SOFTWARE REFERENCE
MANUAL

OPERATING
SYSTEM

Model HT11

for the
H11 Digital Computer System

Portions of this material have been adapted from Digital Equipment Corporation
publications or documents. Heath Company assumes responsibility for the accu-
racy and content of this material.

Copyright © 1978 HEATH COMPANY . 595-2222-10(1:
A Rty o BENTON HARBOR, MICHIGAN 49022 Prittod In the Lnted

States of America

PREFACE

CHAPTER

CHAPTER

CHAPTER

2

2.1

2.2
2.2.1
2.2.2
2.2.3
224
2.2.5
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4

2.5
2.6
2.6.1
2.7
2.7.1
2.7.1.1
2.7.1.2
2.7.1.3
2.7.1.4
2.7.1.5
2.7.1.6
2.7.1.7
2.7.1.8
2.7.2
2.7.2.1
2.7.2.2
2.72.3
2.7.2.4
2.7.2.5
2.7.3
2.7.3.1
2.7.3.2
2.7.3.3
2734
2.8
2.8.1

3

CONTENTS

Page
... xiii
HT-11 OVERVIEW . . . i i e e e e e e e e 1-1
PROGRAM DEVELOPMENT iiiin 1-2
SYSTEM SOFTWARE COMPONENTS @ . 1-2
SYSTEM COMMUNICATION ittt it e et e e e 2-1
START PROCEDURE i et e e 2-1
SYSTEM CONVENTIONS i i et e e e e e e 2-1
Data Formats i e 2-1
Prompting Charactersttt 2-2
Physical Device Names 2-2
File Names and Extensionst nnnnn. 2-3
Device Structurest ii eee 2-4
MONITOR SOFTWARE COMPONENTS. 2-4
Resident Monitor (RMON) it 2-4
Keyboard Monitor (KMON) 2-4
User Service Routine (USR) i 2-5
Device Handlersttt it iieen 2-5
GENERAL MEMORY LAYOUT i i iieee 2-5
ENTERING COMMAND INFORMATION 2-5
KEYBOARD COMMUNICATION (KMON) i 2-6
Type-Ahead 2-7
KEYBOARD COMMANDS e e e et e e e e 2-8
Commands to Allocate System Resources 2-8
DATE Commandttt ettt it et et e 2-8
TIME Commandttt ettt eeee e 2-8
INITIALIZE Commandttt ittt ittt 2-9
ASSIGN Commandt it e e e e 29
CLOSE Commandc¢ciiiiiirianinnnnnanea.. 210
LOAD Commandt ittt it it it et e e e e e 2-11
UNLOAD Commandttt it e et e e 2-11
SET Command 00ttt i 2-11
Commands to Manipulate Memory Images 2-12
GET Command ittt ettt e 2-12
Base Command e e e e 2-14
Examine Command,t e 2-15
Deposit Commandt e 2-15
SAVE Commandttt et e e 2-16
Commands to Start a Program e 2-17
RUN Command ittt e, 2-17
RCommand it i e e 2-18
START Commandttt 2-18
REENTER Commandttt 2-19
MONITOR ERROR MESSAGES i 2-19
Monitor HALTS e e e 2-22
TEXT EDITOR i e et et e et e e eieen 31

iii

CHAPTER

3.1
3.2

3.3

34
3.4.1
3.4.2
343
3.4.4
34.5
3.5

3.6
3.6.1
3.6.1.1
3.6.1.2
3.6.1.3
3.6.14
3.6.1.5
3.6.1.6
3.6.1.7
3.6.1.8
3.6.1.9
3.6.1.10
3.6.2
3.6.2.1
3.6.2.2
3.6.2.3
3.6.3
3.6.3.1
3.6.3.2
3.6.3.3
3.6.4
3.6.4.1
3.6.4.2
3.6.4.3
3.6.4.4
3.6.4.5
3.6.5
3.6.5.1
3.6.5.2
3.6.5.3
3.6.54
3.6.5.5
3.6.5.6
3.7

3.8

4
4.1
4.1.1

CONTENTS (Cont.)

Page
CALLING AND USING EDIT it e e e e 3-1
MODES OF OPERATION i e et et e e 3-1
SPECIAL KEY COMMANDS i et e it e e 32
COMMAND STRUCTURE i e i e e 33
ATGUMENTS . . o ot ittt e e e e e e 34
Command Strings e e 34
The Current Location Pointer oL, 3-5
Character- and Line-Oriented Command Properties 3-5
Command Repetition i 3-6
MEMORY USAGE e e e e e e 3-8
EDITING COMMANDS i e e e i 39
Input/Output Commands0ttt uneeenneennns 39
Edit Read i e i i 39
Edit Write e e e e e e 39
Edit Backupottt e e e 3-10
Read e e e 3-10
R 5 N 3-11
NeXt &ttt e e e e e e e e e e e 3-11
51 3-12
Verify L e e e e e 3-12
End File e e 3-13
ExXit o e e e e e e 3-13
Pointer Relocation Commandsc.cutitiueeeno... 3-13
Beginning e 3-13
Jump L e e e e e e 3-14
Advance e, 3014
Search Commandsc.. ittt 3-15
LT 3-15
Find e e 3-16
Position e e 3-16
Text Modification Commands 0ttt 3-17
Insert e e e e e e e 3-17
Delete .. e e e e 3-17
Kl . e e e e e e 3-18
Change e e . 3-19
Exchange e 3-20
Utility Commandsttt i i e 3-20
Ve . . i e e e e e e 3-20
UnSave . ..t e e e e e e e e 3-21
MaCIO o e e e e e e 3-21
Execute Macro i e e e e e 3-22
Edit Version i e e e e e e 3-22
Upper- and Lower-Case Commandsccuiuieinennnnn. 3-23
EDIT EXAMPLE i e e et e e e e 3-24
EDIT ERROR MESSAGES i i i i i 3-25
PERIPHERAL INTERCHANGE PROGRAM (PIP) 41
CALLING AND USING PIP e e e et 4-1
Using the “Wild Card” Constructionc.couvuinun... 4-1

iv

CONTENTS (Cont.)

Page
4.2 PIP SWITCHES i i it ettt et e e ee e 4-2
4.2.1 Copy Operations . . . o v vt vttt e it et et et et e e e 4-3
4.2.2 Multiple Copy Operations. u ittt ittt e i i e 4-6
4.2.3 The Extend and Delete Operations 4-7
4.2.4 The Rename Operationttt 4-9
4.2.5 Directory List Operations ittt ittt ittt teiee e 4-10
4.2.6 The Directory Initialization Operation 4-11
4.2.7 The Compress Operationt iiieneneneeennenann 4-12
4.2.8 The Bootstrap Copy Operationc.couitiuenennnnnnn. 4-13
4.2.9 The Boot Operationttt ittt eeeeeee o 4-13
4.2.10 The Version Switch i e 4-14
4.2.11 Bad Block Scan (JK) e 4-14
4.2.11.1 Recovery from Bad Blocks 4-14
4.3 PIP ERROR MESSAGES i e it i i 4-17
CHAPTER 5 THE ASSEMBLY PROCESS it ittt i 5-1
5.1 SOURCE PROGRAM FORMAT i 5-1
5.1.1 Statement Format e 5-2
5.1.1.1 Label Field i i it 5-2
5.1.1.2 Operator Field i i i e et e 5-3
5.1.1.3 Operand Field i i it i 5-3
5.1.1.4 Comment Field ittt 5-3
5.1.2 Format Control i it 5-4
5.2 SYMBOLS AND EXPRESSIONS i i e 54
5.2.1 Character Set i ittt e e e e e 5-4
5.2.1.1 Separating Charactersttt inennnns 5-5
5.2.1.2 [llegal Characters.ottt it et 5-6
5.2.1.3 Operator Characters.ottt it it it e et e et e e 5-6
5.2.2 1037211157) -3 5-7
5.2.2.1 Permanent Symbols e 5-7
5.2.2.2 User-Defined Symbols it 5-7
523 Direct Assignment e e 5-8
5.24 Register Symbols e 5-9
5.2.5 Local Symbols e e e 5-10
5.2.6 Assembly Location Counter 5-11
5.2.7 NUMDEIS . . ottt e i e e e 5-13
5.2.8 TS . o e e e e e 5-14
5.2.9 EXPressionsottt e e e e e e e e e 5-14
53 RELOCATION AND LINKING i 5-16
5.4 ADDRESSING MODES e e et 5-16
5.4.1 Register Mode e 5-17
542 Register Deferred Mode i 5-17
5.4.3 Autoincrement Mode L 5-17
5.4.4 Autoincrement Deferred Modey 5-18
5.4.5 Autodecrement Mode e 5-18
5.4.6 Autodecrement Deferred Mode 5-19
5.4.7 Index Mode e 5-19
54.8 Index Deferred Mode ittt ininnenn. 5-19
549 Immediate Mode e 5-19

5.4.10
5.4.11
5.4.12
5.4.13
5.4.14
5.4.15
5.5
5.5.1
5.5.1.1
5.5.1.2
5.5.1.3
5.5.1.4
5.5.1.5
5.5.1.6
5.5.2
5.5.3
5.5.3.1
5.53.2
5.5.3.3
5.53.4
5.5.3.5
5.5.3.6
5.54
5.5.4.1
5.54.2
5.5.5
5.5.5.1
5.5.5.2
5.5.53
5.5.6
5.5.6.1
5.5.6.2
5.5.7
5.5.7.1
5.5.7.2
5.5.8
559
5.5.10
5.5.11
5.5.11.1
5.5.11.2
5.5.11.3
5.6
5.6.1
5.6.1.1
5.6.1.2
5.6.1.3
5.6.2
5.6.3

CONTENTS (Cont.)

Page

Absolute Mode e 5-20
Relative Mode e 5-20
Relative Deferred Mode, 5-21
Table of Mode Forms and Codes, 5-21
Branch Instruction Addressing i, 5-22
EMT and TRAP Addressingciiiiiiiininnennenenen, 5-22
ASSEMBLER DIRECTIVES e 5-22
Listing Control Directives ittt i e 5-22
LIST and NLIST .. oo e 5-22
Page Headings i e e 5-27
TITLE o e 5-27
SBTTL ..o 5-27
ADENT .o 5-28
Page Ejection ((PAGE Directive), 5-29
Functions: .ENABL and .DSABL Directives 5-29
Data Storage Directives e e e 5-30
BYTE o e e 5-30
WORD .o e e e e 5-31
ASCII Conversion of One or Two Characters 5-32
ASCIL o e e 5-33
ASCIZ e e 5-34
RADSO . . 5-35
Radix Control e 5-36
RADIX . e e 5-36
Temporary Radix Control: D, “O,and ™B 5-37
Location Counter Controlttt ninnenen.. 5-37
EVEN e 5-38
ODD e e 5-38
BLKB and .BLKW e 5-39
Numeric Control e e e 5-39
FLT2 and .FLT4 .. e e 5-40
Temporary Numeric Control: “Fand “C 5-41
Terminating Directives e e 5-42
END e e 5-42
EOT . e e 5-42
Program Boundaries Directive: .LIMIT 5-42
Program Section Directives i 542
Symbol Control: .GLOBL i i 5-44
Conditional Assembly Directives 5-46
Subconditionals e 5-48
Immediate Conditionals it 549
PAL-11R and PAL-11S Conditional Assembly Directives 5-50
MACRO DIRECTIVES WITH THE EXPAND UTILITY PROGRAM 5-50
Macro Definition. 5-50
MACRO . e 5-50
ENDM L e e 5-51
MACRO Definition Formatting 5-51
Macro Calls e 5-52
Arguments to Macro Calls and Definitions 5-52

vi

\PTER

[APTER

5.6.3.1
5.6.3.2
5.6.3.3
5.6.4
5.7

5.8
5.8.1
5.8.1.1
5.8.1.2
5.8.1.3
5.9
5.9.1
59.2

6.1
6.2
6.2.1
6.2.2
6.3
6.4
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.6
6.7
6.7.1
6.8
6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6
6.8.7
6.8.8
6.8.9
6.8.10
6.9

7.1

7.2
7.2.1
7.2.2
7.2.2.1
7.2.2.2

CONTENTS (Cont.)

Page
Special Charactersttt ittt et 5-53
Number of Argumentsttt i 5-53
Concatenation i e e 5-53
Macro Libraries: MCALL i iiian. 5-54
CALLING AND USING EXPAND it i i e 5-54
CALLING AND USING ASEMBL e i 5-58
Switches e e e e e e 5-59
Listing Control Switches i, 5-59
Function Switches e 5-60
Cross Reference Table Generation (CREF) 5-61
ERROR MESSAGES e et e e 5-64
EXPAND Error Messagesttt 5-64
ASEMBL/CREF Error Messageso u ittt 5-65
LINKER . e e e e e e 6-1
INTRODUCTION ... e e e e e e e e 6-1
CALLING AND USING THE LINKER i, 6-1
Command Stringo i e e e e 6-1
SWitches e e e 6-2
ABSOLUTE AND RELOCATABLE PROGRAM SECTIONS 6-2
GLOBAL SYMBOLS i et e e 6-3
INPUT AND OUTPUT et et et e e ee e 6-4
Object Modules e e 6-4
Load Module e 6-4
Load Map i e e e 6-5
Library Files i e e e 6-5
USING OVERLAYS ... e e et ie e 6-5
USING LIBRARIES ... e e e e 6-11
User Library Searches 6-11
SWITCH DESCRIPTION e e i e 6-13
Alphabetize Switch L. 6-13
Bottom Address Switch e e 6-13
Continue Switch e e 6-15
Default FORTRAN Library Switch 6-15
Include Switch e 6-15
LDA Format Switch e 6-15
Modify Stack Address e e 6-16
Overlay Switch e e 6-16
Symbol Table Switch i .. 6-18
Transfer Address Switch e e e 6-18
LINKER ERROR HANDLING AND MESSAGES 6-18
LIBRARIAN . .. e e e e, 7-1
CALLING AND USING LIBR i i e e e i e 7-1
USER SWITCH COMMANDS AND FUNCTIONS 7-1
Command Syntaxttt e e 7-1
LIBR Switch Commandsttt iennnnnnn 7-2
Command Continuation Switch, 7-2
Creating a Library File. i .. 7-3

vii

CHAPTER

CHAPTER

7.2.2.3
7.2.2.4
7.2.2.5
7.2.2.6
7.2.2.7
7.2.2.8
7.2.2.9
7.3

7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.5

8.1
8.1.1
8.1.2
8.2
8.2.1
8.3
8.3.1
8.3.2
8.3.3
834
8.3.5
8.3.6
8.3.7
8.3.8
839
8.3.10
8.3.11
8.3.12
8.3.13
8.3.14
8.3.15
8.3.16
8.4
8.4.1
8.4.2
843
8.4.4
8.5

9

9.1
9.2
9.2.1

CONTENTS (Cont.)

Page
Inserting Modules Into a Library 7-4
Replace Switch i i e 7-5
Delete SwitCh it i e e e 7-5
Delete Global Switchottt 7-6
Update Switch i i e e e e 7-7
Listing the Directory of a Library File 7-8
Merging Library Files, 7-8
COMBINING LIBRARY SWITCH FUNCTIONS 79
FORMAT OF LIBRARY FILES AP 7-10
Library Header e e e e 7-10
Entry Point Table (Library Directory) 7-11
Object Modules i e 7-11
Library End Trailer i i i et 7-11
LIBR ERROR MESSAGES i i it e 7-11
ON-LINE DEBUGGING TECHNIQUEc.c0iiiiiinnnn.. 81
CALLING AND USINGODT e e e et e 8-1
Return to Monitor, CTRL C ittt iien e 8-2
Terminate Search, CTRL U 8-2
RELOCATION i i i et e 8-2
Relocatable EXpressionsot ie e ininennnenann. 83
COMMANDS AND FUNCTIONS ittt et e 8-4
Printout Formatst i 8-4
Opening, Changing and Closing Locations 84
Accessing General Registers 0-7ttt i, 8-7
Accessing Internal Registers i, 8-7
Radix S0 Mode, X it it et et e e e e 8-7
Breakpoints e e e 89
Running the Program, ;Gand ;P L i, 8-10
Single Instruction Mode i, 8-11
Searches - e e e e e e e e e e 8-11
The Constant Register, r;C i it i e 8-13
Memory Block Initialization, ;Fand ;I 8-13
Calculating Offsets, r;0 ittt i i it et e 8-13
Relocation Register Commands, r;nR, ;nR, ;R ... oo oo oo oL, 8-14
The Relocation Calculators, nR andn! 8-15
ODT Priority Level, P i i 815
ASCII Input and Output, r;nAo i e 8-16
PROGRAMMING CONSIDERATIONSt 8-16
Functional Organization00ttt enennenennn 8-16
Breakpoints e e e 8-17
SearChes . . e e e e 8-19
Terminal Interrupt i e 8-19
ODT ERROR DETECTION it it ee e 8-20
PROGRAMMED REQUESTS ittt 9-1
FORMAT OF A PROGRAMMED REQUEST 9-1
SYSTEM CONCEPTS i i it e i 9-3
Channel Number (chan)t nennnnnn 9-3

viii

9.2.2
9.2.3
9.2.4
9.2.4.1
9.24.2
9.243
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9
9.3
9.3.1
9.3.1.1
9.3.1.2
9.3.1.3
9.3.1.4
9.4
9.4.1
9.4.2
943
9.4.4
9.4.5
9.4.5.1
9.4.6
9.4.7
9.4.8
9.49
9.4.10
9.4.11
9.4.12
9.4.13
9.4.14
9.4.15
9.4.16
9.4.17
9.4.18
9.4.19
9.4.20
9.4.21
9.4.22
9.4.23
9.4.24
9.4.25
9.4.26
9.4.27
9.4.28
9.4.29
9.4.30

CONTENTS (Cont.)

Page
Device Block (dblK)o v it it i it e e 9-4
EMT Argument Blocks. i 9-4
Important Memory Areas it i e e 9-4
Vector Addresses (0-37, 60-477) ittt 9-4
Resident Monitor it i i e e e 9-5
System Communication Area ieenreeneaennnene.s 9-5
Swapping Algorithm e 9-7
Offset Wordsottt i i e e e 9-8
File Structure D e e e e e e e e 99
Completion Routines i 9-10
Using The System Macro Library 9-10
TYPES OF PROGRAMMED REQUESTSo, 9-10
System Macros e e e 9-10
DATE e e e 9-15
ANTEN o e 9-15
REGDEF e e e 9-16
SYNCH L e e e 9-16
PROGRAMMED REQUEST USAGE it 9-18
CDFEN L e e e 9-18
CHAIN L. e e e 9-19
CLOSE e e e e e 9-21
CSIGEN L e 9-21
CSISPC . . o e e e e e 9-24
Passing Switch Information 9-26
DELETE . . e e e 9-29
DSTATUS . . e e e 9-30
ENTER . e e 9-32
EXIT o e e e e e 9-34
FETCH . . . e e e e e 9-34
GTIM e e e e e 9-35
B 0 P 9-36
HERR/SSERR .o e e e e e 9-37
HRESET o e 9-39
LOCK/UNLOCK ... e e e e et eeeeee e 9-39
LOOKUP .. e e e 9-41
PRINT .o e e 9-42
PROTECT . .. o e e e 9-43
PURGE .. e e e e 9-44
LOSET . e e e e e 9-45
RCOTRLO .. e e 9-46
.READ/READC/READWt 9-46
RELEAS o e e e e 9-49
RENAME . .o e 9-50
REOPEN ... e e e 952
SAVESTATUS e e e e 9-52
SETTOP . e e e e 9-54
SEPA e e e 9-56
SRESET .. e e e e 9-57
JRPSET .o e e e e e e 9-58

APPENDIX

APPENDIX

9.4.31
9.4.32
9.4.33
9.4.34

A
Al
A.l.1
A.1.2
A2
A2.1
A.2.2
A23
A24
A.2.5
A2.6
A2.7
A3
A3.1
A4
AS
AS.1
A.6
A6.1
A7
A7.1
A8
A9
A9.1
A.10
A.10.1
A.11
A.11.1

B

B.1
B.2
B.3
B.4
B.5
B.5.1
B.5.2
B.5.3
B.5.4
B.5.5
B.5.6
B.5.7

CONTENTS (Cont.)

Page
JTYIN/LTTINR o e ettt ie e e 9-59
TTYOUT/TTOUTR ..o it ettt e et ieean 9-60
WAIT . e e e e e 9-62
WRITE/WRITC/WRITW ittt it et 9-64
COMMAND AND SWITCH SUMMARIES00 iiiiienennn A-1
KEYBOARD MONITOR ittt it it ie e et eeaanaenns A-1
Command SUMMATYttt i it ittt ittt et eeeeneaanaennn A-1
Special Function Keys it i i A-2
EDITOR ... e e e e e e e A-3
Command Arguments iueutnneneneneneaseennnnns A-3
Input and Output Commandsoi ittt ennn. A-3
Pointer Relocation Commandsc.0iuiieeneenennenn. A-4
Search Commandsttt eenennnnnenennns A-4
Text Modification Commandsciuieiitreenneenns A-4
Utility Commandsttt ittt ittt eeteaeaeeaenns A-5
Key Commandst iitmeieeenneeeeneeeeanenens A-5
0 P A-6
Switch Summary i e e e e e e A-6
ASEMBL/CREF e e e A-7
LINKER . i e e e e e A-7
Switch Summary e e e e e e A-7
LIBRARIAN . . it et e et et e e e e e A-8
Switch Summary e e e e e e e A-8
O .o e e e e e e A-8
Command SUMMAIY ittt ittt it et e ettt eeteeanenn A-8
PROGRAMMED REQUESTS it it it i i eaeenn A-10
DUMP .. e e e e e e A-10
Switch Summary i ittt i e e e e e A-10
SRCCOM . e e e e e e A-11
Switch Summary i e e e e A-11
PATCH . . . e e e e e e A-11
Command SUMMATYt ittt ittt et ettt et eenaeeenan A-11
ASSEMBLER, INSTRUCTION, AND CHARACTER CODE SUMMARIES B-1
ASCII CHARACTER SET it ettt i e B-1
RADIX-50 CHARACTER SET ittt it B-4
ASSEMBLER SPECIAL CHARACTERS i, B-5
ADDRESS MODE SYNTAX . . . it ittt it et et e et et e i e B-5
INSTRUCTIONS e et et e et ettt e e B-6
Double Operand Instructionsot onn. B-7
Single Operand Instructionso ..., B-8
Rotate/Shift it e i et e et e B-8
Operate Instructionsttt iii ittt et ieee e B-10
Trap Instructionsttt i e e e e B-11
Branch Instructions ittt ittt ittt B-12
Register Destination i, B-12

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

B.5.8
B.5.9
B.5.10
B.5.11
B.5.12
B.5.13
B.5.14
B.5.15
B.5.16
B.6
B.7
B.8
B.8.1
B.8.2
B.8.3
B.9

D.1
D.2

E.1
E.1.1
E.1.2
E.2

F.1
F.1.1
F.1.2
F.2
F.3

G.1
G.2
G.2.1
G.2.2
G.23
G24
G.2.5
G.3
G.4

CONTENTS (Cont.)

Page
Register-Offset i B-13
Subroutine Return B-13
Source-Register e e B-13
Floating-Point Source Double Register B-14
Source-Double Register i B-14
Double Register-Destination 0ouu.oo... B-15
Number e B-16
Priority e B-16
Stack Oriented Floating Point (OPR) B-16
MACRO DIRECTIVES et eeea B-16
ASSEMBLER DIRECTIVES i it i B-17
ASEMBL/CREF SWITCHES ittt it e et B-19
Listing Control Switches0t ininnnnen.. B-19
Function Control Switches i B-20
CREF Switches e i B-20
OCTAL/DECIMAL CONVERSIONS it iiinnnnnn B-21
SYSTEM MACRO FILE it ittt C-1
PROGRAMMED REQUEST SUMMARY iiiiiinn.. D-1
PARAMETERS e e e e D-1
REQUEST SUMMARY it i et i e e D-1
DUMP . e e e e e e E-1
CALLING AND USING DUMP e i e E-1
DUMP Switches e e e e E-1
Examples e e E-2
DUMP ERROR MESSAGES i i E-5
SOURCE COMPARE (SRCCOM) ittt iieeeennn F-1
CALLING AND USING SRCCOM i i ittt it e s F-1
EXtensions oo e e e F-1
Switches ... e F-1
OUTPUT FORMATt e e et e e F-2
SRCCOM ERROR MESSAGES it e F-5
PATCH e e e e G-1
CALLING AND USING PATCHttt ee e G-1
PATCH COMMANDS e e e et e e e e G-2
PatchaNew File i, G-2
Exit from PATCH G-2
Examine, Change Locationsin the File G-2
Set Bottom Address i e e G-3
Set Relocation Registers G-3
EXAMPLES USING PATCH e et e e e G-4

PATCH ERROR MESSAGES i i it G-6

xi

FIGURE

TABLE

.........

2-1

5-2
5-3

5-4
5-5
5-6
5-7
6-1
6-2
6-3

6-5
6-6
7-1
7-2
7-3
7-4

21
22
23
24
25
3-1
3-2
4-1
5-1
6-1
7-1
8-1
8-2
83
9.1
9.2
E-l
F-1
G-1

CONTENTS (Cont.)

Page
.. Index-1
FIGURES
HT-11 System Memory Mapottt it it e e eieeenn 2-4
Assembly Source Listing Showing Local Symbol Blocks 5-12
Example of ASEMBL Line Printer Listing (132-column Line Printer) 5-24
Example of Page Heading From ASEMBL 80-column Line Printer (same format as
Terminal Listing)t it i i e e e e 5-25
Symbol Table it e e e 5-26
Assembly Listing Table of Contentso .. 5-28
ASEMBL Source Code ottt it ittt it it e e e 5-62
CREF Listing Outputttt it 5-63
Linker Load Mapottt ittt i et it e i 6-6
Overlay Schemeo, e 6-7
Memory Diagram Showing BASIC Link with Overlay Regions 6-8
Run-Time Overlay Handler0 iiiinnannn 6-9
Library Searches i i e e e e s 6-12
Alphabetized Load Map i i i e 6-14
General Library File Format 7-10
Library Header Format i 7-10
Format of Entry Point Table iiin.. 7-11
Library End Trailer0ttt it it e i 7-11
TABLES
Prompting Characterst iiini ettt iiee it e 2-2
Permanent Device Names i, 2-2
File Name Extensionsttt iiiinnnnn.. 2-3
Special Function Keys i i i 2-7
SET Command Optionsttt innininenunnnn 2-13
EDIT Key Commandsttt ittt eieennenn 3-2
Command ATGUIMENTSttt ittt ettt e eae e 3-4
PIP Switches e 4-2
Legal Separating Characters it ineenennnn. 5-6
Linker Switches i e 6-3
LIBR Switches i it i it e e e 7-2
Forms of Relocatable Expressions (r)ttt eenn. 83
Internal Registersttt it e e e 8-8
Radix SO Terminatorsot iitt it in ettt eieeeie e 8-8
Summary of Programmed Requests - 9-11
Requests Requiring the USR. i i 9-14
DUMP Switches i et ettt e e E-1
SRCCOM SWitCheso ittt ittt et ettt e e et iiaaa F-2
PATCH Commands ittt it e e et e e G-2

Xii

PREFACE

This manual describes the use of the HT-11 Operating System. It assumes the reader is familiar with computer soft-
ware fundamentals and has had some exposure to assembly-language programs.

The user who is unfamiliar with HT-11 should first read those chapters of interest (see “Chapter Summary” below)
to become familiar with system conventions. Having gained familiarity with HT-11, the user can then reread the
manual for specific information.

CHAPTER SUMMARY
Chapter 1 describes general system operations.

