
~
Zilog

MCZ·1/20A and MCZ-1/25A
MICROCOMPUTERS
FLOPPY PROM

User Guide

December 1979

03-3106-01, Rev. A

December, 1979

Copyright 1979, 1980 by Zilog, Inc. All rights reserved.
No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Zilog.

MCZ·1/20A and MCZ.1/25A
MICROCOMPUTERS
FLOPPY PROM

User Guide

December ° 1979

SECTION 1

SECTION 2

SECTION 3

SECTION 4

SECTION 5

INDEX

CONTENTS

INTRODUCTION .
1.1
1.2
1.3

Software Components •••••••
Initialization •••••.
Command Interpreting

FLOPPY DISK DRIVER .
2.1
2.2

FLOPPY Requests
Completion Codes

TTY DRIVER .
3.1
3.2
3.3

TTY Requests ••••.••••
Line-Edit Commands
Terminal Requirements

· · .
·

1

1
1
1

3

3
4

5

5
6
7

DEBUG ENVIRONMENT 9

4.1
4.2
4.3
4.4

Breakpoints ••••••••••
Program Restrictions •.••••
Debug Commands
Debug Interface •.••••••••••••

. . .
.

SYSTEM PARAMETERS

5.1 User-Accessible System Parameters
5.2 Port Addresses
5.3 PROM Monitor Routine Requests and

Error Codes
5.4 Device Command Codes

9
9

10
15

17

17
18

19
19

. ••••••••.•.•.•.••.• Index 1

-iii-

SECTION 1

INTRODUCTION

1.1 Software Components

The MCZ-l/20A, MCZ-l/25A Floppy PROM set provides the
basic debugging commands, Input/Output, and bootstrap· portions
of a floppy disk operating and development system. The system
consists of a bootstrap loader, a floppy disk driver, a
terminal handler, and a command interpreter. The system
resides in 3K bytes of PROM memory, starting at address 0000,
and uses lK bytes of RAM, including 256 bytes allocated for the
system stack, starting at address 1000H.

1.2 Initialization

At system RESET, the PROM Monitor reads the switch bank to
determine the baud rate required at the serial interface. All
variable parameters are set in RAM to their initial values.
The USART (Universal Synchronous Asynchronous Receiver
Transmitter) is programmed for asynchronous operation with two
transmit stop bits, no parity, 8 data bits, and
divide-by-sixteen operation. The USART is further programmed
to generate active (low) signals on REQUEST TO SEND and DATA
TERMINAL READY lines, and both the receiver and transmitter are
enabled. Finally, the PIO (Parallel I/O chip) in the disk
interface is set to the bit control mode on both its ports, and
appropriate directions are assigned to the bits.

1.3 Command Interpreting

After USART initialization, the monitor fetches its first
command string from the terminal. If that command string is
comprised of a carriage return or the characters "OS" (meaning
Operating System) followed by a carriage return, control
-transfers to the bootstrap logic. For any other command
string, control is passed to the the Debug command scanner.

The bootstrap subroutine reads in 128 bytes of a
supplementary bootstrap routine from disk. If the read is
successful, control is transferred to the routine. If the read
is unsuccessful and the drive is attached, control returns to
the Debug command scanner. If no drive is attached, the
bootstrap routine reads 128 bytes of data in binary form from
the terminal. These bytes of data are put into RAM, starting
at address 1000H. The central processing unit (CPU) continues
program execution from that address.

-1-

2.1 FLOPPY Requests

SECTION 2

FLOPPY DISK DRIVER

The Floppy driver (FLOPPY) is used to read and write from
the disk. The FLOPPY routine ·can only access information on a
diskette formatted to Zilog software standards. The entry
point for the Floppy driver is at location OBFDH.

The driver accepts a standard parameter vector as follows:

IY+O
IY+l
IY+2,IY+3
IY+4,IY+S
IY+6,IY+7
IY+8,IY+9
IY+10
IY+ll,IY+l2

Ignored
Request - type of action needed
Data transfer address
Data length in bytes
Completion return address
Error return address
Completion code
Disk address (sector, track, respectively)

The starting disk address for transfer has two parts: a
track address from 0 to 77 decimal, and a sector address from 0
to 31 decimal. The ~ost significant three bits of the sector
address indicate which of the eight possible units is used for
the transfer. The track address is considered the most
significant part of the disk address, and goes in IY+l2i the
sector address is considered the least significant part and
goes in IY+ll.

