Batch cannot find the labeled line, it terminates your job.

ENTERING A BATCH JOB FROM A TERMINAL

2.4 SPECIFYING ERROR RECOVERY IN THE CONTROL FILE

If you do not specify error recovery when an error occurs in your job,
Batch terminates the job. You can specify error recovery in the
control file by means of the Batch commands, especially the QIF Batch
command. You must put the @IF command at the point between programs
in the control file where an error may occur. When an error occurs,
Batch skips over all lines in the control file until it encounters a
line beginning with an at sign (@). If this 1line contains an @IF
command, the @IF command is processed and the job continues. If this
line does not contain an @IF command, the 3job is terminated.
Therefore, if a Batch job is to recover from an error successfully,
the @QIF command must be placed in the control file where the error is
expected to occur but before any other commands preceded by the @
sign. Thus, if you have a program that you are not sure is error
free, you can include an @QIF command to tell Batch what to do if an
error occurs, as shown in the following example.

@COMPILE MYPROG.FOR
@IF (ERROR) statement

In either the @IF (ERROR) or the @QIF (NOERROR) command, you should
include a statement that tells Batch what to do. You can use any
monitor command or Batch command. If you wish to simply ignore the
error without taking any special action, you may use a comment as the
statement. The @GOTO and @BACKTO commands are also commonly used for
this purpose. Refer to Sections 2.3.4 and 2.3.5 for descriptions of
these commands. Be sure, if you use @GOTO or @BACKTO in the @IF
command, that you supply a line in the control file that has the label
that you specified in the @GOTO or @BACKTO command.

Two sample jobs are shown below. The first shows the @IF (ERROR)
command and the @GOTO command to specify error recovery. The second
example shows the use of the @QIF (NOERROR) and @GOTO commands.

If you have a program that you are not sure will compile without
errors, you can include another version of the same program in your
job (that hopefully will compile) and tell Batch to compile the second
program if the first has an error. You write the control file as
follows.

@CREATE (FILE) MYFILE.CTLGD)

INPUTS MYFILE.CTL.1

00100 @ECOMFILE /COMFILE MYFROG,FOR/LISTGe)
00200 RIF (ERROR) @GOTO ACrer)

00300 @EXECUTE MYFROG,FORCRD)

00400 @coTo BCR)

00500 $ ¢ ICONTINUE

00600 @ECOMFILE /COMFILE FROG2.FOR/LISTCED
00700 @EEXECUTE FROG2.FORCrED)

00800 R::!CONTINUEGeD)

00900

D)
X (Cre)

CMYFILE.CTL.113

2-12

i it

ENTERING A BATCH JOB FROM A TERMINAL

When the job is run, Batch reads the control file and passes commands
to the system. If an error occurs in the compilation of the first
program, Batch finds the @IF (ERROR) command and executes the @GOTO
command contained in it. The @GOTO command tells Batch to look for
the line labeled A::. Thus, Batch skips lines in the control file
until it finds label A and then passes commands to the batch job from
that point. If an error does not occur while compiling MYPROG, the
@GOTO A statement 1is not executed. Instead, MYPROG is executed and
then Batch skips to the line labeled B::.

A variation of the above procedure 1is shown below wusing the @IF
(NOERROR) command and the @GOTO command. The difference is that Batch
skips the @IF (NOERROR) command if an error does occur, and performs
it if an error does not occur. The following is the control file that
you would create.

@CREAJrE (FILE) MYFILE.CTLCxeD)

INPUT! MYFILE.CTL.1

00100 ECOMFILE /COMFILE MYFPROG.FOR/LISTGeD)
00200 @IF (NDERROR) @GOTO aGe)

00300 @COMFILE /COMFILE FROG2.FOR/LISTGED)
00400 E@EXECUTE PROG2.FORCrD)

00500 @GOTO BCeD)

004600 Al ICONTINUECrer)

00700 BEXECUTE MYFROG.FORCRED)

00800 B! !ICONTINUECrD)

00900
(Cesc)

*ECreD)
CMYFILE.CTL.13
e

When the job is run, Batch passes the COMPILE command to the system to
compile the first program. If an error does not occur, the @IF
(NOERROR) command and the @GOTO command are executed, Batch skips to
the line 1labeled A, which is a comment, and passes commands to the
Batch job from that point. The program MYPROG.FOR is executed and the
end of the job is reached. If an error occurs while compiling MYPROG,
Batch skips the @IF (NOERROR) command and continues reading the
control file. PROG2.FOR is compiled and then executed. Batch is then
told to go to the line labeled B, which is a comment line. The end of
the job follows.

The examples shown above illustrate only two ways that you can use the
@IF commands to specify error recovery in the control file. You can
use any of the Batch commands or any system command that you choose to
recover from errors in your job.

However, you do not have to attempt to recover from errors while your
job is running. You can correct your errors according to the error
messages in the log file when your job is returned to you, and then
run your job again. The log file is described in Chapter 4.

CHAPTER 3

ENTERING A BATCH JOB FROM CARDS

When you enter a job to Batch from card input, you must create a
control file on cards that 1is somewhat similar to a control file
created on a timesharing terminal, but that contains some additional
Batch commands. The card control file must tell Batch to start your
job, the tasks or steps your job must take, and when to stop your
Batch job. The tasks or steps in your Batch job can consist of calls
to a system program, can identify and protect the control file, and
can establish error recovery.

Your control card input to Batch may contain any combination of
commands. These commands are in four groups as follows:

1. TOPS-20 system commands, which consist of commands in a
format similar to what you would issue for the same command
on a timesharing terminal. Examples of these commands are
@COPY, @DEASSIGN, @PRINT, and @RENAME.

2, System program commands, which consist of commands that
pertain to a system or user program. An example is the
command to the FILCOM program to specify files to be
compared.

3. Batch commands, as described in Chapter 2, Section 2.3.

4. Batch control card commands, some of which are listed below.

$JOB (See Section 3.2.1)
$PASSWORD (See Section 3.2.2)
$EOJ (See Section 3.2.3)
SCREATE (See Section 3.2.4)
$-language (See Section 3.2.5)
SEXECUTE (See Section 3.2.6)
S$DATA (See Section 3.2.7)
SEOD (See Section 3.2.8)
$TOPS20 (See Section 3.2.9)
SERROR (See Section 3.2.10)
$NOERROR (See Section 3.2.10)

Not all of the available Batch control commands are listed
above and described in Section 3.2. Refer to the
DECSYSTEM-20 (TOPS-20) Batch Reference Manual for a complete
description of all available Batch control card commands.

3-1

ENTERING A BATCH JOB FROM CARDS

3.1 BATCH CONTROL CARD FORMAT CONVENTIONS

The Batch control cards must contain a dollar sign ($) in column 1 and
a command that starts in column 2. The command must be followed by at
least one space, which can then be followed by other information.
(Refer to the individual description of each card for more information
about it.)

A card with a TOPS-20 system command must contain an at sign (@) 1in
column 1 followed immediately by the command. Any information that
follows the command is in the format shown for the command in the
DECSYSTEM-20 (TOPS-20) User's Guide. The $TOPS20 Batch control card
command must precede TOPS-20 system commands in your card deck.
(Refer to Section 3.2.9 for the format and description of the $TOPS20
card.)

A card with a command to a system program must contain an asterisk (*) .
in column 1 followed immediately by the command string.

/
Batch commands are formatted in the same manner as system commands;
that 1is, an at sign (@) 1is punched in column 1 and the command
immediately follows it. You must also place a $TOPS20 card before
Batch commands in the card deck to enable execution of these commands.

If you put any special characters other than those described above in
the first column of a card, you may get unexpected results because
Batch interprets other special characters in special ways.

If you have more information than will fit on one card, insert a
hyphen (-) as the 1last nonspace character on the first card and
continue the information on the second card.

Comments can also be included either on separate cards or on cards
containing other information. If the entire card is to contain a
comment, the card should contain a dollar sign ($) in column 1 and an
exclamation point (!) in column 2. The exclamation point (!) is
called the comment character. If the card contains a command followed
by a comment, only the exclamation point (!) should precede the
comment. If the comment is too long to be contained on a single card,
begin the next card with a dollar sign ($) in column 1 and the
exclamation point (!) in column 2 and then continue the comment.

3.2 BATCH CONTROL CARD COMMANDS

Eleven Batch control card commands are described in the following
sections. Additional Batch control card commands are available and
can be referred to in the Batch Reference Manual.

3.2.1 Starting a Job - The $JOB, Card

The $JOB card is the first card in your card deck. The $JOB card
tells Batch whose job it is processing and, optionally, the name of
the job, and any constraints that you want to place on the job. When
Batch reads the $JOB card, it begins the log file for your job.

3-2

N

ENTERING A BATCH JOB FROM CARDS

The $JOB card has the form:

$JOB user-name/switches

user-name is the name assigned to you by the installation to
allow you to gain access to the DECSYSTEM-20.
Normally, your user-name is your surname.

/switches are optional switches to Batch to tell it the
constraints that you have placed on your job.
They are described below.

/AFTER:dd-mmm-yy hh:mm Switch

If you do not want Batch to run your job until after a certain time
and/or a certain day, you can include the /AFTER switch on your $JOB
card. The date and time are specified in the form dd-mmm-yy hh:mm
(e.g., 16-APR~-78 17:15). If you omit this switch, Batch schedules
your job as it normally does; that is, Batch schedules your job based
on the time required and other parameters.

/AFTER:+hh:mm Switch

If you do not want Batch to run your job until after a certain amount
of time has elapsed since the job was entered, include this form of
the /AFTER switch on the $JOB card. The amount of time that the job
must wait after it has been entered is specified in the form +hh:mm
(e.g., +1:30). If this switch is not included, Batch will schedule
the job as it normally does.

/JOBNAME: xxx Switch

You can set the name of the job by inserting this switch on your $JOB
card. The name can be 1 to 6 alphanumeric characters in length. If
you omit this switch, Batch will create a unigue name for your job.
The name created by Batch is assigned to both your control file and
your log file. Batch adds the file type .CTL to the control file and
the type .LOG to the log file.)

/PAGES:n Switch

Normally, Batch allows your job to print up to 200 pages. Included in
this number are the log file and any compilation listings that you may
request. If you need more than 200 pages for your job, you must

3-3

ENTERING A BATCH JOB FROM CARDS

include the /PAGES switch on the $JOB card to indicate the approximate
number of pages that your job will print. If your output exceeds
either the maximum that Batch allows or the number that you specified
in the /PAGES switch, the excess output will not be printed and the
message ?LPTPLE PAGE LIMIT EXCEEDED will be written in the log file.
However, even if you exceed the maximum, the first 10 pages of the log
file will be printed.

NOTE

Do not arbitrarily enter a large PAGES
value as this may delay execution of
your Batch job.

/TIME:hh:mm:s88 Switch

Normally, Batch allows your job to use up to five minutes of central
processor (CPU) time. CPU time is the amount of time that your job
runs in memory, not the amount of time that it takes Batch to process
your job. If you need more than five minutes of CPU time, you must
include the /TIME switch on the $JOB card to indicate the approximate
amount of time that you will need. If you do not specify enough time,
Batch will terminate your job when the time is up. However, if you
specify a large amount of time, Batch may hold your job in the queue
until it can schedule a large amount of time for it.

The value in the /TIME switch is given in the form hh:mm:ss
(hours:minutes:seconds). If you specify only one number, Batch
assumes that you mean minutes. Two numbers separated by a colon (:)
are assumed to mean hours and minutes. All three numbers, separated
by colons mean hours, minutes, and seconds. For example:

/TIME: 25 means 25 minutes

/TIME:1:25 means 1 hour and 25 minutes

/TIME:1:25:00 means 1 hour, 25 minutes, and no seconds

The following rules apply to all switches in the above 1list that
require a time and/or date to be specified:

When you specify the time of day (hh:mm:ss)

1. You must not omit the colon (:) or colons.
When you specify a date (dd-mmm-yy)

1. You must not omit the hyphens.

2. You must specify both the day and the month as a minimum
requirement.

3. You can abbreviate the month to a minimum of three letters,
e.g., JUL for July.

4. 1If you omit the year, the current year will be used.

3-4

ENTERING A BATCH JOB FROM CARDS

5. If you omit the time from a date specification, the time is
assumed to be midnight on the specified date. 1In the example
below a current date and time of 20 April, 1978, 10AM will
be assumed.

/AFTER:18:00 means 6 P.M. on April 20, 1978
/AFTER: 3-May means midnight on May 3, 1978
/AFTER:19-Apr 20:00 means 8 P.M on April 19, 1978

3.2.2 1Identifying Yourself - The $PASSWORD Card

You put the password that has been assigned to you on the $PASSWORD
card to tell Batch that you are an authorized user of the system.

In conjunction with the $JOB card, the $PASSWORD card identifies you
to Batch and tells Batch to process your job. If you put a password
on the $PASSWORD card that does not match the password stored in the
system for you, Batch will terminate your job. The $PASSWORD card
must be present and must immediately follow the $JOB card.

The $PASSWORD card has the form:

$PASSWORD password

password is a 1= to 39-character password that is stored in
the system to identify you. There must be exactly
one space between the end of the card name
(SPASSWORD) and the first character of your
password.

