
t_ .'

~
Zilog

Operating System User's Mannal

03-0072-01
Revision A
September 1978

Copyright © 1978 by Zilog, Inc. All rights reserved. No
part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Zilog.

Zilog assumes no responsibility for the use of any circuitry
other than circuitry embodied in a Zilog product. No other
circuit patent licenses are implied.

zaO-RIO

Operating System User's Manual

September 1978

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION AND OVERVIEW •

1.1 INTRODUCTION ••

1.2 SYSTEM OVERVIEW

1

1

1.2.1
1.2.2
1.2.3

Hardware Configuration • • • • • •
File Systems • • • • • • • . . • •
System Initialization •••.•••

3

3
3
6
7 1.2.4

1.2.5
Commands • • .• .•..•••
I/O • • • . • • • • • . • • • • • . 7

CHAPTER 2 - RIO EXECUTIVE

2.1 SYSTEM INITIALIZATION

2.2

2.3

2.4

2.5

2.6

FILE NAME CONVENTIONS

MEMORY MANAGEMENT

2.3.1 MEMMGR

COMMAND STRING INTERPRETATION

ERROR HANDLING

PROGRAM EXECUTION OF COMMANDS

CHAPTER 3 - 1/0 STRUCTURE •

3.1 OVERVIEW . •

3.2 I/O REQUESTS - SYSTEM CALLS

3.3 THE 'ASSIGN' I/O REQUEST •••

- i -

9

9

· 10

. • • . 12

• . 13

· 13

• • . 15

· 15

· 16

· 16

· 17

• 19

3.4 STANDARD RIO I/O DEVICES

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7

ZDOS . • • •
DFS
NULL . • • •
CON . • • • .
PCON
FLOPPY • • •
DISK • • • •

CHAPTER 4 - PROGRAM INTERFACE

4.1 PROGRAM LOCATION

4.2 PARAMETER STRING ADDRESS

4.3 PROGRAM STACK SPACE

• • • 21

. 21

. 21
. 21

• • • • • 22
• 27

• • • • • • • 27
• • 27

• • 28

• • • • • 28

· 29

• • • 29

4.4 PROGRAM TERMINATION - ERROR HANDLING ••. 29

4.5 SYSTEM CALLS - SYSTEM ENTRY POINT •. 30

4.6

4.7

4.8

INTERRUPT STATUS • •

I/O UNIT UTILIZATION • •

PROGRAM EXAMPLES

CHAPTER 5 - RIO COMMANDS

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

ACTIVATE

ALLOCATE

BRIEF .

CAT •

CLOSE •

COMPARE

COpy

COPY.DISK •

- i i -

.

• • 31

. • • • 31

.. • 32

• • 33

· • 35

· • 37

• • 39

• • 40

• 44

• • 45

• • 47

• • • 49

5.9 COPYSD 51

5.10 DATE 53

5.11 DEACTIVATE 54

5.12 DEALLOCATE 55

5.13 DEBUG 56

5.14 DEFINE 60

5.15 DELETE 63

5.16 DISK. FORMAT 67

5.17 DISK. REPAIR 70

5.18 DISK. STATUS 72

5.19 DISPLAY 74

5.20 DO 75

5.21 DUMP 79

5.22 ECHO 80

5.23 ERROR 81

5.24 ERRORS 82

5.25 EXTRACT 83

5.26 FORCE 84

5.27 FORMAT 85

5.28 HELP 88

5.29 IMAGE 89

5.30 INITIALIZE 90

5.31 LADT 91

- iii

5.32

5.33

MASTER

r·10VE

5.34 PAUSE.

5.35

5.36

5.37

5.38

5.39

5.40

5.41

5.42

5.43

RELEASE .

RENAME

RESTORE TABS

SAVE TABS .

SET • • •

STATUS

VERBOSE

XEQ • .

EXPRESSION EVALUATION .

CHAPTER 6 - ZDOS •• • .

6.0 ZDOS OPERATION

INITIALIZE

ASSIGN .•• •

OPEN

• 92

• 93

• . • 98

• • • 99

100

102

103

104

109

III

112

113

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

CLOSE •

REWIND

.

114

114

122

123

125

132

134

135

137

139

140

READ BINARY • •

WRITE BINARY

WRITE CURRENT •

DELETE •• • .

- iv -

6.10 DELETE REMAINING RECORDS · · · · · 142

6.11 ERASE . . · · · · · · · · · · · 143

6.12 READ AND DELETE · · · · · · 145

6.13 READ CURRENT · · · · · · · · · 147

6.14 READ PREVIOUS · · · · · · · 149

6.15 READ DIRECT · · · · · · · · · · · · 151

6.16 SKIP FORWARD · · · · · · · · · · · · · 153

6.17 SKIP BACKWARD · · · · · · · · · 155

6.18 SKIP TO END · · · · · · · · · · · · 157

6.19 RENAME · · · · · · · · 158

6.20 UPDATE . · · · · · · · · · · · 160

6.21 SET ATTRIBUTES · · · · 162

6.22 QUERY ATTRIBUTES · · · · · · · · · 164

CHAPTER 7 - DFS · · · · · · · · · · · · · 166

7.1 ZILOG DISK CONTROLLER · · · · · · · · · 166

7.2 DFS OPERATION · · · · · · · · · · · 168

7.3 SOFTWARE ORGANIZATION · · · · · · · 171

7.4 DFS ALLOCATION · · · · · · · · · · · 172

7.4.1 Sector 0 Format · · · · · 172
7.4.2 DFS Allocation Algorithm 173

7.5 THE BARE DISK CONTROLLER • • • • · ,174

7.6 CONTROLLER BOOTSTRAP OPERATION. • . 177

7.7 SYSTEM BOOTSTRAPPING on the MCZ-1/35 179

- v -

APPENDICES

APPENDIX A - RIO/ZDOS/DFS Error Codes
APPENDIX B - RIO Command Syntax Summary
APPENDIX C - RIO System Constants
APPENDIX D - Converting Files to RIO Format
APPENDIX E - Altering Default RIO
APPENDIX F - I/O Request Vector Format and

I/O Request Codes
APPENDIX G - Program Examples
APPENDIX H - Internal Command Table Contents
APPENDIX I - RIO Memory Manager
APPENDIX J - Descriptor Record of Procedure Type File
APPENDIX K - ZDOS/DFS Command Summary

- vi -

PREFACE

This manual provides an introduction and user's manual
for the RIO operating system used with Zilog's Micro
(ZDS). Detailed description is provided for system
features, including the bootstrap process, the RIO
Executive, default console drivers, I/O structure,
program interface, and the Zilog Floppy Disk File System,
ZDOS, and the Zilog Hard Disk File System, DFS.

Other pertinent documentation with which the reader may
want to become familiar includes:

zaO-MCZ PROM User's Manual

zaO-ZDS PROM User's Manual

zaO-RIO Relocating Assembler and Linker User's Manual

zaO-RIO Text Editor User's Manual

This manual makes use of the following conventions of
notation:

Optional portions of a modifier are enclosed
in brackets, [].

The symbol for logical or, 'I " is used if either
option can be issued. STATUS [0 I 1 ••• 7] means
the command can be issued as STATUS 0, STATUS 1, .••
STATUS 7, or simply as STATUS.

Parameters which can be repeated zero or more times
are enclosed in parentheses and followed by an
asterisk - e.g., (filename)*.

Parameters which can be repeated as necessary
but must appear at least once are enclosed in
parentheses and followed by a plus sign - e.g.,
(filename)+.

- vii -

All memory addresses and constants referring to
memory allocation are given in hexadecimal. Unless
so specified, other constants are given in
decimal. Hexadecimal constants are also indicated
by an 'H' immediately following the hex digits,
e.g., 4FH.

- viii -

CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 INTRODUCTION

The zao Operating System with Relocatable Modules and I/O
Management, or RIO, is a general-purpose computing system
designed to facilitate the development and integration of
user's programs into a production environment. RIO is
available on various Zilog hardware configurations
including the zao Micro Computer System (MCZ-l) series and the
zao Development System (ZDS). The zao Development System
provides extensive hardware debugging aids to assist the
engineer/programmer in ZaO-based hardware/software system
design. The user has a choic~ between a modest environment
with a minimum of system support or an enhanced environment
which provides access to an assortment of system support
utilities including the Zilog Floppy Disk File System,
ZDOS, and the Zilog Hard Disk File System, DFS.

In the modest environment, the user has access to 3K
(lK=1024) bytes of dedicated read-only memory which
contains a program debugger with file manipulation
capability, a floppy disk driver which supports up to eight
disk drives, and a basic console driver with provision for
paper tape operation.

In the enhanced environment, the user also has access to
the RIO Executive, ZDOS, DFS, and a collection of disk-resident
software including a text editor, macro assembler, and
linker. The RIO Executive provides standardized I/O
management permitting device independent program
development and utilization of alternate or multiple file
systems. ZDOS provides a versatile floppy disk based file
system with variable record length files; up to 16
concurrently active files; management of user-defined
scratch files which are automatically deallocated after
use; and support of up to eight disk drives for over 2.5
megabytes of on-line storage. The hard disk file system,

- 1 -

DFS, supplies similar features on 10 megabyte high speed
disks. The text editor, macro assembler and linker give
the user full support in program development, minimizing
assembly time with relocatable modules while allowing com
plex memory overlay structures. In addition, a console
driver is provided which allows user definition of character
delete and line delete symbols, automatic insertion of any
number of line feeds, and automatic echo mode to accommodate a
wide r~nge of console devices.

- 2 -

1.2 SYSTEM OVERVIEW

1.2.1 HARDWARE CONFIGURATION

The RIO Operating System is designed to operate with the 4K
PROM in either the Zilog Micro Computer System (MCZ) or
Development System (ZDS). A minimum configuration of 32K
(lK=1024) of random access memory, one disk drive, and a
console device is required.

The MCZ 1/20 Zilog Micro Computer System is equipped with
two floppy disk drives. The left drive is designated drive
'2' and the right drive is designated drive '0'. The Zilog
Development System (ZDS) also has two drives, but the
designations are 'I' and '0' for left and right, respectively.

The MCZ 1/35 uses hard disk cartridge and fixed platter drives.
The usual configuration consists of one fixed platter and one
c?rtridge drive, designated '0' and 'I', respectively. The
system will support up to 8 drives.

1.2.2 FILE SYSTEMS

For systems using floppy disks, ZDOS controls the organization
and allocation of the sectors on a diskette. While the basic unit
of disk allocation is the sector, the fundamental structure within
ZDOS is the 'file'. A file consists of zero or more sectors
of data which contain logically-related information. Each
file has a set of attributes including a name of from one
to thirty-two characters, a set of (possibly null)
properties, a type, a subtype, and a record length. The
smallest amount of information that can be read from or
written to the disk is the contents of one sector, but more
efficient operation can often be achieved by grouping from
one to thirty-two contiguous sectors (a complete track)
into one unit which is then read or written together. This
unit is called a 'record' and the number of bytes of data
in the record is the record length. A record may consist
of 1, 2, 4, 8, 16 or 32 sectors; therefore the record
length may be 128, 256, 512, 1024, 2048, or 4096 bytes.

On systems with hard disks, the Disk File System (DFS)
provides a similar file structure. The bulk of the DFS

- 3 -

software runs in the memory of an intelligent disk con-
,troller; only a small interface routine resides in the
main system memory, thus resulting in a large memory
space saving. DFS files have the same structure as ZDOS
files, except that multiple-sector records are not sup
ported. The sector (and record) size is 512 bytes.

The properties of a file are defined by the user and may
include any combination of the following:

1) write protected - may not have contents altered;

2) erase protected - may not have contents deleted;

3) locked attributes - may not have its attributes
changed (a file's attributes include its
properties, type, subtype, and other information
included in the file's 'descriptor record'; see
below) ;

4) random - file is in a format for random
access;

~) secret - file is not normally found in directory
searches (see below).

When a file is created, the user specifies its type,
which must be exactly one of the following:

1) directory - a file directory (see below);

2) procedure - file contains information which
can be loaded into memory and executed
directly;

3) ASCII - file consists of symbols encoded in
the American Standard Code for Information
Interchange format, such as those produced
by the editor or console input device;

4) binary - data of an unspecified format.

In addition to the file type, the user may define a
subtype, which is a value ranging from 0 (default)
to 15. The subtype is useful to differentiate between
files of a certain type. For instance, RIO requires
all I/O device files to be of type procedure, subtype 1.

- 4 -

The file system maintains a special file on each disk which is
named 'DIRECTORY'. In this file are the names of all files
(including itself) on the disk and the location of the
first record of each file. The first record of each file
is one sector long (regardless of the record length of the file)
and is called the 'descriptor record'. All the file attributes
including entry point (where execution may begin), date of
creation, date of last modification, first data record
address, last data record address, record length, and
record count are contained in this record. Each record of
the file contains pointers (disk addresses) to the previous
record and the subsequent record in the file. Note that
records which are logically in order according to file
contents may, in fact, reside in an arbitrary order on the
di~k. This 'linked' structure allows maximum utilization
of the disk. The disk allocation algorithm in ZDOS
~ttempts to localize the disk sectors used for a single
file. Note that the sectors which comprise a single file
record are physically contiguous on the disk and are
therefore always read or written as a single disk access.

ZDOS maintains a bit map to keep track of allocated vs.
unallocated disk sectors. This map resides on three
sectors of the diskette which are preallocated by the diskette
formatting utility and is read into memory by the Initialize
command or automatically by ZDOS when the diskettes are
exchanged. The map is written from memory to the diskette
when a file is closed following an allocation change.
If the diskette is formatted as a 'system' disk, additional
space is preallocated for the system bootstrap routine and
the GET/SAVE command package (see the Debug command,
section 5.13).

Under DFS, the unallocated hard disk sectors are linked
in a free chain. The allocation and deallocation of
sectors is a matter of removing sectors from or adding
sectors to the free chain. System disks contain the
'BOO~STRAP' file contains the file system that is loaded
at eystem initialization.

While files created by the RIO Operating System or PROM
debugger on the Development System or Micro Computer System
are compatible, the bootstrap is not. Thus files may be
interchcnged between systems (procedure files are generally
not transferable) but a system disk will bootstrap
correctly only on the system for which it was designed.

- 5 -

1.2.3 SYSTEM INITIALIZATION

Where ZDOS is the primary file system, the bootstrapping
of the operating system is from floppy disks. When a
carriage return is entered as the first character after
pressing RESET, or when the OS command is entered while
in the Debug environment, the PROM monitor reads a 128 byte
minibootstrap from track 17, sector 3 of the disk in drive
O. This program initiates a directory search on drive 0 for
the files OS and ZDOS, which are then read into memory.
Execution is started at the entry point of as. This is
one of two instances where a disk formatted as a system
disk must be ready in drive O. The other is when using the
GET or SAVE commands of the PROM Debugger. In all other
cases, while a particular drive search order may be implied,
there is no difference in the utilization of drives.

This process is similar on systems which use DFS as the
primary file system. The file 'BOOTSTRAP' contains the
file system, which the disk controller loads directly
from disk, using the standard disk search sequence of
drive 1, drive 2, ... , drive O. The PROM monitor then may
communicate directly with the controller to load the file
'OS', again using the standard drive search sequence.

When execution of the file as begins, an initialization
procedure is performed that mayor may not involve other
files. A means is provided to read a set of commands from
a file to extend this initialization process. In this way,
a turnkey system can be implemented simply by editing the
external initialization command file. Alternatively, the
file as can be edited directly to execute a user-defined
command sequence at initialization time (see Appendix E). As
part of the initialization process, memory is sized to determine
the current configuration. If the sizing procedur~ determines
the end of memory to be at other than a 4K boundary, a
warning message is issued to indicate possible memory
failure, thus providing a frequent diagnostic of system
memory.

After initialization, OS responds with the message 'RIO REL v.cc
(Where 'v' is the release version and ICC' is the release cycle)
followed by the system prompt character '%'. Any time RIO
is ready to accept command input, this prompt character is
printed.

- 6 -

1.2.4 COMMANDS

Command implementation is in one of two forms: for
'internal' commands, the code which actually implements the
command is a part of the file as and resides in memory
when as is loaded; 'external' commands are simply procedure
type files which are loaded into memory for execution. If
a command is external, a search is made of all accessible
directories for a file of the given name. In this context,
the available command set is limited only by the particular
files of procedure type which are on the 'ready' drives at
a given moment. Therefore, user extension, modification,
or replacement of the Zilog supplied software is a matter
of file manipulation. For example, replacement of the file
named as on a system diskette with another file of the
same name results in the automatic bootstrap of a
user-defined software package. The majority of the
standard RIO command set are implemented as external files.
(Internal commands are noted as such in the command
description, Chapter 5).

1.2.5 I/O

The I/O structure of RIO is designed to facilitate program
development independent of physical device characteristics.
To this end all I/O requests are made with reference to a
'logical unit' which may correspond to any of a given set
of 'I/O devices'. In this way device modifications can
occur with minimal impact on existing software.

The software required to control a particular hardware
device or set of devices is termed the 'device handler'
(used interchangeably with 'I/O device', 'I/O driver',
'device driver', or simply 'device'). Before a particular
device can be accessed, its device handler must be loaded
in memory. Initialization procedures may be required, and
it may be desirable for the memory it utilizes to be
protected from concurrent software routines. RIO provides
command level control of these tasks and assumes that once
this is done, the device is ready to handle I/O requests.
This process is referred to as "activating" a device.

The fundamental concept underlying the RIO I/O structure is
that of the 'logical unit' (also referred to as 'unit' or

- 7 -

'I/O unit') which enables I/O activity independent of a
particular device. Units are 'defined' by linking or
mapping a unit to a given device. I/O requests may not be
made on undefined units, although some requests inherently
result in unit definition.

Three units are predefined by RIO to handle console input
(unit 1), console output (unit 2) and high volume printed
output (unit 3). Unit 0 is used by system functions and is
not available to the user. Units 4-20 (in the standard
system) are available for user programming. Units 1, 2,
and 3 have the mnemonics CONIN, CONOUT and SYSLST,
respectively which can be used interchangeably with the
literal unit designations, where applicable.

I/O requests are made with a standard vector format,
containing information such as unit, data transfer address,
data length, completion codes, and an optional supplemental
parameter vector address. I/O requests are made by
providing a pointer to the request vector (see below) and
making a system call.

Note that programs which use the RIO I/O structure can
remain unchanged so long as compatible I/O devices
are provided. For instance, a BASIC system could
immediately utilize a line printer by redefining SYSLST.
No other software changes would be required.

- 8 -

CHAPTER 2

RIO EXECUTIVE

2.1 SYSTEM INITIALIZATION

As part of the system bootstrap procedure, the RIO
Executive (OS) performs a series of initialization tasks.
CON, the system console device, is initialized. The
primary file system (or the master device - see section
3.1) is then initialized to identify the drives which are
available. Memory size is determined by writing and
subsequently reading a known pattern through memory until
the comparison fails. If the last 'good' address is on
other than a 4K boundary, i.e., nFFF, a warning message is
generated to indicate possible memory failure. Memory
occupied by PROM, OS, ZOOS, and CON is allocated.
If the physical end of memory is other than FFFF, the
nonexistent memory is also allocated (see section 2.3).

Initialization of the console device assigns default values to
the line delete (LINDEL) and character delete (CHRDEL) symbols
and the number of null characters (NULLCT) and line feeds (LFCNT)
to be inserted after every carriage return. These values are
NULLCT=l (a single null character is sufficient for most CRT'S
at speeds up to and including 19.2 Kbaud), LFCNT=l, LINDEL=7FH
(rubout or delete), and CHRDEL=08H (control-H or backspace). The
automatic line feed insertion mode (AUTOLF) and console
character echo (ECHO) modes are set "on", and full duplex
operation selected.

If the external initialization (EXTINI) bit (bit 2) of the
system flag SYSFLG (see Appendices C and E) is set (=1),
the external initialization command is executed. If the
EXTINI bit is reset (=0) this initialization is not
performed. Zilog-supplied software has this bit set;
the external initialization command consists of
'DO OS.INIT'. This command causes the commands on file
OS.INIT, default drive search sequence, to be executed
as part of the initialization process.

- 9 -

The user may alter the external initialization bit using
the PROM Debugger GET/SAVE commands (see section 5.13).
See Appendix E for examples. In addition, the user can
alter the initialization procedure by editing the contents
of the file OS.INIT.

After possible redefinition of logical units by the
commands on the external initialization file, the existing
unit definitions are saved as the defaults. Subsequent
unit definitions restoring a unit to its default will
result in the unit definition existing at this point in the
initialization process.

Concluding the bootstrap and initialization procedure, RIO
prints an identifying message, the command prompt character
is sent to the console output unit, and the system waits for
command input.

2.2 FILE NAME CONVENTIONS

In the most general case, file names in RIO consist of
three parts:

1) the device name specifying which device to
search for the named file (e.g. $ZDOS);

2) the drive designation restricting the search
to a particular element of the device (e.g. drive 2);

3) the file name itself.

The file name consists of from one to thirty-two
characters, the first of which must be alphabetic.
Subsequent characters may be alphanumeric ('A' •.. 'Z' or
'0' .•. '9'), or one of the special characters, question mark
('?'), underbar (' I), or period ('.'). Upper and lower
case characters are interpreted as entered, i.e., 'Status'
is not the same as 'status'.

When a period ('.') is used within a file name, those
characters in the name including and following the period
are referred to as a file name 'extension'. For instance,
the file name OS.INIT has the extension '.INIT', while the
file name BOOK.CHAPTER.l has the multiple extensions
'.CHAPTER' and '.1'. The notion of file name extensions is

- 10 -

a useful convention for the user who wishes to categorize
certain files by their names. Some programs such as the
assembler or editor require that file names end with a
particular extension--source files for the assembler must
end in .S, while the editor creates a backup file with the
extension .OLD--however, in general, RIO makes no
distinction concerning extensions. In other words, a
period is treated as any other valid character in a file
name.

The drive designation consists of a single character from
'0' ••• '7'. In the Zilog Development System, drive '0' is
the right-hand drive, drive '1' is the left-hand drive. In
the standard Zilog Micro Computer System, drive '0' is the
right hand drive, drive '2' is the left-hand drive. The
character '*' denotes a standard search sequence of
drives '1', '2', •.• '7', '0'.

Device names are essentially file names prefixed with the
character '$'. This character merely serves as a delimiter
and is not really part of the name itself. In addition,
the device name must have been made known to the system
either by default initialization procedures or by the
Activate command (see section 5.1). The devices known to
OS after initialization are:

ZDOS

DFS

CON
NULL
PCON
FLOPPY
DISK

file system (where floppy diskettes are
the primary file system media)
file system (where hard disks are the
primary file system media)
console driver
null operation device (see section 3.4.2)
PROM console driver
PROM floppy disk controller interface
PROM hard disk controller interface

When constructing a file name, the character ':' is used to
separate a device name from a drive designator and the
character 'Ii is used to separate the drive designator or
device name from the file name.

- 11 -

For example, the command STATUS may be entered as:

STATUS
ISTATUS
O/STATUS
:O/STATUS
$ZDOS/STATUS
$ZDOS:O/STATUS

In the first case, the device name and drive designation
are given default values. The default device is designated
by the user to be the source of all 'unqualified' (no
explicit device name) files and is termed the Master
device. Default is ZDOS for floppy disk systems, and DFS
for hard disk based systems, but may be redefined (and also
displayed) by the MASTER command (see section 5.32). The
default drive search order for command files is drive '0',
followed by the standard search sequence (designated by
drive '*') if the initial search of drive 'a' is
unsuccessful.

All 'qualified' file names (those with device or drive
designations or the prefix 'I') are treated as external
commands. Thus, IDEBUG is not the same as the internal
command DEBUG.

2.3 MEMORY MANAGEMENT

The RIO Executive includes a memory manager which controls
allocation/deallocation for the system. A bit map is used
to reflect the status of each 128 byte segment in the 65K
address space. A set bit (=1) indicates that the segment
in question is allocated. A reset bit (=0) indicates the
segment is available for allocation. During system
initialization, memory which is occupied by the system or
which is nonexistent is marked as allocated. Subsequent
memory utilization should be coordinated with information
supplied by the memory manager, entry point MEMMGR, to
avoid conflicting uses of the same memory segment.

- 12 -

2.3.1 MEMMGR

Subroutine calls to the system entry point MEMMGR can be
used to allocate, deallocate, or determine the status of
designated memory areas. Appendix I gives the details of
these subroutine calls. Alternately, memory segments
may be allocated, deallocated, or the current memory
map displayed from the command level. Refer to Chapter 5
for details of the ALLOCATE, DEALLOCATE, and DISPLAY
commands.

2.4 COMMAND STRING INTERPRETATION

Whenever RIO is ready to accept command input, the prompt
character '%' is printed on the console output device. All
characters entered (up to a maximum of 256, subject to
device driver editing, see section 3.4.3) after the prompt
character, up to and including the first ASCII carriage
return (CR), are entered into the command string buffer.
This input constitutes the command input string. The
command separation character I:' is used to terminate a
command but does not terminate command input. Thus, as
many commands may be entered at one time as can be
contained in the 256 byte command string buffer.

Several characters have special significance to the command
string interpreter. As noted above, carriage return and
semicolon are used to terminate commands and are
therefore referred to as terminators. Space, horizontal
tab (ASCII 09H), and left and right parentheses can sep
arate command names from optional parameter lists and
are referred to as delimiters.

There are two modes of providing system information to the
user. In verbose mode, each command is echoed as it is
extracted from the command string buffer. This is useful
to verify input or when entering multiple commands per
command string. In brief mode, commands are not echoed
(except as entered).

After a command has been located in the command input
string, an attempt is made to match it against a list of
internal commands. In doing so, an internal command name
may be abbreviated to the extent to which it is
differentiable from other internal commands. For example,

- 13 -

the strings '0', 'DE', 'DEB', 'DEBU', or 'DEBUG' all
result in entering the PROM Debugger. If the abbreviation
does not identify a unique internal command, then the first
entry will be chosen. For example, '0' and 'DE' refers to
DEBUG rather than DEALLOCATE (Appendix H lists the internal
command table contents in order). If no match is found,
the command name is assumed to be the name of a file. The
search order of drive '0', followed by drive '*', is then
used in an attempt to open the file. If the file is located
and is of type procedure, a request is made to the memory
manager to allocate the space required to load the file.
The values LOW ADDRESS and HIGH ADDRESS in the file's
descriptor record define the memory which will be altered
as a result of loading, and generally represent the lowest
segment starting address and highest segment ending address,
respectively. Note that since file I/O is not buffered, the
latter is a function of the record size and may not equal
the highest segment ending address. For example, loading a fiie
consisting of 40 bytes linked at location 5000 having 80 byte
records will affect memory locations 5000-507F rather than
5000-503F since a minimum of one record is required to
contain the file. If the allocating request is successful,
the file is loaded into memory.

After loading the file, two things may inhibit its
execution. If it has a null entry point (=0) or if the
delimiter following the command name is a comma, the
command string interpreter suppresses command execution and
instead processes the remainder of the command input string,
if any. In this way, files may be loaded together and
control passed to anyone of them. For example, it may be
desired that a user program and debugger be loaded with
control passing to the debugger where instructions may be
executed one at a time, breakpoints set, or registers given
appropriate values prior to user program execution.

In the event command execution is not inhibited, a stack
may be allocated consistent with the size specified in the
descriptor record by LINK or IMAGE. (If a null (=0) stack
size is requested, dispatch is made to the loaded file
using the system stack space.) When several procedure files
are loaded together, a stack is allocated for the first file
in the command string with a nonnull stack size; no other
stack space is allocated for the files loaded together. Two
attempts are made to allocate the stack area. First the mem
ory area following the loaded procedure to the end of memory is
searched and, if unsuccessful, a second attempt is made, search-

- 14 -

ing from 0 to the beginning of the loaded file. If both attempts
fail, no stack space is available and command execution cannot
be initialized. Thus, normally the user stack is located im
mediately after the loaded file.

