
SOFTWARE REFERENCE
MANUAL

OPERATING
SYSTEM

Model HTll

for the

Hii Digital Computer System

Portions of this material have been adapted from Digital Equipment Corporation
publications or documents. Heath Company assumes responsibility for the accu
racy and content' of this material.

Copyright © 1978
Heath Company
All Rights Reserved

HEATH COMPANY
BENTON HARBOR, MICHIGAN 49022

PartC
595-2225-01

Printed in the United
States of America

CONTENTS

Page

PREFACE .. xiii

CHAPTER 1
1.1
1.2

CHAPTER 2
2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4
2.5
2.6
2.6.1
2.7
2.7.1
2.7.1.1
2.7.1.2
2.7.1.3
2.7.1.4
2.7.1.5
2.7.1.6
2.7.1.7
2.7.1.8
2.7.2
2.7.2.1
2.7.2.2
2.7.2.3
2.7.2.4
2.7.2.5
2.7.3
2.7.3.1
2.7.3.2
2.7.3.3
2.7.3.4
2.8
2.8.1

CHAPTER 3

HT·11 OVERVIEW. .. 1·1
PROGRAM DEVELOPMENT 1·2
SYSTEM SOFTWARE COMPONENTS 1-2

SYSTEM COMMUNICATION 2·1
START PROCEDURE .. 2-1
SYSTEM CONVENTIONS 2-1

Data Formats. .. 2·1
Prompting Characters 2-2
Physical Device Names. .. 2-2
File Names and Extensions 2-3
Device Structures 2-4

MONITOR SOFTWARE COMPONENTS , 2-4
Resident Monitor (RMON) 2-4
Keyboard Monitor (KMON) .. 2-4
User Service Routine (USR) .. 2·5
Device Handlers ... 2-5

GENERAL MEMORY LAYOUT 2-5
ENTERING COMMAND INFORMATION 2-5
KEYBOARD COMMUNICATION (KMON) .. 2-6

Type-Ahead ... 2· 7
KEYBOARD COMMANDS 2-8

Commands to Allocate System Resources 2-8
DATE Command 2-8
TIME Command .. 2-8
INITIALIZE Command 2-9
ASSIGN Command .. 2-9
CLOSE Command :.... 2·10
LOAD Command 2-11
UNLOAD Command 2-11
SET Command ... 2-11
Commands to Manipulate Memory Images 2-12
GET Command :............................. 2-12
Base Command ... 2-14
Examine Command .. 2-15
Deposit Command 2-15
SAVE Command. .. 2-16
Commands to Start a Program 2-17
RUN Command ... 2-17
R Command ... 2-18
START Command 2-18
REENTER Command 2-19

MONITOR ERROR MESSAGES 2·19
Monitor HALTS .. 2-22

TEXT EDITOR•........... 3·1

iii

3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.5
3.6
3.6.1
3.6.1.1
3.6.1.2
3.6.1.3
3.6.1.4
3.6.1.5
3.6.1.6
3.6.1.7
3.6.1.8
3.6.1.9
3.6.1.10
3.6.2
3.6.2.1
3.6.2.2
3.6.2.3
3.6.3
3.6.3.1
3.6.3.2
3.6.3.3
3.6.4
3.6.4.1
3.6.4.2
3.6.4.3
3.6.4.4
3.6.4.5
3.6.5
3.6.5.1
3.6.5.2
3.6.5.3
3.6.5.4
3.6.5.5
3.6.5.6
3.7
3.8

CHAPTER 4
4.1
4.1.1

CONTENTS (Cont.)

Page

CALLING AND USING EDIT 3-1
MODES OF OPERATION 3-1
SPECIAL KEY COMMANDS 3-2
COMMAND STRUCTURE 3-3

Arguments. .. 3-4
Command Strings 3-4
The Current Location Pointer 3-5
Character- and Line-Oriented Command Properties 3-5
Command Repetition 3-6

MEMORY USAGE ... 3-8,
EDITING COMMANDS 3-9

Input/Output Commands .. 3-9
Edit Read ... 3-9
Edit Write 3-9
Edit Backup ... 3-10
Read. .. 3-10
Write. .. 3-11
Next. .. 3-11
List ... 3-12
Verify ... 3-12
End File ... 3-13
Exit ...•.....•. 3-13
Pointer Relocation Commands ... ~ .. 3-13
Beginning ... 3-13
Jump .. , 3-14
Advance 3-14
Search Commands 3-15
Get '. 3-15
Find. .. 3-16
Position .. , 3-16
Text Modification Commands 3-17
Insert ... 3-17
Delete ... 3-17
Kill ... 3-18
Change ... '.. 3-19
Exchange _ .. 3·20
Utility Commands _ .. 3·20
Save 3·20
Unsave .. _ .. 3·21
Macro _ .. 3·21
Execute Macro ... 3-22
Edit Version ... 3-22
Upper· and Lower·Case Commands 3-23

EDIT EXAMPLE 3-24
EDIT ERROR MESSAGES 3-25

PERIPHERAL INTERCHANGE PROGRAM (PIP) _ 4-1
CALLING AND USING PIP•........... , 4-1

Using the "Wild Card" Construction 4-1

iv

CONTENTS (Cont.)

Page

4.2 PIP SWITCHES ... 4-2
4.2.1 Copy Operations. .. 4-3
4.2.2 Multiple Copy Operations. .. 4-6
4.2.3 The Extend and Delete Operations 4-7
4.2.4 The Rename Operation 4-9
4.2.5 Directory List Operations. .. 4-10
4.2.6 The Directory Initialization Operation 4-11
4.2.7 The Compress Operation 4-12
4.2.8 The Bootstrap Copy Operation .. 4-13
4.2.9 The Boot Operation 4-13
4.2.10 The Version Switch. .. 4-14
4.2.11 Bad Block Scan (/K) 4-14
4.2.11.1 Recovery from Bad Blocks 4-14
4.3 PIP ERROR MESSAGES ... 4-17

CHAPTER 5 THE ASSEMBLY PROCESS. .. 5-1
5.1 SOURCE PROGRAM FORMAT 5-1
5.1.1
5.1.1.1
5.1.1.2
5.1.1.3
5.1.1.4
5.1.2
5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.1.3
5.2.2
5.2.2.1
5.2.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.3
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9

Statement Format
Label Field

5-2
5-2
5-3 Operator Field

Operand Field
Comment Field

. .. 5-3
5-3

Format Control ... 5-4
SYMBOLS AND EXPRESSIONS 5-4

Character Set .. 5-4
Separating Characters 5-5
Illegal Characters. .. 5-6
Operator Characters. .. 5-6
Symbols 5-7
Permanent Symbols. .. 5-7
User-Defined Symbols .. 5-7
Direct Assignment 5-8
Register Symbols•........................ 5-9
Local Symbols ... 5-10
Assembly Location Counter .. 5-11
Numbers ... 5-13
Terms ... 5-14
Expressions ... 5-14

RELOCATION AND LINKING. .. 5-16
ADDRESSING MODES 5-16

Register Mode 5-17
Register Deferred Mode 5-17
Autoincrement Mode 5-17
Autoincrement Deferred Mode 5-18
Autodecrement Mode 5-18
Autodecrement Deferred Mode. .. 5-19
Index Mode ... 5-19
Index Deferred Mode 5-19
Immediate Mode. .. 5-19

v

5.4.10
5.4.11
5.4.12
5.4.13
5.4.14
5.4.15
5.5
5.5.1
5.5.1.1
5.5.1.2
5.5.1.3
5.5.1.4
5.5.1.5
5.5.1.6
5.5.2
5.5.3
5.5.3.l
5.5.3.2
5.5.3.3
5.5.3.4
5.5.3.5
5.5.3.6
5.5.4
5.5.4.1

CONTENTS (Cont.)

Page

Absolute Mode•...................... 5-20
Relative Mode 5-20
Relative Deferred Mode 5-21
Table of Mode Forms and Codes 5-21
Branch Instruction Addressing 5-22
EMT and TRAP Addressing 5-22

ASSEMBLER DIRECTIVES " 5·22
Usting Control Directives , .. 5·22
.LIST and .NLIST 5-22
Page Headings ... " 5-27
.TITLE 5·27
.SBTTL '. 5-27
.IDENT .. 5-28
Page Ejection (.PAGE Directive) 5-29
Functions: .ENABL and .DSABL Directives 5-29
Data Storage Directives 5-30
.BYTE ... 5-30
.WORD .. 5-31
ASCII Conversion of One or Two Characters 5-32
.ASCII ... 5-33
.ASCIZ '. 5-34
.RAD50-. .. 5-35
Radix Con trol ... 5-36
.RADIX .. 5-36

5.5.4.2 Temporary Radix Control: "'D, "'0, and "'B 5-37
5.5.5 Location Counter Control 5-37
5.5.5.1 .EVEN ... 5-38
5.5.5.2 .ODD. .. 5-38
5.5.5.3 .BLKB and .BLKW .. 5-39
5.5.6 Numeric Control. .. 5-39
5.5.6.1 .FLT2 and .FLT4 5-40
5.5.6.2 Temporary Numeric Control: "'F and "'c 5-41
5.5.7 Terminating Directives. .. 5-42
5.5.7.1 .END. .. 5-42
5.5.7.2 .EOT. .. 5-42
5.5.8 Program Boundaries Directive: .LIMIT 5-42
5.5.9 Program Section Directives 5-42
5.5.10 Symbol Control: .GLOBL 5-44
5.5.11 Conditional Assembly Directives 5-46
5.5.11.1 Subconditionals .. , 5-48
5.5.11.2 Immediate Conditionals 5-49
5.5.11.3 PAL-llR and PAL-lIS Conditional Assembly Directives. 5-50
5.6 MACRO DIRECTIVES WITH THE EXPAND UTILITY PROGRAM 5-50
5.6.1 Macro Definition. .. 5-50
5.6.1.1 .MACRO. 5-50
5.6.1.2 .ENDM 5-51
5.6.1.3 MACRO Definition Formatting .. 5-51
5.6.2 Macro Calls ... 5-52
5.6_3 Arguments to Macro Calls and Definitions 5-52

vi

5.6.3.1
5.6.3.2
5.6.3.3
5.6.4
5.7
5.8
5.8.1

CONTENTS (Cont.)

Special Characters
Number of Arguments
Concatenation .. .
Macro Libraries: .MCALL

CALLING AND USING EXPAND
CALLING AND USING ASEMBL

Switches

Page

5-53
5-53
5-53
5-54
5-54
5-58
5-59

5.8.1.1 Listing Control Switches 5-59
5.8.1.2 Function Switches 5-60
5.8.1.3 Cross Reference Table Generation (CREF) .. 5-61
5.9 ERROR MESSAGES ... 5-64
5.9.1 EXPAND Error Messages .. 5-64
5.9.2 ASEMBL/CREF Error Messages. .. 5-65

\PTER 6 LINKER ... 6-1

[APTER

6.1
6.2
6.2.1
6.2.2
6.3
6.4
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.6
6.7
6.7.l
6.8
6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6
6.8.7
6.8.8
6.8.9
6.8.10
6.9

7
7.1
7.2
7.2.1
7.2.2
7.2.2.1
7.2.2.2

INTRODUCTION ... 6-1
CALLING AND USING THE LINKER 6-1

Command String .. , 6-1
Switches ... 6-2

ABSOLUTE AND RELOCATABLE PROGRAM SECTIONS. 6-2
GLOBAL SYMBOLS ... 6-3
INPUT AND OUTPUT. .. 6-4

Object Modules ... 6-4
Load Module 6-4
Load Map ... 6-5
Library Files ... 6-5

USING OVERLAYS ... 6-5
USING LIBRARIES ... 6-11

User Library Searches 6-11
SWITCH DESCRIPTION 6-13

Alphabetize Switch .. 6-13
Bottom Address Switch 6-13
Continue Switch. .. 6-15
Default FORTRAN Library Switch 6-15
Include Switch ... 6·15
LDA Format Switch 6-15
Modify Stack Address. .. 6-16
Overlay Switch ... 6-16
Symbol Table Switch 6-18
Transfer Address Switch 6-18

LINKER ERROR HANDLING AND MESSAGES 6-18

LIBRARIAN ... 7-1
CALLING AND USING LIBR 7-1
USER SWITCH COMMANDS AND FUNCTIONS 7-1

Command Syntax 7-1
LIBR Switch Commands 7-2
Command Continuation Switch. .. 7-2
Creating a Ubrary File , 7-3

vii

CONTENTS (Cont.)

Page

7.2.2.3 Inserting Modules Into a Library 7-4
7.2.2.4 Replace Switch ... 7-5
7.2.2.5 Delete Switch. .. 7-5
7.2.2.6 Delete Global Switch 7-6
7.2.2.7 Update Switch ... 7-7
7.2.2.8 Listing the Directory of a Library File 7-8
7.2.2.9 Merging Library Files 7-8
7.3 COMBINING LIBRARY SWITCH FUNCTIONS 7-9
7.4 FORMAT OF LIBRARY FILES 7-10
7.4.1 Library Header 7-10
7.4.2 Entry Point Table (Library Directory) 7-11
7.4.3 Object Modules ... 7-11
7.4.4 Library End Trailer. .. 7-11
7.5 LIBR ERROR MESSAGES 7-11

CHAPTER 8 ON-LINE DEBUGGING TECHNIQUE 8-1
8.1 CALLING AND USING ODT 8-1
8.1.1 Return to Monitor, CTRL C .. 8-2
8.1.2 Tenninate Search, CTRL U 8-2
8.2 RELOCATION ... 8-2
8.2.1 Relocatable Expressions 8-3
8.3 COMMANDS AND FUNCTIONS 8-4
8.3.1 Printout Fonnats 8-4
8.3.2 Opening, Changing and Closing Locations 8-4
8.3.3 Accessing General Registers 0-7 .. 8-7
8.3.4 Accessing Internal Registers 8-7
8.3.5 Radix 50 Mode, X 8-7
8.3.6 Breakpoints ... 8-9
8.3.7 Running the Program, r;G and r;P .. 8-10
8.3.8 Single Instruction Mode 8-11
8.3.9 Searches· ... 8-11
8.3.10 The Constant Register, r;C 8-13
8.3.11 Memory Block Initialization, ;F and;I 8-13
8.3.12 Calculating Offsets, r;O 8-13
8.3.13 Relocation Register Commands, r;nR, ;nR, ;R .. 8-14
8.3.14 The Relocation Calculators, nR and n! 8-15
8.3.15 ODT Priority Level, $P :.............. 8-15
8.3.16 ASCII Input and Output, r;nA 8-16
8.4 PROGRAMMING CONSIDERATIONS 8-16
8.4.1 Functional Organization 8-16
8.4.2 Breakpoints ... 8-17
8.4.3 Searches ... 8-19
8.4.4 Tenninal Interrupt 8-19
8.5 ODT ERROR DETECTION , 8-20

CHAPTER 9 PROGRAMMED REQUESTS 9-1
9.1 FORMAT OF A PROGRAMMED REQUEST , 9-1
9.2 SYSTEM CONCEPTS ... 9-3
9.2.1 Channel Number (chan) 9-3

viii

9.2.2
9.2.3
9.2.4
9.2.4.1
9.2.4.2
9.2.4.3
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9
9.3
9.3.1
9.3.1.1
9.3.1.2
9.3.1.3
9.3.1.4
9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.5.1
9.4.6
9.4.7
9.4.8
9.4.9
9.4.10
9.4.11
9.4.12
9.4.13
9.4.14
9.4.15
9.4.16
9.4.17
9.4.18
9.4.19
9.4.20
9.4.21
9.4.22
9.4.23
9.4.24
9.4.25
9.4.26
9.4.27
9.4.28
9.4.29
9.4.30

CONTENTS (Cont.)

Page

Device Block (dblk). .. 9-4
EMT Argument Blocks. .. 9-4
Important Memory Areas , 9-4
Vector Addresses (0-37, 6(}'477) 9-4
Resident Monitor 9-5
System Communication Area 9-5
Swapping Algorithm 9-7
Offset Words ... 9-8
File Structure : .. 9-9
Completion Routines 9-10
Using The System Macro Library 9-10

TYPES OF PROGRAMMED REQUESTS 9-10
System Macros
.DATE .. .
.INTEN .. .
.REGDEF "
.SYNCH .. .

PROGRAMMED REQUEST USAGE
.CDFN .. .
.CHAIN .. .
.CLOSE "
.CSIGEN .. .

9-10
9-15
9-15
9-16
9-16
9-18
9-18
9-19
9-21
9-21

.CSISPC .. 9-24
Passing Switch Information 9-26
.DELETE ... 9-29
.DSTATUS. .. 9-30
.ENTER ... 9-32
.EXIT ... 9-34
.FETCH. .. 9-34
.GTIM ... 9-35
.GTJB ... 9-36
.HERR/.SERR ... 9-37
.HRESET ... 9-39
.LOCK/.UNLOCK 9-39
.LOOKUP 9-41
.PRINT .. 9-42
.PROTECT .. 9-43
.PURGE ... 9-44
.QSET ... 9-45
.RCTRLO ... 9-46
.READ/.READC/.READW 9-46
.RELEAS ... 9-49
.RENAME .. 9-50
.REOPEN ... 9-52
.SAVESTATUS ... 9-52
.SETTOP ... 9-54
.SFPA ... 9-56
.SRESET ... 9-57
.TRPSET ,.......................... 9-58

ix

9.4.31
9.4.32
9.4.33
9.4.34

APPENDIX A
A.l
A.l.l
A.1.2
A.2
A.2.l
A.2.2
A.2.3
A.2.4
A.2.S
A.2.6
A.2.7
A.3
A.3.l
A.4
A.S
A.S.l
A.6
A.6.l
A.7
A.7.l
A.S
A.9
A.9.l
A.lO
A.lO.l
A.ll
A.lLl

APPENDIX B
B.I
B.2
B.3
B.4
B.S
B.S.1
B.S.2
B.S.3
B.S.4
B.S.S
B.S.6
B.S.7

CONTENTS (Cont.)

Page

.TTYIN/.TTINR .. 9-59

.TTYOUT/.TTOUTR 9-60

.WAIT ... 9-62

.WRITE/.WRITC/.WRITW 9-64

COMMAND AND SWITCH SUMMARIES A-I
KEYBOARD MONITOR A-I

Command Summary A-I
Special Function Keys. .. A-2

EDITOR ... A-3
Command Arguments A-3
Input and Output Commands A-3
Pointer Relocation Commands A-4
Search Commands A-4
Text Modification Commands A-4
Utility Commands A-S
Key Commands ... A-S

PIP ... A-6
Switch Summary. .. A-6

ASEMBL/CREF .. A-7
LINKER .. _. A-7

Switch Summary. .. A-7
LIBRARIAN ... A-S

Switch Summary .. , A-S
ODT ... A-S

Command Summary A-S
PROGRAMMED REQUESTS A-lO
DUMP ... A-IO

Switch Summary. .. A-IO
SRCCOM ... A-II

Switch Summary. .. A-II
PATCH ... A-II

Command Summary A-II

ASSEMBLER, INSTRUCTION, AND CHARACTER CODE SUMMARIES B-1
ASCII CHARACTER SET B-1
RADIX-50 CHARACTER SET .. B-4
ASSEMBLER SPECIAL CHARACTERS .. B-S
ADDRESS MODE SYNTAX. .. B-S
INSTRUCTIONS. .. B-6

Double Operand Instructions B-7
Single Operand Instructions B-8
Rotate/Shift ... B-S
Operate Instructions B-lO
Trap Instructions B-II
Branch Instructions .. B-12
Register Destination B-12

x

B.5.8
B.5.9
8.5.10
B.5.11
8.5.12
8.5.13
B.5.14
8.5.15
8.5.16
8.6
B.7
B.8
B.8.1
B.8.2
8.8.3
8.9

APPENDIX C

APPENDIX D
D.I
D.2

APPENDIX E
E.I
E.l.l
E.1.2
E.2

APPENDIX F
F.I
F.1.l
F.1.2
F.2
F.3

APPENDIX G
G.I
G.2
G.2.1
G.2.2
G.2.3
G.2A
G.2.5
G.3
GA

CONTENTS (Cont.)

Page

Register-Offset ... B-13
Subroutine Return B-13
Source-Register ... B-13
Floating-Point Source Double Register B-14
Source-Double Register B-14
Double Register-Destination B-15
Number. .. B-16
Priority .. B-16
Stack 9riented Floating Point (OP R) B-16

MACRO DIRECTIVES B-16
ASSEMBLER DIRECTIVES .. B-17
ASEMBL/CREF SWITCHES .. B-19

Listing Con trol Switches B-19
Function Control Switches B-20
CREF Switches ... B·20

OCTAL/DECIMAL CONVERSIONS B-21

SYSTEM MACRO FILE C-1

PROGRAMMED REQUEST SUMMARY D-1
PARAMETERS ... 0-1
REQUEST SUMMARY D-I

DUMP ... E-1
CALLING AND USING DUMP. .. E-l

DUMP Switches ... E-I
Examples ... E-2

DUMP ERROR MESSAGES .. E-5

SOURCE COMPARE (SRCCOM) F-1
CALLING AND USING SRCCOM .. F-l

Extensions .. F-I
Switches ... F-I

OUTPUT FORMAT. .. F-2
SRCCOM ERROR MESSAGES .. F-5

PATCH. .. G-1
CALLING AND USING PATCH G-l
PATCH COMMANDS ... G-2

Patch a New File G-2
Exit from PATCH G-2
Examine, Change Locations in the File G-2
Set Bottom Address G-3
Set Relocation Registers G-3

EXAMPLES USING PATCH. .. G-4
PATCH ERROR MESSAGES G-6

xi

CONTENTS (Cont.)

Page

INDEX . • . Index-!

FIGURE 2-1
5-1
5-2
5-3

5-4
5-5
5-6
5-7
6-1
6-2
6-3
6-4
6-5
6-6
7-1
7-2
7-3
7-4

TABLE 2-1
2-2
2-3
2-4
2-5
3-1
3-2
4-1
5-1
6-1
7-1
8-1
8-2
8-3
9-}
9-2
E-I
F-I
G-I

FIGURES

HT-II System Memory Map .. 2-4
Assembly Source Listing Showing Local Symbol Blocks • 5-12
Example of ASEMBL Line Printer Listing (I32-column Line Printer) 5-24
Example of Page Heading From ASEMBL 80-column Line Printer (same format as
Terminal Listing) ... 5-25
Symbol Table. .. 5-26
Assembly Listing Table of Contents 5-28
ASEMBL Source Code. .. 5-62
CREF Listing Output•.............................. 5-63
Linker Load Map ... 6-6
Overlay Scheme ... 6-7
Memory Diagram Showing BASIC Link with Overlay Regions 6-8
Run-Time Overlay Handler 6-9
Library Searches. .. 6-12
Alphabetized Load Map 6-14
General Library File Format. .. 7-10
Library Header Format 7-10
Format of Entry Point Table 7-11
Library End Trailer. .. 7-11

TABLES

Prompting Characters ;............... 2-2
Permanent Device Names .. 2-2
File Name Extensions ... 2-3
Special Function Keys .. 2-7
SET Command Options 2-13

EDIT Key Commands .. 3-2
Command Arguments ... 3-4
PIP Switches ... 4-2
Legal Separating Characters 5-6
Linker Switches ... 6-3
LIBR Switches ... 7-2
Forms of Relocatable Expressions (r) .. 8-3
Internal Registers ... 8-8
Radix 50 Terminators .. 8-8
Summary of Programmed Requests 9-11
Requests Requiring the USR. .. 9-14
DUM'P Switches ... E-I
SRCCOM Switches ... F-2
PATCH Commands. .. G-2

xii

PREFACE

This manual describes the use of the HT-ii Operating System_ It assumes the reader is familiar with computer soft
ware fundamentals and has had some exposure to assembly-language programs.

The user who is unfamiliar with HT-ll should first read those chapters of interest (see "Chapter Summary" below)
to become familiar with system conventions. Having gained familiarity with HT-II, the user can then reread the
manual for specific information.

CHAPTER SUMMARY
Chapter 1 describes general system operations.

Chapter 2 introduces the user to system conventions and monitor/memory layout. It describes in detail the key
board commands for controlling jobs and implementing user programs.

Chapters 3 through 8 describe the system utility programs EDIT, PIP, ASEMBL, EXPAND, LINK, LIBR, and ODT.
These programs (a text editor, fIle transfer program, assembler, macro expander, linker, librarian, and debugging
program) aid the user in creating text fIles and producing assembly-language programs.

Chapter 9, which describes programmed requests, is of particular interest to the experienced programmer. It de
scribes call sequences that allow the user to access system monitor services from within assembly-language
programs.

The appendices summarize the contents of the manual and describe additional system utility programs that can be
used for extended system operations. These programs include SRCCOM (a source me comparison program);
PATCH and PATCHO (patching programs); and DUMP (a me dump program).

DOCUMENTATION CONVENTIONS
Conventions used throughout this manual include the following:

1. Examples reflect actual computer output whenever possible. When necessary, computer output is under
lined to differentiate from user responses.

2. A line feed (character or key) is represented in the text as (LF); a carriage return (character or key) is
represented as (CR). Unless otherwise indicated, all commands and command strings are terminated by
a carriage return.

3. Terminal and teleprinter are general terms used throughout all HT-II documentation to represent any
terminal device.

4. Several characters in system commands are produced by typing a combination of keys concurrently;
for example, the CTRL key is held down while typing an 0 to produce a command which causes sup
pression of teleprinter output. Key combinations such as this are documented as CTRL 0, CTRL C,
SHIFT N, and so forth.

xiii

CHAPTER 1

HT-ll OVERVIEW

HT -11 is a single-user programming and operating system designed for the PDP-II series of computers. It includes
system programs or "tools" for program development using MACRO assembly language or the high-level languages
BASIC and FORTRAN IV (when available). The HT-Il system programs are summarized in Section 1.2 and are
discussed in detail in individual chapters and appendices of this manual.

1.1 PROGRAM DEVELOPMENT
Computer systems such as HT-II are often used extensively for program development. The programmer makes use
of the programming "tools" available on his system to develop programs which will perform functions specific to
his needs. The number and type of "tools" available on any given system depend on a good many factors - the
size of the system, its application and its cost, to name a few. Systems based on the PDP-ll, however, provide
several basic program development aids: these generally include an editor, assembler, linker, debugger, and often
a librarian; a high level language (such as FORTRAN IV or BASIC) is also usually available.

An editor is used to create and modify textual material. Text may be the lines of code which make up a source
program written in some programming language, or it may be data; text may be reports, or memos, or in fact may
consist of any subject matter the user wishes. In this respect using an editor is analogous to using a typewriter -
the user sits at a keyboard and types text. But the advantages of an editor far exceed those of a typewriter because
once text has been created, it can be modified, relocated, replaced, merged, or deleted - all by means of simple
editing commands. When the user is satisfied with his text, he can save it on a storage device where it is available
for later reference.

If the editor is used for the purpose of writing a source program, development does not stop with the creation of
this program. Since the computer cannot understand any language but machine language (which is a set of binary
command codes), an intermediary program is necessary which will convert source code into the instructions the
computer can execute. This is the function of an assembler.

The assembler accepts alphanumeric representations of PDP-II coding instructions (i.e ., mnemonics), interprets
the code, and produces as output the appropriate object code. The user can direct the assembler to generate a
listing of both the source code and binary output, as well as more specific listings which are helpful during the
program debugging process. In addition, the assembler is capable of detecting certain common coding errors and of
issuing appropriate warnings.

The output produced by the assembler is called object output because it is composed of object (or binary) code.
On PDP-II systems, the object output is called a module and contains the user's source program in the binary
language which is acceptable to a PDP-II computer.

Source programs may be complete and functional by themselves; however, some programs are written in such a way
that they must be used in conjunction with other programs (or modules) in order to form a complete and logical
flow of instructions. For this reason the object code produced by the assembler must be relocatable - that is,
assignment of memory locations must be deferred until the code is combined with all other necessary object
modules. It is the purpose of the linker to perform this relocation.

The linker combines and relocates separately assembled object programs. The output produced by the linker con
sists of a load module, which is the final linked program ready for execution. The user can, at his option, request a
load map which displays all addresses assigned by the linker.

1-1

HT-JJ Overview

Very rarely is a program created which does not contain at least one unintentional error, either in the logic of the
program or in its coding. Errors may be discovered by the programmer while he is editing his program, or the
assembler may find errors during the assembly process and inform the programmer by means of error codes. The
linker may also catch certain errors and issue appropriate messages. Often, however, it is not until execution that
the user discovers his program is not working properly. Programming errors may be extremely difficult to find,
and for this reason a debugging tool is usually available to aid the programmer in determining the cause of his
error.

A debugging program allows the user to interactively control the execution of his program. With it, he can examine
the contents of individual locations, search for specific bit patterns, set designated stopping points during execution,
change the contents of locations, continue execution, and test the results, all without the need of re-editing and
re-assembling.

When programs are successfully written and executed, they may be useful to other programmers. Often routines
which are common to many programs (such as I/O routines) or sections of code which are used over and over again,
are more useful if they are placed in a library where they can be retrieved by any interested user. A librarian pro
vides such a service by allowing creation of a library flIe. Once created, the library can be expanded, updated, or
listed.

High level languages simplify the programmer's work by providing an alternate means of writing a source program
other than assembly-language mnemonics. Generally, high level languages are easy to learn - a single command
may cause the computer to perform many machine language instructions. The user does not need to know about
the mechanics of the computer to use a high level language . In addition, some high level languages (like BASIC)
offer a special immediate mode which allows the user to solve equations and formulas as though he were using
a calculator. Assembling and linking are done automatically so that the user can concentrate on solving the
problem rather using the system.

These are a few of the programming tools offered by most computer systems. The next section summarizes specific
programming aids available to the user of HT -11.

1.2 SYSTEM SOFTWARE COMPONENTS
The following is a brief summary of the HT-II system programs:

I. The Text Editor (EDIT, described in Chapter 3) is used to create or modify source flies for use as input
to language processing programs such as the assembler or FORTRAN. EDIT contains powerful text
manipulation commands for quick and easy editing of a text flIe.

2. EXPAND (Chapter 5) brings the capabilities of macros to the HT-il system. (Macros are instructions in
a source or command language which are equivalent to a specified sequence of machine instructions or
commands.) ASEMBL accepts source flies written in the assembly language and generates a relocatable
object module to be processed by the Linker before loading and execution. Cross reference listings of
assembled programs may be produced using CREF in conjunction with the assembler.

3. The Linker (LINK, described in Chapter 6) fixes (i.e., makes absolute) the values of relocatable symbols
and converts the relocatable object modules of compiled or assembled programs and subroutines into a
load module which can be loaded and executed by HT-ll. LINK can automatically search library flies
for specified modules and entry points; it can produce a load map (which lists the assigned absolute
addresses) and can provide automatic overlay capabilities to very large programs.

4. The Librarian (L1BR, see Chapter 7) allows the user to create and maintain his own library of functions
and routines. These routines are stored on a random access device as library flies, where they can be
referenced by the Linker.

5. The Peripheral Interchange Program (pIP, see Chapter 4) is the HT-ll flIe maintenance and utility program.
It is used to transfer flies between all devices which are part of the HT-ll system, to rename or delete
flies, and to obtain directory listings.

1-2

HT-ll Overview

6. SRCCOM (Source Compare, described in Appendix F) allows the user to perform a character-by-character
comparison of two or more text fIles. Differences can be listed in an output me or directly on the line
printer or terminal, thus providing a fast method of determining, for example, if all edits to a me have
been correctly made.

7. The PATCH utility program (Appendix G) is used to make minor modifications to memory image mes
(output mes produced by the Linker); it is used on mes which do or do not have overlays.

8. ODT (On-line Debugging Technique, described in Chapter 8) aids in debugging assembled and linked object
programs. It can print the contents of specified locations, execute all or part of the object program, single
step through the object program, and search the object program for bit patterns.

9. DUMP (Appendix E) is used to print for examination all or any part of a me in octal words, octal bytes,
ASCII and/or RAD50 characters (see Chapter 5).

1-3

CHAPTER 2

SYSTEM COMMUNICATION

The monitor is the hub ofHT-ii system communications; it provides access to system and user programs, performs
input and output functions, and enables control of the job.

The user communicates with the monitor through programmed requests and keyboard commands. The keyboard
commands (described in Section 2.7) are used to load and run programs, start or restart programs at specific
addresses, modify the contents of memory, and assign and deassign alternate device names.

Programmed requests (described in detail in Chapter 9) are source program instructions which request monitor
services. These instructions allow user assembly-language programs to utilize the available monitor features.

2.1 START PROCEDURE
The monitor can be loaded into memory from disk as follows:

1. Power up the system
2. When the terminal prints $, type DX and a carriage return (specifies floppy disk):

$ DX (Cm

3. The monitor then prints the identification message on the terminal:

HT-ll H01A

After the message has printed, the system device should be WRITE ENABLED. The monitor is ready to accept
keyboard commands.

2.2 SYSTEM CONVENTIONS
Special character commands, me naming procedures and other conventions that are standard for the HT -II system
are described in this section. The user should be familiar with these conventions before running the system.

2.2.1 Data Formats
The HT-II system makes use of four types of data formats: ASCII, object, memory image, and load image.

Files in ASCII format conform to the American National Standard Code for Information Interchange, in which
each character is represented by a 7-bit code. Files in ASCII format include program source mes created by the
Editor, listing and map mes created by various system programs, and data mes consisting of alphanumeric charac
ters. A chart containing ASCII character codes appears in Appendix B.

Files in object format consist of data and PDP-II machine-language code. Object mes are those output by the
assembler or FORTRAN compiler and are used as input to the Linker.

The Linker can output mes in memory image format (.SAV) or load image format (.LDA).

A memory image fIle (.SAV) is a 'picture' of what memory will look like when a program is loaded. The me itself
requires the same number of disk blocks as the corresponding number of 256-word memory blocks.

2-1

System Communication

A load image (or .LDA) me may be produced for compatibility with the PDP-II Paper Tape System and is loaded
by the absolute binary loader. LDA mes can be loaded and executed in stand-alone environments.

2.2.2 Prompting Characters
The following table summarizes the characters typed by HT-II to indicate to the user that the system is awaiting
user response:

Table 2-1 Prompting Characters

Character Meaning

The Keyboard Monitor is waiting for a command (see Section 2.3.2) . .
* The Command String Interpreter is waiting for a command string specification as

explained in Sections 2.3.3 and 2.5.

t When the terminal is being used as an input me, the up-arrow prompts the user to enter
information from the keyboard. Typing a CTRL Z marks the end-of-fIle.

2.2.3 Physical Device Names
Devices are referenced by means of a standard two-character device name. Table 2-2 lists each name and its related
device. If no unit number is specified for devices which have more than one unit, unit 0 is assumed.

Table 2-2 Permanent Device Names

Permanent Name I/O Device

OK: The default logical storage device for all flies. DK is initially the same as
SY: (see below), but the assignment (as a logical device name) can be
changed with the ASSIGN Command (Section 2.7.1.4).

DKn: The specified unit of the same device type as OK.

DXn: H27 Floppy disk (n is 0 or 1).

LP: Line printer.

PP: High-speed paper tape punch.

PR: High-speed paper tape reader.

SY: System device; the device and unit from which the system is bootstrapped.
The assignment as a logical device name can be changed with the ASSIGN
command (Section 2.7.1.4).

SYn: The specified unit of the same device type as that from which the system
was bootstrapped.

TT: Terminal keyboard and printer.

In addition to the fixed names shown in Table 2-2, devices can be assigned logical names. A logical name takes
precedence over a physical name and thus provides device independence. With this feature a program that is coded
to use a specific device does not need to be rewritten if the device is unavailable. Refer to Section 2.7.1.4 for
instructions on assigning logical names to devices.

2-2

System Communication

2.2.4 File Names and Extensions
Files are referenced symbolically by a name of one to six alphanumeric characters followed, optionally, by a period
and an extension of up to three alphanumeric characters. (Excess characters in a fIlename may cause an error
message.) The extension to a fIlename generally indicates the format of a file. It is a good practice to conform to
the standard filename extensions for HT-II. If an extension is not specified for an input or output fIle, most system
programs assign appropriate default extensions. Table 2-3 lists the standard extensions used in HT -11.

Table 2-3 File Name Extensions

Extension Meaning
"

.BAD Files with bad (unreadable) blocks; this extension can be assigned by the user whenever
bad areas occur on a device. The .BAD extension makes the fIle permanent in that
area, preventing other fIles from using it and consequently becoming unreadable.

. BAK Editor backup fIle .

. BAS BASIC source fIle (BASIC input) .

. DAT BASIC or FORTRAN data fIle .

. DlR Directory listing fIle .

. DMP DUMP output fIle .

. FOR FORTRAN IV source fIle (FORTRAN input) .

. LDA Absolute binary fIle (optional Linker output) .

. LLD Library listing fIle .

. LST Listing fIle (ASEMBL or FORTRAN output) .

. MAC EXPAND source fIle (EXPAND or SRCCOM input) .

. MAP Map fIle (Linker output) .

.OBJ Relocatable binary fIle (ASEMBL, FORTRAN IV output, Linker input, LIBR input
and output) .

. PAL Output fIle of EXPAND (the MACRO expander program), input fIle of ASEMBL.

.SAV Memory image or SAVE fIle; default for R, RUN, SAVE and GET Keyboard Monitor
commands; also default for output of Linker.

.SYS System fIles and handlers.

If a fIlename with a blank extension is to be used in a command line in which a default extension is assumed (by
either the monitor or a system program), the user must insert a period after the fIlename to indicate that there is
no extension. For example, to run the fIle TEST, type:

RUN TEST.

2-3

System Communication

If the period after the fIlename is not given, the monitor assumes the .SAV extension and attempts to run a fIle
named TEST .SA V. .

2.2.5 Device Structures
HT-II devices are categorized by the physical structure of the device and the way in which the device allows
information to be processed.

All HT-II devices are either random-access or sequential-access devices. Random-access devices allow blocks of
data to be processed in a random order - that is, independent of the data's physical location on the device or its
location relative to any other information. All disks fall into this category. Random-access devices are sometimes
also called block-replaceable devices, because individual data blocks can be manipulated (rewritten) without affect
ing other data blocks on the device. Sequential-access devices require that data be processed sequentially; the order
of processing data must be the same as the physical order of the data. HT-Il devices that are considered sequential
devices are paper tape, line printer, and terminal.

File-structured devices are those devices that allow the storage of data under assigned fIlenames. HT -11 devices that
are fIle-structured include all disks. Nonlile-structured devices, on the other hand, are those used to contain a single
logical collection of data. These devices are used generally for reading and listing information, and include line
printer, terminal, and paper tape devices.

2.3 MONITOR SOFTWARE COMPONENTS
The main HT-Il monitor software components are:

Resident Monitor (RMON)
Keyboard Monitor (KMON)
User Service Routine (USR) and Command String Interpreter (CSI)
Device Handlers

The reader may find Figure 2-1 helpful while reading the following descriptions.

2.3.1 Resident Monitor (RMON)

RMON

USR

KMON

o

t
HIGH

ADDRESSES

Figure 2-1 HT-II System Memory Map

The Resident Monitor is the only permanently memory-resident part of HT-Il. The programmed requests for all
services of HT -11 are handled by RMON. RMON also contains the terminal service, error processor, system device
handler, EMT processor, and system tables.

2.3.2 Keyboard Monitor (KMON)
The Keyboard Monitor proVides communication between the user at the keyboard and the HT-II system. Monitor
commands allow the user to assign logical names to devices, run programs, and load device handlers. A dot at the
left margin of the terminal page indicates that the Keyboard Monitor is in memory and is waiting for a user
command.

24

System Communication

2.3.3 User Service Routine (USR)
The User Service Routine provides support for the HT-II me structure. It loads device handlers, opens mes for read
or write operations, deletes and renames mes, and creates new meso The Command String Interpreter (the use of
which is described in Section 2.5) is part of the USR and can be accessed by any program to interpret device and me
I/O information.

The USR is only required at the beginning and end of me operations. At other times its memory space may be
reclaimed in a process called USR swapping.

2.3.4 Device Handlers
Device handlers for the HT-II system are programs that perform the actual transfer of data to and from peripheral
devices. All device handlers, except the system device handler, normally reside on the system device and are brought
into memory only when they are needed.

2.4 GENERAL MEMORY LAYOUT
When the HT -11 System is first bootstrapped from the system device, memory is arranged as shown in Figure 2-1.
The job is the HT-II module KMON.

The LOAD and UNLOAD commands can modify the memory map. LOAD causes device handlers to be made
resident between the USR and RMON until an UNLOAD command is performed.

HT -11 maintains a free memory list to manage memory. Thus, when a handler is unloaded, the space the handler
occupied is returned to the free memory list.

2.5 ENTERING COMMAND INFORMATION
Once the monitor has been loaded and a system program started, the user must enter the appropriate command
information before any operation can be performed.

In most cases, the Command String Interpreter immediately prints an asterisk at the left margin. The user must then
type a command string in the general format:

OUTPUT=INPUT/SWITCH

(A few system programs - EDIT, PATCH, PATCHO - require that this command information be entered in a
slightly different format. Complete instructions are provided in the appropriate chapter.)

In all cases, the format for OUTPUT is:

dev:mnam.ext[n] , ... dev:mnam.ext[n]

INPUT is:

dev:mnam.ext, ... dev:fJ1nam.ext

and SWITCH is:

/s:oval or /s!dval

where:

dey: in each case is an optional two to three-character name from Table 2-2 or a user-assigned
name (see Section 2.7.1.4) whose usage conforms to the NOTE below.

2-5

mnam.ext

[n]

/s:ovalor
/s!dval

System Communication

in each case is the name of a me (consisting of one to six alphanumeric characters followed
optionally by a dot and a zero to three-character extension). As many as three output and
six input fIles may be allowed.

is an optional declaration of the number of blocks (n) desired for an output fIle. n is a
decimal number «65,535) enclosed in square brackets immediately following the output
fIlnam.ext to which it applies.

is one or more optional switches whose functions vary according to the program in use
(refer to the switch option table in the appropriate chapter). oval is either an octal number
or one to three alphanumeric characters (the first of which must be alphabetic) which will
be converted to radix-50. dval is a decimal value preceded by an exclamation point.

Throughout this manual, the /s:oval construction is used; however, the /s!dval format is
always valid. Generally, these switches and their associated values, if any, should follow
the device and fIlename to which they apply.

If the same switch is to be repeated several times with different values, as for example,
/L:MEB/L:TTM/L:CND, the line may be abbreviated as /LMEB:TTM:CND; octal, RADSO,
and decimal values may be mixed.

if required, is a delimiter that separates the output and input fields. The < sign may be used
in place of the = sign. The separator can be omitted entirely if there are no output fIles.

NOTE
As illustrated in the general format of a command line,
the command line consists of an output list, a separator
(= or <), and an input list. Omission of a device specifi
cation in either the input or output list is handled as
follows:

DK: is assumed if the first fIle in a list has no explicit
device. DK (or the device associated with the first fIle)
is default until another device is indicated; that device
then becomes default until a new one is used, and so
on. If the following command is entered, for example,
to ASEMBL:

*DXO: F I RST.OBJ,LP:=TASK.1,DX 1 :TASK.2,TASK.3

it is interpreted as though all devices had been indicated
as follows:

*DXO: FIRST.OBJ,LP:=DK:TASK.1,DX 1 :TASK.2,
DX1 :TASK.3

2.6 KEYBOARD COMMUNICATION (KMON)
Special function keys and keyboard commands allow the user to communicate with the HT-ll monitor and allocate
system resources, manipulate memory images, and start programs.

The special functions of certain terminal keys used for communication with the Keyboard Monitor are explained in
Table 24.

2-6

Key

CTRLC

CTRLO

CTRLQ

CTRLS

CTRLU

CTRLZ

RUBOUT

System Communication

Table 24 Special Function Keys

Function

CTRL C echoes as "'C on the terminal and is used to interrupt program execution and
return control to the keyboard monitor. If the program to be interrupted is waiting for
terminal input, typing one CTRL C is sufficient to interrupt execution; in all other cases,
two CTRL Cs are necessary .

Echoes "'0 on the terminal and causes suppression of teleprinter output while continuing
program execution. Teleprinter output is re-enabled when one of the following occurs:

1. A second CTRL 0 is typed,
2. A return to the monitor occurs, or
3. The running program issues a Reset CTRL 0 (.RCTRLO) directive (see Chapter 9).

(HT-II system programs reset CTRL 0 each time a new command string is entered.)

Does not echo. Resumes printing characters on the terminal from the point at which
printing was previously stopped (via CTRL S).

Does not echo. Temporarily suspends output to the terminal until a CTRL Q is typed.

Deletes the current input line and echoes as "'U followed by a carriage return at the
terminal. (The current line is defined to be all characters back to, but not including,
the most recent line feed, CTRL Cor CTRL Z.)

Echoes ... z on the terminal and terminates input when used with the terminal device
handler (TT). The CTRL Z itself does not appear in the input buffer. If TT is not
being used, CTRL Z has no special meaning.

Deletes the last character from the current line and echoes a backslash plus the character
deleted. Each succeeding RUBOUT deletes and echoes another character. An enclosing
backslash is printed when a key other than RUBOUT is typed. This erasure is done right
to left up to the beginning of the current line.

CTRL commands are entered by holding the CTRL key down while typing the appropriate letter.

2.6.1 Type-Ahead
The monitor has a type-ahead feature which allows terminal input to be entered while a program is executing. For
example:

.R PIP
*DX1 :TAPE=PR:/A
DX1:/L
*13-FEB-78
TAPE 7813-FEB-78

422 FREE BLOCKS

While the first command line is executing, the second line (DXl :/L) is entered by the user. This terminal input is
stored in a buffer and used when the first operation has completed.

If a single CTRL C is typed while in this mode, it is put into the buffer. The program currently executing exits when
a terminal input request needs to be satisfied. A double CTRL C returns control to the monitor immediately.

2-7

System Communication

If type-ahead input exceeds 80 characters, the terminal bell rings and no characters are accepted until part of the
type-ahead buffer is used by a program or characters are deleted. No input is lost. Type-ahead is particularly
useful in specifying mUltiple command lines to system programs, as shown in the preceding example. If a job
is terminated by typing two CTRL Cs, any unprocessed type-ahead is discarded.

NOTE
If type-ahead is used in conjunction with EDIT or
BASIC, there is no terminal echo of the characters but
they are stored in the buffer until a new command is
needed. The characters are echoed only when actually
used by the program.

2.7 KEYBOARD COMMANDS
Keyboard commands allow the user to communicate with the monitor. Keyboard commands can be abbreviated;
optional characters in a command are delimited (in this section only) by braces. Keyboard commands require at
least one space between the command and the first argument. All command lines are terminated by a carriage
return.

2.7.1 Commands to Allocate System Resources

I DATE I
2.7.1.1 DATE Command - The DATE command enters the indicated date to the system. This date is then
assigned to newly created mes, new device directory entries (which may be listed with PIP), and listing output
until a new DATE command is issued.

The form of the command is:

DAT{E} {dd-mmm-yy}

where dd-mmm-yy is the day, month and year to be entered. dd is a decimal number in the range 1-31; mmm is
the first three characters of the name of the month, and yy is a decimal number in the range 73-99. If no argument
is given, the current date is printed.

Examples:

. DATE 21-FEB-78

. DAT
21-FEB-78

Enter the date 21-FEB-78 as the current system date .

Print the current date .

If the date is entered in an incorrect format, the ?DAT? error message is printed.

2.7.1.2 TIME Command - The TIME command allows the user to find out the current time of day kept by
HT-ll or to enter a new time of day. If the time is entered in an incorrect format, the ?TIM? message is printed.

2-8

System Communication

The form of the command is:

TIM{E} {hh:mm:ss}

where hh:mm:ss represents the hour, minute, and second. Time is represented as hours, minutes, and seconds past
midnight in 24-hour format (e.g., 1 :25:00 P.M. is entered as 13:25:00), If any of the arguments are omitted, 0 is
assumed. If no argument is given, the current time of day is output.

Examples:

. TIM 8:15:23

. TIM
08:25:27

. TIM 18:5

Sets the time of day to 8 hours, 15 minutes and 23 seconds .

Approximately 10 minutes later, the TIME command outputs this time .

Sets the time of day to 18:05:00 .

INITIALIZE

2.7.1.3 INITIALIZE Command - The INITIALIZE command is used to reset several system tables and do a
general "clean-up" of the area. In particular, this command makes non-resident those handlers which were not
loaded (via LOAD), purges the I/O channels, disables CTRL 0, performs a hard reset, clears locations 40-53, and
resets the KMON stack pointer.

The form of the command is:

IN {ITIALIZE}

The INITIALIZE command can be used prior to running a user program, or when the accumulated results of pre
viously issued GET commands (see Section 2.7.2.1) are to be discarded.

Example:

.IN Initializes system

.R PROG

ASSIGN

2.7.1.4 ASSIGN Command - The ASSIGN command assigns a user-defined (logical) name as an alternate name
for a physical device. This is especially useful when a program refers to a device which is not available on a certain
system. Using the ASSIGN command, I/O can be redirected to a device which is available. Only one logical name
can be assigned per ASSIGN command, but several ASSIGN commands (14 maximum) can be used to assign different
names to the same device. This command is also used to assign FORTRAN logical units to device names.

The form of the command is:

ASS {IGN H {dev} :udev }

where:

dev IS any standard HT-ll (physical) device name (refer to Table 2-2) with the exception of DK
and SY.

2-9

udev

System Communication

is a 1-3 character alphanumeric (logical) name to be used in a program to represent dev
(if more than three characters are given , only the first three are actually used). DK and SY
may be used as logical device names.

is a delimiter character (can be a colon, equal sign, and, if separating physical and logical
devices, space).

The placement of the delimiter is very important in the ASSIGN command; it must be placed exactly as shown in
the following examples:

ASSIGN DX1 INP

.ASSIGN DX1 :DK

.ASSIGN LP=9

Physical device DXl is assigned the logical device name INP. Whenever a reference to
INP: is encountered, device DX1: is used.

Physical device name DXl is assigned the default device name DK. Whenever DK is
referenced or defaulted to, DXl is used. (Note that the initial assignment of DK is
thus changed.)

FORTRAN logical unit 9 becomes the physical device name LP. All references to unit
9 use the line printer for output.

Assignment of logical names to logical names is not allowed.

If only a logical device name is indicated in the command line, that particular assignment (only) is removed. Thus:

. ASSIGN :9

.ASSIGN =DK

Deassigns the logical name 9 from its physical device (LP, in the case above) .

Removes assignment of logical name DK from its physical device (DXl, in the case
above).

If neither a physical device name nor a logical device name is indicated, all assignments to all devices are removed.

. ASSIGN All previous logical device assignments are removed .

CLOSE

2.7.1.5 CLOSE Command - The CLOSE command causes all currently open output files to become permanent
files. If a tentative open file is not made permanent, it will be deleted. The CLOSE command ismost often used
after CTRL C has been typed to abort a job and to preserve any new files that job had open prior to the CTRL C.

The form of the command is:

CLO{SE}

The CLOSE command makes temporary directory entries permanent.

Example:

.R EDIT
*EWTEXT$$
*IABCD$$
*AC

.CLOSE

The Editor has a temporary file open (TEXT), which is preserved by .CLOSE.

2-10

System Communication

2.7.1.6 LOAD Command - The LOAD command is used to make a device handler resident in memory. Time to
fetch the handler is saved when a handler is resident, although memory area for the handler must be allocated.

The form of the command is:

LOA{D} dey

where:

dey represents any legal HT -11 device name.

LOAD is valid for use with user-assigned names. For example:

.ASSIGN DX1:XY

.LOAXY

UNLOAD

2.7.1.7 UNLOAD Command - The UNLOAD command is used to make handlers that were previously LOADed
non-resident, freeing the memory they were using.

The form of the command is:

UNL{OAD} dey {,dev, ... }

where:

dey

Example:

.UNLOAD LP,PP

represents any legal HT-l1 device name.

The lineprinter and paper tape punch handlers are released and the area which they
used is freed.

2.7.1.8 SET Command - The SET command is used to change device handler characteristics and certain system
configuration parameters.

The form of the command is:

SET dey: { NO} option {=value} { , {NO} option {=value} , ... }

2-11

System Communication

where:

dev: represents any legal HT-ll physical device name (or USR).

{NO}option is the feature or characteristic to be altered.

=value is a decimal number required in some cases.

A space may be used in place of or in addition to the colon, equal sign, or comma. Note that the device indicated
(with the exception of USR) must be a physical device name and is not affected by logical device name assignments
which may be active. The name of the characteristic or feature to be altered must be legal for the indicated device
(see Table 2-5) and may not be abbreviated.

The SET command locates the ftie SY :dev .SYS and permanently modifies it. No modification is done if the com
mand entered is not completely valid. If a handler has already been loaded when a SET command is issued for it,
the modifications will not take effect until the handler is unloaded and a fresh copy called in from the system
device.

Table 2-5 lists the system characteristics and parameters which may be altered (those modes designated as "normal"
are the modes as set in the distribution copies of the drivers).

The following variant of the SET command is used to prevent the job from ever placing the USR in a swapping state
(note that USR replaces a device specification in the command line):

SET USR {NO} SWAP

This is useful because programs requiring the USR run much faster in a NOSW AP environment, provided they can
spare the USR's 2K memory requirement; for some programs, this environment is necessary just so they can run.

When the monitor is bootstrapped, it is in the SWAP condition, i.e., the job may place the USR in a swapping state
via a SETTOP.

2.7.2 Commands to Manipulate Memory Images

2.7.2.1 GET Command - The GET command loads the specified memory image ftie (not ASCII or object) into
memory from the indicated device.

The form of the GET command is:

GE{T} dev:ftinam.ext

where:

dev:

ftinam.ext

represents any legal HT -11 device name. If a device is not specified, OK: is assumed.

represents a valid HT-ll ftiename and extension. If an extension is not specified, the exten
sion .SA V is assumed.

2-12

Device

LP

~:

LP

LP

LP

LP

LP

LP

'.,

LP

LP

LP

LP

TTY

TTY

October 15, 1979
Part D

Option

CR

NOCR

CTRL

NOCTRL

FORMO

NOFORMO

HANG

NOHANG

LC

NOLC

WIDTH=n

SCOPE

NOSCOPE

System Communication

Table 2-5 SET Command Options

Alteration

Allows carriage returns to be sent to the printer. The CR option
should be set for any FORTRAN program using formatted 1/0, to
allow the overstriking capability for any line printer. This is the
normal mode.

Inhibits sending carriage returns to the line printer. Some line
printer controllers cause a line feed to perform the functions of a
carriage return, so using this option can produce a significant
increase in printing speed.

Causes all characters, including nonprinting control characters,
to be passed to the line printer. This is the normal mode.

Ignores nonprinting control characters.

Causes a form feed to be issued before a request to print block zero.
This is the normal mode.

Turns off FORMO mode.

Causes the handler to wait for user correction if the line printer is
not ready or becomes not ready during printing. This is the nor-
mal mode.

",

New users should note that when expecting output from the line
printer and it appears as though the system is not responding or is
in an idle state, the line printer should be checked to see if it is on
and ready to print.

Generates an immediate error if the line printer is not ready.

Allows lower-case characters to be sent to the printer. This option
should be used if the printer has a lower-case character set. This is
the normal mode.

Causes lower-case characters to be translated to upper case before
printing.

Sets the line printer width to n, where n is a number between 30
and 255. Any characters printer past column n are ignored. The
NO modifier is not permitted.

Causes the monitor to echo RUBOUTs as backspace-space-
backspace.

Causes the monitor to echo RUB OUTs as backslash followed by
the character deleted. This is the normal mode.

2-13

System Communication

The GET command is typically used to load a program into memory for modification and/or debugging. The GET _
command can also be used in conjunction with the Base, Examine, Deposit. and START commands to test patches.
and can be used with SAVE to make patches permanent. Multiple GETs can be used to combine programs. Thus:

.GET ODT.SAV Loads ODT into memory

.GET PROG Loads PROG.SAV into memory with ODT

. START (ODT's starting address) Starts execution with ODT (seeC'hapter 8) .

The GET command cannot be used to load overlay segments of programs; it may only be used to load the root
segment (that part which will not be overlaid; refer to Chapter 6, Linker).

Multiple GETs can be used to build a memory image of several programs. If identical locations are required by any
of the programs, the later programs overlay the previous ones. The GET command loads memory in multiples of
256-word blocks.

Examples:

GET DX1:FILE1.SAV Loads the me FlLE1.SAV into memory from DX1 .

GET NAME1 Loads the me NAMEl.sAV from device OK.

2.7.2.2 Base Command - The B command sets a relocation base. This relocation base is added to the address
specified in subsequent Examine or Deposit commands to obtain the address of the location to be referenced. This
command is useful when referencing linked modules with the Examine and Deposit commands. The base address
can be set to the address where the module of interest is loaded. The form of the command is:

B {location}

where:

location represents an octal address used as a base address for subsequent Examine and Deposit
commands.

NOTE
A space must follow the B command even if an address
is not specified (the B(space} command is equivalent
to B 0).

Any non-octal digit terminates an address. If location is odd, it is rounded down by one to,
an even address.

The base is cleared whenever user-program execution is initiated.

2-14

System Communication

Examples:

. Btl. Sets base to a (.:l represents space) .

.B 200 Sets base to 200 .

. B 201 Sets base to 200.

EXAMINE

2.7.2.3 Examine Command - The E command prints the contents of the specified location(s) in octal on the
terminal. The form of the Examine command is:

E location m{ -location n}

where:

location represents an octal address which is added to the relocation base value (the value set by the
B Command) to get the actual address examined. Any non-{)ctal digit terminates an address.
An odd address is truncated to become an even address.

If more than one location is specified (location m-location n), the contents oflocation m through location n inclu
sive are printed. The second location specified (location n) must not be less than the first location specified, other
wise an error message is printed. Ifno location is specified, the contents oflocation a are printed. Examination
of locations outside the job's area is illegal.

Examples:

. E 1000
127401

Prints contents of location 1000 (added to the base value if other than 0) .

.E 1001-1012
127401007624127400000000000000000000

Prints the contents of locations 1000 (plus the base value if other than 0) through
1013.

I DEPOSIT

2.7.2.4 Deposit Command - The Deposit command deposits the specified value(s) starting at the location given.

The form of the command is:

D 10cation=value1 {,value2, ... valuen}

where:

location

value

represents an octal address which is added to the relocation base value to get the actual
address where the values are deposited. Any non-{)ctal digit is accepted as a terminator
of an address.

represents the new contents of the location. a is assumed if a value is not indicated.

2-15

System Communication

If multiple values are specified (value 1, ... ,valuen), they are deposited beginning at the location specified. An odd
address is truncated by one to an even address. All values are stored as word quantities.

Any character that is not an octal digit may be used to separate the locations and values in a DEPOSIT command.
However, two (or more) non-octal separators cause O's to be deposited at the location specified (and those
following). For example:

.D 56", Deposits O's in locations 56, 60, and 62.

The user should be aware of situations like the above, which cause system failure since the terminal vector (location
60) is zeroed.

An error results when the address specified references a location outside the job's area.

Examples:

.0 1000=3705 Deposits 3705 into location 1000

.B 1000 Sets relocation base to 1000

.0 1500=2503 Puts 2503 into location 2500

.B 0 Resets base to 0

2.7.2.5 SAVE Command - The SAVE command writes specified user memory areas to a named me and device
in save image format. Memory is written from location 0 to the highest memory address specified by the parameter
list or to the program high limit (contents oflocation 50 in the system communication area).

The SAVE command does not write the overlay segments of programs; it saves only the root segment (refer to
Chapter 6, Linker).

The form of the command is:

SAV{E} dev:mnam.ext {parameters}

where:

dev:

me.ext

parameters

represents one of the standard HT-11 block-replaceable device names. If no device is speci
fied, DK is assumed.

represents the name to be assigned to the me being saved. If the me name is omitted, an
error message is output. If no extension is specified, the extension .SA V is used.

represent memory locations to be saved. HT-II transfers memory in 256-word blocks
beginning on boundaries that are multiples of 256 (decimal). If the locations specified make
a block of less than 256 words, enough additional locations are transferred to make a 256-
word block.

Parameters can be specified in the following format:

areal,area2-arean

2-16

where:

areal
area2-arean

System Communication

represent an octal number (or numbers separated by dashes). If more than one number
is specified, the second number must be greater than the first.

The SAVE command saves the job parameters stored in the following locations. If the user wishes to alter these
parameters, the DEPOSIT command can be used:

Area Location

Start address 40
Initial stack 42
JSW 44
USR address 46
High address 50

If these values are changed, it is the user's responsibility to reset them to their original values. See Chapter 9 for
more information concerning these addresses.

Examples:

.SAVE FILEl 10000-11000,14000-14100
Saves locations 10000(8) through 11777(8) (11000 starts the first word of a new
block, therefore the whole block, up to 12000, is stored) and 14000(8) through
14777(8) on DK with the name FILE1.SAV .

. SAVE DXl :NAM.NEW 10000
Saves locations 10000 through 10777 on DX1: with the name NAM.NEW .

. D 44:20000

.SAV SY:PRAM 1000-5777
Sets the reenter bit in the JSW and saves locations 1000 through 5777 .

2.7.3 Commands to Start a Program

2.7.3.1 RUN Command - The RUN command loads the specified memory image me into memory and starts
execution at the start address specified in location 40.

The form of the command is:

RU{N} dev:mnam.ext

where:

dev:

mnam.ext

is any standard device name specifying a block-replaceable device. If dev: is not specified,
the device is assumed to be DK.

is the file to be executed. If an extension is not specified, the extension .SA V is assumed.

2-17

System Communication

The RUN command is equivalent to a GET command followed by a START command (with no address specified).

Examples:

. RUN DXl :SRCH.SAV

. RUN PROG

.GET PROGl

. RUN PROG2

NOTE
If a me containing overlays is to be RUN from a device
other than the system device, the handler for that device
must be loaded (see Section 2.7.1.6) before the RUN
command is issued.

Loads and executes the me SRCH.SAV from DXl .

Loads PROG.SAV from DK and executes the program .

Loads PROG I.SA V from device DK without executing it. Then combines
PROG 1 and PROG2.SA V in memory and begins execution at the starting
address for PROG2 .

2.7.3.2 R Command
the system device (SY:).

This command is similar to the RUN command except that the me specified must be on

The form of the command is:

R mnam .ext

No device may be specified. If an extension is not given, the extension .SAV is assumed.

Examples:

. R XYZ.SAV Loads and executes XYZ.SAV from SY .

. R SRC Loads and executes SRC.SAV from SY .

START

2.7.3.3 START Command - The START command begins execution of the program currently in memory (Le.,
loaded via the GET command) at the specified address. START does not clear or reset memory areas.

The form of the command is:

ST{ART} {address}

where:

address is an octal number representing any 16-bit address. If the address is omitted, or if 0 is given,
the starting address in location 40 will be used.

If the address given does not exist or is not an even address, a trap to location 4 occurs. In this case a monitor error
message appears. If no address is given, the program's start address from location 40 is used.

2-18

Examples:

. GET FILE.1

.START 1000

.GET FILEA

. GET FILES

.ST

System Communication

Loads FILE. I into memory and starts execution at location 1000 .

Loads FILEA.SAV, then combines FILEA.SA V with FILEB.SA V and starts execution
at FILEB's start address .

REENTER

2.7.3.4 REENTER Command - The REENTER command starts the program at its reentry address (the start
address minus two). REENTER does not clear or reset any memory areas and is generally used to avoid reloading
the same program for repetitive execution. It can be used to return to a program whose execution was stopped with
aCTRLC.

The form of the command is:

RE{ENTER}

If the reenter bit (bit 13) in the Job Status Word (location 44) is not set, the REENTER command is illegal.

For most system programs, the REENTER command restarts the program at the command level.

If desired, the reentry point in a user program can branch to a routine which initializes the tables and stack, fetches
device handlers etc., and then continues normal operation.

Example:

.R PIP
*/F
MONITR.SYS
[directory prints]

CTRL C interrupts the PIP directory listing and transfers control to the monitor level.
REENTER returns control to PIP;

: (AC typed)
AC

REENTER
*

2.8 MONITOR ERROR MESSAGES
The following error messages indicate fatal conditions that can occur during system boot:

Message Meaning

?B-I/O ERROR An I/O error occurred during system boot.

?B-NO BOOT ON VOLUME No bootstrap has been written on volume.

?B-NO MONITR.SYS No monitor exists on volume being booted.

?B-NOT ENOUGH MEMORY There is not enough memory for the system being booted.

2-19

System Communication

The following error messages are output by the Keyboard Monitor.

Message

?ADDR?

?DAT?

?ERRDOVLY?

?FIL NOT FND?

?FILE?

?ILLCMD?

?ILLDEV?

?OVRMEM?

?PARAMS?

?SV FIL I/O ER?

?SY I/O ER?

?TIM?

Meaning

Address out of range in E or D command.

The DATE command argument was illegal, or no argument
was given and the date has not yet been set.

An I/O error occurred while reading a KMON overlay to
process the current command. This is a serious error,
indicating that the system me MONITR.SYS is
unreadable.

File specified in R, RUN, or GET command not found.

No me named where one is expected.

Illegal Keyboard Monitor command or command line too
long.

Illegal or nonexistent device.

Attempt to GET or RUN a me that is too big.

Bad parameters were typed to the SAVE command.

I/O error on .SA V file in SAVE (output) or R, RUN, or
GET (input) command. Possible errors include end-of
me, hard error, and channel not open.

I/O error on system device (usually reading or writing
swap area).

The TIME command argument was illegal.

The following messages are output by the HT-II Resident Monitor when an unrecoverable error has occurred.
Control passes to the Keyboard Monitor. The program in which the error occurred cannot be restarted with the RE
command. To execute the program again, use the R or RUN command.

The format for fatal monitor error messages is:

?M-text PC where PC is the address+2 of the location where the error occurred.

Note that ?M errors can be inhibited in certain cases by the use of the .SERR macro; see Chapter 9 for details.

Message

?M-BAD FETCH

?M-DIR 10 ERR

Meaning

Either an error occurred while reading in a device handler
from SY, or the address at which the handler was to be
loaded was illegal.

An error occurred doing I/O in the directory of a device
(e.g., .ENTER on a write-locked device).

2-20

Message

?M-DIR OVFLO

?M-FPTRAP

?M-ILLCHAN

?M-ILLEMT

?M-ILL USR

?M-NODEV

?M-OVLYERR

?M-SWAPERR

?M-SYSERR

?M-TRAP TO 4
?M-TRAP TO 10

System Communication

Meaning

No more directory segments were available for expansion
(occurs during file creation (.ENTER)).

A floating-point exception trap occurred, and the user
program had no .SFPA exception routine active (see
Chapter 9).

A channel number was specified which was too large.

An EMT was executed which did not exist; Le., the func
tion code was out of bounds.

The USR was called from a completion routine. This
error does not have a soft return (Le., .sERR will not
inhibit this message; see Chapter 9).

A READ/WRITE operation was tried but no device
handler was in memory for it.

A user program with overlays failed to successfully read
an overlay.

A hard I/O error occurred while the system was attempt
ing to write a user program to the system swap blocks.
This is usually caused by a write-locked system device.
This may cause the system to halt.

An I/O error occurred while trying to read KMON/USR
into memory, indicating that the monitor file is situated
on the system device in an area that has developed one or
more bad blocks. The monitor prints the message and
loops trying to read KMON. The message is a warning
that the system device is bad. If, after several seconds,
it is apparent that attempts to read KMON are failing,
halt the processor. It may be impossible to boot the
volume because of the bad area in the monitor file. Use
another system device to verify the bad blocks and
follow the recovery procedures described in section
4.2.11.1 of Chapter 4.

The job has referenced illegal memory or device registers,
an illegal instruction was used, stack overflow occurred,
a word instruction was executed with an odd address,
or a hardware problem caused bus time-out traps through
location 4.

If CSI errors occur and input was from the terminal, an error message is printed on the terminal.

2-21

System Communication

Message Meaning

?DEV FUL? Output me will not fit.

?FIL NOT FND? Input me was not found.

?ILLCMD? Syntax error.

?ILLDEV? Device specified does not exist.

2.8.1 Monitor HALTS
The monitor will halt only if I/O errors occur during swap operations to the system device. If it halts, look for a
write-locked system device.

The monitor halt can be detected by its address, which is high in memory, above the resident base address (contents
of location 54).

When a monitor halt occurs, the system must be rebooted.

2-22

CHAPTER 3

TEXT EDITOR

The Text Editor (EDIT) is used to create and modify ASCII source files so that these files can be used as input to
other system programs such as the assembler or BASIC. Controlled by user commands from the keyboard, EDIT
reads ASCII files from a storage device, m3kes specified changes and writes ASCII files to a storage device or lists
them on the line printer or terminal.

The Editor considers a file to be divided into logical units called pages. A page of text is generally 50-60 lines long
(delimited by form feed characters) and corresponds approximately to a physical page of a program listing. The
Editor reads one page of text at a time from the input file into its internal buffers where the page becomes available
for editing. Editing commands are then used to:

Locate text to be changed,
Execute and verify the changes,
Output a page of text to the output file,
List an edited page on the line printer or terminal.

3.1 CALLING AND USING EDIT
To call EDIT from the system device, type:

R EDIT

and the RETURN key in response to the dot (.) printed by the monitor. EDIT responds with an asterisk (*) indi
cating it is in command mode and awaiting a user command string.

Type CTRL C to halt the Editor at any time and return control to the monitor. To restart the Editor type .R EDIT
or the .REENTE R command in response to the monitor's dot. The contents of the buffers are lost when the Editor
is restarted.

3.2 MODES OF OPERATION
Under normal usage, the Editor operates in one of two different modes: Command Mode or Text Mode. In Com
mand Mode all input typed on the keyboard is interpreted as commands instructing the Editor to perform some
operation. In Text Mode all typed input is interpreted as text to replace, be inserted into, or be appended to the
contents of the Text Buffer.

Immediately after being loaded into memory and started, the Editor is in Command Mode. An asterisk is printed at
the left margin of the console terminal page indicating that the Editor is waiting for the user to type a command. All
commands are terminated by pressing the ESCape key twice in succession. Execution of commands proceeds from
left to right. Should an error be encountered during execution of a command string, the Editor prints an error
message followed by an asterisk at the beginning of a new line indicating that it is still in Command Mode and
awaiting a legal command. The command in error (and any succeeding commands) is not executed and must be
corrected and retyped.

Some terminals do not have and ESCape key. On these terminals, the ALTMODE key should be used.

3-1

Text Editor

Text mode is entered whenever the user types a command which must be followed by a text string. These commands
insert, replace, or otherwise manipulate text; after such a command has been typed, all succeeding characters are
considered part of the text string until an ESCape is typed. The ESCape terminates the text string and causes the
Editor to reenter Command Mode, at which point all characters are considered commands again.

3.3 SPECIAL KEY COMMANDS
The EDIT key commands are listed in Table 3-1. Control commands are typed by holding down the CTRL key
while typing the appropriate character.

Table 3-1 EDIT Key Commands

Key Explanation

ESCape Echoes $, A single ESCape terminates a text string. A double ESCape executes the
command string. For example,

*GMOY A, B$ - 1 D$$

C'TRL C Echoes at the terminal as tc and a carriage return. Terminates execution of EDIT
commands, and returns to monitor Command Mode. A double CTRL C is necessary
when I/O is in progress. The REENTER command may be used to restart the Editor,
but the contents of the text buffers are lost.

C'TRL 0 Echoes to and a carriage return. Inhibits printing on the terminal until completion
of the current command string. Typing a second CTRL 0 resumes output.

CTRLU Echoes tu and a carriage return. Deletes all the characters on the current terminal
input line. (Equivalent to typing RUBOUT back to the beginning of the line.)

RUBOUT Deletes character from the current line; echoes a backslash followed by the character
deleted. Each succeeding RUBOUT typed by the user deletes and echoes another
character. An enclosing backslash is printed when a key other than RUBOUT is
typed. This erasure is done right to left up to the last carriage return/line feed
combination. RUBOUT may be used in both Command and Text Modes.

TAB Spaces to the next tab stop. Tab stops are positioned every eight spaces on the
terminal; typing the TAB key causes the carriage to advance to the next tab position.

CTRLX Echoes tx and a carriage return. CTRL X causes the Editor to ignore the entire
command string currently being entered. The Editor prints a <CR><LF> and an
asterisk to indicate that the user may enter another command. For example:

*IABCD
EFGHAX

*

A C'TRL U would only cause deletion of EFGH; CTRL X erases the entire command.

3-2

Text Editor

3.4 COMMAND STRUCTURE
EDIT commands fall into six general categories:

Category Commands Section

Input/Output Edit Backup 3.6.1.3
Edit Read 3.6.1.1
Edit Write 3.6.1.2
End File 3.6.1.9
Exit 3.6.1.10
List 3.6.1.7
Next 3.6.1.6
Read 3.6.1.4
Verify 3.6.1.8
Write 3.6.1.5

Pointer location Advance 3.6.2.3
Beginning 3.6.2.1
Jump 3.6.2.2

Search Find 3.6.3.2
Get 3.6.3.1
Position 3.6.3.3

Text modification Change 3.6.4.4
Delete 3.6.4.2
Exchange 3.6.4.5
Insert 3.6.4.1
Kill 3.6.4.3

Utility Edit Lower 3.6.5.6
Edit Upper 3.6.5.6
Edit Version 3.6.5.5
Execute Macro 3.6.5.4
Macro 3.6.5.3
Save 3.6.5.1
Un save 3.6.5.2

The general format for the first five categories of EDIT commands is:

nCtext$
or

nC$

where n represents one of the legal arguments listed in Table 3-2, C is a one- or two-letter command, and text is a
string of successive ASCII characters.

As a rule, commands are separated from one another by a single ESCape, however, if the command requires no text,
the separating is not necessary. Commands are terminated by a single ESCape; typing a second ESCape begins
execution.

3-3

Text Editor

3.4.1 Arguments
An argument is positioned before a command letter and is used either to specify the particular portion of text to be
affected by the command or to indicate the number of times the command should be performed. With some com
mands, this specification is implicit and no arguments are needed; other editing commands require an argument.
Table 3-2 lists the formats of arguments which are used by commands of this second type.

Table 3-2 Command Arguments

Format Meaning

n n stands for any integer in the range -16383 to +16383 and may, except where noted, be
preceded by a + or -. If no sign precedes n, it is assumed to be a positive number. When-
ever an argument is acceptable in a command, its absence implies an argument of I (or -I
if only the - is present).

0 o refers to the beginning of the current line.

I I refers to the end of text in the current Text Buffer.

= = is used with the J, D and C commands only and represents -n, where n is equal to the
length of the last text argument used.

The roles of all arguments are explained more specifically in following sections.

3.4.2 Command Strings

All EDIT command strings are terminated by two successive ESCape characters. Spaces, carriage returns and line
feeds within a command string may be used freely to increase command readability but are ignored unless they
appear in a text string. Commands used to insert text can contain text strings that are several lines long. Each line is
terminated with a <CR> <LF> and the entire command is terminated with a double ESCape.

Several commands can be strung together and executed in sequence. For example,

text object text object

*8G'M'Ov PC, RO$-2CR 1$5KGCLR @R2$$
~ "-"-""-' -'-'''''''--'-

j second third j
command command

fifth
command

first command fourth
command

Execution of a command string begins when the double ESCape is typed and proceeds from left to right. Except
when they are part of a text string, spaces, carriage return, line feed, and single ESCape are ignored. For example:

*8GMOV RO$=CCLR Rl$AV$$

may be typed as:

*8$ GMOV RO$
=CCLR Rl$
A$V$$

with equivalent execution.

34

Text Editor

3.4.3 The Current Location Pointer
Most EDIT commands function with respect to a movable reference pointer which is normally located between the
most recent character operated upon and the next character in the buffer. At any given time during the editing pro
cedure, this pointer can be thought of as representing the current position of the Editor in the text. Most commands
use this pointer as an implied argument. Commands are available for moving the pointer anywhere in the text, there
by redefining the current location and allowing greater facility in the use of other commands.

3.4.4 Character- and Line-Oriented Command Properties
Edit commands are line-oriented or character-oriented depending on the arguments they accept. Line-oriented com
mands operate on entire lines of text. Character-oriented commands operate on individual characters independent
of what or where they are.

When using character-oriented commands, a numeric argument specifies the number of characters that are involved
in the operation. Positive arguments represent the number of characters in a forward direction (in relation to the
pointer), negative arguments the number of characters in a backward direction. Carriage return and line feed charac
ters are treated the same as any other character. For example, assume the pointer is positioned as indicated in the
following text (t represents the current position of the pointer):

Mav #VECT ,R2<CR> <LF>t
CLR «i'R2<CR> <LF>

The EDIT command -2J backs the pointer by two characters.

Mav
CLR

#VECT ,R2fCR> <LF>
(a'R2<CR> <LF>

The command IOJ advances the pointer forward by ten characters and places it between the CR and LF characters
at the end of the second line.

Mav #VECT ,R2<CR> <LF>
CLR (a 'R2<CR>t<LF>

Finally, to place the pointer after the "C" in the first line, a -14J command is used. The J (Jump) command is ex
plained in Section 3.6.2.2.

Mav #VECl,R2<CR> <LF>
CLR (iI'R2<CR> <LF>

When using line-oriented commands, a numeric argument represents the number of lines involved in the operation.
The Editor recognizes a line of text as a unit when it detects a <CR> <LF> combination in the text. When the
user types a carriage return, the Editor automatically inserts a line feed. Positive arguments represent the number
of lines forward (in relation to the pointer); this is accomplished by counting carriage return/line feed combinations
beginning at the pointer. So, if the pointer is at the beginning of a line, a line-oriented command argument of + 1
represents the entire line between the current pointer and the terminating line feed. If the current pointer is in the
middle of the line, an argument of + 1 represents only the portion of the line between the pointer and the terminat
ing line feed.

For example, assume a buffer of:

Mav tPC,RI<CR><LF>
ADD #DRIV-.,Rl<CR> <LF>
MaV #VECT ,R2<CR> <LF>
CLR (iI)R2<CR> <LF>

3-5

Text Editor

The command to advance the pointer one line (lA) causes the following change:

MOV

t ADD
MOV
CLR

PC,Rl<CR> <LF>
#DRIV-.,Rl<CR> <LF>
#VECT ,R2<CR> <LF>
@R2<CR> <LF>

The command 2A moves the pointer over 2 <CR> <LF> combinations:

MOV
ADD
MOV

t CLR

PC,R I <CR> <LF>
#DRIV-.,R I <CR> <LF>
#VECT ,R2<CR> <LF>
@DR2<CR> <LF>

Negative line arguments reference lines in a backward direction (in relation to the pointer). Consequently, if the
pointer is at the beginning of the line, a line argument of - I means "the previous line" (moving backward past the
first <CR> <LF> and up to but not including the second <CR> <LF>; if the pointer is in the middle of a line, an
argument of - I means the preceding I 1/2 lines. Assume the buffer contains:

MOV PC,RI<CR> <LF>
ADD #DRIV-.,RI<CR> <LF>
MOV #VECl,R2<CR> <LF>
CLR @i'R2<CR> <LF>

A command of - I A backs the pointer by 1 1/2 lines.

MOV

t ADD
MOV
CLR

PC,R I<CR> <LF>
#DRIV-.,RI<CR> <LF>
#VECT ,R2<CR> <LF>
@R2<CR> <LF>

Now a command of -IA backs it by only I line.

t MOV
ADD
MOV
CLR

PC,RI<CR> <LF>
#DRIV-.,RI<CR> <LF>
#VECT ,R2<CR> <LF>
@R2<CR><LF>

3.4.5 Command Repetition
Portions of a command string may be executed more than once by enclosing the desired portion in angle brackets
« » and preceding the left angle bracket with the number of iterations desired. The structure is:

CI$C2$n<C3$C4$>C5$$

where C 1, C2, ... C5 represent commands and n represents an iteration argument. Commands C I and C2 are each
executed once, then commands C3 and C4 are executed n times. Finally command C5 is executed once and the
command line is finished. The iteration argument (n) must be a positive number (I to 16,383), and if not specified
is assumed to be I. If the number is negative or too large, an error message is printed. Iteration brackets may be
nested up to 20 levels. Command lines are checked to make certain the brackets are correctly used and match prior
to execution.

3-6

Text Editor

Essentially, enclosing a portion of a command string in iteration brackets and preceding it with an iteration argu
ment (n) is equivalent to typing that portion of the string n times. For example:

*8GAAA$3<-DI8$-J>V$$

is equivalent to typing:

* 8GAAA$-D I 8$-J-D I 8$-J-D I 8$-JV$$

and:

* 83<2<AD>V>$$

is equivalent to typing:

*8ADADVADADVADADV$$

The following bracket structures are examples of legal usage:

«>«<><»»
«<»><><>

The following bracket structures are examples of illegal combinations which will cause an error message since the
brackets are not properly matched:

><><
«<»

During command repetition, execution proceeds from left to right until a right bracket is encountered. EDIT then
returns to the last left bracket encountered, decrements the iteration counter and executes the commands within the
brackets. When the counter is decremented to 0, EDIT looks for the next iteration count to the left and repeats the
same procedures. The overall effect is that EDIT works its way to the innermost brackets and then works its way
back again. The most common use for iteration brackets is found in commands such as Unsave, that do not accept
repeat counts. For example:

*3<U>$$

Assume a file called SAMP (stored on device DK) is to be read and the first four occurrences of the instruction
MOV #200,RO on each of the first five pages are to be changed to MOV #244,R4. The following command line is
entered:

*E8SAMP$5<N4<8GMOV #200, RO$=J$3<GO$=C4$> > >EX$$
"------"

~", __ -"v-" __ c-",,,,/

3-7

Text Editor

The command line contains three sets of iteration loops (A,B,C) and is executed as follows:

Execution initially proceeds from left to right; the file SAMP is opened for input, and the first page is read into
memory. The pointer is moved to the beginning of the buffer and a search is initiated for the character string
MOV #200,RO. When the string is found, the pointer is positioned at the end of the string, but the =J command
moves the pointer back so that it is positioned immediately preceding the string. At this point, execution has passed
through each of the first two sets of iteration loops (A,B) once. The innermost loop (C) is next executed three
times, changing the Os to 4s. Control now moves back to pick up the second iteration of loop B, and again moves
from left to righ t. When loop C has executed three times, control again moves back to loop B. When loop Ii has
executed a total of 4 times, control moves back to the second iteration of loop A, and so forth until all iterations
have been satisfied.

3.5 MEMORY USAGE
The memory area used by the Editor is divided into four logical buffers as follows:

MACRO BUFFER
High Memory

SAVE BUFFER

FREE MEMORY

COMMAND INPUT
BUFFER

Low Memory
TEXT BUFFER

The Text Buffer contains the current page of text being edited, and the Command Input Buffer holds the command
currently being typed at the terminal. If a command currently being entered by the user is within 10 characters of
exceeding the space available in the Command Buffer, the message:

* CB ALMOST FULL *

is printed. If the command can be completed within 10 characters, the user may finish entering the command;
otherwise he should type the ALTMODE key twice to execute that portion of the commamlline already completed.
The message is printed each time a character is entered in one of the last 10 spaces.

If the user attempts to enter more than 10 characters the message:

?CB FULL?

is printed and all commands typed within the last 10 characters are ignored. The user again has 10 characters of
available space in which to correct the condition.

The Save Buffer contains text stored with the Save (S) command, and the Macro Buffer contains the command
string macro entered with the Macro (M) command. (Both commands are explained in Section 3.6.5.)

The Macro and Save Buffers are not allocated space until an M or S command is executed. Once an M or S com
mand is executed, a OM or OU (Unsave) command must be executed to return that space to the free area.

The size of each buffer automatically expands and contracts to accommodate the text being entered; if there is not
enough space available to accommodate required expansion of any of the buffers, a "?*NO ROOM*?" error message
is typed.

3-8

Text Editor

3.6 EDITING COMMANDS

3.6.1 Input/Output Commands
Input commands are used to create files and read them into the Text Buffer where they become available for editing
or listing. Output commands cause text to be listed on the terminal or lineprinter or written out to a storage device.
Some commands are specifically designed for either input or output functions, while a few commands serve both
purposes.

Once editing is completed and the page currently in the Text Buffer is written to the output file, that page of text is
unavailable for further editing until the file is closed and reopened.

3.6.1.1 Edit Read - The Edit Read command opens an existing file for input and prepares it for editing. Only
one file can be open for input at a time.

