Rochester Institute of Technology

RIT Scholar Works

Theses Thesis/Dissertation Collections

8-1-1986

A Study of the Xerox XNS Filing Protocol as

Implemented on Several Heterogenous Systems

Edward Flint

Follow this and additional works at: http://scholarworks.rit.edu/theses

Recommended Citation

Flint, Edward, "A Study of the Xerox XNS Filing Protocol as Implemented on Several Heterogenous Systems" (1986). Thesis.
Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion

in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.

http://scholarworks.rit.edu?utm_source=scholarworks.rit.edu%2Ftheses%2F5525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F5525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/etd_collections?utm_source=scholarworks.rit.edu%2Ftheses%2F5525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F5525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/theses/5525?utm_source=scholarworks.rit.edu%2Ftheses%2F5525&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu

Rochester Institute of Technology

School of Computer Science and Technology

A Study of the Xerox XNS Filing Protocol as Implemented
on Several Heterogenous Systems

August, 1986

Ed Flint

A thesis, submitted to the Faculty of the School of Computer Science and Technology, in partial

fullfillment of the requirements for the degree of Master of Science in Computer Science.

Approved by

Leslie Jill Miller 8/7/86

John L. Ellis 8/26/86

James E. Heliotis 8/23/86

Title of Thesis:

A Study of the Xerox XNS Filing Protocol as Implemented on Several Heterogeneous Systems

I Edward Flint hereby grant permission to the Wallace Memorial Library, of RIT, to reproduce my

thesis in whole or in part. Any reproduction will not be for commercial use or profit.

Date: September 25, 1986

Table of Contents

Abstract

Key Words and Phrases

Table of Contents

Computing Review Subject Codes

Servers, Services and Clients

XNS Protocols and Standards

Physical/Data Link Protocols
Internet Transport Protocols
Courier (Remote Procedure Call Protocol)

Application Protocols

Users and Authentication

Files: content and attributes

Attribute Acceptance - Services

Xerox 8037 File Scrvice
VAX/VMS File Service
UNIX File Service

Attribute Usage - Clients

XDE FileTool
VAX/VMS Client
UNIX Client

1. Introduction
2. XNS Architecture
2.1. ISO Model
2.2
2.3,
231.
232
233,
234
3. Filing Protocol Overview
3.1. Clients and Servers
3.2, Procedures
3.3. Sessions
3.4.
3.5.
3.6. Handles
3.7 Controls
3.8. Scopcs
3.9. Errors
+. Implementation Descriptions
4.1.
4.1.1.
1.2
4.1.3.
42
421
422
423
4.3,

Procedure Support - Services

+.3.1.

Xerox 803~ File Service

1]

(v) 3]

(v)

R 0 & W

6.

432 VAX/VMS File Service
+.3.3. UNIX File Service

4.4. Procedure Support - Clients

44.1. XDE FileTool
442 VAX/VMS Client
443, UNIX Client.

Implementation Incompatibilities

5.1. Areas of Incompatibility

5.1.1. Non-support of Filing constructs by the native operating system

5.1.2. Alternate specifications in the Filing Protocol

5.2 Resolving incompatibilities

521. Non-support of Filing constructs by the native operating system

5.2.2 Alternate specifications in the Filing Protocol
FilingSubset
6.1. Overview
6.1.1. Motivation
6.12. Requirements and Goals .

6.2 Definition
6.3. Attributes
6.3.1. Mandatory Attributes
6.3.1.1. createdOn
6312 dataSize.
6.3.1.3. isDirectory
6314 modifiedOn
6.3.15 pathname
6.3.16. type
6.3.2. Implied Attributes
633 Optional Attributes
6.4. Remote Procedure Support.

6.4.1. Session Support .

6.4.2 Opening and Closing Files

6.4.3. Enumerating Files in Directories

6.43.1. Scopes
6.43.2 Attribute Support
6.4.4. Storing Files

645 Retricving Files

6.4.6. Deleting Files

6.5. Remote Procedure Restrictions
6.6. Remote Errors
6.7. Procedures and Attributes
6.8. Courier Definition

References

Appendices
A. FilingSubset Implementor’s Guide
B. Filing Protocol.

69

~0

Abstract

The Xerox Network System is composed of heterogencous processors connected across a variety of
transmission media. A series of protocols is defined to describe the communication mechanisms between
system elements. One of these protocols, the Filing Protocol, defines a general purpose file management
system. Current implementations of the protocol, although derived from the Xerox specification. fall
short of providing the interconnectivity between elements desired in a heterogeneous network system.
The definition of an easily implemented protocol subset that provides the common file system functions
of retrieval, storage, enumeration/location and deletion is derived from experiences with several
implementations. This definition and an accompanying implementation document provide a mechanism

to guide future implementations toward increased interconnectivity.

Keywords and Phrases

Network Protocols, Distributed File Systems

Computing Review Subject Codes

C.2.2 [Computer-Communication Networks]: Network Protocols Protocol architecture; C2.4
[Computer-Communication Networks]: Distributed Systems Distributed applications; D.+ 3

[Operating Systems). File Systems Management - Distributed file systems;

1. Introduction

The Xerox Network Systems (XNS) architecture defines a series of protocols for use between systems in
a distributed computing environment. These protocols provide a mechanism for communicating between
a variety of machines across a variety of transmission media, and encompass the full range of the ISO/OSI
reference model from the physical through application layers. Application protocols are defined for

filing, printing, network object lookup and user authentication.

The Xerox Network Systems provide a general purpose file management system which is heirarchical in
nature and supports a wide variety of functions, including file transfer, access control, file location and
enumeration, random access, serialization and deserialization of directory heirarchies. The Filing Protocol

represents a formal definiton of this file system as wcll as a guide for accessing the system.

As the network model has been refined, implementations of this model became more prevalent. It
became clear that there are many operating systems and application processes which 1) have a specific
need for certain portions, or just a subset, of the Filing functions and/or 2) do not have the requirements
or resources to support the Filing Protocol in its entirety. For example, a subset intended for simple file
transfer and enumeration has a range of uses within the areas of distributed printing. e¢lectronic

publishing and interconnectivity of heterogeneous systems.

Currently several commercial implementations of the Filing Protocol exist for different system
configurations. Although each of these implementations is based upon the XN specification for Filing, in
reality, each of these implementations falls short of the full implementation The result is a lack of
interconnectivity because there is no formal definition of a standard Filing subsct to guide coordination of

the implementation schemcs

This thesis is divided into several sections documenting the c¢volution of a subset of the Filing Protocol
for use as a simple file transfer protocol. The thesis was motivated by my inital expericnces involved

with providing compatible file transfer functionality between three cxisting Filing implementations My

.6-

work resulted in the formal definition and incorporation of the FilingSubset Protocol into the Xerox

Filing Protocol and the development of the accompanying implementor’s guide.