Since it is more efficient to not repeatedly load a command
file which is to be executed several times in succession,
RIO remembers the entry point of the last loaded file and
provides the internal command XEQ (see ·section 5.42) to
transfer program execution to that addres~. Most RIO
commands can be executed repeatedly in this way.

Prior to executing the external command file, the memory
map is examined to identify those segments which were
allocated as a result of loading the file(s) to be
executed. When return to OS is made, these segments will
be deallocated. Note that in the event a file is loaded,
but not executed, the space it occupies will be allocated
until either explicitly deallocated (see the RELEASE
command, section 5.35) or a return to OS is made from any
external command file.

2.5 ERROR HANDLING

Wherever errors occur in the processing or execution of
system commands, a message is directed to the console
output device. Command processing then continues with the
next command in the command string, if any.

2.6 PROGRAM EXECUTION OF COMMANDS

Any command or user program executable from the system
console can also be executed from a program. This is
accomplished by making a system call to RIO with reference
to the command string to be executed. In this way programs
can be chained together or complex overlay structures
easily implemented. (See the Relocating Assembler and
Linker manual for details of overlay creation.) System
calls and the RIO system entry point are described in
sections 3.2 and 4.5.

- 15 -

CHAPTER 3

I/O STRUCTURE

3.1 OVERVIEW

The I/O architecture of RIO is designed to a) facilitate
user construction and implementation of device drivers to
service the I/O requests of system or user programs; and b)
simplify and standardize interface to all I/O drivers.
To this end, all I/O requests are made to RIO with
reference to a logical unit. RIO determines the proper
routing for the referenced unit and passes control for
servicing of the I/O request to the appropriate device
driver.

The internal structures supporting this facility include
the Active Device Table (ADT) and Logical File Table (LFT).
The Active Device Table has one entry for every device
known to the system at a given time and includes the device
name and entry point. Devices are made 'known' to the
system via the ACTIVATE command (see section 5.1), or they
may be removed from the ADT by the DEACTIVATE command (see
section 5.11). The current ADT contents can be reviewed with
the LADT command (List Activate Device Table - see section
5.31).

Devices which are known to the system may be used to
qualify a file name, thereby linking a logical unit to the
named device. Unqualified file names (those without a
device name prefix) are given a default routing to the
master device (see MASTER, section 5.32).

The link between a logical unit and a specific device
exists in the Logical File Table, each entry of which
contains the address of the device that the corresponding
unit is linked to. Before I/O requests may be processed via
a logical unit, the unit must be defined. This unit
definition may occur via the 'Assign' I/O request (see

- 16 -

Section 3.3) or it may occur as a result of the DEFINE
command (see section 5.14).

As a part of system initialization units 1, 2, and 3
are defined as the console input, console output, and
volume output devices, respectively, and are given the
mnemonics CONIN, CONOUT, and SYSLST. Although these
units are available for redefinition by the user, RIO
assumes that these units represent the equivalent devices.

3.2 I/O REQUESTS - SYSTEM CALLS

I/O requests are accomplished by making a subroutine call
to the RIO entry point SYSTEM (see Appendix C). The IY
register must hold the address of a request vector, of the
following format:

IY -)

Byte

o
1

2-3
4-5
6-7
8-9

A
B-C

Logical Unit Number

Contents

logical unit number
request code
data transfer address
data length
completion address
error return address
completion code
supplemental parameter

information

The logical unit number is an integer in the range 1 to
MAXLUN (20 in the standard system). units 1, 2 and 3
are predefined by RIO to be console input, console output,
and volume output.

Request Code

Identifies the operation requested.

- 17 -

Data Transfer Address

The memory address at which data movement will begin.

Data Length

Number of bytes of information in the transfer. This will
be reset by the device to reflect the actual number of
bytes transferred upon completion of the operation.

Completion Return Address

If bit 0 (least significant) of the request code is set
(=1), those devices which are interrupt-driven will return
control to the calling routine as soon as possible and
continue the operation under interrupt control. At the
time that the operation is completed, transfer will be made
to the completion address which should exercise the
responsibilities of an interrupt service routine (i.e., it
must preserve all registers). However, an RETI instruction
should not be executed, since lower-level interrupts are
enabled by the interrupt handler. (If immediate return is
desired, care must be taken not to change any words in the
parameter vector, or use or change the data, until the
operation is complete.) If return on completion is
indicated (i.e., bit 0 is reset=O) the completion return
address is ignored.

Error Return Address

If nonzero, the error return address will be used as the
return address in the event of an error condition. The
routine thus entered should execute an RET instruction
after processing the error condition. Since the error
condition is detected by the I/O driver, and the call to
the error return address is made there, the programmer
should not make assumptions about the elements on the
stack above the return address.

- 18 -

Completion Code

The completion code is always set by the device and will
indicate completion of the request and any errors. Error
codes are universal (i.e., for all devices to which a given
error applies, the error code is the same). Generally, bit
7=1 is used to signal operation complete, with bit 6=1
indicating an error condition (see Appendix A). All I/O
devices must set this completion code prior to returning to
the ca11ing procedure.

Supplemental Parameter Information (Optional)

The two bytes of supplemental paramater information
may be used to hold either additional data or an
address to a vector supplement. The format of
such an extension is defined by the device for a
given request.

3.3 THE 'ASSIGN' I/O REQUEST

If a system call is made with the request byte equal to the
'ASSIGN' request code (02), the request is trapped by RIO for
possible unit definition or supplemental parameter vector
manipulation. The exact sequence is controlled by a set of
flags in the first byte of the supplemental parameter
vector.

If bit 7 (the most significant bit) of the flag byte is
reset (=0), then RIO will format the supplemental parameter
vector (see Appendix F), including the drive name, file
name length, and file name fields, from information derived
either from the string referenced by the Data Transfer
Address of the request vector (bit 1=0) or from the string
contained in the file name field (bit 1=1).

For example, suppose a user program requires one parameter
which can be a qualified or unqualified file name. The
user may elect to parse this parameter string in order to
determine the device name (if any), drive designation (if
any), file name and file length. Alternatively, a request
vector can be set up with the Data Transfer Address field
referencing the parameter string and the first (flag) byte

- 19 -

of the supplemental parameter vector with bits 7 and 1
reset to (this file name string must be terminated by a
delimiter). RIO then moves the file name into the file
name field of the supplemental parameter vector and sets
the name length and drive designation. If no name is
given, the name length field is set to zero. If no drive
designation is given, the standard search sequence symbol
'*' is put in the drive designation field. More
importantly, the logical unit referenced in the request
vector is linked to the device specified as part of the
file name string, or the master device, if no device name
is given.

As a second alternative, the user program can set bit 1 of
the flag byte after moving (or assembling) the entire
parameter string into the supplemental parameter vector
file name field. RIO then formats the rest of the
supplemental parameter vector in the same wa~ as before.

If bit 7 of the flag byte is set (=1), the vector (and
supplemental parameter vector) is assumed to be in a
correct format, i.e., all fields hold valid information.
If bit 0 is also set, the unit is linked to the master
device. If bit 0 is reset, unit redefinition does not
occur, maintaining the current unit-device link. In this
last case, previous unit definition must have taken place.
After the preceding steps are taken, the I/O request is
passed to the intended device for processing. Subsequent
I/O requests are routed directly to the device.

The following table summarizes the effects of specific
supplemental parameter vector flag byte values during the
'ASSIGN' I/O request:

Flag Byte
(hex)

o (bit 1 reset)

2 (bit 1 set)

Effect on ASSIGN I/O Request

RIO formats Supplemental
Parameter Vector, Data Transfer
Address is the address of the
file name string

RIO formats Supplemental
Parameter Vector, file name
field contains file name
string

- 20 -

80 (bit 7 set and
bit 0 reset)

81 (bit 7 set
and bit 0 set)

RIO passes request directly
to device (previous unit
definition required)

RIO links unit to
master device

3.4 STANDARD RIO I/O DEVICES

Five devices are known to RIO after default system
initialization:

Device

ZDOS or DFS
FLOPPY or DISK
NULL
PCON
CON

3.4.1 ZOOS

Description

Primary file system
Interface to de~ice controller
Null device
PROM console driver
System console driver

ZOOS is the file system for RIO on floppy disk based systems.
It distinguishes between logical units and supports named
files. Consult Chapter 6 for details of ZOOS request codes
and request vector formats.

3.4.2 DFS

DFS is the ZDOS equivalent for hard disk based systems.
Consult chapter 7 for details of DFS request codes and
request vector formats.

3.4.3 NULL

NULL is a pseudo device driver which responds to all
request codes. In most cases, the operation performed is,
in fact, nUll--that is, no operation is performed.

- 21 -

Nonetheless, it responds with a completion code implying
completion of operation.

I/O Request

READ LINE
READ BINARY

All others

Action

completion code = C9H (end of
file), data length = 0

completion code = 80H
(operation completed)

This device provides a destination to which unwanted output
can be diverted. It also provides a convenient way to
check the integrity of a file. A file that can be copied
to NULL has no record pointer errors, since a complete READ
operation is performed. In the same way, all files on a
disk can be copied to the NULL device with a single
command, thus checking the file structure of the entire
disk.

3.4.4 CON

CON is the default RIO console driver especially designed
for CRT terminals. It is linked as part of the file as
which is loaded during system bootstrap. It allows the
user to define the line and character delete symbols and
supports arbitrary tab settings within a 134 character
line length. The standard RIO I/O vector format is used
in communicating with CON (see Appendix F).

During READ operations, entering the single character
delete symbol (default = ASCII backspace, 08H) causes the
last character placed in the buffer to be logically
deleted. A backspace, space, backspace sequence is sent to
the console to erase the character from the screen and
reposition the cursor.

The line feed character (ASCII OAH) forces the cursor to
the start of the next line and places a space (ASCII 20H)
in the buffer. This provides a convenient way to force the
cursor or print mechanism to the beginning of the next line
without terminating input. Note that no carriage return is
placed in the buffer, i.e., input is logically a single
line.

- 22 -

The line delete character (default = ASCII rubout or
delete, 7FH) deletes from the console display and the
input buffer all characters back to and including the
previous carriage return. (If linefeeds or backspaces have
been entered, not all of the displayed input string is
erased from the display).

The input delete character (control-X) flushes the input
buffer ~nd echoes a backslash carriage return on the console
display. The effect of the line delete character and the
input delete character differs only when processing read
binary requests (described below).

To input verbatim special characters (like rubout, control-X,
etc.), an escape character (backslash) is provided. So, to
enter 'AB<rubout>, type 'AB\<rubout>'. To enter '\', type
'\\'. The backslash can be used to enter any character
other than carriage return.

The console driver is not interrupt-driven nor does it
distinguish between logical units. Modes can be set for
linefeed insertion, number of nulls, and character echo.
If in AUTOLF ON mode (default), and the value of LFCNT
is nonzero, then LFCNT linefeeds are output to the console
following every carriage return. After ljne feed insertion
(if any), and if the value of NULLCT is nonzero, then NULLCT
nulls (ASCII 0) are output to allow time for print head or
cursor repositioning. Default is NULLCT=l, which is sufficient
for CRT operation up to 19.2 Kbaud, and LFCNT=l. If in ECHO ON
mode (default), then each character is echoed back to the ter
minal as it is read.

The ASCII tab character, control-I (09H), is expanded into
an appropriate number of spaces only when it is output to a
display device, thus compacting symbolic files where
large numbers of spaces are required to improve readability.
Tabs can be set by placing the cursor in the desired
column and entering control-T (ASCII l4H) followed by
'T'. To clear a tab setting, the cursor is positioned
in the column where the tab exists and the sequence
control-T followed by a 'space' is entered.

The default tab settings are every eight columns, starting
with the leftmost column as column O. To change this default
tab setting, the user may use the SET TABSIZE command (see
5.39) •

- 23 -

Tabs can be altered in the file OS (from the PROM Debugger)
to change the default tab settings of every eight
columns. Different tabbing environments can be
established and made into a file so that they may be
altered by command (see Sections 5.37 and 5.38).

The following I/O requests are honored by CON:

INITIALIZE (OOH)

ASSIGN (02H)

OPEN (04H)

CLOSE (06H)

READ BINARY (OAH)

- Reads the current date into the
default attributes table (see OPEN
below) and sets default ~tatus area.

- Null operation returns
operation complete

- If data length = 0: null operation.
Otherwise up to 20 bytes can be
requested from the default set of
attributes including:

Type
Record Count
Record Length
Block Length
Properties
Starting Address
Bytes in last record
Creation Date

20H (ASCII)
o
80H
80H
o
o
o
Current Date

- Null operation returns operation
complete

- Data length c~racters are received
from the console. Entering a
control-D (ASCII EOT, 04H) causes
an end-of-file mark (FFH) to be
placed in the buffer and the request
terminated. Data length is reset to
the actual number of characters read.
The parity bit of each character is
reset.

- 24 -

READ LINE (OCH)

WRITE BINARY (OEH)

WRITE LINE (lOH)

READ STATUS (40H)

Byte

- A maximum of data length characters
is received from the console up to
and including the first carriage
return. Data length is reset to
the actual number of characters read.
The parity bit of each character is
reset.

- Data length characters are sent to
the console. An end-of-file mark
(OFFH) results in termination of the
request. Data length is reset to
the actual number of characters
written.

- A maximum of data length characters
is sent to the console up to and
including the first carriage return.
Data length is reset to the actual
number of characters written.

- Transfers data length bytes of the
CON status area to the area
starting at the data transfer
address. The CONSOL status flags
are defined as follows:

o FLAG byte Bit 0
Bit 1

Local Flag

Bit 2

Bit 3

Bit 4

Bit 5

- 25 -

Auto linefeed
insertion (AUTOLF)
On=l (defaul t)
Off=O

Echo On/Off
On=l (defaul t)
Off=O

Temporary Input buffer
(TIB)
Full=l
Empty=O (default)

Echo carriage return
Off=l
On=O (defaul t)

Escape pending
Not pending=l
Pending=O (default)

1
2

reserved
TIB

Bit 6
Bit 7

Local flag
Full/Half duplex
Half=l
Full=O (default)

Holds last character which has
been input from serial
communication port but not yet
transferred by a READ request.

3 Cursor Location
4 reserved
5 •• 138 Tabbing Drum 134 positions used to mark tab

settings (nonzero values)

WRITE STATUS (42H) - Transfers data length bytes
from the data transfer address
to the CON status area
(see above).

DEACTIVATE (44H) - Null operation returns
operation complete

READ ABSOLUTE (46H) - Data length bytes are
received from the console
device. Byte data is ac
cepted exactly as trans
mitted. Data length is
unaffected.

WRITE ABSOLUTE (48H) - Data length bytes are sent
to the console device. Byte
data is written exactly as
given. Data length is un
affected.

All others - returns Invalid request completion code.

During write operations, entering a question mark causes
the operation to pause until a second question mark is
entered. Entering an ESCape always immediately terminates
an I/O request.

- 26 -

3.4.5 PCON

The PROM console driver provides basic console I/O and
becomes the default device for logical units I and 2
when OS encounters errors while requesting input from
or output to these units. Refer to the MCZ or ZDS PROM
User's Manual for full details.

3.4.6 FLOPPY

The PROM floppy disk driver is used by ZOOS as the access
primitive for the floppy disk drives. Refer to the MCZ
or ZDS PROM User's Manual for full details.

3.4.7 DISK

DISK is the hard disk controller interface provided for
those utilities requiring access by sector address. Refer
to Chapter 7 for full details.

- 27 -

CHAPTER 4

PROGRAM INTERFACE

4.1 PROGRAM LOCATION

The following table describes the memory utilization for
the standard Microcomputer System (MCZ) and Development
System (ZDS):

MCZ 1/20 MCZ 1/35 ZDS (monito
mode)

PROM O-FFF O-FFF O-BFF
PROM Dedicated RAM 1000-13FF 1000-13FF COO-FFF
RIO Executive (OS) l400-24FF l400-24FF 1000-20FF
Console Driver 2500-29FF 2500-29FF 2l00-25FF
ZOOS 2AOO-43FF 2600-3FFF
User Space 4400- 2AOO- 4000-

RIO commands, and, in fact, all RIO procedure files, are
written as subroutines. That is, the system return address
is pushed on the stack when program execution of the
procedure file begins. Command files are generally
loaded into the low range of the program space for
execution. Entry points and file sizes can be obtained
using the EXTRACT or CAT commands (see Chapter 5).

The minimum requirement for program execution concurrent
with RIO is that it be 'loadable' in the sense that the
space required to read the file into memory be unallocated,
and that sufficient space be available in the system to
allocate a user stack.

The current state of the memory allocation map can be
displayed using the DISPLAY command (see Section 5.19). In the
MCZ 1/20 configuration, memory from 4400H is unallocated and is
available for system or user command execution. The only concert
of the user is to insure that all programs which coexist in memo]
form a disjoint memory space--i.e., if a program is to make SyStE
calls which result in execution of external procedure

- 28 -

files, then all programs referenced which reside in memory
concurrently must not occupy the same address space.

4.2 PARAMETER STRING ADDRESS

When the command string interpreter identifies an external
file name and succeeds in loading the procedure file, the
variable INPTR (see Appendix C) is given the address of the
delimiter following the file name. Programs may alter
the subsequent parameter string, if any, up to but not
including the next terminator (carriage return or semicolon).
Prior to program execution, this address is also pushed
on the user stack, followed by the system return address.

4.3 PROGRAM STACK SPACE

To RIO, user programs look like subroutines. Before
execution, the system stack pointer is saved, a user
stack is allocated (if the requested stack size is not
equal to zero), and the parameter string address and
return address in RIO are pushed. Dispatch is then made
to the program at its entry point. The stack size is
determined by LINK or IMAGE, default being 80H bytes.
Programs requiring larger stack space should be LINKed
or IMAGEd with non-default stack sizes (ST=nn option).

4.4 PROGRAM TERMINATION - ERROR HANDLING

In addition, or asa supplement to internal error handling
procedures, user programs may indicate certain errors to
RIO by setting the variable ERCODE. In the RIO convention,
if bit 6 is set, the value is taken to be an error code to
be displayed. If the error code value is one of those
which corresponds to a RIO error message (see Appendix A),
then the message is printed instead of the value.

- 29 -

4.5 SYSTEM CALLS - SYSTEM ENTRY POINT

System calls for program execution of RIO procedure files
is accomplished by making a subroutine call to the system
entry point SYSTEM (see Appendix C) in the same way as an
I/O request: The IY register must hold the address of a
request vector of the following format:

Byte

IY -) 0

1
2-3
4-7
8-9

A

Command String Address

Contents

zero - indicates request is a system
call rather than an I/O request
unused
command string address
unused
error handler address
completion code

Address of the first byte of command input string.
This string is of indefinite length, but must terminate
with a carriage return. The format for the command string
is the same as if entered on the console input device (see
section 2.3).

Error Handler Address

Address of the routine to which RIO jumps to handle error
conditions. If zero, no jump will be made and error
conditions will not be reported. This applies only to
errors either generated within RIO or reported to it via
ERCODE.

Completion Code

Either the completion code generated internally by RIO or
the ERCODE reported by external file execution, if
applicable, will be returned in this byte. Bit 6 set (=1)
implies an error condition.

- 30 -

*** NOTE ***

When external files make system calls resulting in
execution of other external files, the current state of the
memory map needs to be saved in order to determine what
space to deallocate as a result of program loading. This
map is saved on the user stack occupying a block of
44H bytes. Care must be taken to allocate sufficient
stack sizes for programs using this feature.

*** NOTE ***

RIO is not reentrant from its system entry point.

4.6 INTERRUPT STATUS

The initialization process associated with system restart
sets interrupt mode 2, and the I register to the base address
of the interrupt vector, with interrupts enabled. Proper
system operation depends on this interrupt status. With
this configuration the a-bit vector supplied by the
interrupting device is used with the contents of the I
register to form a pointer to the interrupt service routine
starting address. Zilog support devices can be programmed
to supply appropriate interrupt vectors using this space.
If program constraints make it necessary to alter the
interrupt mode or I register, they must restore the proper
conditions before making system calls that result in disk
activity. See Appendix C for the system interrupt vector
address for use in restoring the I register.

4.7 I/O UNIT UTILIZATION

The user is free to redefine all I/O logical units with the
exception of '0'. Unit a is restricted to use by RIO.
Units 1, 2 and 3 are predefined to be the console input
device, console output device and system volume output
device. Units 4 through 20 are initialized to be the
master device. Redefinition of these units may result in
abnormal system behavior upon return to RIO. This means
that in the standard RIO configuration which allows 0-20,
17 units may be defined concurrently, with an additional
3 units predefined by RIO for use as console or line
printer I/O devices.

E3-0072-01, Rev. B -31- 10/31/79

I

4.8 PROGRAM EXAMPLES

In Appendix G are sample programs which the user is.
encouraged to edit, assemble, link, and execute. They
illustrate some of the concepts introduced in previous
sections of the chapter, including console I/C, parameter
string processing, and file I/O.

-32-

CHAPTER 5

RIO COMMANDS

The following RIO commands are supplied as procedure type
files which have the properties SECRET and WRITE
PROTECTION. Each section is devoted to one command and has
the following format:

SYNTAX

A description of the syntax of the command, giving
parameter definitions, options and conventions. In all
syntax descriptions, the following notation is used:

Optional parts of a parameter list are enclosed in
brackets, '[•..]'.

The symbol for logical or, 'I I, is used if either
parameter separated by the symbol can be used, but not
both.

Parameters which can be repeated zero or more times
are enclosed in parentheses and followed by an
asterisk, i.e., (param)*.

Parameters which can be repeated as necessary but
must appear at least once are enclosed in parentheses
and followed by a plus sign, i.e., (param)+.

- 33 -

Internal commands are indicated by notation just under
the command name in the upper right hand corner of the
page. In this case, the command as given in the
syntax also indicates the extent to which the command
may be abbreviated. Upper case characters are required
while trailing lower case characters are not.
The command may be entered in either abbreviated
or unabbreviated form, in upper or lower case,
e.g., 'DEB' is the same as 'dl.

DESCRIPTION

A general description of command operation and definition
of options.

I/O UNIT UTILIZATION

The logical units that the command uses for a particular
function. I/O error messages generally refer to the unit
on which the error occurred.

EXAMPLES

Illustrative examples of command invocation, where
appropriate.

Note that the length of the parameter string associated
with any single command is intrinsically limited by the
buffer space associated with the command string. This
imposes a 256 character limit on commands entered via the
console input device and a 512 character limit on commands
created by the editor for execution as part of command
files (see section 5.20). Of course, command files created
by copying the console input device directly to a file are
limited only by available memory when executing the command
file.

- 34 -

5.1
ACTIVATE

SYNTAX

ACTIVATE device name [address]

DESCRIPTION

ACTIVATE

Make a device known to the system by including it in the
Active Device Table (ADT). It can thereafter be used as a
device name in qualified file names. If the optional
address is omitted, the file name referenced by the
device name will be located on the appropriate device and
loaded-if it is a device file (procedure type, subtype 1),
has a non-null entry point, and does not overlay protected
memory. The amount of memory allocated as a result of
loading the file is kept as the SIZE field of the ADT entry

.for possible later use by the DEACTIVATE command. If the
optional address is given, the file is assumed to have
been previously loaded in memory. In this case the address
parameter is taken as the device entry point. Since the
memory bounds are unknown, the SIZE field of the ADT entry
is set to a null value (O).

In either case, an Initialize I/O request is sent to the
device to allow preparation for subsequent request
handling.

I/O UNIT UTILIZATION

Unit 0: device file handling
Unit 2: error messages

- 35 -

ACTIVATE ACTIVATE

EXAMPLES

ACTIVATE $MYDOS

locates file 'MYDOS' on the master device using
the default drive search sequence. It is then
loaded and given an Initialize request. An
entry is created in the Active Device Table.

ACTIVATE $MYDOS:4/$MY.VIDEO.DRIVER

locates file 'MY.VIDEO.DRIVER' on device 'MYDOS',
drive 4. It is then loaded, an Initialize request
sent, and an Active Device Table entry created.

ACTIVATE $MY.PROM.DISK.DRIVER OBFD

creates an Active Device Table entry using OBFDH
as the entry point. An Initialize request is
generated.

- 36 -

5.2
ALLOCATE ALLOCATE

(Internal Command)

SYNTAX

Allocate low_boundary high_boundary block size

DESCRIPTION

Attempts to allocate block size bytes (rounded
up to a multiple of 80H bytes) of memory. The search
begins at address low boundary (rounded down modulo 80H),
and the first block large enough and not extending beyond
high boundary (rounded up to the next multiple of 80H - 1)
is marked as allocated in the system memory map. If allocation
is not possible, the message INSUFFICIENT MEMORY is given.

I/O UNIT UTILIZATION

None

EXAMPLES

ALLOCATE 0 FFFF 120

starting at memory address 0, a search is made for
a 180H byte (120H bytes rounded up to a multiple of
80H) memory segment.

ALLOCATE 5300 537F 80

attempts to allocate the single 80 byte memory segment
starting at 05300H.

ALLOCATE 7400 8000 400
INSUFFICIENT MEMORY

no 400H byte block is available in the address range
7400-807FH.

- 37 -

ALLOCATE ALLOCATE

ALLOCATE 8EOO 9535 9535-8EOO

use the expression evaluator to determine the
blocksize to be allocated. (780H bytes).

- 38 -

5.3
BRIEF

SYNTAX

Brief

DESCRIPTION

BRIEF
(Internal Command)

Enters console Brief mode. Commands are not echoed on the
console output device as interpreted and some command files
suppress execution messages. See Verbose command.

I/O UNIT UTILIZATION

None

EXAMPLES

B

brief

- 39 -

5.4
CAT

SYNTAX

CAT (match string I T=type I P=props
F=format I L=listing disposition
CDATE reI date)* -

DESCRIPTION

CAT

D=drive I
DATE reI date

Prints a catalog of entries in the file system
directories which match the specified options. Given
without options, all (non-secret) files in each active
drive directory are listed. Options may be given in any
order, and may appear more than once. Where optioQs other
than match strings are specified more than once, the last
one entered is used.

match_string

Fully- or partially-specified file names may be given, in
which case only those directory entries which are identical
to one of the fully specified file names or match one of
the partially specified file names, are listed. Partially
specified refers to the use of the symbol '*' which denotes
an arbitrary character string. For example, '*XYZ' matches
any file which ends in 'XYZ'. 'ABC*XYZ' matches any name
which starts with 'ABC' and ends with 'XYZ' but has any (or
no) characters in the middle. The string '*' (which is
equivalent to '**') matches any name. Match strings cannot
be qualified file names, i.e., no device or drive name may
be given (see the 'D=drive' option below).

- 40 -

CAT CAT

T=type

Only files of the given type will be listed. Type must be
one of 'D' (directory), 'A' (ASCII), 'B' (binary) or 'Pi
(procedure). Subtype may also be specified immediately follow
ing the type (e.g., 'PI' refers to files of procedure type,
subtype 1). If no subtype is given, all subtypes of the specified
type are listed.

P=props

Only files with exactly the specified properties will be
listed. Props must be from 'WI (write protected), 'E'
(erase protected), 'L' (properties locked), 'S'
(secret), 'R' (random), 'F' (force memory allocation), or
'&'. Use of '&' will allow any file with at least the
specified properties to be listed. One or more properties
may be concatenated in which case only files with exactly
(or at least, if '&' is included) the specified properties
will be listed.