The form of the command is:

ERdev: filnam .ext$

The string argument (dev:filnam.ext) is limited to 19 characters and specifies the file to be opened. Ifno device is
specified, DK: is assumed. If a file is currently open for input, that file is closed; any edits made to the file are
preserved.

Edit Read does not input a page of text nor does it affect the contents of the other user buffers (see Section 3.5.)

Edit Read can be used on a file which is already open to close that file for input and reposition EDIT at its begin
ning. The first Read command following any Edit Read command inputs the first page of the file.

Examples:

*ERDX1:SAMP. MAC$$ Opens SAMP.MAC on device DXl: for input.

*ERSOURCE$$ Opens SOURCE on device DK: for input.

3.6.1.2 Edit Write - The Edit Write command sets up a file for output of newly created or edited text. How
ever, no text is output and the contents of the user buffers are not affected. Only one file can be open for output at
a time. Any current output files are closed.

The form of the command is:

EWdev:filnam.ext[n] $

The string argument (dev:filnam.ext[nJ) is limited to 19 characters and is the name to be assigned to the output file
being opened. If dev: is not specified, DK: is assumed. [n] is optional and represents the length of the file to be
opened. If not specified, one half the largest available space is used; if this is not adequate for the output file size,
the EF and EX commands will not close the output me, and all edits will be lost. It is thus recommended that the
[n] construction be used whenever there is doubt as to whether enough space is available on the device for the
output me.

3-9

Text Editor

If a fIle with the same name already exists on the device, the old fIle is deleted when an EXit, End File or another
Edit Write command is executed.

Examples:

* EWDK :TEST.MAC$$ Opens the fIle TEST.MAC on device OK: for output.

*EWFILE.BAS(11) $$ Opens the fIle FlLE.BAS (allocating II blocks) on the device OK: for output.

3.6.1.3 Edit Backup - The Edit Backup command is used to open an existing fIle for editing and at the same
time create a backu p version of the fIle. Any currently open file will be closed. No text is read or written with this
command.

The form of the command is:

EBdev:fIlnam.ext[n] $

The device designation, fIlename and extension are limited to 19 characters. If dev: is not specified, OK: is assumed.
[nJ is optional and represents the length of the fIle to be opened; if not specified, one-half the largest available space
is used.

The fIle indicated in the command line must already exist on the device designated since text will be read from this
file as input. At the same time, an output file is opened under the same fIlename and extension. After an EB com
mand has been successfully executed, the original file (used as input) is renamed with the current fIlename and a
.BAK extension; any previous fIle with this fIlename and a .BAK extension is deleted. The new output fIle is closed
and assigned the name as specified in the EB command. This renaming of fIles takes place whenever an Exit, End
File, Edit Read, Edit Write or Edit Backup command is executed.

Examples:

*EBSY:BAS1.MAC$$

* EBBAS2 .BAS[15) $$

Opens BASI.MAC on SY. When editing is complete, the old BASI.MAC
becomes BAS l.BAK and the new file becomes BAS l.MAC. Any previous
version of BAS l.BAK is deleted.

Opens BAS2.BAS on OK (allocating 15 blocks). When editing is complete,
the old BAS2.BAS is labeled BAS2.BAK and the new file becomes BAS2.BAS.
Any previous version of BAS2.BAK is deleted.

In EB, ER and EW commands, leading spaces between the command and the fIlename are illegal (the filename is con
sidered to be a text string). All dev:file.ext specifications for EB, ER and EW commands conform to the HT-II
conventions for file naming and are identical to filenames entered in command strings used with other system pro
grams.

~.6.I.4 Read - The Read command (R) causes a page of text to be read from the input file (previously specified
in an ER or EB command) and appended to the current contents, if any, of the Text Buffer.

The form of the command is:

R

3-10

Text Editor

No arguments are used with the R command and the pointer is not moved. Text is input until one of the following
conditions is met:

l. A form feed character, signifying the end of the page, is encountered. At this point, the form feed will be
the last character in the buffer; or

2. The Text Buffer is within 500 characters of being full. (When this condition occurs, Read inputs up to
the next <CR> <LF> combination, then returns to Command Mode. An asterisk is printed as though
the Read were complete, but text will not have been fully input); or

3. An end-of-file condition is detected, (the *EOF* message is printed when all text in the file has been read
into memory and no more input is available).

The maximum number of characters which can be brought into memory with an R command is approximately
6,000 for an 8K system. Each additional4K of memory allows apPfoximately 8,000 additional characters to be
input. An error message is printed if the Read exceeds the memory available or ifno input is available.

3.6.1.5 Write ~ The Write command (W) moves lines of text from the Text Buffer to the output file (as specified
in the EW or EB command). The format of the command is:

nW Write all characters beginning at the pointer and ending at the nth <CR> <LF> to the output file.

~nW Write all characters beginning on the ~nth line and terminating at the pointer to the output file.

OW Write the text from the beginning of the current line to the pointer.

/W Write the text from the pointer to the end of the buffer.

The pointer is not moved and the contents of the buffer are not affected. If the buffer is empty when the Write is
executed, no characters are output.

Examples:

*5W$$ Writes the next 5 lines of text starting at the pointer, to the current output file.

*~2W$$ Writes the previous 2 lines of text, ending at the pointer, to the current output file.

*S/W$$ Writes the entire Text Buffer to the current output file.

3.6.1.6 Next The Next command acts as both an input and output command since it performs both functions.
First it writes the current Text Buffer to the output file, then clears the buffer, and finally reads in the next page of
the input file. The Next command can be repeated n times by specifying an argument before the command. The
command format is:

nN

Next accepts only positive arguments (n) and leaves the pointer at the beginning of the buffer. If fewer than n pages
are available in the input file, all available pages are input to the buffer, output to the current file, and deleted from
the buffer; the pointer is left positioned at the beginning of an empty buffer, and an error message is printed. This
command is equivalent to a combination of the Beginning, Write, Delete and Read commands (B/W /DR). Next can
be used to space forward, in page increments, through the input file.

3-11

Example:

*2N$$

3.6.1.7 List
mand is:

Text Editor

Writes the contents of the current Text Buffer to the output fIle. Read and write the next page
of text. Clear the buffer and then read in another page.

The List command prints the specified number of lines on the terminal. The format of the com-

nL Print all characters beginning at the pointer and ending with the nth <CR> <LF>.

-nL Print all characters beginning with the first character on the -nth line and terminating at the
pointer.

OL Print from the beginning of the current line up to the pointer.

/L Print from the pointer to the end of the buffer.

The pointer is not moved after the command is executed.

Examples:

*-2L$$ Prints all characters starting at the second preceding line and ending at the pointer.

*4L$$ Prints all characters beginning at the pointer and terminating at the 4th <CR> <LF>'

Assuming the pointer location is:

MOVB
ADD t

The command:

*-lL$$

5 (RI) ,(a'R2
Rl, (R2) +

Prints the previous 1 1/2 lines up to the pointer:

MOVB 5 (RI) , (alR2
ADD

3.6.1.8 Verify - The Verify command prints the current text line (the line containing the pointer) on the termi
nal. The position of the pointer within the line has no effect and the pointer does not move. The command format
is:

V

No arguments are used. The V command is equivalent to a OLL (List) command.

Example:

*V$$
ADD R1, (R2) +'

The command causes the current line of text to be printed.

3-12

Text Editor

3.6.1.9 End File - The End File command closes the current output file. This command does no input/output
operations and does not move the pointer. The buffer contents are not affected. The output file is closed, contain
ing only the text previously output.

The form of the command is:

EF

No arguments are used. Note that an implied EF command is included in EW and EB commands.

3.6.1.10 EXit - The EXit command is used to terminate editing, copy the text buffer and the remainder of the
input file to the output file, close input and output files, and return control to the monitor. It performs consecutive
Next commands until the end of the input file is reached, then closes both the input and output files.

The command format is:

EX

No arguments are used. Essentially, Exit is used to copy the remainder of the input file into the output file and
return to the monitor. Exit is legal only when there is an output file open. If an output file is not open and it is
desired to terminate the editing session, return to the monitor with CTRL C.

NOTE
An EF or EX command is necessary in order to make an
output file permanent. If CTRL C is used to return to
the monitor without a prior execution of an EF com
mand, the current output file is not saved. (It can how
ever, be made permanent using the monitor CLOSE
command.)

An example of the contrasting uses of the EF and EX commands follows. Assume an input file, SAMPLE, contains
several pages of text. The user wishes to make the first and second pages of the file into separate files called SAM I
and SAM2, respectively; the remaining pages of text will then make up the file SAMPLE. This can be done using
these commands:

*EWSAM1$$
*ERSAMPLE$$
*RNEF$$
*EWSAM2$$
*NEF$$
* EWSAMP LE$EX$$

The user might note that the EF commands are not necessary in this example since the EW command closes a cur
rently open output file before opening another.

3.6.2 Pointer Relocation Commands
Pointer relocation commands allow the current location pointer to be moved within the Text Buffer.

3.6.2.1 Beginning - The Beginning command moves the current location pointer to the beginning of the Text
Buffer.

The command format is:

B

3-13

Text Editor

There are no arguments.

For example, assume the buffer contains:

MOVB
ADD
CLR
MOVB

5 (Rl),@R2
RI, (R2) +
(alR2

t 6 (RI), (alR2

The B command:

moves the pointer to the beginning of the Text Buffer:

t MOVB
ADD
CLR
MOVB

5 (RI), (alR2
RI,(R2) +
(alR2
6 (RI), (a'R2

3.6.2.2 Jump - The Jump command moves the pointer over the specified number of characters in the Text
Buffer.

The form of the command is:

(+ or -) nJ

OJ

/J

=J

Move the pointer (backward or forward) n characters.

Move the pointer to the beginning of the current line (equivalent to OA).

Move the pointer to the end of the Text Buffer (equivalent to / A).

Move the pointer backward n characters, where n equals the length of the last text
argument used.

Negative arguments move the pointer toward the beginning of the buffer, positive arguments toward the end. Jump
treats carriage return, line feed, and form feed characters the same as any other character, counting one buffer posi
tion for each.

Examples:

*3J$$

*-4J$$

*B$GABC$=J$$

Moves the pointer ahead three characters.

Moves the pointer back four characters.

Move the pointer so that it immediately precedes the first occurrence of 'ABC' in the
buffer.

3.6.2.3 Advance - The Advance command is similar to the Jump command except that it moves the pointer a
specified number of lines (rather than single characters) and leaves it positioned at the beginning of the line.

3-14

Text Editor

The form of the command is:

nA Advance the pointer forward n lines and position it at the beginning of the nth line.

-nA Move the pointer backward past n <CR> <LF> combinations and position it at the beginning
of the -nth line.

OA Advance the pointer to the beginning of the current line (equivalent to OJ).

/ A Advance the pointer to the end of the Text Buffer (equivalent to / J).

Examples:

*3A$$ Moves the pointer ahead three lines.

Assuming the buffer contains:

CLR (alR2
t

The command:

*OA$$

Moves the pointer to:

tCLR @R2

3.6.3 Search Commands
Search commands are used to locate specific characters or strings of characters within the Text Buffer.

3.6.3.1 Get - The Get command starts at the pointer and searches the current Text Buffer for the nth occur·
rence of a specified text string. If the search is successful, the pointer is left immediately following the nth occur
rence of the text string. If the search fails, an error message is printed and the pointer is left at the end of the Text
Buffer. The format of the command is:

nGtext$

The argument (n) must be positive and is assumed to be I if not otherwise specified. The text string may be any
length and immediately follows the G command. The search is made on the portion of the text between the pointer
and the end of the buffer.

Example:

Assuming the buffer contains:

t MOY
ADD
MOY
CLR
MOYB
ADD
CLR
MOYB

PC, Rl
#DRIY-., Rl
#YECT,R2
@R2
5 CRl),@)R2
Rl, (R2) +
@R2
6 CRl), @R2

3-15

Text Editor

The command:

*GADD$$

positions the pointer at:

ADDt #DRIV-., Rl

The command:

*3G@R2$$

positions the pointer at:

ADD R1, (R2) +
CLR @R2 t

After search commands, the pointer is left immediately following the text object. Using a search command in com
bination with =J will place the pointer before the text object, as follows:

*GTEST$=J$$

This command combination places the pointer before 'TEST'.

3.6.3.2 Find - The Find command starts at the current pointer and searches the entire input fIle for the nth
occurrence of the text string. If the nth occurrence of the text string is not found in the current buffer, a Next
command is automatically performed and the search is continued on the new text in the buffer. When the search
is successful, the pointer is left immediately following the nth occurrence of the text string. If the search fails (Le.,
the end-of-fIle is detected for the input file and the nth occurrence of the text string has not been found), an error
message is printed and the pointer is left at the beginning of an empty Text Buffer.

The form of the command is:

nFtext$

The argument (n) must be positive and is assumed to be I if not otherwise specified.

By deliberately specifying a nonexistent search string, the user can close out his fIle; that is, he can copy all remain
ing text from the input fIle to the output file.

Find is a combination of the Get and Next commands.

Example:

*2FMOBV 6 (Rl),@R2$$ Searches the entire input file for the second occurrence of the text string
MOVB 6 (Rl), @R2. Each unsuccessfully searched buffer is written to the
output file.

3.6.3.3. Position - The Position command searches the input fIle for the nth occurrence of the text string. If
the desired text string is not found in the current buffer, the buffer is cleared and a new page is read from the input
fIle. The format of the command is:

nPtext$

3-16

Text Editor

The argum,ent (n) must be positive, and is assumed to be I ifnot otherwise specified. When a P command is executed
the current contents of the buffer are searched from the location of the pointer to the end of the buffer. If the
search is unsuccessful, the buffer is cleared and a new page of text is read and the cycle is continued.

If the search is successful, the pointer is positioned after the nth occurrence of the text. If it is not, the pointer is
left at the beginning of an empty Text Buffer.

The Position command is a combination of the Get, Delete and Read commands; it is most useful as a means of plac
ing the location pointer in the input file. For example, if the aim of the editing session is to create a new file from
the second half of the input file, a Position search will save time.

The difference between the Find and Position commands is that Find writes the contents of the searched buffer to
the output file while Position deletes the contents of the buffer after it is searched.

Example:

*PADD R 1, (R2) + $$ Searches the entire input file for the specified string ignoring the unsuccessfully
searched buffers.

3.6.4 Text Modification Commands
The following commands are used to insert, relocate, and delete text in the Text Buffer.

3.6.4.1 Insert - The Insert command causes the Editor to enter Text Mode and allows text to be inserted
immediately following the pointer. Text is inserted until an ESCape is typed and the pointer is positioned
immediately after the last character of the insert. The command format is:

Itext$

No arguments are used with the Insert command, and the text string is limited only by the size ofthe Text Buffer and
the space available. All characters except ESCape are legal in the text string. ESCape terminates the text string.

NOTE
Forgetting to type the I command will cause the text
entered to be executed as commands.

EDIT automatically protects against overflowing the Text Buffer during an Insert. If the I command is the first
command in a multiple command line, EDIT ensures that there will be enough space for the Insert to be executed at
least once. If repetition of the command exceeds the available memory, an error message is printed.

Example:

*IMOV
MOV
MOVB
*

#BUFF,R2
#LlNE, R1
-1 (R2), RO$$

Inserts the specified text at the current location of the pointer and leaves the
pointer positioned after RO.

3.6.4.2 Delete - The Delete command removes a specified number of characters from the Text Buffer. Charac
ters are deleted starting at the pointer; upon completion, the pointer is positioned at the first character following the
deleted text.

3-17

The form of the command is:

(+ or -) nD

OD

/D

=0

Examples:

*-20$$

*S$FMOV R1$=0$

Assuming a buffer of:

ADD RI, (R2) +
CLR t(a1R2

the command:

*00$$

leaves the buffer with:

ADD RI, (R2) +
t«I'R2

Text Editor

Delete n characters (forward or backward from the pointer).

Delete from beginning of current line to the pointer (equivalent to OK).

Delete from pointer to end of Text Buffer (equivalent to /K).

Delete -n characters, where n equals the length of the last text argument used.

Deletes the two characters immediately preceding the pointer.

Deletes the text string 'MOY RI '. (=D used in combination with a search command
will delete the indicated text string).

3.6.4.3 Kill - The Kill command removes n lines from the Text Buffer. Lines are deleted starting at the location
pointer; upon completion of the command, the pointer is positioned at the beginning of the line following the
deleted text. The command format is:

nK Delete lines beginning at the pointer and ending at the nth <CR> <LF>.

-nK Delete Jines beginning with the first character in the -nth line and ending at the pointer.

OK Delete from the beginning of the current line to the pointer (equivalent to 00).

/K Delete from the pointer to the end of the Text Buffer (equivalent to /D).

Example:

*2K$$ Delete lines starting at the current location pointer and ending at the 2nd <CR> <LF>.

Assuming a buffer of:

ADD
CLRt
MOYB

RI, (R2) +
(a'R2
6 (RI),ca'R2

3-18

Text Editor

the command:

*/K$$

alters the contents of the buffer to:

ADD
CLR t

Rl, (R2) +

Kill and Delete commands perform the same function, except that Kill is line-oriented and Delete is character
oriented.

3.6.4.4 Change The Change command replaces n characters, starting at the pointer, with the specified text
string and leaves the pointer positioned immediately following the changed text.

The form of the command is:

(+ or -) nCtext$

OCtext$

ICtext$

=Ctext$

Replace n characters (forward or backward from the pointer) with the specified
text.

Replace the characters from the beginning of the line up to the pointer with the
specified text (equivalent to OX).

Replace the characters from the pointer to the end of the buffer with the specified
text (equivalent to IX).

Replace -n characters with the indicated text string, where n represents the length
of the last text argument used.

The size of the text is limited only by the size of the Text Buffer and the space available. All characters are legal
except ESCape which terminates the text string.

If the C command is to be executed more than once (Le., it is enclosed in angle brackets) and if there is enough
space available so that the command can be entered, it will be executed at least once (provided it appears first in the
command string). If repetition of the command exceeds the available memory, an error message is printed. The
Change command is identical to executing a. Delete command followed by an Insert (nDitext$).

Examples:

*5C#VECT$$ Replaces the five characters to the right of the pointer with #VECT.

Assuming a buffer of:

CLR
MOVt

The command:

@R2

5 (RI), @R2

*QCADDB$$

leaves the buffer with:

CLR
ADDB t

(g)R2

5 (Rl), (a1R2

3-19

Text Editor

=C can be used in conjunction with a search command to replace a specific text string as follows:

*GFIFTY : $=CFIVE : $ Find the occurrence of the text string FIFTY: and replace it with the text
string FIVE:.

3.6.4.5 Exchange - The Exchange command exchanges n lines, beginning at the pointer, with the indicated text
string and leaves the pointer positioned after the changed text.

The form of the command is:

nXtext$

-nXtext$

OXtext$

IXtext$

Exchange all characters beginning at the pointer and ending at the nth <CR> <LF> with the
indicated text.

Exchange all characters beginning with the first character on the -nth line and ending at the
pointer with the indicated text.

Exchange the current line from the beginning to the pointer with the specified text (equivalent
to OC).

Exchange the lines from the pointer to the end of the buffer with the specified text (equivalent
to IC).

All characters are legal in the text string except ESCape which terminates the text.

The Exchange command is identical to a KiIl command followed by an Insert (nKItext$), and accepts all legal line
oriented arguments.

If the X command is enclosed within angle brackets so that it will be executed more than once, and if there is
enough memory space available so that the X command can be entered, it will be executed at least once (provided it
is first in the command string). If repetition of the command exceeds the available memory, an error message is
printed.

Example:

*2XADD
CLR
$$
*

R1. (R2)+
@R2

3.6.5 Utility Commands

Exchanges the two lines to the right of the pointer location with the text
string.

3.6.5.1 Save - The Save command starts at the pointer and copies the specified number of lines into the Save
Buffer (described previously in Section 3.5).

The form of the command is:

nS

The argument (n) must be positive. The pointer position does not change and the contents of the Text Buffer are
not altered. Each time a Save is executed, the previous contents of the Save Buffer, if any, are destroyed. If the
Save command causes an overflow of the Save Buffer, an error message is printed.

3-20

Text Editor

Example:

Assume the Text Buffer contains the following assembly language subroutine:

: SUBROUTINE MSGTYP
; WHEN CALLED, EXPECTS RO TO POINT TO AN
; ASCII MESSAGE THAT ENDS IN A ZERO BYTE,
; TYPES THAT MESSAGE ON THE USER TERMINAL

MSGTYP:

MLOOP:

MDONE:

The command:

*145$$

.ASECT

.=1000
TSTB (%0)
BEQMDONE
TSTB @#177564
BPLMLOOP
MOVB (%0) +,@#177566
BRMSGTYP
RTS%7

; DONE?
; YES-RETURN
; NO-IS TERMINAL READY?
; NO-WAIT
; YES PRINT CHARACTER
; LOOP
; RETURN

stores the entire subroutine in the Save Buffer; it may then be inserted in a program wherever needed by using the
U command.

3.6.5.2 Unsave - The Un save command inserts the entire contents of the Save Buffer into the Text Buffer at the
pointer location and leaves the pointer positioned following the inserted text.

The form of the command is:

U Insert in the Text Buffer the contents of the Save Buffer.

OU Clear the Save Buffer and reclaim the area for text.

Zero is the only legal argument to the U command.

The contents of the Save Buffer are not destroyed by the Unsave command (only by the OU command) and may be
Unsaved as many times as desired.

If there is no text in the Save Buffer and the U command is given, the ?*NO TEXT*? error message is printed. If the
Unsave command causes an overflow of the Text Buffer, the ?*NO ROOM*? error message is displayed.

3.6.5.3 Macro - The Macro command inserts a command string into the EDIT Macro Buffer. The Macro com
mand is of the form:

M/command string/ Store the command string in the Macro Buffer.

OM Clear the Macro Buffer and reclaim the area for text.
or

M//

/represents the delimiter character. The delimiter is always the first character following the M command, and may
be any character which does not appear in the Macro command string itself.

3-21

Text Editor

Starting with the character following the delimiter, EDIT places the Macro command string characters into its inter
nal Macro Buffer until the delimiter is encountered again. At this point, EDIT returns to Command Mode. The
Macro command does not execute the Macro string; it merely stores the command string so that it can be executed
later by the Execute Macro (EM) command. Macro does not affect the contents of the Text or Save Buffers.

All characters except the delimiter are legal Macro command string characters, including single ESCape to
terminate text commands. All commands, except the M and EM commands, are legal in a command string macro.

In addition to the OM command, typing the M command immediately followed by two identical characters
(assumed to be delimiters) and two ESCape characters also clears the Macro Buffer.

Examples:

*M//$$

*M/GRO$-Cl$/$$

3.6.5.4 Execute Macro
command.

The form of the command is:

nEM

Clears the Macro Buffer

Stores a Macro to change RO to RI.

NOTE
Be careful to choose infrequently used characters as
macro delimiters; use of frequently used characters can
lead to inadvertent errors. For example,

*M GMOV RO$=CADD Rl$ $$
?*NO FILE*?

In this case, it was intended that the macro be GMOV
RO $=CADD RI $ but since the delimiter character (the
character following the M) is a space, the space following
MOV is used as the second delimiter, terminating the
macro. EDIT then returns an error when the RO$= be
comes an illegal command structure.

The Execute Macro command executes the command string specified in the last Macro

The argument (n) must be positive. The macro is executed n times and returns control to the next command in the
original command string.

Examples:

*M/BGRO$-Cl$/$$
*Bl000EM$$
?*SRCH FAIL IN MACRO*?
*

*IMOV PC, Rl$2EMICLR @R2$$
*

Executes the MACRO stored in the previous example. An error
message is returned when the end of buffer is reached. (This macro
effectively changes all occurrences of RO in the Text Buffer to Rl.)

In a new program, inserts MOV PC, RI then executes the command
in the Macro Buffer twice before inserting CLR (a'R2.

3.6.5.5 Edit Version
terminal.

The Edit Version command displays the version number of the Editor in use on the

3-22

The form of the command is:

EV$

Example:

*EV$$
H02-01
*

Text Editor

3.6.5.6 Upper- and Lower-Case Commands - Users who have any upper/lower-case terminal as part of their
hardware configuration may take advantage of the upper- and lower-case capability of this terminal. Two editing
commands, EL and EU, permit this.

When the Editor is first called (R EDIT), upper-case mode is assumed; all characters typed are automatically trans
lated to upper case. To allow processing of both upper- and lower-case characters, the Edit Lower command is
entered:

*EL$$
*i Text and commands can be entered in UPPER and lower case.$$
*

The Editor now accepts and echoes upper- and lower-case characters received from the keyboard, and outputs text
on the teleprinter in upper- and lower-case.

To return to upper-case mode, the Edit Upper command is used:

*EU$$

Control also reverts to upper-case mode upon exit from the Editor (via EF, EX, or CRTL C).

Note that when an EL command has been issued, Edit commands can be entered in either upper- or lower-case.
Thus, the following two commands are equivalent:

*GTEXT$=Cnew text$V$$

* gTEXT$=cnew text$v$$

The Editor automatically translates (internally) all commands to upper-case independent of EL or EU.

3-23

Text Editor

3.7 EDIT EXAMPLE
The following example illustrates the use of some of the EDIT commands to change a program stored on the device
DK. Sections of the terminal output are coded by letter and corresponding explanations follow the example.

A *ERDK:TEST1.MAC$$ {
. R EDIT

*EWDK :TEST2.MAC$$
*R$$

B

*/L$$
; TEST PROGRAM

ST ART: MOV #1000, %6
MOV #MSG, %0
JSR %7, MSGTYP
HALT

MSG: · ASCII/IT WORKS/
.BYTE15
.BYTE12
· BYTE 0

; INITIALIZE STACK
; POINT RO TO MESSAGE
; PRINT IT
; STOP

c {*B 1J 50$$

~ *GPROGRAM$$
D *OL$$

E l ; PROGRAM*I TO TEST SUBROUTINE MSGTYP. TYPES
; "THE TEST PROGRAM WORKS"
; ON THE TEMI\IM\RMINAL$$

F {* F. ASCII/$$
*SCTHE TEST PROGRAM WORKS$$

{
*P. BYTEAX

G ·*F.BYTEO$V$$

H

. BYTE 0
*1

.END
$B/L$$
; PROGRAM TO TEST SUBROUTINE MSGTYP. TYPES
; "THE TEST PROGRAM WORKS"
; ON THE TERMINAL

START: MOV #1000, %6 ; INITIALIZE STACK
MOV #MSG, %0 ; POINT RO TO MESSAGE
JSR %7, MSGTYP ; PRINT IT
HALT ; STOP

MSG: . ASClliTHE TEST PROGRAM WORKS/
. BYTE 15
.BYTE12
· BYTE 0
.END

I l'EX$$

3-24

Text Editor

A The EDIT program is called and prints an *. The input file is TESTl.MAC; the output file is TEST2.MAC and
the first page of input is read.

B The buffer contents are listed.

C Be sure the pointer is at the beginning of the buffer. Advance pointer one character (past the ;) and delete the
"TEST".

D Position pointer after PROGRAM and verify the position by listing up to the pointer.

E Insert text. RUBOUT used to correct typing error.

F Search for .ASCII/ and change "IT WORKS" to "THE TEST PROGRAM WORKS".

G CTRL X typed to cancel P command. Search for ".BYTE 0" and verify location of pointer with V command.

H Insert text. Return pointer to beginning of buffer and list entire contents of buffer.

I Close inpu t and output files after copying the current text buffer as well as the rest of input file into output
file. EDIT returns control to the monitor.

3.8 EDIT ERROR MESSAGES
The Editor prints an error message whenever one of the error conditions listed next occurs. Prior to executing any
commands, the Editor first scans the entire command string for errors in command format (illegal arguments, illegal
combinations of commands, etc.). If an error of this type is found, an error message of the form:

?ERRORMSG?

is printed and no commands are executed. The user must retype the command.

If the command string is syntactically correct, execution is started. Execution errors are still pOSSible, however
(buffer overflow, I/O errors, etc.), and if such an error occurs, a message of the form:

?*ERROR MSG*?

is printed. In this case, all commands preceding the one in error are executed, while the command in error and those
following are not executed. Most errors will generally be of the syntax type and can be corrected before execution.

When an error occurs during execution of a Macro, the message format is:

?message IN MACRO?
or

?*message IN MACRO*?

depending on when it is detected.

3-25

Message

CB ALMOST FULL

?CB FULL?

?*DIR FULL *?

?*EOF*?

?*FILE FULL*?

?*FILE NOT FND*?

?*HDW ERR*?

?ILL ARG?

?ILL CMD?

?*ILL DEV*?

?ILL MAC?

?*ILL NAME*?

?*NO FILE*?

?*NO ROOM*?

?*NO TEXT*?

?*SRCH FAIL*?

?"< >"ERR?

Text Editor

Explanation

The command currently being entered is within 1 0 characters of exceeding the
space available in the Command Buffer.

Command exceeds the space allowed for a command string in the Command
Buffer.

No room in device directory for output file.

Attempted a Read, Next or file searching command and no data was available.

Available space for an output file is full. Type a CTRL C and the CLOSE
monitor command to save the data already written.

Attempted to open a nonexisting file for editing.

A hardware error occurred during I/O. May be caused by WRITE LOCKed
device. Try again.

The argument specified is illegal for the command used. A negative argument
was specified where a positive one was expected or argument exceeds the range
+ or - 16,383.

EDIT does not recognize the command specified.

Attempted to open a file on an illegal device.

Delimiters were improperly used, or an attempt was made to enter an M
command during execution of a Macro or an EM command while an EM was
in progress.

File name specified in EB, EW, or ER is illegal.

Attempted to read or write when no file is open.

Attempted to Insert, Save, Unsave, Read, Next, Change or Exchange when there
was not enough room in the appropriate buffer. Delete unwanted buffers to
create more room or write text to the output file.

Attempted to call in text from the Save Buffer when there was no text available.

The text string specified in a Get, Find or Position command was not found in
the available data.

Iteration brackets are nested too deeply or used illegally or brackets are not
matched.

3-26

CHAPTER 4

PERIPHERALINTERCHANGEPROGRAMWI~

The Peripheral Interchange Program (PIP) is the fIle transfer and maintenance utility for HT -11. PIP is used to
transfer fIles between any of the HT -11 devices (listed in Table 2-2), merge and delete fIles from these devices, and
list, zero, and compress device directories.

4.1 CALLING AND USING PIP
To call PIP from the system device, type:

R PIP

in response to the dot printed by the Keyboard Monitor. The Command String Interpreter prints an asterisk at the
left margin of the terminal and waits to receive a line of fIlenames and command switches. PIP accepts up to six
input filenames and three output fIlenames; command switches are generally placed at the end of the command
string but may follow any fIlename in the string. There is no limit to the number of switches which may be indi
cated in a command line, as long as only one operation (insertion, deletion, etc.) is represented.

Since PIP performs fIle transfers for all HT-ll data formats (ASCII, object, and image) there are no assumed exten
sions for either input or output fIles; all extensions, where present, must be explicitly specified.

Following completion of a PIP operation, the Command String Interpreter prints an asterisk at the left margin of the
teleprinter and waits for another PIP command line. Typing CTRL C at any time returns control to the Keyboard
Monitor. To restart PIP, type R PIP or the REENTER command in response to the monitor's dot.

4.1.1 Using the "Wild Card" Construction
PIP follows the standard file specification syntax explained in Section 2.5 (Chapter 2) with one exception: the
asterisk character can be used in a command string to represent fIlenames or extensions. The asterisk (called the
"wild card") in a fIle specification means "all". For instance, "*.MAC" means all fIles with the extension .MAC,
regardless of fIlename. "FORTN. *" means all fIles with the fIlename FORTN regardless of extension. "*. *" means
all fIles, regardless of name or extension.

The wild card character is legal in the following cases only (switches are explained in the next section):

1. Input file specification for the copy and multiple copy operations (i.e., no switch, II, IB, and I A).
2. File specification for the delete operation (/0).
3. Input and output file specifications for the rename operation (/R).
4. Input and output file specifications for the multiple copy operation (IX).
5. Input me specifications for the directory list operations (lL, IE, IF).

Operations on fIles implied by the wild card asterisk are performed in the order in which the fIles appear in the di
rectory. System files with the extension .SYS and files with bad blocks and the extension .BAD are ignored when
the wild card character is used unless the IY switch is specified.

4-1

Examples:

**.BAK/D

**.TST=*.BAK/R

DXl :. * /X/Y=*. *

**.MAC, *.OBJ/L

4.2 PIP SWITCHES

Peripheral Interchange Program

Causes all files with the extension .BAK (regardless of their filenames) to be de
leted from the device OK.

Renames all files with a .BAK extension (regardless of filenames) so that these
files now have a .TST extension (maintaining the same filenames).

Transfers all files, including system ftles, (regardless of ftlename or extension)
from device DK to device DX1.

Lists all ftles with .MAC and .OBJ extensions.

The various operations which can be performed by PIP are summarized in Table 4-1. If no switch is specified, PIP
assumes the operation is a ftle transfer in image (JI) mode. Detailed explanations of the switches follow the table.

Table 4-1 PIP Switches

Switch Section Explanation

IA 4.2.1 Copies file(s) in ASCII mode; ignores nulls and rubouts; converts to 7-bit ASCII;
CTRL Z (32 octal) treated as logical end-of-ftle on input.

IB 4.2.1 Copies ftles in formatted binary mode.

IC 4.2.1 May be used in conjunction with another switch to cause only files with current
date (as deSignated using the monitor DATE command) to be included in the spec-
ified operation.

/0 4.2.3 Deletes ftle(s) from specified device.

IE 4.2.5 Lists the device directory including unused spaces and their sizes.

IF 4.2.5 Prints a short directory (ftlenames only) of the specified device.

/G 4.2.1 Ignores any input errors which occur during a file transfer and continues copying.

/1 or no 4.2.1 Copies file(s) in image mode (byte by byte). This is the default switch.
switch

IK 4.2.11 Scans the specified device and types the absolute block numbers (in octal) of any
bad blocks on the device.

IL 4.2.5 Lists the directory of the specified device, including the number of files, their dates,
and the number of blocks used by each file.

IN:n 4.2.6 Used with /Z to specify the number of directory segments (n) to allocate to the
directory.

/0 4.2.9 Bootstraps the specified device.

(Continued on next page)

4-2

Peripheral Interchange Program

Table 4-1 PIP Switches (Cont.)

Switch Section Explanation

IQ 4.2.1 When used in conjunction with another PIP operation, causes PIP to type each me-
name which is eligible for a wild card operation and to ask for a confirmation of its
inclusion in the operation. Typing a "Y" causes the named me to be included in the
operation; typing anything else excludes the me. The command line is not proc-
essed until the user has confirmed each me in the operation.

IR 4.2.4 Renames the specified me.

IS 4.2.7 Compresses the mes on the specified directory device so that free blocks are com-
bined into one area.

IT 4.2.3 Extends number of blocks allocated for a me.

IU 4.2.8 Copies the bootstrap from the specified me into absolute blocks 0 and 2 of the
specified device.

IV 4.2.10 Types the version number of the PIP program being used.

IW 4.2.5 Includes the absolute starting block and any extra directory words in the directory
listing for each me on the device (numbers in octal). Used with IF, IL, or IE.

IX 4.2.2 Copies mes individually (without concatenation).

JY 4.2.1 Causes system mes and .BAO mes to be operated on by the command speCified.
Attempted modifications or deletions of .SYS or .BAD mes without IY are not
done and cause the message ?NO SYS ACTION? to be printed.

IZ:n 4.2.6 Zeroes (initializes) the directory of the specified device; n is used to allocate extra
words per directory entry. When used with IN, the number of directory segments
for entries may be specified.

4.2.1 Copy Operations .
A command line without a switch causes mes to be copied onto the destination device in image mode (byte by
byte). This operation is used to transfer memory image (save format) mes and any mes other than ASCII or for
matted binary. For example:

*ABC<XYZ

*SY :BACK.BI N=PR :/1

Makes a copy of the me named XYZ on device OK and assigns the name ABC.
(Both mes exist on device OK following the operation).

Copies a tape from the papertape reader to the system device in image mode and
assigns it the name BACK.BIN.

The IA switch is used to copy me(s) in ASCII mode as follows:

*DX1 :F1<F2/A Copies F2 from device OK onto device DXI in ASCII mode and assigns the
name Fl.

Nulls and rub outs are ignored in an ASCII mode file transfer. CTRL Z (32 octal) is treated as logical end-of-file
if encountered in the input me.

4-3

Peripheral Interchange Program

The IB switch is used to transfer formatted binary files. The formatted binary copy switch should be used for .OBJ
files produced by the assembler or FORTRAN and for .LDA files produced by the Linker. For example:

*DK :FI LE.OBJ<PR :/B Transfers a formatted binary fIle from the papertape reader to device DK and
assigns the name FILE.OBJ.

When performing formatted binary transfers, PIP verifies checksums and prints the message ?CHK SUM? if a check
sum error occurs.

If neither I A nor IB is used in a copy operation that involves a paper tape device, the size of the output fIle in the
operation depends upon the memory size of the system. The transfer mode defaults to image mode and PIP attempts
to do a single read to fIll its input buffer. When a read from the paper tape reader encounters end-of-tape, no
count of words transferred can be returned; PIP assumes its input buffer is full and copies it to the output device.
The output fIle size thus depends upon the input buffer size, which is determined by the memory size of the system.
The output fIle will have several blocks of zeroes after the end of the paper tape image. If copying to the punch,
large amounts of blank tape will be punched after the input tape image is output. The extra length is harmless, but
can be avoided by use of IA or lB. Image mode files (for example, .SAY files) cannot reliably be transferred to or
from paper tape.

To combine more than one file into a single file, use the following format:

* DK :AA<DX 1 :BB,CC,DDII Transfers files BB, CC and DD to device DK as one file and assigns this fIle
the name AA.

*DXl :MERGE=DXO:FILE2,FI LE3/A
Merges ASCII files FILE2 and FILE3 on DXO into one ASCII file named
MERGE on device DXI.

Errors which occur during the copy operation (such as a parity error) cause PIP to output an error message and
return for another command string.

The IG switch is used to copy files but ignore all input errors. For example:

* ABC<DX 1 :TOP/G Copies file TOP in image mode froth device DXI to device DK and assigns
the name ABC. Any errors during the copy operation are ignored.

*DXl :COMB<DXO:F1,F2/A/G
Copies files FI and F2 in ASCII mode from device DXO to device DXI as one
file with the name COMB. Ignores input errors.

The wild card construction may be used for input file specifications during copy operations. Be sure to use the IY
switch if system files (.SYS) are to be copied. For example:

* DX 1 :PROG 1<* .MAC

** .*=DX 1 :*.* IG/Y IX

Copies, in image mode, all fIles with a .MAC extension from device DK to
device DXI and combines them under the name PROG 1.

Copies to device DK, in image mode, all files (including .SYS files) from device
DXl ; ignores any input errors.

44

Peripheral Interchange Program

If only mes with the current date are to be copied (using the wild card construction), the IC switch must also be
used in the command line. For example:

OX1 :NN3=ITEM1. /C,ITEM2/A

OX1 :.*=*.*/C/X

Copies, in ASCII mode, all mes having the men arne ITEM I and the current date,
(the date entered using the monitor DATE command) and copies ITEM2 (re·
gardless of its date) from device DK to device DX 1 and combines them under
the name NN3.

Copies all mes with the current date from DK to DXI. Note that commands of
this nature are an efficient way to backup all new mes after a session at the com
puter.

The IQ switch is used in conjunction with another PIP operation and the wild card construction to list all mes and
allow the user the opportunity to confirm individ ually which of these mes should be processed "during the wild
card expansion. Typing a "Y" causes the named me to be processed: typing anything else excludes the me. For
example:

**.OBJ<OX1 :*.OBJ/Q/X
FIRST .OBJ?Y
GETR .OBJ?
BORO .OBJ?
CARJ .OBJ?Y

Copies the files FIRST.OBJ and CARJ.OBJ to the DK in image mode from
disk and ignores the others.

The me allocatioAscheme for HT-II nonnally allows half the entire largest available space or the second largest
space, or a maximum size (a constant which may be patched in the HT-Il monitor), whichever is largest, for a new
fIle. The user can, using the [n] construction explained in Chapter 2, force HT-II to allow the entire largest pos
sible space by setting n=I77777. If n is set equal to any other value (other than a which is default and gives the
normal allocation described first above), that size will be allocated for the me.

Therefore. assume that the directory for a given device shows a free area of 200 blocks and that PIP returns an
?OUT ER? message when a transfer is attempted to that device with a file which is longer than 100 blocks but
less than 200 blocks. Transfers in this situation can be accomplished in either of two ways:

I. Use the [n] constructi.on on the output me to specify the desired length (refer to Chapter 2, Section 2.5
for an explanation of the [n] construction).

2. Use the IX switch during the transfer to force PIP to allocate the correct number of blocks for the output
me. This procedure will operate correctly if the input device is a disk.

For example. assume that me A is 150 blocks long and that a directory listing shows that there is a 200 block
<unused> space on DXI :

or

. .R PIP
*OX1 :A=A
lOUT ER?

*OX1:A[150]=A

*OX1 :A=A/X

File longer than 100 blocks.

Either command causes a correct transfer.

4-5

Peripheral Interchange Program

4.2.2 Multiple Copy Operations
The IX switch allows the transfer of several files at a time onto the destination device as individual tiles. The I A.
IG. Ie ./Q, /B and /V switches can be used with IX. If IX is not indicated, all output mes but the first will be
ignored.

Examples;

- FILE1,FILE2.FILE3<OX1 :FILEA,FILEB,FILEC/X

-OX1 :F1. *=F2. -IX
?NO SYS ACTION?
•

-OXO:*.*=OX 1:*.* IX
?NO SYS ACTION?

Copies, in image mode, FILEA, FILED and FILEC from device OX) to device
OK as separate nIes called FILEI, FILE2 and FILE3, respectively.

Copies, in image Illode. all tiles named F2 (except files with .SVS or .BAO ex
tensions) from device UK to device DX I. Each flIe is assigned the filename F I
but retains its original extension.

Copies, in image mode. all files on device OXl to device OXO (except flies with
.sVS or .BAO extensions); the mes are copied separately and retain the same
names and extensions.

-OX1 :FILE1,FILE2<FILEA. * /A/G/X

-OX1:- .SYS=-.SYS/X/Y

This command line assumes there are two mes with the filename FILEA (and
any extension excluding .SVS or .BAO extensions) and copies these flies in
ASCII mode to device OXl. The files are transferred in the order they are
found in the directory; the first file found is copied and assigned the name
FILE I , and the second is assigned FILE2. If there is a third, it is ignored and a
fourth causes an ?OUT FlU error.

Copies all system files from device OK to device OX I.

File transfers performed via normal operations place the new file in the largest available area on the disk. The IX
switch, however, places the copied fIles in the first free place large enough to accommodate it. Therefore, the IX
switch should be used whenever possible (Le., when no concatenation is desired) as an aid toreducing disk frag.
men tation.

-A=S
and

-A-SIX

perform the same operation; however, using the second construction whenever possible increases the system disk
usage efficiency.

For example, assume the directory of OX) is:

-/E
9-IIAY-79
MONITR.SYS 32 5-MAY-79
PR ,SYS 2 5-MAY-79
2 FILES. 34 BLOCKS
448 FREE BLOCKS
•

< UNUSED > 2<NO DATE>
< UNUSED > 444<NO DATE>

4-6

October 15. 1979
Part D

Peripheral Interchange Program

To copy the me PP.SYS (2 hlocks long) from DK to UX I, the command:

-OX1 :PP. SYS=PP . SYS/Y

can be entered, and the new directory is:

-IE
9-MAY-79
MONITR.SYS
PR .SYS

32 5-MAY-79
2 5-MAY-79

< UNUSED > 442<NO DATE>
3 FILES. 36 BLOCKS
444 FREE BLOCKS
*

1ft he command:

*OX1 :PP. SYS=PP. SYS/Y/X

< UNUSED >
PP .SYS

had "een entered. the new directory would appear:

*/E
9-MAY-79

PP .SYS

2<NO DATE>
2 9-MAY-79

2 9-MAY-79 MONITR.SYS 32 5-MAY-79
PR . SYS 2 5-MAY-79
3 FILES. 36 BLOCKS

< UNUSED > 444<NO DATE>

444 FREE BLOCKS
*

4.2.3 The Extend and Delete Operations
The IT switch is used to increase the number of blocks allocated for the specified file. The file associated with the
IT switch must be followed by a numeric argument of the form [n] where n is a decimal number indicating the
number of blocks to be allocated to the me at the completion of the extend operation.

The format of the IT switch is:

dev:fiInam.ext[n] =/T

A file can be extended in this manner only if it is followed by an unused area of sufficient size (on whichever device
it is located) to accommodate the additional length of the extended file. It may he necessary to create this space
by moving other files on the device lIsing the IX switch.

Specifying thc IT switch in conjunction with a file that does not currently exist creates a file of the designated
length.

Error messages are printed if the IT command makes the specified me smaller (?EXT NEG?) or if there is insuffi
cient space following the me ('rROOM'!).

Examples:

- ABC(200] =/T

-OX1 :XYZ(100] <IT

October 15,1979
Part 0

Assigns 200 blocks to me ABC on device OK.

Assigns 100 blocks to .he file named XYZ on device OXI.

4-1

Peripheral Interchange Program

The /D switch is used to delete one or more files from the specified device. The wild card character (*) can he
used in conjunction with this command.

Only six flies can be specified in a delete operation if each file to be deleted is individuall~named (i.e., if the wild
card character is not used).

When a file is deleted on block-replaceable devices, the information is not destroyed. The file name is merely
removed from the directory. If a flIe has been deleted but not overwritten, it can be recovered with the /T switch
by specifying a command of the form:

mena.ext [n I =/T

where mena.ext is the nallle desired and n is the length of the deleted me. For example:

*DX1: IE
4-JUN-79
A . MAC 18 3-JUN-79
C . MAC 19 3-JUN-79
3 FILES. 54 BLOCKS
426 FREE BLOCKS

*DXl : B. MACID

*DX1: IE
4-JUN-79

A .MAC 18 3-JUN-79
C .MAC 19 3-JUN-79
2 FILES. 37 BLOCKS
443 FREE BLOCKS
*

. File B.MAC could now be recovered by:

• OX 1 :B.MAC[17] =/T

B .MAC 17 3-JUN-79
< UNUSED > 426<NO DATE>

< UNUSED> 17 <NO DATE>
< UNUSED >426 <NO DATE>

The /'1' switch looks for the first unused area large enough to accommodate the requested file length. If the file to
be recovered is in the first area large enough to accommodate the size specified, the preceding command is suffi
cient. If not, all larger unused spaces preceding the desired file must be given dummy names before the recovery
can he made. .

4-8

October 15, 1979
PartD

Peripherallnterrhange Program

For instance, assume the previulis example with the exception that A.MAC has a .13 hlock unused file before it, so
that the directory looks like:

*DX1:/E
4-JUN-79

< UNUSED > 33 <NO DATE>
< UNUSED > 17 <NO DATE>
< UNUSED > 393 <NO DATE>
2 FILES. 37 BLOCKS

A
C

.MAC

.MAC
18 3-JUN-79
19 3-JUN-79

443 FREE BLOCKS
*

A .,~cover of B.MAC would require:

*OX1 :OUMMY[33] =/T
*OX1 :B.MAC[17] =/T

If the 33 block unused area was not named prior to B.MAC, the first 17 blocks of the 33 block area would become
B.MAC.

Examples:

*FILE1.SAV/O

OX1:.*/O

**.MAC/O

*OXO:R1,OX1 :AA/O

OX1 :,*/O/Y

4.2.4 The Rename Operation

Deletes FILEI.SAV from device OK.

Deletes all nIes from device OX I except those with a .SYS or .BAD extension.
If there is a me with a .SYS or .BAD extension, the message ?NO SYS ACTION?
is printed to remind the user that these files have not been deleted.

Deletes all files with a .MAC extension from device OK.

Deletes the files specified from the associated devices.

Deletes all nIes from device OX I .

The IR switch is used (in a mariner similar to the multiple copy command described in Section 4.2.2) to rename a
file given all input with the associated name given in the output specification. There must be an equal number of
input and output files and they must reside on the same device, or an error message will be printed. The IY switch
must be used in conjunction with IR if ,SYS faIes are to be renamed.

The Rename command is particularly useful when a me on a disk contains bad blocks. By renaming the file with a
.HAD extension, the file permanently resides in that area of the device so that no other attempts to use the bad area
will occur. Once a file is given a .HAl> extension it cannot be moved during a compress operation .. BAD mes are
lIut renamed in wild cllrd ()"crotio",; unles.'1/Y is used.

fo:xampll's:

*OX1 :F1,X1<OX1 :FO,XO/R

* FILE1.*<FILE2.*/R

October 15, 1919
Part D

Renames FO to FI and XO to XI on device DXt.

Renames all files on device DK with the name FILE2 (except files with .SYS or
.BAD extension) to FILEt, retaining the original extensions.

4-9

Peripheral Interchange Program

4.2.5 Directory List Operations
The IL switch lists the directory of the specified device. The listing contains the current date, all files with their
associated creation dates, total free blocks on the device if disk, the number of files listed, and number of blocks
used by the files. File lengths, number of blocks and number of files are indicated as decimal values. If no output
device is specified, the directory is output to the terminal (TT:).

Outputs complete directory of device DX1 to the terminal.

*DX1 :/L
1-AUG-79
MONITR.SYS 32 5-MAY-79
PR .SYS 2 5-MAY-79
MERGE .BAS 2 4-JUL-79
6 FILES. 55 BLOCKS
425 FREE BLOCKS

PP .SYS 2 9-MAY-79
F2 .REL 15 4-JUL-79
COMB .OBJ 2 4-JUL-79

Outputs a complete directory of device DX1 to a file, DIRECf, on the device DK.

*DIRECT=DX1 : /L

Outputs a complete directory of all files on device DK using the .MAC extension.

**.MAC/L
1-AUG-79
VTMAC . MAC 7 8-JUL-79
2 FILES. 8 BLOCKS
472 FREE BLOCKS

FILE2 .MAC 1 9-JUL-79

The IE switch lists the entire directory including the unused areas and their sizes in blocks (decimal).

*/E
9-SEP-79
BATCH. HLP 2 3-SEP-79 CHESS.SAV 20 2-SEP-79
PAT1 .FOR 10 5-SEP-79 < UNUSED > 3 <NO DATE>
IRAD5.MAC 8 7;"SEP-79 < UNUSED > 30 <NO DATE>
TRIG .OBJ 2 6-SEP-79 STP .OBJ 2 6-SEP-79
< UNUSED > 15 <NO DATE> BAC .OBJ 2 6-SEP-79
< UNUSED > 4 <NO DATE> LIBRI.OBJ 137 6-SEP-79

The IF switch lists only ftienames, omitting the file lengths and associated dates.

Exanlplc:

*DXO:/F.
TRACE .MAC CARGO .REt. BMAP .OBJ AAA . TST NEW . OAT

-- -,,---- -. -. -_. -- ___ . _____ --------- ---- ---,r1

4-10

October 15, 19~
Part D

nle IL./E and IP commands have no erfect on the files of the specified device. If the /W switch is used in con·
junction with the IL or IE switches. the absolute starting block of the file and extra wordl (in oc:tal) will be in·
cluded in the listing. For example:

*DX1:/L/W
10-SEP-79
DSQRT .OBJ
BASICR.OBJ

1 10-SEP-79 16 0
11 10-SEP-79 20 0

MAIN . OBJ 1 10-SEP-79 17 0
OTSV2 .OBJ 3 10-SEP-79 33 0

NOTE: When you allocate more than a 8in81e word par directory.
the di.play i. larser than a conventional console .creen. The
li.t!ns device must be capable ofprintill8 record. 8J'88ter than 80
characters in width.

nle lirat three columns Indicate the filename and extension. block length. and date. The fourth column shows
. Ule absulute starting block (in octal). and the tlfth column shows the contents of each extra word per directory

entry (in oct Ill). (This is allocated uling the IZ:n switch; see Section 42.6.)

lIsing the IL./F.. or IP switch in conjunction with a device and filename causes the fllename, and optionally the date
and file length to be output rather than a directory of the entire device. For example:

-F1.SAV/L

causes:

4.JUN·18
F1 .SAV 18 4·JUN·18
124 FREE 8LOCKS

-
tn be output, providing the file exists on device OK.

Directories are made up of segments which are two blocks long. Full directory listings with multiple segments con·
tain blank lines us segment boundaries.

4.2.6 The Directory Initialization Opention
'111e IZ switch dears and initializes the directory of an Hl·11 directory-structured device and must always be the
nrst operation pcrfonned on a new (that ii, previously unused) device. The form of the switch is:

II:n

October 15.1979
Put 0

4-/1

Peripheral Interchange Program

where n is an optional octal number to increase the size of each directory entry on a directory-structured device. If
n is not specified, each entry is 7 words long (for fIlename and me length information) and 70 entries can be made
ill a directory segment. When extra words are allocated, the number of entries per directory segment decreases. The
formula for determining the number of entries per directory segment is:

507/«# of extra words)+7)

For example, if the switch /Z:l is used, 63 entries can be made per segment.

When IZ is used, PIP responds as follows:

device/Z

For example:

*OX1 :/Z
OX1 :/Z

ARE YOU SURE?

ARE YOU SURE '?

Answer Y and a carriage return to perform the initialization. An answer beginning with a character other than Y is
considered to be no.

Example:

*OX1:/Z
OX1:/Z ARE YOU SURE ?Y<CR>
* Zeroes the directory on device OX} and allocates no extra words for the direc

tory.

The IN switch is used with IZ to specify the number of directory segments for entries in the directory. The form of
the switch is:

IN:n

where n is an octal number less than or equal to 37. Initially HT·ll allocates four directory segments, each two
blocks (512 words) long.

Example:

*OX1 :/Z:2/N:6

4.2.7 The Compress Operation

Zeroes the directory on device OXI. allocates two extra words per directory
entry and allocates six directory segments.

The IS switch is used to compress the directory and files on the specified device, condensing all the free (unused)
blocks into one area. Input errors are reported on the console terminal unless the IG switch is used; output errors
are always reported. In either case. the compress continues. '.

'\

IS can also be used to copy OX disks, though the output diskette must first be initialized using IZ to write the
appropriate volume identification. (It is important to note that the IS switch destroys any previous directory on the
output device. The new directory on the output device has the same number of segments as the directory on the
input device.) IS does not copy the bootstrap onto the volume.

4-12

Peripheral Interchange Program

To increase the number of directory blocks in a two-volume compress (that is. from one volume to another rather
than from one volume to itself). use the IN:o switch in conjunction with the IS switch (any attempts to decrease
the directory size are ignored) .

. IS does not move mes \\lIth the .BAD extension. This feature provides protection against reusing bad blocks which
may occur on a disk. Files containing bad blocks can be renamed with the .BADextension and are then left in place
when a /S is executed.

If a compress operation is perfonned on the system device. the message:

?REBOOT?

is printed to indicate that it may be necessary to reboot the system. If .SYS mes were not moved during the com
press operation. it is not necessary to reboot the system.

NOTE
Rebooting the system in response to the '?REBOOT?
warning message should ONLY be done AFTER the
operation which generated the message is complete.
'?REBOOT? does not signify that the system should
be rebooted immediately; the user should wait for the
"*" signifying that PIP is ready for another command
before rebooting.

If the command <lttempts to compress a large device to a smaller one, an error results and the directory of the
smaller device is zeroed. If a device is being compressed in place, input and output errors are reported on the
terminal and the operation continues to completion.

Lxamples:

*SY:/S
?REBOOT?

*OXO:A<DXI :/S

Compresses the files on the system deviceSY:

Transfers and compresses the filesfrom device DXI to device DXO. Device
DXI is not changed. The filename A is a dummy speCification required by the
Command String Interpreter. .

4.2.8 The Bootstrap Copy Operation
The bootstrap copy switch (/U) copies the bootstrap portion of the specified file into absolute blocks 0 and 2 of the
speCIfied device.

Example:

* OK :A<OK:MONITH.SYS/U

4.2.9 The Boot Operation

Writes the bootstrap me MONITR.SYS in blocks 0 and 2 of the device OK.
A is a dummy filename.

The boot switch reboots the system, reinitializing monitor tables and returning the system to the monitor level.
The boot switch performs the same operation as a hardware bootstrap.

4-13

P('ripllerallnlerchange Program

Exalllple:

*OK:/O Reboots the device DK.

If a boot switch is specified on an illegal device, the message:

?BAD BOOT?

is printed. Legal devices are SY,DK, and DXO-DXI.

4.2.10 TheVersion Switch
The Versipn switch <IV) outputs a version number meSsage (representing the version of PIP in use J to the terminal
using the form: .

PIP VOl-XX

The rest of the command line, if any, is ignored.

4.2.11 Bad Block Scan UK)
The bad block switch UK) scans the specified device and types the absolute block numbers of those blocks on the
device which return hardware errors. The block numbers typed are octal; the first block on a device is 0(8). Note
that if no errors occur, nothing will be output. A complete scan of a disk takes several minutes.

Example:

*OX1:/K
BLOCK
*OX:/K
*

Scan disk drive 1 for bad blocks.
140 IS BAD

Scan drive O. No blocks are bad.

4.2.11.1 Recovery from Bad Blocks - As a disk ages, the recording surface wears. Eventually unrecoverable
I/O errors occur during attempts to read or write a bad disk block. PIP protects against usage of bad disk areas
by ignoring files with a .BAD extension (unless the IV switch is used). Once a bad block is uncovered in an I/O
operation, it can be located using the IK ~witch and a .BAD me can be created which encompasses the bad block.

When a hardware I/O error is detected, the recovery procedure is as follows:

1. Use the PIP /K switch to scan the device and print on the terminal the absolute block numbers (in octal) of
the bad blocks. For example:

.R PIP
*OX1:/K
BLOCK
*

23 IS BAD

2. Obtain an extended directory with the /W switch, showing the starting block numbers of all the mes on
the disk.

3. If a bad block occurs ina me with valuable information, copy the me to another me using the /G switch.
In most cases, only 1 bit (character) oCthe file is affected.

4-14

Peripheral Interchange Program

4. If the fIle is small, it can then be renamed with a .BAD extension to prevent further use of that disk area.
5. If the fIle is large or the bad block occurs in an empty area, a I-block .BAD fIle can be created using the

IT switch as follows:
a. Delete the bad me (if any).
b. If the bad block is at block n of the free area, create a file of length n-l with the IT switch. Remember

that there must be no spaces liuger than n-l blocks before the desired one (refer to Section 4.2.3).
Also note that the block numbers printed in the IK and IW operations are octal, while the argument to
the IT operation is decimal. .

c. Create a I-block .BAD file with the IT switch to cover the bad block.
d. Delete any temporary files created during the operation.

For example, assume the extended directory is:

*
*
NEWSRC.BAT 8 11-SEP-79 55 RTTEMP.BAT
PIP .MAC 150 12-SEP-79 120 < UNUSED >
VERIFY.SAV 3 12-SEP-79 600 PIP .OBJ
MKPIP .CTL 1 12-SEP-79 622 MKV2RK.CTL
VTLIB .OBJ 10 12-SEP-79 627 A
PIP .LST 50 3-SEP-79 645
*
*

27 11-SEP-79 65
154 <NO DATE>

15 12-SEP-79 603
4 12-SEP-79 623
4 12-SEP-79 641

and a bad block is detected at block 670 (octal) of the file PIP.LST. To recover, make a copy, ignoring the error,
and delete the bad me:

-OX1 :PIPA. LST=OX1 :PIP. LST /G
-OX1 :PIP.LST/O

The directory now reads:

* -NEWSRC.BAT
PIP .MAC
< UNUSED>
PIP .OBJ
MKV2RK.CTL
A

*
*

October 15, 1979
Part D

8 11-SEP-79 55
150 12-SEP-79 120
104 <NO DATE>

15 12-SEP-79 603
4 12-SEP-79 623
4 12-SEP-79 641

4-15

RTTEMP.BAT 27 11-SEP-79 65
PIPA .LST 50 18-SEP-79 346
VERIFY.SAV 3 12-SEP-79 600
MKPIP .CTL 1 12-SEP-79 622
VTLIB .OBJ 10 12-SEP-79 627

I Peripheral Interchange Program . ,
An unused area following A contains block 670 (octal), which is bad. Continuing in PIP:

*OX1 :TEMP.002[l04] =/T
*OX1 :TEMP.OO3[19] =rr

This fills the unused areas with temporary files. Specifying TEMP.a03 with a length of 19 blocks makes
the file just long enough to precede the bad block (i.e., 645 (octal) and 19 (decimal) equal 670, which
would be the starting block number of the next file created). The directory now contains:

*
*
NEWSRC.BAT 8 11-SEP-79 55
PIP .MAC 150 12-SEP-79 120
TEMP .002 104 18-SEP-79 430
PIP .OBJ 15 12-SEP-79 603
MKV2RK.CTL 4 12-SEP-79 623
A 4 12-SEP-79 641
*
*

Continuing with PIP:

*OX1 :FILE.BAO [11 =/Vrr

The directory now contains:

*

*
NEWSRC.BAT 8 11-SEP-79 55
PIP .MAC 150 12-SEP-79 120
TEMP .002 104 18-SEP-79 430
PIP .OBJ 15 12-SEP-79 603
MKV2RK.CTL 4 12-SEP-79 623
A 4 12-SEP-79 641
FILE . BAD 1 18-SEP-79
*
*

4·16

RTTEMP.BAT 27 11-SEP-79 65
PIPA .LST 50 18-SEP-79 346
VERIFY.SAV 3 12-SEP-79 600
MKPIP .CTL 1 12-SEP-79 622
VTLIB .OBJ 10 12-SEP-79 627
TEMP .003 19 18-SEP-79 645

Create a bad file.

RTTEMP.BAT
PIPA .LST
VERIFY.SAV
MKPIP .CTL
VTLIB .OBJ
TEMP .003

27 11-SEP-79 65
50 18-SEP-79 346
3 12-SEP-79 600
1 12-SEP-79 622

10 12-SEP-79 627
19 18-SEP-79 645

October 15, 197!J
Part n

Perlphc'rall"lcrchange Program

Next delete all temporary files and rename PIPA.LST to PIP.LST. The final directory now contains:

*
*
NEWSRC.BAT
PIP . MAC
< UNUSED >
PIP .OBJ
MKV2RK.CTL
A
FILE .BAD
*
*

8 11-SEP-79 55
150 12-SEP-79 120
104 <NO DATE>

15 12-SEP-79 603
4 12-SEP-79 623
4 12-SEP-79 641
1 18-SEP-79 760

RTTEMP.BAT 27 11-SEP-79 65
PIP .LST 50 18-SEP-79 346
VERIFY.SAV 3 12-SEP-79 600
MKPIP .CTL 1 12-SEP-79 622
VTLIB .OBJ 10 12-SEP-79 627
< UNUSED :> 19 <NO DATE>

Disks with many bad blocks can often be reused by reformatting them. First copy all desired mes, since
reformatting destroys all information contained on a volume.

4.3 PIP ERROR MESSAGES
• The following error messages are output on the terminal when PIP is used incorrectly:

Errors

?BADBOOT?

?BOOTCOPY?

?CHK SUM?

?COROVR?

?DEV FUL?

?ER RDDlR?

?ERWRDlR?

?EXTNEG?

?FIL NOT FND?

?ILLCMD?

October 15. 1979
Part 0

Meaning

A boot switch was specified on an illegal device.

An error occurred during an attempt to write bootstrap with IU switch.

A checksum error occurred in a formatted binary transfer.

Memory overflow-too many devices andlor me speCifications (usually • operations)
and no room for buffers.

No room on device for me.

Unrecoverable error reading directory. Check volume for off-line and try the operation
again.

Unrecoverable error writing directory. Try again.

A IT command attempted to make fde smaller.

File not found during a delete, copy, or rename operation, or lIO input fIles with the
expected name or extension were found during a expansion.

The command specified was not syntactically correct; a device name is missing which
should be specified, a switch argument is too large, a mename is specified where one
is inappropriate, or a nonfIle-structured device is specified for a fIle-structured
operation.

4-17

?ILL DEV?

?ILLDIR?

?ILL REN?

l'ILL SWT?

?IN ER?

?OUT ER?

?OUT FIL?

?ROOM?

• •
Peripheral Interchange Program

lllegal or nonexistent device.

The device did not contain a properly initialized directory structure. Use IZ.

Illegal rename operation. Usually caused by different device names on the input and
output sides of the command string.

Illegal switch or switch combination.

Unrecoverable error reading fIle. Try again (this error is ignored during IG operation).

Unrecoverable error writing fIle. Perhaps a hardware or checksum error; try recopying
fIle. Also may be caused by an attempt to compress a larger device to a smaller one or
by not enough room when creating a fIle. The system takes the largest space available
and divides it in half before attempting to insert the fIle. Try t-he [nJ construction or
IX switch.

lllegal output fIle specification or missing output fIle:

Insufficient space following file specified with a IT switch.

The following warning messages are output by PIP:

?NO .SYSI.BAD
ACTION?

?REBOOT?

The IY switch was not included with a command specified on a .SYS or .BAD fIle. The
command is executed for all but the .SYS and .BAD fIles. A *. * transfer is most likely
to cause this message .

. SYS fIles have been transferred, renamed, compressed or deleted from the system
device. It may be necessary to reboot the system.

NOTE
The message is typed immediately after execution of the
relevant command has begun, but the actual reboot oper
ation must not be performed until PIP returns with the
prompting asterisk for the next command. If the system
is halted and rebooted before the prompting asterisk
returns, disk information may be lost.

If any of the .SYS files in use by the current system (MONITR.SYS and handler fIles)
have been physically moved on the system device, it is necessary to reboot the system
immediately. If not, this message can be ignored. If the cause of the message was a IS
operation, the system need be rebooted only if there was an empty space before any of
the .SYS fIles or if the IN:n switch was used to increase the number of directory seg
ments. The need to reboot can be permanently avoided by placing all .SYS fIles at the
beginning of the system device, then avoiding their involvements in PIP operations by
not using the IY switch.

dev:/Z ConfIrmation must be given by the user before a device can be zeroed.
ARE YOU SURE?

4-18

CHAPTER 5

THE ASSEMBLY PROCESS

Three HT-ll system programs perfonn the tasks collectively known as the assembly process.

EXPAND makes the first pass over a source program containing macros, applying a user's macro definition or one
from the system library each time the source program references a macro. EXPAND writes the program source, with
macros expanded, to its output me.

The EXPANDed program or one originally without macros (both have .PAL me extensions) undergoes two passes by
ASEMBL. This system program outputs a single relocatable binary object me and can also produce an assembly list
ing with symbol table.

The system program CREF (Cross REFerence) appends an index of symbol usage to the assembly listing when speci
fied as part of the assembly output.

Some notable features of ASEMBL are:

1. Program control of assembly functions
2. Device and me name specifications for input and output mes
3. Error listing on command output device
4. Alphabetized, fonnatted symbol table listing
5. Relocatable object modules
6. Global symbols declaration for linking among object modules
7. Conditional assembly directives
8. Program sectioning directives
9. Extensive listing control, including cross reference listing

Operating instructions for the three programs EXPAND, ASEMBL, and CREF appear in Sections 5.7 and 5.8.

S.1 SOURCE PROGRAM FORMAT
A source program is composed of a sequence of source lines; each source line contains a single assembly-language
statement followed by a statement tenninator. A tenninator may be either a line feed character (which increments
the line count by 1) or a form feed character (which resets the line count and increments the page count by 1).

NOTE
EDIT automatically appends a line feed to every carriage
return encountered in a source program. For listing for
mat, ASEMBL automatically inserts a carriage return be
fore any line feed or fonn feed not already preceded by
one.

An assembly-language line can contain up to 132(decimal) characters (exclUSive of the statement terminator). Be
yond this limit, excess characters are ignored and generate an error flag.

5-1

The Assembly Process

5.1.1 Statement Format
A statement can contain up to four fields which are identified by order of appearance and by specified terminating
characters. The general format of an assembly language statement is:

label: operator operand(s) ;comments

The label and comment fields are optional. The operator and operand fields are interdependent; either may be
omitted depending upon the contents of the other.

The assembler interprets and processes these statements one by one, generating one or more binary instructions or
data words or performing an assembly process. A statement contains one of these fields and may contain all four
types. Blank lines are legal.

Some statements have one operand, for example:

CLR RO

while others have two:

MOV #344,R2

An assembly language statement must be complete on one source line. No continuation lines are allowed. (If a con
tinuation is attempted with a line feed, the assembler interprets this as the statement terminator.)

Source statements may be formatted with EDIT so that use of the TAB character causes the statement fields to be
aligned. For example:

Label Operator Operand Comment
Field Field Field Field

CHECK: BIT #l,RO ;IS NUMBER ODD?
BEQ EVEN ;NO, IT'S EVEN
MOV #-l,ODDFLG ;ELSE SET FLAG

EVEN: RTS PC ;RETURN

5.1.1.1 Label Field - A label is a user-defined symbol that is unique within the first six characters and is assigned
the value of the current location counter and entered into the user-defined symbol table. The value of the label may
be either absolute (fIXed in memory independently of the position of the program) or relocatable (not fIXed in mem
ory), depending on whether the location counter value (see Section 5.2.6) is currently absolute or relocatable.

A label is a symbolic means of referring to a specific location within a program. If present, a label always occurs first
in a statement and must be terminated by a colon. For example, if the current location is absolute 100(octal), the
statement:

ABeD: MOV A,B

assigns the value 100(octal) to the label ABCD. Subsequent reference to ABCD references location 100(octal). In
this example if the location counter was declared relocatable within the section, the fmal value of ABCD would be
100(octal) plus a value assigned by LINK when it relocates the code, called the relocation constant. (The final value
of ABCD would therefore not be known until link-time. This is discussed later in this chapter and in Chapter 6.)

5-2

The Assembly Process

More than one label may appear within a single label field, in which case each label within the field is assigned the
same value. For example, if the current location counter is 100(octal), the multiple labels in the statement:

ABC: ERREX: MASK: MOV A,B

cause each of the three labels ABC, ERREX, and MASK to be equated to the value 1 OO(octal).

A symbol used as a label may not be redefmed within the user program. An attempt to redefine a label results in an
error flag in the assembly listing.

5.1.1.2 Operator Field - An operator field follows the label field in a statement and may contain an instruction
mnemonic or an assembler directive. The operator may be preceded by zero, one or more labels and may be fol
lowed by one or more operands and/or a comment. Leading and trailing spaces and tabs are ignored.

When the operator is an instruction mnemonic, it specifies the instruction to be generated and the action to be per
formed on any operand(s) which follow. When the operator is an assembler directive, it specifies a certain function
or action to be performed during assembly.

An operator is legally terminated by a space, tab, or any non-alphanumeric character (symbol component).

Consider the following examples:

MOV A,B
MOV@A,B

(space terminates the operator MOV)
(@ terminates the operator May)

When the statement line does not contain an operand or comment, the operator is terminated by a carriage return
followed by a line feed or form feed character.

A blank operator field is interpreted as a .WORD assembler directive (See Section 5.5.3.2).

5.1.1.3 Operand Field - An operand is that part of a statement which is manipulated by the operator. Operands
may be expressions, numbers, or symbolic arguments (within the context of the operation). When multiple oper
ands appear within a statement, each is separated from the next by one of the following characters: comma, tab,
space, or paired angle brackets around one or more operands (see Section 5.2.1.1). Multiple delimiters separating
operands are not legal (with the exception of spaces and tabs -- any combination of spaces and/or tabs repre
sents a single delimiter). An operand may be preceded by an operator, a label or another operand and followed by a
comment.

The operand field is terminated by a semicolon when followed by a comment, or by a statement terminator when
the operand completes the statement. For example:

LABEL: MOV A,B ;COMMENT

The space between MOV and A terminates the operator field and begins the operand field; a comma separates the
operands A and B; a semicolon terminates the operand field and begins the comment field.

5.1.1.4 Comment Field - The comment field is optional and may contain any ASCII characters except null, rub
out, carriage return, line feed, vertical tab or form feed. All other characters, even special characters with defined
usage, are ignored by the assembler when appearing in the comment field.

The comment field may be preceded by one, any, none or all of the other three field types. Comments must begin
with the semicolon character and end with a statement terminator.

5-3

The Assembly Process

Comments do not affect assembly processing or program execution, but are useful in source listings for later analy
sis, debugging, or documentation purposes.

5.1.2 Fonnat Control
Horizontal or line formatting of the source program is controlled by the space and tab characters. These characters
have no effect on the assembly process unless they are embedded within a symbol, number, or ASCII text; or unless
they are used as the operator field terminator. Thus, these characters can be used to provide an orderly source pro
gram. A statement can be written:

LABEL:MOV(SP)+,TAG;POP VALUE OFF STACK

or, using formatting characters, it can be written:

LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK

which is easier to read in the context of a source program listing.

Vertical formatting, i.e., page size, is controlled by the form feed character. A page of n lines is created by inserting
a form feed (CTRL FORM) after the nth line. (See also Section 5.5.1.2 for a description of assembly listing out
put.)

5.2 SYMBOLS AND EXPRESSIONS
This section describes the various components oflegal expressions: the assembler character set, symbol construc
tion, numbers, operators, terms and expressions.

5.2.1 Character Set
The following characters are legal in source programs:

1. The letters A through Z. Both upper- and lower-case letters are acceptable, although, upon input, lower
case letters are converted to upper-case letters. Lower-case letters can only be output by sending their
ASCII values to the output device. This conversion is not true for .ASCII, .ASCIZ, , (single quote) or
" (double quote) statements if .ENABL LC is in effect.

2. The digits 0 through 9.
3. The characters . (period or dot) and $ (dollar sign) which are reserved for use in system program sym

bols (with the exception oflocal symbols; See Section 5.2.5).
4. The following special characters:

5-4

Character

carriage return
line feed
form feed
vertical tab

%
tab
space

@

(
)

<
>
+

*
/
&

t

Designation

colon
equal sign
percent sign

number sign
at sign
left parenthesis
right parenthesis
comma
semicolon
left angle bracket
right angle bracket
plus sign
minus sign
asterisk
slash
ampersand
exclamation
double quote
single quote
uparrow

The Assembly Process

Function

formatting character
source statement terminator
source statement terminator
source statement terminator

label terminator
direct assignment indicator
register term indicator
item or field terminator
item or field terminator
immediate expression indicator
deferred addressing indicator
initial register indicator
terminal register indicator
operand field separator
comment field indicator
initial argument or expression indicator
terminal argument or expression indicator
arithmetic addition operator or auto increment indicator
arithmetic subtraction operator or auto decrement indicator
arithmetic multiplication operator
arithmetic division operator
logical AND operator
logical inclusive OR operator
double ASCII character indicator
single ASCII character indicator
universal unary operator, argument indicator

5.2.1.1 Separating Characters - Reference is made in the remainder of the chapter to legal separating characters.
These terms are defined in Table 5-1 and following.

5-5

The Assembly Process

Table 5-1 Legal Separating Characters

Character Defmition Usage

space one or more spaces and/or tabs A space is a legal separator only for argument operands.
Spaces within expressions are ignored.

, comma A comma is a legal separator for both expressions and
argument operands.

< ... > paired angle brackets Paired angle brackets are used to enclose an argument,
particularly when that argument contains separating char-
acters. Paired angle brackets may be used anywhere in a
program to enclose an expression for treatment as a term.
(The angle bracket construction should be used when the
argument contains unary operators.)

t\ ... \ Up arrow construction where This construction is equivalent in function to the paired
the up arrow character is angle brackets and is generally used only where the argu-
followed by an argument ment contains angle brackets.
bracketed by any paired
printing characters.

5.2.1.2 Illegal Characters - A character can be illegal in one of two ways:

1. A character which is not recognized as an element of the character set is always an illegal character and
causes immediate termination of the current line at that point, plus the output of an error flag in the
assembly listing. For example:

LABEL+-* A: MOV A,B
Since the backarrow is not a recognized character, the entire line is treated as a:

.WORD LABEL
statement and is flagged in the listing.

2. A legal character may be illegal in context. Such a character generates a Q error on the assembly listing.

5.2.1.3 Operator Characters - Legal unary operators (operators applying to only one operand) are as follows:

Unary
Operator

+

t

Explanation

plus sign

minus sign

uparrow, universal unary opera tot
(this usage is described in greater
detail in Sections 5.5.4.2 and
5.5.6.2)

+A

-A

tF3.0

tC24

tDI27

t034

tB 11 00011 1

5-6

Example

(positive value of A, equivalent to A)

(negative, 2's complement, value of A)

(interprets 3.0 as a I-word floating
point number)

(interprets the one's complement of
the binary representation of 24(8»

(interprets 127 as a decimal number)

(interprets 34 as an octal number)

(interprets 11000111 as a binary value)

The Assembly Process

The unary operators described above can be used adjacent to each other in a term. For example:

tCW12
-t05

Legal binary operators are as follows:

Binary
Operator Explanation Example

+ addition
subtraction

* multiplication

/ division
& logical AND

logical inclusive OR

A+B
A-B
A *B (l6-bit product returned)
A/B (l6-bit quotient returned)
A&B
A!B

All binary operators have the same priority. Division and multiplication are signed operations. Items can be
grouped for evaluation within an expression by enclosure in angle brackets. Terms in angle brackets are evaluated
first, and remaining operations are performed left to right. For example:

.WORD

.WORD

5.2.2 Symbols

1+2*3 ;15 11 OCTAL
1+<2*3> ;15 7 OCTAL

ASEMBL maintains the Permanent Symbol Table (PST) and the User Symbol Table (UST). The PST contains all the
permanent symbols and is part of the assembler load module. The UST is constructed as the source program is as
sembled; user-defined symbols are added to the table as they are encountered.

5.2.2.1 Permanent Symbols - Permanent symbols consist of the instruction mnemonics (Appendix B) and as
sembler directives (sections 5.5 and 5.6, Appendix B). These symbols are a permanent part of the assembler and
need not be defined before being used in the source program.

5.2.2.2 User-Defined Symbols - User-defined.symbols are those used as labels or defined by direct assignment
(Section 5.2.3). These symbols are added to the User Symbol Table as they are encountered during the first pass of
the assembly.

User-defined symbols can be composed of alphanumeric characters, dollar signs, and periods only; any other charac
ter is illegal.

The $ and . characters are reserved for system software symbols; it is recommended that $ and . not be inserted
in user-defined symbols.

The following rules apply to the creation of user-defmed symbols:

l. The first character must not be a number (except in the case of local symbols, see Section 5.2.5).
2. Each symbol must be unique within the first six characters.
3. A symbol can be written with more than six legal characters, but the seventh and subsequent characters

.are only checked for legality, and are not otherwise recognized by the assembler.
4. Spaces, tabs, and illegal characters must not be embedded within a symbol.

5-7

The Assembly Process

The value of a symbol depends upon its use in the program. A symbol in the operator field may be either one of the
symbol types. To determine the value of the symbol, the assembler searches the symbol tables in the following
order:

1. Permanent Symbol Table
2. User-Defmed Symbol Table

A symbol found in the operand field is sought in the:

1. User-Defined Symbol Table
2. Permanent Symbol Table

in that order.

These search orders allow redefinition of Permanent Symbol Table entries as user-defined symbols.

User-defined symbols are either internal or external (global). All user-defined symbols are internal unless explicitly
defined as being global with the .GLOBL directive (see Section 5.5.1 0).

Global symbols provide links between object modules. A global symbol defined as a label is generally called an entry
point (to a section of code). Such symbols are referenced from other object modules to transfer control throughout
the load module (which may be composed of a number of object modules).

Since ASEMBL provides program sectioning capabilities (Section 5.5 .9), two types of internal symbols must be con
sidered:

1. Symbols that belong to the current program section, and
2. Symbols that belong to other program sections.

In both cases, the symbol must be defined within the current assembly; the significance of the distinction is critical
in evaluating expressions involving type (2) above (see Section 5.2.9).

5.2.3 Direct Assignment
A direct assignment statement associates a symbol with a value. When a direct assignment statement defines a sym
bol for the first time, that symbol is entered into the user symbol table and the specified value is associated with it.
A symbol may be redefined by assigning a new value to a previously defined symbol. The latest assigned value re
places any previous value assigned to a symbol.

The general format for a direct assignment statement is:

symbol = expression

Symbols take on the relocatable or absolute attribute of their defining expression. However, if the defining expres
sion is global, the symbol is not global unless explicitly defined as such in a .GLOBL directive. For example:

C:

E:

A=1 ;THE SYMBOL A IS EQUATED TO THE
;VALUE 1

B='A-1&MASKLOW ;THE SYMBOL B IS EQUATED TO THE
;VALUE OF THE EXPRESSION

D=3

MOV #1,ABLE

;THE SYMBOL D IS EQUATED TO 3

;LABELS C AND E ARE EQUATED TO THE
; LOCATION OF THE MOV COMMAND

5-8

The Assembly Process

The following conventions apply to direct assignment statements:

1. An equal sign (=) must separate the symbol from the expression defining the symbol value.
2. A direct assignment statement is usually placed in the operator field and may be preceded by a label and

followed by a comment.

NOTE
If the program jumps to or references the label of a
direct assignment statement, it is actually referencing the
following instruction statement. For example:

.=.+1000
C: D=3

E: MOV #D,ABLE

JMP C

This code causes a jump to the label E.

3. Only one symbol can be defined by anyone direct assignment statement.
4. Only one level of forward referencing is allowed. That is, the following arrangement is illegal:

X = Y
Y = Z
Z = 1

X and Yare both undefined throughout pass 1. X is undefined throughout pass 2 and causes an error
flag in the assembly listing.

5.2.4 Register Symbols
The eight general registers of the PDP-II are numbered 0 through 7 and can be expressed in the source program as:

%0
%1

%7

The digit indicating the specific register can be replaced by any legal term which can be evaluated during the first
assembly pass.

It is recommended that the programmer create and use symbolic names for all register references. A register symbol
may be defined in a direct assignment statement among the first statements in the program. A register symbol can
not be defined after the statement which uses it. The defining expression of a register symbol must be absolute. For
example:

RO=%O
Rl=%l

R2=%2
R3=%3

R4=%4

R5=%5

SP=%6
PC=%7

;REGISTER DEFINITION

5-9

The Assembly Process

The symbolic names assigned to the registers in the example above are the conventional names used in all PDP-II
system programs. Since these names are fairly mnemonic, it is suggested the user follow this convention. Registers
6 and 7 are given special names because of their special functions, while registers 0 through 5 are given similar names
to denote their status as general purpose registers.

All register symbols must be defined before they are referenced. A forward reference to a register symbol causes
phase errors in an assembly.

The % character can be used with any term or expression to specify a register. (A register expression less than 0 or
greater than 7 is flagged with an R error code.) For example:

CLR %3+1

is equivalent to:

CLR %4

and clears the contents of register 4, while:

CLR 4

clears the contents of memory address 4.

In certain cases a register can be referenced without the use of a register symbol or register expression; these cases
are recognized through the context of the statement. An example is shown below:

JSR 5,SUBR

5.2.5 Local Symbols

;FIRST OPERAND FIELD MUST ALWAYS
;BE A REGISTER

Local symbols are specially formatted symbols used as labels within a given range.

Local symbols provide a convenient means of generating labels to be referenced by branch instructions. Use of local
symbols reduces the possibility of multiply-defined symbols within a user program and separates entry point sym
bols from local references. Local symbols, then, are not referenced from other object modules or even from outside
their local symbol block.

Local symbols are of the form n$, where n is a decimal integer from I to 127, inclusive, and can only be used on
word boundaries. Local symbols include:

1$
27$
59$

104$

Within a local symbol block, local symbols can be defined and referenced. However, a local symbol cannot be refer
enced outside the block in which it is defined. There is no conflict with labels of the same name in other local sym
bol blocks.

5-10

The Assembly Process

A local symbol block is delimited in one of the following ways:

1. The range of a single local symbol block can consist of those statements between two normally con·
structed symbolic labels. (Note that a statement of the form:

LABEL=.
is a direct assignment, does not create a lahel in the strict sense, and does not delimit a local range.)

2. The range of a local symbol block is terminated upon encountering a .CSECT directive.
3. The range of a single local symbol block can be delimited with .ENABL LSB and the first symbolic

label or .CSECT directive following the .DSABL LSB directives. The default for LSB is off.

For examples of local symbols and local symbol blocks, see Figure 5·1.

The maximum offset of a local symbol from the base of its local symbol block is 128 decimal words. Symbols be·
yond this range are flagged with an A error code.

5.2.6 Assembly Location Counter
The period (.) is the symbol for the assembly location counter. When used in the operand field of an instruction, it
represents the address of the first word of the instruction. When used in the operand field of an assembler directive,
it represents the address of the current byte or word. For example:

A: MOV

(#is explained in Section 5.4.9).