ENTERING A BATCH JOB FROM- CARDS

3.2.3 EBEnding a Job - The $EOJ Card

You must put the $EOJ card at the end of the deck containing your
complete job to tell Batch that it has reached the end of your job.
If you omit the $EOJ card, an error message will be issued. However,
your Jjob will still be scheduled and may be processed if another job
follows it. The form of the $EOJ card is shown below.

$EOJ

3.2.4 Creating a File - The $CREATE Card

You can put the $CREATE card in front of any program, data, or other
set of information to make Batch copy the program, data, or
information into a disk file. 1If the appropriate switch is included,
Batch will also print this file on the line printer.

The form of the S$CREATE card is:

$CREATE filename. typ/switches

filename. typ specifies the optional filename and type you
want Batch to put on the file it creates for
your program or data. If you omit the filename
and type, Batch will create a unique name for
your file of the form CRxxxx, where XXXX
represents a unique name generated by Batch.

/switches are switches to Batch to tell it how to read the
cards in your deck. The switches are described
below.

ENTERING A BATCH JOB FROM CARDS

/WIDTH:n Switch

Normally, Batch reads 80 columns on every card in your deck. You can
make Batch stop reading at a specific column by means of the /WIDTH
switch, where you indicate the number of column at which to stop.
Thus, if you have no information in the last 10 columns of each card
in your deck, you can tell Batch to read only up to column 70 by
specifying

/WIDTH:70

/SUPPRESS Switch

When Batch reads the cards in your deck, it normally copies everything
on the card up to column 80 (or up to any column you may specify on
the /WIDTH switch). However, if you do not want trailing spaces
copied (to save space on the disk, for example), you can tell Batch,
by means of the /SUPPRESS switch, not to copy any trailing spaces into
the disk file.

/PRINT Switch
The file currently being created on disk by Batch is 1listed on the
line printer.
Examples

The simplest form of the $CREATE card is:

SCREATE
This card causes Batch to copy your deck into a disk file and to
assign a unique name to it. All 80 columns of the cards are read and
trailing spaces are copied into the file. The file is not printed.
The following is an example of a $CREATE card.

SCREATE MYFILE.CDS/WIDTH:50/PRINT
The deck that follows this card is copied into a disk file named
MYFILE.CDS. When Batch reads the cards in the deck, it copies

trailing spaces into the file, reading up to 50 columns. The disk
file created from your cards will ke printed on the line printer.

3.2.5 Compiling a Program - The $-language Card
The $-language card specifies the source program language of your
program on cards. It is placed in front of your program. The
$-language card may be any of the following:

1. $COBOL

2, SFORTRAN

3. S$MACRO

4. SALGOL

E
1

ENTERING A BATCH JOB FROM CARDS

The $-language card causes Batch to copy your source program into a
disk file and compile it., You may then execute your program by using
the $EXECUTE card (Section 3.2.6) or the $DATA card (Section 3.2.7).
Optional information (/switches) may be included on the $-language
card to tell Batch how to read and compile your program.

When Batch copies your source program file onto disk, Batch assigns an
unique filename for your program in the form of LNxxxx. Depending on
the type of $-language card, the appropriate file type 1is also
assigned to this file. When your Batch job completes successfully,
the LNxxxx- file is deleted automatically.

The $-language card has any of the following forms:

()
$ALGOL/switches $COBOL /switches
$FORTRAN/switches $MACRO/switches
_ ' ‘ —
/switches are switches to Batch to tell it how to read your

program and whether or not to request a
compilation listing when the program is compiled.
The switches can be put on the card in any order.
The following three switches may be used with any
of the $-language cards. Additional switches are
available and can be referenced in the Batch
Reference Manual.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of the source
program. You can make Batch stop reading at a specific column by
means of the /WIDTH switch. You indicate the number of a column at
which to stop. Thus, if you have no useful information in the last 10
columns of each card of your program, you can tell Batch to read only
up to column 70 by specifying

/WIDTH:70

ENTERING A BATCH JOB FROM CARDS
/NOLIST Switch

Normally, the $-language card tells Batch to ask the compiler to
generate a compilation listing of your source program. The listing is
then printed as part of your job's output. If you do not want this
listing, you can include the /NOLIST switch on the $-language card to
stop generation of the listing.

/SUPPRESS Switch

When Batch reads the cards of your source program it normally copies
everything on the card up to column 80 or any column you may specify
in the /WIDTH switch. However, if you do not want trailing spaces
copied (to save space on the disk, for example), you can tell Batch,
by means of the /SUPPRESS switch, not to copy any trailing spaces into
the disk file.

Examples

The simplest form of the $-language card is shown in the following
example using ALGOL.

SALGOL

This card causes Batch to copy your ALGOL card program into a disk
file. The cards in the program are read up to column 80 and trailing
spaces are not suppressed. A 1listing file is produced when the
program is compiled. The 1listing is written as part of the job's
output. ’

The following is an example of a $ALGOL card with switches.
$ALGOL/NOLIST/SUPPRESS/WIDTH:72

with this card, Batch copies your program onto disk and inserts a
COMPILE command into the control file. When the program is compiled,
no listing is produced. The cards in the program are read up to

column 72, and trailing spaces up to column 72 are not copied into the
file.

3-9

ENTERING A BATCH JOB FROM CARDS

3.2.6 Executing a Program - The S$EXECUTE Card

The SEXECUTE card is used to execute the program that has been
compiled using the $-language card. This card is used when the
program requires no data or uses data already existing on disk. The
form of the $EXECUTE card is shown below.

SEXECUTE/switch

/switch is a switch to Batch to tell it what to include in
the command it inserts in the control file.

/MAP Switch

If you want a loader map to be generated and printed for you when your
program is run, you can specify the /MAP switch on the S$EXECUTE card
to tell Batch to request one for you.

An SEXECUTE card following another S$EXECUTE card in the control file
without intervening $-language cards causes the program executed by
the first EXECUTE card to be loaded and executed again.

3.2.7 Executing a Program with Data - The $DATA Card

The $DATA card is used when you want to execute a program that uses
data from cards. The $DATA card must be in front of the input data
cards. When Batch reads the $DATA card, Batch copies the data cards
that follow it onto a spooled card-reader file and then inserts an
EXECUTE command into your control file to execute your program.

When your job is run, any programs are executed that were entered with
$-language cards that came before the $DATA card. The spooled card
reader file becomes the input to the currently executing program, and
your program may reference this file by using the card reader as the
input device.

If your input control file contains more than one program and input
data, Batch will execute the first program with the input data, spool
the results to be printed, and then compile the second program when
Batch reads the second $-language card. Again, when Batch reads the
second $DATA card, a spooled card-reader file is created for your
input data cards and an EXECUTE command is inserted in your control
file.

A $DATA card (with its associated card deck) followed by another S$DATA
card (with its deck), without intervening $-language cards, causes the
program to be loaded and executed twice. The first deck 1is wused as
data on the first execution and the second deck is used as data on the
second execution.

3-10

2 T4 e

ENTERING A BATCH JOB FROM CARDS

If your data is included in the program or is already on disk (so that
you do not have cards with data on them), use the $EXECUTE card
(Section 3.2.6) to execute the program,

The form of the $DATA card is:

$DATA filename. typ/switches

filename. typ specifies a name for the input data file (see
Section 3.2.7.1). If omitted, a spooled
card-reader file is created. You may reference
this file by using the card reader as the input
device in the source program. If included, a
disk file is created, and you may reference this
file by using the disk as the input device.

/switches are switches to Batch to tell it how to read
your data cards. The switches are described
below.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your data.
You can make Batch stop reading at a specific column by means of the
/WIDTH switch, where you indicate the number of a column at which to
stop. Thus, if you have no useful information in the last 10 columns
of each card of your data, you can tell Batch to read only up to
column 70 by specifying

/WIDTH:70

/SUPPRESS Switch

When Batch reads the cards of your data, it normally copies everything
on the card up to column 80 or up to any column you may specify on the
/WIDTH switch. However, if you do not want trailing spaces copied (to
save space on the disk, for example), you can tell Batch, by means of
the /SUPPRESS switch, not to copy any trailing spaces into the disk
file.

ENTERING A BATCH JOB FROM CARDS

/MAP Switch

If you want a loader map to be generated and printed for you when your
program is run, you can specify the /MAP switch on the $DATA card to
tell Batch to request one for you.

Examples
The simplest form of the $DATA card is:
SDATA

This card causes Batch to copy your data into a spooled card-reader
file. A spooled card-reader file is a file that Batch creates on disk
so that when your program reads from the card reader, that file is
read. All 80 columns of the caras are read and trailing spaces are
copied into the file.

The following example shows a $DATA card with switches.
SDATA MYDAT.DAT/WIDTH:72

The data that follows this card is copied into a file named MYDAT.DAT
and an EXECUTE command is inserted into the control file. When Batch
reads the cards of the data, it reads only up to column 72 and copies
trailing spaces into the data file.

3.2.7.1 Reading from a Spooled Card-Reader File - If you let Batch
assign a name to your data file, you will not know the name that your
data file will have; you should, therefore, assign your data file,
without a name, to the card reader. The following examples illustrate
how to do this.

NOTE

The $DATA card can be used for data of
programs written in ALGOL, COBOL,
FORTRAN, and MACRO. It can also be used
for programs that are in relocatable
binary form. However, data for BASIC
programs cannot be copied by means of
the $DATA card because BASIC programs
are not compiled and executed. For
BASIC programs, use the SCREATE card as
described in Section 3.2.4.

3-12

ENTERING A BATCH JOB FROM CARDS

COBOL Example

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
SELECT SALES, ASSIGN TO CDR.

DATA DIVISION.
FILE SECTION.
FD SALES, LABEL RECORDS ARE OMITTED.

SDATA (in the control file)
FORTRAN Example

To read your data from the card reader, you use the unit number 2 or
no unit number, as shown below.

READ (2,f), list

END
$DATA

READ £, list

END

ENTERING A BATCH JOB FROM CARDS

$DATA

ALGOL Example

In an ALGOL program, you assign the desired channel (signified by <c)
to the card reader and select the desired channel. Do not explicitly
open the named file on the channel because the file does not have a
name that is known to you.

INPUT (c, "CDR")
SELECT INPUT (c)

SDATA

3.2.7.2 Naming Data Files on the $DATA Card - If you want to name
your data file on the $DATA card rather than letting Batch name it for
you, you must, in your program, assign that file to disk as shown in
the following examples.

COBOL Example

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
SELECT SALES, ASSIGN TO DSK.

DATA DIVISION.
FILE SECTION.
FD SALES, VALUE OF IDENTIFICATION IS "SALES CDS".

ENTERING A BATCH JOB FROM CARDS

The $DATA card would then appear as follows.
SDATA SALES.CDS
FORTRAN Examples
You can assign your data to disk in several ways when you use FORTRAN.
You can read from unit 1, which is the disk, in your program and use

the name FORO1.DAT as the filename on your $DATA card, as shown in the
following statements.

READ (1,f), list

$DATA FORO1,.DAT

You can also tell FORTRAN to read from 1logical unit 2, which is
normally the card reader, and assign unit 2 or the card reader (CDR)
to disk (DSK). You can use the name FOR02.DAT on the $DATA card in
this case.

OPEN (UNIT=2,DEVICE='DSK')
READ (2,f), list

@DEFINE CDR: DSK: (in the control file)
SDATA FOR02.DAT

ALGOL Example

.To read your data from the disk in an ALGOL program, you would use the

following statements. You can assign your data to any channel
(signified by c) and you can give your data file any name as long as
the name that you use in your program is the same as that put on the
$DATA card.

ENTERING A BATCH JOB FROM CARDS

INPUT (c, "DSK")
SELECT INPUT (c)
OPENFILE (¢, "MYDAT.DAT")

$DATA MYDAT.DAT

This is done to ensure that your program finds your data in the disk
file under the name that you have assigned to it.

3.2.8 End of Data Input - The $EOD Card

The $EOD card terminates the card input that was preceded by either a
SCREATE or S$DATA card.

The form of the $EOD card is:

$EOD

If the $EOD card does not follow the card input that was preceded by a
SCREATE card, Batch recognizes the next card with a dollar sign ($) in
column one as a new Batch command and as the end of the card input;
that is, an EOD card is assumed if one is not present.

3.2.9 System Commands - The $TOPS20 Card

You can include system commands, commands to system or user programs,
and Batch commands in your deck by inserting a $TOPS20 card
immediately before these commands. The $TOPS20 card directs Batch to
copy all cards following it into the Batch control file. Therefore, a
single system or Batch command or a group of consecutive system and/or
Batch commands must be preceded by a $TOPS20 card. The copying
process is terminated by the next control card in the deck.

ENTERING A BATCH JOB FROM CARDS

The form of the $TOPS20 card is:

$TOPS20/switches

/switches are switches to Batch to tell it how to read and
interpret your input.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your system or
Batch commands. You can make Batch stop reading at a specific column
by using the /WIDTH switch, where you indicate the column number at
which Batch 1is to stop reading. Thus, if you have no useful
information in the last 10 columns of each card, you can tell Batch to
read only up to column 70 by specifying

/WIDTH:70

/SUPPRESS Switch

When Batch reads your cards, it normally copies everything on the card
up to column 80 or up to any column you may specify on the /WIDTH
switch. However, if you do not want trailing spaces copied (to save
space on the disk, for example), you can tell Batch, by means of the
/SUPPRESS switch, not to copy any trailing spaces into the disk file.