D=drive

Only files from the specified drive will be listed. Drive
must be from '0' ••• '7'. Default is to search directories
from all ready drives on the master device. If a device is
specified without a drive (i.e. D=$DFS), all ready drives on
that device will be searched.

F=format

Specifies long (F=L) listing format. The short form
(default) consists of name and drive while the long form
gives name, drive, file type, record count, record length,
file properties, starting address, date of creation, and
date of last modification. Additionally, the number of
files examined, the number of files listed, and the number
of sectors used by listed files are given.

- 41 -

CAT CAT

L=listing_disposition

The listing is normally routed to SYSLST but can be routed
to any device or file. For example, L=$CON would route
output to the console (SYSLST may also be defined as this
device) or L=2/FILELISTING would route the output to file
'FILELISTING' on drive 2 of the master device. All output
generated for the specified device or file will be
buffered, i.e., several lines will be transferred at one
time. While output is active at the console, entering a
I?' character will cause output to stop until another I?'
character is entered. If the ESCape character (ASCII IBH)
is typed, output will be terminated and control will return
to the Executive. The I?' and ESCape features apply
only to MCZ systems.

CDATE DATE reI date

where reI is one of the relational operators '=',
'>', '<', '>=', '<=', or '<>', and date is up to 6
digits or '*' representing a date to be compared against
in 'yymmdd' form. '*' in a digit position specifies that
that digit will be considered equal to anything. A date
expressed with less than 6 digits is treated as being
filled on the right with '*'s.
DATE refers to the date of last modification. CDATE refers
to the date of creation. The entire option should be
specified with no intervening blanks. For example:

CDATE>=7805

refers to all files created with dates in May of 1978
or later. This is equivalent to

CDATE>=7805**

If the referenced date field of the file descriptor has
a character which is not a digit, it will not match unless
that digit position of the match date has an '*' in it.

- 42 -

CAT CAT

I/O UNIT UTILIZATION

Unit 2: error messages
Unit 3: default listing destination

directories Unit 4:
Unit 5: files listed in directory

non-default listing destination Unit 6:

EXAMPLES

CAT F=L

Lists all (non-secret) files (long format) from
all ready drives.

CAT D=$DFS:2 P=W SYS*

Lists all files (short format) on drive 2 on the device
$DFS (if it is ready) which are write protected (only)
and whose names start with 'SYS'.

CAT F=L *.S *.L P=E& L=CAT.LIST

Lists all files (long format) which end with either
'.S' or '.L' and are at least erase protected.
Listing goes to file CAT. LIST on the master device.

CAT F=L P=& DATE)=780301

Lists all files (long format) with at least null
properties that have been last modified on or
since March 1, 1978.

- 43 -

5.5
CLOSE

SYNTAX

Close u/*

DESCRIPTION

CLOSE
(Internal Command)

Generates a Close (06) I/O request for (hexadecimal) logical
unit 'u' or all logical units ('*'). Error returns are ignored.

I/O UNIT UTILIZATION

As noted above

EXAMPLES

CLOSE 5

generates a Close I/O request for logical unit 5.

CLOSE *

generates a Close I/O request for all logical units.

- 44 -

5.6
COMPARE

SYNTAX

COMPARE file 1 file 2

DESCRIPTION

COMPARE

Performs a comparison of the contents of file 1 and
file 2 (excluding the descriptor record). If-the file
contents are identical, no message is given. For each
byte comparison which fails, a message of the form

FILEl: BYTE OlFC RECORD 0003 = B6
FILE2: BYTE OlFC RECORD 0003 = A6

is given.

Pressing the escape key will terminate command execution.
File 1 and file 2 may not be the same physical file, though
they-can be the-same named file on different drives if the
names are appropriately qualified.

I/O UNIT UTILIZATION

Unit 2:
Unit 6:
Unit 7:

EXAMPLES

error messages
file 1 input
file 2 input

COMPARE MYFILE YOURFILE

MYFILE and YOURFILE are read and compared. No
message implies the files are identical.

- 45 -

COMPARE COMPARE

COMPARE AFILE BFILE
I/O ERROR C9 ON UNIT 7

an end of file was reached on BFILE before the
corresponding end of file on AFILE.

COMPARE Q/MYFILE l/MYFILE

the two files have the same name, but they reside
on different devices.

- 46 -

5.7
COpy

SYNTAX

COpy

COpy file 1 file 2 (A I U I 0 I RL=record length I
T=type)*

DESCRIPTION

Copies file 1 (using a READ BINARY request) to file 2 (using
a WRITE BINARY request). When the A (Append) option is I
specified, file 1 is copied (initially using a READ CURRENT
request) to fil; 2 (initially using a WRITE CURRENT request)
so that the first byte of file 1 is placed immediately after
the last byte of file 2. The copy command then proceeds as
before. Either file I or file 2 may be devices or fully
qualified names. FILE attributes of file 1 are transferred
to file_2. The options A (Append)', U (Updite), 0 (Output)
are used to specify the type of open request performed on
the destination file, file 2. The A (Append) option should I
only'be used with ASCII files. See Chapter 6 for details.
The default record length and type of file 2 will be the
same as file 1. These attributes can be overridden by
specifying one of 80, 100, 200, 400, 800 or 1000 for record
length, or one of D (directory), B (binary), A (ASCII) or P
(procedure) for type. In the event that the destination
file or device is unable to support the record length
attribute of the source file, the 'message

WARNING: RECORD LENGTH CHANGED

will be issued and the default attributes of the destination
device will be used.

*** WARNING ***

If the record length of the destination file is not the
same as the record length of the source file, either
because the RL=record length option was specified or
due to automatic record length modification (see above),
the BYTECOUNT field in the source file's descriptor
record is used to determine the number of bytes in
the last record. In the event this value is incorrect,
file truncation may result.

E3-0072-0l, Rev. B -47- 10/31/79

COpy COpy

I/O UNIT UTILIZATION

Unit 2: error messages
source file
destination file

Unit 6:
Unit 7:

EXAMPLES

COpy MYFILE 2/MYFILE.TOO

Copies MYFILE on the master device, default drive
search, to MYFILE.TOO on the master device, drive 2.
File attributes of MYFILE are transferred to
MYFILE.TOO. Error occurs if MYFILE.TOO already
exists.

COpy $ZDOS:2/THE.FILE $MYDOS/THE.FILE RL=400 0

Copies THE. FILE on drive 2 of ZDOS to THE. FILE
on device $MYDOS, default drive search. The
record length of the destination file is 400H and
its previous contents (if any) will be erased.

COpy ANOTHER. FILE $CON

Copies ANOTHER.FILE from the master device,
default drive search to the device CON, the
default RIO console device driver (see section 3.4.3).

COpy $CON 7/TEXT 0

Copies from the device CON (see section 3.4.3) to
the file TEXT on the master device, drive 7. If
TEXT existed previously, its contents will be
erased. Use a "control D" to exit the file created I
on $CON.

E3-0072-01, Rev. B -48- 10/31/79

5.8
COPY.DISK

SYNTAX

COPY.DISK [s_drive TO d_drive] [V]

DESCRIPTION

COPY. DISK

Copies the disk in drive s_drive (default = 0) to the
disk in drive d drive (default = drive 2 (MCZ) or drive 1
(ZDS)). Before starting, the prompt message

DRIVES READY?

is given. Response other than 'Y' will abort the command.
The disks are read and written directly (through the
drive control ports) one track at a time; thus the previous
contents, if any, are overwritt2D. It is not necessary
that the destination disk be formatted. After the copy
operation, a verification pass is made during which a track
by-track comparison is made. At the completion of this
pass, the message

VERFICATION COMPLETE

indicates a successful verify operation. The message

*** 0016 VERIFICATION ERROR(S) ***

indicates the number of compare errors found during the
verification attempt.

If the verification- pass only is required, the 'V'
option in the command line causes the copy cycle to be
skipped.

- 49 -

COPY.DISK

I/O UNIT UTILIZATION

Unit 0:
Unit 1:
Unit 2:

EXAMPLES

COPY.DISK

FLOPPY or DFS interaction
console interaction
console interaction

DRIVES READY?Y
VERIFICATION COMPLETE

COPY.DISK

copies disk in drive 0 onto disk in drive 2
(for MCZ) or 1 (for ZDS).

COPY.DISK 3 TO 7 V
DRIVES READY?Y
VERIFICATION COMPLETE

verifies the disk in drive 3 is identical
to disk in drive 7.

- 50 -

5.9
COPYSD

SYNTAX

COPYSD file name

DESCRIPTION

COPYSD

Copies a single ZDOS file from one diskette to another
using a single disk drive. The file name may be fully
or partially qualified. The source and destination diskette
are inserted as many times as necessary to copy the file.
When either of the prompts:

INSERT SOURCE DISK. TYPE ANY KEY TO CONTINUE, ESCAPE TO ABORT:
INSERT DESTINATION DISK. TYPE ANY KEY TO CONTINUE, ESCAPE TO ABORT:

is sent to the console device, the user must place the source
or destination diskette, as specified in the prompt, into the
drive. If the user wishes to abort the command, the ESCape
character (ASCII lBH) is entered from the console device at
this time; otherwise, any other character is entered. The
file is created on the destination diskette with the same name
and attributes that it has on the source diskette.

I/O UNIT UTILIZATION

Unit 1:
Unit 2:
Unit 6:

console interaction
console interaction
ZOOS interaction

- 51 -

COPYSD COPYSD

EXAMPLE

%COPYSD DATA. FILE
INSERT SOURCE DISK. TYPE ANY KEY TO CONTINUE, ESCAPE TO ABORT:G
INSERT DESTINATION DISK. TYPE ANY KEY TO CONTINUE, ESCAPE TO ABORT:
%

copies the file DATA. FILE from the source diskette to the
destination diskette.

- 52 -

5.10
DATE

SYNTAX

DATE [yyrnmdd]

DESCRIPTION

DATE

Displays and optionally sets the date field which is used
as the date of creation or date of last modification by
ZDOS. Digits 'yy' specify the year, 'mm' the month, and
'ddt the day.

The Date command is part of the standard RIO external
initialization command file OS.INIT. Editing the file
manually is required to change the date set at system
initialization.

Users are encouraged to maintain the DATE consistent with
the actual date in order to maximize the utility of the
information and capabilities provided by the file system(s).

I/O UNIT UTILIZATION

Unit 2: output response

EXAMPLES

DATE 780801
AUGUST 1, 1978

Sets and displays current system date.

DATE
AUGUST 1, 1978

Displays current system date.

- 53 -

5.11
DEACTIVATE

SYNTAX

DEACTIVATE device name

DESCRIPTION

DEACTIVATE

Deletes device name from the Active Device Table (ADT) and thus
makes it unknown to RIO. A Close I/O request is generated
for units linked to the deactivated device and a Deactivate
I/O request is generated for the device itself. If the ADT
size entry is non-null (> 0), the space allocated to the
device handler is deallocated.

Deactivation is inhibited for the last active device, since
there would be no source for further external commands and
therefore no method to activate other device files.
Likewise, the master device cannot be deactivated.

I/O UNIT UTILIZATION

Unit 2: error messages
Others: all units currently linked to device

EXAMPLE

DEACTIVATE $MYDOS

Removes MYDOS from Active Device Table and generates
Close request for all units linked to MYDOS. A
Deactivate request is sent to MYDOS and the space
allocated to it deallocated (if ADT size entry> 0).

- 54 -

•..• : I

5.12
DEALLOCATE

SYNTAX

DEAllocate block_address block size

DESCRIPTION

DEALLOCATE
(Internal Command)

Marks the block size segment starting at block address as
unallocated in the system memory map. If any affected
blocks were not previously allocated, the message

MEMORY PROTECTION

is given. Block address will be rounded down and
block size will be rounded up to a multiple of 80 bytes.

I/O UNIT UTILIZATION

None

EXAMPLE

DEALLOCATE 5000 1400

deallocates the 1400 byte block starting at 5000
(must have been previously allocated).

DEALLOCATE COOO 180
MEMORY PROTECTION

the 180 byte block starting at COOO was not previously
allocated.

E3-0072-01, Rev. A - 55 - 02/13/79

5.13

DEBUG DEBUG

DESCRIPTION:

Causes system to go into PROM Debugger Modeo The PROM Debugger
provides certain commands and capabilities for debugging taskso
These commands are implemented as code segment Qverlays on systems
with ZDOS as the primary file system. On systems using DFS as the
primary file system, file system primitives are always available
(because DFS executes on a separate processor), and code segment
overlays are not required. These commands require that the system
diskette on Drive 0 must not be write-protected.

SYNTAX:

DEBUG

EXAMPLE:

%D
>BREAK 5500
>Q
%

PROM DEBUGGER COMMANDS:

• GET file name

;invoke Debug environment
1set a breakpoint
:return to RIO

Loads a memory image into memory and stores its starting execution
address in the user PC. A memory image file (file type=Procedure)
can be created by the SAVE command or by the IMAGE or LINK
commands. The files contain, as part of the descriptor, the
starting address and length of one or more segments of contiguous
memory that is stored in the file, as well as the starting address
for execution of the file. The GET command can handle files of up
to five segments of memory, but the segments may be of any size.
If more than six segments are in the file, only the first six (6)
will be loaded.

If any segment contains information within the range 0-13FFH, the
system displays the message "MEMORY PROTECTION" and aborts the load
att~mpt.

If an'y disk:' I/O errors occur, the system displays the message "FILE
ERR code", where "code" is one of the operating system error codes.

E3-0072-0l, Rev. A - 56 - 02/13/79

DEBUG (continued)

• SAVE file name (starting address ending_address) +
[E=entry] [RL=record_rength]

The SAVE command copies segments of memory to diskette so that they
may be restored later. Segments are saved beginning at the
specified starting address, and terminating on a record boundary~
In a case, therefore, where the starting address is 2000H, the
ending addres~ is 20PPH, and the recotd length is SOH, memory will
be copied from the starting address to the ending address. But if
the ending address is 2100B, then lOla bytes are being requested"
and the next record must be completed, causing 2000 to 2l7F to be
saved. Up to five such segments may be saved by repeating the
start address and end address pair. The default record length for
ZDOS-based systems is SOH, and the maximum record length is 400B.
Other valid record sizes are 100H and 200H. The default record

,length for DPS-based systems 'is 200H. If no entry address is
specified, the system assumes an entry address of O.

If the entry address and record length 'parameters are both
specified, they must be specified in the syntactical order
specified above. If the system encounters a syntax error in the
command line, it displays a Question-Mark character, and returns to
Debug. Such syntactical errors might include incorrect or
incorrectly entered file names or numbers, incorrect pairing of
starting and ending addresses, failure to enter "RL=" or "E=", or
failure to specify a value after "RL=" or "E=".

Any disk I/O error will cause the system to display the message
"PILE ERR code", where "code" is one of the operating system error
codes. One exception: if the diskette is full, the system may
display the message "DISK PULL'~ rather than "FILE ERR D3. It

*** USAGE NOTE ***

SAVE does not set the values LOW ADDRESS, HIGH ADDRESS, or
STACK SIZE in the file's descriptor record. These values must be
set before the file can be loaded by RIO (see SET command
description, Section 5.39).

*** WARNING ***
SAVE uses diskette allocation information retrieved ~irectly from
the diskette, whereas ZOOS uses a copy of the same information
stored in memory. If ZDOS activities have immediately preceded the
SAVE attempt, e.g., if the Debug environment is invoked by a Break
from an operating system program, or will be returning immediately

E3-0072-0l, Rev. A - 57 - 02/13/79

DEBUG (continued)

after a SAVE, e.g., by a Quit return to the operating system
without rebooting, the following procedures must be observed to
insure that the diskette copy of the allocation information agrees
with the memory copy, both before and after the SAVE operationo

1) If Debug was invoked via a breakpoint, and ZDOS is being
accessed by the program in question, do not issue a SAVE
command unless you can verify that all ZDOS files are closedo

2) When you are attempting a return to the operating system via a
Quit command (after a SAVE has been done), immediately issue
an Initialize command (I) to update the allocation mapsG

E3-0072-01, Rev. A - 58 - 02/13/79

This Change Page has been left blank intentionally.

E3-0072-01, Rev. A - 59 - 02/13/79

.;

5.14
DEFINE

SYNTAX

DEFINE

DEFINE (unit file name I unit device name I unit *
*)+ [A I 0-1 U I I I NF I NO]~

DESCRIPTION

Links a logical unit (referenced by an integer from 1 to
20) to a currently active device or restores unit to the
default established at system initialization (bootstrap) 0

(Units 1,2,3 may be referenced by the mnemonics CONIN,
CONOUT, and SYSLST, respectively.,) If the unit was
previously defined, a close request is generated~ A

/file name may optionally be associated with the unit.
Assign and Open requests may be generated for the unit.

Unit file name

The unit is linked .to the specified device if name is
qualified, or to the master device if unqualified. An
Assign request is sent to the device with file name as a
parameter, followed by an Open request (default open type
is 'open for update').

Unit device name

The unit is linked to device name (must be active). No
other I/O requests are generated.

Unit *

Links uriit to the default established at system
initialization.

E3-0072-01, Rev. A - 60 02/13/79

DEFINE DEFINE

*
Links all units to their defaults established at system
initialization. The standard RIO system defaults to units
1, 2 and 3 defined as the console device; the remaining
units are linked to the master device.

Options

A open type = Append (See Chapter 6 for
0 open type = Output open types)
U open type = Update
I open type = Input
NF open type = Newfile
NO Generate No Open request

I/O UNIT UTILIZATION

Unit 2: error messages
parameter dependent Others:

EXAMPLES

DEFINE SYSLST $LPR

Defines the system volume output unit SYSLST (3) to be
device driver LPR, which must be an active device.
Subsequent I/O requests for unit 3 will be directed
to this device.

DEFINE 6 MYFILE

Links unit 6 to the master device. Assign and Open
(for update) I/O requests are then sent to unit 6
with MYFILE as parameter.

- 61 -

DEFINE DEFINE

DEFINE *

Restores all units to the defaults established at
system initialization (after bootstrap). All
defined units are closed prior to being redefined
as their defaults.

DEFINE 12 $YOUR.DOS/YOURFILE NO

Links unit 12 to the device YOUR. DOS (which must
be active). An Assign I/O request is then generated
with YOURFILE as the filename, but no Open request.

- 62 -

5.15
DELETE

SYNTAX

DELETE

DELETE (match string I T=type I P=props I D=drive
Q=query I DATE reI date I COATE reI date)*

DESCRIPTION

Deallocates all records and deletes name from file
directory of files which match the specified options.
Given without option, all (non-secret) files in each active
unit are deleted. Options may be given in any order, and
may appear more than once. Where options other than
match strings are specified more than once, the last
entered is used. As matches are made, if in query mode, a
prompt is made to the console of the form:

DELETE drive/filename (Y/N/A/Q)?

One character is accepted as input and must be one of the
following:

'Y' Yes, delete the named file
'N' No, do not delete the named file
'A' Yes, delete the named file and all other

files without further query.
'Q' No, do not delete the named file and discontinue

searching for file matches.

In general, if a file is listed with a given parameter list
using CAT, it will be deleted using the same parameter list
using DELETE.

- 63 -

DELETE DELETE

match_string

Fully- or partially-specified file names may be given, in
which case only those directory entries are deleted which
are identical to one of the fully-specified file names or
match one of the partially-specified file names. Partially
specified refers to the use of the symbol '*' which denotes
an arbitrary character string. For example '*XYZ' matches
any file which ends in 'XYZ'. 'ABC*XYZ' matches any name
which starts with 'ABC' and ends with 'XYZ' but has any (or
no) characters in the middle. The string '*' (which is
equivalent to '**') matches any name. Match strings cannot
be qualified file names, i.e., no device or drive name may
be given (see the '0=' option below).

T=type

Only files of the given type will be deleted. Type must be
one of '0' (directory), 'A' (ASCII), ~B' (binary) or 'P'
(procedure). Subtype may also be specified immediately follow
ing the type (e.g. 'AD' refers to files of ASCII type, subtype
0). If no subtype is given, all subtypes of the specified type
are deleted.

P=props

Only files with exactly the specified properties will be
deleted. Props may include any of the following:

,W write protected
E erase protected
L properties locked
R random
F force memory allocation
& files with at least the specified

properties

One or more properties may be concatenated in which case
only files with exactly (or at least, if '&' is included)
the specified properties, will be deleted.

- 64 -

DELETE DELETE

D=drive

Only files from the specified drive will be deleted. Drive
must be from '0' .•. '7'. Default is to list all ready
drives.

Q=query

Sets Query mode for delete operations. 'Q=Y' (default)
causes a query before a delete; 'Q=N' suppresses queries.
Note that the 'Q=Y' mode can be overridden by the query
response 'A'.

CDATE I DATE reI date

where reI is one of the relational operators '=',
')', '<', ')=', '<=', or '<)', and date is up to 6
digits or '*' representing a date to be compared against
in 'yymmdd' form. '*' in a digit position specifies that
that digit will be considered equal to anything. A date
expressed with less than 6 digits is treated as being
filled on the right with '*'s.
DATE refers to the date of last modification. COATE refers
to the date of creation. The entire option should be
specified with no intervening blanks. For example:

CDATE)=7805

refers to all files created with dates in May of 1978
or later. This is equivalent to

CDATE)=7805**

If the referenced date field of the file descriptor has
a character which is nota digit, it will not match unless
that digit position of the match date has an '*' in it.

I/O UNIT UTILIZATION

Unit 2:
Unit 4:
Unit 5:

error messages
directories
files listed in directories

- 65 -

DELETE DELETE

EXAMPLES

DELETE *.OLD Q=N

Deletes without query all files on all ready drives
which end in '.OLD' (backup files are normally
produced by the text editor).

DELETE T=A CDATE<773112

Deletes (after prompting) all ASCII type
files created before December 31, 1977.

DELETE D=2 P=R *.BASIC Q=N

Deletes without query all random files on drive 2
whose name ends in '.BASIC'.

- 66 -

5.16

DISK. FORMAT DISK. FORMAT

DESCRIPTION:

Formats a hard disk cartridge or hard disk fixed platter,
initializes the disk allocation map and utilization statistics in
the superblock, and ~stablishes the directory file.

SYNTAX:

DISK.FORMAT (S r D=drive I ID='diskname' I Q=query I N=number)*

Parameter

S

D=drive

ID='diskname'

E3-0072-0l, Rev. A

Description

Determines whether or not the disk is to
be formatted as a disk from which to read
the file system program into the
controller. Such.disks are referred to as
system disks and contain the 'BOOTSTRAP'
file and a pointer to that file within the
superblock. If the "S" option is given in
order to format a system disk, the file
"BOOTSTRAP" is copied from the master
device. This file implements the file
system, and is read into memory when the
controller is initialized.

The drive number of the drive containing
the disk to be formatted; specified as
"drive." If the drive is not specified,
the system issues the following prompt:

DRIVE:

Valid response: 0, 1, 2, 3, 4, 5, 6, or 7.

Up to 100 characters, not including a
carriage return character, are written
into the disk identification field in the
superblock on the disk. The file system
uses this field to verify that allocation
maps in memory are for the disk being
accessed. If no value is specified for
this option, the system issues the
following prompt:

DISKID:

- 67 - 02/13/79

,~

DISK. FORMAT (continued)

Parameter

Q=query

N=number

EXAMPLE:

Description

Normally, before disk formatting begins,
the system issues the following prompt:

READY?

Responses other than 'Y' or 'y' abort the
format attempt. This verification may be
bypassed by specifying 'Q=N'. The default
is IQ=Y'"

This option may be used to override the
default directory size of 5 blocks. The
directory will grow to accomodate more
filenames, but the directory blocks will
no longer be on the same track and seeks
will have to be issued to look through the
directoryo

%DISK"FORMAT S D=O N=l5 ID='RIO MCZ 1/35 SYSTEM DISK'
READY?Y

USAGE:

formats the disk in drive 0 as a system disk with an initial
directory size of 15 blockso

The format program writes sector 0 so that the sector interlace map
which maps logical records to disk addresses is valid. The format
program then downloads a program which writes a known pattern on
all sectors after sector 00 After this program completes, the
following message is written to the console:

WRITE PASS DONE

The format program then downloads another program which will read
back all sectors and build a free chain from which to allocate
blocks to files. After this program completes, the following
message is written to the console:

VERIFY PASS DONE

On a 5 megabyte platter, this will occur within approximately 5
minuteso If any blocks were read with an error, their record

E3-0072-01, Rev. A - 68 - 02/13/79

DISK. FORMAT (continued)

numbers are written into an error block. The directory is then
constructed. If the S option was specified, then-the format
program will attempt to copy the file 'BOOTSTRAP' onto the drive.

I/O UNIT UTILIZATION:

Unit
Unit
Unit

0:
1:
2:

DISK interaction
console interaction
console interaction

Unit 4: DFS file system interaction

E3-0072-01, Rev. A - 69 -

•

02/13/79

5.17

DISK.REPAIR DISK .. REPAIR

DESCRIPTION:

Attempts to recover lost file data due to software failure or
abnormal program interruption. There are currently three levels of
repair: Levell, Level 2, and Level C (see USAGE p below) 0

SYNTAX:

DISK.REPAIR D=drive number (L=level~indicator)

Parameter Description

D=drive The drive number of the drive
- the disk to be repaired~ if no

specified for this option, the
issues the following prompt:

Drive~

Valid response: 0, 1 , 2, 3" 4,

L=level The attempted repair level~ if
specified for this option, the
issues the following prompt:

Level:

Valid response: 1 , 2, or c.

EXAMPLES:

%OISK.REPAIR L=l D=3
Drive number is 3, repair level is 1.
Ready? Y
6 sectors removed from free chaino

containing
value is
system

5, 6, or 7 •

no value is
system

level 1 repair is administered to the disk in drive 3; 6
allocated sectors were removed from the unallocated sector list.

%DISKoREPAIR L=C
Drive: 0
Drive number is 0, repair level is C.
Ready?Y
Free sector count: 2576

E3-0072-01, Rev. A - 70 - 02/13/79

DISK. REPAIR (continued)

USAGE:

• Level 1 Repair:

When software failure or external interruption prevents the
cache of unallocated sectors maintained within the superblock
from being updated, this level of repair will remove any
allocated sectors from this ·cache. If the command does remove
sectors, the message

"n sectors removed from free chain."

is sent to the console device, where n is the decimal number of
sectors the command removed. If the state of the sectors is
consistent with their being in the cache, the message:

"Free chain unmodified."

• Level 2 Repair:

Level e 2 repair reconstructs the free chain from scratch. This
level is useful for retrieving sectors that have been allocated,
but are on the free chain and not in the unallocated sector
list. Level 2 repair takes about seven minutes to run.

• Level C Repair:

Level C checks the free chain of unallocated sectors on the
disk: it counts the number of free sectors and reports the
count to the user, displays a warning for each unusable sector
in the free chain, if any. If the number of free sectors listed
by a DISK. STATUS significantly differs from the number of free
sectors counted by Level C of DISK. REPAIR, it.·maybe wise--- to .. -
perform a Level 2 repair on the disk. Level C requires about. a
minute to run.

Both Level C and Level 2 will take a very long time to run if
there is more than one sector of unusable sector addresses, that
is, if there are 130(1) or more unusable sectors on the disk.

I/O UNIT UTILIZATION:

Unit 0:
Unit 2:

disk sector access
execution messages

E3-0072-01, Rev. A - 71 - 02/13/79

5.18

DISK. STATUS DISK .. STATUS

DESCRIPTION:

Lists statistics on how much of the DFS disk space on the specified
drive has been used, and how much of it remains available for new
file creation.