#.,RO ;. REFERS TO LOCATION A,
;I.E., THE ADDRESS OF THE
;MOV INSTRUCTION

At the beginning of each assembly pass, the assembler clears the location counter. Normally, consecutive memory
locations are assigned to each byte of object data generated. However, the location where the object data is stored
may be changed by a direct assignment statement altering the location counter:

.=expression

The expression defining the location counter must not contain forward references or symbols that vary from one
pass to another. If an expression is assigned to the currenrlocation counter in a relocatable CSECT, an error flag is
generated. (The construction .=.+expression must be used.)

Similar to other symbols, the location counter symbol has a mode associated with it, either absolute or relocatable;
the mode cannot be external. The existing mode of the location counter cannot be changed by using a defining
expression of a different mode.

5·11

The Assembly Process

Line Octal
Number Expansion Source Code Comments

000000 RO=%O

1
2
3
4
5
6
7
8
9
10 .SBTTL SECTOR INITIALIZATION
11 000000' .CSECT IMPURE ;IMPURE STORAGE AREA
12 00000 IMPURE:
13 000000' .CSECT IMPPAS ;CLEARED EACH PASS
14 00000 IMPPAS:
15 000000' .CSECT IMPLIN ;CLEARED EACH LINE
16 00000 IMPLlN:
17 000000' .CSECT
18
19 00000 XCTPRG:
20 00000 012700 MOV

000000'
21 00004 005020 1$: CLR
22 00006 022700 CMP

000000'
23 00012 101374
24

BHI

25 000000' .CSECT
26 00000 XCTPAS:
27 00000 012700 MOV

000000'
28 00004 0050201$: CLR
29 00006 022700 CMP

000000'
30 00012 101374 BHI
31

XCTPRG

#IMPURE,RO

(RO)+
#IMPTOP,RO

1$

XCTPAS

#1 MPPAS,RO

(RO)+
#IMPTOP,RO

1$

32 000000' .CSECT XCTLIN
33 00000 XCTLlN:
34 00000 012700

000000'
35 00004 005020 1 $:
36 00006 022700

000000'
37 00012 101374
38

MOV

CLR
CMP

BHI

#IMPLlN,RO

(RO)+
#IMPTOP,RO

1$

39 000000' .CSECT MIXED
40 00000 OOOOOOIMPTOP: .wORD 0
41 000001' .END

;PROGRAM
;INITIALIZATION

;CLEAR IMPURE AREA

;PASS INITIALIZATION

;CLEAR IMPURE PART

;LlNE INITIALIZATION

;MIXED MODE SECTOR

Figure 5-1 Assembly Source Listing Showing Local Symbol Blocks

5-12

The Assembly Process

The mode of the location counter symbol can be changed by the use of the .ASECT or .CSECT directive as ex
plained in Section 5.5.9.

Examples:

.ASECT

.=500

FIRST: MOV .+10,COUNT

COUNT: .wORD 0

.=520

SECOND: MOV .,INDEX

INDEX: .WORD 0

.CSECT

.=.+20

THIRD: .WORD 0

;SET LOCATION COUNTER TO
;ABSOLUTE 500

;THE LABEL FIRST HAS THE VALUE
;500(8)
; .+10 EQUALS 510(8). THE
;CONTENTS OF THE LOCATION
;510(8) WILL BE DEPOSITED
;IN LOCATION COUNT .

;THE ASSEMBLY LOCATION COUNTER
;NOW HAS A VALUE OF
;ABSOLUTE 520(8).

;THE LABEL SECOND HAS THE
;VALUE 520(8)
;THE CONTENTS OF LOCATION
;520(8). THAT IS, THE BINARY
;CODE FOR THE INSTRUCTION
;ITSELF WILL BE DEPOSITED IN
;LOCATION INDEX.

;SET LOCATION COUNTER TO
;RELOCATABLE 20 OF THE
;UNNAMED PROGRAM SECTION.

;THE LABEL THIRD HAS THE
;VALUE OF RELOCATABLE 20.

Storage area may be reserved by advancing the location counter. For example, if the current value of the location
counter is 1000, the direct assignment statement:

.=.+100

reserves 100(octal) bytes of storage space in the program. The next instruction is stored at 1100. (The .BLKW and
.BLKB directives can also be used to reserve blocks of storage; see Section 5.5.5.3.)

5.2.7 Numbers
The assembler assumes all numbers in the source program are to be interpreted in octal radix unless otherwise speci
fied. The assumed radix can be altered with the .RADIX directive or individual numbers can be treated as being of
decimal, binary, or octal radix (see Section 5.5.4.2).

Octal numbers consist of the digits 0 through 7 only. A number not specified as a decimal number and containing
an 8 or 9 is flagged with an N error code and treated as a decimal number.

5-13

The Assembly Process

Negative numbers are preceded by a minus sign (the assembler translates them into two's complement form). Posi
tive numbers may be preceded by a plus sign, although this is not required.

A number which is too large to fit into 16 bits (177777<n) is truncated from the left and flagged with a Terror
code in the assembly listing.

Numbers are always considered absolute quantities (that is, not relocatable).

The single-word floating-point numbers which can be generated with the tF operator (see Section 5.5.6.2) are stored
in the following format:

15 14 7 6 o

8-BIT EXPONENT 7 -BIT MANTISSA

Refer to the Hii Operation Manual for details of the floating-point format.

5.2.8 Terms
A term is a component of an expression. A term may be one of the following:

I. A number whose 16-bit value is used.
2. A symbol that is interpreted according to the following hierarchy:

a. a period that causes the value of the current location counter to be used
b. a permanent symbol whose basic value is used and whose arguments (if any) are ignored
c. user defined symbols
d. an undefined symbol that is assigned a value of zero and inserted in the user-defined symbol table

3. An ASCII conversion using either an apostrophe followed by a single ASCII character or a double quote
followed by two ASCII characters, which results in a word containing the 7-bit ASCII value of the charac
teres). (This construction is explained in greater detail in Section 5.5.3.3.)

4. An expression enclosed in angle brackets. Any quantity enclosed in angle brackets is evaluated before the
remainder of the expression in which it is found. Angle brackets are used to alter the left to right evalua
tion of expressions (for example, to differentiate between A *B+C and A *<B+C» or to apply a unary
operator to an entire expression (-<A+B».

5.2.9 Expressions
ExpreSSions are combinations of terms that are joined together by binary operators and that reduce to a 16-bit value.
The operands of a .BYTE directive are evaluated as word expressions before truncation to the low-order eight bits.
Prior to truncation, the high-order byte must be zero or all ones (when the byte value is negative, the sign bit is pro
pagated). The evaluation of an expression includes the evaluation of the mode of the resultant expression - that
is, absolute, relocatable or external. Expression modes are defined further below.

ExpreSSions are evaluated left to right with no operator hierarchy rules except that unary operators take precedence
over binary operators. A term preceded by a unary operator can be considered as containing that unary operator.
(Terms are evaluated, where necessary, before their use in expressions.) Multiple unary operators are valid and are
treated as follows:

-+-A

is equivalent to:

-<+<-A»

5-14

The Assembly Process

The value of an external expression is the value of the absolute part of the expression; e.g., EXT+ A has a value of
A. This is modified by the Linker to become EXT+A.

Expressions, when evaluated, are either absolute, relocatable, or external. For the programmer writing position inde
pendent code, the distinction is important.

1. An expression is absolute if its value is ftxed. An expression whose terms are numbers and ASCII conver
sions has an absolute value. A relocatable expression minus a relocatable term, where both items belong
to the same program section, is also absolute.

2. An expression is relocatable if its value is fixed relative to a base address but will have an offset value
added when linked. Expressions whose terms contain labels defmed in relocatable sections and the assem
bly location counter (in relocatable sections) have a relocatable value.

3. An expression is external (or global) if its value is only partially defined during assembly and is completed
at link time. An expression whose terms contain a global symbol not defined in the current program is an
external expression. External expressions have relocatable values at execution time if the global symbol is
defined as being relocatable or absolute if the global symbol is defined as absolute.

An example of the three expression types follows:

.=100
ABSSYM=.

.ASECT

.CSECT MAIN

.GLOBL EXTVAL

BEGSYM: .BLKW 4
.ASCII IABCDI
.EVEN

ENDSYM=.

SIZE = ENDSYM-BEGSYM

RELEXP = ENDSYM-BEGSYM+.

EXTEXP: .WORD EXTVAL+4

CHARA='A

;THE VALUE OF ABSSYM IS
;NOT RELOCATABLE, BECAUSE
;WE ARE IN AN ASECT

;START RELOCATABLE
;PROG RAM SECTION

;EXTVAL IS DEFINED ELSEWHERE,
;ITS VALUE WILL NOT BE KNOWN
;UNTIL LINK TIME

;THE VALUES OF BEGSYM
;AND ENDSYM ARE
;RELOCATABLE, BECAUSE
;THE ADDRESS AT WHICH
;"MAIN" WILL BE LOADED
;IS NOT DETERMINED UNTIL
;L1NK TIME

;HOWEVER, THE
;VALUE OF SIZE IS KNOWN
;(IT IS 12.) AT ASSEMBLY
;TIME AND IS ABSOLUTE

;RELEXP (=.+12.) IS
;RELOCATABLE

;THE EXPRESSION 'EXTVAL+4"
;IS EXTERNAL (OR GLOBAL)
;BECAUSE EXTVAL IS DEFINED
;IN ANOTHER PROGRAM UNIT.

;THE VALUE OF CHARA
;IS ABSOLUTE

5-15

The Assembly Process

5.3 RELOCATION AND UN KING
The output of the assembler is an object module which must be processed by LINK before loading and execution
(refer to Chapter 6 for details). The Linker essentially ftxes (i.e., makes absolute) the values of external or relocat
able symbols and turns the object module into a load module.

To enable the Linker to ftx the value of an expression, the assembler issues certain directives to the Linker together
with required parameters. In the case of relocatable expressions, the Linker adds the base of the associated relocat
able section (the location in memory of relocatable 0) to the value of the relocatable expression provided by the
assembler. In the case of an external expression, the value of the external term in the expression is determined by
the Linker (since the external symbol must be defined in one of the other object modules which are being linked to·
gether) and adds it to the value of the external expression provided by the assembler.

All words that are to be modified (as described in the previous paragraph) are marked- with an apostrophe in the
assembly listing. A G in the listing indicates that the value is external, or that a global is added to that value. Thus,
the binary text output looks as follows:

005065
OOOOOOG

CLR EXTERNAL(R5) ;VALUE OF EXTERNAL SYMBOL

;ASSEMBLED ZERO; WILL BE
;MODIFIED BY THE LINKER.

005065
000006G

CLR EXTERNAL+6(R5) ;THE ABSOLUTE PORTION OF THE

005065
000040'

CLR RELOCATABLE(R5)

5.4 ADDRESSING MODES

;EXPRESSION (000006) IS ADDED
;BY THE LINKER TO THE VALUE OF
;THE EXTERNAL SYMBOL

;ASSUMING WE ARE IN A

;RELOCATABLE SECTION
;AND THE VALUE OF RELOCATABLE
;IS RELOCATABLE 40

The program counter (pC, register 7 of the eight general registers) always contains the address of the next word to be
fetched; i.e., the address of the next instruction to be executed, or the second or third word of the current instruc·
tion.

In order to understand how the address modes operate and how they assemble, the action of the program counter
must be understood. The key rule is:

Whenever the processor implicitly uses the program counter to fetch a word from memory, the program
counter is automatically incremented by two after the fetch.

That is, when an instruction is fetched, the PC is incremented by two so that it is pointing to the next word in
memory; if an instruction uses indexing (Sections 5.4.7,5.4.9 and 5.4.11) the processor uses the program counter to
fetch the base from memory. Hence, using the rule above, the PC increments by two, and now points to the next
word.

The following conventions are used in this section:

1. Let E be any expression as dermed in Section 5.2.

5·16

The Assembly Process

2. Let R be a register expression. This is any expression containing a term preceded by a % character or a
symbol previously equated to such a term.
Examples:

RO=%O ;GENERAL REGISTER 0
Rl=RO+l ;GENERAL REGISTER 1
R2=1+%1 ;GENERAL REGISTER 2

3. Let ER be a register expression or an expression in the range 0 to 7 inclusive.
4. Let A be any general address specification which produces a 6-bit mode address field as described in the

H 11 Operation Manual.

The addressing specifications, A, can be explained in terms of E, R, and ER as defined above. Each is illustrated
with the single operand instruction CLR or double operand instruction MOV.

5.4.1 Register Mode
The register contains the operand.

Format for A: R

Examples: RO=%O
CLR

5.4.2 Register Deferred Mode

RO
;DEFINE RO AS REGISTER 0
;CLEAR REGISTER 0

The register contains the address of the operand.

Format for A: (a1R or (ER)

Examples: CLR

CLR

5.4.3 Autoincrement Mode

@Rl

(Rl)

;BOTH INSTRUCTIONS CLEAR
;THE WORD AT THE ADDRESS
;CONTAINED IN REGISTER 1

The contents of the register are incremented immediately after being used as the address of the operand. (See NOTE
below.)

Format for A: (ER)+

Examples: CLR
CLR
CLR

CLRB

(RO)+
(RO+3)+
(R2)+

(R4)+

;EACH INSTRUCTION CLEARS
;THE WORD AT THE ADDRESS
;CONTAINED IN THE SPECIFIED
;REGISTER AND INCREMENTS
;THAT REGISTER'S CONTENTS
;BY TWO.

;CLEARS THE BYTE AT THE
;ADDRESS SPECIFIED BY THE
;CONTENTS OF R4 AND
;INCREMENTS R4 BY ONE.

5-17

The Assembly Process

NOTE
Both JMP and JSR instructions using non-deferred
autoincrement mode, autoincrement the register before
its use on the PDP-l 1/20 and 11/05 (but not on the
PDP-l 1/40 or 11/45). In double operand instructions
of the addressing form %R, (R)+ or %R,-(R) where
the source and destination registers are the same, the
source operand is evaluated as the autoincremented or
autodecremented value, but the destination register, at
the time it is used, still contains the originally intended
effective address.

In the following two examples, as executed on the
PDP-I 1/20, RO originally contains 100.

MOV RO,(RO)+ ;THE QUANTITY 102 IS MOVED
;TO LOCATION 100

MOV RO,-(RO) ;THE QUANTITY 76 IS MOVED
;TO LOCATION 76

The use of these forms should be avoided as they are not
compatible with other PDP-II models.

A Z error code is printed with each instruction which is not compatible among all members of the PDP-II family.
This is merely a warning code.

5.4.4 Autoincrement Deferred Mode
The register contains the pointer to the address of the operand. The contents of the register are incremented after
being used.

Format for A: @(ER)+

Example: CLR

5.4.5 Autodecrement Mode

@(R3)+ ;CONTENTS OF REGISTER 3 POINT
;TO ADDRESS OF WORD TO BE
;CLEARED, AND REGISTER 3 IS
;THEN INCREMENTED BY TWO

The contents of the register are decremented before being used as the address of the operand (see NOTE under auto
increment mode).

Format for A: -(ER)

Examples: CLR
CLR
CLR

-(RO)
-(RO+3)
-(R2)

;DECREMENT CONTENTS OF
;0, 3, AND 2 BY TWO
;BEFORE USING AS ADDRESSES
;OF WORDS TO BE CLEARED.

5-18

The Assembly Process

5.4.6 Autodecrement Deferred Mode
The contents of the register are decremented before being used as the pointer to the address of the operand.

Format for A: (a'-(ER)

Example: CLR

5.4.7 Index Mode

@-(R2) ;DECREMENT CONTENTS OF
;REGISTER 2 BY TWO BEFORE
;USING AS A POINTER
;TO ADDRESS OF WORD TO BE
;CLEARED.

The value of an expression E is stored as the second or third word of the instruction. The effective address is calcu
lated as the value of E plus the contents of register ER. The value E is called the base.

Format for A: E(ER)

Examples: CLR

CLR

5.4.8 Index Deferred Mode

X+2(R1) ;EFFECTIVE ADDRESS IS X+2 PLUS
;THE CONTENTS OF REGISTER 1

-2(R3) ;EFFECTIVE ADDRESS IS -2 PLUS
;THE CONTENTS OF REGISTER 3.

An expression plus the contents of a register gives the pointer to the address of the operand.

Format for A: @E(ER)

Example: CLR

5.4.9 Immediate Mode

@14(R4) ;IF REGISTER 4 HOLDS 100 AND
;LOC 114 HOLDS 2000,
;LOCATION 2000 IS CLEARED.

The immediate mode allows the operand itself to be stored as the second or third word of the instruction. It is
assembled as an autoincrement of register 7, the PC.

Format for A: #E

Examples: MOV

MOV

#100,RO ;MOVE AN OCTAL 100 TO
;REGISTER 0

#X,RO ;MOVE THE VALUE OF THE SYMBOL X TO
;REGISTER 0

The operation of this mode can be explained by the following example. The statement MOV #100,R3 assembles
as two words. These are:

012703
000100

Just before this instruction is fetched and executed, the PC points to the first word of the instruction. The proces
sor fetches the first word and increments the PC by two. The source operand mode is 27 (autoincrement the PC).
Thus, the PC is used as a pointer to fetch the operand (the second word of the instruction) before being incre
mented by two, to point to the next instruction.

5-19

The Assembly Process

5.4.1 0 Absolute Mode
Absolute mode is the equivalent of immediate mode deferred. @#E specifies an absolute address which is stored in
the second or third word of the instruction. Absolute mode is assembled as an autoincrement deferred of register 7,
the PC.

Format for A: @#E

Examples: MOV

CLR

5.4.11 Relative Mode

@#100,RO ;MOVE THE VALUE OF CONTENTS
;OF LOCATION 100 TO
;REGISTER O.

@#X ;CLEAR THE CONTENTS OF THE
;LOCATION WHOSE ADDRESS IS X.

Relative mode is the normal mode for memory references.

Format for A: E

Examples: CLR

MOV

100

X,Y

;CLEAR LOCATION 100

;MOV THE CONTENTS OF LOCATION X
;TO LOCATION Y.

Relative mode is assembled as index mode, using register 7, the PC, as the index register. The base of the address cal
culation, which is stored in the second or third word of the instruction, is not the address of the operand (as in index
mode), but the number which, when added to the PC, becomes the address of the operand. Thus, the base is X-PC,
which is called an offset. The operation is explained as follows:

If the statement MOV 100,R3 is assembled at absolute location 20, the assembled code is:

Location 20:
Location 22:

016703
000054

The processor fetches the MOV instruction and adds two to the PC so that it points to location 22. The source
operand mode is 67, that is, indexed by the PC. To pick up the base, the processor fetches the word pointed to by
the PC and adds two to the PC. The PC now points to location 24. To calculate the address of the source oper
and, the base is added to the designated register, that is, BASE+PC=54+24=100, the operand address.

Since the assembler considers "." as the address of the first word of the instruction, an equivalent index mode
statement would be:

MOV 100-.-4(pC),R3

This mode is called relative because the operand address is calculated relative to the current PC. The base is the dis
tance or offset (in bytes) between the operand and the current PC. If the operator and its operand are moved in
memory so that the distance between the operator and data remains constant, the instruction will operate correctly
anywhere in memory.

5-20

The Assembly Process

5.4.12 Relative Deferred Mode
Relative deferred mode is similar to relative mode, except that the expression, E, is used as the pointer to the
address of the operand.

Format for A: @E

Example: MOV @X,RO ;MOVE THE CONTENTS OF THE
;LOCATION WHOSE ADDRESS IS IN
;X INTO REGISTER 0

5.4.13 Table of Mode Fonns and Codes
Each instruction assembles into at least one word. Operands of the first six forms listed below do not increase the
length of an instruction. Each operand in one of the other modes, however, increases the instruction length by one
word.

Fonn

R
@R or (ER)
(ER)+
(iz;'(ER)+
-(ER)
@-(ER)

Mode

On
In
2n
3n
4n
5n

Meaning

Register mode
Register deferred mode
Autoincrement mode
Autoincrement deferred mode
Autodecrement mode
Autodecrement deferred mode

n represents the register number.

Any of the following forms adds one word to the instruction length:

Fonn

E (ER)
@E(ER)
#E
@'#E
E
(a'E

Mode

6n
7n
27
37
67
77

Meaning

Index mode
Index deferred mode
Immediate mode
Absolute memory reference mode
Relative mode
Relative deferred reference mode

n represents the register number. Note that in the last four forms, register 7 (the PC) is referenced.

NOTE
An alternate form for @R is (ER). However, the form
@(ER) is equivalent to @O(ER).

The form @#E differs from the form E in that the
second or third word of the instruction contains the
absolute address of the operand rather than the relative
distance between the operand and the Pc. Thus, the in
struction CLR @#100 clears absolute location lOa
even if the instruction is moved from the point at which
it was assembled. See the description of the .ENABL
AMA function in Section 5.5.2, which directs the
assembly of all relative mode addresses as absolute mode
addresses.

5-21

The Assembly Process

5.4.14 Branch Instruction Addressing
The branch instructions are I-word instructions. The high byte contains the op code and the low byte contains an
8-bit signed offset which specifies the branch address relative to the PC. Upon execution of a branch instruction, the
hardware calculates the branch address as follows:

1. Extend the sign of the offset through bits 8-15.
2. Multiply the result by 2. This creates a word offset rather than a byte offset.
3. Add the result to the PC to form the final branch address.

The assembler performs the reverse operation to form the byte offset from the specified address. Remember that
when the offset is added to the PC, the PC is pointing to the word following the branch instruction; hence the term
-2 in the calculation.

Byte offset = (E-PC)/2 truncated to eight bits.

Since PC = .+2, we have:

Byte offset = (E-.-2)/2 truncated to eight bits.

NOTE
It is illegal to branch to a location specified as an exter
nal symbol, or to a relocatable symbol from within an
absolute section, or to an absolute symbol or a relocat
able symbol or another program section from within a
relocatable section.

5.4.15 EMT and TRAP Addressing
The EMT and TRAP instructions do not use the low-order byte of the word. This allows information to be trans
ferred to the trap handlers in the low-order byte. If EMT or TRAP is followed by an expression, the value is put
into the low-order byte of the word. However, if the expression is too big (>377(8)) it is truncated to eight bits and
a T error flag is generated.

5.5 ASSEMBLER DIRECTIVES
Directives are statements which cause the assembler to perform certain processing operations.

Assembler directives can be preceded by a label, subject to restrictions associated with specific directives, and fol·
lowed by a comment. An assembler directive occupies the operator field of a source line. Only one directive can be
placed on anyone line. Zero, one, or more operands can occupy the operand field; legal operands differ with each
directive and may be either symbols, expressions, or arguments.

5.5.1 Listing Control Directives

5.5.1.1 .LIST and .NLIST - Listing options can be specified in the text of a program through the .LIST and
.NLIST directives. These are of the form:

.LIST arg

.NLIST arg

where arg represents one or more optional arguments.

5-22

The Assembly Process

Allowable arguments for use with the listing directives are as follows (these arguments can be used singly or in com
bination):

Argument

SEQ

LOC

BIN

BEX

SRC

COM

CND

LD

TOC

TTM

SYM

Default

list

list

list

list

list

list

list

no list

list

Terminal
mode

list

Function

Controls the listing of source line sequence numbers.

Controls the listing of the location counter (this field would not nor
mally be suppressed).

Controls the listing of generated binary code (supersedes BEX).

Controls listing of binary extensions; that is, prevents listing those loca
tions and binary contents beyond the first line of an expansion. This is a
subset of the BIN argument.

Controls the listing of the source code.

Controls the listing of comments. This is a subset of the SRC argument
and can be used to reduce listing time and/or space where comments are
unnecessary .

Controls the listing of unsatisfied conditions and all .IF and .ENDC
statements. This argument permits conditional assemblies to be listed
without including unsatisfied code.

Controls listing of all listing directives having no arguments.

Controls listing of table of contents on pass I of the assembly (see Sec
tion 5.5.1.4 describing the .SBTTL directive). The full assembly listing
is printed during pass 2 of the assembly.

Controls listing output format. The TIM argument (the default case)
causes output lines to be truncated to 72 characters. Binary code is
printed with the binary extensions below the first binary word. The
alternative (.NLIST TIM) to Terminal mode is line printer mode, which
is shown in Figure 5-2.

Controls the listing of the symbol table for the assembly.

An example of an assembly listing as sent to a 132-column line printer is shown in Figure 5-2. Notice that binary
extensions for statements generating more than one word are spread horizontally on the source line. An example of
an assembly listing as sent to an 80-column line printer is shown in Figure 5-3 (this is the same format as a terminal
listing). Notice that binary extensions for statements generating more than one word are printed on subsequent
lines.

Figure 5-4 illustrates a symbol table listing. With the exception of local symbols, all user-defmed symbols are listed
in the symbol table. The characters following the symbols listed have special meanings as follows:

the symbol is assigned in a direct assignment statement
% the symbol is a register symbol
R the symbol is relocatable
G the symbol is global

5-23

The Assembly Process

The fmal value of the symbol is expressed in octal. If the symbol is undefined six asterisks are printed in place of the
octal number.

CSECT numbers are listed if the symbol is in a named CSECT. All CSECTs are listed at the end of the table with
theirlengths and corresponding number.

HTEXEC HT·11 ASSEMBL H01·1 7·SEP·78 17:26:14 PAGE 21
GET PHYSICAL SOURCE LINE

HTEXEC HT-ll ASSEMBL H01-l 7-SEP-78 17:26:14 PAGE 21
GET PHYSICAL SOURCE LINE

.SBTTL GET PHYSICAL SOURCE LINE
2
3 104240 WINST=EMT +240
4 001764 GETPLI:
5 001764 104403 TRAP SRC
6 001766 005000 CLR RO
7 001770 032737 000004 000012' BIT #IO.EOF,IOFTBL +SRCCHN ;END OF FILE?
8 001776 001424 BEQ 2$;NO
9 002000 013700 002362' MOV CHAN+SRCCHN,RO ;GET CUR RENT INPUT CHAN

10 002004 005200 INC RO ;MOVE TO NEXT CHAN
11 002006 020027 000010 CMP RO,#8. ; LAST CHAN?
12 002012 101017 BHI 1$;YES, FLAG END OF INPUT
13 002014 005037 000026' CLR RECNUM+SRCCHN ;RESET RECORD (BLK) NUMBER
14 002020 013737 002310' '002306' MOV BLKTB L +<SRCCHN *4>,PTRTB L+<:SRCCHN *4>
15 002026 010037 002362' MOV RO,CHAN+SRCCHN
16 002032 052700 104240 BIS #WINST,RO ;CREATE A WAIT CALL FOR NEXT CHAN
17 002036 010017 MOV RO,@PC ;AND STORE IN NEXT LOCATION
18 002040 104240 WINST
19 002042 103403 BCS 1$;BRANCH IF NO MORE INPUT
20 002044 012700 177777 MOV #-l,RO ;FLAG END OF FILE
21 002050 2$: RETURN
22 002052 012700 000001 1$: MOV #l,RO ;FLAG END OF INPUT
23 002056 RETURN

Figure 5·2 Example of ASEMBL Line Printer listing (132·Column line Printer)

5-24

The Assembly Process

HTEXEC HT-11 ASSEMBL H01-1 5-5EP-78 22:30:23 PAGE 21
GET PHYSICAL SOURCE LINE

1 .SBTTL GET PHYSICAL SOURCE LINE
2
3 104240 WINST=EMT +240
4 001764 GETPLI:
5 001764 104403 TRAP SRC
6 001766 005000 CLR RO
7 001770 032737 BIT #IO.EOF,IOFTBL+SRCCHN ;END OF FILE?

000004
000012'

8 001776 001424 BEQ 2$;NO
9 002000 013700 MOV CHAN+SRCCHN,RO ;GET CURRENT INPUT CHAN

002362'
10 02004 005200 INC RO ;MOVE TO NEXT CHAN
11 02006 020027 CMP RO,#8. ; LAST CHAN?

000010
12 02012 101017 BHI 1$;YES, FLAG END OF INPUT
13 02014 005037 CLR RECNUM+SRCCHN ;RESET RECORD (BLK) NUMBER

000026'
14 02020 013737 MOV BLKTBL+<SRCCHN*4>,PTRTBL+<SRCCHN*4>

002310'
002306'

15 02026 010037 MOV RO,CHAN+SRCCHN
002362'

16 02032 052700 BIS #WINST,RO ;CREATE A WAIT CALL FOR NEXT CHA
104240

17 02036 010017 MOV RO,@PC ;AND STORE IN NEXT LOCATION
18 02040 104240 WINST
19 02042 103403 BCS 1$;BRANCH IF NO MORE INPUT
20 02044 012700 MOV #-1,RO ;FLAG END OF FILE

177777
21 02050 2$: RETURN
22 02052 012700 1$: MOV #1,RO ;FLAG END OF INPUT

000001
23 02056 RETURN

Figure 5-3 Example of Page Heading from ASEMBL 80-Column Line Printer
(same format as Terminal listing)

5-25

The Assembly Process

HTEXEC HT-ll ASEMBL H01-l 5-8EP-78 22:30:23 PAGE 29+
SYMBOL TABLE

ABSEXP= ****** G ARGCNT= ****** G
BINCHN= 000004 BINDAT 002322R
BPMB = 000020 BUFTBL 000374RG
CHNSPC 000312R 003 CHRPNT= ****** G
CMILEN= 000123 CNTTBL 000360RG
CONT 000040RG 010 CORERR 001726R
CR 000015 CRFBUF 002076RG
CRFCHN= 000012 CRFCNT 000004RG
CRFE 000100 CRFFLG OOOOOOR
CRFM = 000010 CRFP 000020
CRFR = 000004 CRFS 000002
CRFTAB 000026R 003 CRFTST 000002RG
CTLTBL OOOOOOR 003 DATE 001000R
DEFEXT 000104R 003 DEVFUL 000252R
DNC ****** G EDMASK= ****** G
EMTERR= 000052 ENDPl = ****** G
ENDSWT 000434R 010 ERR 001662R
ERRBTS= ****** G ERRCNT= ****** G
FF 000014 FILNF 000264R
FINCL 001636R 010 FINMSG 001030R
FINMS2 001070R 004 FINPl 000776R
FINSML 002124RG 010 FRECOR 000006R
GETR50= ****** G GSARG = ****** G
HIGHAD= 000050 ILLCMD 000226R
IMPURT 000042R 007 IMPUR$ OOOOOOR

HTEXEC HT-l1 ASEMBL H01-1 5-SEP-78 22:30:23 PAGE 29+
SYMBOL TABLE

TIME 000210R 003 TIMTIM 001016R
TMPCNT= 000014 TSTSTK 001704RG
TTLBUF= ****** G TTLLEN= 000040
USRLOC= 000046 VT 000013
WRTERR 002306R 010 XBAW = 000000
XMITO = ****** G $CLOUT 003006RG
$FLUSH 002732RG 010 $NLlST= ****** G
$READW 002422RG 010 $WAIT 002730RG
$WRITW 002134RG 010
. ABS. 000000 000

000000 001
DPURE 000000 002
DPURE$ 000410 003
MIXED$ 002376 004
SWTSE$ 000000 005
SWTSEC 000000 006
IMPUR$ 000042 007
MAIN$ 003024 010
ERRORS DETECTED: 0
FREE MEMORY: 13431. WORDS

,LP:/C/L:BEX=RP4:RTPAR, RPARAM, RCIOCH, RTEXEC

Figure 5-4 Symbol Table

5-26

004
003

003
010
004
007
007

007
010
003

010

003
004
010
007

003
007

004
010

010

010

ASSEM=
BLKTBL=
CHAN
CLK50 =
CONFIG=
CPL
CRFC =
CRFDAT
CRFLEN=
CRFPNT
CRFSPC
CSIERR
DATTIM
DIV60
ED.ABS=
ENDP2 =
ERRB
EXMFLG=
FIN
FINMSl
FINP2
GETPLI
HDRTTL
ILLDEV
INIOF

TIMWRD
TTLBRK=
TTYBUF=
WINST =
XEDPIC=
$EDABL=
$READ
$WRITE

****** G
002310R
002362R
000040
000300
000120
000040
002352R
000204
000064R
000114R
000214R
001004RG
001240R
****** G
****** G
000102R
****** G

001434RG
001052R
000776R
001756RG
001102RG
000240R
000106R

000204R
****** G
000616
104240
000000
****** G
002422RG
002134RG

004
004

004

003
003
003
004
010

010

010
004
010
010
004
003
010

003

010
010

The Assembly Process

5.5.1.2 Page Headings - The assembler outputs each page in the format shown in Figure 5-3. On the first line of
each listing page the assembler prints (from left to right):

1. title taken from .TITLE directive (most recent one encountered)
2. assembler version identification
3. the date and time of day if entered
4. page number

The second line of each listing page contains the subtitle text specified in the last encountered. SBTTL directive.

5.5.1.3 .TITLE - The .TITLE directive is used to print a heading in the output listing and to assign a name to the
object module. The heading printed on the first line of each page of the listing is taken from the first 31 characters
of the argument in the .TITLE directive. The first six characters (symbol name) of this same line are also used as
the name of the object module. These six characters must be Radix-50 characters (any characters beyond the first
six are ignored). Non-Radix-50 characters are not acceptable.

For example:

.TITLE PROG TO PERFORM DAILY ACCOUNTING

causes PROG TO PERFORM DAILY ACCOUNTIN to be printed in the heading for each page and causes the object
module of the assembled program to be PROG (this name is distinguished from the filename of the object module
specified in the command string to the assembler).

If there is no TITLE statement, the default name assigned to the first object module is:

.MAIN.

The first tab or space following the . TITLE directive is not considered part of the object module name or header
text, although subsequent tabs and spaces are significant.

If there is more than one .TITLE directive, the last .TITLE directive in the program conveys the name of the object
module.

5.5.1.4 .SBTTL - The .SBTTL directive is used to provide the elements for a printed table of contents of the
assembly listing. The text following the directive is printed as the second line of each of the following assembly
listing pages until the next occurrence of a .SBTTL directive.

For example:

.SBTTL CONDITIONAL ASSEMBLIES

The text:

CONDITIONAL ASSEMBLIES

is printed as the second line of each of the following assembly listing pages.

During pass 1 of the assembly process, ASEMBL automatically prints a table of contents for the listing containing
the line sequence number and text of each .SBTTL directive in the program. Such a table of contents is inhibited by
specifying the .NLIST TOC directive within the source.

5-27

The Assembly Processor

An example of a table of contents is shown in Figure 5-5 .

. MAIN. HT-11 ASEMBL H01-1 5-SEP-78 22:30:23
TABLE OF CONTENTS

1- 29
1- 37
2- 1
3-
4-
5-
7-

10- 1
11- 2
12- 2
13-
14-
15-
16-
17-
18-
19-
20-
21-
22-
23-
24-
25-
26-
27-
29-

HT-1l MACRO PARAMETER FILE
COMMON PARAMETER FILE

ASSEMBLY OPTIONS
VARIABLE PARAMETERS
GLOBALS
SECTOR INITIALIZATION
SUBROUTINE CALL DEFINITIONS
MISCELLANEOUS MACRO DEFINITIONS

MCIOCH - I/O CHANNEL ASSIGNMENTS
****EXEC****
PROGRAM START
INIT OUTPUT FILES
SWITCH HANDLERS
END-OF-PASS ROUTINES
SWITCH AND DATE DATA AREAS
INIT OUTPUT FILES (CONTINUED)
FINISH ASSEMBLY AND RESTART
MEMORY MANAGEMENT
GET PHYSICAL SOURCE LINE
SYSTEM MACRO HANDLERS
WRITE ROUTINES
READ ROUTINE
COMMON I/O ROUTINES
MESSAGES
I/O TABLES
FINIS

Figure 5-5 Assembly Listing Table of Contents

Table of Contents text is taken from the text of each .SBTTL directive. The associated numbers are the page and
line numbers of the .SBTTL directives.

5.5.1.5 .IDENT - The .IDENT directive is not used or supported by the HT-II system, but is handled by
ASEMBL for compatibility with other systems. .IDENT provides a means of labeling the object module produced
as a result of an assembly. In adQition to the name assigned to the object module with the . TITLE directive, a
character string (up to six characters, treated like a .RAD50 string) can be specified between paired delimiters.
For example:

JDENT /V005A/

5-28

The Assembly Process

The character string:

V005A

is converted to Radix-50 notation and output to the global symbol directory of the object module.

When more than one .IDENT directive is found in a given program, the last .IDENT found determines the symbol
which is passed as part of the object module identification.

5.5.1.6 Page Ejection (.PAGE Directive) - There are several means of obtaining a page eject in an assembly
listing:

1. After a line count of 58 lines, ASEMBL automatically performs a page eject to skip over page
perforations on line printer paper and to formulate terminal output into pages.

2. A form feed character used as a line terminator (or as the only character on a line) causes a page eject.
3. More commonly, the .PAGE directive is used within the source code to perform a page eject at that

point. The format of this directive is:
.PAGE

This directive takes no arguments and causes a skip to the top of the next page.

5.5.2 Functions: .ENABL and .DSABL Directives
Several functions are provided by ASEMBL through the .ENABL and .DSABL directives. These directives use 3-
character symbolic arguments to designate the desired function and are of the forms:

.ENABLarg

.DSABL arg

where arg is one of the legal symbolic arguments dermed below.

The following list describes the symbolic arguments and their associated functions in the MACRO language:

Symbolic
Argument

ABS

AMA

CDR

FPT

LC

Function

Enabling of this function produces absolute binary output; (Le., for input to
the Paper Tape Software System absolute binary loader using a .BIN exten
sion instead of .OBJ). The default case is .DSABL ABS.

Enabling of this function directs the assembly of all relative addresses
(address mode 67) as absolute addresses (address mode 37). This switch is
useful during the debugging phase of program development.

The statement .ENABL CDR causes source columns 73 and greater to be
treated as comments. This accommodates sequence numbers in columns
72-80.

Enabling of this function causes floating point truncation, rather than
rounding as is otherwise performed. .DSABL FPT returns to floating point
rounding mode.

Enabling of this function causes the assembler to accept lower-case ASCII
input instead of converting it to upper case.

5-29

Symbolic
Argument

LSB

PNC

The Assembly Process

Function

Enable or disable a local symbol block. While a local symbol block is
nonnally entered by encountering a new symbolic label or .CSECT direc
tive, .ENABL LSB forces a local symbol block which is not terminated
until a label or .CSECT directive following the .DSABL LSB statement
is encountered. The default case is .DSABL LSB.

The statement .DSABL PNC inhibits binary output until an .ENABL PNC
is encountered. The default case is .ENABL PNC.

An incorrect argument causes the directive containing it to be flagged as an error.

5.5.3 Data Storage Directives
A wide range of data and data types can be generated with the following directives and assembly characters:

.BYTE

.WORD

"
.ASCII
.ASCIZ
.RAD50
tB
tD
to

These facilities are explained in the follOWing sections.

5.5.3.1 .BYTE - The .BYTE directive is used to generate successive bytes of data. The directive is of the fonn:

.BYTE exp

.BYTE exp1, exp2,

;WHICH STORES THE OCTAL
;EQUIVALENT OF THE EXPRESSION
;EXP IN THE NEXT BYTE

;WHICH STORES THE OCTAL
;EQUIVALENTS OF THE LIST OF
;EXPRESSIONS IN SUCCESSIVE BYTES.

A legal expression must have an absolute value (or contain a reference to an external symbol) and must result
in eight bits or less of data. The 16-bit value of the expression must have a high-order byte (which is truncated)
that is either all zeros or all ones. Each operand expression is stored in a byte of the object program. Multiple
operands are separated by commas and stored in successive bytes. For example:

SAM=5
.=.+410
.BYTE A D48,SAM ;060 (OCTAL EQUIVALENT OF 48

;DECIMAL) IS STORED IN LOCATION
;410 - 005 IS STORED IN
;LOCATION 411

5-30

The Assembly Process

If the high-order byte of the expression equates to a value other than 0 or -1, it is truncated to the low-order eight
bits and flagged with a T error code. If the expression is relocatable, an A-type warning flag is given.

At link time it is likely that relocation will result in an expression of more than eight bits, in which case, the Linker
prints an error message. For example:

.BYTE 23
B:

.BYTE B

Here, X has an absolute value,

.GLOBL X
X=3
.BYTE X

;STORES OCTAL 231N NEXT BYTE

;RELOCATABLE VALUE CAUSES AN "An
;ERROR FLAG

;STORES 3 IN NEXT BYTE

and can be linked later with another program:

.GLOBL X

.BYTE X

If an operand following the .BYTE directive is null, it is interpreted as a zero. For example (assume assembly
begins at relocatable 0):

.=.+420

.BYTE ;ZEROS ARE STORED IN BYTES
;420,421, AND 422.

5.5.3.2 .WORD - The .WORD directive is used to generate successive words of data. The directive is of the
form:

.wORD exp

.wORD expl, exp2, ...

;WHICH STORES THE OCTAL
;EQUIVALENT OF THE EXPRESSON
;EXP IN THE NEXT WORD

;WHICH STORES THE OCTAL
;EQUIVALENTS OF THE LIST OF
;EXPRESSIONS IN SUCCESSIVE
;WORDS

where a legal expression must result in 16 bits or less of data. Each operand expression is stored in a word of
the object program.

5-31

The Assembly Process

Multiple operands are separated by commas and stored in successive words. For example:

SAL=O
.=.+500
.WORD 177535,.+4,SAL ;STORES 177535, 506, AND 0

;IN WORDS 500,502, AND 504.

If an expression equates to a value of more than 16 bits, it is truncated and flagged with a T error code.

If an operand following the .WORD directive is null, it is interpreted as zero. For example:

.=.+500

.wORD ,5, ;STORES 0, 5, 0 IN LOCATIONS
;500,502, AND 504

A blank operator field (any operator not recognized as an op-code, directive or semicolon) is interpreted as an
implicit .WORD directive. Use of this convention is discouraged. The first term of the first expression in the
operand field must not be an instruction mnemonic or assembler directive unless preceded by a + or - operator.

For example:

.=.+440
LABEL: +MOV,LABEL

;THE OP-CODE FOR MOV, WHICH IS
;010000, IS STORED IN LOCATION
;440,440 IS STORED IN
; LOCATION 442.

Note that the default .WORD directive occurs whenever there is a leading arithmetic or logical operator, or whenever
a leading symbol is encountered which is not recognized as an instruction mnemonic or assembler directive. There
fore, if an instruction mnemonic or assembler directive is misspelled, the .WORD directive is assumed and errors will
result. Assume that MOV is spelled incorrectly as MOR:

MOR A,B

Two error codes result: A and U. Two words are then generated, one for MOR A and one for B.

5.5.3.3 ASCII Conversion of One or Two Characters - The' and " characters are used to generate text characters
within the source text. A single apostrophe followed by a character results in a term in which the 7 ·bit ASCII repre
sentation of the character is placed in the low-order byte and zero is placed in the high-order byte. For example:

MOV #'A,RO

results in the following 16 bits being moved into RO:

0000000001000001

The' character is never followed by a carriage return, null, RUBOUT, line feed, or form feed. (For another use
of the 'character, see Section 5.6.3.3.)

5-32

STMNT:
GETSYM
BEQ
CMPB
BEQ
CMPB
BEQ

4$
@CHRPNT, #':
LABEL
@CHRPNT, #'=
ASGMT

The Assembly Process

:COLON DELIMITS LABEL FIELD

;EQUAL DELIMITS
;ASSIGNMENT PARAMETER

A double quote followed by two characters results in a term in which the 7 -bit ASCII representations of the two
characters are placed. For example:

MOV #"AB,RO

results in the following binary word being moved into RO:

0100001001000001

Note that the first character is placed in the low-order byte and the second character in the high-order byte.

The" character is never followed by a carriage return, null, rubout, line feed, or form feed. For example:

;DEVICE NAME TABLE

DEVNAM: .WORD "OX ;RX DISK
DEVNKB: .WORD "TT ;TERMINAL KEYBOARD

.WORD "LP ;L1NE PRINTER

.WORD "PR ;PAPER TAPE READER

.WORD "PP ;PAPER TAPE PUNCH

.WORD 0 ;TABLE'S END

5.5.3.4 .ASCII - The .ASCII directive translates character strings into their 7 -bit ASCII equivalents for use in the
source program. The format of the .ASCII directive is:

.ASCII /character string/

where: character string

/ /

As an example:

is a string of any acceptable printing ASCII characters including spaces. The string
may not include null characters, rub out, return, line feed, vertical tab, or form feed.
Nonprinting characters can be expressed in digits of the current radix and delimited
by angle brackets. (Any legal, defmed expression is allowed between angle brackets.)

are delimiting characters and may be any printing characters other than; < and =
characters and any character within the string.

A: .ASCII/HELLO/ ;STORES ASCII REPRESENTATION OF
;THE LETTERS H ELL 0 IN
;CONSECUTIVE BYTES

5-33

The Assembly Process

The order of the characters as they are stored in memory is illustrated below.

1001 1000

1003 E H 1002

1005 L L 1004

1007 o 1006

.ASCII /ABC/<15><12>/DEF/
;STORES
;101,102,103,15,12,104,105,106
;IN CONSECUTIVE BYTES

.ASCII I<AB>/ ;STORES 74, 101, 102, 76 IN
;CONSECUTIVE BYTES

The; and = characters are not illegal delimiting characters, but are preempted by their significance as a comment
indicator and assignment operator, respectively. For other than the first group, semicolons are treated as beginning
a comment field. For example:

Directive Result Explanation

.ASCII ;ABC;/DEF/ ABCDEF Acceptable, but not recommended procedure.

.ASCII /ABC/;DEF; ABC ;DEF; is treated as a comment and ignored.

.ASCII /ABC/=DEF= ABCDEF Acceptable, but not recommended procedure.

.ASCII =DEF= The assignment .ASCII=DEF is performed and
an error generated upon encountering the
second =.

5.5.3.5 .ASCIZ - The .ASCIZ directive is equivalent to the .ASCII directive with a zero byte automatically
inserted as the final character of the string. For example:

When a list or text string has been created with a .ASCIZ directive, a search for the null character
can determine the end of the list as follows:

CR=15
LF=12

MOV #HELLO,R1

5-34

X:

HELLO:

MOV
MOVB

BNE X

.ASCIZ

The Assembly Process

#LlNBUF, R2
(R1) +, (R2) + ;MOVE A CHARACTER OF THE

;MESSAGE STRING INTO THE
;OUTPUT BUFFER
;BRANCH BACK IF BYTE
;NOT EQUAL TO 0

<CR><LF>/ASEMBL-11 H01-1/<CR><LF>
;INTRO MESSAGE

5.5.3.6 .RAD50 - The .RADSO directive allows the user the capability to handle symbols in Radix-SO coded
fonn (this fonn is sometimes referred to as MOD40 and is used in PDP-II system programs). Radix-SO fonn allows
three characters to be packed into sixteen bits; therefore, any 6-character symbol can be held in two words. The
fonn of the directive is:

.RADSO

where:

string

/string/

delimiters can be any printing characters other than the =, <, and; characters.

is a list of the characters to be converted (three characters per word) and may consist of
the characters A through Z, 0 through 9, dollar ($), dot (.) and space (). If there are fewer
than three characters (or if the last set is fewer than three characters) they are considered
to be left justified and trailing spaces are assumed. Illegal non printing characters are
replaced with a ? character and cause an I error flag to be set. Illegal printing characters
set the Q error flag.

The trailing delimiter may be a carriage return, semicolon, or matching delimiter. (A warning code is printed if it is
not a matching delimiter, however.) For example:

****** A
20 00040 003223 .RAD50 IABC
21 ;PACK ABC INTO ONE WORD
22 00042 003220 .RAD50 IABI ;PACK AB (SPACE) INTO ONE WORD.
23 00044 000000 .RAD50 I I ;PACK THREE SPACES INTO ONE WORD
24 00046 003223 .RAD50 IABCDI ;PACK ABC INTO FIRST WORD AND

00050 014400
;D (SPACE) (SPACE) INTO SECOND WORD

S-3S

The Assembly Process

Each character is translated into its Radix-SO equivalent as indicated:

Radix-50
Character Equivalent (octal) ASCII (octal)

(space) 0 40
A-Z 1-32 101-132
$ 33 44

34 S6
undefmed 3S undefmed
0-9 3647 60-71

Note that another character could be defined for code 3S, which is currently unused.

The Radix-SO equivalents for three characters (Cl, C2, C3) are combined in one l6-bit word as follows:

Radix-50 value = «Cl *SO) + C2)*SO + C3

For example:

Radix-SO value of ABC is «(1 *SO) + 2)*SO + 3 or 3223

See Appendix D for a table to quickly determine Radix-SO equivalents.

Use of angle brackets is encouraged in the .ASCII, .ASCIZ, and .RADSO statements whenever leaving the text
string to insert special codes. For example:

.ASCII <101>

.RAD50 /AB/<35>

CHR1=1
CHR2=2
CHR3=3

;EOUIVALENT TO .ASCII/A/

;STORES 3255 IN NEXT WORD.

.RAD50 <CHR1><CHR2><CHR3> ;EOUIVALENT TO RAD50/ABC/

5.5.4 Radix Control

5.5.4.1 .RADIX - Numbers used in a source program are initially considered to be octal numbers. However,
the programmer has the option of declaring the following radices:

2,4,8,10

This is done via the .RADIX directive of the form:

.RADIXn

where n is one of the acceptable radices.

S-36

The Assembly Process

The argument to the .RADIX directive is always interpreted in decimal radix. Following any radix directive,
that radix is the assumed base for any number specified until the following .RADIX directive.

The default radix at the start of each program, and the argument assumed if none is specified, is 8 (octal).
For example:

.RADIX 10

.RADIX

;BEGINS SECTION OF CODE WITH
;DECIMAL RADIX

;REVERTS TO OCTAL RADIX

A given radix is valid throughout a program until changed. Where a possible conflict exists within future uses of
that code module, it is suggested that the user specify values using the temporary radix controls.

5.5.4.2 Temporary Radix Control: tD, to, and tB - Once the user has specified a radix for a section of code,
or has determined to use the default octal radix, he may discover a number of cases where an alternate radix is more
convenient. For example, the creation of a mask word might best be done in the binary radix.

ASEMBL has three unary operators to provide a single interpretation in a given radix within another radix as
follows:

tDx (x is treated as being in decimal radix)
tax (x is treated as being in octal radix)
tBx (x is treated as being in binary radix)

For example:

tD123
to 47
tB 00001101
to<A+3>

Notice that while the uparrow and radix specification characters may not be separated, the radix operator can be
physically separated from the number by spaces or tabs for formatting purposes. Where a term or expression
is to be interpreted in another radix, it should be enclosed in angle brackets.

These numeric quantities may be used any place where a numeric value is legal.

A temporary radix change from octal to decimal may be made by specifying a decimal radix number with a
"decimal point". For example:

100. (144(8»
1376. (2540(8»

128. (200(8»

5.5.5 Location Counter Control
The four directives that control movement of the location counter are .EVEN and .ODD which move the counter
a maximum of one byte, and .BLKB and .BLKW which allow the user to specify blocks of a given number of bytes
or words to be skipped in the assembly.

5·37

The Assembly Process

5.5.5.1 .EVEN - The .EVEN directive ensures that the assembly location counter contains an even memory
address by adding one if the current address is odd. If the assembly location counter is even, no action is taken.
Any operands following a .EVEN directive are ignored.

The .EVEN directive is used as follows:

.ASCIZ /THIS IS A TESTI

.EVEN

.WORD XYZ

;ASSURES NEXT STATEMENT
;BEGINS ON A WORD BOUNDARY

S.S.S.2 .000 - The .ODD directive ensures that the assembly location counter is odd by adding one if it is even.
For example:

;CODE TO MOVE DATA FROM AN INPUT LINE
;TO A BUFFER

BUFF:

AGAIN:

DONE:

LINE:

N=5

.000

.BYTE N*2

.BLKWN

MOV #BUFF, R2
MOV #L1NE, R 1
MOVB -1(R2), RO
MOVB (R1) +, (R2) +
BEQDONE
DEC RO
BNEAGAIN

CLRB -(R2)

.ASCIZ /TEXTI

;BUFFER HAS 5 WORDS

;COUNT=2N BYTES
;RESERVE BUFFER OF N WORDS

;ADDRESS OF EMPTY BUFFER IN R2
;ADDRESS OF INPUT LINE IS IN R1
;GET COUNT STORED IN BUFF -1 IN RO
;MOVE BYTE FROM LINE INTO BUFFER
;WAS NULL CHARACTER SEEN?
;DECREMENT COUNT
;NOT=O, GET NEXT CHARACTER

;OUT OF ROOM IN BUFFER, CLEAR LAST
;WORD

In this case, .ODD is used to place the buffer byte count in the byte preceding the buffer, as follows:

COUNT BUFF-2

BUFF

5-38

The Assembly Process

5.5.5.3 .BLKB and .BLKW - Blocks of storage can be reserved using the .BLKB and .BLKW directives .
. BLKB is used to reserve byte blocks and .BLKW reserves word blocks. The two directives are of the fonn:

.BLKB exp

.BLKW exp

where exp is the number of bytes or words to reserve. If no argument is present, I is the assumed default value.
Any legal expression which is completely dermed at assembly time and produces an absolute number is legal.
For example:

1
2
3
4 000000' .CSECT IMPURE
5 000000 PASS: .BLKW
6 ;NEXT GROUP MUST STAY TOGETHER
7 000002 SYMBOL: .BLKW 2 ;SYMBOL ACCUMULATOR
8 000006 MODE:
9 000006 FLAGS: .BLKB 1 ;FLAG BITS

10 00007 SECTOR: .BLKB 1 ;SYMBOL/EXPR ESSION TYPE
11 00010 VALUE: .BLKW 1 ;EXPRESSION VALUE
12 00012 RELLVL: .BLKW 1
13 .BLKW 2 ;END OF GROUPED DATA
14 00020 CLCNAM: .BLKW 2 ;CURRENT LOCATION COUNTER
15 00024 CLCFGS: .BLKB 1
16 00025 CLCSEC: .BLKB 1
17 00026 CLCLOC: .BLKW 1
18 00030 CLCMAX: .BLKW 1
19 000001' .END

The .BLKB directive has the same effect as:

.=. +exp

but is easier to interpret in the context of source code.

5.5.6 Numeric Control
Several directives are available to provide software complements to the floating-point hardware on the PDP-II.

A floating-point number is represented by a string of decimal digits. The string (which can be a single digit in length)
may optionally contain a decimal point, and may be followed by an optional exponent indicator in the fonn of
the letter E and a signed decimal exponent. The list of number representations below contains seven distinct, valid
representations of the same floating-point number:

3
3.
3.0
3.0EO
3EO
.3EI
300E-2

5-39

The Assembly Process

As can be quickly inferred, the list could be extended indefmitely (e.g., 3000E-3, .03E2, etc.). A leading plus
sign is ignored (e.g., +3.0 is considered to be 3.0). Leading minus signs complement the sign bit. No other
operators are allowed (e.g., 3.0+N is illegal).

Floating-point number representations are valid only in the contexts described in the remainder of this section.

Floating-point numbers are normally rounded. That is, when a floating-point number exceeds the limits of the field
in which it is to be stored, the high-order excess bit is added to the low-order retained bit. For example, if the
number were to be stored in a 2-word field, but more than 32 bits were needed for its value, the highest bit carried
out of the field would be added to the least significant position. In order to enable floating-point truncation, the
.ENABL FPT directive is used and .DSABL FPT is used to return to floating-point rounding.

5.5.6.1 .FLT2 and .FLT4 - Like the .WORD directive, the two floating-point storage directives cause their
arguments to be stored in-line with the source program. These two directives are of the form:

. FLT2

. FLT4
arg 1 ,arg2,. . .
argl,arg2, ...

where argJ, arg2, etc. represent one or more floating point numbers separated by commas .

. FLT2 causes two words of storage to be generated for each argument while .FLT4 generates four words of storage.

The following code shows the use of the .FLT4 directive:

1
2
3
4

5

6

7

8

9

000000
000002
000004
000006
000010
000012
000014
000016
000020
000022
000024
000026
000030
000032
000034
000036
000040
000042
000044
000046
000050
000052
000054
000056

037314 ATOFTB:
146314
146314
146315
036443
153412
036560
121727
034721
133427
054342
014545
031453
146167
010604
060717
022746
112624
137304
046741
005517
130436
126505
034625

540

.FLT41.E-l

.FL T4 l.E-2

.FLT41.E-4

.FLT41.E-8

.FLT41.E-16

.FL T4 1.E-32

The Assembly Process

5.5.6.2 Temporary Numeric Control: tF and tc - Like the temporary radix control operators, operators are
available to specify either a I-word floating-point number or the one's complement of a I-word nwnber (tC). For
example:

FL3.7: tF3.7

creates a I-word floating-point number at location FL3.7 containing the value 3.7 as follows:

SIGN

BIT

15

S

14 7 6

EXPONENT MANTISSA

o

This I-word floating-point number is the first word of the 2- or 4-word floating-point number format shown in the
HJ1 Operation Manual, and the statement:

CMPI51 : tC151

stores the one's complement of 151 in the current radix (asswne current radix is octal) as follows:

15 o
177626

Since these control operators are unary operators, their arguments may be integer constants or symbols, and the
operators may be expressed successively. For example:

tCtD25 or tC31 or 177746

The term created by the unary operator and its argument is then a tenn which can be used by itself or in an
expression. For example:

tC2+6

is equivalent to:

<tC2>+6 or 177775+6 or 000003

For this reason, the use of angle brackets is advised. Expressions used as terms or arguments of a unary operator
must be explicitly grouped.

An example of the importance of ordering with respect to unary operators is shown below:

tFl.O
tF-1.0

-tFl.O
-tF-l.O

= 040200
= 140200
= 137600
= 037600

5-41

The Assembly Process

The argument to the tF operator must not be an expression and should be of the same format as arguments to the
.FLT2 and .FLT4 directives.

5.5.7 Terminating Directives

5.5.7.1 .END - The .END directive indicates the physical end of the source program. The .END directive
is of the form:

.END exp

where exp is an optional argument which, if present, indicates the program entry point, i.e., the transfer address.

When the load module is loaded, program execution begins at the transfer address indicated by the .END directive.
In a runtime system (the load module output ofthe tinker) a .END exp statement should terminate the first
object module and .END statements should terminate any other object modules.

5.5.7.2 .EOT - Under the HT-l1 System, the .EOT directive is ignored. The physical end fue allows
several physically separate tapes to be assembled as one program.

5.5.8 Program Boundaries Directive: .LIMIT
The .LIMIT directive reserves two words into which the tinker puts the low and high addresses of the load module's
relocatable code (the load module is the result of the link). The low address (inserted into the first word) is the
address of the first byte of code. The high address is the address of the first free byte follOWing the relocated code.
These addresses are always even since all relocatable sections are loaded at even addresses. (If a relocatable section
consists of an odd number of bytes, the tinker adds one to the size to make it even.)

5.5.9 Program Section Directives
The assembler provides for 255(10) program sections: an absolute section declared by .ASECT, an unnamed
relocatable program section declared by .CSECT, and 253(10) named relo.catable program sections declared by
.CSECT symbol, where symbol is any legal symbolic name. These directives allow the user to:

1. Create his program (object module) in sections:

The assembler maintains separate location counters for each section. This allows the user to write
statements which are not physically contiguous but will be loaded contiguously. The follOwing
examples will clarify this:

A:
B:
C:
ST:

.CSECT
o
o
o
CLR A
CLR B
CLR C
.ASECT
.=4
.WORD .+2, HALT
.CSECT

INCA
BRST
.END

;START THE UNNAMED RELOCATABLE SECTION
;ASSEMBLED AT RELOCATABLE 0,
;RELOCATABLE 2 AND
;RELOCATABLE 4
;ASSEMBLE CODE AT
;RELOCATABLE ADDRESS
;6 THROUGH 21
;START THE ABSOLUTE SECTION
;ASSEMBLE CODE AT
;ABSOLUTE 4 THROUGH 7
;RESUME THE UNNAMED RELOCATABLE
;SECTION
;ASSEMBLE CODE AT
;RELOCATABLE 22 THROUGH 27

5-42

The Assembly Process

The first appearance of .CSECT or .ASECT assumes the location counter is at relocatable or absolute zero,
respectively. The scope of each directive extends until a directive to the contrary is given. Further
occurrences of the same .CSECT or .ASECT resume assembling where the section was left off.

.CSECT COM1 ;DECLARE SECTION COM1
A: 0 ;ASSEMBLED AT RELOCATABLE 0
B: 0 ;ASSEMBLED AT RELOCATABLE 2
C: 0 ;ASSEMBLED AT RELOCATABLE 4

.CSECT COM2 ;DECLARE SECTION COM2
X: 0 ;ASSEMBLED AT RELOCATABLE 0
Y: 0 ;ASSEMBLED AT RELOCATABLE 2

.CSECT COM1 ;RETURN TO COM1
D: 0 ;ASSEMBLED AT RELOCATABLE 6

.END

The assembler automatically begins assembling at relocatable zero of the unnamed .CSECT if not
instructed otherwise; that is, the first statement of an assembly is an implied .CSECT.

All labels in an absolute section are absolute; all labels in a relocatable section are relocatable. The
location counter symbol, ".", is relocatable or absolute when referenced in a relocatable or absolute
section, respectively. Undefmed internal symbols are assigned the value of relocatable or absolute zero in
a relocatable or absolute section, respectively. Any labels appearing on a .ASECT or .CSECT statement
are assigned the value of the location counter before the .ASECT or .CSECT takes effect. Thus, if the
first statement of a program is:

A: .ASECT

then A is assigned to relocatable zero and is associated with the unnamed relocatable section (because
the assembler implicitly begins assembly in the unnamed relocatable section).

Since it is not known at assembly time where the program sections are to be loaded, all references
between sections in a single assembly are translated by the assembler to references relative to the base of
that section. The assembler provides the Linker with the necessary information to resolve the linkage.
Note that this is not necessary when making a reference to an absolute section (the assembler knows all
load addresses of an absolute section).

Examples:

A:

Y:
X:

.ASECT

.=1000
CLR X

JMPY

.CSECT
MOV RO, R1
JMPA
HALT
o
.END

;ASSEMBLED AS CLR BASE OF UNNAMED
;RELOCATABLE SECTION +10
;ASSEMBLED AS JMP BASE OF UNNAMED
;RELOCATABLE SECTION +6

;ASSEMBLED AS JMP 1000

In the above example the references to X and Y were translated into references relative to the base of
the unnamed relocatable section.

5-43

The Assembly Process

2. Share code and/or data between object modules (separate assemblies):

Named relocatable program sections operate as FORTRAN labeled COMMON; that is, sections of the
same name from different assemblies are all loaded at the same location by LINK. The unnamed
relocatable section is the exception to this as all unnamed relocatable sections are loaded in unique
areas by LINK.

Note that there is no conflict between internal symbolic names and program section names; that is, it
is legal to use the same symbolic name for both purposes. In fact, considering FORTRAN again, this is
necessary to accommodate the FORTRAN statement:

COMMON /X/A,B,C,X

where the symbol X represents the base of this program section and also the fourth element of this
program section.

Program section names should not duplicate .GLOBL names. In FORTRAN language, COMMON block
names and SUBROUTINE names should not be the same.

The .ASECT and .CSECT program section directives are provided in ASEMBL to allow the user to specify an
absolute or relocatable section. These directives are formatted as follows:

.ASECT

.CSECT

.CSECT symbol

The single absolute section can be declared with an:

.ASECT

directive. No name can be associated with the absolute section specified by means of the .ASECT directive. The
single unnamed relocatable program section can be declared with a:

.CSECT

directive.

All named relocatable sections are loaded in unique areas by LINK. Up to 253(10) named relocatable program
sections can be declared with:

.CSECT symbol

directives, where symbol is any legal symbolic name.

The assembler automatically begins assembling at relocatable zero of the unnamed .CSECT if not instructed other
wise; that is, the first statement of an assembly is an implied .CSECT.

5.5.10 Symbol Control: .GLOBL
If a program is created in segments which are assembled separately, global symbols are used to allow reference
to one symbol by the different segments.

544

The Assembly Process

A global symbol must be declared in a .GLOBL directive. The form of the .GLOBL directive is:

.GLOBL sym! ,sym2, ...

where:

syml,sym2, etc. are legal symbolic names, separated by commas, tabs, or spaces where
more than one symbol is specified.

Symbols appearing in a .GLOBL directive arc either defmed within the current program or are external symbols,
in which case they are defmed in another program which is to be linked with the current program, by LINK,
prior to execution.

A .GLOBL directive line may contain a label in the label field and comments in the comment field.

;DEFINE A SUBROUTINE WITH 2 ENTRY POINTS WHICH
;CALLS AN EXTERNAL SUBROUTINE

.CSECT ;DECLARE THE CONTROL SECTION

.GLOBL A,B,C ;DECLARE A,B,C, AS GLOBALS
A: MOV @(R5) +, RO ;ENTRY A IS DEFINED

MOV #X, R1
X: JSR PC,C ;CALL EXTERNAL SUBROUTINE C

RTS R5 ;EXIT
B: MOV @(R5)+,R1 ;DEFINE ENTRY B

CLR R1
BR X

In the previous example, A and B are entry symbols (entry points), C is an external symbol and X is an internal
symbol.

A global symbol is defmed only when it appears in a .GLOBL directive. A symbol is not considered a global symbol
if it is assigned the value of a global expression in a direct assignment statement.

References to external symbols can appear in the operand field of an instruction or assembler directive in the form
of a direct reference, i.e.:

CLR
.WORD
CLR

EXT
EXT
@EXT

or a direct reference plus or minus a constant, Le.:

D=6
CLR
.wORD
CLR

EXT+D
EXT-2
@EXT+D

5-45

The Assembly Process

A global symbol defmed within the program can be used in the evaluation of a direct assignment statement, but an
external symbol cannot. Since ASEMBL determines at the end of pass 1 whether a given global symbol is defmed
within the program or is expected to be external, a construction such as the following will cause errors at link
time:

.GLOBL FREE

.GLOBL LIMITS
FREE=LlMITS+2

LIM ITS: . LIM IT

;FREE WILL NOT BE
;DEFINED UNTIL PASS 2

FREE will be flagged as an undefmed global at link time. To allow correct linking, derme FREE after LIMITS:.

5.5.11 Conditional Assembly Directives
Conditional assembly directives provide the programmer with the capability to conditionally include or ignore
blocks of source code in the assembly process. This technique is used extensively to allow several variations of a
program to be generated from the source program.

The general form of a conditional block is as follows:

.IF cond, argument(s) ;START CONDITIONAL BLOCK
;STATEMENTS IN RANGE OF
;CONDITIONAL

.ENDC

where: cond

argument(s)

range

;BLOCK
;END CONDITIONAL BLOCK

is a condition which must be met if the block is to be included in the assembly.
These conditions are defmed below.

are a function of the condition to be tested. If more than one argument is specified,
they must be separated by commas.

is the body of code which is included in the assembly or ignored depending upon whether
the condition is met.

The following are the allowable conditions:

Conditions
Positive Complement

EQ NE

GT LE

LT GE

Arguments

expression

expression

expression

5-46

Assemble Block If

expression=O (or '* 0)

expression>O (or:O:;; 0)

expression<O (or ;;a. 0)

Conditions
Positive Complement

DF NDF

B NB

Z NZ

G

L

For example:

ALPHA=-l
.IF

.ENDC

The Assembly Process

Arguments

symbolic
argument

macro-type
argument

expression

expression

expression

NOTE
A macro-type argument is enclosed in angle brackets or
within an up-arrow construction (as described in Section
5.2.1.1). For example:

EQ,ALPHA+l

<A,B,C>
t/124/

;ASSEMBLE IF ALPHA + 1 = 0

Assemble Block If

symbol is defmed
(or undefined)

argument is blank
(or nonblank)

same as EQ/NE

same as GT /LE

same as LT/GE

Within the conditions DF and NDF the following two operators are allowed to group symbolic arguments:

&

For example:

.IF

.ENDC

logical AND operator

logical inclusive OR operator

DF, SYMl & SYM2 ;ASSEMBLE IF BOTH SYMl
;AND SYM2 ARE DEFINED

5-47

The Assembly Process

5.5.11.1 Subconditionals - Sub conditionals may be placed within conditional blocks to indicate:

1. assembly of an alternate body of code when the condition of the block indicates that the code within
the block is not to be assembled,

2. assembly of a non-contiguous body of code within the conditional block depending upon the result
of the conditional test to enter the block,

3. unconditional assembly of a body of code within a conditional block.

There are three subconditional directives, as follows:

Subconditional

.IFF

.1FT

.IFTF

Function

The code following this statement up to the next sub conditional
or end of the conditional block is included in the program if the value
of the condition tested upon entering the conditional block is false .

The code following this statement up to the next subconditional or
end of the conditional block is included in the program if the value
of the condition tested upon entering the conditional block is true.

The code following this statement up to the next sub conditional
or the end of the conditional block is included in the program
regardless of the value of the condition tested upon entering the
conditional block.

The implied argument of the sub conditionals is the value of the condition upon entering the conditional block.
Sub conditionals are used within outer level conditional blocks. Subconditionals are ignored within nested,
unsatisfied conditional blocks.

For example:

.IF

.IFF

.IFT

.IFTF

.ENDC

DF, SYM ;ASSEMBLE BLOCK IF SYM IS DEFINED
;ASSEMBLE THE FOLLOWING CODE ONLY IF
;SYM IS UNDEFINED

;ASSEMBLE THE FOLLOWING CODE ONLY IF
;SYM IS DEFINED

;ASSEMBLE THE FOLLOWING CODE
;UNCONDITIONALL Y

5-48

.IF

.IF

.IFF

.IFT

.ENDC

.ENDC

However,

.IF

.IF

.IFF

. IFT

.ENDC

.ENDC

DF,X
DF, Y

DF,X
DF, Y

The Assembly Process

;ASSEMBLY TESTS FALSE
;TESTS FALSE
;NESTED CONDITIONAL
;IGNORED WITHIN NESTED. UNSATISFIED
;CONDITIONAL BLOCK

;NOT SEEN

;TESTS TRUE
;TESTS FALSE
;IS ASSEMBLED
;OUTER CONDITIONAL SATISFIED .

;NOT ASSEMBLED

5.5.11.2 Immediate Conditionals - An immediate conditional directive is a means of writing a I-line
conditional block. In this form, no .ENDC statement is required and the condition is completely expressed on the
line containing the conditional directive. Immediate conditions are of the form:

.IIF cond, arg, statement

where: cond is one of the legal conditions dermed for conditional blocks in Section 5.5.11.

arg is the argument associated with the conditional specified, that is, either an expression,
symbol, or macro-type argument, as described in Section 5.5.l1.

statement is the statement to be executed if the condition is met.

For example:

.IIF DF,FOO,BEQ ALPHA

This statement generates the code:

BEQ ALPHA

if the symbol FOO is defmed.

5-49

The Assembly Process

A label must not be placed in the label field of the .IIF statement. Any necessary labels may be placed on the
previous line, as in the following example:

LABEL:
.I1F DF ,FPP BEQ ALPHA

or included as part of the conditional statement:

.IFF DF ,FOO LABEL: BEQ ALPHA

5.5.11.3 PAL-IIR and PAL-lIS Conditional Assembly Directives - In order to maintain compatibility with
programs developed under PAL-lIR and PAL-lIS, the following conditionals remain permissible under ASEMBL.
It is advisable that future programs be developed using the format for ASEMBL conditional assembly directives.

Directive Arguments Assemble Block If

.IFZ or .IFEQ expression expression=O

.IFNZ or .IFNE expression expression+O

.IFL or .IFLT expression expression <0

.IFG or .IFGT expression . expression>O

.IFGE expression expression= >0

.IFLE expression expression <=0

.IFDF logical expression expression is true (defmed)

.IFNDF logical expression expression is false (undefmed)

The rules governing the usage of these directives are now the same as for the conditional assembly directives
previously described. Conditional assembly blocks must end with the .ENDC directive and are limited to a nesting
depth of 16(10) levels (instead of the 127(10) levels allowed under PAL-IIR).

5.6 MACRO DIRECTIVES WITH THE EXPAND UTILITY PROGRAM
EXPAND is a system program which processes the macro references in an assembly language source fIle. Using the
system library fIle SYSMAC.SML, EXPAND produces an output fIle (with a .PAL extension) in which all legal
macro references are expanded into macro·free source code. ASEMBL can then process the program.

5.6.1 Macro Defmition
It is often convenient in assembly language programming to generate a recurring coding sequence with a single state·
ment. In order to do this, the desired coding sequence is first defmed with dummy arguments as a macro. Once a
macro has been defmed, a single statement calling the macro by name with a list of real arguments (replacing the
corresponding dummy arguments in the defmition) generates the correct sequence or expansion.

In general it is recommended that macro defmitions not contain or rely on radix settings from the .RADIX directive
(Section 5.5.4.1). The temporary radix control characters should be used within a macro defmition. (tD, to, and
tB are described in Section 5.5.4.2).

5.6.1.1 .MACRO - The first statement of a macro definition must be a .MACRO directive. The .MACRO
directive is of the form:

.MACRO .name, dummy argument list

where:

.name is the name of the macro. This name is any legal symbol. The name chosen
must begin with a dot (.) and may be used as a label elsewhere in the program.

5·50

dummy
argument
list

The Assembly Process

represents any legal separator (generally a comma or space).

zero, one, or more legal symbols which may appear anywhere in the body of
the macro defmition, even as a label. These symbols can be used elsewhere
in the user program with no conflicts of defmition. Where more than one
dummy argument is used, they are separated by any legal separator (generally
a comma). Dummy argument names must begin with a dot (.).

A comment may follow the dummy argument list in a statement containing a .MACRO directive. For example:

.MACRO .ABS A,B ;DEFINE MACRO .ABS WITH TWO ARGUMENTS

A label must not appear on a .MACRO statement. Labels are sometimes used on macro calls, but serve no function
when attached to .MACRO statements.

5.6.1.2 .ENDM - The fmal statement of every macro defmition must be an .ENDM directive of the form:

.ENDM .name

where .name is an optional argument and is the name of the macro being terminated by the statement.

For example:

.ENDM (terminates the current macro definition)

.ENDM .ABS (terminates the defmition of the macro .ABS)

If specified, the symbolic name in the .ENDM statement must correspond to that in the matching .MACRO
statement. Otherwise the statement is flagged and processing continues. Specification of the macro name in the
.ENDM statement permits the assembler to detect missing .ENDM statements.

The .ENDM statement may contain a comment field, but must not contain a label.

An example of a macro defmition is shown below:

.MACRO
JSR
.WORD
.ENDM

.TYPMSG .MESSAGE
R5, .TYPMSG
.MESSAGE

;TYPE A MESSAGE

5.6.13 Macro Defmition Fonnattlng - A form feed character used as a line terminator in a macro source
statement (or as the only character on a line), causes a page eject when the source program is listed. Used within
a macro definition, a form feed character also causes a page eject. A page eject is not performed, however, when
the macro is invoked.

Used within a macro defmition, the .PAGE directive is ignored, but a page eject is performed at invocation of
that macro.

5·51

The Assembly Process

5.6.2 Macro Calls
A macro must be defmed prior to its first reference. Macro calls are of the general form:

label: .name, real arguments

where: label represents an optional statement label.

.name represents the name of the macro specified in the .MACRO directive preceding the
macro defmition.

real
arguments

represents any legal separator (comma, space, or tab). No separator is necessary where
there are no real arguments. (Refer to Section 5.2.1.1.)

are those symbols, expressions, and values which replace the dummy arguments in the
.MACRO statement. Where more than one argument is used, they are separated by any
legal separator.

Arguments to the macro call are treated as character strings whose usage is determined by the macro defmition.

5.6.3 Arguments to Macro Calls and Defmitions
Arguments within a macro defmition or macro call are separated from other arguments by any of the separating
characters described in Section 5.2.1.1. For example:

.MACRO .REN .A, .B,.C ;MACRO DEFINITION

.REN ALPHA,BETA,<C1,C2> ;MACRO CALL

Arguments which contain separating characters are enclosed in paired angle brackets. An up·arrow construction
is provided to allow angle brackets to be passed as arguments.

F or example:

.REN <MOV x, V>, #44, WEV

This call would cause the entire statement:

MOV X,V

to replace all occurrences of the symbol .A in the macro defmition. Real arguments within a macro call are
considered to be character strings and are treated as a single entity until their use in the macro expansion.

The up-arrow construction would have been used in the above macro call as follows:

.REN x, VI, #44, WEV

which is equivalent to:

.REN <MOV x, V>, #44, WEV

Since spaces are ignored preceding an argument, they can be used to' increase legibility of bracketed constructions.

5-52

The Assembly Process

5.6.3.1 Special Characters - Arguments may include special characters without enclosing the argument in a
bracket construction if that argument does not contain spaces, tabs, semicolons, or commas. For example:

.MACRO
MOV
.ENDM

.PUSH

.PUSH .ARG

.ARG, -(SP)

X+3(%2)

generates the following code:

MOV X+3(%21, -(SP)

5.6.3.2 Number of Arguments - If more arguments appear in the macro call than in the macro defmition, the
excess arguments are ignored. If fewer arguments appear in the macro call than in the definition, missing arguments
are assumed to be null (consist of no characters). The conditional directives .IF B and .IF NB can be used within
the macro to detect null argumen ts.

A macro can be defmed with 0 to 30 arguments.

5.6.3.3 Concatenation - The apostrophe or single quote character ('), operates as a legal separating character in
macro defmitions. An' character which precedes and/or follows a dummy argument in a macro defmition is
removed, and the substitution of the real argument occurs at that point. For example:

.MACRO .DEF .A, .B, .C
.A '.B: .ASCIZ I.CI

.WORD ".A'''.B

.ENDM

When this macro is called:

.DEF X,Y,<EXPAND-11>

it expands as follows:

XY: .ASCIZ IEXPAND-111
.WORD 'X'Y

In the macro defmition, the scan terminates upon fmding the first' character. Since.A is a dummy argument, the
, is removed. The scan resumes with .B, notes .B as another dummy argument and concatenates the two dummy
arguments. The third dummy argument is noted as going into the operand of the .ASCIZ directive. On the next
line (this example is for purely illustrative purposes) the argument to .WORD is seen as follows: The scan begins
with a 'character. Since it is neither preceded nor followed by a dummy argument, the ' character remains in the
macro expansion. The scan then encounters the second' character which is followed by a dummy argument and is
discarded. The scan of the argument .A terminates upon encountering the second' which is also discarded since it
follows a dummy argument. The next' character is neither preceded nor followed by a dummy argument and
remains in the macro expansion. The last' character is followed by another dummy argument and is discarded.
(Note that the five' characters were necessary to generate two' characters in the macro expansion.)

5-53

The Assembly Process

5.6.4 Macro Ubraries: .MCALL
All macro defmitions must occur prior to their referencing within the user program. EXPAND provides a selection
mechanism for the programmer to indicate in advance those system macro defmitions required by his program.

The .MCALL directive is used to specify the names of all system macro defmitions not defmed in the current
program but required by the program. The .MCALL directive must appear before the first occurrence of a macro
call for an externally defmed macro. The .MCALL directive is of the form:

.MCALL .argI, .arg2, ...

where argI, and arg2, etc. are the names of the macro defmitions required in the current program.

When this directive is encountered, EXPAND searches the system library fIle, SYSMAC.SML, to fmd the requested
defmition(s). EXPAND searches for SYSMAC.SML on the system device (SY:).

See Appendix C for a listing of the system macro fIle (SYSMAC.SML) stored on the system device.

5.7 CALLING AND USING EXPAND
To run EXPAND, type:

REXPAND

in response to the dot printed by the Keyboard Monitor. EXPAND responds with an asterisk indicating that it
is ready to accept a command string. A command string must be of the following form:

*ofIle=ifIleI ,ifIle2, ... ,ifIle6

ifIle2 through iftle6 are optional. Each ftle specification follows the general HT-ll command string syntax
(dev:ftlnam.ext). The default value for each fIle specification is noted below:

I/O File

o fIle

ifIlel, .. "
ifIle6

Dev

DK

device used for last source
me specified or DK

Ext

PAL

MAC

Type CTRL C to halt EXPAND and return control to the monitor. To restart EXPAND, type R EXPAND or the
REENTER command in response to the monitor's dot.

EXPAND copies sequentially the specified input mes to the specified output fIle until a macro directive is
encountered. EXPAND then changes the macro directive to a comment by inserting a semicolon so that it will not
be seen later by the assembler (usually ASEMBL).

If the directive is .MCALL, EXPAND searches the system library file (SYSMAC.SML) for the requested macro
definitions. The requested defmitions are then included in the user's program in the order in which they are
found in the library.

5-54

The Assembly Process

For the .MACRO directive, EXPAND reads each line following the directive up to the next .ENDM directive. Each
line is stored in the internal defmition table and then changed to a comment in the output me so that it is not
processed later by the assembler. Also, any occurrence of a macro argument name within the defmition is flagged
internally so that it can be replaced by the real argument value whenever the macro is later referenced.

For macro reference, EXPAND locates the stored macro definition in its internal tables, binds the actual argument
values to the argument names, and changes the macro reference to a comment line. EXPAND then begins copying
the stored defmition to the output fIle. Whenever a macro argument name is encountered in the defmition, it is
replaced by the corresponding actual argument value.

Examples:

The following are examples of input and corresponding EXPAND output.

INPUT

Rl=%1
SP=%6
PC=%7
.MACRO .CALL .sUBR
JSR PC, .SUBR
.ENDM
.MCALL .LOOKUP, .READ

5-55

OUTPUT

;HT-ll MACRO EXPAND H01-l

Rl=%l
SP=%6
PC=%7
.MACRO .CALL .SUBR
JSR PC, .SUBR
.ENDM
.MCALL . LOOKUP, .READ

;.MACRO .LOOKUP .AREA, .CHAN, .DEVBLK, .SPF
;.IF DF ... V1
;.IF NB .CHAN

MOV .CHAN, %0
;.ENDC

EMT
;.IFF
;.IF NB .AREA

MOV
MOVB

;.ENDC
;.IF NB .CHAN

MOVB
;.ENDC
;.IF NB .DEVBLK

MOV
;.ENDC
;.IF NB .SPF

MOV
;.IFF

"'O<;20+.AR EA>

.AREA,%O
#1, 1(0)

.CHAN, (0)

.DEVBLK, 2. (0)

.SPF,4. (0)

CLR 4. (0)
;.ENDC

STACK:
AREA:
BUFR:
INBLK:
START:
A:
B:

The Assembly Process

.CSECT MAIN

.GLOBLSORT

.BLKW 100

.BLKW 10

.BLKW 100

.BLKW 5
MOV #ST ACK,SP
MOV R1, -(SP)
.CALLSORT

.LOOKUP#INBLK,O

;.ENDC
;.ENDM

EMT "'0375

;.MACRO .READ .AREA, .CHAN, .BUFF, .WCNT, .BLK
;.IFDF ... V1
;.IF NB.WCNT

MOV .WCNT,%O
;.ENDC

MOV #1, -(6.)
MOV .BUFF, -(6.)
MOV .CHAN, -(6.)
FMT "'0<200+.AREA>

;.IFF
;.IF NB .AREA

MOV .AREA, %0
MOVB #8., 1(0)

;.ENDC
;.IF NB .CHAN

MOVB .CHAN, (0)
;.ENDC
;.IF NB .BLK

MOV .BLK, 2. (0)
;.ENDC
;.IF NB .BUFF

MOV .BUFF,4. (0)
;.ENDC
;.IF NB .WCNT

;.ENDC

;.ENDC
;.ENDM

STACK:
AREA:
BUFR:
INBLK:
START:
A:
B·· .,

MOV . WCNT, 6. (0)

MOV #1,8. (0)
EMT "'0375

.CSECT MAIN

.GLOBL SORT

.BLKW 100

.BLKW 10

.BLKW 100

.BLKW 5
MOV #STACK, SP
MOV R1, -(SP)
.CALLSORT
JSR PC, SORT
.LOOKUP #INBLK, 0

.IF DF ... V1

.IF NB 0
MOV 0, %0

.ENDC
EMT "'0<20+#INBLK>

.IFF

.IF NB #INBLK

5-56

CLR Rl ;BLOCK NUMBER
.READ #AREA, #0, #BUFR, #256., Rl

HALT
.END START

The Assembly Process

MOV #INBLK, %0
MOVB #1,1(0)

.ENDC

.IF NB 0
MOVB 0, (0)

.ENDC

.IF NB
MOV ,2. (0)

.ENDC

.IF NB
MOV ,4. (0)

.IFF
CLR 4. (0)

.ENDC
EMT "0375

.ENDC
CLR R 1 ;BLOCK NUMBER
.READ #AREA, #0, #BUFR, #256., Rl

.IF DF ... Vl

.IF NB #256.