Section 2 is an overview of the XNS architecture and the relationship between the XNS protocol family
and the ISO/OSI Reference Model. Section 3 describes the concepts and terms defined by the Filing
Protocol as a foundation for understanding the more detailed discussions in later sections Section 4
describes several existing Filing implementations and points out the incompatibilities evidenced between
them. This description highlights the difficulty in providing interoperability between various
implementations. Section 5 presents a specific solution to the problems from these implementations of
the Filing Protocol. The choices made in this section are then formalized into a subset of the Filing
Protocol that provides the intended file transfer functionality This formal specification of the
FilingSubset Protocol is presented in Section 6. Appendix A includes the FilingSubset Implementor’s
Guide, a detailed implementation strategy for the FilingSubset Protocol. This strategy describes the
implementation of the protocol from general perspective and describes specific support required on the
UNIX and VMS operating systems. A copy of verion 6 of the Xerox Filing Protocol is included in
Appendix B for reference. This version contains the Xerox definition of the FilingSubset Protocol, which

is an edited version of the specification presented in Section 6 of this thesis

2. XNS Architecture

The XNS architecture defines a family of protocols and standards to provide for the exchange and
handling of information within a distributed network environment. This architecture is an outgrowth of
the 3MB Ethernet used within Xerox from the early 1970's into the 1980’s. This experimental network
was developed at Xerox’s Palo Alto Research Center (PARC) and has been the subject of numerous

published papers.

The XNS protocols represent a refinement of the early research protocols. As the architecture graduated
to the 10MB Ethernet and other transmission media. research continued into numerous application areas

and products were developed to provide greater diversity and richer functionality.

This section presents an overview of the XNS architecture and its relationship to the ISO/OSI reference
model. The intent is to provide the reader with some background on the structured approach of the XNS
architecture and the inter-relationship betwecn the various protocols that it defines This inter-

relationship is important in understanding the definition and use of the Filing Protocol later in this thesis.

2.1. ISO Model

In 1981 the International Organization for Standardization (ISO) defined a refcrence model [11] for Open
Systems Interconnection (OSI) consisting of ~ layers of protocols as shown in Figure 2 1 Each of these
layers offers distinct functions that depend upon the lower layers and in turn are relied upon by the

higher layers. The layers included in this model arc:

Layer 1: Physical This layver performs the actual transmission of data over the physical

communication medium

Layer 2: Data Link This layer providcs reliable transmission by organizing the data into

frames and providing error detection and optionally correction

User Process User Process

i t

Apphcation | o ___ »| Application
A Application Protocols
,, t
Presentation e _ o o o o o o o o o o e e e e e e e o= »] Presentation
i Presentation Protocols
‘, t

Session € e e > Session
t Session Protocols t
TraANSPOMt € o o o o o e e e e e e e e e e e e = Transport

A
Y /

Network < Network

A

Yy

Data Link € — = - - e e - > Data Link
A

\i

Physical € — — — = — m e —— - > Physical
Physical Protocols t

End System A Transmission Medium End System B

Figure 2 1 [SO/OSI Reference Model Protocols

Layer 3: Network The responsibility of this layer is to organize higher level data into
packets which are transmitted to the recipient To perform this, the

network layer must provide for packet addressing and routing

Layer +4: Transport This layer provides reliable end-to-end transmission indcpendent of

any intermediate nodes.

Layer 5: Session The session layer provides for the establishment, management,

synchronization and termination of a user level connection from source

to destination. This connection exists independent of the underlying

transport connections

Layer 6: Presentation This layer translates user data objects into the form transmitted
between systems Common translations may include data compression,

encryption and character code conversions.

Layer 7: Application This layer performs applications specific to the environment in which

the network is used.

The XNS architecture is organized into a series of protocol layers which closely resemble the ISO model.
However, in several instances, a single XNS layer corresponds to multiple ISO layers. The XNS layers and

their association to the ISO model is depicted in Figure 2.2.

2.2. Servers, Services and Clients
Two terms used quite frequently when describing the XNS architecture are those of clients and servers.

Any device attached to the network for the purposes of prov ding a service to network users is referred
to as a server. The collection of software which accomplishes a specific task by following a defined

protocol for interaction is commonly referred to as a service

Several types of servers are evident in the XNS environment A dedicated scrver performs a specific task
and nothing else. A print scrver is an example of such a dedicated server. A server may also be a general
purpose computer capable of providing scveral services simultaneously, such as naming, authentication
and mail services. In addition, a user workstation may function as a network server on occasion. for

example, a temporary file service.

The entity which makes requests of a service is called a client. Clients typically perform work on behalf
of a user; however, services may in fact be clients of other services undcr certain conditions, such as

when a file service contacts an authentication service to validate user credentials

-10-

Layer 7
Application

Layer 6
Presentation

Layer 5
Session

Layer 4
Traasport

Layer 3
Network

Layer 2
Data Link

Layer 1
Physical

Interpress

Mail
Format

Raster
Encoding
Standard

Information Format and Encod'mg Standards

o . Mail Gateway
Printing Filing Transport Access
Protocol Protocol

Protocol Protocol
Basic Application Services
Clearing- i-
l:armg Auménu Time Font Character
ouse cation Protocol Standards Code
Protocol Protocol Standard
Application Support Environment
Courier Message Stream
Object Stream
Block Stream
Bulk Data Transfer Protocol
Courier
Echo Sequenced Packet Error Routing
Protocol Packet Exchange Protocol Information
Protocol Protocol Protocol
Internet Datagram Protocol
Internet Transport Protocols
Ethernet Synchronous

Data Link Layer

Ethernet
Physical Layer

X 25

Virtual Circuit

Point-to-Point
Protocol

Ethernet

RS-232, RS-449, X.21, etc.

Figure 2 2 XN Protocols

S11-

2.3. XNS Protocols and Standards

2.3.1. Physical/Data Link Protocols

The primary transmission medium used by XNS is the Ethernet [7]. The Ethernet specification describes
both the physical and data link layers as defined by the ISO model. XNS also supports other standard
physical interfaces (RS-232, RS-449 and X .21) and data link protocols (X.25 and synchronous point-to-

point protocol).

2.3.2 Internet Transport Protocols

Typically, a network consists of many sub-network configurations which are connected in some manner.
Each of these sub-networks may use a different physical transmission medium. However, an internet
protocol provides the functions which allow these sub-networks to be addressed as a single uniform
network. The XNS network, like other packet switching networks, routes each packet. or datagram,
individually. This concept differs from that of a virtual circuit in that no prior setup is necessary between
the respective source and destination nodes before data can be exchanged A transport protocol must
provide the mechanisms to insure that packets are delivered to the receiver in the same order in which

they were sent, with no duplication or omission.

The XNS Internet Transport Protocols [9] provide these services through several layered protocols, each

performing a distinct function.

The Internet Datagram Protocol defines the fundamental unit of data. an internet packet, which is passed
within the internet, and also defines the means for these packets to be addressed. routed and delivered
Each packet contains addressing information (source and destination addresscs), control information

(checksum, length, packet type and transport control) and data (encoded higher level protocol data).

The Sequenced Packet Protocol (SPP) provides for the reliable delivery of packets from source to

destination. It is this protocol that guarantees the delivery of packets in order with no duplication or

ommission.

The Packet Exchange Protocol (PEP) provides a facility for efficient request-response oriented
communication. This is typically used when a single internet packet can contain the response data and

the reliability achieved through the use of the Sequenced Packet Protocol is not required.
The Error Protocol provides a standard mechanism for errors to be communicated.

The Routing Information Protocol defines the means by which network routing tables are maintained.
Each network node must maintain a routing table which is used to route individual packets from one
network to another. This protocol provides for the broadcast and maintenance of the information

contained within the tables.

The Echo Protocol defines a simple means to verify the existence and correct operation of anv network

host.

233 Courier (Remote Procedure Call Protocol)

The Courier Protocol [6] defines the manner in which clients and servers interact within the distributed
XNS environment. Courier defines a single request/reply, or transaction. mechanism upon which all

higher level XNS protocols are based

Courier is based upon the remote procedure call model, where an active client invokes operations
provided by a passive network server A Courier call is analagous to a subroutine call where arguments

are passed on the call and values may be conveved on the return, as shown in Figure 2 3.