Figure 3-1 illustrates a sample Batch input card deck using only
TOPS-20 commands.

3-17

ENTERING A BATCH JOB FROM CARDS

/ $E0J

@VDIRECTORY

@INF SYSTEM-STATUS

@INF AVAILABLE DEVICES

@INF STRUCTURE PS:

@INFORMATION BATCH

@TRANSLATE PS:<user-name>

@DAYTIME

$TOPS20 ||

$PASSWORD password

$JOB user-name

Figure 3-1 Batch Card Deck Using TOPS-20 Commands

3.2.10 Error Recovery - The $ERROR and $NOERROR Cards

You can use the $ERROR card and the $NOERROR card to recover from
errors that may or may not occur while your Batch job is running. 1If
an error occurs during your job (for example, a program fails to
compile), Batch will normally terminate your job. However, if a
$SERROR or $NOERROR card is included in your card deck immediately
after the point at which the error occurs, Batch will proceed as
indicated on the $ERROR or $NOERROR card and will not terminate the
job.

3-18

ENTERING A BATCH JOB FROM CARDS

The SERROR card has the form:

$ERROR statement

The SNOERROR card has the form:

$NOERROR statement

statement is a system command or a special Batch command
(for example, @GOTO or @BACKTO) such as you would
include following a $TOPS20 card. The Batch
commands are described in Section 2.3 (of Chapter
2). The statement may also be a comment (begun
with the exclamation point(!)) if you wish Batch
to simply ignore the error.

If an error occurs in your Batch job and the S$ERROR card 1is then
encountered, the statement on the SERROR card is executed and the job
continues. If the SERROR card is encountered when an error has not
occurred, the card is ignored.

If an error occurs in your Batch Jjob and the $NOERROR card is
encountered, no action will be taken, with the exception that Batch
will not terminate your job as it would have if the card had not been
found. If the SNOERROR card is encountered when no error has
occurred, the statement on the $NOERROR card is executed.

The SERROR card is equivalent to the Batch command @IF(ERROR). The
$NOERROR card 1is equivalent to the Batch command @IF (NOERROR). See
Section 3.5 for examples of Batch jobs using the $ERROR and $NOERROR
cards.

3-19

ENTERING A BATCH JOB FROM CARDS

3.3 SETTING UP YOUR CARD DECK

Batch enters commands into the control file when you use certain
control cards. Where you put these control cards in your card deck
determines their position in the control file. Batch reads your card
deck in sequential order, copying commands into the control file as
they or the special control cards are read. However, when Batch reads
a control card that tells it to copy a program or data into a disk
file, the disk file is created immediately, before the remainder of
the job 1is processed. Every succeeding card is copied until another
control card is read.

A Batch job can do almost anything a timesharing job can do. If you
wish to perform complicated tasks, you may include system commands in
your deck to direct Batch to execute these tasks. Section 3.4
describes the way to include system commands for the desired control.

The $JOB card, the $PASSWORD card, and the $EOJ card are required for
all jobs. The $JOB card must be the first card in the deck and must
be immediately followed by the $PASSWORD card. The $EOJ card must be
the last card in the deck.

The control cards used to compile and execute programs written in
ALGOL, COBOL, FORTRAN, and MACRO are shown in Figure 3-2. The
following card deck does not apply to control card decks for BASIC.
Refer to Section 3.4.1 for information regarding BASIC.

$EOQJ

$EOD

ALGOL source program

$ALGOL

$PASSWORD password

$JOB user-name

NOTE:

— For other languages use
$COBOL,
$FORTRAN,
$MACRO, etc.

Figure 3-2 Typical Program Card Deck

3-20

ENTERING A BATCH JOB FROM CARDS

The typical card deck shown in Figure 3-2 includes a language card
(SALGOL, S$SCOBOL, etc.) immediately prior to the source program. This
language card informs Batch of the system program to be employed for
processing (compiling) the succeeding cards. The $DATA card likewise
immediately precedes the data cards to inform Batch that the
succeeding cards contain data for the program. In both cases, the
information is stored (on a spooled card-reader file) to establish
program files and data files. The $DATA card also causes Batch to
execute the program, using the data cards as input. The $EOJ card
informs Batch that all cards pertaining to the job have been entered.
At this time Batch has access to the program to be compiled and the
data to be used by the program; it knows what compiler or assembler
is to be used, and has built a control file containing the TOPS-20
@EXECUTE command so that the program will be run.,

3.4 PUTTING COMMANDS INTO THE CONTROL FILE FROM CARDS

Batch enters commands into the control file when you use certain
control cards such as $EXECUTE and $DATA. However, only a small
number of operations, such as compilation and execution of programs,
can be put into the control file using control cards. To perform
operations in your control file other than compilation or execution,
you must include commands in your card deck for Batch to copy into
your control file. 1If you want to include Batch commands or system
commands in your card deck, you must insert a $TOPS20 card immediately
before these commands in your deck. The $TOPS20 card directs Batch to
copy all succeeding commands into the control file until the next
control card is encountered. The commands will later be executed by
Batch in the same order that they appear in your card deck.

For example, in order to compare two card decks and produce a list of

the differences, you could include the cards shown in Figure 3-3 in
your deck.

3-21

ENTERING A BATCH JOB FROM CARDS

$EOJ

*LPT:=FILE.ONE,FILE.TWO

@FILCOM

$TOPS20/switches

$EOD

second card deck

$CREATE FILE.TWO

first card deck

$CREATE FILE.ONE

$PASSWORD password

$JOB user-name

Figure 3-3 Use of Control Cards to Compare Two Card Decks

The only system commands that you cannot use in a Batch job are ATTACH
and SET TIME-LIMIT. Batch will send these commands to the EXEC, the
EXEC will give an error, and Batch will detect the error and terminate
your job. Also, you cannot use the LOGIN command in your Batch job
because you will get an error that will terminate your job. Batch
logs in your job in accordance with your $JOB and $PASSWORD cards.

3.4.1 Card Decks for Programs that Do Not Have Special Control Cards

By using system commands and the S$SCREATE control card, you can process
any program that does not have special control cards. You put a
$SCREATE card in front of a program, data, or any other group of cards
to make Batch copy the cards into a disk file and, if you request, to

3-22

ENTERING A BATCH JOB FROM CARDS

print the file on the line printer. The $CREATE card is described in
detail in Section 3.2.4. You put the $TOPS20 card in front of monitor
and Batch commands to cause Batch to copy these commands into the
control file. The $TOPS20 card 1is described in detail in Section
3.2.9.

For example, a BASIC program does not have a specific control card.
To run a BASIC program under Batch from cards, you can combine the
$CREATE card and the $TOPS20 card with system commands. You can also
use a S$CREATE card to copy the data which a BASIC program will use.
The $DATA card cannot be used, because the $DATA card puts an EXECUTE
command into the control file, and BASIC does not use the EXECUTE
command to run. The $TOPS20 card causes Batch to copy the monitor
commands into the control file.

Figure 3-4 shows a card deck that enters a BASIC program for running
under Batch.,

3-23

H
H

ENTERING A BATCH JOB FROM CARDS

/ *OLD MYPROG
(@BASIC

$TOPS20/switches

$EOD

data for program

$SCREATE FILE.ONE

BASIC source program

$CREATE MYPROG. BAS

$PASSWORD password

$JOB user-name]

Figure 3-4 BASIC Program Card Deck with Integral Data
The BASIC program contains statements that read data from disk file
FILE.ONE. You answer OLD to the BASIC gquestion
NEW OR OLD-
because the program file is on disk and can be retrieved by BASIC.
If your BASIC program reads data that is to be input from a terminal
during the running of the program, enter the data in the control file

so that it will be passed to your program by Batch. This is shown in
Figure 3-5.

3-24

ENTERING A BATCH JOB FROM CARDS

*MONITOR

*35,9,1,8

*5,1,34,-7

*1,2,3,2,-7

*RUN

*MYPROG.BAS

*oLo

@BASIC

$TOPS20/switches

BASIC source program

$CREATE MYPROG.BAS

$PASSWORD password

$JOB user-name

Figure 3-5 BASIC Program Card Deck with Provisions
for Terminal Data Input

You can use the. same technique to enter programs written in any
language that does not have a specific control card provided that your
installation supports the language. Also, you can run system programs
under Batch using the same technique.

3-25

;
;
E
|

ENTERING A BATCH JOB FROM CARDS

3.5 SPECIFYING ERROR RECOVERY IN THE CONTROL FILE

Normally, when an error occurs in your job, Batch terminates the job.
However, you can specify recovery from errors in the control file by
means of the $ERROR and $NOERROR cards, described in Section 3.2.10.
You must include one of these cards at the point in the control file
where an error may occur. When an error occurs, Batch examines the
next system command level line (skipping over lines that contain data
or command strings of a system program) to find an ‘@IF (ERROR)
statement or @IF(NOERROR) statement to tell it what to do about the
error. If an error does not occur and an @IF (ERROR) statement is
present, the @QIF (ERROR) statement is ignored. 1If an error occurs and
an QIF (NOERROR) statement is present, the statement is. ignored with
the exception that Batch does not terminate the job.

Thus, if you have a program that you are not sure is error free, you
can include a S$ERROR or $NOERROR card to tell Batch what to do if an
error occurs, as shown in Figure 3-6.

$EOJ

remainder of job

$ERROR statement

FORTRAN source program

$FORTRAN

$PASSWORD password

$JOB user-name

Figure 3-6 Card Deck with Error Statement

The above cards would cause Batch to make the following entries in the
control file.

@COMPILE . . .
@IF (ERROR) statement

3-26

ENTERING A BATCH JOB FROM CARDS

On either the $ERROR or S$SNOERROR card, you must include a statement
that tells Batch what to do. You can use any system command, a
command to a program, or one of the special Batch commands. The @GOTO
and @BACKTO Batch commands are commonly used for this purpose. Refer
to Sections 2.3.4 and 2.3.5 for descriptions of these commands. If
you use @GOTO or @BACKTO on your $ERROR or $NOERROR card, be sure that
you supply a line for the «control file that has the 1label you
specified in the @GOTO or @BACKTO command.

Two sample jobs are shown on the following pages. The first shows the
use of the $ERROR card and the @GOTO command to specify error
recovery. The second example shows the use of the SNOERROR card and
the @GOTO command.

If you have a program that may compile with errors, you can include
another version of the same program in your job (that hopefully will
compile) and tell Batch to compile the second program if the first has
an error. The cards to enter this job are shown in Figure 3-7.

ENTERING A BATCH JOB FROM CARDS

$€0J

B::!ICONTINUE

$TOPS20

$SEXECUTE

FORTRAN source program

$FORTRAN
A::!ICONTINUE
@GOoTOoB
$TOPS20
-
— | |
data for program =
$DATA FORO1.DAT/MAP |
$ERROR @GOTO A
-
FORTRAN source program
$FORTRAN
$PASSWORD password —
$JOB user-name -

Figure 3-7 Card Deck with Error Recovery Program

3-28

ENTERING A BATCH JOB FROM CARDS

These cards set up the following control file for you.

@COMPILE/COMPILE LNxxxx.FOR/LIST
@QIF (ERROR) QGOTO A
@EXECUTE LNxxxx.REL/MAP:MAP.LST
QGOTO B

:: ICONTINUE
QCOMPILE/COMPILE LNxxxx.FOR/LIST
@EXECUTE LNxxxx.FOR
B:: !CONTINUE

The $FORTRAN card told Batch to copy the program into a disk file, to
create a unique filename for the program in the form LNxxxx.FOR, and
to insert a COMPILE command into the control file. The $ERROR card
told Batch to insert @IF (ERROR) @GOTO A into the control file. The
data was copied into a disk file and an EXECUTE command was put into
the control file because of the $DATA card. The $TOPS20 card told
Batch to start copying cards into the control file, so Batch put the
next two 1lines into the control file. The second $FORTRAN card told
Batch to copy the program into a disk file, create another unique
filename for the program in the form LNxxxx.FOR, and put a COMPILE
command into the control file. A SEXECUTE card was used instead of a
$DATA card because the data for the second program was already in a
file on disk. The $TOPS20 card caused the next line to be put into
the control file.

When the job is started, Batch reads the control file and passes
commands to the system. If an error occurs in the compilation of the
first program, Batch executes the @GOTO command within the @IF
statement. The command tells Batch to skip to the line labeled A,
which contains a comment. Batch then proceeds to the next line. The
second program is compiled and executed with the data. The next line
is a comment, so Batch continues to the end of the control file. If
an error does not occur in the first program, Batch skips the @IF
statement, executes the program with the data, avoids the second
program by skipping to label B, and continues to the end of the
control file.

A variation of the above procedure using the $NOERROR card and @GOTO
command is shown in Figure 3-8. The difference is that Batch skips
the QIF statement if an error occurs and performs it if an error does
not occur.