.ENDC

.IFF

.IF NB #AREA

.ENDC

.IF NB #0

.ENDC

.IF NB Rl

.ENDC

.IF NB #BUFR

.ENDC

.IF NB #256.

.ENDC

.ENDC
HALT

MOV

MOV
MOV
MOV
EMT

MOV
MOVB

MOVB

MOV

MOV

MOV

MOV
EMT

.END START

5-57

#256., %0

#1, -(6.)
#BUFR, -(6.)
#0,-(6.)
"0<200+#AR EA>

#AREA, %0
#8.,1(0)

#0, (0)

Rl, 2. (0)

#BUFR,4. (0)

#256., 6. (0)

#1,8. (0)
"0375

The Assembly Process

5.8 CALLING AND USING ASEMBL
The assembler assembles one or more macro-free ASCII source mes into a single relocatable binary object me.
Assembler output consists of this binary object file and an optional assembly listing followed by the symbol table
listing. CREF (Cross Reference) listings may also be specified as part of the assembly output by means of
switch options.

ASEMBL is executed using the HT-11 Monitor R command as follows:

.R ASEMBL

The assembler responds by typing an asterisk (*) to indicate readiness to accept command string input. In response
to the * printed by the assembler, the user types the output me specification(s), followed by an equal sign or left
angle bracket, followed by the input file specification(s) in a command line as follows:

*dev: obj ,dey :list/ s: arg=dev :source 1 , .. ,dey: sourcen/s :arg

where:

dey:

obj

list

source 1,
.. ,sourcen

/s:arg

is any legal HT-11 device for output; must be file-structured for input

is the binary object me

is the assembly listing fIle containing the assembly listing and symbol
table

are the ASCII source fIles containing the ASEMBL source program(s);
a maximum of six source mes is allowed

represents a switch and argument as explained in Section 5.8.1

A null specification in either of the output me fields signifies that the associated output me is not desired.

One or more switches can be indicated with the appropriate me specification to provide ASEMBL with information
about that me.

The default case for each me specification is noted below:

fde device fdename extension

object DK: .OBJ

listing device used for object .LST
output

source I DK: .PAL

sOllrce2 device used for last source .PAL
file specified

sourcen

5-58

The Assembly Process

Type CRTL C to halt ASEMBL at any time and return control to the monitor. To restart the assembler type R
ASEMBL or the REENTER command in response to the monitor's dot.

5.8.1 Switches

NOTE
If tc was typed while a CREF listing was being produced,
the REENTER command may not be accepted. In this
case, type R ASEMBL to restart the assembler.

There are three types of switch options: listing control switches, function switches, and CREF specification
switches. The listing control switches (fL,IN) provide capabilities similar to those described in detail in Section
5.5.1.1. The function control switches (fD,/E) provide function control as described in Section 5.5.2; arguments
for these switches are summarized in Section 5.8.1.2. CREF control switches allow the user to obtain a detailed
cross-referenced listing of his assembled me, and are described in detail in Section 5.8.13. Multiple arguments may
be specified for a particular switch, if deSired, by separating each switch value from the next by a colon. For
example:

/N:TTM:CND

These switches turn off teleprinter mode and suppress printing of unsatisfied conditionals (as described in the next
section). Also, the switches are not restricted to appearing near a particular me in the command string; /N :TTM,
for example, is legal in all of the following places:

* ,LP:/N :TTM =source
*,LP:=source/N :TTM
*/N :TTM,LP:=source

and they are all equivalent in function.

5.8.1.1 Listing Control Switches - A listing control switch (/L for list or IN for nolist) is indicated in a
command line as follows:

*dev:obj.ext,dev:list.ext/s:arg=dev:source.ext

where s :arg represents /L or IN; the remainder of the command line abbreviations are as described in Section 5.8.

The /N with no argument causes only the symbol table, table of contents and error listings to be produced. The /L
switch with no arguments causes .LIST and .NLIST directives that appear in the source program but have no
arguments to be ignored. A summary of the arguments which are valid for the listing control switches follows
(refer to Section 5.5.1.1 for details):

Argument Default Controls Listing of

SEQ list Source line sequence numbers
LOC list Location counter
BIN list Generated binary code
BEX list Binary extensions
SRC list Source code
COM list Comments
CND list Unsatisfied conditionals, .IF

and .ENDC statements

5-59

Argument

LD

TOC
TTM
SYM

The Assembly Process

Default

nollst

list
terminal mode
list

Controls Listing of

Listing directives with no
arguments

Table of Contents
Listing output format
Symbol table

For example, a command line in the following format suppresses the Table of Contents listing and uses the
132-column listing format:

*,LP:/N:TOC:TTM=FILE

5.8.1.2 Function Switches - The function control switches (/D for disable and /E for enable) are used to enable
or disable certain functions in source input fIles and are indicated in the command line as follows:

*dev :obj .ext ,dev:list.ext=dev:source/s: arg

/s:arg here represents either /D:arg or /E:arg. A summary of the arguments which are valid for use with the function
control switches follows (refer to Section 5.5.2 for details):

Argument Default Enables or Disables

ABS disable Absolute binary output
AMA disable Assembly of all absolute

addresses as relative addresses
CDR disable Source columns 73 and greater

to be treated as comments
FPT disable Floating point truncation
LC disable Accepts lower-case ASCII

input
LSB disable Local symbol block
PNC enable Binary output

For example, the following commands assemble a fIle allowing all 80 columns of each line to be used as input
(note that since ASEMBL is a two-pass assembler, the paper tape cannot be read directly from the reader; input
from any non file-structured device must first be transferred to a fIle-structured device before assembly):

.R PIP
*PTAPE. PAL=PR:/A
*AC

.R ASEMBL
*,LP:=PTAPE. PAL/E:CDR

Use of either the function control or listing control switches and arguments at assembly-time will override any
corresponding listing or function control directives and arguments in the source program. For example, assume the
following appears in the source program:

.NLIST BEX

code with binary extensions

.LIST BEX

5-60

The "BEX" printing will be disabled for the block indicated; however, if /L:BEX is indicated in the assembly
command line, both the .NLIST BEX and the .LIST BEX will be ignored and the "BEX" printing will be enabled
everywhere in the program.

5.8.1.3 Cross Reference Table Generation (CREF) - A cross reference table of all or a subset of all symbols
used in the source program and the statements where they were dermed or used can be obtained automatically
following an assembly by specifying /C:arg with the assembly listing file specification (and any listing or function
control specifications) as follows:

*dev:obj.ext,dev:list.ext/s:arg/C:arg=dev:source.ext

/s:arg represents any of the other valid switches.

There are five sections to a complete cross reference listing:

1. Cross reference of program symbols (i.e., labels used in the program and symbols used on the left of
the "=" operator).

2. Cross reference of register-equate symbols (those symbols which are dermed in the program by a
"SYMBOL=%N", D<=N<7, construct). Normally this consists of the symbols RD, Rl, R2, R3, R4,
R5, SP, and PC.

3. Cross re ference of permanen t symbols (all operation mnemonics and assembler directives).
4. Cross reference of control sections (those names specified as the operand of a .CSECT directive, plus the

blank .CSECT and the absolute section ". ABS." which are always dermed by ASEMBL).
5. Cross reference of errors (all errors flagged on the listing are grouped by error type).

Any or all of the above sections may be included in the cross reference listing as desired. The associated switch
options and their arguments are listed below:

Switch
Argument

/C:s
/C:R
/C:P

/C:C

/C:E
/C<no arg>

Section Type

User-dermed symbols
Register symbols
Permanent symbols

(instructions, directives)
Control sections (.CSECT

symbolic names)
Error codes
Equivalent to /C:S:E

The specification of a /C switch in a command string causes a temporary file, "DK:CREF.TMP", to be generated.
If device DK: is write-locked or contains insufficient free space for the temporary file, the user may allocate the
temporary me on another device. To do so, a third output file specification is given in the ASEMBL command
string; this me is then used instead of DK:CREF .TMP, and is purged after use. For example, a command string
of this type:

*,LP:,DXl :TEMP.TMP=SOURCE/C

causes "DXl :TEMP.TMP" to be used as the temporary file.

Figure 5-6 illustrates assembled source code and Figure 5-7 contains the CREF output. The command line used to
produce these listings was:

*,EXAMPL/C:S:R:P:C:E/N:BEX=EXAMPL

5-61

The Assembly Process

An explanation of the CREF output follows the figures.

EXAMPLE OF CROSS REFERENCE LIST HT-11 ASEMBL H01-1 19-5EP-78 PAGE 1

1 j HT -11 MACRO EXPAND H01-1
2 · TITLE EXAMPLE OF CROSS REFERENCE LISTING
3

jDEFINE THE REGISTER SYMBOLS 4 00!iH!H30 R0 = %0
5 000001 R1= % 1
6 000002 R2= %2
'(000003 R3= %3
8 000004 R4= %4
9 000005 R5= %5
10 000006 SP= %6
1 1 000007 pc= %7
12
13 000012 LF= 012
14
15 j · MCALL . TTYIN, . EXIT
16 j .MACRO · EXIT
17 j EMT ~O 350
18 j. ENDM
19 j .MACRO · TTYIN .CHAR
20 EMT ~O340

21 j BCS .-2
22 j. ENDM
23
24 .MACRO . CALL . NAME
25 JSR PC,.NAME
26 .ENDM
27
28 .GLOBL SUBR 1, SUBR2 jTWO EXTERNAL SUBROUTINES
29 000000' · CSECT PROG jDEFINE A CSECT
30 00000 012702 START: MOV IIBUFFER, R2 jR2 = ADRS(BUFFER
31 00004 1 $: j .TTYIN jREAD A CHAR INTO R0
32 00004 104340 EMT ~0340

:n 00006 103776 BCS .-2
34 00010 1 10022 MOVB R0,(R2)+ jAND STORE IN BUFFER
35 00012 120027 CMPB R0,IILF jWAS IT A LINE FEED?
36 00016 001372 BNE 1$ jNOPE - KEEP READING
37 00020 105022 CLRB (R2)+ jELSE FLAG END OF LINE
38 00022 012703 MOV IIBUFFER, R 3 jR3 = ADRS FOR SUBR1
39 .CALL SUBR 1 jINVOKE "CALL" MACRO
40 00026 004767 JSR PC,SUBR1
41 00032 103762 BCS START jGET A NEW LINE IF CARRY SET
42 .CALL SUBR2 jELSE CALL OTHER SUBR
43 00034 004767 JSR PC,SUBR2
44 00040 ~1006'{ MOV R0,ANSWER jSTORE RESULT IN ANSWER
45 .EXIT jRETURN TO HT-11
46 00044 104350 EMT ~O 350
47
46 00046 ANSWER: .BLKW jDEFINE ANSWER STORAGE
49 00050 BUFFER: .BLKB 72. jINPUT LINE BUFFER
50
51 000000' .END START

Figure 5-6 ASEMBL Source Code

5-62

The Assembly Process

EXAMPLE OF CROSS REFERENCE LIST HT-11 ASEMBL H01-1
SYMBOL TABLE

ANSWER 000046R
PC =%000007
R2 =%000002
R5 =%000005
SUBR 1 = ****** G
. ABS. 000000

000000
PROG 000160
ERRORS DETECTED: 0

002 BUFFER 000050R
R0 =%000000
R3 =%000003
SP =%000006
SUBR2 = ****** G

002 LF
R 1
R4
START

FREE MEMORY: 11178. WORDS

,EXAMPL/C:S:R:P:C:E/N:BEX=EXAMPL

Figure 5-6 (Cant.) ASEMBL Source Code

EXAMPLE OF CROSS REFERENCE LIST HT-11 ASEMBL H01-1
CROSS REFERENCE TABLE (CREF H01-1)

1-j)
ANSWER 1-44* 1-4811
BUFFER 1-30 1-38 1 -4911
LF 1-131/ 1-35
START 1-3011 1-41 1-51
SUBR1 1-2811 1-40
SUBR2 1-28# 1-43

EXAMPLE OF CROSS REFERENCE LIST HT-11 ASEMBL H01-1
CROSS REFERENCE TABLE (CREF H01-1)

PC 1-1111 1-40* 1-43*
R0 1-41/ 1-34 1-35 1-44
R 1 1-511
R2 1-61/ 1-30* 1-34* 1-37 *
R3 1 -71/ 1-38*
R4 1-i51/
R5 1 -911
SP 1-101/

EXAMPLE OF CROSS REFERENCE LIST HT-11 ASEMBL H01-1
CROSS REFERENCE TABLE (CREF H01-1)

.BLKB

.BLKW

.CSECT

.END

.GLOBL

. TITLE
BCS
BNE
CLRB
CMPB
EMT
JSR
MOV
MOVB

1-49
1-48
1-29
1-51
1-28
1-2
1-33
1-36
1-37
1-35'
1-32
1-40
1-30
1-34

1-41

1-46
1-43
1-38 1-44

Figure 5-7 CREF Listing Output

5-63

19-5EP-78 PAGE 1+

= 000012
=%000001
=%000004

000000R

19-5EP-78 PAGE S-l

19-5EP-78 PAGE R-1

19-5EP-78 PAGE P-1

The Assembly Process

EXAMPLE OF CROSS REFERENCE LIST HT-11 ASEMBL H01-1
CROSS REFERENCE TABLE (CREF H01-1)

19-5EP-78 PAGE C-1

0-0
. ABS. 0-0
PROG 1-29

Figure 5-7 (Cont.) CREF Listing Output

Cross reference tables, if requested, are generated at the end of an ASEMBL assembly listing. Each table begins on
a new page (the tables in Figure 5-7 have been consolidated due to space considerations). Symbols, control sections,
and error codes are listed at the left margin of the page; corresponding references are indicated next to them across
the page from left to right. A reference is of the form pol, where p is the page on which the symbol, control section,
or error code appears, and I is the line number within the page. A number sign (#) appears next to a reference
wherever a symbol has been defmed. An asterisk appears next to a reference wherever a destructive reference has
been made to the symbol (Le., the contents of the location defmed by that symbol has been altered at that point).

The CREF output requested in the preceding figures included user-defined symbols, control sections, error codes,
register symbols, and permanent symbols. Since no errors were generated in this assembly, no CREF output for
error codes was produced.

5.9 ERROR MESSAGES

5.9.1 EXPAND Error Messages
The following messages are caused by fatal errors detected by EXPAND. They print on the terminal and cause
EXPAND to restart:

Message

?BAD SWITCH?

?INPUT ERROR?

?INSUFFICIENT MEMORY?

?MISSING END IN MACRO?

?NO INPUT FILE?

?OUTPUT DEVICE FULL?

?WRONG NUMBER OF OUTPUT FILES?

5·64

Explanation

An unrecognized command string switch
was specified.

Hardware error in reading an input file.

Not enough memory to store macro defmitions.

End of input was encountered while storing
a macro definition; probably missing an .ENDM.

There must be at least one input file.

No room to continue writing output; try to
compress the device with PIP.

There must be exactly one output file.

The Assembly Process

The following errors are non-fatal but indicate that something is wrong in the input me(s). These errors appear in
the output me as a line in the following form:

?*** ERROR U. message

After each run of EXPAND, the total number of non-fatal errors is printed on the terminal.

Message

BAD MACRO ARG

LINE TOO LONG

MACRO ALREADY DEFINED

MACRO(S) NOT FOUND

MISSING COMMA IN MACRO ARG

MISSING DOT

NAME DOESN'T MATCH

NESTED MACROS

NO NAME

SYNTAX

TOO MANY ARGS

5.9.2 ASEMBL/CREF Error Messages

Explanation

The macro argument is not formatted correctly.

A line has become longer than 132 characters.

A macro was defmed more than once.

Macros listed in an .MCALL statement were not
found in SYSMAC.SML (make sure
SYSMAC.SML is present on system).

Found spaces or tabs within a macro argument
when a comma was expected; try using brackets
around the arguments, e.g., <arg with spaces>.

A macro name or argument name does not begin
with a dot.

Optional name given in .ENDM directive does
not match name given in corresponding .MACRO
directive.

A macro is being defmed or invoked within
another macro.

A macro definition has no name.

A macro directive is not constructed correctly.

A macro directive has more than 30 arguments.

ASEMBL error messages enclosed in question marks are output on the terminal. The single-letter error codes are
printed in the assembly listing.

In terminal mode these error codes are printed following a field of six asterisk characters and on the line preceding
the source line containing the error. For example:

****** A
2600236000002' .WORD REL1+REL2

5-65

Error Code

A

B

D

E

I

L

M

N

o

P

Q

R

T

U

z

The Assembly Process

Meaning

Addressing error. An address within the instruction is incorrect. Also may
indicate a relocation error. The addition of two relocatable symbols is
flagged as an A error. May also indicate that a local symbol is being defined
more than 128 words from the beginning of a local symbol block.

Bounding error. Instructions or word data would be assembled at an odd
address in memory. The location counter is updated by + 1.

Multiply-defmed symbol referenced. Reference was made to a label (not a
local label) that is defmed more than once.

End directive not found. (A .END is generated.)

illegal character detected. illegal characters which are also non-printing are
replaced by a ? on the listing. The character is then ignored.

Line buffer overflow, i.e., input line greater than 132 characters. Extra
characters on a line are ignored in terminal mode.

Multiple defmition of a label. A label was encountered which was equivalent
(in the first six characters) to a previously encountered label.

Number containing 8 or 9 has decimal point missing.

Opcode error. Directive out of context.

Phase error. A label's defmition or value varies from one pass to another or
a local symbol occurred twice within a local symbol block.

Questionable syntax. There are missing arguments or the instruction scan
was not completed or a carriage return was not immediately followed by a
line feed or form feed.

Register-type error. An invalid use of or reference to a register has been
made.

Truncation error. A number generated more than 16 bits of significance or
an expression generated more than 8 bits of significance during the use of
the .BYTE directive.

Undefmed symbol. An undefmed symbol was encountered during the
evaluation of an expression. Relative to the expression, the undefmed
symbol is assigned a value of zero.

Instruction which is not compatible among all members of the PDP-II
family.

5-66

Error Message

?BAD SWITCH?

?INSUFFICIENT MEMORY?

?I/O ERROR ON CHANNEL n?

?NO INPUT FILE?

?OUTPUT DEVICE FULL?

TOO MANY OUTPUT FILES

The Assembly Process

Explanation

The switch specified was not recognized by the program.

There are too many symbols in the program being assembled.
Try dividing program into separately-assembled subprograms.

A hardware error occurred while attempting to read from
or write to the device on the channel specified in the
message. (Channel numbers (O<=n<=l0 octal) are assigned
to mes in the manner described in Section 9.4.4, Chapter 9.)

Note that the CREF temporary me is on channel 2 even if
it was not specified in the command string (Le., if the default
me DK:CREF.TMP is used).

No input me was specified and there must be at least one
input file.

No room to continue writing output. Try to compress device
with PIP.

Too many output mes were specified.

All CREF error message begin with C- to distinguish them from ASEMBL error messages. When a CREF error
occurs, the error message is printed on the terminal and CREF chains back to ASEMBL; ASEMBL prints an
asterisk, at which time another command line may be entered.

Error Message

?C-CHAIN-ONLY -CUSP?

?C-CRF FILE ERROR?

?C-DEVICE?

?C-LST FILE ERROR?

Explanation

An attempt was made either to "R CREF" or to "START"
a copy of CREF which was in memory. CREF can only
be "chained" to.

An output error occurred while accessing "DK:CREF .TMP" ,
the temporary me passed to CREF.

An invalid device was specified to CREF.

An output error occurred while attempting to write the
cross-reference table to the listing me.

5-67

6.1 INTRODUCTION

CHAPTER 6

LINKER

The HT-II Linker converts object modules produced by the HT-II assembler or FORTRAN N into a format
suitable for loading and execution. This allows the user to separately assemble a main program and each ofits
subroutines without assigning an absolute load address at assembly time. The object modules of the main pro
gram and subroutines are processed by the Linker to:

1. Relocate each object module and assign absolute addresses
2. Link the modules by correlating global symbols defined in one module and referenced in another

module
3. Create the initial control block for the linked program
4. Create an overlay structure if specified and include the necessary run-time overlay handlers and tables
5. Search user specified libraries to locate unresolved globals
6. Optionally produce a load map showing the layout of the load module

The HT-II Linker requires two or three passes over the input modules. During the first pass it constructs the
global symbol table, including all control section names and global symbols in the input modules. If library mes are
to be linked with input modules, an intermediate pass is needed to force the modules resolved from the library me
into the root segment (that part of the program which is never overlaid). During the final pass, the Linker reads the
object modules, performs most of the functions listed above, and produces a load module (.LOA for use with the
Absolute Loader and save image (.SAV) for the system).

The Linker runs in a minimal HT-II system of 8K; any additional memory is used to facilitate efficient linking
and to extend the symbol table. Input is accepted from any random-access device on the system; there must be at
least one random-access device (disk) for save image.

6.2 CALLING AND USING THE LINKER
To call the Linker, type the command:

RLINK

and the RETURN key in response to the Keyboard monitor's dot. The Linker prints an asterisk and awaits a com
mand string.

Type CTRL C to halt the Linker at any time and return control to the monitor. To restart the Linker, type R LINK
or the REENTER command in response to the monitor's dot. The Linker outputs an extra line feed character when
it is restarted with REENTER or after an error in the first command line. When the Linker is fmished linking,
control returns to the CSI au tomatically. An extra line feed character precedes the asterisk printed by the CSl.

6.2.1 Command String
The first command string entered in response to the Linker's asterisk has the follOWing format:

*dev:binout,dev:mapout=dev:objl,dev:obj2, ... /sl /s2/s3

6-1

Linker

where:

dev: is a random-access device for all fIles except dev:mapout, which can be any legal output device.
If dev: is not specified, DK is assumed. If the output is to be LDA format (that is, the /L switch
was used), the output fIle need not be on a random-access device.

hinout is the name to be assigned to the Linker's save image or LDA format output fIle. This file is
optional; if not specified, no binary output is produced. (Save image is the assumed output
format unless the /L switch is used.)

mapout is the optional load map fIle.

objl,... are fIles of one or more object modules to be input to the Linker (these may be library fIles).

/sl/s2/s3 are switches as explajned in Table 6-1 and Section 6.8.

If the /C switch is given, subsequent command lines may be entered as:

*objm,objn, ... /sl/s2

The /C switch is necessary only if the command string will not fit on one line or if the overlay structure is used. If
an error occurs in a continued command line (e.g., ?FILE NOT FND?), only the line in error need be retyped.

If an output file is not specified, the Linker assumes that the associated output is not desired. For example, if the
load module and load map are not specified, only error messages (if any) are printed by the Linker.

The default values for each specification are:

Load Module
Map Output
Object Module

Device

DK:
Same as load module
DK: or same as previous
object module

Filename

none
none
none

Extension

SAVor LDA (JL)
MAP
OBI

If a syntax error is made in a command string, an error message is printed. A new command string can then be typed
following the asterisk.

If a nonexistent fIle is specified a fatal error occurs; control is returned to the command string interpreter, an
asterisk is printed and a new command string may be entered.

6.2.2 Switches
The switches associated with the Linker are listed in Table 6-1. The letter representing each switch is always pre
ceded by the slash character. Switches must appear on the line indicated if the command is continued on more than
one line. They may be positioned anywhere on the line. (A more detailed explanation of each switch is provided in
Section 6.8.)

6.3 ABSOLUTE AND RELOCATABLE PROGRAM SECTIONS
A program produced by the HT-II assembler or FORTRAN IV can consist of an absolute program section, declared
by the .ASECT assembler directive, and relocatable program sections declared by the .CSECT assembler directive.
A .CSECT directive is assumed at the beginning of the source program. The instructions and data in relocatable
sections are normally assigned locations beginning at 1000 (octal). The assignment of addresses can be influenced
by command string switches and the size of the absolute section (.ASECT, if present). Each control section is
assigned a memory address; the Linker then appropriately modifies all instructions and/or data as necessary to
account for the relocation of the control sections.

6-2

Linker

Table 6-1 Linker Switches

Switch Command
Name Line Meaning

/A 1 st Alphabetizes the entries in the load map.

/B:n 1 st Bottom address of program is indicated as n.

/C any Continues input specification on another command line. Used also with /0.

/F 1st Instructs the Linker to use the default FORTRAN library, FORLIB.OBJ; note
that FORLIB does not have to be specified in the command line.

/1 1 st Includes the global symbols to be searched from the library.

/L 1 st Produces an output file in LDA format.

/M or 1 st Stack address is to be specified at the terminal keyboard or via n.
IM:n

/O:n any but Indicates that the program will be an overlay structure; n specifies the overlay
the 1 st region to which the module is assigned.

IS 1 st Allows the maximum amount of space in memory to be available for the
Linker's symbol table. (This switch should only be used when a particular link
stream causes a symbol table overflow.)

IT or 1 st Transfer address is to be specified at terminal keyboard or via n.
/T:n

The HT-11 Linker handles the absolute section as well as the named and unnamed control sections. The unnamed
control section is internal to each object module. That is, every object module can have an unnamed control section
but the Linker treats each control section independently. Each is assigned an absolute address such that it occupies
an exclusive area of memory. Named control sections, on the other hand, are treated globally; if different object
modules have control sections with the same name, they are all assigned the same absolute load address and the size
of the area reserved for loading of the section is the size of the largest. Thus, named control sections allow for the
sharing of data and/or instructions among object modules. This is the same as the handling and function of
COMMON in FORTRAN IV. The names assigned to control sections are global and can be referenced as any other
global symbol.

6.4 GLOBAL SYMBOLS
Global symbols provide the link, or communication, between object modules. Global symbols are created with the
.GLOBL assembler directive (see Chapter 5). If the global symbol is defmed in an object module (as a label or by
direct assignment), it is called an entry symbol and other object modules can reference it. If the global symbol is
not defined in the object module, it is an external symbol and is assumed to be defined (as an entry symbol) in some
other object module.

As the Linker reads the object modules it keeps track of all global symbol defmitions and references. It then
modifies the instructions and/or data which reference the global symbols. Undefined globals are printed on the
console terminal after pass 1 (or pass 2 if a library file is also linked).

6-3

Linker

6.5 INPUT AND OUTPUT
Linker input and output is in the fonn of modules; one or more input modules (object fIles produced by either
assembler or FORTRAN IV) are used to produce a single output (load) module.

6.5.1 Object Modules
Object fIles, consisting of one or more object modules, are the input to the Linker (the Linker ignores fIles which are
not object modules). Object modules are created by the HT-II assembler or FORTRAN IV. The Linker reads each
object module at least twice (three times if library files are linked) .. During the first pass each object module is read
to construct a global symbol table and to assign absolute values to the control section names and global symbols. If
library fIles are linked, a second pass is needed to resolve the undefined globals from the library files and force their
associated object modules into the root; on the final pass, the Linker reads the object modules, links and relocates
the modules and outputs the load module.

6.5.2 Load Module
The primary output of the Linker is a load module which may be loaded and run under HT-II. The load module is
output as a save image file (SA V). An absolute load module (LDA) is produced if the module is to be loaded by the
Absolute Loader.

The load module for a save image file is arranged as follows:

Root Segment Overlay
Segments
(optional)

The first 256-word block of the root segment (main program) contains the memory usage map and the locations
used by the Linker to pass program control parameters. The memory usage map outlines the blocks of memory used
by the load module and is located in locations 360 to 377.

The control parameters are located in locations 40-50 and contain the following information when the module is
loaded:

Address

40:
42:
44:
46:
50:

Information

Start Address of program
Initial setting of R6 (stack pointer)
Job Status Word
USR Swap Address (0 implies nonnallocation)
Highest Memory Address in user's program

Memory locations 0-476 (comprising the interrupt vectors and system communication area) may be assigned initial
values by using an .ASECT assembler statement and will appear in block 0 of the load module, but there are restric
tions on the use of .ASECTs in this region. The Linker does not permit an .ASECT of location 54 or of locations
360-377 (the memory usage map is passed in those locations).

Any location which is not restricted may be set with an .ASECT, but caution should be used in changing the system
communication area. Restricted areas, such as the region 360-377, must be initialized by the program itself. There
are no restrictions on .ASECTs if the output format is LDA.

6-4

Linker

Locations in the region 0-476 which are initialized by an .ASECT in a program may never be loaded when the pro
gram is executed. The R, RUN, and GET commands will not load an address protected by the monitor's memory
protection map. The addresses normally protected include such important areas as the system device and console
device vectors, but protection may be extended dynamically (e.g., by a task issuing a .PROTECT call). The proce
dure for loading these locations is to do so at run-time using MOV instructions.

6.5.3 Load Map
If requested, a load map is produced following the completion of the initial passe es) of the Linker. This map, shown
in Figure 6-1, diagrams the layout of memory for the load module.

Each .CSECT included in the linking process is listed in the load map. The entry for a .CSECT includes the name
and low address of the section and its size (in bytes). The remaining columns contain the entry points (or globals)
found in the section and their addresses.

The map begins with the name of the load module and the date of creation. The modules located in the root
segment of the load module are listed next, followed by those modules which were assigned to overlays in order by
their region number (see Section 6.6). Any undefined global symbols are then listed. The map ends with the
transfer address (start address) and high limit of relocatable code.

6.5.4 Library Files
The HT-II Linker has the capability of automatically searching libraries. Libraries are composed of library mes-
specially formatted mes produced by the Librarian program (Chapter 7) which contain one or more object modules.
The object modules provide routines and functions to aid the user in meeting specific programming needs. (For
example, FORTRAN has a special library containing all necessary computational functions--TAN, ATAN, etc.)
By using the Librarian, libraries can be created and updated so that routines which are used more than once, or
routines which are used by more than one program, may be easily accessed. Selected modules from the appropriate
library file are linked as needed with the user program to produce one load module. Libraries are further described
in Section 6.7 and in Chapter 7.

6.6 USING OVERLAYS

NOTE
Library mes that have been combined under PIP are illegal
as input to both the Linker and the Librarian.

The HT-II program overlay facility enables the user to have virtually unlimited memory space for an assembly
language or FORTRAN program. A program using the overlay facility can be much larger than would normally fit
in the available memory space, since portions of the program (called overlay segments) reside on a backup storage
device (disk).

The HT-II overlay scheme is a strict multi-region arrangement; it is not tree-structured. Figure 6-2 diagrams this
scheme. The overlay system which the user constructs from his completed program is composed of a root segment,
memory-resident overlay regions, and the overlay segments stored on the backup storage device. The root segment is
a required part of every overlay program and contains all transfer addresses; it must therefore never be overlaid. An
overlay region corresponds to a run-time area of memory that is shared by two or more subroutines; there is a
distinct memory area for each overlay region. Overlay segments are portions of the save image file from which the
user's program is run; these are brought into memory as needed.

6-5

Linker

HT·11 LINK V03·01 LOAD MAP
SORT .SAV 19·5Ep·78

SECTION ADDR SIZE ENTRY ADDR ENTRY ADDR ENTRY ADDR

. ABS. 000000 001000 $USRSW 000000 $V005A 000001 $NLCHN 000006
$LRECL 000210 $TRACE 004737

001000 000220
001220 001364 $OTI 001246
002604 002300 OCI$ 002604 ICI$ 002612 $GET 002772

RCI$ 003006 OCO$ 003712 ICO$ 003720
GCO$ 004144 FCO$ 004152 ECO$ 004156
DCO$ 004164

005104 000160 ISN$ 005104 $ISNTR 005110 LSN$ 005124
$LSNTR 005130

005264 000102 MOI$SS 005264 MOL$SS 005264 MOI$SM 005270
MOI$SA 005274 MOI$IS 005300 MOL$IS 005300
REL$ 005300 MOI$IM 005304 MOI$IA 00531.0
MOI$MS 005314 MOI$MM 005320 MOI$MA 005324
MOI$OS 005330 MOI$OM 005334 MOI$OA 005340
MOI$lS 005344 MOI$lM 005352 MOI$lA 005360

005366 000020 IFR$ 005366 IFW$ 005400
005406 000046 EOL$ 005406
005454 000062 TVL$ 005454 TVF$ 005462 TVD$ 005470

TVO$ 005476 TVP$ 005504 TVI$ 005512
005536 000036 CAI$ 005536 CAL$ 005544
005574 000174 SORT 005574
005770 000026 MOF$RS 005770 MOF$RM 005776 MOF$RA 006006

MOF$RP 006012
006016 000044 NMI$lM 006016 NMI$ll 006026 BLE$ 006034

BEO$ 006036 BGT$ 006044 BGE$ 006046
BRA$ 006050 BNE$ 006054 BLT$ 006056

006062 000072 FOO$ 006062 EXIT 006074 STP$ 006074
006154 000002 $AOTS 006154

$ERRTB 006156 000100
$ERRS 006256 002637

011116 001534 $FIO 011600
012652 000202 $FMTDR 012652 $FMTDW 012702 $INITI 012750
013054 000416 $CLOSE 013054
013472 000106 LCI$ 013472 LCO$ 013540
013600 000302 $GETRE 013600 $TTYIN 013722
014102 000262 $PUTRE 014102
014364 000106 $FCHNL 014364
014472 000674 $OPEN 014472
015366 000110 $DUMPL 015366
015476 000414 $PUTBL 015476 $GETBL 015676 $EOFIL 016046
016112 000042 $WAIT 016112

TRANSFER ADDRESS = 001000
HIGH lIMIT= 016154

Figure 6·1 Linker Load Map

6·6

A=A/C
B/O:1/C

C/O:1/C
D/O:2/C

E/O:2

Linker

= Root
= Segment 1 ! = Segment 2

= Region 1

= Segment 3

! = Segment 4
= Region 2

Figure 6-2 Overlay Scheme

Overlay regions are specified to the Linker via the /0 switch as described in Section 6.8.8. The size of the overlay
region is calculated by the Linker to be the size of the largest group of subroutines that can occupy the region at one
time. The Linker creates the overlay regions and edits the program to produce the desired overlays at run-time.

Figure 6-3 shows a diagram of memory for a program which has an overlay structure and Figure 6-4 is a listing of the
run-time overlay handler.

There is no special code or function call needed to use overlays but the following eight rules must be observed when
referencing parts of the users program which might be overlaid.

1. Calls or branches to overlay segments must be made directly to entry points in the segment. Entry points
are locations tagged with a global symbol (refer to Chapter 5). For example, if ENTER is a global tag in an
overlay segment:

JMPENTER
JMPENTER+6

is legal, but
is illegal.

2. Entries in overlay segments can be used only for transfer of control and not for referencing data within an
overlay section (e.g., MOV ENTER,R4 is illegal if ENTER is in an overlay segment, but MOV #ENTER,R 7
is legal because it is used for transfer of control). A violation of this rule cannot be detected by the
assembler or Linker so no error is issued; however, it can cause the program to use incorrect data.

3. When calls are made to overlays, the entire return path must be in memory. This will happen if these rules
are followed:

Calls (with expected return) may be made from an overlay segment only to entries in the same
segment, the root segment, or an overlay segment with a greater region number.

Calls to entries in the same region as the call must be entirely within the same segment, not another
segment in the same region.

Jumps (with no expected return) can be made from an overlay segment to any entry in the program.
However, jumps should not reference an overlay region whose number is lower than the region from
which the last unreturned call was made (e.g., if a call was made from region 3, then no jumps should
reference regions 1,2 or 3 until the call has returned).

Subroutines in the root segment may be called from overlay segments; in turn, they may call entries
from the same overlay segment which called them, or from the root segment, or from another overlay
segment with a greater region number. Such subroutines are considered part of the overlay segment
which called them.

4. A .CSECT name cannot be used to pass control to an overlay. It will not cause the appropriate segment to
be loaded into memory (e.g., JSR PC,OVSEC is illegal if OVSEC is used as a .CSECT name in an overlay).
As stated in 1 above, a global symbol must be used to pass control from one segment to the next.

5. Channel 17 (octal) cannot be used by the user program because overlays are read on that channel.
6. Object modules acquired from a library fIle cannot be placed into overlays.
7. Library fIles may not be specified on the same command line as an overlay.

6-7

Linker

ADDRESS
o

SYSTEM AREA
400

OVERLAY HANDLER
AND TABLES

(INCLUDED BY LINKER)

ROOT SEGMENT
OF PROGRAM
(BASICB,FPMP)

IDENTIFICATION WORD

OVERLAt REGION 1

(BAS I C2S.l (BASI C,§,)

IDENTIFICATION WORD

OVERLAY REGION 2

(BASICH)

.... - -"-

T MONITOR T

Figure 6-3 Memory Diagram Showing BASIC Link With Overlay Regions

.SBTTL THE RUN-TIME OVERLAY HANDLER

THE FOLLOWING CODE IS INCLUDED IN THE USER'S PROGRAM BY THE
LINKER WHENEVER OVERLAYS ARE REQUESTED BY THE USER.
56.8 MICROSECONDS (APPROX) IS ADDED TO EACH REFERENCE OF
A RESIDENT OVERLAY SEGMENT.

THE RUN-TIME OVERLAY HANDLER IS CALLED BY A DUMMY
SUBROUTINE OF THE FOLLOWING FORM:

JSR
.WORD
.WORD

R5,$OVRH
<OVERLAY#>
<ENTRY ADDR>

;CALL TO COMMON CODE
;#OF DESIRED SEGMENT
;ACTUAL CORE ADDR

ONE DUMMY ROUTINE OF THE ABOVE FORM IS STORED IN THE RESIDENT
PORTION OF THE USER'S PROGRAM FOR EACH ENTRY POINT TO
AN OVERLAY SEGMENT. ALL REFERENCES TO THE ENTRY POINT ARE
MODIFIED BY THE LINKER TO INSTEAD BE REFERENCES TO THE APPRO
PRIATE DUMMY ROUTINE. EACH OVERLAY SEGMENT IS CALLED INTO

6-8

Linker

CORE AS A UNIT AND MUST BE CONTIGUOUS IN CORE. AN OVERLAY
SEGMENT MAY HAVE ANY NUMBER OF ENTRY POINTS, TO THE LIMITS
OF CORE MEMORY. ONLY ONE SEGMENT AT A TIME MAY OCCUpy AN
OVERLAY REGION.

RESTRICTIONS:
SINCE REFERENCES TO OVERLAY SEGMENTS ARE AUTOMATICALLY TRANS
LATED BY THE LINKER INTO REFERENCES TO DUMMY SUBROUTINES,
THE PROGRAMMER MUST NOT ATTEMPT TO REFERENCE DATA IN AN OVER
LAY BY USING GLOBAL SYMBOLS.

$OVTAB=1000+$OVRHE-$OVRH
$OVRH: MOV RO,-(SP)

MOV R 1,-(SP)
MOV R2,-(SP)

$OVRHB:
MOV
BR
MOV

$OVRHA: ADD
MOV
CMP
BEQ
.READW
BCS

$ENTER: MOV
MOV
MOV
MOV
RTS

$FIRST: MOV
MOV

$HROOT: .WORD
MOV

$HOVL Y: .WORD
1$: CLR

$ERR:

$OVRHE:

CMP
BLO
BR
EMT
.BYTE

(R5)+,RO
$FIRST
RO,R1

;PICK UP OVERLAY NUMBER
;FIRSTCALLONLY * * *

#$OVTAB-6,R1 ;CALC TABLE ADDR
(R1)+,R2 ;GET CORE ADDR OF OVERLAY REGION
RO, @R2 ;IS OVERLAY ALREADY RESIDENT?
$ENTER ;YES, BRANCH TO IT
17,R2,(R1)+,(R1)+ ;READ FROM OVERLAY FILE
$ERR
(SP)+,R2
(SP)+,R 1
(SP)+,RO
@R5,R5
R5

;RESTORE USER'S REGS

;GET ENTRY ADDRESS
;ENTER OVERLAY ROUTINE AND
;RESTORE USER'S R5

#12500,$OVRHB;RESTORE SWITCH INSTR
(PC)+,Rl ;START ADDR FOR CLEAR OPERATION
o ;HIGH ADDR OF ROOT SEGMENT
(PC)+,R2 ;COUNT
o ;HIGH LIMIT OF OVERLAYS
(Rl)+ ;CLEAR ALL OVERLAY REGIONS
Rl,R2
1$
$OVRHB
376
0,373

;AND RETURN TO CALL IN PROGRESS
~ENERATEALWAYSFATALERROR

;AND DISREGARD SOFT ERROR

OVERLAY SEGMENT TABLE FOLLOWS;
$OVTAB: .wORD <CODE ADDR>,<RELATIVE BLK>,<WORD COUNT>
THREE WORDS PER ENTRY, ONE ENTRY PER OVERLAY SEGMENT.

ALSO, THERE IS ONE WORD PREFIXED TO EACH OVERLAY REGION
THAT IDENTIFIES THE SEGMENT CURRENTLY RESIDENT IN THAT REGION.
THIS WORD IS AN INDEX INTO THE $OVTAB TABLE.

Figure 6-4 The Run-Time Overlay Handler

6-9

Linker

8. Overlay regions must be specified in ascending order and are read-only. Unlike USR swapping, an overlay
segment does not save the segment it is overlaying. Any tables, variables, or instructions that are modi
fied within a given overlay segment are re-initialized to their original values in the SA V me if that segment
has been overlaid by another segment. Any variables or tables whose values must be maintained across
overlays should be placed in the root segment.

The following information should be noted when writing FORTRAN overlays.

1. When dividing a FORTRAN program into a root segment and overlay regions (and subsequently dividing
each overlay region into overlay segments), routine placement should be carefully considered. The user
should always remember that it is illegal to call a routine located in a different overlay segment in the same
overlay region, or an overlay region with a lower numeric value (as specified by the Linker overlay switch,
/O:n) from the calling routine. The user should divide each overlay region into overlay segments which
never need to be resident simultaneously (Le., if segments A and B are assigned to region X, they cannot
call each other because they occupy the same locations in memory).

2. The FORTRAN main program unit must be placed in the root segment.
3. In an overlay environment, subroutine calls and function subprogram references may refer only to one of

the following:

A FORTRAN library routine (e.g., ASSIGN, DCOS)

A FORTRAN or assembly language routine contained in the root segment

A FORTRAN ot assembly language routine contained in the same overlay segment as the calling
routine

A FORTRAN or assembly language routine contained in a segment whose region number is greater
than that of the calling routine

4. In an overlay environment, COMMON blocks must be placed so that they are resident when referenced.
Blank COMMON is always resident since it is always placed in the root segment. All named COMMON
must be placed either in the root segment, or into the segment whose region number is lowest of all seg
ments which reference the COMMON block. A named COMMON block cannot be referenced by two
segments in the same region unless the COMMON block appears in a segment of a lower region number.
The Linker automatically places a COMMON block into the root segment if it is referenced by the
FORTRAN main program or by a subprogram that is located in the root segment. Otherwise the Linker
places a COMMON block in the first segment encountered in the Linker command string that references
that COMMON block.

5. All COMMON blocks which are initialized (by use of DATA statements) must be so initialized in the seg
ment in which they are placed.

Refer to the HT-11 FORTRAN IV User's Guide for more details.

The .ASECT never takes part in overlaying in any way (Le., if part of an .ASECT is destroyed by overlay operations,
it is not restored by the overlay handler).

The aforementioned sets of rules apply only to communications among the various modules that make up a pro
gram. Internally, each module must only observe standard programming rules for the PDP-ll (as described in the
PDP-11 Processor Handbook and in Chapter 5).

It should be noted that the condition codes set by a user program are not preserved across overlay segment bound
aries.

6-10

Linker

The Linker provides overlay services by including a small resident overlay handler (Figure 6-4) in the same file with
the user program to be used at program run-time. This overlay handler plus some tables are inserted into the user's
program beginning at the bottom address computed by the Linker. The Linker moves the user's program up in
memory by an appropriate amount to make room for the overlay handler and tables, if necessary.

6.7 USING LIBRARIES
Libraries are specified in a command string in the same fashion as nonnal modules; they may be included anywhere
in the command string, with the exception of overlay lines. If a global symbol is undefined at the time the library
is encountered in the input stream and a module is included in the library which includes that global definition,
that module is pulled from the library and linked into the load image. Only the modules needed to resolve refer
ences are pulled from the library; unused modules are not linked.

NOTE
Modules in one library may call modules from another
library; however, the libraries must appear in the com
mand string in the order in which they are called. For
example, assume module X in library ALIB calls SQRT
from the FORTRAN library. To correctly resolve all
globals, the order of ALIB and the FORTRAN library
should appear in the command line as:

*Z=B,ALlB/F
or *Z=B,ALlB,FORLIB

Module B is the root. It calls X from ALIB and brings
X into the root. X in turn calls SQRT which is brought
from FORLIB into the root.

FORTRAN libraries cannot precede their root segment in a command line as this creates a bad transfer address.
For example:

are legal, but:

*X=ROOT/F
*X=ROOT,FORLIB

*X=FORLlB,ROOT

is not. Unpredictable results will occur.

6.7.1 User Library Searches
Object modules from the named user libraries built by the Librarian are relocated selectively and linked by the
Linker. The HT-II Linker searches a specified library file during the library pass as follows (refer to Figure 6-5
for a flowchart representation of this process):

1. If there are any undefmed globals in the Linker's table when a library is encountered in the command
string, proceed to step 2; otherwise skip this library (go to step 5).

2. Read the library directory.
3. If any of the undefmed globals can be defined by a module in this library, include the relevant module

into the linked output file; otherwise, go to step 5.
4. If any undefmed globals remain in the Linker's table and they have not been looked for in the library,

return to step 2; otherwise go to step 5.
5. Close the llbrary file.
6. Go to the next element in the command string.

6-11

Linker

This search method allows modules to appear in any order in the library. Any number of libraries may be specified
in a link, and they may be positioned anywhere, with the exception of overlay segments and the restrictions noted
in Section 6.7.

EXIT PASS

START

SEARCH
UNDEFINED GLOBALS

FROM LIBRARY

YES

NO

Figure 6-5 Library Searches

6-12

pROCESS FILE

YES

Linker

NOTE
For faster Linker performance, the user should specify
all object mes before library mes, and all user library
mes before the system library files. For example:

*A=A,B,USELIB/F

where A and B are object modules, USEUB is a user
created library file, and IF denotes the default
FORTRAN library, FORUB.

Libraries are input to the Linker as any other input file. Assume the following command string to the Linker:

*TASK01.SAV,LP:=MAIN.OBJ,MEASUR.OBJ

This causes program MAIN.OBJ to be read from DK: as the first input me. Any undefined symbols generated
by program MAIN.OBJ should be satisfied by the library file MEASUR.OBJ specified in the second input file.
The load module, TASK01.SAV is put on DK: and a load map goes to the line printer.

6.8 SWITCH DESCRIPTION
The switches summarized in Table 6-1 are described in detail below.

6.8.1 Alphabetize Switch
The /A switch requests the Linker to list linked modules in alphabetical order as follows: .CSECTs, module names,
and entry points within modules. The load map is normally arranged in order by module address as shown in
Figure 6-1. Figure 6-6 is an example of an alphabetized load map.

6.8.2 Bottom Address Switch
The /B switch specifies the lowest address to be used by the relocatable code in the load module. When /B is not
specified, the Linker positions the load module so that the lowest address is location 1000 (octal). If the .ASECT
length is greater than 1000, the length of .ASECT is used.

The form of the bottom switch is:

/B:n

n is a six-digit unsigned octal number which defines the bottom address of the program being linked. An error
message results if n is not specified as part of the /B command.

If more than one /B switch is specified during the creation of a load module, the first /B switch specification is
used.

NOTE
The bottom value must be an unsigned even octal
number. If the value is odd, an error message is gen
erated.

6-13

Linker

HT-11 LINK V03-01 LOAD MAP
SORT .SAV 19-5EP-78

SECTION ADDR SIZE ENTRY ADDR ENTRY ADDR ENTRY ADDR

. ABS. 000000 001000 $LRECL 000210 $NLCHN 000006 $USRSW 000000
$TRACE 004737 $V005A 000001

001000 000220
001220 001364 $OTI 001246
002604 002300 DCO$ 004164 ECO$ 004156 FCO$ 004152

GCO$ 004144 ICI$ 002612 ICO$ 003720
OCI$ 002604 OCO$ 003712 RCI$ 003006
$GET 002772

005104 000160 ISN$ 005104 LSN$ 005124 $ISNTR 005110
$LSNTR 005130

005264 000102 MOI$IA 005310 MOI$IM 005304 MOI$IS 005300
MOI$MA 005324 MOI$MM 005320 MOI$MS 005314
MOI$SA 005274 MOI$SM 005270 MOI$SS 005264
MOI$OA 005340 MOI$OM 005334 MOI$OS 005330
MOI$1A 005360 MOI$1M 005352 MOI$1S 005344
MOL$IS 005300 MOL$SS 005264 REL$ 005300

005366 000020 IFR$ 005366 IFW$ 005400
005406 000046 EOL$ 005406
005454 000062 TVD$ 005470 TVF$ 005462 TVI$ 005512

TVL$ 005454. TVP$ 005504 TVO$ 005476
005536 000036 CAI$ 005536 CAL$ 005544
005574 000174 SORT 005574
005770 000026 MOF$RA 006006 MOF$RM 005776 MOF$RP 006012

MOF$RS 005770
006016 000044 BEO$ 006036 BGE$ 006046 BGT$ 006044

BLE$ 006034 BLT$ 006056 BNE$ 006054
BRA$ 006050 NMI$11 006026 NMI$1M 006016

006062 000072 EXIT 006074 FOO$ 006062 STP$ 006074
006154 000002 $AOTS 006154

$ERRTB 006156 000100
$ERRS 006256 002637

011116 001534 $FIO 011600
012652 000202 $FMTDR 012652 $FMTDW 012702 $INITI 012750
013054 000416 $CLOSE 013054
013472 000106 LCI$ 013472 LCO$ 013540
013600 000302 $GETRE 013600 $TTYIN 013722
014102 000262 $PUTRE 014102
014364 000106 $FCHNL 014364
014472 000674 $OPEN 014472
015366 000110 $DUMPL 015366
015476 000414 $EOFIL 016046 $GETBL 015676 $PUTBL 015476
016112 000042 $WAIT 016112

TRANSFER ADDRESS = 001000
HIGH LIMIT = 016154

Figure 6-6 Alphabetized Load Map

6-14

Linker

Example:

*OUTPUT,LP:=INPUT/B:500 Causes the input file to be linked starting at location 500 (octal).

6.8.3 Continue Switch
The Continue switch (lC) is used to allow additional lines of command string input. The /C switch is typed at the
end of the current line and may be repeated on subsequent command lines as often as necessary to specify all input
modules for which memory is available. If memory is exceeded, an error message is output. A /C switch is not
entered on the last line of input.

Example:

*OUTPUT, LP:=INPUT IC
*

Input is to be continued on the next line; the Linker prints an
asterisk.

6.8.4 Default FORTRAN Library Switch
By indicating the /F switch in the command line, the FORTRAN library, FORLIB.OBJ on the default device (SY:),
is linked with the other object modules specified; the user does not need to specify FORLIB. For example:

*FI LE,LP:=AB.OBJ/F

The object module AB.OBJ and the FORTRAN library FORLIB are linked together to form a load module called
FILE.SAY. (Note that the FORLIB default is SY:FORLIB.OBJ, not DK:FORLIB.OBJ.)

6.8.S Include Switch
The /1 switch allows subsequent entry at the keyboard of global symbols to be taken from any library and included
in the linking process. When the /1 switch is specified, the Linker prints:

LIBRARY SEARCH:

Reply with the list of global symbols to be included in the load module; type a carriage return to enter each symbol
in the list. A carriage return alone terminates the list of symbols. This provides a method for forcing modules
(which are not called by other modules) to be loaded from the library.

Example:

*OUTPUT,LP:=INPUT,XLlB/I

LIBRARY SEARCH:

A<CR>
GETSYM<CR>
CHAR<CR>
CHFLG <CR>
<CR>

6.8.6 LDA Fonnat Switch

Linker prints LIBRARY SEARCH:

User enters A, GETSYM, etc. which are to be included in the linking process.
Each symbol is entered by typing a carriage return; the list is terminated by
an additional carriage return.

The LDA format switch (fL) causes the output file to be in LDA format instead of save image format. The LDA
format file can be output to any device, including devices that are not block-replaceable such as paper tape, and is
useful for files which are to be loaded with the Absolute Loader. The default extension .LDA is assigned when the
/L switch is used.

6-15

Linker

The /L switch cannot be used in conjunction with the overlay switch (/0).

Example:

*DK:OUT,LP:=IN,IN2/L

6.8.7 Modify Stack Address

Links disk files IN and IN2; outputs an LDA format file OUT.LDA
to the system device and a load map to the line printer.

The stack address, location 42, is the address which contains the user's stack pointer. The /M switch allows terminal
keyboard specification of the user's stack address.

The form of the switch is:

/M:n

n is an even unsigned 6-digit octal number which defines the stack address. If n is not specified, the Linker prints
the message:

STACK ADDRESS =

In this case, specify the global symbol whose value is the stack address. A number cannot be specified, and if a non
existent symbol is specified, an error message is printed and the stack address is set to the system default (1000 for
save files).

Direct assignment (via .ASECT) of the stack address within the program takes precedence over assignment with the
/M switch.

Example:

*OUTPUT=INPUT/M

STACK ADDRESS = BEG

6.8.8 Overlay Switch
The Overlay switch (fO) is used to segment the load module so that the entire program is not memory resident
at one time (overlay feature). This allows programs larger than the available memory to be executed. The switch
has the form:

/O:n

where n is an unsigned octal number (up to six digits in length) specifying the overlay region to which the module
is assigned. The /0 switch must follow (on the same line) the specification of the object modules to which it applies,
and only one overlay region can be specified on a command line. Overlay regions cannot be specified on the first
command line as this is the root segment. Therefore, the /C continuation switch must be used.

Co-resident overlay routines (a group of subroutines which occupy the overlay region and segment at the same time)
are specified as follows:

*OBJA,OBJB,OBJC/O:n/C
*OBJD,OBJE/O:m/C

6-16

Linker

All modules mentioned until the next /0 switch will be co-resident overlay routines. If at a later time the /0 switch
is given with the same value previously used (same overlay region), then the corresponding overlay area is opened for
a new group of subroutines. The new group of subroutines will occupy the same locations in memory as the first
group, but not at the same time. For example, if subroutines in object modules Rand S are to be in memory
together, but are never needed at the same time as T, then the following commands to the Linker make Rand S
occupy the same memory as T (but at different times):

*MAIN,LP:=ROOT/C
*R,S/O:l/C
*T/O:l

The above could also be written as:

*MAIN,LP:=ROOT/C
*R/O:l/C
*S/C
*T/O:l

Example:

*OUTPUT, LP:=INPUT /C
*OBJA/O:l/C
*OBJB/0:2

Establishes two overlay regions

Overlays must be specified in order of increasing region number. For example:

.R LINK
*A=A/C
*B/O:l/C
*C/O:l/C
*D/O:l/C
*E,F/0:2/C
*G/0:3

The following overlay specification is illegal since the overlay regions are given in a random numerical order (an
error message is printed in each case):

.R LINK
*A=A/C
*D/0:2/C
*B/O:l/C
/0 IGNORED
*C/O:l/C
/0 IGNORED
*G/0:3/C
*H/0:3/C
*E,F/0:2
/0 IGNORED

6-17

Linker

6.8.9 Symbol Table Switch
Use of the symbol table switch in the command line instructs the Linker to allow the largest possible memory area
for its symbol table at the expense of making the link process slower. With the IS switch, library directories are
not made resident in memory, but are left on disk. For example:

*OUTF,LP:=INPUT.OBJ,LlBR1.0BJ,LlBR2.0BJ/S

The directories of the library mes LIBRI and LIBR2 are not brought into memory, resulting in more room in the
symbol table but longer link time.

If the IS switch is not used and the memory available to the Linker is approximately 10K or larger, the library
directory is brought into memory (providing there is room); the directory is kept there until the library has been
completely processed, thus reducing the size of the Linker's symbol table. If there is not enough room in memory
for the direcctory (as is the case in an 8K system), the Linker determines this and leaves the directory on disk re
gardless of whether the IS switch was used or not.

The IS switch should be used only if an attempt to link a program failed because of symbol table overflow. Often,
use of IS will allow the program to link.

6.8.10 Transfer Address Switch
The transfer address is the address at which a program is to be started when executed via an R or RUN command.
The Transfer Address switch (IT) allows terminal keyboard specification of the start address of the load module
to be executed. This switch has the form:

IT:n

where n is a six-digit unsigned octal number which defmes the transfer address. If n is not specified, the message:

TRANSFER ADDRESS =

is printed. In this case, specify the global symbol whose value is the transfer address of the load module, followed
by a carriage return. A number cannot be specified in answer to this message. When a nonexistent symbol is
specified, an error message is printed and the transfer address is set to 1 (so that the program cannot be executed).

If the transfer address specified is odd, the program does not start after loading and control returns to the monitor.

Direct assignment (.ASECT) of the transfer address within the program takes precedence over assignment with the
IT switch. The transfer address assigned with a IT has precedence over that assigned with a .END assembly directive.

Example:

*PROG=PROG 1 ,PROG2,ODT IT
TRANSFER ADDRESS =
O.ODT

The mes PROG1.0BJ,PROG2.0BJ and ODT.OBJ are linked to
gether and started at ODT's transfer address.

6.9 LINKER ERROR HANDLING AND MESSAGES
The following error messages can be output by the Linker. The messages enclosed in question marks are output
to the terminal; the other messages are only warnings and are included in the load map. If a load map is not re
quested in the command string, all messages are output to the terminal.

6-18

Message

ADDITIVE REF OF xxxxxx
AT SEGMENT #yyyyyy

?/B NO VALUE?

?/B ODD VALUE?

?BADGSD?

Linker

Meaning

Rule 1 of overlay rules explained in Section 6.6 has been violated. xxxxxx
represents the entry point; yyyyyy represents the segment number.

The /B switch requires an unsigned even octal number as an argument.

The argument to the /B switch was not an unsigned even octal number.

There is an error in the global symbol directory (GSD). The me is probably
not a legal object module. This error message occurs on pass I of the Linker.

BAD OVERLAY AT SEG # yyyyyy Overlay tries to store text outside its region; check for a .ASECT in overlay.
yyyyyy represents the segment number.

?BAD RLD? There is an invalid relocation directory (RLD) command in the input me;
the me is probably not a legal object module. The message occurs on pass
2 of the Linker.

?BAD SWITCH? LINK did not recognize a switch specified on the first command line. On
a subsequent command line, a bad switch causes this warning message but
does not restart the Linker.

?BAD x SWITCH IGNORED? LINK did not recognize a switch (x) specified in the command line. The
switch is ignored and linking continues.

BYTE RELOCATION ERROR AT Linker attempted to relocate and link byte quantities but failed. xxxxxx
xxxxxx represents the address at which the error occurred. Failure is defined as the

high byte of the relocated value (or the linked value) not being all zero.

?CORE?

?ERROR ERROR?

?ERROR IN FETCH?

?FILE NOT FND?

?FORLIB NOT FND?

?HARD I/O ERROR?

In such a case, the value is truncated to 8 bits and the Linker continues
processing.

There is not enough memory to accommodate the command or the resultant
load module.

An error occurred while the Linker was in the process of recovering from a
previous system or user error.

The device is not available.

Input me was not found.

The user indicated via the /F switch that the FORTRAN library, FORLIB,
was to be linked with the other object modules in the command line, and
the Linker could not find FORLIB.OBJ on the system device.

A hardware error occurred; try the operation again.

6-19

Message

?LDA FILE ERROR?

?/MODDVAL?

?MAP FILE ERROR?

MULT DEF OF xxxxxx

?NOINPUT?

10 IGNORED

?OUTPUT FULL?

?SA V FILE ERR?

Linker

Meaning

There was a hardware problem with the device specified for LDA output or
the device was full.

An odd value has been specified for the stack address. Control returns to
the Linker and another command line may be indicated.

There was a hardware problem with the device specified for map output or
the device is full.

The symbol, xxxxxx, was defmed more than once.

No input fIles were specified.

Overlays have been speCified in the wrong order (see overlay restrictions);
the overlay switch is ignored.

The output device was full.

The Linker encountered a problem writing the save image fIle; try the oper
ation again.

?STACK ADDRESS UNDEFINED OR IN OVERLAY?

?SYMBOL TABLE OVERFLOW?

?TOO MANY OUlPUT FILES?

The stack address specified by the 1M switch was either undefined or in an
overlay. The stack address is set to the system default.

There were too many global symbols used in the program. Retry the link
using the IS switch. If the error still occurs, the link cannot take place in
the available memory.

The Linker allows speCification of only two output fIles.

TRANSFER ADDRESS UNDEFINED OR IN OVERLAY

UNDEFGLBLS

UNDEFINED GLOBALS
xxxxxx
xxxxxx

The transfer address was not defined or was in an overlay.

Undefmed globals exist.

The globals listed (xxxxxx) were undefined. If a load map is requested,
this condition also causes the warning message, UNDEF GLBLS, to be
printed on the terminal.

6-20

CHAPTER 7

LIBRARIAN

The HT -11 system provides the user with the capability of maintaining libraries which may be composed of func
tions and routines of his choice. Each library is a file containing a library header, library directory (or entry point
table), and one or more object modules. The object modules in a library file may be routines which are repeatedly
used in a program, routines which are used by more than one program, or routines which are related and simply
gathered together for ease in usage - the contents of the library file are determined by the user's needs. An
example ofa typical library file is the FORTRAN library, FORLIB.OBJ. This library is provided with the FOR
TRAN package and contains all the mathematical functions needed for normal usage.

Object modules in a library file are accessed from another program via calls to their entry points; the object modules
are linked with the program which uses them by the Linker (Chapter 6) to produce a single load module.

The HT-II Librarian (LIBR) allows the user to create, update, modify, list, and maintain library files.

7.1 CALLING AND USING LIBR
The HT-ll Librarian is called from the system device by entering the command:

RLIBR

in response to the dot printed by the Keyboard Monitor. The Command String Interpreter prints an asterisk at
the left margin on the console terminal when it is ready to accept a command line.

Type CTRL C to halt the Librarian at any time and return control to the monitor. To restart the Ubrarian, type
R LIBR or the REENTER command in response to the monitor's dot.

7.2 USER SWITCH COMMANDS AND FUNCTIONS
The user maintains library files through the use of switch commands. Functions which can be performed include
object module deletion, insertion and replacement, library file creation, and listing of a library file's contents.

7.2.1 Command Syntax
LIBR accepts command strings in the following general format:

*dev:lib ,dey :list=dev :input/sl /s2/s3

where:

dey:

lib

list

input

/sl, ...

represents a legal HT-II device specification

represents the library file to be created or updated

represents a listing me for the library's contents

represents the filenames of the input object modules

represents one or more of the switches listed in Table 7-1

7-1

Librarian

Devices and fIlenames are specified by the user in the standard HT-ll command string syntax, with default exten
sions assigned as follows:

File

list fIle:
library fIle:
input fIles:

Extension

.LLD

.OBJ

.OBJ

If no device is specified, the default device (DK:) is assumed.

Each input fIle is made up of one or more object modules, and is stored on a given device under a specific me
name and extension. Once an object module has been inserted into a library fIle, the module is no longer refer
enced by the name of the fIle of which it was a part, but by its individual module name. (This module name has
been assigned by the assembler either via a .TITLE statement in the assembly source program, or, if no .TITLE
statement is present, with the default name .MAIN.; see Chapter 5.) Thus, for example, the input fIle FORT~OBJ
may exist on DX1: and may contain an object module called ABC. Once the module is inserted into a library
fIle, reference is made only to ABC (not FORT.OBJ).

7.2.2 LIBR Switch Commands
Table 7-1 summarizes the switches available for use under HT-l1 LIBR. Switches are explained in detail follow
ing the table.

Table 7-1 LIBR Switches

Position In
Switch Command String Meaning

/C Any line Command continuation; the command is .JO long for the
but last current line and is continued on the next line

/D lst line only Delete; delete modules from a library fIle

/G lst line only Global deletion; delete entry points from the library
directory

/R lst line only Replace; replace modules in a library me

/U lst line only Update; insert and replace modules in a library fIle

There is no switch to indicate module insertion. The function of inserting a module into a library me is assumed
in the absence of other switches.

7.2.2.1 Command Continuation Switch - The Command Continuation switch is necessary whenever there is
not enough room to enter a command string on one line and additional lines are needed. The /C switch is typed
at the end of the current line and may be repeated at the end of subsequent command lines as often as necessary as
long as memory is available; if memory is exceeded, an error message is output. A IC switch is not entered on the
last line of input.

7-2

Librarian

Command Format:

*dev:lib,dev:list=dev:inputl ,dev:input2, ... ,1C
*dev:inputn

where:

dey: represents a device specification

lib represents the filename of the library to be created or updated

list represents the filename of a listing file containing the library file's contents

input represents the filenames of the input modules to be inserted into the library

IC represents the Continuation switch, indicating that the command is to be continued on the fol
lowing line

Examples:

*ALlB,L1BLST=DXl :MAIN,TEST,FXN/C
*DX1:TRACK

In this example, a library file is created on the default device (DK:) under the filename ALIB.OBJ; a listing of
the library file's contents is created as LIBLST.LLD also on the default device; the filenames of the input modules
are MAIN.OBJ, TEST.OBJ, FXN.OBJ, and TRACK.OBJ, all from DXl.

*BLlB=MAIN/C
*DX1:TEST/C
*PR:FXN/C
*DXl :TRACK

A library file is created on the default device, (DK:) under the name BLIB. No listing is produced. Input files are
MAIN from the default device, TEST from DXl:, FXN from PR: and TRACK from DXl.

Another way of writing this command line is:

*BLlB=MAIN,DXl :TEST,PR :FXN/C
*DXl :TRACK

7.2.2.2 Creating a Library Fie - A library file is created whenever a fllename is indicated on the output side of a
command line which does not represent a list file.

Command Format:

*dev:lib=dev:inputI, ... ,dev:inputn

where:

dey: represents a device specification

lib represents the filename of the library to be created

input represents the filenames of the input modules to be inserted into the new library

Example:

* NEW L I B=F I RST ,SECON D

7-3

Librarian

A new library called NEWLIB.OBI is created on the default device (DK:). The modules which will make up this
library file are in the files FIRST.OBI and SECOND.OBI, both on the default device.

Assume this command line is next entered:

*NEWLlB,LlST=THIRO,FOURTH

The already existing library file NEWLIB is destroyed when the new library file is created. A listing of the library
file's contents is created under the filename LIST, and the object modules in the files THIRD and FOURTH are
inserted into the library file NEWLIB.

7.2.2.3 Inserting Modules Into a Library - The Insert function is assumed whenever an input file does not have
an associated switch; the modules in the file are inserted into the library file named on the output side of the com
mand string. Any number of input files are allowed. If an attempt is made to insert a file which contains an entry
point or .CSECT having the same name as an entry point or .CSECT already existing in the library file, a warning
message is printed. However, the library file is updated, ignoring the entry point or .CSECT in error, and control
returns to the CSI; the user may enter another command string.

Although the user may insert object modules which exist under the same name (as assigned by the .TITLE state
ment) this practice is not recommended because of the difficulty involved when replacing or updating these modules
(refer to Sections 7.2.2.4 and 7.2.2.7).

NOTE
The library operations of module insertion, replacement
deletion, merge, and update are actually performed in
conjunction with the library file creation operation.
Therefore, the library file to which the operation is
directed must be indicated on both the input and out
put sides of the command line, since effectively a "new"
output library file is created each time the operation is
performed. The library file must be specified first in the
input field.

Command Format:

*dev:lib=dev:lib,dev:inputl, ... ,dev:inputn

where:

dev: represents a device specification

lib represents the filename of an existing library file

input represents the filenames of the modules to be inserted into the library file

Example:

*OXY=OXY,OXl :FA,FB,FC

The modules included in the files F A.OB], FB.OBI, and FC.OBI on DXI: are inserted into a library file named
DXY.OBI on the default device. The library header and Entry Point Table of the library file are updated accord
ingly (see Section 7.4).

7-4

Librarian

7.2.2.4 Replace Switch - The Replace function is used to replace modules in a library file. All modules con
tained in the file(s) indicated as input will replace existing modules of the same names in the library file specified as
output.

An error message is printed and no modules are replaced if an old module does not exist under the same name as an
input module, or if the user specifies the /R switch on a library file. /R must follow each input filename containing
modules for replacement.

Command Format:

*dev:lib=dev:lib~nput1/R, ... ,dev:inputn/R

where:

dey: represents a device specification

lib represents the filename of an existing library file

input represents the names of the files containing modules to be replaced

/R represents the Replace switch

Examples:

*TFIL=TFIL,INA,INB/R,INC

This command line indicates that the modules in the me INB.OBJ are to replace existing modules of the same names
in the library file TFIL.OBJ. The object modules in the mes INA.OBJ and INC.OBJ are to be added. All files are
stored on the default device DK:.

*XFI L=TF IL,INA,INB/R,INC

The same operation occurs here as in the preceding example, except that this updated library file is assigned the new
name XFIL.

7.2.2.5 Delete Switch The Delete switch deletes modules and all their associated entry points from the library.

Command Format:

*dev:lib=dev:lib/D

where:

dey: represents the device on which the library file exists

lib represents the filename of an existing library file

/D represents the Delete switch; may be positioned anywhere on the input side of the command line

When the /D switch is used, the Librarian prints:

MOD NAME:

The user should respond with the name of the module to be deleted followed by a carriage return; he may continue
until all modules to be deleted have been entered. Typing only a carriage return (either on a line by itself or immedi
ately after the MOD NAME: message) terminates input and initiates execution of the command line.

7-5

Examples:

*DX1 :TRAP=DX1 :TRAP/D

MOD NAME:
SGN<CR>
TAN<CR>
<CR>

Librarian

The modules SGN.OB] and T AN.DB] are deleted from the library file TRAP.DB] on DXl:.

*LlBFIL=LlBFIL/D,ABC/R,DEF

MOD NAME:
FIRST<CR>
<CR>

The module FIRST. DB] is deleted from the library (LIBFIL); the module ABC.DB] replaces an old module of the
same name in the library, and the modules in the me DEF.DB] are inserted into the library.

*LlBFI L=LlBFIL/D

MOD NAME:
X<CR>
X<CR>
<CR>

Two modules of the same name are deleted from the library me LIBFIL (module names are assigned with the
.TITLE statement as described in Section 7.2.1).

7.2.2.6 Delete Global Switch - The Delete Global switch gives the user the ability to delete a specific entry
point from a library file's Entry Point Table.

Command Format:

*dev:lib=dev :lib /G

where:

dev: represents the device on which the library me exists

lib represents the mename of an existing library me

/G represents the Delete Global switch; may be positioned anywhere on the input side of the com
mand line

When the /G switch is used, the Librarian prints:

ENTRY POINT:

The user should respond with the name of the entry point to be deleted followed by a carriage return; he may con
tinue until all entry points to be deleted have been entered. Typing only a carriage return (either on a line by itself
or immediately after the ENTRY POINT: message) terminates input and initiates execution of the command line.

7-6

Example:

*ROLL=ROLL/G

ENTRY POINT:
NAMEA<CR>
NAMEB<CR>
<CR>

Librarian

This command inst,ructs LIBR to delete the entry points NAMEA and NAMEB from the entry point table found in
the library file ROLL.OBJ on DK:.

Since entry points are only deleted from the Entry Point Table (and not from the library itself) whenever a library
file is updated, all entry points that were previously deleted are restored unless the /G switch is again used to delete
them. This feature allows the user to recover from inadvertently deleting the wrong entry point.

7.2.2.7 Update Switch - The Update switch allows the user to update a library file by combining the insert and
replace functions. If the object modules included in an input file in the command line already exist in the library
file, they are replaced; if not, they are inserted. (No error messages are printed when using the Update function as
might occur under the Insert and Replace functions.) /U must follow each input file containing modules to be
updated.

Command Format:

*dev:lib=dev:lib,dev:inputl/U, ... ,dev:inputn/U

where:

dev: represents a device specification

lib represents the fllename of an existing library file

input represents the names of files containing object modules to be updated

/U represents the Update switch

Examples:

*BALlB=BALlB,FOL T/U,TAL,BART /U

This command line instructs LIBR to update the library file BALIB.OBJ on the default device. First the modules
in FOLT.OBJ and BART.OBJ replace old modules of the same names in the library file, or if none already exist
under their names, the modules are inserted. Then the modules from the me TAL.OBJ are inserted; an error mes
sage is printed if the name of the module in TAL.OBJ already exists.

* XLI B=XLI BID ,Z/U/G

MOD NAME:
X<CR>
X<CR>
<CR>

ENTRY POINT:
SEC<CR>
SEC1 <CR>
<CR>

7-7

Librarian

There are two object modules of the same name (X) in both Z and XLIB; these are first deleted from XLIB. This
ensures that both modules X in file Z are correctly placed into the library. Entry points SEC and SECl are also
deleted from the Entry Point Table, but automatically return when the library (XLIB) is updated in the future.

7.2.2.8 Listing the Directory of a Library File - The user may specify that a listing of the contents of a library
file be output by indicating both the library file and a list file in the command line. Since a library file is not being
created or updated, it is not necessary to indicate the mename on the output side of the command line; however a
comma must be used to designate a null output library me.

Command Formats:

*,LP:=dev:lib

or

* ,dev:list=dev:lib

where:

dey: represents a device specification

lib represents the file name of an existing library file

LP: indicates the listing is to be sent directly to the line printer

list represents a list file of the library file's contents

Examples:

*,DX1: LlST=LlBFI L

This command line outputs to disk 1 as LIST.LLD a listing of the contents of the library file LIBFIL.OBJ on the
default deVice.

*,LP:=FLlB

This command outputs on the line printer a listing of all modules in the library file FLIB.OBJ stored on the default
device. Assuming this library is composed of modules STOP, WAIT, and IMUL, is 2 blocks long, was created on
September 6, 1978, and the listing was requested on September 6, 1978, the directory format appears as follows:

HT-ll LIBRARIAN
FLiB

MODULE

STOP
WAIT
IMUL

X02-05
6-SEP-78

ENTRY/CSECT

STP$
SWAIT
MUI$IS
MUI$SS

6-SEP-78
2 BLOCKS

ENTRY/CSECT

MUI$MS
$MLI

ENTRY /CSECT

MUI$PS

7.2.2.9 Merging Library Files - Two or more library files may be merged under one filename by indicating all
the library files to be merged in a single command line. The individual library files are not deleted following the
merge.

Command Format:

*dev:lib=dev:inputl, ... ,dev:inputn

7-8

Librarian

where:

dev: represents a device specification

lib represents the name of the library me which will contain all the merged mes (if a library file
already exists under this name, it must also be indicated in the input side of the command line in
order to be included in the merge)

input represents the library mes to be merged together

Thus, the command:

*MAIN=MAIN,TRIG,STP,BAC

combines library files MAIN.OBJ, TRIG.OBJ, STP.OBJ, and BAC.OBJ under the existing library me name
MAIN.OBJ; all mes are on the default device DK:.

*FORT=A,B,C

This command creates a library me named FORT.OBJ and merges existing library mes A.OBJ, B.OBJ, and C.OBJ
under the filename FORT.OBJ.

NOTE
Library mes that have been combined under PIP are
illegal as input to both the Librarian and the Linker.

7.3 COMBINING LIBRARY SWITCH FUNCTIONS
Two or more library functions may be requested in the same command line. The Librarian performs functions in
the following order:

1. IC
2. ID
3. IG
4. IV
5. IR
6. Insertions
7. Listing

Example:

*FILE,LP:=FILE/D,MODX,MODY/R

MOD NAME:
XYZ<CR>
A<CR>
<CR>

Functions in this example are performed in order, as follows:

1. Delete modules XYZ.OBJ and A.OBJ from the library me FILE.OBJ
2. Replace any duplicate of the module in the me MODY.OBJ
3. Insert the modules in the me MODX.OBJ
4. List the contents of FILE.OBJ on the line printer

7-9

Librarian

7.4 FORMAT OF LIBRARY FILES
A library me is a contiguous me consisting of a header, an Entry Point Table (library directory) and one or more
library object modules, as illustrated in Figure 7-1:

LIBRARY HEADER

ENTRY POINT TABLE

OBJECT MODULES

LIBRARY END TRAILER BLOCK

Figure 7-1 General Library File Format

The following paragraphs describe in detail each component of a library me.

7.4.1 Library Header
The header section of a library me contains 17 (decimal) words which describe the current status of the me (refer
to Figure 7 -2). This includes information relating to the version of the Librarian in use, the date and time of me
creation or update, the relative starting address of the Entry Point Table (EPT), the number of EPT entries available
and in use, and the placing of the next module to be inserted into the library me. The contents of the library header
are updated as the library me is modified, so that LIBR can always quickly and easily access the information it needs
to perform its functions. Figure 7-2 illustrates the header format.

1

568

7

x

0

x

0

0

0

0

0

128

xl

0

x2

x3

0

} FORMATTED BINARY
BLOCK HEADER

'I

1.1

LIBRARIAN CODE

VERSION NUMBER

RESERVED

YEAR-MONTH-DAY

RESERVED

EPT RELATIVE START ADDRESS

EPT ENTRIES ALLOCATED IN BYTES

EPT ENTRIES AVAILABLE

NEXT INSERT RELATIVE BLOCK NUMBER

NEXT BYTE WITHIN BLOCK

NOT USED (MUST BE ZERO)

Figure 7-2 Library Header Format

7-10

Librarian

7.4.2 Entry Point Table (Library Directory)
The Entry Point Table is located immediately after the library header. It is composed of four-word entries which
include the names, addresses, and entry points of all object modules in the library file. The first two words of an
entry in the EPT contain the Radix 50 name by which an entry point, CSECT, or module is referenced. The third
word provides a pointer to the object module where an entry point is defined. The fourth word contains the total
number of CSECTs in the object module (information needed by the Linker), and the relative byte within the block
pointing to the object module's starting point, as shown in Figure 7 -3.

o

2

4

6

SYMBOL (RAD 50)

SYMBOL (RAD 50)

I ADDRESS OF BLOCK

OF CSECTS IN I
OBJECT MODULE RELATIVE BYTE IN BLOCK

BIT 15 = 1-MODULE NAME
= 0-CSECT OR ENTRY POINT NAME

RELATIVE BYTE MAXIMUM = 7778
CSECTS MAXIMUM = 1778

Figure 7-3 Format of Entry Point Table

7.4.3 Object Modules
Object modules follow the Entry Point Table. An object module consists of three main types of data blocks:
a global symbol directory, text blocks, and a relocation directory. The information contained in these data blocks
is used by the Linker during creation of a load module.

7.4.4 Library End Trailer
Following all object modules in a library fIle is a specially coded library end trailer which signifies the end of the
file. This trailer is illustrated in Figure 74.

1 FORMATTED BINARY HEADER

10 FORMATTED BINARY LENGTH

10 TYPE CODE

0 NOT USED (MUST BE ZERO)

I 357 CHECKSUM BYTE

Figure 74 Library End Trailer

7.5 LIBR ERROR MESSAGES
The following error messages are printed following incorrect use of LIBR; if any errors result during library process
ing, the user must reenter the command.

7-11

Message

?BADLIBR?

?BADOBJ?

?CSECT ERROR?

?DEVFULL?

?FIL NOT FND?

?ILLCMD?

xxxxxx ILL DEL

?ILLDEV?

xxxxxx ILL INS

xxxxxx ILL REPL

?IN ERR?

?LIBR FIL ILL REPL?

?NOCORE?

?OUTERR?

Librarian

Meaning

The user has attempted to build a library fIle containing no directory
entries or he has given an illegally constructed library fIle to the
Librarian as input.

A bad object module was detected during input.

The user has extended beyond the allowable .CSECT space for an object
module to be placed in the library (i.e., the object module contains
greater than 127 (decimal) .CSECTS).

The device is full; LIBR is unable to create or update the indicated
library fIle. The CSI prints an asterisk and waits for the user to enter
another command line.

One of the input fIles indicated in the command line was not found.
The CSI prints an asterisk; the command may be reentered.

An illegal command was used in the command line. The CSI prints an
asterisk; the command may be reentered.

An attempt was made to delete from the library's directory a module or
an entry point that does not exist; xxxxxx represents the module or
entry point name. The name is ignored and processing continues.

An illegal device was specified in the command line. The CSI prints an
asterisk; the command may be reentered.

An attempt was made to insert a module into a library which contains
the same entry point as an existing module. xxxxxx represents the entry
point name. The entry point is ignored but the module is still inserted
into the library.

An attempt was made to replace in the library fIle a module which does
not already exist. xxxxxx represents the module name. The module
is ignored and the library is built without it.

An unrecoverable hardware/software error has occurred while processing
an input fIle. The CSI prints an asterisk and waits for another command
to be entered.

The user has speCified that a library fIle be replaced by another library
fIle. Only object modules can be replaced.

Available free memory has been used up. The current command is
aborted and the CSI prints an asterisk; a new command may be entered.

An unrecoverable hardware/software error has occurred while processing
an output fIle. This may indicate that there is not enough space left on
the device to create the library fIle, even though there may be enough
directory entries. The CSI prints an asterisk and waits for the user to
enter another command.

7·12

CHAPTER 8

ON-LINE DEBUGGING TECHNIQUE

HT-II On-Line Debugging Technique (ODT) is a system program that aids in debugging assembled and linked object
programs. From the keyboard, the user interacts with ODT and the object program to:

1. Print the contents of any location for examination or alteration.
2. Run all or any portion of an object program using the breakpoint feature.
3. Search the object program for specific bit patterns.
4. Search the object program for words which reference a specific word.
5. Calculate offsets for relative addresses.
6. Fill a single word, block of words, byte or block of bytes with a designated value.

The assembly listing of the program to be debugged should be readily available when ODT is being used. Minor
corrections to the program can be made on-line during the debugging session, and the program may then be run
under control of ODT to verify any changes made. Major corrections, however (such as a missing subroutine),
should be noted on the assembly listing and incorporated in a subsequent updated program assembly.

8.1 CALLING AND USING ODT
ODT is supplied as a relocatable object module. It can be linked with the user program (using the HT-II Linker) for
an absolute area in memory and loaded with the user program. When linked with the user program, ODT should
reside in low memory, starting at 1000, to accommodate its stack.

Once loaded in memory with the user program, ODT has three legal start or restart addresses. The lowest (O.ODT)
is used for normal entry, retaining the current breakpoints. The next (O.ODT+2) is a restart address which clears all
breakpoints and re-initializes ODT saving the general registers and clearing the relocation registers. The last address
(O.ODT+4) is used to reenter ODT. A reenter saves the Processor Status and general registers and removes the
breakpoint instructions from the user program. ODT prints the Bad Entry (BE) error message. Breakpoints which
were set are reset on the next ;G command. (;P is illegal after a BE message.) The ;G and ;P commands are used to
run a program and are explained in Section 8.3.7.

The absolute address used is the address of the entry point O.ODT shown in the Linker load map. O.ODT is always
the lowest address of ODT+l72, i.e., O.ODT is relative location 172 in ODT.

Examples:

NOTE
If linked with an overlay structured file, ODT should
reside in the root segment so it is always in memory.
A breakpoint inserted in an overlay will be destroyed if it
is overlaid during program execution.

1. ODT Linked with the User Program:

!.GET USER.SAV
-,-START 1172
ODT V01-0l

User program previously linked to ODT is brought into memory.
Value (1172) of entry point a.ODT (determined from Linker load
map) is used to start ODT.

8-1

On-Line Debugging Technique

2. Loading ODT with the User Program:

~GET ODT. SAY

~ GET USER. SAY

~START 40172

ODT V01-02
.:!.

ODT is loaded into memory.

User program is loaded into memory.

Assuming ODT has been linked for a bottom address of 40000,
ODT starts.

3. Restarting ODT Clearing Breakpoints:

. START 1174

..:!.

4. Reentering ODT:

. START 1176

BE001212

8.1.1 Return to Monitor, CTRL C

Assuming ODT was originally linked for a bottom address of 1000, this
command (O.ODT+2) re·initializes ODT and clears any previous
breakpoints.

Assuming ODT was linked for a bottom address of 1000, the value of
O.ODT 1172+4 is used as the start address.

If ODT is awaiting a command, a CTRL C from the keyboard calls the HT·II Keyboard Monitor. The monitor
responds with a tc on the terminal and awaits a Keyboard Monitor command. (The monitor REENTER command
may be used to reenter ODT only if the user program has set the reenter bit. Otherwise ODT is reentered at address
O.ODT+4 as shown above.)