CALL procedure. arguments

Client Service

RETURN results

. --Or-- :
Active Passive
ABORT error. arguments

Figure 2 3 Courier model

Courier is defined as consisting of three layers the block stream. the object strcam and the message

stream. The block stream encapsulates the binary data from higher layer packets for transmission by the

-13-

Sequenced Packet Protocol. The object stream imposes structure onto this binary data in the form of
common data types (such as booleans, cardinals. strings, etc.). The message stream structures these data

types into Courier procedure calls and replies.

The message and data types supported by Courier also form the definition for a language in which all XNS
application level protocols are written. The formal definition for higher level protocols consists of

transaction-oriented expressions written in this Courier language.

There may be instances where applications desire to send large amounts of data for which it does not
make sense to pass the data as a procedure argument. For this reason, Courier also includes a Bulk Data
Protocol [2] which defines the mechanism for transmitting simple streams of data between two Courier
applications. For the purposes of transmission. this data may be viewed as a single Courier data object
which is interpreted based upon the context of a recent Courier call. Bulk data transfers may take place in
two forms: immediate, where the initiator is either the sender or receiver of the data and third party.

where the initiator causes the data to be sent from a separate sender to another receiver

2.3.4 Application Protocols

The XNS application protocol layer consists of a set of protocols and standards that support and enhance
those protocols. This layer is further subdivided into three distinct levels, the Application Support

Environment, Basic Application Scrvices and Information Format and Encoding Standards

The lowest level, the Application Support Environment. provides those services used by the majority of
higher level applications. Specifically this level provides the following functions to present a secure and

reliable network for the higher levels:

) location of resources and individuals within the network

L user authentication

) a common time base for the entirc network

. a common character encoding format for files and Courier strings

14-

] standardization for the use of fonts and font services

The Clearinghouse Protocol [4] defines the mechanisms for object naming and addressing within the
network. The Clearinghouse service and associated database is decentralized and replicated throughout
the network. This protocol defines the information stored by the service and the means whereby users

can retrieve the information.

The Authentication Protocol [1] defines the methods used by clients and servers to identify each other in
a secure and reliable manner. This protocol defines the credentials which a user provides to gain access

to the network services and the procedures employed by clients and services to verify these credentials

The Time Protocol [14] defines a standard format for the representation of time within the network and

the manner in which network clients receive the current time from a network time service.

The Character Code Standard [3] defines the encoding of character data within the network This
encoding provides character assignments for Ascii and ISO 646 characters as well as special characters

from many different alphabets, mathematical symbols and graphics characters.

The second level, consisting of the Basic Application Protocols, defines the protocols needed by uscrs of

the network on a regular basis. These protocols provide the following common applications:

o a global network file system
° remote printing

° mail services

° interactive terminal services

The Printing Protocol [12] defines the manncr in which print requests are communicatcd to print seryers

and the status of print requests is determined.

The Filing Protocol [8] defines a gencral purposc distributed file system and the mechanism for transfer of

files within the nctwork.

The Gateway Access Protocol supports terminal emulation and file exchange between non-XNS clients

and XNS services as well as XNS clients and non-XNS services.

The Mail Protocol defines the format of mail messages and the means employed to send and receive these

messages.

The third level, consisting of the Information and Encoding Standards, defines specific formats or
languages for the encoding and decoding of files within the network. This level provides a uniform
format for similar files in an effort to provide users with the ability to edit, print or transmit a file

anywhere within the network, regardless of host hardware or software.

Interpress [10] defines a standard representation for documents which are to be printed It is this
language that is interpreted by a print service prior to the actual printing. Interpress provides device

independence for the creators of print files within the network.

The Raster Encoding Standard is the definition of a general purpose encoding for digital images This
standard is used to represent stand-alone images to be viewed as well as images included within

Interpress files.

-16-

3. Filing Protocol Overview

The Xerox Network Systems provide a general purpose file management system which is hierarchical in
nature and supports a wide variety of functions. including file transfer. access control, file location and
enumeration, random access, serialization and deserialization of directory heirarchies. The Filing Protocol

represents a formal definiton of this file system as well as a guide for accessing the system.

The protocol being defined by this thesis evolved as a subset of the Filing Protocol because there were
existing implementations of the Filing Protocol and compatability with these implementations could be
preserved. Since the Filing Protocol contained the level of functionality desired for the protocol being
defined, that functionality simply needed to be separated from the full protocol into the definition of the

subset.

A brief description of the basic concepts of the Filing Protocol is presented here to provide a background
for the remainder of the thesis. A detailed description of the protocol is not intended. since manyv of these
details are not relevant to this thesis. Instead, the complete Xerox specification of the Filing Protocol is
included, for reference, in Appendix B. The description of the protocol that follows defines the terms and

concepts intrinsic to understanding the work presented later

3.1 Clients and Servers

The Xerox Filing Protocol is a formal specification of a gencral purpose file system It defines the
interaction that takes place between a filing client. an entity requesting work to be done on behalf of a

user, and a file service. the entity accepting requests for work.

A client may have an explicit user interface. where specific user inputs control the client process actions.

or it may be invoked during the execution of a process where there is no user interaction.

A file service may. but is not required to, exist on a separate processor or server. Multiple separate file
services may in fact reside on a single server A gencral time-sharing computer may provide a file scrvice

to allow some level of file access to users not resident on that machine

All files within a file service are organized in a heirarchical manner. Each service contains a single root
directory which in turn contains various descendant subdirectories and files All files residing directly in
a directory are referred to as children of the directory file. The directory which contains a file is. in turn.

that file’'s parent.

3.2 Procedures

The Filing Protocol defines a set of procedures for various levels of file access and transfer. The

procedures defined in the Xerox specification are:

Session Management--

Logon establish a session
Logoff terminate a session
Continue retain an open session during a period of inactivity

File Access--

Open open a file

Close close a file

Create create a file with no content
Delete delete a file

Access Control Management--

ChangeControls modify the controls in effect for a previously opened file
GetControls retricve the controls in effect for a previously opened file
UnifyAccessLists unify the access lists for a subtrec

Attribute Management--

ChangeAttributes modify the attributcs for a file

-18-

3.3

The Filing Protocol is a session oriented protocol. in that an explicit user logon must be performed to

establish a session, with a subsequent logoff terminating the session. All procedure calls issued by the

GetAttributes

Remote File Management--

Copy

Move

File Transfer--

Retrieve

Store

Replace

Serialize

Deserialize

Random Access--

ReplaceBytes

RetrieveBytes

File Enumeration--

Find

List

Sessions

retrieve the attributes for a file

copy a file and its descendants to another directory

move a file and its descendants to another directory

retrieve the contents of a file

create a file with contents

replace the contents of an existing file

encode a file and its descendants into a stream of bytes

reconstruct a file and its descendants from a stream of bytes

overwrite or append to the existing content of a file

read a range of bytes from an existing file

locate and open a file in a directory

return attributes about files in a directory

client relative to the initial logon request take place in the context of that session

A unique identifier called a scssion handle is used by both client and scrvice processes to maintain the

context of a user session. Upon successful validation of the user credentials. the service creates the

-19-

session handle and returns it to the client. This handle is then used on all subsequent client calls within
the same session until a logoff occurs. The logoff signals termination of the session and causes the client

and service to discard the corresponding session handle

Sessions may vary greatly in their duration and amount of activity. A file service may terminate a session

at any time when a remote procedure call is not in progress.