3-29

ENTERING A BATCH JOB FROM CARDS

I/ $EOJ

B::!CONTINUE

@EXECUTE

A::ICONTINUE

@GOoTo B

@EXECUTE

$TOPS20/switches

$EOD

data for program

$CREATE FORO1. DAT

FORTRAN source program

$FORTRAN -

$NOERROR @GOTO A

FORTRAN source program

$FORTRAN

$PASSWORD password

$JOB user-name

Figure 3-8 Card Deck Using GOTO Statement

3-30

ENTERING A BATCH JOB FROM CARDS

Batch reads the cards and puts the following commands into the control
file.

@COMPILE/COMPILE LNxxxx.FOR/LIST
@IF (NOERROR) €@GOTO A
@COMPILE/COMPILE LNxxxx.FOR/LIST
@EXECUTE LNxxxx.FOR

@GOTO B

A:: ICONTINUE

@QEXECUTE LNxxxx.FOR

B:: !CONTINUE

The $FORTRAN card tells Batch to copy the FORTRAN program into a file,
to create a unique filename of the form LNxxxx.FOR, and to insert a
COMPILE command into the control file. The $NOERROR card tells Batch
to insert an @QIF command into the control file.

The second $FORTRAN card tells Batch to copy the second program into a
disk file, to create a unique filename of the form LNxxxx.FOR, and to
insert another COMPILE command into the control file. Instead of a
$DATA card, a $CREATE card is used to tell Batch to copy the data into
a disk file named FOR01.DAT. The $DATA card is not used here because
it would have the names of both programs in its list for the EXECUTE
command generation, which would cause an error when the 3job is run.
To tell Batch to start copying cards into the control file, the
$TOPS20 card comes next. Thus, Batch copies the next five cards into
the control file.

When the job is run, Batch passes the COMPILE command to the system to
compile the first program, If an error does not occur, the @IF
command is read and the @GOTO command is executed. Batch skips to the
line 1labeled A, which is a comment, and continues reading the control
file. The program LNxxxx.FOR is executed with the data, and the end
of the 3job 1is reached. If an error occurs, Batch skips the @IF
statement and continues reading the control file. The second program
is compiled and then executed with the data. Batch is then told to go
to the line labeled B, which is a comment line. The end of the job
follows. The TOPS-20 @EXECUTE command was used in this job rather
than the S$EXECUTE card. The S$EXECUTE card would have caused the names
of both programs to be included in the @EXECUTE command which would
have resulted in an error when the job was run.

The examples shown above illustrate only two ways that you can specify
error recovery in the control file. You can use the @BACKTO command

or any system command that you choose to help you recover from errors
in your job.

However, you do not have to attempt to recover from errors while your
job is running. You can correct your errors according to the error
messages in the log file when your job is returned to you, and then
run your job again.

3-31

CHAPTER 4

INTERPRETING YOUR PRINTED OUTPUT

You can receive three kinds of printed output from your Batch jobs:
1. Output that you request, i.e., the results of your job.
2, Output from Batch commands, i.e., the log file.

3. Output that is the result of actions by your job, Batch, the
system, or system programs; examples of this output are
compilation listings, cross-reference 1listings, and error
messages.

4.1 OUTPUT FROM YOUR JOB

If your job uses the PRINT command to print files on the line printer,
the files will be printed in listings separate from the log file. The
printed output from each program will be preceded by two banner pages
containing your user name and other pertinent information. Following
these pages are two header pages that contain the name of your output
file in block letters; the output follows these header pages. Two
trailer pages follow your output; they contain the same information
that is on the first two pages. The header and trailer pages also
include three rows of numbers (read vertically from 001 to 132) that
represent the character print positions on the line printer.

If your output is usually directed to the terminal, it will be printed
in the 1log file, not as a separate file. In the sample output shown
in Section 4.4, the output from the program is included in the 1log
file because it was directed to the terminal rather than the line
printer.

Although this chapter deals mainly with printed output, you can have
output to any device that the installation supports, as long as the
installation allows you to use these devices.

4.2 BATCH OUTPUT

The output from Batch consists of a log file that contains all the
statements in the control file, commands sent to the system from Batch
for you, and the replies to the commands from the system and from
system programs like the compilers. Any error message sent from the
system or system program or from Batch itself is also written in the
log file.

INTERPRETING YOUR PRINTED OUTPUT

When your Batch card job is printed on the line printer, it will have
a unique filename of JBxxxx and a file type of .LOG. This file is
deleted automatically after it has printed.

4.3 OTHER PRINTED OUTPUT

Other output that you can get as a result of action by vyour job
includes compiler listings, cross-reference listings, and loader maps
for programs that were successfully loaded.

The compiler and cross-reference listings are those listings generated
by the compiler if you request them. When you enter your job from
cards, Batch requests compilation listing for you unless you specify
otherwise. Cross-reference listings are generated for you only if you
specifically ask Batch for them. When you enter your Jjob from a
terminal, you must reqguest the listings in the COMPILE command. Refer
to the Batch Reference Manual for the switches (/CREF, /MAP) that are
available to generate additional listings for your Batch job process.

If a fatal error occurs in a program in your Jjob and you have not
included an error recovery command to Batch, Batch will not try to
recover from the error for you. Instead, it will write the error
message in the log file and terminate your job.

4.4 SAMPLE BATCH OUTPUT

Two sample jobs and their output are shown in the following sections.
The first shows a job entered from a terminal, the second shows a job
entered from cards. The log file is somewhat different for the two
types of jobs.

4.4.1 Sample Output of a Job from a Terminal

The following example illustrates a job as it would be entered from a
terminal. You would first create the program as a file on disk.

C=)

@CREATE (FILE) COROL1.CBLCe)

Ineput? COBOL1.CBL.1

00100 IDENTIFICATION DIVISION. D

00200 FROGRAM-ID. COBOL1.CeED)

00300 ENVIRONMENT DIVISION (reD)

00400 DATA DIVISION. (D)

00500 FROCEDURE DIVISION.GeD)

00600 START.GD)

00700 DISPLAY °*THIS IS TO SHOW SAMFLE OUTPUT FROM BATCH.® .G
00800 DISFLAY °THESE TWO LINES ARE OUTPUT FROM THE FPROGRAM.®.G)
00900 STOF RUN.GED

01000 ;

)
XEGED

CCOBROL1.CBL.11]
e

INTERPRETING YOUR PRINTED OUTPUT

Then you would make up a control file to compile and execute the COBOL
program.

>

@CREA#’E (FILE) MYJOR.CTLCrer)

InFut?! MYJOR.CTL.1

00100 @COMFILE COROL1.CEL/LISTCD)
00200 REXECUTE COROL1.CEBLCxrD)

00300 $

*E
[MYJOR.CTL.113
@

You would then submit the job to Batch using the SUBMIT command.

)

}
@SUBMIT (BATCH JOB) MYJOB,CTL(RED)
CINPIMYJOE=/Seat4453/Timet0:05:001
@

When the job is run, the program is compiled and a listing is
produced. The following 1listing is placed in the queue of the
line-printer spooler:

PROGRAM COBOL COBOL#68 12(526) BIS SeAPRe78 14142
COROL1,CBL O0SwAPReyS 14352

0001 00100 IDENTIFICATION DIVISION,

0002 00200 PRUGRAMeID, MYPROG,

0003 00300 ENVIRONMENT DIVISION,

0004 00400 DATA DIVISION,

0008 00500 PROCEDURE DIVISION,

0006 00600 START,

0007 00700 DISPLAY "THIS IS TO SHOW SAMPLE QUTPUT FROM BATCH,",
0008 00800 DISPLAY "THESE TWO LINES ARE QUTPUT FROM THE PROGRAM,",
0009 00900 STOP RUN,

NO ERRORS DETECTED

The log file below is printed as your job's output. The output from
the program is written in the log file because- it is output to the
terminal and the log file simulates the terminal dialogue. The 1log
file also contains some commands that Batch sent to the system for you
and some additional system information. An annotated 1log file is
shown on the following page. Note that each line in the log file is
preceded by the time of day when the line was written. Following the
time is a word that describes what kind of information is on each
line. Much of the information is system information and is described
in detail in the DECSYSTEM-20 (TOPS-20) Batch Reference Manual.

17149109 BAJOB
17149309 BAFIL
17849109 BATIL
17149109 BASUM

17849809 MONTR
17149310 MONTR
17849410 MONTR
17349114 MONTR
17149114 MONTR
17849114 MONTR
178149314 MONTR
17149318 MONTR
17849218 USER
171493532 USER
17149132 USER
17149132 MONTR
17149333 USER
17149344 USER
17149148 USER
17149345 USER
17849148 UBER
17149345 USER
17849345 MONTR
17849348 MONTR
17849147 MONTR
17149147 MONTR
17149349 LPDAT
17149149 LPDAY
17149150 LPMSG
17180308 LPMSG

INTERPRETING YOUR PRINTED OUTPUT

BATCON version 103(3000) running MyJOB sequence 4453 in stream 1§
tnput trom PSICUSEReNAMEDMYJOB,CTL,1

Output to PSI<USEReNAMEXMYJOB,LOG

Job parameters

Times0030%300 uniquesyYeEs RestartiNoO OutputsLoG

SYSTEM 2102 DEVELOPMENT SYSTEM, TOP8e20 Monitor JIA(1473)
CLOGIN USEReNAME 341
Job 6 on TTY22S SeApre?s8 17149113

¢

(CONNECTED TO PSCUSEReNAME>)
OSET TIMESLIMIT 300
eeCOMPILE COBOLY ,CBL/LIST

COBOLS
EXIT

cosoL1 (COBOL),CBL)

eOEXECUTE COBOL1 ,CBL

LINK;
{LNKXCT
THIS IS

Loading
COBOLY Execution)
TO SNOW SAMPLE OUTPUT FROM BATCH,

THESE TWO LINES ARE OUTPUT FROM THE PROGRAM,

EXIT
e*C
MLOGOUT

Killed Job 6, User USEReNAME, Account 341, TTY 22s,
At SeApre?8 17149147, ysed 01013 in 01083)

{LPTL8Y
(LPTSJS
(LPTSTF
(LPTFPF

LPTSPL version 103(2305) yunning on PLPTi, SeApre78)
Searting Job MYJOB, Seq #4453, request created at SeAprels§)
Starting rile P3i<SPOULILPT=226«0«COBOLY ,LET,123)

Finished Printing File PSi<SPOOLILPT®2260eCOBOL],L8T,12)

INTERPRETING YOUR PRINTED OUTPUT

| 4.4.2 Sample Output of a Job on Cards

This example shows a job in which a small COBOL program is compiled
and executed. The card deck is shown in Figure 4-1,
‘ $EOJ
i $EXECUTE
| —1
COBOL source program
$COBOL
[N $PASSWORD password
‘ $JOB user-name
N
Figure 4-1 COBOL Print Program Card Deck
The COBOL program is as follows.
IDENTIFICATION DIVISION.
PROGRAM-ID. COBOLl.
ENVIRONMENT DIVISION,
. DATA DIVISION.
N~— PROCEDURE DIVISION.
START.
DISPLAY "THIS IS TO SHOW S3MPLE OUTPUT FROM BATCH.".
DISPLAY "THESE TWO LINES ARE OUTPUT FROM THE PROGRAM.".
STOP RUN.
When the job is run, the program is compiled and a compilation listing
is produced. The listing is shown below. Note that the compiler puts
sequence numbers on the program even though they were not in the
original program.
N

4-5

;
;

INTERPRETING YOUR PRINTED OUTPUT

PROGRAM COBOL COROLe68 12(526) BIS TeAPRe78 07101
LN2REC ,CBL 07«APRe78 07301

0001 IDENTIFICATION DIVISION,

0002 PROGRAMeID, COBOLY,

0003 ENVIRUNMENT DIVISION,

0004 DATA DIVISION,

0008 PROCEDURE DIVISION,

0006 START,

0007 DISPLAY "THIS 1S TO SHOW SAMPLE OUTPUT FROM BATCH,",
0008 DISPLAY "THESE TWO LINES ARE OUTPUT FROM THE PROGRAM,*,
0009 STOP RUN,

NO ERRQRS DETECTED

After the program is compiled,- it is loaded and executed. The program
in this example does not have output to the line printer. 1Instead its
output is written to a terminal. Because this is a Batch job, the
terminal output is written in the log file. The log file is printed
because the end of the job is reached. The log file contains all the
dialogue between your job and the system and system programs, and some
commands that Batch sent to the system for you. An annotated log file
is shown on the following pages. Note that each line in the log file
is preceded by the time of day when the line was written. Following
the time is a word that describes what kind of information is on each
line. Refer to the DECSYSTEM-20 (TOPS-20) Batch Reference Manual for
a description and definition of these words.