8.1.2 Terminate Search, CTRL U
If typed during a search printout, a CTRL U terminates the search and ODT prints an asterisk.

8.2 RELOCATION
When the assembler produces a binary object module, the base address of the module is taken to be location
000000, and the addresses of all program locations as shown in the assembly listing are indicated relative to this base
address. After the module is linked by the Linker, many values within the program, and all the addresses of
locations in the program, will be incremented by a constant whose value is the actual absolute base address of the
module after it has been relocated. This constant is called the relocation bias for the module. Since a linked
program may contain several relocated modules each with its own relocation bias, and since, in the process of
debugging, these biases will have to be subtracted from absolute addresses continually in order to relate relocated
code to assembly listings, HT·II ODT provides an automatic relocation facility.

The basis of the relocation facility lies in eight relocation registers, numbered a through 7, which may be set to the
values of the relocation biases at different times during debugging. Relocation biases should be obtained by consult·
ing the memory map produced by the Linker. Once set, a relocation register is used by ODT to relate relocatable
code to relocated code. For more information on the exact nature of the relocation process, consult Chapter 6,
the HT ·11 Linker.

8·2

On-Line Debugging Technique

8.2.1 Relocatable Expressions
A relocatable expression is evaluated by aDT as a 16-bit (6·digit octal) number and may be typed in anyone of the
three forms presented in Table 8-1. In this table, the symbol n stands for an integer in the range 0 to 7 inclusive, and
the symbol k stands for an actal number up to six digits long, with a maximum value of 177777. If more than six
digits are typed, aDT takes the last six digits, truncated to the low-order 16 bits. k may be preceded by a minus
sign, in which case its value is the two's complement of the number typed. For example:

k (number typed) Values

000001
-1 177777
400 000400
-177730 000050
1234567 034567

Table 8-1 Fonns of Relocatable Expressions (r)

r Value ofr

A) k The value of r is simply the value of k.

B) n,k The value of r is the value of k plus the contents of relocation register n.
If the n part of this expression is greater than 7, aDT uses only the last
octal digit of n.

C) Cor Whenever the letter C is typed, aDT replaces C with the contents of a
C,k or special register called the Constant Register. This value has the same role
n,C or as the k or n that it replaces (Le., when used in place of n it designates a
C,C relocation register). The Constant Register is designated by the symbol $C

and may be set to any value, as indicated below.

In the following examples, assume in each case that relocation register 3 contains 003400 and that the constant
register contains 000003.

r Value ofr

5;C 000005
-17;C 177761
3,0;C 003400
3,150;C 003550
3,-I;C 003377
C;C 000003
3,C;C 003403
C,O;C 003400
C,1O;C 003410
C,C;C 003403

NOTE
For simplicity most examples in this section use Form A.
All three forms of r are equally acceptable, however.

8-3

On-Line Debugging Technique

8.3 COMMANDS AND FUNCTIONS
When aDT is started (as explained in Section 8.1) it indicates readiness to accept commands by printing an asterisk
on the left margin of the terminal page. Most of the aDT commands can be issued in response to the asterisk. For
example, a word can be examined and changed if desired, the object program can be run in its entirety or in seg
ments, or memory can be searched for certain words or references to certain words. The discussion below explains
these features. In the following examples, characters output by aDT are underlined to differentiate from user input.

8.3.1 Printout Fonnats
Normally, when aDT prints addresses (as with the commands ,j" t, +-, @, <, and» it attempts to print them in
relative form (Form B in Table 8-1). aDT looks for the relocation register whose value is closest but less than or
equal to the address to be printed, and then represents the address relative to the contents of the relocation register.
However, if no relocation register fits the requirement, the address is printed in absolute form. Since the relocation
registers are initialized to -1 (the highest number) the addresses are initially printed in absolute form. If any reloca
tion register subsequently has its contents changed, it may then, depending on the command, qualify for relative
form.

For example, suppose relocation registers 1 and 2 contain 1000 and 1004 respectively, and all other relocation
registers contain numbers much higher. Then the following sequence might occur (the slash command causes the
contents of the location to be printed; the line feed command «LF» accesses the next sequential location):

~774/000000 <LF>
000776/000000 <LF>
1, 000000 /000000 <LF>
1, 000002 /000000 <LF>
2,000000/000000

(absolute location 1000)
(absolute location 1002)
(absolute location 1004)

The printout format is controlled by the format register, $F. Normally this register contains 0, in which case aDT
prints addresses relatively whenever possible. $F may be opened and changed to a non-zero value, however, in which
case all addresses will be printed in absolute form (see paragraph 8.3.4, Accessing Internal Registers).

8.3.2 Opening, Changing, and Closing Locations
An open location is one whose contents aDT prints for examination, making those contents available for change. In
a closed location, the contents are no longer available for change. Several commands are used for opening and
closing locations.

Any command used to open a location when another location is already open causes the currently open location to
be closed. The contents of a11 open location may be changed by typing the new contents followed by a single
character command which requires no argument (Le., <LF>, t, RETURN, +-,@,>,<).

The Slash, /
One way to open a location is to type its address followed by a slash:

":1000/012746

Location 1000 is open for examination and is available for change.

If the contents of an open location are not to be changed, type the RETURN key and the location is closed; aDT
prints an asterisk and waits for another command. However, to change the word, simply type the new contents
before giving a command to close the location:

~1000/012746 012345 <CR>
.!

8-4

On-Line Debugging Technique

In the example above, location 1000 now contains 012345 and is closed since the RETURN key was typed after
entering the new contents, as indicated by OOT's second asterisk.

Used alone, the slash reopens the last location opened:

:1000/012345 2340 <CR>
~/002340

In the example above, the open location was closed by typing the RETURN key. OOT changed the contents of
location 1000 to 002340 and then closed the location before printing the *. The single slash command directed
OOT to reopen the last location opened. This allowed verification that the word 002340 was correctly stored in
location 1000.

Note again, that opening a location while another is open automatically closes the currently open location before
opening the new location.

Also note that if an odd numbered address is specified with a slash, OOT opens the location as a byte, and subse
quently behaves as if a backslash had been typed (see the following paragraph).

The Backslash, \
In addition to operating on words, OOT operates on bytes. One way to open a byte is to type the address of the
byte followed by a backslash. This causes not only the printing of the byte value at the specified address but also
the interpreting of the value as ASCII code, and the printing of the corresponding character (if possible) on the
terminal:

:1001\101 =A

A backslash typed alone reopens the last open byte. If a word was previously open, the backslash reopens its even
byte:

: 1002/000004 \004 =

The LINE FEED Key, <LF>
If the LINE FEED key is typed when a location is open, OOT closes the open location and opens the next sequential
location:

: 1000/002340 <LF>
001002/012740

(<LF> denotes typing the LINE FEED key)

In this example, the LINE FEED key caused OOT to print the address of the next location along with its contents,
and to wait for further instructions. After the above operation, location 1000 is closed and 1002 is open. The open
location may be modified by typing the new contents.

If a byte location was open, typing the LINE FEED key opens the next byte location.

The Up-Arrow, t or'"
If the up-arrow (or circumflex) is typed when a location is open, OOT closes the open location and opens the pre
vious location. To continue from the example above:

':001002/012740 t
001000/002340

8-5

On-Line Debugging Technique

Now location 1002 is closed and 1000 is open. The open location may be modified by typing the new contents.

If the opened location was a byte, then up-arrow opens the previous byte.

The Back-Arrow, +- or -
If the back-arrow (or underline) is typed to an open word, ODT interprets the contents of the currently open word
as an address indexed by the Program Counter (PC) and opens the addressed location:

~ 1006/000006 +-

001016/000405

Notice in this example that the open location, 1006, was indexed by the PC as if it were the operand of an instruc
tion with address mode 67 as explained in Chapter 5.

A modification to the opened location can be made before a line feed, up-arrow, or back-arrow is typed. Also, the
new contents of the location will be used for address calculations using the back-arrow command. Example:

~ 1 00/000222 4 <LF>
000102/000111 6t
000100 /000004 100+-
000202 /123456

Open the Addressed Location, @

(modify to 4 and open next location)
(modify to 6 and open previous location)
(change to 100 and open location indexed by PC)

The at symbol @ may be used to optionally modify a location, close it, and then use its contents as the address
of the location to open next.

:'1006/001044 @
001044 /000500

:'1006/0010442100@
002100/000167

Relative Branch Offset, >

(open location 1044 next)

(modify to 2100 and open location 2100)

The right-angle bracket, >, will optionally modify a location, close it, and then use its low-order byte as a relative
branch offset to the next word to be opened. For example:

:'1032/000407301>
000636/000010

(modify to 301 and interpret as a relative branch)

Note that 301 is a negative offset (-77). The offset is doubled before it is added to the PC; therefore,
1034+(-176)=636.

Return to Previous Sequence, <
The left-angle bracket, <, allows the user to optionally modify a location, close it, and then open the next location
of the previous sequence which was interrupted by a back-arrow, @,or right-angle bracket command. Note that
back-arrow, @, or right-angle bracket causes a sequence change to the word opened. If a sequence change has not
occurred, the left-angle bracket simply opens the next location as a LINE FEED does. This command operates on
both words and bytes.

8-6

':1032/000407 301>
000636 /000010 <
001034/001040 @

001040/000405 \005 = <
001035 \002 = <
001036 \004 =

8.3 .3 Accessing General Registers 0-7

On-Line Debugging Technique

(> causes a sequence change)
(return to original sequence)
(@ causes a sequence change)
« now operates on byte)
« acts like <LF»

The program's general registers 0-7 are opened with a command in the following format:

*$n/

where n is the integer representing the desired register (in the range 0 through 7). When opened, these registers can
be examined or changed by typing in new data as with any addressable location. For example:

~$0/000033 <CR> (RO was examined and closed)
*

~$4/000474 464<CR> (R4 was opened, changed, and closed)
*

The example above can be verified by typing a slash in response to OOT's asterisk:

:/000464

The LINE FEED, up-arrow, back-arrow or @ command may be used when a register is open.

8.3.4 Accessing Internal Registers
The program's Status Register contains the condition codes of the most recent operational results and the interrupt
priority level of the object program. It is opened by typing $S. For example:

~$S/OOO311

$S represents the address of the Status Register. In response to $S in the example above, OOT printed the 16-bit
word, of which only the low order eight bits are meaningful. Bits 0-3 indicate whether a carry, overflow, zero,
or negative (in that order) has resulted, and bits 5-7 indicate the interrupt priority level (in the range 0-7) of the
object program.

The $ is used to open certain other internal locations listed in Table 8-2.

8.3.5 Radix 50 Mode, X
The Radix 50 mode of packing certain ASCII characters three to a word is employed by many system programs,
and may be employed by any programmer via the assembler's" .RA050" directive. OOT provides a method for
examining and changing memory words packed in this way with the X command.

When a word is opened and the X command is typed, OOT converts the contents of the opened word to its 3-char
acter Radix 50 equivalent and prints these characters on the terminal. One of the responses in Table 8-3 can then be
typed.

8-7

Register

$B

$M

$P

$S

$C

$R

$F

On-Line Debugging Technique

Table 8-2 Internal Registers

Function

location of the first word of the breakpoint table (see Section 8.3 .6).

mask location for specifying which bits are to be examined during a bit pattern search
(see Section 8.3.9).

location defining the operating priority of ODT (see Section 8.3 .15).

location containing the condition codes (bits 0-3) and interrupt priority level (bits 5-7)
(explained above).

location of the Constant Register (see Section 8.3.10).

location of Relocation Register 0, the base of the Relocation Register table (see Section
8.3.13).

location of Format Register (see Section 8.3.1).

Table 8-3 Radix 50 Terminators

Response Effect

RETURN key <CR>

LINE FEED key <LF>

t key

Any three characters
whose octal code is 040
(space) or greater.

Closes the currently open location.

Closes the currently open location and opens the next one
in sequence.

Closes the currently open location and opens the previous
one in sequence.

Converts the three specified characters into packed Radix
50 format.

Legal Radix 50 characters for this last response are:

$ Space o through 9 A throughZ

If any other characters are typed, the resulting binary number is unspecified (that is, no error message is printed and
the result is unpredictable). Exactly three characters must be typed before ODT resumes its normal mode of oper
ation. After the third character is typed, the resulting binary number is available to be stored in the opened location
by closing the location in anyone of the ways listed in Table 8-3.

8-8

Example:

On-Line Debugging Technique

:1000/042431 X=KBI CBA <CR>
:1000/011421 X=CBA

NOTE
After ODT has converted the three characters to bi
nary, the binary number can be interpreted in one of
many different ways, depending on the command which
follows. For example:

:1234/063337 X=PRO XIT/013704

Since the Radix 50 equivalent of XIT is 113574, the
fmal slash in the example will cause ODT to open
location 113574 if it is a legal address. (Refer to para
graph 8.5 for a discussion of command legality and
detection of errors.)

8.3.6 Breakpoints
The breakpoint feature facilitates monitoring the progress of program execution. A breakpoint may be set at any
instruction which is not referenced by the program for data. When a breakpoint is set, ODT replaces the contents
of the breakpoint location with a trap instruction so that program execution is suspended when a breakpoint is
encountered. The original contents of the breakpoint location are restored, and ODT regains control.

With ODT, up to eight breakpoints, numbered 0 through 7, can be set at anyone time. A breakpoint is set by
typing the address of the desired location of the breakpoint followed by ;B. Thus r;B sets the next available break
point at location r. (If all 8 breakpoints have been set, ODT ignores the r;B command.) Specific breakpoints may
be set or changed by the r;oB command where n is the number of the breakpoint. For example:

':1020;8
':1030;8
':1040;8
:'1032;18
*

(sets breakpoint 0)
(sets breakpoint 1)
(sets breakpoint 2)
(resets breakpoint 1)

The ;B command removes all breakpoints. Use the ;oB command to remove'only one of the breakpoints, where
n is the number of the breakpoint. For example:

~;2B (removes the second breakpoint)
*

A table of breakpoints is kept by ODT and may be accessed by the user. The $B/ command opens the location
containing the address of breakpoint O. The next seven locations contain the addresses of the other breakpoints
in order, and can be sequentially opened using the LINE FEED key. For example:

~$B/OO 1 020 <LF>
nnnnnn /001032 <LF>
nnnnnn / nnnnnn (nnnnnn=address internal to ODT)

8-9

On-Line Debugging Technique

In this example, breakpoint 2 is not set. The contents printed is an address internal to ODT and can be determined
by checking the Linker Load Map (see Chapter 6).

It should be noted that a repeat count in a Proceed command refers only to the breakpoint that has most recently
occurred. Execution of other breakpoints encountered is detennined by their own repeat counts.

8.3.7 Running the Program, r;G and r;P
Program execution is under control of ODT. There are two commands for running the program: r;G and r;P. The
r;G command is used to start execution (Go) and r;P to continue (proceed) execution after halting at a breakpoint.
For example:

':'1000;G

Execution is started at location 1000. The program runs until a breakpoint is encountered or until program com
pletion, unless it gets caught in an infinite loop, in which case it must be either restarted or reentered as explained
in Section 8.1.

Upon execution of either the r;G or r;P command, the general registers 0-6 are set to the values in the locations
specified as $0-$6 and the processor Status Register is set to the value in the location specified as $S.

When a breakpoint is encountered, execution stops and ODT prints Bn; (where n is the breakpoint number), fol
lowed by the address of the breakpoint. Locations can then be examined for expected data. For example:

~1010;3B
":'1000; G
B3;001010
*

(breakpoint 3 is set at location 1010)
(execution started at location 1000)
(execution stopped at location 1010)

To continue program execution from the breakpoint, type ;P in response to ODT's last *.

When a breakpoint is set in a loop, it may be desirable to allow the program to execute a certain number of times
through the loop before recognizing the breakpoint. This can be done by setting a proceed count using the k;P
command; this command specifies the number of times the breakpoint is to be encountered before program execu
tion is suspended (on the kth encounter). The count, k, refers only to the numbered breakpoint which most re
centlyoccurred. A different proceed count may be specified for the breakpoint when it is encountered. Thus:

B3; 001010
~1026; 3B
':'4; P
B3;001026
*

(execution halted at breakpoint 3)
(reset breakpoint 3 at location 1026)
(set proceed count to 4 and continue execution; loop through breakpoint
three times and halt on fourth occurrence of the breakpoint)

Following the table of breakpoints (as explained in Section 8.3 .6) is a table of proceed command repeat counts for
each breakpoint. These repeat counts can be inspected by typing $B/ and nine LINE FEEDs. The repeat count for
breakpoint 0 is printed (the first seven LINE FEEDs cause the table of breakpoints to be printed; the eighth types
the single instruction mode, explained in the next section, and the ninth LINE FEED begins the table of proceed
command repeat counts). The repeat counts for breakpoints 1 through 7, and the repeat count for the single
instruction trap follow in sequence. Before a proceed count is assigned a value by the user, it is set to 0; after the
count has been executed, it is set to -1. Opening anyone of these provides an alternative way of changing the
count as the location, once open, can have its contents modified in the usual manner by typing the new contents and
then the RETURN key.

8-10

For example:

nnnnnn /001036 <LF>
nnnnnn /006630 <LF>
nnnnnn /000000 15 <LF>
nnnnnn /000000 <LF>

nnnnnn /000000 <LF>
nnnnnn /nnnnnn

On-Line Debugging Technique

(address of breakpoint 7)
(single instruction address)
(count for breakpoint 0; change to 15)
(count for breakpoint 1)

(count for breakpoint 7)
(repeat count for single instruction mode; the single instruction address is an
address internal to the user program if single instruction mode is used)

The address indicated as the single instruction address and the repeat count for single instruction mode are explained
next.

8.3.8 Single Instruction Mode
With this mode the number of instructions to be executed before suspension of the program run can be specified.
The Proceed command, instead of specifying a repeat count for a breakpoint encounter, specifies the number of
succeeding instructions to be executed. Note that breakpoints are disabled when single instruction mode is
operative.

Commands for single instruction mode are:

;nS

n;P

;S

Enables single instruction mode (n can have any non-zero value and serves only to dis
tinguish this form from the form ;S). Breakpoints are disabled.

Proceeds with program run for next n instructions before reentering aDT (if n is missing,
it is assumed to be 1). Trap instructions and associated handlers can affect the Proceed
repeat count. See Section 8.4.2.

Disables single instruction mode.

When the repeat count for single instruction mode is exhausted and the program suspends execution, aDT prints:

B8;nnnnnn

where nnnnnn is the address of the next instruction to be executed. The $B breakpoint table contains this address
follOWing that of breakpoint 7. However, unlike the table entries for breakpoints 0-7, direct modification has no
effect.

Similarly, following the repeat count for breakpoint 7 is the repeat count for single instruction mode. This table
entry may be directly modified and thus is an alternative way of setting the single-instruction mode repeat count.
In such a case, ;P implies the argument set in the $B repeat count table rather than an assumed 1.

8.3.9 Searches
With aDT all or any specified portion of memory can be searched for any specific bit pattern or for references to
a particular location.

8-11

On-Line Debugging Technique

Word Search, r;W
Before initiating a word search, the mask and search limits must be specified. The location represented by $M is
used to specify the mask of the search. $M/ opens the mask register. The next two sequential locations (opened
by LINE FEEDs) contain the lower and upper limits of the search. Bits set to 1 in the mask are examined during
the search; other bits are ignored. Then the search object and the initiating command are given using the r;W com
mand where r is the search object. When a match is found, (Le., each bit set to 1 in the search object is set to 1 in
the word being searched over the mask range) the matching word is printed. For example:

':$M/OOOOOO 177400 <LF>
nnnnnn /000000 1000 <LF>
nnnnnn /0000001040 <CR>
':400; W
001010/000770
001034 /000404

(test high-order eight bits)
(set low address limit)
(set high address limit)
(initiate word search)

In the above example, nnnnnn is an address internal to ODT; this location varies and is meaningful only for refer
ence purposes. In the first line above, the slash was used to open $M which now contains 177400; the LINE FEEDs
opened the next two sequential locations which now contain the upper and lower limits of the search.

In the search process an exclusive OR (XOR) is performed with the word currently being examined and the search
object, and the result is ANDed to the mask. If this result is zero, a match has been found and is reported on the
terminal. Note that if the mask is zero, all locations within the limits are printed.

Typing CTRL U during a search printout terminates the search.

Effective Address Search, r;E
ODT provides a search for words which address a specified location. Open the mask register only to gain access to
the low and high limit registers. After specifying the search limits (as explained for the word search), type the
command r;E (where r is the effective address) to initiate the search.

Words which are either an absolute address (argument r itself), a relative address offset, or a relative branch to the
effective address, are printed after their addresses. For example:

':$M/177400 <LF>
nnnnnn /001000 1010 <LF>
nnnnnn /001040 1060 <CR>
':1034;E
001016/001006
001054 /002767
':1020; E
001022/177774
001030 /00 1020

(open mask register only to gain access to search limits)

(initiating search)
(relative branch)
(relative branch)
(initiating a new search)
(relative address offset)
(absolute address)

Particular attention should be given to the reported effective address references because a word may have the speci
fied bit pattern of an effective address without actually being so used. ODT reports all possible references whether
they are actually used as such or not.

Typing CTRL U during a search printout terminates the search.

8-12

On-Line Debugging Technique

8.3.10 The Constant Register, r;C
It is often desirable to convert a relocatable address into its value after relocation or to convert a number into its
two's complement, and then to store the converted value into one or more places in a program. The Constant
Register provides a means of accomplishing this and other useful functions.

When r;C is typed, the relocatable expression r is evaluated to its 6-digit octal value and is both printed on the
terminal and stored in the Constant Register. The contents of the Constant Register may be invoked in subsequent
relocatable expressions by typing the letter C. Examples follow:

":'-4432;C=173346

':'6632/062701 C <CR>

:1000; 1 R

:1,4272;C=005272

8.3.11 Memory Block Initialization, ;F and ;I

(the two's complement of 4432 is placed in the Constant Register)

(the contents of the Constant Register are stored in location 6632)

(relocation Register 1 is set to 1000)

(relative location 4272 is reprinted as an absolute location and
stored in the Constant Register)

The Constant Register can be used in conjunction with the commands ;F and ;I to set a block of memory to a given
value. While the most common value required is zero, other possibilities are plus one, minus one, and ASCII space.

When the command ;F is typed, OOT stores the contents of the Constant Register in successive memory words
starting at the memory word address specified in the lower search limit and ending with the address specified in
the upper search limit.

When the command ;1 is typed, the low-order 8 bits in the Constant Register are stored in successive bytes of mem
ory starting at the byte address specified in the lower search limit and ending with the byte address specified in the
upper search limit.

For example, assume relocation register 1 contains 7000, 2 contains 10000, and 3 contains 15000. The following
sequence sets word locations 7000-7776 to zero, and byte locations 10000-14777 to ASCII spaces.

':'$M/OOOOOO <LF>
nnnnnn 1000000 1, 0 LF>
nnnnnn 1000000 2, -2 <LF>
':'O;C=OOOOOO
:; F

:'$M/OOOOOO <LF>
nnnnnn 1007000 2, 0 <LF>
nnnnnn 1007776 3, -1 <CR>
:'40; C=000040
.:; I
*

8.3.12 Calculating Offsets, r;O

(open mask register to gain access to search limits)
(set lower limit to 7000)
(set upper limit to 7776)
(Constan t Register set to zero)
(Locations 7000-7776 set to zero)

(set lower limit to 10000)
(set upper limit to 14777)
(Constant Register set to 40 (SPACE))

(Byte locations lOOOO-14777 are set to value in low-order 8 bits
of Constant Register)

Relative addressing and branching involve the use of an offset - the number of words or bytes forward or backward
from the current location to the effective address. During the debugging session it may be necessary to change a
relative address or branch reference by replacing one instruction offset with another. OOT calculates the offsets
in response to the r;O command.

8-13

On-Line Debugging Technique

The command r;O causes DDT to print the 16-bit and 8-bit offsets from the currently open location to address r.
For example:

':346/000034 414; 0 000044 022 22 <CR>
':/000022

In the example, location 346 is opened and the offsets from that location to location 414 are calculated and printed.
The contents oflocation 346 are then changed to 22 (the 8-bit offset) and verified on the next line.

The 8-bit offset is printed only if it is in the range -128(decimal) to 127(decimal) and the 16-bit offset is even, as
was the case above. For example, the offset of a relative branch is calculated and modified as follows:

:1034/103421 1034; 0 177776 377 \021 = 377 <CR>
:1103777

Note that the modified low-order byte 377 must be combined with the unmodified high-order byte.

8.3.13 Relocation Register Commands, r;oR, ;nR, ;R
The use of the relocation registers is defmed in Section 8.2. At the beginning of a debugging session it is desirable
to preset the registers to the relocation biases of those relocatable modules which will be receiving the most
attention.

This can be done by typing the relocation bias, followed by a semicolon and the specification of relocation registers,
as follows:

r;nR

r may be any relocatable expression and n is an integer from 0 to 7. If n is omitted it is assumed to be O. As an
example:

:1000; 5R
:5, 100; 5R
*

(puts 1000 into relocation register 5)
(effectively adds 100 to the contents of relocation register 5)

Once a relocation register is defmed, it can be used to reference relocat~ble values. For example:

':20oo;1R
..: 1, 2176/002466
":1,3712;08

(puts 2000 into relocation register 1)
(examines contents oflocation 4176)
(sets a breakpoint at location 5712)

In certain uses, programs may be relocated to an address below that at which they were assembled. This could
occur with PIC code (position Independent Code) which is moved without the use of the tinker. In this case the
appropriate relocation bias would be the two's complement of the actual downward displacement. One method
for easily evaluating the bias and putting it in the relocation register is illustrated in the following example.

Assume a program was assembled at location 5000 and was moved to location 1000. Then the sequence:

~1000;1R
':'1, -5000; 1 R
*

enters the two's complement of 4000 in relocation register 1, as desired.

8-14

On-Line Debugging Technique

Relocation registers are initialized to -1, so that unwanted relocation registers never enter into the selection process
when ODT searches for the most appropriate register.

To set a relocation register to -1, type ;nR. To set all relocation registers to -1, type ;R.

ODT maintains a table of relocation registers, beginning at the address specified by $R. Opening $R ($RI) opens
relocation register O. Successively typing a line feed opens the other relocation registers in sequence. When a re
location register is opened in this way, it may be modified like any other memory location.

8.3.14 The Relocation Calculators, nR and n!
When a location has been opened, it is often desirable to relate the relocated address and the contents of the
location back to their relocatable values. To calculate the relocatable address of the opened location relative to a
particular relocation bias, type n!, where n specifies the relocation register. This calculator works with opened bytes
and words. If n is omitted, the relocation register whose contents are closest but less than or equal to the opened
location is selected automatically by ODT. In the following example, assume that these conditions are fulfilled by
relocation register 2, which contains 2000. To find the most likely module that a given opened byte is in:

':'2500\011 = !=2,000500

Typing nR after opening a word causes ODT to print the octal number which equals the value of the contents of the
opened location minus the contents of relocation register n. If n is omitted, ODT selects the relocation register
whose contents are closest but less than or equal to the contents of the opened location. For example, assume the
relocation bias stored in relocation register 1 is 7000; then:

~1, 500/000000 1R=1, 171000

The value 171000 is the content of 1,500, relative to the base 7000. An example of the use of both relocation cal
culators follows.

If relocation register 1 contains 1000, and relocation register 2 contains 2000, then to calculate the relocatable
addresses of location 3000 and its contents, relative to 1000 and 2000, the following can be performed.

:3000/000410 1!=1, 002000 2!=2, 001000 1R=1, 177410 2R=2, 176410

8.3.15 ODT Priority Level, $P
$P represents a location in ODT that contains the interrupt (or processor) priority level at which ODT operates. If
$P contains the value 377, ODT operates at the priority level of the processor at the time ODT is entered. Otherwise
$P may contain a value between a and 7 corresponding to the flxed priority at which ODT operates.

To set ODT to the desired priority level, open $P. ODT prints the present contents, which may then be changed:

:$P/000006 377 <CR>
*

If $P is not specifled, its value is seven.

Breakpoints may be set in routines which run at different priority levels. For example, a program running at a
low priority may use a device service routine which operates at a higher priority level. If a breakpoint occurs from a
low-priority routine, ODT operates at a low priority; if an interrupt occurs from a high priority routine, the
breakpoints in the high priority routine will not be recognized since they were removed when the low priority break
point occurred. That is, interrupts set at a priority higher than the one at which ODT is running will occur and any
breakpoints will not be recognized. ODT disables all breakpOints from the program whenever it gains control.

8-15

On-Line Debugging Technique

Breakpoints are enabled when ;P and ;G commands are executed. For example:

':$P /000007 5
~1000; 8
~2000; 8
':'1000; G
80; 001000
* (an interrupt occurs and is serviced)

If a higher level interrupt occurs while ODT is waiting for input the interrupt will be serviced, and no breakpoints
will be recognized.

8.3.16 ASCII Input and Output, r;nA
ASCII text may be inspected and changed by the command:

r;nA

where r is a relocatable expression, and n is a character count. If n is omitted it is assumed to be 1. ODT prints n
characters starting at location r, followed by a carriage return/line feed. Type one of the following:

<CR>

<LF>

ODT outputs a carriage return/line feed and an asterisk and waits for another
command.

ODT opens the byte following the last byte ou tput.

Up to n characters of text
ODT inserts the text into memory, starting at location r. If fewer than n char
acters are typed, terminate the command by typing CTRL U, causing a carriage
return/line feed/asterisk to be output. However, if exactly n characters are
typed, ODT responds with a carriage return/line feed, the address of the next
available byte and a carriage return/line feed/asterisk.

ODT does not check the magnitude of n.

8.4 PROGRAMMING CONSIDERA nONS
Information in this section is not necessary for the efficient use of ODT. However, it does provide a better under
standing of how ODT performs some of its functions and in certain difficult debugging situations, this understanding
is necessary.

8.4.1 Functional Organization
The internal organization ofODT is almost totally modularized into independent subroutines. The internal struc
ture consists of three major functions: command decoding, command execution, and various utility routines.

The command decoder interprets the individual commands, checks for command errors, saves input parameters for
use in command execution, and sends control to the appropriate command execution routine.

The command execution routines take parameters saved by the command decoder and use the utility routines to
execute the specified command. Command execution routines exit either to the object program or back to the
command decoder.

The utility routines are common routines such as SAVE-RESTORE and I/O. They are used by both the command
decoder and the command executers.

8-16

On-Line Debugging Technique

8.4.2 Breakpoints
The function of a breakpoint is to give control to ODT whenever the user program tries to execute the instruction
at the selected address. Upon encountering a breakpoint, all of the ODT commands can be used to examine and
modify the program.

When a breakpoint is executed, ODT removes all the breakpoint instructions from the user's code so that the loca
tions may be examined and/or altered. ODT then types a message on the terminal of the form Bn;k where k is
the breakpoint address and n is the breakpoint number. The breakpoints are automatically restored when execution
is resumed.

A major restriction in the use of breakpoints is that the word where a breakpoint was set must not be referenced by
the program in any way since ODT altered the word. Also, no breakpoint should be set at the location of any
instruction that clears the T-bit. For example:

MOV #240,177776 ;SET PRIORITY TO LEVEL 5

NOTE
Instructions that cause or return from traps (e.g., EMT,
RTI) are likely to clear the T-bit, since a new word from
the trap vector or the stack is loaded into the Status
Register.

A breakpoint occurs when a trace trap instruction (placed in the user program by ODT) is executed. When a break
point occurs, the following steps are taken:

I. Set processor priority to seven (automatically set by trap instruction).
2. Save registers and set up stack.
3. If internal T-bit trap flag is set, go to step 13.
4. Remove breakpoints.
5. Reset processor priority to ODT's priority or user's priority.
6. Make sure a breakpoint or single-instruction mode caused the interrupt.
7. If the breakpoint did not cause the interrupt, go to step 15.
8. Decrement repeat count.
9. Go to step 18 if non-zero; otherwise reset count to one.

10. Save terminal status.
11. Type message about the breakpoint or single-instruction mode interrupt.
12. Go to command decoder.
13. Clear T-bit in stack and internal T-bit flag.
14. Jump to the Go processor.
IS. Save terminal status.
16. Type BE (Bad Entry) followed by the address.
17. Clear the T-bit, if set, in the user status and proceed to the command decoder.
18. Go to the Proceed processor, bypassing the TT restore rou tine.

Note that steps 1-5 inclusive take approximately 100 microseconds during which time interrupts are not permitted
(ODT is running at level 7).

8-17

On-Line Debugging Technique

When a proceed (;P) command is given, the following occurs:

1. The proceed is checked for legality.
2. The processor priority is set to seven.
3. The T-bit flags (internal and user status) are set.
4. The user registers, status, and Program Counter are restored.
5. Control is returned to the user.
6. When the T-bit trap occurs, steps 1,2,3, 13, and 14 of tlie breakpoint sequence areexecuted, breakpoints

are restored, and program execution resumes normally.

When a breakpoint is placed on an lOT, EMT, TRAP, or any instruction causing a trap, the following occurs:

1. When the breakpoint occurs as described above, ODT is entered.
2. When ;Pis typed, the T-bit is set and the lOT, EMT, TRAP, or other trapping instruction is executed.
3. This causes the current PC and status (with the T-bit included) to be pushed on the stack.
4. The new PC and status (no T-bit set) are obtained from the respective trap vector.
5. The whole trap service routine is executed without any breakpoints.
6. When an RTI is executed, the saved PC and PS (including the T-bit) are restored. The instruction fol

lowing the trap-causing instruction is executed. If this instruction is not another trap-causing instruction,
the T-bit trap occurs, causing the breakpOints to be reinserted in the user program, or the single-instruction
mode repeat count to be decremented. If the following instruction is a trap-causing instruction, this
sequence is repeated starting at step 3.

NOTE
Exit from the trap handler must be via the RTI instruc
tion. Otherwise, the T-bit is lost. ODT can not regain
control since the breakpoints have not been reinserted
yet.

Note that the ;P command is illegal if a breakpOint has not occurred (ODT responds with ?); ;P is legal, however,
after any trace trap entry.

The internal breakpoint status words have the following format:

1. The first eight words contain the breakpoint addresses for breakpOints 0-7. (The ninth word contains
the next instruction to be executed in single-instruction mode.)

2. The next eight words contain the respective repeat counts. (The following word contains the repeat count
for single-instruction mode.)

These words may be changed at will, either by using the breakpoint commands or by direct manipulation with $B.

When program runaway occurs (that is, when the program is no longer under ODT control, perhaps executing an
unexpected part of the program where a breakpoint has not been placed), ODT may be given control by pressing
the HALT key to stop the computer, and restarting ODT (see Section 8.1). ODT prints *, indicating that it is ready
to accept a command.

If the program being debugged uses the teleprinter for input or output, the program may interact with ODT to
cause an error since ODT uses the teleprinter as well. This interactive error will not occur when the program being
debugged is run without ODT.

8-18

On-Line Debugging Technique

Note the following rules concerning the ODT break routine:

I. If the teleprinter interrupt is enabled upon entry to the ODT break routine, and no output interrupt is
pending when ODT is entered, ODT generates an unexpected interrupt when returning control to the
program.

2. If the interrupt of the teleprinter reader (the keyboard) is enabled upon entry to the ODT break routine,
and the program is expecting to receive an interrupt to input a character, both the expected interrupt and
the character are lost.

3. If the teleprinter reader (keyboard) has just read a character into the reader data buffer when the ODT
break routine is entered, the expected character in the reader data buffer is lost.

8.4.3 Searches
The word search allows the user to search for bit patterns in specified sections of memory. Using the $M/ command,
the user specifies a mask, a lower search limit ($M+2),and an upper search limit ($M+4). The search object is spec
ified in the search command itself.

The word search compares selected bits (where ones appear in the mask) in the word and search object. If all of
the selected bits are equal, the unmasked word is printed.

The search algorithm is:

1. Fetch a word at the current address.
2. XOR (exclusive OR) the word and search object.
3. AND the result of step 2 with the mask.
4. If the result of step 3 is zero, type the address of the unmasked word and its contents. Otherwise, pro

ceed to step 5.
5. Add two to the current address. If the current address is greater than the upper limit, type * and return

to the command decoder, otherwise go to step 1.

Note that if the mask is zero, aDT prints every word between the limits, since a match occurs every time (Le., the
result of step 3 is always zero).

In the effective address search, ODT interprets every word in the search range as an instruction which is interrogated
for a possible direct relationship to the search object. The mask register is opened only to gain access to the search
limit registers.

The algorithm for the effective address search is (where (X) denotes contents of X, and K denotes the search object):

I. Fetch a word at the current address X.
2. If (X)=K [direct reference] , print contents and go to step 5.
3. If (X)+X+2=K [indexed by PC] , print contents and go to step 5.
4. If (X) is a relative branch to K, print contents.
5. Add two to the current address. If the current address is greater than the upper limit, perform a carriage

return/line feed and return to the command decoder; otherwise, go to step 1.

8.4.4 Terminal Interrupt
Upon entering the TT SAVE routine, the following occurs:

I. Save the LSR status register (TKS).
2. Clear interrupt enable and maintenance bits in the TKS.
3. Save the TT status register (TPS).
4. Clear interrupt enable and maintenance bits in the TPS.

8-19

On-Line Debugging Technique

To restore the TT:

1. Wait for completion of any I/O from ODT.
2. Restore the TKS.
3. Restore the TPS.

NOTES
If the TT printer interrupt is enabled upon entry to the
ODT break routine, the following may occur:

1. If no output interrupt is pending when ODT is
entered, an additional interrupt always occurs
when ODT returns control to the user.

2. If an output interrupt is pending upon entry,
the expected interrupt occurs when the user
regains control.

If the TT reader (keyboard) is busy or done, the ex
pected character in the reader data buffer is lost.

If the TT reader (keyboard) interrupt is enabled upon
entry to the ODT break routine, and a character is
pending, the interrupt (as well as the character) is lost.

8.5 ODT ERROR DETECTION
ODT detects two types of error: illegal or unrecognizable command and bad breakpoint entry. ODT does not check
for the legality of an address when commanded to open a location for examination or modification. Thus the
command:

~1777741
?M-TRAP TO 4 003362

references nonexistent memory, thereby causing a trap through the vector at location 4. If this vector has not been
properly initialized, unpredictable results occur.

Typing something other than a legal command causes ODT to ignore the command, print:

(echoes illegal command)?

*

and wait for another command. Therefore, to cause ODT to ignore a command just typed, type any illegal character
(such as 9 or RUBOUT) and the command will be treated as an error, Le., ignored.

ODT suspends program execution whenever it encounters a breakpoint, Le., traps to its breakpoint routine. If the
breakpoint routine is entered and no known breakpOint caused the entry, ODT prints:

BEnnnnnn

*

and waits for another command. BEnnnnnn denotes Bad Entry from location nnnnnn. A bad entry may be caused
by an illegal trace trap instruction, setting the T-bit in the status register, or by a jump to the middle of ODT.

8-20

CHAPTER 9

PROGRAMMED REQUESTS

A number of services at the machine language level which the monitor regularly provides to system programs are
also available to user-written programs. These include services for file manipulation, command interpretation, and
facilities for input and output operations. User programs call these monitor services by means of "programmed
requests", which are assembler macro calls written into the user program and interpreted by the monitor at pro
gram execution time.

The macro definitions for programmed requests are included in the me SYSMAC.SML; Appendix C provides a listing
of SYSMAC.SML. Refer to Chapter 5 for general information related to the use of macro calls.

9.1 FORMAT OF A PROGRAMMED REQUEST
The basis of a programmed request is the EMT instruction, used to communicate information to the monitor. When
an EMT is executed, control is passed to the monitor, which extracts appropriate information from the EMT and
executes the function required. The low-order byte of the EMT instruction contains a code which is interpreted as:

Low-Order Byte
ofEMT

377

376

375

374

360-373

340-357

0-337

Meaning

Reserved; HT-II ignores this EMT and returns control to the user program immediately.

Used internally by the HT-II monitor; this EMT code should never be used by user
programs.

Programmed request with several arguments: RO must point to a list of arguments
which designates the specific function.

Programmed request with one argument: RO contains a function code in the high
order byte and a channel number (see Section 9.2.1) or 0 in the low-order byte.

Used internally by the HT-II monitor; these EMT codes should never be used by user
programs.

Programmed request with arguments on the stack and/or in RO.

Reserved

A programmed request consists of a macro call followed, where necessary, by one or more arguments. Arguments
supplied to a macro call must be legal assembler expressions since arguments will be used as source fields in MOV
instructions when the macros are expanded. The following two formats are used:

1. PRGREQ ARGI,ARG2, ... ARGN
2. PRGREQ AREA,ARG 1 ,ARG2, ... ARGN

Form I above contains the arguments ARG 1 through ARGN; no argument list pointer is required. Macros of this
form generate either an EMT 374 or one of the EMTs 340-357. Certain arguments for this form may be omitted;
refer to the listing of SYSMAC.SML in Appendix C.

9-1

Programmed Requests

In form 2 above, AREA is a pointer to the argument list which contains the arguments ARG 1 through ARGN. TItis
form always causes an EMT 375 to be generated. Blank fields are permitted; however, if the AREA argument is
blank, the macro assumes that RO points to a valid argument block (see Section 9.2.3). If any of the fields ARG 1 to
ARGN are blank, the corresponding entries in the argument list are left untouched. Thus,

.PRGREQ AREA,A 1 ,A2

points RO to the argument block at AREA and fills in the first and second arguments, while:

.PRGREQ AREA

points RO to the block, but does not fill in any arguments.

The call:

.PRGREQ ,AI

assumes RO points to the argument block and fills in the Al argument, but leaves the A2 argument alone. The call:

.PRGREQ

generates only an EMT 375 and assumes that both RO and the block to which it points are properly set up.

The arguments to HT-II programmed request macros all serve as the source field of a MOY instruction which moves
a value into the argument block or RO. For example:

.PRGREQ CHAR

expands into:

MOY CHAR,RO
EMT 357

Care should be taken to make certain that the arguments specified are legal source fields and that the address accu
rately represents the value desired. If the value is a constant, immediate mode [#] should be used; if the value is in
a register, the register mnemonic [Rn] should be used; if the value is indirectly addressed, the appropriate register
convention is necessary [@Rn], and if the value is in memory, the label of the location whose value is the argument
is used.

Following are some examples of both correct and incorrect macro calls. Consider the general request:

.PRGREQ .AREA, .ARG 1, ... ARGN

A more common way of writing a request of this form is:

.PRGREQ #AREA,#ARG 1, ... #ARGN

In this format, the address of AREA is put directly into the argument list. AREA is the tag which indicates the
beginning of the argument block. For example:

.PRGREQ #AREA,#4

AREA: .BLKW 3

9-2

Programmed Requests

When a direct numerical argument is required, the # causes the correct value to be put into the argument block.
For example:

.PRGREQ #AREA,#4

is correct, while:

.PRGREQ #AREA,4

is not. This form interprets the 4 as meaning "move the contents oflocation 4 into the argument block", where
the number 4 itself should be moved into the block.

If the request is written as:

.PRGREQ AREA,#4

it is interpreted as "use the contents of location AREA as the list pointer", when the address of AREA is actually
desired. This expansion could be used with the following form:

.PRGREQ usn,#4

usn:
AREA:

AREA
.BLKW3

In this case, the content of location usn is the address of the argument list. Similarly, this form is correct:

.PRGREQ usn ,NUMBER
LIsn: AREA
NUMBER: 4

In this case, the contents of the locations usn and NUMBER are the argument list pointer and data value, respec
tively.

9.2 SYSTEM CONCEPTS

NOTE
All registers except RO are preserved across a program
med request. (In certain cases, RO may contain informa
tion passed back by the monitor; however, unless the
description of a request indicates that a specific value
is returned in RO, it may be assumed that the contents
of RO are unpredictable upon return from the request).
With the exception of calls to the CSI, the position of
the stack pointer is also preserved across a programmed
request.

Some basic operational characteristics and concepts of HT -II are described below.

9.2.1 Channel Number (chan)
A channel number is a logical identifier in the range 0 to 377 (octal) for a fIle or "set of data" used by the HT-II
monitor. Thus, when a file is opened on a particular device, a channel number is assigned to that fIle. To refer
to an open file, it is only necessary to refer to the appropriate channel number for that file.

9-3

Programmed Requests

9.2.2 Device Block (dblk)
A device block is a four-word block of radix-50 information which specifies a physical device and me name for an
HT-II programmed request. (Refer to Chapter 5 for an explanation of .RAD50 strings.) For example, a device
block representing a me FILE.EXT on device DK: could be written as:

.RAD50

.RADSO

.RADSO

.RADSO

IDK I
IFIL /
IE /
IEXT/

The first word contains the device name, the second and third words contain the me name, and the fourth contains
the extension. Device, name, and extension must each be left-justified in the appropriate field. This string could
also be written as:

.RADSO /DK FILE EXT/

Note that spaces must be used to fill out each field. Note also that the colon and period separators do not appear
in the actual RAD50 string. They are used only by the monitor keyboard interface to delimit the various fields.

9.2.3 EMT Argument Blocks
Programmed requests which call the monitor via EMT 375 use RO as a pointer to an argument list. In general,
the argument list appears as follows:

contents

function code I channel number

argument 1

argument 2

address.

x

x+2

x+4

RO points to location x. The even (low-order) byte of location x contains the channel number named in the macro
call. If no channel number is required, the byte is set to O. The odd. (high-order) byte of x is a code specifying the
function to be performed. Locations x+2, x+4, etc. contain arguments to be interpreted. These are described in
detail under each request.

Requests which use EMT 374 set up RO with the channel number in the even byte and the function code in the odd
byte. They require no other arguments.

9.2.4 Important Memory Areas

9.2.4.1 Vector Addresses (0-37,60-477) - Certain areas of memory between 0 and 477 are reserved for use
by HT-ll. KMON does not load these locations from the save image file when it initiates a program, i.e., R, RUN,
and GET will not load these words. However, no hardware memory protection is supplied. Thus, programs should
never alter the contents of the indicated areas at run-time.

Locations Contents

0,2 Monitor restart. Executes .EXIT request and returns control to KMON.

4,6 Time out or bus error trap; HT-ll sets this to point to its internal trap handler.

10,12 Reserved instruction trap; HT-ll sets this to point to its internal trap handler.

9-4

Programmed Requests

Locations Contents

30,32 EMT trap vector and status.

40-57 HT-II system communication area (see below).

60,62 TTY input interrupt vector and status.

64,66 TTY output interrupt vector and status.

100,102 Line Time Clock vector and status.

These areas are not replaced by HT-II. If they are destroyed by a program, the system must be re-bootstrapped,
or the program must restore them.

9.2.4.2 Resident Monitor - Section 2.4 of Chapter 2 describes the placement of monitor components when the
monitor is brought into memory; included is the approximate size of each monitor component and the size of the
area available for handlers and user programs.

9.2.4.3 System Communication Area - HI-II uses bytes 40-57 to hold information about the program currently
executing, as well as certain information used only by the monitor. A description of these bytes follows:

Bytes

40,41

42,43

44,45

Meaning and Use

Start address of job. When a file is linked into an HT-II memory image, this word is set
to the starting address of the job either with the Linker II switch or as an argument in
the .END statement of the program.

Initial value of the stack pointer. If it is not set by the user program in an .ASECT, it
defaults to 1000 or the top of the .ASECT, whichever is larger. The initial stack pointer
can also be set with the Linker 1M switch option.

Job Status Word. Used as a flag word for the monitor. Certain bits are maintained by
the monitor exclUSively while others must be set or cleared by the user job. Those bits
in the following list which are marked by an asterisk are bits which must be set by the
user job.

Since the currently unassigned bits may be used in future releases of HI -11, user pro
grams should not use these bits for internal flags.

Bit Number

15

14

*13

Meaning

USR swap bit. The monitor sets this bit when programs do not
require the USR to be swapped. See Section 9.2.5 for details on l)SR
swapping.

Lower-case bit. When set (for example, by EDIT when the EL com
mand is typed), disables conversion oflower-case to upper-case.

Reenter bit. When set, this bit indicates that the program may be
restarted from the terminal with the REENTER command.

9-5

46,47

50,51

52

53

54,55

56

57

Bit Number

*12

11-10

9

8

*7

6-0

Programmed Requests

Meaning

Special mode TT bit. When set, this bit indicates that the job is in a
"special" keyboard mode of input. Refer to the explanation of the
.TTYIN/.TTINR requests for details.

Unused

Overlay Bit. Set if the job uses the Linker overlay structure.

CHAIN bit. If this bit is set in a job's save image, words 500-776 are
loaded from the save fIle when the job is started even if the job is
entered via CHAIN. (These words are normally used to pass param
eters across CHAINs.) The bit is set when a job is running if and only
if the job was actually entered with CHAIN.

Error halt bit. When set, this bit indicates a halt on an I/O error.
If the user desires to halt when any I/O device error occurs, this bit
should be set.

Unused

USR load address. Normally 0, this word may be set to any valid word address in the
user's program. See Section 9.2.5, Swapping Algorithm, for details of use.

High memory address. The monitor maintains the highest address the user program can
use in this word. The Linker sets it initially. It is modified only via the .SETTOP (Set
Top of Memory) monitor request.

EMT error code. If a monitor request results in an error, the code number of the error
is always returned in byte 52 and the carry bit is set. Each monitor call has its own
set of possible errors. It is recommended that the user program reference byte 52 with
absolute addreSSing, rather than relative addressing. For example:

ERRWRD = 52
TSTB ERRWRD
TSTB@#ERRWRD

;RELATIVE ADDRESSING
;ABSOLUTE ADDRESSING

NOTE
Location 52 must always be addressed as a byte, never as a word, since byte
53 will be used in future releases of HT-ll.

Reserved for future system use.

Address of the beginning of the Resident Monitor. HT-ll always loads the resident into
the highest available memory locations; this word points to its first location. It must
never be altered by the user. Doing so will cause HT-ll to malfunction.

Fill character (7-bit ASCII). Some high-speed terminals require filler (nUll) characters
after printing certain characters. Byte 56 should contain the ASCII 7 -bit representation
of the character after which fillers are required.

Fill count. This byte specifies the number of fill characters required. If bytes 56 and
57 = 0, no fillers are required.

9-6

Bytes

9.2.5 Swapping Algorithm

Programmed Requests

Meaning and Use

Examples of fill characters are:

No. of Fills

10 after carriage return
4 after carriage return
2 after carriage return
4 after line feed
2 after line feed
1 after line feed

Value of
Word 56

5015
2015
1015
2012
1012
412

Programmed requests are divided into two categories according to whether or not they require the USR to be in
memory (see Table 9·2). Any request which requires the USR in memory may also require that a portion of the
user program be saved temporarily on the system device scratch blocks (i.e., be "swapped out") to provide room for
the USR. The USR will be read into the swapped region.

During most normal operations, this swapping is invisible to the user and he need not be concerned about it. How·
ever, it is possible to optimize programs so that they require little or no swapping. If the USR is not swapped, the
job will not be slowed down by the swapping process.

The following should be considered if a swap operation is necessary:

1. If a .SETTOP request specifies an address beyond the point at which the USR normally resides, a swap
will be required when the USR is called. More details concerning the .sETTOP request are in Section
9.4.27.

2. If the user either assembles an address into word 46 or moves a value there while the program is running,
HT·II uses the contents of that word as an alternate place to swap the USR. If location 46 is 0, this
indicates that the USR will be at its normal location in high memory.

NOTES
1. If the USR does not require swapping, the value in

location 46 is ignored. Swapping is a relatively time·
consuming operation and is avoided, if possible.

2. Care should be taken when specifying an alternate
address in location 46. The system does not verify
the legality of the USR swap address. Thus, if the
area to be swapped overlays the Resident Monitor,
the system is destroyed.

3. The user should also take care that the USR is never
swapped over any of the following areas: the pro·
gram stack; any parameter block for calls to the
USR; any I/O buffers, device handlers, or comple.
tion routines being used when the USR is called.

The following is an example of the way a program can avoid unnecessary USR swapping.

9·7

RMPTR=54
USRLOC=266

START:

1$:

HILlM:

9.2.6 Offset Words

.MCALL

.REGDEF

MOV
MOV
TST
CMP
BHI
MOV
.SETTOP
MOV

. EXIT

.WORD

.END

Programmed Requests

.REGDEF,.SETTOP,.EXIT

;POINTER TO RMON IS AT 54.
;POINTER TO USR LOCATION IS
;AT 266 BYTES INTO RMON.

@#RMPTR,R1 ;R1 -> RESIDENT MONITOR
USRLOC(R1),RO ;RO -> USR
-(RO) ;POINT JUST BELOW
RO,@#50 ;DOES USR SWAP OVER US?
1$;NO, OK
#-2,RO ;YES, USR MUST SWAP

;ASK FOR MEMORY UP TO USR
RO,HILIM ;RO = HIGH LIMIT OF MEMORY

;ACTUALLY GRANTED BY MONITOR .

0 ;CONTAINS HI LIMIT OF MEMORY
START

There are several words which always have ftxed positions relative to the start of the Resident Monitor. It is often
advantageous for user programs to be able to access these words. This is done with the code:

RMON= 54
MOV@#RMON,register
MOV OFFSET(register),register

Here, register is any general register and OFFSET is a number from the following list:

OFFSET (Bytes)

262

266

270

275

276

277

Contents

System date. (See .DATE request.)

Pointer to start of normal USR area. This is where the USR will reside when it is
non-swapping. It is useful to be able to perform a .SETTOP in a job such that the
USR is always resident. (An example is in Section 9.2.5.)

Address of I/O exit routine for all devices. The exit routine is an internal queue
management routine through which all device handlers exit once the I/O transfer is com
plete. Any new devices added to HT-II must also use this exit location.

Unit number of system device (device from which system was last bootstrapped).

Monitor version number. The user can always access the version number to determine
if the most recent monitor is in use.

Update number. Patches to the monitor always increment the update number. This
provides a means of checking that all patches have been made. (This number should
be accessed by MOVB rather than MOV.)

9-8

OFFSET (Bytes)

300

304-313

314

9.2.7 File Structure

Programmed Requests

Contents

Configuration word. This is a string of 16 bits used to indicate information about
either the hardware configuration of the system, or a software condition. The bits and
their meanings are:

Bit #

5

9
11
15

o = 60-cycle clock
1 = 50-cycle clock

Meaning

1 = USR is permanently resident (via a SET USR NOSWAP)
1 = Processor is an 11/03
1 = KWIIL clock is present (always set if 11/03)

The other bits are reserved for future use and should not be accessed by user programs.

These locations contain the addresses of the terminal control and status registers.
The order is:

304 Keyboard status
306 Keyboard buffer
310 Printer status
312 Printer buffer

These locations can be changed, for example, to reflect a second terminal; thus HT-Il
can be made to run on any terminal present on the system which is connected to the
machine via the DUI multiple terminal interface.

The maximum file size allowed in a 0 length .ENTER. This can be adjusted by the user
program or by using the PATCH program to be any reasonable value. The default value
is 177777 (octal) blocks, allowing an essentially unlimited file size.

HT -11 uses a "contiguous" file structure. This type of structure implies that every file on the device is made up of a
contiguous group of physical blocks. Thus, a file that is 9 blocks long occupies 9 contiguous blocks on the device.

A contiguous area on a device can be in one of the following categories:

1. Permanent file. This is a file which has been .CLOSEd on a device. Any named files which appear in a PIP
directory listing are permanent files.

2. Tentative file. Any file which has been created via .ENTER, but not .CLOSEd, is a tentative file entry.
When the .CLOSE request is given, the tentative entry becomes a permanent file. If a permanent file
already exists under the same name, the old file is deleted. If a .CLOSE is never given, the tentative file
is treated like an empty entry.

3. Empty entry. When disk space is unused or a permanent file is deleted, an empty entry is created. Empty
entries appear in a PIP IE directory listing as (UNUSED) N, where N is the decimal block length of the
empty area.

Since a contiguous structure does not automatically reclaim unused disk space, the device may eventually become
"fragmented". A device is fragmented when there are many empty entries which are scattered over the device.
HT -11 PIP has an option which allows the user to collect all empty areas so that they occur at the end of a device.
Refer to Chapter 4 for details.

9-9

Programmed Requests

9.2.8 Completion Routines
Completion routines are user-written routines which are entered following an operation. On entry to a completion
routine, RO contains the channel status word for the operation; RI contains the octal channel number of the
operation. The carry bit is not significant.

The restrictions which must be observed when writing completion routines are:

1. Completion functions cannot issue a request which would cause the USR to be swapped in. They are
primarily used for issuing READ/WRlTE commands, not for opening or closing files, etc. A fatal monitor
error is generated if the USR is called from a completion routine.

2. Completion routines should never reside in the memory space which will be used for the USR, since the
USR can be interrupted when I/O terminates and the completion routine is entered. If the USR has over
laid the routine, control passes to a random place in the USR, with a HALT or error trap the likely result.

3. The routine must be exited via an RTS PC, as it is called from the monitor via a JSR PC,ADDR where
ADDR is the user-supplied address.

4. If a completion routine uses registers other than RO or RI, it must save them upon entry and restore them
before exiting.

9.2.9 Using the System Macro Library
User programs for HT-II should always be written using the system macro library (SYSMAC.SML), supplied with
HT-II. This ensures compatibility among all user programs and allows easy modification by redefming a macro.
A listing of SYSMAC.SML appears in Appendix C.

9.3 TYPES OF PROGRAMMED REQUESTS
There are three types of services which the monitor makes available to the user through programmed requests.
These are:

1. Requests for File Manipulation
2. Requests for Data Transfer
3. Requests for Miscellaneous Services

Table 9-1 summarizes the programmed requests in each of these categories alphabetically. The EMT and function
code for each request (where applicable) are included.

Table 9-2 indicates which requests require the USR to be in memory. The CLOSE request on non-file structured
devices (LP, PP, TT, etc.) does not require the USR.

9.3.1 System Macros
The following four macros are included in the system macro library, but are not programmed requests in that they
cause no EMT instruction to be generated:

.DATE

.INTEN

.REGDEF

.sYNCH

They can be used in the same manner as the other macro calls; their explanations follow.

9-10

Programmed Requests

Table 9-1 Summary of Programmed Requests

EMT&
Mnemonic Code Section Purpose

File Manipulation Requests

.CLOSE 374 6 9.4.3 Closes the specified channel.

.DELETE 375 0 9.4.6 Deletes the file from the specified device.

.ENTER 375 2 9.4.8 Creates a new file for output.

.LOOKUP 375 1 9.4.16 Opens an existing file for input and/or output via the
specified channel.

.RENAME 375 4 9.4.24 Changes the name of the indicated file to a new name.

. REOPEN 375 6 9.4.25 Restores the parameters stored via a SA VEST ATUS request
and reopens the channel for I/O.

.SA VEST AT US 375 5 9.4.26 Saves the status parameters of an open file in user memory
and frees the channel for future use.

Data Transfer Requests

.READ 375 10 9.4.22 Transfers data via the specified channel to a memory buffer
and returns control to the user program when the transfer
request is entered in the I/O queue. No special action is
taken upon completion of I/O .

. READC 375 10 9.4.22 Transfers data via the specified channel to a memory buffer
and returns control to the user program when the transfer
request is entered in the I/O queue. Upon completion of
the read, control transfers asynchronously to the routine
specified in the .READC request.

.READW 375 10 9.4.22 Transfers data via the specified channel to a memory buffer
and returns control to the user program only after the
transfer is complete.

.TTYIN 340 - 9.4.31 Transfers one character from the keyboard buffer to RO.

.TTINR

.TTYOUT 341 - 9.4.32 Transfers one character from RO to the terminal input

.TTOUTR buffer.

.wRITE 375 11 9.4.34 Transfers data via the specified channel to a device and
returns control to the user program when the transfer
request is entered in the I/O queue. No special action is
taken upon completion of the I/O.

9-11

Programmed Requests

Table 9-1 (Cont.) Summary of Programmed Requests

EMT&
Mnemonic Code Section Purpose

.WRITC 375 11 9.4.34 Transfers data via the specified channel to a device and
returns control to the user program when the transfer
request is entered in the I/O queue. Upon completion of
the write, control transfers asynchronously to the routine
specified in the .WRITC request.

.WRITW 375 11 9.4.34 Transfers data via the specified channel to a device and
returns control to the user program only after the transfer
is complete.

Miscellaneous Services

.CDFN 375 15 9.4.1 Defines additional channels for doing I/O.

.CHAIN 374 10 9.4.2 Chains to another program.

.CSIGEN 344 - 9.4.4 Calls the Command String Interpreter (CSI) in general
mode.

.CSISPC 345 - 9.4.5 Calls the CSI in special mode.

. DATE - .- 9.3.1.1 Moves the current date infonnation into RO.

.DSTATUS 342 - 9.4.7 Returns the status of a particular device.

.EXIT 350 - 9.4.9 Exits the user program and returns control to the Keyboard
Monitor.

.FETCH 343 - 9.4.10 Loads device handlers into memory.

.GTIM 375 21 9.4.11 Gets time of day.

. GTJB 375 20 9.4.12 Gets parameters of this job .

. HERR 374 5 9.4.13 Specifies termination of the job on fatal errors .

. HRESET 357 - 9.4.14 Tenninates I/O transfers and does a .SRESET operation .

.INTEN - - 9.3.1.2 Notifies monitor that an interrupt has occurred and to
switch to "system state", and sets the processor priority to
the correct value.

.LOCK 346 - 9.4.15 Makes the monitor User Service Routines (USR)
pennanently resident until .EXIT or .UNLOCK is executed.
The user program is swapped out if necessary.

9-12

Programmed Requests

Table 9-1 (Cont.) Summary of Programmed Requests

EMT&
Mnemonic Code Section Purpose

.PRINT 351 - 9.4.17 Outputs an ASCII string to the terminal.

.PROTECT 375 31 9.4.18 Reserves a vector in the region 0 - 476 for an interrupt
address and priority.

.PURGE 374 3 9.4.19 Clears out a channel.

.QSET 353 - 9.4.20 Expands the size of the monitor I/O queue.

.RCTRLO 355 - 9.4.21 Enables output to the terminal.

.REGDEF - - 9.3.1.3 Defines the PDP-II general registers.

.RELEAS 343 - 9.4.23 Removes device handlers from memory .

.SERR 374 4 9.4.13 Inhibits most fatal errors from causing the job to be
aborted.

.SETTOP 354 - 9.4.27 Specifies the highest memory location to be used by the
user program.

.SFPA 375 30 9.4.28 Sets user interrupt for floating point processor exceptions.

.SRESET 352 - 9.4.29 Resets all channels and releases the device handlers from
memory.

.sYNCH - - 9.3.1.4 Enables user program to perform monitor programmed
requests from within an interrupt service routine.

.TRPSET 375 3 9.4.30 Sets a user intercept for traps to locations 4 and 10.

.UNLOCK 347 - 9.4.15 Releases USR if a LOCK was done. The user program is
swapped in if required.

.WAIT 374 0 9.4.33 Waits for completion of all I/O on a specified channel.

9-13

Programmed Requests

Table 9-2 Requests Requiring the USR

Request

.CDFN

.CHAIN

.CLOSE (see Note 1)

.CSIGEN

.CSISPC

.DELETE

.DSTATUS

.ENTER

.EXIT

.FETCH

.GTIM

.GTJB

.HERR

.HRESET

.LOCK (see Note 2)

. LOOKUP

.PRINT

.PURGE

.QSET

.RCTRLO

.READ/ .READC/ .READW

.RELEAS

.RENAME

. REOPEN

.SA VEST ATUS

.sERR

.SETTOP

.SFPA

.SPFUN

.SRESET

.TRPSET

. TTINR/. TTYIN

.TTOUTR/.TTYOUT

.UNLOCK

.WAIT

.WRITE/.WRITC/.WRITW

Note 1. Only if channel was opened via .ENTER.
Note 2. Only if USR is in a swapping state.

9-14

USR Required

Yes
No

Yes
Yes
Yes
Yes
Yes
Yes
No

Yes
No
No
No

Yes
Yes
Yes
No
No

Yes
No
No

Yes
Yes
No
No
No
No
No
No

Yes
No
No
No
No
No
No

Programmed Requests

9.3.1.1 .DATE
This request moves the current date information from the system date word into RO. The date word returned is in
the following format:

Bit: 14 10 9 5 4 o

MONTH DAY YEAR-72 (DECIMAL)
(1-12.) (1-3l.)

Macro Call: .DATE

Errors:

No errors are returned. A zero result in RO indicates that no DATE command was entered.

.INTEN

9.3.1.2 .IN TEN
This request is used by user program interrupt service routines to:

1. Notify the monitor that an interrupt has occurred and to switch to "system state",
2. Set the processor priority to the correct value.

In HT-II, all external interrupts cause the processor to go to level 7. .INTEN is used to lower the priority to the
value at which the device should be run. On return from .INTEN, the device interrupt can be serviced, at which
point the interrupt routine returns via an RTS Pc. It is very important to note that an RTI will not return correctly
from an interrupt routine which specifies an .INTEN.

Macro Call:

where:

Errors:

None.

Example:

.INTEN .priority, pic

.priority

pic

is the processor priority at which the user wishes to run his interrupt routine.

is an operational argument which should be non-blank if the interrupt routine
is written as a PIC (position independent code) routine. If the routine does
not have to be PIC, it is recommended that the PIC field be left blank; the
non-PIC version is slightly faster than the PIC version.

Refer to Section 9.3.1.4, .SYNCH, for an example.

9-15

Programmed Requests

.REGDEF

9.3.1.3 .REGDEF
This macro call defmes the PDP-II general registers as RO through R5, SP, and PC.

Macro Call:

Errors:

None.

Example:

.MCALL .REGDEF, ...

. REGDEF

Refer to the example for the .SYNCH request. Appendix C shows the expansion of .REGDEF.

I .SYNCH I
9.3.1.4 .SYNCH
This macro call enables the user program to perform monitor programmed requests from within an interrupt service
routine. Unless a .SYNCH is used, issuing prograplmed requests from interrupt routines IS not supported by the
system and should not be performed. .SYNCH, like .INTEN and .DATE, is not a programmed request and generates
no EMT instructions .

Macro Call:

where:

. SYNCH .area

.area is the address of a seven-word area which the user must set aside for use by
.SYNCH. The 7-word block appears as:

Word I HT-II maintains this word; its contents should not be altered by the
user.

Word 2 The current job's number. This can be obtained by a .GTFB call.
Word 3 Unused.
Word 4 Unused.
Word 5 RO argument. When a successful return is made from .SYNCH, RO

contains the argument.
Word 6 Must be -1.
Word 7 Must be O.

NOTE
.SYNCH assumes that the user has not pushed anything
on the stack between the .INTEN and .SYNCH calls.
This rule must be observed for proper operation.

9-16

Programmed Requests

Errors:

The monitor returns to the location immediately following the .SYNCH if the .SYNCH was rejected. The routine is
still unable to issue programmed requests, and R4 and RS are available for use. Errors returned are due to one of
the following:

1. Another .SYNCH which specified the same 7 -word block is still pending.
2. An illegal job number was specified in the second word of the block.
3. If the job has been aborted or for some reason is no longer running, the .SYNCH will fail.

Normal return is to the word after the error return with the routine in user state and thus allowed to issue pro
grammed requests. RO contains the argument which was in word 5 of the block. RO and Rl are free to be used
without having to be saved. (R4 and RS are not free.) Exit from the routine should be done via an RTS PC.

Example:

START:

.MCALL

.REGDEF

.MCALL
MOV
.GTJB
MOV

INTRPT: .INTEN

.SYNCH
BR

.REGDEF

.GTJB,.INTEN,.WRITC,.SYNCH,.EXIT,.PRINT
#JOB,R5 ;OUTPUT OF .GTJB GOES HERE
#AREA,R5 ;GET JOB NUMBER
(R5),SYNBLK+2 ;STORE THE JOB NUMBER INTO SYNCH BLOCK

;IN HERE WE SET UP INTERRUPT
;PROCESSING, AND START UP THE
;INTERRUPTING DEVICE.

5

#SYNBLK
SYNFAIL

;GO INTO SYSTEM STATE
;RUN AT LEVEL FIVE
;INTERRUPT PROCESSING
;NOTHING CAN GO ON STACK
;TIME TO WRITE A BUFFER
;SYNCH BLOCK IN USE

;RETURN HERE AT PRIORITY O. NOTE: .SYNCH DOES RTI

.wRITC

BCS

RTS
SYNBLK: .wORD

.wORD

.WORD

.WORD

.wORD

.wORD
SYNFAIL:

#AREA,CHAN,BUFF,WCNT,#CRTN1,BLK
;WRITE A BUFFER

WTFAIL ;FAILED SOMEHOW

;RE-INITIALIZE FOR MORE
PC ;INTERRUPTS AND EXIT
0
0 ;JOB NUMBER
0
0
5 ;RO CONTAINS 5 ON SUCCESSFUL

;SYNCH
-1,0 ;SET UP FOR MONITOR

9-17

Programmed Requests

9.4 PROGRAMMED REQUEST USAGE
This section provides a description of each of the programmed requests alphabetically. The following parameters
are commonly used as arguments in the various calls:

.addr an address, the meaning of which depends on the request being used

.area a pointer to the EMT argument list (for those requests which require a list); see Section 9.2.3

.blk a block number specifying the relative block in a me where an I/O transfer is to begin

.buff a buffer address specifying a memory location into or from which an I/O transfer is to be
performed

.chan a channel number in the range 0-377 (octal)

.crtn the entry point of a completion routine; see Section 9.2.8

.dblk the address of a four-word RAD50 descriptor of the me to be operated upon; see Section
9.2.2

.num a number, the value of which depends on the request

.wcnt a word count specifying the number of words to be transferred to or from the buffer during
an I/O operation

Additional information concerning these parameters (and others not defmed here) is provided as necessary under
each request.

I .CDFN I
9.4.1 .CDFN
The .CDFN request is used to redefme the number ofl/O channels. Each job is initially provided with 16 (decimal)
I/O channels, numbered 0-15 .. CDFN allows the number to be expanded to as many as 255 (decimal) channels.

Note that .CDFN defines new channels; the previously-defmed channels are not used. Thus, a .CDFN for 20
(decimal) channels (while the 16 original channels are defmed) causes only 20 I/O channels to be available; the
space for the original 16 is unused.

Note that if a program is overlaid, channel 15 is used by the overlay handler and should not be modified. (Other
channels can be defmed and used as usual.)

Macro Call: .CDFN .area, .addr, .num

where: .addr is the address where the I/O channels begin

.num is the number of I/O channels to be created

Request Format:

RO ~ .area: 151 0
.addr
.num

9-18

Programmed Requests

The space used to contain the new channels is taken from within the user program. Each I/O channel requires 5
words of memory. Thus, the user must allocate 5 *N words of memory, where N is the number of channels to be
defined.

It is recommended that the .CDFN request be used at the beginning of a program, before any I/O operations have
been initiated. If more than one .CDFN request is used, the channel areas must either start at the same location or
not overlap at all. The two requests .sRESET and .HRESET cause the user's channel areas to revert to the original
16 channels defined at program initiation. Hence, any .CDFNs must be reissued after using those directives.

Errors:

Code Explanation

o An attempt was made to defme fewer channels than already exist.

Example:

.MCAlL .REGDEF

.REGDEF

.MCAlL .CDFN,.PRINT,.EXIT
START: . CDFN #ROllST,#CHAN L,#40 .

BCS BADCDF
.PRINT #MSGl
.EXIT

BADCDF: .PRINT #MSG2
.EXIT

MSG1: .ASCIZ /.CDFN O.K./
.EVEN
MSG2: .ASCIZ /BAD .CDFN/

.EVEN
ROllST: BlKW 3 ;EMT ARGUMENT LIST
CHANl: .8LKW 40.*5 ;ROOM FOR CHANNELS

.END START

The example defmes 40 (decimal) channels to start at location CHANL. An error occurs if 40 or more channels are
already defined.

.CHAIN

9.4.2 .CHAIN
This request allows a program to pass control directly to another program without operator intervention. Since
this process may be repeated, a large "chain" of programs can be strung together.

The area from locations 500-507 contains the device name and me name (in RAD50) to be chained to, and the
area from locations 510-777 is used to pass information between the chained programs .

Macro Call: . CHAIN

9·19

Errors:

Programmed Requests

NOTES
1. No assumptions should be made concerning which

areas of memory will remain intact across a .CHAIN.
In general, 500-777 is the only area guaranteed to
be preserved across a .CHAIN.

2. I/O channels are left open across a .CHAIN for use
by the new program. However, I/O channels opened
via a .CDFN request are not available in this way.
Since the monitor reverts to the original 16 channels
during a .CHAIN, programs which leave mes open
across a .CHAIN should not use .CDFN. Further
more, non-resident device handlers are released
during a .CHAIN, and must be FETCHed again by
the new program.

3. A program can determine whether it was CHAINed
to or RUN from the keyboard by examining bit 8
of the JSW. This bit is on during program execution
only if the program was entered via CHAIN. If a
program normally loads into area 500-777, bit 8 of
the JSW should be set during program assembly.
This causes the monitor to load the area properly.
If the bit is not set, locations 500-777 are pre
served from the chaining program causing the new
program to malfunction.

.CHAIN is implemented by simulating the monitor RUN command (described in Chapter 2), and can produce any
errors which RUN can produce. If an error occurs, the .CHAIN is abandoned and the Keyboard Monitor is entered.

When using .CHAIN, care should be taken for initial stack placement, since the program being "chained to" is
started. The Linker normally defaults the initial stack to 1000 (octal); if caution is not observed, the stack may
destroy chain data before it can be used (see Chapter 2, the RUN command).

Example:

.MCALL .REGDEF

.REGDEF

.MCALL .CHAIN,.TTYIN
START:

MOV #500,R1 ;SET UP TO CHAIN
MOV #CHPTR,R2 ;DEVICE, FILE NAME TO 500-511
MOV (R2)+,(R 1)+
MOV (R2)+,(R 1)+
MOV (R2)+,(R 1)+
MOV (R2)+,(R 1)+

LOOP: .TTYIN ;NOW GET A COMMAND LINE
MOVB RO,(R 1)+ ;AND PASS IT TO THE JOB
CMPB RO,#12 ;IN LOCATIONS 512 AND UP
BNE LOOP ;LOOP UNTIL LINE FEED
CLRB (R1)+ ;PUT IN A NULL BYTE
.CHAIN

CHPTR: .RAD50 10K I
.RAD50 /TECO I
.RAD50 ISAVI
.END START

9-20

Programmed Requests

.CLOSE

9.4.3 .CLOSE
The .CLOSE request terminates activity on the specified channel and frees it for use in another operation. The
handler for the associated device must be in memory .

Macro Call: . CLOSE .chan

Request Format:

A .CLOSE is required on any channel opened for either input or output. A .CLOSE request specifying a channel
that is not opened is ignored.

A .CLOSE performed on a me wru.ch was opened via .ENTER causes the device directory to be updated to make
that me permanent. A me opened via .LOOKUP does not require any directory operations. If the device associated
with the specified channel already contains a me with the same name and extension, the old copy is deleted when
the new me is made permanent. When an entered me is .CLOSEd, its permanent length reflects the highest block
written since it was entered; for example, if the highest block written is block number 0, the me is given a length
of I; if the me was never written, it is given a length of O. If this length is less than the size of the area which was
allocated at .ENTER time, the unused blocks are reclaimed as an empty area on the device.

Errors:

.CLOSE does not return any errors. If the device handler for the operation is not in memory, a fatal monitor error
is generated.

Example:

An example which illustrates the .CLOSE request follows the discussion of the .WRITW request in Section 9.4.34 .

. CSIGEN

9.4.4 .CSIGEN
The .CSIGEN request calls the Command String Interpreter (CSI) in general mode to process a standard HT-ll
command string (see Chapter 2 for the description of a standard command string). In general mode, all me
.LOOKUPs and .ENTERs as well as handler .FETCHs are performed. When called in general mode, the CSI first
closes channels 0-8 (decimal).

9-21

Programmed Requests

Macro Call: .CSIGEN .devspc, .defext, .cstring

where: .devspc

.defext

.cstring

is the address of the memory area where the device handlers (if any) are to be
loaded.

is the address of a four-word block which contains the RAD50 default exten
sions. These extensions are used when a me is specified without an extension.

is the address of the ASCIZ input string or a #0 if input is to come from the
terminal. If the string is in memory, it must not contain a (CR) (LF), but must
terminate with a zero byte. If the .cstring field is left blank, input is auto
matically taken from the terminal .

. CSIGEN loads all necessary handlers and opens the mes as specified. The area specified for the device handlers
must be large enough to hold all the necessary handlers simultaneously. If the device handlers exceed the area
available, the user program may be destroyed. The system, however, is protected from this.

When the EMT is complete, register 0 pOints to the first available location above the handlers.

The four-word block pointed to by .defext is arranged as:

Word 1: default extension for all input channels

Word 2, 3, and 4: default extensions for output channels 0, 1, 2 respectively

If there is no default for a particular position, the associated word must contain a zero. All extensions are expressed
in Radix 50. For example, the following block can be used to set up default extensions for a macro assembler:

DEFEXT: .RAD50 "MAC"
.RAD50 "OBJ"
.RAD50 "LST"
.WORD 0

In the command string:

*DXO:ALPHA,DX1 :BETA=DX1 :INPUT

the default extension for input is MAC; for output, OBJ and LST. The following cases are legal:

*DXO:OUTPUT=
*DX1 :INPUT

In the last example, the equal sign is not necessary in the event that only input mes are specified.

When control returns to the user program after a call to .CSIGEN, all the specified mes have been opened for
input and/or output. The association is as follows: the three possible output mes are assigned to channels 0,
1, and 2; the six input slots are assigned to channels 3 through 8. A null specification causes the associated channel
to remain inactive. For example, in the following string:

*,LP:=Fl,F2

9-22

Programmed Requests

channel 0 is inactive since the first slot is null. Channell is associated with the line printer, and channel 2 is
inactive. Channels 3 and 4 are associated with two mes on DK:, while channels 5 through 8 are inactive. The user
program can determine whether a channel is inactive by issuing a .WAIT request on the associated channel, which
returns an error if the channel is not open.

Switches and their associated values are returned on the stack; see Section 9.4.5.1 for a description of the way
switch information is passed.

Errors:

If CSI errors occur and input was from the terminal, an error message describing the fault is printed on the terminal
and the CSI retries the command (these messages appear in Section 9.4.5.1). If the input was from a string, the
carry bit is set and byte 52 contains the error code. The errors are:

Code Explanation

o megal command (bad separators, illegal filename, command too long, etc.).

A device specified is not found in the system tables.

2 Unused.

3 An attempt to .ENTER a me failed because of a full directory.

4 An input file was not found in a .LOOKUP.

Example:

This example uses the general mode of the CSI in a program to copy an input file to an output file. Command input
to the CSI is from the terminal.

.MCALL .REGDEF

.REGDEF

.MCALL .CSIGEN,.READW,.PRINT,.EXIT,.WRITW,.CLOSE,.SRESET
ERRWD=52

START: .CSIGEN #DSPACE,#DEXT ;GET STRING FROM TERMINAL
MOV RO,BUFF ;RO HAS FIRST FREE LOCATION
CLR INBLK ;INPUT BLOCK #
MOV #LlST,R5 ;EMT ARGUMENT LIST

READ: .READW R5,#3,BUFF,#256.,INBLK ;READ CHANNEL 3
BCC 2$;NO ERRORS
TSTB @#ERRWD ;EOF ERROR?
BEQ EOF ;YES
MOV #INERR,RO

9-23

1$:

2$:

NOERR:

EOF:

DEXT:
BUFF:
INBLK:
LIST:
INERR:

WTERR:

DSPACE=.

.PRINT
CLR
.EXIT
.WRITW
BCC
MOV
BR
INC
BR
.CLOSE
.CLOSE
,SRESET
BR
.WORD
.WORD
.WORD
.BLKW
.ASCIZ
.EVEN
.ASCIZ
.EVEN

.END

I··CSISPC I
9.4.5 .CSISPC

Programmed Requests

RO
;ERROR MESSAGE
;HARD EXIT

R5,#O,BUFF,#256.,INBLK ;WRITE THE BLOCK
NOERR ;NO ERROR WRITING
#WTERR,RO
1$
INBLK
READ
#0
#3

START
0,0,0,0
o
o
5
/INPUT ERROR/

/OUTPUT ERROR/

START

;HARD OUTPUT ERROR
;GET NEXT BLOCK
;LOOP UNTIL DONE
;CLOSE OUTPUT CHANNEL
;AND INPUT CHANNEL
;RELEASE HANDLER FROM MEMORY
;GO FOR NEXT COMMAND LINE
;NO DEFAULT EXTENSIONS
;1/0 BUFFER START
;RELATIVE BLOCK TO READ/WRITE
;EMT ARGUMENT LIST

;HANDLER SPACE

The .CSISPC request calls the Command String Interpreter in special mode to parse the command string and return
fIle descriptors and switches to the program. In this mode, the CSI does not perform any handler fetches, .CLOSEs,
. ENTERs , or .LOOKUPs.

Macro Call:

where:

.CSISPC .outspc, .defext, .cstring

.outspc

.defext

.cstring

is the address of the 39-word block to contain the me descriptors produced by
.CSISPC. This area may overlay the space allocated to .cstring if desired.

is the address of a four-word block which contains the RAD50 default exten
sions. These extensions are used when a me is specified without an extension.

is the address of the ASCIZ input string or a :/K) if input is to come from the
terminal. If the string is in memory, it must not contain a (CR) (LF) but
must terminate with a zero byte. If .cstring is blank, input is automatically
taken from the terminal.

The 39-word fIle deSCription consists of nine fIle descriptor blocks (five words for each of three possible output fIles;
four words for each of six possible input fIles) which correspond to the nine possible mes (three output, six input).
If any of the nine possible fIlenames are not specified, the corresponding descriptor block is filled with zeroes.

9-24

Programmed Requests

The five-word blocks hold four words of RAD50 representing dev:me.ext, and 1 word representing the size speci
fication given in the string. (A size specification is a decimal number enclosed in square brackets [], following the
output me descriptor.) For example,

*DX 1: LIST. MAC [15] =PR:

Using special mode, the CSI returns in the first five word slot:

16336
46173
76400
50553
00017

.RAD50 for DXl

.RADSO for LIS

.RAD50 forT

.RADSO for MAC
Octal value of size request

In the fourth slot (starting at an offset of 36 (octal) bytes into .outspc), the CSI returns:

63320
o
o
o

.RADSO for PR
No file name
Specified

Since this is an input me, only four words are returned.

Switches and their associated values are returned on the stack. See Section 9.4.5.l.

Errors:

Errors are the same as in general mode. However, since .LOOKUPs and .ENTERs are not done, the error codes
which are valid are:

Code Explanation

o Illegal command line
Illegal device

Example:

This example illustrates the use of the special mode of CSI. This example could be a program to read a me which
is not in HT-11 format to a me under HT-l1.

9-25

Programmed Requests

.MCALL .REGDEF

.REGDEF

.MCALL .CSISPC,.PRINT,.EXIT,.ENTER,.CLOSE

START: .CSISPC #OUTSPC,#DEXT,#CSTRNG ;GET INPUT FROM A
;STRING IN MEMORY

BCC
MOV

1$: .PRINT
.EXIT

2$: .ENTER
BCC
MOV
BR

3$: JSR

.CLOSE

.EXIT
CSTRING: .ASCIZ

.EVEN
DEXT: .wORD
LIST: .BLKW
SYNERR: .ASCIZ
ENMSG: .ASCIZ

.EVEN
INPUT: RTS
OUTSPC= .

. END

2$
#SYNERR,RO ;SYNTAX ERROR

;ERROR MESSAGE

#L1ST,#O,#OUTSPC,#64.
3$

;ENTER FILE UNDER HT·11

#ENMSG,RO
1$
R5,INPUT

#0

;ENTER FAILED

;ROUTINE INPUT WILL USE
;THE INFORMATION AT
;#OUTSPC+36 TO READ INPUT
;FROM THE NON·HT-11 DEVICE.
;INPUT IS PROCESSED AND
;WRITTEN VIA .WRITW REQUESTS
;MAKE OUTPUT FILE PERMANENT
;AND EXIT PROGRAM

"DXO:HTFIL.MAC=DX1 :DOS.MAC"

0,0,0,0
5
"CSI ERROR"
"ENTER FAILED"

R5

START

;NO DEFAULT EXTENSIONS
;L1ST FOR EMT CALLS

;CSI LIST GOES HERE

9.4.5.1 Passing Switch Infonnation
In both general and special modes of the CSI, switches and their associated values are returned on the stack. A CSI
switch is a slash (j) followed by any character. The CSI does not restrict the switch to printing characters, although
it is suggested that printing characters be used wherever possible. The switch can be followed by an optional value,
which is indicated by a : or ! separator. The : separator is followed by either an octal number or by one to three
alphanumeric characters, the fust of which must be alphabetic, which are converted to Radix-50. The ! separator is
followed by a decimal value. Switches can be associated with fIles with the CSI. For example:

*DK:FOO/A,DX 1: F I LE.OBJ/A: 100

In this case, there are two A switches. The first is associated with the input fIle DK:FOO. The second is associated
with the input fIle DXl :FILE.OBJ, and has a value of 100(8). The stack output of the CSI is as follows:

9-26

Word #

(top of
stack)

2

3

Value

N

Switch value
and fIle num ber

Switch value
or next switch

For example, if the input to the CSI is:

Programmed Requests

Meaning

Number of switches found in command string. If N=O, no switches were
found.

