
RIO SYMBOLIC DEBUGGER

i !Z
I

Reference Manual
. Zilog

November 1978

03-3034-01, Revision B
-

November 1978

Copyright 1978 by Zilog, Inc. ~~1 rights reserved.
No part of this publication may be reproduced, stored
in any retrieval syste~, or transmitted, in any for~
or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written
permission of Zilog.

Zilog assumes no responsibility for the use of any
circuitry other than circuit;y embodied in a Zilog
product. No other circuit patent licenses are
implied.

BIO SYMBOLIC DEBUGGER

Reference Manual

November 1978

TABLE OF CONTENTS

Preface •••.•••.....••..•••..•.•..•.••..•..•.. e •••••••• iii

Part 1: ZBUG Tutorial............................... 1

I. What is ZBUG?........................ 1

II. Generating a Version of ZBUG.......... 2

III. Looking Around ••••..••.•.••.••• ~...... 3

IV. Chang ing Th ing s. • • • . • • . . • • . • • • • • . . • • . • 8

V. Running Programs •.•••..••• '............ 12

VI. A Second Example •••••••••••••••.•••••• 15

Part 2: ZBUG Reference Manual •••.•..••••••••...••... 34

I. Conventions ••••••••••..•••..•••••.•••• 34

II. ZBUG Generation, Entry and Exit •.••••• 34

III. Errors and Deleting Commands •••••••••• 36

IV. Expressions, Symbols and Displacements 37

V. Examine Memory Commands ••.•.••••••••.• 40

VI. Breakpoints, CPU registers and
Stepping Commands •.•.•••••••••••••.••• 43

VII. Miscellaneous:
Searching and Filling Memory•••.•• 48

VIII. Interrupts ••••••••.•••••.••..••.••..•. 49

IX. Rough Spots and Their Conquest •••••..• 50

Part 3: NBUG Supplement •••••••••••••••••••••••.••••• 51

APPENDIX'- ZBUG Quick Reference Sheet •.•.•.••••.••••• 53

i

i i

PREFACE

This document describes the Zilog symbolic debuggers for use
with Z-80 assembly language programs. ZBUG, the name of the
debugger, is supplied in relocatable form on the RIO system
disk. ZBUG contains many features making it a much more
powerful programming tool than the debugger supplied in the
MCZ PROM. NBUG, a newer version of ZBUG, is also supplied in
relocatable form. NBUG contains several extensions to ZBUG
(most notably assembly and disassembly of Z-80 instructions)
which make it the more desirable of the two. It does, however,
occupy more memory and, because of this, ZBUG is still supplied.

The manual is divided into three parts. A tutorial introducing
the user to ZBUG is presented first. It goes through several
examples in detail and a careful reading of this section is
strongly recommended. The second part is a reference manual
describing ZBUG in detail but giving few examples and explaining
little about the use of ZBUG-the tutorial is intended for this.
Some features of ZBUG are not described in the tutorial, however,
so the reference manual is an important source of detail. The
third part describes NBUG primarily by noting its differences
from ZBUG as the two debuggers are very similar.

The appendix gives a quick reference summary of ZBUG
andNBUG commands. Posting the two page summary by the terminal
is recommended.

iii

PART 1: ZBUG TUTORIAL

I • ~.ia ZBUG?

ZBUG is an interactive debugger designed to ease the
task of debugging zao assembly language programs.
Several features of ZBUG facilitate this process. Memory
can be displayed in several formats. Up to eight breakpoints
can be placed in the user's program. A trip-count is associ
ated with each breakpoint to facilitate dealing with loops.
Control can be transferred to the user program for a specific
number of instructions and then returned to ZBUG. Register con
tents can be displayed or modified. Facilities are also pro
vided to deal with relocatable modules making manual arithmetic
unnecessary and to 'interface to the assembler symbol table
making user program symbols available. ZBUG is highly inter
active - all commands are a single character and a carriage
return is not required to invoke them.

ZBUG runs only on Zilog MCZ systems. ZBUG itself is slightly
over 4K (decimal) in length. Space for the user symbol table
(not required but often highly useful) takes roughly lK· ~
per 30 pages of source code. ZBUG is not particularly well
suited for debugging interrupt driven programs but can be of
some use (see the ZBUG reference manual for details).

This tutorial is written for the reasonably experienced assembly
language programmer. It assumes knowledge of the z-ao archi
tecture, the Zilog RIO relocating assembler and linker, and the
Zilog RIO operating system. Further details of those packages
can be found in their respective manuals.

~ ~ tutorial liill ~ won't kll ~

This section is a tutorial. It, through several examples,
illustrates the use of most of the features of ZBUG. Other,
hopefully handy, techniques are illustrated. A full explan
ation of all ZBUG commands and features, however, is not the
purpose of this tutorial. Further information can be obtained
from part 2, the ZBUG reference manual.

- ~

Conventions ~ .in ~ Document.

There are several special characters used with ZBUG.ln the
examples that follow, they are represented as follows:

character
<-

carriage return
line feed
any control character
escape
$

representation

CR
LF
icharacter (e.g., iA is control-A)
$
$ (with a note that this is the real $)

To make it clear who printed what, user input is in9icated in
bold face type like that. Output printed by ZBUG is in normal
type.

II. Generating ~ version ~ ~

ZBUG is supplied in relocatable form. This allows it to be
linked as an executable version generated at any address or
to be linked directly with the user program. Of course, it
also requires that you do it. Herels how:

%LIBK $=7000 ZBUG (NOH P H=ZBUG70 ST=O)

This RIO command creates a procedure file named ZBUG70. It
is a suggested convention that procedure files for ZBUG be
suffixed with the first two digits of its load address as a
reminder. Thus, a file ZBUGCa would indicate a version of
ZBUG that runs at caoa. (Substitutions for the "$=7000" and
"N=ZBUG70" can be made to produce versions of ZBUG that run
at any desired address. Also, in LINK commands, the "$" is
always the real $, not the ESC key.)

The manual entry point to ZBUG is at its first byte address.

Try the above command. Subsequent examples will assume that
a version of ZBUG called ZBUG70 exists and is linked to run
at 7000. (Most numbers in this document are hexadecimal.)

- 2 -

III. Looking Around

Opening ~ Closing

Imagine that each memory location and CPU register is in a
box. To examine or modify the contents, the box must first
be opened. This concept is central to ZBUG. To open a
register, ZBUG must be ready to accept a command (i.e.,
have just typed its "*" prompt). Then, some name that iden
tifies the register is typed, followed by a command that
causes the register to be opened. Most such commands are
single characters that not only cause the register to be
opened, but also specify the format in which it will be dis
played. (Note: the term 'register' is here used synonymously
with 'CPU register', 'memory location', and 'ZBUG register.')

Once open, the contents of the register can be replaced.
This process is described below. Next, the register must
be closed and, perhaps, another one opened. A carriage
return is the typical signal to close the currently open
register; the prompt character "*" then appears indicating
that ZBUG is waiting for the next command. A line-feed
closes the current location and opens the next; an "itt
closes the current location and opens the previous
(lower memory addresses).

There are several output formats available. They are
often referred to as modes. ZBUG maintains a "current"
mode and displays numbers in that form until another mode
is selected. The modes discussed in this section are a-bit
hex, l6-bit hex, and ASCII. The names used for these are
HEX8, HEXl6, and ASCII.

We will use as an example the first sample program from the
RIO operating system manual. The program prints a message on
the console and is shown in figure 1. It is recommended that
you type in and assemble the program. Then link it and load
it with ZBUG70 as follows:

%EDIT EXAMPLEl..MCZ.S

type type type

%ASII EXAMPLEl.KCZ (S)

%LIRK $=4400 EXAMPLE1.KCZ (SY)

The Sand SY options on the ASM and LINK commands are explained
below.

- 3-

EXA1'1PLE1.HCZ PAGE 1
LOC OBJ CODE H STHT SOURCE STATEMENT. ASl-I 5.3

0000 FD210800 R 1 LD IY,AVEC
0004 CD0314 2 CALL SYSTEH
0007 C9 3 RET

4
5 AVEC:

0008 02 6 AVLN: DEFB CONOUT
0009 10 7 AVREQ: DEFB t'lRTLIN
OOOA 1300 R 8 AVDTA: DEFW MSG

9
OOOC 2400 10 AVDL: . DEFW LHSG
OOOE 0000 11 AVCRA: DEF~v a

12
0010 0000 13 AVERA: DEFW a
0012 00 14 AVCC: DEFB a

15
16 SYSTEH EQU 1403H
17 CONOUT EQU 2
18 WRTLIN EQO 10H
19

0013 454E4F52 20 r1SG: DEFM ' ENORI10US CHANGES AT THE LAST MINU~
0036 00 21 DEFB aDa

22 LIvISG EQO $-rlSG
23
24 END

Figure 1.

- 4-

%EXAMPLE1.MCZ,ZB0G70

*

Let's look around in memory.
to choose from:

Load EXAMPLEl.MCZ and ZBUG70.
Execute ZBUG70
ZBUG types its prompt character.

There are several output formats

*4400. FD LF
4401 21 LF
4402 08 CR

(Recall that CR and LF
are the carriage return and
line-feed keys, -respectively.)

*
Here, we are examining the first few bytes of the program.
The "." command "opens" a location (4400 in this case) and
types out the contents as a hexadecimal number. Once open,
ZBUG waits for input. The command LF (the linefeed key)
closes any open location and opens the next one. The command
CR (carriage return) closes any open location and retypes
the ZBUG prompt character, "*"

*440A: 4413 LP
440C 0024 C1l

*440A. 13 LP
440B 44 C1l

*

Similar to ".", ":" opens a
memory location but displays
it as a 16-bit number. LP
advances the address by 2.
Note that ":" reverses the
bytes, consistent with the
Z80 architecture.