07101346
07301146
07101246
07101147
07101147
07:01347
07101147
07101147
0710147

07601154
07301154
071014%4
07101154

07401134
07101494
07401154
073011%7
07101157
07801197
07101187
07101167
071010867
07302108
07102408
07102308
07102106
07102110
071021114
07102111
07102111
071023118
07102911

07102111
07102111
07102111
07102111
07102811
07102111
07102113
07302343
07102114
07102114
07102114
0710230

STOAT
STCRD
8TCRD
STMSG
STCRD
8TCRD
ST8UM
STSUM
ST8UM

BAJOB
BAFIL
BAFIL
BASUM

MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
USER
USER
USER
MONTR
USER
USER
USER
USER
USER
USER
MONTR

BLABL
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
LPDAT
LPDAT
LPMAG
LpMsG

INTERPRETING YOUR PRINTED OUTPUT

Te=ApPRe=70 SYSTEM 2102 DEVELLOPMENT SYSTEM, TOPS*20 Monitor JA(147%5)
$J0OB USEReNAME /ACCOUNTS34S

sCosotL

File PSILNIREC,CBL Created « 9 Cards Read

SEXECUTE

sEDY

End of Job Encoyntered

14 Cards Read

Bateh Input Reguest Created

BATCON version $03(3000) running JB2ZRED sequence 4303 {n stream |
Inpue from PSICUSEReNAMEDJIB2RED,CTL, !

Output to P8ICUSER«NAMED> JB2RED,LOG,}

Job parameters

Time0090%§00 unique;ygs RestartjiYES Output 1 LUG

.

8YSTEM 2102 DEVELOPMENT SYSTEM, TOPS«20 Moniter 3IA(1479)
PLOGIN USEReNAME 341
Job 38 on TTY221 TeApre?8 07101187

’

[CONNECTED TO P83 <CUSERaNAME>)

OSET TIME=LIMIT 300

¢eCOMPIL /COMP/COB PSILNZREC,CBL/LIST
co8nLr COBOLY [LN2REC,CBL)

EXIT

@OEXECUT /REL PS3LN2REC,REL

LINK; Loading

(LNKxCT COBOLY Execution)

THIS 18 TO SHOW SAMPLE OUTPUT FROM BATCH,
THESE TWO LINES ARE OUTPUT FROM THE PROGRAM,

EXIT
[]
SERR)
SFINg
SDELETE PSJLNIREC,CBL,PS LNZREC,REL
CUSER®NAME>LNZREC,CBL 1 [OK)
CUSEReNAMEDLNZREC ,REL 1 (OK)
[1
eLOGOUT .
Killed Job 38, User USEReNAME, Account 341, TTY 221,
8t TeApre78 07102313, Used 08033 4{n 080815
(LPTL8Y LPTSPL vegrsion 103(2308) punning on PLPTO, 7eApre78]
[LPTSJS Starting Job JBIRED, Seq ¢4301, request created atr 7TeAprely])
(LPTSTF Starting rile PE1<SPOOLYLPT«22600eLN2REC L8T,16)
(LPTFPF Finished printing File p31<3POOLILPT226,0aLNZREC,LET,16)

:
:

CHAPTER 5

EXAMPLES OF COMMON TASKS WITH BATCH

This chapter shows some sample jobs that are run from a terminal and
from cards. Section 5.1 illustrates entering jobs from a terminal.
Section 5.2 shows entering jobs from cards. The examples are the same
in both cases, the difference is in the way that they are entered.

5.1 USING THE TERMINAL TO ENTER JOBS

ALGOL Example

The first job is a simple ALGOL program that writes output to the
terminal. Since the job is being entered through Batch, the output is
written in the log file instead of on an actual terminal.

G

@CREA*E (FILE) MYPROG.ALG D
INPUT? MYPROG.ALG.1

00100 BEGIN(ED)

00200 REAL X3 INTEGER I3
00300 Xi=13Gea)
00400 FOR It= 1 UNTIL 1000 DO X 3= X+I G
00500 FRINT (X)3CreD)
00600 ENDCrD)
00700 ?
D)
*E (reD)
CMYPROG.ALG,. 1]
@

The control file for the program is created as follows.

@CREﬁiE (FILE) MYFILEG)

INPUT: MYFILE..1

00100 @COMFILE MYPROGRAM.ALG/LISTGED)
00200 @EXECUTE MYPROG.ALG(RD)

00300 $

!
XECD
CMYFILE. .13
e

EXAMPLES OF COMMON TASKS WITH BATCH

To execute this ALGOL program using the Batch control file, issue the
SUBMIT command.

GSUBP‘iIT (RATCH JOB) MYFILE.,(&D)

CINPIMYFILE=/SEQR:4067/TIME!Q205:00]
e

When Batch starts the job, the statements in the control file call the
ALGOL compiler to compile the program., The TOPS-20 EXEC then calls
the loader to load the program for execution. A listing of the
program will be printed with the log file shown below.

09159159 BAJOB BATCON vergion 103()000) running MYFILE sequence 4066 in streanm
09159359 BAFIL Input trom PSICUSEReNAMEMMYFILE,,!
09359359 BAFIL DOutpyt to PSICUSEReNAMEMMYFILE,LOG
09159159 BASUM Job parameters
Times0010%300 Unique;YeS RestartiND Outputitue

091591%9 MONTR

10100100 MONTR SYSTEM 2102 DEVELOPMENT SYSTEM, TOPSe20 Monitor 3A(1470)
10100300 MONTR QLOGIN USEReNAME 341

10100104 MONTR Job 40 on TTY226 4wApPrevy8 10500104

10100304 MONTR 8

10800904 MONTR (CONNECTED TO PSj<USEReNAMED)

10300304 MONTR @S8ET TIMESLIMIT 300

1010030% MONTR @8COMPILE MYPROG,ALG/LIST

10300107 USER ALGOL$ MYPROG

102000109 USER

103100109 USER EXIT

10100209 MONTR @SEXECUTE MYPROG,ALG

10300110 USER LINKg Loading

10300318 USER [LNKXCT MYPROG Execution)

10100117 MONTR 1,00100006 3

10100217 MONTR

10100317 MONTR End of execution,

10100417 MONTR @°C

10300317 MONTR @LOGOUT

10300118 MONTR Killed Job 40, User UBLReNAME, Account 343, TTY 226,

10800318 MONTR at ¢=Apre78 10300318, Useds 03011 in 080184

10100321 LpDAT [(LPTLAJ LPTSPL version $103(2305) running on PLPTO, 4e=Apre78)
1030032% LPDAT (LPTSJS Starting Job MYPILE, Seg #4066, request crested at 4eiApre7id)
10100821 LPMSG (LPTSTF Starting File PSI<SPOOLILPTe22600eMYPROG,LET,6)
10100334 LPMSG (LPTFPF Finished Printing File P8 <SPOOLILPTe22640«MYPRUG,LST,6])

5-2

EXAMPLES OF COMMON TASKS WITH BATCH
BASIC+2 Example

The second example is a BASIC program submitted to Batch. You can
make up the program file using BASIC and save it on disk. Then make
up a control file that simulates the dialogue with the BASIC system.
The program is shown below.

@RASICCrer)

READY

NEW D)
NEW PROGRAM NAME--MYBRAS.BAS (&)

READY

00100 INFUT DG

00200 IF DI = 2 THEN 1100GenD) .
00300 PFRINT "X VALUE", "SINE"y "RESOLUTION*CzD)
00400 FOR X=0 TO 3 STEP nCeD)

00500 IF SIN(X)<=M THEN 800(xr)

00600 LET X0=XGer)

00700 LET M=SIN(X))

00800 NEXT XGm)

00900 FPRINT XOsMsD(Re)

01000 GO 10 100CxD)

01100 END G

SAVE Ga)

READY
MONITORCreD)
e

The program requests data from the your terminal when it is running.
You include the data in the control file. For this program, the final
data item must be 2 to conclude the program. The control file
follows.

GO

@CREA‘%’E (FILE) BASIC.CTLGED
Input! BASIC.CTL.1
00100 @RASICGeD)
00200 X0OLD DSK:MYEAS.RAS(R)
00300 ¥RUNCED
00400 ¥, 1CD)
00500 x.01(Re)
00600 *.001CD)
00700 x2(xD)
00800 xMONITORCED
00900 ?
s
XE Crer)

CBASIC.CTL.11]
e

R —

EXAMPLES OF COMMON TASKS WITH BATCH

The output from the program will be printed as part of the control

file 1listing. The command to submit the job to i
follows. J Batch is executed as

G

|
@SUEMIT (BATCH JOB) BASIC.CTLGE)
CINPIBASIC=/Sea!2972/Timet0$05:00]
@

00149129 BAJOB BATCON version 103(3000) running BASIC sequence 2907 in stream 1
08149129 BAFIL Input from PS§<CUSCReNAMEMBASIC,CTL,!
08149129 BAFIL Outpyt to PSICUSEReNAMERASIC,LOG
00149329 BASUM Job parameters
Time300308100 uniqueryrs RegtartiNog OutputiLoG

08149129 MONTR
00149930 MONTR SYSTEM 2102 DEVELOPMENT SYSTEM, TOPS=20 Monitor IA(147%)
08349131 MONTR O@LOGIN USEReNAME 341
00149134 MONTR Job 30 on TTY230 SeApre78 08149334
H 08149334 MONTR ¢
H 08149134 MONTR (CONNECTED TO P8 <USEReNAME>]
2 08149334 MONTR #SET TIMESLIMIT 300
i 08149935 MONTR @8BAgIC
H 081499137 USER ¢ CAN’T TRAP CONTROL C, USE CONTROL A INSTEAD
; 00149138 USER
: 00149138 USER READY
08149136 USER OLD pSKIMYBAS,820
08149342 USER
08149142 USER READY
08149342 USER RUN
5 08149142 USER
§ 00149142 USER MYBAS,B20
: 00149142 USER Wednesday, Apriy S, 1979 00149142
00149342 USER
08149143 USER & CAN®'T TRAP CONTROL C, USE CONTROL A INSTEAD
08149144 USER ? .1

08149344 USER 1
00149144 USER X VALUE SINE RESOLUTION
08149144 USER 146 0,9995736 0.1

00149344 USER 7 ,01

00149144 USER L0y

08149148 USER X VALUE SINC RESOLUTION
00149145 USER 1,57 0,9999997 0,01
00149148 USER T ,001

00149146 USER 001

00149146 USER X VALUE SINE RESOLUTION
08149146 USER 1,571002 1 0,001
00149146 USER T2

00149046 USER 2

08149346 USER

00349246 UBER ;

08149346 USER RUNTIME; 0,676 SECS CLAPSED TIMEg 0100104
08149346 USER

08149146 USER READY

00149146 USER MONITOR

08149347 MONTR 0°C

08349147 MONTR @LOGOUT

00149133 MONTR Killed Job 30, User USEReNAME, ACcount 341, TTY 230,

08149953 MONTR at SeApre78 08149153, Used 01091 {n 030319

00856113 LPDAT (LPTLS8J LPTSPL version 103(2303) punning on PLPTY{, SeApre78)
08156113 LPDAT (LPTSJS Starting Job BASIC, Seq #2907, request created at SeApre7§)

EXAMPLES OF COMMON TASKS WITH BATCH
FORTRAN Example

The third example is a FORTRAN program that prints output on the 1line
printer. You want to tell Batch in the control file to delete your
relocatable binary file if an error occurs when your program is
executed. If an error does not occur, you want Batch to save your
relocatable binary file as it normally would. The program is shown
below.

|
@CREATE (FILE) MYFROG.FORCre)
InrFut?! MYFROG.FOR.1

00100 C THIS PROGRAM CALCULATES FRIME NUMRERS.GD)
00200 DO 10 I =11+50y2)
00300 J=1GE)
00400 4 J=J+2Cren)
00500 a=J Gen)
00600 A=I/a (D)
00700 L=I/JCReD)
00800 B=A-L Crer)
00900 IF (B) S5910y5CED)
01000 5 IF (J.LT.S@RT(FLOAT(I))) GO TO 4D
01100 FRINT 1055 ICReD)
01200 10 CONTINUE D)
01300 105 FORMAT (I4s ‘IS FRIME.’ X®D
01400 ENDCrD)
01500 ?
GO
*ECrer)
CMYPROG.FOR.13]
@

EXAMPLES OF COMMON TASKS WITH BATCH

You create the control file to compile and execute this program,
deleting the relocatable binary file if there is an execution error as
follows.

«D)

{
@CREATE (FILE) MYFOR.CTLCRD)
InPut? MYFOR.CTL.1
00100 @COMPILE MYFROG.FORGE)
00200 PEXECUTE MYPROG.REL Gur)
00300 RIF(ERROR) @UELETE MYFROG.FORGe)
00400 END!:IEND OF JORCED)
00500 ?

D)

¥ECeD)
[MYFOR.CTL.13
@

You submit this job for execution as follows.

€D)

|

@SUBMIT (BATCH JOE) MYFOR.CTLCRD)
CINFIMYFOR=/Sea!2978/Timet0:05:001

e

The program output is as follows.

11
13
\7
19
23
29
n
37
43
43
47

18
I8
18
18
I8
1s
I8
I8
18
18
1s

PRIME,
PRIME,
PRIME

PRINME,
PRIME,
PRIME,
PRIME,
PRIME,
PRIME,
PRIME,
PRIME,

|
E
;
:
;
!