If the data transfer length is not divisible by the sector
size (128 bytes), the data transfer length is increased to the
next integral multiple of the sector size. Data is
written/read from contiguous sectors. The length should be
such that the entire transfer will take place between the
sector where transfer starts and the end of the track. If this
limitation is not observed, a sector error results on a read
operation and a permanent sector error is created on a write
operation, resulting in certain sectors being permanently
inaccessible.

There are two valid requests for the floppy driver: RDBIN
(OAB), which reads binary data frqm the disk to the data
transfer area, and WRTBIN (OEB), which writes binary data from
the data transfer area to the disk.

If the user's request code is increased by a value of one,
the driver executes a return as soon as the request has been
initiated. The data transfer can then continue under interrupt

-3-

control. When the operation 1s complete, the routine specified
by the completion. return address is called. This routine
should act as an interrupt routine, except that it should not
execute a Return from Interrupt (RETI) instruction; a RET
instruction should be used instead.

If an error occurs during processing of the user's request
and the error return address bytes are non-zero, the routine at
that address is called. The routine takes whatever action is
appropriate and returns. If the address is zero, the return is
normal, as though there were no error.

2.2 Completion Codes

Bit 7 of the completion code byte is set when the
operation is complete. Bit 6 is set·to indicate that an error
occurred •. The least significant six bits indicate which error
occurred. Possible return codes are:

Code
SOH
CIa
C2B

C3a
C4a

C5a

C6a

Meaning

Normal return (Bit 6 not set)
Invalid operation request
Not ready - disk is signalling a QNot Ready"

condition
Disk is write protected
Sector error - the sector address in the sector

header did not agree with the sector position
Track error - the track address in the sector

header did not agree with the head position
CRC error - Cyclic Redundancy Checking;

indicates one or more data bits in error

-4-

SECTION 3

TTY DRIVER

3.1 TTY Requests

The TTY driver, which is used to read and write from the
terminal, is interrupt driven for input characters. Characters
received from the terminal are stored in a 20H-byte circular
buffer. This approach provides the user with a type-ahead
capability. The entry point for the TTY driver is at OBE8H.
The driver accepts a standard parameter vector as follows:

IY+O
IY+l
IY+2, IY+3
IY+4, IY+5
IY+6, IY+7
IY+8, IY+9
IY+lO
IY+ll, IY+12

Ignored
Request - type of action needed
Data transfer address
Data length in bytes
Completion return address
Error return address
Completion code
Ignored

The four valid requests handled by the terminal driver
are: RDBIN (OAB) , WRTBIN (OEH), RDLIN (OCR), and WRTLIN (lOH).
The binary operations read or write the specified length of
data between the serial interface and the block of memory
beginning at the data transfer address. No special characters
are honored in binary operations. No echoing on the terminal
is performed for RDBIN. See the Z80 RIO Operating System
User's Manual for more information on ROBIN and WRTSIN.

The RDLIN operation begins by issuing a prompt character
to the terminal, then proceeds to input characters from the
terminal to the data transfer area. All input characters are
echoed on the terminal. Special line delete, which is
initialized by the PROM Monitor to DEL (ASCII 7FH) and
character delete, which is initialized by the PROM Monitor to
BACKSPACE or CONTROL H (ASCII 08B) are honored by this routine.
A ROLIN operation terminates either on receipt of the number of
characters specified as the transfer length or on receipt of a
carriage return. The carriage return is echoed, and the number
of line feeds and null characters specified in the
corresponding parameter storage locations is generated.

The WRTLIN operation also proceeds either for the number
of characters specified as the transfer length, or until a
carriage return is encountered. The carriage return is sent to
the terminal. The NULLCT parameter determines how many nulls
should be sent to the terminal. The LFCNT parameter determines
how many linefeeds should be written to the terminal.

-5-

Both ASCII line operations return a count of the number of
characters actually transferred in the transfer length field.

If the request code is incremented by one, control
transfers to the completion return address after t~e operation.
The routine at this address should act as an interrupt routine,
except that it should not execute a RET! instruction; a RET
should be used instead. If the request code is not incremented
by one, TTY returns normally after the operation has been
completed. In this case, the completion return address is
ignored. In either case, the data is transferred without the
use of interrupts.

If an error occurs and the error return address bytes are
non-zero, the routine stored at that address is called. The
routine takes the appropriate action and returns. If the
address is zero, the return is normal.

Bit 7 of the completion code is set when the operation
completes normally. Bit 6 is set to indicate that an error
occurred. The only error condition returned is Invalid
Operation (CIS). This action occurs for request codes greater
(arithmetically) than those honored by TTY. Request codes
lower than those honored by TTY return complete with no error,
but also with no effect.