SYNTAX:

DISK STATUS [drive_number]

Parameter
. Description

drive The drive number of the drive containing
the disk being status-checked~ valid
entries~ 0, I, 2, 3, 4, 5, 6, or 7.,

EXAMPLE:

%DISK .. STATUS 0

DRIVE 0 RIO MCZ 1/35 SYSTEM DISK
6638 SECTORS USED
3105 SECTORS AVAILABLE

USAGE:

Entering the command keyword without a qualifying drive number
causes the system to respond by listing statistics for all ready
drives.. For example, DISK .. STATUS issued on a system with one drive
(two platters) causes the system to respond as follows:

%DISK.STATUS
2 TRACK ERRORS
o CRC ERRORS
o SECTOR ERRORS

2217 BUFFERS RECEIVED
12404 BUFFERS SENT

2217 MESSAGES RECEIVED CORRECTLY
o MESSAGES RECEIVED INCORRECTLY
2 TIMES THAT COMMUNICATIONS LINK WAS RESET

8312 I/O OPERATIONS PERFORMED
o UNFORMATTED WRITES

330 FORMATTED WRITES

E3-0072-01, Rev. A - 72 - 02/13/79

o UNFORMATTED READS
7296 FORMATTED READS

2 HEADER READS

DRIVE 0 790129
7405 SECTORS USED
2336 SECTORS AVAILABLE

2 SECTORS UNUSABLE

DRIVE 1 CHECK IT OUT
4327 SECTORS USED
5414 SECTORS AVAILABLE

2 SECTORS UNUSABLE

ERROR CONDITIONS:

If any sectors are unavailable due to read-back errors that
occurred when the disk was formatted, the system issues the
following message, where "n" is the number of :,unusable sectors:

n SECTORS AVAILABLE

The STATUS command uses data from the disk allocation maps on the
disk to detect two error conditions. The number of free sectors
and allocated sectors are added together and compared to the total
number of sectors on the disk. If the number of free sectors and
allocated sectors does not equal the total of sectors on the disk,
the system issues the following message:

WARNING: DISK STATISTICS ARE INCONSISTENT

If the total number of sectors marked as unallocated in the sector
map does not equal the free sector count, the system issues the
following message:

• WARNING: ALLOCATION IS INCONSISTENT

The second error condition is more serious than the first, because
it is possible that sectors logically part of a file are marked as
unallocated in the allocation map. These errors may result from
memory failure, disk write failure, or an attempt at deleting files
with pointer errors, etc. Generally speaking, either condition
indicates a need to reformat the disk in question, but it may still
be possible to read all files from the disk, and avoid loss of
data.

I/O UNIT UTILIZATION:

Unit 2: Output Listing

E3-0072-0l, Rev. A - 73 - 02/13/79

5.19
DISPLAY

SYNTAX

DISPLAY

DESCRIPTION

DISPLAY

Displays the current state of the memory allocation map on
the system console.

The memory allocation display is a matrix with one horizontal
row for each 1000H bytes of memory. The point corresponding
to each 80H byte segment of memory is either marked with lA'
if the segment is allocated, or IoU if it is freec

I/O UNIT UTILIZATION

Unit 2: memory display

E3-0072-01, Rev. A - 74 - 02/13/79

5.20
DO

SYNTAX

DO command file [parameter list]

DESCRIPTION

DO

Executes commands from file command file. The file is read
into a dynamically allocated buffer~ Each command line (as
terminated by a carriage return) is then expanded according
to the presence of certain expansion control symbols.

A 'parameter string' is a group of symbols delimited by
either a blank (20H), comma (2CH), horizontal tab ·(09H),
left parenthesis (28H), right parenthesis (29H), semicolon
(3BH) , or carriage return (ODH).

Simple parameter substitution is made for each occurrence
of the string lin', where n is an integer less than or
equal to the number of parameters given. If n is greater
than the number of parameters given, a Command Expansion
Error is generated and processing is terminated. For each
lin', the nth parameter string from the parameter list is
substituted. A maximum of 64 parameter strings may be
passed in this manner. Parameters which are present but
not referenced are ignored.

Conditional expansion of the command line can be controlled
by the symbol pair '[' and ']'. ",' At each occurrence of '[',
the depth of conditional expansion increases by one. If
the resultant depth is greater than the number of
parameters given, the command line is scanned over until
the matching ']' is located. If the resultant depth is not
greater than the number of parameters given, the' [' is
deleted from the command string and expansion continued.
At each occurrence of ']', the depth of conditional
expansion decreases by one. Thus, the command string
'AB[C]DE' would expand into 'ABCDE' only if at least one
parameter were given. Otherwise, the resultant command
string (after expansion) would be 'ABDE'. Note that
parameters may control command string expansion regardless

- 75 -

DO DO

of whether or not they are used in that expansion.

After command string editing according to the above rules,
a system call is generated to execute the resultant command
string.

This command is reentrant (and has the 'force allocation'
property) and may call itself up to a depth limited only by
the amount of memory available. That is to say, FILE.X may
contain the command 'DO FILE.Y', which may contain the
command 'DO FILE.Z', etc., down to a level where insufficient
memory exists to allocate buffer space. For short command
files (a few records) in a 32K system, this depth is
approximately 15, depending on memory requirements for
other command executions.

*** WARNING ***
Due to the force allocation property of this command, it
will over-write the memory where it is loaded, whether or
not the memory is all ready allocated. This command should
be linked to load at an address that will not affect memory
that is preallocated for system use.

I/O UN~T UTILIZATION

Unit 0: command file
Unit 2: error messages

EXAMPLES

The examples have the fOllowing format:

FILENAME:
Command:
Result:

DO file contents
Command line entered
The expanded file contents which
are to be executed.

- 76 -

DO DO

1) PRINT: ACTIVATE $LPTRiCOPY il $LPTRi
DEACTIVATE $LPTR

Command: DO PRINT MYFILE

Result: ACTIVATE $LPTR
COpy MYFILE $LPTR
DEACTIVATE $LPTR

2) PRINT:

Failing to give a parameter would result
in a Parameter Expansion Error.

ACTIVATE $LPTR
[COpy il $LPTR[iCOPY *2 $LPTR[iCOPY i3 $LPTR]]]
DEACTIVATE $LPTR

Command: DO PRINT MYFILE

Result: ACTIVATE $LPTR
COpy MYFILE $LPTR
DEACTIVATE $LPTR

Simple parameter substitution is performed for as
many strings enclosed within brackets as there are
parameters given. Only the parameter 'MYFILE' was
present, therefore the command after (and
including) the second' [' was ignored.

Command: DO PRINT FILEI FILE2

Result: ACTIVATE $LPTR
COpy FILEI $LPTRiCOPY FILE2 $LPTR
DEACTIVATE $LPTR

Two parameters were given so that two levels of
conditional expansion were valid.

- 77 -

DO DO

3) BATCH: EDIT #l[iASM #l[iLINK $=4400 #l[i#l]]]

Command: DO BATCH MYFILE A L X

Result: EDIT MYFILEiASM MYFILEiLINK $=4400 MYFILEiMYFIL

Command: DO BATCH MYFILE A

Result: EDIT MYFILEiASM MYFILE

In the first command, four parameters were given
indicating conditional expansion of four levels.
In the second command, only two were given, limiting
expansion to two levels. The characters 'A', 'L', and
'X, could have been any character string although
they serve as symbolic notations for assemble, link,
and execute. This is an example where the number
of parameters controls expansion but the parameters
themselves do not take part in the expansion.

- 78 -

5.21
DUMP

SYNTAX

DUMP file name [m[n]]

DESCRIPTION

DUMP

Converts the referenced file into a hexadecimal/ASCII dump
on unit SYSLST. Each byte of the file is displayed in
hexadecimal. In addition, printable characters are
displayed as ASCII symbols, while unprintable characters
are displayed as '.'.

If m and n are specified, the dump starts with record m and
continues through record n. If m and/or n are unspecified,
the dump starts with the first and continues through the
last, respectively.

While output is active at the console, entering a I?' will
cause output to stop until another I?' is entered. If the
ESCape character (lBH) is entered, output will be
terminated.

I/O UNIT UTILIZATION

Unit 3: output listing
Unit 4: file to be dumped

EXAMPLES

DUMP $MICRO.80:2/DATA

Dumps the file 'DATA' from device MICRO.80,
drive 2 on the system volume output unit.

- 79 -

/

5.22
ECHO

SYNTAX

ECHO string

DESCRIPTION

ECHO

Copies the string following the command name up to, but not
including, the command terminator, to the console output
device. This provides a method to send messages to the
console from the command line.

I/O UNIT UTILIZATION

unit 2: string output

EXAMPLES

ASM MYFILEiLINK $=4400 MYFILEiECHO <control-G>

This would send a control-G (bell) to the console output
device after completion of the assembly and link.

ECHO is also useful to provide instructions to the user of
the console command file. For example,

COPY,;ECHO INSERT DISKETTES;PAUSE;I:X 4400 #1 #2

can be used to copy files from one diskette to another,
neither of which have the command file COpy on them.

- 80 -

5.23
ERROR

SYNTAX

ERROR [error_codel*l

DESCRIPTION

ERROR

Prints the meaning of error code when returned by RIO or a
device as a completion code~ If the optional error code is
'*', all error code meanings are displayed. If error code is
omitted, this description of the ERROR command is printed.

I/O UNIT UTILIZATION

Unit 2: output

EXAMPLE

%ERROR 43
43: MEMORY PROTECT VIOLATION

- 81 -

5.24
ERRORS

SYNTAX

ERRORS

DESCRIPTION

ERRORS

Prints a summary of the recoverable disk errors which have
occured since system bootstrap. Output is of the form:

THE FOLLOWING RECOVERABLE ERRORS HAVE OCCURRED SINCE SYSTEM RESTART
0000 SEEK ERRORS
0000 SECTOR ADDRESS ERRORS
0000 DATA TRANSFER ERRORS

Reference the Z80-MCZ PROM User's Manual for a detailed
explanation of these errors.

I/O UNIT UTILIZATION

Unit 2: output listing

*** NOTE ***
This command is implemented only with the MCZ 1/20 PROM
date coded 78089 or later, or with the MCZ 1/35 PROM date
coded 780529 or later when ZDOS is used as a secondary
file system.

- 82 -

5.25
EXTRACT

SYNTAX

EXTRACT file name

DESCRIPTION

EXTRACT

Lists record count, record length, and the number of bytes
in the last record of file name. If the file is of type
procedure, the file entry point, the lowest and highest
memory addresses affected by the file, and the addresses
of the memory segments which make up the file are also
displayed. For files created by IMAGE, the segment addresses
are those given in the parameter list. However, LINK provides
an optimizing algorithm for segment allocation dependent on
program memory utilization and file record length. Thus,
EXTRACT can be used to determine the best record length for
a procedure file.

I/O UNIT UTILIZATION

Unit 0: file input
Unit 2: output listing, error messages

EXAMPLE

%EXTRACT EXTRACT
RECORD COUNT = 0001 RECORD LENGTH = 0400

NO. OF BYTES IN LAST RECORD = 0400
ENTRY POINT = 4400 LOW ADDRESS = 4400 HIGH ADDRESS = 47FF

STACK SIZE = 0080
SEGMENTS:
4400 45F2

- 83 -

5.26
FORCE

SYNTAX

Force command parameter list

FORCE
(Internal Command)

DESCRIPTION

Causes all command files in the current command string to
be loaded regardless of previous memory allocation.
Normally, a procedure file will be loaded only if the
memory space it requires is unallocated. Sometimes it is
convenient to load a file into previously allocated
memory space. Command overlays or recursive program calls
are two examples. As an alternative to using the Force
command, the properties of a file can include F (force
memory allocation), which has the same effect as the
Force command, but only for that file.

I/O UNIT UTILIZATION

None

EXAMPLES

FORCE DISPLAY

loads and executes the procedure file DISPLAY even
if the memory space it requires is preallocated.

F FILEA,FILEB,;FILEC

loads the procedure files FILEA and FILEB, but does
not execute either. FILEC will be loaded (and
executed) only if the memory it requires is
available; i.e., the context of the FORCE does not
extend into subsequent commands.

- 84 -

5.27
FORMAT

SYNTAX

FORMAT

FORMAT (S I D=drive I ID='diskname' I Q=query)*

DESCRIPTION

Formats a diskette into 77 tracks of 32 sectors,
initializes the disk allocation map and disk utilization
statistics. An empty (except for one entry for itself)
directory file is established.

Thirteen sectors are allocated for the disk allocation
map (3 sectors) and directory (IO sectors). When a
system disk is formatted, an additional 64 sectors
(2 tracks) are preallocated for the RIO bootstrap
and RIO Debug Get/Save package.

The parameter list specifies the following options:

S

Determines whether or not the disk is to be
formatted as a system disk. Systems disks have
dedicated areas for the bootstrap and GET/SAVE
overlays.

When the'S' option is given and the disk is
being formatted on any drive except 0, the
bootstrap and GET/SAVE overlays are read from
the disk in drive O. If the'S' option is
given and the disk is being formatted on
drive O,a prompt is made for the user to insert
a formatted system disk in drive a replacing
the disk being formatted. After this is done,
entering any key will cause the system bootstrap
and the GET/SAVE overlays to be read into
memory and another prompt to be issued. Again
entering any key will result in the bootstrap
and the GET/SAVE overlays being written onto
the disk, thereby making it a 'system' disk.

-85-

FORMAT FORMAT

D=drive

The drive containing the disk to be formatted is
given as 'drive'. If the option is not present,
the query

DRIVE:

will be given, the correct response to which must
be an integer 0 ••. 7.

ID='diskname'

Up to 24 characters not including a carriage return
are used to identify the disk. If a single quote I
is to be part of the new name it must be immediately
preceded by a percent (%) sign. These are written
on the disk and used by ZDOS to determine disk
allocation map validity. If this option is not
given, the query

DISK ID:

will be given.

Q=Query

Normally, before formatting commences, the query

READY?

is given. Any response other than 'Y' will result
in aborting the format. The generation of this query
may be inhibited by giving the 'Q=N' option. The 'Q=Y'
option is the default and has no effect.

E3-0072-01, Rev. B -86- 10/31/79

5.35
RELEASE

SYNTAX

Release

DESCRIPTION

RELEASE
(Internal Command)

As mentioned in Section 4.1, memory required for procedure
file loading is allocated immediately preceding execution,
and deallocated after program completion. In the case
where a file is loaded but no external file is executed
(for example, after examination with the Debugger), it
may be necessary to deallocate the space it occupies.
This command deallocates any memory allocated as a result
of procedure file loading since the last execution of an
external command.

I/O UNIT UTILIZATION

None

EXAMPLE

%MOVE ,
%STATUS
MEMORY PROTECT VIOLATION
%R
%STATUS

DRIVE a RIO.MCZ.SYSTEM.DISK
659 SECTORS USED
1805 SECTORS AVAILABLE

-99-

5.36
RENAME

SYNTAX

RENAME

RENAME (oldfile newfile I device:drive ID='new_disk_name')*

DESCRIPTION

For each sequence, "oldfile newfile", changes the name of
"oldfile" to "newfile" on the disk drive specified by
oldfile. If in Verbose mode, the following message will be
printed for each name change.

oldfile--->newfile

For each sequence, "device:drive ID='new disk name''',
the name of the disk in the specified drIve is changed to
"new disk name". The device must be either $FLOPPY for
diskettes-or $DISK for hard disks; no pseudonyms for these
devices may be used. The "new disk name" may be up to 24
characters for $FLOPPY or 100 characters for $DISK, and
may include any character except carriage return or
semicolon. If a single quote is to be part of the new
name, it must be immediately preceded by a percent
sign (%). The disk is renamed by first initializing the I
allocation maps, reading directly from the disk (via the floppy
or hard disk driver) the map sector on which the disk ID is
saved, altering it, and rewriting the sector. A second
initialization is then made to update the disk name in
memory.

I/O UNIT UTILIZATION

Unit 0: file I/O

E3-0072-01, Rev. B -100- 10/31/79

FORMAT FORMAT

NOTE: Diskettes formatted on OS 2.1 software are NOT
compatible with RIO. Refer to Appendix 0 for
conversion details.

Format interacts with FLOPPY through the system. The
driver $FLOPPY must appear in the Active Device Table.
On floppy disk-based systems, this occurs automatically.
On hard disk-based systems, FLOPPY is part of ZOOS,
and has an entry point two greater than the entry
address for ZOOS. It must be activated separately.
For example, if the ZOOS.60 is being used on a 64K
system, has been renamed to ZOOS, and has an
entry point of EOOOH, than a sequence of commands
such as:

ACTIVATE $ZDOSi X* $FLOPPY E002
would have to have been executed at some time prior to
issuing a FORMAT command.

I/O UNIT UTILIZATION

Unit 0:
Unit 1:
Unit 2:
Unit 4:

FLOPPY interaction
console interaction
console interaction
ZOOS interaction

- 87 -

5.28
HELP

SYNTAX

HELP (key_word I '*')*

DESCRIPTION

Prints a description of key word(s}.
is *, a list of valid key words that
modifiers of the preceding key words
final argument is omitted, a general
of the preceding modifying key_words

I/O UNIT UTILIZATION

EXAMPLES

Unit 2: Help message
Unit 4: File I/O

%HELP *

HELP

If the final argument
can be used as further
is displayed. If the
description of the use
is printed.

prints a list of all initial key_words for which
there is HELP.

%HELP DELETE

prints a description of the RIO 'DELETE' command.

- 88 -

5.29
IMAGE

SYNTAX

IMAGE

IMAGE file name (first location last location)+
[E=entry point] [RL=record length]
[ST=stack size]

DESCRIPTION

Copies memory images to a specified file. The resultant
file will be procedure type, subtype O. The first and last
locations of each memory segment, optional entry point
address (default=O), record length (80H, 100H, 200B,
400B, 800H, or 1000B; default=80B bytes) and stack
size (default=80H bytes) are given in hexadecimal. At least
one but no more than 16 segments may be specified. When
writing the file, the exact memory locations, including
first location and last location, are copied for each
segme~t. The lowest ana highest memory addresses
referenced by the file are saved in the descriptor record
(refer to Appendix J) and are used by the RIO Executive
whe~ requesting memory allocation prior to loading.

I/O UNIT UTILIZATION

Unit 0: file I/O
Unit 2: error messages

EXAMPLE

IMAGE TWO.BLOCKS 4400 4425 7000 7FFO E=7000

Copies contents of memory locations 4400 to 4425
and 7000 to 7FFO to file TWO.BLOCKS. The file
will contain 33 records of 80H bytes each, with
an entry point = 7000 and stack size = 80B.

- 89 -

5.30
INITIALIZE

SYNTAX

INITIALIZE
(Internal Command)

Initialize [device_name [parameter list]]

DESCRIPTION

Sends an Initialize request to the master device or to the
optionally specified device (which must be active). Result
is device dependent. The supplemental parameter address
of the vector points to the delimiter after the command
or d~vice_narne, if given.

I/O UNIT UTILIZATION

Unit 0: I/O request

EXAMPLES

IN IT $MY.VIDEO.DRIVER BUFFER = COOO

I

Sends Initialize request to MY.VIDEO.DRIVER,
with a pointer to the space preceding 'BUFFER'.

Sends Initialize request to master device.

- 90 -

5.31
LADT

SYNTAX

LADT

DESCRIPTION

LADT

Lists the currently active devices, their entry points,
size, and which logical units are linked to each.

A size of zero implies that the device is in PROM or was
activated with a preloaded entry point given. In either
case, no memory is deallocated upon deactivation.

I/O UNIT UTILIZATION

Unit 3: listing output

EXAMPLE

LADT

DEVICE ADDRESS SIZE UNITS

ZDOS 2AOO lAOO 0 4 5 6 7 8 9
12 13 14 15 16 17 18

CON 252B 0500 1 2 3
NULL 214D 0000 20
PCON OBE8 0000
FLOPPY OBFD 0000

- 91 -

10 11
19

5.32
MASTER

SYNTAX

MASTER [device_name]

DESCRIPTION

MASTER

Displays the current master device or, optionally, makes
another currently active device the default source for
unqualified files. This provides the user with the
potential to easily utilize multiple file systems
concurrently without the burden of always fully specifying
file names.

I/O UNIT UTILIZATION

Unit 2: error messages

EXAMPLES

MASTER $NEW.DOS

Makes NEW.DOS the default device for unqualified
file names.

MASTER
NEW.DOS IS THE MASTER DEVICE

- 92 -

5.33
MOVE

SYNTAX

MOVE

MOVE (match string I T=type I P=props I F=format I
D=destInation device I S=source device I
L=listing disposition I Q=query-I DATE reI date
COATE rel-date)*

DESCRIPTION

The directory on the source device is searched and files
which match the specified option are copied from the source
device to the destination device. Default destination and
source devices for MCZ are master device, drive 2, and
master device, drive 0, respectively. For the Development
System, the defaults are drive I and drive 0, respectively.

match_string

Fully or partially specified file names may be given, in
which case only those directory entries which are identical
to one of the fully-specified file names or match one of
the partially-specified file names are moved. Partially
specified refers to the use of the symbol '*' which denotes
an'arbitrary character string. For example, '*XYZ' matches
any file which ends~in 'XYZ'. 'ABC*XYZ' matches any name
which starts with 'ABC' and ends with 'XYZ' but has any (or
no) characters in the middle. The string '*' (which is
equivalent to '**') matches any name. Match strings cannot
be qualified file names, i.e., no device or drive name may
be given.

- 93 -

MOVE MOVE

T=type

Only files of the given type will be moved. Type must be
one of 'D' (directory), 'A' (ASCII), IB' (binary) or 'P'
(procedure). Subtype may also be specified immediately follow
ing the type (e.g. 'PO' refers to files of prodecure type,
subtype 0). If no subtype is given, all subtypes of the
specified type are moved.

P=props

Only files with exactly the specified properties will be
moved. Props must be from 'WI (write protected), 'E'
(erase protected), 'L' (properties protected), IS'
(secret), 'R' (random), 'F' (force memory allocation), or
1&'. Use of the '&' will allow any file with at least the
specified properties to be moved. One or more properties
may be concatenated, in which case only files with exactly
(or at lea~t, if '&' is included) the specified properties
will be moved.

D=destination device

Defines device to which files are copied. Any active
device name or drive designation may be given. Only device
name and drive name are relevant. File names are ignored.
Default is drive 2, master device (MCZ) , or drive 1, master
device (ZDS).

S=source device

Defines device from which files are copied. Any active
device name or drive designation may be given. Only device
name and drive name are relevant. File names are ignored.
Default is drive 0, master device.

- 94 -

MOVE MOVE

F=format

Specifies long (F=L) or short (F=S) listing format. The
short form (default) consists of name and drive while the
long form gives name, drive, file type, record count,
record length, file properties, starting address, date of
creation, and date of last modification. Additionally, the
number of files examined, the number of files moved, and
the number of sectors used by moved files is also given.

L=listing_disposition

The listing is normally routed to SYSLST but can be routed
to any device or file. For example, L=$CON would route
output to the console (SYSLST may also be asigned to this
device) or L=2/FILELISTING would route the output to file
'FILELISTING' on unit 2 of the master device. All output
generated to the specified device or file will be buffered,
i.e., several lines will be transferred at one time. While
output is active at the console, entering a '?' character
will cause output to stop until another '?' character is
entered. If the ESCape character (ASCII IBH) is typed,
output will be terminated and control will return to the
Executive.

Q=query

Permits selective copying of files that match the other
options. Default is Q=N, which moves all files
which match the given criteria. If Q=Y is specified, a
message of the form:

MOVE source device : source drive / source file name TO
destination device destination drive / destination filename
(Y/N/A/Q)? - -

response of 'Y(es)' will move the file, 'N(o)' will not move it
and go on to the next file, 'A(ll)' will move the file and
suppress the query for all subsequent files, and 'Q(uit)' will
not move the file and will terminate the program. Any other
r~sponse will cause the query to be repeated.

- 95 -

MOVE MOVE

COATE I DATE reI date

where reI is one of the relational operators '=',
I>', '<I, '>=', '<=', or '<>', and date is up to 6
digits or '*' representing a date to be compared against
in' yymmd d' for m • ' *' ina dig i t po sit ion s pe c i fie s th a t
that digit will be considered equal to anything. A date
expressed with less than 6 digits is treated as being
filled on the right with '*'s.
DATE refers to the date of last modification. COATE refers
to the date of creation. The entire option should be
specified with no intervening blanks. For example:

CDATE>=7805

refers to all files created with dates in May of 1978
or later. This is equivalent to

CDATE>=7805**

If the referenced date field of the file descriptor has
a character which is not a digit, it will not match unless
that digit position of the match date has an '*' in it.

I/O UNIT UTILIZATION

Unit 0: directory
Unit 3: default listing destination
Unit 4: source file
Unit 5: destination file
Unit 6: non-default listing destination

EXAMPLES

MOVE D=$NULL F=L P=&

will copy all files from (default) drive 0 to
the Null device and print a long format list
including the number of files moved and the
number of sectors they occupy. This is a
convenient way to check the integrity of
each file on a disk.

- 96 -

MOVE MOVE

MOVE T=P SYS* L=$LPRINTER S=2 D=O CDATE<780915

Will copy all procedure files whose names start
with 'SYS' that were created before September 15,
1978, from the master device, drive 2, to the
master device, drive O. The listing will
be sent to the device LPRINTER.

- 97 -

5.34
PAUSE

SYNTAX

PAUSE

DESCRIPTION

PAUSE

Issues successive Read Status requests to unit 1 (CONIN)
until either the ESCape Pending flag or the TIB Full flag is
active (see section 3.4.3). If a character is ready to be input,
it is absorbed and the program executes a normal return. If an
ESCape is pending, subsequent commands in the command
string are ignored.

I/O UNIT UTILIZATION

Unit 1: read request

EXAMPLE

The content of the command file MOVE.IT is:

MOVE,iECHO INSERT DISKETTESiPAUSEiIiX 4400

This command file will result in the following interaction
when executed (Brief mode) :

DO MOVE.IT
INSERT DISKETTES

iMOVE is loaded
iECHO is loaded and executed
iPAUSE waits for one character
i(not ESC) to be entered and
ithen MOVE is executed (MCZ
iaddress). Entering ESC would
ihave resulted in direct
ireturn to RIO without executing
iMOVE

- 98 -

PRINT PRINT,

DESCRIPTION:

Copies an ASCII-type file to the SYSLST unit. The specified
filename may be fully or partially qualified. Entering the Escape
character keystroke (ESC: ASCII ISH) at the terminal terminates
output.

SYNTAX:

PRINT file name

Parameter Description

file name The name of the user file; an alphanumeric
character string, excluding special
characters; upper or lower case (the
command keyword must be in upper case
characters) .

EXAMPLE:

%PRINT REPORT.FILE

Prints the file named REPORT. FILE on SYSLST.

%PRINT O/MYFILE

Copies the file named MYFILE located on Drive 0 of the Master
device to SYSLST.

I/O UNIT UTILIZATION:

Unit 2: error messages
Unit 3: file listing

E3-0072-01, Rev. A - 9SA - 02/13/79

This Change Page has been left blank intenti~nal1y.

E3-0072-01 t Rev. A -' 9ab CD 02/13/79

5.35
RELEASE

SYNTAX

Release

DESCRIPTION

RELEASE
(Internal Command)

As mentioned in Section 4.1, memory required for procedure
file loading is allocated immediately preceding execution,
and deallocated after program completion. In the case
where a file is loaded but no external file is executed
(for example, after examination with the Debugger), it
may be necessary to deallocate the space it occupies.
This command deallocates any memory allocated as a result
of procedure file loading since the last execution of an
external command.