The log file

15141408
15341308
15341408
15141908

18341308
15141009
15141109
19341113
1S141113
1534131)
19341813
15841918
19841122
151411286
19341130
19141131
193413133
15241238
15341038
18341335
153413238
19541238
15141138
19141238
18141138

15141339
19341939
19141137
1S40 M7
19157137
18157137
15157137
18157431

BaJOB
BAFIL
RAFIL
BASUM

MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
USER
USER
MONTR
USEP
USER
USER
USER
USER
USER
MONTR
TRUE
BATCH
BLABL

MONTR
MONTR
MONTR
MONTR
LPDAT
LPDAT
LPMSG
LpMSG

EXAMPLES OF COMMON TASKS WITH BATCH

produced by the job is as follows.

BATCQN version 103(3000) running MYFOR sequence 4422 in sgtream 2
Input ¢rom PSICUSER=NAMEIMYFOR,CTL,2

OUTPYT TO PSI<CUSFReNAMEIMYFOR LOG

Job parameters

Time 00205300 Uniquesyes RegtartiNO DutputiL0G

SYSTEM 2102 DEVELOPMENT SYSTEM, TOoPSe30 Monjitor JA(147Y%)
CLOGIN USEReNAME 341

Job 61 on TTY226 S=Apre78 15141113

L]

[CONNECTED TO PSt<USEReNAME>)
OSET TIMELIMIT 3100
@8COMPILE MYPROG,FOR

FORTRAN] MYPROG

MAIN,

POEXECUTE MYPROG,REL

LINK; Loading

{LNKXCT MYPROG Execution)

END oF EXECUTION

CPU TIMES 0,11 ELAPSED TIME: 0,90
EXIT

’

#IF (NOERROR)

&GOTo END

END1

{END OF JOB

Y

eLoGoUT
Killed Job 61, User USERSNAME, Account 341, TTY 226,

at SeApre?9 153141137, Used 01032 in 01012)
(LPTL8J) LPTSPL version 103(2308) punning on PLPTO, SeApre=78)
[LPTSJS Starting Job MYFOR, 8eq #4420, request created at SeApre78)
(LPTSTF Starting File P8i1<3POOLOLPTe|64w0eFORLPT DAT,3)
(LpTrpr Finished printing Flle psi<3pOOLILPTeL6400"FORLPTDAT, 3]

EXAMPLES OF COMMON TASKS WITH BATCH
COBOL Example

The fourth example is a COBOL program that writes record output on a
magnetic tape. To have a tape drive assigned and your magnetic tape
mounted on it, you must make a request to the operator. Since you do
not know which drive will be assigned to your job, you must assign it
in your job with a logical device name. The TMOUNT command assigns
the drive to your job and associates the logical name that you specify
with the physical drive assigned. The TMOUNT command also informs the
operator of the name or ID number that identifies the particular tape
you want mounted. (Your tape should be given to the operator or
stored at the central site before you submit your job.) You create
the program as follows.

@CREA*E (FILE) MYPROG.CBL(=1D)

InFut? MYPROG.CEL.1

00100 IDENTIFICATION DIVISION.Cr)

00200 ENVIRONMENT DIVISION.Ge)

00300 INPUT-OUTPUT SECTION.C:D)

00400 FILE-CONTROL (=)

00500 SELECT OUTFIL ASSIGN TPDRIV.(=))
00600 DATA DIVISION.Ge)

00700 FILE SECTION.Cmrn)

00800 FD OUTFIL LAREL RECORDS ARE STANDARD

00900 VALUE OF IDENTIFICATION IS "INFIL DAT*Gen)
01000 DATA RECORD IS OUTREC
01100 . BLOCK CONTAINS 20 RECORDS .(&0)

01200 01 OUTREC PIC X(80) .1

01300 WORKING-STORAGE SECTION.G)
01400 77 A PIC 9999 USAGE IS COMF.Ge)
01500 FROCEDURE DIVISION.Crer)

01600 START.(eD)

01700 OPEN OUTPUT OUTFIL.GeD)
01800 MOVE ZEROQS TO OUTREC (D)
01900 MOVE 1000 TO A« mr) ‘
02000 Loor,(CxeD)
02100 WRITE OUTREC (&)
02200 SUBTRACT 1 FROM A0
02300 IF A IS GREATER THAN ZERO GO TO LOOP .)
02400 CLOSE OUTFIL. (D)
02500 STOF RUN.GeD)
02600 ?

GO
XE Crer)
CMYPROG.CEL.13
@

5-8

You create

EXAMPLES OF COMMON TASKS WITH BATCH

the control file (COBJOB)

(PROG1.CBL) as follows.

Cesc)
@CREA*‘E (FILE) CcORJORCRD)
Inrput?! COBJOR..1
00100 @TMOUNT TFORIVIMAGL ()
00200 ECWRITE-ENABLEDRCxD

00300
00400
00500
00600
00700
00800

¥E (rer

eCer)

@COMFILE MYPROG.CEL/LISTCR)
PEXECUTE MYFROG.CELG)
RUNLOAD TFDRIV: Ger)
@DEASSIGN TPDORIV:CeED)

$

1

=

CCORJOB, .11

e

used

You submit the job for execution as follows.

)
@SUBMIT (BATCH JOR) CORJOE. .CRr)
CINP{CORJOB=/Sec!2981/Timel0305:001

e

5-9

to

run

the

program

EXAMPLES OF COMMON TASKS WITH BATCH

The log file produced by COBJOB is shown below.

073129138
07129130
0731293390
07129138

07829130
07129138
07329138
07129844
07129144
071293414
07129341
071291414
07129142
07129142
07129142
07129142
07130367
07130467
07330159
07931109
07831408
071311098
07131106
07131110
07131812
07131312
07131112
07331112
0713111}
07131813
07131114
07331814
07131318
07131818
071231116
07331330

BAJOB
BAFIL
BAFIL
BASUM

MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
USER

USER

USER

MONTR
USER

USER

-USER

USER

MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
LPDAT
LPDAT
LpMSG
LPMSG

BATCQN version 103(3000) running CoBJOB sequence 4317 in streanm |
Input grom PS1CUSEReNAMEXCOBJOB, ,1

Outpyt to P81<USEReNAME>COBJOB,LOG

Job parameters

Timey0030%5:00 Uniquesye3 RestartyNO OutputiLoG

SYSTEN 2102 DEVELOPMENT SYSTEM, TOP8*20 Monitor JA(1475)
PLOGIN USTReNAME 141
Job 42 on TTY23§ TeApre78 0712914]

(CONNECTED TO PS3<USEReNAME>)
OSET TIMESLIMIT 300

OOTMQUNT TPDRIVIMAGY,
SOSWRITESENABLED

(Operator notified)
{MTA3L assigned)
08COMPILE MYPROG,CBL/LIST

coBoLs
EXIT

MAIN [MYPROG,C8L] '

@SEXECUTE MYPROG,CBL

LINKy

Loading

(LNKXCT MYPROG Execution)

EXIT

@PUNLOAD TPDRIVy
SODEASSIGN TPDRIV:

ecc
$1.0GoUT

Killed Job 42, User USEReNAME, ACcount 343, TTY 221,
at TeAPre78 07131114, Used 01024 (n 021133

{LPTLSY
[LPTSJS
(LPTSTF
(LPTFPF

LPTSPL version 103(2308) punning on PLPTO, 7eApre=78)
Starting Job COBJOB, Seq #4317, request created at 7eApre74]
Starting File PSi<SPOOLYLPTeS«0aMYPROG,LST,23)

Finished Printing File PS;<3POOL>LPTe3e0«NYPROG,LSET,23)

5-10

EXAMPLES OF COMMON TASKS WITH BATCH

5.2 USING CARDS TO ENTER JOBS

ALGOL Example

.

The first job is a simple ALGOL program that writes its output into
the log file because it has statements that would cause it normally to
write to the terminal. The program is as follows.

BEGIN
REAL X;INTEGER I;
X :=1;

FOR I :=1 UNTIL 1000 DO X :=X+I;
PRINT (X);
‘END

The cards to enter this program are shown in Figure 5-1.

$EOJ

SEXECUTE

ALGOL source program

$ALGOL/NOLIST

$PASSWORD password

$JOB user-name

Figure 5-1 ALGOL Job Entry Card Deck

The output, including the log file, is shown on the following page.

5-11

2
E
§
i
:
:
:
¥
§

07102327
07102427
07102327
07302427

07102327
07102127
n7102¢28
07102131
07302331
0710233%
07102131
07102331
07102132
n7302333
07302333
07102133
07102134
07102336
07102137
071023137
07102337
073102437

07102337
07102137
07102137
n702137
07302337
nN1e2137
07102138
07102338
07102139
N7102139

BAJOB
BAFIL
BAFIL
BATSUM

MONTR
MONTR
MONTR
MONTR
MONTR
MANTR
MONTR
MONTR
USER

USER

USER

MONTR
USER

USER

MONTR
MONTR
MONTR
MONTR

HLABL
MANTR
MONTR
MANTR
MONTR
MANTR
MONTR
MONTR
LPDAT
LPDAT

EXAMPLES OF COMMON TASKS WITH BATCH

BATCoN Version 103(3000) running JR2REB gequence 4302 in stream
Inpug from PSICUSEReNAME>JB2REB ,CTL, 1

Outpyt t0 PSICUSEReNAME> JBIRFB,LNG 1

JOb parameters

Timey00¢0%g00 uniquelyes Restartiyes OutputiLOG

SYSTEM 2102 DEVELOPMENT SYSTEM: TOPSe20 Monitor 3IA(1475)
BLNGIN USEReNAME 341

Job 38 on TTY221 7eAprey8 07102114

(]

[CONNECTED TO PSi<USEReNAMED>])

#SET TIMESLIMIT 300

GACOMPIL /COMP/ALG PSILN2REA ALG

ALGOLE LN2REA

EXIT

PREXECUT /REL PSiLN2REA REL

LINK; Loading

[LNKXCT LN2PEA Execution)
1,0010000¢ 3

End of execution,
(]
SERR ¢
SV iINgs
ADELETE PSSLN2REAALG,PS3LN2REA,REL
CUSEReNAME>LNZREA,ALG,] (OK]
CUSERWNAMESLN2REA REL,1 (0K}
e c
LAGOUT
Killed Job 38, User USEReNAME, Account 341, TTY 221,
at TeApre78 07102338, Used 03031 in 01087
(LPTL8J LPTSPL version 103(230%5) prunning on PLPTi, 7TeAPRe7§)
{LPTSJS Starting Job JB2REB, 8eq #4302, request ereated at 7eApre7s§)

5-12

EXAMPLES OF COMMON TASKS WITH BATCH

BASIC+2 Example

The next example shows how to enter a BASIC program. You must precede
the program commands with a SCREATE card so that the program will be
copied into a file on disk. No $DATA card can be used because BASIC
does not use the EXECUTE command and because the data is entered by
means of the control file: the program requests data when it |is
running; it finds the data in the control file. For this program the
final data item in the control file must be 2 so that the program can
be concluded. The program is shown below.

5 INPUT D

10 IF D=2 THEN 100

20 PRINT "X VALUE", "SINE", "RESOLUTION"
30 FOR X=0 TO 3 STEP D
40 IF SIN(X)=M THEN 80
50 LET X0=X

60 LET M=SIN (X)

70 NEXT X

80 PRINT XO,M,D

90 GO TO 5

100 END

The cards to enter the program and run it are shown in Figure 5-2,

5-13

E
K
!

EXAMPLES OF COMMON TASKS WITH BATCH

/s?OJ

("MONITOR

"1

"RUN

*OLD MYBAS. B20

*QUIET WARM

@BASIC

$TOPS20

BASIC source program

$CREATE MYBAS. B20

$PASSWORD password -

$JOB user-name

1

Figure 5-2 BASIC Job Entry and Run Card Deck

5-14

EXAMPLES OF COMMON TASKS WITH BATCH

The output from the program will be printed in the log file because it
would normally be printed on the terminal. The log file is shown
below. ‘

10105152 STDAT 7eAPRe?78 SYSTEM 2102 DEVELOPMENT SYSTEM 0
10105152 S3TCRD $JOB USEReNAME IACCOUNTlECl TOTEY TURASIR Menilar SAtIATNE
:gtg:n:i srﬁno SCREATE MYBAS,B20
1051 STM8G Flle PSIMYBAS,P20 Creat . 1}
10105954 STCRD $TOP320 e aced ¢} Ranly Reag
10305358 STCRD $E0OJ
10905158 STSUM End of Job Encountered
10205138 STSUM 25 Cards Read
10105353 STSUM Batech Input Request Created

10115940 BAJOB BATCON version 103(3000) running JB2RDW gequence 4355 {n streanm |
10113540 BAFIL Input grom PSICUSEReNAME>IB2RDW,CTL,!
10315340 BAFIL Outpyt to P81 <USEReNAME> JB2RDW,LOG, 1
10115440 BASUM Job parameters
Time; 00908300 Uniquesyes RestaprtiYES QutputiLOG

10115140 MONTR

10815340 MONTR SYSTEM 2102 DEVELOPMENT SYSTEM, TOPS»20 Moniter 3JA(147%)
108195141 MONTR OLOGIN USEReNAME 341

10115344 MONTR Job 34 on TTY230 7eApre78 10115344

0215144 MONTR ¢

10815544 MONTR [CONNECTED TO PS§<CUSEReNANED)

10119344 MONTR @BET TIMESLIMIT 300

10015344 MONTR @@BASIC

10315948 USER # CAN'T TRAP CONTROL C, UBE CONTROL A INSTEAD
108195348 USER ® CAN’T TRAP CONTROL C, ySE CONTROL A INSTEAD
10115146 USER