3.4 Users and Authentication

Each session requires that some user identification be presented to the service process. The Filing
Protocol provides for the use of both primary and secondary credentials. Primary credentials are in a
form defined in the Authentication Protocol [1] and are validated against a network Authentication
service. Secondary credentials are file service specific and may be required as needed by the underlying
service operating system. The service performs the necessary validation of the credentials presented as a

part of logging on to the service.

3.5 Files: content and attributes

The basic unit of operation within the Filing Protocol is that of a file A file is a logical grouping of data

which is stored as a single unit.

Each file is viewed as either temporary or permanent. Temporary files do not reside in any directory and
only exist for the duration of all sessions which have the file open. Permanent files reside in a specific

directory and remain therc until explicitly deleted

Each file consists of two distinct parts: content and attributes The content of the file is the data actually
contained in the file as a scquence of eight-bit bytes This data is uninterpreted by the file service except

in the case where a specific format is dcfined for the transfer of the data

Attributes are additional data items associated with a file's content that may be used to provide additional

identification or description of a file. Attributes may either be interprcted, in which case they have a

specific meaning to a file service and result in a defined behavior, or uninterpreted, in which case they

are stored on the file service but interpreted only by the client

Each attribute is designated by an attribute type, many of which are defined by the Filing Protocol. Fach

of these defined attribute types must be interpreted by all file services implementing the Filing Protocol.

Attributes normally are obtained and modified by explicit client action; however, certain procedures do

result in file service modification of attributes.

Interpreted attributes exist in several different categories:

identification related fileID. isDirectory. isTemporary. name. pathname. type and version
content related checksum, dataSize and storedSize
parent related parentID and position
event related createdBy, createdOn, modifiedBy, modifiedOn, readBy and readOn
directory related childrenUniquelyNamed, numberOfChildren, ordering, subtreeSize and
subtreeSizeLimit

access related accessList and defaultAccessList

3.6 Handles

Filing clients issue requests to a file service to operate on files When a service creates a new file or
opens an existing filc on behalf of a client, a file handle is created and returncd to the client. This handle
is used by the client and service to identify the file within the context of a session. The handle is

discarded once the filc is closed or the session is terminated

The actual structure of a file handle is service specific and is only interpreted by the file service.

3.7 Controls

A client may request access to a file with certain access characteristics to be imposed by the scrvice.

These characteristics, called controls, are presented with the request to open the file and specify the

intended interaction with a file by the client. Controls can be used by the service to determine the level
of interaction with a file that can occur simultaneously by several clients. Since controls are relative to a
given file handle, they can also be used to control access by the same client if a file is opened multiple

times in a single session. Specifically, controls can designate:

lock a type of lock (none, share or exclusive)

timeout a timeout period to be used in waiting for a lock

access a set of access permissions requested for a file
38 Scopes

When clients enumerate or locate files, they specify arguments, called scopes, to describe the selection

criteria to use Scopes can specify the following:

count the maximum number of files to present to the client

depth the nesting level of descendants to consider during the search

direction the direction of examination. either from beginning to end or end to beginning
filters the conditions on attributes to be used for identification (condition is True or

False, condition equal to a constant, or a logical combination of conditions)

3.9 Errors

Consistent with the Courier model. the Filing Protocol will return appropriate errors when a procedure

call cannot be scrviced correctly. Specifically, the following classes of errors may be returned

AccessError the desired file access is not possible

ArgumentError a specified argument (attribute, control or scope) type or value was
invalid

AuthenticationError the user could not be validated

o
(8%

ConnectionError the bulk data connection could not be established

HandleError the specified file handle was invalid

InsertionError the specified file could not be inserted into the directory
RangeError the specified random access byte range was invalid
ServiceError the session could not be created or terminated
SessionError the specified session handle was invalid

SpaceError the specified storage for the file could not be allocated
TransferError the bulk data transfer encountered a problem
UndefinedError an implementation dependant problem occured

4. Implementation Descriptions

This section presents descriptions of several existing implementations based upon the Xerox Filing
Protocol definition. These descriptions are intended to demonstrate the potential areas of incompatibility

arising from the differences in each implementor’s choice of a specific subset.

This section will discuss the following implementations : 1) the Xerox Network Systems 8037 File Server
and Xerox Development Environment FileTool client, 2) Implementation A for VAX/VMS and 3)
[mplementation B for VAX/4 2BSD UNIX and System V UNIX. The anonvmous identification of the latter
two implementations results from the proprietary nature of the corresponding commercial products.
They are included in the discussion because they are working examples of diffcrent implementations,
each of which attempted to support useful functionality. They provide concrete examples of the various

forms of incompatibilities which may be expericnced.

The descriptions presented will compare the implementations with regard to two categories: attribute
acceptance/usage and procedure support. The discussion of attribute acceptance and usage focuses on
the acceptance and retention of Filing attributes by a file service and the usage of attributes by the
clients. The discussion of procedure support describes where the implementations differ from the Filing
Protocol in their support for Filing procedures This description does not encompass the full detail of
these implementations, rather, it is intended to provide a perspective on the alternatives available when
implementing a subset of the protocol and the interoperability problems which are a result of these

alternatives.

The problems pointed out in this section provide the motivation for this thesis They forcibly
demonstrate the need for a single well defined protocol, in order to achicve interoperability between
heterogeneous implementations. Section 5 describes some of the specific choices made in defining this
standard subset and Section 6 specifies the resulting Filing Protocol subset which provides the desired

file transfer facility.

4.1 Attribute Acceptance - Services

Table 4.1 lists the attributes allowed on those procedures accepted by at least two of the various server
implementations. From this table, it is evident that only a small subset of attributes is actually accepted
and subsequently retained by each of the implementations and that the intersection of all three represents

an even smaller subset.

4.1.1 Xerox 8037 File Service

The Xerox 8037 File Service supports the full Filing Protocol with respect to attribute support The List
and GetAttributes procedures allow specification of any attributes and will return appropriate values for
the attributes requested. The Open and Store procedures allow only those attributes specified as legal in
the series of tables in Section 3.10 of the Filing Protocol [8]. Attribute specification is also supported for
the Copy, Deserialize, Move and Replace attributes although they are not included in Table + 1 since

neither the VMS or UNIX implementations support these procedures

4.1.2 VAX/VMS File Service

The VAX/VMS service only supports those attributes which readily map into specific VMS file system
constructs. In addition, the range of attributcs supported is not consistent across each of the procedures
implemented. Attributes that are not included in the table are not accepted and the corresponding
procedure is rejected. Howcever, not all attributes accepted on various procedures are. in turn. retained

by the file service.

A List procedure is rejected if an attribute type other than createdBy, createdOn, datasize. filelD.
isDirectory, modifiedOn, name, readOn, type or version is specified. Appropriate values are returned for

each of these attributes.