Chapter 2 introduces the user to system conventions and monitor/memory layout. It describes in detail the key-
board commands for controlling jobs and implementing user programs.

Chapters 3 through 8 describe the system utility programs EDIT, PIP, ASEMBL, EXPAND, LINK, LIBR, and ODT.
These programs (a text editor, file transfer program, assembler, macro expander, linker, librarian, and debugging
program) aid the user in creating text files and producing assembly-language programs.

Chapter 9, which describes programmed requests, is of particular interest to the experienced programmer. It de-
scribes call sequences that allow the user to access system monitor services from within assembly-language
programs.

The appendices summarize the contents of the manual and describe additional system utility programs that can be
used for extended system operations. These programs include SRCCOM (a source file comparison program);
PATCH and PATCHO (patching programs); and DUMP (a file dump program).

DOCUMENTATION CONVENTIONS
Conventions used throughout this manual include the following:

1. Examples reflect actual computer output whenever possible. When necessary, computer output is under-
lined to differentiate from user responses.

2. Aline feed (character or key) is represented in the text as (LF); a carriage return (character or key) is
represented as (CR). Unless otherwise indicated, all commands and command strings are terminated by
a carriage return.

3. Terminal and teleprinter are general terms used throughout all HT-11 documentation to represent any
terminal device.

4. Several characters in system commands are produced by typing a combination of keys concurrently;
for example, the CTRL key is held down while typing an O to produce a command which causes sup-
pression of teleprinter output. Key combinations such as this are documented as CTRL O, CTRL C,
SHIFT N, and so forth.

Xiii

CHAPTER 1
HT-11 OVERVIEW

HT-11 is a single-user programming and operating system designed for the PDP-11 series of computers. It includes
system programs or “tools” for program development using MACRO assembly language or the high-level languages
BASIC and FORTRAN IV (when available). The HT-11 system programs are summarized in Section 1.2 and are
discussed in detail in individual chapters and appendices of this manual.

1.1 PROGRAM DEVELOPMENT

Computer systems such as HT-11 are often used extensively for program development. The programmer makes use
of the programming “‘tools” available on his system to develop programs which will perform functions specific to
his needs. The number and type of “tools” available on any given system depend on a good many factors — the
size of the system, its application and its cost, to name a few. Systems based on the PDP-11, however, provide
several basic program development aids: these generally include an editor, assembler, linker, debugger, and often

a librarian; a high level language (such as FORTRAN IV or BASIC) is also usually available.

An editor is used to create and modify textual material. Text may be the lines of code which make up a source
program written in some programming language, or it may be data; text may be reports, or memos, or in fact may
consist of any subject matter the user wishes. In this respect using an editor is analogous to using a typewriter —
the user sits at a keyboard and types text. But the advantages of an editor far exceed those of a typewriter because
once text has been created, it can be modified, relocated, replaced, merged, or deleted — all by means of simple
editing commands. When the user is satisfied with his text, he can save it on a storage device where it is available
for later reference.

If the editor is used for the purpose of writing a source program, development does not stop with the creation of
this program. Since the computer cannot understand any language but machine language (which is a set of binary
command codes), an intermediary program is necessary which will convert source code into the instructions the
computer can execute. This is the function of an assembler.

The assembler accepts alphanumeric representations of PDP-11 coding instructions (i.e., mnemonics), interprets
the code, and produces as output the appropriate object code. The user can direct the assembler to generate a
listing of both the source code and binary output, as well as more specific listings which are helpful during the
program debugging process. In addition, the assembler is capable of detecting certain common coding errors and of
issuing appropriate warnings.

The output produced by the assembler is called object output because it is composed of object (or binary) code.
On PDP-11 systems, the object output is called a module and contains the user’s source program in the binary
language which is acceptable to a PDP-11 computer.

Source programs may be complete and functional by themselves; however, some programs are written in such a way
that they must be used in conjunction with other programs (or modules) in order to form a complete and logical
flow of instructions. For this reason the object code produced by the assembler must be relocatable — that is,
assignment of memory locations must be deferred until the code is combined with all other necessary object
modules. It is the purpose of the linker to perform this relocation.

The linker combines and relocates separately assembled object programs. The output produced by the linker con-

sists of a load module, which is the final linked program ready for execution. The user can, at his option, request a
load map which displays all addresses assigned by the linker.

1-1

HT-11 Overview

Very rarely is a program created which does not contain at least one unintentional error, either in the logic of the
program or in its coding. Errors may be discovered by the programmer while he is editing his program, or the
assembler may find errors during the assembly process and inform the programmer by means of error codes. The
linker may also catch certain errors and issue appropriate messages. Often, however, it is not until execution that
the user discovers his program is not working properly. Programming errors may be extremely difficult to find,
and for this reason a debugging tool is usually available to aid the programmer in determining the cause of his
error.

A debugging program allows the user to interactively control the execution of his program. With it, he can examine
the contents of individual locations, search for specific bit patterns, set designated stopping points during execution,
change the contents of locations, continue execution, and test the results, all without the need of re-editing and
re-assembling.

When programs are successfully written and executed, they may be useful to other programmers. Often routines
which are common to many programs (such as I/O routines) or sections of code which are used over and over again,
are more useful if they are placed in a library where they can be retrieved by any interested user. A librarian pro-
vides such a service by allowing creation of a library file. Once created, the library can be expanded, updated, or
listed.

High level languages simplify the programmer’s work by providing an alternate means of writing a source program
other than assembly-language mnemonics. Generally, high level languages are easy to learn — a single command
may cause the computer to perform many machine language instructions. The user does not need to know about
the mechanics of the computer to use a high level language. In addition, some high level languages (like BASIC)
offer a special immediate mode which allows the user to solve equations and formulas as though he were using

a calculator. Assembling and linking are done automatically so that the user can concentrate on solving the
problem rather using the system.

These are a few of the programming tools offered by most computer systems. The next section summarizes specific
programming aids available to the user of HT-11.

1.2 SYSTEM SOFTWARE COMPONENTS
The following is a brief summary of the HT-11 system programs:

1. The Text Editor (EDIT, described in Chapter 3) is used to create or modify source files for use as input
to language processing programs such as the assembler or FORTRAN. EDIT contains powerful text
manipulation commands for quick and easy editing of a text file.

2. EXPAND (Chapter 5) brings the capabilities of macros to the HT-11 system. (Macros are instructions in
a source or command language which are equivalent to a specified sequence of machine instructions or
commands.) ASEMBL accepts source files written in the assembly language and generates a relocatable
object module to be processed by the Linker before loading and execution. Cross reference listings of
assembled programs may be produced using CREF in conjunction with the assembler.

3. The Linker (LINK, described in Chapter 6) fixes (i.e., makes absolute) the values of relocatable symbols
and converts the relocatable object modules of compiled or assembled programs and subroutines into a
load module which can be loaded and executed by HT-11. LINK can automatically search library files
for specified modules and entry points; it can produce a load map (which lists the assigned absolute
addresses) and can provide automatic overlay capabilities to very large programs.

4. The Librarian (LIBR, see Chapter 7) allows the user to create and maintain his own library of functions
and routines. These routines are stored on a random access device as library files, where they can be
referenced by the Linker.

5. The Peripheral Interchange Program (PIP, see Chapter 4) is the HT-11 file maintenance and utility program.
It is used to transfer files between all devices which are part of the HT-11 system, to rename or delete
files, and to obtain directory listings.

1-2

HT-11 Overview

. SRCCOM (Source Compare, described in Appendix F) allows the user to perform a character-by-character
comparison of two or more text files. Differences can be listed in an output file or directly on the line
printer or terminal, thus providing a fast method of determining, for example, if all edits to a file have
been correctly made.

. The PATCH utility program (Appendix G) is used to make minor modifications to memory image files
(output files produced by the Linker); it is used on files which do or do not have overlays.

. ODT (On-ine Debugging Technique, described in Chapter 8) aids in debugging assembled and linked object
programs. It can print the contents of specified locations, execute all or part of the object program, single
step through the object program, and search the object program for bit patterns.

. DUMP (Appendix E) is used to print for examination all or any part of a file in octal words, octal bytes,
ASCII and/or RADSO characters (see Chapter 5).

13

CHAPTER 2
SYSTEM COMMUNICATION

The monitor is the hub of HT-11 system communications; it provides access to system and user programs, performs
input and output functions, and enables control of the job.

The user communicates with the monitor through programmed requests and keyboard commands. The keyboard
commands (described in Section 2.7) are used to load and run programs, start or restart programs at specific
addresses, modify the contents of memory, and assign and deassign alternate device names.

Programmed requests (described in detail in Chapter 9) are source program instructions which request monitor
services. These instructions allow user assembly-language programs to utilize the available monitor features.

2.1 START PROCEDURE
The monitor can be loaded into memory from disk as follows:

1. Power up the system
2. When the terminal prints §, type DX and a carriage return (specifies floppy disk):

$ DX (CR)
3. The monitor then prints the identification message on the terminal:
HT-11 HO1A

After the message has printed, the system device should be WRITE ENABLED. The monitor is ready to accept
keyboard commands.

2.2 SYSTEM CONVENTIONS
Special character commands, file naming procedures and other conventions that are standard for the HT-11 system
are described in this section. The user should be familiar with these conventions before running the system.

2.2.1 Data Formats
The HT-11 system makes use of four types of data formats: ASCII, object, memory image, and load image.

Files in ASCII format conform to the American National Standard Code for Information Interchange, in which
each character is represented by a 7-bit code. Files in ASCII format include program source files created by the
Editor, listing and map files created by various system programs, and data files consisting of alphanumeric charac-
ters. A chart containing ASCII character codes appears in Appendix B.

Files in object format consist of data and PDP-11 machine-language code. Object files are those output by the
assembler or FORTRAN compiler and are used as input to the Linker.

The Linker can output files in memory image format (.SAV) or load image format (.LDA).

A memory image file (.SAV) is a ‘picture’ of what memory will look like when a program is loaded. The file itself
requires the same number of disk blocks as the corresponding number of 256-word memory blocks.

System Communication
A load image (or .LDA) file may be produced for compatibility with the PDP-11 Paper Tape System and is loaded
by the absolute binary loader. LDA files can be loaded and executed in stand-alone environments.
2.2.2 Prompting Characters

The following table summarizes the characters typed by HT-11 to indicate to the user that the system is awaiting
user response:

Table 2-1 Prompting Characters

Character Meaning

The Keyboard Monitor is waiting for a command (see Section 2.3.2).

The Command String Interpreter is waiting for a command string specification as
explained in Sections 2.3.3 and 2.5.

1 When the terminal is being used as an input file, the up-arrow prompts the user to enter
information from the keyboard. Typing a CTRL Z marks the end-of-file.

2.2.3 Physical Device Names
Devices are referenced by means of a standard two-character device name. Table 2-2 lists each name and its related
device. If no unit number is specified for devices which have more than one unit, unit O is assumed.

Table 2-2 Permanent Device Names

Permanent Name I/0 Device

DK: The default logical storage device for all files. DK is initially the same as
SY: (see below), but the assignment (as a logical device name) can be
changed with the ASSIGN Command (Section 2.7.1.4).

DKn: The specified unit of the same device type as DK.

DXn: H27 Floppy disk (n is 0 or 1).

LP: Line printer.

PP: High-speed paper tape punch.

PR: High-speed paper tape reader.

SY: System device; the device and unit from which the system is bootstrapped.

The assignment as a logical device name can be changed with the ASSIGN
command (Section 2.7.1.4).

SYn: The specified unit of the same device type as that from which the system
was bootstrapped.

TT: Terminal keyboard and printer.

In addition to the fixed names shown in Table 2-2, devices can be assigned logical names. A logical name takes
precedence over a physical name and thus provides device independence. With this feature a program that is coded
to use a specific device does not need to be rewritten if the device is unavailable. Refer to Section 2.7.1.4 for
instructions on assigning logical names to devices.

22

System Communication

2.2.4 File Names and Extensions
Files are referenced symbolically by a name of one to six alphanumeric characters followed, optionally, by a period
and an extension of up to three alphanumeric characters. (Excess characters in a filename may cause an error

message.) The extension to a filename generally indicates the format of a file. It is a good practice to conform to

the standard filename extensions for HT-11. If an extension is not specified for an input or output file, most system

programs assign appropriate default extensions. Table 2-3 lists the standard extensions used in HT-11.

Table 2-3 File Name Extensions

Extension Meaning

.BAD Files with bad (unreadable) blocks; this extension can be assigned by the user whenever
bad areas occur on a device. The .BAD extension makes the file permanent in that
area, preventing other files from using it and consequently becoming unreadable.

.BAK Editor backup file.

.BAS BASIC source file (BASIC input).

.DAT BASIC or FORTRAN data file.

.DIR Directory listing file.

.DMP DUMP output file.

.FOR FORTRAN IV source file (FORTRAN input).

.LDA Absolute binary file (optional Linker output).

.LLD Library listing file.

.LST Listing file (ASEMBL or FORTRAN output).

MAC EXPAND source file (EXPAND or SRCCOM input).

.MAP Map file (Linker output).

.OBJ Relocatable binary file (ASEMBL, FORTRAN IV output, Linker input, LIBR input
and output).

.PAL Output file of EXPAND (the MACRO expander program), input file of ASEMBL.

SAV Memory image or SAVE file; default for R, RUN, SAVE and GET Keyboard Monitor
commands; also default for output of Linker.

.SYS System files and handlers.

If a filename with a blank extension is to be used in a command line in which a default extension is assumed (by
either the monitor or a system program), the user must insert a period after the filename to indicate that there is
no extension. For example, to run the file TEST, type:

RUN TEST.

System Communication

If the period after the filename is not given, the monitor assumes the .SAV extension and attempts to run a file
named TEST.SAV.

2.2.5 Device Structures
HT-11 devices are categorized by the physical structure of the device and the way in which the device allows
information to be processed.

All HT-11 devices are either random-access or sequential-access devices. Random-access devices allow blocks of
data to be processed in a random order — that is, independent of the data’s physical location on the device or its
location relative to any other information. All disks fall into this category. Random-access devices are sometimes
also called block-replaceable devices, because individual data blocks can be manipulated (rewritten) without affect-
ing other data blocks on the device. Sequential-access devices require that data be processed sequentially; the order
of processing data must be the same as the physical order of the data. HT-11 devices that are considered sequential
devices are paper tape, line printer, and terminal.

File-structured devices are those devices that allow the storage of data under assigned filenames. HT-11 devices that
are file-structured include all disks. Nonfile-structured devices, on the other hand, are those used to contain a single
logical collection of data. These devices are used generally for reading and listing information, and include line
printer, terminal, and paper tape devices.

2.3 MONITOR SOFTWARE COMPONENTS
The main HT-11 monitor software components are:

Resident Monitor (RMON)

Keyboard Monitor (KMON)

User Service Routine (USR) and Command String Interpreter (CSI)
Device Handlers

The reader may find Figure 2-1 helpful while reading the following descriptions.

RMON
USR
KMON
HIGH
ADDRESSES

0

Figure 2-1 HT-11 System Memory Map

2.3.1 Resident Monitor (RMON) .

The Resident Monitor is the only permanently memory-resident part of HT-11. The programmed requests for all
services of HT-11 are handled by RMON. RMON also contains the terminal service, error processor, system device
handler, EMT processor, and system tables.

2.3.2 Keyboard Monitor (KMON)

The Keyboard Monitor provides communication between the user at the keyboard and the HT-11 system. Monitor
commands allow the user to assign logical names to devices, run programs, and load device handlers. A dot at the
left margin of the terminal page indicates that the Keyboard Monitor is in memory and is waiting for a user
command.

24

System Communication

2.3.3 User Service Routine (USR)

The User Service Routine provides support for the HT-11 file structure. It loads device handlers, opens files for read
or write operations, deletes and renames files, and creates new files. The Command String Interpreter (the use of
which is described in Section 2.5) is part of the USR and can be accessed by any program to interpret device and file
1/0 information.

The USR is only required at the beginning and end of file operations. At other times its memory space may be
reclaimed in a process called USR swapping.

2.3.4 Device Handlers

Device handlers for the HT-11 system are programs that perform the actual transfer of data to and from peripheral
devices. All device handlers, except the system device handler, normally reside on the system device and are brought
into memory only when they are needed.

2.4 GENERAL MEMORY LAYOUT
When the HT-11 System is first bootstrapped from the system device, memory is arranged as shown in Figure 2-1.
The job is the HT-11 module KMON.

The LOAD and UNLOAD commands can modify the memory map. LOAD causes device handlers to be made
resident between the USR and RMON until an UNLOAD command is performed.

HT-11 maintains a free memory list to manage memory. Thus, when a handler is unloaded, the space the handler
occupied is returned to the free memory list.

2.5 ENTERING COMMAND INFORMATION
Once the monitor has been loaded and a system program started, the user must enter the appropriate command

information before any operation can be performed.

In most cases, the Command String Interpreter immediately prints an asterisk at the left margin. The user must then
type a command string in the general format:

OUTPUT=INPUT/SWITCH

(A few system programs — EDIT, PATCH, PATCHO — require that this command information be entered in a
slightly different format. Complete instructions are provided in the appropriate chapter.)

In all cases, the format for OUTPUT is:
dev:filnam.ext[n],...dev:filnam.ext[n]
INPUT is:
dev:filnam.ext,...dev:filnam.ext
and SWITCH is:
/s:oval or [s!dval
where:

dev: in each case is an optional two to three-character name from Table 2-2 or a user-assigned
name (see Section 2.7.1.4) whose usage conforms to the NOTE below.

2-5

filnam .ext

[n]

/s:oval or
[s!dval

System Communication

in each case is the name of a file (consisting of one to six alphanumeric characters followed
optionally by a dot and a zero to three-character extension). As many as three output and
six input files may be allowed.

is an optional declaration of the number of blocks (n) desired for an output file. nisa
decimal number (<65,535) enclosed in square brackets immediately following the output
filnam .ext to which it applies.

is one or more optional switches whose functions vary according to the program in use
(refer to the switch option table in the appropriate chapter). oval is either an octal number
or one to three alphanumeric characters (the first of which must be alphabetic) which will
be converted to radix-50. dval is a decimal value preceded by an exclamation point.

Throughout this manual, the /s:oval construction is used; however, the /s!dval format is
always valid. Generally, these switches and their associated values, if any, should follow
the device and filename to which they apply.

If the same switch is to be repeated several times with different values, as for example,
J/L:MEB/L:TTM/L:CND, the line may be abbreviated as /L:MEB:TTM:CND; octal, RAD50,
and decimal values may be mixed.

if required, is a delimiter that separates the output and input fields. The < sign may be used
in place of the = sign. The separator can be omitted entirely if there are no output files.

NOTE
As illustrated in the general format of a command line,
the command line consists of an output list, a separator
(= or <), and an input list. Omission of a device specifi-
cation in either the input or output list is handled as
follows:

DK: is assumed if the first file in a list has no explicit
device. DK (or the device associated with the first file)
is default until another device is indicated; that device
then becomes default until a new one is used, and so
on. If the following command is entered, for example,
to ASEMBL.:

*DXO0:FIRST.OBJ,LP:=TASK.1,DX1:TASK.2,TASK.3

it is interpreted as though all devices had been indicated
as follows:

*DXO0:FIRST.OBJ,LP:=DK:TASK.1,DX1:TASK.2,
DX1:TASK.3

2.6 KEYBOARD COMMUNICATION (KMON)
Special function keys and keyboard commands allow the user to communicate with the HT-11 monitor and allocate
system resources, manipulate memory images, and start programs.

The special functions of certain terminal keys used for communication with the Keyboard Monitor are explained in

Table 24.

2-6

System Communication

Table 244 Special Function Keys

Key Function

CTRLC CTRL C echoes as “C on the terminal and is used to interrupt program execution and
return control to the keyboard monitor. If the program to be interrupted is waiting for
terminal input, typing one CTRL C is sufficient to interrupt execution; in all other cases,
two CTRL Cs are necessary.

CTRLO Echoes “O on the terminal and causes suppression of teleprinter output while continuing
program execution. Teleprinter output is re-enabled when one of the following occurs:

1. Asecond CTRL O is typed,
. A return to the monitor occurs, or
3. The running program issues a Reset CTRL O (.RCTRLO) directive (see Chapter 9).
(HT-11 system programs reset CTRL O each time a new command string is entered.)

CTRL Q Does not echo. Resumes printing characters on the terminal from the point at which
printing was previously stopped (via CTRL S).

CTRL S Does not echo. Temporarily suspends output to the terminal until a CTRL Q is typed.

CTRL U Deletes the current input line and echoes as “U followed by a carriage return at the
terminal. (The current line is defined to be all characters back to, but not including,
the most recent line feed, CTRL C or CTRL Z.)

CTRL Z Echoes “Z on the terminal and terminates input when used with the terminal device
handler (TT). The CTRL Z itself does not appear in the input buffer. If TT is not
being used, CTRL Z has no special meaning.

RUBOUT Deletes the last character from the current line and echoes a backslash plus the character
deleted. Each succeeding RUBOUT deletes and echoes another character. An enclosing
backslash is printed when a key other than RUBOUT is typed. This erasure is done right
to left up to the beginning of the current line.

CTRL commands are entered by holding the CTRL key down while typing the appropriate letter.

2.6.1 Type-Ahead
The monitor has a type-ahead feature which allows terminal input to be entered while a program is executing. For
example:

.RPIP

*DX1:TAPE=PR:/A

DX1:/L

*13-FEB-78

TAPE 78 13-FEB-78
422 FREE BLOCKS

While the first command line is executing, the second line (DX1:/L) is entered by the user. This terminal input is
stored in a buffer and used when the first operation has completed.

If a single CTRL C is typed while in this mode, it is put into the buffer. The program currently executing exits when
a terminal input request needs to be satisfied. A double CTRL C returns control to the monitor immediately.

2-7

System Communication

If type-ahead input exceeds 80 characters, the terminal bell rings and no characters are accepted until part of the
type-ahead buffer is used by a program or characters are deleted. No input is lost. Type-ahead is particularly
useful in specifying multiple command lines to system programs, as shown in the preceding example. If a job

is terminated by typing two CTRL Cs, any unprocessed type-ahead is discarded.

NOTE
If type-ahead is used in conjunction with EDIT or
BASIC, there is no terminal echo of the characters but
they are stored in the buffer until a new command is
needed. The characters are echoed only when actually
used by the program.

2.7 KEYBOARD COMMANDS

Keyboard commands allow the user to communicate with the monitor. Keyboard commands can be abbreviated;
optional characters in a command are delimited (in this section only) by braces. Keyboard commands require at
least one space between the command and the first argument. All command lines are terminated by a carriage
return.

2.7.1 Commands to Allocate System Resources

DATE

2.7.1.1 DATE Command — The DATE command enters the indicated date to the system. This date is then
assigned to newly created files, new device directory entries (which may be listed with PIP), and listing output
until a new DATE command is issued.

The form of the command is:

DAT{E} {dd-mmm-yy}
where dd-mmm-yy is the day, month and year to be entered. dd is a decimal number in the range 1-31; mmm is
the first three characters of the name of the month, and yy is a decimal number in the range 73—-99. If no argument
is given, the current date is printed.
Examples:

.DATE 21-FEB-78 Enter the date 21-FEB-78 as the current system date.

.DAT Print the current date.
21-FEB-78

If the date is entered in an incorrect format, the ?DAT? error message is printed.

TIME

2.7.1.2 TIME Command - The TIME command allows the user to find out the current time of day kept by
HT-11 or to enter a new time of day. If the time is entered in an incorrect format, the ?TIM? message is printed.

28

System Communication

The form of the command is:
TIM{E} {hh:mm:ss}
where hh:mm:ss represents the hour, minute, and second. Time is represented as hours, minutes, and seconds past

midnight in 24-hour format (e.g., 1:25:00 P.M. is entered as 13:25:00). If any of the arguments are omitted, O is
assumed. If no argument is given, the current time of day is output.

Examples:
.TIM 8:15:23 Sets the time of day to 8 hours, 15 minutes and 23 seconds.
.TIM Approximately 10 minutes later, the TIME command outputs this time.
08:25:27
.TIM 18:5 Sets the time of day to 18:05:00.

INITIALIZE

2.7.1.3 INITIALIZE Command — The INITIALIZE command is used to reset several system tables and do a
general “clean-up” of the area. In particular, this command makes non-resident those handlers which were not
loaded (via LOAD), purges the I/O channels, disables CTRL O, performs a hard reset, clears locations 40—53, and
resets the KMON stack pointer.

The form of the command is:
IN {ITIALIZE}

The INITIALIZE command can be used prior to running a user program, or when the accumulated results of pre-
viously issued GET commands (see Section 2.7.2.1) are to be discarded.

Example:

N Initializes system
.R PROG

ASSIGN

2.7.1.4 ASSIGN Command — The ASSIGN command assigns a user-defined (logical) name as an alternate name
for a physical device. This is especially useful when a program refers to a device which is not available on a certain
system. Using the ASSIGN command, I/O can be redirected to a device which is available. Only one logical name
can be assigned per ASSIGN command, but several ASSIGN commands (14 maximum) can be used to assign different
names to the same device. This command is also used to assign FORTRAN logical units to device names.
The form of the command is:

ASS {IGN }{{dev} ‘udev }

where:

dev is any standard HT-11 (physical) device name (refer to Table 2-2) with the exception of DK
and SY.

29

System Communication

udev is a 1—3 character alphanumeric (logical) name to be used in a program to represent dev
(if more than three characters are given, only the first three are actually used). DK and SY
may be used as logical device names.

is a delimiter character (can be a colon, equal sign, and, if separating physical and logical
devices, space).

The placement of the delimiter is very important in the ASSIGN command; it must be placed exactly as shown in
the following examples:

ASSIGN DX1 INP Physical device DX1 is assigned the logical device name INP. Whenever a reference to
INP: is encountered, device DX1: is used.

.ASSIGN DX1:DK Physical device name DX1 is assigned the default device name DK. Whenever DK is
referenced or defaulted to, DX1 is used. (Note that the initial assignment of DK is
thus changed.)

.ASSIGN LP=9 FORTRAN logical unit 9 becomes the physical device name LP. All references to unit
9 use the line printer for output.

Assignment of logical names to logical names is not allowed.

If only a logical device name is indicated in the command line, that particular assignment (only) is removed. Thus:

.ASSIGN :9 Deassigns the logical name 9 from its physical device (LP, in the case above).
.ASSIGN =DK Removes assignment of logical name DK from its physical device (DX1, in the case
above).

If neither a physical device name nor a logical device name is indicated, all assignments to all devices are removed.

.ASSIGN All previous logical device assignments are removed.

CLOSE

2.7.1.5 CLOSE Command — The CLOSE command causes all currently open output files to become permanent
files. If a tentative open file is not made permanent, it will be deleted. The CLOSE command is most often used
after CTRL C has been typed to abort a job and to preserve any new files that job had open prior to the CTRL C.

The form of the command is:
CLO{SE}
The CLOSE command makes temporary directory entries permanent.

Example:

.REDIT - The Editor has a temporary file open (TEXT), which is preserved by .CLOSE.
*EWTEXT$$

*IABCD$$

*°c

.CLOSE

2-10

System Communication

LOAD

2.7.1.6 LOAD Command — The LOAD command is used to make a device handler resident in memory. Time to
fetch the handler is saved when a handler is resident, although memory area for the handler must be allocated.

The form of the command is:
LOA{D} dev
where:
dev represents any legal HT-11 device name.
LOAD is valid for use with user-assigned names. For example:
.ASSIGN DX1:XY

.LOA XY

UNLOAD

2.7.1.7 UNLOAD Command — The UNLOAD command is used to make handlers that were previously LOADed
non-resident, freeing the memory they were using.