108195346 USER READY

10319246 USER SQUIET WARN

10115346 USER

103115146 UBER READY

1011%946 USER ¢OLD MYBAS,B20

10815146 USER

10315147 USER READY

10315347 USER SRUN

10015148 USER

10315040 USER MYBAS,B20

10815040 USER Friday, April 7, 1978 10415147

10115148 USER

10815148 USER ® CAN°T TRAP CONTROL C, USE CONTROL A INSTEAD
10115349 USER ?

10115149 USER o,

10115149 USER X VALUE SINE RESOLUTION

10115149 USER 0 0 0ol

10115149 USER ?

10315149 USER ®,01 .

10019149 USER X VALUE SINE RESOLUTION

10115149 USER 0 0 0,014

10815149 USER ?

10915149 USER #,00%

10519349 USER X VALUE SINE RESOLUTION

10115349 USER 0 0 0,004

10115149 USER ?

10115149 USER 2

10415349 USER

10115949 USER RUNTIME; 0,444 SECS ELAPSED TIMEs 0300101
10819149 USER '

10115149 USER READY

10118149 USER
10115249 USER #MONITOR
108153150 MONTR

SERRy ¢
BTNECF End of the Contre) File vhile searching for SFrIN

10115150 MONTR °C

10315390 MONTR @LOGQUT

103315995 MONTR K{illed Job 34, Uger USEReNAME, Account 341, TTY 230,

10119159 MONTR at TJeApre7’8 10115855, Used 03031 in 0O1U$11Y

10116400 LPDAT (LPTLSJ LPTSPL version 103¢230%) punntng on PLPTi, 7eApre?le)
10116100 LPDAT [ULPTSJS Starting Job JB2RDW, Seq #4355, request ecreated at 7TeApre7§)

5-15

EXAMPLES OF COMMON TASKS WITH BATCH
FORTRAN Example

The third example shows a FORTRAN program that prints output on the
line printer. 1In the control file, you want to tell Batch to prevent
execution if the program compiles incorrectly.

C THIS PROGRAM CALCULATES PRIME NUMBERS FROM 11 TO 50.
Do 10 1=11,50,2
J=1
4 J=J+2
A=J
A=I/A
L=1/3J
B=A-L
IF (B) 5,10,5
5 IF (J.LT.SQRT(FLOAT(I))) GO TO 4
PRINT 105,I
10 CONTINUE
105 FORMAT (I4, 'IS PRIME.')
END

The cards used to enter this program are shown in Figure 5-3.

$EOJ

END::! END OF JOB

$TOPS20

$EXECUTE

$ERROR @GOTO END

FORTRAN source program

$FORTRAN

$PASSWORD password

$JOB user-name

Figure 5-3 FORTRAN Card Deck That Prevents Execution
on Error

5-16

|
E
]

E
s

Batch puts the following commands into the

EXAMPLES OF COMMON TASKS WITH BATCH

the cards you entered.

@COMPILE LNxxxx.FOR/COMPILE/LIST
@IF (ERROR) @GOTO END

QEXECUTE

END:: IEND OF JOB

Program output is as follows.

11
13
17
19
23
29
£ 3
»
41
43
47

PRIME,
PRIME,
PRIME,
PRIME,
PRIME,
PRIME,
PRIME,
PRIME,
PRIME,
PRIME,
PRIME,

control file as a result of

The log file produced by the job is on the following page.

AR NS LT T TR S

073101353
071013933
07101153
07101158
07101459
071011988
0710158
07101155
071011535%
073014389
07101385

07303321
07303321
0710328
073103321

07303121
nN7303121
07303121
07103124
07103324
07103324
07103124
07103124
07103126
nN73103129
07103130
07103330
073503130
07103130
N73103:31
0710333
07303334
07103134
07103834
07103334
07103134
07103134

07103334
07103134
07103334
07103134
07103134
07103338
07103338
07303338
07103336
07103336
07103337
07103180
0710315}
07104302

STDAT
STCRD
STCRD
8TMSG
STCRD
STCRD
STCRD
STCRD
STSUM
STSUM
STSUM

Bagos
BAFIL
BAFIL
BASUM

MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
USER
USER
MONTR
FALSE
MONTR
MONTR
USER
USER
USER
USER
USER
USER
MONTR
BLABL

BLABL
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
LPDAT
LPDAT
LPMSG
LPMSG
LPMSG
LPMSG

EXAMPLES OF COMMON TASKS WITH BATCH

TeAPRe78 SYSTEM DEVELOPMENT SYSTEM, TOPS«20 Moniter 3A(147%)
$JNR USERSNAME /ACCOUNTI 341}

S¥ORTRAN/LIST

File PSILNZRET,FOR Created « 14 Cards Read
SERRQR AGOTO END

$TXECUTE

$TOPS20

[1 AsN]

End of Job Encountered

22 Cards Read

Rateh Input ReqQuest Creaged

BATCON version 103(3000) running JR2RES geguence 4304 in ggream |
Inpue from PSICUSEReNAMEDJBIRES ,CTL,!

Outpyt to PS1CUSEReNAMEXJB2RES , LNG,1

JOb parameters

Time3 00305100 Uni{quesYES RestartsYES outputLOG

SYSTEM 2102 DEVELOPMENT SYSTEM, TOPS=20 Monitor 3A(1475)
PLOGIN USEReNAME 341

Job 38 on TTY221 7=Apre78 07103124

’

{CONNECTED TO PS3j<USEReNAME>)

@B8ET TIMESLIMIT 300

88COMPIL /COMP/FOR PSILN2RE7 ,FOR/LIST
FORTRAN) LN2RE?

MIIN'

[]

SIF(ERROR) 8GOTO END
®EXECUT /REL PS§LN2RE? REL
EXECUT /REL PSILN2RE7,REL
LINK; Loading

[{LNXXCT LN2RE7 Execution)

END OF EXECUTION
CPU TIME! 0,10 ELAPSED TIME; 0,88
EXIT ’

(]
END1g
JEND OF JOB
SERR})
SFINgs
ODELETE PSILN2RE? ,FOR,PS LNZRE7 ,REL
CUSEReNAMESLNZRE? ,FOR,§ (OK)
:USQI-NANE)LNQRE1.HEL.1 {0K)
e°C
0LOGOUT
Killed Jod 30, User USEReNAME, Account 341, TTY 221,
at TeAPre78 07803135, Ugsed 03032 in 030380
(LPTLSY LPTSPL version 103(2303) punning on PLPTO, 7=Apre78)
(LPTSJS Starting Job JB2RES, Seq #4304, request created at T7TeApre74)
{LPTSTF Starting File P81<SPOOLOLPT=226e0=LN2REY,,17)
(LPTFPF Finished Printing File PS1<SPOOLILPT®22600°LN2REY ,417)
(LPTSTF Starting File PSICSPOOLPLPTe22600«FORLPT DAT,18)
[(LPTFPF Finished Printing rile PS;<SPONLOLPT®226e09FORLFT,DAT,18)

5-18

EXAMPLES OF COMMON TASKS WITH BATCH

~ COBOL Example

The fourth example is a COBOL program that writes record output on a
magnetic tape. To have a tape drive assigned and your magnetic tape
mounted on it, you must make a request to the operator. Since you do
not know which drive will be assigned to your job, you must assign it
in your job with a logical device name. The TMOUNT command assigns
the drive to your job and associates the logical name that you specify
with the physical drive assigned. The TMOUNT command also informs the
operator of the name or ID number that identifies the particular tape
you want mounted. (Your tape should be given to the operator or
stored at the central site before you submit your job.) The program
is as follows.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT OUTFIL ASSIGN TPDRIV.

DATA DIVISION.

FILE SECTION,

FD OUTFIL LABEL RECORDS ARE STANDARD
VALUE OF IDENTIFICATION IS "INFIL DAT"
DATA RECORD IS OUTREC
BLOCK CONTAINS 20 RECORDS.

01 OUTREC PIC X(80).

WORKING-STORAGE SECTION.

77 A PIC 9999 USAGE IS COMP.

PROCEDURE DIVISION.

START.

OPEN OUTPUT OUTFIL.
MOVE ZEROS TO OUTREC.,
MOVE 1000 TO A.
LOOP.
WRITE OUTREC.
SUBTRACT 1 FROM A.
IF A IS GREATER THAN ZERO GO TO LOOP.
CLOSE OUTFIL.
STOP RUN.

The cards to enter this job are shown in Figure 5-4,

5-19

EXAMPLES OF COMMON TASKS WITH BATCH

($E0J

@DEASSIGN TPDRIV:

@UNLOAD TPDRIV:

$TOPS20

$EXECUTE

COBOL source program

$cosoL

@

@WRITE-ENABLED

@TMOUNT TPDRIV: MAGT,

$TOPS20

$PASSWORD password

$JOB USER-NAME

Figure 5-4 COBOL Program Card Deck Using Data From Magnetic Tape

Batch puts the following commands into the control file for you.

: Q@TMOUNT TPDRIV:MAGI1,

: @WRITE-ENABLED

' @

@COMPILE/COMP/COB DSK:LNxxxx.REL
@EXECUTE/REL DSK:LNxxxx.REL
@QUNLOAD TPDRIV:

@DEASSIGN TPDRIV:

07124106
07324106
07324106
07124106

07124406
07124306
07124106
07124109
07124109
07124209
07124409
07124110
07324110
07124210
07324110
07324110
07124432
07124133
07124134
07124140
07124340
07124140
071241414
07824145
07124149
07324148
0712448
07124148
07324148

07124148
07124148
071241498
071241348
07124048
07124149
07124150
07124150
07124151
071324151
07124151
07328307

BAJOB
BAFIL
BAFIL
BASUM

MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
USEP

USER

USER

MONTR
USER

USER

USER

USER

MONTR
MONTR
MONTR

BLABL
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
LPDAT
LPDAT
LpMSG
LPMSG

EXAMPLES OF COMMON TASKS WITH BATCH

BATCON version 103(3000) running JB2REO gegquence 4315 in stream
Input from PSICUSER=NAMEYJB2REOC,CTL,!

Output to PSICUSEReNAMEJIB2RED,LOG,!

JOob parameters

Time3 00108300 uniquesyes RestartiYES OutputylLOG

SYSTEM 2102 DEVELOPMENT SYSTEM, TOPS=20 Monitor 3A(147%)
SLOGIN USEReNAME 341

Job 42 on TTY221 7TeAprevd 07124109

()

{CONNECTED TO PSi<USBEReNAMED)

@BET TIMEeLIMIT 300

@OTMOUNT TPDRIVIMAGY,

SPAWRITEENABLED

(11}

{Operator notified)

(MTA3) assigned)

#0COMPIL /COMP/CO8 PSILN2RDZ,CBL/LIST
COBOLt MAIN (LN2RDZ,CBL)

EXIT ,

0OEXECUT /REL PSILN2RDZ,REL
LINK} Loading

[LNKXCT LN2RDZ Execution)

EXIT
SOUNLOAD TPDRIV)
GODEASSIGN TPDRIVY
[]
SERR;
SFINgs
®DELETE PSILN2RDZ,CBL,PS;LN2RDZ REL
CUSEReNAME>LN2RDZ,CBL,t (0K}
:USER-NAME)LNZRDZ.REL.i {oK)
e°C
aLNGouUT
Killed Job 42, User USEReNAME, AcColunt 341, TTY 221,
at 7TeApre78 07124150, Used 03034 {n 010340
(LPTL8J LPTSPL varsion 103(2305) punning on PLPTO0, 7eApre7s)
[LPTSJS Starting Job JB2REQ, Seq #4313, request created at 7eApre7y)
(LPTSTF Starting File PsI<SPOOLILPTe226+0eLN2RDZ LST,22)
[LPTyPFr Finished Printing rile PS;<SPOOL>LPT»22690=LN2RDZ,L8T,22)

wn
1

21

5
X

s

o o e Ak L0 {5 ek A

! character, 2-3, 3-2
$ character, 3-2
* character, 2-3, 3-2
~ character, 3-2, 3-4
: character, 3-4
= character, 2-3
@ character, 2-3, 3-2

$-language card, 3-1, 3-7,
3-8

$-language card examples,
3-9

$-language card /switches,
3-8

/AFTER switch, 2-5, 3-3,
3-5

ALGOL, Glossary-1

$ALGOL, 3-7, 3-8

ALGOL batch log file, 5-2,

5-12
ALGOL card-input example,
5-11, 5-12

ALGOL example, 3-14, 3-15

ALGOL terminal example, 5-1,
5-2

Alphanumeric, Glossary-1l

ASCII Code, Glossary-1

Assemble, Glossary-1

Assembly Language, Glossary-1

Assembly Listing, Glossary-1

@BACKTO command, 2-11

@BACKTO label, 2-11

BASIC, Glossary-1

BASIC batch process, 3-23

BASIC program, 3-23

BASIC program in batch,
3-24,. 3-25

BASIC+2 batch log file, 5-4,
-5=15,

BASIC+2 card-input example,
5-13, 5-14, 5-15
BASIC+2 terminal example,

5-3, 5-4
Batch,

BASIC program in, 3-24,
3-25

common tasks with, 5-1

how to use, 1-2

summary of, 1-3

using the terminal for,
5-1

what is, 1-1

INDEX

Batch card commands, 3-1
Batch commands, 1-2, 2-8,
3-1
Batch control card commands,
3-2
Batch control card format,
3-2
Batch job,
card, 3-1
entering a, 2-
submitting, 1-
terminal, 5-1
Batch output, 4-1
additional, 4-2
sample, 4-2, 4-3
Batch printed output, 4-1
Batch procedure,
terminal, 2-2
Batch process,
BASIC, 3-23
Batch Processing, Glossary-1
Batch system,
TOPS-20, 1-1

Card, Glossary-2
Card,
$-language, 3-1, 3-7, 3-8
SCREATE, 3-1, 3-6
Column, Glossary-2
$DATA, 3-1, 3-10, 3-14
$EOD, 3-1, 3-16
$EOJ, 3-1, 3-6
SERROR, 3-1, 3-18
SEXECUTE, 3-1, 3-10
Field, Glossary-2
$JOB, 3-1, 3-2
SNOERROR, 3-1, 3-18
$PASSWORD, 3-1, 3-5
Row, Glossary-2
$TOPS20, 3-1, 3-16
Card batch job, 3-1
Card commands,
batch, 3-1
Card comments, 3-2
Card deck,
commands in the, 3-21
print program, 4-5
program, 3-20
setting up your, 3-20
Card error recovery
procedure, 3-29, 3-30,
3-31
Card error recovery program,
3-28

Index~1

INDEX (CONT.)