Output can also be displayed in ASCII:

* 44l.3 (IE LF
4414 IN LF
4415 '0 LP
4416 'R CB.

* 4408 (< 02> Cll
*L.P

4409 <10> • 10 LF

440A <13> : 4413 ca

The "(" displays output in
ASCII form. The form is
'character or <hex number>
if the character is non-

pr~nting.
LF as a ZBUG command still
opens the next location in
the last format selected.
Once open, a location can be
redisplayed in another format
by typing the display char
acter as a command.
Here, 440A,- originally
open in ASCII format, is re
displayed as a 16-bit Hex
number.

- 5 -

"T" has an effect similar to LF except that the previous
location, not the next, is reopened:

*44~6 ('R r
4415 'a r
4414 IN r
4413 'E. 45 CR

*

Note the following:

Each t closes the current
location and opens the pre
vious one.

1) LF and r can be used as commands opening the next and
last locations based on the most recently examined location.
The output mode is whatever the most recent one was.

2) Once open, a register can be redisplayed in another
format by typing the appropriate command character.
Redisplaying a register does not change the "current" mode.

- 6 -

to

.c.fII Registers

CPU registers can be opened, displayed, modified, and closed.
There is, however, no notion of a 'next' or 'last ' register,
as there is with memory. The tR command is used to display
or open registers. When given with no arguments, fa displays
a standard set of registers. The lR command is also used to open
registers. First, the register .name is typed, followed by
iRe All output is in HEX8 or HEXl6 format based on the
size of the register. Consider the following examples:

* ill
PC ABC 0 E H L F IX IY SP AI B' CI 0 1 E' HI L' F'

7000 70 lC 03 17 E4 70 00 20 0000 l5FA 1958 00 00 00 00 B9 26 E9 90
*.

Recall that ia represents a control R. The register
names are:

$A $A' $IX
$F $F I $IY
$B $B' SSP
$C SCI $PC
$D $D ' $1
$E $E'
$H $H'
$L $L'

where $PC is the program counter and $1 is the interrupt
vector register. Recall that the character '$' represents
ESC unless otherwise noted.

*$AfR
*$n:tR

70 CR
0000 CR

The CPU registers are saved each time ZBUG is entered and
restored each time it returns to a user program. Thus, any
change to a register would affect what is seen by the user
program when it is executed •

.z.mlG Registers

ZBUG itself has several registers used in controlling its
operation. These are opened, displayed, modified, and
closed in manners similar to the above. Different commands
are used, however, and these will be discussed later.

- 7 -

IV. Changing Things

Memory, CPU registers, and ZBUG registers can be modified.
The technique is fairly simple - first", open the register.
Then, type an expr~ssion representing the desired new con
tents. Finally, close the register in one of the ways
described above.

Occasionally, a series of numbers is to be entered in memory.
An output mode, callea QUIET, is provided so that it is
possibl~ to open locations without displaying their con
tents each time. The command character "!" opens a
location in this mode.

*90001
9001
9002
*

1 LP
2 LP
3 CR

Open with no display. Put in
the value 1, then open the next
location, put in 2, and so on.

Note that QUIET mode behaves as HEX8 (except for display),
changing the location counter one byte at a time. Only the
low 8 bits of any expression input are significant.

Let's revisit example 1 and change the message.

*4413 ('E 'V LP
4414 'N 'R LF
4415 '0 '0 LP
4416 'R 'N LP
4417 'M IG LP I followed by a character
4418 '0 ,

LP has the ASCII value of the
4419 'u LP character.
441A 's • Cll
*4413 ('W LP
4414 'R LP
4415 'a L.P
4416 'N LP
4417 'G LP
4418 LP
4419 LP
441A LP
441B LP
441C 'c CR
*

Also, expressions can be used anywhere:

*4402: 4408 4400+34-4 CR
*4400+2: 4430 4408 CR

Registers are similarly altered:

*$PCTR 7000 4400 CR
*

- 8 -

Expressions are evaluated.
Change things back.

Change PC ~o 4400

Better Ways to Specify Locations

Clearly, debugging relocatable modules using only absolute
addresses is difficult at best. It is necessary to have a load
map from the linker and manually compute absolute addresses by
adding the module load address (from the load map) to the
offset of the desired location (found in the assembler
listing). ZBUG allows all input to be an expression,
eliminating the need for manual computation. However, a
better way is still desirable. ZBUG provides a 'displacement'
register which can be set to any value. If it is set to a
module address then relative addresses can be entered. The
format of a relative address is a number followed by the character
"'" (a single quote mark). Such a number is added to the value
in the D register of ZBUG and then the result is used in
place of the original number. (Don't be confused with the
Z80 D register. Here we are talking about a 16 bit register
in ZBUG.)

*fD

*8'.
0009'
OOOA'
*

0000

02 LP.
10 LF
13 CR

4400 CR TD opens the displacement
register. The old value is
displayed and a new one "entered.

The relative add"ress is followed
by the character to open the loca
tion in the desired mode.
Note that the addresses are
output in relative form.

To deal with the output of relative addresses, a dis-
placed output format is provided. This mode is called
DHEX16 and locations can be opened in this mode by using the
command character W[_. If a value is less than the D reg
ister, it is displayed in HEX16 format to avoid negative
displacements.

* 2 • [a a a 8 ' : 44 08 CR
*

In the above example, location 4402 is first opened in DHEXl6 mode,
then redisplayed in HEX16 mode, and then closed.

*io
%

iQ (for Quit) leaves ZBUG and
returns to RIO.

- 9 -

~ Symbols

Still, it would be nice to access the labels used in the source
program. Conveniently, ZBUG can do this. All global symbols
and module names are accessible but local labels are available
for only one module at a time.

There are several steps necessary to use this feature:

1) Assemble and link your program with the S and SYm options.
This causes the assembler to include the local symbols in
the object file and causes the linker to produce a file
with the same name as the procedure file but with a suffix
of d.SYM". The example at the beginning of section III
illustrates this.

2) Prior to beginning a debugging session, allocate memory
immediately following ZBUG by using the RIO command ALLOCATE
to reserve space for the symbol table. ZBUG will (on
command) load the user symbol table immediately following
itself in memory. It also does not interact with the RIO memory
manager while doing this - hence the need to do it manually.
In fact, it is not always necessary to do this allocation,
but if your program causes or performs any memory managem~nt
calls, it will, most likely, be necessary. .

3) Load your program and ZBUG with control going to ZBUG.

4) The TE and TL commands in ZBUG are used to load the
symbol table. TE is used to specify the name of the pro
cedure file and to load the symbol table in memory with
global symbols and module names. If the program has
a module with the same name as the procedure file, the
locals for this module are also loaded. (If no such module
module exists, then the message "??d is issued, but every
thing is otherwise okay.) The TL command specifies
a module name whose local symbols are loaded, re-
placing in memory the locals of the last module to be
there. (Recall that locals from only one module at a time
are available.)

Once loaded, any symbol can be SUbstituted in an expression
for any number. Symbols must be prefixed with ESC (which
is printed as a '$1).

- 10 -

In the following example, we will assume the assembly has been
done a~ready as shown above.

%A 8400 9400 1000
%EXAKPLBl.XCZ,ZB0G70

* tB EXAKPLBl. • XC. CB.
*"

Reserve 4K for symbol table.

Since there is only a single module here, both globals and
locals are loaded. (There aren't any globals in this example,
anyway.) Let's look around again:

*fD 0000 4400 ca
*$AVEC.. 02 laP
AVREQ 10 laP
AVDTA 13 [0013'
oooa' 44 LP
AVDL 24 C3.

'*
*$LlISG= 0024
*$MSG+~1(<00> t
0035 ' 'E C3. ...

Open location with label AVEC.

Redisplay AVDTA in displaced number
format.

Evaluate an expression.
Look at last character in message.

Needless to say, the symbols come in very handy •.

-. II -

v. Running Programs

The process of debugging supporte~by ZBUG is based on watching
the execution of the user program including control flow and
changes in data structures as execution proceeds. Thus, there
are provisions for executing part of the program and chen
having control return to ZBUG. Then, memory and registers
can be examined and modified and c'ontrol can be returned to
the user program. Through a series of steps such as these,
the point in the program at which "things go wrong" can be
isolated and, finally, bugs identifieq and obliterated.

Control can be transferred to the user program at any address.
It is possible to execute one or any number of instructions
and then have control return to ZBUG. This process is referred
to as 'stepping'. Up to eight 'breakpoints' can be placed
in the user program. A breakpoint is a connection between
ZBUG and the user program and is placed at a specific location'
in the user program. When control comes to that location,
the normal flow of control is halted and control comes to
ZBUG. Then, memory and registers can be examined as usual

,and control can be returned to the program at the breakpoint,
continuing execution as though nothing had happened. In a
sense, ZBUG has been 'inserted' between two locations in the
user program.

In the following several examples, it is assumed that the
sample program used above is loaded and that the symbol
table has been allocated and loaded.

First, let's just run the program. The tG command transfers
control to the address represented by the expression given
immediately before it.

*4400tG Start it up.
ENORMOUS CHANGES AT THE LAST MINUTE
%

Control ends up at RIO. Let's get back to ZBUG

%X 7000
*fQ
%

RIO goes back to ZBUG
Quit .from ZBUG. Back to RIO

Why the jumping back and forth at the end? Control is first
transferred to the sample program and then to RIO. ZBUG still
thinks the luser l program is running as it started the user
program and never heard anything to say that it was done. So
ZBUG is sitting waiting for, for example, the NMI ('BREAK')
button to be pressed (which transfers control to ZBUG). How
ever, once back at RIO, we are effectively through with the
run and the memory space allocated for ZBUG and the example
program has been deallocated. It is a good idea to tell ZBUG
that its through, too. .