3.2 Line-Edit Commands

The two line-edit commands interpreted by the TTY driver,
Delete Last Character and Delete Current Line, can be changed
from the Debug environment as follows:

1. To change the Delete Last Character command:

Set memory location 13CCH to the ASCII code for the
character desired. For example, to make the "@" the
character delete, set the location to 40H.

2. To change the Delete Current Line command:

Set memory location 13CBH to the ASCII code for the"
character desired. For example, to make "1" the line
delete, set the location to 218.

-6-

These characters are also changed to defaults when the RIO
operating system is boo'tstrapped, or when the RIO SET command
is issued. This means that when the Debug environment is
entered from the RIO operating system, the characters may not
function in the same way.

3.3 Terminal Requirements

The Z80 MCB-MT board in any Zilog system interfaces to any
terminal using a standard 8-bit ASCII asynchronous transmission
mode, with or without parity, on RS-232 or 20 rnA current-loop.
The interface uses four switches on the MCB-MT to set a binary
value equivalent to a specific baud rate. The speeds and their
corresponding switch positions are as follows:

SPEED SETTING SWl SW2 SW3 SW4

50 0 ON ON ON ON
75 1 OFF ON ON ON

110 2 ON OFF ON ON
134.5 3 OFF OFF ON ON
150 4 ON ON OFF ON
200 5 OFF ON OFF ON
300 6 ON OFF OFF ON
600 7 OFF OFF OFF ON

1200. 8 ON ON ON OFF
2400 9 OFF ON ON OFF
4800 10 ON OFF ON OFF
9600 11 OFF OFF ON OFF

19200 12 ON ON OFF OFF
38400 13 OFF ON OFF OFF

-7-

SECTION 4

DEBUG ENVIRONMENT

4.1 Breakpoints

The zeo MCB-MT board allows the user to set software
breakpoints for program debugging. A breakpoint is a command
to suspend program execution whenever a specified instruction
is executed. The address specified in the command is the
address of the instruction. When encountered in the course of
program execution', the breakpoint suspends execution of the
user's program, saves all registers in a reserved memory area,
and prints a message informing of the break and the address at
which it occurred.

Any number of breakpoints can be set manually by se~ting
the desired breakpoint location to OFFB, which causes a trap to
the breakpoint routine. The breakpoint location must be the
first byte of an instruction, and when the breakpoint is no
longer desired, the original instruction must be restored
manually. The fact that OFFH causes a break means that anytime
a program erroneously attempts to execute fro~ non-existent
memory, a break occurs immediately.

The BREAK command saves the address at which the
breakpoint is being set and the instruction the OFFB is
replacing. The BREAK command has an optional parameter of a
repetition counter, which is also saved when specified. If a
repetition counter with value N is specified, suspension of
execution does not occur until the Nth time this breakpoint is
encountered, unless some other breakpoint is encountered first.
If the breakpoint is cleared (BREAK <CR», the instruction
modified with OFFH is restored.

4.2 Program Restrictions

If interrupts are disabled when a breakpoint occurs,
program execution will begin with interrupts enabled. Because
some timing distortion occurs each time the breakpoint is
encountered, the program should not be timing-dependent.

The program must not use Channel 3 of the CTC (Counter
Timer Circuit) I as this channel is used to implement the
multiple execution featur~. The breakpoint cannot be within an
interrupt routine entered by an interrupt from Channels 0-2 of
the eTC.

-9-

Both the breakpoint programs and the NEXT command use
instruction modification and the interrupt system. Thus, the
instructions being debugged cannot be in ROM, and they cannot
involve modifications of either the interrupt status or the
Interrupt (I) register. Also, the byte preceding the
instruction in question is temporarily modified, and so must be
in writable memory.

Whenever a JUMP or GO command is executed, the user stack
is utilized. This implies that. the stack must be set up in
writable memory. Also, if the JUMP or GO address has a system
breakpoint set, the execution of the instruction immediately
following the GO or JUMP will not cause suspension of
execution. Subsequent executions of the breakpoint locations
suspends execution. This permits breaking and continuing
execution without resetting the breakpoint as, for example,
inside a loop.

When debugging system programs, verify that the I-register
is set "to 13H and that interrupts are enabled. Before starting
debugging, set the stack pointer to where the debugger software
will not interfere with it. Because the debugger uses 10-20
locations down from IlOOH, location 10COH should be used under
normal circumstances.