Even byte 7 -bit ASCII switch value.

Bits 8-14 = Number (0-8) of the me with which the switch is asso
ciated.

Bit 15 1 if the switch had a value.
o if the switch had no value.

If word 2 was negative, word 3 = switch value. If word 2 was not nega
tive, this word is the next switch value (if it exists).

*F I LE/B:20,F I L2/E=DX: INPUT /X:SY:20

on return, the stack is:

Stack Pointer ~ 4
101530

20
101530
075250

505
100102

20

Four switches appeared.
Last switch=X; with me 3, has a value.
Value of switch X=20
Next switch=X; with me 3, has a value.
Next value of switch X=RAD50 code for SY.
Next switch=E; associated with fIle 1, no value.
Switch=B; associated with me 0 and has a value.
Value is 20.

As an extended example, assume the following string was input for the CSI in general mode:

*FI LE [8] ,LP:,SY:F I LE2[20] =PR :,DX 1 :IN 1/B,DXO:IN2/M:7

Assume also that the default extension block is:

DEFEXT: .RAD50
.RAD50
.RAD50
.RAD50

'MAC'
'OP1'
'OP2'
'OP3'

The resul t of this CSI call would be:

;INPUT EXTENSION
;FIRST OUTPUT EXTENSION
;SECOND OUTPUT EXTENSION
;THIRD OUTPUT EXTENSION

1. A me named FILE.OP1 is entered on channel 0 on device DK; channell is open for output to the device
LP; a 20-block me named FILE2.0P3 is entered on the system device on channel 2.

2. Channel 3 is open for input from paper tape; channel 4 is open for input from a me INl.MAC on device
DX1; channelS is open for input from IN2.MAC on device DXO.

9-27

Programmed Requests

3. The stack contains switches and values as follows:

2
lO2515

7
2lO2

Explanation

2 switches found in string.
Second switch is M, associated with Channel 5; has a numeric value.
Numeric value is 7.
Switch is B, associated with Channel 4; has no numeric value.

If the CSI were called in special mode (Section 9.4.5), the stack would be the same as for the general mode call, and
the descriptor table would contain:

.OUTSPEC: 15270 ;.RADSO 'DK'
23364 ;.RAD50 'FIL'
17500 ;.RAD50 'E'
60137 ;.RAD50 'OP1'

10 ;LENGTH OF 8 BLOCKS
46600 ;.RADSO 'LP'

0 ;NO NAME OR LENGTH SPECIFIED
0
0
0

75250 ;.RAD50 'SY'
23364 ;.RAD50 'FIL'
22100 ;.AAD50 'E2'
60141 ;.AAD50 'OP3'

24 ;LENGTH OF 20 (DECIMAL)
63320 ;.AAD50 'PR'

0
0
0

16337 ;.RAD50 'DX1'
35217 ;.RAD50 'IN1'

0 ;.RAD50
50553 ;.RAD50 'MAC'
16336 ;.AAD50 'DXO'
35220 ;.RAD50 'IN2'

0 ;.RAD50
50553 ;.AAD50 'MAC'

0

o (twelve more zero words are returned)

Keyboard error messages which may occur from incorrect use of the CSI when input is from the keyboard include:

Message

?ILLCMD?
?FIL NOT FND?
?DEV FUL?
?ILLDEV?

Meaning

Syntax error.
Input me was not found.
Output me will not fit.
Device specified does not exist.

9-28

9.4.6 .DELETE

Programmed Requests

NOTE
In many cases, the user program does not need to proc
ess switches in CSI calls. However, the user at the
terminal may inadvertently enter switches. In this case,
it is wise for the program to save the value of the stack
pointer before the call to the CSI, and restore it after
the call. In this way, no extraneous values will be left
on the stack.

The .DELETE request deletes a named file from an indicated device.

Macro Call:

Request Format:

RO =? .area:

Errors:

.DELETE .area, .chan, .dblk

o I .chan

.dblk

NOTE
The channel specified in the .DELETE request must not
be in use when the request is made, or an error will
occur. The file is deleted from the device, and an empty
(UNUSED) entry of the same size is put in its place. A
.DELETE issued to a nonme-structured device is ignored .
. DELETE requires that the handler to be used be in
memory at the time the request is made. When the
.DELETE is complete, the specified channel is left
inactive.

Code Explanation

o Channel is active
File was not found in the device directory

Example:

This example uses the special mode of CSI to delete fIles .

START:

.MCALL

.REGDEF

.MCALL

.SRESET

.CSISPC

.DELETE

. REGDEF

.SR ESET ,.CSISPC,.D E LETE,.PR I NT ,.EX IT

#OUTSPC,#DEFEXT

#LlST,#O,#INSPC

9-29

.DELETE

;MAKE SURE CHANNELS
;ARE FREE
;GET COMMAND LINE
;TERMINAL DIALOG WAS
;DX:FILE
;USE CHANNEL 0 TO
;DELETE THE FILE
;WHICH IS AT THE
;FIRST INPUT SLOT.

Programmed Requests

BCC START
.PRINT #NOFILE
BR START

NOFILE: .ASCIZ /FILE NOT FOUND/
.EVEN

DEFEXT: .RAD50 /MAC/
.WORD 0,0,0

LIST: .BLKW 2
OUTSPC=.
I NSPC=.+36

. BLKW 39 .

.END START

INSPC is the address of the first input slot in the CSI input table.

I .DSTATUS I
9.4.7 .DSTATUS
This request is used to obtain information about a particular device.

Macro Call: .DST ATUS .cblk, .devnam

;OK, LOOP AGAIN
;NO SUCH FILE

;.MAC INPUT EXTENSION
;NO OUTPUT DEFAULTS
;EMT ARG LIST

where: . cblk is the 4-word space used to store the status information .

. devnam is the pointer to the RAD50 device name .

.DSTATUS looks for the device specified by .devnam and, if found, returns four words of status starting at the
address specified by .cblk. The four words returned are:

1. Status Word

Bits 7-0: contain a number which identifies the device in question. The values (octal) currently defined
are:

0= Reserved
1 = Reserved
2 = Reserved
3 = Line Printer
4 = Console Terminal

5,6 = Reserved
7 = PC11 High-speed Reader

10 = PCll High-speed Punch
11 = Reserved
12 = Reserved
13 = Reserved
14 = Reserved
15 = Reserved
16 = Reserved
17 = Reserved
20 = Reserved
21 = Reserved
22 = H27 Disk

9-30

Bit 15:

Bit 14:
Bit 13:
Bit 12:
Bit 11:

Programmed Requests

1 = Random-access device (disk)
0= Sequential-access device (line printer, paper tape, terminal)
1 = Read-only device (paper tape reader)
1 = Write-only device (line printer, paper tape punch)
1 = Non HT -11 directory -structured device
I = Enter handler abort entry every time a job is aborted

Bit 10:
o = Handler abort entry taken only if there is an active queue element belonging to aborted job
I = Handler accepts .SPFUN requests (e.g., DX)
o = .SPFUN requests are rejected as illegal

2. Handler size

The size of the device handler, in bytes.

3. Entry point

Non-zero implies the handler is now in memory; zero implies it must be .FETCHed before it can be used.

4. Device size

The size of the device (in 256-word blocks) for block-replaceable devices; zero for sequential-access devices.

The device name may be a user-assigned name.

Errors:

Code Explanation

o Device not found in tables.

Example:

This example shows how to determine if a particular device handler is in memory and, if it is not, how to .FETCH
it there.

START:

1$:

2$:

CORE:
FPTR:

.MCALL

.REGDEF

.MCALL

.DSTATUS
BCC
.PRINT
.EXIT
TST
BNE
.FETCH
BCC
.PRINT
.EXIT
.PRINT
.EXIT
.BLKW
.RAD50
.RAD50

.REGDEF

.DSTATUS,.PRINT,.EXIT,.FETCH
#CORE,#FPTR
1$
#ILLDEV

CORE+4
2$
#HNDLR,#FPTR
2$
#FEFAIL

#FECHOK

4 ;DSATUS GOES HERE
/DXO/ ;DEVICE NAME
/FILE MAC/ ;FILE NAME

9-31

;GET STATUS OF DEVICE

;DEVICE NOT IN TABLES

;IS DEVICE RESIDENT?

;NO, GET IT

;FETCH FAILED

FEFAIL:
ILLDEV:

FECHOK:

HNDLR=.

.ENTER

9.4.8 .ENTER

.ASCIZ

.ASCIZ

.EVEN

.ASCIZ

.EVEN

.END

Programmed Requests

/FETCH FAILED/
/ILLEGAL DEVICE/

/FETCH O.K./

;HANDLER WILL GO HERE
START

The .ENTER request allocates space on the specified device and creates a tentative entry for the named me. The
channel number specified is associated with the me. (Note that if the program is overlaid, channel 15 is used by the
overlay handler and should not be modified.)

Macro Call:

where:

Request Format:

.ENTER .area, .chan, .dblk, length

length is the me size specification. The me length allocation is as follows:
o - either 1/2 the largest empty entry or the entire second largest empty entry,

whichever is largest. (A maximum size for non-specific .ENTERs may be
patched in the monitor.)

M - a me of M blocks. M may exceed the maximum mentioned above.
-1 - the largest empty entry on the device.

RO ~ .area: 2 I .chan

.dblk

length

The me created with an .ENTER is not a permanent me until the .CLOSE on that channel is given. Thus, the newly
created me is not available to .LOOKUP and the channel may not be used by .SAVESTATUS requests. However,
it is possible to go back and read data which has just been written into the me by referencing the appropriate block
number. When the .CLOSE to the channel is given, any already existing permanent me of the same name on the
same device is deleted and the new me becomes permanent. Although space is allocated to a me during the .ENTER
operation, the actual length of the me is determined when .CLOSE is requested.

Each job may have up to 256 mes open on the system at any time. If required, all 256 may be opened for output
with the .ENTER function. .ENTER requires that the device handler be in memory when the request is made.
Thus, a .FETCH should normally be executed before a .ENTER can be done. On return, RO contains the size of the
area actually allocated for use.

NOTE
When using the 0 length feature of .ENTER, it must be
kept in mind that less than the largest empty space is
allocated. This can have an important effect in trans
ferring mes between devices which have a relatively
small capacity. For example, to transfer a 200-block me
to a device on which the largest available empty space is
300 blocks, a 0 length transfer will not work. Since the
.ENTER allocates half the largest space, only 150 blocks
are really allocated and an output error will occur during
the transfer. If a specific length of 200 is requested,
however, the transfer will proceed without error.

9-32

Programmed Requests

Errors:

Code Explanation

o Channel is in use.

Example:

In a flXed length request, no space greater than or equal to M was found, or in a non-specific
request the device or the directory was found to be full.

.ENTER may be used to open a flle on a specified device, and then write data from memory into that flle as follows:

START:

FPRT:

AREA:
BADFET:

BADENT:

BADWRT:

FMSG:
EMSG:
WMSG:

CORSPC:

BUFF:

END:

.MCALL

.MCALL

.REGDEF

.SRESET

.FETCH
BCS

.ENTER

BCS
.WRITW

BCS
.CLOSE
.EXIT
.RAD50
.RAD50
.BLKW
.PRINT
.EXIT
.PRINT
.EXIT
.PRINT
.EXIT
.ASCIZ
.ASCIZ
.ASCIZ
.EVEN
.BLKW

.REPT

.wORD

.ENDR

.END

.REGDEF,.ENTER,.WRITW,.CLOSE,.PRINT

.SRESET,.EXIT,.FETCH

#CORSPC,#FPRT
BADFET

#AREA,#O,#FPRT

;MAKESUREALLCHANNELS
;ARE CLOSED.
;FETCH DEVICE HANDLER
;.FETCH ERROR, PROBABLY
;ILLEGAL DEVICE.
;OPEN A FILE ON THE DEVICE
;SPECIFIED. LENGTH 0 WILL
;GIVE 1/2 OF LARGEST EMPTY
;SPACE NOW AVAILABLE.

BADENT ;FAILED. CHANNEL PROBABLY BUSY
#AREA,#O,#BUFF,#END-BUFF/2,#O

BADWRT
#0

/DK /
/FILE EXT/
10
#FMSG

#EMSG

#WMSG

/BAD FETCH/
/BAD ENTER/
/WRITE ERROR/

400

400
0,1

START

9-33

;WRITE DATA FROM MEMORY, THE
;SIZE IS # OF WORDS BETWEEN
;BUFF AND END. START AT BLOCK O.
;WRITE FAILURE.
;CLOSE THE FILE
;AND GO TO KEYBOARD MONITOR.
; FILE WILL BE ON DK
;NAMED FILE, EXT
;EMT ARGUMENT LIST

;LEAVE 400(8) WORDS
;FOR DEVICE HANDLER.

;THIS IS BUFFER TO BE WRITTEN OUT

Programmed Requests

~
9.4.9 .EXIT
The .EXIT request causes the user program to tenninate. Any I/O requests and completion routines pending for
that job are allowed to complete. If part of the job resides where KMON and USR are to be read, the user job is
written onto system device scratch blocks. KMON and USR are then loaded and control goes to KMON. If RO=O
when the .EXIT is done, an implicit INIT command is executed when KMON is entered, disabling the subsequent
use of REENTER, START, or CLOSE.

.EXIT also resets any .CDFN and .QSET calls that were done and executes an .UNLOCK if a .LOCK has been done.
Thus, the .CLOSE command from the Keyboard Monitor does not operate for programs which perfonn .CDFN
requests.

Macro Call: .EXIT

Errors:

None.

I·FETCH I
9.4.10 .FETCH
The .FETCH request loads device handlers into memory from the system device.

Macro Call: .FETCH .coradd, .devnam

where: . coradd is the address where the device handler is to be loaded .

. devnam is the pointer to the RADSO device name .

The storage address for the device handler is passed on the stack. When the .FETCH is complete, RO points to the
first available location above the handler. If the handler is already in memory, RO keeps the same value as was
initially pushed onto the stack. If the argument on the stack is less than 400(8), it is assumed that a handler
.RELEAS is being done. (.RELEAS does not dismiss a handler which was LOADED from the KMON; an UNLOAD
must be done.) After a .RELEAS, a .FETCH must be issued in order to use the device again.

Several requests require a device handler to be in memory for successful operation. These include:

.CLOSE

.LOOKUP

.ENTER

.RENAME

Errors:

.READC

.WRITC

.READW

.WRITW

.READ

.wRITE

.SPFUN

.DELETE

Code Explanation

o The device name specified does not exist, or there is no handler for that device in the system.

9-34

Programmed Requests

Example:

In the following example, the PR and PP handlers are fetched into memory in preparation for their use by a program.
The program sets aside handler space from its free memory area .

START:

OK:

FERR:

PRNAME:
PPNAME:
MSG:

FREE:

9.4.11 .GTIM

.MCALL

.REGDEF

.FETCH
BCS
MOV
.FETCH

BCS
MOV

.PRINT

.EXIT

.ASCIZ

.EVEN

.PRINT

.EXIT
HALT
.RAD50
.RAD50
.ASCIZ
.EVEN
.+2
.END

. REGDEF ,.FETCH,.PRINT,.EXIT

FREE,#PRNAME
FERR
RO,R2
R2,#PPNAME

FERR
RO,FREE

#OK

/FETCH O.K./

#MSG

"PR "
"PP "
"DEVICE NOT FOUND"

START

;FETCH PR HANDLER
;FETCH ERROR

;FETCH PP HANDLER
;IMMEDIATELY FOLLOWING
;PR HANDLER, RO POINTS
;TO THE TOP OF PR
;HANDLER ON RETURN
;FROM THAT CALL.
;NO PP HANDLER
;UPDATE FREE MEMORY
;POINTER TO POINT TO
;NEW BOTTOM OF FREE
;AREA (TOP OF HANDLERS).

;PRINT ERROR MESSAGE
;AND EXIT

;DEVICE NAMES

;ERROR MESSAGE

;POINTER TO FREE MEMORY

.GTlM allows user programs to access the current time of day. The time is returned in two words, and is given in
terms of clock ticks past midnight.

Macro Call:

where:

Request Format:

RO =? .area:

.GTIM .area, .addr

. addr

J2ilOl
~

is a pointer to the two words of time to be returned .

9-35

Programmed Requests

The high-order time is returned in the first word, the low-order time in the second word. User programs must make
the conversion from clock ticks to hours-minutes-seconds. The basic clock frequency (50 or 60 Hz) may be deter
mined from the configuration word in the monitor (see Section 9.2.6). The system time and date must be manually
updated by the user after midnight to maintain the correct time (see Chapter 2).

The clock rate is initially set to 60-cycle.

Errors:

None.

Example:

.MCALL .REGDEF,.GTIM,.EXIT

.REGDEF
START:

.GTIM #L1 ST,#T I ME

.EXIT
TIME: .wORD 0,0 ;LOW AND HI ORDER TIME

;RETURNED HERE.

LIST: .BLKW 2 ;ARGUMENTS FOR THE EMT

.END START

I·GTJB I
9.4.12 .GTJB
The .GTJB request passes certain job parameters back to the user program .

Macro Call:

where:

Request Format:

RO ~ .area:

. GTJB .area, .addr

.addr

~
~

is the address of an eight-word block into which the parameters are passed.
The values returned are:
Word 1 - Job Number.

2 - High memory limit
3 - Low memory limit
4 - Beginning of I/O channel space

5-8 - Reserved for future use

The job number is always 0 and the low limit O.

Word 4 describes where the I/O channel words begin. This is normally an address within the Resident Monitor.
When a .CDFN is executed, however, the start of the I/O channel area changes to the user-specified area.

9-36

Programmed Requests

Errors:

None.

.HERR/.SERR

9.4.13 .HERR/.SERR
.HERR and .SERR are complementary requests used to govern monitor behavior for serious error conditions.
During program execution, certain error conditions may arise which cause the executing program to be aborted (for
example, trying to pass I/O to a device which has no handler in memory, or trying to load a device handler over the
USR). Normally, these errors cause program termination with one of the ?M- error messages. However, in certain
cases it is not feasible to abort the program because of these errors; for example, a multi-user program must be able
to retain control and merely abort the user who has generated the error. .SERR accomplishes this by inhibiting the
monitor from aborting the job. Instead, it causes an error return to the offending EMT to be taken. On return from
that request, the C bit is set and byte 52 contains a negative value indicating the error condition which occurred .

. HERR turns off user error interception and allows the system to abort the job on fatal errors and generate an error
message. (.HERR is the default case.)

Macro Calls: .HERR

.SERR

Errors:

Following is a list of the errors Which are returned if soft error recovery is in effect:

Code

-1
-2
-3
-4

-5
-6
-7

-10
-11

Explanation

Called USR from completion routine.
No device handler; this operation needs one.
Error doing directory I/O.
FETCH error. Either an I/O error occurred while reading the handler, or tried to load it over
USRor RMON.
Error reading an overlay.
No more room for files in the directory.
Tried to perform a monitor operation outside the job partition.
Illegal channel number; number is greater than actual number of channels which exist.
Illegal EMT; an illegal function code has been decoded.

Traps to 4 and 10, and floating point exception traps are not inhibited. These errors have their own recovery
mechanism. (See Section 9.4.30.)

Example:

This example causes a normally fatal error to generate errors back to the user program. The error returned is used
to print an appropriate message.

9-37

Programmed Requests

.MCALL .REGDEF,.FETCH,.ENTER,.HERR,.SERR

.MCALL .EXIT,.PRINT

.REGDEF
ST: .SERR ;TURN ON SOFTWARE ERROR

;RETURNS
.FETCH #HDLR,#PTR ;GET A DEVICE HANDLER
BCS FCHERR
.ENTER #AR EA,#l ,#PTR ;OPEN A FILE ON CHANNEL 1
BCS ENERR
. HERR ;NOW PERMIT ?M-ERRORS .
.EXIT

FCHERR: MOVB @#52,RO ;WAS IT FATAL
BMI FTLERR ;YES
.PRINT #FMSG ;NO ... NO DEVICE BY THAT NAME
.EXIT

ENERR: MOVB @#52,RO
BMI FTLERR
.PRINT #EMSG
.EXIT

FTLERR: NEG RO ;THIS WILL TURN POSITIVE
DEC RO ;ADJUST BY ONE
ASL RO ;MAKE IT AN INDEX
MOV TBL(RO),RO ;PUT MESSAGE ADDRESS INTO RO
. PRINT ;AND PRINT IT .
.EXIT

TBL: Ml ;CAN'T OCCUR IN THIS PROGRAM
M2 ;NO DEVICE HANDLER IN MEMORY
M3 ;DIRECTORY I/O ERROR
M4 ;FETCH ERROR
M5 ;IMPOSSIBLE FOR THIS PROGRAM
M6 ;NO ROOM IN DIRECTORY
M7 ;ILLEGAL ADDRESS
Ml0 ;ILLEGAL CHANNEL
Mll ;ILLEGAL EMT

Ml: ;CAN'T OCCUR IN THIS PROGRAM
M2: .ASCIZ /NO DEVICE HANDLER/
M3: .ASCIZ "DIRECTORY I/O ERROR"
M4: .ASCIZ /ERROR DOING FETCH/
M5: ;NOT APPLICABLE TO THIS PROGRAM
M6: .ASCIZ /NO ROOM IN DIRECTORY/
M7: .ASCIZ /ADDRESS CHECK ERROR/
Ml0: .ASCIZ /ILLEGAL CHANNEL/
Mll : .ASCIZ /ILLEGAL EMT/
FMSG: .ASCIZ /FETCH FAILED/
EMSG: .ASCIZ /ENTER FAILED/

.EVEN
HDLR: .BLKW 300 ;LEAVE 300 (OCTAL) FOR HANDLER
PTR: .RAD50 /DX1/ ;DEVICE AND FILE NAME.

.RAD50 /EXAMPL/

.RAD50 /MAC/
AREA: .BLKW 4 ;EMT AREA

.END ST

9-38

Programmed Requests

.HRESET

9.4.14 .HRESET
This request perfonns the same function as .sRESET, after stopping all I/O transfers in progress for that job.
(.HRESET is not used to clear a hard-error condition.) Note that a hardware RESET instruction is used to tenninate
I/O.

Macro Call: .HRESET

Errors:

None.

Example:

See the example for .SRESET (Section 9.4.29) for fonnat.

9.4.15 .LOCK/.UNLOCK

.LOCK

.LOCK/.UNLOCK

The .LOCK request is used to "lock" the USR in memory for a series of operations. If all the conditions which
cause swapping are satisfied, the user program is written into scratch blocks and the USR is loaded. Otherwise, the
USR which is in memory is used, and no swapping occurs. The USR is not released until an .UNLOCK request is
given. A program which has many USR requests to make can .LOCK the USR in memory, make all the requests,
and then .UNLOCK the USR; no time is spent dOing unnecessary swapping.

Macro Call: .LOCK

Note that the .LOCK request reduces time spent in me handling by eliminating the swapping of the USR in and out
of memory. If the USR is currently resident, .LOCK is ignored. After a .LOCK has been executed, an .UNLOCK
request must be executed to release the USR from memory. The .LOCK/.UNLOCK requests are complimentary
and must be matched. That is, if three .LOCK requests are issued, at least three .UNLOCKs must be done, other
wise the USR will not be released. More .UNLOCKs than .LOCKs may occur without error.

Errors:

None.

NOTES
1. It is vital that the .LOCK call not come from within

the area into which the USR will be swapped. If
this should occur, the return from the USR request
would not be to the user program, but to the USR
itself, since the LOCK function inhibits the user
program from being re-read.

2. Once a .LOCK has been perfonned, it is not advis
able for the program to destroy the area the USR is
in, even though no further use of the USR is required.
This causes unpredictable results when an .UNLOCK
is done.

9-39

Programmed Requests

Example:

See the example following .UNLOCK .

. UNLOCK
The .UNLOCK request releases the User Service Routine from memory if it was placed there with a .LOCK request.
If the .LOCK required a swap, the . UNLOCK loads the user program back in to memory. If the USR does not
require swapping, the .UNLOCK acts as a no-op.

Macro Call:

Errors:

None.

Example:

.UNLOCK

NOTE
It is important that at least as many .UNLOCKS are
given as .LOCKs. If more .LOCK requests were done,
the USR remains locked in memory. It is not harmful
to give more UNLOCKs than are required; those that
are extra are ignored.

This example shows the usage of .LOCK, .UNLOCK, and their interaction with the system .

START:
SYSPTR=54

2$:

1$:

LIST:
FILE1 :

FILE2:

TOP:
LMSG:

.MCALL

.MCALL

.REGDEF

.SETTOP
MOV
.LOCK
.LOOKUP
BCC
.PRINT
.EXIT
MOV
INC
MOV
,LOOKUP
BCS
,UNLOCK
,EXIT
,BLKW
,RAD50
,RAD50
,RAD50
,RAD50
,WORD
,ASCIZ
,EVEN
,END

. REGDEF ,.LOCK,.UNLOCK,.LOOKUP

.SETTOP,.PRINT,.EXIT

@#SYSPTR ;TRY FOR ALL OF MEMORY
RO,TOP ;RO HAS THE TOP

;BRING USR INTO MEMORY
#LlST,#O,#FILE1 ;LOOKUP A FILE ON CHANNEL 0
1$;ON ERROR, PRINT A
#LMSG ;MESSAGE AND EXIT

#LlST,RO
(RO) ;DO LOOKUP ON CHANNEL 1
#FILE2,2(RO) ;NEW POINTER

;ALL ARGS ARE FILLED IN
2$

;NOW RELEASE USR

3 ;SPACE FOR ARGUMENTS
IDK I
IFILE1 MACI
IDK I
IFILE2 MACI
0
ILOOKUP ERRORI

START

940

Programmed Requests

In the above example, .SETTOP tries to obtain as much memory as it can. Most likely this will make the USR non
resident (Le., unless a SET USR NOSW AP command is done at the keyboard). Thus, if the USR were non-resident,
swapping must take place for each .LOOKUP given. Using the .LOCK, the USR is brought into memory and remains
there until the .UNLOCK is given.

The second .LOOKUP makes use of the fact that the arguments have already been set up at LIST. Thus, it is pos
sible to increment the channel number, put in a new file pointer and then give a simple .LOOKUP, which does not
cause any arguments to be moved into LIST.

.LOOKUP

9.4.16 .LOOKUP
The .LOOKUP request associates a specified channel with a device and/or file, for the purpose of performing I/O
operations. The channel used is then "busy" until one of the following requests is executed:

.CLOSE

.SA VEST ATUS

.sRESET

.HRESET

.PURGE

.CSIGEN (if channel is in range 0-8)

Note that if the program is overlaid, channel 15 is used by the overlay handler and should not be modified .

Macro Call:

Request Format:

RO ~ .area:

. LOOKUP .area, .chan, .dblk

1 I .chan

.dblk

If the first word of the file name in .dblk is zero and the device is a file-structured device, absolute block 0 of the
device is designated as the beginning of the "file". This technique allows I/O to any physical block on the device.
If a me name is specified for a device which is not file-structured (i.e., PR:FILE.EXT), the name is ignored.

The handler for the selected device must be in memory for a .LOOKUP. On return from the .LOOKUP, RO contains
the length (number of blocks) of the me just looked up. If the length returned is 0, a nonfile-structured .LOOKUP
was done to the device.

Errors:

Code Explanation

o Channel already open.
1 File indicated was not found on the device.

Example:

In the following example, the me "DATA.OOI" on device DXI is opened for input on channel 7.

941

Programmed Requests

.MCALL .REGDEF,.FETCH,.LOOKUP,.PRINT,.EXIT

.REGDEF
START:
ERRWD=52

.FETCH #HSPACE,#DXl N ;GET DEVICE HANDLER
BCS FERR ;DXl IS NOT AVAILABLE
.LOOKUP #L1ST,#7,#DX1N ;LOOKUP THE FILE

;ON CHANNEL 7
BCC LDONE ;FILE WAS FOUND
TSTB @#ERRWD ;ERROR, WHAT'S WRONG?
BNE NFD ;FILE NOT FOUND
.PRINT #CAMSG ;PRINT 'CHANNEL ACTIVE'
.EXIT

NFD: .PRINT #NFMSG ;FILE NOT FOUND
.EXIT

CAMSG: .ASCIZ /CHANNEL ACTIVE/
NFMSG: .ASCIZ /FILE NOT FOUND/ ;ERROR MESSAGES
DXMSG: .ASCIZ /DXl NOT AVAILABLE/

.EVEN
FERR: .PRINT #DXMSG

.EXIT
LDONE: ;PROGRAM CAN NOW

;ISSUE READS AND
;WRITES TO FILE
;DATA.OOl VIA
;CHANNEL 7

.EXIT
LIST: .BLKW 5
DX1N: .RAD50 "DX 1" ;DEVICE

.RAD50 "DAT" ;FILENAME

.RAD50 "A ;FILENAME

.RAD50 "001" ;EXTENSION
HSPACE: ;RESERVED SPACE FOR DX

.=.+400 ;HANDLER

.END START

.PRINT

9.4.17 .PRINT
The .PRINT request causes output to be printed at the tenninal. The string to be printed may be terminated with
either a null (0) byte or a 200 byte. If the null (ASCIZ) format is used, the output is automatically followed by
a (CR) (LF). If a 200 byte terminates the string, no (CR) (LF) is generated.

Macro Call: .PRINT .addr

where: . addr is the address of the string to be printed .

Control returns to the user program after all characters have been placed in the output buffer.

Errors:

None.

9-42

Example:

START:

Sl :
S2:

9.4.18 .PROTECT

.MCALL

.REGDEF

Programmed Requests

.REGDEF,.PRINT,.EXIT

.PRINT #S2

.PRINT #S1

.EXIT

.ASCIZ

.ASCII

.BYTE

.EVEN

(THIS WILL HAVE CR-LF FOLLOWING/
(THIS WILL NOT HAVE CR-LF/
200

.END START

.PROTECT

The .PROTECT request is used by a job to obtain exclusive control of a vector (two words) in the region 0-476.
If it is successful, it indicates that the locations are not currently in use by another job or by the monitor, in
which case the job may place an interrupt address and priority into the protected locations and begin using the
associa ted device.

Macro Call:

where:

Request Format:

RO => .area:

Errors:

.PROTECT .area, .addr

.addr

GIITI
~

is the address of the word pair to be protected. .addr must be a multiple of
four, and must be less than 476 (octal). The two words at .addr and .addr+2
will be protected.

Code Explanation

o Protect failure; locations already in use.
Address greater than 476 or not a multiple of 4.

Example:

This example shows the use of .PROTECT to gain control of the vectors at location 234.

943

ST:

ERR:

AREA:
NOVEC:

UDCINT:

.PURGE

9.4.19 .PURGE

.MCALL

.REGDEF
MOV
MOV
.PROTECT
BCS
MOV
MOV

.EXIT

.PRINT

.EXIT

.BLKW

.ASCIZ

.EVEN

Programmed Requests

. R EGDEF ,.PROTECT ,.PR I NT,. EX IT

#AREA,-(SP)
#234,R5
(SP),R5
ERR
#UDCINT,(R5)+
#340,(R5)

#NOVEC

5

;VECTOR ADDRESS
;PROTECT 234,236
;YOU CAN'T
;INITIALIZE THE VECTORS.
;AT LEVEL 7

/VECTORS ALREADY IN USE/

The .PURGE request is used to de-activate a channel without performing a .HRESET, .sRESET, .SA VEST ATUS,
or .CLOSE request. It merely frees a channel without taking any other action. If a tentative fIle has been
.ENTERed on the channel, it will be discarded. Purging an inactive channel acts as a no-op .

Macro Call: . PURGE .chan

Errors:

None.

Example:

The following code is used to make certain that channels 0-7 are free:

.MCALL .R EGO EF ,.PU RG E,.EX IT

.REGDEF

START:
CLR R1 ;START WITH CHANNEL 0

1$: .PURGE R1 ;PURGE A CHANNEL
INC Rl ;BUMP TO NEXT CHANNEL
CMP R1,#8. ;IS IT AT CHANNEL 8 YET?
BLO 1$;NO, KEEP GOING

.EXIT

.END START

9-44

Programmed Requests

9.4.20 .QSET
All HT -II I/O transfers are done through a centralized queue management system. If I/O traffic is very heavy and
not enough queue elements are available, the program issuing the I/O requests may be suspended until a queue ele
ment becomes available.

The .QSET request is used to make the HT -II I/O queue larger (i.e., add available entries to the queue). A general
rule to follow is that each program should contain one more queue element than the total number of I/O requests
which will be active simultaneously. Note that if synchronous I/O is done (Le., .READW/.WRITW, etc.) and no
timing requests are done, no additional queue elements need be allocated.

Macro Call:

where:

.QSET .addr, .qleng

.addr

.qleng

is the address at which the new elements are to start.

is the number of entries to be added. Each queue entry is seven words long;
hence the space set aside for the queue should be .qleng * 7 words.

Each time .QSET is called, a continuous area of memory is divided into seven-word segments and is added to the
queue for that job .. QSET may be called as many times as required. The queue set up by multiple .QSET requests
is a linked list. Thus, .QSET need not be called with strictly contiguous arguments. The space used for the new
elements is allocated from the user's program space. Thus, care must be taken so that the program in no way alters
the elements once they are set up. The .SRESET and .HRESET requests discard all user-defined queue elements;
therefore any .QSETs must be reissued.

Care should also be taken to allocate enough memory for the queue. The elements in the queue are altered by the
monitor; if enough space is not allocated, destructive references will occur in an unexpected area of memory.

Errors:

None.

Example:

START:

Q1:
Q3:

.MCALL

.REGDEF

.QSET

. QSET

.EXIT

.BLKW

.BLKW

.END

.REGDEF,.QSET,.EXIT

#Q1,#5

#03,#3

7*5.
7*3.

START

;ADD 5 ELEMENTS TO THE QUEUE
;STARTING AT Q1
;AND 3 MORE AT Q3 .

;FIRST QUEUE AREA (35 DECIMAL WORDS)
;SECOND QUEUE AREA (21 DECIMAL WORDS)

Note that Q1 and Q3 need not have been contiguous.

9-45

Programmed Requests

.RCTRLO

9.4.21 .RCTRLO
The .RCTRLO request restores tenninal output after its inhibition by a CTRL 0 keyboard command. Typing a
second CRTL 0 or returning to the monitor are methods that also restore tenninal output.

Macro Call: .RCTRLO

Errors:

None.

Example:

In this example, the user program first calls the CSI in general mode, then processes the command. When finished,
it returns to the CSI for another command line. To make certain that the prompting "*,, typed by the CSI is not
inhibited by a CTRL 0 in effect from the last operation, terminal output is re-enabled via a .RCTRLO command
prior to the CSI call.

.MCALL

.REGDEF
.REGDEF,.RCTRLO,.CSIGEN,.EXIT

START:

DEXT:

DSPACE:

.RCTRLO

.CSIGEN

JMP

o
o
o
o
.=.+400

#DSPACE,#DEXT,#O

START

.END START

.READ/.READC/.READW

9.4.22 .READ/.READC/.READW

;MAKE SURE TT OUTPUT IS
;ENABLED
;CALL CSI-IT WILL TYPE

;PROCESS COMMAND

;GET NEXT COMMAND

;NO DEFAULT EXTENSIONS

;HANDLER SPACE

HT-II provides three modes ofI/O: .READ/.WRITE, .READCj.WRITC, and .READWj.WRITW. Section 9.4.34
explains the output operations. The input operations are described next.

Note that in the case of .READ and .READC, additional queue elements should be allocated for buffered I/O
operations (see .QSET).

946

Programmed Requests

.READ
The .READ request transfers a specified number of words from the specified channel to memory. Control returns to
the user program immediately after the .READ is initiated. No special action is taken when the transfer is completed .

Macro Call:

where:

Request Format:

. READ .area, .chan, .buff, .wcnt, .blk

. buff is the address of the buffer to receive the data read .

.wcnt is the number of words to be read .

. blk is the block number to be read relative to the start of the fIle, not block °
of the device. The monitor translates the block supplied into an absolute
device block number. The user program normally updates .blk before it is
used again. If .blk=O, TT: gives'" prompt and LP: gives form feed. (This
is true for all .READ and .WRITE requests.)

RO =* .area: 10 I .chan

.blk

.buff

.wcnt

When the user program needs to access the data read on the specified channel, a .WAIT request should be issued.
This ensures that the data has been read completely. If an error occurred during the transfer, the .WAIT request
indicates the error.

Errors:

Code Explanation

o Attempt to read past end-of-fIle
1 Hard error occurred on channel
2 Channel is not open

Example:

Refer to the .WRITEj.WRITCj.wRITW examples .

. READC
The .READC request transfers a speCified number of words from the indicated channel to memory. Control returns
to the user program immediately after the .READC is initiated. Execution of the user program continues until
the .READC is complete, then control passes to the routine specified in the request. When an RTS PC is executed
in the completion routine, control returns to the user program.

Macro Call: .READC .area, .chan, .buff, .wcnt, .crtn, .blk

where: . buff is the address of the buffer to receive the data read .

. wcnt is the number of words to be read .

947

Request Format:

RO ~ .area:

. crtn

. blk

101
.blk

.buff

.wcnt

.chan

Programmed Requests

is the address of the user's completion routine (refer to Section 9.2.8) .

is the block number relative to the start of the fIle, not block a of the device .
The monitor translates the block supplied into an absolute device block num
ber. The user program normally updates .blk before it is used again.

address of completion routine

When entering a .READC completion function the following are true:

1. RO contains the channel status word for the operation. If bit 0 of RO is set, a hardware error occurred
during the transfer. The data may not be reliable.

2. RI contains the channel number of the operation. This is useful when the same completion function is to
be used for several different transfers.

Errors:

Code Explanation

a Attempt to read past end-of-fIle
Hard error occurred on channel

2 Channel is not open

Example:

Refer to the .WRlTE/.WRITC/.WRlTW examples .

. READW
The .READW request transfers a specified number of words from the indicated channel to memory. Control returns
to the user program when the .READW is complete or if an error is detected .

Macro Call:

where:

. READW .area, .chan, .buff, .wcnt, .blk

. buff is the address of the buffer to receive the data read .

.wcnt is the number of words to be read. The number must be positive .

. blk is the block number relative to the start of the fIle, not block a of the device.
The monitor translates the block supplied into an absolute device block num
ber. The user program normally updates .blk before it is used again.

948

Programmed Requests

Request Format:

RO => .area: 10 I .chan

.blk

.buff

.wcnt

o

On return from this call, the C bit set indicates an error has occurred. If no error occurred, the data is in memory at
the specified address.

Errors:

NOTE
Upon return from any READ programmed request, RO
will contain no information if the read is from a sequen
tial-access device. If the read is from a random-access
device, RO will contain the actual number of words that
will be read (.READ or .READC) or have been read
(.READW). This will be less than the requested word
count if an attempt is made to read past the end-of-ftle,
but a partial transfer is possible. Therefore, a program
should always use the returned word count as the num
ber of words available. For example, suppose a ftle is
5 blocks long (i.e., it has block numbers 0 to 4) and a
request is issued to read 512 words, starting at block
4. The request is shortened to 256 words; no error is
indicated. Also note that since the request will be
shortened to an exact number of blocks, a request for
256 words will either succeed or fail, but cannot be
shortened.

Code Explanation

o Attempt to read past end-of-ftle
Hard error occurred on channel

2 Channel is not open

Example:

Refer to the .WRITEjWRITCjWRITW examples.

9.4.23 .RELEAS

.RELEAS

The .RELEAS request removes the handler for the specified device from memory. The .RELEAS is ignored if the
handler is:

1. Part of RMON (i.e., the system device),
2. Not currently resident, or
3. Resident because of a LOAD command to the Keyboard Monitor.

949

Programmed Requests

Macro Call: .RELEAS .devname

where: . devname is the pointer to the .RAD50 device name .

Errors:

Code Explanation

o Handler name was illegal.

Example:

In the following example, the lineprinter handler (LP) is loaded into memory, used, then released .

.MCALL

.REGDEF
. REGDEF,.FETCH,.RELEAS,.EXIT

START: .FETCH
BCS

; USE HANDLER

FERR:
LPNAME:
HSPACE:

.RELEAS

BR
HALT
.RAD50

#HSPACE,#LPNAME
FERR

#LPNAME

START

/LP /

.END START

I·RENAME I
9.4.24 .RENAME

; LOAD LP HANDLER
;NOT AVAILABLE

;MARK LP NO LONGER IN
;MEMORY.

;LP NOT AVAILABLE
;NAME FOR LP HANDLER
;BEGINNING OF HANDLER
;AREA

The .RENAME request causes an immediate change of name of the me specified. An error occurs if the channel
specified is already open.

Macro Call: .RENAME .area, .chan, .dblk

Request Format:

RO => .area: 4 I .chan

.dblk

9-50

Programmed Requests

The .dblk argument consists of two consecutive .RAD50 device and me specifications. For example:

DBLK:

.RENAME
BCS

.RAD50

.RAD50

.RAD50

.RAD50

.RAD50

.RAD50

#AR EA,#7 ,#DB LK
RNMERR

/DX1/
/OLDFIL/
/MAC/
/DX1/
/NEWFIL/
/MAC/

;USE CHANNEL 7
;NOT FOUND

The first string represents the me to be renamed and the device it is found on. The second represents the new me
name. If a me with the same name as the new me name specified already exists on the indicated device, it is deleted.
The second occurrence of the device name DXl is necessary for proper operation, and should not be omitted. The
specified channel is left inactive when the .RENAME is complete .. RENAME requires that the handler to be used
be resident at the time the .RENAME request is made. If it is not, a monitor error occurs. Note that .RENAME is
legal only on mes which are on disk. (.RENAMEs to other devices are ignored.)

Errors:

Code Explanation

o Channel open
1 File not found

Example:

In the following example, the me DATA.TMP on DXO is renamed to DATA.001:

.MCALL

.MCALL

.REGDEF

START: .FETCH
BCS
.RENAME
BCS
.EXIT

FERR: .PRINT
.EXIT

RNMERR: .PRINT
.EXIT

AREA: .BLKW
NAMBLK: .RAD50

.RAD50
FMSG: .ASCIZ
RNMSG: .ASCIZ

.EVEN
HSPACE=.

.END

.REGDEF,.FETCH,.PRINT

.EXIT,.RENAME

#HSPACE,#NAMB LK
FERR
#AREA,#O,#NAMBLK
RNMERR

#FMSG

#RNMSG

5
/DXODATA TMP/
/DXODATA 001/
/FETCH?/
/RENAME?/

START

9-51

;GET HANDLER
;SOME ERROR
;DO THE RENAME
;ERROR

; ROOM FOR ARGS.
;OLD NAME
;NEW NAME
;ERROR MESSAGES

Programmed Requests

.REOPEN

9.4.25 .REOPEN
The .REOPEN request reassociates the specified channel with a me on which a .SA VEST ATUS was performed. The
.SA VEST ATUS/ .REOPEN combination is useful when a large number of mes must be operated on at one time. As
many mes as are needed can be opened with .LOOKUP, and their status preserved with .SA VEST ATUS. When data
is required from a me, a .REOPEN enables the program to read from the me. The .REOPEN need not be done on
the same channel as the original .LOOKUP and .SA VEST ATUS.

Macro Call: .REOPEN .area, .chan, .cblk

where: .cblk

Request Format:

RO =* .area: 6 1 .chan

.cblk

Errors:

is the address of the five-word block where the channel status information
was stored.

Code Explanation

o The specified channel is in use. The .REOPEN has not been done.

Example:

Refer to the example following the description of .SA VEST ATUS.

I .SAVEST ATUS I
9.4.26 .SAVESTATUS
The .SA VEST ATUS request stores five words of channel status information into a user-specified area of memory.
These words contain all the information HT-II requires to completely defme a fIle. When a .SAVESTATUS is done,
the data words are placed in memory, and the specified channel is again available for use. When the saved channel
data is required, the .REOPEN request is used .

. SAVESTATUS can only be used if a me has been opened with .LOOKUP. If .ENTER was used, .SAVESTATUS
is illegal and returns an error .

Macro Call:

where:

Request Format:

. SA VEST ATUS .area, .chan, .cblk

.cblk is the address of the user memory block (5 words) where the channel status
information is to be stored.

RO =* .area: 5! .chan

.cblk

9-52

Programmed Requests

The five words stored are the five words normally contained in the channel area, as follows:

Word No. Contents

Channel status word. The contents of the bits of this word are:

Bit No.

o
1-5

6
7

8-12

13
14
15

Contents

1 - a hardware error occurred on this channel.
Index into monitor tables. This describes the physical device with which
the channel is associated.
1 - a .RENAME operation is in progress on the channel.
1 - a .CLOSE operation must rewrite the directory (i.e., set when a .ENTER
is done).
Contains the directory segment number (1-37(8» in which the current open
me can be found.
1 - an end-of-me was found on the channel.
Unused.
1 - this channel is currently in use (i.e., a me is open on this channel).

2 Starting block number of the me. Zero for sequential-access devices.

3 Length of me (in 256-word blocks).

4 Data length of me; currently unused.

5 Even Byte: I/O count. Count of how many I/O requests have been made on this channel.
Odd Byte: Unit number of the device associated with the channel (between 0 - 7).

While the .SA VEST ATUS/ .REOPEN combination is very useful, care must be observed when using it. In particular,
the following cases should be avoided:

1. If a .SA VEST ATUS is performed and the same me is then deleted before it is reopened, it becomes avail
able as an empty space which could be used by the .ENTER command. If this sequence occurs, the con
tents of the me supposedly saved will change.

2. Although the device handler for the required peripheral need not be in memory for execution of a
.REOPEN, if the handler is not in memory when a READ or .WRITE is executed, a fatal error is generated.

Errors:

Code Explanation

The me was opened via .ENTER and a .SAVESTATUS is illegal.

Example:

One of the more common uses of .SA VEST ATUS and .REOPEN is to consolidate all directory access motion and
code at one place in the program. All mes necessary are opened and their status saved, then they are re-opened
one at a time as needed. USR swapping can be minimized by locking in the USR, doing .LOOKUPs as needed,
using .SA VEST ATUS to save the me data, and then .UNLOCKing the USR.

In the program segment below, three input mes are specified in the command string; these are then processed one
at a time.

9-53

START:

Programmed Requests

.MCALL

.MCALL

.REGDEF

.REGDEF,.CSIGEN,.SAVESTATUS,.REOPEN

.READ,.EXIT

MOV
.CSIGEN

MOV

#AREA,R5
#DSPACE,#DEXT

RO,BUFF

.SAVESTATUS R5,#3,#B LOCK 1

.SAVESTATUS R5,#4,#BLOCK2

.SAVESTATUS R5,#5,#BLOCK3

MOV

;GET INPUT FILES

;SAVE POINTER TO FREE MEMORY

;SAVE FIRST INPUT FILE
;SAVE SECOND FILE
;SAVE THIRD FILE

PROCESS: .REOPEN
#BLOCK1,R4
R5,#Q,R4 ;REOPEN FILE ON

;CHANNEL °
.READ R5,#Q,BUFF,COUNT,BLOCK ;PROCESS FILE ON CHANNEL °

DONE: ADD #12,R4 ;POINT TO NEXT SAVESTATUS BLOCK
CMP R4,#BLOCK3 ; LAST FILE PROCESSED?
BLOS PROCESS ;NO - DO NEXT
.EXIT

BLOCK1: .WORD 0,0,0,0,0 ;MEMORY BLOCKS FOR
BLOCK2: .WORD 0,0,0,0,0 ;SAVESTATUS INFORMATION
BLOCK3: .wORD 0,0,0,0,0
AREA: .BLKW 10

BUFF: .WORD ° BLOCK: .WORD ° COUNT: .WORD 256.

DEXT: .WORD 0,0,0,0
DSPACE=.

.END START

.SETTOP

9.4.27 .SETTOP
The .SETTOP request allows the user program to request that a new address be specified as a program's upper limit.
The monitor determines whether this address is legal and whether or not a memory swap is necessary when the USR
is required. For instance, if the program specified an upper limit below the start address of USR, no swapping is
necessary, as the USR is not overlaid. If .SETTOP specifies a high limit greater than the address of the USR and a
SET USR NOSWAP command has not been given, a memory swap is required. Section 9.2.5 gives details on deter
mining where the USR is in memory and how to optimize the .SETTOP.

On return from .SETTOP, both RO and the word at location 50 (octal) contain the highest memory address allo
cated for use. If the job requested an address higher than the highest address which is legal for the requesting job,
it is adjusted down to that address.

9-54

Macro Call:

where:

Errors:

None.

Example:

Programmed Requests

.SETTOP .addr

. addr is the address of the word immediately following the free area desired .

NOTES
1. A program should never do a .SETTOP and assume

that its new upper limit is the address it requested.
It must always examine the returned contents of RO
or location 50 to determine its actual high address.

2. It is imperative that the value returned in RO or loca
tion 50 be used as the absolute upper limit. If this
value is ever exceeded, vital parts of the monitor may
be destroyed, and the system integrity will be
violated.

Following is an example in two parts. The first indicates how a small job (i.e., one with free space between itself
and the USR) can be assured of reserving space up to but not including the USR. This in effect gives the job all
the space it can without causing the USR to become non-resident.

The second part indicates how to always reserve the maximum amount of space by making the USR non-resident.

I)

START:
RMON=54
USR=266

II)

HICORE:

.MCALL

.REGDEF

MOV
MOV
TST
.SETTOP
MOV

.SETTOP

MOV

.EXIT

.WORD

.REGDEF,.SETTOP,.EXIT

@#RMON,R1
USR(R1),RO
-(RO)

RO,HICORE

#-2

RO,HICORE

o
.END START

;POINTER TO START OF RESIDENT
;OFFSET FROM RESIDENT TO POINTER
;WHERE USR WILL START.
;START OF RMON TO R1
;POINT TO LOWEST USR WORD
;POINT TO HIGHEST WORD NOT IN USR
;AND ASK FOR IT
;RO CONTAINS THE HIGH ADDRESS
;THAT WAS RETURNED.

;IF WE ASK FOR A VALUE GREATER
;THAN START OF RESIDENT, WE
;WILL GET BACK THE ABSOLUTELY
;HIGHEST USABLE ADDRESS.
;THAT IS OUR LIMIT NOW

If a SET USR NOSWAP command is executed, the USR cannot be made non-resident. In this case, in both I and II
above, RO would return a value just below the USR.

9-55

Programmed Requests

Caution should be used concerning technique I, above. If the program is so large that the USR is normally posi·
tioned over part of it, the high limit value returned by the .SETTOP may actually be lower than the original limit.
TheUSR is then resident, with a portion of the user program destroyed. The example in Section 9.2.5 shows how
to include checks that will avoid this situation.

I·SFPA I
9.4.28 .SFPA
.SFPA allows users with floating point hardware (FPP on 11/45 and FIS on 11/40 and LSI-l1) to set trap addresses
to be entered when a floating point exception occurs. If no user trap address is specified and a floating point (FP)
exception occurs, a ?M·FP TRAP occurs, and the job is aborted .

Macro Call: . SFPA .area, .addr

where: . addr is the address of the routine to be entered when an exception occurs .

Request Format:

RO ~ .area: ~

Errors:

None.

Example:

~
NOTES

1. If the address argument is 0, user floating point
routines are disabled and the fatal ?M·FP TRAP
error is produced.

2. When the user routine is activated, it is necessary to
re-execute an .SFPA request, as the monitor inhibits
user traps when anyone is serviced. It does this to
inhibit any possible infinite loop being set up by
repeated FP exceptions.

3. If the 11/45 FPP is being used, the instruction
STST - (SP) is executed by the monitor before
entering the user's trap routine. Thus, the trap
routine must pop the two status words off the stack
before doing an RTI. The program can tell if FPP
hardware is available by examining the configura·
tion word in the monitor (see Section 9.2.6).

This example sets up a user FP trap address .

START:

. MCALL

.REGDEF

.SFPA

.EXIT

.REGDEF,.SFPA,.EXIT

#AR EA,#FPTRAP

9-56

FPTRAP:

AREA:

MOV
.SFPA
MOV
RTI

.BLKW

.END

Programmed Requests

RO,-(SP)
#AREA,#FPTRAP
(SP)+,RO

10
START

;RO USED BY .SFPA

;RESTORE RO

.SRESET

9.4.29 .sRESET
The .sRESET (software reset) request performs the following functions:

1. Dismisses any device handlers which were brought into memory via a .FETCH call. Handlers which were
loaded via the Keyboard Monitor LOAD command remain resident, as does the system device handler.

2. Purges any currently open fIles. Files opened for output with .ENTER will never be made permanent.
3. Reverts to using only 16 (decimal) I/O channels. Any channels defined with .CDFN are discarded. A

.CDFN must be reissued to open more than 16 (decimal) channels after a .sRESET is performed.
4. Resets the I/O queue to one element. A .QSET must be reissued to allocate extra queue elements.
5. Clears completion queue of any completion routines.

Macro Call: .sRESET

Errors:

None.

Example:

In the example below, .SRESET is used prior to calling the CSI to ensure that all handlers are removed from mem
ory and the CSI is started with a free handler area .

. MCALL

.REGDEF

START: .CSIGEN
MOV

DONE: .SRESET

BR
DEXT: .WORD
BUFFER: 0
DSPACE=.

.END

.REGDEF,.CSIGEN,.SRESET,.EXIT

#DSPACE,#DEXT,#O
RO,BUFFER

START
0,0,0,0

START

;GET COMMAND STRING
;RO POINTS TO FREE MEMORY

;RELEASE HANDLERS, DELETE
;TENTATIVE FILES
;AND REPEAT PROGRAM.
;NO DEFAULT EXTENSIONS

;START OF HANDLER AREA.

If the .sRESET had not been performed prior to the second call of .CSIGEN, it is possible that the second command
string would load a handler over one that the monitor thought was resident from the first command line.

9-57

Programmed Requests

.TRPSET

9.4.30 .TRPSET
.TRPSET allows the user job to intercept traps to 4 and 10 instead of having the job aborted with a ?M-TRAP TO 4
or ?M-TRAP TO 10 message. If .TRPSET is in effect when a trap occurs, the user-specified routine is entered. The
sense of the C bit on entry to the routine determines which trap occurred: C bit clear indicates a trap to 4; set
indicates a trap to 10. The user routine should exit via an RTI instruction.

Macro Call:

where:

Request Format:

RO => .area:

Errors:

None.

Example:

.TRPSET .area, .addr

.addr is the address of the user's trap routine. If an address of 0 is specified, the
user's trap interception is disabled.

ITEJ
~

NOTES
It is necessary to reissue a .TRPSET request whenever
a trap occurs and the user routine is entered. The moni
tor inhibits servicing user traps prior to entering the first
user trap routine. Thus, if a trap should occur from
within the user's trap routine, a ?M-TRAP message is
generated. The last operation the user routine should
perform before an RTI is to reissue the .TRPSET request.

The following example sets upa user trap routine and, when the trap occurs, prints an appropriate error message .

. MCALL

.REGDEF

START:
.TRPSET
MOV
TST
. WORD
. EXIT

TRPLOC: MOV
BCS
.PRINT
BR

.REGDEF,.TRPSET,.EXIT,.PRINT

#AR EA,#TRPLOC
#101,RO
(RO)+
67

RO,-(SP)
1$
#TRP4
2$

9-58

;SET TO PRODUCE A TRAP
;THIS WILL TRAP TO 4 •
;THIS WILL TRAP TO 10 .

;RO USED BY EMTS
;C SET = TRAP TO 10
;TRAPT04

1$:
2$:

AREA:
TRP4:
TRP10:

.PRINT

.TRPSET
MOV
RTI

.BLKW

.ASCIZ

.ASCIZ

.EVEN

.END

9.4.31 .TTYIN/.TTINR

Programmed Requests

#TRP10
#AR EA,#TRPLOC
(SP)+,RO

10
/TRAP TO 4/
/TRAP TO 10/

START

;TRAPTO 10
;RESET TRAP ADDRESS
;RESTORE RO

.TTYIN/.TTINR

These requests are used to transfer characters from the terminal to the user program. The character thus obtained
appears right-justified (even byte) in RO.

The expansion of .TTYIN is:

EMT 340
BCS .-2

while that for .TTINR is:

EMT 340

If no characters or lines are available when an EMT 340 is executed, return is made with the C bit set. The implica
tion of these calls is that .TTYIN causes a tight loop waiting for a character/line to appear, while the user can either
wait or continue processing using .TTINR.

Macro Calls:

where:

.TTYIN .char

.TTINR

.char is the location where the character in RO is stored. If not specified, the charac
ter is left in RO.

If the carry bit is set when execution of the .TTINR request is completed, it indicates that no character was avail
able; the user has not yet typed a valid line.

There are two modes of doing terminal input. This is governed by bit 12 of the Job Status Word. If bit 12 = 0,
normal I/O is performed. In this mode, the following conditions apply:

1. The monitor echoes all characters typed; lower case characters are converted to upper case.
2. CTRL V (tV) and RVBOVT perform line deletion and character deletion, respectively.
3. A carriage return, line feed, CTRL Z, or CTRL C must be struck before characters on the current line are

available to the program. When carriage return is typed, characters on the line typed are passed one-by
one to the user program; both carriage return and line feed are passed to the program.

4. ALTMODEs (octal codes 175 and 176) are converted to ESCAPEs (octal 33).

9-59

Programmed Requests

If bit 12 = 1, the tenninal is in special mode. The effects are:

1. The monitor does not echo characters typed except for CTRL C and CTRL O.
2. CTRL U and RUBOUT do not perfonn special functions.
3. Characters are immediately available to the program.
4. No ALTMODE conversion is done.

In special mode, the user program must echo the characters received. However, CTRL C and CTRL 0 are acted on
by the monitor in the usual way. Bit 12 in the JSW must be set by the user program. This bit is cleared when control
returns to HT-II.

CTRL S and CTRL Q are intercepted by the monitor.

Errors:

Code Explanation

o No characters available in ring buffer.

Example:

Refer to the example following the description of .TTYOUT/.TTOUTR.

.TTYOUT I.TTOUTR

9.4.32 .TTYOUT/.TTOUTR
These requests cause a character to be transmitted from RO to the terminal. The difference, as in the .TTYIN/
. TTINR requests, is that if there is no room for the character in the monitor's buffer, the .TTYOUT request waits
for foom before proceeding, while the .TTOUTR does not wait for room and the character in RO is not output .

Macro Calls:

where:

. TTYOUT .char

.TTOUTR

.char is the location containing the character to be loaded in RO and printed. If not
specified, the character in RO is printed. Upon return from the request, RO
still contains the character.

If the carry bit is set when execution of the .TTOUTR request is completed, it indicates that there is no room in the
buffer and that no character was output.

The .TTINR and .TTOUTR requests have been supplied as a help to those users who do not wish to suspend pro
gram execution until a tenninal operation is complete. With these modes of I/O, if a no-character or no-room condi
tion occurs, the user program can continue processing and try the operation again at a later time.

Errors:

Code Explanation

o Output ring buffer full.

9-60

Programmed Requests

Example:

As an example of the various terminal requests, the following program is coded in two ways. The program itself
accepts a line from the keyboard, then repeats it on the terminal.

The first example uses .TTYIN and .TTYOUT, which are synchronous. The monitor retains control until both
requests are satisfied, hence there is no time available for any other processing while waiting .

.MCALL . REGDEF,.TTYIN,.TTYOUT

.REGDEF

START: MOV #BUFFER,R1 ;POINT R1 TO BUFFER
CLR R2 ;CLEAR CHARACTER COUNT

INLOOP: .TTYIN (R1)+ ;READ CHAR INTO BUFFER
INC R2 ;BUMP COUNT
CMPB #12,RO ;WAS LAST CHAR=LF?
BNE INLOOP ;NO-GET NEXT
MOV #BUFFER,R1 ;YES-POINT R1 TO BUFFER

OUTLOOP: .TTYOUT (R1)+ ;PRINT CHAR
DEC R2 ;DECREASE COUNT
BEQ START ;DONE IF COUNT = 0
BR OUTLOOP

BUFFER=.

.END START

Rather than wait for the user to type something at IN LOOP or wait for the output buffer to have available space
at OUT LOOP, the routine can be recoded using .TTINR and .TTOUTR as follows:

.MCALL .REGDEF,.TTYIN,.TTYOUT

.REGDEF

.MCALL .TTINR,.TTOUTR,.EXIT

START: MOV #BUFFER,R 1 ;POINT R1 TO BUFFER
CLR R2 ;CLEAR CHARACTER COUNT

INLOOP: .TTINR ;GET CHAR FROM TERMINAL
BCS NOCHAR ;NONE AVAILABLE

CHRIN: MOVB RO,(R 1)+ ;PUT CHAR IN BUFFER
INC R2 ;INCREASE COUNT
CMPB RO,#12 ;WAS LAST CHAR = LF?
BNE INLOOP ;NO-GET NEXT
MOV #BUFFER,R1 ;YES-POINT R1 TO BUFFER

OUTLOOP: MOVB (R1),RO ;PUT CHAR IN RO
.TTOUTR ;TYPE IT
BCS NO ROOM ;NO ROOM IN OUTPUT BUFFER

CHROUT: DEC R2 ;DECREASE COUNT
BEQ START ;DONE IF COUNT=O
INC R1 ;BUMP BUFFER POINTER
BR OUT LOOP ;AND TYPE NEXT

NO CHAR:

9-61

NOROOM:

TYPE IT:

BUFFER:

9.4.33 .WAIT

Programmed Requests

.TTlNR

BCC CHRIN

(code to be executed
while waiting)

BR NOCHAR

MOVB (R1),RO

.TTOUTR
BCC CHROUT

(code to be execu ted
while waiting)

.TTYOUT (Rl)
BR CHROUT

. BLKW 100 .

.END START

;PERIODIC CHECK FOR
;CHARACTER AVAILABILITY
;GOTONE

;PERIODIC ATTEMPT TO TYPE
;CHARACTER

;SUCCESSFUL

;PUT CHAR

The .WAIT request suspends program execution until all input/output requests on the specified channel are com
pleted. The .WAIT request combined with the .READ/.WRITE requests make double-buffering a simple process .

. WAIT also conveys information back through its error returns. An error is returned if either the channel is not
currently open or if the last I/O operation resulted in a hardware error.

9-62

Programmed Requests

Macro Call: .WAIT .chan

Request Format:

RO ~ I 0 I .chan I
Errors:

Code Explanation

o Channel specified is not open.
Hardware error occurred on the previous I/O operation on this channel.

These error codes make the .WAIT request useful in checking channel status.

Example:

For an example of .WAIT used for I/O synchronization, see the examples in the next section.

An example of the use of .W ArT for error detection is its use in conjunction with .CSIGEN to determine which
file fields in the command string have been specified. For example, a program such as ASEMBL might use the
following code to determine if a listing file is desired .

START:

NOBINARY:

NOLlSTlNG:

ERROR:

DEXT:

DSPACE=.

. MCALL

.REGDEF

.CSIGEN

.wAIT
BCS

.WAIT
BCS

.WAIT
BCS

.EXIT

.RAD50

.RAD50

.RAD50

.WORD

.REGDEF,.WAIT,.CSIGEN,.EXIT

#DSPACE,#DEXT,#O
#0
NOBINARY

#1
NOLISTING

#3
ERROR

/PAL/
/OBJ/

./LST/
o

;PROCESS COMMAND STRING
;CHECK FOR FILE IN FIRST FIELD
;NO BINARY DESIRED

;CHECK FOR LISTING SPECIFICATION
;NO LISTING DESIRED

;CHECK FOR INPUT FILE OPEN
;NO INPUT FILE

.END START

9-63

Programmed Requests

.WRITE/.WRITC/.WRITW

9.4.34 .WRITE/.WRITC/.WRITW
Note that in the case of .WRITE and .WRITC, additional queue elements should be allocated for buffered I/O
operations (see .QSET) .

. WRITE
The .WRITE request transfers a specified number of words from memory to the specified channel. Control returns
to the user program immediately after the request is queued .

Macro Call: . WRITE .area, .chan, .buff, .wcnt, .blk

where: . buff is the address of the memory buffer to be used for output .

.wcnt is the number of words to be written .

. blk is the number of the block to be written.

Request Format:

RO => .area:

Notes:

See the note following .WRITW.

Errors:

11 I.chan
.blk
.buff
.wcnt
1

Code Explanation

o Attempted to write past end-of-me.
1 Hardware error.
2 Channel was not opened.

Example:

Refer to the examples following .WRITW .

. WRITC
The .WRITC request transfers a specified number of words from memory to a specified channel. Control returns
to the user program immediately after the request is queued. Execution of the user program continues until the
.WRITC is complete, then control passes to the routine specified in the request. When an RTS PC is encountered
in the routine, control returns to the user program.

9-64

Macro Call:

where:

Request Format:

RO'* .area:

Programmed Requests

.WRITC .area, .chan, .buff, .wcnt, .crtn, .blk

. buff

. wcnt

. crtn

. blk

11 I .chan
.blk
.buff
.wcnt
.crtn

is the address of the memory buffer to be used for output .

is the number of words to be written .

is the address of the completion routine to be entered (see Section 9.2.8) .

is the block number relative to the start of the file, not block 0 of the device .
The monitor translates the block supplied into an absolute device block num
ber. The user program normally updates .blk before it is used again.

When entering a .wRITC completion function the following are true:

1. RO contains the channel status word for the operation. If bit 0 of RO is set, a hardware error occurred
during the transfer. The data may not be reliable.

2. Rl contains the channel number of the operation. This is useful when the same completion function is
to be used for several different transfers.

Notes:

See the note following .wRITW.

Errors:

Code Explanation

o End-of-file on output. Tried to write outside limits of file.
1 Hardware error occurred.
2 Specified channel is not open.

Example:

Refer to the examples foHowing .WRITW .

. WRITW
The .WRITW request transfers a specified number of words from memory to the specified channel. Control returns
to the user program when the .WRITW is complete .

Macro Call: . WRITW .area, .chan, .buff, .wcnt, .blk

where: .buff is the address of the buffer to be used for output.

. wcnt is the number of words to be written. The number must be positive .

. blk is the number of the block to be written .

9-65

Request Format:

RO =? .area:

Errors:

Programmed Requests

11 I .chan
.bIk
.buff
.wcnt
o

NOTE
Upon return from any WRITE programmed request, RO
will contain no information if the write is to a sequen
tial-access device. If the write is to a random-access de
vice, RO contains the number of words that will be
written (.WRITE or .WRITC) or have been written
(.WRITW). If a request is made to write past the end-of
me on a random-access device, the word count is short
ened and an error is returned. Note that the write will be
done and a completion routine, if specified, will be
entered, unless the request cannot be partially filled
(shortened word count = 0).

Code Explanation

o Attempted to write past EOF.
Hardware error.

2 Channel was not opened.

Examples:

The following routine illustrates the differences between the three types of .READ/.WRITE requests and is coded
in three ways, each using a different mode of monitor I/O. The routine itself is a simple program to duplicate a
paper tape.

In the first example, .READW and .WRITW are used. The I/O is completely synchronous, with each request re
taining control until the buffer is filled (or emptied) .

ERRWD=52

.MCALL

.MCALL

.REGDEF

. REGDEF,.FETCH,.READW,.WRITW

.ENTER,.LOOKUP,.PRINT,.EXIT,.CLOSE,.WAIT

9-66

Programmed Requests

START: .FETCH #HSPACE,#PR NAM E ;GET PR HANDLER
BCS FERR ;PR NOT AVAILABLE
MOV RO,R2 ;RO HAS NEXT FREE LOCATION
.FETCH R2,#PPNAME ;GET PP HANDLER
8CS FERR ;NOT AVAILABLE
MOV #AREA,R5 ;EMT ARGUMENT AREA
CLR R4 ;R4 IS OUTPUT CHANNEL; 0
MOV #1,R3 ;R3 IS INPUT CHANNEL ;1
.ENTER R5,R4,#PPNAME ;ENTER THE FILE
BCS ENERR ;SOME ERROR IN ENTER
.LOOKUP R5,R3,#PRNAME ;LOOKUP FILE ON CHANNEL 1
BCS LKERR ;ERROR IN LOOKUP
CLR R1 ;USE R1 AS BLOCK NUMBER

LOOP: .READW R5,R3,#BUF F ,#256.,R 1 ;READ ONE BLOCK
8CS RDERR
.WRITW R5,R4,#BUFF,#256.,R 1 ;WRITE THAT BLOCK
BCS WTERR
INC R1 ;BUMP BLOCK. NOTE: THIS IS

;NOT NECESSARY FOR NON-FILE
;DEVICES IN GENERAL. IT IS
;USED HERE AS AN EXAMPLE OF
;A GENERAL TECHNIOUE.

BR LOOP ;KEEP GOING
RDERR: TSTB ERRWD ;ERROR. IS IT EOF?

BEQ 1$;YES,
.PRINT #RDMSG ;No., HARD READ ERRo.R
.EXIT

1$: .CLo.SE R3 ;CLOSE INPUT AND o.UTPUT
.CLo.SE R4
. EXIT ;AND EXIT .

WTERR: .PRINT #WTMSG'
.EXIT

PRNAME: RAD50 /PR / ;No.TE THAT PR NEEDS NO. FILE NAME
. Wo.RD 0 ;FILE NAME NEED o.NLY BE O .

PPNAME: .RAD50 /PP /
.Wo.RD 0

FERR: .PRINT #FMSG ;ERRo.R ACTlo.NS Go. HERE. IT IS
.EXIT ;GENERALLY UNDESIRABLE TO.

ENERR: .PRINT #EMSG ;EXECUTE A HALT o.R RESET
.EXIT ;INSTRUCTlo.N o.N ERRo.R.

LKERR: .PRINT #LMSG
.EXIT

FMSG: .ASCIZ /No. DEVICE?/
EMSG: .ASCIZ /ENTRY ERRo.R?/
LMSG: .ASCIZ /Lo.o.KUP ERRo.R?!
RDMSG: .ASCIZ /READ ERRo.R?/
WTMSG: .ASCIZ /WRITE ERRo.R?/

.EVEN
AREA: .BLKW 10
BUFF: . BLKW 256 .
HSPACE=.

.END START

9-67

Programmed Requests

The same routine can be coded using .READ and .WRITE as follows. The .WAIT request is used to detennine if
the buffer is full or empty prior to its use .

.MCALL . REGDEF •. FETCH •• READ •• WRITE

.MCALL . ENTER •. LOOKUP •. PR INT •. EXIT •• CLOSE •. WAIT

.REGDEF

ERRWD=52

START: .FETCH #HSPACE.#PRNAME ;GET PR HANDLER
BCS FERR ;PR NOT AVAILABLE
MOV RO.R2 ;RO HAS NEXT FREE LOCATION
.FETCH R2.#PPNAME ;GET PP HANDLER
BCS FERR ;NOT AVAILABLE
MOV #AREA.R5 ;EMT ARGUMENT AREA
CLR R4 ;R4 IS OUTPUT CHANNEL; 0
MOV #1.R3 ;R3 IS INPUT CHANNEL;l
.ENTER R5.R4.#PPNAME ;ENTER THE FILE
BCS ENERR ;SOME ERROR IN ENTER
.LOOKUP R5.R3.#pRNAME ;LOOKUP FILE ON CHANNEL 1
BCS LKERR ;ERROR IN LOOKUP
CLR Rl ;USE Rl AS BLOCK NUMBER

LOOP: .READ R5.R3.#BUFF.#256 •• Rl ;READ A BUFFER
BCS RDERR
.WAIT R3 ;WAIT FOR BUFFER
BCS 10ERR ;ERROR HERE IS HARD ERROR
.WRITE R5.R4.#BUFF .#256 .• R 1 ;WRITE THE BUFFER
BCS 10ERR ;1/0 ERROR
INC Rl
BR LOOP ;KEEP GOING

RDERR: TSTB ERRWD ;ERROR. IS IT EOF?
BNE 10ERR ;NO.HARD ERROR
.CLOSE R3 ;CLOSE INPUT AND OUTPUT
.CLOSE R4
.EXIT ;AND EXIT.

10ERR: .PRINT #IOMSG ;NO. HARD READ ERROR
.EXIT

PRNAME: .RAD50 IPR 1 ;NOTE THAT PR NEEDS NO FILE NAME
.WORD 0 ;FILE NAME NEED ONLY BE O.

PPNAME: .RAD50 IPP 1
.WORD 0

FERR: .PRINT #FMSG ;ERROR ACTIONS GO HERE. IT IS
.EXIT ;GENERALLY UNDESIRABLE TO

ENERR: .PRINT #EMSG ;EXECUTE A HALT OR RESET
.EXIT ;INSTRUCTION ON ERROR.

LKERR: .PRINT #LMSG
.EXIT

9-68

Programmed Requests

FMSG: .ASCIZ /NO DEVICE?/
EMSG: .ASCIZ /ENTRY ERROR?/
LMSG: .ASCIZ /LOOKUP ERROR?/
10MSG: .ASCIZ "I/O ERROR?"
WTMSG: .ASCIZ /WRITE ERROR?/

.EVEN
AREA: .BLKW 10
BUFF: . BLKW 256 .
HSPACE=.

.END START

.READ and .WRITE are also often used for double-buffered I/O. The basic double-buffering algorithm for input
is:

LOOP:
READ
WAIT
READ
USE
WAIT
READ
USE
BR

BUFFER 1
BUFFER 1
BUFFER 2
BUFFER 1
BUFFER 2
BUFFER 1
BUFFER 2
LOOP

Explanation

Fill BUFFER 1
Wait for BUFFER 1 to fIll
Start filling BUFFER 2
Process BUFFER 1 while BUFFER 2 mls
Wait for BUFFER 2 to fill
S tart fIlling BUFFER 1
Process BUFFER 2 while BUFFER 1 fills

Correspondingly, the basic double-buffering algorithm for output is:

LOOP:
FILL BUFFER 1
WRITE BUFFER 1
FILL BUFFER 2
WAIT BUFFER 1
WRITE BUFFER 2
FILL BUFFER 1
WAIT BUFFER 2
BR LOOP

Explanation

Prepare BUFFER 1 for output
Start emptying BUFFER 1
Fill BUFFER 2 while BUFFER 1 empties
Wait for BUFFER 1 to empty
Start emptying BUFFER 2
FILL BUFFER 1 while BUFFER 2 empties
Wait for BUFFER 2 to empty

The previous example program can be coded using completion routines via .READC and .wRITC as follows. Once
the initial read is performed, the remainder of the I/O is performed by the completion routines .

ERRBYT=52

. MCALL

.MCALL

.REGDEF

.REGDEF,.FETCH,.READC,.WRITC

. ENTE R,. LOOKUP,. PR INT ,. EXIT,.CLOSE,.WAIT

9-69

Programmed Requests

START: .FETCH #HSPACE,#PRNAME ;GET PR HANDLER
BCS FLNK ;PR NOT AVAILABLE
MOV RO,R2 ;RO HAS NEXT FREE LOCATION
.FETCH R2,#PPNAME ;GET PP HANDLER

FLNK: BCS FERR ;NOT AVAILABLE
MOV #AREA,R5 ;EMT ARGUMENT AREA
CLR R4 ;R4 IS OUTPUT CHANNEL; 0
MOV #l,R3 ;R3 IS INPUT CHANNEL ;1
.ENTER R5,R4,#PPNAME ;ENTER THE FILE
BCS ENERR ;SOME ERROR IN ENTER
.LOOKUP R5,R3,#PRNAME ;LOOKUP FILE ON CHANNEL 1
BCS LKERR ;ERROR IN LOOKUP
CLR R1 ;USE R 1 AS BLOCK NUMBER

LOOP: CLR DFLG ;CLEAR DONE/ERROR FLAG
.READC R5,R3,#BUFF,#256.,#RDCOMP,R1 ;READ ONE BLOCK
BCS EOF ;NO ERROR WILL HAPPEN HERE

1$: TST DFLG ;DONE FLAG SET?
BEQ 1$;NO, WAIT FOR IT TO BE SET.
BMI TOERR ;YES, BUT HARD ERROR OCCURRED

EOF: .CLOSE R3 ;CLOSE INPUT AND OUTPUT CHANNELS
.CLOSE R4
.EXIT ;ALL DONE

.ENABL LSB
RDCOMP: ROR RO ;IF BIT 0 SET

BCS RWERR ;AN ERROR OCCURRED.
.WRITC #AREA,#O,#BUFF,#256.,#WRCOMP,BLKN ;WRITE THAT BLOCK
BCC 2$;ERROR HERE IS HARDWARE

RWERR: MOV #-l,DFLG ;FLAG THE ERROR
2$: RTS PC
WRCOMP: ROR RO

BCS RWERR ;HARDWARE ERROR
INC BLKN ;BUMP BLOCK NUMBER.
.READC #AREA,#l,#BUFF,#256.,#RDCOMP,BLKN
BCC 3$;NO ERROR
TSTB ERRBYT ;EOF?
BNE RWERR ;NO, HARD ERROR
INC DFLG ;SAY WE'RE DONE

3$: RTS PC
.DSABL LSB
FERR: MOV #FMSG,RO ;ERROR ACTIONS GO HERE. IT IS

BR TYPIT ;GENERALLY UNDESIRABLE TO
ENERR: MOV #EMSG,RO ;EXECUTE A HALT OR RESET

BR TYPIT ;INSTRUCTION ON ERROR.
IOERR: MOV #IOMSG,RO

BR TYPIT
LKERR: MOV #LMSG,RO
TYPIT: .PRINT

.EXIT
.NLlST BEX

9-70

Programmed Requests

FMSG: .ASCIZ /NO DEVICE?!
EMSG: .ASCIZ /ENTRY ERROR?/
LMSG: .ASCIZ /LOOKUP ERROR?!
10MSG: .ASCIZ "1/0 ERROR?"
.LlST BEX
.EVEN
DFLG: .WORD 0
PRNAME: .RAD50 /PR / ;NOTE THAT PR NEEDS NO FILE NAME

. WORD 0 ;FILE NAME NEED ONLY BE O .
PPNAME: .RAD50 /PP/

.WORD 0
BLKN: .WORD 0 ;BLOCK NUMBER
AREA: .BLKW 10
BUFF: . BLKW 256 .
HSPACE=.

.END START

The following example incorporates the .LOOKUP, .READW, and .CLOSE requests. The program opens the me
HTll.MAC which is on the system device, SY:, for input on channel O. The fIrst block is read and the me is then
closed.

START:

1$:

2$:

3$:

4$:

.MCALL

.MCALL

.REGDEF

MOV
CLR
CLR
.FETCH
BCC
MOV
.PRINT
.EXIT
.LOOKUP
BCC
MOV
BR
.READW
BCC
MOV
BR
.CLOSE
.EXIT

.REGDEF •. CLOSE •. LOOKUP

.PRINT •. EXIT •. READW •. FETCH

#LlST.R5
R4
R3
#CORADD.#FPTR
2$
#FETMSG.RO

R5.R3.#FPTR
3$
#LKMSG.RO
1$
R5.R3.#BUFF.#256 .• R4
4$
#RDMSG.RO
1$
R3

9·71

;EMT ARGUMENT LIST POINTER
;BLOCK NUMBER
;CHANNEL#
;FETCH DEVICE HANDLER

;FETCH ERROR
;PRINT ERROR MESSAGE

;LOOKUP FILE ON CHANNEL 0

;PRINT FAILURE MESSAGE

;READ ONE BLOCK

;READ ERROR

;CLOSE THE CHANNEL

Programmed Requests

LIST: .BLKW 5 ; LIST FOR EMT CALLS
FPTR: .RAD50 /SY HT11 MAC/ ;RAD50 OF FILE NAME, DEVICE
FETMSG: .ASCIZ /FETCH FAILEDI ;ASCII MESSAGES
LKMSG: .ASCIZ /LOOKUP FAILED/
RDMSG: .ASCIZ /READ FAILED/

.EVEN
CORADD: .BLKW 2000 ;SPACE FOR LARGEST HANDLERS
BUFF=.

.END START

9-72

APPENDIX A

COMMAND AND SWITCH SUMMARIES

Command and switch summaries of the various system and utility programs are grouped here for the user's
convenience. Refer to the appropriate chapter for details.

A.I KEYBOARD MONITOR (Chapter 2)

A.I.I Command Summary
Only those command characters underlined need be entered; all command lines are terminated by typing a carriage
return.

Command Format

ASSIGN dev:udev

!! location

CLOSE

DATE dd-mmm-yy

Explanation

Assigns a user-defined name (udev) as an alternate name for a device (dev).
Deassigns synonyms when used without any arguments.

Sets a relocation base (location), which is an octal address to be used as a base
address for subsequent Examine and Deposit commands.

Causes all currently open mes to become permanent.

Enters the indicated day-month-year (dd-mmm-yy); this date is then assigned
to newly created mes, new device directory entries, and listing output. When
used without an argument, the current date (as entered) is printed.

!? location = value 1 ,value2 , ... ,valuen

E location m-Iocation n

GET dev:mnam.ext

INITIALIZE

LOADdev, ...

Rmnam.ext

REENTER

Deposits the specified values starting at the given location (location represents
an octal address which is added to the base address to obtain the actual address
at which values will be deposited).

Prints the contents of the specified locations in octal on the terminal (location
represents an octal address which is added to the base address to obtain the
actual address examined).

Loads the specified memory image me (mnam.ext) into memory from the
indicated device (dev:).

Resets the system tables; makes nonresident all handlers not loaded and purges
the I/O channels.

Makes a device handler resident for use.

Loads the specific memory image me (mnam.ext) into memory from the system
device and starts execution.

Starts a program at its reentry address (Le., its start address -2).

A-I

Command and Switch Summaries

Command Fonnat Explanation

RUN dev:fllnam.ext Loads the specified memory image flle (fllnam.ext) into memory from the
indicated device (dev:) and starts execution.

SAVE dev:fllnam.ext areal ,area2-arean
Writes the area(s) of user memory specified into the named flle (fllnam.ext) in
save image format. Memory is transferred in 256-word blocks.

SET dey: {NO} option=value Used to change device (dev:) handler characteristics and certain system
configuration parameters. Consult Chapter 2 for a list of options.

START address

TIME hh:mrn:ss

UNLOAD dev,dev, ...

Begins execution of the program currently in memory at the specified address.
If an address is not indicated, the starting address in location 40 is used.

Enters time of day in hours, minutes, seconds past midnight (hh:mm:ss). If all
three arguments are omitted, the current time of day is output.

Makes previously loaded handlers (dev) nonresident and frees the memory space
they were using.

A.l.2 Special Function Keys

Key

CTRLC

CTRL D

CTRLO

CTRLQ

CTRLS

CTRLU

CTRLZ

RUBOUT

Function

Echoes tc on the terminal, interrupts current program execution, and returns control to the'
Keyboard Monitor. If a program is waiting for terminal input or is using the device handler
IT: for input, typing a single CTRL C interrupts execution and returns control to the
monitor command level. Otherwise, two CTRL C's must be typed in order to interrupt
execution.

Echoes t D and ends a file on PR:

Echoes to on the terminal and causes suppression of teleprinter output while continuing
program execution. Teleprinter output is reenabled when one of the following occurs:

1. A second CTRL 0 is typed
2. A return to the monitor is indicated via CTRL C
3. The running program issues a .RCTRLO directive (see Chapter 9)

Does not echo. Resumes printing characters on the terminal from the point at which
printing was previously stopped (via CTRL S).

Does not echo. Temporarily suspends output to the terminal until a CTRL Q is typed.

Echoes tu followed by a carriage return on the terminal and deletes the current input line.

Echoes tz on the terminal and terminates input when used with the terminal device
handler (TT:).

Deletes the last character from the current line. Echoes a backslash plus the character
deleted; each succeeding RUBOUT deletes and echoes another character; an enclosing
backslash is printed when a key other than RUBOUT is typed.