The Open procedure only accepts the file[D, name, parentID and version attributes. The Open will be

rejected if the parentID value is not nullfilelD

v
I

VAX/VMS UNIX
Procedure Xerox 8037 File Service File Service File Service
ChangeAttributes accessList procedure not supported all actribute types
checksum
childrenUniquelyNamed
createdBy
createdOn
defaultAccessList
name
ordering
position
subtreeSizeLimit
type
version
Create accesslist procedure not supported all attribute ty pes
checksum
childrenUniquelyNamed
createdby
createdOn
dataSize
defaultAccessList
isDirectory
isTemporany
name
ordering
position
subtreeSizeLimit
type
version
GetAttributes all attribute types procedure not supported dataSize
(values returned for isDircctory
these attributes) modifiedOn
name
type
List all attribute types createdBy dataSize
(values returned for createdOn isDircctony
these attributes) dataSize modificdOn
fileID name
isDirectory type
modifiedOn
name
readOn
type
version

Table 4.1

Scrvice acceptance of attribute typcs

-26-

VAX/VMS UNIX
Procedure Xerox 8037 File Service File Service File Service
Open file[D fileID all attribute types
name name
parentID parentID
pathname version
version
Store accessList createdBy all attribute types
checksum createdOn
childrenUniquelyNamed dataSize
createdby isDirectory
createdOn name
dataSize type
defaultAccessList version
isDirectory
isTemporary
name
ordering
position
subtreeSizeLimit
type
version

Table 4.1 (continued)
Service acceptance of attribute types

The Store procedure is rejected if the client specifies an attribute type other than createdBy. createdOn,
dataSize, isDirectory, name, type or version. Only the attributes name, type and version are actually

retained with the file; values for the other attributes are accepted but ignored

The ChangeAttributes, Create and GetAttributes procedures are not supported by the VMS

implementation.

4.1.3 UNIX File Service

The UNIX file service supports a different subsct of Filing attributes. Again, only those attributes readily
mapped into Unix file system constructs are supported and retained with the files. The file service will

accept, but not retain, attributes which it does not support.

The ChangeAttributes procedure only allows the name attribute to be specified. If the name attribute is
not specified, the procedure is rejected; however, specification of other attributes does not cause the

procedure call to be rejected.

The Create, Open and Store procedures accept all attributes and do not reject the procedure call
according to the legality of the attributes as specified in the Filing definition. Although specification of
the isDirectory and name attributes are necessary for the service to process the Open procedure call, the
procedure is not rejected if either of these attributes are missing. All attributes specified on the Create

and Store procedures, with the exception of isDirectory and name are not retained

The dataSize, isDirectory, modifiedOn, name and type attributes are accepted by the GetAttributes and
List procedures and appropriate values returned. Other attributes are accepted, but values are simply

omitted from the list returned to the client.

4.2 Attribute Usage - Clients

Table 4.2 compares the use of attributes by clients on thosc procedures supported by one or more clients
For each procedure, the client may use any combination of the attributes listed. This table in conjunction

with Table .1 is useful in identifying the incomptabilitics between the various clients and scrvices

4.2.1 XDE FileTool

The Xerox FileTool uses a subset of the defined Filing attributes depending upon the higher level user
function being performed. For example, the Open procedure may specify the pathname or file[D attribute
depending upon whether a previous GetAttributes was performed to determine the file[D attribute value.

The List procedure only requests those attributes actually specified by an option in the user interface.

Usage of attributes by the FileTool client is legal as defined by the tables in Section 3.10 of the Filing

Protocol [8].

-28-

4.2.2

VAX/VMS Client

Client usage of attribute types

VAX/VMS .
Procedure XDE FileTool / UNIX Client
Client
e
ChangeAttributes procedure not used procedure not used name
Create procedure not used procedure not used name
type
GetAttributes pathname procedure not used dataSize
modifiedOn
name
type
List createdBy dataSize dataSize
createdOn isDirectory modifiedOn
dataSize name name
modifiedOn type type
name
pathname
readOn
type
version
Open file[D name isDirectory
name name
pathname
Store createdOn dataSize dataSize
dataSize isDirectory modifiedOn
name name name
type type type
Table + 2

The VAX/VMS client only uses those atributes necessary to identify files and maintain round-trip

integrity of the data between Xerox and corresponding VMS services. Thosc attributes supported include

dataSize, isDirectory, name and type

4.2.3 UNIX Client

The UNIX client also makes use of only a small set of attributes for the same reasons as the VM client

However, the modifiedOn attribute is also specified on several proccdures even though it is illegal as

defined by the Filing Protocol.

4.3 Procedure Support - Services

Table 4.3 depicts the level of support for Filing defined procedures by the various implementations. Each
non-empty entry describes digressions from the Filing Protocol that are evidenced by these

implementations.

4.3.1 Xerox 8037 File Service

The Xerox 8037 File Service implementation was the original implementation of the Filing Protocol and
provides support for much of the protocol as defined Some anomalies are present which are of specific

importance when considered in conjunction with the other implementations.
The List procedure does not allow specification of the pathname attribute on a filter of type matches

The Create and Store procedures allow the isDirectory and type attributes to have conflicting values. The
isDirectory attribute is the sole indicator of directory files on the file service; specification of a tDirectory
type value without an accompanying isDirectory value of TRUE does not create a directory on the file

service.

4.3.2 VAX/VMS File Service

The VAX/VMS implementation supports a limited sct of procedures. The Logon. Logoff. Open. Close.
Delete, Store, Retrieve, List and Continue routines are the only procedures supported Of these. only the

Logoff, Close, Delete and Continue procedures do not impose some restrictions upon their use.

The Logon procedure will only accept Authentication credentials of type simple. An appropriate

rejection is issued if other credentials types are specified.

The Open procedure is restrictive in the type of attributes it allows The acceptance of attributes is

described in Section +.1.1.

The Store procedure also imposes restrictions on the types of attributes accepted and subscquently

retained as discussed in Section + 1.1. Only controls of type exclusive lock are accepted; all others are

VAX/VMS X
Procedure Xerox File Service / UN
File Service File Service
0 e ————————————
Logon - credentials (simple) credentials (not in Xerox
form)
Logoff - - -
Open -- attribute supgort attribute support
controls (only exclusive lock) | all controls accepted but not
implemented
Close - - -
Create - not supported attribute support
all controls accepted but not
implemented
Delete - - -
GetControls -- not supported not supported
ChangeControls - not supported not supported
GetAttributes -- not supported -
ChangeAttributes -- not supported --
Move - not supported not supported
Store = controls (only exclusive lock) | separate procedure for tText
remove CR from tText storage
records all controls accepted but not
implemented
Retrieve - added CR to tText records separate procedure for tText
retrieval
Serialize - not supported not supported
DeSerialize -- not supported not supported
Find -- not supported not supported
List -- scopes (count or filter of type implemented own
matches on pathname or wildcarding procedures
equal on version attribute) scopes (not implemented)
Continue - - -
UnifyAccessLists -- not supported not supported
RetrieveBytes - not supported not supported
ReplaceBytes -- not supported not supported

Table + 3

Service implementations - Non-support of procedurcs

rejected. A conversion of file content is performed on incoming files of type tText to preserve the
editability of simple text files throughout the network. The service assumes that a carriage return is the

record delimiter and subsequently strips these characters to form records when writing to V'MS files.

The Retrieve procedure performs the inverse conversion of file content if the file being transferred is of
type tText. Specifically, a carriage return character is inserted at the end of each record as it is entered

into the bulk data stream.
The VMS service does not allow storage or retrieval of directory files.

The List procedure only allows specification of a few types of scopes: 1) count or 2) filter of type
matches on the name and 3) filter of type equal on the version attribute. In addition, the count scope is
not used when formatting the returned attribute list. The List procedure also imposes restrictions on

acceptance of attribute types as described in Section +.1.1.

4.3.3 UNIX File Service

The UNIX service implementation supports only the Logon, Logoff, Open. Close, Create. Delete,
ChangeAttributes, GetAttributes. Store, Retrieve, List and Continue procedures. The Logoff, Closec, Delete

and Continue are the only procedures which impose no restrictions beyond the Filing Protocol definition

The Logon procedure accepts only credentials in the simple form; however. the encoding of the
credentials data docs not adhere to the Authentication Protocol, since the XNS model of authentication is

not supported.