4.3 Debug Commands

In the following command descriptions, the angle brackets
«» enclosing descriptive names for the quantities to be
entered should not be typed. Square brackets .([]) enclose
optional quantities. Parentheses are used for grouping
repetitive items.

The commands may be abbreviated to their first letter,
with the exception of SAve and GEt, which must have at least
two letters. If a command is not understood, the system issues
a "7", followed by a command prompt, ")". All numbers may be
entered in free-form hex, with leading zeros omitted. If more
than four hex digits are entered, the last four will form the
number used. All fields are blank-delimited.

An example of a valid Display command is:

o 1000 10

-10- .

The following commands are implemented in the PROM
Monitor:

Syntax

B <addr> [<nth time>]

Description

BREAK - Sets a breakpoint at the
specified address, first clearing
any breakpoint previously set.
<nth time> denotes the number of
times the breakpoint instruction
is encountered before a breakpoint

-occurs. The default is 1. See
description of breakpo{nts,
Section 4.1.

C <addrl> <addr2> <no. of bytes>

D <addr> [<no. of bytes>]

COMPARE - Used to compare the
contents «no. of bytes» of two
blocks of memory. <addrl> and
<addr2> specify the starting
addresses of the two blocks. If any
locations of the two blocks differ,
the address and contents of those
locations are displayed on the
user's terminal.

DISPLAY - Displays contents of memory
locations starting at the specified
address, for the specified number of
bytes. If <no. of bytes> is not
specified, memory locations are
displayed one at a time, with an
opportunity to change each byte.
For each byte, the address
is displayed, followed by the
contents of the location,
followed by a space. To change
the contents of that location,
type in the new contents. A
carriage return, either alone or
after the new contents, causes the
next sequential location to be
displayed. A nQ~ (Quit) followed
by a carriage return terminates the
command. If <no. of bytes> is
spe·.' ; f ied, the contents of the
desisnated memory locations are
displayed both in hex notation and
as "ASCII char acter. The char acter

-11-

Syntax

F <addrl> <addr2> <data>

GE [<drive>/] filename

G

I

J <addr>

Description

representation appears to the right
of the screen between asterisks with
all non-printing charact€rs
appearing as periods (".").

FILL - Stores the specified data byte
into all memory locations from <addrl>
to <addr2>, inclusive. This range
must not include any areas of ROM or
non-existent memory •.

GET - This command assumes that
"filename" is a procedure file, and
reads the file into core using the
segment information in the file
description record. If <drive> is
not specified, the filename is
searched for "in the usual drive
sequence order (1-7, 0). I/O errors
are reported with the message:

FILE ERROR hh

where "hh" consists of two hex
digits representing the RIO OS error
code. Refer to the Error Code listing
in the zao RIO Operating System User's
Manual.

GO - Branches to the last stored
program counter (PC), thus continuing
program execution where it was last
interrupted. All registers are
restored.

INTERRUPT - Displays the status of
the interrupt enable flip-flop as
either 00 (disabled) or 01 (enabled)
To change the status, enter the
number corresponding to the desired
status after the display; otherwise,
enter a carriage return. .

JUMP - Branches unconditionally to
the specified address, thus executing
the user's program. All registers
are restored before branching.

-12-

Syntax

M <dest> <source> <n>

N [<n>]

Q

R [<register name>]

Description

MOVE - Used to move the contents of
a block of memory from the source
address specified by <source> to
the destination address specified
by <dest>. <n> is the length in
bytes of the block to be moved.
There are no restrictions on
<source>, <dest>, or <n>.

NEXT - Causes execution of the next
machine instruction, starting at
the current PC, and displays all
registers after each instruction
execution. If <n>, the number of
instructions, is not given, 1 is
assumed. Typing a carriage return,
after a NEXT command, causes
execution and tracing of the next
instruction.

QUIT - If Debug was properly entered
from an external program, such as the
RIO operating system, QUIT returns
to that program; otherwise, it is an
invalid command.

REGISTER - Allows. the contents of the
indicated register to be displayed
and modified. If no register name
is specified, all registers are
displayed on one line. If a
register name is specified, individual
registers are displayed, starting
with the one specified.

For each register, the register name
is displayed, followed by its contents,
followed by a space. To change the
contents of that register, type in
the new contents. A carriage return,
either alone or after new contents,
causes the next register to be
displayed. To terminate the command,
enter "on (Quit), either alone or
after new contents, then enter a
carriage return.