I/O UNIT UTILIZATION

None

EXAMPLE

%MOVE,
%STATUS
MEMORY PROTECT VIOLATION
%R
%STATUS

DRIVE 0 RIO.MCZ.SYSTEM.DISK
659 SECTORS USED
1805 SECTORS AVAILABLE

- 99 -

5.36
RENAME

SYNTAX

RENAME

RENAME (oldfile newfile I device:drive IO='new_disk_name')*

DESCRIPTION

For each sequence, "oldfile newfile", changes the name of
"oldfile" to "newfile" on the disk drive specified by
oldfile. If in Verbose mode, the following message will be
printed for each name change.

oldfile--->newfile

For each sequence, "device:drive IO='new disk name'",
the name of the disk in the specified drIve is changed to
"new disk name". The device must be either $FLOPPY for
diskettes-or $DISK for hard disks; no psuedonyms for these
devices may be used. The "new disk name" may be up to 24
characters for $FLOPPY or 100 characters for $OISK, and
may include any character except carriage return or
semicolon. If a single quote is to be part of the new
name, it must be immediately followed by a second single
quote. The disk is renamed by first initializing the
allocation maps, reading directly from the disk (via the floppy
or hard disk driver) the map sector on which the disk IO is
saved, altering it, and rewriting the sector. A second
initialization is then made to update the disk name in
memory.

I/O UNIT UTILIZATION

Unit 0: file I/O

- 100 -

RENAME RENAME

EXAMPLES

RENAME $MYDOS/FILE.X FILE.Y

generates Assign and Rename requests for device
MYDOS changing name of FILE.X to FILE.Y.

RENAME $FLOPPY:2 ID='MY NEWEST RIO DISK'

renames the diskette in drive 2.

- 101 -

5.37
RESTORE TABS RESTORE TABS

SYNTAX

RESTORE TABS file name

DESCRIPTION

Replaces the current l34-character console tabbing environment
with the tabs in the specified file. The file name may be
fully or partially qualified. The referenced file must have
been previously created by the SAVE TABS command.

I/O UNIT UTILIZATION

EXAMPLES

Unit 2: error messages
Unit 4: file I/O

RESTORE_TABS $MYDOS:TAB.ASM

replaces the current console tabbing environment with
the tabs in the file TAB.ASM on device MYDOS.

- 102 -

5.38
SAVE TABS SAVE TABS

SYNTAX

SAVE TABS file name

DESCRIPTION

Stores the current l34-cha~acter console tabbing environment
into the specified file for possible later retrieval by the
RESTORE TABS command. The file name may be fully or partially
qualified. If the file all ready exists, it is deleted and
recreated.

I/O UNIT UTILIZATION

EXAMPLE

Unit 2: error message
Unit 4: file I/O

SAVE TABS LETTER. TABS

stores the current console tabbing environment into
the file LETTER. TABS on the master device.

- 103 -

5.39
SET

SYNTAX

SET

SET (CHRDEL=C I LINDEL=C I NULLCT=n I SPEED=NN I LFCNT = n
ECHO ON I ECHO OFF I AUTOLF ON I AUTOLF OFF I
PROPERTIES OF file name TO plist I
TYPE OF file name TO type I
SUBTYPE OF fIle name TO subtype I
ENTRY POINT OF file name TO nn I
LOW ADDRESS OF file-name TO I
HIGH ADDRESS OF file name TO I
STACK SIZE OF file name TO nn I
BYTE COUNT OF file-name TO nn I
TABSIZE = n)*

DESCRIPTION

Sets a variety of system parameters. Any combination of
the option list can be given in any order with each command
entry.

CHRDEL=c

Sets the console driver single character delete symbol to char
acter c. For example, typing 'SET CHRDEL=<control-H>, will cause
all control-His to be interpreted by the console input driver
as a 'delete last character' command. (The characters '<I
and I>' are not typed, but serve to illustrate that
'control-Hi is a non-printing character.)

LINDEL=c

Sets the console driver line delete symbol to character c.
For example, typing 'SET LINDEL=<rubout>, will cause the console
driver to interpret <rubout> as a 'delete current line' command.
(The characters '<I and I>' are not typed, but serve to
illustrate that 'rubout' is a non-printing character.)

- 104 -

SET SET

LFCNT = n

Sets to n the number of linefeed characters (OAH) the console
driver automatically output after each carriage return if in
AUTOLF=ON mode. Note that LFCNT=O is equivalent to AUTOLF=OFF.

NULLCT=n

Sets the number of null characters (ASCII 0) to output by
the system console driver after every carriage return to
decimal value n. One null character is sufficient for CRT
operation up to 19.2 Kbaud. Mechanical devices require
longer head repositioning periods and thus a larger null
count.

SPEED=nn

(MCZ only) Changes the serial communication port baud rate
to the value given as nne This port typically is used for
terminal I/O. Any value from 20 baud to 4800 baud which is
an even divisor of 4800, or 110, 9600, 19200, or 38400, can
be selected.

TABSIZE=n

Redefines all tab settings to be every n columns,
starting with the leftmost column as column O.The
defaul t is ever-y 8 columns.

PROPERTIES OF file_name TO plist

Sets the properties of 'file name' to those given in the
properties list plist. This-list must be from W (write ------
protect), E (erase protect), S (secret), L (locked), R
(random), F (force memory allocation), or * (null, i.e.,
no properties). Locked files cannot have their properties
altered. The properties of more than one filename may be
set in one command by enclosing all the filenames within
one set of parentheses.

E3-0072-0l, Rev. B -105- 10/31/79

I

SET SET

SUBTYPE OF file_name TO subtype

Sets the file subtype of file 'file name' to value
'subtype'. Only the least significant four bits of the
value entered are used.

,

TYPE OF file name TO type

~Io: - -- • - -",,1:'-- ::::t-. __ •
must be one of '0' (directory), 'AI (ASCII), IBI (binary)
or 'Pi (procedure).

ENTRY POINT OF file name TO nn

Sets the entry point field in the descriptor record of
file name to nne This is the address to which control passes when
the RIO Executive loads a procedure type file.

LOW ADDRESS OF file name TO nn - -
Sets to nn the lower boundary of the memory space which
must be allocatable before a file name can be loaded.

HIGH_ADDRESS OF file_name TO nn

Sets to nn the high boundary of the memory space which
must be allocatable before file name can be loaded.

STACK SIZE OF file name TO nn

Sets the size of the user stack which will be allocated
before execution of file name begins. Setting the
stack size to zero will result in no stack allocation;
the system stack will be used instead.

BYTE COUNT OF file name TO nn

Sets the 'bytes in last record' count for file name to nne
This field is used by PLZ and BASIC to determine the number
of valid data bytes in the last record of a file.

-106-

SET SET

ECHO ONIOFF

Sets or resets the input character echo mode in CON (see
sect ion 3. '* .3) •

AUTOLF ONIOFF

Sets or resets the automatic line feed insertion mode flag
in CON (see section 3.4.°3).

I/O UNIT UTILIZATION

Unit 2: error messages
Unit 4: file I/O

EXAMPLES

SET LINDEL=l CHRDEL=@ NULLCT=2

Sets the line delete symbol to '1', the
character delete symbol to '@', and the
null count to 2.

SET PROPERTIES OF OS TO SWEL

Would give file 'OS' the properties secret,
write protect, erase protect, and locked.
Therefore it could never be altered or
deleted without reformatting the disk.

SET PROPERTIES OF ($DFS:l/TEXT $ZDOS:O/TEXT
$DFS:O/STATUS.OBJ) TO *

Would clear the properties of 'TEXT' on DFS
drive 1 of 'TEXT' on ZDOS drive 0 and of
'STATUS.OBJ' on DFS drive O.

SET SUBTYPE OF $DFS/TEXT TO S

Sets subtype of file TEXT on device MICRO.SO
to 8H.

SET ECHO ON AUTOLF OFF

Sets the terminal mode to ECHO ON and AOTOLF OFF.

E3-0072-0l, Rev. B -107- 10/31/79

I

SET SET

SET SPEED=9600

Sets the serial communication port baud rate to 9600.

SET ENTRY POINT OF STAR TREK TO 4419 BYTE COUNT OF
STAR TREK~S TO 38

Sets the entry point of STAR TREK to 4419H, and the
number of bytes in the last record of STAR_TREK.S
to iRH_

-108-

RIO

Completion Code

40
41
42
43
44
45
46
47
48
49
4A
4B
4C

ZDOS/DFS

Completion Code

80
81
82
83
84
Cl
C2
C3
C4
C5
C6
C7
C9
CA
CB
CC
CD
CE
CF

E3-0072-01, Rev. B

APPENDIX A

RIO/ZDOS/DFS ERROR CODES

Meaning

Invalid Drive Name
Invalid or Inactive Device
Invalid Unit
Memory Protect Violation
Missing or Invalid Operand(s)
System Error
Illegal File Name
Non-existent Command
Illegal File Type
Program Abort
Insufficient Memory
Missing or Invalid File Properties
I/O Error (IY->Vector)

Meaning

Operation Complete
Directory Format Error
Scratch File Created
File Name Truncated
Attribute List Truncated
Invalid Operation (Request)
Device Is Not Ready
Write Protection
Sector Address Error
Seek Error
Data Transfer Error
File Not Found
End of File Error
Pointer Check Error
File Not Open
Unit Already Active (Open)
Assign Buffer Full
Invalid Drive Specification
Logical Unit Table Full (>16 Open)

A-I 10/31/79

I

DO
Dl
D2
D3
D4

05
06
07
08

D9
DA

FO
Fl

E3-0072-01, Rev. B

Duplicate File
Diskette ID Error
Invalid Attributes
Disk Is Full
File Not Found in Proper Directory
Record
Beginning of File Error
File Already Open on Other Unit
Invalid Rename to Scratch File
File Locked (Attempt to Change
Attributes)
Invalid Open Request
Insufficient Memory for Allocation Maps

Queue Full
Unacceptable Request at this Time

A-2 10/31/79

I

5.40
STATUS

SYNTAX

STATUS [011 .•• 617]

DESCRIPTION

STATUS

Lists statistics on how much of the disk on the specified
drive has been used and how much of it remains available
for new files. The default lists statistics on all drives
which are ready.

Two error conditions are detected by the STATUS command.
As part of the disk allocation maps kept on the disk,
the number of free sectors and the number of allocated
sectors are maintained. In the event they do not sum up
to the number of sectors on the disk, the message

WARNING: DISK STATISTICS ARE INCONSISTENT

is printed. If the total number of sectors marked as
unallocated in the sector map do not equal the free
sector count, then the following message is printed:

WARNING: ALLOCATION IS INCONSISTENT

This is somewhat more serious than the previous error
condition and could mean that sectors which are logically
part of a file are marked unallocated in the allocation
map. These errors may result from memory failure, disk
write failure, deleting files with pointer errors, etc.,
and generally indicate reformatting of the diskette.
However, it may still be possible to read all files from
the disk and avoid loss of data.

I/O UNIT UTILIZATION

Unit 2: output listing

- 109 -

STATUS

EXAMPLES

%STATUS 0

DRIVE 0 RIO MCZ SYSTEM DISK
659 SECTORS USED
1805 SECTORS AVAILABLE
o

- 110 -

STATUS

5.41
VERBOSE

SYNTAX

Verbose

DESCRIPTION

VERBOSE
(Internal Command)

Enter Verbose mode. Echo command strings as interpreted.
Some commands test this mode before printing non-essential
messages. See Brief command.

I/O UNIT UTILIZATION

None

- III -

5.42
XEQ

SYNTAX

Xeq [* I nn [parameter_list]]

XEQ
(Internal Command)

DESCRIPTION

Begin execution of last loaded command with optional
parameter list, or begin execution at location nn with
optional parameter list.

I/O UNIT UTILIZATION

None

EXAMPLES

XEQ
X *

Jumps to entry point of last loaded file.

X 5600 pI p2

Jumps to address 5600B with INPTR referencing
delimiter after '5600'.

X * pI p2

Jumps to entry point of last loaded file with
INPTR referencing delimiter after '*'

- 112 -

5.43
EXPRESSION EVALUATION

SYNTAX

expression

DESCRIPTION

EXPRESSION EVALUATION
(Internal Command)

Evaluates hex constant expressions left to right and
prints result. Allowable operators are +, - *, and /.
Overflow is not detected.

EXAMPLES

: FDOO-4400/80
0172

: 8732-4400/200
0021

- 113 -

CHAPTER 6

zoos

6.0 ZOOS OPERATION

This chapter covers the program interface for the ZOOS-II floppy
disk file access system used under Zilog's RIO operating system.
It describes the general interface structure and calling
sequence, and, for each of the different requests, gives
the details of the interface, a description of the actions
taken, and a list and interpretation of the errors that
could occur with that operation.

ZOOS-II is an improved version of ZOOS, the diskette access
system which runs under earlier versions of Zilog software.
For simplicity, in the remainder of this document ZOOS-II
will be referred to as ZOOS.

ZOOS imposes a file structure on data stored on floppy
disks. Data is stored as a sequence of records. All data
records in a file are of the same length, and the length
must be an integral number of sectors of the diskette media,
and an integral power of two (valid record sizes are 128,
256, 512, 1024, 2048, and 4096 bytes). ZOOS maintains two
pointers which are appended to each record. One is the
disk address of the following record, the other is the
disk address of the preceding record. The file is thus
stored as a doubly-linked list of records.

Files are accessed by name through a directory. The
directory is itself a file, and can be accessed as such by
its name, 'DIRECTORY', which is the first entry in each
directory. Unlike other files, however, it has a known
first record so that it can be found: that is, it always
begins at a fixed address known to the system. ZOOS
'DIRECTORY' files are type directory, subtype O.

A scratch file is a slight exception to this. A scratch
file is one which has existence only while it is active.

- 114 -

It is created by opening a file on a logical unit that has
an assignment to a zero-length name (all assignments are
initialized to scratch files, so opening a unit without
making an assignment has the same effect). No directory
entry is created, and the descriptor information is only
stored internally rather than on the diskette. When the file is
closed, any records which have been created on it are
deallocated, and the file ceases to exist. Such a file is
ideal for temporary storage of intermediate data. The
programmer will find it advantageous to use scratch files
whenever an application is suited to them, since opening
them does not involve the directory operations that opening
a named file does, and is therefore faster.

The directory is made up of sectors. Each sector is, in
turn, made up of one or more variable length entries. Each
entry consists of a single byte giving the length of the
name, followed by the characters of the name, and a two
byte pointer to the descriptor record (described below).
The file names can be from I to 32 characters in length.
The last entry in a sector is followed by a byte of -1
(OFFH). Directory entries do not span sector boundaries,
so that if a new entry will not fit completely in a sector,
it is put in the next one.

Occasionally, all the entries in a sector will be deleted.
This happens relatively infrequently, and is indicated by
the first byte of the sector (normally a length byte, which
must be from I to 32) being the terminator byte, OFFH.

The pointer contained in the directory entry for a file
points to a special record, which is not one of the data
records and is not included in the record count, called
the file descriptor record. As its name indicates, it
contains information describing the file to the system.
Some of the information is also available to the user.
Regardless of the length of the data records, the descriptor
record is always I physical sector, or 128 bytes long. Of
these, zoos has defined 40 bytes, leaving 88 which are
available for programmer definition. Note, however, that
there are some system conventions on how these remaining
bytes will be used for some files. Most notably, procedure
files contain segment addresses and lengths in this area
(see Appendix J).

- 115 -

The information contained in the descriptor record is as
follows:

Bytes 0-3
Bytes 4-5
Bytes 6-7

Bytes 8-9
Bytes 10-11
Byte 12

Bytes 13-14
Bytes 15-16
Bytes 17-18

Byte 19

Bytes 20-21

Bytes 22-23
Bytes 24-31
Bytes 32-39
Bytes 40-127

Reserved for future expansion
File ID - currently unused
Pointer to directory sector holding

entry for this file
Pointer to first data record of file
Pointer to last data record of file
File type and subtype - see

description with the OPEN request
Record count
Record length
Block length - currently unused,

and set to be same as record length
File properties - see description

with the OPEN request
Starting execution address for

procedure files (entry point)
Number of bytes in last record
Date of creation
Date of last modification
Available for programmer definition

The Date of creation and Date of last modification are moved
to the descriptor from the System Global Variable DATE at the
appropriate times. Thus, if DATE is maintained to indicate
the current date, then the descriptor record can give some
historical information about the file.

The information stored in the descriptor (except for the
first 12 bytes) is available to the program accessing the
file at the time it is OPENed or while it is open by means
of a QUERY ATTRIBUTES request. It can also be supplied at
the time the file is created, or later by a SET ATTRIBUTES
request, or when the file is UPDATED or CLOSED. See the
appropriate request description for -details.

Implicit in the description of accessing a file is the
concept of the file pointer. There are actually three
pointers. The one referred to as the pointer is the
"current record pointer", the disk address of the record
considered to be the current one. This is normally the
record last handled, as, for example, in reading or
writing. The "previous record pointer" contains the disk
address of the record preceding the current one in the
sequence of the file. The "next record pointer" contains the

- 116 -

disk address of the record following the current one in the
sequence. A file is said to be active if these pointers
are valid. OPENing a file consists of locating it in a
directory, reading its descriptor record, and initializing
these pointers.

A doubly-linked list provides some redundancy in
establishing the sequence of the records. This redundancy
is used when traversing the file to check the file
integrity. For example, the forward pointer of the current
record is used to establish the next record. When the next
record is read, its back pointer is checked to make sure it
indicates the current record. A failure of this or a
similar check is what is referred to as a pointer error.

ZOOS is designed to operate with up to 8 floppy disk
drives, each holding approximately 300 Kbytes. The
standard MCZ has two drives, configured as drive a (also
referred to as the system drive), and drive 2. The ZOS
also has two drives configured as drive 0 ·(referred
to as the system drive), and drive 1. Wh~n a file
is to be located, and the drive is not specifically
indicated (equivalent to specifying '*'), the drives are
searched in order, starting with drive 1, and continuing
through the highest disk which is attached and ready, and
finally, if still unsuccessful, concluding with drive o.

Similarly, if a file is to be created without specifying
which disk it is to be on, it will be created on the first
disk which is attached and ready in the same search order.

Under RIO, all I/O calls pass through the operating system
where they are routed to the required device driver
according to the logical unit being requested and the
current routing for that unit. Calling parameters are
passed to the drivers via a 13-byte "parameter vector"
which is pointed to by the IY register. There are two ways
in which I/O calls are handled by the drivers. The driver
may perform the entire operation, then return to the
calling program (referred to as "return on completion"), or
it may perform only the initial setup necessary, then return
to the calling program and let the operation proceed to
completion under interrupt control (referred to as
"immediate return"). A completion code is provided in the
parameter vector to indicate when the operation is complete
and signal any unusual circumstances of the completion.

- 117 -

The parameter is set up as follows:

(IY)

(IY+l)

(IY+2)

(IY+4)

(IY+6)

(IY+8)

Logical unit number (1 byte) -
identifies the particular dataset
being accessed. Used by as to
route the call to the correct driver.

Request code (1 byte) - identifies
the action to be taken. Two request
codes are given for each operation
in the following list. One is even,
the other odd. If the first is
used, the return will be on completion
of the operation. If the second is
used, then return will be immediate,
with completion occurring under
interrupt control.

Data transfer area (2 bytes) - gives
the address at which data transfer
is to begin. If no data transfer is
expected for a given request, this
field should be zero.

Length (2 bytes) - gives the length
of the operation. For most operations,
this is the number of bytes to transfer,
but refer to specific operation
descriptions. If no data transfer is
expected, the length should be zero.
On return, this gives the length
actually completed.

Completion return address (2 bytes) -
specifies address to branch to when
the operation completes if the request
code specified immediate return. If
return on completion is specified,
this element is ignored.

Error return address (2 bytes) - if
non-zero, specifies the address to
branch to if an error occurs. The
error will still be indicated in the
completion return code. If the
address is zero, return is as though
there were no error.

- 118 -

(IY+lO)

(IY+ll)

Completion code (1 byte) - indicates
when the operation is complete.
This byte is set to zero when the
call is made. Bit 7 is set when the
operation is complete. Bit 6 is set
if an error occurred. The remainder
of the byte will contain a code
indicating the nature of the difficulty
or error. A normal completion will
thus contain a code of 'SO'.

Supplemental parameter information -
some requests require special
information which does not fit into
the general structure of the parameter
vector. This information is supplied
by the supplemental parameter vector.
If two bytes or less (e.g., a disk
address), it is normally put here.
Otherwise an address pointer to an
area containing the information is
placed here.

- 119 -

Following is a list of error codes with their meaning.
They will be discussed in detail under the description of
each operation with which they can occur.

CODE
(Base 16)

Cl
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
DO
Dl
D2
D3
D4

D5
D6

D7
D8

D9
DA

MEANING

Invalid operation
Not ready
Protection
Sector error
Seek error
Data transfer area
File not found

End of file error
Pointer check error
File not open
unit already active
Assign buffer full
Invalid disk drive
Logical unit table full
Duplicate file
Diskette ID error
Invalid attributes
Disk full
File not in proper

directory record
Beginning of file error
File already open (on

another unit)
Invalid rename
File locked (attempt to

change attributes)
Invalid open request
Insufficient memory for

allocation maps

The following are warning codes. They do not have bit 6
(the error bit) set, and do not cause transfer to the error
return address.

81
82
83
84

Directory format error
Scratch file created
File name truncated
Attribute list truncated

- 120 -

There are some errors which are either not associated with
a particular request, or can occur on almost every request,
that are described in detail here. An INVALID OPERATION
error (code Cl) will occur anytime the request code is not
one of the valid operations for the device addressed. ZDOS
will respond with this code to operation READ LINE (Oe),
WRITE LINE (10), and WRITE DIRECT (14), as well as
anything 32 or over.

Disk I/O errors can occur on almost any operation. There
are 5 different errors that can occur, though some of them
have other meanings as well. A NOT READY error (code C2)
indicates that an attempt was made to access a drive which
was not asserting its READY signal. This may also signify
designation of an operation to a drive which was recorded
as being not ready at initialization. A WRITE PROTECT
error (code C3) indicates that an attempt was made to write
on a disk which is physically write protected. This could
also indicate a request which would cause a change in a
file which is (software) write protected, or a request
which would remove records from a file which is erase
protected. A SECTOR error (code C4) is always a media or
hardware problem, indicating that the sector header
information read did not agree with the location recorded
on the disk. A TRACK ERROR (code C5) indicates that
there was a hard seek error, or that the sector address
header was destroyed, or else that an invalid track was
requested from the floppy driver (a ZDOS software error!).
A CRC ERROR (code C6) indicates that there was a data
error in transmitting from the disk to memory, or that the
data was written incorrectly on the disk in the first place.

Another error which could conceivably occur almost anytime
is LOGICAL UNIT TABLE FULL (code CF). ZDOS maintains an
internal mapping between the 255 possible logical unit
designations and the 16 for which it has space. The first
reference to a new unit causes it to be entered in this
map. If the unit given is not found in the map, and there
are no empty entries in it, then this error is returned.
An entry is removed from this map when a file is closed, or
when one is found to be not open when it should be. The
table is also cleared when an INITIALIZE request is done.

- 121 -

6.1
INITIALIZE INITIALIZE

Request vector:

Logical unit - ignored
Request code - 00 or 01
Data transfer area - ignored
Length - ignored. Zero will be returned.
Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

All 16 logical units are flagged as not openG
The logical unit map is cleared. Memory
is allocated at the top of the available
space for each map, and the maps are read
in from the disk. A flag word is constructed
indicating which drives are ready.

Possible errors:

Disk SECTOR, SEEK, or DATA TRANSFER errors
(C4, CS, or C6). The initialization is not
completed if one of these occur.

INSUFFICIENT MEMORY (code DA) - There was
insufficient memory available to fulfill
one or more of the requests for space for
the allocation maps.

- 122 -

6.2
ASSIGN ASSIGN

Request vector:

Logical unit
Request code - 02 or 03
Data transfer area - ignored
Length - ignored. Zero will be returned.
Completion return address
Error return address
Completion code
Supplemental parameter information - pointer to

area containing the following:

Action:

1st byte of area - ignored by ZOOS.
(This byte does control system
functions however. See Section 3.3.),

2nd byte of area - character designating
physical disk drive, either '0' through
'7', or '*'.

3rd byte of area - length in bytes of file
name. A 0 length name indicates a
scratch file. The maximum length name is
32 characters.

4th and following bytes - the filename.

The filename given is associated with
(assigned to) the given logical unit for
subsequent I/O operations. Any previous
assignment to the same logical unit is
nullified. The filename is stored in a
buffer for later use when the logical
unit is opened. When the file is
opened, the filename is removed from
the buffer. Thus, if a file is
opened and closed, there must be a
new assignment before it can be
reopened.

- 123 -

ASSIGN ASSIGN

Possible errors:

FILE ALREADY OPEN (code CC) - an attempt
to assign a file to a unit which is
currently active. The assignment is not
made.

INVALID DRIVE (code CE) - some drive is
specified other than '*' or '0'-'7'.

ASSIGN BUFFER FULL (code CD) - the buffer
used for storing filenames after
assignment prior to files being opened is
too full to hold the name assigned. The
assignment is not made.

NAME TOO LONG (code 83) - this
circumstance is only a warning. The name
given was indicated as being longer than
the maximum length and_was truncated
accordingly.

- 124 -

6.3
OPEN OPEN

Request vector:

Logical unit
Request code - 04 or 05
Data' transfer area - A pointer to an area

containing the attributes that the file is to
be created with, if it gets created, or where
the attributes can be returned if the file
exists. See below for a detailed description
of these attributes. If this pointer is zero,
a set of default attributes will be supplied
if the file is created. Nothing will be
returned if the file is found.

Length - The number of bytes to transfer to/from
the attributes in the data transfer area. If
this is zero, or less than the minimum set of
attributes for a new file, and the file needs
to be created, the balance will be supplied
from defaults. See below for a detailed
description of attributes.

Completion return address
Error return address
Completion code
Supplemental parameter information - Pointer to an

area containing the following:
1st byte of area - designation of the type of

action to be performed on the open. See
below for possibilities.

2nd byte of area - A byte for returning a
character representing the disk drive the
file was opened on. A character '0'-'7'
will be returned in this byte. If a new
assignment is to be made, such a
character or '*' should be supplied by
the calling program to indicate where
the file is to be searched.

- 125 -

OPEN OPEN

3rd byte of area - length of file name. The
open request can do its own assignment,
removing the necessity for two calls to
ZOOS. If this is done, it will override
any assignment done previously. This
supplemental information should look
exactly like the supplemental information
for an assign request. If no assignment
is to be made, however, this byte should
be -1 (OFFH).

4th byte and following - filename if there is
one.

File attributes:

Each file has a 128-byte record referred to as the file
descriptor record. This contains information concerning
the type of file, where it is on the disk, how it is
organized, etc. Only 40 of the 128 bytes are used by
the system, leaving the remainder for possible use by
the user. When a file is created, the organization,
etc., must be specified by the user, either explicitly
or by default. Similarly, when a file is opened, the
information about the organization may be needed by the
program. In order to accomplish both these ends, that
portion of the file descriptor record which may be of
use to the programmer can be passed back and forth. It
is laid out as follows:

1 Type and subtype. There are 4 types of files
recognized by the system. Each is assigned
one of the top four bits of this word. The
bottom four bits are available for user
defined subtypes.
Bit 7 - procedure type files.
Bit 6 - Directory files.
Bit 5 - ASCII files.
Bit 4 - Data files.

The default is ASCII subtype 0 (20B).

2-3 Record count. Number of records in the file.