- 1"2-

Next, let's backup and load the original program again:

%A 8400 9400 1000 This is not necessary if it
was done already in the last example.
The allocation is reset only by
issuing an appropriate DEALLOCATE
command or re-bootstrapping.

%EXAMPLBl.MCZ,ZBOG70

*fE EXAMPLEl.MCZ CR
*

Let's put a breakpoint at 4' (just before the call to SYSTEM).

*fD 0000 4400 CR
*4'TB
*

The tB command sets a breakpoint at the address specified by
its argument.
With no arguments, it lists all active breakpoints and their numbers:

*fB
OB 4404 IB 2B 3B 4B SB 6B 7B
*

Thus~ breakpoint number zero is set at location 4404. Run
the program:

*4400fG

BO 0004'
*TR Control came back to ZBUGi list

registers.
PC A B C 0 E H L F IX IY SP A' B' C' 0' E' H' L'

4404 70 lC CE 17 Fl 70 00 20 0000 4408 44FB 00 00 00 00 B9 2B E3
*

IY has been loaded. Now execute the next instruction:

*fs Single step

S SYSTEM
*
*$sp1R 44F9 Cll
*%: 4407 Clt
*%fB

The call to SYSTEM has been made.
Look at stack pointer.
Look in stack.
Place breakpoint there.

*
First, the CALL instruction was executed (by single stepping).
Control returned to ZBUG with the message "5 SYSTEM" inform-
ing the user that control came to it at the conclusion of a step

- 13 -

F' .
90

operation and the next instruction to be executed is at ad
dress SYSTEM. Then, the stack pOinter register is opened,
displayed, and closed. The symbol "%" has a special meaning
to ZBUG. In an expression, it has the value of the last reg
ister opened (or memory location opened). Thus, the command
%: opens the location whose address was just printed - in
this case, the top of the stack. Since the instruction just
executed was a-CALL, the value on top of the stack is the re
turn address, 0007'. In the next line, a breakpoint is placed
at that address, again using the symbol % to stand for the
last value ZBUG typed out. The above sample sequence is
frequently used when stepping through code: A subroutine call
is encountered and one wishes not to step through the sub
routine, but to continue stepping when it returns.

*Tp

ENORMOUS CHANGES AT THE LAST MINUTE

Bl 0007 I

Continue execution. The
ip command is used to
proceed from ~ breakpoint •.

This is the program output.

* The breakpoint is encounterei
and control returns to ZBUG.

The breakpoint was encountered when the system returned after
printing the message on the console. ZBUG is running again.
It is possible to start the program at the beginning again by
transferring control to location 4400.

It is desirable sometimes to have ZBUG list the registers after
each step and at each breakpoint. There is a location in ZBUG
called $RSWITCH that controls this.

*$RSWITCB. 00 leB. Put a I in.
*4400fG Start running at 4400.

BO 0004 1

PC A B C D E H L F IX IY SP AI- B' CI D' E' HI
4404 80 00 00 lF 4B 00 24 54 28C2 4408 44FB 24 00 00 00 B9 2B
*fp Proceed from last breakpoint.

ENORMOUS CHANGES AT THE LAST MINUTE

B1 0007'

L' F
E3 2~

PC ABC D E H L F IX IY SP AI B' C' DI E' HI L' F
4407 80 00 00 IF 4B 00 24 54 28C2 4408 44FB 24 00 00 00 B9 2B E3 2~

*
This time the registers were automatically listed when the
breakpoint was encountered •.

*fO Quit, return to RIO.

- 14-

VI. A Second Example

Now, let's go through another, more complex, example. This
example is a program to sort numbers using the bubble sort
algorithm. Although the bubble sort is one of the least
efficient sorting algorithms, it serves well to illustrate the
use of ZBUG. The program is (somewhat unnecessarily) broken
into three modules to illustrate techniques used when dealing
with multiple modules.

The first module is the main loop of the program. It first
generates the numbers, then goes into a loop that makes a pass
over the numbers, exchanging any two that are out of order,
and finally prints the resulting array of numbers.

The second module, called EX2.2, contains the routine that makes
a pass over the array, exchanging any two consecutive numbers
not in ascending order. If an exchange is made, a flag is set.

The third module contains the array generating procedure and
the output conversion and RIO interface code.

The listing of the source code follows. It is recommended that
you refer to it continually while following the subsequent
discussion.

..

- l~ -

; EXAMPLE 2 - BUBBLE SORT IN SEVERAL MODULES
;
; THE MODULES ARE:

. ,
;
i
;
GLOBAL SWAP

GLOBAL
GLOBAL

EXTERNAL

EXTERNAL

BEGIN: LD
CALL
LD
LD

. ,
ARAY
LOW,HIGH

LOAD,PRINT

PASS

HL,ARAY
LOAD
(LOW) ,HL
(HIGH) ,DE

1) READ NUMBERS, MAIN SORT LOOP,
PRINT NUMBEl{S

2) INNER SORT LOOP (MAKES ONE PASS)
3) INPUT AND OUTPUT.

Element swapped flag
i Holds the actual numbers

Point to first and last locations . of area to be sorted • ,

i Routines to read and print the
; numbers
i Make one pass over the array.

; -> Beginning of array of numbers
; Read the numbers and return:
; index of first element, and
; index of last element.

; Loop here for each pass over the array. Each pass moves the
i largest number to the end of the array. If, after a pass, the
; swap flag is still zero, then no numbers were exchanged and the
; array is sorted.

NPASS: XOR A
LD

LD
LD
CALL

LD
OR
JR

(SWAP) ,A

HL, (LOW)
DE, (HIGH)
PASS

A, (SWAP)
A
NZ,NPASS

All done, print results
LD BC,ARAY
LD HL, (LOW)
LD DE, (HIGH)
CALL PRINT

Back home to RIO
RET

LOW:
HIGH:
SWAP:

ARAY:

DEFS
DEFS
DEFS

DEFS
END

2
2
1

100

- 16-

; =,0
i Clear swap flag.

; HL = index of first element
DE = index of last element

i Make a pass over the array

i See if any exchanges were made

i Yes, pass over the array again.

BC -> array
; HL = index of first element
; QE = index of last element

; Index of first element
; Index of last element in. array
; Swapped elements flag

; Space for the array of numbers

MODULE 2 OF EXAMPLE 2 - PASS OVER THE ARRAY EXCHANGING ELEMENTS
OUT OF ORDER

GLOBAL PASS
EXTERNAL ARAY,SWAP

~ i PASS
PASS - Make a pass over the array.

A single pass is made over a specified area of memory. Any
adjacent numbers out of order are exchanged. If any exchanges
are made, th.e SWAP flag is set.

HL = index of first element in ARAY
DE = index of last element
SWAP flag is zero
CALL PASS
<RETURN> SWAP flag set if any exchanges are made.

PASS: LD
LD

(last) ,8L
(current) ,DE

Save indices

i Loop here for each element. See if done.
NCHR: LD HL,(current)

INC HL i Move to next
LD (current),HL
DEC HL ; HL = index if next elt to look at.

LD
OR
SBC
RET

ADD

LD
ADD
LD
INC
CP

JR

LD
LD
DEC
LD

LD
LD
JR

current:DEFS
last: DEFS

END

DE, (last)
A
HL,DE
Ne

HL,DE

DE,ARAY
HL,DE
A, (HL)
HL

. (HL)

C,NCHK

B, (HL)
(HL) ,A
HL
(HL) ,B

A,l
(SWAP) ,A
NCHK

2
2

; DE = index of last elt to look at.

; :; Curr - last
; Current >= last, all done with
; this pass.
; Restore HL

i HL -> element

; Compare ARAY[current] and
; ARAY[currnet+l]
; No exchange necessary, move to next
; element

; Exchange elements

; Set swap flag .

; Index of current element to look at
; Index of last element to look at
; of module 2

17 -

. ,
; . ,
; EXAMPLE 2 MODULE 3 - Generation and output of numbers

GLOBAL LOAD, PRINT

; ; LOAD
; LOAD - Generate some random numbers to be sorted.

; HL -> array area. This area must be at least 30 bytes long.
; CALL LOAD
; <RETURN> HL = index of first number
; DE = index of last number

LOAD: LD
LO

; Loop here
NUMB: LO

ADD
DJNZ

LO
LO
RET

i iPRINT

for

A,13
B,30

each number
(HL) ,A
A,lS7 ; Next number = current + 157 MOD 256
NUMB

HL,O
DE,29

; Low index
; High index

i PRINT - Print a series of 8 bit numbers

; Unsigned numbers are output to the console, converted from
; a specified area of memory.

; Be = Array base address
; HL = index of .first number to output
; DE = index of last number to output
; CALL PRINT
; S~ETURN> all done

PRINT: ADO
EX
ADD
EX
INC

HL,BC
DE,HL
HL,.BC
DE,HL
DE

; -> First number

i -> Last number

; -> Last+l

- 18" -

i Loop here for next number
PRTNXT: PUSH HL

OR A
sac HL,DE
POP BL
RET NC Current > last, done

LD A, (HL) i = Number to print
PUSH HL
PUSH DE i Save DE,HL
CALL OUT8 i Print A
POP DE
POP HL
INC HL
JR PRTNXT i Loop for next

i iOUT8
; OUT8 - Print an 8 bit number in A

OUT8: PUSH AF
RRA
RRA
RRA
RRA · Left digit first I

CALL OUT4
POP AF
CALL OUT4 i Then right digit

LD A,CR
CALL OUTCH · Print a CR I

RET ; Wasn't that easy?