-13-

Syntax

R [<register name>]
(cont.)

Description

The sequence in which the registers
are displayed when they are stepped
from one to the next is: A, B, C,
0, E, F, H, L, I, A', B', C', 0',
E " F', H', L', IX, IY, PC, SP.

The registers are saved at the start
of the program and at each
breakpoint. They.are restored at
each JUMP or GO command.

SA [<drive>/] filename <startl><endl> ••• [<startn><endn>]
(E=entry] [RL=record length]

SAVE - Builds a procedure file on the
specified drive. If no drive is
specified, the file is built on the
first available drive in the
sequence 1,2, ••• ,7,0. The SAVED
procedure file contains segments
specified by the address pairs
<start) and <end>. The entry point
of the SAVED procedure file is set
to 0, and the stack size is set to
100H. Segment sizes are rounded up
to multiples of 512. The file is
overwritten if it is an old file.
I/O errors are repeated with the
message:

FILE ERROR hh

where "hh" consists of two hex codes
representing the RIO OS error code.
Refer to the Error Code listing in
the zao !!£ 0Eerating System User's
Manual.

-5 <addr> <data> «data> [<data) •••]]

SET - Stores the specified data words
into sequential memory locations
starting at the specified address.
A carriage return terminates the list.

-14-

4.4 Debug Interface

An ·external routine can interface with the PROM Debug
package in·one of two ways. Either way, a flag is set and a
return address is stored in an associated location.

The first way is to make a call into the Debug
environment, thus passing control to the Debug command
interpreter until a QUIT command is issued. This is done by
setting Bit 5 of location 13CDH (BRKFLG) in system RAM, storing
.the return address at locations 13BEH, 13BFH (EXTRET) and
jumping to the Debug command interpreter atOBFAH.

The second method is used when an external routine is to
handle breakpoints. If Bit 7 of l3CDH (BRKFLG) is set, the
occurrence of a breakpoint causes a jump to the location stored
at l3CEH, 13CFH (BRKRTN).

-15-

SECTION 5

SYSTEM PARAMETERS

5.1 User-Accessible System Parameters

The following system parameters are user-accessible:

Parameters

NULLCT

LFCNT

PROMPT

LINDEL

CHRDEL

Description

Null Count (l3C8H) - The number of null
characters and line feeds inserted after a
carriage return is stored in this location.
Modifying the null count adapts the TTY
driver to the mechanical carriage return
delays of various terminals.

Line Feed Count (l3C9H) - The number of line
feeds inserted after a carriage return is
stored in this location. Modifying the line
feed count permits automatic multiple
spacing. .

Prompt Character (l3CAH) - The character
output by the GET and TTY routines before
reading a line from the terminal is stored
in this location. Modifying the prompt
character permits various levels of
interactive software to identify themselves
in each command query. Prompting can be
effectively eliminated by setting this
location to a null character (ASCII 0).

Line Delete (13CBH) -'The character
interpreted by the GET and TTY routines as a
line delete is stored in this location.
When a line delete is encountered in the
AS~II input stream from the terminal, GET
and TTY purge their buffers and continue'
reading the input stream.

Character Delete (13CCH) - The character
interpreted by the GET and TTY routines as
a character delete is stored in this
location. When charaeter delete is
encountered in the ASCII input stream, the
last character entered is purged from the
input buffer. Multiple character deletes
delete multiple characters.

-17-

Parameters Description

BRKFLG

BRKRTN

EXTRET

Breakpoint Flag (l3CDH) - Bit 5 of this
location determines the return address
for the QUIT command. Bit 7 is used to
signal the existence of an external
breakpoint (see Section 4.3).

Breakpoint Return (l3CEH, l3CFH) - These
locations are used with BRKFLG to make use
of an external breakpoint handler (see
Section 4.3).

External Return (13BEH, 13BFB) - These
locations are used with BRKFLG when calling
the Debug command interpreter (see Section
4.3) •

5.2 Port Addresses

The following equates define the system I/O devices.

SYSTEM HARDWARE I/O PORT ADDRESSES

PORT

USART DATA (TTYDAT)
USART CONTROL/STATUS (TTYSTT)
eTC CHAN a (CLKO)
eTC CHAN 1 (CLKl)
CTC CHAN 2 (USART TRANSMITTER READY)
CTC CHAN 3 (USART RECEIVER READY)
PIO DATA A
PIO CONTROL A
PIO DATA B
PIO CONTROL B
DISK SHIFT REGISTER (DSKDAT)
DISK PIO DATA A (DSSTAT)
DISK PIO CONTROL A
DISK PIO DATA B (DSKSEL)
DISK PIO CONTROL B
SWITCH BANK (TTYSPD)

-18-

ADDRESS

DE
DF
D4
D5
06
07
D8
DA
09
DB
CF
DO
D2
Dl
03
DO

5.3 PROM Monitor Routine Request and Error Codes

The following request codes are satisfied by the PROM
routines.