- 126 -

OPEN

4-5

6-7

8

9-10

11-12

13-20

21-28

29-116

OPEN

Record length in bytes. The default is 128.
If zero is specified, the default will be
assumed.

Block length in bytes. This has to do with
logical blocking of records, which is
currently unimplemented. This is therefore
set to the record length.

File properties. The following bits are
assigned:
Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2
Bit 1
Bit 0

- Write protection - the file cannot be
changed.
- Erase protection - nothing can be
removed from the file. 'Write
protection implies erase protection,
but not vice versa.
- Locked - No attributes can be
changed.
- Secret - the file will not appear in
normal directory listings.
- Random - file is set up for random
access. This has not been defined at
this time.
- FORCE file loading.
- Reserved for system use.
- Reserved for system use.

Start address - Address at which execution of
a procedure file should begin. Not used by
ZOOS itself.

Reserved for system use.

Date of creation. This is supplied by ZOOS
from the system global DATE.

Date last written. This is supplied by ZOOS
from the system global DATE.

Available for user definition.

- 127 -

OPEN OPEN

Types of open requests:

There are several ways the activation of
a file may be handled. These are specified
by the 1st word of the supplemental parameter
information. A file may be opened for either
random or sequential access. Random access
is specified by setting bit 3 of this word.
Currently, a file being open for random
access has two implications. One is that the
READ DIRECT request will be accepted (it
will be refused with an INVALID REQUEST error
otherwise). The other is that in each record
oriented operation, the disk address of the
first record involved will be returned to the
calling program in the supplemental parameter
information field of the parameter vector.

There are five mutually exclusive ways that
the cases of file not found/ file found may
be handled. These are specified in the
bottom 3 bits of this word. They are as
follows:

Open for input - 0 - if the file exists, it will be
activated with the pointer ahead of the first
record. If it does not exist, a FILE NOT
FOUND error (code C7) is returned.

Open for output - 1 - If the file exists, it is
activated and all its records are deleted. If
it does not exist, it is created.

Open new file - 2 - (also referred to as open for
nondestructive output) -.if the file exists, a
DUPLICATE FILE error (code DO) is returned,
and the file is not activated. If the file
doe s no t ex is t, i tis c r e.a ted.

Open for append - 3 - if the file exists, it is
activated with the pointer positioned at the
last record. If it does not exist, it is
created.

Open for update - 4 - if the file exists, it is
activated with the pointer ahead of the first
record of the file. If it does not exist, it
is created.

- 128 -

OPEN

Action:

OPEN

If a filename assignment is specified (3rd byte
of the supplemental information is not -1),
the ASSIGN subroutine is called as though an
ASSIGN request had been made. If there is a
filename assigned to the unit, i.e., if it is not
assigned to a scratch file, the directory on
the specified drive is searched for the
filename. If the drive is specified as '*', a
check is made to determine the ready status of
all drives, then each ready drive is searched,
from drive I to drive 7, followed by drive 0,
until the file is found or all drives have
been searched.
The ID of the diskette which holds or
will hold the file is read into a buffer and
compared against the ID on the corresponding
map in memory. If they do not match, and no
other unit has a file open on the same
physical drive, a new map (and ID) will be
read into memory. If another unit is open on
that drive, a WRONG DISKETTE error will be
returned and the file will not be activated.
If the file is found, its descriptor
record is read, the relevant parts are moved
into the active file table entry for the unit,
and, if requested, moved to the user's data
transfer area. The file is then flagged as
open. If the file is to be created, the
descriptor record is created in a buffer, then
moved to the active file table, and, if
requested, to the user's data area. If the
file is not a scratch (no-name) file, the
descriptor record is written out to the disk
and a directory entry is created.

Possible errors:

All DISK ERRORS are possible. NOT READY (code
C2) may indicate designation of a specific
drive that was recorded as 'not ready' the
last time the ready status was checked.

- 129 -

OPEN OPEN

PROTECTION (code C3) - may occur as a disk
error if the diskette is write-protected, or
may occur by an attempt to open an existing
file which is write- or erase-protected for
output (thus deleting its records). In that
case, the file is opened but its records are
not deleted.

UNIT ALREADY OPEN (code CC) - the logical unit
is already active. It must be closed, or an
initialize operation must be performed, before
it can be OPENed again. No action is taken.

WRONG DISKETTE (code 01) - the disk ID of the
diskette in the drive does not match the ID in
memory. Usually indicates that the disks have
been switched since an INITIALIZE operation
was performed, or that a program has
overwritten the maps in memory. The file is
not opened.

FILE NOT FOUND (code C7) - the open request
was for input, and the file designated does
not exist.

POINTER ERROR (code CAl - could occur if the
pointers linking the segments of the directory
together have been destroyed or overwritten,
or if the file exists and the pointers for the
descriptor record are incorrect, or, in
deleting the records of an existing file, a
pointer mismatch occurs.

DUPLICATE FILE (code DO) - request to open a
new file when the file already exists. The
file is not activated.

INVALID ATTRIBUTE (code D2) - one of the
attributes specified for the creation of the
file was invalid. This may be that more than
one (or none) of the four mutually exclusive
types was specified, or that an invalid record
size was specified. The file is activated with
the defaults substituted for the erroneous
attributes.

- 130 -

OPEN OPEN

DISK FULL (code 03) - there was no space to
allocate a descriptor record, or a new
directory record if one needed to be
allocated. Can only occur if the file is
being created.

FILE ALREADY OPEN (code 06) - the file
requested to be opened on this unit is already
active on another unit. The unit is not
activated.

PROPERTIES PROTECTION (code 08) - an attempt
to change attributes on a locked file. The
attributes are not changed.

INVALID OPEN REQUEST (code 09) - a type of
open request which was not input, output,
newfile, append, or update was specified. No
action is taken.

INSUFFICIENT MEMORY (code DA) - if additional
disks have been inserted prior to the open
request and insufficient memory is available
for additional allocation maps, this error
will be returned.

The following are w~rning codes, and will not cause
the error return branch to be taken.

DIRECTORY FORMAT ERROR (code 81) - Indicates
the format of one or more directory records is
erroneous. The record can still be read, but
its data is suspect.

SCRATCH FILE (code 82) - informative message
that a scratch file has been created.

ATTRIBUTES TOO LONG (code 84) - more than 116
bytes of attribute information were requested.
Only 116 bytes were transferred.

In addition, if an assign is implicit in
the open request, any error that can occur
with assign could occur.

- 131 -

6.4
CLOSE CLOSE

Request vector:

Logical unit
Request code - 06 or 07
Data transfer area - a pointer to an area which may

contain attributes to replace those of the
file. The format is the same as for the OPEN
request. If no replacement of attributes is
desired, the data transfer area should be
zero.

Length - Number of bytes to move to the descriptor
record from the data transfer area. If no
data is to be moved, it should be zero. The
maximum is 116 decimal bytes.

Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

If the logical unit is a scratch file, the file
is erased. If there have been any changes in
allocation to the file, or if new attributes
are to be written, its descriptor record is
read, updated, including moving in any new
attributes supplied by the calling program,
and rewritten, and the allocation map is
rewritten. The file is then flagged as being
closed, and indicators are set to indicate an
assignment to a scratch file.

Possible errors:

FILE NOT OPEN (code CB) - the logical unit is
not active. No action is taken.

- 132 -

CLOSE CLOSE

WRONG DISKETTE (code Dl) - the diskette ID on
the disk does not agree with the ID in memory.
Usually indicates disks have been changed
since an INITIALIZE was performed, or that a
program wrote over the allocation maps. The
file is not closed. Either the correct disk
must be re-inserted, or an INITIALIZE must be
performed, which will result in the file
status information being cleared.

INVALID ATTRIBUTE (code 02) - if attributes
are specified for replacement and the type is
invalid, this error will result. The type is
left unchanged, but everything else is done.

All DISK ERRORS are possible.

POINTER ERROR (code CAl - indicates a pointer
mismatch occurred while deleting the records
of a scratch file, or that the pointers on
the descriptor record were incorrect. If it
occurs while reading the descriptor record,
the file is deactivated but the descriptor is
not updated.

The following warnings are possible:

ATTRIBUTES TOO LONG (code 84) - more than 116
bytes of replacement attributes were
specified. Only 116 bytes were transferred.

- 133 -

6.5
REWIND REWIND

Request vector:

Logical unit
Request code - 08 or 09
Data transfer area - ignored
Length - ignored
Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

The file pointer is positioned at the
descriptor record, with the first record as
the next record. This is the position the
file pointer assumes when the file is opened
for other than append, or when it is created.
If there are no records in the file, the next
record pointer is null.

Possible errors:

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 134 -

6.6
READ BINARY READ BINARY

Request vector:

Logical unit
Request code - OA or OB
Data transfer area - the address to which data

should be transferred
Length - the number of bytes to transfer. If this

number is not an integral multiple of the
record size, it will be rounded up until it
is. On return, this will contain the actual
number of bytes transferred."

Completion return address
Error return address
Completion code
Supplemental parameter information - if the file is

open for random I/O, this field should contain
the address of a three-byte area where the
disk address of the first record read will be
returned. Otherwise, it is unused.

Action:

Data is read from the file, starting at the
next record, into the data transfer area. The
pointer is left on the last record read. If
the file is open for random I/O, the disk
address of the first record read is returned
in the field pointed to by the supplemental
parameter information. The third byte of
this address will always be zero.

Possible errors:

All DISK ERRORS except PROTECTION (code C3)
are possible.

- 135 -

READ BINARY READ BINARY

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

END OF FILE (code C9) - the last record of the
file was read and the given length had not
yet been fulfilled. The length returned
reflects the number of bytes actually read.

POINTER ERROR (code CA) - a pointer mismatch
occurred. The reading stops at the point it
is detected. The length returned will include
the record which had the error.

- 136 -

6.7
WRITE BINARY WRITE BINARY

Request vector:

Logical unit
Request code - OE or OF
Data transfer area - the address from which data is

to be transferred.
Length - the number of bytes of data to transfer.

If this number is not an integral multiple of
the record size, it will be rounded up until
it is. On return, this will contain the
actual number of bytes transferred.

Completion return address
Error return address
Completion code
Supplemental parameter information - if the file is

open for random I/O, this field should contain
the address of a three-byte area where the
disk address of the first record written will
be returned. If not, it is unused.

Action:

New records are created and filled with data
from the data transfer area. The new records
are inserted after the current one. The
pointer is left at the last record written.
The next record pointer remains on the same
record it was prior to the operation.

Possible errors:

All DISK ERRORs are possible except CRC (code
C6). PROTECTION (code C3) will also be
returned by ZOOS if the file is write
protected.

- 137 -

WRITE BINARY WRITE BINARY

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

DISK FULL (code D3) - there is no room on the
disk to allocate a new record. Records which
will fit are written. The length returned
reflects the number of bytes written before
the disk filled,up.

- 138 -

6.8
WRITE CURRENT WRITE CURRENT

Request vector:

Logical unit
Request code - 12 or 13
Data transfer area - the address from which data is

to be transferred.
Length - if the length is zero, no data will be

transferred. Otherwise, one record will be
transferred. On return, length will contain
the number of bytes transferred.

Completion return address
Error return address
Completion code
Supplemental parameter information - if the unit is

open for random I/O, this field should

Actio~:

contain the address of a three-byte area
where the disk address of the record will
be returned. Otherwise, it is unused.

Data is moved from memory to the file,
replacing the data in the current record. No
new records are created, and the record
pointer is not moved.

Possible errors:

All DISK ERRORs except CRC (code C6) are
possible. PROTECTION (code C3) will also be
returned by ZDOS if the file is write
protected.

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 139 -

6.9
DELETE DELETE

Request vector:

Logical unit
Request code - 16 or 17
Data transfer area - ignored.
Length - the number of bytes of data to be removed

from the file. If this number is not an
integral number of records, it will be rounded
up to the next full record. On return, length
will contain the number of bytes deleted.

Completion return address
Error return address
Completion code
Supplemental parameter information - none.

Action:

Starting at the current record, records are
removed from the file, and the space taken up
by them deallocated (made available), until
the given number of bytes have been removed.
The current record pointer is left on the
record preceding those deleted. The next
record pointer is left at the record following
those deleted.
If the file is currently positioned on
the descriptor record (top of the file), the
pointer will be advanced to the first record
before the operation is started. This is not
counted as one of the records deleted. After
the operation, the pointer will again be on
the descriptor record.

Possible errors:

All DISK ERRORs are possible. PROTECTION
(code C3) will also be returned by ZDOS if the
file is either write or erase protected.

- 140 -

DELETE DELETE

END OF FILE (code C9) - the last record of the
file was deleted, and the length specified had
not yet been exhausted. The number of bytes
returned will indicate the number deleted,
including the last record. The pointer is
left at the record preceding the first one
deleted, with the next record pointer being
null.

POINTER ERROR (code CA) - a pointer mismatch
occurred while traversing the records of the
file in deleting them. Records are deleted up
to the one preceding the mismatch.

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 141 -

6.10
DELETE REMAINING RECORDS DELETE REMAINING RECORDS

Request vector:

Logical unit
Request .code - 18 or 19
Data transfer area - ignored
Length - ignored. The total number of bytes

deleted is returned.
Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

All records from the current one to the end of
the file are removed. The pointer is left on
the record preceding those deleted. The next
record pointer is null. If the pointer is on
the descriptor before the operation, it is
moved forward before deletion begins.

Possible errors:

All DISK ERRORS are possible. PROTECTION
(code C3) will also be returned if the file is
write- or erase-protected.

POINTER ERROR (code CA) - will occur if, in
traversing the records of the file, a pointer
mismatch is found. The records will be
deleted up to, but not including, the record
preceding the mismatch.

FILE NOT OPEN (code CB) - the requested
logical unit is not active. No action is
taken.

- 142 -

6.11
ERASE ERASE

Request vector:

Logical unit
Request code - lA or IB
Data transfer area - ignored
Length - ignored. The total number of bytes

deleted is returned.
Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

All records of the file are deallocated (their
space is made available), the descriptor
record is deallocated, and the directory entry
for the file is removed from the directory,
thus rendering the file completely
inaccessible. The file does not have to be
open, but it must have been assigned.

Possible errors:

All DISK ERRORS are possible. In addition,
PROTECTION (code C3) will be returned by ZDOS
if the file is write- or erase-protected. NOT
READY (code C2) will be returned if the
specified drive for the file is not loaded and
ready.

FILE NOT FOUND (code C7) - The named file
cannot be located on the drive specified.
Will not occur if the file is open when the
request is given.

- 143 -

ERASE ERASE

POINTER ERROR (code CAl - A pointer mismatch
occurred either while locating the file or
while traversing the records of the file. All
records beyond the pointer mismatch will
remain allocated and thus be unavailable for
further use.

INVALID DRIVE (code CE) - The drive specified
in the assignment was something other than '0'
- '7'. '*l is not a valid specification for a
file being erased.

WRONG DISKETTE (code Dl) - the ID for the
diskette the file is on does not match the ID
in memory for that diskette. Usually
indicates that the diskette has been changed
or that a program has overwritten the ZDOS map
area. The file is not erased.

FILE NOT FOUND IN DIRECTORY (code D4) - this
error indicates that no directory entry for
the file could be found in the segment of the
directory indicated by the descriptor record.
The records will be deallocated, but a
directory entry may remain somewhere else. If
this error occurs. it is best to copy all
remaining files to another diskette and
reformat the one in question, as any further
access to the bad file is liable to cause
pointer errors and other complications.

FILE ALREADY OPEN (ON ANOTHER UNIT) (code D6)
- this error will result from an attempt to
erase on one unit a file which is currently
active on another unit. No action will be
taken.

- 144 -

6.12
READ AND DELETE READ AND DELETE

Request vector:

Logical unit
Request code - Ie or lD
Data transfer area - address to which data will be

read
Length - number of bytes of data to read. If this

is not equal to an integral number of records,
it will be rounded up until it is. On return,
length will contain the number of bytes
actually transferred.

Completion return address
Error return address
Completion code
Supplemental parameter information - if the file is

open for random I/O, this field should contain
the address of a three-byte area where the
disk address of the first record read will

Action:

be returned.

This request is useful when a block of data is
to be read, modified, and rewritten. Starting
at the record following the current one, data
is transferred from the file to memory and
simultaneously removed from file (that is, the
records are deallocated). The current record
at the start of the operation will remain the
current record when it is complete, thus
leaving the pointer in position to write data
back in the same position from which it was
just read. The record after the last one read
will be indicated as the next record.

- 145 -

READ AND DELETE READ AND DELETE

Possible errors:

All DISK ERRORS are possible. In addition,
PROTECTION (code C3) will be returned by ZDOS
if the file is write- or erase-protected.

END OF FILE (code C8) - the last record of the
file was read without exhausting the length
specification. The number of bytes read is
returned in the length field, and the next
record pointer is null.

POINTER ERROR (code CA) - a pointer mismatch
occurred in going from one record to the next.
The data transfer stops with the record in
error. The length field indicates how many
bytes were transferred prior to the error.

FILE NOT OPEN (code CB) - the logical unit
being requested is not active. No action is
taken.

- 146 -

6.13
READ CURRENT READ CURRENT

Request vector:

Logical unit
Request code - IE or IF
Data transfer area - address to which data should

be read
Length - number of bytes to read. If this is zero,

no data will be transferred. Otherwise, one
record of data will be transferred. The
number of bytes actually transferred will be
indicated here on return.

Completion return address
Error return address
Completion code
Supplemental parameter information - if the file is

open for random I/O, this field should contain
the address of a three-byte area where the
address of the current record will be returned.
Otherwise, it is unused.

Action:

Unless the length specification is zero, one
record's worth of data is transferred from the
current record. The pointer is left unmoved.

Possible errors:

All DISK ERRORS except PROTECTION (code C3)
are possible.

POINTER ERROR (code CA) - if the back pointer of
the current record does not indicate the
previous record, a pointer error is reported.
The data is still transferred.

- 147 -

READ CURRENT READ CURRENT

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

BEGINNING OF FILE (code D5) - the pointer is
on the descriptor record, which cannot be
read. No data is transferred, and a null
address is returned if open for random I/O.

- 148 -

6.14
READ PREVIOUS READ PREVIOUS

Request vector:

Logical unit
Request code - 20 or 21
Data transfer area - address to which data should

be read
Length - number of bytes to read. If this is zero,

no data will be transferred. Otherwise, one
record of data will be transferred. The
number of bytes actually transferred will be
indicated here on return.

Completion return address
Error return address
Completion code
Supplemental parameter information - if the file is

open for random I/O, this field should contain
the address of a three-byte area where the
disk address of the previous record will be
returned. Otherwise, it is unused.

Action:

Unless the length is zero, the record preceding
the current one is read. In either case, the
pointer is backed up one record. The current
record will become the next record, the
previous one the current record, and the one
preceding the previous record will become the
new previous record.

Possible errors:

ALL DISK ERRORS except PROTECTION (code C3)
are possible.

POINTER ERROR (code CA) - if the forward
pointer on the previous record does not
indicate the current one, a pointer error is
reported. The data is still transferred.

- 149 -

READ PREVIOUS READ PREVIOUS

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

BEGINNING OF FILE (code D5) - if the record
indicated is the descriptor record of the
file, the pointer is positioned at the
beginning and a previous record is
meaningless. No action is taken. A null disk
address is returned if the file is open for
random I/O.

- 150 -

6.15
READ DIRECT READ DIRECT

Request vector:

Logical unit
Request code - 22 or 23
Data transfer area - memory address to which data

is to be transferred.
Length - number of bytes of data to transfer. If

this number is not an integral number of
records, it will be rounded up until it is.
The number of bytes actually transferred will
be reported in this field.

Completion return address
Error return address
Completion code
Supplemental parameter information - a pointer

Action:

to a three-byte area containing the disk
address of the first record to be read. The
third byte of this area should be zero. It
is the calling program's responsibility to
be certain this sector is a part of the file
being accessed. This field will be unchanged
on return.

The record whose disk address is given is read
as though it were the next record, but no
pointer checking is done on it. If more than
one record is specified for the length,
subsequent records are read just as in the
read binary request. This request is only
valid if the file has been opened for random
I/O.

- 151 -

READ DIRECT READ DIRECT

possible errors:

INVALID REQUEST (code Cl) - if the file is not
open for random I/O, the read direct request
will be rejected with this error.

All the errors of the READ BINARY request
apply for the READ DIRECT request as well.

- 152 -

6.16
SKIP FORWARD SKIP FORWARD

Request vector:

Logical unit
Request code - 24 or 25
Data transfer area - ignored
Length - the number of records (not bytes) to be

skipped. On return, the number of records
skipped will be reported.

Completion return address
Error return address
Completion code
Supplemental parameter information - if file is

open for random I/O, this field should contain
the address of a three-byte area where the
disk address of the first record skipped will
be returned. Otherwise, none.

Action:

The current record pointer is advanced through
the file by the number of records indicated.
No data is transferred.

Possible errors:

All DISK ERRORs except PROTECTION (code C3)
are possible.

END OF FILE (code C9) - the last record of the
file was reached while there remained records
to skip. The pointer is left at the last
record of the file, with a null pointer for
the next record.

POINTER ERROR (code CA) - a pointer mismatch
occurred while traversing the records of the
file. The current record pointer is left at
the record preceding the mismatch.

- 153 -

SKIP FORWARD SKIP FORWARD

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 154 -

6.17
SKIP BACKWARD SKIP BACKWARD

Request vector:

Logical unit
Request code - 26 or 27
Data transfer area - ignored
Length - the number of records (not bytes) to be

skipped. On return, the number of records
skipped will be reported.

Completion return address
Error return address
Completion code
Supplemental parameter information - if the file is

open for random I/O, this field should contain
the address of a three-byte area where the

Action:

disk address of the record preceding the
current one will be reported. Otherwise, none.

The current record pointer is moved backward
through the file by the number of records
indicated. No data is transferred.

Possible errors:

All DISK ERRORs except PROTECTION (code C3)
are possible.

POINTER ERROR (code CA) - a pointer mismatch
occurred while traversing the records of the
file. The current record pointer is left
indicating the record following the error.

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 155 -

SKIP BACKWARD SKIP BACKWARD

BEGINNING OF FILE (code 05) - the beginning of
the file was reached without exhausting the
given record count. The pointer is left
positioned on the descriptor, with the first
record of the file being next.

- 156 -

6.18
SKIP TO END SKIP TO END

Request vector:

Logical unit
Request code - 28 or 29
Data transfer area - ignored
Length - ignored. Zero will be returned.
Completion return address
Error return address
Completion code
Supplemental parameter information - if the file is

open for random I/O, this field should contain
the address of a three-byte area where the
disk address of the last record in the file
will be returned. Otherwise, it is unused.

Action:

The file is positioned with the current pointer
indicating the last record of the file.

Possible errors:

All DISK ERRORs are possible with the
exception of PROTECTION (code C3).

POINTER ERROR (code CAl - the forward pointer
of the last record was not null, indicating it
was not, in fact, the last record.

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 157 -

6.19
RENAME RENAME

Request vector:

Logical unit
Request code - 2A or 2B
Data transfer area - ignored
Length - ignored
Completion return address
Error return address
Completion code
Supplemental parameter information - a pointer to

an area configured as follows

Action:

1st byte - length of name
2nd and following bytes - new name

The file on the unit requested is given the new
name which is contained in the supplemental
parameter vector. The file may be open. If
it is not, there must be a pending assignment
for it, so that it can be opened. If it is
not already open, it will be activated, then
its directory entry removed from the directory
and a new one created. An open scratch file
may be recovered (requiring its descriptor
record to be created), but a named file cannot
be renamed to a scratch file. Finally, if the
file was not open at the start of the
operation, it is deactivated.

Possible errors:

All DISK ERRORs are possible.

FILE NOT FOUND (code C7) - the unit being
accessed was not open and the file assigned to
it does not exist. Will also occur if the
unit is assigned to a scratch file which has
not yet been created. No action is taken.

- 158 -

RENAME RENAME

POINTER ERROR (code CA) - the back pointer
from the descriptor record did not point to
the directory. No further action is taken.

DUPLICATE FILE (code DO) - a file of the same
name as the new name already exists. The file
is not renamed.

DISK FULL (code 03) - it was necessary to
create a new directory record to contain the
new name, and the disk was too full to allow
it, or too full to allow creation of the
descriptor record if renaming a scratch file.

FILE NOT IN PROPER DIRECTORY RECORD (code 04)
- no directory entry "for the file exists in
the directory record indicated by its
descriptor. No action is taken.

FILE ALREADY OPEN ON ANOTHER UNIT (code D6) -
the file assigned to the unit being accessed
is currently active on another logical unit.
No action is taken.

INVALID RENAME (code D7) - attempt to rename a
file either to a scratch file (zero length
name) or to a name longer than the maximum
name length (32 characters). The file is not
renamed.

- 159 -

6.20
UPDATE UPDATE

Request vector:

Logical unit
Request code - 2C or 2D
Data transfer area - address of attributes to be

assigned to the file. Format is described
under the OPEN request.

Length - number of bytes of attribute information
to be used.

Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

If there have been any changes to the file, or
if there are attributes to be updated, the
descriptor is read, updated, and rewritten,
and the allocation map is rewritten. The
attributes of the file can be changed with the
update request in the same way as by the close
request. The file remains active.

possible errors:

All DISK ERRORs are possible.

POINTER ERROR (code CAl - will occur if the
back pointer for the descriptor does not
indicate the directory record for the file.

FILE NOT FOUND (code CB) - the logical unit
being accessed {s not active. No action is
taken.

- 160 ~

UPDATE UPDATE

WRONG DISKETTE (code Dl) - the diskette ID for
the drive for this file does not agree with
the ID in memory for that drive. Usually
indicates the diskette has been changed since
the file was opened, or that a program wrote
across the allocation maps. No action is
taken.

INVALID ATTRIBUTES (code D2) - one or more of
the attributes being supplied either is or was
invalid. The attributes checked are type
(there should be exactly one of the most
significant bits on) and record length. The
attribute which was wrong is left as it was,
and the remainder of the process is carried
on.

PROPERTY PROTECTION (code 08) - if the file is
locked, no attributes are to be changed. An
attempt to do so results in this error.

- 161 -

6.21
SET ATTRIBUTES SET ATTRIBUTES

Request vector:

Logical unit
Request code - 2E or 2F
Data transfer area - address of attributes to be

assigned to the file. Format is described
under the OPEN request.

Length - number of bytes of attribute information
to be used.

Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

The descriptor record is read and updated from
the current information and the attributes
supplied and rewritten.

Possible errors:

All DISK ERRORS are possible.

POINTER ERROR (code CAl - will occur if the
back pointer for the descriptor does not
indicate the directory record for the file.

FILE NOT FOUND (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 162 -

SET ATTRIBUTES SET ATTRIBUTES

INVALID ATTRIBUTES (code D2) - one or more of
the attributes being supplied either is or was
invalid. The attributes checked are type
(there should be exactly one of the most
significant bits on) and record length.
The attribute which was wrong is left as it
was, and the remainder of the process is
carried on.

PROPERTY PROTECTION CODE (code 08) - if the
file is locked, no attributes are to be
changed. An attempt to do so results in this
error.

- 163 -

6.22
QUERY ATTRIBUTES QUERY ATTRIBUTES

Request vector:

Logical unit
Request code - 30 or 31
Data transfer area - address for return of

attributes of the file.
Length - number of bytes of attribute information

to be returned.
Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

This command is used for obtaining attribute
information, such as the record count, while a
file is open. The descriptor record is read,
the current information merged into it, and as
many bytes of attribute information as have
been requested are returned to the user. See
the OPEN request for the format of the
returned bytes.

Possible errors:

All DISK ERRORS except PROTECTION (code C3)
are possible.