; iOUT4
; OUT4 - Output a digit in the right 4 bits of A

OUT4: AND OFH
CP 10
JR C,QUT4B · Hex is so nasty! ,
ADD A,'A'-('9 1 +l) ; Convert to ABCDEF

OUT4B: ADD A, 10 1 Make a digit
CALL OUTCH · Output a character I

RET

i iOUTCH
i OUTCH - Output a character to the console.

OUTCH: LD (chr),A i Set the data area

; Prepare the vector and call RIO
LD HL,1
LD (DL) ,HL
LD IY,VECTOR
CALJ:, SYSTEM

LD
Cl?
RET

A, (ccode)
80H
Z

; Panic - RIO error
PANIC: JR PANIC

VECTOR:
DEFB
DEFB
DEFW

DL: DEFS
DEFW
DEFW

ccode: DEFS

chr: DEFS

SYSTEM EQU
CONOUT EQU
WRTLIN EQU
CR EQU

END

CONOUT
WRTLIN
chr
2
o
a
1

I

l403H
22
IOH
I •

i Check completion code
; OK?
; Yes

; Hang up here
; (this will never happen)

; Console
i Write
i -> Buffer
; Length
; Completion return address
; Error return address
; Completion code

; A short buffer

; RIO entry point for MCZ
; Console logical unit number
; Write code
; Carriage return

- 20 -

The assemblies are performed as follows:

%ASII EX2 .1. (S); ASII BX2.2 (S); ASII BX2.3 (8)

%LZRK $=4400 EX2.1 EX2.2 £X2.3 (SY)

Next, we want to try the program on the chance that it will work
the first time. Either we can resist the temptation or just try
it (it goes into an infinite loop). With that out of the way,
it's time to find the bug(s). (Note the optimism in writing
"bug(s)", implying that there might be just one.)

We will use ZBUG with the symbol table of the program. Because
the program was assembled and linked with the SYM option, the
file EX2.l.SYM exists and contains the symbol table for use
by ZBUG. Space for the symbol table should be allocated
immediately above ZBUG in memory. To find the low address to
use, type:

% BXTBAC~ ZB0G70

(We are still using ZBUG70 here.) The first address to allocate
is the high address of ZBUG rounded up to the next 80H byte
boundary, in this example 8400H. This program doesn't need
much space but since there is a lot available, weill allocate
IOOOH bytes. (Again, this is not necessary if already done.)

%A 8400 9400 1000

The space in memory above ZBUG is now reserved so that RIO
won't allocate any space in that area. Next, load the example
program and ZBUG:

%EX2.J.,ZBUG70

*fB

*fD

EX2.1 CR.

0000 $BEGIB ca

and off we go.

Load the global symbols

Set displacement register
to beginning of first module.

Next we must execute the program slowly and in parts, checKing
the results of each part. By dOing this, we can look for a part
of the program that is not functioning properly and also verify
that other parts are functioning properly. The subroutine

'LOAD is the first one called, let's break there.

*$LOADtB
*BEGIBfG

BO EX2.3
*

Set breakpoint at entry to LOAD
Begin execution at label BEGIN.

The breakpoint was encountered
and control comes back to ZBUG.

- 21 -

Notice that the location indicated was EX2.3 rather than LOAD.
An examination of the listing reveals that LOAD is the first
address in the module EX2.3. When listing addresses, ZBUG
prints the first symbol it finds that matches the address so
that module names tend to appear instead of other labels on
the first location of a module.

Let's proceed to the return of the LOAD subroutine. It should
fill the array ARAY with random numbers and return the indices
of the first and last elements of the array in registers.

*$SpfR 4679 CR
'k\: 4406 Cll
*%fB
*

*tp

Bl 0006 '

*tR

This is the return address in
the stack. Place a breakpoint
there. Recall that 1%' has the
value of the last number
printed.

Proceed from current breakpoint.

The second breakpoint is
encountered.
Look at the registers.

PC ABC 0 E H L F IX IY SP AI Bf C' 0 1 E' HI LI F'
4406 73 00 CE 00 10 00 00 35 0000 15FA 467B 00 00 00 00 B9 2B E3 90

*
HL has zero, a reasonable number for the index of the first
array element. DE has 10, again a reasonable value for the
index of the last element. Let's look are the array itself:

*$ARAY.
0035 1

0036 '
0037 '
0038'
*

D6
FF
FF
FF
FF

LF
LF
LF
LP
CD.

These numbers are not reasonable
at all!'

Something must be wrong with the LOAD routine - it generates
~ poor random numbers. We can restart the program from
the beginning and this time go through LOAD in more detail.

- 22 -

*$BBGIBtG
BO EX2.3
* tL EX2.1 EX2.3 CR

'II$RDIIBiB
*fp

B2 NUMB
*fR

The breakpoints are still in,
and we arrive at LOAD.
Change the local environment
to the third module, as that is
where LOM is. .

, Break at NUMB, in the loop.
Go 2 instructions forward to
there.

Check the registers.

t.

PC ABC D E H L F IX IY SP A' B' C' D' E' H' L' pi
44CC aD IE CE 00 ID 44 34 35 0000 lSFA 4679 00 00 00 00 B9 2B E3 90

*$ARAY=4434
*

Control is now at the label NUMB, the beginning of the loop to
generate and store random numbers in ARAY. HL should pOint to
the first element. Printing the registers reveals that HL=4434.
In the next line, we ask ZBUG to evaluate the expression $ARAY.
It has the value 4434, verifying that HL has the correct value.
Register B has the count of numbers to be generated, lEe Let's
go through the loop a few times and see what changes (or fails
to).

*lOfp

B2 NUMB
*

The command lofp tells ZBUG to proceed from the last breakpoint
and also not to report the occurrence of the breakpoint
(breakpoint number 2, in this case) until it has been
encountered lOB times. Thus, the registers should now look as
though the loop had been executed lOB times.

* TIt
PC ABC 0 E B L F IX IY SP A' B' C' D' E' HI L' F'

44.CC DO OE CE 00 ID 44 34 88 0000 lSFA 4679 00 00 00 00 B9 2B E3 90

Note that registerS has been decremented 10H times as expected,
however, HL seem unchanged. A glance at the code evokes an
"ah-ha" experience as we see that an

INC BL

instruction is missing from the loop. While we have a moment,
let's look at another way to use breakpoints with loops. A
command like lOfp proceeds through the next 10 occurrences of
the breakpoint at the location to which the proceed command
sends control. Such a count can be established as a default by

- 23-

setting the N register (a ZBUG register unrelated to the Z80)
to a certain number. For example, suppose we wish to step
through the loop 3 iterations at a time:

*2fB 0001 3 CIt

*fp

B2 NUMB
*$BfR DB CD.
*TP

B2 NUMB
*$BfR 08 Cll

*$BfR 44 Cll
*$LfR 34 Cll

*2tli 0003 1 CIt
*2fK 0003 1 ca

Set N register for breakpoint
2 to 3.
Then proceed.

B has been decremented by 3

Three mor e t,imes
B is decremented by 3 again.

HL hasn't changed.

Reset Nand K registers to 1.

The K register is the trip-count used to control each
breakpoint. Each time a breakpoint is encountered, it~ trip
count is decremented. When the count reached"zero, the break
is reported on the console. Otherwise, execution of the user"
program continues. A command of the form nTp sets the K
register of the breakpoint at the current location to n. If
control is resumed from a location that has no breakpoint, the
n is ignored. When the trip-count reaches zero and the break
is reported, the K register is automatically reset to the value
in the corresponding N register. Thus, setting the N register
for a particular breakpoint establishes a default trip-count.

Now that the trip-count for breakpoint 2 is back to 1, let's
check that the loop is producing the proper random numbers.
Each one should be 157 (90 hex) MOD 256 from the last.

*$AfR 8B Cll
*fp

B2 NUMB
*$AiR 28 CR

*8B+9D=Ol28
*

Go through the loop again.

This is the new value in A.

Thus, the k register is advanced properly each time through the
loop.

*fQ
%

%EDIT EX2.2.S

Back to RIO to EDIT in the fix.

- 24 -

Make a change so that LOAD reads:

LOAD: LD
LD

A,13
B,30

; Loop here for each number
NUMB: LO (HL) ,A

INC HL
ADD A,157 ; Next number = current + 157 MOD 256
OJNZ NUMB

Assemble and link:

%ASM £X2.3 (S);LIRK $=4400 EX2.~ EX2.2 EX2.3 (SY)

We didn't deallocate memory so the space for the symbol table
is still protected. Start the debugging process again.

%EX2.~,ZB0G70

* TB BX2.1 CR.
*fD 0000 $BEGI. CR .

Now confident that LOAD works, we will break initially at NPASS,
the loop point in the main module.

*$RPASsfB
*$BEGIBfG

BO NPASS
*$ABAY. 00 LF
0035 1 AA LF
0036 r 47 LF
0037 I E4 LP
0038 1 81 CR
*fR.

These are more reasonable
numbers to be sorted.