The form of the command is:

UNL{OAD} dev {dev,...}

where:
dev represents any legal HT-11 device name.
Example:
.UNLOAD LP,PP The lineprinter and paper tape punch handlers are released and the area which they
used is freed.
SET
2.7.1.8 SET Command — The SET command is used to change device handler characteristics and certain system

configuration parameters.
The form of the command is:

SET dev: { NO} option {=value} { , {NO } option {=value} . }

2-11

System Communication

where:
dev: represents any legal HT-11 physical device name (or USR).
{NO}option is the feature or characteristic to be altered.
=value is a decimal number required in some cases.

A space may be used in place of or in addition to the colon, equal sign, or comma. Note that the device indicated
(with the exception of USR) must be a physical device name and is not affected by logical device name assignments
which may be active. The name of the characteristic or feature to be altered must be legal for the indicated device
(see Table 2-5) and may not be abbreviated.

The SET command locates the file SY:dev.SYS and permanently modifies it. No modification is done if the com-
mand entered is not completely valid. If a handler has already been loaded when a SET command is issued for it,
the modifications will not take effect until the handler is unloaded and a fresh copy called in from the system
device.

Table 2-5 lists the system characteristics and parameters which may be altered (those modes designated as “normal”
are the modes as set in the distribution copies of the drivers).

The following variant of the SET command is used to prevent the job from ever placing the USR in a swapping state
(note that USR replaces a device specification in the command line):

SET USR {NO} SWAP

This is useful because programs requiring the USR run much faster in a NOSWAP environment, provided they can
spare the USR’s 2K memory requirement; for some programs, this environment is necessary just so they can run.

When the monitor is bootstrapped, it is in the SWAP condition, i.e., the job may place the USR in a swapping state
via a SETTOP.

2.7.2 Commands to Manipulate Memory Images

GET

2.7.2.1 GET Command - The GET command loads the specified memory image file (not ASCII or object) into
memory from the indicated device.

The form of the GET command is:
GE{ T } dev:filnam .ext
where:
dev: represents any legal HT-11 device name. If a device is not specified, DK: is assumed.

filnam.ext represents a valid HT-11 filename and extension. If an extension is not specified, the exten-
sion .SAV is assumed.

2-12

System Communication

Table 2-5 SET Command Options

Device

Option J

Alteration

LP

LP

LP

LP

LP

LP

TTY

TTY

CR

NOCR

CTRL

NOCTRL

FORMO

NOFORMO

HANG

NOHANG

LC

NOLC

WIDTH=n

SCOPE

NOSCOPE

A

Allows carriage returns to be sent to the printer. The CR option

should be set for any FORTRAN program using formatted I/O, to
allow the overstriking capability for any line printer. This is the
normal mode.

Inhibits sending carriage returns to the line printer. Some line
printer controllers cause a line feed to perform the functions of a
carriage return, so using this option can produce a significant
increase in printing speed.

Causes all characters, including nonprinting control characters,
to be passed to the line printer. This is the normal mode.

Ignores nonprinting control characters.

Causes a form feed tobe issued before a request to print block zero.
This is the normal mode.

Turns off FORMO mode.

Causes the handler to wait for user correction if the line printer is
not ready or becomes not ready during printing. This is the nor-
mal mode.

New users should note that when expecting output from the line
printer and it appears as though the system is not responding or is
in anidle state, the line printer should be checked to see if itis on
and ready to print.

Generates an immediate error if the line printer is not ready.

Allowslower-case characters to be sent to the printer. This option
should be used if the printer has alower-case character set. This is
the normal mode.

Causes lower-case characters to be translated to upper case before
printing.

Sets the line printer width to n, where n is a number between 30
and 255. Any characters printer past column n are ignored. The
NO modifier is not permitted.

Causes the monitor to echo RUBOUTS as Qbackspace-space-
backspace.

Causes the monitor to echo RUBOUTSs as backslash followed by
the character deleted. This is the normal mode.

October 15, 1979
Part D

2-13

Svstem Communication

The GET command is typically used to load a program into memory for modification and/or debugging. The GET
command can also be used in conjunction with the Base, Examine, Deposit. and START commands to test patches.
and can be used with SAVE to 'make patches permanent. Multiple GETs can be used to combine programs. Thus:

.GET ODT.SAV Loads ODT into memory
.GET PROG Loads PROG.SAV into memory with ODT
.START (ODT’s starting address) Starts execution with ODT (see Chapter 8).

The GET command cannot be used to load overlay segments of programs; it may only be used to load the root
segment (that part which will not be overlaid; refer to Chapter 6, Linker).

Multiple GETs can be used to build a memory image of several programs. If identical locations are required by any
of the programs, the later programs overlay the previous ones. The GET command loads memory in multiples of
256-word blocks.

Examples:
GET DX1:FILE1.SAV Loads the file FILE1.SAV into memory from DX1.
GET NAME1 Loads the file NAME1.SAV from device DK.

BASE

2.7.2.2 Base Command — The B command sets a relocation base. This relocation base is added to the address
specified in subsequent Examine or Deposit commands to obtain the address of the location to be referenced. This
command is useful when referencing linked modules with the Examine and Deposit commands. The base address
can be set to the address where the module of interest is loaded. The form of the command is:

B {location}
where:

location represents an octal address used as a base address for subsequent Examine and Deposit
commands.

NOTE
A space must follow the B command even if an address
is not specified (the B{space) command is equivalent
to B0).

Any non-octal digit terminates an address. If location is odd, it is rounded down by one to
an even address.

The base is cleared whenever user-program execution is initiated.

System Communication

Examples:
.BA Sets base to 0 (A represents space).
.B 200 Sets base to 200.
.B 201 Sets base to 200.
2.7.2.3 Examine Command — The E command prints the contents of the specified location(s) in octal on the

terminal. The form of the Examine command is:
E location m{ —location n}
where:

location represents an octal address which is added to the relocation base value (the value set by the
B Command) to get the actual address examined. Any non-octal digit terminates an address.
An odd address is truncated to become an even address.

If more than one location is specified (location m-location n), the contents of location m through location n inclu-
sive are printed. The second location specified (location n) must not be less than the first location specified, other-
wise an error message is printed. If no location is specified, the contents of location O are printed. Examination
of locations outside the job’s area is illegal.

Examples:

.E 1000 Prints contents of location 1000 (added to the base value if other than 0).
127401

.E 1001-1012
127401 007624 127400 000000 000000 000000
Prints the contents of locations 1000 (plus the base value if other than 0) through

1013.

DEPOSIT

2.7.24 Deposit Command — The Deposit command deposits the specified value(s) starting at the location given.
The form of the command is:

D location=valuel { value2,.. .valuen}

where:
location represents an octal address which is added to the relocation base value to get the actual
address where the values are deposited. Any non-octal digit is accepted as a terminator
of an address.
value represents the new contents of the location. 0 is assumed if a value is not indicated.

2-15

System Communication
If multiple values are specified (valuel,... valuen), they are deposited beginning at the location specified. An odd
address is truncated by one to an even address. All values are stored as word quantities.
Any character that is not an octal digit may be used to separate the locations and values in a DEPOSIT command.
However, two (or more) non-octal separators cause 0’s to be deposited at the location specified (and those
following). For example:

.D 56,,, Deposits O’s in locations 56, 60, and 62.

The user should be aware of situations like the above, which cause system failure since the terminal vector (location
60) is zeroed.

An error results when the address specified references a location outside the job’s area.

Examples:
.D 1000=3705 Deposits 3705 into location 1000
.B 1000 Sets relocation base to 1000
.D 1500=2503 Puts 2503 into location 2500
.BO Resets base to 0

SAVE

2.7.2.5 SAVE Command - The SAVE command writes specified user memory areas to a named file and device
in save image format. Memory is written from location O to the highest memory address specified by the parameter
list or to the program high limit (contents of location 50 in the system communication area).

The SAVE command does not write the overlay segments of programs; it saves only the root segment (refer to
Chapter 6, Linker).

The form of the command is:

SAV{E} dev:filnam.ext {parameters}

where:
dev: represents one of the standard HT-11 block-replaceable device names. If no device is speci-
fied, DK is assumed.
file.ext represents the name to be assigned to the file being saved. If the file name is omitted, an
error message is output. If no extension is specified, the extension .SAV is used.
parameters represent memory locations to be saved. HT-11 transfers memory in 256-word blocks

beginning on boundaries that are multiples of 256 (decimal). If the locations specified make
a block of less than 256 words, enough additional locations are transferred to make a 256-
word block.

Parameters can be specified in the following format:

areal ,area2-arean

2-16

System Communication

where:

areal represent an octal number (or numbers separated by dashes). If more than one number
area2-arean is specified, the second number must be greater than the first.

The SAVE command saves the job parameters stored in the following locations. If the user wishes to alter these
parameters, the DEPOSIT command can be used:

Area Location
Start address 40
Initial stack 42
JISW 44
USR address 46
High address 50

If these values are changed, it is the user’s responsibility to reset them to their original values. See Chapter 9 for
more information concerning these addresses.

Examples:

.SAVE FILE1 10000-11000,14000-14100
Saves locations 10000(8) through 11777(8) (11000 starts the first word of a new
block, therefore the whole block, up to 12000, is stored) and 14000(8) through
14777(8) on DK with the name FILE1.SAV.

.SAVE DX1:NAM.NEW 10000
Saves locations 10000 through 10777 on DX1: with the name NAM.NEW.

.D 44:20000
.SAV SY:PRAM 1000-5777
Sets the reenter bit in the JSW and saves locations 1000 through 5777.

2.7.3 Commands to Start a Program

RUN

2.7.3.1 RUN Command — The RUN command loads the specified memory image file into memory and starts
execution at the start address specified in location 40.

The form of the command is:

RU{ N} dev:filnam.ext

where:
dev: is any standard device name specifying a block-replaceable device. If dev: is not specified,
the device is assumed to be DK.
filnam.ext is the file to be executed. If an extension is not specified, the extension .SAV is assumed.

2-17

System Communication

The RUN command is equivalent to a GET command followed by a START command (with no address specified).

NOTE
If a file containing overlays is to be RUN from a device
other than the system device, the handler for that device
must be loaded (see Section 2.7.1.6) before the RUN
command is issued.

Examples:
.RUN DX1:SRCH.SAV Loads and executes the file SRCH.SAV from DXI1.
.RUN PROG Loads PROG.SAV from DK and executes the program.
.GET PROG1 Loads PROG1.SAV from device DK without executing it. Then combines
PROGI1 and PROG2.SAV in memory and begins execution at the starting
.RUN PROG2 address for PROG2.
2.73.2 RCommand — Thiscommand is similar to the RUN command except that the file specified must be on

the system device (SY:).
The form of the command is:
R filnam.ext

No device may be specified. If an extension is not given, the extension .SAV is assumed.

Examples:
.R XYZ.SAV Loads and executes XYZ.SAV from SY.
.RSRC Loads and executes SRC.SAV from SY.

START

2.73.3 START Command — The START command begins execution of the program currently in memory (i.e.,
loaded via the GET command) at the specified address. START does not clear or reset memory areas.

The form of the command is:
ST{ART} {address}
where:

address is an octal number representing any 16-bit address. If the address is omitted, or if 0 is given,
the starting address in location 40 will be used.

If the address given does not exist or is not an even address, a trap to location 4 occurs. In this case a monitor error
message appears. If no address is given, the program’s start address from location 40 is used.

2-18

System Communication

Examples:
.GET FILE.1 Loads FILE.1 into memory and starts execution at location 1000.
.START 1000
.GET FILEA Loads FILEA.SAV, then combines FILEA.SAV with FILEB.SAV and starts execution
at FILEB’s start address.
.GET FILEB
ST

REENTER

2.7.3.4 REENTER Command — The REENTER command starts the program at its reentry address (the start
address minus two). REENTER does not clear or reset any memory areas and is generally used to avoid reloading
the same program for repetitive execution. It can be used to return to a program whose execution was stopped with
a CTRL C.
The form of the command is:

RE{ENTER}
If the reenter bit (bit 13) in the Job Status Word (location 44) is not set, the REENTER command is illegal.

For most system programs, the REENTER command restarts the program at the command level.

If desired, the reentry point in a user program can branch to a routine which initializes the tables and stack, fetches
device handlers etc., and then continues normal operation.

Example:
.RPIP CTRL C interrupts the PIP directory listing and transfers control to the monitor level.
*/F REENTER returns control to PIP;
MONITR.SYS

[directory prints]

(€ typed)
. °C
REENTER

*

2.8 MONITOR ERROR MESSAGES
The following error messages indicate fatal conditions that can occur during system boot:

Message Meaning
7B-1/O ERROR An I/0 error occurred during system boot.
7B-NO BOOT ON VOLUME No bootstrap has been written on volume.
?7B-NO MONITR.SYS No monitor exists on volume being booted.
7B-NOT ENOUGH MEMORY There is not enough memory for the system being booted.

2-19

System Communication

The following error messages are output by the Keyboard Monitor.

Message Meaning

?7ADDR? Address out of range in E or D command.

"DAT? The DATE command argument was illegal, or no argument
was given and the date has not yet been set.

?ER RD OVLY? An I/O error occurred while reading a KMON overlay to
process the current command. This is a serious error,
indicating that the system file MONITR.SYS is
unreadable.

?FIL NOT FND? File specified in R, RUN, or GET command not found.

?FILE? No file named where one is expected.

?1LL CMD? Illegal Keyboard Monitor command or command line too
long.

?1LL DEV? Illegal or nonexistent device.

?70VR MEM? Attempt to GET or RUN a file that is too big.

7PARAMS? Bad parameters were typed to the SAVE command.

7SV FIL I/O ER? I/O error on .SAV file in SAVE (output) or R, RUN, or
GET (input) command. Possible errors include end-of-
file, hard error, and channel not open.

7SY I/O ER? I/O error on system device (usually reading or writing
swap area).

TIM? The TIME command argument was illegal.

The following messages are output by the HT-11 Resident Monitor when an unrecoverable error has occurred.
Control passes to the Keyboard Monitor. The program in which the error occurred cannot be restarted with the RE
command. To execute the program again, use the R or RUN command.

The format for fatal monitor error messages is:

IM-text PC where PC is the address+2 of the location where the error occurred.

Note that ?M errors can be inhibited in certain cases by the use of the .SERR macro; see Chapter 9 for details.

Message Meaning
"M-BAD FETCH Either an error occurred while reading in a device handler
from SY, or the address at which the handler was to be
loaded was illegal.
"M-DIR IO ERR An error occurred doing 1/0 in the directory of a device

(e.g., ENTER on a write-locked device).

220

System Communication

Message Meaning

"M-DIR OVFLO No more directory segments were available for expansion
(occurs during file creation (ENTER)).

"M-FP TRAP A floating-point exception trap occurred, and the user
program had no .SFPA exception routine active (see
Chapter 9).

M-ILL CHAN A channel number was specified which was too large.

M-ILL EMT An EMT was executed which did not exist; i.e., the func-

tion code was out of bounds.

IM-ILL USR The USR was called from a completion routine. This
error does not have a soft return (i.e., .SERR will not
inhibit this message; see Chapter 9).

M-NO DEV A READ/WRITE operation was tried but no device
handler was in memory for it.

"M-OVLY ERR A user program with overlays failed to successfully read
an overlay.

M-SWAP ERR A hard 1/O error occurred while the system was attempt-

ing to write a user program to the system swap blocks.
This is usually caused by a write-locked system device.
This may cause the system to halt.

M-SYS ERR An I/O error occurred while trying to read KMON/USR
into memory, indicating that the monitor file is situated
on the system device in an area that has developed one or
more bad blocks. The monitor prints the message and
loops trying to read KMON. The message is a warning
that the system device is bad. If, after several seconds,
it is apparent that attempts to read KMON are failing,
halt the processor. It may be impossible to boot the
volume because of the bad area in the monitor file. Use
another system device to verify the bad blocks and
follow the recovery procedures described in section
4.2.11.1 of Chapter 4.

"M-TRAP TO 4 The job has referenced illegal memory or device registers,
"M-TRAP TO 10 an illegal instruction was used, stack overflow occurred,
a word instruction was executed with an odd address,
or a hardware problem caused bus time-out traps through
location 4.

If CSI errors occur and input was from the terminal, an error message is printed on the terminal.

221

System Communication

Message Meaning
?7DEV FUL? Output file will not fit.
?FIL NOT FND? Input file was not found.
?ILL CMD? Syntax error.
?ILL DEV? Device specified does not exist.

2.8.1 Monitor HALTS
The monitor will halt only if I/O errors occur during swap operations to the system device. If it halts, look for a
write-locked system device.

The monitor halt can be detected by its address, which is high in memory, above the resident base address (contents
of location 54).

When a monitor halt occurs, the system must be rebooted.

222

CHAPTER 3
TEXT EDITOR

The Text Editor (EDIT) is used to create and modify ASCII source files so that these files can be used as input to
other system programs such as the assembler or BASIC. Controlled by user commands from the keyboard, EDIT
reads ASCII files from a storage device, makes specified changes and writes ASCII files to a storage device or lists
them on the line printer or terminal.

The Editor considers a file to be divided into logical units called pages. A page of text is generally 50-60 lines long
(delimited by form feed characters) and corresponds approximately to a physical page of a program listing. The
Editor reads one page of text at a time from the input file into its internal buffers where the page becomes available
for editing. Editing commands are then used to:

Locate text to be changed,

Execute and verify the changes,

Output a page of text to the output file,

List an edited page on the line printer or terminal.

3.1 CALLING AND USING EDIT
To call EDIT from the system device, type:

R EDIT

and the RETURN key in response to the dot (.) printed by the monitor. EDIT responds with an asterisk (*) indi-
cating it is in command mode and awaiting a user command string.

Type CTRL C to halt the Editor at any time and return control to the monitor. To restart the Editor type .R EDIT
or the .REENTER command in response to the monitor’s dot. The contents of the buffers are lost when the Editor
is restarted.

3.2 MODES OF OPERATION

Under normal usage, the Editor operates in one of two different modes: Command Mode or Text Mode. In Com-
mand Mode all input typed on the keyboard is interpreted as commands instructing the Editor to perform some
operation. In Text Mode all typed input is interpreted as text to replace, be inserted into, or be appended to the
contents of the Text Buffer.

Immediately after being loaded into memory and started, the Editor is in Command Mode. An asterisk is printed at
the left margin of the console terminal page indicating that the Editor is waiting for the user to type a command. All
commands are terminated by pressing the ESCape key twice in succession. Execution of commands proceeds from
left to right. Should an error be encountered during execution of a command string, the Editor prints an error
message followed by an asterisk at the beginning of a new line indicating that it is still in Command Mode and
awaiting a legal command. The command in error (and any succeeding commands) is not executed and must be
corrected and retyped.

Some terminals do not have and ESCape key. On these terminals, the ALTMODE key should be used.

3-1

Text mode is entered whenever the user types a command which must be followed by a text string. These commands
insert, replace, or otherwise manipulate text; after such a command has been typed, all succeeding characters are
considered part of the text string until an ESCape is typed. The ESCape terminates the text string and causes the

Text Editor

Editor to reenter Command Mode, at which point all characters are considered commands again.

3.3 SPECIAL KEY COMMANDS
The EDIT key commands are listed in Table 3-1. Control commands are typed by holding down the CTRL key
while typing the appropriate character.

Table 3-1 EDIT Key Commands

Key

Explanation

ESCape

CTRLC

CTRLO

CTRLU

RUBOUT

TAB

CTRL X

Echoes $, A single ESCape terminates a text string. A double ESCape executes the
command string. For example,

*GMOV A, B$ — 1DS$$

Echoes at the terminal as 1C and a carriage return. Terminates execution of EDIT
commands, and returns to monitor Command Mode. A double CTRL C is necessary
when 1/0 is in progress. The REENTER command may be used to restart the Editor,
but the contents of the text buffers are lost.

Echoes 10 and a carriage return. Inhibits printing on the terminal until completion
of the current command string. Typing a second CTRL O resumes output.

Echoes tU and a carriage return. Deletes all the characters on the current terminal
input line. (Equivalent to typing RUBOUT back to the beginning of the line.)

Deletes character from the current line; echoes a backslash followed by the character
deleted. Each succeeding RUBOUT typed by the user deletes and echoes another
character. An enclosing backslash is printed when a key other than RUBOUT is
typed. This erasure is done right to left up to the last carriage return/line feed
combination. RUBOUT may be used in both Command and Text Modes.

Spaces to the next tab stop. Tab stops are positioned every eight spaces on the
terminal; typing the TAB key causes the carriage to advance to the next tab position.

Echoes tX and a carriage return. CTRL X causes the Editor to ignore the entire
command string currently being entered. The Editor prints a <CR><LF> and an
asterisk to indicate that the user may enter another command. For example:

*IABCD
EFGH"X

*

A CTRL U would only cause deletion of EFGH; CTRL X erases the entire command.

Text Editor

3.4 COMMAND STRUCTURE
EDIT commands fall into six general categories:

Category Commands Section
Input/Output Edit Backup 3.6.1.3
Edit Read 3.6.1.1
Edit Write 3.6.1.2
End File 3.6.1.9
Exit 3.6.1.10
List 3.6.1.7
Next 3.6.1.6
Read 3.6.14
Verify 3.6.1.8
Write 3.6.1.5
Pointer location Advance 3.623
Beginning 3.6.2.1
Jump 3.62.2
Search Find 3.6.32
Get 3.6.3.1
Position 3.6.3.3
Text modification Change 3.644
Delete 3.642
Exchange 3.64.5
Insert 3.64.1
Kill 3.64.3
Utility Edit Lower 3.6.5.6
Edit Upper 3.6.5.6
Edit Version 3.6.5.5
Execute Macro 3.6.54
Macro 3.6.5.3
Save 3.6.5.1
Unsave 3.6.5.2

The general format for the first five categories of EDIT commands is:

nCtext$
or
nC$

where n represents one of the legal arguments listed in Table 3-2, C is a one- or two-letter command, and text is a
string of successive ASCII characters.

Asarule, commands are separated from one another by a single ESCape, however, if the command requires no text,

the separating is not necessary. Commands are terminated by a single ESCape; typing a second ESCape begins
execution.

33

Text Editor

3.4.1 Arguments

An argument is positioned before a command letter and is used either to specify the particular portion of text to be
affected by the command or to indicate the number of times the command should be performed. With some com-
mands, this specification is implicit and no arguments are needed; other editing commands require an argument.
Table 3-2 lists the formats of arguments which are used by commands of this second type.

Table 3-2 Command Arguments

Format Meaning

n n stands for any integer in the range —16383 to +16383 and may, except where noted, be
preceded by a + or —. If no sign precedes n, it is assumed to be a positive number. When-
ever an argument is acceptable in a command, its absence implies an argument of 1 (or —1
if only the — is present).)

0 0 refers to the beginning of the current line.
/ [refers to the end of text in the current Text Buffer.

= = is used with the J, D and C commands only and represents —n, where n is equal to the
length of the last text argument used.

The roles of all arguments are explained more specifically in following sections.

3.4.2 Command Strings

All EDIT command strings are terminated by two successive ESCape characters. Spaces, carriage returns and line
feeds within a command string may be used freely to increase command readability but are ignored unless they
appear in a text string. Commands used to insert text can contain text strings that are several lines long. Each line is
terminated with a <CR> <LF> and the entire command is terminated with a double ESCape.

Several commands can be strung together and executed in sequence. For example,
text object text object

——ttn,

N—-’\ 3
*BGMOV PC, R0$—2CR 1$5KGCLR @R2$$
Nt erp—— N\t NN e

second third fifth
command command command
first command fourth
command

Execution of a command string begins when the double ESCape is typed and proceeds from left to right. Except
when they are part of a text string, spaces, carriage return, line feed, and single ESCape are ignored. For example:
*BGMOV R0$=CCLR R1$AV$$
may be typed as:
*B$ GMOV R0$
=CCLR R1$
A$ V$$

with equivalent execution.

34

Text Editor

3.4.3 The Current Location Pointer

Most EDIT commands function with respect to a movable reference pointer which is normally located between the
most recent character operated upon and the next character in the buffer. At any given time during the editing pro-
cedure, this pointer can be thought of as representing the current position of the Editor in the text. Most commands
use this pointer as an implied argument. Commands are available for moving the pointer anywhere in the text, there-
by redefining the current location and allowing greater facility in the use of other commands.

3.4.4 Character- and Line-Oriented Command Properties

Edit commands are line-oriented or character-oriented depending on the arguments they accept. Line-oriented com-
mands operate on entire lines of text. Character-oriented commands operate on individual characters independent
of what or where they are.

When using character-oriented commands, a numeric argument specifies the number of characters that are involved
in the operation. Positive arguments represent the number of characters in a forward direction (in relation to the
pointer), negative arguments the number of characters in a backward direction. Carriage return and line feed charac-
ters are treated the same as any other character. For example, assume the pointer is positioned as indicated in the
following text (t represents the current position of the pointer):

MOV #VECT R2<CR> <LF>T
CLR @R2<CR> <LF>

The EDIT command —2J backs the pointer by two characters.

MOV #VECT,R2?<CR> <LF>
CLR @R2<CR><LF>

The command 10J advances the pointer forward by ten characters and places it between the CR and LF characters
at the end of the second line.

MOV #VECT,R2<CR> <LF>

CLR (LI'R2<CR>T<LF>
Finally, to place the pointer after the “C” in the first line, a —14J command is used. The J (Jump) command is ex-
plained in Section 3.6.2.2.

MOV #VECT ,R2<CR> <LF>
CLR @R2<CR><LF>

When using line-oriented commands, a numeric argument represents the number of lines involved in the operation.
The Editor recognizes a line of text as a unit when it detects a <CR> <LF> combination in the text. When the
user types a carriage return, the Editor automatically inserts a line feed. Positive arguments represent the number
of lines forward (in relation to the pointer); this is accomplished by counting carriage return/line feed combinations
beginning at the pointer. So, if the pointer is at the beginning of a line, a line-oriented command argument of +1
represents the entire line between the current pointer and the terminating line feed. If the current pointer is in the
middle of the line, an argument of +1 represents only the portion of the line between the pointer and the terminat-
ing line feed.

For example, assume a buffer of:

MOV 4PC,RI<CR> <LF>

ADD #DRIV-,R1<CR> <LF>
MOV #VECT R2<CR> <LF>
CLR @R2<CR> <LF>

35

Text Editor

The command to advance the pointer one line (1A) causes the following change:

MOV PC,RI<CR><LF>
+ADD #DRIV-, R1<CR><LF>
MOV #VECT ,R2<CR> <LF>

CLR @R2<CR> <LF>

The command 2 A moves the pointer over 2 <CR> <LF> combinations:

MOV PCRI<CR><LF>
ADD #DRIV-,,RI<CR> <LF>
MOV #VECT,R2<CR><LF>

+CLR @R2<CR> <LF>

Negative line arguments reference lines in a backward direction (in relation to the pointer). Consequently, if the
pointer is at the beginning of the line, a line argument of —1 means “‘the previous line” (moving backward past the
first <CR> <LF> and up to but not including the second <CR> <LF>; if the pointer is in the middle of a line, an
argument of —1 means the preceding 1 1/2 lines. Assume the buffer contains:

MOV PC,RI<CR><LF>

ADD #DRIV-. ,R1<CR> <LF>
MOV #VECT R2<CR> <LF>
CLR @R2<CR> <LF>

A command of —1A backs the pointer by 1 1/2 lines.

MOV PC RI<CR> <LF>
+ADD #DRIV-. R1<CR><LF>
MOV #VECT ,R2<CR> <LF>

CLR @R2<CR><LF>

Now a command of —1A backs it by only 1 line.