Card file, Computer, Glossary-2
error recovery in, 3-26, Computer Operator, Glossary-2
3-27 Continuation Card, Glossary-2

Card format conventions,
3-2
Card input, 1-1, 5-11
output from, 4-5, 4-6,
4-7
Card /switches,
$JOB, 3-3
Card user-name,
$JOB, 3-3
Card-reader file,
spooled, 3-12
Cards to enter jobs,
using, 5-11
Central Processing Unit,
Glossary-2
Character, Glossary-2
Character,
G@ERROR, 2-9
Characters,
special, 2-3
COBOL, Glossary-2
$COBOL, 3-7, 3-8
COBOL batch log file, 5-10,

5-21
COBOL card-input example,
5-19, 5-20

COBOL example, 3-13, 3-14
COBOL terminal example, 5-8,
5-9, 5-10
Command, Glossary-2
Command,
@BACKTO, 2-11
@ERROR, 2-9
@GOTO, 2-10
@IF, 2-8
@NOERROR, 2-9
@QSUBMIT, 2-5, 2-7
Commands,
batch, 1-2, 2-8
batch control card, 3-2
invalid, 3-22
system, 1-2, 3-16
system program, 1-2
TOPS-20, 2-4
TOPS-20 EXEC, 2-2
using TOPS-20, 3-18
Commands in the card deck,
3-21
Comment card, 3-2
Common tasks with batch,
5-1
Comparing two card decks,
3-22
Compile, Glossary-2
Compiler, Glossary-2
Compiling a program, 3-7

Control card commands,
batch, 3-2
Control card file,
batch, 3-21
Control card format,
batch, 3-2
Control cards,
nonspecial, 3-22
special, 3-22
Control File, Glossary-3
Control file, 1-2
creating, 1-3, 2-1, 2-2
error recovery in, 2-12,
2-13
Control file format, 2-3
Control-file-specification,
2-5
Conventions,
card format, 3-2
CPU, Glosssary-3
$CREATE card, 3-1, 3-6
SCREATE card examples, 3-7
$CREATE card filename.typ,
3-6
$CREATE card /switches, 3-6
Creating the control file,
1-3, 2-1, 2-2, 3-6
Cross—-Reference Listing,
Glossary-3

Data, Glossary-3
Data,
executing a program with,
3-10
input, 2-2
$DATA card, 3-1, 3-10, 3-14
$DATA card examples, 3-12
$DATA card filename.typ,
3-11
SDATA card format, 3-11
$DATA card /switches, 3-11
Data files,
naming, 3-14
Data input,
~ end of, 3-16
Debug, Glossary-3
Disk, Glossary-3

EDIT,

using, 2-2
End of data input, 3-16
Ending a job, 3-6

Index-2

Enter jobs,
using cards to, 5-11
using terminal to, 5-1
Entering a batch job, 2-1,
3-1
$EOD card, 3-1, 3-16
SEOJ card, 3-1, 3-6
SERROR card, 3-1, 3-18
SERROR card format, 3-19
SERROR card statement, 3-19
@ERROR character, 2-9
@ERROR command, 2-9
Error recovery, 2-3, 3-18
Error recovery,
specifying, 2-12, 2-13,
3-26, 3-27
Error recovery in card file,
3-26, 3-27
Error recovery in control
file, 2-12, 2-13
Error recovery procedure,
card, 3-29, 3-30, 3-31
Error recovery prodram,
card, 3-28
Errors,
recovering from, 1-3
Examples, 5-1
$-language card, 3-9
ALGOL, 3-14, 3-15
ALGOL card-input, 5-11,
5-12
ALGOL terminal, 5-1, 5-2
BASIC+2 card-input, 5-13,
5-14, 5-15
BASIC+2 terminal, 5-3,
5-4
CcoBOL, 3-13, 3-14
COBOL card-input, 5-19,
5-20
COBOL terminal, 5-8, 5-9,
5-10
SCREATE card, 3-7
$DATA card, 3-12
FORTRAN, 3-13, 3-15
FORTRAN card-input, 5-17,
5-18
FORTRAN terminal, 5-5,
5=17
log file, 4-7
submitting job, 2-6, 2-7
EXEC commands,
TOPS-20, 2-2
Execute, Glossary-3
SEXECUTE card, 3-1, 3-10
SEXECUTE card /switches,
3-10
Executing a program, 3-10
Executing a program with
data, 3-10

INDEX (CONT.)

FILCOM program,
TOPS-20, 2-4
File, Glossary-3
File,
control, 1-2
control card, 3-21
creating a, 3-6
log, 1-2, 2-2, 4-1
Filename, Glossary-3
Filename. typ,
SCREATE card, 3-6
$DATA card, 3-11
File Type, Glossary-3
Format,
$-language card, 3-8
batch control card, 3-2
control file, 2-3
SCREATE card, 3-6
$DATA card, 3-11
SEOD card, 3-16
SEOJ card, 3-6
SERROR card, 3-19
SEXECUTE card, 3-10
$JOB card, 3-3
SNOERROR card, 3-19
$SPASSWORD card, 3-5
STOPS20 card, 3-17
Format conventions,
card, 3-2
Format of lines, 2-3
FORTRAN, Glossary-3
$FORTRAN, 3-7, 3-8
FORTRAN batch log file, 5-7
5-18
FORTRAN card-input example,
5-16, 5-17
FORTRAN card-input output,
5-17
FORTRAN example, 3-13, 3-15
FORTRAN terminal example,
5-5, 5-=17

Generation Number,
Glossary-3
@GOTO command, 2-10

@GOTO label, 2-10

How to use batch, 1-2

Identifying yourself, 3-5
@IF command, 2-8
@QIF (ERROR) statement, 2-8

Index-3

INDEX (CONT.)

@IF (NOERROR) statement, /NOLIST switch, 3-9

2-8 Nonspecial control cards, 3-22
Input data, 2-2
Interpreting your printed

output, 4-1

Introduction, 1-1 Object Program, Glossary-4
Invalid commands, 3-22 Output,
batch, 4-1

FORTRAN card-input, 5-17
line-printer, 4-1

Job, Glossary-3 printed, 4-2, 4-3

Job, receiving your, 1-3
output from your, 4-1 Output from card input, 4-5,
running your, 1-2 4-6, 4-17

$JOB card, 3-1, 3-2 Output from terminal input,

$JOB card /switches, 3-3 4-2, 4-3, 4-4

$JOB card user-name, 3-3 Output from your job, 4-1

/JOBNAME switch, 3-3

Page limit exceeded message,

Label, Glossary-4 2-5
Label, /PAGE switch, 2-5, 3-3, 3-4
@BACKTO, 2-11 Password, Glossary-4, 3-5
@GoTO, 2-10 SPASSWORD card, 3-1, 3-5
Line-printer output, 4-1 Peripheral Device,
Lines, Glossary-4
format of, 2-3 Print program card deck,
Log File, Glossary-4, 4-5
1-2, 2-2, 4-1 /PRINT switch, 3-7
Log file, - Printed output, 4-2, 4-3
ALGOL batch, 5-2, 5-12 Printed output,
BASIC+2 batch, 5-4, 5-15, batch, 4-1
5-16 interpreting your; 4-1
COBOL batch, 5-10, 5-21 Procedure,
FORTRAN batch, 5-7, 5-18 card error recovery, 3-29,
Log file example, 4-7 3-30, 3-31
terminal batch, 2-2
Process,
BASIC batch, 3-23
MACRO, Glossary-4 Program, Glossary-4
$MACRO, 3-7, 3-8 Program,
/MAP switch, 3-10, 3-12 BASIC, 3-23
Message, card error recovery, 3-28
page limit exceeded, 2-5 compiling a, 3-7
?TIME-LIMIT-EXCEEDED, executing a, 3-10
2-10 Program card deck, 3-20
Mounting a Device, Program commands,
Glossary-4 system, 3-1

Program in batch,
BASIC, 3-24, 3-25

Programming, Glossary-4
Program with data,

Naming data files, 3-14 executing a, 3-10

SNOERROR card, 3-1, 3-18

SNOERROR card format, 3-19

SNOERROR card statement,

3-19
@NOERROR command, 2-9 Queue, Glossary-4, 1-2

Index-4

INDEX (CONT.)

Reading from spooled
card-reader, 3-12
Receiving your output, 1-3
Recovering from errors, 1-3
Recovery,
error, 2-3, 3-18
Running your job, 1-2

Sample batch output, 4-2,
4-3
Setting up your card deck,
3-20
Software, Glossary-4
Source Deck, Glossary-4
Source Language, Glossary-4
Source Program, Glossary-5
Special characters, 2-3
Special control cards, 3-22
Specifying error recovery,
2-12, 2-13, 3-26, 3-27
Spooled card-reader,
reading from, 3-12
Spooled card-reader file,
3-12
Starting a job, 3-2
Statement,
SERROR card, 3-19
@QIF (ERROR), 2-8
@QIF (NOERROR), 2-8
SNOERROR card, 3-19
Submit batch job, 1-3
SUBMIT command, 2-5, 2-7
SUBMIT /switches, 2-5
Submitting job examples,
2-6, 2-7
Submitting the batch job,
2-4
Summary of batch, 1-3
/SUPPRESS switch, 3-7, 3-9,
3-11, 3-17
Switches,
$-language card, 3-8
/AFTER, 2-5, 3-3, 3-5
$CREATE card, 3-6
$DATA card, 3-11
$EXECUTE card, 3-10
$JOB card, 3-3
/JOBNAME, 3-3
/MAP, 3-10, 3-12
/NOLIST, 3-9
/PAGE, 2-5, 3-3, 3-4
/PRINT, 3-7
@SUBMIT, 2-5
/SUPPRESS, 3-7, 3-9, 3-11,
3-17
/TIME, 2-6, 3-4
$TOPS20 card, 3-17

Switches (Cont.),
/WIDTH, 3-7, 3-8, 3-11,
3-17
System, Glossary-5
System Command, Glossary-5
System commands, 1-2, 3-16
TOPS-20, 3-1
System Program, Glossary-5
System program commands,
1-2, 3-1

Terminal, Glossary-5
Terminal,
timesharing, 2-1
Terminal batch jobs, 5-1
Terminal batch procedure,
2=-2
Terminal for batch,
using the, 5-1
Terminal input, 1-1, 2-1
Terminal input,
output from, 4-2, 4-3,
4-4
/TIME switch, 2-6, 3-4
?TIME-LIMIT-EXCEEDED
message, 2-10
Timesharing terminal, 2-1
TOPS-20 batch system, 1-1
TOPS-20 commands, 2-4
EXEC, 2-2
FILCOM, 2-4
system, 3-1
using, 3-18
$TOPS20 card, 3-1, 3-16
$TOPS20 card format, 3-17
$TOPS20 card /switches,
3-17

User Name, Glossary-5
User-name,
$JOB card, 3-3

Using cards to enter jobs,
5-11

Using EDIT, 2-1

Using the terminal for
batch, 5-1

Using TOPS-20 commands,
3-18

/WIDTH switch, 3-7, 3-8,
3-11, 3-17

Index-5

GETTING STARTED WITH BATCH
(TOPS-20)
AA-C781B-TM

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

oOooodgdg

Other (please specify)

Name Date
Organization Telephone
Street

City. State Zip Code

or
Country

SR AR

dilgliltla) -1

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MR1-2/E37
MARLBOROUGH, MASSACHUSETTS 01752

No Postage
Necessary
it Mailed in the
United States

(

"7 77 Cut Along Dotted Line

(