PC ABC 0 E H L F IX IY SP AI B'. CI D' E' HI L' FI
4400 73 00 CE 00 lD 00 00 35 0000 l5FA 467B 00 00 00 00 B9 2B E3 90

Thus, coming back from LOAD we see that ARAY has reasonable
numbers in it. aL has the low index, zero, and DE has the high
index, OOlD. Let's check the variables LOW and HIGH:

*$LOII:
HIGH
*

0000 LF
OOID CR.

LF opens next word

They are ok. We have a breakpoint at NPASS, the loop point of
the main loop. If we proceed, control should come to NPASS
(causing a break) for each pass over the array. Eventually,
control will go out of the loop, eventually arriving at the
routine PRINT. We will place a breakpoint there to catch
control when it gets out of the loop.

- 25 -

*$PB.DJT1B
*fp

Bl PRINT
*

Go ahead and make a pass
over the array. Control
should return to ZBUG when
the pass is over and control
loops back to NPASS.

Why did control go to PRINT? Could the array already be sorted?

*$ARAY.
0035'
0036 I

00 LF
AA LF
47 C1l

No, these numbers are not in order. The code says that contr'ol
comes out of the loop only if SWAP (a flag) is zero.

*$SWAP. 00 CR.
*

It is zero and this implies that the problem is in the second
module in the subroutine PASS. Let's look at that.

* fL· EX2 .1 EX2.2 CR. Change the local environment.

We want to begin again and watch as PASS is executed. Where
are the breakpoints now?

*1B0 4400 Bl 4409 B2 B3 B4 BS B6

The command tB with no arguments lists the breakpoint numbers
and their addresses. Only two breakpoints are active at the
moment. Unfortunately, we have to figure out where those
addresses are. We can guess and check:

*$P1UBT=44D9
*$BPASS= UNO??

*$PASS=4498
*$LOAD=44C8

PRINT is one
The symbol NPASS is in
the first module and we
no longer have access to its
locals.
PASS isn't one.
LOAD isn't one, either.

B7

Well, at this point we can guess that NPASS is breakpoint 0 and
go on. Let's break on entry to PASS and check its execution
carefully.

*$PASstB
*$BEGIRfG UNO??
*$EX2. UNO??
*4400tG.

S.et the break, then start
over. Oops.

Don't forget that BEGIN is 10cal to module EX2.1. Locals are
accessible from only the current module; in this case we are in
EX2.2. Module names and globals are always available and our
program begins at the first word of the module EX2.1 so we could
use that name to start running. Unfortunately, symbols that
include the character '.' can only be used in the iE or iL
commands so we must resort to the old reliable form - absolute
hex addresses!

BO 0000'
*TD EX2.1 $PASS CR

*fp

B2 EX2.2
*

The first break is at NPASS.
Set the displacement register
for the module we're in.

This break is at PASS.

Let's look at the interaction above and note some details. The
displacement (Tn) register is not changed by changing the local
environment (with TL). Thus, the displacement register has been
EX2.1 the whole time. When breakpoint a was encountered the
addresses was ~rinted as 0000' because:

1) There was no symbol available that matched the address
(NPASS is local to EX2.1), and

2) The displacement register was less than the address
NPASS so that the displacement would be positive.

When the address printed in that form, we realized that we
hadn't changed the 0 register to the beginning of the module
currently being investigated, EX2.2. The symbol used to set
it was PASS which fortunately has the same value as EX2.2 since
EX2.2 contains the character '.' and can't be used to set a
register.

Next, let's move forward a few instructions to the first place
that something interesting happens: the test for pass complete.

*$BCBKiB
*ip

B3 NCHK
*41s

S OOOF'
*S 11

*is

Step 4 instructions.

Control returns to ZBUG.
Oops, forgot to hold down
the 'control l key.
Step one instruction.

S 0013' Now, DE=last, HL=current~
*fR

PC ABC D E H L F IX IY SP AI BI C' 0 1 E' HI LI FI
44AB 00 00 34 00 00 00 lD 40 0000 lSFA 4677 00 00 00 00 B9 2B E3 90

- 27-

At this point it appears that DE, the index of the last element,
is zero, and HL, the index of the first element, is OOID.
This is clearly wrong, reversed, in fact. A look at the code
at the beginning of the subroutine reveals a conflict between
the code and the comments above about the calling sequence. If
we believe the comments to be correct, the code reverses DE
and HL at the entry to PASS. If we step a few more to see what
happens:

*2tS

S 0016'
*fs

S 44lB
*

Control returned to the
caller, in NPASS.

We could, at this point, edit, reassemble, and relink but
instead let's fix the code (since it's easy) and go on debugging.
Be sure to note in a log that the bug is found and to edit in
the fix.

If we reverse the addresses in the two store instructions at the
beginning of PASS we can go on looking for more bugs.

*$PASS+1[002E' $curren C1l
*$PASS+3+2[002C' $last CR
*

Here, the address in the first instruction is displayed as a
displacement and the new value (the address of 'current') is
typed to replace the value at that location. Then the address
in the next instruction is displayed (the first instruction is
three bytes long, there are two bytes before the address in
the second instruction) and replaced with the proper address.
Note that the symbol 'current' must be entered as 6 characters
as the assembler recognizes only that many. PLZ identifiers
and module names, however, may be longer.

*4400fG Start over again.

BO 440D Break at NPASS.
*fp

B2 EX2.2 Break at PASS.
*fp

B3 NCHK Break at NCHK in PASS
*

Let's check that I last' and 'curr.ent' have the proper values:

*$last: 0010 t
curren 0000 CR
*fp

B3 NCHK

*fp
B3 NCHK
*3iX

last is ok,
current is ok, also.

We've gone through the PASS
loop once.
Do it again.

Delete breakpoint #3.

The tx command with no arguments deletes all breakpoints; with
a single argument it deletes the specified breakpoint. The
argument is the breakpoint number, not the address.

*fp
BO 4400

*$SWAP. 01 CR
*fp

B2 EX2.2

This break is at NPASS,
main loop of EX2.1.
SWAP is set, as expected.

Break at PASS.

It looks like PASS may work; let's not break there any more but
rather look at the array as it changes.

*21%
*fp

BO 440D
*fp
BO 4400

*fL EX2.2 £X2.l CR
*$BIGH: 0010 CR
* $ABAY, $ARAY+'.

We've been through the main
loop a few times, let's look
at it again.

4434 00 47 lE 81 58 AA 92 2F BB 69 06 A3 40 CC 7A 17
4444 B4 51 DO 8B 28 C5 62 E4 9C 39 D6 EE F5 FF

.G •• X*./;i.#@Lz.
4Q].CEbd.9Vnu.

*
In the above, first the local environment is changed back to
EX2.l. Then the variable HIGH is displayed. Finally, a block
of memory is dumped in hex and ASCII.. The format of the dump
command is

low, high.

where low and high are the lower and upper addresses to be
dumped. (The I.' is the command char~cter.) In the above', the
low address is ARAY, the first location of the array. The
special character 1%' has the value "the last number typed out";
in this example it has the value 0010. Thus, the high address
is ARAY+OOID.

- 29 -

*3Tp

BO NPASS
*$ARAY,$ARAY+ID.

Loop 3 more times.

4434 00 IE 47 58 2F 81 69 06 92 40 A3 7A 17 AA 51 B4 •• GX/.i •• @#z.X<
4444 8B 28 BS 62 CS 9C 39 CC D6 DD E4 EE F5 FF • (;bE.9LVjdnu.

*
Here we can see that the larger numbers are mov.ing to the end
of the array. Let's let the program go and finish sorting.

*otx
*TBO
*Tp

S1 PRINT
*

Bl 4409 B2 B3
Delete breakpoint #0.

B4 BS B6 B7

Break at PRINT routine.

The sorting loop has finished. Control is now at the PRINT
routine. Let's look at the array:

*$ARAY,$ARAY+ID.
4434 06 00 17 IE 28 2F 39 40 47 51 58 62 69 7A 81 8B
4444 92 9C A3 AA B4 BS CS CC D6 DO E4 EE F5 FF

• ••• (/9@GQXbiz.
•• #*4;E~Vjdnu.

*
Terrific, the numbers are sortedl Next, we should trace through
the output code some.

*1'L EX2.1 £X2.3 CR
*$O~8fB
*fp

BO OUTS
*$AiR 06 CR.

*fp

Change modules.
Break at number output code.

A should have the number to
print (the first one) •
Onward.

- 30 -

When we broke at OUT8, the number printing routine, register
had the first number to print. We then let control proceed
expecting to break again when the second number was to be au
Unfortunately, after waiting several seconds, nothing has
happened. Control seems to have gone into never-never land (or
some infinite loop, at least). We can cause control to return
to ZBUG by initiating a non-maskable interrupt. This is done
by pressing the 'BREAK' or 'NMI' button on the MCZ panel (the
~utton is next to the reset button). (The button might also
be labelled'MON'.) Our program has gone away so it's time
to press it. .

<press BREAK button>
??B PANIC
*

When ZBUG is entered in this way it behaves as though it had
encountered a breakpoint but prints ??B instead of the number.
PANIC is the address at which the. break occurred. Checking the
listing, we see that control goes to PANIC, an intentional
infinite loop, if RIO returns an error when. trying to print
a character on the console. Register A has the error number.

*fB.
PC ABC 0 E H L F IX IY SP A' B' C' 0' E' H' L' F'

4425 42 44 34 44 52 00 00 87 0000 4527 466B 00 00 00,00 B9 2B E3 90
*

Code 42 is 'Invalid Unit', not something expected when printing
on the console. What unit did RIO receive in the parameter
vector?

* $VEC'.rOR. 16 CIt Not the right number.

What is CONOUT, then?

*$COROO'J!=:l6
*

With that hint, we notice that CONOUT is equated to 22, not 2.
With that error discovered (and another one remaining to edit
out) we end the debugging session.

*tQ

In. the course of this example several ZBUG commands, features,
and general techniques have been demonstrated. Here is a
brief summary.