MOV PC RI<CR><LF>
ADD #DRIV-, ,RI<CR> <LF>
MOV #VECT R2<CR> <LF>
CLR @R2<CR><LF>

3.4.5 Command Repetition
Portions of a command string may be executed more than once by enclosing the desired portion in angle brackets
(< >) and preceding the left angle bracket with the number of iterations desired. The structure is:

C1$C28n<C38C4$>C58$

where C1, C2, . .. C5 represent commands and n represents an iteration argument. Commands C1 and C2 are each
executed once, then commands C3 and C4 are executed n times. Finally command C5 is executed once and the
command line is finished. The iteration argument (n) must be a positive number (1 to 16,383), and if not specified
is assumed to be 1. If the number is negative or too large, an error message is printed. Iteration brackets may be
nested up to 20 levels. Command lines are checked to make certain the brackets are correctly used and match prior
to execution.

3-6

Text Editor
Essentially, enclosing a portion of a command string in iteration brackets and preceding it with an iteration argu-
ment (n) is equivalent to typing that portion of the string n times. For example:
* éGAAA$3<—D IB$—I>VE$
is equivalent to typing:
*BGAAA$—-DIB$—J—-DIB$—J—-DIB$S—JVS
and:
*B3<2<AD>V>S
is equivalent to typing:
*BADADVADADVADADVSS
The following bracket structures are examples of legal usage:

<> >L>>>>
<LKL>>>LI>L>

The following bracket structures are examples of illegal combinations which will cause an error message since the
brackets are not properly matched:

><><
<<LKILK>>

During command repetition, execution proceeds from left to right until a right bracket is encountered. EDIT then
returns to the last left bracket encountered, decrements the iteration counter and executes the commands within the
brackets. When the counter is decremented to 0, EDIT looks for the next iteration count to the left and repeats the
same procedures. The overall effect is that EDIT works its way to the innermost brackets and then works its way
back again. The most common use for iteration brackets is found in commands such as Unsave, that do not accept
repeat counts. For example:

*3<U>$$
Assume a file called SAMP (stored on device DK) is to be read and the first four occurrences of the instruction
MOV #200,R0 on each of the first five pages are to be changed to MOV #244,R4. The following command line is

entered:

*EBSAMP$5<N4<BGMOV #200, R0$=J$3<G0$=C4$> > >EX$$
\‘\/—/
W
W

A

3-7

Text Editor

The command line contains three sets of iteration loops (A,B,C) and is executed as follows:

Execution initially proceeds from left to right; the file SAMP is opened for input, and the first page is read into
memory. The pointer is moved to the beginning of the buffer and a search is initiated for the character string

MOV #200,R0. When the string is found, the pointer is positioned at the end of the string, but the =J command
moves the pointer back so that it is positioned immediately preceding the string. At this point, execution has passed
through each of the first two sets of iteration loops (A,B) once. The innermost loop (C) is next executed three
times, changing the Os to 4s. Control now moves back to pick up the second iteration of loop B, and again moves
from left to right. When loop C has executed three times, control again moves back to loop B. When loop B has
executed a total of 4 times, control moves back to the second iteration of loop A, and so forth until all iterations
have been satisfied.

3.5 MEMORY USAGE
The memory area used by the Editor is divided into four logical buffers as follows:

MACRO BUFFER

High Memory
SAVE BUFFER

FREE MEMORY

COMMAND INPUT
BUFFER

Low Memory
TEXT BUFFER

The Text Buffer contains the current page of text being edited, and the Command Input Buffer holds the command
currently being typed at the terminal. If a command currently being entered by the user is within 10 characters of
exceeding the space available in the Command Buffer, the message:

* CB ALMOST FULL *
is printed. If the command can be completed within 10 characters, the user may finish entering the command;
otherwise he should type the ALTMODE key twice to execute that portion of the command line already completed.
The message is printed each time a character is entered in one of the last 10 spaces.
If the user attempts to enter more than 10 characters the message:

?CB FULL?

is printed and all commands typed within the last 10 characters are ignored. The user again has 10 characters of
available space in which to correct the condition.

The Save Buffer contains text stored with the Save (S) command, and the Macro Buffer contains the command
string macro entered with the Macro (M) command. (Both commands are explained in Section 3.6.5.)

The Macro and Save Buffers are not allocated space until an M or S command is executed. Once an M or S com-
mand is executed, a OM or OU (Unsave) command must be executed to return that space to the free area.

The size of each buffer automatically expands and contracts to accommodate the text being entered; if there is not
enough space available to accommodate required expansion of any of the buffers, a “?*NO ROOM*?” error message
is typed.

Text Editor

3.6 EDITING COMMANDS

3.6.1 Input/Output Commands

Input commands are used to create files and read them into the Text Buffer where they become available for editing
or listing. Output commands cause text to be listed on the terminal or lineprinter or written out to a storage device.
Some commands are specifically designed for either input or output functions, while a few commands serve both
purposes.

Once editing is completed and the page currently in the Text Buffer is written to the output file, that page of text is
unavailable for further editing until the file is closed and reopened.

3.6.1.1 Edit Read — The Edit Read command opens an existing file for input and prepares it for editing. Only
one file can be open for input at a time.

The form of the command is:

ERdev:filnam.ext$
The string argument (dev:filnam.ext) is limited to 19 characters and specifies the file to be opened. If no device is
specified, DK: is assumed. If a file is currently open for input, that file is closed; any edits made to the file are
preserved.

Edit Read does not input a page of text nor does it affect the contents of the other user buffers (see Section 3.5.)

Edit Read can be used on a file which is already open to close that file for input and reposition EDIT at its begm-
ning. The first Read command following any Edit Read command inputs the first page of the file.

Examples:
*ERDX1:SAMP. MAC$$ Opens SAMP.MAC on device DX1: for input.
*ERSOURCES$$ Opens SOURCE on device DK: for input.

3.6.1.2 Edit Write — The Edit Write command sets up a file for output of newly created or edited text. How-
ever, no text is output and the contents of the user buffers are not affected. Only one file can be open for output at
a time. Any current output files are closed.

The form of the command is:
EWdev:filnam.ext[n] $

The string argument (dev:filnam.ext[n]) is limited to 19 characters and is the name to be assigned to the output file
being opened. If dev: is not specified, DK: is assumed. [n] is optional and represents the length of the file to be
opened. If not specified, one half the largest available space is used; if this is not adequate for the output file size,
the EF and EX commands will not close the output file, and all edits will be lost. It is thus recommended that the
[n] construction be used whenever there is doubt as to whether enough space is available on the device for the
output file.

39

Text Editor

If a file with the same name already exists on the device, the old file is deleted when an EXit, End File or another
Edit Write command is executed.

Examples:
*EWDK:TEST.MACS$$ Opens the file TEST.MAC on device DK: for output.
*EWFILE.BAS[11]$$ Opens the file FILE.BAS (allocating 11 blocks) on the device DK: for output.

3.6.1.3 Edit Backup — The Edit Backup command is used to open an existing file for editing and at the same
time create a backup version of the file. Any currently open file will be closed. No text is read or written with this
command.

The_form of the command is:
EBdev:filnam.ext[n] $

The device designation, filename and extension are limited to 19 characters. If dev: is not specified, DK: is assumed.
[n] is optional and represents the length of the file to be opened; if not specified, one-half the largest available space
is used.

The file indicated in the command line must already exist on the device designated since text will be read from this
file as input. At the same time, an output file is opened under the same filename and extension. After an EB com-
mand has been successfully executed, the original file (used as input) is renamed with the current filename and a
.BAK extension; any previous file with this filename and a .BAK extension is deleted. The new output file is closed
and assigned the name as specified in the EB command. This renaming of files takes place whenever an Exit, End
File, Edit Read, Edit Write or Edit Backup command is executed.

Examples:

*EBSY:BAS1.MACS$$ Opens BAS1.MAC on SY. When editing is complete, the old BAS1.MAC
becomes BAS1.BAK and the new file becomes BAS1.MAC. Any previous
version of BAS1.BAK is deleted.

*EBBAS2.BAS[15] $$ Opens BAS2.BAS on DK (allocating 15 blocks). When editing is complete,

the old BAS2.BAS is labeled BAS2.BAK and the new file becomes BAS2.BAS.
Any previous version of BAS2 BAK is deleted.

In EB, ER and EW commands, leading spaces between the command and the filename are illegal (the filename is con-
sidered to be a text string). All dev:file.ext specifications for EB, ER and EW commands conform to the HT-11
conventions for file naming and are identical to filenames entered in command strings used with other system pro-

grams.

3.6.14 Read — The Read command (R) causes a page of text to be read from the input file (previously specified
in an ER or EB command) and appended to the current contents, if any, of the Text Buffer.

The form of the command is:

R

3-10

Text Editor

No arguments are used with the R command and the pointer is not moved. Text is input until one of the following
conditions is met:

1. A form feed character, signifying the end of the page, is encountered. At this point, the form feed will be
the last character in the buffer; or

2. The Text Buffer is within 500 characters of being full. (When this condition occurs, Read inputs up to
the next <CR> <LF> combination, then returns to Command Mode. An asterisk is printed as though
the Read were complete, but text will not have been fully input); or

3. An end-of-file condition is detected, (the *EOF* message is printed when all text in the file has been read
into memory and no more input is available).

The maximum number of characters which can be brought into memory with an R command is approximately
6,000 for an 8K system. Each additional 4K of memory allows approximately 8,000 additional characters to be
input. An error message is printed if the Read exceeds the memory available or if no input is available.

3.6.1.5 Write — The Write command (W) moves lines of text from the Text Buffer to the output file (as specified
in the EW or EB command). The format of the command is:

nW Write all characters beginning at the pointer and ending at the nth <CR> <LF> to the output file.
—nW Write all characters beginning on the —nth line and terminating at the pointer to the output file.
ow Write the text from the beginning of the current line to the pointer.

W Write the text from the pointer to the end of the buffer.

The pointer is not moved and the contents of the buffer are not affected. If the buffer is empty when the Write is
executed, no characters are output.

Examples:
*5W$$ Writes the next 5 lines of text starting at the pointer, to the current output file.
*2wWs$$ Writes the previous 2 lines of text, ending at the pointer, to the current output file.
*B/W$$ Writes the entire Text Buffer to the current output file.
3.6.1.6 Next — The Next command acts as both an input and output command since it performs both functions.

First it writes the current Text Buffer to the output file, then clears the buffer, and finally reads in the next page of
the input file. The Next command can be repeated n times by specifying an argument before the command. The
command format is:

nN

Next accepts only positive arguments (n) and leaves the pointer at the beginning of the buffer. If fewer than n pages
are available in the input file, all available pages are input to the buffer, output to the current file, and deleted from
the buffer; the pointer is left positioned at the beginning of an empty buffer, and an error message is printed. This
command is equivalent to a combination of the Beginning, Write, Delete and Read commands (B/W/DR). Next can
be used to space forward, in page increments, through the input file.

3-11

Text Editor

Example:
*2N$$ Writes the contents of the current Text Buffer to the output file. Read and write the next page
of text. Clear the buffer and then read in another page.
3.6.1.7 List — The List command prints the specified number of lines on the terminal. The format of the com-
mand is:
nL Print all characters beginning at the pointer and ending with the nth <CR> <LF>.
—nL Print all characters beginning with the first character on the —nth line and terminating at the
pointer.
OL Print from the beginning of the current line up to the pointer.
/L Print from the pointer to the end of the buffer.

The pointer is not moved after the command is executed.

Examples:
*-2L$$ Prints all characters starting at the second preceding line and ending at the pointer.
*4L$$ Prints all characters beginning at the pointer and terminating at the 4th <CR> <LF>.

Assuming the pointer location is:

MOVB 5 (R1),@R2
ADD; R1,(R2)+

The command:
*—1L$$
Prints the previous 1 1/2 lines up to the pointer:

MOVB 5(RI),@R2
ADD

3.6.1.8 Verify — The Verify command prints the current text line (the line containing the pointer) on the termi-

nal. The position of the pointer within the line has no effect and the pointer does not move. The command format
is:

v

No arguments are used. The V command is equivalent to a OLL (List) command.

Example:

*V$$ The command causes the current line of text to be printed.
ADD R1, (R2) +

3-12

Text Editor

3.6.1.9 End File — The End File command closes the current output file. This command does no input/output
operations and does not move the pointer. The buffer contents are not affected. The output file is closed, contain-
ing only the text previously output.

The form of the command is:
EF
No arguments are used. Note that an implied EF command is included in EW and EB commands.

3.6.1.10 EXit — The EXit command is used to terminate editing, copy the text buffer and the remainder of the
input file to the output file, close input and output files, and return control to the monitor. It performs consecutive
Next commands until the end of the input file is reached, then closes both the input and output files.

The command format is:
EX

No arguments are used. Essentially, Exit is used to copy the remainder of the input file into the output file and
return to the monitor. Exit is legal only when there is an output file open. If an output file is not open and it is
desired to terminate the editing session, return to the monitor with CTRL C.

NOTE
An EF or EX command is necessary in order to make an
output file permanent. If CTRL C is used to return to
the monitor without a prior execution of an EF com-
mand, the current output file is not saved. (It can how-
ever, be made permanent using the monitor CLOSE
command.)

An example of the contrasting uses of the EF and EX commands follows. Assume an input file, SAMPLE, contains
several pages of text. The user wishes to make the first and second pages of the file into separate files called SAM1
and SAM2, respectively; the remaining pages of text will then make up the file SAMPLE. This can be done using
these commands:

*EWSAM1$$
*ERSAMPLES$$
*RNEF$$
*EWSAM2$$
*NEF$$
*EWSAMPLESEX$$

The user might note that the EF commands are not necessary in this example since the EW command closes a cur-
rently open output file before opening another.

3.6.2 Pointer Relocation Commands
Pointer relocation commands allow the current location pointer to be moved within the Text Buffer.

3.6.2.1 Beginning — The Beginning command moves the current location pointer to the beginning of the Text
Buffer.

The command format is:

B

3-13

Text Editor

There are no arguments.
For example, assume the buffer contains:

MOVB 5 (R1),@R2
ADD RI,(R2)+
CLR @R2

MOVB 6/(R1), @R2

The B command:
*B$$
moves the pointer to the beginning of the Text Buffer:
4MOVB 5 (RI),@R2
ADD R1,(R2) +
CLR @R2
MOVB 6(R1),@R2

3.6.22 Jump - The Jump command moves the pointer over the specified number of characters in the Text
Buffer.

The form of the command is:

(tor—) nJ Move the pointer (backward or forward) n characters.
oJ Move the pointer to the beginning of the current line (equivalent to 0A).
/J Move the pointer to the end of the Text Buffer (equivalent to /A).
=J Move the pointer backward n characters, where n equals the length of the last text

argument used.

Negative arguments move the pointer toward the beginning of the buffer, positive arguments toward the end. Jump
treats carriage return, line feed, and form feed characters the same as any other character, counting one buffer posi-
tion for each.

Examples:
*3J$$ Moves the pointer ahead three characters.
*_4J$$ Moves the pointer back four characters.
*B$GABCS$=J$$ Move the pointer so that it immediately precedes the first occurrence of ‘ABC’ in the
buffer.
3.6.2.3 Advance — The Advance command is similar to the Jump command except that it moves the pointer a

specified number of lines (rather than single characters) and leaves it positioned at the beginning of the line.

3-14

Text Editor

The form of the command is:

nA Advance the pointer forward n lines and position it at the beginning of the nth line.
—nA Move the pointer backward past n <CR> <LF> combinations and position it at the beginning
of the —nth line.
0A Advance the pointer to the beginning of the current line (equivalent to 0J).
/A Advance the pointer to the end of the Text Buffer (equivalent to /J).
Examples:

*3A%$% Moves the pointer ahead three lines.
Assuming the buffer contains:
CLR @R2
T
The command:
*0AS
Moves the pointer to:
4+CLR @R2

3.6.3 Search Commands
Search commands are used to locate specific characters or strings of characters within the Text Buffer.

3.6.3.1 Get — The Get command starts at the pointer and searches the current Text Buffer for the nth occur-
rence of a specified text string. If the search is successful, the pointer is left immediately following the nth occur-
rence of the text string. If the search fails, an error message is printed and the pointer is left at the end of the Text
Buffer. The format of the command is:

nGtext$
The argument (n) must be positive and is assumed to be 1 if not otherwise specified. The text string may be any
length and immediately follows the G command. The search is made on the portion of the text between the pointer
and the end of the buffer.

Example:

Assuming the buffer contains:

tMOV PC, R1
ADD #DRIV-., R1
MOV #VECT,R2
CLR @R2
MOVB 5 (R1), @R2
ADD R1, (R2) +
CLR @R2

MOVB 6 (R1), @R2

3-15

Text Editor

The command:
*GADDS
positions the pointer at:
ADDy #DRIV-, R1
The command:
*3G@R2$$
positions the pointer at:

ADD R1,(R2) +
CLR @R2,

After search commands, the pointer is left immediately following the text object. Using a search command in com-
bination with =J will place the pointer before the text object, as follows:

*GTEST$=J$$
This command combination places the pointer before ‘TEST’.
3.6.32 Find — The Find command starts at the current pointer and searches the entire input file for the nth
occurrence of the text string. If the nth occurrence of the text string is not found in the current buffer, a Next
command is automatically performed and the search is continued on the new text in the buffer. When the search
is successful, the pointer is left immediately following the nth occurrence of the text string. If the search fails (i.e.,
the end-of-file is detected for the input file and the nth occurrence of the text string has not been found), an error
message is printed and the pointer is left at the beginning of an empty Text Buffer.
The form of the command is:

nFtext$

The argument (n) must be positive and is assumed to be 1if not otherwise specified.

By deliberately specifying a nonexistent search string, the user can close out his file; that is, he can copy all remain-
ing text from the input file to the output file.

Find is a combination of the Get and Next commands.

Example:

*2FMOBV 6 (R1),@R2$$ Searches the entire input file for the second occurrence of the text string
MOVB 6 (R1), @R2. Each unsuccessfully searched buffer is written to the
output file.

3.6.3.3. Position — The Position command searches the input file for the nth occurrence of the text string. If

the desired text string is not found in the current buffer, the buffer is cleared and a new page is read from the input
file. The format of the command is:

nPtext$

3-16

Text Editor

The argument (n) must be positive, and is assumed to be | if not otherwise specified. When a P command is executed
the current contents of the buffer are searched from the location of the pointer to the end of the buffer. If the
search is unsuccessful, the buffer is cleared and a new page of text is read and the cycle is continued.

If the search is successful, the pointer is positioned after the nth occurrence of the text. If it is not, the pointer is
left at the beginning of an empty Text Buffer.

The Position command is a combination of the Get, Delete and Read commands; it is most useful as a means of plac-
ing the location pointer in the input file. For example, if the aim of the editing session is to create a new file from
the second half of the input file, a Position search will save time.

The difference between the Find and Position commands is that Find writes the contents of the searched buffer to
the output file while Position deletes the contents of the buffer after it is searched.

Example:

*PADD R1, (R2) + $$ Searches the entire input file for the specified string ignoring the unsuccessfully
searched buffers.

3.6.4 Text Modification Commands
The following commands are used to insert, relocate, and delete text in the Text Buffer.

3.6.4.1 Insert — The Insert command causes the Editor to enter Text Mode and allows text to be inserted
immediately following the pointer. Text is inserted until an ESCape is typed and the pointer is positioned
immediately after the last character of the insert. The command format is:

Itext$

No arguments are used with the Insert command, and the text string is limited only by the size of the Text Buffer and
the space available. All characters except ESCape are legal in the text string. ESCape terminates the text string.

NOTE
Forgetting to type the I command will cause the text
entered to be executed as commands.

EDIT automatically protects against overflowing the Text Buffer during an Insert. If the I command is the first
command in a multiple command line, EDIT ensures that there will be enough space for the Insert to be executed at
least once. If repetition of the command exceeds the available memory, an error message is printed.

Example:
*IMoV #BUFF, R2 Inserts the specified text at the current location of the pointer and leaves the
MOV #LINE, R1 pointer positioned after RO.
MOVB —1(R2), R0O$$

3.6.42 Delete — The Delete command removes a specified number of characters from the Text Buffer. Charac-

ters are deleted starting at the pointer; upon completion, the pointer is positioned at the first character following the
deleted text.

3-17

The form of the command is:

(tor—) nD
0D
/D
=D
Examples:
*-2D$$

*B$FMOV R1$=D$

Assuming a buffer of:

ADD RI,(R2)+
CLR 4@R2

the command:
*oD$$
leaves the buffer with:

ADD R1,(R2) +
T(‘“RQ

Text Editor

Delete n characters (forward or backward from the pointer).
Delete from beginning of current line to the pointer (equivalent to 0K).
Delete from pointer to end of Text Buffer (equivalent to /K).

Delete —n characters, where n equals the length of the last text argument used.

Deletes the two characters immediately preceding the pointer.

Deletes the text string ‘MOV R1°. (=D used in combination with a search command
will delete the indicated text string).

3.6.43 Kill — The Kill command removes n lines from the Text Buffer. Lines are deleted starting at the location
pointer; upon completion of the command, the pointer is positioned at the beginning of the line following the
deleted text. The command format is:

nK Delete lines beginning at the pointer and ending at the nth <CR> <LF>.
—nK Delete lines beginning with the first character in the —nth line and ending at the pointer.
0K Delete from the beginning of the current line to the pointer (equivalent to OD).
/K Delete from the pointer to the end of the Text Buffer (equivalent to /D).
Example:

*2K$$ Delete lines starting at the current location pointer and ending at the 2nd <CR> <LF>.

Assuming a buffer of:

ADD RI,(R2)+
CLR; @R2
MOVB 6(R1),@R2

3-18

Text Editor

the command:
*/IK$S
alters the contents of the buffer to:

ADD R1, (R2) +
CLR

Kill and Delete commands perform the same function, except that Kill is line-oriented and Delete is character-
oriented. .

3.6.4.4 Change — The Change command replaces n characters, starting at the pointer, with the specified text
string and leaves the pointer positioned immediately following the changed text.

The form of the command is:

(+or—-) nCtext$ Replace n characters (forward or backward from the pointer) with the specified
text.
0Ctext$ Replace the characters from the beginning of the line up to the pointer with the

specified text (equivalent to 0X).

/Ctext$ Replace the characters from the pointer to the end of the buffer with the specified
text (equivalent to /X).

=Ctext$ Replace —n characters with the indicated text string, where n represents the length
of the last text argument used.

The size of the text is limited only by the size of the Text Buffer and the space available. All characters are legal
except ESCape which terminates the text string.

If the C command is to be executed more than once (i.e., it is enclosed in angle brackets) and if there is enough
space available so that the command can be entered, it will be executed at least once (provided it appears first in the
command string). If repetition of the command exceeds the available memory, an error message is printed. The
Change command is identical to executing a Delete command followed by an Insert (nDItext$).
Examples:

*5CHVECT$S Replaces the five characters to the right of the pointer with #VECT.

Assuming a buffer of:

CLR @R2
MOV, 5 (R1), @R2

The command:
*0CADDB$$
leaves the buffer with:

CLR @R2
ADDB, 5 (R1), @R2

3-19

Text Editor

=C can be used in conjunction with a search command to replace a specific text string as follows:

*GFIFTY : $=CFIVE : $ Find the occurrence of the text string FIFTY: and replace it with the text
string FIVE:.

3.6.4.5 Exchange — The Exchange command exchanges n lines, beginning at the pointer, with the indicated text
string and leaves the pointer positioned after the changed text.

The form of the command is:

nXtext$ Exchange all characters beginning at the pointer and ending at the nth <CR> <LF> with the
indicated text.

—nXtext$ Exchange all characters beginning with the first character on the —nth line and ending at the
pointer with the indicated text.

0Xtext$ Exchange the current line from the beginning to the pointer with the specified text (equivalent
to 0C).

/Xtext$ Exchange the lines from the pointer to the end of the buffer with the specified text (equivalent
to /C).

All characters are legal in the text string except ESCape which terminates the text.

The Exchange command is identical to a Kill command followed by an Insert (nKItext$), and accepts all legal line-
oriented arguments.

If the X command is enclosed within angle brackets so that it will be executed more than once, and if there is
enough memory space available so that the X command can be entered, it will be executed at least once (provided it
is first in the command string). If repetition of the command exceeds the available memory, an error message is
printed.

Example:
*2XADD R1,(R2)+ Exchanges the two lines to the right of the pointer location with the text
CLR @R2 string.
$$

3.6.5 Utility Commands

3.6.5.1 Save — The Save command starts at the pointer and copies the specified number of lines into the Save
Buffer (described previously in Section 3.5).

The form of the command is:
nS
The argument (n) must be positive. The pointer position does not change and the contents of the Text Buffer are

not altered. Each time a Save is executed, the previous contents of the Save Buffer, if any, are destroyed. If the
Save command causes an overflow of the Save Buffer, an error message is printed.

320

Text Editor

Example:
Assume the Text Buffer contains the following assembly language subroutine:

: SUBROUTINE MSGTYP

; WHEN CALLED, EXPECTS RO TO POINT TO AN

; ASCII MESSAGE THAT ENDS IN A ZERO BYTE,

; TYPES THAT MESSAGE ON THE USER TERMINAL

ASECT
=1000

MSGTYP: TSTB (%0) : DONE?
BEQ MDONE . YES—RETURN

MLOOP: TSTB @#177564 : NO—IS TERMINAL READY?
BPL MLOOP : NO—WAIT
MOVB (%0) +, @#177566 : YES PRINT CHARACTER
BR MSGTYP ; LOOP

MDONE: RTS %7 : RETURN

The command:
*14S$$

stores the entire subroutine in the Save Buffer; it may then be inserted in a program wherever needed by using the
U command.

3.6.5.2 Unsave — The Unsave command inserts the entire contents of the Save Buffer into the Text Buffer at the
pointer location and leaves the pointer positioned following the inserted text.

The form of the command is:
U Insert in the Text Buffer the contents of the Save Buffer.
(01]9] Clear the Save Buffer and reclaim the area for text.

Zero is the only legal argument to the U command.

The contents of the Save Buffer are not destroyed by the Unsave command (only by the OU command) and may be
Unsaved as many times as desired.

If there is no text in the Save Buffer and the U command is given, the 2*NO TEXT*? error message is printed. If the
Unsave command causes an overflow of the Text Buffer, the 2*NO ROOM*? error message is displayed.

3.6.5.3 Macro — The Macro command inserts a command string into the EDIT Macro Buffer. The Macro com-
mand is of the form:

M/command string/ Store the command string in the Macro Buffer.

oM Clear the Macro Buffer and reclaim the area for text.
or

M//

[represents the delimiter character. The delimiter is always the first character following the M command, and may
be any character which does not appear in the Macro command string itself.

321

Text Editor

Starting with the character following the delimiter, EDIT places the Macro command string characters into its inter-
nal Macro Buffer until the delimiter is encountered again. At this point, EDIT returns to Command Mode. The
Macro command does not execute the Macro string; it merely stores the command string so that it can be executed
later by the Execute Macro (EM) command. Macro does not affect the contents of the Text or Save Buffers.

All characters except the delimiter are legal Macro command string characters, including single ESCape to
terminate text commands. All commands, except the M and EM commands, are legal in a command string macro.

In addition to the OM command, typing the M command immediately followed by two identical characters
(assumed to be delimiters) and two ESCape characters also clears the Macro Buffer.

Examples:
*M//$$ Clears the Macro Buffer
*M/GRO$-C1$/$$ Stores a Macro to change RO to R1.

NOTE
Be careful to choose infrequently used characters as
macro delimiters; use of frequently used characters can
lead to inadvertent errors. For example,

*M GMOV R0$=CADD R1$ $$
?*NO FILE*?