The Open and Create procedures impose restrictions on the types of attributes accepted, as described in
Section 4.1.3. In addition, several non-Filing attributes are defined and are requircd by the service to
identify files. These procedures also accept all controls types. even though no form of controls is

provided by the service.

The Store procedure, like Open and Create, accepts all controls types without providing specific support

for them. The preservation of editability of simple text files is also provided, but in a manner unlike that

chosen by the VMS implementation. Specifically, an implementation-specific procedure is defined which
is used to store files of type tText. The content of these files is actually maintained across the bulk data

stream by defining a format for encoding the data into the bulk data stream.

The Retrieve procedure is identical to that defined in the Filing definition. However, a separate routine is
implemented for retrieval of files of type tText. This procedure simply performs the inverse of the

encoding performed by the analagous Store procedure.

The List procedure was totally incompatible with the Filing definition since the scope selection
mechanism was not implemented. The client used an implementation-specific procedure to establish the
context for wildcard searches on the service. The List procedure was then used to determine the next file

matching the previously specified file specification and return the requested attributes.

4.4 Procedure Support - Clients

Table 4.4 describes those procedures used by the various client implementations and any restrictions on
their use. Many of the restrictions described are complementary to restrictions enforced by the

corresponding file service.

4.4.1 XDE FileTool

The Xerox client only uses the Logon, Logoff, Open, Close, Delete, GetAttributes, Store, Retrieve, List and
Continue procedures. All procedures are implemented in accordance with the Filing definition. The
Delete procedure does, however, make use of multiple transport connections specifying a single Filing
session handle. Although this feature is allowed by the definition of Courier, it is not used by the other

client implementations.

Controls specified on the Open and Store procedures are of type empty. The List specifies a filter of type

matches on the name attribute.

-33.

Procedure XDE FileTool VAX/VMS Client UNIX Client
Logon -- credentials (simple) credentials (not in Xerox
form)
Logoff - - -
Open attribute use attribute use attribute use
controls (empty) controls (empty) controls (empty)
Close - - -
Create not used not used attribute use
Delete uses multiple transport - -
connections for a single
session
GetControls not used not used not used
ChangeControls not used not used not used
GetAttributes -- not used attribute use
ChangeAttributes not used not used attribute use
Move not used not used not used
Store attribute use attribute use attribute use
controls (empty) controls (empty) controls (empty)
add CR to tText records separate procedure for tText
storage
Retrieve -- remove CR from tText separate procedure for tText
records retrieval
Serialize not used not used not used
DeSerialize not used not used not used
Find not used not used not used
List scopes (only filter of type attribute use attribute use
matches on name attribute) scopes (only filter of type implemented own
matches on name attribute) wildcarding procedures
scopes (not implemented)
Continue - -- -
UnifyAccessLists not used not used not used
RetrieveBytes not used not used not used
ReplaceBytes not used not used not used

Table + +

234

Client implementations - Non-support of procedures

4.4.2 VAX/VMS Client

The VMS client implements the same procedures as FileTool with the exception of the GetAttributes
procedure. Attribute usage on those procedures is legal as defined by the protocol, although only a

limited number of attributes are used, as described in Section +.2.2.
Simple credentials are specified by the client on a Logon procedure.

Controls specified on the Open and Store are empty. The List procedure performs selection with a filter

of type matches on the name attribute.
The Store and Retrieve procedures perform the same conversion of tText file content as the VMS service
4.4.3 UNIX Client

The UNIX client implements the ChangeAttributes and Create procedures in addition to the procedures
supported by the XDE client. The subset of attributes implemented for use on those procedures is

described in Section +.2.3.

The Logon procedure uses credentials of type simple, but does not encode the data according to the

Xerox Authentication Protocol.

Empty controls are specified on the Open, Create and Store procedures. The Create proccedure is only
used to create empty directory files. Howcever, the type attribute is used to convey a type of tDirectory
without an accompanying isDirectory attribute. This use is legal according to the Filing definition but is

in conflict with the Xerox file scrvice implementation

The client also uses two implementation-specific procedures for the storage and retrieval of type tText
files. These procedures perform the same encoding’decoding of file content as their counterparts

implemented in the UNIX file service.

Wildcard listing is also performed via an implementation-specific procedure which is used by the client

to set up an initial search context. The List procedure is then used to retricve the desired attributes about

each file matching the wildcard criteria. The Filing selection mechanism of scopes is not implemented by

the client.

-36-

5. Implementation Incompatibilities

A well defined protocol, such as the Filing Protocol, minimizes the opportunities for incompatibilities
within implementations of the protocol. However, implementation of only a portion of the full protocol
increases the possibility that the interoperability will be reduced. Section 4 describes specific points
where the implementations discussed were not compatible because there was only a small intersection in
the subsets of the protocol chosen for implementation. The resulting disparity in implementation

strategies points out the need for a single subset which is supported across all implementations.

Maximum compatibility between implementations of a subset protocol is based on a well-specified set of
procedures and attributes which form a required basis for all implementations to support. This definition
must precisely specify the actions performed by each of the procedures and the handling of the defined
attributes within each of those procedures. A richer set of functions may be implemented as incremental

levels of support beyond the defined base level.

This section discusses the potential areas of incompatibility and selects specific solutions that are used to
build the specification of the subset protocol in Section 6. Alternatives are selected based on the need for
file transfer between heterogeneous systems.

5.1 Areas of incompatibility

The descriptions of the various Filing Protocol implementations in Section + indicate many areas of
incompatibility between the implementations. The causes of the incompatability witnessed in these

implementations can be divided into two categories:
° non-support of Filing constructs by the native operating system

. alternate specifications in the Filing Protocol

5.1.1 Non-support of Filing constructs by the native operating system

The XNS protocols were defined for use in a distributed system consisting of homogenous processors and
operating systems. As heterogeneous processors and operating systems were introduced into this
environment, the need to implement the protocol on top of existing file systems became critical because

a great deal of host software was already based on the underlying file system.

Successful implementation of the Filing Protocol on an existing file system must integrate Filing
constructs with the native operating/file system. thus enabling the protocol to act as a natural extension
of the native system. In many cascs, the mapping of defined Filing constructs to existing file systems is
not easily accomplished. This is due to the inability of the native operating or file system to provide

Filing functionality in the following areas:

) procedure support

. attribute retention and retrieval

. usc of controls to insure file integrity

) syntax of file names

. deletion of directories and all descendants
5.1.2 Alternate specifications in the Filing Protocol

The Filing Protocol is the detailed definition of a complcte file system I[n many cascs. the richness of the
protocol allows alternative methods to achicve the same results. For implementations not supporting the
full protocol, these alternatives lead to incompatible implementations.

The following examples point out several alternatives for specific actions which exist in the Filing

Protocol:

. specification of Open attributes to identify a file

U opening a file by use of the pathname attribute on Open or successive opening of nested

directories specifying the name attribute

. use of the isDirectory and type (tDirectory) attributes to designate a directory on a Store

5.2 Resolving Incompatibilities

Resolution of the above-stated incompatabilities is required to support interoperability between different
implementations. This section proposes particular solutions to these problems. These choices are used as

the basis for the subset protocol definition presented in Section 6.