- 31 -

l

Breakpoints

niB
iB
nix
ix
niN

niK

ip
niP

Set a breakpoint at location n
List the beakpoints
Delete breakpoint number n
Delete all breakpoints
Open the breakpoint count register for
breakpoint in
Open the trip-count register for
breakpoint #n
Proceed from breakpoint
Proceed from breakpoint and set trip
count for this oreakpoint to n.

When a breakpoint is encountered, control comes to
ZBUG. The trip-count for the breakpoint is

.decremented and, if zero, is reset to the value in
the N register for the particular breakpoint. The
breakpoint number and address are then reported to
the user. If an RST 38 instruction or 'BREAK'
interrupt is encountered, control goes to ZBUG which
prints the message 111B' and the address at which
the break occurred.

Stegping

is
nis

Step one instruction
Step n instructions

After a stepping operation is completed, control
returns to ZBUG which prints the message '5' and the
address of the next· instruction· to be executed.

EnyirQnment

iL

iE

io

Open the local environment register.
Input is a module name (no leading ESC)
Open the environment register. Input is
a program name (no leading ESC)
Open the displacement register

When the ZBUG D register is nonzero,. addresses are
printed in symbolic form if an appropriate symbol is
accessible, in relative form if the displacement is
non-negative, and in hexadecimal otherwise.

Starting ~ Program

niG Begin execution at location n

- 32 -

Symbols

Symbol names may be used freely in expressions. The
symbol must be either global or local in the module
specified by the L register to be accessible.
Symbols from the assembler must be no more than six
characters. The character I.' may not be used in
a symbol except in a program name (E command) or
module name used in a response to the iL command.

Using ~ ~ Value Printed ~ ~

The character' 1%' has the value of the last number
output by ZBUG.

pumping Blocks ~ Memory

first,last. will dump locations first to
last in HEX8 and ASCII modes.

The ZBUG Reference r~anual gives a complete but terse description
of all the ZBUG commands. The quick reference sheet, one of the
appendices of the reference manual, lists all the commands and
other information useful to have beside you when debugging at ,"
the terminal.

- 33- -

PART 2: ZBUG REFERENCE MANUAL

I. CONVENTIONS

i<character>

$

CR

LF

ESC

DEL

*

means· control (CRTL) <character>

means the escape key (ESC) unless
otherwise noted

means the "return" key

means the "line feed" key

means the escape (ESC) key

means the DEL or RUBOUT key

ZBUG's prompt character (precedes
most examples),

II. ZBUG GENERATION, ENTRY AND EXIT

Unlike the PROM debugger, ZBUG must be loaded into memory
explicitly in order to be used. This may be done either by
linking ZBUG directly with your program or by generating a
procedure file in a specific area in memory and loading it
with your program at the RIO command level. The relocatable
version of the ZBUGger is called ZBUG.OBJ and is referenced in
the LINK command as ZBUG. To produce a procedure file version,
a command sU,ch as

%LINK $=7000 ZBUG (N=ZBUG70 NOM ST=O)

can be given. (The "$" is the real $.) This example pro
duces a file called ZBUG70, containing the ZBUGger which can
be loaded with your program by

%your.prog,ZBUG70 <optional parameter list
for your program>

Control goes to the ZBUGger following this load. Note the
convention of including the address of the debugger in the
file name (i.e., ZBUG70 implies starting address 7000).

- 3,4 -

The ZBUGger can be manually started at its first word address
(7000 above). Once a user program in which breakpoints have
been placed has been started, control comes to-ZBUG if a
breakpoint is encountered. Control will then also come to
ZBUG if the NMI (BREAK) button on the console is pressed.

Control can be returned to the RIO command interpreter by
issuing the iQ command:

"Ta
% (control has ret~rned to RIO)

All breakpoints are removed.

~ Symbols

In order to have ZBUG know about the labels in your assembler
program, the options to produce a binary symbol table file
must be selected at assembly and link time. An example
illustrates:

%ASM MODI (S)
%ASM MOD2 (S)
%LINK $=4400 MODI MOD2 (SY)

The S options on the ASM commands cause the assembler to append
the symbols to the binary file so that the linker can combine
them into a binary symbol table file. The SY option on the
LINK command causes said file to be created (with extension
.SYM). This file name can then be input to ZBUG in the E
(Environment) register (See IV).

- -·35-

III. ERRORS AND DELETING COMMANDS

The error messages are:

?? something is wrong

OVF?? a number was out of range (generally
too big for context)

DISK ERROR xx

liND??

Correcting Errors

the specified error occurred while
trying something with symbol files

a symbol given is undefined.

THERE IS NO BACKSPACE CHARACTER

Mistakes made while typing numbers can sometimes be corrected.
Only the rightmost four digits are accepted, so typing several
zeros and retyping the number may work. Also, if an incorrect
number is typed in an expression it can sometimes be later
subtracted and the correct number added.

Pressing DEL generally gets you out of anything without modifying
register contents or taking other actions.

IV. EXPRESSIONS, SYMBOLS AND DISPLACEMENTS

Many inputs to ZBUG are expressions. Any expression may
consist of the elements described below. Several different
modes of input are accepted as elements in expressions.
These may be combined using one of several operators.

Elements in Expressions

Each element has a 16 bit numeric value. Whether the value
is treated as 16 bit or not is dependent on context. In
computing expressions, however, 16 bit arithmetic is used.

The legal elements are:

<hex number>

<hex number>'

$<symbol>

'<character>

$ (real $)

%

The rightmost four digits of the
number typed are" used. Upper or
lower case characters for A-F are
accepted.

The rightmost four digits of the
number typed are added to the

. contents of the D register, and this
value is used. This form is useful
for specifying addresses in relocat~
able modules by setting the D register
(see below) to the module origin and
then inputting the addresses on the
listing with the "In sign to form
the correct absolute address.

The <symbol> is looked up in the ZBUG
symbol table and the corresponding
value is used in the symbol's place.
See below for a description of how to
gain access to your program's symbols.

The value of the ASCII code for
<character> is used.

The location of the last memory
location opened is used.

The value of the last register opened
or the last expression .evaluated with
the If=" command is used.

Elements may be preceded by a unary If+" or "~" sign and combined
with the operators "+", "-", "*" (multiply), and "I" (divide).
Expressions are evaluated left to right with no operator
precedence.

- 37 -

Eyaluating ~ Expression

The It=" command can be used to output the value of an expression.

*n=

where n is an expression whose 16 bit hex value is
output.

Loading .the. Symbol Table

Assuming that a binary symbol table has been produced as
described in Section II, the iE and iL commands can be used
to load the ZBUG environment.

The symbol table is loaded immediately following ZBUG in
memory. Hence, IT IS A BAD IDEA TO HAVE CODE OR DATA-FOLLOWING
ZBUG IF YOU PLAN TO USE THE SYMBOL TABLE COMMANDS. Also, no
check is made to prevent the symbol table from running past
the end of physical memory. The iw command reports on the
bounds of ZBUG and the current symbol table.

ZBUG does not interact with the RIO (Rev. F and later) memory.
manager. Manual allocation of space for the symbol table is
advised, (and usually necessary) •

The binary symbol file is made known to ZBUG by issuing the
jE (ENVIRONMENT) command. fE types the name of the current
symbol file and accepts the name of a new one, if desired.
The name must. be entered WITHOUT the .SYM extension.

*fE BASIC
*fE BASIC NEWPROG
*

In this example, first the symbol file BASIC.SYM is speCified,
then the file NEWPROG.SYM is selected. The global symbols and
module names are loaded into the ZBUG symbol table upon specifi
cation of this command. The local symbol portion is initialized
to the symbols from the ·module of the same name as the symbol
file, if any. If no such module exists, then a question mark
is generated. The globals and module names, however, are always
loaded.

Local symbols in a module can be loaded by specifying the module
name in response to the iL (LOCAL) ·command's prompt:

*fL INFORM
*fL INFORM SCANNER

- 32 -

Here the module INFORM has its locals loaded first and then
the module SCANNER has its locals loaded, overwriting the
previous set of locals. You can thus have locals of only one
module active at a time. . .

NOTE: ZBUG uses RIO unit 20 to load the symbol table. There£ore~
user programs should avoid that unit.

The bounds on the symbol table 'and ZBUG are reported by the iw
command.

*iw 7000 8323 85F3

Here ZBUG occupies locations 7000 to 8323 and the current symbol
table (including any locals loaded) occupies locations 8323 to
85F3. Great care should be taken to prevent the symbol table
from overwriting anything or running past the end of memory.

Reserying Symbol Table Space

Space for a symbol table immediately following ZBUG can be
reserved as follows:

1. Link a version of ZBUG as described above. (Here, we wil~
assume it was called ZBUG70.)

2. Use the RIO command EXTRACT to. find the highest address
used. Round this number up to the next 80H byte boundary.

3. The size of the symbol table can be guessed very roughly
at lK for each 20 pages of source. Allocate sufficient
memory starting at the address calculated above. Unless
memory space is very scarce, it doesn't hurt to overestimate;
once the symbol table is loaded, the iw command can be used
check that sufficient space was allocated.

For example:

%EXTRACT ZBUG70
LOW ADDRESS = 7000 HIGH ADDRESS = 83A2

%ALLOCATE 8400 A400 2000

This reserves 8K of space.

- -39 -

~ Displacement Register

The D register is used for two purposes:

(1) To supply a basis for numbers entered as relative
(i.e., with the "I" suffix), and

(2) to supply an origin from which addresses output
by ZBUG will be offset.