In this case, it was intended that the macro be GMOV
RO $=CADD R1S$ but since the delimiter character (the
character following the M) is a space, the space following
MOV is used as the second delimiter, terminating the
macro. EDIT then returns an error when the R0O$= be-
comes an illegal command structure.

3.6.54 Execute Macro — The Execute Macro command executes the command string specified in the last Macro
command.

The form of the command is:

nEM

The argument (n) must be positive. The macro is executed n times and returns control to the next command in the
original command string.

Examples:
*M/BGRO$—C1$/$$ Executes the MACRO stored in the previous example. An error
*B1000EMSS message is returned when the end of buffer is reached. (This macro
?*SRCH FAIL IN MACRO*? effectively changes all occurrences of RO in the Text Buffer to R1.)

*IMOV PC, R1$2EMICLR @R2$$ In a new program, inserts MOV PC, R1 then executes the command
* in the Macro Buffer twice before inserting CLR @R2.

3.6.5.5 Edit Version — The Edit Version command displays the version number of the Editor in use on the
terminal.

3-22

Text Editor

The form of the command is:
EV$

Example:
*EVS

H02-01

3.6.5.6 Upper- and Lower-Case Commands — Users who have any upper/lower-case terminal as part of their
hardware configuration may take advantage of the upper- and lower-case capability of this terminal. Two editing
commands, EL and EU, permit this.

When the Editor is first called (R EDIT), upper-case mode is assumed; all characters typed are automatically trans-
lated to upper case. To allow processing of both upper- and lower-case characters, the Edit Lower command is
entered:

*EL$S

*i Text and commands can be entered in UPPER and lower case.$$

*

The Editor now accepts and echoes upper- and lower-case characters received from the keyboard, and outputs text
on the teleprinter in upper- and lower-case.

To return to upper-case mode, the Edit Upper command is used:
*EUS$S
Control also reverts to upper-case mode upon exit from the Editor (via EF, EX, or CRTL C).

Note that when an EL command has been issued, Edit commands can be entered in either upper- or lower-case.
Thus, the following two commands are equivalent:

*GTEXT$=Cnew text$V$$
*gTEXT$=cnew text$v$$

The Editor automatically translates (internally) all commands to upper-case independent of EL or EU.

3-23

Text Editor

3.7 EDIT EXAMPLE
The following example illustrates the use of some of the EDIT commands to change a program stored on the device
DK. Sections of the terminal output are coded by letter and corresponding explanations follow the example.

(.REDIT
A *ERDK:TEST1.MAC$$
*EWDK:TEST2.MAC$$
(" */L$$
; TEST PROGRAM
START: MOV #1000, %6 : INITIALIZE STACK
MOV #MSG, %0 : POINT RO TO MESSAGE
B 4 JSR %7, MSGTYP ; PRINT IT
HALT ; STOP
MSG: . ASCII/IT WORKS/
.BYTE 15
.BYTE 12
.BYTEO

|
C { *B 1J 5D$$
*GPROGRAMS$
*OL$$
: PROGRAM*| TO TEST SUBROUTINE MSGTYP. TYPES
; “THE TEST PROGRAM WORKS"’
: ON THE TEMNIM\RMINALS$S
E { *F.ASCII/$$
*8CTHE TEST PROGRAM WORKS$$
*P.BYTE™X
G {*F.BYTE 0$V$$

.BYTEO

D

E

(*

I
.END
B/LS
; PROGRAM TO TEST SUBROUTINE MSGTYP. TYPES
; “THE TEST PROGRAM WORKS"
; ON THE TERMINAL

H J START: MOV #1000, %6 ; INITIALIZE STACK
MOV #MSG, %0 ; POINT RO TO MESSAGE
JSR %7, MSGTYP ; PRINTIT
HALT ; STOP

MSG: . ASCII/THE TEST PROGRAM WORKS/
.BYTE 15
.BYTE 12
.BYTEO
.END
\.
I f*EX$$

324

Text Editor
A The EDIT program is called and prints an *. The input file is TEST1.MAC; the output file is TEST2.MAC and
the first page of input is read.
B The buffer contents are listed.

C Be sure the pointer is at the beginning of the buffer. Advance pointer one character (past the ;) and delete the
66TEST”.

D Position pointer after PROGRAM and verify the position by listing up to the pointer.

E Insert text. RUBOUT used to correct typing error.

F Search for .ASCII/ and change “IT WORKS” to “THE TEST PROGRAM WORKS”.

G CTRL X typed to cancel P command. Search for “.BYTE 0” and verify location of pointer with V command.
H Insert text. Return pointer to beginning of buffer and list entire contents of buffer.

I Close input and output files after copying the current text buffer as well as the rest of input file into output
file. EDIT returns control to the monitor.

3.8 EDIT ERROR MESSAGES
The Editor prints an error message whenever one of the error conditions listed next occurs. Prior to executing any
commands, the Editor first scans the entire command string for errors in command format (illegal arguments, illegal
combinations of commands, etc.). If an error of this type is found, an error message of the form:

?ERROR MSG?

is printed and no commands are executed. The user must retype the command.

If the command string is syntactically correct, execution is started. Execution errors are still possible, however
(buffer overflow, I/O errors, etc.), and if such an error occurs, a message of the form:

?7*ERROR MSG*?

is printed. In this case, all commands preceding the one in error are executed, while the command in error and those
following are not executed. Most errors will generally be of the syntax type and can be corrected before execution.

When an error occurs during execution of a Macro, the message format is:
?message IN MACRQ?
or

?*message IN MACRO*?

depending on when it is detected.

325

Message

CB ALMOST FULL

?CB FULL?

?7*DIR FULL*?
7*EOF*?

?*FILE FULL*?

?7*FILE NOT FND*?

7*HDW ERR*?

?ILL ARG?

?ILL CMD?

7*ILL DEV*?

?ILL MAC?

7*ILL NAME*?
?7*NO FILE*?

2%NO ROOM*?

?7*NO TEXT*?

?*SRCH FAIL*?

7“<>"ERR?

Text Editor

Explanation

The command currently being entered is within 10 characters of exceeding the
space available in the Command Buffer.

Command exceeds the space allowed for a command string in the Command
Buffer.

No room in device directory for output file.

Attempted a Read, Next or file searching command and no data was available.

Available space for an output file is full. Type a CTRL C and the CLOSE
monitor command to save the data already written.

Attempted to open a nonexisting file for editing.

A hardware error occurred'during I/0. May be caused by WRITE LOCKed
device. Try again.

The argument specified is illegal for the command used. A negative argument
was specified where a positive one was expected or argument exceeds the range
+ or — 16,383.

EDIT does not recognize the command specified.

Attempted to open a file on an illegal device.

Delimiters were improperly used, or an attempt was made to enter an M
command during execution of a Macro or an EM command while an EM was
in progress.

File name specified in EB, EW, or ER is illegal.

Attempted to read or write when no file is open.

Attempted to Insert, Save, Unsave, Read, Next, Change or Exchange when there
was not enough room in the appropriate buffer. Delete unwanted buffers to
create more room or write text to the output file.

Attempted to call in text from the Save Buffer when there was no text available.

The text string specified in a Get, Find or Position command was not found in
the available data.

Iteration brackets are nested too deeply or used illegally or brackets are not
matched.

3-26

CHAPTER 4
PERIPHERAL INTERCHANGE PROGRAM (PIP)

The Peripheral Interchange Program (PIP) is the file transfer and maintenance utility for HT-11. PIP is used to
transfer files between any of the HT-11 devices (listed in Table 2-2), merge and delete files from these devices, and
list, zero, and compress device directories.

4.1 CALLING AND USING PIP
To call PIP from the system device, type:

R PIP

in response to the dot printed by the Keyboard Monitor. The Command String Interpreter prints an asterisk at the
left margin of the terminal and waits to receive a line of filenames and command switches. PIP accepts up to six
input filenames and three output filenames; command switches are generally placed at the end of the command
string but may follow any filename in the string. There is no limit to the number of switches which may be indi-
cated in a command line, as long as only one operation (insertion, deletion, etc.) is represented.

Since PIP performs file transfers for all HT-11 data formats (ASCII, object, and image) there are no assumed exten-
sions for either input or output files; all extensions, where present, must be explicitly specified.

Following completion of a PIP operation, the Command String Interpreter prints an asterisk at the left margin of the
teleprinter and waits for another PIP command line. Typing CTRL C at any time returns control to the Keyboard
Monitor. To restart PIP, type R PIP or the REENTER command in response to the monitor’s dot.

4.1.1 Using the “Wild Card” Construction

PIP follows the standard file specification syntax explained in Section 2.5 (Chapter 2) with one exception: the
asterisk character can be used in a command string to represent filenames or extensions. The asterisk (called the
“wild card”) in a file specification means ““all”. For instance, “*.MAC” means all files with the extension .MAC,
regardless of filename. “FORTN.*” means all files with the filename FORTN regardless of extension. “*.*”” means
all files, regardless of name or extension.

The wild card character is legal in the following cases only (switches are explained in the next section):

Input file specification for the copy and multiple copy operations (i.e., no switch, /1, /B, and /A).
File specification for the delete operation (/D).

Input and output file specifications for the rename operation (/R).

Input and output file specifications for the multiple copy operation (/X).

Input file specifications for the directory list operations (/L, /E, /F).

N A W -

Operations on files implied by the wild card asterisk are performed in the order in which the files appear in the di-
rectory. System files with the extension .SYS and files with bad blocks and the extension .BAD are ignored when
the wild card character is used unless the /Y switch is specified.

4-1

Peripheral Interchange Program

Examples:

** BAK/D Causes all files with the extension .BAK (regardless of their filenames) to be de-
leted from the device DK.

** TST=*.BAK/R Renames all files with a .BAK extension (regardless of filenames) so that these
files now have a .TST extension (maintaining the same filenames).

*DX1:**/X/Y=>* Transfers all files, including system files, (regardless of filename or extension)
from device DK to device DX1.

** MAC,*.0BJ/L Lists all files with MAC and .OBJ extensions.

4.2 PIP SWITCHES
The various operations which can be performed by PIP are summarized in Table 4-1. If no switch is specified, PIP
assumes the operation is a file transfer in image (/I) mode. Detailed explanations of the switches follow the table.

Table 4-1 PIP Switches

Switch Section Explanation
/A 42.1 Copies file(s) in ASCII mode; ignores nulls and rubouts; converts to 7-bit ASCII;
CTRL Z (32 octal) treated as logical end-of-file on input.
/B 42.1 Copies files in formatted binary mode.
/C 421 May be used in conjunction with another switch to cause only files with current

date (as designated using the monitor DATE command) to be included in the spec-
ified operation.

/D 423 Deletes file(s) from specified device.

/E 425 Lists the device directory including unused spaces and their sizes.

[F 425 Prints a short directory (filenames only) of the specified device.

/G 42.1 Ignores any input errors which occur during a file transfer and continues copying.

/T or no 421 Copies file(s) in image mode (byte by byte). This is the default switch.

switch

/K 42.11 Scans the specified device and types the absolute block numbers (in octal) of any
bad blocks on the device.

/L 425 Lists the directory of the specified device, including the number of files, their dates,
and the number of blocks used by each file.

/N:n 42.6 Used with /Z to specify the number of directory segments (n) to allocate to the
directory.

/O 429 Bootstraps the specified device.

(Continued on next page)

42

Peripheral Interchange Program

Table 4-1 PIP Switches (Cont.)

Switch Section Explanation

/Q 4.2.1 When used in conjunction with another PIP operation, causes PIP to type each file-
name which is eligible for a wild card operation and to ask for a confirmation of its
inclusion in the operation. Typing a “Y” causes the named file to be included in the
operation; typing anything else excludes the file. The command line is not proc-
essed until the user has confirmed each file in the operation.

/R 4.24 Renames the specified file.

/S 4.2.7 Compresses the files on the specified directory device so that free blocks are com-
bined into one area.

/T 4.2.3 Extends number of blocks allocated for a file.

/U 4.2.8 Copies the bootstrap from the specified file into absolute blocks 0 and 2 of the
specified device.

1A% 4.2.10 Types the version number of the PIP program being used.

/W 4.2.5 Includes the absolute starting block and any extra directory words in the directory

listing for each file on the device (numbers in octal). Used with /F, /L, or /E.
/X 4.2.2 Copies files individually (without concatenation).

/Y 4.2.1 Causes system files and .BAD files to be operated on by the command specified.
Attempted modifications or deletions of .SYS or .BAD files without /Y are not
done and cause the message ?NO SYS ACTION? to be printed.

[Z:n 4.2.6 Zeroes (initializes) the directory of the specified device; n is used to allocate extra
words per directory entry. When used with /N, the number of directory segments
for entries may be specified.

4.2.1 Copy Operations .

A command line without a switch causes files to be copied onto the destination device in image mode (byte by
byte). This operation is used to transfer memory image (save format) files and any files other than ASCII or for-
matted binary. For example:

*ABC<XYZ Makes a copy of the file named XYZ on device DK and assigns the name ABC.
(Both files exist on device DK following the operation).

*SY:BACK.BIN=PR:/I Copies a tape from the papertape reader to the system device in image mode and
assigns it the name BACK.BIN.

The /A switch is used to copy file(s) in ASCII mode as follows:

*DX1:F1<F2/A Copies F2 from device DK onto device DX1 in ASCII mode and assigns the
name F1.

Nulls and rubouts are ignored in an ASCII mode file transfer. CTRL Z (32 octal) is treated as logical end-of-file
if encountered in the input file.

Peripheral Interchange Program

The /B switch is used to transfer formatted binary files. The formatted binary copy switch should be used for .OBJ
files produced by the assembler or FORTRAN and for .LDA files produced by the Linker. For example:

*DK:FILE.OBJ<PR:/B Transfers a formatted binary file from the papertape reader to device DK and
assigns the name FILE.OBJ.

When performing formatted binary transfers, PIP verifies checksums and prints the message ?7CHK SUM? if a check-
sum error occurs.

If neither /A nor /B is used in a copy operation that involves a paper tape device, the size of the output file in the
operation depends upon the memory size of the system. The transfer mode defaults to image mode and PIP attempts
to do a single read to fill its input buffer. When a read from the paper tape reader encounters end-of-tape, no

count of words transferred can be returned; PIP assumes its input buffer is full and copies it to the output device.
The output file size thus depends upon the input buffer size, which is determined by the memory size of the system.
The output file will have several blocks of zeroes after the end of the paper tape image. If copying to the punch,
large amounts of blank tape will be punched after the input tape image is output. The extra length is harmless, but
can be avoided by use of /A or /B. kmage mode files (for example, .SAV files) cannot reliably be transferred to or
from paper tape.

To combine more than one file into a single file, use the following format:

*DK:AA<DX1:BB,CC,DD/!I Transfers files BB, CC and DD to device DK as one file and assigns this file
the name AA.

*DX1:MERGE=DXO0:FILE2,FILE3/A
Merges ASCII files FILE2 and FILE3 on DXO into one ASCII file named
MERGE on device DX1.

Errors which occur during the copy operation (such as a parity error) cause PIP to output an error message and
return for another command string.

The /G switch is used to copy files but ignore all input errors. For example:

*ABC<DX1:TOP/G Copies file TOP in image mode frorh device DX1 to device DK and assigns
the name ABC. Any errors during the copy operation are ignored.

*DX1:COMB<DXO0:F1,F2/A/G
Copies files F1 and F2 in ASCII mode from device DXO0 to device DX1 as one
file with the name COMB. Ignores input errors.

The wild card construction may be used for input file specifications during copy operations. Be sure to use the /Y
switch if system files (.SYS) are to be copied. For example:

DX1:PROG1< .MAC Copies, in image mode, all files with a .MAC extension from device DK to
device DX1 and combines them under the name PROG]1.

¥ *¥=DX1:*.*/G/Y/X Copies to device DK, in image mode, all files (including .SYS files) from device
DX1;ignores any input errors.

44

Peripheral Interchange Program

If only files with the current date are to be copied (using the wild card construction), the /C switch must also be
used in the command line. For example:

DX1:NN3=ITEM1./C ITEM2/A
Copies, in ASCII mode, all files having the filename ITEM1 and the current date,
(the date entered using the monitor DATE command) and copies ITEM2 (re-
gardless of its date) from device DK to device DX1 and combines them under
the name NN3,

DX1:.*=**/C/X Copies all files with the current date from DK to DX1. Note that commands of
this nature are an efficient way to backup all new files after a session at the com-
puter.

The /Q switch is used in conjunction with another PIP operation and the wild card construction to list all files and
allow the user the opportunity to confirm individually which of these files should be processed during the wild
card expansion. Typing a “Y” causes the named file to be processed: typing anything else excludes the file. For
example:

** OBJ<DX1:*.0BJ/Q/X

FIRST .0OBJ?Y Copies the files FIRST.OBJ and CARJ.OBJ to the DK in image mode from
GETR .0BJ? disk and ignores the others.

BORD .0BJ?

CARJ .0BJ?Y

The file allocation scheme for HT-11 normally allows half the entire largest available space or the second largest
space, or a maximum size (a constant which may be patched in the HT-11 monitor), whichever is largest, for a new
file. The user can, using the [n] construction explained in Chapter 2, force HT-11 to allow the entire largest pos-
sible space by setting n=177777. If n is set equal to any other value (other than 0 which is default and gives the
normal allocation described first above), that size will be allocated for the file.

Therefore, assume that the directory for a given device shows a free area of 200 blocks and that PIP returns an
?70UT ER? message when a transfer is attempted to that device with a file which is longer than 100 blocks but
less than 200 blocks. Transfers in this situation can be accomplished in either of two ways:

1. Use the [n] construction on the output file to specify the desired length (refer to Chapter 2, Section 2.5
for an explanation of the [n] construction).

2. Use the /X switch during the transfer to force PIP to allocate the correct number of blocks for the output
file. This procedure will operate correctly if the input device is a disk.

For example. assume that file A is 150 blocks long and that a directory listing shows that there is a 200 block
<unused> space on DX1:

.R PIP
*DX1:A=A
?0UT ER? ’ File longer than 100 blocks.
*DX1:A[150]=A

or Either command causes a correct transfer,
*DX1:A=A/X

Peripheral Interchange Program

4.2.2 Multiple Copy Operations

The /X switch allows the transfer of several files at a time onto the destination device as individual files. The /A,
/G./C./Q, /B and /Y switches can be used with /X. If /X is not indicated, all output files but the first will be
ignored.

Examples:
*FILE1,FILE2 FILE3<DX1:FILEA,FILEB,FILEC/X
Copies, in image mode, FILEA, FILEB and FILEC from device DX1 to device
DK as separate files called FILE1, FILE2 and FILE3, respectively.

*DX1:F1, *=F2. */X Copies, in image mode, all files named F2 (except files with .SYS or .BAD ex-

?NO SYS ACTION? tensions) from device DK to device DX1. Eauch file is assigned the filename F1
* but retains its original extension,

DX0:.*=DX1:".*/X Copies, in image mode, all files on device DX1 to device DXO (except files with
?NO SYS ACTION? SYS or .BAD extensions); the files are copied separately and retain the same

names and extensions.

*DX1:FILE1,FILE2<FILEA. */A/G/X
This command line assumes there are two files with the filename FILEA (and
any extension excluding .SYS or .BAD extensions) and copies these files in
ASCII mode to device DX1. The files are transferred in the order they are
found in the directory; the first file found is copied and assigned the name
FILEl, and the second is assigned FILE2. If there is a third, it is ignored and a
fourth causes an 20UT FIL? error.

DX1:.SYS="SYS/X/Y Copies all system files from device DK to device DX1.

File transters performed via normal operations place the new file in the largest available area on the disk. The /X
switch, however, places the copied files in the first free place large enough to accommodate it. Therefore, the /X
switch should be used whenever possible (i.e., when no concatenation is desired) as an aid to reducmg disk frag-
mentation.

*A=B
and
*A=B/X

perform the same operation; however, using the second construction whenever possible increases the system disk-
usage efficiency.

For example, assume the directory of DX1 is:

- /B

9-MAY-T9

MONITR.SYS 32 5-MAY-79 < UNUSED > 2<NO DATE>
PR .SYS 2 5-MAY-T9 < UNUSED > 444<NO DATE>

i 2 FILES. 34 BLOCKS
446 FREE BLOCKS

*

October 15, 1979

Part D
4-6

Peripheral Interchange Program

To copy the file PP.SYS (2 blocks long) from DK to DX1, the command:
*DX1:PP.SYS=PP.SYS/Y

can be entered, and the new directory is:

* /E

9-MAY-79

MONITR.SYS 32 5-MAY-79 < UNUSED > 2<NO DATE>
PR .SYS 2 5-MAY-79 PP .SYS 2 9-MAY-T79

< UNUSED > 442<NO DATE>
3 FILES. 36 BLOCKS
444 FREE BLOCKS

*
If the command:

*DX1:PP. SYS=PP. SYS/Y/X

had been cntered, the new directory would appear:

*/E
9-MAY-79

MONITR.SYS 32 5-MAY-79 PP .SYS 2 9-MAY-79
PR .SYS 2 5-MAY-79 < UNUSED > 444<NO DATE>

3 FILES. 36 BLOCKS
444 FREE BLOCKS

*

4.2.3 The Extend and Delete Operations

The /T switch is used to increase the number of blocks allocated for the specified file. The file associated with the
/T switch must be followed by a numeric argument of the form [n] where n is a decimal number indicating the
number of blocks to be allocated to the file at the completion of the extend operation.

The format of the /T switch is:
dev:filnam ext[n]=/T

A file can be extended in this manner only if it is followed by an unused area of sufficient size (on whichever device
it is located) to accommodate the additional length of the extended file. It may be necessary to create this space
by moving other files on the device using the /X switch.

Specifying the /T switch in conjunction with a file that does not currently exist creates a file of the designated
length.

Error messages are printed if the /T command makes the specitied file smaller (?EXT NEG?) or if there is insuffi-
cient space following the file (YROOM?).

Examples:
*ABC[200] =/T Assigns 200 blocks to file ABC on device DK.
*DX1:XYZ[100]</T Assigns 100 blocks to the file named XYZ on device DX1.
October 15, 1979 4 47

Part D

Peripheral Interchange Program

The /D switch is used to delete onc or more files from the specified device. The wild card character (*) can be
used in conjunction with this command.

Only six files can be specified in a delete operation if each file to be deleted is individually named (i.e., if the wild
card character is not used).

When a file is deleted on block-replaceable devices, the information is not destroyed. The file name is merely
removed from the directory. If a file has been deleted but not overwritten, it can be recovered with the /T switch
by specifying a command of the form:

filenaext[n]=/T

where filena.ext is the name desired and n is the length of the deleted file. For cxample:

*DX1:/E
4-JUN-79
A .MAC 18 3-JUN-79 B .MAC 17 3-JUN-T79
(o .MAC 19 3-JUN-79 < UNUSED > 426<NO DATE>

3 FILES, 54 BLOCKS
426 FREE BLOCKS

*DX1:B.MAC/D

*DX1:/E

4-JUN-T79

A .MAC 18 3-JUN-79 < UNUSED > 17 <NO DATE>
Cc .MAC 19 3-JUN-79 < UNUSED >426 <NO DATE>

2 FILES, 37 BLOCKS
443 FREE BLOCK

*

_File B.MAC could now be recovered by:
*DX1:B.MAC[17]=/T

The /T switch looks for the first unused area la'rge enough to accommodate the requested file length. If the file to
be recovered is in the first area large enough to accommodate the size specified, the preceding command is suffi-

cient. If not, all larger unused spaces preceding the desired file must be given dummy names before the recovery
can be made.

Octaober 15, 1979
Part D

48

Peripheral Interchange Program

‘

lor instance, assumc the previous example with the exception that AMAC has a 33 block unused file before it, so
that the directory looks like:

*DX1:/E

4-JUN-79
< UNUSED > 33 <NO DATE> A .MAC 18 3-JUN-79
< UNUSED > 17 <NO DATE> C .MAC 19 3-JUN-T79

< UNUSED > 393 <NO DATE>
2 FILES, 37 BLOCKS
443 FREE BLOCKS

*

A .:cover of BMAC would require:

*DX1:DUMMY[33]=/T
*DX1:B.MAC[17]=/T

If the 33 block unused area was not named prior to BMAC, the first 17 blocks of the 33 block area would become
B.MAC. '

Examples:

"FILE1.SAV/D Deletes FILE1.SAV from device DK.

DX1:.*/D Deletes all files from device DX1 except those with a .SYS or .BAD extension.
If there is a file with a .SYS or .BAD extension, the message 7NO SYS ACTION?
is printed to remind the user that these files have not been deleted.

** MAC/D Deletes all files with a MAC extension from device DK.

*DX0:R1,DX1:AA/D Deletes the files specified from the associated devices.

DX1:.*/D/Y ' Deletes all files from device DX1.

4.24 The Rename Operation

The /R switch is used (in a manner similar to the multiple copy command described in Section 4.2.2) to rename a
file given as input with the associated name given in the output specification. There must be an equal number of
input and output files and they must reside on the same device, or an error message will be printed. The /Y switch
must be used in conjunction with /R if .SYS files are to be renamed.

The Rename command is particularly uscful when a file on a disk contains bad blocks. By renaming the file with a
.BAD extension, the file permanently resides in that area of the device so that no other attempts to use the bad area
will occur. Once a file is given a .BAD extension it cannot be moved during a compress operation. .BAD files arc
not renamed in wild card operations unless /Y is used.,

Examples:

*DX1:F1,X1<DX1:F0,X0/R
Renames FO to F1 and X0 to X1 on device DX1.

"FILE1.*<FILE2."/R Renamies all files on device DK with the name FILE2 (except files with .SYS or -
.BAD extension) to FILEI, retaining the original extensions.
‘October 15, 1979
Part D

49

Peripheral Interchange Program ’

425 Directory List Operatnons
The /L switch lists the directory of the specnﬁed device. The listing contains the current date, all files with their

associated creation dates, total free blocks on the device if disk, the number of files listed, and number of blocks
used by the files. File lengths, number of blocks and number of files are indicated as decimal values. If no output

device is specified, the directory is output to the terminal (TT:).

Outputs complete directory of device DX1 to the terminal.

*DX1:/L
1-AUG-T79
MONITR.SYS 32 5-MAY-T9 PP .SYS 2 9-MAY-T79
PR .SYS . 2 5-MAY-T9 F2 .REL 15 4-JUL-T9
MERGE .BAS 2 4-JUL-T9 COMB .0BJ 2 4-JUL-T79

6 FILES, 55 BLOCKS
425 FREE BLOCKS

Outputs a complete directory of device DX1 to a file, DIRECT, on the device DK.
*DIRECT=DX1:/L

Outputs a complete directory of all files on device DK using the .MAC extension.
** MAC/L
1fAUG—79
VTMAC .MAC 7 8-JUL-T9 FILE2 .MAC 1 9-JUL-79
2 FILES, 8 BLOCKS ' i
472 FREE BLOCKS

The /E switch lists the entire directory including the unused areas and their sizes in blocks (decimal).