POINTER ERROR (code CAl - the back pointer of
the descriptor record does not indicate the
directory record. No data is returned.

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 164 -

QUERY ATTRIBUTES QUERY ATTRIBUTES

ATTRIBUTE LIST TRUNCATED (code 84) - this code
is a warning and will not cause an error
branch. It indicates that more than 116 bytes
of attribute information were requested.
Only 116 bytes were transferred.

- 165 -

CHAPTER 7

DFS

7.1 ZILOG DISK CONTROLLER

The interface from a Zilog Z-80 System to high-speed disk
units consists of an intelligent disk controller in a
module separate from the system, and a high speed serial
interface link from the system to the controller. The
controller contains its own Z-80 CPU, sockets for 8K of ROM (of
which only 3K is currently used), 16K of static RAM, Direct Memory
Access (DMA) control circuitry, the data decode/encode interface
circuitry and miscellaneous control signal interface logic. The
interface is to Caelus Model 206R or similar units. It will
support up to four disk drives with appropriate daisy-chained
cabling.

The software for this configuration makes the disk
appear as another file system, functionally identical
to the ZDOS file system which exists for the floppy disks.

The Disk File System (DFS) software is capable of running in
two versions. On the MCZ 1/20, the system is bootstrapped from
the floppy disks as a standard system. The system resident
portion of DFS must be loaded from ZDOS by the command ACTIVATE
$DFS. ZDOS is at 2AOO, immediately above the console driver
for RIO, and DFS is placed at the top of memory.
DFS contains an entry point for DISK, the low level
disk controller used by some utilities; it is 2 greater
than the entry point for DFS, and should be activated
with an address at the same time DFS is activated,
thus:

ACTIVATE $DFS;X * $DISK E002

If DFS is to be run as the master device, then the command
MASTER $DFS should follow these. At this point ZDOS can be
deactivated, thus effecting a large savings in memory space,
unless it is needed for transfers to diskette.

- 166 -

The MCZ 1/35 bootstraps directly from DFS. The 4K monitor
proms for this system contain the system resident
portion of the OFS driver and the system bootstrap.
ZOOS is supplied on the disk for use with optional floppy
disk drives and is linked to run at the top of memory.
There is a separate entry point for the FLOPPY driver at
two greater than the entry point for ZOOS. When activating
ZOOS, FLOPPY should be activated with an address in the same
manner as was described above for OISK, i.e.

ACTIVATE $ZOOSiX * $FLOPPY E002

Command files for these systems are normally linked at 2AOO.

- 167 -

7.2 DFS OPERATION

Except where noted otherwise, the information contained in
Chapter 6 regarding ZDOS also applies toDFS.

The following are the major differences between the two
file systems:

1) The DFS descriptor record differs from the ZDOS des
criptor record:

Bytes 0-3
Bytes 4-7
Bytes 8-10

Bytes
Bytes
Byte
Bytes
Bytes
Bytes

11-13
14-16

17
18-19
20-21
22-23

Byte 24
Bytes 25-26

Bytes 27-28
Bytes 29-36
Bytes 37-44
Bytes 45-132

Bytes 133-511

Unused
File ID
Pointer to directory sector holding
entry for this file
Pointer to first data record of file
Pointer to last data record of file
File type and subtype
Record count
Record length
Block length - currently unused, and set to
be same as record length
File properties
Starting execution address for procedure
type files (entry point)
Number of bytes in last record
Date of creation
Date of last modification
Undefined by DFS - used by RIO for
procedure files
Available for programmer definition

2) While ZDOS accepts records of several lengths
(multiples of 128 (80H) bytes), the record length
on DFS must be equal to the physical sector length
(512, or 200H bytes). A request to set it to any
other record length results in an invalid attribute
error (code D2H). However, a request for record
length 0 is treated as a r~quest for the default,
or 200H.

3) Because some of the disks to be interfaced to this
system have more than 65535 sectors, three bytes
are used for all disk addresses. This affects

- 168 -

programs which access the directory, because
there are now 3-byte pointers at the end
of each entry instead of 2-byte pointers. To
facilitate differentiation between the two formats,
the DFS directory file is subtype 1.

4) There are three commands which apply exclusively to DFS
disks. They are described in the following sections
of this manual:

Command

DISK. FORMAT
DISK. REPAIR
DISK. STATUS

Section

5.16
5.17
5.18

5) For systems with floppy disks, software updates will be
supplied on floppy diskettes as required. For systems
without diskette drives, software updates are supplied
on disk cartridges at an additional cost.

6) The GET/SAVE Debug commands have not yet been implemented
for DFS hard disks.

7) The user and system operator should be familiar with
the disk manufacturer's recommended operations pro
cedures provided in separate manuals. These
paragraphs are not intended to substitute for those
documents. Nevertheless, we will briefly discuss
disk start-up and shut-down procedures. These pro
cedures apply to the Caelus Model 206R front-loading
cartridge disks. Similar procedures would apply to
other drives of the same class.

Prior to bootstrapping the system, turn power on to
the disk drive and disk controller. After a delay
of perhaps 10-15 seconds, the "stop" light on the disk
front panel will be illuminated. At this time open
the door and slide in the cartridge to be used for the
session. Close the door and turn the run/stop switch
to run. After a delay of about a minute, the ready
light will corne on. At this point the bootstrap
file from the disk is read into the controller memory.
The disk is now ready for operation. Bootstrap the system.

- 169 -

To change disk cartridges during a session, turn the
run/stop switch to stop, wait for the stop light, open
the door, remove the cartridge and insert the new one,
close the door and turn the switch to runi and wait
for the ready light. The door is always locked except
when the stop light is on. Also, a cartridge must be
in place and the ~oor closed to spin the disk up.

Any time there is a change in disks or a change in the
ready status, give an Initialize (I) command. This is
necessary to make the controller aware of the new status.

When shutting down for a period of time, as overnight,
it is best to remove the cartridge and close the door,
to prevent dust from gathering in either the cartridge
or the drive.

- 170 -

7.3 SOFTWARE ORGANIZATION

The Disk File System driver is divided into two parts to
correspond to the division of the hardware interface.
One part is resident on the host system and contains the
message interface link to communicate with the controller.
It is used to pass I/O requests to the controller and
to send and receive data.

The second, and larger part, is th~ software which
resides in the memory of the intelligent controller.
Most of this is loaded from the disk whenever the
controller is reset. The software in ROM includes the
initial start-up and serial message interface logic,
the bare disk controller, which gives access to the
disk by sector number for reads and writes, and the
self-bootstrapping logic to read the rest of the file
system from the disk. The disk file system, which
is an adaptation of the ZOOS-II file system, and an
interface for handling the request vector across the
remote serial interface, are loaded from the disk.

There are two entry points to the resident software,
each of which takes a standard I/O vector. One, DFS,
causes the vector to be taken as a request to the Disk
File System on the controller, and the other, DISK
(located at address of DFS + 2), causes it to be
taken as a request to the bare disk controller.

- 171 -

7.4 DFS ALLOCATION

7.4.1 SECTOR 0 FORMAT

As opposed to the floppy-disk system, which uses a RAM bit map,
allocation is maintained as a list of free sectors. The first
part of this list, plus the volume ID (Disk ID) and
statistics on disk usage, are maintained on sector 0
of each unit. The format of that sector is as follows:

VOLUME ID -- bytes 1-100

MAXSIZ -- bytes 101-103 -- the total number
of sectors on that unit, and thus
1 more than the highest accessible
sector address.

MAXID -- bytes 104-107 -- the current highest
file ID. This is incremented every time
a new file is created.

ROOTPT bytes 108-110 -- the pointer to the
root directory descriptor for the unit.

TFREE -- bytes 111-113 -- the total number of
sectors remaining on the free list.

NERR -- bytes 114-116 -- the number of sectors
unusable because of errors. This is
generated during the read pass of the
format routine.

NUSED -- bytes 117-119 total number of
sectors on the unit which have been
allocated.

NFREE -- bytes 120-121 -- an index into the
free array to follow.

FREE -- bytes 122-421 -- an array of 100
3-byte pointers, each to an
unallocated sector.

FMOD byte 422 -- internal use.

- 172 -

NSECS -- byte 423 -- number of sectors per track

SECMAP bytes 424-487 -- sector interlace
map. Used by the disk controller to
optimize track layout for access time.

ERRPTR bytes 488-490 -- pointer to a sector
containing the list of sectors in error
after the initial format.

BTPTR -- bytes 491-493 -- pointer to the descriptor
record for the bootstrap file. Used by the
bootstrap process to avoid a directory search.

The remainder of the sector is reserved for future use.

7.4.2 DFS ALLOCATION ALGORITHM

FREE[O] is a pointer to a sector whose contents are addresses
of the next 100 elements of the free chain. To allocate a
sector, decrement NFREE, and the new sector is
FREE[NFREE]. If this element is zero, then there are
no sectors left. If NFREE becomes 0, then read the
contents of the designated sector into NFREE and FREE.
To deallocate a sector, if NFREE is 100, copy NFREE and
FREE to the deallocated sector and set NFREE to zero.
Set FREE [NFREE] equal to the sector address and increment
NFREE.

- 173 -

7.5 THE BARE DISK CONTROLLER

The bare disk controller is analogous to the subroutine
FLOPPY in floppy-disk based systems. It accepts a
standard RIO vector and reads or writes a sector of
the disk. It accepts only a very limited set of
requests, and requires a supplemental parameter vector
specifying the disk address of the sector and the
disk drive to be accessed. The drive is specified in
the most significant three bits of the 3-byte
disk address. The sectors are addressed by
3-byte integers. Sector 0 is cylinder 0, surface 0,
sector o. Since disks with various numbers of sectors
per track, various numbers of surfaces, and various
numbers of cylinders can all be used with the same interface,
it is difficult to say on what cylinder, surface, and
sector any given sector address would lie, or what the
highest sector address is. However, with increasing
sector address, the sector number varies most rapidly,
then the surface, then the cylinder.

On drives which have one or more fixed platters and one
removable platter, the removable platter is considered
to be a different physical drive than, and thus to have
a different sector address space from, the fixed
platter or platters. If there are four drives on a
controller, the fixed platters on them will be
referenced as drives 0, 2, 4, and 6. It is not
necessary that any drive have a removable platter, but
if it does, the removable platter is referenced as
drive n+l, where n is the drive by which the fixed
platter is referenced. It is also not necessary that
multiple drives be of the same configuration; i.e.,
the drives need not be in fixed-removable platter pairs.

The typical installation will have a single drive with
one fixed platter, one removable platter, 12 sectors
per track and 406 tracks, and will be connected as
drive o. This means that drive 0, sector 0 will address
sector 0, surface 0, and cylinder 0 of the fixed
platter. Sector 1 will access sector 1, surface 0,
cylinder o. Sector 12 will access sector 0, surface 1,

- 174 -

cylinder o. Sector 23 will access sector 11, surface 1,
cylinder O. Sector 1000 will access sector 4, surface 1,
and cylinder 41. The highest addressable sector will be
9743.

The same addresses on drive 1 would access sectors in the
same relative position, but on the removable cartridge
instead of the fixed platter.

The requests which the bare disk controller will
handle are as follows:

INITIALIZE (00) -- initializes all controls
and issues a recalibrate request to
each disk. This causes each head to
move to cylinder o.

READ BINARY (OAH) -- transfers data from
the disk starting at the requested
sector until the byte count is
satisfied, then continues to the
end of the sector. The sector
headers are not transferred.

WRITE BINARY (OEH) -- transfers data to the
requested sector. The sector
header of the sector preceding
the selected one is read and
checked for consistency before the
sector is written. The first ten
bytes of the data transfer area are
the backward pointer, the forward
pointer, and the file ID of the
sector. They will be written in
the sector header, not in the -data
area. Because of the necessity to
provide a new set of pointers and
file ID for each subsequent sector,
only one sector can be written at
a time.

- 175 -

READ HEADER (32H) -- The 24 bytes of the
sector header of the requested sector
are transferred back to the user.
These are as follows:

byte 1 flag byte, always 80H
byte 2 cylinder address, low order
byte 3 cylinder address, high order
byte 4 surface
byte 5 sector
byte 6-8 -- backward pointer
byte 9-11 -- forward pointer
byte 12-13 data length, always 200H
byte 14-17 file ID
byte 18-19 header CRC
byte 20-24 zero

WRITE WITHOUT PRECHECK (34H) -- performs
exactly as a write request, but skips
the check of the header of the
preceding sector. This permits
initial formatting of the disk as well
as repair of a damaged format.

- 176 -

7.6 CONTROLLER BOOTSTRAP OPERATION

The bootstrap of the controller occurs after the system is
reset. At reset time a flag is set indicating that the
controller is awaiting bootstrap: any request from the
host system prior to controller bootstrap is answered by
returning with a device not ready (Error C2) completion
code.

All control variables and control ports are initialized.
At this time, if drive 1 is ready, the reading of the
bootstrap starts. If it is not ready, the STATUS PIO is
set up to give an interrupt when drive 1 becomes ready,
and transfer is made up to the wait-for-request loop.
When the interrupt signals that drive 1 has entered the
ready state, the reading of the bootstrap starts.

When reading the bootstrap, interrupts from the SIO are
disabled to prevent any interference with the disk operation.
Any request messages received du~ing this time are ignored,
causing them to be repeated until they are acknowledged.

The first step in reading the bootstrap is tQ read sector 0
of drive 1 (the removable cartridge) into a buffer. (If an
error occurs at any point in reading the bootstrap from
drive 1, the process is repeated on drive 0.) A variable
in block 0, BTPTR, gives a pointer to the descriptor record
of the bootstrap file. If this pointer is null, the
bootstrap fails on drive 1, and bootstrap from drive 0 is
initiated.

This descriptor record is read into the buffer. For each
segment listed in the descriptor record, successive data
records are read into a buffer and transferred to the
correct address in the controller memory. As each data
record is read in, its back pointer is checked against
the address of the previous record. Any failure to compare
causes failure of the bootstrap read on that drive.

When the last segment has been completely read, the flag
is cleared indicating that the bootstrap has completed. The
starting address from the descriptor is placed in a variable
for indirect jumping on receipt of a DFS request.

- 177 -

Should the bootstrap read from drive 1 fail to complete
for any reason (disk error or failure of a required condition),
the entire process will be repeated on drive O. Should it
also fail on drive 0, it will again try drive 1, continuing
to alternate between drives until the condition corrects
itself or the operator turns off the disk.

- 178 -

7.7 SYSTEM BOOTSTRAPPING on the MCZ-l/35

Since the entire file system is available in ROM at bootstrap
time, bootstrapping consists of issuing I/O requests to DFS,
as follows:

1) Initialize
2) Open named file */OS for input, returning all

attributes
3) For each segment, issuing read binary requests

for the data address and data length indicated
in the segment table.

4) Close file

and jumping to the entry point given by the attributes.

- 179 -

RIO

Completion Code

40
41
42
43
44
45
46
47
48
49
4A
4B
4C

ZDOS/DFS

Completion Code

80
81
82
83
84
Cl
C2
C3
C4
C5
C6
C7
C9
CA
CB
CCwww
CD
CE
CF

APPENDIX A

RIO/ZDOS/DFS ERROR CODES

Meaning

Invalid Drive Name
Invalid or Inactive Device
Invalid Unit
Memory Protect Violation
Missing or Invalid Operand(s)
System Error
Illegal File Name
Non-existent Command
Illegal File Type
Program Abort
Insufficient Memory
Missing or Invalid File Properties
I/O Error (IY->Vector)

Meaning

Operation Complete
Directory Format Error
Scratch File Created
File Name Truncated
Attribute List Truncated
Invalid Operation (Request)
Device Is Not Ready
Write Protection
Sector Address Error
Seek Error
Data Transfer Error
File Not Found
End of File Error
Pointer .Check Error
File Not Open

Unit Already Active (Open)
Assign Buffer Full
Invalid Drive Specification
Logical Unit Table Full (>16 Open)

A-I

DO
01
02
03
04

05
06
D7
08

09
DA

Duplicate File
Diskette 10 Error
Invalid Attributes
Disk Is Full
File Not Found in Proper Directory
Record
Beginning of File Error
File Already Open on Other unit
Invalid Rename to Scratch File
File Locked (Attempt to Change
Attr ibutes)
Invalid Open Request
Insufficient Memory for
Allocation Maps

A-2

NAME

ACTIVATE

Allocate

Brief

CAT

Close

COMPARE

COpy

COPY.DISK

COPYSD

DATE

DEACTIVATE

DEAllocate

Debug

DEFINE

DELETE

DISK. FORMAT

APPENDIX B

RIO COMMAND SYNTAX SUMMARY

PARAMETERS REFERENCE

device name [address]

low boundary high_boundary
block size

5.1

5.2

5.3

(match string I T=type I P=props 5.4
D=drive I F=format I
L=listing disposition I DATE rel date
I CDATE reI date)*

ul* 5.5

file 1 file 2 5.6

file 1 file 2 (A I U I 0 I 5.7
RL=record length I T=type)*

[s _ d rive TO d _ d r i v e] [V] 5 • 8

file name 5.9

[yymmdd] 5.10

device name 5.11

block_address block size 5.12

(unit file name I unit
device name I unit * I *)+
[A I 0-1 U I I I NF I NO]

(match string I T=type I
P=props I D=drive I Q=query I
DATE reI date I COATE reI date)*

(S I D=dr ive
Q=query)*

B-1

ID='disk name'

5.13

5.14

5.15

5.16

DISK. REPAIR

DISK. STATUS

DISPLAY

DO

DUMP

ECHO

ERROR

ERRORS

EXTRACT

Force

FORMAT

HELP

IMAGE

Initialize

LADT

MASTER

MOVE

PAUSE

Release

E3-0072-01, Rev. B

DFS drive number level number - -
[011 ••. 617]

command_file [parameter list]

file name [men]]

string

[error_code I *1

file name

command parameter_list

(S I D=drive I ID='disk name'
Q=query)*

(key_wordl*)*

filename (first location
last location)+-[E=entry point]
[RL=record length] [ST=stack size]

[device_name] [parameter list] 1

[dev ice_name]

(match string I T=type I P=props I
F=format I D=destination device I
S=source device I
L=listing disposition I Q=query I
DATE reI date I CDATE reI date) *

B-2

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5 .. 28

5.29

5.30

5.31

5 .. 32

5.33

5.34

5.35

10/31/79

I

RENAME

RESTORE TABS

SAVE TABS

SET

STATUS

Verbose

Xeq

(oldfile newfile I
device:drive ID='new_disk_name')*

file name

file name

(CHRDEL=c I LINDEL=c I NULLCT=n I
SPEED=nn I LFCNT=n I TABSIZE=n I
ECHO ON I ECHO OFF I
AUTOLF ON I AUTOLF OFF I
PROPERTIES OF file name TO plist
TYPE OF file name TO type I
SUBTYPE OF fIle name TO subtype I
ENTRY POINT OF file name TO nn I
LOW ADDRESS OF file-name TO I
HIGH ADDRESS OF file name TO I
STACK SIZE OF file name TO nn I
BYTE COUNT OF file-name TO nn)*

[011 ••• 617]

[* I nn [parameter_list]]

expression

8-3

5.36

5.37

5.38

5.39

5.40

5.41

5.42

5.43

APPENDIX C

RIO SYSTEM CONSTANTS

The following are the current values of RIO symbols.
In some cases, however, address values vary from those
listed below. To be certain you are using the values
appropriate to your system, check the NOTE.TO.USER file
on your system disk.

Symbol MCZ Address ZDS Address

BRKFLG 13CD OFC4
BRKRTN 13CE OFC5
CHRDEL 13CC OFC3
CONIBF 1189 OD8A
CONIVC 1293 OECE
CONOBF 1103 OD04
CONOVC 1288 OEC3
DATE 13AB OFA2
DEBUG OBFA OBFA
DISK OBFD OBFD
ENTRY 17DE 13DE
ERCODE 13BD OFB4
EXTRET 13BE OFB5
FLOPPY OBFD OBFD
INITIALIZATION

COMMAND AREA 18DF 14DF
INPTR 13C4 OFBB
INTERRUPT VECTOR 1300 OFOO
LINDEL 13CB OFC2
MEMMGR 1409 1009
NULLCT 13C8 OFBF
OUTPTR 13C6 OFBD
PRO~~PT 13CA OFCI
peON OBE8 OBEE
SYSFLG 140E lODE
SYSTEM 1403 1003
SYSTEM REENTRY

POINT 1400 1000

C-l

APPENDIX D

CONVERTING FILES TO RIO FORMAT

Files which have been created by MCZ or ZDS 2.1 System
software (hereafter reference is made only to OS 2.1) are
not compatible with RIO format. File conversion can be
effected in two ways: a series of RIO commands can convert
one or more files, or a Zilog utility program can be used
which converts all files on a given diskette. In either
case, the conversion is non-destructive, that is, the
converted file always resides on a second disk, leaving the
OS 2.1 type disk unaffected.

To manually convert one or more files to RIO format, enter
the following command sequence:

%ACTIVATE $ZDOSI
%COPY,

;Activates the as 2.1 ZDOS emulator
;Load, but do not execute, COpy

At this point, the diskette containing the file or files
to be converted is inserted in one drive and the formatted
RIO diskette on which the converted file is to reside is
inserted in another. For this example, drive 2 has the RIO
diskette, and drive 0 has the OS 2.1 type diskette.

%I;I $ZDOSI ;Initialize the disk allocation maps
%XEQ * $ZDOSI:O/TEMP.S 2/TEMP.S

The above two commands may be repeated as necessary. The
INITIALIZE command need be executed only when the diskettes
are changed. The last command causes execution of the last
loaded file, which in this case is COPY. (If a formatted
RIO disk was in drive 0 with the COpy command on it, the
user can alternatively enter 'COPY •• !.) The first
parameter is the source file name; note that it will always
be qualified with '$ZDOSI' indicating that the as 2.1 ZDOS
emulator (ZDOSI) is the device on which the file exists.
The second parameter is the destination file name, which ,
does not have to be the same as the source file name; it may

0-1

or may not be qualified with '$ZOOS' as long as ZOOS is the
master device.

After file conversion and verification of conversion
is concluded, the following command will free the
memory occupied by ZDOSI.

%OEACTIVATE $ZDOSI :Remove ZDOSI from Active Device Table

Alternatively, all files on a diskette may be converted
using the utility program CONVERT. Execution of that
command results in the prompt message,

INSERT DISKS (OLD DISK IN DRIVE 2, FORMATTED RIO DISK
IN DRIVE 0)
TYPE RETURN (OR 'Q' TO TERMINATE)

The as 2.1 diskette is inserted into drive 2 and the RIO
diskette is inserted into drive 0, after which carriage
return (or 'Q' to abort) is entered. The names of the
new RIO files will be the as 2.1 type name concatenated
with the file type as an extension. For example, the 'C'
type file 'ABC' would be named 'ABC.C' on the RIO diskette.
There is no provision to rename files as they are converted.

After all files on the as 2.1 diskette are converted, the
prompt message is repeated, at which time diskettes may
be changed.

D-2

APPENDIX E

ALTERING DEFAULT RIO

The file OS contains the resident RIO programs plus the
default system console driver. Altering the file consists
of GETting OS from the 3K Monitor, making the desired
modifications and SAVing it. The examples will use MCZ
addresses; for ZDS addresses, refer to Appendix C.

Example 1: MODIFY SYSTEM FLAG TO INHIBIT EXTERNAL
INITIALIZATION

%SET PROPERTIES OF O/OS TO * ;remove write protection

%D
>GET O/OS
>D l40E
l40E 04 0 Q

from file OS
;enter 3K Monitor Debugger
;load file OS from drive 0
;display and modify SYSFLG
;turn off EXTERNAL

INITIALIZATION FLAG
>SAV O/OS 1400 2BFF E=17DE RL=400

;save new OS
>OS ;bootstrap new OS
RIO
%SET PROPERTIES OF O/OS to SW ;restore protection to file OS

Example 2: MODIFY SYSTEM EXTERNAL INITIALIZATION COMMAND AREA
TO EXECUTE THE COMMAND 'BASIC' (ONLY) ON EXTERNAL
INITIALIZATION

%SET PROPERTIES OF O/OS TO *
%D
>GET O/OS
>D 140E

l40E 00 4 Q
>D l8DF

l8DF
l8EO
l8El
l8E2
l8E3

44 42
4F 41
20 53
30 49
2F 43

E-l

;remove write protection
;enter 3K Monitor Debugger
;load file OS from drive 0
;turn on external initialization
flag

;display and open initialization
message area

;Change to 'B'
; lA'
; 'S I

; I I I

; 'C'

l8E4 4F OD Q ;carriage return and quit
>SAV O/OS 1400 2BFF E=17DE RL=400

>OS

E-2

;save new as
;bootstrapping at this point
will result in execution
of the file BASIC

APPENDIX F

I/O REQUEST VECTOR FORMAT

and

I/O REQUEST CODES

I/O Request Vector Format

Byte

o
1

2-3
4-5
6-7
8-9

A
B-C

Contents

Logical Unit Number
Request Code
Data Transfer Address
Data Length
Completion Address
Error Return Address
Completion Code
Supplemental Parameter
Vector Address

ZDOS/DFS Supplemental Parameter Vector

o

1
2
3

I/O Request Codes

o
2
4
6
8
A

Flag Byte (ASSIGN),
Open Type (OPEN)
Drive Designation
File Name Length
File Name

Initialize
Assign
Open
Close
Rewind
Read Binary

F-l

C
E

10
12
14
16
18
lA
lC
IE
20
22
24
26
28
2A
2C
2E
30
40
42
44

Read Line
write Binary
write Line
write Current
write Direct
Delete
Delete Remaining
Erase File
Read and Delete
Read Current
Read Previous
Read Direct
Skip Forward
Skip Backward
Skip to End
Rename

Update
Set Attributes
Query Attributes
Read Status
Write Status
Deactivate

F-2

APPENDIX G

PROGRAM EXAMPLES

Following are sample programs which the user is encouraged
to edit, assemble, link, and execute. They illustrate
some of the concepts introduced in previous sections,
including console I/O, parameter string processing, and
file I/O.

In each case the following commands may be used to edit,
assemble, and link the example program:

%EDIT filename.S
EDIT 1.6
NEW FILE
INPUT

>QUIT
%ASM filename (X)
ASM 5.7
PASS 1 COMPLETE
o ASSEMBLY ERRORS
ASSEMBLY COMPLETE
%LINK $=4400 PRINT
LINK 1.5
LINK COMPLETE
%

iinvoke the editor
ithe file does not already
iexist, so it is created
ieditor automatically enters
iinput mode

iassemble (w/cross reference option)

iand link

All system addresses are given for MCZ. Refer to
Appendix C for ZDS equivalents.