A-2

Command and Switch Summaries

A.2 EDITOR (Chapter 3)

A.2.1 Command Arguments

Format

n

o

Meaning

A decimal integer (in the range -16383 to +16383) which may, except where noted, be preceded by
a + or -. Whenever an argument is acceptable in a command, its absence implies an argument of 1.

Refers to the beginning of the current line.

Refers to the end of the text in the current Text Buffer.

Is used with the J, D and C commands only and represents -n, where n is equal to the length of
the last text argument used.

A.2.2 Input and Output Commands

Command

EDIT BACKUP

EDIT READ

EDIT WRITE

END FILE

EXIT

LIST

NEXT

READ

VERIFY

WRITE

Form Meaning

EB dev:mnam.ext[n] $
Opens a me for editing, creating a backup copy (.BAK).

ER dev:mnam.ext$
Opens a me for input.

EW dev:mnam.ext[n] $

EF

EX

(-)nL
OL
/L

nN

R

V

(-)nW
OW
/W

Creates a new me for output.

Closes the current output me without performing any further
input/output operations.

Outputs the remainder of the input me to the output file and returns
control to the monitor.

Prints a specified number of lines on the terminal.

Outputs the contents of the Text Buffer to the output file, clears the
buffer, and reads in the next page of the input me.

Reads a page of text from the input me and appends it to the contents
of the buffer.

Prints the current text line (the line containing the pointer) on the
terminal.

Outputs a specified number of lines of text from the Text Buffer to
the output me.

A-3

A.2.3 Pointer Relocation Commands

Command Form

ADVANCE (-)nA
OA
/A

BEGINNING B

JUMP (-)nJ
OJ
/J
=J

A.2.4 Search Commands

Command Form

FIND nFtext$

GET nGtext$

POSITION nPtext$

A.2.S Text Modification Commands

Command

CHANGE

DELETE

EXCHANGE

INSERT

KILL

Form

(-)nCtext$
OCtext$
/Ctext$

(-)nD
OD
/D
=D

(-)nXtext$
OXtext$
/Xtext$

Itext$

(-)nK
OK
/K

Command and Switch Summaries

Meaning

Moves the pointer over a specified number of lines in the Text Buffer.
The pointer is positioned at the beginning of the line.

Moves the current location pointer to the beginning of the Text
Buffer.

Moves the pointer over a specified number of characters in the Text
Buffer.

Meaning

Beginning at the current location pointer, searches the entire text file
for the nth occurrence of the specified character string. Pages of text
are read into the Text Buffer, searched, and then written to the output
file until the text string is found.

Searches the contents of the Text Buffer, beginning at the current
location pointer, for the next occurrence of the text string.

Searches the input file for the nth occurrence of the text string; if the
text string is not found, the buffer is cleared and a new page is read
from the input file.

Meaning

Replaces n characters, beginning at the pointer, with the indicated text
string.

Removes a specified number of characters from the Text Buffer,
beginning at the current location pointer.

Replaces n lines, beginning at the pointer, with the indicated text
string.

Inserts text immediately following the current location pointer; an
ESCape terminates the text.

Removes n lines from the Text Buffer beginning at the current location
pointer.

A4

Command and Switch Summaries

A.2.6 Utility Commands

Command

EXECUTE MACRO

MACRO

SAVE

UNSAVE

EDIT VERSION

EDIT LOWER

EDIT UPPER

A.2.7 Key Commands

Command

ESCape

CTRL C

CTRLO

CTRLU

RUBOUT

TAB

CTRLX

Fonn Meaning

nEM Executes the command string specified in the last macro command.

MI command string!
Inserts a command string into the Macro Buffer.

OM Clears the Macro Buffer and reclaims the area for text.
Mil

nS

U

EV

EL

EU

Copies the specified number of lines, beginning at the pointer, into the
Save Buffer.

Inserts the entire contents of the Save Buffer into the Text Buffer at
the position of the current location pointer.

Displays the version number of the Editor on the terminal.

Enables editing in upper- and lower-case.

Returns editing to upper-case only (after EL).

Meaning

Echoes $. A single ESCape terminates a text string. A double ESCape executes the com
mand string.

Echoes at the terminal at tC and a carriage return. Terminates execution of EDIT commands
and returns to monitor command mode.

Echoes to and a carriage return. Inhibits printing on the terminal until completion of the
current command string. Typing a second CTRL 0 resumes output.

Echoes tu and a carriage return. Deletes all the characters on the current terminal input
line.

Deletes character from the current line.

Spaces to the next tab stop. Tab stops are positioned every eight spaces on the terminal.

Echoes tx and a carriage return. CTRL X causes the Editor to ignore the entire command
string currently being entered. The Editor prints a <CR><LF> and an asterisk to indicate
that the user may enter another command.

A-5

A.3 PIP (Chapter 4)

A.3.t Switch Summary

Switch

IA

IB

IC

ID

IE

IF

IG

II or no switch

IK

IL

IN:n

10

IQ

IR

IS

IT

IU

fV

/W

Command and Switch Summaries

Explanation

Copies me(s) in ASCII mode; ignores nulls and rubouts; converts to
7-bit ASCII.

Copies mes in formatted binary mode.

Used in conjunction with another switch; causes only mes with current
date to be included in the specified operation.

Deletes me(s) from specified device.

lists the device directory including unused spaces and their sizes.

Prints a short directory (menames only) of the specified device.

Ignores any input errors which occur during a me transfer and continues
copying.

Copies me(s) in image mode (byte by byte).

Scans the specified device and types the absolute block numbers (in
octal) of any bad blocks on the device.

lists the directory of the specified device.

Used with IZ to specify the number of directory blocks (n) to allocate
to the directory.

Bootstraps the specified device (DXn).

Causes PIP to type each mename which is eligible for a wild card operation
and to ask for a confirmation of its inclusion in the operation.

Renames the specified me.

Compresses the mes on the specified directory device so that free blocks
are combined into one area.

Extends number of blocks allocated for a me.

Copies the bootstrap from the specified me into absolute blocks 0 and 2
of the specified device.

Types the version number of the PIP program being used.

Includes the absolute starting block and any extra directory words in the
directory listing for each me on the device (numbers in octal). Used with
IF, IL, or IE.

A-6

Switch

IX

IY

IZ:n

A.4 ASEMBL/CREF (Chapter S)

Command and Switch Summaries

Explanation

Copies files individually (without concatenation).

Causes system files and .BAD files to be operated on by the command
specified.

Zeroes (initializes) the directory of the specified device; n is used to
allocate extra words per directory entry. When used with IN, the number
of directory segments for entries may be specified.

Refer to Appendix B for a complete summary of ASEMBL features. CREF switches are also included in that
appendix.

A.S LINKER (Chapter 6)

A.S.l Switch Summary
The Linker switches (and the command line on which each must appear) are:

Switch
Name

IA

IB:n

IC

IF

II

IL

IM:n

10:n

IS

IT or
IT:n

Command
Line

1st

1st

any

1 st

1st

1st

1st

any but
the 1st

1st

1st

A-7

Meaning

Alphabetizes the entries in the load map.

Bottom address of program is indicated as n.

Continues input files on another command line (must
be used with 10).

Indicates that the Linker will use the default FORTRAN
library, FORLIB.OBJ.

Includes the global symbols to be searched from the
library.

Produces an output file in LDA format.

Allows terminal keyboard specification of the user's
stack address. n represents an optional 6-digit unsigned
octal number.

Indicates that the program will be an overlay structure;
n specifies the overlay region to which the module is
assigned.

Allows the maximum amount of space in memory to be
available for the Linker's symbol table. (This switch
should only be used when a particular link stream causes
a symbol table overflow.)

Transfer address is to be specified at terminal keyboard
via n.

Command and Switch Summaries

A.6 LIBRARIAN (Chapter 7)

A.6.1 Switch Summary
The Librarian (LIBR) switches (and the command line on which each must appear) are:

Command
Switch Line

IC Any

ID 1 st

IG 1st

IR 1 st

IU 1 st

A.7 ODT (Chapter 8)

A. 7.1 Command Summary

Meaning

The command is too long for the current line and is
continued on the next line.

Deletes modules from a library me.

Global deletion; deletes entry points from the library
directory.

Replaces modules in a library me.

Update; inserts and replaces modules in a library me.

In the command format shown below, r represents a relocatable expression and n represents an octal number.

Command Format

RETURN

LINE FEED

t or ~

+- or +- or

@ @

rl

\ \

r\

A·8

Explanation

Closes open location and accepts the next command.

Closes current location and opens next sequential
location.

Opens previous location.

Indexes the contents of the opened location by the
contents of the PC and opens the resulting location.

Uses the contents of the opened location as a relative
branch instruction and opens the referenced location.

Returns to sequence prior to last @, >, or +- command
and opens the succeeding location.

Uses the contents of the opened location as an absolute
address and opens that location.

Reopens the last opened location.

Opens the word at location r.

Reopens the last opened byte.

Opens the byte at location r.

Command Fonnat

n!

$ $n/

$B/

$C/

$F/

$P/

$RI

$S/

A r;nA

B ;B

r;B

r;nB

;nB

C r;C

E r;E

F ;F

G r;G

;1

o r;O

P ;P

Command and Switch Summaries

A-9

Explanation

After a word or byte has been opened, prints the address
of the opened location relative to relocation register n.
If n is omitted, ODT selects the relocation register whose
contents are closest to but less than or equal to the
address of the opened location.

Opens general register n (0-7).

Opens the first word of the breakpoint table.

Opens Constant Register.

Opens Format Register.

Opens Priority Register.

Opens first Relocation Register (register 0).

Opens Status Register.

Starting at location r, prints n bytes in their ASCII
format; then inputs n bytes from the terminal starting at
location r.

Removes all Breakpoints.

Sets Breakpoint at location r.

Sets Breakpoint n at location r.

Removes the nth Breakpoint.

Prints the value of r and stores it in the Constant
Register.

Searches for instructions that reference effective address
r.

Fills memory words with contents of the Constant
Register.

Goes to location r and starts program.

Fills memory bytes with the low-order 8 bits of the
Constant Register.

Calculates offset from currently open location to r.

Proceeds with program execution from breakpoint. In
single instruction mode only, executes next instruction.

Command Fonnat

k;P

R ;R

;nR

r;nR

R

nR

S ;S

;nS

W r;W

x x

Command and Switch Summaries

Explanation

Proceeds with program execution from breakpoint;
stops after encountering the breakpoint k times. In
single instruction mode only, executes next k
instructions.

Sets all Relocation Registers to -1 (highest address
value).

Sets Relocation Register n to -1.

Sets Relocation Register n to the value of r. If n is
omitted, it js assumed to be o.

Selects the Relocation Register whose contents are
closest to but less than or equal to contents of the
opened location. Subtracts the contents of the register
from the contents of the opened word and prints the
result.

Subtracts the contents of the Relocation Register n
from the contents of the opened word and prints
the result.

Disables single instruction mode; reenables breakpoints.

Enables single instruction mode (n can have any value
and is not significant); disables breakpoints.

Searches for words with bit patterns which match r.

Performs a Radix 50 unpack of the binary contents of
the current opened word; then permits the storage of
a new Radix 50 binary number in the same location.

A.8 PROGRAMMED REQUESTS (Chapter 9)
Appendix D summaries the programmed requests available under HT -11.

A.9 DUMP (Appendix E)

A.9.1 Switch Summary

Switch Meaning

IB Outputs octal bytes.

IE:n Ends output at block n.

IG Ignores input errors.

IN Suppresses ASCII output.

A-to

Switch

10:n

IS:n

IW

IX

A.tO SRCCOM (Appendix F)

A.IO.I Switch Summary

Switch

IB

IC

IF

IH

IL:n

IS

A.ll PATCH (Appendix G)

A.lt.l Command Summary

Command

10

1M

Vr;nR

b;B

[s:]r,o/

[s:]r,o\

Command and Switch Summaries

A-lJ

Meaning

Outputs only block number n.

Starts output with block n.

Outputs octal words.

Outputs RADSO characters.

Meaning

Compares blank lines. Without this switch, blank lines
are ignored.

Ignores comments (all text on a line preceded by a semi
colon) and spacing (spaces and tabs).

Includes form feeds in the output me (form feeds are
still compared if IF is not used, but they are not in
cluded in the output of differences).

Types list of switches available (help text).

Specifies the number of lines that determine a match
(here n is an octal number <=310). The default value
for n is 3.

Ignores spaces and tabs.

Meaning

Indicates overlay-structured file.

Indicates monitor file.

Sets relocation register n to value Vr.

Sets bottom address of overlay me to b.

Opens word location Vr + 0 in overlay segment s.

Opens byte location Vr + 0 in overlay segment s.

Command

(cm

(LF)

@

F

E

Command and Switch Summaries

Meaning

Closes currently open word/byte.

Closes currently open word/byte and opens the next
one.

Closes the currently open word/byte and opens the
the previous one.

Closes the currently open word and opens the word
addressed by it.

Begins patching a new fIle.

Exits to HT-ll monitor.

A-12

APPENDIX B

ASSEMBLER, INSTRUCTION, AND CHARACTER CODE

SUMMARIES
B.1 ASCn CHARACTER SET

Even
Parity

Bit

o
1
1
o

o
o
1
1

o
o

1
o

1
o
1
o

o

1

o

o

o
1
1
o
1

7-Bit
Octal
Code

000
001
002
003
004

005
006
007
010

011
012

013
014
015

016
017
020
021

022

023

024

025
026
027

030
031
032
033
034

Character

NUL
SOH
STX
ETX
EOT

ENQ
ACK
BEL
BS

HT
LF

VT
FF
CR

SO
SI
DLE
DC1

DC2

DC3

DC4

NAK
SYN
ETB

CAN
EM
SUB
ESC
FS

Remarks

Null, Tape Feed, CTRL SHIFT P.
Start of Heading; also SOM (Start of Message), CTRL A.
Start of Text; also EOA (End of Address), CTRL B.
End of Text; also EOM (End of Message), CTRL C.
End of Transmission (END); Shuts off TWX machines,
CTRLD.
Enquiry (ENQRY); also WRU, CTRL E.
Acknowledge; also RU, CTRL F.
Rings the Bell. CTRL G.
Backspace; also FEO, Format Effector. Backspaces
some machines, CTRL H.
Horizontal TAB. CTRLI.
Line Feed or Line Space (New Line); Advances paper to
next line; duplicated by CTRL J.
Vertical TAB (VTAB). CTRL K.
FORM FEED to top of next page (pAGE). CTRL L.
Carriage Return to beginning of line. Duplicated by
CTRLM.
Shift Out; Changes ribbon color to red. CTRL N.
Shift In; Changes ribbon color to black. CTRL O.
Data Link Escape. CTRL P (DCO).
Device Control 1 , turns transmitter (reader) on, CTRL Q
(X ON).
Device Control 2, turns punch or auxiliary on, CTRL R
(TAPE, AUX ON).
Device Control 3, turns transmitter (reader) off, CTRL S
(X OFF).
Device Control 4, turns punch or auxiliary off, CTRL T
(AUXOFF).
Negative Acknowledge; also ERR, Error, CTRL U.
Synchronous Idle (SYNC), CTRL V.
End of Transmission Block; also LEM, Logical End of
Medium, CTRL W.
Cancel (CANCL), CTRL X.
End of Medium, CTRL Y.
Substitute, CTRL Z.
Escape, CTRL SHIFT K.
File Separator, CTRL SHIFT L.

B-1

Assembler, Instruction, and Character Code Summaries

Even 7·Bit
Parity Octal

Bit Code Character Remarks

0 035 GS Group Separator, CTRL SHIFT M.
0 036 RS Record Separator, CTRL SHIFT N.
1 037 US Unit Separator, CTRL SHIFT O.
1 040 SP Space.
0 041
0 042
1 043 #
0 044 $

045 %
1 046 &
0 047 Apostrophe or Acute Accent.
0 050 (
1 051)
1 052 *
0 053 +
1 054
0 055
0 056

057 /
0 060 0

061
1 062 2
0 063 3

064 4
0 065 5
0 066 6
1 067 7

. 1 070 8
0 071 9
0 072
1 073
0 074 <
1 075
1 076 >
0 077 ?
1 100 @

0 101 A
0 102 B
1 103 C
0 104 D

105 E
106 F

0 107 G
0 110 H

III I
1 112 J
0 113 K
1 114 L
0 115 M

B-2

Assembler, Instruction, and Character Code Summaries

Even 7-Bit
Parity Octal

Bit Code Character Remarks

0 116 N
1 117 0
0 120 P
1 121 Q
1 122 R
0 123 S

124 T
0 125 U
0 126 V
1 127 W
1 130 X
0 131 Y
0 132 Z
1 133 [SHIFT K.
0 134 \ SHIFT L.

135] SHIFTM.
1 136 t (Appears as

~

on some machines).
0 137 +- (Appears as _ (Underscore) on some machines).
0 140 Accent Grave.

141 a
1 142 b
0 143 c
1 144 d
0 145 e
0 146 f
1 147 g
1 150 h
0 151
0 152 j
1 153 k
0 154 1
1 155 m
1 156 n
0 157 a
1 160 p
0 161 q
0 162 r
1 163 s
0 164 t

165 u
1 166 v
0 167 w
0 170 x

171 y
172 z

0 173 {
1 174 I
0 175 } This Code Generated by ALTMODE.
0 176 This Code Generated by PREFIX key (if Present)

177 DEL DELETE, RUBOUT.

B-3

Assembler, Instruction, and Character Code Summaries

B.2 RADIX-SO CHARACTER SET

Character

space
A-Z
$

unused
0-9

The maximum Radix-50 value is, thus:

47*502 +47*50+47=174777

ASCII Octal Equivalent

40
101-32
44
56

60-71

Radix-SO Equ~valent

o
1-32
33
34
35
36-47

The following table provides a convenient means of translating between the ASCII character set and its Radix-50
equivalents. For example, given the ASCII string X2B, the Radix-50 equivalent is (arithmetic is performed in
octal):

x=113000
2=002400
B=000002

X2B=115402

Single Character
or

First Character Second Character Third Character

A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 0 001130 0 000017
P 062000 P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025
V 104600 V 001560 V 000026
W 107700 W 001630 W 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 Y 000031
Z 121200 Z 002020 Z 000032

B4

Assembler, Instruction, and Character Code Summaries

Single Character
or

First Character Second Character

$ 124300 $ 002070
127400 002140
132500 002210

0 135600 0 002260
1 140700 1 002330
2 144000 2 002400
3 147100 3 002450
4 152200 4 002520
5 155300 5 002570
6 160400 6 002640
7 163500 7 002710
8 166600 8 002760
9 171700 9 003030

B.3 ASSEMBLER SPECIAL CHARACTERS

Character

form feed
line feed
carriage return
vertical tab

%
tab
space

@

(
)
, (comma)

+

*
/
&

"
, (apostrophe)

<
>
t
t

B.4 ADDRESS MODE SYNTAX

Function

Source line terminator, forces a new listing page
Source line terminator
Formatting character
Source line terminator
Label terminator
Direct assignment indicator
Register term indicator
Item terminator, field terminator
Item terminator, field terminator
Immediate expression indicator
Deferred addreSSing indicator
Initial register indicator
Terminal register indicator
Operand field separator
Comment field indicator
Arithmetic addition operator or autoincrement indicator
Arithmetic subtraction operator or autodecrement indicator
Arithmetic multiplication operator
Arithmetic division operator
Logical AND operator
Logical OR operator
Double ASCII character indicator
Single ASCII character indicator
Assembly location counter
Initial argument indicator
Terminal argument indicator
Universal unary operator
Argument indicator

Third Character

$ 000033
000034
000035

0 000036
1 000037
2 000040
3 000041
4 000042
5 000043
6 000044
7 000045
8 000046
9 000047

In the following syntax table, n represents an integer between 0 and 7; R is a register expression; E represents any
expression; ER represents either a register expression or an absolute expression in the range 0 to 7.

B-5

On

In

2n

3n

4n

5n

6n

7n

27

37

67

77

Assembler, Instruction, and Character Code Summaries

Register

Deferred Register

Autoincrement

Deferred Autoincrement

Autodecrement

Deferred Autodecrement

Index by the Register
Specified

Deferred Index by the
Register Specified

Immediate Operand

Absolute address

Relative address

Deferred Relative
address

R

@Ror(R)

(ER)+

@(ER)+

-(ER)

@-(ER)

E(ER)

@E(ER)

#E

@#E

E

@E

Register R contains the operand. R is a register
expression.

Register R contains the operand address.

The contents of the register specified by ER are
incremented after being used as the address of the
operand.

ER contains a pointer to the address of the operand.
ER is incremented after use.

The contents of register ER are decremented before
being used as the address of the operand.

The contents of register ER are decremented before
being used as a pointer to the address of the operand.

The value obtained when E is added to the contents
of the register speCified (ER) is the address of the
operand.

E added to ER produces a pointer to the address
of the operand.

E is the operand.

E is the operand address.

E is the address of the operand.

E is a pointer to the address of the operand.

BoS INSTRUCTIONS
The tables of instructions which follow are grouped according to the operands they take and according to the bit
patterns of their op-codes.

The following symbols are used to indicate the instruction type format:

OP
R
E
ER
AC
A

Instruction mnemonic
Register expression
Expression
Register expression or expression 0<=ER<=7
Floating point register expression
General address speCification

In the representation of op-codes, the following symbols are used:

SS
DD
XX
R

Source operand
Destination operand
8-bit offset to a location
Integer between 0 and 7

B-6

SpeCified by a 6-bit address mode
Specified by a 6-bit address mode
Branch instructions
Represents a general register

Assembler, Instruction, and Character Code Summaries

Symbols used in the description of instruction operations are:

SE Source Effective Address
FSE Floating Source Effective Address
DE Destination Effective Address
FDE Floating Destination Effective Addresses
I I Absolute Value of
() Contents of
-+- Becomes

The condition codes in the processor status word (PS) are affected by the instructions; these condition codes are
represented as follows:

N
Z
V
C

Negative bit
Zero bit
Overflow bit
Carry bit

Set if the result is negative
Set if the result is zero
Set if the operation caused an overflow
Set if the operation caused a carry

In the representation of the instruction's effect on the condition codes, the following symbols are used:

*

o
1

Conditionally set
Not affected
Cleared
Set

To set conditionally means to use the instruction's result to determine the state of the code.

Logical operators are represented by the following symbols:

Inclusive OR

CD Exclusive OR

& AND

Used over a symbol to represent the l's complement of the symbol

B.S.l Double Operand Instructions (OP A,A)

Status Word
Condition

Codes
Op-Code Mnemonic Stands for Operation N Z V C

01SSDD MOV MOVe (SE) -+- (DE) * * 0
IlSSDD MOVB MOVe Byte

02SSDD CMP CoMPare (SE) - (DE) * * * *
12SSDD CMPB CoMPare Byte

03SSDD BIT Bit Test (SE) & (DE) * * 0
13SSDD BITB Bit Test Byte

04SSDD BIC Bit Clear (SE) & (DE) -+- (DE) * * 0
14SSDD BICB Bit Clear Byte

OSSSDD BIS Bit Set (SE) ! (DE) -+- (DE) * * 0
lSSSDD BISB BIt Set Byte

06SSDD ADD ADD (SE) + (DE) -+- (DE) * * * *
16SSDD SUB SUBtract (DE) - (SE) -+- (DE) * * * *

B-7

Assembler, Instruction, and Character Code Summaries

B.S.2 Single Operand Instructions (OP A)

Status Word
Condition

Codes
Op-Code Mnemonic Stands for Operation N Z V C

OOSODD CLR CLeaR o -+- (DE) 0 0 0
105 ODD CLRB CLeaR Byte

OOSlDD COM COMplement (DE) -+- (DE) * * 0
IOSlDD COMB COMplement Byte

OOS2DD INC INCrement (DE) + 1 -+- (DE) * * *
lOS2DD INCB INCrement Byte

OOS3DD DEC DECrement (DE) - 1 -+- (DE) * * *
lOS3DD DECB DECrement Byte

OOS4DD NEG NEGate o - (DE) -+- (DE) * * * *
lOS4DD NEGB NEGate Byte

OOSSDD ADC ADd Carry (DE) + (C) -+- (DE) * * * *
lOSSDD ADCB ADd Carry Byte

OOS6DD SBC SuBtract Carry (DE) - (C) -+- (DE) * * * *
lOS6DD SBCB SuBtract Carry

Byte

OOS1DD TST TeST (DE) * * 0 0
lOS1DD TSTB TeST Byte

B.S.3 Rotate/Shift

Status Word
Condition

Codes
Op-Code Mnemonic Stands for Operation N Z V C

0060DD ROR ROtate Right Qj. . : • * * * *
1060DD RORB ROtate Right Byte It • [;: I' * * * *
006lDD ROL ROtate Left Iij. . : • , I * * * *
lO6lDD ROLB ROtate Left Byte '~! * * * *
0062DD ASR Arithmetic Shift

Ii' - I I I I : * * * *
• HJ .

Right

1062DD ASRB Arithmetic Shift Ii ItVftA~J I 1-0 * * * *
Right Byte

0063DO ASL Arithmetic Shift 1IJ..t ..• I, , • I I ... * * * *
Left

106300 ASLB Arithmetic Shift &1 ~. * * * * IWN am' .. ,\ "

Left Byte

OOOlDO JMP JuMP DE -+-(PC)

000300 SWAB SWap Bytes !..' .: •• I : ••• ; •••• .1 * * 0 0

B-8

Assembler, Instruction, and Character Code Summaries

PDP-ll/03 (LSI/11) only;

Op-Code Mnemonic Stands for

1067DD MFP8 Move byte From
Processor Status
word

10648S MTPS Move byte To
Processor Status
word

Op-Code Mnemonic Stands for

Machines with KT1I Memory Management only;

00658S MFPI

1065SS MFPD

006600 MTPI

106600 MTPO

Not on 11/04, 11/05, 11/20;

006700 SXT

Machines with FP Il-B Floating Point only;

07070D

070700

170100

17020D

NEGD

NEGF

LOFPS

STFPS

Move From
Previous
Instruction
space

Move From
Previous
Oata space

Move To
Previous
Instruction
space

Move To
Previous
Data space

Sign eXTend

NEGate Oouble

NEGate Floating

Load FPP
program status

STore Floating
Point processor
program Status

B-9

Operation

(DE) +-PSW

(SE)-+PSW

Operation

(SE) -+ (TEMP)
(SP) -2 -+ (SP)
(TEMP) -+ «SP»

(SE) -+ (TEMP)
(SP) -2 -+ (SP)
(TEMP) -+ «SP»

«SP» -+ (TEMP)
(SP+2) -+ (SP)
(TEMP) -+ (OE)

«SP» -+ (TEMP)
(SP+2) -+ (SP)
(TEMP) -+ (OE)

o -+ OE if N bit is clear
-1 -+ OE ifN bit is set

-(FOE) -+ FOE

-{FOE) -+ FOE

OE-+FPS

Status Word
Condition

Codes
N Z V C

* * 0

* * * *

Status Word
Condition

Codes
N Z V C

* * 0 -

* * 0 -

* * 0 -

* * 0 -

- * 0 -

* * 0 0

* * 0 0

Assembler, Instruction, and Character Code Summaries

Status Word
Condition

Codes
Op-Code Mnemonic Stands for Operation N Z V C

170300 STST STore floating - - - -
point processor
STatus

170400 CLRD CleaR Oouble O~(FOE) 0 0 0

170400 CLRF CleaR Floating O~(FOE) 0 0 0

170500 TSTO TeST Oouble (FOE) * * 0 0

170500 TSTF TeST Floating (FOE) * * 0 0

170600 ABSO make ABSolute I(FOE) I ~ (FOE) 0 * 0 0
Oouble

170600 ABSF make ABSolute I(FOE) I ~ (FOE) 0 * 0 0
Floating

B.5.4 Operate Instructions (OP)

Status Word
Condition

Codes
Op-Code Mnemonic Stands for Operation N Z V C

000000 HALT HALT The computer stops all
functions.

000001 WAIT WAIT The computer stops and
waits for an interrupt.

000002 RTI ReTurn from The PC and PS are popped * * * *
Interrupt off the SP stack:
(Return from «SP» ~ (PC)
Trap) (SP) +2 ~ (SP)

«SP» ~ (PS)
(SP) +2 ~ (SP)

000005 RESET RESET Returns all I/O devices - - -

to power-on state.

000241 CLC Clear Carry bit O~C 0

000261 SEC SEt Carry bit l~C

000242 CLV Clear oVerflow O~V 0 -

000262 SEV SEt oVerflow bit 1~V 1 -

000244 CU Clear Zero bit O~Z - 0

000264 SEZ SEt Zero bit 1~Z 1

000250 CLN Clear Negative bit O~N 0 - - -

000270 SEN SEt Negative bit 1~N 1

000257 CCC Clear all O~N 0 0 0 0
Condition O~Z

Codes O~V

O~C

B-lO

Assembler, Instruction, and Character Code Summories

Op·Code Mnemonic

000277 SCC

000240 NOP

Machines with FP11-B only:

170000 CFCC

170011 SETD

170001 SETF

170002 SETI

170012 SETL

Not on 11/04,11/05,11/20:

000006 RTT

Stands for

Set all
Condition
Codes

No OPeration

Copy Floating
Condition Codes

SET Double
floating mode

SET Floating
mode

SET Integer mode

SET Long integer
mode

ReTurn from
inTerrupt

B.5.5 Trap Instructions (OP or OP E where 0<=E<=377(8»

Op·Code

000003

000004

104000-
104377

104400-
104777

Mnemonic

BPT

lOT

EMT

TRAP

Stands for

BreakPoint Trap

Input Output Trap

EMulator Trap

TRAP

B-l1

Operation

l-+N
l-+Z
I-+V
I-+C

Copy FPP condition
codes into CPU condition
codes.

FPP set to double
precision

FPP set to single
precision mode

FPP set for integer data
(16 bits)

FPP set for long integer
data (32 bits)

Same as RTI instruction
but inhibits trace trap

Operation

Trap to location 14.
This is used to call ODT.

Trap to location 20.
This is used to call lOX.

Trap to location 30.
This is used to call
system programs.

Trap to location 34.
This is used to call any
routine desired by the
programmer.

Status Word
Condition

Codes
N Z V C

1 1 1

'" '" '" '"

'" '" '" '"

Status Word
Condition

Codes
N Z V C

* * * *

* * * *

* * * *

* * * *

Assembler, Instruction, and Character Code Summaries

B.5.6 Branch Instructions (OP E)
(where -12810 < (E-.-2)/2 < 12710)

Op-Code Mnemonic

0004XX BR

OOlOXX BNE

0014XX BEQ

0020XX BGE

0024XX BLT

0030XX BGT

0034XX BLE

1000XX BPL

1004XX BMI

1010XX BHI

1014XX BLOS

1020XX BVC

1024XX BVS

1030XX BCC (or BHIS)

1034XX BCS(or BLO)

B.5.7 Register Destination (OP ER,A)

Op-Code Mnemonic

004RDD JSR

Stands for

BRanch always

Branch if Not Equal (to zero)

Branch if EQual (to zero)

Branch if Greater than or Equal (to zero)

Branch if Less Than (zero)

Branch if Greater Than (zero)

Branch if Less than or Equal (to zero)

Branch if PLus

Branch if MInus

Branch if Higher

Branch if LOwer or Same

Branch if oVerflow Clear

Branch if oVerflow Set

Branch if Carry Clear (or Branch if
HIgh or Same)

Branch if Carry Set (or Branch if LOw)

Stands for

Jump to SubRoutine

B-12

Operation

Push register on the SP
stack, put the PC in the
register:

DE TEMP (TEMP=
temporary storage register
internal to processor.)

(SP) -2 ~ SP
(REG) ~(SP)
(PC)~ REG
(TEMP)~PC

Condition To Be
Met if Branch is

To Occur

z=O

Z=1

N CD V=O

N CD V= 1

Z !(N CD V)=O

Z! (N CD V)=1

N=O

N=1

C!Z=O

C!Z=l

V=O

V=1

C=O

C=1

Status Word
Condition

Codes
N Z V C

Assembler, Instrnction, and Character Code Summaries

Op-Code Mnemonic

Not on 11/04, 11/05, 11/20:

074RDD XOR

B.5.8 Register-Offset (OP R,E)

Not on 11/04, 11/05, 11/20:

Op-Code Mnemonic

077RDD SOB

B.5.9 Subroutine Return (OP ER)

Op-Code Mnemonic

0OO20R RTS

B.5.10 Source-Register (OP A,R)

Only on machines with EIS option:

Op-Code

071RSS

070RSS

072RSS

073RSS

Mnemonic

DIV

MUL

ASH

ASHC

Stands for

eXclusive OR

Stands for

Subtract One and
Branch

Stands for

ReTurn from
Subroutine

Stands for

DIVide

MULtiply

Arithmetic SHift

Arithmetic SHift
Combined

B-13

Operation

(R) CD (DE) -r (DE)

Operation

(R) -1 -r (R)
(PC) - (2*DE) -r (PC)

Operation

Put register in PC and pop
old contents from SP stack
into register.

Operation

(R),(R! I)/(SRC) -r (R),(R! I)

(R)*(SRC) -r (R),(R! 1)

R is shifted according to low
order 6-bits of source

or

R,R! 1 are shifted according
to low-order 6-bits of source

... 1 rz= .. n nn n

or

[]-I, ,

·"Ie,

,.:- , I-[]

, :
, :

Status Word
Condition

Codes
N Z V C

* * 0 -

N Z V C

N Z V C

Status Word
Condition

Codes
N Z V C

* * * *

* * * *

* * * *

Assembler, Instruction, and Character Code Summaries

B.S.ll Floating-Point Source Double Register (OP A,Ac)

Machines with FP Il-B only:

Status Word
Floating

Condition
Codes

Op-Code Mnemonic Stands for Operation FN FZ FV FC

172(AC)SS ADDD ADD Double (FSE)+(AC) ~ (AC) * * * 0

172(AC)SS ADDF ADD Floating (FSE)+(AC) ~ (AC) * * * 0

173(AC+4)SS CMPD CoMPare Double (FSE)-(AC) * * 0 0

173(AC+4)SS CMPF CoMPare Floating (FSE)-(AC) * * 0 0

174(AC+4)SS DIVD DIVide Double (AC)/(FSE) ~ (AC) * * * 0

174(AC+4)SS DIVF DIVide Floating (AC)/(FSE) ~ (AC) * * * 0

177(AC+4)SS LDCDF LoaD and Convert (FSE)~ (AC) * * * 0
from Double to
Floating

I 77(AC+4)SS LDCFD LoaD and Convert (FSE) ~ (AC) * * * 0
from Floating to
Double

172(AC+4)SS LDD LoaD Double (FSE) ~(AC) * * 0 0

172(AC+4)SS LDF LoaD Floating (FSE)~ CAC) * * 0 0

171 (AC+4)SS MODD Multiply and (AC)*(FSE) ~ (AC) * * * 0
integerize double

171(AC+4)SS MODF Multiply and (AC)*(FSE) ~ (AC) * * * 0
integerize floating-
point

171(AC)SS MULD MULtiply Double (AC)*(FSE) ~ (AC) * * * 0

171 (AC)SS MULF MULtiply Floating (AC)*(FSE) ~ (AC) * * * 0

173(AC)SS SUBD SUBtract Double (FSE)-(AC) ~ (AC) * * * 0

173(AC)SS SUBF SUBtract Floating (FSE)-(AC) ~ (AC) * * * 0

B.5.12 Source-Double Register (OP A,Ac)

Machines with FPJ loB only:

Status Word
Condition

Codes
Op-Code Mnemonic Stands for Operation FN FZ FV FC

177(AC)SS LDCID LoaD and Convert (SE)~(AC) * * * 0
Integer to Double

177(AC)SS LDCIF LoaD and Convert (SE) ~CAC) * * * 0
Integer to Floating

B-14

Assembler, Instruction, and Character Code Summaries

Status Word
Condition

Codes
Op-Code Mnemonic Stands for Operation FN FZ FV FC

177(AC)SS LDCW LoaD and Convert (SE)~ (AC) * * * 0
Long integer to
Double

177(AC)SS LDCLF LoaD and Convert (SE)~(AC) * * * 0
Long integer to
Floating

176(AC+4)SS LDEXP LoaD EXPonent (SE)+200 ~ (AC EXP) * * 0 0

B.5.13 Double Register-Destination (OP AC,A)

Machines with FP11-B only:

Status Word
Condition

Codes
Op-Code Mnemonic Stands for Operation FN FZ FV FC

176(AC)DD STCFD STore, Convert (AC)~(FDE) * * * 0
from Floating to
Double

176(AC)DD STCDF STore, Convert (AC)~ (FDE) * * * 0
from Double to
Floating

17S(AC+4)DD STCm l STore, Convert (AC)~ (FDE) * * 0 *
from Double to
Integer

17S(AC+4)DD STCDL I STore, Convert (AC)~ (FDE) * * 0 *
from Double to
Long integer

17S(AC+4)DD STCFI I STore, Convert (AC)~(FDE) * * 0 *
from Floating to
Integer

174(AC+4)DD STCFL I STore, Convert (AC)~(FDE) * * 0 *
from Floating to
Long integer

1 74(AC)DD STD STore Double (AC)~(FDE)

1 74(AC)DD STF STore Floating (AC)~(FDE)

17S(AC)DD STExp l STore EXPonent (AC EXP)-200 ~ (DE) * * 0 0

I These instruction set both the floating-point and processor condition codes as indicated.

B·lS

Assembler, Instruction, and Character Code Summaries

B.S.14 Number

Not on 11/04, 11/05, 11/20:

Status Word
Condition

Codes
Op-Code Mnemonic Stands for Operation N Z V

0064NN MARK MARK Stack cleanup on
return from subroutine.

B.S.lS Priority

The following instruction is available on the PDP-llj45 only:

Status Word
Condition

Codes
Op-Code Mnemonic Stands for Operation N Z V

0OO23N SPL Set Priority Level (X)-+(PS)
(bits 7-5)

B.S.16 Stack Oriented Floating Point (OPR)

Only on machines with FIS option:

Status Word
Condition

Codes
Op-Code Mnemonic Stands for Operation N Z V

07500R FADD Floating ADD (4(R»+«R» -+ «R» * * 0

07501R FSUB Floating SUBtract (4(R»-«R» -+ «R» * * 0

07502R FMUL Floating MULtiply (4(R»*«R» -+ «R» * * 0

07503R FDIV Floating DIVide (4(R»)+(R» -+ «R» * * 0

B.6 MACRO DIRECTIVES

Form
Described in

Manual Section Operation

.ENDM

.ENDM symbol

.MACRO sym,argl,
arg2, ...

.MCALL

5.6.1.2

5.6.1.1

5.6.4

Indicates the end of the current repeat block, indefinite repeat
block, or macro. The optional symbol, if used, must be identi
cal to the macro name .

Indicates the start of a macro with the specified name
containing the dummy arguments specified .

Used to specify the names of all system macro defmitions not
defmed in the current program but required by the program.

B-16

C

C

C

0

0

0

0

Assembler, Instrnction, and Character Code Summaries

B.7 ASSEMBLER DIRECTIVES

Fonn

"

tBn

tCn

tDn

tFn

tOn

.ASCII string

.ASCIZ string

. ASECT

. BLKB exp

. BLKWexp

.BYTE expl,
exp2, ...

. CSECT symbol

.DSABLarg

. ENABLarg

.END

. ENDexp

Described in
Manual Section

5.5.3.3

5.5.3.3

5.5.4.2

5.5.6.2

5.5.4.2

5.5.6.2

5.5.4.2

5.5.3.4

5.5.3.5

5.5.9

5.5.5.3

5.5.5.3

5.5.3.1

5.5.9

5.5.2

5.5.2

5.5.7.1

Operation

A single quote character (apostrophe) followed by one ASCII
character generates a word containing the 7-bit ASCII represen
tation of the character in the low-order byte and zero in the
high-order byte.

A double quote character followed by two ASCII characters
generates a word containing the 7-bit ASCII representation
of the two characters.

Temporary radix control; causes the number n to be treated
as a binary number.

Creates a word containing the one's complement of n.

Temporary radix control; causes the number n to be treated
as a decimal number.

Creates a one-word floating point quantity to represent n.

Temporary radix control; causes the number n to be treated
as an octal number.

Generates a block of data containing the ASCII equivalent of
the character string (enclosed in delimiting characters) one
character per byte.

Generates a block of data containing the ASCII equivalent
of the character string (enclosed in delimiting characters)
one character per byte with a zero byte following the specified
string .

Begin or resume absolute section.

Reserves a block of storage space exp bytes long .

Reserves a block of storage space exp words long .

Generates successive bytes of data containing the octal equiva
lent of the expression{s) specified.

Begins or resumes named or unnamed relocatable section.

Disables the assembler function specified by the argument.

Provides the assembler function specified by the argument .

Indicates the physical end of the source program. An optional
argument specifies the transfer address .

B-17

Fonn

. ENDC

.EOT

. EVEN

.FLT2 argI,
arg2, ...

.FLT4 argI,
arg2, ...

. GLOBL syrol,
sym2, ...

.IDENT symbol

.IF cond,
arguments

.IFF

.1FT

.IFTF

. IIF cond,arg,
statement

. LlMIT

. LlST

.LlST arg

. NLlST

.NLlST arg

Assembler, Instruction, and Character Code Summaries

Described in
Manual Section

5.5.11

5.5.7.2

5.5.5.1

5.5.6.1

5.5.6.1

5.5.10

5.5.1.5

5.5.11

5.5.11.1

5.5.11.1

5.5.11.1

5.5.11.2

5.5.8

5.5.1.1

5.5.1.1

Operation

Indicates the end of a condition block .

Ignored. Indicates End·of·Tape which is detected automatically
by the hardware .

Ensures that the assembly location counter contains an even
address by adding 1 if it is odd.

Generates successive two-word floating point equivalents for
the floating-point numbers specified as arguments.

Generates successive four-word floating point equivalents for
the floating·point numbers specified as arguments.

Defines the symbol(s) specified as gIobal symbol(s) .

Provides a means of labeling the object module produced as a
result of assembly .

Begins a conditional block of source code which is included in
the assembly only if the stated condition is met with respect to
the argument(s) specified.

Appears only within a conditional block and indicates the
beginning of a section of code to be assembled if the condition
tested false.

Appears only within a conditional block and indicates the
beginning of a section of code to be assembled if the condition
tested true .

Appears only within a conditional block and indicates the
beginning of a section of code to be unconditionally assembled .

Acts as a one·line conditional block where the condition is
tested for the argument specified. The statement is assembled
only if the condition tests true .

Reserves two words into which the Linker inserts the low and
high addresses of the relocated code .

Without an argument, .LlST increments the listing level count
by 1. With an argument, .LlST does not alter the listing level
count but formats the assembly listing according to the argu
ment specified .

Without an argument, .NLlST decrements the listing level count
by 1. With an argument, .NLlST deletes the portion of the
listing indicated by the argument.

B·18

Form

.000

. PAGE

.RADIXn

.RAD50 string

.SBTTL string

.TITLE string

.WORDexpl,
exp2, ...

Assembler, Instruction, and Character Code Summaries

Described in
Manual Section

5.5.5.2

5.5.1.6

5.5.4.1

5.5.3.6

5.5.1.4

5.5.1.3

5.5.3.2

Operation

Ensures that the assembly location counter contains an odd
address by adding 1 if it is even.

Causes the assembly listing to skip to the top of the next page .

Alters the current program radix to n, where n can be 2,4,8,
or 10.

Generates a block of data containing the Radix-50 equivalent
of the character string (enclosed in delimiting characters).

Causes the string to be printed as part of the assembly listing
page header. The string part of each .SBTTL directive is col
lected into a table of contents at the beginning of the assembly
listing.

Assigns the first symbolic name in the string to the object
module and causes the string to appear on each page of the
assembly listing. One .TITLE directive should be issued per
program.

Generates successive words of data containing the octal equiva
lent of the expression(s) specified.

B.8 ASEMBL/CREF SWITCHES

B.8.1 Listing Control Switches

Switch

/L:arg
/N:arg

Arg

SEQ
LOC
BIN
BEX
SRC
COM
CND
ill
TOC
TTM
SYM
<no arg)

Meaning

These switches are used to control listing output.

Controls Listing of:

Source line sequence numbers
Location counter
Generated binary code
Binary extensions
Source code
Comments •
Unsatisfied conditons and all .IF and .ENDC statements.
Listing directives having no arguments
Table of contents
Listing output format
Symbol table
IN with no argument causes only table of contents, symbol table, and error listings
to be produced.

/L with no argument causes .LIST and .NLIST directives without arguments which
appear in the source program to be ignored.

B-19

Assembler, Instruction, and Character Code Summaries

B.8.2 Function Control Switches

Switch

/D:arg
/E:arg

Arg

ABS
AMA
CDR
FPT
LC
LSB

B.8.3 CREF Switches

Switch

/C:S
/C:R
/C:P
/C:C
/C:E
/C <no arg)

Meaning

These switches are used to enable or disable certain functions in source input files.

Enables or Disables:

Absolute binary output
Assembly of all absolute addresses as relative addresses
Source columns 73 and greater to be treated as comments
Floating point truncation
Accepts lower case ASCII input
Local symbol block

Produces Cross-Reference of:

User-defined symbols
Register symbols
Permanent symbols
Control sections
Error codes
Equivalent to /C:S:E

•

B-20

Assembler, Instruction, and Character Code Summaries

B.9 OCTAL-DECIMAL CONVERSIONS

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

0000 0000 0001 0002 0003 0004 0005 0006 0007 0400 0256 0257 0258 0259 0260 0261 0262

0010 0008 0009 0010 0011 0012 0013 0014 0015 0410 0264 0265 0266 0267 0268 0269 0270

0020 0016 0017 0018 0019 0020 0021 0022 0023 0420 0272 0273 0274 0275 0276 0277 0278

0030 0024 0025 0026 0027 0028 0029 0030 0031 0430 0280 0281 0282 0283 0284 0285 0286

0040 0032 0033 0034 0035 0036 0037 0038 0039 0440 0288 0289 0290 0291 0292 0293 0294

0050 0040 0041 0042 0043 0044 0045 0046 0047 0450 0296 0297 0298 0299 0300 0301 0302
0060 0048 0049 0050 0051 0052 0053 0054 0055 0460 0304 0305 0306 0307 0308 0309 0310

0070 0056 0057 0058 0059 0060 0061 0062 0063 0470 0312 0313 0314 0315 0316 0317 0318

0100 0064 0065 0066 0067 0068 0069 0070 0071 0500 0320 0321 0322 0323 0324 0325 0326

0110 0072 0073 0074 0075 0076 0077 0078 0079 0510 0328 0329 0330 0331 0332 0333 0334

0120 0080 0081 0082 0083 0084 0085 0086 0087 0520 0336 0337 0338 0339 0340 0341 0342

0130 0088 0089 0090 0091 0092 0093 0094 0095 0530 0344 0345 0346 0347 0348 0349 0350

0140 0096 0097 0098 0099 0100 0101 0102 0103 0540 0352 0353 0354 0355 0356 0357 0358

0150 0104 0105 0106 0107 0108 0109 0110 0111 0550 0360 0361 0362 0363 0364 0365 0366

0160 0112 0113 0114 0115 0116 0117 0118 0119 0560 0368 0369 0370 0371 0372 0373 0374

0170 0120 0121 0122 0123 0124 0125 0126 0127 0570 0376 0377 0378 0379 0380 0381 0382

0200 0128 0129 0130 0131 0132 0133 0134 0135 0600 0384 0385 0386 0387 0388 0389 0390

0210 0136 0137 0138 0139 0140 0141 0142 0143 0610 0392 0393 0394 0395 0396 0397 0398

0220 0144 0145 0146 0147 0148 0149 0150 0151 0620 0400 0401 0402 0403 0404 0405 0406

0230 0152 0153 0154 0155 0156 0157 0158 0159 0630 0408 0409 0410 0411 0412 0413 0414

0240 0160 0161 0162 0163 0164 0165 0166 0167 0640 0416 0417 0418 0419 0420 0421 0422

0250 0168 0169 0170 0171 0172 0173 0174 0175 0650 0424 0425 0426 0427 0428 0429 0430

0260 0176 0177 0178 0179 0180 0181 0182 0183 0660 0432 0433 0434 0435 0436 0437 0438

0270 0184 0185 0186 0187 0188 0189 0190 0191 0670 0440 0441 0442 0443 0444 0445 0446

0300 0192 0193 0194 0195 0196 0197 0198 0199 0700 0448 0449 0450 0451 0452 0453 0454

0310 0200 0201 0202 0203 0204 0205 0206 0207 0710 0456 0457 0458 0459 0460 0461 0462

0320 0208 0209 0210 0211 0212 0213 0214 0215 0720 0464 0465 0466 0467 0468 0469 0470

0330 0216 0217 0218 0219 0220 0221 0222 0223 0730 0472 0473 0474 0475 0476 0477 0478

0340 0224 0225 0226 0227 0228 0229 0230 0231 0740 0480 0481 0482 0483 0484 0485 0486

0350 0232 0233 0234 0235 0236 0237 0238 0239 0750 0488 0489 0490 0491 0492 0493 0494

0360 0240 0241 0242 0243 0244 0245 0246 0247 0760 0496 0497 0498 0499 0500 0501 0502

0370 0248 0249 0250 0251 0252 0253 0254 0255 0770 0504 0505 0506 0507 0508 0509 0510

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

1000 0512 0513 0514 0515 0516 0517 0518 0519 1400 0768 0769 0770 0771 0772 0773 0774

1010 0520 0521 0522 0523 0524 0525 0526 0527 1410 0776 0777 0778 0779 0780 0781 0782

1020 0528 0529 0530 0531 0532 0533 0534 0535 1420 0784 0785 0786 0787 0788 0789 0790

1030 0536 0537 0538 0539 0540 0541 0542 0543 1430 0792 0793 0794 0795 0796 0797 0798

1040 0544 0545 0546 0547 0548 0549 0550 0551 1440 0800 0801 0802 0803 0804 0805 0806

1050 0552 0553 0554 0555 0556 0557 0558 0559 1450 0808 0809 0810 0811 0812 0813 0814

1060 0560 0561 0562 0563 0564 0565 0566 0567 1460 0816 0817 0818 0819 0820 0821 0822

1070 0568 0569 0570 0571 0572 0573 0574 0575 1470 0824 0825 0826 082J 0828 0829 0830

1100 0576 0577 0578 0579 0580 0581 0582 0583 1500 0832 0833 0834 0835 0836 0837 0838

1110 0584 0585 0586 0587 0588 0589 0590 0591 1510 0840 0841 0842 0843 0844 0845 0846

1120 0592 0593 0594 0595 0596 0597 0598 0599 1520 0848 0849 0850 0851 0852 0853 0854

1130 0600 0601 0602 0603 0604 0605 0606 0607 1530 0856 0857 0858 0859 0860 0861 0862

1140 0608 0609 0610 0611 0612 0613 0614 0615 1540 0864 0865 0866 0867 0868 0869 0870

1150 0616 0617 0618 0619 0620 0621 0622 0623 1550 0872 0873 0874 0875 0876 0877 0878

1160 0624 0625 0626 0627 0628 0629 0630 0631 1560 0880 0881 0882 0883 0884 0885 0886

1170 0632 0633 0634 0635 0636 0637 0638 0639 1570 0888 0889 0890 0891 0892 0893 0894

1200 0640 0641 0642 0643 0644 0645 0646 0647 1600 0896 0897 0898 0899 0900 0901 0902

1210 0648 0649 0650 0651 0652 0653 0654 0655 1610 0904 0905 0906 0907 0908 0909 0910

1220 0656 0657 0658 0659 0660 0661 0662 0663 1620 0912 0913 0914 0915 0916 0917 0918

1230 0664 0665 0666 0667 0668 0669 0670 0671 1630 0920 0921 0922 0923 0924 0925 0926

1240 0672 0673 0674 0675 0676 0677 0678 0679 1640 0928 0929 0930 0931 0932 0933 0934

1250 0680 0681 0682 0683 0684 0685 0686 0687 1650 0936 0937 0938 0939 0940 0941 0942

1260 0688 0689 0690 0691 0692 0693 0694 0695 1660 0944 0945 0946 0947 0948 0949 0950

1270 0696 0697 0698 0699 0700 0701 0702 0703 1670 0952 0953 0954 0955 0956 0957 0958

1300 0704 0705 0706 0707 0708 0709 0710 0711 1700 0960 0961 0962 0963 0964 0965 0966

1310 0712 0713 0714 0715 0716 0717 0718 0719 1710 0968 0969 0970 0971 0972 0973 0974

1320 0720 0721 0722 0723 0724 0725 0726 0727 1720 0976 0977 0978 0979 0980 0981 0982

1330 0728 0729 0730 0731 0732 0733 0734 0735 1730 0984 0985 0986 0987 0988 0989 0990

1340 0736 0737 0738 0739 0740 0741 0742 0743 1740 0992 0993 0994 0995 0996 0997 0998

1350 0744 0745 0746 0747 0748 0749 0750 0751 1750 1000 1001 1002 1003 1004 1005 1006

1360 0752 0753 0754 D755 0756 0757 0758 0759 1760 1008 1009 1010 lOll 1012 1013 1014

1370 0760 0761 0762 0763 0764 0765 0766 0767 1770 1016 1017 1018 1019 1020 1021 1022

B-21

7

0263
0271
0279
0287
0295
0303
0311
0319

0327
0335
0343
0351
0359
0367
0375
0383

0391
0399
0407
0415
0423
0431
0439
0447

0455
0463
0471
0479
0487
0495
0503
0511

7

0775
0783
0791
0799
0807
0815
0823
0831

0839
0847
0855
0863
0871
0879
088.'
0895

0903
0911
0919
0927
0935
0943
0951
0959

0967
0975
0983
0991
0999
1007
1015
1023

0000
to

0777
(Octal)

Octal

10000
20000
30000
40000
50000
60000
70000

1000
to

1777
(Octal)

0000
to

0511
(Decimal)

Decimal

4096
8192

12288
16384
20480
24576
28672

0512
to

1023
(Decimal)

2000
to

2777
(Octal)

Octal
10000
20000
30000
40000
50000
60000
70000

3000
to

3777
(Octal)

1024
to

1535
(Decimal)

Decimal
4096
8192

12288
16384
20480
24576
28672

1536
to

2047
(Decimal)

Assembler, Instruction, and Character Code Summaries

0 1 2 3 4 5 6 7 0 1

2000 1024 1025 1026 1027 1028 1029 1030 1031 2400 1280 1281
2010 1032 1033 1034 1035 1036 1037 1038 1039 2410 1288 1289
2020 1040 1041 1042 1043 1044 1045 1046 1047 2420 1296 1297
2030 1048 1049 1050 1051 1052 1053 1054 1055 2430 1304 1305
2040 1056 1057 1058 1059 1060 1061 1062 1063 2440 1312 1313
2050 1064 1065 1066 1067 1068 1069 1070 1071 2450 1320 1321
2060 1072 1073 1074 1075 1076 1077 1078 1079 2460 1328 1329
2070 1080 1081 1082 1083 1084 1085 1086 1087 2470 1336 1337

2100 1088 1089 1090 1091 1092 1093 1094 1095 2500 1344 1345
2110 1096 1097 1098 1099 1100 1101 1102 1103 2510 1352 1353
2120 1104 1105 1106 1107 1108 1109 1110 1111 2520 1360 1361
2130 1112 1113 1114 1115 1116 1117 1118 1119 2530 1368 1369
2140 1120 1121 1122 1123 1124 1125 1126 1127 2540 1376 1377
2150 1128 1129 1130 1131 1132 1133 1134 1135 2550 1384 1385
2160 1136 1137 1138 1139 1140 1141 1142 1143 2560 1392 1393
2170 1144 1145 1146 1147 1148 1149 1150 1151 2570 1400 1401

2200 1152 1153 1154 1155 1156 1157 1158 1159 2600 1408 1409
2210 1160 1161 1162 1163 1164 1165 1166 1167 2610 1416 1417
2220 1168 1169 1170 1171 1172 1173 1174 1175 2620 1424 1425
2230 1176 1177 1178 1179 1180 1181 1182 1183 2630 1432 1433
2240 1184 1185 1186 1187 1188 1189 1190 1191 2640 1440 1441
2250 1192 1193 1194 1195 1196 1197 1198 1199 2650 1448 1449
2260 1200 1201 1202 1203 1204 1205 1206 1207 2660 1456 1457
2270 1208 1209 1210 1211 1212 1213 1214 1215 2670 1464 1465

2300 1216 1217 1218 1219 1220 1221 1222 1223 2700 1472 1473
2310 1224 1225 1226 1227 1228 1229 1230 1231 2710 1480 1481
2320 1232 1233 1234 1235 1236 1237 1238 1239 2720 1488 1489
2330 1240 1241 1242 1243 1244 1245 1246 1247 2730 1496 1497
2340 1248 1249 1250 1251 1252 1253 1254 1255 2740 1504 1505
2350 1256 1257 1258 1259 1260 1261 1262 1263 2750 1512 1513
2360 1264 1265 1266 1267 1268 1269 1270 1271 2760 1520 1521
2370 1272 1273 1274 1275 1276 1277 1278 1279 2770 1528 1529

0 1 2 3 4 5 6 7 0 1

3000 1536 1537 1538 1539 1540 1541 5142 1543 3400 1792 1793
3010 1544 1545 1546 1547 1548 1549 1550 1551 3410 1800 1801
3020 1552 1553 1554 1555 1556 1557 1558 1559 3420 1808 1809
3030 1560 1561 1562 1563 1564 1565 1566 1567 3430 1816 1817
3040 1568 1569 1570 1571 1572 1573 1574 1575 3440 1824 1825
3050 1576 1577 1578 1579 1580 1581 1582 1583 3450 1832 1833
3060 1584 1585 1586 1587 1588 1589 1590 1591 3460 1840 1841
3070 1592 1593 1594 1595 1596 1597 1598 1599 3470 1848 1849

3100 1600 1601 1602 1603 1604 1605 1606 1607 3500 1856 1857
3110 1608 1609 1610 1611 1612 1613 1614 1615 3510 1864 1865
3120 1616 1617 1618 1619 1620 1621 1622 1623 3520 1872 1873
3130 1624 1625 1626 1627 1628 1629 1630 1631 3530 1880 1881
3140 1632 1633 1634 1635 1636 1637 1638 1639 3540 1888 1889
3150 1640 1641 1642 1643 1644 1645 1646 1647 3550 1896 1897
3160 1648 1649 1650 1651 1652 1653 1654 1655 3560 1904 1905
3170 1656 1657 1658 1659 1660 1661 1662 1663 3570 1912 1913

3200 1664 1665 1666 1667 1668 1669 1670 1671 3600 1920 1921
3210 1672 1673 1674 1675 1676 1677 1678 1679 3610 1928 1929
3220 1680 1681 1682 1683 1684 1685 1686 1687 3620 1936 1937
3230 1688 1689 1690 1691 1692 1693 1694 1695 3630 1944 1945
3240 1696 1697 1698 1699 1700 1701 1702 1703 3640 1952 1953
3250 1704 1705 1706 1707 1708 1709 1710 1711 3650 1960 1961
3260 1712 1713 1714 1715 1716 1717 1718 1719 3660 '1968 1969
3270 1720 1721 1722 1723 1724 1725 1726 1727 3670 1976 1977

3300 1728 1729 1730 1731 1732 1733 1734 1735 3700 1984 1985
3310 1736 1737 1738 1739 1740 1741 1742 1743 3710 1992 1993
3320 1744 1745 1746 1747 1748 1749 1750 1751 3720 2000 2001
3330 1752 1753 1754 1755 1756 1757 1758 1759 3730 2008 2009
3340 1760 1761 1762 1763 1764 1765 1766 1767 3740 2016 2017
3350 1768 1769 1770 1771 1772 1773 1774 1775 3750 2024 2025
3360 1776 1777 1778 1779 1780 1781 1782 1783 3760 2032 2033
3370 1784 1785 1786 1787 1788 1789 1790 1791 3770 2040 2041

B-22

2 3 4 5 6 7

1282 1283 1284 1285 1286 1287
1290 1291 1292 1293 1294 1295
1298 1299 1300 1301 1302 1303
1306 1307 1308 1309 1310 1311
1314 1315 1316 1317 1318 1319
1322 1323 1324 1325 1326 1327
1330 1331 1332 1333 1334 1335
1338 1339 1340 1341 1342 1343

1346 1347 1348 1349 1350 1351
1354 1355 1356 1357 1358 1359
1362 1363 1364 1365 1366 1367
1370 1371 1372 1373 1374 1375
1378 1379 1380 1381 1382 1383
1386 1387 1388 1389 1390 1391
1394 1395 1396 1397 1398 1399
1402 1403 1404 1405 1406 1407

1410 1411 1412 1413 1414 1415
1418 1419 1420 1421 1422 1423
1426 1427 1428 1429 1430 1431
1434 1435 1436 1437 1438 1439
1442 1443 1444 1445 1446 1447
1450 1451 1452 1453 1454 1455
1458 1459 1460 1461 1462 1463
1466 1467 1468 1469 1470 1471

1474 1475 1476 1477 1478 1479
1482 1483 1484 1485 1486 1487
1490 1491 1492 1493 1494 1495
1498 1499 1500 1501 1502 1503
1506 1507 1508 1509 1510 1511
1514 1515 1516 1517 1518 1519
1522 1523 1524 1525 1526 1527
1530 1531 1532 1533 1534 1535

2 3 4 5 6 7

1794 1795 1796 1797 1798 1799
1802 1803 1804 1805 1806 1807
1810 1811 1812 1813 1814 1815
1818 1819 1820 1821 1822 1823
1826 1827 1828 1829 1830 1831
1834 1835 1836 1837 1838 1839
1842 1843 1844 1845 1846 1847
1850 1851 1852 1853 1854 1855

1858 1859 1860 1861 1862 1863
1866 1867 1868 1869 1870 1871
1874 1875 1876 1877 1878 1879
1882 1883 1884 1885 1886 1887
1890 1891 1892 1893 1894 1895
1898 1899 1900 1901 1902 1903
1906 1907 1908 1909 1910 1911
1914 1915 1916 1917 1918 1919

1922 1923 1924 1925 1926 1927
1930 1931 1932 1933 1934 1935
1938 1939 1940 1941 1942 1943
1946 1947 1948 1949 1950 1951
1954 1955 1956 1957 1958 1959
1962 1963 1964 1965 1966 1967
1970 1971 1972 1973 1974 1975
1978 1979 1980 1981 1982 1983

1986 1987 1988 1989 1990 1991
1994 1995 1996 1997 1998 1999
2002 2003 2004 2005 2006 2007
2010 2011 2012 2013 2014 2015
2018 2019 2020 2021 2022 2023
2026 2027 2028 2029 2030 2031
2034 2035 2036 2037 2038 2039
2042 2043 2044 2045 2046 2047

0 I 2 3

4000 2048 2049 2050 2051
4010 2056 2057 2058 2059
4020 2064 2065 2066 2067
4030 2072 2073 2074 2075
4040 2080 2081 2082 2083
4050 2088 2089 2090 2091
4060 2096 2097 2098 2099
4070 2104 2105 2106 2107

4100 2112 2113 2114 2115
4110 2120 2121 2122 2123
4120 2128 2129 2130 2131
4130 2136 2137 2138 2139
4140 2144 2145 2146 2147
4150 2152 2153 2154 2155
4160 2160 2161 2162 2163
4170 2168 2169 2170 2171

4200 2176 2177 2178 2179
4210 2184 2185 2186 2187
4220 2192 2193 2194 2195
4230 2200 2201 2202 2203
4240 2208 2209 2210 2211
4250 2216 2217 2218 2219
4260 2224 2225 2226 2227
4270 2232 2233 2234 2235

4300 2240 2241 2242 2243
4310 2248 2249 2250 2251
4320 2256 2257 2258 2259
4330 2264 2265 2266 2267
4340 2272 2273 2274 2275
4350 2280 2281 2282 2283
4360 2288 2289 2290 2291
4370 2296 2297 2298 2299

0 1 2 3

5000 2560 2561 2562 2563
5010 2568 2569 2570 2571
5020 2576 2577 2578 2579

5030 2584 2585 2586 2587
5040 2592 2593 2594 2595
5050 2600 2601 2602 2603

5060 2608 2609 2610 2611

5070 2616 2617 2618 2619

5100 2624 2625 2626 2627
5110 2632 2633 2634 2635
5120 2640 2641 2642 2643
5130 2648 2649 2650 2651
5140 2656 2657 2658 2659
5150 2664 2665 2666 2667
5160 2672 2673 2674 2675

5170 2680 2681 2682 2683

5200 2688 2689 2690 2691
5210 2696 2697 2698 2699
5220 2704 2705 2706 2707
5230 2712 2713 2714 2715
5240 2720 2721 2722 2723
5250 2728 2729 2730 2731
5260 2736 2737 2738 2739
5270 2744 2745 2746 2747

5300 2752 2753 2754 2755
5310 2760 2761 2762 2763
5320 2768 2769 2770 2771

5330 2776 2777 2778 2779
5340 2784 2785 2786 2787

5350 2792 2793 2794 2795
5360 2800 2801 2802 2803
5370 2808 2809 2810 2811

Assembler, Instruction, and Character Code Summaries

4 5 6 7 0 1 2 3 4 5 6

2052 2053 2054 2055 4400 2304 2305 2306 2307 2308 2309 2310

2060 2061 2062 2063 4410 2312 2313 2314 2315 2316 2317 2318

2068 2069 2070 2071 4420 2320 2321 2322 2323 2324 2325 2326

2076 2077 2078 2079 4430 2328 2329 2330 2331 2332 2333 2334

2084 2085 2086 2087 4440 2336 2337 2338 2339 2340 2341 2342

2092 2093 2094 2095 4450 2344 2345 2346 2347 2348 2349 2350

2100 2101 2102 2103 4460 2352 2353 2354 2355 2356 2357 2358

2108 2109 2110 21 II 4470 2360 2361 2362 2363 2364 2365 2366

2116 2117 2118 2119 4500 2368 2369 2370 2371 2372 2373 2374

2124 2125 2126 2127 4510 2376 2377 2378 2379 2380 2381 2382

2132 2133 2134 2135 4520 2384 2385 2386 2387 2388 2389 2390

2140 2141 2142 2143 4530 2392 2393 2394 2395 2396 2397 2398

2148 2149 2150 2151 4540 2400 2401 2402 2403 2404 2405 2406

2156 2157 2158 2159 4550 2408 2409 2410 2411 2412 2413 2414

2164 2165 2166 2167 4560 2416 2417 2418 2419 2420 2421 2422

2172 2173 2174 2175 4570 2424 2425 2426 2427 2428 2429 2430

2180 2181 2182 2183 4600 2432 2433 2434 2435 2436 2437 2438

2188 2189 2190 2191 4610 2440 2441 2442 2443 2444 2445 2446

2196 2197 2198 2199 4620 2448 2449 2450 2451 2452 2453 2454

2204 2205 2206 2207 4630 2456 2457 2458 2459 2460 2461 2462

2212 2213 2214 2215 4640 2464 2465 2466 2467 2468 2469 2470

2220 2221 2222 2223 4650 2472 2473 2474 2475 2476 2477 2478

2228 2229 2230 2231 4660 2480 2481 2482 2483 2484 2485 2486

2236 2237 2238 2239 4670 2488 2489 2490 2491 2492 2493 2494

2244 2245 2246 2247 4700 2496 2497 2498 2499 2500 2501 2502

2252 2253 2254 2255 4710 2504 2505 2506 2507 2508 2509 2510

2260 2261 2262 2263 4720 2512 2513 2514 2515 2516 2517 2518

2268 2269 2270 2271 4730 2520 2521 2522 2523 2524 2525 2526

2276 2277 2278 2279 4740 2528 2529 2530 2531 2532 2533 2534

2284 2285 2286 2287 4750 2536 2537 2538 2539 2540 2541 2542

2292 2293 2294 2295 4760 2544 2545 2546 2547 2548 2549 2550

2300 2301 2302 2303 4770 2552 2553 2554 2555 2556 2557 2558

4 5 6 7 0 1 2 3 4 5 6

2564 2565 2566 2567 5400 2816 2817 2818 2819 2820 2821 2822

2572 2573 2574 2575 5410 2824 2825 2826 2827 2828 2829 2830

2580 2581 2582 2583 5420 2832 2833 2834 2835 2836 2837 2838

2588 2589 2590 2591 5430 2840 2841 2842 2843 2844 2845 2846

2596 2597 2598 2599 5440 2848 2849 2850 2851 2852 2853 2854

2604 2605 2606 2607 5450 2856 2857 2858 2859 2860 2861 2862

2612 2613 2614 2615 5460 2864 2865 2866 2867 2868 2869 2870

2620 2621 2622 2623 5470 2872 2873 2874 2875 2876 2877 2878

2628 2629 2630 2631 5500 2880 2881 2882 2883 2884 2885 2886

2636 2637 2638 2639 5510 2888 2889 2890 2891 2892 2893 2894

2644 2645 2646 2647 5520 2896 2897 2898 2899 2900 2901 2902

2652 2653 2654 2655 5530 2904 2905 2906 2907 2908 2909 2910

2660 2661 2662 2663 5540 2912 2913 2914 2915 2916 2917 2918

2668 2669 2670 2671 5550 2920 2921 2922 2923 2924 2925 2926

2676 2677 2678 2679 5560 2928 2929 2930 2931 2932 2933 2934

2684 2685 2686 2687 5570 2936 2937 2938 2939 2940 2941 2942

2692 2693 2694 2695 5600 2944 2945 2946 2947 2948 2949 2950

2700 2701 2702 2703 5610 2952 2953 2954 2955 2956 2957 2958

2708 2709 2710 2711 5620 2960 2961 2962 2963 2964 2965 2966

2716 2717 2718 2719 5630 2968 2969 2970 2971 2972 2973 2974

2724 2725 2726 2727 5640 2976 2977 2978 2979 2980 2981 2982

2732 2733 2734 2735 5650 2984 2985 2986 2987 2988 2989 2990

2740 2741 2742 2743 5660 2992 2993 2994 2995 2996 2997 2998

2748 2749 2750 2751 5670 3000 3001 3002 3003 3004 3005 3006

2756 2757 2758 2759 5700 3008 3009 3010 3011 3012 3013 3014

2764 2765 2766 2767 5710 3016 3017 3018 3019 3020 3021 3022

2772 2773 2774 2775 5720 3024 3025 3026 3027 3028 3029 3030

2780 2781 2782 2783 5730 3032 3033 3034 3035 3036 3037 3038

2788 2789 2790 2791 5740 3040 3041 3042 3043 3044 3045 3046

2796 2797 2798 2799 5750 3048 3049 3050 3051 3052 3053 3054

2804 2805 2806 2807 5760 3056 3057 3058 3059 3060 3061 3062

2812 2813 2814 2815 5770 3064 3065 3066 3067 3068 3069 3070

B-23

7

2311
2319
2327
2335
2343
2351
2359
2367

2375
2383
2391
2399
2407
2415
2423
2431

2439
2447
2455
2463
2471
2479
2487
2495

2503
2511
2519
2527
2535
2543
2551
2559

7

2823
2831
2839
2847
2855
2863
2871
2879

2887
2895
2903
2911
2919
2927
2935
2943

2951
2959
2967
2915
2983
2991
2999
3007

3015
3023
3031
3039
3047
3055
3063
3071

4000
to

4777
(Octal)

Octal

10000
20000
30000
40000
50000
60000
70000

5000
to

5777
(Octal)

2048
to

2559
(Decimal)

Decimal

4096
8192

12288
16384
20480
24576
28672

2560
to

3071
(Decimal)

6000
to

6777
(Octal)

Octal
10000
20000
30000
40000
50000
60000
70000

7000
to

7777
(Octal)

3072
to

3583
(Decimal)

Decimal
4096
8192

12288
16384
20480
24576
28672

3584
to

4095
(Decimal)

6000
6010
6020
6030
6040
6050
6060
6070

6100
6110
6120
6130
6140
6150
6160
6170

6200
6210
6220
6230
6240
6250
6260
6270

6300
6310
6320
6330
6340
6350
6360
6370

7000
7010
7020
7030
7040
7050
7060
7070

7100
7110
7120
7130
7140
7150
7160
7170

7200
7210
7220
7230
7240
7250
7260
7270

7300
7310
7320
7330
7340
7350
7360
7370

Assembler, Instruction, and Character Code Summaries

0 1 2 3 4 5 6 7 0 1

3072 3073 3074 3075 3076 3077 3078 3079 6400 3328 3329
3080 3081 3082 3083 3084 3085 3086 3087 6410 3336 3337
3088 3089 3090 3091 3092 3093 3094 3095 6420 3344 3345
3096 3097 3098 3099 3100 3101 3102 3103 6430 3352 3353
3104 3105 3106 3107 3108 3109 3110 3111 6440 3360 3361
3112 3113 3114 3115 3116 3117 3118 3119 6450 3368 3369
3120 3121 3122 3123 3124 3125 3126 3127 6460 3376 3377
3128 3129 3130 3131 3132 3133 3134 3135 6470 3384 3385

3136 3137 3138 3139 3140 3141 3142 3143 6500 3392 3393
3144 3145 3146 3147 3148 3149 3150 3151 6510 3400 3401
3152 3153 3154 3155 3156 3157 3158 3159 6520 3408 3409
3160 3161 3162 3163 3164 3165 3166 3167 6530 3416 3417
3168 3169 3170 3171 3172 3173 3174 3175 6540 3424 3425
3176 3177 3178 3179 3180 3181 3182 3183 6550 3432 3433
3184 3185 3186 3187 3188 3189 3190 3191 6560 3440 3441
3192 3193 3194 3195 3196 3197 3198 3199 6570 3448 3449

3200 3201 3202 3203 3204 3205 3206 3207 6600 3456 3451
3208 3209 3210 3211 3212 3213 3214 3215 6610 3464 3465
3216 3217 3218 3219 3220 3221 3222 3223 6620 3472 3473
3224 3225 3226 3227 3228 3229 3230 3231 6630 3480 3481
3232 3233 3234 3235 3236 3237 3238 3239 6640 3488 3489
3240 3241 3242 3243 3244 3245 3246 3247 6650 3496 3491
3248 3249 3250 3251 3252 3253 3254 3255 6660 3504 3505
3256 3257 3258 3259 3260 3261 3262 3263 6670 3512 3513

3264 3265 3266 3267 3268 3269 3270 3271 6700 3520 3521
3272 3273 3274 3275 3276 3277 3278 3279 6710 3528 3529
3280 3281 3282 3283 3284 3285 3286 3287 6720 3536 3537
3288 3289 3290 3291 3292 3293 3294 3295 6730 3544 3545
3296 3297 3298 3299 3300 3301 3302 3303 6140 3552 3553
3304 3305 3306 3307 3308 3309 3310 3311 6750 3560 3561
3312 3313 3314 3315 3316 3317 3318 3319 6760 3568 3569
3320 3321 3322 3323 3324 3325 3326 3327 6770 3576 3577

0 1 2 3 4 5 6 7 0 1

3584 3585 3586 3587 3588 3589 3590 3591 7400 3840 3841
3592 3593 3594 3595 3596 3597 3598 3599 7410 3848 3849
3600 3601 3602 3603 3604 3605 3606 3607 7420 3856 3851
3608 3609 3610 3611 3612 3613 3614 3615 7430 3864 3865
3616 3617 3618 3619 3620 3621 3622 3623 7440 3872 3873
3624 3625 3626 3627 3628 3629 3630 3631 7450 3880 3881
3632 3633 3634 3635 3636 3637 3638 3639 7460 3888 3889
3640 3641 3642 3643 3644 3645 3646 3647 7470 3896 3897

3648 3649 3650 3651 3652 3653 3654 3655 7500 3904 3905
3656 3657 3658 3659 3660 3661 3662 3663 7510 3912 3913
3664 3665 3666 3667 3668 3669 3670 3671 7520 3920 3921
3672 3673 3674 3675 3676 3677 3678 3679 7530 3928 3929
3680 3681 3682 3683 3684 3685 3686 3687 1540 3936 3937
3688 3689 3690 3691 3692 3693 3694 3695 7550 3944 3945
3696 3697 3698 3699 3700 3701 3702 3703 7560 3952 3953
3704 3705 3706 3707 3708 3709 3710 3711 7570 3960 3961

3712 3713 3714 3715 3716 3717 3718 3719 7600 3968 3969
3720 3721 3722 3723 3724 3725 3726 3727 7610 3976 3977
3728 3729 3730 3731 3732 3733 3734 3735 7620 3984 3985
3736 373.7 3738 3739 3740 3741 3742 3743 7630 3992 3993
3744 3745 3746 3747 3748 3749 3750 3751 7640 4000 4001
3752 3753 3754 3755 3756 3757 3758 3759 7650 4008 4009
3760 3761 3762 3763 3764 3765 3766 3767 7660 4016 4017
3768 3769 3770 3771 3772 3773 3774 3775 1670 4024 4025

3776 3777 3778 3779 3780 3781 3782 3783 7700 4032 4033
3784 3785 3786 3787 3788 3789 3790 3791 1710 4040 4041
3792 3793 3794 3795 3796 3797 3798 3799 7720 4048 4049
3800 3801 3802 3803 3804 3805 3806 3807 7730 4056 4057
3808 3809 3810 3811 3812 3813 3814 3815 7740 4064 4065
3816 3817 3818 3819 3820 3821 3822 3823 7750 4072 4073
3824 3825 3826 3827 3828 3829 3830 3831 7760 4080 4081
3832 3833 3834 3835 3836 3837 3838 3839 7770 4088 4089

B-24

2 3 4 5 6 7

3330 3331 3332 3333 3334 3335
3338 3339 3340 3341 3342 3343
3346 3347 3348 3349 3350 3351
3354 3355 3356 3357 3358 3359
3362 3363 3364 3365 3366 3367
3370 3371 3372 3313 3314 3315
3378 3379 3380 3381 3382 3383
3386 3387 3388 3389 3390 3391

3394 3395 3396 3397 3398 3399
3402 3403 3404 3405 3406 3407
3410 3411 3412 3413 3414 3415
3418 3419 3420 3421 3422 3423
3426 3427 3428 3429 3430 3431
3434 3435 3436 3437 3438 3439
3442 3443 3444 3445 3446 3447
3450 3451 3452 3453 3454 3455

3458 3459 3460 3461 3462 3463
3466 3467 3468 3469 3470 3471
3474 3475 3476 3477 3478 3479
3482 3483 3484 3485 3486 3487
3490 3491 3492 3493 3494 3495
3498 3499 3500 3501 3502 3503
3506 3501 3508 3509 3510 3511
3514 3515 3516 3517 3518 3519

3522 3523 3524 3525 3526 3527
3530 3531 3532 3533 3534 3535
3538 3539 3540 3541 3542 3543
3546 3547 3548 3549 3550 3551
3554 3555 3556 3557 3558 3559
3562 3563 3564 3565 3566 3567
3570 3571 3572 3573 3574 3575
3578 3579 3580 3581 3582 3583

2 3 4 5 6 7

3842 3843 3844 3845 3846 3847
3850 3851 3852 3853 3854 3855
3858 3859 3860 3861 3862 3863
3866 3867 3868 3869 3870 3871
3874 3875 3876 3877 3878 3879
3882 3883 3884 3885 3886 3887
3890 3891 3892 3893 3894 3895
3898 3899 3900 3901 3902 3903

3906 3907 3906 3909 3910 3911
3914 3915 3916 3917 3918 3919
3922 3923 3924 3925 3926 3927
3930 3931 3932 3933 3934 3935
3938 3939 3940 3941 3942 3943
3946 3947 3948 3949 3950 3951
3954 3955 3956 3957 3958 3959
3962 3963 3964 3965 3966 3967

3970 3971 3972 3973 3914 3975
3978 3979 3980 3981 3982 3983
3986 3987 3988 3989 3990 3991
3994 3995 3996 3997 3998 3999
4002 :r003 4004 4005 4006 4001
4010 4011 4012 4013 4014 4015
4018 4019 4020 4021 4022 4023
4026 4027 4028 4029 4030 4031

4034 4035 4036 4037 4038 4039
4042 4043 4044 4045 4046 4047
4050 4051 4052 4053 4054 4055
4058 4059 4060 4061 4062 4063
4066 4067 4068 4069 4070 4071
4074 4075 4076 4077 4078 4079
4082 4083 4084 4085 4086 4087
4090 4091 4092 4093 4094 4095

APPENDIX C

SYSTEM MACRO FILE

The following is a listing of the system macro library, SYSMAC.SML. This fIle is stored on the system device, and
used by EXPAND when it expands the programmed requests discussed in Chapter 9.

Several macros and arguments are present in SYSMAC.SML for compatibility purposes. These items can be ignored
by the HT·ll user.

SYSMAC.SML
HT-11 V1A SYSTEM MACRO LIBRARY FOR USE WITH EXPAND

EF,JD,EP

COPYRIGHT (C) 1974,1975,1978

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS 01754

THIS SOFTWARE IS FUHNISHED UNDER A LICENSE FOR USE ONLY
ON A SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH
THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE,
OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE MADE
AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH SYSTEM AND TO
ONE WHO AGREES TO THESE LICENSE TERMS. TITLE TO AND OWNERSHIP OF THE
SOFTWARE SHALL AT ALL TIMES REMAIN IN DIGITAL.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO
CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED
AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE
OR RELIABILITY OF ITS SOFTWARE ON EQUIPMENT
WHICH IS NOT SUPPLIED BY DIGITAL .

. MACRO .. V1 ..
• •• V 1 = 1
.ENDM

.MACRO .. V2 ..
· .. V2 = 1
.ENDM

· MACRO ... CM 1
· ENDM
.MACRO ... CM2
· ENDM
.MACRO ... CM3
· ENDM
.MACRO ... CM4
· ENDM

C·l

System Macro File

.MACRO . CDFN .AREA, .ADD, .NUM

.IF NB .AREA
MOV .AREA,%(J
MOV #64(J0, «(J)

· ENDC
· IIF NB .ADD, MOV . ADD; 2. C 0)
· IIF NB .NUM, MOV .NUM,4.«(J)

EMT ~O 375
· EN DM

.MACRO .CHAIN
MOV fl4(JrJ(J,%(J
EMT ~O374

· ENDM

.MACRO .CHCOP¥ .AREA,.CHAN,.OCHAN
· ERROR j BAD MAC
.ENDM

.MACRO .CNTXSW .AREA,.ADD
· ERROR j BAD MAC
.ENDM

.MACRO .CLOSE .CHAN
· IF DF ... V 1

EMT ~O<16rJ+.CHAN>

· IFF
MOV 113(JrJrJ,%rJ

.IIF NB .CHAN, BISB .CHAN,%rJ
EMT ~O374

· ENDC
.ENDM

.MACRO .CMKT .AREA, .ID,.TIME

.ERROR jBAD MAC

.ENDM

.MACRO .CSIGEN .DEVSPC, .DEFEXT,.CSTRING
MOV .DEVSPC,-C6.)
MOV .DEFEXT,-(6.)

.IF B .CSTRING
CLR -(6.)

· IFF
MOV .CSTRING,-C6.)

· ENDC
EMT ~O 344

.ENDM

.MACRO .CSISPC .OUTSPC,.DEFEXT,.CSTRING
MOV .OUTSPC,-(6.)
MOV .DEFEXT,-(6.)

.IF B .CSTRING
CLR - (6.)

.IFF
MOV .CSTRING,-(6.)