The alternatives chosen are based upon the requirements of the protocol subset. The protocol is intended

to provide:
. common file system functions of retrieval, storage. enumeration and deletion
. round-trip equality of file content
. compatibility with common host proccssing activities (i.e.. text editing, backup/restore,
etc.)
J preservation of attributes essential to the above functions
5.2.1 Non-support of Filing constructs by the native operating system constructs

The usefulness of a Filing Protocol implementation on a specific operating system requircs successful
integration of Filing constructs with the existing file system. Much of this integration depends upon the
features provided by the host operating/file system Each of the arcas presented in Scction 5 1.1 are

examined and a specific alternative is presented. under the constraint of keeping the subset as small as

possible.

Procedure support

The initial step in supporting a subset of the full protocol on an existing file system is to decide which

procedures must be implcmented. The functions of retrieval, storage. enumeration and deletion can be

casily accomplished with the following set of procedures: Logon, Logoff, Open, Close. Delete, Store.
Retrieve, List and Continue. The remaining Filing procedures introduce added functionality and
complexity that is not essential to the common file exchange functions desired or simply duplicate

actions that can be performed by one of the above procedures.

The GetAttributes and List procedures allow retricval of the attributes associated with a given file or
files, respectively. List allows the client to specify the selection criteria for the files to be listed. while the
GetAttributes procedure is constrained to a single file which has previously been opened. The desire to
support specification of wildcard file formats led to the choice of the List procedure in the set of
mandatory procedures. The GetAttributes procedure is not considered essential since the specification of

a single file on a List can be used to obtain the same results.

The Create and Store procedures allow the creation of empty and non-empty files, respectively.
However, the Store procedure can also be used to create empty files by sending a bulk data stream
containing no data or by specifying BulkData nullSource as the source stream Since use of the Store is the
sole procedure for conveying file content to a service, use of the Create is not esscntial for the creation of
empty files. A given service must allow the usc of a null bulk data stream on the Store procedure to effect

creation of an empty file

This set of implemented procedures provide the context for discussion of other incompatibilites.
Problems evidenced on procedures which are not included in this list are irrelevant to the remaining

discussion.

Attribute retention and retrieval

The support for retention and retrieval of Filing attributes is the largest area of discrepancy between the
implementations discussed previously. Each implementation uses its own subset of attributes for the

desired functions and assumes compatability only with similar implementations.

Comparing the facilitics provided by different operating and file systems with the requirements of the

subset protocol indicate a set of attributes which are commonly implementable and useful across all

40-

systems. These core Filing attributes convey the information which is most useful to other host utilities.
The Filing attributes createdOn, dataSize, isDirectory, modifiedOn. pathname and type are designated as
the set of attributes which must be supported by all implementations. This level of support implies that a
service implementation must retain the value for each of these attributes when presented on a Store
procedure and must also return the appropriate value when requested on a List Clients are also

responsible for retaining these attributes when retrieving a file from a service.

The majority of the remaining Filing-defined attributes do not easily map to existing file system
constructs on many popular file systems. In some cases (i.e , createdBy, file[D), legal Filing values cannot
be maintained by the file system; in others (i.e., accessList, ordering, version), the functionality implied

by the attribute is non-existant.

The definition of these mandatory attributes. in combination with the set of required procedures.
provides the backdrop for the discussion of more specific problems as they relate to these procedures

and attributes.

Use of controls to insure file integrity

Controls are used by the Filing Protocol to insure file integrity by controlling multi-clicnt access to files
When dealing with existing file systems, this functionality may already exist. although in a potentially

different form.

For those procedures designated as mandatory. it is reasonable to assume that the default access
mechanisms provided by the resident operating system are sufficient. The ability to implement Filing-
defined controls may require changes to the resident file system and therefore contradict a major goal of

defining the subset protocol Therefore. no specific support for controls is required or assumed by a

given service implementation

-41-

Syntax of file names

One of the most obvious inconsistencies across heterogeneous systems is that of file name conventions.
The constraints imposed upon file names by various systems can sometimes lead to very complicated
conversion algorithms. The definition of the Xerox pathname syntax in the Filing Protocol introduces yet

another convention for implementations to consider.

When coupling the intended use of the implementations with the desire for ease of implementation, the
obvious strategy is to allow specification of pathname values in the syntax of the intended service file
system. This strategy implies that the filename syntax on two systems mayv be radically different, but in
most cases, the user knows the conventions of the intended system and can specify an appropriate value.
The specification of service-specific wildcard file names on a List is also allowed by this scheme. The
need to define and implement any mapping algorithms is eliminated; however, individual

implementations may still support alternate syntaxes (such as the Filing pathname syntax) as desired.

Deletion of directories and all descendants

Deletion of directorics as specified in the Filing Protocol implies deletion of all descendant files for that
directory. Support for this feature may differ from system to system depending upon the structure of the
resident file system For this reason, deletion of directorics is not required and a given service is allowed

to return an appropriate error.

5.2.2 Alternate specifications in the Filing Protocol

The Filing Protocol allows the use of alternate mechanisms for accomplishing spccific functions. The
existence of these alternatives implies that more than one method can be used to effect a given result

This in turn fosters incompatibility when an implemcntation chooses to support one alternative without

providing support for the others.

The resolution of this class of problem involves mandating support for onc of the alternatives. All

implementations are required to support the single alwernative defined by the subset protocol. Support

for other alternatives may exist at the discretion of individual implementations This provides a common
ground for all implementations to perform the desired actions and thus maximizes interoperability with

other implementations.

Specification of Open attributes to identify a file

The Filing Protocol allows a client to specify a given file on an Open procedure through the combination
of several attribute types: fileID, name, parentID, pathname and version. Since the fileID, namec, parentID
and version types are not included in the set of mandatory attributes to be supported by each
implementation, use of the pathname attribute becomes the required method of identifying files on an

Open.

Use of the pathname attribute on an Open or successive opening of nested directories

For historical reasons, several implementations of the Filing Protocol have used the name attribute with
an accompanying directory handle to identify a file on an Open. The name attribute specifies the name of
the file as it exists relative to the directory associated with the supplied directory handle. Since the value
for the name attribute is relative to the immediate parent, the client must successively issue an Open (and
Close) for each directory identified as an ancestor of the desired file For instance, to open the file
A/B/C/D (assuming the Xerox specified pathname syntax), the client would open A, open B, (closc A),
open C, (close B) and open D. Use of the pathname attribute allows the client to simply specify the

absolute form, A/B/C/D, on the Open.

In Section 5.2.1 5 the syntax of the pathname attribute value was defined to be service-specific. This
implies that a given clicnt may not know a given scrvice syntax and thus be unable to parse the pathname
value and call the successive Opens Since pathname was previously defined to be a mandatory attribute
and the form of the pathname value is specified relative to the root directory. use of the successive
Opens is not encouraged A service implementation may require use of the pathname attribute on the
Open with an accompanying directory handle value of nullHandle It is recognized that in certain cases.

the inability of the client to know the appropriate scrvice syntax may in fact cause the service to open a

file different from that intended by the client. However. for the implementations examined by this thesis,

the number of these cases is relatively small

Use of the isDirectory and type (tDirectory) attributes to designate a directory file

The Filing Protocol includes two mechanisms for specifying directory files. Although there appears to be
a redundancy in this definition, actual implementations use only the isDirectory attribute to designate a
directory file. A type value of tDirectory when not used in conjunction with an isDirectory value of True,

will create a non-directory file of type tDirectory.