G-l

EXAMPLEl.MCZ
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

1 EXAMPLE 1 -- MAKE A SYSTEM CALL TO PRINT A MESSAGE
2
3
4

0000 FD210800 R 5 LD IY,AVEC IY -) I/O VECTOR
0004 CD0314 6 CALL SYSTEM
0007 C9 7 RET

8
9

10 AVEC:
0008 02 11 AVLUN: DEFB CONOUT LOGICAL UNIT NUMBER
0009 10 12 AVREQ: DEFB WRTLIN REQUEST CODE
OOOA 1300 R 13 AVDTA: DEFW MSG DATA TRANSFER

14 ADDRESS
OOOC 2400 15 AVDL: DEFW LMSG BYTE COUNT
OOOE 0000 16 AVCRA: DEFW 0 COMPLETION RETURN

17 ADDRESS
0010 0000 18 AVERA: DEFW 0 ERROR RETURN ADDRESS
0012 00 19 AVCC: DEFB 0 COMPLETION CODE

20
21 : EQUATES AND CONSTANTS
22
23 SYSTEM: EQU 1403H SYSTEM ENTRY POINT
24 CONOUT: EQU 2 CONSOLE OUTPUT UNIT
25 WRTLIN: EQU 10H WRITE LINE REQUEST
26 CODE
27

0013 454E4F52 28 MSG: DEFM 'ENORMOUS CHANGES AT THE LAST MINUTE'
0036 00 29 DEFB DOH

30 LMSG: EQU $-MSG
31
32 END

CROSS REFERENCE EXAMPLEl.MCZ
SYMBOL VAL M DEFN REFS

AVCC 0012 R 19
AVCRA OOOE R 16
AVDL OOOC R 15
AVDTA OOOA R 13
AVEC 0008 R 10 5
AVERA 0010 R 18

G-2

SYMBOL VAL M DEFN REFS

AVLUN 0008 R 11
AVREQ 0009 R 12
CONOUT 0002 24 11
LMSG 0024 30 15
MSG 0013 R 28 13 30
SYSTEM 1403 23 6
WRTLIN 0010 25 12

G-3

EXAMPLE2.MCZ
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

1 ; EXAMPLE 2 --- MAKE A SYSTEM CALL TO COPY THE PARAMETER
2 STRING TO CONOUT
3
4

0000 2AC413 5 LD HL, (INPTR) ;ADDRESS OF THE
6 ;PARAMETER LIST

0003 113700 R 7 LD DE,BUFFER ; MOVE PARArlfETER LIST
8 ;INTO BUFFER

0006 010000 9 LD BC,O ;KEEP A CHARACTER COUNT
0009 7E 10 SCAN: LD A, (HL) ;NEXT CHARACTER IN

11 ;PARAMETER STRING
OOOA FE3B 12 CP I • I ;TEST FOR END ,
OOOC 2808 13 JR Z,ADDCHR
OOOE FEOD 14 CP ODH
0010 2804 15 JR Z,ADDCHR
0012 EDAO 16 LDI ;MOVE CHARACTER AND INC

17 ;POINTERS
0014 18F3 18 JR SCAN

19
0016 EB 20 ADDCHR: EX DE,HL
0017 360D 21 LD (HL) ,ODH ;COULD HAVE BEEN A I • I ,
0019 OB 22 DEC BC

23
OOIA 79 24 LD A,e ;GET STRING LENGTH
001B 2F 25 CPL
OOIC 4F 26 LD C,A
001D 2F 27 CPL
001E 47 28 LD B,A
001F 03 29 INC BC

30
0020 ED433000 R 31 LD (AVDL) ,BC ;DATA LENGTH

32
0024 FD2l2COO R 33 LD IY,AVEC
0028 CD0314 34 CALL SYSTEM ;MAKE THE SYSTEM CALL

35 iTO WRITE IT
002B C9 36 RET

37
38
39 AVEC:

002C 02 40 AVLUN: DEFB CONOUT ;CONSOLE OUTPUT
002D 10 41 AVREQ: DEFB WRTLIN ;WRITE LINE
002E 3700 R 42 AVDTA: DEFW BUFFER ;DATA TRANSFER ADDRESS
0030 0000 43 AVDL: DEFW 0 ;DATA LENGTH
0032 0000 44 AVCRA: DEFW 0 ;COMPLETION RETURN

G-4

LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

45 :ADDRESS
0034 0000 46 AVERA: DEFW 0 :ERROR RETURN ADDRESS
0036 00 47 AVCC: DEFB 0 :COMPLETION CODE

48
49
50 SYSTEM: EQU 1403H :SYSTEM ENTRY POINT
51 CONOUT: EQU 2 :CONSOLE OUTPUT UNIT
52 WRTLIN: EQU 10H iWRITE LINE REQUEST
53 :CODE
54 INPTR: EQU 13C4H :PARAMETER LIST POINTER
55

0037 56 BUFFER: DEFS 80
57 END

CROSS REFERENCE EXAMPLE2.MCZ
SYMBOL VAL M DEFN REFS

ADDCHR 0016 R 20 13 15
AVCC 0036 R 47
AVCRA 0032 R 44
AVDL 0030 R 43 31
AVDTA 002E R 42
AVEC 002C R 39 33
AVERA 0034 R 46
AVLUN 002C R 40
AVREQ 002D R 41
BUFFER 0037 R 56 7 42
CONOUT 0002 51 40
INPTR 13C4 54 5
SCAN 0009 R 10 18
SYSTEM 1403 50 34
WRTLIN 0010 52 41

G-5

EXAMPLE3.MCZ
LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

1 iPROGRAM 3 -- PRINT -- COpy AN ASCII FILE TO SYSLST
2
3
4
5
6
7 jMAKE A SYSTEM CALL-TO FORMAT SUPPLEMENTAL PARAMETEF
8 iVECTOR
9

0000 3E02 10 LD A,ASSIGN iASSIGN REQUEST
0002 325001 R 11 LD (AVREQ) ,A
0005 3E04 12 LD A,4 iON UNIT 4
0007 324F01 R 13 LD (AVLUN) ,A
OOOA AF 14 XOR A
OOOB 325C01 R 15 LD (SPVFB) ,A
OOOE 2AC413 16 LD HL, (INPTR) jPARAMETER STRING

17 jADDRESS
0011 225101 R 18 LD (AVDTA) ,HL
0014 215C01 R 19 LD HL,SPV j-) SUPPLEMENTAL

20 jPARAMETER VECTOR
0017 225A01 R 21 LD (AVSVP) ,HL
001A 210000 22 LD HL,O jCLEAR ERROR RETURN

23 jADDRESS
0010 225701 R 24 LD (AVERA) ,HL jFOR NORMAL ERROR

25 iRETURN
0020 FD214F01 R 26 LD IY,AVEC
0024 CD0314 27 CALL SYSTEM
0027 3A5901 R 28 LD A, (AVCC) iCOMPLETION CODE
002A CB77 29 BIT 6,A iERROR
002C C2D700 R 30 JP NZ,ERROR

31
32
33 iOPEN THE FILE AND TEST FILE TYPE
34
35

002F 3E04 36 LD A,OPEN iOPEN REQUEST
0031 325001 R 37 LD (AVREQ) ,A
0034 3EOO 38 LD A,OPNINP iFOR INPUT
0036 325C01 R 39 LD (SPVOR) ,A
0039 3EFF 40 LD A,-l iUNIT PREVIOUSLY

41 iASSIGNED
003B 325E01 R 42 LD (SPVFNL) ,A
003E 217F01 R 43 LD HL,ASVFT iREQUEST SOME OF THE

44 iDESCRIPTOR RECORD

G-6

LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5.1

0041 225101 R 45 LD (AVDTA) ,HL
0044 210100 46 LD HL,LASV
0047 225301 R 47 LD (AVDL) ,HL
004A CD0314 48 CALL SYSTEM
004D 3A5901 R 49 LD A, (AVCC) :COMPLETION CODE
0050 CB77 50 BIT 6,A : ERRORS?
0052 C2D700 R 51 JP NZ ,ERROR

52
53
54 :FILE IS OPEN TEST FILE TYPE, COpy TO SYSLST
55
56

0055 3A7F01 R 57 LD A, (ASVFT) :FILE TYPE
0058 E6FO 58 AND OFOH iSTRIP SUBTYPE
005A FE20 59 CP ASCII iBETTER BE ASCII
005C 2808 60 JR Z,PRT100
005E 3E48 61 LD A,ILLFT iOR ILLEGAL FILE TYPE
0060 32BD13 62 LD (ERCODE) ,A
0063 C3F900 R 63 JP CLOSEF

64
65
66 iFILE IS OF TYPE ASCII
67
68
69 PRT100:

0066 3EOO 70 LD A,O iALLOCATE
0068 210000 71 LD HL,O
006B 11FFFF 72 LD DE,-l iLOCATE LONGEST BUFFER
006E 01FFFF 73 LD BC,-l
0071 CD0914 74 CALL MEMMGR
0074 OEOO 75 LD C,O
0076 78 76 LD A,B
0077 E6FO 77 AND OFOH iSEE IF AVAILABLE

78 iSPACE)= 1000H
0079 2009 79 JR NZ,GETIT :IF SO, ALLOCATE

80 iIT
007B CDF900 R 81 CALL CLOSEF
007E 3E4A 82 LD A,INSMEM iOTHERWISE, OUTPUT

83 :INSUFF. MEM. ERROR,
84 :CLOSE FILE AND
85 iRETURN

0080 32BD13 86 LD (ERCODE) ,A
0083 C9 87 RET
0084 47 88 GETIT: LD B,A
0085 AF 89 XOR A
0086 CD0914 90 CALL MEMMGR
0089 224B01 R 91 LD (BUFFER) ,HL iSAVE BEGINNING

G-7

LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

92 :ADDRESS
008C ED434DOI R 93 LD (BUFSIZ),BC :SAVE SIZE OF BUFFER

94
0090 225101 R 95 LD (AVDTA) ,HL :INITIALIZE DATA

96 :TRANSFER ADDRESS
0093 ED435301 R 97 LD (AVDL) ,BC :LOAD BUFFER SIZE

98
99

100 : READ NEXT BUFFER LOAD
101
102

0097 3EOA 103 READ: LD A,RDBIN iREAD BINARY
0099 325001 R ·104 LD (AVREQ) ,A
009C 3E04 105 LD A,4 :FROM UNIT 4
009E 324FOI R 106 LD (AVLUN),A
00A1 FD214FOI R 107 LD IY,AVEC
00A5 CD0314 108 CALL SYSTEM
00A8 3A5901 R 109 LD A, (AVCC) :READ ERROR?
OOAB CB77 110 BIT 6,A
OOAD 280B III JR Z,WRITE
OOAF FEC9 112 CP EOF iYES, HAS IT AN END

113 :OF FILE?
OOBI 2024 114 JR NZ ,ERROR
00B3 2A5301 R 115 LD HL, (AVDL)
00B6 7C 116 LD A,H :YES, ANY DATA

117 :TRANSFERRED?
00B7 B5 118 OR L
00B8 283F 119 JR Z,CLOSEF :IF NOT, CLOSE FILE

120
121
122 :WRITE A BUFFER LOAD TO SYSLST
123
124

OOBA 3EOE 125 WRITE: LD A,WRTBIN :WRITE BINARY
OOBC 325001 R 126 LD (AVREQ) ,A
OOBF 3E03 127 LD A,SYSLST iON SYSLST
OOCI 324F01 R 128 LD (AVLUN) ,A
00C4 3A5901 R 129 LD A, (AVCC) : SAVE COMPLETION CODE
00C7 F5 130 PUSH AF

131
132 iDATA TRANSFER ADDRESS
133 :AND DATA LENGTH WERE
134 :SET BY THE READ
135 iOPERATION
136

00C8 CD0314 137 CALL SYSTEM
138

G-8

LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

OOCB F1 139 POP AF ;RESTORE READ
140 ;COMPLETION CODE

OOCC FEC9 141 CP EOF ;DID LAST READ REQUEST
142 ;REACH END OF FILE?

OOCE 2829 143 JR Z,CLOSEF
144
145

OODO 3A5901 R 146 LD A, (AVCC) ;HAS WRITTEN
147 ; SUCCESSFULLY?

00D3 CB77 148 BIT 6,A
00D5 28CO 149 JR Z ,READ

150
151
152 ;AN ERROR HAS OCCURRED, PRINT
153 ;MESSAGE, CLOSE FILE, AND RETURN
154
155

00D7 3EOE 156 ERROR: LD A,WRTBIN ;WRITE BINARY
00D9 325001 R 157 LD (AVREQ) ,A
OODC 3E02 158 LD A,CONOUT ;TO CONSOLE OUTPUT UNIT
OODE 324F01 R 159 LD (AVLUN) ,A
00E1 214801 R 160 LD HL,EMSGN ; CONVERT ERROR CODE TO

161 ;ASCII
00E4 3A5901 R 162 LD A, (AVCC)
00E7 CD2401 R 163 CALL BTOHEX

164
OOEA 213E01 R 165 LD HL,EMSG ;PRINT MESSAGE
OOED 225101 R 166 LD (AVDTA) ,HL
OOFO 210DOO 167 LD HL,LEMSG
00F3 225301 R 168 LD (AVDL) ,HL
00F6 CD0314 169 CALL SYSTEM

170
171

OOF9 3E06 172 CLOSEF: LD A,CLOSE :CLOSE FILE
OOFB 325001 R 173 LD (AVREQ) ,A
OOFE 3E04 174 LD A,4 ;ON UNIT FOUR
0100 324F01 R 175 LD (AVLUN) ,A
0103 210000 176 LD HL,O
0106 225101 R 177 LD (AVDTA) ,HL ;DON'T UPDATE

178 ;DESCRIPTOR RECORD
0109 225301 R 179 LD (AVDL),HL
010C 225A01 R 180 LD (AVSVP) ,HL
010F CD0314 181 CALL SYSTEM

182
183 iDEALLOCATE THE
184 ;ALLOCATED SPACE
185

G-9

LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

0112 2A4B01 R 186 LD HL, (BUFFER)
0115 7C 187 LD A,H iWAS BUFFER ALLOCATED?
0116 B4 188 OR H
0117 3E01 189 LD A,l iDEALLOCATE
0119 ED4B4D01 R 190 LD BC, (BUFSIZ)
011D C40914 191 CALL NZ,MEMMGR
0120 32BD13 192 LD (ERCODE) ,A

193
0123 C9 194 RET

195
196
197 iB T 0 HEX --- CONVERT 8 BITS OF REG A TO HEX ASCII,
198 STORE AT (HL)
199

0124 F5 200 BTOHEX: PUSH AF iSAVE A
0125 IF 201 RRA
0126 IF 202 RRA
0127 IF 203 RRA
0128 IF 204 RRA
0129 CD3201 R 205 CALL HBTHEX iCONVERT HIGH ORDER

206 i4 BITS
012C F1 207 POP AF ;RESTORE A
012D 23 208 INC HL
012E CD3201 R 209 CALL HBTHEX iCONVERT LOW ORDER 4

210 :BITS
0131 C9 211 RET

212
213
214 iH B T HEX --- CONVERT 4-BIT BINARY LOW ORDER 4 BITS
215 OF REG A TO HEX ASCII CHARACTER AT (HL)
216

0132 E60F 217 HBTHEX: AND OFH iMASK OFF LOW ORDER 4
218 iBITS

0134 FEOA 219 CP 10 iDECIMAL CHARACTER?
0136 3802 220 JR C,HB10
0138 C607 221 ADD A,7 iNO
013A C630 222 HB10: ADD A,30H
013C 77 223 LD (HL) ,A
013D C9 224 RET

225
226
227 CONOUT: EQU 2 iCONSOLE OUTPUT UNIT
228 SYSLST: EQU 3 iSYSTEM VOLUME OUTPUT
229 iUNIT
230
231
232 iI/O REQUEST CODES

G-IO

LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

233
234 RDBIN: EQU OAH iREAD BINARY
235 WRTBIN: EQU OEH iWRITE BINARY
236 WRTLIN: EQU lOB iWRITE LINE
237 ASSIGN: EQU 2 :ASSIGN
238 OPEN: EQU 4 iOPEN
239 CLOSE: EQU 6 ;CLOSE
240
241 OPNINP: EQU 0 ;OPEN TYPE: OPEN FOR
242 ; INPUT
243 EOF: EQU OC9H :EOF ERROR CODE
244 ILLFT: EQU 48H ;RIO ERROR CODE -
245 ;ILLEGAL FILE TYPE
246 INSMEM: EQU 4AH ;RIO ERROR CODE -
247 iINSUFFICIENT MEMORY
248 ASCII: EQU 20H ;ASCII FILE TYPE
249
250
251 iRIO ADDRESSES
252
253 INPTR: EQU 13C4H :PARAMETER STRING
254 iPOINTER
255 ERCODE: EQU 13BDH ;ERROR CODE LOCATION
256 SYSTEM: EQU 1403H :SYSTEM CALL ADDRESS
257 MEMMGR: EQU 1409H ;MEMORY MANAGER ADDRESS
258

013E 492F4F20 259 EMSG: DEFM I I/O ERROR I

0148 260 EMSGN: DEFS 2
014A OD 261 DEFB ODH :ADD A CARRIAGE RETURN

262 LEMSG: EQU $-EMSG
263

0148 0000 264 BUFFER: DEFW 0 ;READ/WRITE BUFFER
0140 265 BUFSIZ: DEFS 2

266
267 AVEC:

014F 268 AVLUN: DEFS 1 ;LOGICAL UNIT NUMBER
0150 269 AVREQ: DEFS 1 ;REQUEST CODE
0151 270 AVDTA: DEFS 2 ;DATA TRANSFER ADDRESS
0153 271 AVDL: DEFS 2 ;DATA LENGTH
0155 272 AVCRA: DEFS 2 :COMPLETION RETURN

273 :ADDRESS
0157 274 AVERA: DEFS 2 ;ERROR RETURN ADDRESS
0159 275 AVCC: DEFS 1 ; COMPLETION ,CIODE
015A 276 AVSVP: DEFS 2 :SUPPLEMENTAL PARAMETER

277 iVECTOR POINTER
278
279 SPV: :THE SUPPLEMENTAL

G-ll

LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

280 iPARAMETER VECTOR
281 SPVOR: iOPEN REQUEST TYPE

015C 282 SPVFB: DEFS 1 iASSIGN REQUEST FLAG
283 iBYTE

015D 284 SPVDRV: DEFS 1 iDRIVE DESIGNATION
015E 285 SPVFNL: DEFS 1 iFILE NAME LENGTH
015F 286 SPVFN: DEFS 32 iFILE NAME

287
288
289 iAREA IN WHICH TO MOVE THE DESCRIPTOR RECORD ON THE
290 iFILE OPEN
291

017F 2~ ASVFT: DEFS 1
293 LASV: EQU $-ASVFT
294
295 END

CROSS REFERENCE EXAMPLE3.MCZ
SYMBOL VAL M DEFN REFS

ASCII 0020 248 59
ASSIGN 0002 237 10
ASVFT 017F R 292 43 57 293
AVCC 0159 R 275 28 49 109 129 146 162
AVCRA 0155 R 272
AVDL 0153 R 271 47 97 115 168 179
AVDTA 0151 R 270 18 45 95 166 177
AVEC 014F R 267 26 107
AVERA 0157 R 274 24
AVLUN 014F R 268 13 106 128 159 175
AVREQ 0150 R 269 11 37 104 126 157 173
AVSVP 015A R 276 21 180
BTOHEX 0124 R 200 163
BUFFER 014B R 264 91 186
BUFSIZ 014D R 265 93 190
CLOSE 0006 239 172
CLOSEF 00F9 R 172 63 81 119 143
CONOUT 0002 227 158
EMSG 013E R 259 165 262
EMSGN 0148 R 260 160
EOF 00C9 243 112 141
ERCODE 13BD 255 62 86 192
ERROR 00D7 R 156 30 51 114
GETIT 0084 R 88 79
HBI0 013A R 222 220

G-12

SYMBOL VAL M OEFN REFS

HBTHEX 0132 R 217 205 209
ILLFT 0048 244 61
INPTR 13C4 253 16
INSMEM 004A 246 82
LASV 0001 293 46
LEMSG 0000 262 167
MEMMGR 1409 257 74 90 191
OPEN 0004 238 36
OPNINP 0000 241 38
PRT100 0066 R 69 60
ROBIN OOOA 234 103
REAO 0097 R 103 149
SPV 015C R 279 19
SPVORV 0150 R 284
SPVFB 015C R 282 15
SPVFN 015F R 286
SPVFNL 015E R 285 42
SPVOR 015C R 281 39
SYSLST 0003 228 127
SYSTEM 1403 256 27 48 108 137 169 181
WRITE OOBA R 125 III
WRTBIN OOOE 235 125 156
WRTLIN 0010 236

G-13

APPENDIX H

INTERNAL COMMAND TABLE CONTENTS

Debug
Initialize
Brief
Verbose
Xeq
Allocate
DEAllocate
Release
Force
Close
: (expression evaluation)

H-l

APPENDIX I

RIO MEMORY MANAGER

This appendix describes register contents before and after
a MEMMGR call. Appendix C has the MCZ and ZDS addresses
of MEMMGR. Example 3 of Appendix G includes calls to
MEMMGR to allocate and deallocate buffer space.

ALLOCATE

MEMMGR CALL:
(allocate)

Before
A=O

HL = lower address
DE = upper address
BC = required size

After MEMMGR CALL:

boundary
boundary
(bytes)

A=80 (operation complete)
HL = beginning address of hole
DE = ending address of hole
BC = size of hole (bytes)

A=4A (insufficient memory)
HL = beginning of largest hole within boundaries
BC = size of largest hole within boundaries (bytes)

(if BC=O, then HL=undefined)

DEALLOCATE

Before MEMMGR CALL:
A=l (deallocate)

HL = beginning address of hole
BC = hole size (bytes)

After MEMMGR CALL:
A=80 (operation complete)
A=43 (not all blocks in area were allocated)

I-I

Byte #

o •• 3

4 •• 5

6 •• 7

8 •• 9

10 •• 11

12

13 •• 14

15 .. 16

17 •• 18

19

20 •• 21

22 •• 23

24 •• 31

32 •• 39

APPENDIX J

DESCRIPTOR RECORD OF PROCEDURE TYPE FILE

Reserved for future expansion

File ID - currently unused

Pointer to directory sector
holding entry for this file

Pointer to first data record of file

Pointer to last data record of file

Type of file - see description under
the OPEN request

Record count

Record length

Block length - currently unused,
and set to be same as record length

Protection properties - see
description in OPEN request

Starting execution address for
procedure files

Number of bytes in the last record
of the file

Date of creation

Date last written

J-l

40 •• 40+4*n

122 .. 123

124 •• 125

126 •• 127

Where n is the number of segment
descriptors (0 <= n <= 16)
Each segment descriptor is 4 bytes-
the first 2 bytes are the starting
address of the segment and the
second 2 bytes are the length of
the segment in bytes. After the
the last segment descriptor is a
null descriptor where each of the
4 bytes are zero.

Lowest segment starting address
(LOW_~DDRESS)

Highest segment ending address
rounded up to the end of the record
(HIGH_ADDRESS)

Stack size

J-2

APPENDIX K

ZDOS/DFS COMMAND SUMMARY

Name

ASSIGN
CLOSE
DELETE
DELETE REMAINING RECORDS
ERASE
INITIALIZE
OPEN
QUERY ATTRIBUTES
READ AND DELETE
READ BINARY
READ CURRENT
READ DIRECT
READ PREVIOUS
RENAME
REWIND
SET ATTRIBUTES
SKIP BACKWARD
SKIP FORWARD
SKIP TO END
UPDATE
\vRITE BINARY
WRITE CURRENT

Request Code

K-l

02,03
06,07w
16,17
18,19
lA,lB
00,01
04,05
30,31
1C,lD
OA,OB
1E,lF
22,23
20,21
2A,2B
08,09
2E,2F
26,27
24,25
28,29
2C,2D
OE, OF
12,13

Ref

6.2
6.4

6.9
6.10
6.11
6.1
6.3
6.22
6.12
6.6
6.13
6.15
6.14
6.19
6.5
6.21
6.17
6.16
6.18
6.20
6.7
6.8

APPENDIX L

RELINKING RIO COMMANDS

Most RIO commands are linked to execute at the lowest
available memory. Those which may be expected to be
loaded concurrently under some circumstances (i.e.,
when executed from DO) are linked elsewhere. The object
files for these commands (listed below) are provided on
the system disk in order that they may be relinked to
execute elsewhere to fit the user's needs.

DO
ECHO
PAUSE
IMAGE

The command files RELINK.MCZ.COMMAND and RELINK.ZDS.COMMAND
are on the MCZ and ZDS system disks, respectively. These
command files use the specified object file and link
the command at the specified address using system object
files on the system disk.

A command may be linked as follows:

or

where

DO RELINK.MCZ.COMMAND #1 #2 #3 #4 #5 #6 #7

DO RELINK.ZDS.COMMAND #1 #2 #3 #4 #5 #6 #7

#1 is the name of the command to be linked

#2 is the address the command is to be linked at

#3,#4,#5,#6,#7 are the optional link parameters
(see RIO Relocating Assembler and Linker User's
Manual for more details).

L-l

EXAMPLES

DO RELINK.MCZ.COMMAND DO OCOOO

DO RELINK.ZDS.COMMAND IMAGE OFOOO RL=400

L-2

~
Zilog

READER COMMENTS

Your comments concerning this publication are important to us.
Please take the time to complete this questionnaire and return it to
Zilog.

Title of Publication: ___________________________ _

Document Number: ___________________________ _

Your Hardware Model and Memory Size: ___________________ _

Describe your likes/dislikes concerning this document:

Technical Information: ---

Supporting Diagrams:

Ease of Use: __ _

Your Name: _______________________________ _

Company and Address: _________________________ _

Your Position/Department: ________________________ _

CF-1031-02

IIIIII
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 475, CUPERTINO, CA.

POSTAGE WILL BE PAID BY ADDRESSEE

Zilog
Manager, Systems Publications

10460 Bubb Road
Cupertino, California 95014

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

... ~

~
Zilog

CF-1017-01 A

DOCUMENT CHANGE NOTICE

DATE: 10-31-79

DCN NUMBER: E3-0072-01, Rev. B

PUBLICATION NUMBER: 03-0072-01

TITLE: Z80 RIO Operating System User Manual

PREVIOUS DCNs BY NUMBER: 'E3-0072-01, Rev. A

EFFECTIVE DATE: 10-31-79

This document change notice provides changed pages for
the publication specified above. These changed pages
will remain in effect for subsequent releases unless
specifically amended by another DCN or superseded by a
publication revision. Replace the following pages in
your manual with the enclosed pages:

31
47
85
99

105
107
A-I
B-1

Changes are indicated-by a vertical line in the
right-hand margin.

NOTE: Please file this DeN at the back of the
manual to provide a record of changes.

DOCUMENT CHANGE:N:O~,

Zilog

DATE: 02-13-79

DeN NUMBER:E3-09J~,Ol, Rev. A,

,'pIJ8LICA'l'I-Ot~ NtJHB6Rjf~ QJ:r'H~72~,Ql~,. RaV,., A-

TITLE: ZaO-RIO Operating System Users Manual

PREVIOUS DeN's.> BY NUMBER: None
• ~ .. • •• It ..

E,FFECTIVE DATE:: 02-1;13,,-79.

This Document Change No,ti'ce P·J:,.ovides chan9·e-~ pages for the,
publication specified above.. T,taese ch,ange pages will rema.in,.
;~tt,effect for subseq'uent" rel~-C1A~es \lnless sp~cifi;~ally .
amended ~y another DeN:; 0·[, supers~.~e,d by a put>.lJp·ation,
~~visioq~" The following. page,~: ~J,:e;, to be,: t'r'e~at:~d as
oeser ibed·:;, ' ,

Re,place P-ages 55-.6,.0
Replace Pages 67'-14~
Insert Pages 9SA a:nd,98J.t after Page 98,

f;hanges to tex,t" ar:;e:, !.,:~~sa ted by' a vext i:ca.l<; l~i:ne~ i~ t!Fb,e'·
. ~J9ht> margin" OPP9s~~te:: t'fi~, changed 1::.\~,~t pOf"th)q~ .' .. ' ,.

NOTE: Please file; thi'~ DCN~: at the back oJa. t?ne,~n,Qa1.·, to
prov i.de a r:~:;9·r.d: 0;£ c~'.a.,nges. '

CF·1017·01A

;

!

Zilog, Inc . 10460 Bubb Road, Cupertino, California 95014 Telephone (408)446-4666 TWX 910-338-7621

Printed in USA