PROM MONITOR I/O ROUTINE CODES

FLOPPY REQUEST CODE

RDBIN
WRTBIN

TTY REQUEST CODE

RDBIN
ROLIN
WRTBIN
WRTLIN

VALUE

OA
OE

VALUE

OA
OC
OE
10

Error codes that may occur are as follows:

ERROR CODES

CODES

NORMAL RETURN
INVALID OPERATION REQUEST
DISK NOT READY
DISK WRITE PROTECTED
SECTOR ERROR
TRACK ERROR
CRe ERROR

5.4 Device Command Codes

VALUE

80
Cl
C2
C3
C4
C5
C6

The commands sent to the I/O devices are defined as
follows:

I/O CONTROL PROM MONITOR RESET VALUES

USART CONTROL WORDS

MODE INSTRUCTION
COMMAND INSTRUCTION

-19-

VALUE

CE
27

CTC CHANNEL 0 CONTROL WORDS

VECTOR REGISTER
CONTROL REGISTER
TIME CONSTANT

DISK PIO CONTROL WORDS

PORT A CONTROL
PORT A I/O SELECT
PORT B CONTROL
PORT B I/O SELECT

CPU INITIAL STATE

INTERRUPT MODE
INTERRUPT VECTOR
INTERRUPT FLIP/FLOP
STACK POINTER -

-20-

VALUE

EO
03
CF

VALUE

CF
EO
CF
EO

VALUE

2
13

ENABLED
1100

B

BACKSPACE, 5
baud rate, 7
binary operations, 5
bootstrap, 1, 7
BREAK, 9, 11
breakpoint, 9, la, 15
BRKFLG, 18
BRKRTN, 18
buffer,S

c

character delete,S
CHRDEL, 17
command codes, 19
command scanner, 1
command string, 1
COMPARE, 11
completion code, 3, 4
completion return address, 3
CONTROL H, 5
CRC error, 4
CTC, 18, 20
Cyclic Redundancy Checking, 4

D

data 1eng th, 3
data transfer address, 3
Debug, 15
Debug commands, 10
Debug environment, 7
debugger, 10
defaults, 7
Delete Current Line, 6
Delete Last Character, 6
disk address, 3
DISPLAY, 11

INDEX

Index 1

echoing,S
entry point, FLOPPY, 3
entry point, TTY,S
environment, 15
error, 6
error codes, 19
error return address, 3
external routine, 15
EXTRET, 18

p

FILE ERROR, 11
FILL, 11

G

GEt, 10, 11
GO, 10, 11, 14

I

I/O devices, 18
I/O error, 11
initialization, 1
INTERRUPT, 11
interrupt routine, 4, 6
interrupt status, 9
interrupt system, 9
I - r eg is t e r, 1 a

J

JUMP, 10, 11, 14

L

LFCNT, 5, 17
LINDEL, 17.
line delete, 5
line-edit, 6

Index 2

MCB-MT board, 7, 9
memory, 1, 6
MOVE, 13
Multiple character deletes, 17

N

NEXT, 9, 13
NULLC~, 5, 17

p

parameter vector, 3
PIO, 1, 18, 20
port addresses, 18
procedure file, 14
program counter, 11
program restrictions, 9
PROMPT, 17

Q

QUIT, 13, 15

R

RD BIN, 3, 5 , 19
RDLIN, 5,19
REGISTER, 13
repetition counter, 9
reset values, 19
RET, 4, 6
RETI, 4, 6
routine codes, 19

s

SAve, 10, 14
sector address, 3
sector error, 3, 4
serial interface, 5
SET, 14
stack pointer, la, 20
SWITCH, 18

Index 3

switches, 7
system parameters, 17

T

timing distortion, 9
track address, 3
track error, 4
transfer length, 3, 5

o

USART, 1, 18

w

write protected, 4
WRTBIN, 3,5,19
WRTLIN, 5, 19

Index 4

Zilog, Inc. 10460 Bubb Road, Cupertino, California 95014 Telephone (408)446-4666 TWX 910-338-7621

Printed in USA