When an address is output and the D register is nonzero, a
symbol table search is performed to find a symbol with the
v.alue of the address to be output. If found, the symbol name
is output; otherwise the address is output as a 16 bit hex
number if it is less than the value in the D register, and"
in "displaced" mode if it is not. Thus, relative addresses
are never output as negative numbers and setting the D register
to -1 will force ·the symbol table search but never output in
relative hex mode.

To set the 0 register, the command TD is used:

*iD 0000
*iD 0000 $MODB

Here the D register is opened by typing TD but not modified
(CR is pressed). Next, it is again opened and the value of
the symbol MODS (probably a module name) is placed in it. A
more complete discussion of opening registers is given in
Sections V and VI.

V. MEMORY COMMANDS

Memory and registers can be displayed in one of several output
modes. They are:

HEX8
HEXl6
DHEX16

ASCII
QUIET

8 bit hex
16 bit hex
16 bit hex displaced from the 0 register as
described in the previous section
as a 7 bit ASCII character
no output

- 40 -

ZBUG maintains a "current" output mode which is set as the
most recently specified of one of the above. The output mode
may be explicitly specified by issuing one of the following
commands:

* HEX8 mode
*: HEX8 mode
*[DHEXl6 mode
*(ASCII mode
*1 QUIET mode (no output)

These characters are also used in conjunction with one or two
parameters: to open a specified location or to dump a range
of locations, respectively.

Opening a register is analogous to opening a box: you can
examine and/or modify the contents when the box is open, and
you cannot when the box is closed. When a memory location
is opened, the contents are displayed in the mode selected by
the command that opened it; or in the current mode, if the
command that caused the location to be opened selected no mode.
Then an expression to replace the contents of the location cari
be optionally input followed by one of:

CR to close the location (rep~acing the contents
if new contents were input)

LF to close the location as in CR but then open
the next location

i to close the location as in CR but then open
the previous location

DEL to close the location immediately with no
alteration

to redisplay the location in HEX8 mode
: to redisplay the location in HEXl6 mode
(to redisplay the location in ASCII mode
[to redisplay the location in DHEXl6 mode

The contents of the location are n.ever changed if an error
(message ?7) occurs.

Memory locations are opened in one of the above modes with
the command:

*nc

where c is one of ., :, (, !, or [.

- 41-

LF and i issued as single commands open the next or last location
in the ZBUG current mode (next or last from whatever location was
last open) •

Dumping Memory

A range of locations can be dumped by issuing one of the follow
ing commands:

*n,m.
*n,m(
*n,m:

n,m. and n,m(produce dumps in HEX8 and ASCII modes (combined)
of locations n through m. n,m: produces a dump of locations
n to m output in HEXl6 mode. The dump can be interrupted by
pressing any key.

- 42"-

VI. BREAKPOINTS, CPU REGISTERS, AND STEPPING

The general strategy of ZBUG is to insert itself between two
instructions so that, between these instructions, registers
and memory can be examined and/or modified and an evaluation
made of whether or not the program is executing properly.

ZBUG allows this kind of debugging by providing features
allowing the placement of up to 8 breakpoints in the user
program, by making it possible to step through the program
one or several instructions at a time,· and by saving and
restoring the machine state on entry and exit from ZBUG.

Registers

Any time ZBUG is entered it saves the contents of all
registers. These values are available for inspection and
modification. The registers can be displayed or opened
in a manner similar to memory locations.

The iR command causes most registers to be displayed:

*iR

Individual registers can be opened by specifying the register
name followed by the iR command:

*$BiR 04

Here, register B is opened and the value displayed (04) in
HEX8 mode. Once a register is open, an expression to replace
the value can be optionally entered followed by CR to close
the register.

Only the low 8 bits of a value input to an 8 bit register are
used. The register names are:

$A $B $C $D $E $H $L $F $A' $B'

SCI $D' $E t $R' $L' $F' SSP $IX $IY $PC $I

where SSP is the stack pointer register and $PC is the
program counter.

The interrupt vector can be similarly examined and modified
but is not displayed by the iR command with no arguments.
It's name is $I.

- ~3 -

Step.ping

One or more instructions (beginning at PC) can be executed
(with control then returning to ZBUG) by issuing the is command
(STEP) •

There are 2 forms:

*Ts single step
*nTS step through the next n instructions

(n an expression)

After the specified number of instructions have been executed,
control returns to ZBUG. The contents of the registers are
optionally displayed (see below) •

Breakpoints

Breakpoints are placed on the first byte of an instruction
which meets the restrictions listed-below. When this instruc
tion is executed, control goes to ZBUG which may return control
to the user program after reporting the break and address.

To provide flexibility when using breakpoints in loop-like
structures, there is a trip count associated with each break
point. Each time the breakpoint is encountered, the trip
count is decremented and if the value is nonzero, control
returns to the user program. When the count reaches zero,
ZBUG reports the breakpoint.

The addresses of the breakpoints are kept in the B registers,
the trip counter value in the N registers, and the trip count
down (the value.that gets modified) in the K registers.

Each entire group of these registers can be displayed with:

*TB display breakpoint address registers
*TN display trip count registers
*TK display trip countdown registers

All are output in HEXl6 mode.

To set a breakpoint at location nr the command

*niB

- 44-

is issued. An error results if' this would be the 9th con
current breakpoint. Each breakpoint is assigned a number
(as displayed by the iB command) and this number is used
by the debugger to report the occurrence of a breakpoint
and by the user to delete a particular breakpoint.

*fx deletes all breakpoints
*nix deletes breakpoint n (n = a - 7)

The breakpoint count and countdown registers may be opened
(and hence al tered) by g i v ing. the commands:

*niN open N register for breakpoint number n

*niK open K register for breakpoint number n

Controlling Execution

The user program can be started (or continued) in one of
several ways:

(1) Starting at a particular address

*niG GO (execution begins at address n)

(2) Starting at the current value of PC

*fG GO (execution begins at the current PC value)

(3) Proceeds from a breakpoint

*fp PROCEED

(4) Proceed from a breakpoint and set the trip countdown
(all at once---i.e., the K register)

*niP PROCEED, set trip countdown for last BP

Controlling Register Display

Normally, when control returns to ZBUG following a step or
breakpOint, only the addrsss of the next instruction to be
executed is displaye~. It is sometimes desirable to display
the CPU registers at this time. A one-byte register, $RSWITCH,
controls thi.s display option. The value one causes registers
to be displayed and zero suppresses the display.

*$RSWITCH. 00 1

Here, the 'display is enabled.

- 45:

Restrictions

Breakpoints may not be placed on:

1) any but the first byte of an instruction;

2) any instruction that is modified;

3) any instruction that is also used as data;

4) any instruction within ZBUG;

5) any location in non-modifiable memory (PROM,
ROM, etc.);

6) any location that follows a non-modifiable location
in memory (ROM, PROM, etc.);

7) at location FFFF; or,

8) any instruction that fails to satisfy the step
restrictions below as the instruction at the
location of the breakpoint must be stepped through.

In addition, anomolous results will be obtained if the instruc
tion on which the breakpoint is placed references the immediately
preceding location in memory. This is because the instruction
preceding the breakpoint is altered when the instruction at the
breakpointed location is executed and restored after that instruc
tion is executed.

The stepping operations cannot be used if:

1) The location preceding the instruction to be
stepped is in non-modifiable memory (ROM, PROM,
nonexistent memory, etc.)

2) The instruction to be stepped through references
the preceding location as data

3) The instruction to be stepped through is an:

IM
IM
LD

a
1
I,A with AFl3H

(The idea here is that an interrupt is going to occur
at the end of the instruction, and if the interrupt
environment is faulty, the state of ZBUG will be
likewise) •

- ·46 -

Also, if a

01

instruction is stepped through, control will not
return to ZBUG until one instruction after an E1
is executed.

If an

E1

is stepped through, the instruction following it
will also be executed before control returns to
ZBUG.

- 47 -

to

VII. SEARCHING AND FILLING MEMORY

Seatching

ZBUG. provides a facility to aearch for particular bit patterns
in memory; up to a four byte value, may be searched for. The
search proceeds as follows:

Each location in the specified range is tested by loading the
four bytes beginning at the current location. These bytes are
'and'ed with the four byte Mask register and then compared to
the four byte Word register. If there is a match, the location
and contents are output in the current output mode. Then the
process is repeated for the four bytes beginning at the next
location.

One, two, three or four byte instructions may be searched for
using this feature, as can a two byte address, for example.

To set the Mask and Word registers, locations accessed using
the symbols $MASK and $WORD are opened. Input is as any other
memory location but take care not to modify any but the four
bytes beginning at these symbols as the locations are within
ZBUG.

The search is initiated with the command:

*n,miS

which causes locations n to m to be searched as described. For
example, suppose we wish to search for a HALT (76) instruction
followed by ale

*$MASK! -1 LF
xxxx -1 LF
xxxx a LF
xxxx a CR
*$WORD! 76 LF
xxxx 1 LF
xxx x 0 LF
xxxx a CR
*4000,5000fs

Filling Memory

does said search on locations
"4000 to 5000

A series of memory locations can be set to a value as follows:

*n,miZ
*n,m,kiF

sets locations n to m to zero
fills locations n to m with k

ZBUG cannot be overwritten with these commands.

Example:

*4000,5000, I XiF fills locations 4000 to 5000 with
the ASCII character IX'

- 48-"

VIII. INTERRUPTS

Due to the complications noted below, interrupt code debugging
'is complex and somewhat ill-advised. The following commands
are provided to monitor and control the interrupt system.

Interrupt Flip-Flop

The iI command opens the Interrupt flip-flop (IFF) register.
The values zero and one indicate interrupts disabled and
enabled, respectively.