*/E
9-SEP-79

BATCH.HLP 2 3-SEP-T79 CHESS . SAV 20 2-SEP-79
PAT1 .FOR 10 5-SEP-79 < UNUSED > 3 <NO DATE>
IRAD5 .MAC 8 T7-SEP-79 < UNUSED > 30 <NO DATE>
TRIG .0OBJ 2 6-SEP-79 STP .OBJ 2 6-SEP-79
< UNUSED > 15 <NO DATE> BAC .0OBJ 2 6-SEP-T79
< UNUSED > 4 <NO DATE> LIBRI.OBJ 137 6-SEP-T79

The /F switch lists only filenames, omitting the file lengths and associated dates.
Example:

*DX0: /F.
TRACE .MAC CARGO .REL BMAP .0BJ AAA .TST NEW .DAT

" October 15 197‘

Part D
4-10

i Peripheral Interchange Program

The /L, /E and /F commands have no effect on the files of the specified device. If the /W switch is used in con-
junction with the /L or /E switches, the absolute starting block of the file and extra words (in octal) will be in-
cluded in the listing. For example:

*DX1:/L/W
10-SEP-79
DSQRT .0BJ 1 10-SEP-79 16 O MAIN .0BJ 1 10-SEP-79 17 O
BASICR.0BJ 11 10-SEP-79 20 0 OTSV2 .0BJ 3 10-SEP-79 33 O

NOTE: When you allocate more than a single word per directory,
the display is larger than a conventional console screen. The

listing device must be capable of printing records greater than 80
characters in width. o8 g

The first three columns indicate the filename and extension, block length, and date. The fourth column shows
* the absolute starting block (in octal), and the fifth column shows the contents of each extra word per directory
entry (in octal). (This is allocated using the /Z:n switch; see Section 42.6.)

Using the /L. /E, or /F switch in conjunction with a device and filename causes the filename, and optionally the date
and file length to be output rather than a directory of the entire device. For example:

*F1SAV/L
causes:

4JUN-78

F1 SAV 18 4-JUN-78
124 FREE BLOCKS

L]

to be output, providing the file exists on device DK.
Directorics are made up of segments which are two blocks long. Full directory listings with multiple segments con-

tain blank lines as segment boundaries.

4.2.6 The Directory Initialization Operation
‘The /Z switch clears und initializes the directory of an HT-11 directory-structured device and must always be the
first operation performed on a new (that is, previously unused) device. The form of the switch is:

[Z:n

October 15, 1979
Part D

Peripheral Interchange Program ' :

where n is an optional octal number to increase the size of each directory entry on a directory-structured device. If
n is not specified, each entry is 7 words long (for filename and file length information) and 70 entries can be made
in a directory segment. When extra words are allocated, the number of entries per directory segment decreases. The
formula for determining the number of entries per directory segment is:

507/((# of extra words)+7)
For example, if the switch /Z:1 is used, 63 entries can be made per segment.
When /Z is used, PIP responds as follows:

device/Z ARE YOU SURE ?
For example:

*DX1:/Z
DX1:/2 ARE YOU SURE ?

Answer Y and a carriage return to perform the initialization. An answer beginning with a character other than Y is
considered to be no.

Example:
*DX1:/Z
DX1:/2 ARE YOU SURE ?Y<CR>
* Zeroes the directory on device DX1 and allocates no extra words for the direc-
tory.)

The /N switch is used with /Z to specify the number of directory segments for entries in the directory. The form of
the switch is:

/N:n

where n is an octal number less than or equal to 37, Initially HT-11 allocates four directory segments, each two
blocks (512 words) long.

Example:

*DX1:/Z2:2/N:6 Zeroes the directory on device DX1, allocates two extra words per directory
entry and allocates six directory segments.

4.2.7 The Compress Operation
The /S switch is used to compress the directory and files on the specified device, condensing all the free (unused)
blocks into one area. Input errors are reported on the console terminal unless the /G sw1tch is used; output errors
are always reﬁorted In either case, the compress continues.

AN
/S can also be used to copy DX disks, though the output diskette must first be initialized using /Z to write the
appropriate volume identification. (It is important to note that the /S switch destroys any previous directory on the
output device. The new directory on the output device has the same number of segments as the directory on the
input device.) /S does not copy the bootstrap onto the volume.

4-12

Peripheral Interchange Program

To increase the number of directory blocks in a two-volume compress (that is, trom one volume to another rather
than from one volume to itself), use the /N:n switch in conjunction with the /S switch (any attempts to decrease
the directory size are ignored).

/S does not move files with the .BAD extension. This feature provides protection against reusing bad blocks which
may occur on a disk. Files containing bad blocks can be renamed with the .BAD extension and are then left in place
when a /S is executed.

If a compress operation is performed on the system device. the message:
REBOOT?

is printed to indicate that it may be necessary to reboot the system. If .SYS tiles were not moved during the com-
press operation, it is not necessary to reboot the system.

NOTE
Rebooting the system in response to the ’JREBOOT?
warning message should ONLY be done AFTER the
operation which generated the message is complete.
?REBOOT? does not signify that the system should
be rebooted immediately: the user should wait tor the
“* signifying that PIP is ready for another command
before rebooting.

If the command attempts to compress a large device to a smaller one, an error results and the directory of the
smaller device is zeroed. If a device is being compressed in place, input and output errors are reported on the
terminal and the operation continues to completion.

Examples:
*SY:/S Compresses the files on the system device SY:
?REBOOT?
*DX0:A<DX1:/S Transfers and compresses the files from device DX! to device DXO0. Device

DX1 is not changed. The filename A is a dummy specification required by the
Command String Interpreter.

428 The Bootstrap Copy Operation
The bootstrap copy switch (/U) copies the bootstrap portion of the specified file into absolute blocks 0 and 2 of the
specified device. ‘

Example:

*DK:A<DK:MONITR.SYS/U
Writes the bootstrap file MONITR.SYS in blocks 0 and 2 of the device DK.
A is adummy filename.

429 The Boot Operation

The boot switch reboots the system, reinitializing monitor tables and returning the system to the monitor level.
- The boot switch performs the same operation as a hardware bootstrap.

413

Peripheral Interchange Program

vlixumplc:
*DK:/0 ' Reboots the device DK.
- If a boot switch is specified on an illégal device, the message:
?BAD BOOT?
is printed. Legal devices are SY, DK, and DX0-DX1.
4.2.10 The Version Switch
The Version switch (/V) outputs a version number message (representing the version of PIP i in use) to the terminal
usxm> the form:
PIP VO1-XX
The rest of the command line, if any, is ignored.
4.2.11 Bad Block Scan (/K)
The bad block switch (/K) scans the specified device and types the absolute block numbers of those blocks on the
device which return hardware errors. The block numbers typed are octal; the first block on a device is 0(8). Note

that if no crrors occur, nothing will be output. A complete scan of a disk takes several minutes.

Example:

*DX1:/K Scan disk drive 1 for bad blocks.
BLOCK 140 ISBAD
*DX:/K Scan drive 0. No blocks are bad.
4.2.11.1 Recovery from: Bad Blocks — As a disk ages, the recording surface wears. Eventually unrecoverable

1/0 errors occur during attempts to read or write a bad disk block. PIP protects against usage of bad disk areas
by ignoring files with a .BAD extension (unless the /Y switch is used). Once a bad block is uncovered in an 1/O
operation, it can be located using the /K switch and a .BAD file can be created which encompasses the bad block.

‘ When a hardware 1/O error is detected, the recovery procedure is as follows:

1. Use the PIP /K switch to scan the device and print on the terminal the absolute block numbers (in octal) of
the bad blocks. For example: :

RPIP
*DX1:/K

BLOCK 23 1S BAD
»

9

Obtain an extended directory with the /W switch, showing the starting block numbers of all the files on

the disk.

3. If abad block occurs in a file with valuable information, copy the ﬁle to another file using the /G switch,
In most cases, only 1 bit (character) of the file is affected. :

4-14

Peripheral Interchange Program

4. If the file is small, it can then be renamed with a .BAD extension to prevent further use of that disk area.
5. If the file is large or the bad block occurs in an empty area, a 1-block .BAD file can be created using the
/T switch as follows:
a. Delete the bad file (if any).
b. If the bad block is at block n of the free area, create a file of length n-1 with the /T switch. Remember
that there must be no spaces larger than n-1 blocks before the desired one (refer to Section 4.2.3).
Also note that the block numbers printed in the /K and /W operations are octal, while the argument to
the /T operation is decimal. '
c. Create a 1-block .BAD file with the /T switch to cover the bad block.
d. Delete any temporary files created during the operation.

For example, assume the extended directory is:

*

*

NEWSRC. BAT 8 11-SEP-T79 55 RTTEMP.BAT 27 11-SEP-79 65
PIP .MAC 150 12-SEP-79 120 < UNUSED > 154 <NO DATE>

VERIFY.SAV 3 12-SEP-T79 600 PIP .OBJ 15 12-SEP-79 603
MKPIP .CTL 1 12-SEP-79 622 MKV2RK . CTL 4 12-SEP-T9 623
VTLIB .0BJ 10 12-SEP-79 627 A 4 12-SEP-T79 641

- PIP .LST 50 3-SEP-79 645
i *

.
and a bad block is detected at block 670 (octal) of the file PIP.LST. To recover, make a copy, ignoring the error,
and delete the bad file:

*DX1:PIPA.LST=DX1:PIP.LST/G
*DX1:PIP.LST/D

The directory now reads:

*

*

NEWSRC . BAT 8 11-SEP-79 55 RTTEMP.BAT 27 11-SEP-79 65
PIP .MAC 150 12-SEP-79 120 PIPA .LST 50 18-SEP-79 346
| < UNUSED > 104 <NO DATE> VERIFY.SAV 3 12-SEP-79 600
. PIP .0BJ 15 12-SEP-79 603 MKPIP .CTL 1 12-SEP-T79 622
* MKV2RK.CTL 4 12-SEP-T79 623 VTLIB .OBJ 10 12-SEP-T79 627
A 4 12-SEP-T79 641

*

*

4OCtOBel' 15, 1979
Part D

4-15

e

Peripheral Interchange Program

An unused area following A contains block 670 (octal), which is bad. Continuing in PIP:

*DX1:TEMP.002[104] =/T
*DX1:TEMP.003[19] =/T

This fills the unused areas with temporary files. Specifying TEMP.003 with a length of 19 blocks makes
the file just long enough to precede the bad block (i.e., 645 (octal) and 19 (decimal) equal 670, which
would be the starting block number of the next file created). The directory now contains:

*

*

NEWSRC.BAT
PIP .MAC
TEMP .002
PIP .0BJ
MKV2RK. CTL
A

*

*

Continuing with PIP:

150
104
15

11-SEP-79 55
12-SEP-79 120
18~-SEP-79 430
12-SEP-T79 603
12-SEP-79 623
12-SEP-T79 641

*DX1:FILE.BAD[1]=/Y/T

The directory now contains:

*

*

NEWSRC.BAT
PIP .MAC
TEMP .002
PIP .0BJ
MKV2RK. CTL
A

FILE .BAD

*

*

150
104
15

11-SEP-79
12-SEP-79
18-SEP-79
12-SEP-79
12-SEP-79
12-SEP-T79
18-SEP-79

55
120
430
603
623
641

4-16

RTTEMP.BAT 27 11-SEP-79 65
PIPA .LST 50 18-SEP-79 346
VERIFY.SAV 3 12-SEP-79 600
MKPIP .CTL 1 12-SEP-79 622
VTLIB .0BJ 10 12-SEP-79 627
TEMP .003 19 18-SEP-79 645
Create a bad file.
RTTEMP . BAT 27 11-SEP-79 65
PIPA .LST 50 18-SEP-79 346
VERIFY.SAV 3 12--SEP-79 600
MKPIP .CTL 1 12-SEP-79 622
VTLIB .0OBJ 10 12-SEP-79 627
TEMP .003 19 18--SEP-79 645
]

October 15, 1979

Part D

Peripheral Interchange Program

Next delete all temporary files and rename PIPA.LST to PIP.LST. The final directory now contains:

*

*

NEWSRC.BAT 8 11-SEP-79 55 RTTEMP.BAT 27 11-SEP-79 65

PIP .MAC 150 12-SEP-79 120 PIP .LST 50 18-SEP-T79 346
< UNUSED > 104 <NO DATE> VERIFY.SAV 3 12-SEP-T9 600

' PIP .0BJ 15 12-SEP-79 603 MKPIP .CTL 1 12-SEP-79 622
MKV2RK. CTL 4 12-SEP-T9 623 VTLIB .0BJ 10 12-SEP-79 627
A 4 12-SEP-T9 641 < UNUSED > 19 <NO DATE>

FILE .BAD 1 18-SEP-T79 760

*

*

Disks with many bad blocks can often be reused by reformatting them. First copy all desired files, since
reformatting destroys all information contained on a volume.

4.3 PIP ERROR MESSAGES
+ The following error messages are output on the terminal when PIP is used incorrectly:

Errors Meaning
?BAD BOOT? A boot switch was specified on an illegal device.
7BOOT COPY? An error occurred during an attempt to writ_e bootstrap with /U switch.
?7CHK SUM? A checksum error occurred in a formatted binary transfer.
7COR OVR? Memory overflow-too many devices and/or file specifications (usually *.* operations)

and no room for buffers.

7DEV FUL? No room on device for file.
| ?ER RD DIR? Unrecoverable error reading directory. Check volﬁme for off-line and try the operation
again.
7ER WR DIR? Unrecoverable error writing directory. Try again.
7EXT NEG? A /T command attempted to make file smaller.

?FIL NOT FND? File not found during a delete, copy, or rename operation, or ;10 input files with the
expected name or extension were found during a *.* expansion.

?ILL CMD? The command specified was not syntactically correct; a device name is missing which
should be specified, a switch argument is too large, a filename is specified where one
is inappropriate, or a nonfile-structured device is specified for a file-structured
operation.

October 15, 1979
Part D 4-17

Peripheral Interchange Program

7ILL DEV? Illegal or nonexistent device.
7LL DIR? The device did not contain a properly initialized directory structure. Use /Z.
?ILL REN? Illegal rename operation. Usually caused by different device names on the input and

output sides of the command string.

2ILL SWT? Illegal switch or switch combination.
?IN ER? Unrecoverable error reading file. Try again (this error is ignored during /G operation).
?70UT ER? Unrecoverable error writing file. Perhaps a hardware or checksum error; try recopying

file. Also may be caused by an attempt to compress a larger device to a smaller one or
by not enough room when creating a file. The system takes the largest space available
and divides it in half before attempting to insert the file. Try the [n] construction or

[X switch.
?70UT FIL? Illegal output file specification or missing output file:
?7ROOM? Insufficient space following file specified with a /T switch.

The following warning messages are output by PIP:

INO .SYS/.BAD The /Y switch was not included with a command specified on a .SYS or .BAD file. The

ACTION? command is executed for all but the .SYS and .BAD files. A *.* transfer is most likely
to cause this message.
7REBOOT? .SYS files have been transferred, renamed, compressed or deleted from the system

device. It may be necessary to reboot the system.

NOTE
The message is typed immediately after execution of the
relevant command has begun, but the actual reboot oper-
ation must not be performed until PIP returns with the
prompting asterisk for the next command. If the system
is halted and rebooted before the prompting asterisk
returns, disk information may be lost.

If any of the .SYS files in use by the current system (MONITR.SYS and handler files)
have been physically moved on the system device, it is necessary to reboot the system
immediately. If not, this message can be ignored. If the cause of the message was a /S
operation, the system need be rebooted only if there was an empty space before any of
the .SYS files or if the /N:n switch was used to increase the number of directory seg-
ments. The need to reboot can be permanently avoided by placing all .SYS files at the
beginning of the system device, then avoiding their involvements in PIP operations by
not using the /Y switch.

dev:/Z Confirmation must be given by the user before a device can be zeroed.
ARE YOU SURE?

4-18

CHAPTER 5
THE ASSEMBLY PROCESS

Three HT-11 system programs perform the tasks collectively known as the assembly process.

EXPAND makes the first pass over a source program containing macros, applying a user’s macro definition or one
from the system library each time the source program references a macro. EXPAND writes the program source, with
macros expanded, to its output file.

The EXPANDed program or one originally without macros (both have .PAL file extensions) undergoes two passes by
ASEMBL. This system program outputs a single relocatable binary object file and can also produce an assembly list-
ing with symbol table.

The system program CREF (Cross REFerence) appends an index of symbol usage to the assembly listing when speci-
fied as part of the assembly output.

Some notable features of ASEMBL are:

Program control of assembly functions

Device and file name specifications for input and output files
Error listing on command output device

Alphabetized, formatted symbol table listing

Relocatable object modules

Global symbols declaration for linking among object modules
Conditional assembly directives

Program sectioning directives

Extensive listing control, including cross reference listing

N R A o e

Operating instructions for the three programs EXPAND, ASEMBL, and CREF appear in Sections 5.7 and 5.8.

5.1 SOURCE PROGRAM FORMAT

A source program is composed of a sequence of source lines; each source line contains a single assembly-language
statement followed by a statement terminator. A terminator may be either a line feed character (which increments
the line count by 1) or a form feed character (which resets the line count and increments the page count by 1).

; NOTE
EDIT automatically appends a line feed to every carriage
return encountered in a source program. For listing for-
mat, ASEMBL automatically inserts a carriage return be-
fore any line feed or form feed not already preceded by
one.

An assembly-language line can contain up to 132(decimal) characters (exclusive of the statement terminator). Be-
yond this limit, excess characters are ignored and generate an error flag.

5-1

The Assembly Process

5.1.1 Statement Format
A statement can contain up to four fields which are identified by order of appearance and by specified terminating
characters. The general format of an assembly language statement is:

label: operator operand(s) ;comments

The label and comment fields are optional. The operator and operand fields are interdependent; either may be
omitted depending upon the contents of the other.

The assembler interprets and processes these statements one by one, generating one or more binary instructions or
data words or performing an assembly process. A statement contains one of these fields and may contain all four
types. Blank lines are legal.
Some statements have one operand, for example:

CLR RO
while others have two:

MOV #344,R2

An assembly language statement must be complete on one source line. No continuation lines are allowed. (If a con-
tinuation is attempted with a line feed, the assembler interprets this as the statement terminator.)

Source statements may be formatted with EDIT so that use of the TAB character causes the statement fields to be
aligned. For example:

Label Operator Operand Comment

Field Field Field Field

CHECK: BIT #1,R0 ;IS NUMBER ODD?
BEQ EVEN ;NO, IT'S EVEN
Mov #-1,0DDFLG ;ELSE SET FLAG

EVEN: RTS PC ;JRETURN

5.1.1.1 Label Field — A labelis a user-defined symbol that is unique within the first six characters and is assigned
the value of the current location counter and entered into the user-defined symbol table. The value of the label may
be either absolute (fixed in memory independently of the position of the program) or relocatable (not fixed in mem-
ory), depending on whether the location counter value (see Section 5.2.6) is currently absolute or relocatable.

A label is a symbolic means of referring to a specific location within a program. If present, a label always occurs first
in a statement and must be terminated by a colon. For example, if the current location is absolute 100(octal), the
statement:

"ABCD: MoV AB
assigns the value 100(octal) to the label ABCD. Subsequent reference to ABCD references location 100(octal). In
this example if the location counter was declared relocatable within the section, the final value of ABCD would be

100(octal) plus a value assigned by LINK when it relocates the code, called the relocation constant. (The final value
of ABCD would therefore not be known until link-time. This is discussed later in this chapter and in Chapter 6.)

52

The Assembly Process

More than one label may appear within a single label field, in which case each label within the field is assigned the
same value. For example, if the current location counter is 100(octal), the multiple labels in the statement:

ABC: ERREX: MASK: MoV AB
cause each of the three labels — ABC, ERREX, and MASK —— to be equated to the value 100(octal).

A symbol used as a label may not be redefined within the user program. An attempt to redefine a label results in an
error flag in the assembly listing.

5.1.1.2 Operator Field — An operator field follows the label field in a statement and may contain an instruction
mnemonic or an assembler directive. The operator may be preceded by zero, one or more labels and may be fol-
lowed by one or more operands and/or a comment. Leading and trailing spaces and tabs are ignored.

When the operator is an instruction mnemonic, it specifies the instruction to be generated and the action to be per-
formed on any operand(s) which follow. When the operator is an assembler directive, it specifies a certain function
or action to be performed during assembly.

An operator is legally terminated by a space, tab, or any non-alphanumeric character (symbol component).
Consider the following examples:

MOV AB (space terminates the operator MOV)
MOV@A,B (@ terminates the operator MOV)

When the statement line does not contain an operand or comment, the operator is terminated by a carriage return
followed by a line feed or form feed character,

A blank operator field is interpreted as a .WORD assembler directive (See Section 5.5.3.2).

5.1.1.3 Operand Field — An operand is that part of a statement which is manipulated by the operator. Operands
may be expressions, numbers, or symbolic arguments (within the context of the operation). When multiple oper-
ands appear within a statement, each is separated from the next by one of the following characters: comma, tab,
space, or paired angle brackets around one or more operands (see Section 5.2.1.1). Multiple delimiters separating
operands are not legal (with the exception of spaces and tabs —— any combination of spaces and/or tabs repre-
sents a single delimiter). An operand may be preceded by an operator, a label or another operand and followed by a
comment.

The operand field is terminated by a semicolon when followed by a comment, or by a statement terminator when
the operand completes the statement. For example:

LABEL: MOV AB ;COMMENT

The space between MOV and A terminates the operator field and begins the operand field; a comma separates the
operands A and B; a semicolon terminates the operand field and begins the comment field.

5.1.1.4 Comment Field — The comment field is optional and may contain any ASCII characters except null, rub-
out, carriage return, line feed, vertical tab or form feed. All other characters, even special characters with defined

usage, are ignored by the assembler when appearing in the comment field.

The comment field may be preceded by one, any, none or all of the other three field types. Comments must begin
with the semicolon character and end with a statement terminator.

5-3

The Assembly Process

Comments do not affect assembly processing or program execution, but are useful in source listings for later analy-
sis, debugging, or documentation purposes.

5.1.2 Format Control

Horizontal or line formatting of the source program is controlled by the space and tab characters. These characters
have no effect on the assembly process unless they are embedded within a symbol, number, or ASCII text; or unless
they are used as the operator field terminator. Thus, these characters can be used to provide an orderly source pro-
gram. A statement can be written:

LABEL:MOV(SP)+ TAG;POP VALUE OFF STACK
or, using formatting characters, it can be written:

LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK
which is easier to read in the context of a source program listing.

Vertical formatting, i.e., page size, is controlled by the form feed character. A page of n lines is created by inserting
a form feed (CTRL FORM) after the nth line. (See also Section 5.5.1.2 for a description of assembly listing out-

put.)

5.2 SYMBOLS AND EXPRESSIONS
This section describes the various components of legal expressions: the assembler character set, symbol construc-
tion, numbers, operators, terms and expressions.

5.2.1 Character Set
The following characters are legal in source programs:

1. The letters A through Z. Both upper- and lower-case letters are acceptable, although, upon input, lower-
case letters are converted to upper-case letters. Lower-case letters can only be output by sending their
ASCII values to the output device. This conversion is not true for .ASCII, .ASCIZ, ’ (single quote) or
¢ (double quote) statements if . ENABL LC is in effect.

2. The digits O through 9.

3. The characters . (period or dot) and $ (dollar sign) which are reserved for use in system program sym-
bols (with the exception of local symbols; See Section 5.2.5).

4. The following special characters:

54

The Assembly Process

Character Designation Function
carriage return formatting character
line feed source statement terminator
form feed source statement terminator
vertical tab source statement terminator
colon label terminator
= equal sign direct assignment indicator
% percent sign register term indicator
tab item or field terminator
space item or field terminator
number sign immediate expression indicator
@ at sign deferred addressing indicator
(left parenthesis initial register indicator
) right parenthesis terminal register indicator
, comma operand field separator
; semicolon comment field indicator
< left angle bracket initial argument or expression indicator
> right angle bracket terminal argument or expression indicator
+ plus sign arithmetic addition operator or auto increment indicator
— minus sign arithmetic subtraction operator or auto decrement indicator
* asterisk arithmetic multiplication operator
/ slash arithmetic division operator
& ampersand logical AND operator
! exclamation logical inclusive OR operator
« double quote double ASCII character indicator
¢ single quote single ASCII character indicator
) uparrow universal unary operator, argument indicator
5.2.1.1 Separating Characters — Reference is made in the remainder of the chapter to legal separating characters.

These terms are defined in Table 5-1 and following.

The Assembly Process

Table 5-1 Legal Separating Characters

Character

Definition

Usage

space

NN

one or more spaces and/or tabs
comma

paired angle brackets

Up arrow construction where
the up arrow character is
followed by an argument
bracketed by any paired
printing characters.

A space is a legal separator only for argument operands.
Spaces within expressions are ignored.

A comma is a legal separator for both expressions and
argument operands.

Paired angle brackets are used to enclose an argument,
particularly when that argument contains separating char-
acters. Paired angle brackets may be used anywhere in a
program to enclose an expression for treatment as a term.
(The angle bracket construction should be used when the
argument contains unary operators.)

This construction is equivalent in function to the paired
angle brackets and is generally used only where the argu-
ment contains angle brackets.

5.2.1.2 Illegal Characters — A character can be illegal in one of two ways:

1. A character which is not recognized as an element of the character set is always an illegal character and
causes immediate termination of the current line at that point, plus the output of an error flag in the
assembly listing. For example:

LABEL«<*A: MOV AB

Since the backarrow is not a recognized character, the entire line is treated as a:

.WORD LABEL

statement and is flagged in the listing.
2. A legal character may be illegal in context. Such a character generates a Q error on the assembly listing.

5.2.1.3 Operator Characters — Legal unary operators (operators applying to only one operand) are as follows:
Unary
Operator Explanation Example
+ plus sign +A (positive value of A, equivalent to A)
— minus sign —A (negative, 2’s complement, value of A)
t uparrow, universal unary operator 1F3.0 (interprets 3.0 as a 1-word floating-
(this usage is described in greater point number)
detail in Sections 5.5.4.2 and
5.5.6.2) 1C24 (interprets the one’s complement of
the binary representation of 24(8))
tD127 (interprets 127 as a decimal number)
1034 (interprets 34 as an octal number)
tB11000111 (interprets 11000111 as a binary value)

5-6

The Assembly Process

The unary operators described above can be used adjacent to each other in a term. For example:

tCcto12
-105

Legal binary operators are as follows:

Binary
Operator Explanation Example

+ addition A+B

- subtraction A-B

* multiplication A*B (16-bit product returned)
/ division A/B (16-bit quotient returned)
& logical AND A&B

]

logical inclusive OR A'B

All binary operators have the same priority. Division and multiplication are signed operations. Items can be
grouped for evaluation within an expression by enclosure in angle brackets. Terms in angle brackets are evaluated
first, and remaining operations are performed left to right. For example:

.WORD 142%3 ;1S 11 OCTAL
.WORD 1+<2*3> ;IS 7 OCTAL

5.2.2 Symbols

ASEMBL maintains the Permanent Symbol Table (PST) and the User Symbol Table (UST). The PST contains all the
permanent symbols and is part of the assembler load module. The UST is constructed as the source program is as-
sembled; user-defined symbols are added to the table as they are encountered.

5.2.2.1 Permanent Symbols — Permanent symbols consist of the instruction mnemonics (Appendix B) and as-
sembler directives (sections 5.5 and 5.6, Appendix B). These symbols are a permanent part of the assembler and
need not be defined before being used in the source program.

5.2.2.2 User-Defined Symbols — User-defined symbols are those used as labels or defined by direct assignment
(Section 5.2.3). These symbols are added to the User Symbol Table as they are encountered during the first pass of
the assembly.

User-defined symbols can be composed of alphanumeric characters, dollar signs, and periods only; any other charac-
ter is illegal.

The $ and . characters are reserved for system software symbols; it is recommended that $§ and . not be inserted
in user-defined symbols.

The following rules apply to the creation of user-defined symbols:

1. The first character must not be a number (except in the case of local symbols, see Section 5.2.5).

2. Each symbol must be unique within the first six characters.

3. A symbol can be written with more than six legal characters, but the seventh and subsequent characters
are only checked for legality, and are not otherwise recognized by the assembler.