· ENDC
EMT ~O345

· ENDM

C-2

.MACRO .CSTAT
· IF NB .AREA

· ENDC
.IIF NB .CHAN,
.IIF NB .ADD,

· ENDM

.MACRO . DATE

· ENDM

· MACRO . DELETE
· IF DF ... V 1
· IIF NB . CHAN,

.IFF

.IF NB .AREA

· ENDC

System Macro File

.AREA, .CHAN, .ADD

MOV .AREA,%0
MOVB 1123.,1(0)

MOVB .CHAN,(0)
MOV .ADD,2.(0)
EMT ~O375

MOV @1I~054,%0

MOV ~0262(0) ,%0

.AREA, .CHAN, .DEVBLK

MOV . CHAN, %0
EMT ~O<.AREA>

MOV
CLRB

.AREA,%0
1 (0)

· IIF NB . CHAN, MOVB
.IIF NB .DEVBLK,MOV

.CHAN,(0)

.DEVBLK,2.(0)
4. (0)

· ENDC
.ENDM

CLR
EMT ~0375

.MACRO .DEVICE .AREA, .ADD
· ERROR ; BAD MAC
.ENDM

.MACRO .DSTATUS .RETSPC, .DNAME

.IIF NB .DNAME, MOV .DNAME,%0
MOV .RETSPC,-(6.)
EMT ~0342

· ENDM

C·3

System Macro File

.MACRO .ENTER .AREA, .CHAN,.DEVBLK, .LEN
· IF DF ... V1
· IIF NB .CHAN, MOV .CHAN, %0
.IF B .DEVBLK

CLR - (6.)
.IFF

MOV .DEVBLK,-(6.)
.ENDC

EMT AO<40+.AREA)
.IFF
· IF NB .AREA

MOV .AREA,%0
MOVB 112.,1(0)

.ENDC
· IIF NB .CHAN, MOVB · CHAN, (13)
· IIF NB . DEVBLK, MOV .DEVBLK,2.(0)
.IF NB .LEN

MOV · LEN, 4. {13)
.IFF

CLR 4. (13)
.ENDC

CLR 6. {(3)
EMT A0375

· ENDC
.ENDM

.MACRO . EXIT
EMT A0350

.ENDM

.MACRO .FETCH . ADD, . DNAME
· IIF NB . DNAME, MOV · DNAME, %0

MOV .ADD,-{6.)
EMT A0343

· ENDM

.MACRO .GTIM . AREA, . ADD

.IF NB .AREA
MOV .AREA,%0
MOV 1110400,(0)

.ENDC
· IIF NB .ADD, MOV .ADD,2.(0)

EMT A0375
.ENDM

.MACRO .GTJB .AREA, .ADD

.IF NB .AREA
MOV .AREA,%0
MOV 1110000,(0)

• ENDC
· IIF NB .ADD, MOV .ADD,2.(0)

EMT A0375
.ENDM

.MACRO . HERR
MOV 112400, %0
EMT A0374

.ENDM

.MACRO .HRESET
EMT "0357

• .£NDM

C4

System Macro File

.MACRO .LOCK
EMT "0346

.ENDM

.MACRO .INTEN .PRIO, .PIC

.IF NB .PIC
MOV @#"054,-(6.)
JSR 5. ,@(6.)+

.IFF
JSR 5. ,@"054

· ENDC
. WORD "C<.PRIO*32.>&224 .

· ENDM

.MACHO .LOOKUP
• If OF ... V 1
.IIF NB .CHAN,

.AREA, .CHAN, .DEVBLK

MOV . CHAN, %fJ
EMT "0<2fJ+.AREA>

.IFF

.IF NB .AREA

· ENDC

MOV
MOVB

.IIF NB .CHAN, MOVB

.IIF NB .DEVBLK,MOV

· ENDC
· ENDM

CLR
EMT

.MACRO .MFPS .ADD
MFPS .ADD

.ENDM

.AREA,%fJ
fll,l(Cl)

.CHAN,(I2l)

.DEVBLK,2.(Cl)
4. (I2l)
"0375

.MACRO .MRKT .AREA,.TIME,.CRTN,.ID
· ERROR ; BAD MAC
· ENDM

.MACRO .MTPS .ADD
MTPS .ADD

· ENDM

· MACRO . MWAIT
· ERROR ; BAD MAC
.ENDM

.MACRO .PRINT .ADD

.IIF NB .ADD, MOV
EMT

.ENDM

.ADD,%i2l
"0351

.MACRO .PROTECT .AREA,.ADD

.IF NB .AREA

· ENDC
· IIF NB . ADD,

· ENDM

MOV . AREA, %Cl
MOV fl144ClI2l,(Cl)

MOV
EMT

.ADD,2.(I2l)
"0375

c-s

.MACRO .PURGE .CHAN
MOV

.llF NB .CHAN, BlSB
EMT

· ENDM

.MACRO .QSET .QADD,.QLEN

System Macro File

111400,%0
.CHAN,%0
~0374

.llF NB .QLEN, MOV .QLEN,%0
MOV .QADD,-(6.)
EMT ~0353

· ENDM

.MACRO .RCTRLO
EMT ~O 355

· ENDM

.MACRO .RCVD .AREA, .BUFF, .WCNT

.ERROR jBAD MAC

.ENDM

.MACRO .RCVDC .AREA, .BUFF, .WCNT, .CRTN
· ERROR j BAD MAC
.ENDM

.MACRO .RCVDW .AREA, .BUFF, .WCNT
· ERROR j BAD MAC
· ENDM

.MACRO .READ .AREA,.CHAN,.BUFF, .WCNT, .BLK

.IF DF ... V 1

.IIF NB .WCNT, MOV .WCNT,%0
MOV 111,-(6.)
MOV .BUFF,-(6.)
MOV .CHAN,-(6.)
EMT ~O<200+.AREA>

. IFF

.IF NB .AREA
MOV .AREA,%0
MOVB 118.,1(1J)

· ENDC
· IIF NB . CHAN, MOVB .CHAN,(0)
. !IF NB .BLK, MOV .BLK,2.(0)
· IIF NB .BUFF, MOV .BUFF,4.(0)
. !IF NB .WCNT, MOV .WCNT,6.(0)

MOV 111,8.(0)
EMT ~O375

· ENDC
.ENDM

C-6

System Macro File

.MACRO .READC .AREA, .CHAN,.BUFF, .WCNT,.CRTN,.BLK
· IF DF ... V 1
.IIF NB .CRTN,

.IFF
· IF NB .AREA

· ENDC
· IIF NB . CHAN,
· IIF NB .BLK,
· IIF NB .BUFF,
.IIF NB .WCNT,
· IIF NB .CRTN,

· ENDC
.ENDM

MOV
MOV
MOV
MOV
EMT

MOV
MOVB

MOVB
MOV
MOV
MOV
MOV
EMT

.CRTN,%(J

.wCNT,-(6.)
· BUFF, - (6.)
.CHAN,-(6.)
~O<2(J(J+.AREA>

.AREA,%(J
118.,1«(J)

· CHA N , (0)
.BLK,2.«(J)
· BUFF, 4. (0)
.WCNT,6.«(J)
.CRTN,8.(0)
~0375

.MACRO .READW .AREA, .CHAN, .BUFF,.WCNT,.BLK
· IF DF ... V 1
.IIF NB .WCNT, MOV

CLR
MOV
MOV
EMT

.IFF

.IF NB .AREA
MOV
MOVB

.ENDC
· IIF NB . CHAN, MOVB
· IIF NB .BLK, MOV
· IIF NB .BUFF, MOV
· IIF NB .WCNT, MOV

CLR
EMT

· ENDC
.ENDM

.MACRO .REGDEF
R(J=%0
R 1 =% 1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7
.ENDM

.MACRO .RELEASE . DEVBLK
· IIF NB .DEVBLK,MOV

CLR
EMT

· ENDM

.WCNT,%(J
- (6.)
· BUFF, - (6.)
.CHAN,-(6.)
~O<2(J(J+.AREA>

.AREA,%(J
118.,1«(J)

· CHA N , (0)
.BLK,2.«(J)
· BUFF, 4. (0)
.WCNT,6.Un
8. (0)
~O375

.DEVBLK,%0
- (6.)
~O343

C-7

.MACRO .RENAME
· IF DF ... V 1
.IIF NB .CHAN,

· IFF
.IF NB .AREA

· ENDC

System Macro File

.AREA, .CHAN,.DEVBLK

MOV . CHAN, %0
EMT AO<100+.AREA>

MOV
MOVB

.AREA,%0
114.,1(0)

.IIF NB .CHAN, MOVB

.IIF NB .DEVBLK,MOV
. CHAN, (0)
.DEVBLK,2.(0)
A0375

.ENDC

.ENDM

.MACRO

.IF DF
· IIF NB

· IFF
.IF NB

· ENDC
· IIF NB
· IIF NB

· ENDC
.ENDM

.REOPEN

..• V 1
. CHAN,

.AREA

.CHAN,

.CBLK,

EMT

.AREA,.CHAN,.CBLK

MOV .CHAN,%0
EMT AO<140+.AREA>

MOV .AREA,%0
MOVB 116.,1(0)

MOVB .CHAN,(0)
MOV .CBLK,2.(0)
EMT A0375

.MACRO .SAVESTAT .AREA, .CHAN,.CBLK
· IF DF ... V 1
.IIF NB .CHAN, MOV .CHAN,%0

.IFF

.IF NB .AREA

· ENDC
· IIF NB . CHAN,
· IIF NB .CBLK,

· ENDC
.ENDM

.MACRO .RSUM
· ERROR ; BAD MAC
.ENDM

EMT AO<120+.AREA>

MOV .AREA,%(O
MOVB 115.,1«(0)

MOVB .CHAN,(0)
MOV . CBL K , 2. (0)
EMT A0375

.MACRO .SOAT .AREA,.BUFF, .WCNT
· ERROR ; BAD MAC
.ENOM

.MACRO .SOATC .AREA, .BUFF,.WCNT, .CRTN

.ERROR ;BAO MAC
· ENDM

.MACRO .SOATW .AREA, .BUFF,.WCNT

.ERROR ;BAO MAC

.ENOM

e.g

System Macro File

.MACRO .SERR
MOV #2~~~,%~
EMT ~0374

· ENDM

.MACRO .SETTOP .ADD

.!IF NB .ADD, MOV
EMT

.ADD,UJ
~O 354

· ENDM

.MACRO .SFPA

.IF NB .AREA
. AREA, . ADD

MOV .AREA,%~
MOV #14~~0,(~)

· ENDC
.IIF NB .ADD,

· ENDM

.MACRO .SPFUN

.IF NB .AREA

.ENDC

.IIF NB .CHAN,

.!IF NB .BLK,

.IIF NB .BUFF,

.!IF NB .WCNT,

.IF NB .CODE

· ENDC
.IF NB .CRTN

· IFF

· EN DC

.ENDM

.MACRO .SRESET

.ENDM

.MACRO .SPND
· ERROR i BAD MAC
.ENDM

MOV
EMT

.ADD,2.(0)
~0375

.AREA, .CHAN, .CODE, .BUFF, .WCNT, .BLK,.CRTN

MOV . AREA, %~
MOVB #26.,1(~)

MOVB
MOV
MOV
MOV

.CHAN,(0)

.BLK,2.(~)

. BUFF, 4. (QJ)

.WCNT,6.(~)

MOVB #~0377,8.(QJ)
MOVB .CODE,9.(~)

MOV

CLR

EMT

.CRTN,8.(QJ)

8. (0)

~0375

EMT ~0352

.MACRO .SYNCH .AREA

.IIF NB .AREA, MOV .AREA,%4
@r054, %5

· ENDM

.MACRO .TLOCK

· ENDM

MOV
JSR 5. ,@~0324(5.)

MOV #3400,%0
EMT ~0374

C-9

System Macro File

.NACRO · TRPSET . AREA, . ADD

.IF NB .AREA
MOV .AREA,%0
MOV 11140'0,(0)

.ENDC
· IIF NB . ADD, MOV .ADD,2.(0)

EMT A0375
· ENDM

.MACRO · TTINR
EMT A0340

.ENDM

.MACRO · TTYIN . CHAR
EMT A0340
BCS . -2

· IIF NB .CHAR, MOVB %0,. CHAR
.ENDM

.MACRO · TTOUTR
EMT A0341

· ENDM

.MACRO · TTYOUT .CHAR
• IIF NB .CHAR, MOVB .CHAR,%0

EMT "0341
BCS . -2

.ENDM

.MACRO · TWAIT . AREA, . TIME

.ERROR jBAD MAC

.ENDM

.MACRO .UNLOCK
EMT A0347

.ENDM

.MACRO .WAIT .CHAN

.IF DF · •. V 1
EMT "O<240+.CHAN)

· IFF
CLR %0

.IIF NB .CHAN, BISB .CHAN,%0
EMT A0374

.ENDC

.ENDM

C-10

· MACRO . WRITE
· IF DF ... V 1
.IIF NB . WCNT ,

· IFF
· IF NB . AREA

· ENDC
· IIF NB .CHAN,
.IIF NB .BLK,
.IIF NB .BUFF,
.IIF NB .WCNT,

· ENDC
.ENDM

System Macro File

.AREA,.CHAN, .BUFF, .WCNT,.BLK

MOV . WCNT , %0
MOV 111 , - (6 .)
MOV .BUFF,-(6.)
MOV .CHAN,-(6.)
EMT ~O<220+.AREA>

MOV
MOVB

MOVB
MOV
MOV
MOV
MOV
EMT

.AREA,%0
119.,1(0)

.CHAN,(0)

.BLK,2.(0)

.BUFF,4.(0)

.WCNT,6.(0)
111,8.(0)
~0375

.MACRO .WRITC .AREA,.CHAN, .BUFF, .WCNT,.CRTN, .BLK
· IF DF ... V 1
.IIF NB .CRTN,

· IFF
· IF NB .AREA

· ENDC
· IIF NB . CHAN,
· IIF NB .BLK,
· IIF NB .BUFF,
· IIF NB .WCNT,
.IIF NB .CRTN,

· ENDC
· ENDM

MOV
MOV
MOV
MOV
EMT

MOV
MOVB

MOVB
MOV
MOV
MOV
MOV
EMT

.CRTN,%0

.WCNT,-(6.)

.BUFF,-(6.)

.CHAN,-(6.)
~O <22Ih. AREA>

.AREA,%0
119.,1(1d')

.CHAN,(0)

.BLK,2.(Id')

.BUFF,4.(0)

.WCNT,6.(Id')

.CRTN,8.(0)
~O375

.MACRO .WRITC .AREA,.CHAN, .BUFF, .WCNT, .CRTN, .BLK
· IF DF ... V 1
· IIF NB . CRTN,

· IFF
· IF NB .AREA

· ENDC
.IIF NB .CHAN,
.IIF NB .BLK,
.IIF NB .BUFF,
.IIF NB .WCNT,
· IIF NB .CRTN,

· ENDC
.ENDM

MOV
MOV
MOV
MOV
EMT

MOV
MOVB

MOVB
MOV
MOV
MOV
MOV
EMT

.CRTN,%0

.WCNT,-(6.)

. BUFF, - (6.)

.CHAN,-(6.)
~O<220+.AREA>

.AREA,%0
119.,1(1d')

. CHA N , (0)

.BLK,2.(Id')

.BUFF,4.(0)

.WCNT,6.(0)

.CRTN,8.(0)
~O375

C-ll

System Macro File

.MACRO .WRITW .AREA, .CHAN,.BUFF, .WCNT, .BLK
· IF DF ... V 1
.IIF NB .WCNT,

. IFF

.IF NB . AREA

· ENDC
· IIF NB .CHAN,
· IIF NB .BLK,
· IIF NB .BUFF,
· IIF NB .WCNT,

· ENDC
.ENDM

MOV
CLR
MOV
MOV
EMT

MOV
MOVB

MOVB
MOV
MOV
MOV
CLR
EMT

.WCNT,%(a'
- (6.)
. BUFF, - (6.)
.CHAN,-(6.)
~O<22(a'+.AREA>

.AREA,%(a'
119.,1«(a')

.CHAN,(Q)

.BLK,2.«(a')

.BUFF,4.(Q)

.WCNT,6.«(a')
8.(Q)
~0375

C-12

D.1 PARAMETERS

APPENDIX D

PROGRAMMED REQUEST SUMMARY

The following parameters are used as arguments in various calls. (Any parameters used which are not mentioned
here are particular to a request and the appropriate section in Chapter 9 should be consulted.)

Parameter

.addr

.area

.blk

.buff

.chan

.crtn

.dblk

.num

.wcnt

Description

an address, the meaning of which depends on the request being used

a pointer to the EMT argument list

a block number specifying the relative block in a file where an I/O operation is
to begin

a buffer address specifying a memory location into which or from which an I/O
transfer is to be perfonned

a channel number in the range 0-377 (octal)

the entry point of a completion routine

the address of a four-word RAD50 descriptor of the file to be opened

a number, the value of which depends on the request

a word count specifying the number of words to be transferred to or from the
buffer during an I/O operation

D.2 REQUEST SUMMARY
Refer to Appendix C (SYSMAC.SML) to see how each macro call is expanded in assembly language code.

Mnemonic

.CDFN

,CHAIN

Function

Increases number of
I/O channels to as
many as 255 (decimal)

Allows one program
to transfer control to
another without oper
ator intervention

Macro Call

.CDFN .area,.addr ,.num

.CHAIN

D-I

Error Codes
(Byte 52=)

o - attempt to define
fewer channels than
already exist

Can produce any errors
which the monitor RUN
command can produce

Programmed Request Summary

Error Codes
Mnemonic Function Macro Call (Byte 52=)

.CLOSE Tenninates activity .CLOSE .chan Fatal monitor error if
on specified channel device handler is not
and frees it for use in in memory
another operation;
makes tentative mes
pennanent

.CSIGEN Calls the CSI in gen- .CSIGEN .devspc,.defext,.cstring o - illegal command
eral mode 1 - device not found

2 - unused
Note: if input is taken 3 - full directory
from TT:, all errors 4 - input me not found
are printed out

.CSISPC Calls the CSI in spe- .CSISPC .outspc,.defext,.cstring o - illegal command line
cial mode 1 - illegal device

Note: if input is taken
from TT:, all errors
are printed out

.DATE Moves current date .DATE None
infonnation into RO

.DELETE Deletes named me .DELETE .area,.chan,.dblk o - active channel
from indicated device 1 - file not found

.DSTATUS Provides infonnation .DSTATUS .cblk,.devnam o - device not found
about a device

.ENTER Allocates space on .ENTER .area,.chan,.dblk,.length
specified device and o - channel in use
creates tentative entry 1 - no space greater
for named me than or equal to the spec-

ified length was found

.EXIT Tenninates user pro- .EXIT None
gram and returns
control to monitor

.FETCH Loads device handlers .FETCH .coradd,.devnam o - nonexistent device
into memory from name or no handler for
system device that device

.GTIM Allows access to the .GTIM .area,.addr None
current time of day

D-2

Programmed Request Summary

Error Codes
Mnemonic Function Macro Call (Byte 52=)

.GTJB Passes certain job .GTIB .area,.addr None
parameters back to
user program

.HERR Disables error inter- .HERR Monitor Error occurs if:
ception and allows
system to detect and 1. called USR from com-
act on normally fatal pletion routine
errors 2. no device handler

3. error doing directory
I/O
4. FETCH error
5. Error reading overlay
6. no room in directory
7. illegal address
8. illegal channel number
9. illegal EMT

.HRESET Resets channels, re- .HRESET None
leases device handlers
and stops all I/O
transfers in progress

.INTEN Notifies monitor that .INTEN .priority, .pic None
interrupt has occurred,
and sets processor pri-
ority to correct state

.LOCK Locks the USR in .LOCK None
memory

.LOOKUP Associates a specified .LOOKUP .area,.chan,.dblk 0- channel already open
channel with a device
and/or me on that
device 1 - me not found

.PRINT Outputs a string to .PRINT .addr None
the terminal

.PURGE Deactivates a channel .PURGE .chan None
without taking any
other action

.QSET Enlarges I/O queue .QSET .addr,.qleng None
for monitor

.RCTRLO Enables terminal .RCTRLO None
printing

D-3

Mnemonic

. READ

.READC

.READW

.REGDEF

.RELEAS

.RENAME

.REOPEN

.SAVEST A TUS

.SERR

Programmed Request Summary

Function

Initiates transfer from
specified channel to
memory; returns to
program immediately

Transfers words from
specified channel to
memory; returns con
trol to specified routine
when complete

Transfers words from
specified channel to
memory; returns con
trol to user program
when transfer complete

Defines general regis
ters RO-RS, SP,PC

Removes device
handler from memory

Changes me name

Reassociates channel
with me on which a
SAVESTA TUS was
performed

Stores five words
(containing data con
cerning ftle definition)
into memory

Inhibits fatal errors
from aborting job

Error Codes
Macro Call (Byte 52=)

.READ .area,.chan,.buff,.wcnt,.blk 0 - attempt to read past
end-of-ftle
1 - hard error on channel
2 - channel not open

.READC .area,.chan,.buff,.wcnt,.crtn,.blk

.READW .area,.chan,.buff,.wcnt,.blk

o - attempt to read past
end-of-me
1 - hard error on channel
2 - channel not open

o - attempt to read past
end-of-me
1 - hard error on channel
2 - channel not open

.REGDEF None

.RELEAS .devnam 0 - handler name is illegal

.RENAME .area,.chan,.dblk 0 - channel open
1 - me not found

.REOPEN .area,.chan,.cblk 0 - channel is in use

.SA VESTA TUS .area,.chan,.cblk

.SERR

D-4

1 - SAVESTATUS is
illegal

- 1 - called USR from
completion routine
- 2 - no device handler
- 3 - error doing directory
1/0
-4 - FETCH error
- 5 - error reading overlay
-6 - no more room for
files in directory
-7 - illegal address
- 10 - illegal channel
number
- 11 - illegal EMT

Programmed Request Summary

Error Codes
Mnemonic Function Macro Call (Byte 52=)

.sETTOP Requests additional .SETTOP .addr None
memory for program

.SFPA Sets user interrupt .SFP A .area,.addr None
address for floating
point processor
exceptions

.sRESET Resets certain areas .sRESET None
of memory, dismisses
device handlers brought
in by FETCH, purges
currently open files,
resets to 16 I/O
channels, queue to
one element

.SYNCH Enables monitor pro- SYNCH .area Monitor returns to loca-
grammed request from tion following .SYNCH
within an interrupt if:
service routine; normal
return is to 2nd loca- l. another .SYNCH speci-
tion following fying same 7 -word block is
.SYNCH pending

2. illegal job number was
specified
3. job is not running

.TRPSET Allows user job to .TRPSET .area,.addr None
intercept traps to 4
and 10

.TTYIN Inputs character from .TTYIN .char None
terminal and waits
until done

.TTINR Inputs character from .TTINR o - No characters avail-
terminal able in ring buffer

.TTOUTR Outputs character to .TTOUTR o - Output ring buffer
terminal full

D-S

Mnemonic

.TTYOUT

.UNLOCK

.WAIT

.WRITC

.WRITE

.WRITW

Programmed Request Summary

Function

Outputs character
to terminal and
waits until done

Releases USR
from memory

Suspends program
execution until all
channel I/O is
complete

Initiates transfer
from memory to
specified channel
and returns to user
program; when
complete, passes
control to specified
routine

Initiates transfer
from memory to
channel; returns
control to user
program immediately

Transfers words
from memory to
channel; when com
plete, returns control
to user program

Macro Call

.TTYOUT .char

.UNLOCK

.WAIT .chan

None

None

Error Codes
(Byte 52=)

o - channel not open
I - hardware error

.WRITC .area,.chan,.buff,.wcnt,.crtn,.blk
0- end-of-ftle reached
I - hardware error
2 - channel not open

.WRITE .area,.chan,.buff,.wcnt,.blk 0 - end-of-file reached
1 - hardware error
2 - channel not open

.WRITW .area,.chan,.buff,.wcnt,.blk 0 - end-of-ftle reached
1 - hardware error
2 - channel not open

0-6

APPENDIX E

DUMP

HT -11 DUMP is a program which outputs to the terminal or lineprinter all or any part of a file in octal words,
octal bytes, ASCII characters and/or RADSO characters. DUMP is particularly useful for examining data such as
directories or files.

E.t CALLING AND USING DUMP
DUMP is called using the monitor command:

R DUMP

in response to the dot printed by the Keyboard Monitor. The name of the file which is to be output is entered as
follows in response to the asterisk printed by the Command String Interpreter:

dev:output=dev:input/s

where:

dey:

output

input

/s

represents any valid device specification (terminal is default for output if no output file is
designated).

represents the filename and extension assigned to the output file. The default extension for
me-structured output is .DMP.

represents the input source filename and extension.

represents one or more of the switches listed in Table E-l.

Type CTRL C to halt DUMP at any time and return control to the monitor. To restart DUMP, type R DUMP
or the REENTER command in response to the monitor's dot.

E.t.1 DUMP Switches
The following switches can appear in the command string for DUMP:

Table E-l DUMP Switches

Switch Meaning

/B Output octal bytes

/E:n End output at block number n

/G Ignore input errors

/N Suppress ASCII output

/O:n Output only block number n (same as /E:n, /S:n)

/S:n Start output with block number n

/W Output octal words

/X Output RAD50 characters

E·1

Dump

If neither /W nor /B is given, /W is assumed. ASCII characters are always dumped unless /N is given. The number
n is an octal block number.

If an input filename is given, block numbers are relative to the beginning of the file to which the block belongs.
If not, block numbers are absolute block numbers on the device (Le., the physical block numbers on the corre
sponding device).

E.l.2 Examples
The following are two examples of DUMP. /B is used in the first example to output octal bytes of the file
SQRT.FTN into a file called DIF.DMP on device DXI.

R DUMP
*DXl :DIF = SQRT.FTN/B

If DIF .DMP is then listed on the line printer (using PIP), it appears as follows:

BLOCK NUMBER 0000
0001 001 000 056 000 001 000 011 261 214 072 150 000 000 000 001 257

1 H /
020/ 224 017110 001000 000262252304 037110004 210 000 374252

H 2 * D H if> *
040/ 016 024 110 004 006 000 033 254 217 163 110 004 000 000 012 001

H $ H
060/ 000 036 000 001 000 054 253 100 070 100 004 000 000 123 263 024

+ @ 8 @ S 3
100/ 255 150 001 000 000 000 000 000 000 000 003 000 000 032 001 000

H
120/ 016 000 004 000 007 000 000 000 000 000 000 000 346 001 000 016

F
140/ 000 003 000 000 000 067 011 076 371 000 000 167 001 000 014 000

7 > Y w
160/ 004 000 004 006 054 253 100 070 226 000 000 000 000 000 000 000

+ @ 8
~~~~~~~~~~~~~~~~~ 

220/ 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 

320 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 

420/ 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 

E-2 



Dump 

560/ 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 

640/ 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 

700/ 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 

720/ 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 

740/ 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 

760/ 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 

The second example illustrates the use of IX to output RAD 50 and octal values for locations in the file. The 
numbers in the left column represent the byte displacement. ASCII characters are suppressed . 

. R DUMP 
*LP: = DX:/O:6/X/N 

BLOCK NUMBER 00006 
000/ 000004 000000 

D 
020/ 075273 000052 

040/ 

060/ 

100/ 

120/ 

140/ 

160/ 

SYS 
000016 

N 
000016 

N 
020446 
ELF 
002000 

YX 
021420 
EXP 
042300 

K 

AB 
000016 

N 
020446 
ELF 
002000 

YX 
004505 
ASM 
004164 
AND 
073376 
SAY 

000001 
A 

000016 
N 

020446 
ELF 
002000 

YX 
062570 
PIP 
007145 
BLE 
073376 
SAY 
000031 

Y 

000000 000016 
N 

020446 002000 
ELF 
002000 

YX 
075273 
SYS 
000000 

073376 
SAY 
000014 

L 
000015 

M 

E-3 

YX 
057164 
ODT 
050553 
MAC 
073376 
SAY 
000032 

Z 
000016 

N 
020446 
ELF 

002000 
YX 

017751 
EDI 
000000 

074324 
SML 
000015 

M 
000016 

N 
020446 
ELF 
002000 

YX 

051646 
MON 

076400 
T 
057032 
OBJ 
000023 

S 
000016 

N 
020446 
ELF 
002000 

YX 
110215 
WEE 

035562 
ITR 

073376 
SAY 
000011 

I 
000016 

N 
020446 
ELF 
002000 

YX 
046166 
LIN 
042300 
K 



Dump 

200/ 073376 000020 000016 020446 002000 016125 062000 073376 
SAY p N ELF YX DUM P SAY 

220/ 000005 000016 020546 002000 074623 012445 073376 000013 
E N EMO YX SRC COM SAY K 

240/ 000015 020546 002000 012625 022600 073376 000005 000014 
M EMO YX CRE F SAY E L 

260/ 020546 001000 057164 000000 073376 000433 000000 020446 
EMO L2 ODT SAY GC ELF 

300/ 004000 057164 000000 073376 000433 000000 020446 004000 
AKH COT SAY GC ELF AKH 

320/ 057164 000000 073376 000433 000000 020446 004000 162745 
ODT SAY GC ELF AKH 61M 

340/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

360/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

400/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

420/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

440/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

460/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

500/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

520/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

540/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

560/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

600/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

620/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

640/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

660/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

700/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

720/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

740/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

760/ 162745 162745 162745 162745 162745 162745 162745 162745 
61M 61M 61M 61M 61M 61M 61M 61M 

E-4 



Dump 

E.2 DUMP ERROR MESSAGES 
The following errors may occur when using DUMP: 

Message 

?IN ERR? 

?OUT ERR? 

?LPNOT FND? 

Meaning 

A hardware error occurred while reading the input file 
and /G was not specified in the command line. 

A hardware error occurred while writing an output file, 
or the output device was full. 

A line printer handler is not available on the system. 

E-5 





APPENDIX F 

SOURCE COMPARE (SRCCOM) 

The HT -11 Source Compare program (SRCCOM) is used to compare two ASCII files and to output any differences 
to a specified output device. It is particularly useful when the two files are different versions of a single program, 
in which case SRCCOM prints all the editing changes which transpired between the two versions. 

F.1 CALLING AND USING SRCCOM 
To run SRCCOM type the command: 

RSRCCOM 

followed by a carriage return in response to the dot printed by the Keyboard Monitor; the CSI prints an asterisk. 
Then enter the names of the files which are to be compared using a command string in the following format: 

dev :output=dev :input 1 ,dev:input2/s 

where: 

dev: 
output 

inputl ... 
Is 

is any valid device specification. 
is the filename and extension assigned to the output file. If no output file is indicated, 
output is directed to the terminal. 
are the input source filenames and extensions to be compared. 
is one of the switches listed in Table F -1. 

Source mes are examined line by line for groups of lines which match. When a mismatch occurs, all differences 
are output until n successive lines in the first file are identical to n lines in the second me. The number (n) is a 
variable which the user can set with the IL switch. 

F.1 .1 Extensions 
No default extension is assigned by SRCCOM to the output file. The default extension for an input file is .MAC, 
representing a source file in MACRO language. 

F .1.2 Switches 
Command switches are generally placed at the end of the command string but may follow any filename in the 
string. The following switches can appear in the command string. 

F-l 



Switch 

IB 

IC 

IF 

IH 

IL:n 

IS 

Source Compare (SRCCOM) 

Table F-I 

SRCCOM Switches 

Meaning 

Compare blank lines. Without this switch, blank lines are ignored. 

Ignore comments (all text on a line preceded by a semicolon) and spacing (spaces and 
tabs), This switch does not cause a line consisting entirely of a comment to become a 
blank line, and therefore ignored in the line count. 

Include form feeds in the output file. (Form feeds are still compared if IF is not used, but 
they are not included in the output of differences.) 

Type list of switches available (help text). No 1/0 device is necessary since /H always 
prints the help text on the terminal. 

Specify the number of lines that determines a match (n is an octal number <=310). All 
differences occurring before and after a match are output. In addition, the first line of the 
current match is output after the differences to aid in locating the place within each file 
at which the differences occurred. The default value for n is 3. 

Ignore spaces and tabs. 

F.2 OUTPUT FORMAT 
The first line 0 f each file is always output as identification and is also compared. A blank line is then printed, 
followed by the differences between the files, in the following format: 

I) I FILEA 
1) A 
**** 
2) I FILEB 
2) A 

********** 

% FILES ARE DIFFERENT 

The different lines are listed followed by a reference line which is the same for both files. Note the example 
below. 

The following example uses SRCCOM to compare an edited file and its backup version. The default value for a 
match is 3 lines. Blank lines are ignored but all other characters are compared. 

F·2 



Source Compare (SRCCOM) 

Following the example is a coded explanation of the comparison . 

. R SRCCOM 
*DX1 :LlNKO. FB,LlNKO. BAK 

Ai 1) 1 .TITLE HTLINK ROOT CODE H03-16 

t 2) 1 .TITLE HTLINK ROOT CODE H03-15 

~ 
1) 1 SEVENK= 31452 ; MINIMUM CORE TO START LINKER 

B 1 ) 
1 ) 

C { 1) .MCALL .CSISPC, . CSIGEN, .SETTOP,. LOCK, .UNLOCK 
**** 

~ 
2) 1 SEVENK= 31500 ;JUST BELOW 8K RESIDENT 

B 2) 
I 2) 

c 2) .MCALL .CSISPC, .CSIGEN, .SETTOP,. LOCK, . UNLOCK 
********** 

B 

1 
1) 2 .GLOBL RSWIT, RELPTR, FBTXT, OVLNUM, RELOVL, RLSTRT 

C 1) .GLOBL RELADR,PNRELO,RELlD1 ,RSIZ1 ,OVSIZ1 ,OVLCDE 
**** 

B { 2) 2 .GLOBL RSWIT,RELPTR,FBTXT,OVLNUM, RELOVL 
C { 2) .GLOBL RELADR,PNRELO, RELlD1, RSIZ1,OVSIZ1,OVLCDE 

********** 

B { 1) 2 RLSTRT: .BLKW ;CURRENT REL BLK OVERLAY NUM 
C { 1 ) RELPTR: .BLKW ; POINTER TO CURRENT REL BLK LOCATION 

**** 

C { 2)2 RELPTR: .BLKW ; POINTER TO CURRENT REL BLK LOCATION 
********** 

B { 1) 2 MTITLE: .ASCII /HT -11 LINK X03-16/ 
C { 1) . ASCII / LOAD MAP / 

**** 

B { 2)2 MTITLE: .ASCII /HT-11 LINK X03-15/ 
C { 2) .ASCII / LOAD MAP / 

************ 

1 
1) 12 .IF DF FB 

B 1 ) MOV OBLK, RLSTRT ; IND START OF OVL FOR REL BLK 
1 ) .ENDC 

C { 1 ) BR 1$ 
**** 

c { 2) 12 BR 1$ 
********** 

D { %FILES ARE DIFFERENT 

A Headers, consisting of the first line of each file; for identification purposes. 

B n)m. A notation where n is the number of the input file, and m is the page number (less than 256 decimal) 
of the input file on which the text appears. The right column lists the lines in the files which are different. 

C Following a section of differences, a line identical to each file is output for reference purposes. 

D Indicates that the files are different (this is printed on the system terminal, not in the output file). 

F-3 



Source Compare (SRCCOM) 

This example uses the /L:n switch and sets the number of lines that determines a match to 2 lines. The first two 
columns represent the input files: 

TEST FILE 1 
LlNEC 
LlNEE 
LlNEC 
LINED 
LlNEF 
LINE H 
LINE I 
LINE J 

TEST FILE 2 
LlNEC 
LINE D 
LlNEC 
LlNEE 
LlNEF 
LlNEG 
LlNEH 
LINE I 
LINE J 

The files are compared and differences listed on the line printer. 

*LP: =TEST1, TEST2/L:2 
1) 1 TEST FILE 1 
2) 1 TEST FILE 2 

1) 1 LINE E 
1) LlNEC 
1) LINED 
1 ) LlNEF 
1 ) LINE H 
**** 
2) 1 LINED 
2) LlNEC 
2) LlNEE 
2) LlNEF 
2) LlNEG 
2) LlNEH 
********** 

This message prints on the terminal indicating that the files are different. 

%FILES ARE DIFFERENT 

F-4 



Source Compare (SRCCOM) 

F.3 SRCCOM ERROR MESSAGES 
The following errors may be reported by SRCCOM: 

Messages 

?COROVR? 

?IN ERR? 

?OUT ERR? 

?SWITCH ERROR? 

?TOO MUCH DIFFERENCE? 

Meaning 

Not enough memory to hold a particular difference section. 

A hardware error occurred in reading input. 

A hardware error occurred in writing output file, or output device 
full. 

An invalid switch was found or a switch other than /L was given a 
value. 

More than 310 (octal) lines of difference between two files were 
found. 

F·5 





APPENDIX G 

PATCH 

The PATCH utility program is used to make code modifications to memory image (.SA V) files, including overlay· 
structured and monitor files. PATCH, like ODT, can be used to interrogate, and then to change, words or bytes 
in the file. 

PATCH provides eight relocation registers. Before changing a program with PATCH, copy the old file to a backup 
file with PIP, as the old file is modified when PATCH is used. 

G.1 CALLING AND USING PATCH 
To run PATCH, type the command: 

R PATCH 

followed by the RETURN key in response to the dot printed by the monitor. PATCH prints a version number 
message: 

PATCH H01-Q2 

and then prints the message: 

FILE NAME--
* 

In response to the asterisk, enter the name of the file to be modified, using the following format: 

dev:filnam.ext/M/O 

where: 

dev: 

mnam.ext 

/M 

/0 

represents an optional device specification; if not specified, DK: is assumed. 

represents the name of the file which is to be patched, if an extension is not indicated, .SAV 
is assumed. 

must be used if the file is an HT ·11 monitor file. 

must be used if the file is an overlay·structured file. 

G.2 PATCH COMMANDS 
Table G·I summarizes the PATCH commands. 

G·l 



Patch 

Table G-l 

PATCH Commands 

Command Action 

Vr;nR Set relocation register n to value Vr. 

b;B Set bottom address of overlay file to b. 

[s : ] r ,0/ Open word location Vr + 0 in overlay segment s. 

[s:]r,o\ Open byte location Vr + 0 in overlay segment s. 

<CR> Close currently open word/byte. 

<LF> Close currently open word/byte and open the next one. 

tor 
1\ 

Close currently open word/byte and open the previous one. 

@ Close the currently open word and open the word addressed by it. 

F Begin patching a new file. 

E Exit to HT-ll monitor. 

Explanations of each command follow. An example of the use of the commands is provided in 
Section G.3. 

G.2.J Patch a New File 
The F command causes PATCH to close the fIle being patched, and accept a new file name to be patched. 

G.2.2 Exit from PATCH 
The E command causes PATCH to close the file being patched and return control to the HT -11 monitor. 

G.2.3 Examine, Change Locations in the File 
For a non~verlay file, a word address may be opened, as with ODT, by typing: 

[<relocation register> ,] offset/ 

At this point, PATCH will type out the contents of the location and wait for the user to type in either new 
location contents (in octal) or another command. 

In an overlay file, the format is: 

[<segment number>:] [<relocation register>,] offset/ 

Where <segment number> is the overlay segment number as it is printed on the link map for the file. If it is 
omitted, the root segment is assumed. 

G-2 



Patch 

Similarly, to open a byte address in the file, the format is: 

[<relocation register> ,] offset\ 

for non-overlay files, or 

[<segment number>:] [<relocation register>,] offset\ 

for overlay files. 

Once a location has been opened, the user may optionally type in the new contents in the format: 

[<relocation register> ,] value 

followed by one of these control characters: 

<carriage return> 

<line feed> 

t or II 

@ 

G.2.4 Set Bottom Address 

Close the current location by changing its contents to the new 
contents (if specified), and await more control input. 

Close the current location, and open the next word/byte. 

Close the current location, and open the previous word/byte. 

Close the current word location, and open the word addressed by it 
(in the same segment if an overlay file). 

To patch an overlay file, PATCH must know the bottom address at which the program was linked if it is different 
from the initial stack pointer. This is the case if the program sets location 42 in an .ASECT. To set the bottom 
address, type: 

<bottom address> ;B 

Note that the B command must be issued before any locations are opened for modification. 

G.2.5 Set Relocation Registers 
The relocation registers 0-7 are set, as with ODT, by the R command. The R command has the format: 

<relocation value> ;<relocation register>R 

Once one of the eight relocation registers has been set, the expression: 

<relocation register>,<octal number> 

typed as part of a command will have the value: 

<relocation value> + <octal number> 

G-3 



Patch 

G.3 EXAMPLES USING PATCH 
The following example shows how to patch a non-overlaid file. Assume the following program (EXAM): 

.MAIN. HT-11 ASEMSL HM02-0S PAGE 1 

1 
2 
3 000015 CR= 15 
4 000012 LF= 12 
5 000000 ' .CSECT MAIN 
6 .MCALL .PRINT,.EXIT 
7 .NLlST SEX 
8 000000 124 MSG: . ASCII /THIS IS A SUCCESSFUL PATCH/<CR><LF> 
9 . LIST SEX 
10 00034 000403 START: BR EXIT 
11 00036 .PRINT #MSG 
12 00044 EXIT: .EXIT 
13 000034 ' .END START 

This program has been assembled with ASSEMBL and linked with LINK; execution causes no output of text: 

. R EXAM 

To make a line of text print on the terminal, PATCH is used as follows: 

R PATCH 

PATCH H01-02 

FILE NAME-
*EXAM. SAY 
*1000;OR 
*0,34/ 403 240 
*E 

Now when the program is executed: 

R EXAM 
THIS IS A SUCCESSFUL PATCH 

G4 



Patch 

The next example demonstrates a similar situation, only includes an overlay file. These programs have been 
assembled and linked; the output of both operations is included: 

.MAIN. HT·11 ASEMBL HM02-08 3-SEP-78 PAGE 1 

2 
3 000015 CR= 15 
4 000012 LF= 12 
5 000007 PC= %7 
6 000000 ' .CSECT MAIN 
7 .GLOBL ENTRY,MSG1 
8 .MCALL .PRINT,. EXIT 
9 .NLlST BEX 
10 00000 124 MSG: .ASCIZ /THIS IS A SUCCESSFUL PATCH/<CR><LF> 
11 00035 124 MSG1: .ASCIZ /THIS IS AN OVERLAY PATCH/ 
12 . LIST BEX 
13 00066 000403 START: BR EXIT 
14 00070 .PRINT #MSG 
15 00076 004767 EXIT: JSR PC,ENTRY 

OOOOOOG 
16 00102 .EXIT 
17 000065' .END START 

.MAIN. HT·11 ASEMBL HM02-08 3-SEP-78 PAGE 1 

1 
2 
3 000015 CR= 15 
4 000012 LF= 12 
5 000007 PC= %7 
6 000000 ' .CSECT OVL 
7 .MCALL .PRINT 
8 .GLOBL MSGl 
9 .GLOBL ENTRY 
10 00000 000403 ENTRY: BR RETURN 
11 00002 .PRINT #MSG1 
12 00010 000207 RETURN: RTS PC 
13 . 000001 ' .END 

HT·l1 LINK H03·18 LOAD MAP 
PTCH .SAV 03-SEP-78 

SECTION ADDR SIZE ENTRY ADDR ENTRY ADDR ENTRY ADDR 

. ABS. 000000 001122 
MAIN 001122 000104 MSGl 001157 

OVERLAY REGION 000001 SEGMENT 000001 
OVL 001230 000012 ENTRY 001230 

TRANSFER ADDRESS = 001210 
HIGH LIMIT = 001242 

C·S 



Patch 

Running the program (PTCH) produces no terminal output: 

· R PTCH 

But by using PATCH to modify the me as follows: 

· R PATCH 

PATCH H01-Q2 

FILE NAME-
*PTCH. SAVIO 
*1230;OR 
*1 : 0,01 403 240 
*E 

the following line results: 

· R PTCH 
THIS IS AN OVERLAY PATCH 

G.4 PATCH ERROR MESSAGES 
Error messages which may occur under PATCH follow. 

Message 

?ADDR NOT IN SEG? 

?BAD SWITCH? 

?BOTTOM ADDR WRONG? 

?INCORRECT FILE SPEC? 

?INSUFFICIENT CORE? 

?INV ALID RELOC REG? 

?INV ALID SEG NO? 

?MUST OPEN WORD? 

?MUST SPECIFY SEG? 

Meaning 

The address is not in the specified overlay segment. 

Typed a switch other than /0 or /M. 

The bottom address specified or contained in location 
42 of an overlay me is inconect. Specify the correct 
one using the b ; B command. 

The response to the "FILE NAME --" message was not 
of the correct form. Try again. 

PATCH did not have enough memory to hold the file's 
device handler plus the internal "segment table." This 
message should not occur. 

Tried to reference a relocation register outside the 
range 0-7. 

The segment number S: does not exist. 

The @ command was typed when a byte location was 
open. 

The address referenced is not in the root section; a 
segment number S: must be used. 

G-6 



Message 

?NO ADDR OPEN? 

?NOT IN PROGR BOUNDS? 

?ODD ADDRESS? 

?ODD BOTTOM ADDR? 

?PROG HAS NO SEGS? 

?READ ERROR? 

?WRITE ERROR? 

Patch 

Meaning 

The <line feed>, t or @ command was typed when no 
location was open. 

Tried to open a location beyond the end of the file. 

Tried to open a word address which was odd. (Use 
"\" .) 

The bottom address specified or contained in location 
42 of an overlay file is odd. 

The file specified as an overlay file is not. 

File I/O error in reading. 

File I/O error in writing. 

G·7 





Abort entry point, 9-31 
Absolute, 5-2 

and relocatable program sections, 6-2 
block numbers, 4-14, E-2 
expression, 5-14, B-5 
load address, 6-1 
load module, 64 
mode, 5-20 
quantities, 5-14 
section, 6-2 
starting block, 4-11 

Absolute Loader, 64 
Accessing, 

general registers, 8-7 
internal registers, 8-7 

Address mode syntax, B-5 
Addressed location, 8-6 
Addresses, vector, 94 
Addressing modes, 5-16 
Advance command, 3-14 
Allocating, 

blocks for mes, 4-5. 
extra words, 4-12 
memory for a queue, 945 
system resources, 2-8 

Alphabetize switch, 6-13 
Alphabetized load map, 6-14 
Alphanumeric representation, 1-1 
ALTMODE,3-1 
Argument, 3-4 

block,9-2 
dummy, 5-53 
iteration, 3-6 
list, 94 
list pointer, 9-1 
negative line, 3-6 
numeric, 3-5 
numerical, 9-3 
positive, 3-5 

Arguments, 9-1 
EDIT, 34 
missing, 5-53 
number of, 5-53 
real, 5-52 
symbolic, 5-29 
to Macro calls and definitions, 5-52 

INDEX 

ASCII, 
character set, B-1, B4 
conversion of one or two characters, 5-32 
mes, 3-1 
format, 2-1 
input and output, 8-16 

.ASCII directive, 5-33 

.ASCIZ directive, 5-34 

.ASECT directive, 544,6-2,64 
ASEMBL, 1-2,5-1 

calling and using, 5-58 
character code, B-1 
directives, 5-50 
error messages, 5-65 
features, 5-1 
me specifications, 5-58 
instructions, B-1 
program section capabilities, 5-8 
source code, 5-62,5-63 
source statements, 5-1 
special characters, B-5 
switches, 5-59, B-19 

Assembler, 1-1, 8-2 
ASEMBL, 5-1 
output, 5-16 

Assembler directives, 5-3,5-22, B-17 
.ASCII, 5-33 
.ASCIZ, 5-34 
.ASECT, 542 
.BLKB, 5-39 
.BLKW, 5-39 
.BYTE, 5-30 
.cSECT, 542 
.DSABL, 5-29 
.ENABL, 5-29 
.END,542 
.ENDM, 5-51 
.EOT, 542 
.EVEN, 5-38 
.FLT2,540 
.FLT4,540 
.GLOBL,544 
.IDENT, 5-28 
.IFF, 548 
.1FT, 548 
.IFTF, 548 

Index-l 



Assembler directives (cont.) 
.LIMIT, 542 
.LIST, 5-22 
.MACRO, 5·50 
.MCALL, 5-54 
.NLIST, 5-22 
.000, 5-38 
.PAGE, 5-29 
.RADIX, 5-36 
.RAD50, 5-35 
.SBTTL, 5-27 
.TITLE, 5-27 
.wORD, 5-31 

Assembly, 
language statement, 5-1 
listing, 8-1 
listing table of contents, 5-27 
location counter, 5-11 
pass, 5-11 
source listing showing local symbol blocks, 5-12 

ASSIGN command, 2-9 
Asterisk, 

wild-card, 4-1 
Asynchronous completion routines, 9-10 
Autodecrement mode, 5-18 
Autodecrement deferred mode, 5-19 
Autoincrement mode, 5-17 
Autoincrement deferred mode, 5-18 
Automatic relocation facility, 8-2 

Backslash, 8-5 
Backup storage device, 6-5 
Back-arrow, 8-6 
Bad block mes, 4-1 
Bad block scan, 4-14 
Bad entry, 8-1,8-20 
Base address, 5-20, 8-2 
Base command, 2-14 
Beginning command, 3-13 
Binary, 

code, 1-1 
object module, 8-2 
operators, 5-6,5-14 
output, 1-1 
radix, 5-13, 5-37 

Bit patterns, 1-2,8-19 
search, 8-8 

Blank COMMON, 6-10 
Blank, 

extension mename, 2-3 
lines, 5-2 

.BLKB directive, 5-39 

.BLKW directive, 5-39 

Index 

Blocks, 2-6 
control, 6-1 
device, 94 
EMT arguments, 94 
256-word, 2-16 

Block numbers, 
absolute, E-2 
physical, E-2 

Block-replaceable devices, 24,4-8 
Boot operation, 4-13 
Bootstrap, 

copy operation, 4-13 
me, 4-12 

Bootstrapping the system, 4-13 
Bottom address switch, 6-13 
Branch, 

address, 5-22 
instruction addressing, 5-22 
instructions, 5-22, B-12 

Breakpoints, 8-9,8-17 
table, 8-8,8-9 

Buffer, 
macro, 3-8 
save, 3-8 
text, 3-1,3-17 

Building, 
a memory image, 2-14 

Byte, 8-5 
offset, 5-22 

BYTE directive, 5-30 

Calculating offsets, 8-13 
Calling and using, 

ASEMBL, 5-58 
DUMP, E-I 
EDIT, 3-1 
EXPAND, 5-54 
LIBR, 7-1 
LINK, 6-1 
ODT, 8-1 
PATCH, G-l 
PIP, 4-1 
SRCCOM, F-l 

Calls or branches to overlay segments, 6-7 
Carry bit, 9-10 
.CDFN request, 9-18 
Centralized queue management system, 945 
CHAIN bit, 9-6 
.CHAIN request, 9-19 
Change command, 3-19 
Changing, 

device handler characteristics, 2-11 
Channel, 

data, 9-52 

Index-2 



Channel (cont.) 
number, 9-3 
status word, 9-10,9-52 

Channels, 9-22 
Chapter summary, Preface 
Character, 

deletion, 9-59 
transfer, 9-59 

Character- and line-oriented command 
properties, 3-5 

Character-oriented commands, 3-5 
Character set, 54 

ASCII, B-1 
Radix-50, B4 

Characters, 
illegal, 5·6 
legal, 54 
operator, 5·6 
optional, 2·8 
prompting, 2-2 
special, 5-53 
upper-/lower-case, 3·23 

Checking channel status, 9-62 
Checksum, 44, 
Clearing breakpoints, restarting ODT, 8·2 
Clock, 

frequency, 9-36 
rate, 9-36 
ticks, 9-35 

CLOSE command, 2-10 
.CLOSE request, 9·21 
Closed location, 84 
Code, 

binary, 1-1 
modifications, G-l 
object, 1-1 
source, 1-1 

Combining, 
mes, 44 
library switch functions, 7-9 

Command and Switch Summaries, A-I 
Command, 

arguments (EDIT), 34, A-3 
continuation switch, 7-2 
decoder, 8·16 
execution routine, 8-16 
interpretation services, 9-1 
mode, 3-1 
repetition, 3-7 
string format, 2·5 
strings, 34,6·1 
structure (EDIT), 3-3 
switches, 4·1, F-l 
syntax (LlBR), 7-1 

Index 

Index-3 

Command String Interpreter, 2-5,6-2,9-21 
Command summary, 

EDIT, A-3 
Keyboard monitor, A-I 
ODT, A-8 
PATCH, A-ll 

Commands, 
and functions, 84 
character-oriented, 3-5 
control, 3-2 
edit control, 3-2 
input/output, 3-3,3-9 
keyboard, 2-8 
line-oriented, 3·5 
PATCH, G-2 
pointer relocation, 3-13 
search, 3-15 
text modification, 3-3,3-17 
utility, 3-3, 3-20 

Commands to allocate system resources, 2-8 
ASSIGN, 2-9 
CLOSE, 2-10 
DATE, 2-8 
INITIALIZE, 2-9 
LOAD, 2-11 
SET, 2-11 
TIME, 2-8 
UNLOAD, 2-11 

Commands to manipulate memory 
images, 2-12 
Base, 2-14 
Deposit, 2-15 
Examine, 2-15 
GET, 2-12 
SAVE, 2-16 

Comment field, 5·2,5·3 
Common blocks, 6-10 
Completion functions, 9·10 
Completion routines, 9-10,9-34,9-57 
Components, 

system software, 1-2 
Compress operation, 4-12 
Compressing, 

directories, 4·12 
mes, 4-12 

Concatenation, 5-53 
Condition codes, 8-7 
Conditional, 

assembly directives, 546 
block, 546 

Configuration word, 9-9,9-36,9-56 
Confirming me transfers, 4·5 
Constant register, 8-3,8-8,8-13 



Contiguous 
area, 9-9 
me, 7-10,9-9 

Continuation lines, 5-2 
Continue switch, 6-15 
Control, 

block, 6-1 
commands, 3-2 
parameters, 64 
section names, 6-1 

Control section, 
named, 6-3 
unnamed, 6-3 

Conventions, system, 2-1 
Conversion, Octal-Decimal, B-21 
Copy operations, 4-3 

errors, 44 
multiple, 4-6 

Copying, 
mes with the current date, 4-5 
system mes, 44 

Co-resident overlay routines, 6-16 
Correct and incorrect macro calls, 9-2 
Creating, 

a library me, 7-3 
CREF, 1-2 

error messages, 5-65 
listing output, 5-63 
specification switches, 5-59 
switches, 5-61, B-20 

Cross reference, 
control sections, 5-61 
errors, 5-61 
listings, 1-2 
permanent symbols, 5-61 
register-equate symbols, 5-61 
table generation, 5-61 

.CSECT directive, 544,6-2 
CSECT, 7-11 
CSI, 

error messages, 9-23 
general mode, 9-21 
special mode, 9-24 
switch separators, 9-26 

.CSIGEN request, 9-21 

.CSISPC request, 9-24 
CTRL C, 2-7,3-2,8·2 
CTRL 0, 2-7,3·2 
CTRLQ, 2-7 
CTRLS, 2·7 
CTRL U, 2-7,3-2,8-2 
CTRLX, 3-2 
CTRLZ, 2·7 

Index 

Index4 

Current, 
location counter, 5-2,5-11 
location pointer, 3-5 

Data, 
format, 2-1 
length, 9-53 
storage directives, 5-30 
transfer requests, 9·11 

DATE command, 2-8 
.DATE request, 9-15 
De·activating a channel, 944 
Debugger, 1-2 
Debugging, 

process, 1-2 
tool, 1-2 

Decimal, 
number, 5-13 
radix, 5-13,5-37 

Default, 
extensions, 9-22 
FORTRAN library switch, 6·15 
stack, 9-5 

Delete, 
command, 3·17 
global switch, 7-6 
operation, 4·7 
switch, 7-5 

.DELETE request, 9-29 
Deleting mes, 4-7 
Delimiting characters, 3·21 
Deposit command, 2-15 
Destination device, 4-3 
Device, 

block, 94 
block replaceable, 24 
designation, 3·10 
me-structured, 24 
HT -11 directory ·structured, 24 
name, logical, 2·2 
name, physical, 2-10,94 
nonme-structured, 24,6-15 
random access, 24,6-1 
sequential-access, 24 
size, 9·31 
specification, 2·6 

Device Handlers, 2-5,9-34 
loading, 9-34 

Device names, 
logical, 2·2 
permanent, 2-2 
physical, 2-2 



Device structures, 2-4 
Direct assignment statement, 5·8,5·11 

conventions, 5·9 
format, 5·8 

Directives, 
assembler, see assembler directives 
conditional assembly, 5-46 
data storage, 5·30 
immediate conditional, 5-49 
listing control, 5·22 
Macro, 5·50 
PAL·IIR, 5·50 
PAL·lIS, 5·50 
program boundaries, 5-42 
program section, 5-42 
terminating, 5-42 

Directory, 
access motion and code consolidation, 9·53 
initialization operation, 4·11 
list operations, 4·10 
segments, 4·11,4·12 

Directories, compressing, 4·12 
Documentation conventions, Preface 
Double·buffered I/O, 9·69 
Double Operand Instructions, B· 7 
Double Register·Destination, B·15 
.DSABL directive, 5·29 
.DSTATUS request, 9·30 
Dummy, 

argument, 5·53 
argument list, 5·51 
names, 4·8 

DUMP, 1·3, E·1 
calling and using, E·1 
error messages, E·5 
switches, E·2, A·lO 

E command, G·2 
Edit Backup command, 3·10 
Edit Lower command, 3·23 
Edit Read command, 3·9 
Edit Upper command, 3·23 
Edit Version command, 3·22 
Edit Write command, 3·11 
Editor (EDIT), 1·2,3·1 

arguments, 3-4, A·3 
calling and using, 3·1 
command structure, 3·3 
control commands, 3·2 
editing commands, 3·9 
error messages, 3·25 
example, 3·24 
input/output commands, 3·9, A·3 

Index 

Index·5 

Editor (EDIT) (cont.) 
key commands, 3·2, A·5 
modes of operation, 3·1 
pointer relocation commands, 3·13, A-4 
search commands, 3·15, A-4 
text modification, 3·17 
utility commands, 3·20, A·5 

Effective address search, 8·12 
Empty entry, 9·9, 9·29 
EMT, 

and TRAP addressing, 5·22 
argument blocks, 94 
error code, 9·6 
instruction, 9·1 

.ENABL directive, 5·29 

.END directive, 542 
End File command, 3·13 
.ENDM directive, 5·51 
.ENTER request, 9·32 
Entering command information, 2·5 
Entry point, 5·8,545,6·5,6·7, 9·31 

table, 74,7·10,7·11 
Entry symbol, 6·3 
.EOT directive, 542 
Error, 

code, 9·23 
returns, 9·62 

Error halt bit, 9·6 
Error messages, 

ASEMBL, 5·65 
CREF, 5·67 
DUMP, E·5 
EDIT, 3·25 
EXPAND, 5·64 
keyboard, 9·28 
monitor, 2·19 
PATCH, G·6 
PIP, 4-17 

ESCape, 3-2 
Evaluation of an expression, 5-14 
Even byte. 9-4 
.EVEN directive. 5-38 
Examine, change locations in the me, G·2 
Examine command, 2·15 
Examples, 

ASEMBL line printer listing, 5·24 
EDIT, 3·24 
page heading, 5·25 
PATCH, G4 

EX command, 3·13 
Exchange command, 3·20 
Execute Macro command, 3·22 
Exit command, 3·13 



Exit from PATCH, G-2 
.EXIT request, 9-34 
EXPAND, 1-2,5-1 

calling and using, 5-54 
error messages, 5-64 

Expression, 8-5 
absolute, 5-14,8-5 
external, 5-14 
register, 5-17, 8-5 
relocatable, 5-14,8-3 

Expressions, 5-14 
symbols and, 54 

Extend and delete operations, 4-7 
Extending fIle lengths, 4-7 
Extensions, 3-10, F-I 

and fIlenames, 2-3 
External, 

expression, 5-14 
symbols, 5-8,6-3 

F command, G-2 
Facilities, 

for input and output operations, 9-1 
Fatal monitor error messages, 2-20 
Fatal system boot error messages, 2-19 
.FETCH request, 9-34 
Field, 

comment, 5-2, 5-3 
label, 5-2 
operand, 5-3 

File, 
allocation scheme, 4-5 
ASCII, 3-1 
compressing, 4-12 
descriptor blocks, 9-24 
length, 9-53 
manipulation requests, 9-11 
manipulation services, 9-1 
memory image, 2-1,4-3, G-l 
names and extensions, 2-3 
non-overlay, G-3 
overlay, G-l 
permanent, 9-9 
specifications (ASEM8L), 5-25 
structure, 9-9 
temporary, 4-16 
tentative, 9-9 
transfer, 4-1 

File-structured HT-II device, 24 

Index 

Index-6 

Filename, 3-10 
blank extensions, 24 
extensions, 2-3 
input. 4-1 
output, 4-1 

Fill characters, 9-6 
Fill count, 9-7 
Find command, 3-16 
Floating point, 

exception, 9-56 
hardware, 5-39,9-56 
numbers, 5-14,5-39 
source double register, 8-14 

.FLT2 directive, 540 

.FLT4 directive, 540 
Format, 

ASCII, 2-1 
control, 54 
load image, 2-1,6-2,6-15 
memory image, 2-1 
object, 2-1 
of Entry Point Table, 7-11 
of library tiles, 7-10 
of programmed requests, 9-1 
register, 84 
statement, 5-1 

Formats, data, 2-1 
Formatted binary copy switch, 44 
Formatting, 

horizontal, 54 
vertical, 54 

Form feed character, 3-1, 3-11 
Forms of relocatable expressions, 8-3 
Fragmented device, 9-9 
Free area, 4-5 
Free memory list, 2-5 
Function, 

code, 94 
control switches, 8-20 
switches, 5-59,5-60 

General, 
address specification, 5-17 
library fIle format, 7-10 
memory layout, 2-5 
registers, 5-9,8-7 

GET command, 2-12 
Get command, 3-15 
Global symbol directory, 7-11 
Global symbol table, 6-1,6-3 



Global symbols, 5-8,545,6-1,6-3 
Globals, unresolved, 6-1 
.GLOBL directive, 544 
.GTIM request, 9-35 
.GTJB request, 9-36 

HALT instructions, 2-22 
Handler size, 9-31 
Handlers, 

device, 2-5 
removing from memory, 949 

Hardware bootstrap, 4-13 
Hardware, 

memory protection, 94 
.HERR request, 9-37 
High, 

address, 2-17 
level languages, 1-2 
memory address, 9-6 
order time of day, 9-36 

Horizontal formatting, 54 
.HRESET request, 9-39 
HT -11 directory-structured 

devices, 24 
HT-ll system, 1-1 

data formats, me transfers, 4-1 
I/O transfers, 945 
librarian, 7-1 
memory map, 24 

.IDENT directive, 5-28 
Identification messages, 2-1 
.IFF Directive, 548 
.1FT Directive, 548 
.IFTF Directive, 548 
Illegal characters, 5-6,8-20 
Image mode transfer, 4-3 
Immediate conditional directive, 549 
Immediate mode, 1-2,5-19,9-1 
Important memory areas, 94 
Include switch, 6-15 
Index Mode, 5-19,5-20 
Index Deferred Mode, 5-19 
Individual module name, 7-2 
INITIALIZE command, 2-9 
Input and output, 3-3,64 

commands (Editor), 3-9, A-3 
Input, 

menames, 4-1 
list, 2-6 
source mename, E-1 

Insert command, 3-17 
Inserting modules into a library, 74 

Index 

- Index-7 

Instruction, 
EMT, 9-1 
mnemonic, 5-3 
offset, 8-13 

Instructions, B-6 
branch, B-12 
double operand, B-7 
operate, B-lO 
rotate/shift, B-8 
single operand, B-8 
trap, B-l1 

.INTEN request, 9-15 
Internal, 

buffers, 3-1 
Macro buffer, 3-22 
registers, 8-7 
symbol directory, 7-11 
symbolic names, 544 
symbols, 5-8 

Interrupt, 
priority level, 8-8 

I/O count, 9-53 
exit routine, 9-8 

Iteration argument, 3-6 
loops, 3-7 

Job Status Word, 2-19,9-5,9-59 
Jl!mp command, 3-14 
Jumps, 6-7 

Key commands, Editor, 3-2, A-5 
Key, LINE FEED, 8-5 
Keyboard, 

commands, 2-8 
communication (KMON), 2-6 
error messages, 9-28 
monitor (KMON), 24 

Keyboard Monitor (KMON), 24 
command summary, A-I 
special function keys, A-2 

Kill command, 3-18 

Label field, 5-2 
LDA format, 6-2 

switch, 6-15 
Legal, 

characters, 54 
separating characters, 5-5,5-53 
wild card, 4-1 

Librarian (LIBR), 1-2,7-1 
calling and using, 7-1 
error messages, 7-11 
switch commands, 7-1,7-2, A-8 



Library 
directory, 7-1 
end trailer, 7-11 
header, 7-1,7-10 
processing, 7-11 
searches, 6-12 

Library mes, 6-5 
creation, 7-3 
directory listing, 7-8 
entry point table, 7-6 
format, 7-10 
inserting modules into, 74 
merging, 7-8 

.LIMIT directive, 542 
Line- and character-oriented command 

properties, 3-5 
Line deletion, 9-59 

formatting, 54 
oriented commands, 3-5 
printer overstriking capability, 2-13 

LINE FEED key, 8-5 
Linker (LINK), 1-1,1-2,6-1,7-11 

calling and using, 6-1 
error handling and messages, 6-18 
input and output, 64 
load map, 6-6,8-1 
switches, 6-2, A-7 

Linked, 
list, 945 
program, 6-1 

Linking, relocation and, 5-16 
List command, 3-12 
LIST command, H-3 
.LIST directive, 5-22 
Listing, 

assembly, 8-1 
control directives, 5-22 
control switches, 5-59, B-19 
cross-reference, 1-2 
the directory of a library me, 7-8 

Load address, 
absolute, 6-1 

LOAD command, 2-11 
Load image format (.LDA), 2-1 
Load 

map, 1-1,6-1,6-5 
module, 1-1,6-1,64,6-15 

Loading, 
device handlers, 9-34 
memory image mes, 2-17 
ODT with user program, 8-1 
root segment, 2-12 

Local symbol block, 5-10 

Index 

Index-8 

Local symbols, 5-10 
Location, 

addressed, 8-6 
closed, 84 
counter control, 5-37 
open, 84 

Locations, opening, changing, and 
closing, 84 

.LOCK request, 9-39 
Locking USR in memory, 9-39 
Logical device name, 2-2 

identifier, 9-3 
names, 2-2, 2-9 

.LOOKUP request, 941 
Low and high addresses, 542 

-order priority, 8-15 
priority, 8-15 

Lower-case bit, 9-5 

Machine language, 1-1 
Macro, 

buffer, 3-8 
call, 9-1 
definition, 5-50 
definition formatting, 5-51 
libraries, 5-54 
recursive, 5-65 

Macro command, 3-8,3-21 
.MACRO directive, 5-50 
Making patches permanent, 2-14 
Manipulating memory images, 2-12 
Mask limit, 8-12 
Masking, 8-8 
Matching areas, F-l 
Maximum file size, 9-9 
.MCALL directives, 5-54 
Memory block initialization, 8-13 
Memory, 

diagram, BASIC link with overlay regions, 6-8 
maps, 24,8-2 
usage, 3-8 
usage map, 64 

Memory image, G-I 
files, 2-1, 4-3, G-I 
format, 2-1 

Merging library mes, 7-8 
Miscellaneous services, 9-12 
Missing arguments, 5-53 
Mnemonics, 1-1 
Mode, 

absolute, 5-20 
autodecrement, 5-18 



Mode (cont.) 
auto decrement deferred, 5-19 
autoincrement, 5-17 
autoincrement deferred, 5-18 
command, 3-1 
general, 9-21 
immediate, 1-2,5-19 
index, 5-19,5-20 
index deferred, 5-19 
instruction, 8-13 
Radix-50, 8-7 
register, 5-17 
register deferred, 5-17 
relative, 5-20 
relative branch, 8-6 
relative deferred, 5-21 
single instruction, 8-11, 8-13 
source operand, 5-20 
special, 9-24 
text, 3-1,3-17 
type-ahead, 2-7 

Modes, addressing, 5-16 
of operation (EDIT), 3-1 

Modify stack address, 6-16 
Modules, 64 

absolute load, 64 
load, 6-1,64,6-15,7-1 
object, 64,6-11,7-1,7-11 

Monitor, 2-1 
error messages, 2-19 
HALTs, 2-22 
keyboard (KMON), 24 
memory protection map, 64 
Resident (RMON), 24, 9-5 
software components, 24 
start procedure, 2-1 
version number, 9-8 

MOY instruction, 9-2 
Multiple, 

command lines, 2-7 
copy operations, 4-6 
delimiters, 5-3 
GETs, 2-12 
labels, 5-2 
operands, 5-3,5-30 
.QSET requests, 945 

Multiply-defined symbols, 5-10 

[n] construction, 4-5 
Named, 

COMMON,6-1O 
control sections, 6-3 
relocatable program sections, 544 

Index 

Negative, 
line arguments, 3-6 
numbers, 5-14 

Next command, 3-11 
.NLlST, 5-22 
N onme-structured, 

devices, 24,6-16 
Non-overlay me, G-2 
Nonexistent symbol, 6-16 
Number, B-16 

channel, 9-3 
decimaf, 5-13 
monitor version, 9-8 
of arguments, 5-53 
update, 9-8 

Numbers, 
assembler, 5-14 
floating-point, 5-14,540 
negative, 5-14 
octal, 5-13 
positive, 5-14 

Numeric arguments, 3-5,9-3 
Numeric control, 5-39 

Object, 
code, 1-1 
mes, 64 
format, 2-1 
modules, 5-16,64,6-11,7-1,7-11 
modules, relocatable, 8-1 
modules, starting point, 7-10 
output, 1-1 

.OBJ format, H-l 
Octal, 

numbers, 5-13 
radix, 5-13,5-37 

Octal-Decimal conversions, B-21 
.ODD directive, 5-38 
Odd (high-order) byte, 94 
ODT, 

(On-line debugging technique), 1-3 
break routine, 8-18 
calling and using, 8-1 
command summary, A-8 
error detection, 8-20 
functional organization, 8-16 
linking ODT with the user 

program, 8-1 
priority level, 8-15 

Offset, 5-11,5-20 
relative branch, 8-6 
relative branch instruction, 8-13 

Offset words, 9-8 



On·line debugging technique 
(ODT) - see ODT 

Open fIle, 2·10 
Opening a byte address, G·2 
Opening, changing, and closing locations, 84 
Operand field, 5·3 
Operands, multiple, 5·30 
Operate Instructions, B·I0 
Operations on fIles, 4·1 
Operator, 

characters, 5·6 
field, 5·3 

Operators, 
binary, 5·6,5·14 
unary, 5·6,5·37,541 

Optional characters, 2·8 
Output, 

fIlenames, 4·1 
format, F·2 
list, 2·6 

Page, 3·1 
eject, 5·29,5·51 
headings, 5·27 

.PAGE directive, 5·29 
PAL·I1R directive, 5·50 
PAL·11S conditional assembly directive, 5·50 
Parameter list, 2·16 
Parameters used as arguments, 0·1 
Passing switch information, 9·22,9·26 
PATCH utility program, 1·3, G·! 

commands, G·2 
command summary, A·ll 
error messages, G·6 
examples, G4 

PATCH, 
calling and using, G·l 

Patching, 
new fIles, G·2 

Percent (%) character, 5·10 
Peripheral Interchange Program (PIP), see PIP 
Permanent, 

device names, 2·2 
fIles, 2·10,9·9 

Permanent Symbol Table, 5·7 
Physical block numbers, E·2 
Physical device, 2·9,94 

names, 2·2 
PIC (position independent code), 8·14,9·15 
PIP (peripheral Interchange Program), 1·2,4·1 

copy operation, 4·3 
error messages, 4·17 

Index 

PIP (Peripheral Interchange Program) (cont.) 
switches, 4·2 
switch summary, A·6 
warning messages, 4·18 

PIP, 
calling and using, 4·1 

POINT command, H·2 
Pointer location, 3·3 
Pointer relocation commands, 3·13 

for Editor, A4 
Position command, 3·16 
Position independent code (PIC), 8·14,9·15 
Positive, 

arguments, 3·5 
numbers, 5·14 

.PRINT request, 942 
Printout formats, 84 
Priority, B·16 
Proceed command, 8·10 
Proceed count, 8·10 
Processor Status, 8·1 
Program Boundaries directive, 542 
Program, 

counter, 5·16, 8·6 
development aids, 1·1 
execution, 8·10 
runaway, 8·18 
section directives, 542 
section names, 544 
sections, absolute and relocatable, 6·2 

Program starting commands, 2·17 
R, 2·18 
REENTER, 2·19 
RUN, 2·17 
START, 2·18 

Programmed requests, 24,9·1 
format, 9·1 
summary, 0·1 
usage, 9·18 

Programming, 
considerations, 8·16 
errors, 1·2 

Prompting characters, 2·2 

.PROTECT requests, 943 

.PURGE request, 944 
Purging an inactive channel, 944 

.QSET request, 945 
Quantities, absolute, 5·14 

.RADIX directive, 5·36 

Index· 10 



Radix, 
binary, 5·14,5·37 
control, 5·36 
decimal, 5·14,5·37 
octal, 5·14,5·37 
speCification characters, 5·37 

Radix·50, 
character set, B4 
equivalents, B4 
mode, 8·7 
notation, 5·28 
terminators, 8·8 

.RAD50 directive, 5·35 
Random·access, 

devices, 24,6·1,9·31 
R Command, 2·18 
.RCTRLO request, 946 
READ command, 3·10 
.READ request, 946 
.READC request, 947 
.READW request, 948 
Real arguments, 5·52 
Re·assembling, 1·2 
Rebooting the system, 4·12 
Reclaiming memory, 2·11 
Recovering fIles, 4·8 
Recovery from Bad Blocks, 4·14 
Recurring coding sequence, 5·50 
Reducing disk fragmentation, 4-6 
Re·editing, 1·2 
Reenter bit, 2·19, 9·5 
REENTER command, 2·19,3·2 
Reference line, F·2 
.REGDEF, macro call, 9·16 
Region number, 6·7 
Region, overlay, 6·7, 6·10 
Register Deferred Mode, 5·17 
Register, 

destination, B·12 
expression, 5·17, B·5 
mnemonic, 9·2 
mode, 5·17 
symbols, 5·9 

Register·Offset, B·13 
Registers, 

constant, 8·13 
relocation, G·1 
terminal control and status, 9·9 

Reinitializing monitor tables, 4·13 
Relative, 

branch, 8·12 
branch offset, 8·6 

Index 

Index· 11 

Relative (cont.) 
deferred mode, 5·21 
mode, 5·20 

.RELEAS request, 949 
Releasing USR from memory, 940 
Relocatable, 1·1,5·2 

expressions, 5·15, 8·3 
image me, 2·1 
object module, 8·1 
values, 8·14 

Relocation, 8·2 
base, 2·14 
bias, 8·2,8·14 
calculators, 8·15 
constant, 5·2 
directory, 7·11 
register commands, 8·14 
registers, 84, G·1 

Relocation and Linking, 5·16 
Removing, 

handlers from memory, 949 
logical assignments, 2·10 

Rename operation, 4·9 
.RENAME request, 9·50 
.REOPEN request, 9·52 
Repeat counts, 8·18 
Replace switch, 7·5 
Requests, 

for data transfer, 9·10 
for fIle manipulation, 9·10 
for miscellaneous services, 9·10 
requiring the USR, 9·14 

Requests, programmed, 9·1 
Requests, 

.CDFN, 9·18 

.CHAIN, 9·19 

.CLOSE, 9·21 

.CSIGEN, 9·21 

.CSISPC, 9·24 

.DELETE, 9·29 

.DSTATUS, 9·30 

.ENTER, 9·32 

.EXIT, 9·34 

.FETCH, 9·34 

.GTIM, 9·35 

.GTJB,9·36 

.HERR,9·37 

.HRESET, 9·39 

.LOCK, 9·39 

.LOOKUP, 941 

.PRINT, 942 

.PROTECT, 943 



Requests (cont.) 
.PURGE, 944 
.QSET, 945 
.RCTRLO, 946 
.READ,946 
.READC, 946 
.READW, 946 
.RELEAS, 949 
.RENAME, 9-50 
.REOPEN, 9-52 
.SAVESTATUS, 9-52 
.SERR,9-37 
.SETTOP, 9-54 
.SFPA, 9-56 
.sRESET, 9-57 
.TRPSET, 9-58 
.TTINR, 9-59 
.TTYIN, 9-59 
.TTYOUT, 9-60 
.TTOUTR, 9-60 
.UNLOCK, 9-39 
.WAIT, 946,9-62 
.WRITC, 9-64 
.WRITE, 9-64 
.WRITW, 9-64 

Reserving storage area, 5-13 
Resident monitor (RMON), 24,9-5 
Resident overlay handler, 6-11 
Restarting ODT, clearing breakpoints, 8-2 
Restarting PIP, 4-1 
Return, 

to previous sequence, 8-6 
to monitor, CTRL C, 8-2 

Return path, 6-7 
Reusing bad blocks, 4-13 
Root segment, 2-14,6-5,6-10, G-2 
Rotate/Shift Instructions, B-8 
Rounding numbers, 540 
Routines, 1-2 
RUBOUT, 2-7,3-2 
Rules for user-defined symbols, 5-7 
RUN command, 2-17 
Running, 

the program (ODT), 8-10 
Run-time area of memory, 6-5 
Run-time overlay handler, 6-9 
Run-time overlay handlers and tables, 6-1 
Save buffer, 3-8 
SAVE command, 

(Monitor), 2-16 
(Editor), 3-8,3-20 

Index 

Save image, 6-1,6-2 
me (SA V), 64 
format, 2-16,6-15 

.SAVESTATUS request, 9-52 

.SBTTL directive, 5-27 
Search, 

algorithm (ODT), 8-19 
commands (EDIT), 3-3,3-15, A-3 
effective address, 8-12 
lirni~ (ODT), 8-12 
word, 8-12 

Searches, 8-11, 8-19 
Segment boundaries, 4-11 
Separating characters, 5-5 
Separator, 2-6 
Sequential-access devices, 24,9-31 
.SERR request, 9-37 
Set Bottom Address, G-3 
SET command, 2-11 

options, 2-12 
Set Relocation Registers, G-3 
.SETTOP request, 9-54 
.sET USR NOSW AP command, 9-54 
.SFPA request, 9-56 
Single absolute section, 544 
Single instruction, 

address, 8-11 
mode, 8-11 

Single load module, 7-1 
Single operand instructions, B-8 
Size specification, 9-25 
Slash, 84 
Soft error recovery, 9-37 
Software, 

components, monitor, 24 
Source compare (SRCCOM), 1-3, F-l 

error messages, F-5 
switches, F-l, A-ll 

Source-Double Register, B-14 
Source, 

code, 1-1 
code, macro-free, 5-1 
field, 9-2 
line&, 5-1 
operand mode, 5-21 
program, 1-1,5-1 
program format, 5-2 
register, B-13 

Special characters, 5-53 
Special key commands, EDIT, 3-2 

Index-12 



Special function keys, 2·7, A·2 
CTRLC, 2·7 
CTRL 0, 2·7 
CTRL Q, 2·7 
CTRL S, 2·7 
CTRL U, 2·7 
CTRL Z, 2·7 
RUBOUT,2·7 

Specifying, 
directory segments, 4·12 
extra words per directory entry, 4·12 

SRCCOM, see Source Compare 
.SRESET request, 9·57 
Stack, 9·34 

address, 6·16 
pOinter, 6·16,9·5 

Start address, 6·5, 9·5 
START Command, 2·18 
Start procedure, 2·1 
Starting block number, 9·53 
Statement, 

format, 5·2 
terminator, 5·2 

Statements, 
assembly language, 5·1 
direct assignment, 5·8,5·11 

Status word, 9·30 
Stopping points, 1·2 
Storage device, 3·1 
Subconditionals, 548 
Subroutine, 

return, B·13 
Summary, 

ASEMBL, B·1 
command, B·1 
programmed requests, 9·11 
switch, A·1 

Suspending program execution, 9·62 
Swapped region, 9·7 
Swapping, 9·39 

algorithm, 9·7 
Switch description, 6·13 
Switch summary, A·1 

ASEMBL/CREF, B·19 
CREF, B·20 
DUMP, A·lO 
Librarian, A·8 
Linker, A·7 
PIP, A·6 
SRCCOM, A·11 

Index 

Index-13 

Switches, 2·5 
CREF, 5·59,5-61 
function control, 5·59, 5·60, B·20 
listing control, 5·59, B·19 
Macro, 5·59 
PIP, 4·2 

Symbol control, 544 
Symbol table, 5-26 

global, 6-1, 6·3 
overflow, 6·18 
permanent, 5-7 
switch, 6·18 
user, 5·7 
user·defined, 5·2 

Symbol, value, 5·8 
Symbolic arguments, 5·29 
Symbols, 5·7 

entry, 6·3 
external, 5·8,6·3 
global, 5·8,544,6-3 
internal, 5·8 
local, 5·10 
multiply·defined, 5·10 
permanent, 5-7 
register, 5·9 
user-defined, 5-2, 5·7 

Symbols and expressions, 54 
.SYNCH, macro call, 9·16 
SYSMAC.SML, D·1, 5·50,9·1 
System, 

build operation, 2·1 
communication, 2·1 
communication area, 64,9·5 
concepts, 9·3 
conventions, 2·1 
date, 9·8 
device, 2·18 
device scratch block~, 9·34 
disk·usage efficiency, 4-6 
files, 4·5 
macros, 9·10 
macro library, C·1 
programs, 1·1 
software components, 1·2 
state, 9·15 

System software components, 1·2 
ASEMBL, 1·2,5·1 
CREF, 1·2,5·61 
DUMP, 1·3, E-1 
EDIT, 1-2,3·1 



System software components (cont.) 
EXPAND, 1-2,5-50 
Librarian, 1-2, 7-1 
Linker, 1-2,6-1 
ODT, 1-3,8-1 
PATCH, 1-3, G-I 
PIP, 1-2,4-1 
SRCCOM, 1-3, F-I 

TAB character, 3-2,5-2 
Table of, 

breakpoints, 8-9,8-10 
mode forms and codes, 5-21 
proceed cpmmand repeat counts, 8-10 

Temporary mes, 4-16 
Temporary numeric control, 541 
Temporary radix control, 5-37 
Tentative entry; 9-32 
Tentative me, 9-9,944 
Terminal, 

input request, 2-14 
interrupt, 8-19 
normal mode, 9-59 
special mode, 9-59 
terminal control and status registers, 9-9 

Terminate search, 8-2 
Terminating directives, 542 
Terms, 5-14 
Testing patches, 2-14 
Text, I-I 

blocks, 7-11 
buffer, 3-1,3-17 
Editor, 3-1 
mode, 3-1,3-17 
modification, 3-3 
modification commands, 3·17 

TIME command, 2-8 
Time of day, access to, 9-35 
.TITLE directive, 5-27 
Trace trap instruction, 8-17 
Trailing delimiter, 5-35 
Transfer address, 6-5,6-18 
Transfer, 

image mode, 4-3 
Transferring characters, 9-59 
Transferring mes, 4·6 
Transferring memory, 2-16 
TRAP addressing, EMT and, 5·22 
Trap instructions, 8-11, B-ll 
Trap'interception, 9-58 
.TRPSET request, 9-58 

Index 

TT 
printer interrupt, 8-20 

.TTYIN request, 9-59 

.TTINR request, 9-59 

.TTYOUT request, 9-60 

.TTOUTR request, 9-60 
Turning off user error interception, 9-37 
Two-volume compress, 4-12 
Type ahead, 2-7 
Types of programmed requests, 9-10 

Unary operators, 5-6,5-37,541 
Unit number (system device), 9-8 
UNLOAD command, 2-11 
.UNLOCK request, 940 
Unnamed control section, 6-3 
Unrecoverable hardware/software error, 7-12 
Unresolved gIobals, 6-1 
Unsave command, 3-21 
Unused areas, 4-10 
Up-arrow construction, 5-52 
Up-arrow, 8-5 
Update, 

number, 9-8 
switch, 7-7 

Upper-flower-case, 
commands, 3-23 
mode, 3-23 
terminal, 3-23 

User command string, 3-1 
User-defined symbol, 5-2,5-7 

table, 5-2 
User library searches, 6-11 
User program, 5-2 

protection, 9·22 
User Service Routine (USR), 2·5 

address, 2-17 
swapping, 2·12 

User switch commands and functions (LIBR), 7-1 
User symbol table, 5-7 
Using, 

libraries, 6-11 
overlays, 6-5 
the system macro library, 9-10 
the wild-card construction, 4-1 

USR area, 9-8 
load address, 9-6 

USR 
swap bit, 9-5 
swapping, 9-7,9-53 

Utility commands, Editor, 3-3,3-20, A-5 

Index-14 



Utility program, PATCH, G-1 
Utility routines, 8-16 

Value specifier, H-2, H-3 
Vector addresses, 9-4 
Verify command, 3-12 
Version, 

number message, 4-14, G-1 
switch, 4-14 

Vertical formatting, 5-4 

.WAIT request, 9-47,9-62 

Index 

Index-IS 

Warning messages, PIP, 4-18 
Wild card, 

construction, 4-4 
expansion, 4-4 

Word, 
address, G-2 
search, 8-12,8-19 

.WORD directive, 5-31 

.WRITC request, 9-64 
Write command, 3-11 
.WRITE request, 9-64 
.WRITW request, 9-64 

I 53 