When ZBUG receives control (through a breakpoint or by entry
to its first word address) the IFF register is saved. When
control returns to the user program (by use of the jp or jG
commands) the hardware IFF is set to the value in the jI
register.

It should be carefully noted, however, that ZBUG itself enables
interrupts while it is executing and disables and re-enables
them during step operations (is command).. Also, ZDOS requires
that interrupts be enabled in order to access the disk, (which
happens while loading the symbol file).

Interrupt Vector Register ,

The interrupt vector register can be examined and modified as
the other hardware register by-being opened, modified, and
closed. It has the name $I (see example below). Once again,
note that for proper ZDOS operation and for ZBUG stepping
the I register must have value l3H. Upon entry to ZBUG the
hardware I register is saved and then set to l3H. When control
returns to the user program (ip or jG commands) the hardware
I register is restored to its value on entry (or the value
explicitly set).

Interrupt .Mg.d.e.

The interrupt mode can be set by

*njI

where n=O,l, or 2. The mode change takes effect immediately.
ZBUG, however, changes the mode to 2 to do stepping. Thus,
setting the mode would be cancelled if a subsequent is command
is issued.

- 40;· -

IX. Rough Spo~s and Their Conq~est

There are some idosyncrosies associated with the use of ZBUG.
Some could certainly be considered "bugs·' , but, in any case,
here is a list of them and, when possible, how to overcome
them.

1. Use of module names which include the character "." causes
problems in that "." is a ZBUG command. Thus, such names
cannot be used in any context other than a response to
the iE (environment file~ame) or iL (local environment
module name) commands.

solution: 1. Don't use "." in module name~.
2. Have another global symbol in such a module

with value equal to the first byte address
in the module and use it instead of the
module name.

2. A symbol table search must match all characters typed to
succeed. Recall that the assembler truncates names to 6
characters. Thus, a symbol in a program:

SEARCHTBL: . ., . . .
must be referenced as $SEARCH.
not truncated.

Module names, however, are ,

3. The response to an iE or iL command must not be preceeded
by an escape ($).

4. The area following ZBUG where the symbol table is loaded
is not allocated using RIO memory management and, hence,
must be manually allocated if ZBUG is to be used with. a
program that allocates memory through RIO. Also, ZBUG
does not check if the memory required for symbol tables
is already allocated.

Solution: 1. Manually allocated space for the symbol
table prior to loading ZBUG and the program
to be debugged. (Use the RIO ALLOCATE
command) •

2. Instead of linking ZBUG with ST=O, link with
ST=n where n is large enough for both the
symbol table and stack of the program being
debugged. Be sure that this stack gets
allocated immediately above ZBUG. Example:

LINK $=9000 ZBUG (NOM ST=1400 N=NBUG90)

TO.BE.DEBUGGED.PROGRAM,ZBUG90

3. Be very careful.

_ 50 _

Part 3: NBUG

NBUG is an extension of ZBUG that incorporates an assembler/
disassembler allowing display and entry of Z80 instruction
mnemonics. It is approximately 2.SK bigger than ZBUG.
Except as noted below, it functions identically to ZBUG.

Instruction Mnemonic Mode

The instruction output format is selected by the ; command.
The ; can be used to open a memory location or redisplay a
value the same as ., :, (, and [. If the value to be dis
played is not legal instruction, it is displayed in HEX8
mode. LF advances the location counter past the instruction
displayed. i decrements the location by 1 byte (regardless
of the intruction size).

Once a memory location is open, a Z80 instruction can be entered.
The number of bytes written upon as well as the number of bytes
the location counter is advanced when the LF command is issued
depends on the length of the instruction. Instructions can be
entered regardless of the output format used to display a location.

Notes £!! Instruction Assembly

Several differences between NBUG's assembler and the RIO assembler
exist. They are listed below.

1) Blanks, as well as commas, are accepted as field separaters.

2) All numbers are assumed to be hexadecimal.

3) Numbers do not have to begin with a digit, however they
will be interpreted as a resigter name if such an
interpretation is possible. For example,

tD B A
tD B OA

load register B with register A
load register B with A (hex)

4) IMO, IMl, IM2 must be entered without spaces.

S} Any user symbols used must be prefixed with ESC ($), consistent
with ZBUG symbol use.

Sl

Backspace Is Here

The backspace (control-H) and DEL (RUBOUT) keys function as they
do under,RIO. A command character still terminates input, so
errors cannot be corrected once the command is issued. The
backslash (1\1) serves the 'abort' function formerly served by
DEL (RUBOUT).

Breakpoint Register List

Breakpoint addresses listed by the iB command are displayed
symbolic~lly rather than as absolute HEX addresses.

Linking Instructions

A command file called NBUG.LINK.CMD is provided. It accepts
one or two parameters:

DO NBUG.LINK.CMD addr [stack_size]

where addr is the high two digits of the address for NBUG to
run (the low order digits are zero) and stack size is an op
tional stack to be allocated when NBUG is loa~ed. NBUG does
not use this stack;' it is for user programs if needed.

Example: To make a version of NBUG that runs at 7000 '(hex)
enter

%DO HBUG.LINK.CMD 70

This will produce a procedure file called NBUG70.

Sorry About This

Life is, of course, not a bed of roses.

1) Some illegal instructions are assembled and disassembled
without complaint. The set roughly includes:

Assembly

Usage of IX/IY in 2 fields (e.g., LD (IX) (IX))
Usage of IX/IY with some instructions for which such

usage is not legal.

Disassembly

Instructions that begin as IX/IY instructions but don't
use IX or IY (extra DO or FD prefi~)

52

APPENDIX - ZBUG Quick Reference Sheet

Conventions: T<chr>
n m k
$

means a control character
are expressions (see below)
is ESC unless otherwise noted

Errors: OVF?? means a number is too big for context. UND?? means
an undefined symbol. ?? means "I can't do that."

RUB OUT or DEL ('\' in NBUG) gets you out of most
everything without modifying anything.

Zero Argument Commands

iB List breakpoints'
TD Open displacement register
TE Open Symbol File name register
iG Go at address in PC (exits debugger to user program)
iI Open interrupt flag register
iK List breakpoint countdowns
TL Open the local symbols module name register
TN List breakpoint count registers
ip Proceed from breakpoint
TQ Quit. Return to RIO.
TR List registers
is Step. Execute one instruction.
iw Where? List debugger beginning, end and

symbol table end addresses.
ix Delete all breakpoints
Tz . Same as ip for people with small hands.

Set QUIET output mode
Set HEX8 output mode
Set HEX16 output mode (16 bit hex)
Set ASCII output mode
Set Displaced HEXl6 mode (16 bit hex offset
from D register)
Set INSTRUCTION output format (NBUG only)

LF Open next memory location (after
whatever the last one was)

T Open the previous memory location

One Argument Commands

nTB Set breakpoint at location n
nTG Begin execution at location n
nTI Set interrupt mode n (n=0,1,2)
nTK Open breakpoint countdown register n (n=O-7)
niN Open breakpoint count register n (n=0-7)
niP Proceed from breakpoint and set BP countdown

register to n
nTR Open register n (n=0-20. or $A $B .•.

$A' $F' $IX $PC SSP $I)
nTS Execute the next n instructions
nTX Delete breakpoint number n (n=0-7)

53

nl
n.
n:
nC
n[
n:
n-
•

Open memory location n with no output
Open memory location n in BExa mode (8 bit hex)
Open memory location n in BEX16 mode
Open memory location n in ASCII output mode
Open memory location n in displaced-gEX16 mode
Open memory location n in INSTUCTION mode (NBOG only)
Type n in EEX16 mode (evaluates expression) .,..

4..: .

.I!2 Argument Commands

ll,mis
D,mTZ
D,lI.
n ,mC
n,m:

Search memory from n to m
Zero memory from n to m inclusive
Cump memory in BEXS mode and ASCII from n to 11
Same as n,m·.
cump memory in SEX1S moce from n to 11

Three Arqument Commands

n,m,JeTl rill memory from n to m with k

E:c'Cressions for Ineut '
Expressions are evaluated from left to right and may include
the operators +, -, * I and /. There may be a leadinq + or - .

.. sisn on each element. The elements in the expression may be:

<hex number>
<hex number>'
'<character>

$<sym.bol>

S ,

The last 4 diqits are siqnificant
~he number offset by the 0 re9ister
~he value is the specified 7 bit
ASCII c:haracter
The value of the symbol table entry
for the symbol is used ($ is ESC) •
The value is the address of last
location examined ($ is $, not ESC).
~he value is the c:ontents of tile last
location or re9ister opened ot' the·
last expression evaluated by n

Once a Memorv Location is O~en
~ -- - -------
An expression replacinq ehe c:ontents of the location may be
typed. rollowin9 the expression (if any), a CR closes the
location, LE closes the location and opens the next, i closes the
location and opens the last.

If no eXiJression is typed, the value may be redisplayed in another
out~ut mode by typing a zero-arqument command listed above.

Hardware and ZaUG reaisters --- ---- ---------
Once opened, an expression may be t~ed whic~ replaces the previous
contents followed by CR or the register ~ay be closed·unmodi!iec
by typing only CA.

SMASX is the oriqin of the 4 byte mask reqis~er. SWORD is the
oriqin of the 4 byte word reqister. SRSWITCE is the one byte
register whose value determines whether the :e~isters will be
aisplayed after steps and breakpoints.

S4

' \

Zilog, Inc. 10460 Bubb Road, Cupertino, California 95014 Telephone (408)446-4666 TWX 910-338-7621

Printed in USA