4. Spaces, tabs, and illegal characters must not be embedded within a symbol.

5-7

The Assembly Process

The value of a symbol depends upon its use in the program. A symbol in the operator field may be either one of the
symbol types. To determine the value of the symbol, the assembler searches the symbol tables in the following
order:

1. Permanent Symbol Table
2. User-Defined Symbol Table

A symbol found in the operand field is sought in the:

1. User-Defined Symbol Table
2. Permanent Symbol Table

in that order.
These search orders allow redefinition of Permanent Symbol Table entries as user-defined symbols.

User-defined symbols are either internal or external (global). All user-defined symbols are internal unless explicitly
defined as being global with the .GLOBL directive (see Section 5.5.10).

Global symbols provide links between object modules. A global symbol defined as a label is generally called an entry
point (to a section of code). Such symbols are referenced from other object modules to transfer control throughout
the load module (which may be composed of a number of object modules).

Since ASEMBL provides program sectioning capabilities (Section 5.5.9), two types of internal symbols must be con-
sidered:

1. Symbols that belong to the current program section, and
2. Symbols that belong to other program sections.

In both cases, the symbol must be defined within the current assembly; the significance of the distinction is critical
in evaluating expressions involving type (2) above (see Section 5.2.9).

5.2.3 Direct Assignment

A direct assignment statement associates a symbol with a value. When a direct assignment statement defines a sym-
bol for the first time, that symbol is entered into the user symbol table and the specified value is associated with it.
A symbol may be redefined by assigning a new value to a previously defined symbol. The latest assigned value re-
places any previous value assigned to a symbol.

The general format for a direct assignment statement is:
symbol = expression

Symbols take on the relocatable or absolute attribute of their defining expression. However, if the defining expres-
sion is global, the symbol is not global unless explicitly defined as such in a .GLOBL directive. For example:

A=1 ;THE SYMBOL A IS EQUATED TO THE
JVALUE 1

B="A—1&MASKLOW ;THE SYMBOL B IS EQUATED TO THE
;VALUE OF THE EXPRESSION

C: D=3 ;THE SYMBOL D IS EQUATED TO 3

E: MOV #1,ABLE ;LABELS C AND E ARE EQUATED TO THE
;LOCATION OF THE MOV COMMAND

5-8

The Assembly Process

The following conventions apply to direct assignment statements:

1. An equal sign (=) must separate the symbol from the expression defining the symbol value.
2. A direct assignment statement is usually placed in the operator field and may be preceded by a label and
followed by a comment.

NOTE
If the program jumps to or references the label of a
direct assignment statement, it is actually referencing the
following instruction statement. For example:

.=.+1000

C: D=3

E: MOV #D,ABLE
JMP C

This code causes a jump to the label E.

3. Only one symbol can be defined by any one direct assignment statement.

4. Only one level of forward referencing is allowed. That is, the following arrangement is illegal:
X=Y
Y=12
Z=1

X and Y are both undefined throughout pass 1. X is undefined throughout pass 2 and causes an error
flag in the assembly listing.

5.2.4 Register Symbols
The eight general registers of the PDP-11 are numbered O through 7 and can be expressed in the source program as:

%0
%1

%7

The digit indicating the specific register can be replaced by any legal term which can be evaluated during the first
assembly pass.

It is recommended that the programmer create and use symbolic names for all register references. A register symbol
may be defined in a direct assignment statement among the first statements in the program. A register symbol can-
not be defined after the statement which uses it. The defining expression of a register symbol must be absolute. For
example:

R0O=%0 ;REGISTER DEFINITION
R1=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

59

The Assembly Process

The symbolic names assigned to the registers in the example above are the conventional names used in all PDP-11
system programs. Since these names are fairly mnemonic, it is suggested the user follow this convention. Registers
6 and 7 are given special names because of their special functions, while registers O through S are given similar names
to denote their status as general purpose registers.

All register symbols must be defined before they are referenced. A forward reference to a register symbol causes
phase errors in an assembly.

The % character can be used with any term or expression to specify a register. (A register expression less than 0 or
greater than 7 is flagged with an R error code.) For example:

CLR %3+1

is equivalent to:
CLR %4

and clears the contents of register 4, while:
CLR 4

clears the contents of memory address 4.

In certain cases a register can be referenced without the use of a register symbol or register expression; these cases
are recognized through the context of the statement. An example is shown below:

JSR 5,SUBR ;FIRST OPERAND FIELD MUST ALWAYS
;BE A REGISTER

5.2.5 Local Symbols
Local symbols are specially formatted symbols used as labels within a given range.

Local symbols provide a convenient means of generating labels to be referenced by branch instructions. Use of local
symbols reduces the possibility of multiply-defined symbols within a user program and separates entry point sym-
bols from local references. Local symbols, then, are not referenced from other object modules or even from outside
their local symbol block.

Local symbols are of the form n$, where n is a decimal integer from 1 to 127, inclusive, and can only be used on
word boundaries. Local symbols include:

18
27%
598

104$

Within a local symbol block, local symbols can be defined and referenced. However, a local symbol cannot be refer-
enced outside the block in which it is defined. There is no conflict with labels of the same name in other local sym-
bol blocks.

The Assembly Process

A local symbol block is delimited in one of the following ways:

1. The range of a single local symbol block can consist of those statements between two normally con-
structed symbolic labels. (Note that a statement of the form:
LABEL=.
is a direct assignment, does not create a lahel in the strict sense, and does not delimit a local range.)
2. The range of a local symbol block is terminated upon encountering a .CSECT directive.
3. The range of a single local symbol block can be delimited with .ENABL LSB and the first symbolic
label or .CSECT directive following the .DSABL LSB directives. The default for LSB is off.

For examples of local symbols and local symbol blocks, see Figure 5-1.

The maximum offset of a local symbol from the base of its local symbol block is 128 decimal words. Symbols be-
yond this range are flagged with an A error code.

5.2.6 Assembly Location Counter

The period (.) is the symbol for the assembly location counter. When used in the operand field of an instruction, it
represents the address of the first word of the instruction. When used in the operand field of an assembler directive,
it represents the address of the current byte or word. For example:

A: MOV #.,RO ;. REFERS TO LOCATION A,
;L.LE., THE ADDRESS OF THE
;MOV INSTRUCTION

(#is explained in Section 5.4.9).
At the beginning of each assembly pass, the assembler clears the location counter. Normally, consecutive memory
locations are assigned to each byte of object data generated. However, the location where the object data is stored
may be changed by a direct assignment statement altering the location counter:

=expression
The expression defining the location counter must not contain forward references or symbols that vary from one
pass to another. If an expression is assigned to the current’location counter in a relocatable CSECT, an error flag is
generated. (The construction .=.+expression must be used.)
Similar to other symbols, the location counter symbol has a mode associated with it, either absolute or relocatable;

the mode cannot be external. The existing mode of the location counter cannot be changed by using a defining
expression of a different mode.

5-11

Line
Number

O NOOOGTD WN =

N = e o @ ed e ed = - (O
O WO NODOPAWN=O0O

21
22

23
24
25
26
27

28
29

30
31
32
33
34

35
36

37
38
39
40
41

00000

00000

00000

00000

00000

00004
00006

00012

00000

00000

00004
00006

00012

00000

00000

00004
00006

00012

00000

Octal
Expansion

000000

000000’

IMPURE:

000000’
IMPPAS:
000000’
IMPLIN:
000000’

XCTPRG:

012700
000000’
005020 1%:
022700
000000’
101374

000000’

XCTPAS:

012700
000000’
005020 1$:
022700
000000’
101374

000000’

XCTLIN:

012700
000000’
005020 1$:
022700
000000°
101374

000000’

000000 IMPTOP:

000001’

The Assembly Process

Source Code Comments

R0=%0

SBTTL SECTOR INITIALIZATION

.CSECT IMPURE ;IMPURE STORAGE AREA
.CSECT IMPPAS ;CLEARED EACH PASS

.CSECT IMPLIN JCLEARED EACH LINE

.CSECT XCTPRG PROGRAM

;INITIALIZATION

MOV #IMPURE,RO

CLR (RO)+ .CLEAR IMPURE AREA

CMP #IMPTOP,RO

BHI 1$

.CSECT XCTPAS ;PASS INITIALIZATION

MOV #IMPPAS,RO

CLR (RO)+ .CLEAR IMPURE PART

CMP #IMPTOP,RO

BHI 1$

.CSECT XCTLIN ;LINE INITIALIZATION

MOV #IMPLIN,RO

CLR (RO)+

CMP #IMPTOP,RO

BHI 1$

.CSECT MIXED ;MIXED MODE SECTOR

WORD 0

.END

Figure 5-1 Assembly Source Listing Showing Local Symbol Blocks

The Assembly Process

The mode of the location counter symbol can be changed by the use of the .ASECT or .CSECT directive as ex-
plained in Section 5.5.9.

Examples:
.ASECT

=500 ;SET LOCATION COUNTER TO
;ABSOLUTE 500

FIRST: MOV .+10,COUNT ;THE LABEL FIRST HAS THE VALUE
;5600(8)
;.+10 EQUALS 510(8). THE
;CONTENTS OF THE LOCATION
;510(8) WILL BE DEPOSITED

COUNT: WORD 0 ;IN LOCATION COUNT.

=520 . ;THE ASSEMBLY LOCATION COUNTER
;NOW HAS A VALUE OF
;ABSOLUTE 520(8).

SECOND: MOV .INDEX ;THE LABEL SECOND HAS THE
;VALUE 520(8)
;THE CONTENTS OF LOCATION
;520(8). THAT IS, THE BINARY
;CODE FOR THE INSTRUCTION
JITSELF WILL BE DEPOSITED IN
INDEX: .WORD 0 ;LOCATION INDEX.

.CSECT

=420 ;SET LOCATION COUNTER TO
;,RELOCATABLE 20 OF THE
;JUNNAMED PROGRAM SECTION.

THIRD: .WORD 0 ;THE LABEL THIRD HAS THE
;VALUE OF RELOCATABLE 20.

Storage area may be reserved by advancing the location counter. For example, if the current value of the location
counter is 1000, the direct assignment statement:

=+100

reserves 100(octal) bytes of storage space in the program. The next instruction is stored at 1100. (The .BLKW and
.BLKB directives can also be used to reserve blocks of storage; see Section 5.5.5.3.)

5.2.7 Numbers

The assembler assumes all numbers in the source program are to be interpreted in octal radix unless otherwise speci-
fied. The assumed radix can be altered with the .RADIX directive or individual numbers can be treated as being of
decimal, binary, or octal radix (see Section 5.5.4.2).

Octal numbers consist of the digits O through 7 only. A number not specified as a decimal number and containing
an 8 or 9 is flagged with an N error code and treated as a decimal number.

5-13

The Assembly Process

Negative numbers are preceded by a minus sign (the assembler translates them into two’s complement form). Posi-
tive numbers may be preceded by a plus sign, although this is not required.

A number which is too large to fit into 16 bits (177777<n) is truncated from the left and flagged witha T error
code in the assembly listing.

Numbers are always considered absolute quantities (that is, not relocatable).

The single-word floating-point numbers which can be generated with the 1F operator (see Section 5.5.6.2) are stored
in the following format:

15 14 7 6 0

SIGN

BIT 8-BIT EXPONENT 7-BIT MANTISSA

Refer to the H11 Operation Manual for details of the floating-point format.

5.2.8 Terms
A term is a component of an expression. A term may be one of the following:

1. A number whose 16-bit value is used.
2. A symbol that is interpreted according to the following hierarchy:
a. aperiod that causes the value of the current location counter to be used
b. a permanent symbol whose basic value is used and whose arguments (if any) are ignored
c. user defined symbols
d. an undefined symbol that is assigned a value of zero and inserted in the user-defined symbol table

3. An ASCII conversion using either an apostrophe followed by a single ASCII character or a double quote
followed by two ASCII characters, which results in a word containing the 7-bit ASCII value of the charac-
ter(s). (This construction is explained in greater detail in Section 5.5.3.3.)

4. An expression enclosed in angle brackets. Any quantity enclosed in angle brackets is evaluated before the
remainder of the expression in which it is found. Angle brackets are used to alter the left to right evalua-
tion of expressions (for example, to differentiate between A*B+C and A*<B+C>) or to apply a unary
operator to an entire expression (—<A+B>).

5.2.9 Expressions

Expressions are combinations of terms that are joined together by binary operators and that reduce to a 16-bit value.
The operands of a .BYTE directive are evaluated as word expressions before truncation to the low-order eight bits.
Prior to truncation, the high-order byte must be zero or all ones (when the byte value is negative, the sign bit is pro-
pagated). The evaluation of an expression includes the evaluation of the mode of the resultant expression — that
is, absolute, relocatable or external. Expression modes are defined further below.

Expressions are evaluated left to right with no operator hierarchy rules except that unary operators take precedence
over binary operators. A term preceded by a unary operator can be considered as containing that unary operator.
(Terms are evaluated, where necessary, before their use in expressions.) Multiple unary operators are valid and are
treated as follows:

—+—A

is equivalent to:

—<t<-A>>

The Assembly Process

The value of an external expression is the value of the absolute part of the expression; e.g., EXT+A has a value of
A. This is modified by the Linker to become EXT+A.

Expressions, when evaluated, are either absolute, relocatable, or external. For the programmer writing position inde-
pendent code, the distinction is important.

1. An expression is absolute if its value is fixed. An expression whose terms are numbers and ASCII conver-
sions has an absolute value. A relocatable expression minus a relocatable term, where both items belong
to the same program section, is also absolute.

2. An expression is relocatable if its value is fixed relative to a base address but will have an offset value
added when linked. Expressions whose terms contain labels defined in relocatable sections and the assem-
bly location counter (in relocatable sections) have a relocatable value.

3. An expression is external (or global) if its value is only partially defined during assembly and is completed
at link time. An expression whose terms contain a global symbol not defined in the current program is an
external expression. External expressions have relocatable values at execution time if the global symbol is
defined as being relocatable or absolute if the global symbol is defined as absolute,

An example of the three expression types follows:

.ASECT
=100
ABSSYM=, ;THE VALUE OF ABSSYM IS
:NOT RELOCATABLE, BECAUSE
JWE ARE IN AN ASECT

.CSECT MAIN ;START RELOCATABLE
;PROGRAM SECTION

.GLOBL EXTVAL JEXTVAL IS DEFINED ELSEWHERE,
JITS VALUE WILL NOT BE KNOWN
JUNTIL LINK TIME

BEGSYM: .BLKW 4 ;THE VALUES OF BEGSYM
.ASCII /ABCD/ ;JAND ENDSYM ARE
.EVEN ;RELOCATABLE, BECAUSE
ENDSYM=. ;THE ADDRESS AT WHICH
J'MAIN"” WILL BE LOADED
;IS NOT DETERMINED UNTIL
;LINK TIME

SIZE = ENDSYM—-BEGSYM ;HOWEVER, THE
;VALUE OF SIZE IS KNOWN
S(IT 1S 12.) AT ASSEMBLY
;TIME AND IS ABSOLUTE

RELEXP = ENDSYM—BEGSYM+. JRELEXP (=.412)) IS
JRELOCATABLE

EXTEXP: .WORD EXTVAL+4 ;THE EXPRESSION ‘EXTVAL+4"
;IS EXTERNAL (OR GLOBAL)
;BECAUSE EXTVAL IS DEFINED
/IN ANOTHER PROGRAM UNIT.

CHARA='A ;THE VALUE OF CHARA
/IS ABSOLUTE

5-15

The Assembly Process

5.3 RELOCATION AND LINKING ,

The output of the assembler is an object module which must be processed by LINK before loading and execution
(refer to Chapter 6 for details). The Linker essentially fixes (i.e., makes absolute) the values of external or relocat-
able symbols and turns the object module into a load module.

To enable the Linker to fix the value of an expression, the assembler issues certain directives to the Linker together
with required parameters. In the case of relocatable expressions, the Linker adds the base of the associated relocat-
able section (the location in memory of relocatable 0) to the value of the relocatable expression provided by the
assembler. In the case of an external expression, the value of the external term in the expression is determined by
the Linker (since the external symbol must be defined in one of the other object modules which are being linked to-
gether) and adds it to the value of the external expression provided by the assembler,

All words that are to be modified (as described in the previous paragraph) are marked with an apostrophe in the
assembly listing. A G in the listing indicates that the value is external, or that a global is added to that value. Thus,
the binary text output looks as follows:

005065 CLR EXTERNAL(R5) J'VALUE OF EXTERNAL SYMBOL
000000G
;ASSEMBLED ZERO; WILL BE
;MODIFIED BY THE LINKER.

005065 CLR EXTERNAL+6(R5) ;THE ABSOLUTE PORTION OF THE
000006G
;EXPRESSION (000006) IS ADDED
;BY THE LINKER TO THE VALUE OF
;THE EXTERNAL SYMBOL

005065 CLR RELOCATABLE(RbS) ;ASSUMING WE ARE IN A

000040’
;RELOCATABLE SECTION
;AND THE VALUE OF RELOCATABLE
IS RELOCATABLE 40

5.4 ADDRESSING MODES ;

The program counter (PC, register 7 of the eight general registers) always contains the address of the next word to be
fetched;i.e., the address of the next instruction to be executed, or the second or third word of the current instruc-
tion.

In order to understand how the address modes operate and how they assemble, the action of the program counter
must be understood. The key rule is:

Whenever the processor implicitly uses the program counter to fetch a word from memory, the program
counter is automatically incremented by two after the fetch.

That is, when an instruction is fetched, the PC is incremented by two so that it is pointing to the next word in
memory; if an instruction uses indexing (Sections 5.4.7, 5.4.9 and 5.4.11) the processor uses the program counter to
fetch the base from memory. Hence, using the rule above, the PC increments by two, and now points to the next
word.

The following conventions are used in this section:

1. Let E be any expression as defined in Section 5.2.

5-16

The Assembly Process

2. Let R be a register expression. This is any expression containing a term preceded by a % character or a
symbol previously equated to such a term.
Examples:
R0O=%0 ;GENERAL REGISTER 0
R1=R0+1 ;GENERAL REGISTER 1
R2=1+%1 ;GENERAL REGISTER 2
3. Let ER be a register expression or an expression in the range 0 to 7 inclusive.
4. Let A be any general address specification which produces a 6-bit mode address field as described in the
H11 Operation Manual.

The addressing specifications, A, can be explained in terms of E, R, and ER as defined above. Each is illustrated
with the single operand instruction CLR or double operand instruction MOV.

5.4.1 Register Mode
The register contains the operand.

Format for A: R

Examples: R0=%0 ;DEFINE RO AS REGISTER 0
CLR RO ;CLEAR REGISTER 0

5.4.2 Register Deferred Mode
The register contains the address of the operand.

Format for A: @R or (ER)

Examples: CLR @R1 ;BOTH INSTRUCTIONS CLEAR
;THE WORD AT THE ADDRESS
CLR (R1) ;CONTAINED IN REGISTER 1

5.4.3 Autoincrement Mode
The contents of the register are incremented immediately after being used as the address of the operand. (See NOTE
below.)

Format for A: (ER)+

Examples: CLR (RO)+ ;EACH INSTRUCTION CLEARS
CLR (RO+3)+ ;THE WORD AT THE ADDRESS
CLR (R2)+ ;CONTAINED IN THE SPECIFIED

;REGISTER AND INCREMENTS
;THAT REGISTER’S CONTENTS
;BY TWO.

CLRB (R4)+ ;CLEARS THE BYTE AT THE
;ADDRESS SPECIFIED BY THE
;CONTENTS OF R4 AND
JINCREMENTS R4 BY ONE.

5-17

The Assembly Process

NOTE
Both JMP and JSR instructions using non-deferred
autoincrement mode, autoincrement the register before
its use on the PDP-11/20 and 11/05 (but not on the
PDP-11/40 or 11/45). In double operand instructions
of the addressing form %R, (R)* or %R,—(R) where
the source and destination registers are the same, the
source operand is evaluated as the autoincremented or
autodecremented value, but the destination register, at
the time it is used, still contains the originally intended
effective address.

In the following two examples, as executed on the
PDP-11/20, RO originally contains 100.

MoV RO,(RO)+ ;THE QUANTITY 102 IS MOVED
;TO LOCATION 100

MoV RO,—(RO) ;THE QUANTITY 76 IS MOVED
;TO LOCATION 76

The use of these forms should be avoided as they are not
compatible with other PDP-11 models.

A Z error code is printed with each instruction which is not compatible among all members of the PDP-11 family.
This is merely a warning code.

5.4.4 Autoincrement Deferred Mode
The register contains the pointer to the address of the operand. The contents of the register are incremented after
being used.

Format for A: @ER)+

Example: CLR @(R3)+ ;CONTENTS OF REGISTER 3 POINT
;TO ADDRESS OF WORD TO BE
;CLEARED, AND REGISTER 3 IS
;THEN INCREMENTED BY TWO

5.4.5 Autodecrement Mode
The contents of the register are decremented before being used as the address of the operand (see NOTE under auto-

increment mode).

Format for A: —(ER)

Examples: CLR —(R0O) ;DECREMENT CONTENTS OF
CLR —(R0O+3) ;0, 3, AND 2 BY TWO
CLR —(R2) ;BEFORE USING AS ADDRESSES

;OF WORDS TO BE CLEARED.

5-18

The Assembly Process

5.4.6 Autodecrement Deferred Mode
The contents of the register are decremented before being used as the pointer to the address of the operand.

Format for A: @—(ER)

Example: CLR @—(R2) ;DECREMENT CONTENTS OF
;REGISTER 2 BY TWO BEFORE
JUSING AS A POINTER
;TO ADDRESS OF WORD TO BE
;CLEARED.

5.4.7 Index Mode
The value of an expression E is stored as the second or third word of the instruction. The effective address is calcu-

lated as the value of E plus the contents of register ER. The value E is called the base.

Format for A: E(ER)

Examples: CLR X+2(R1) EFFECTIVE ADDRESS IS X+2 PLUS
;THE CONTENTS OF REGISTER 1
CLR —2(R3) ;EFFECTIVE ADDRESS IS —2 PLUS

;THE CONTENTS OF REGISTER 3.

5.4.8 Index Deferred Mode
An expression plus the contents of a register gives the pointer to the address of the operand.

Format for A: @E(ER)

Example: CLR @14(R4) ;IF REGISTER 4 HOLDS 100 AND
:LOC 114 HOLDS 2000,
;LOCATION 2000 IS CLEARED.

5.4.9 Immediate Mode
The immediate mode allows the operand itself to be stored as the second or third word of the instruction. It is

assembled as an autoincrement of register 7, the PC.

Format for A: #E

Examples: Mov #100,R0 ;MOVE AN OCTAL 100 TO
;REGISTER 0
MOV #X,RO ;MOVE THE VALUE OF THE SYMBOL X TO
;REGISTER 0

The operation of this mode can be explained by the following example. The statement MOV #100,R3 assembles
as two words. These are:

012703
000100

Just before this instruction is fetched and executed, the PC points to the first word of the instruction. The proces-
sor fetches the first word and increments the PC by two. The source operand mode is 27 (autoincrement the PC).
Thus, the PC is used as a pointer to fetch the operand (the second word of the instruction) before being incre-
mented by two, to point to the next instruction.

5-19

The Assembly Process

5.4.10 Absolute Mode

Absolute mode is the equivalent of immediate mode deferred. @#E specifies an absolute address which is stored in
the second or third word of the instruction. Absolute mode is assembled as an autoincrement deferred of register 7,
the PC.

Format for A: @#E

Examples: MOV @#100,R0 ;MOVE THE VALUE OF CONTENTS
;OF LOCATION 100 TO
;REGISTER 0.
CLR @#X ;CLEAR THE CONTENTS OF THE

;LOCATION WHOSE ADDRESS IS X.

5.4.11 Relative Mode
Relative mode is the normal mode for memory references.

Format for A: E
Examples: CLR 100 ;CLEAR LOCATION 100

MoV XY ;MOV THE CONTENTS OF LOCATION X
;TO LOCATION Y.

Relative mode is assembled as index mode, using register 7, the PC, as the index register. The base of the address cal-
culation, which is stored in the second or third word of the instruction, is not the address of the operand (as in index
mode), but the number which, when added to the PC, becomes the address of the operand. Thus, the base is X-PC,
which is called an offset. The operation is explained as follows:

If the statement MOV 100,R3 is assembled at absolute location 20, the assembled code is:

Location 20: 016703
Location 22: 000054

The processor fetches the MOV instruction and adds two to the PC so that it points to location 22. The source
operand mode is 67, that is, indexed by the PC. To pick up the base, the processor fetches the word pointed to by
the PC and adds two to the PC. The PC now points to location 24. To calculate the address of the source oper-
and, the base is added to the designated register, that is, BASE+PC=54+24=100, the operand address.

Since the assembler considers ““.”
statement would be:

as the address of the first word of the instruction, an equivalent index mode

MOV 100-.—4(PC),R3

This mode is called relative because the operand address is calculated relative to the current PC. The base is the dis-
tance or offset (in bytes) between the operand and the current PC. If the operator and its operand are moved in
memory so that the distance between the operator and data remains constant, the instruction will operate correctly
anywhere in memory.

5-20

The Assembly Process

5.4.12 Relative Deferred Mode
Relative deferred mode is similar to relative mode, except that the expression, E, is used as the pointer to the
address of the operand.

Format for A: @E

Example: MOV @X,R0 ;MOVE THE CONTENTS OF THE
;LOCATION WHOSE ADDRESS IS IN
;X INTO REGISTER 0

5.4.13 Table of Mode Forms and Codes
Each instruction assembles into at least one word. Operands of the first six forms listed below do not increase the
length of an instruction. Each operand in one of the other modes, however, increases the instruction length by one

word.

Form Mode Meaning
R On Register mode
@R or (ER) In Register deferred mode
(ER)+ 2n Autoincrement mode
@ER)+ 3n Autoincrement deferred mode
—(ER) 4n Autodecrement mode
@—(ER) 5n Autodecrement deferred mode

n represents the register number.

Any of the following forms adds one word to the instruction length:

Form Mode Meaning
E (ER) 6n Index mode
@E(ER) 7n Index deferred mode
#E 27 Immediate mode
@#E 37 Absolute memory reference mode
E 67 Relative mode
@E 77 Relative deferred reference mode

n represents the register number. Note that in the last four forms, register 7 (the PC) is referenced.

NOTE
An alternate form for @R is (ER). However, the form
@(ER) is equivalent to @0(ER).

The form @#E differs from the form E in that the
second or third word of the instruction contains the
absolute address of the operand rather than the relative
distance between the operand and the PC. Thus, the in-
struction CLR @#100 clears absolute location 100
even if the instruction is moved from the point at which
it was assembled. See the description of the .ENABL
AMA function in Section 5.5.2, which directs the
assembly of all relative mode addresses as absolute mode
addresses.

521

The Assembly Process

5.4.14 Branch Instruction Addressing

The branch instructions are 1-word instructions. The high byte contains the op code and the low byte contains an
8-bit signed offset which specifies the branch address relative to the PC. Upon execution of a branch instruction, the
hardware calculates the branch address as follows:

1. Extend the sign of the offset through bits 8-15.
2. Multiply the result by 2. This creates a word offset rather than a byte offset.
3. Add the result to the PC to form the final branch address.

The assembler performs the reverse operation to form the byte offset from the specified address. Remember that
when the offset is added to the PC, the PC is pointing to the word following the branch instruction; hence the term
—2 in the calculation.

Byte offset = (E—PC)/2 truncated to eight bits.
Since PC = +2, we have:
Byte offset = (E—.—2)/2 truncated to eight bits.

NOTE
It is illegal to branch to a location specified as an exter-
nal symbol, or to a relocatable symbol from within an
absolute section, or to an absolute symbol or a relocat-
able symbol or another program section from within a
relocatable section.

5.4.15 EMT and TRAP Addressing

The EMT and TRAP instructions do not use the low-order byte of the word. This allows information to be trans-
ferred to the trap handlers in the low-order byte. If EMT or TRAP is followed by an expression, the value is put
into the low-order byte of the word. However, if the expression is too big (>377(8)) it is truncated to eight bits and
a T error flag is generated.

5.5 ASSEMBLER DIRECTIVES
Directives are statements which cause the assembler to perform certain processing operations.

Assembler directives can be preceded by a label, subject to restrictions associated with specific directives, and fol-
lowed by a comment. An assembler directive occupies the operator field of a source line. Only one directive can be
placed on any one line. Zero, one, or more operands can occupy the operand field; legal operands differ with each
directive and may be either symbols, expressions, or arguments.

§.5.1 Listing Control Directives

5§.5.1.1 |LIST and NLIST - Listing options can be specified in the text of a program through the .LIST and
NLIST directives. These are of the form:

.LIST arg
NLIST arg

where arg represents one or more optional arguments.

5-22

The Assembly Process

Allowable arguments for use with the listing directives are as follows (these arguments can be used singly or in com-
bination):

Argument Default Function
SEQ list Controls the listing of source line sequence numbers.
LOC list Controls the listing of the location counter (this field would not nor-
mally be suppressed). ’
BIN list Controls the listing of generated binary code (supersedes BEX).
BEX list Controls listing of binary extensions; that is, prevents listing those loca-

tions and binary contents beyond the first line of an expansion. Thisis a
subset of the BIN argument.

SRC list Controls the listing of the source code.

COM list Controls the listing of comments. This is a subset of the SRC argument
and can be used to reduce listing time and/or space where comments are
unnecessary.

CND list Controls the listing of unsatisfied conditions and all .IF and .ENDC

statements. This argument permits conditional assemblies to be listed
without including unsatisfied code.

LD no list Controls listing of all listing directives having no arguments.

TOC list Controls listing of table of contents on pass 1 of the assembly (see Sec-
tion 5.5.1.4 describing the .SBTTL directive). The full assembly listing
is printed during pass 2 of the assembly.

T™ Terminal Controls listing output format. The TTM argument (the default case)
mode causes output lines to be truncated to 72 characters. Binary code is
printed with the binary extensions below the first binary word. The
alternative (.NLIST TTM) to Terminal mode is line printer mode, which
is shown in Figure 5-2.

SYM list Controls the listing of the symbol table for the assembly.

An example of an assembly listing as sent to a 132-column line printer is shown in Figure 5-2. Notice that binary
extensions for statements generating more than one word are spread horizontally on the source line. An example of
an assembly listing as sent to an 80-column line printer is shown in Figure 5-3 (this is the same format as a terminal
listing). Notice that binary extensions for statements generating more than one word are printed on subsequent
lines.

Figure 54 illustrates a symbol table listing. With the exception of local symbols, all user-defined symbols are listed
in the symbol table. The characters following the symbols listed have special meanings as follows:

= the symbol is assigned in a direct assignment statement

% the symbol is a register symbol
R the symbol is relocatable
G the symbol is global

5-23

The Assembly Process

The final value of the symbol is expressed in octal. If the symbol is undefined six asterisks are printed in place of the
octal number.

CSECT numbers are listed if the symbol is in a named CSECT. All CSECTs are listed at the end of the table with
theirlengths and corresponding number.

HTEXEC HT-11 ASSEMBL H01-1 7-SEP-78 17:26:14 PAGE 21
GET PHYSICAL SOURCE LINE

HTEXEC HT-11 ASSEMBL H01-1 7-SEP-78 17:26:14 PAGE 21
GET PHYSICAL SOURCE LINE

1 .SBTTL GETPHYSICAL SOURCE LINE
2
3 104240 WINST=EMT+240
4 001764 GETPLI:
5 001764 104403 TRAP SRC
6 001766 005000 CLR RO
7 001770 032737 000004 000012 BIT #l0.EOF,IOFTBL+SRCCHN ;END OF FILE?
8 001776 001424 BEQ 2% ;NO
9 002000 013700 002362 MoV CHAN+SRCCHN,RO ;GET CURRENT INPUT CHAN
10 002004 005200 INC RO ;MOVE TO NEXT CHAN
11 002006 020027 000010 Cwmp RO,#8. ;LAST CHAN?
12 002012 101017 BHI 1$;YES, FLAG END OF INPUT
13 002014 005037 000026’ CLR RECNUM+SRCCHN ;RESET RECORD (BLK) NUMBER
14 002020 013737 002310’ '002306° MoV BLKTBL+<SRCCHN=*4>PTRTBL+<SRCCHN #4>
15 002026 010037 002362’ MOV RO,CHAN+SRCCHN
16 002032 052700 104240 BIS #WINST,RO ;CREATE A WAIT CALL FOR NEXT CHAN
17 002036 010017 MoV RO,@PC ;AND STORE IN NEXT LOCATION
18 002040 104240 WINST
19 002042 103403 BCS 1$;BRANCH IF NO MORE INPUT
20 002044 012700 177777 MOV #1,R0 ;FLAG END OF FILE
21 002050 2%: RETURN
22 002052 012700 000001 18: MOV #1,R0 ;FLAG END OF INPUT
23 002056 RETURN

Figure 5-2 Example of ASEMBL Line Printer Listing (132-Column Line Printer)

5-24

The Assembly Process

HTEXEC HT-11 ASSEMBL HO1-1 5-SEP-78 22:30:23 PAGE 21
GET PHYSICAL SOURCE LINE

001764
001766

1
2
3
4 001764
5
6
7 001770

8 001776
9 002000

10 02004
11 02006

12 02012
13 02014

14 02020

15 02026
16 02032
17 02036
18 02040
19 02042
20 02044

21 02050
22 02052

23 02056

104240

104403
005000
032737
000004
000012’
001424
013700
002362
005200
020027
000010
101017
005037
000026’
013737
002310’
002306’
010037
002362’
052700
104240
010017
104240
103403
012700
177777

012700
000001

GETPLI:

2$:
1$:

.SBTTL

GET PHYSICAL SOURCE LINE

WINST=EMT+240

TRAP
CLR
BIT

BEQ

MOV

INC
CMP

BHI
CLR

MOV

MOV
BIS
MOV
WINST
BCS
MOV

RETURN
MOV

RETURN

SRC
RO
#10.EOF,IOFTBL+SRCCHN ;END OF FILE?

2% ;NO

CHAN+SRCCHN,R0O ;GET CURRENT INPUT CHAN
RO ;MOVE TO NEXT CHAN
RO,#8. ;LAST CHAN?

1% ;YES, FLAG END OF INPUT

RECNUM+SRCCHN ;RESET RECORD (BLK) NUMBER

BLKTBL+<SRCCHN#4> PTRTBL+<SRCCHN#4>

RO,CHAN+SRCCHN

#WINST,RO ;CREATE A WAIT CALL FOR NEXT CHA
R0O,@PC ;AND STORE IN NEXT LOCATION

1$;BRANCH IF NO MORE INPUT

#1,R0 ;FLAG END OF FILE

#1,R0 ;FLAG END OF INPUT

Figure 5-3 Example of Page Heading from ASEMBL 80-Column Line Printer
(same format as Terminal Listing)

5-25

The Assembly Process

HTEXEC HT-11 ASEMBL HO1-1 5-SEP-78 22:30:23 PAGE 29+

SYMBOL TABLE
ABSEXP= rREXEE G ARGCNT= rREEEE G ASSEM= FRREEE G
BINCHN= 000004 BINDAT 002322R 004 BLKTBL= 002310R
BPMB = 000020 BUFTBL 000374RG 003 CHAN 002362R
CHNSPC 000312R 003 CHRPNT= rrEER® G CLK50 = 000040
CMILEN= 000123 CNTTBL 000360RG 003 CONFIG= 000300
CONT 000040RG 010 CORERR 001726R 010 CPL = 000120
CR = 000015 CRFBUF 002076RG 004 CRFC = 000040
CRFCHN= 000012 CRFCNT 000004RG 007 CRFDAT 002352R
CRFE = 000100 CRFFLG 000000R 007 CRFLEN= 000204
CRFM = 000010 CRFP = 000020 CRFPNT 000064R
CRFR = 000004 CRFS = 000002 CRFSPC 000114R
CRFTAB 000026R 003 CRFTST 000002RG 007 CSIERR 000214R
CTLTBL 000000R 003 DATE 001000R 010 DATTIM 001004RG
DEFEXT 000104R 003 DEVFUL 000252R 003 DIV60 001240R
DNC = LE XX 22 G EDMASK= ¥* K % XX ¥ G ED.ABS= LA R 2 X G
EMTERR= 000052 ENDP1 = rEEERE G ENDP2 = ¥REXEX G
ENDSWT 000434R 010 ERR 001662R 010 ERRB 000102R
ERRBTS= FrEXEX G ERRCNT= i ¢ EXMFLG= ****** G
FF = 000014 FILNF 000264R 003 FIN 001434RG
FINCL 001636R 010 FINMSG 001030R 004 FINMS1 001052R
FINMS2 001070R 004 FINP1 000776R 010 FINP2 000776R
FINSML 002124RG 010 FRECOR 000006R 007 GETPLI 001756RG
GETR50= FREREE G GSARG = rEREEE G HDRTTL 001102RG
HIGHAD= 000050 ILLCMD 000226R 003 ILLDEV 000240R
IMPURT 000042R 007 IMPUR$ 000000R 007 INIOF 000106R
HTEXEC HT-11 ASEMBL HO01-1 5-SEP-78 22:30:23 PAGE 29+
SYMBOL TABLE
TIME 000210R 003 TIMTIM 001016R 004 TIMWRD 000204R
TMPCNT= 000014 TSTSTK 001704RG 010 TTLBRK= = ****** @G
TTLBUF= e ¢ TTLLEN= 000040 TTYBUF= 000616
USRLOC= 000046 VT = 000013 WINST = 104240
WRTERR 002306R 010 XBAW = 000000 XEDPIC= 000000
XMITO = rrEEEX G $CLOUT 003006RG 010 S$EDABL= rREEEX G
$FLUSH 002732RG 010 $NLIST= b ¢ $READ 002422RG
$SREADW 002422RG 010 SWAIT 002730RG 010 S$WRITE 002134RG
$SWRITW 002134RG 010
. ABS. 000000 000

000000 001
DPURE 000000 002
DPURE$ 000410 003
MIXED$ 002376 004
SWTSE$ 000000 005
SWTSEC 000000 006
IMPUR$ 000042 007
MAINS$ 003024 010

ERRORS DETECTED: 0
FREE MEMORY: 13431. WORDS

,LP:/C/L:BEX=RP4:RTPAR, RPARAM, RCIOCH, RTEXEC

Figure 5-4 Symbol Table

526

004
004

004

003
003
003
004
010

010

010
004
010
010
004
003
010

003

010
010

The Assembly Process

5.5.1.2 Page Headings — The assembler outputs each page in the format shown in Figure 5-3. On the first line of
each listing page the assembler prints (from left to right):

title taken from .TITLE directive (most recent one encountered)
assembler version identification

the date and time of day if entered

page number

.-lkwl\)»—-

The second line of each listing page contains the subtitle text specified in the last encountered. SBTTL directive.
5.5.1.3 .TITLE — The .TITLE directive is used to printa heading in the output listing and to assign a name to the
object module. The heading printed on the first line of each page of the listing is taken from the first 31 characters
of the argument in the .TITLE directive. The first six characters (symbol name) of this same line are also used as
the name of the object module. These six characters must be Radix-50 characters (any characters beyond the first
six are ignored). Non-Radix-50 characters are not acceptable.
For example:

.TITLE PROG TO PERFORM DAILY ACCOUNTING
causes PROG TO PERFORM DAILY ACCOUNTIN to be printed in the heading for each page and causes the object
module of the assembled program to be PROG (this name is distinguished from the filename of the object module
specified in the command string to the assembler).
If there is no TITLE statement, the default name assigned to the first object module is:

.MAIN.

The first tab or space following the .TITLE directive is not considered part of the object module name or header
text, although subsequent tabs and spaces are significant.

If there is more than one .TITLE directive, the last .TITLE directive in the program conveys the name of the object
module.

5.5.14 SBTTL - The SBTTL directive is used to provide the elements for a printed table of contents of the
assembly listing. The text following the directive is printed as the second line of each of the following assembly
listing pages until the next occurrence of a .SBTTL directive.
For example:
.SBTTL CONDITIONAL ASSEMBLIES
The text:
CONDITIONAL ASSEMBLIES
is printed as the second line of each of the following assembly listing pages.
During pass 1 of the assembly process, ASEMBL automatically prints a table of contents for the listing containing

the line sequence number and text of each .SBTTL directive in the program. Such a table of contents is inhibited by
specifying the .NLIST TOC directive within the source.

527

The Assembly Processor

An example of a table of contents is shown in Figure 5-5.

.MAIN. HT-11 ASEMBL HO1-1 5-SEP-78 22:30:23
TABLE OF CONTENTS

1- 29 HT-11 MACRO PARAMETER FILE
1- 37 COMMON PARAMETER FILE
2- 1 ASSEMBLY OPTIONS
3 1 VARIABLE PARAMETERS
4- 1 GLOBALS
5- 1 SECTOR INITIALIZATION
7- 1 SUBROUTINE CALL DEFINITIONS
10- 1 MISCELLANEOUS MACRO DEFINITIONS
11- 2 MCIOCH — 1/0 CHANNEL ASSIGNMENTS
12_ 2 ****ExEC****
13- 1 PROGRAM START
14- 1 INIT OUTPUT FILES
15- 1 SWITCH HANDLERS
16- 1 END-OF-PASS ROUTINES
17- 1 SWITCH AND DATE DATA AREAS
18- 1 INIT OUTPUT FILES (CONTINUED)
19- 1 FINISH ASSEMBLY AND RESTART
20- 1 MEMORY MANAGEMENT
21- 1 GET PHYSICAL SOURCE LINE
22- 1 SYSTEM MACRO HANDLERS
23- 1 WRITE ROUTINES
24- 1 READ ROUTINE
25- 1 COMMON I/0 ROUTINES
26- 1 MESSAGES
27- 1 1/0 TABLES
29- 1 FINIS

Figure 5-5 Assembly Listing Table of Contents

Table of Contents text is taken from the text of each .SBTTL directive. The associated numbers are the page and
line numbers of the .SBTTL directives.

5.5.1.5 .IDENT - The IDENT directive is not used or supported by the HT-11 system, but is handled by
ASEMBL for compatibility with other systems. .IDENT provides a means of labeling the object module produced
as a result of an assembly. In addition to the name assigned to the object module with the .TITLE directive, a
character string (up to six characters, treated like a .RAD50 string) can be specified between paired delimiters.
For example:

IDENT /V005A/

5-28

The Assembly Process

The character string:
VOOSA
is converted to Radix-50 notation and output to the global symbol directory of the object module.

When more than one .IDENT directive is found in a given program, the last IDENT found determines the symbol
which is passed as part of the object module identification.

5.5.1.6 Page Ejection (.PAGE Directive) — There are several means of obtaining a page eject in an assembly
listing:

1. After aline count of 58 lines, ASEMBL automatically performs a page eject to skip over page
perforations on line printer paper and to formulate terminal output into pages.
2. A form feed character used as a line terminator (or as the only character on a line) causes a page eject.
3. More commonly, the .PAGE directive is used within the source code to perform a page eject at that
point. The format of this directive is:
.PAGE
This directive takes no arguments and causes a skip to the top of the next page.

5.5.2 Functions: .ENABL and .DSABL Directives
Several functions are provided by ASEMBL through the .ENABL and .DSABL directives. These directives use 3-

character symbolic arguments to designate the desired function and are of the forms:

.ENABL arg
.DSABL arg

where arg is one of the legal symbolic arguments defined below.

The following list describes the symbolic arguments and their associated functions in the MACRO language:

Symbolic
Argument Function

ABS Enabling of this function produces absolute binary output; (i.e., for input to
the Paper Tape Software System absolute binary loader using a .BIN exten-
sion instead of .OBJ). The default case is .DSABL ABS.

AMA Enabling of this function directs the assembly of all relative addresses
(address mode 67) as absolute addresses (address mode 37). This switch is
useful during the debugging phase of program development.

CDR The statement .ENABL CDR causes source columns 73 and greater to be
treated as comments. This accommodates sequence numbers in columns
72-80.

FPT Enabling of this function causes floating point truncation, rather than
rounding as is otherwise performed. .DSABL FPT returns to floating point
rounding mode.

LC Enabling of this function causes the assembler to accept lower-case ASCII

input instead of converting it to upper case.

5-29

The Assembly Process

Symbolic
Argument Function
LSB Enable or disable a local symbol block. While a local symbol block is
normally entered by encountering a new symbolic label or .CSECT direc-
tive, ENABL LSB forces a local symbol block which is not terminated
until a label or .CSECT directive following the .DSABL LSB statement
is encountered. The default case is .DSABL LSB.
PNC The statement .DSABL PNC inhibits binary output until an .ENABL PNC

is encountered. The default case is ENABL PNC.
An incorrect argument causes the directive containing it to be flagged as an error.

5.5.3 Data Storage Directives
A wide range of data and data types can be generated with the following directives and assembly characters:

.BYTE
.WORD

»

.ASCII
.ASCIZ
.RADS0
B

tD

10

These facilities are explained in the following sections.
5.53.1 .BYTE - The .BYTE directive is used to generate successive bytes of data. The directive is of the form:

.BYTE exp WHICH STORES THE OCTAL
;EQUIVALENT OF THE EXPRESSION
;EXP IN THE NEXT BYTE

.BYTE exp1, exp2, WHICH STORES THE OCTAL
JEQUIVALENTS OF THE LIST OF
;EXPRESSIONS IN SUCCESSIVE BYTES.

A legal expression must have an absolute value (or contain a reference to an external symbol) and must result
in eight bits or less of data. The 16-bit value of the expression must have a high-order byte (which is truncated)
that is either all zeros or all ones. Each operand expression is stored in a byte of the object program. Multiple
operands are separated by commas and stored in successive bytes. For example:

SAM=5

=+410

.BYTE “D48,SAM ;060 (OCTAL EQUIVALENT OF 48
;DECIMAL) IS STORED IN LOCATION
/410 — 005 IS STORED IN
;LOCATION 411

5-30

The Assembly Process

If the high-order byte of the expression equates to a value other than 0 or —1, it is truncated to the low-order eight
bits and flagged with a T error code. If the expression is relocatable, an A-type warning flag is given.

At link time it is likely that relocation will result in an expression of more than eight bits, in which case, the Linker
prints an error message. For example:

.BYTE 23 ;STORES OCTAL 23 IN NEXT BYTE

B:
BYTE B ;RELOCATABLE VALUE CAUSES AN “A"
;JERROR FLAG

Here, X has an absolute value,

.GLOBL X
X=3
BYTE X ;STORES 3 IN NEXT BYTE

and can be linked later with another program:

.GLOBL X
.BYTE X

If an operand following the .BYTE directive is null, it is interpreted as a zero. For example (assume assembly
begins at relocatable 0):

=.+420
.BYTE ;ZEROS ARE STORED IN BYTES

;420, 421, AND 422.

5.53.2 .WORD - The .WORD directive is used to generate successive words of data, The directive is of the
form:

.WORD exp ;WHICH STORES THE OCTAL
;EQUIVALENT OF THE EXPRESSON
;EXP IN THE NEXT WORD

.WORD expl,exp2,... ;WHICH STORES THE OCTAL
;EQUIVALENTS OF THE LIST OF
;EXPRESSIONS IN SUCCESSIVE
;WORDS

where a legal expression must result in 16 bits or less of data. Each operand expression is stored in a word of
the object program,

5-31

The Assembly Process

Multiple operands are separated by commas and stored in successive words. For example:

SAL=0

.=.+500

.WORD 177535,.+4,SAL ;STORES 177535, 506, AND 0
;IN WORDS 500, 502, AND 504.

If an expression equates to a value of more than 16 bits, it is truncated and flagged with a T error code.
If an operand following the .WORD directive is null, it is interpreted as zero. For example:
.=.+500

.WORD 5, ;STORES 0, 5, 0 IN LOCATIONS
;500, 502, AND 504

A blank operator field (any operator not recognized as an op-code, directive or semicolon) is interpreted as an
implicit WORD directive. Use of this convention is discouraged. The first term of the first expression in the
operand field must not be an instruction mnemonic or assembler directive unless preceded by a + or — operator.

For example:

.=+440 ;THE OP-CODE FOR MOV, WHICH IS
LABEL: +MOV,LABEL ;010000, IS STORED IN LOCATION
;440, 440 IS STORED IN
;LOCATION 442.

Note that the default .WORD directive occurs whenever there is a leading arithmetic or logical operator, or whenever
a leading symbol is encountered which is not recognized as an instruction mnemonic or assembler directive. There-
fore, if an instruction mnemonic or assembler directive is misspelled, the .WORD directive is assumed and errors will
result. Assume that MOV is spelled incorrectly as MOR:
MOR A,B
Two error codes result: A and U. Two words are then generated, one for MOR A and one for B.
5.5.3.3 ASCII Conversion of One or Two Characters — The ’ and ”’ characters are used to generate text characters
within the source text. A single apostrophe followed by a character results in a term in which the 7-bit ASCII repre-
sentation of the character is placed in the low-order byte and zero is placed in the high-order byte. For example:
MOV #'ARO
results in the following 16 bits being moved into RO:

0000000001000001

The * character is never followed by a carriage return, null, RUBOUT, line feed, or form feed. (For another use
of the ’ character, see Section 5.6.3.3.)

5-32

The Assembly Process

STMNT:
GETSYM
BEQ 43
CmPB @CHRPNT, #": :COLON DELIMITS LABEL FIELD
BEQ LABEL
CMPB @CHRPNT, #'= ;EQUAL DELIMITS
BEQ ASGMT ;ASSIGNMENT PARAMETER

A double quote followed by two characters results in a term in which the 7-bit ASCII representations of the two
characters are placed. For example:

MOV #"AB,RO
results in the following binary word being moved into RO:

0100001001000001

Note that the first character is placed in the low-order byte and the second character in the high-order byte.
The ” character is never followed by a carriage return, null, rubout, line feed, or form feed. For example:

;DEVICE NAME TABLE

DEVNAM: .WORD "DX ;RX DISK

DEVNKB: .WORD "TT ;TERMINAL KEYBOARD
.WORD "LP ;LINE PRINTER
.WORD "PR ;PAPER TAPE READER
.WORD "PP ;PAPER TAPE PUNCH
.WORD 0 ;TABLE'S END

5.53.4 .ASCII — The .ASCII directive translates character strings into their 7-bit ASCII equivalents for use in the
source program. The format of the .ASCII directive is:

.ASCII /character string/

where: character string is a string of any acceptable printing ASCII characters including spaces. The string
may not include null characters, rubout, return, line feed, vertical tab, or form feed.
Nonprinting characters can be expressed in digits of the current radix and delimited
by angle brackets. (Any legal, defined expression is allowed between angle brackets.)

/ / are delimiting characters and may be any printing characters other than ;< and =
characters and any character within the string.

As an example:

A: .ASCI!l /HELLO/ ;STORES ASCII REPRESENTATION OF
;THELETTERSHELLOIN
;CONSECUTIVE BYTES

5-33

The Assembly Process

The order of the characters as they are stored in memory is illustrated below.

o1 [T 1000
1003 | E H 1002
1005 | L L 1004
1007 o | 1006
T

.ASCIl /ABC/<15><12>/DEF/
;STORES

;101, 102, 103, 15, 12, 104, 105, 106
;IN CONSECUTIVE BYTES

LASCII /<AB>/ ;STORES 74, 101, 102, 76 IN

;CONSECUTIVE BYTES

The ; and = characters are not illegal delimiting characters, but are preempted by their significance as a comment
indicator and assignment operator, respectively. For other than the first group, semicolons are treated as beginning

a comment field. For example:

Directive
LASCII ;ABC;/DEF/
.ASCII /ABC/;DEF,;
LASCII /ABC/=DEF=
LASCII =DEF=

Result

ABCDEF

ABC

ABCDEF

Explanation
Acceptable, but not recommended procedure.
;DEF; is treated as a comment and ignored.
Acceptable, but not recommended procedure.
The assignment .ASCII=DEF is performed and

an error generated upon encountering the
second =

5.53.5 .ASCIZ — The .ASCIZ directive is equivalent to the .ASCII directive with a zero byte automatically
inserted as the final character of the string. For example:

When a list or text string has been created with a .ASCIZ directive, a search for the null character
can determine the end of the list as follows:

CR=15
LF=12

MOV #HELLO,R1

5-34

HELLO:

The Assembly Process

MoV #LINBUF, R2

Movs (R1) +, (R2) + ;MOVE A CHARACTER OF THE
;MESSAGE STRING INTO THE
;OUTPUT BUFFER

BNE X ;BRANCH BACK IF BYTE
;NOT EQUAL TOO

.ASCIZ <CR><LF>/ASEMBL-11 HO01-1/<CR><LF>
;INTRO MESSAGE

5.53.6 .RADS0 — The .RADSO directive allows the user the capability to handle symbols in Radix-50 coded
form (this form is sometimes referred to as MOD40 and is used in PDP-11 system programs). Radix-50 form allows
three characters to be packed into sixteen bits; therefore, any 6-character symbol can be held in two words. The

form of the directive is:

.RADS50
where: |/

string

[string/
delimiters can be any printing characters other than the =, <, and ; characters.

is a list of the characters to be converted (three characters per word) and may consist of
the characters A through Z, 0 through 9, dollar (§), dot (.) and space (). If there are fewer
than three characters (or if the last set is fewer than three characters) they are considered
to be left justified and trailing spaces are assumed. Illegal nonprinting characters are
replaced with a ? character and cause an I error flag to be set. Illegal printing characters
set the Q error flag.

The trailing delimiter may be a carriage return, semicolon, or matching delimiter. (A warning code is printed if it is
not a matching delimiter, however.) For example:

W I ® XX A

20 00040

21

22 00042

23 00044

24 00046
00050

003223 .RAD50 /ABC

;PACK ABC INTO ONE WORD
003220 .RAD50 /AB/ ;PACK AB (SPACE) INTO ONE WORD.
000000 .RADSO // ;PACK THREE SPACES INTO ONE WORD
003223 .RAD50 /ABCD/ ;PACK ABC INTO FIRST WORD AND
014400

5-35

;D (SPACE) (SPACE) INTO SECOND WORD

The Assembly Process

Each character is translated into its Radix-50 equivalent as indicated:

Radix-50
Character Equivalent (octal) ASCII (octal)
(space) 0 40
A-Z 1-32 101-132
$ 33 44
. 34 56
undefined 35 undefined
09 3647 60-71

Note that another character could be defined for code 35, which is currently unused.

The Radix-50 equivalents for three characters (C1, C2, C3) are combined in one 16-bit word as follows:
Radix-50 value = ((C1*50) + C2)*50 + C3

For example:
Radix-50 value of ABC is ((1*50) + 2)*50 + 3 or 3223

See Appendix D for a table to quickly determine Radix-50 equivalents.

Use of angle brackets is encouraged in the .ASCII, .ASCIZ, and .RADSO0 statements whenever leaving the text
string to insert special codes. For example:

ASCIH <101> ;EQUIVALENT TO .ASCII/A/
.RAD50 /AB/<35> ;STORES 3255 IN NEXT WORD.
CHR1=1

CHR2=2

CHR3=3

.RAD50 <CHR1><CHR2><CHR3> ;EQUIVALENT TO RAD50/ABC/

5.54 Radix Control

554.1 RADIX — Numbers used in a source program are initially considered to be octal numbers. However,
the programmer has the option of declaring the following radices:

2,4,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>