To prevent confusion on the part of clients, this ambiguity is resolved by dictating that the isDirectory
and type (tDirectory) attributes are essentially the same Specification of one without the other will have
the same effect; conflicting values when both attributes are specified will result in an error. This allows

directory files to be created on a service by specifying either an isDirectory value of True. a type value of

tDirectory, or both.

44

6. FilingSubset

The previous sections have provided background related to the the development of a subset of the Filing
Protocol primarily for use as a file transfer protocol between heterogeneous systems. This section
presents the formal specification of the FilingSubset. a subset protocol of the Filing Protocol that makes
use of the choices identified in Section 5. The specification which follows was edited and subsequently
adopted by Xerox as the definition of the FilingSubset Protocol included in version 6 of the Filing

Protocol (Appendix B).

6.1 Overview

6.1.1 Motivation

The Filing Protocol represents the specification of a general purpose filing system which defines the
interaction that takes place between client and server processes within the Xerox Network System This

protocol acts as the definition of the file system as well as a guide on how to use that system.

As the formal specification for a file system, the Filing Protocol provides mechanisms for file access,
transfer and management. As the network model matured. the addition of new network processors and
application processes introduced requirements for varying levcls of filing service. The motivation to
provide a consistent base level of service across all processors increased with the inability of new
implementations to provide the full level of service stated in the Filing Protocol The motivations for
defining a consistent subset for implementation across a wide variety of processors stems from scveril

areas including:

o the ability to allow file exchange without the support necessary for a full level of service
. the ability to provide XNS Filing access to the native file system resident on a *foreign’ host
. the ability to allow XNS Filing access to the files on a system whose primary purpose is not

to provide a file service

45-

6.1.2

the inability of the native operating system on several 'foreign’ hosts to support Filing

features and constructs

the expense of software development and resource utilization necessary to support the full

Filing Protocol

Requirements and Goals

The definition of a subset of the Filing Protocol is guided by a set of requirements and goals. In general,

the requirements are to provide a useful and compatible level of service within the context of the Filing

Protocol. The requirements set forth for the definition of the FilingSubset are:

provide the common file system functions of retrieval, storage, enumeration and deletion.

facilitate compatibility by remaining a proper subsect of the Filing Protocol.

build upon the Xerox Network Systems Authentication model in addition to the native

operating system model for authentication.

retain round-trip equality of file content.

A set of goals is also defined which, although not required nor guaranteed, are important to the overall

usefulness for elements implementing the subset. The following goals are desirable in the definition of

the FilingSubset:

round-trip preservation of attributes (the ability to store a file on a remote system and

retrieve it at a later date with all attributes intact).

the ability to perform common processing activities on a file regardless of on which system

it currently resides (for example, text editing, data base listing and backup/restore).

ease of implementation of both client and server code on a wide variety of systems.

-46-

6.2 Definition

The FilingSubset defines a guaranteed minimal level of service which is supported by both clients and
servers implementing the Subset. This service is defined as a set of restrictions on the Filing Protocol
definition. The mandatory restrictions define specific implementation alternatives specific to the

FilingSubset.

The FilingSubset is a proper subset of the Filing Protocol. This guarantees that both actions and
responses defined in the subset are identical to those in the Filing Protocol. The subset also guarantees
that clients that implement the subset can interact with a service implementing the full Filing Protocol In
addition, a client using the full protocol can interact with a subset service by restricting its use of

procedures and arguments to those included in the subset definition.

In all cases, the procedures, arguments and errors defined in the subset are identical to those in the Filing
Protocol. In providing a lower level of service, the subset does, however, restrict the choices available
for argument and error values. The subset also allows recognizes that it may not be possible for a given
service to support the semantics of certain operations. The subset dictates appropriate errors to be

returned under those conditions.

Maximum interoperability is ensured when both client and server implementations support this minimum
level and make no assumptions regarding the availability of a broader functionality. However, increased
levels of functionality, up to full Filing, may be supported by individual implementations with the

restriction that appropriate actions be taken in the event that the additional functionality is not supported

by other implementations.

The complete Courier definition of the FilingSubset is presented in Section 6.8.

-3

6.3 Attributes

In defining a minimum level of Filing service, the FilingSubset differentiates three levels of support for

file attributes. These levels are mandatory. implied and optional.

6.3.1 Mandatory Attributes

Mandatory attributes represent the specific set of attributes whch must be interpreted by all Subset
implementations. These attributes are guaranteed to be retained by any service implementing the
FilingSubset and must also be accepted on specific procedure calls to the extent that they are legal

arguments on that same procedure within the Filing Protocol.

The attributes createdOn, dataSize, isDirectory, modifiedOn, pathname, and type are defined by the
Subset as mandatory and must be supported by all Subset implementations. In addition, an
implementation must support the type values tAsciiText. tDirectory and tUnspecified This support
implies that a service implementation must accept these attributes on a Store procedure, if they are legal

arguments, and must also return the appropriate non-null value when requested with a List procedure.

6.3.1.1 createdOn

The createdOn attribute is identical to that in Filing.

6.3.1.2 dataSize

The Filing Protocol states that the dataSize attribute contains the number of eight-bit bytcs in the
content of the file. The FilingSubset recognizes that it not always straightforward for specific
implementations to determine the actual content size, so all Subset implementations should regard the

value of the dataSize attribute as an estimate of the file size rather than the amount of valid data in the

file.

6.6.1.3 isDirectory

The isDirectory attribute is identical to that in Filing

-48-

6.3.1.4 modifiedOn

The modifiedOn attribute is identical to that in Filing.

6.3.1.5 pathname

The FilingSubset requires all implementations to permit the use of the pathname attribute to identify a
file. The value of the pathname attribute will always specify a remote file’s access path in a form which
is recognized by the service. A Subset client should make no assumptions as to the syntax of this attribute

since it will vary from service to service.

Two types of pathname values are supported by Filing: 1) absolute, which is specified from the root file
and 2) relative, which is specified relative to an accompanying directory Handle or parentlD attribute.
All FilingSubset service implementations are required to allow specification of the absolute syntax for the
pathname attribute on an Open. List or Store procedure. However. when the absolute form is specified
on one of these procedures, a FilingSubset service is permitted to reject the procedure if the directory
Handle specified on the call is not the nullHandle. Likewise, the procedure may be rejected if the
parentlD attribute is not the nullfilelD if it is specified on an Open or Store procedure in conjunction

with the absolute pathname form.

FilingSubset services are not required to support a relative pathname syntax A service may reject a
procedure call with an AttributeValueError if the pathname value specified is in the relative form.
Clients should recognize that support for this syntax may not be provided by a given service and there is
no explicit mechanism to determine if such support does exist. Use of the rclative pathname syntux by a

client may result in either an undefined behavior or rejection from the scrvice.

The value of the pathname attribute returned from a List procedure should always be an absolute

pathname so that it can be used directly for subsequent operations.

-49-

6.3.1.6 type

The tAsciiText, tDirectory and tUnspecified values must be supported by all FilingSubset

implementations.

FilingSubset services should also permit the specification of these tvpes on the Open call. This usage of
the type attribute indicates the client's intention to receive the file as the specified type regardless of the

file type as stored on the service.

6.3.2 Implied Attributes

Those non-mandatory attributes which receive an default value when a file is created are designated
implied attributes. In maintaining consistency with the Filing Protocol, the Subset requires that
implementations must allow specification of these implied values for the accessList,
childrenUniquelyNamed, defaultAccessList, isTemporary, ordering. subtreeSizeLimit and version
attributes even though the attribute may not be fully supported by the implementation A Store
procedure must allow specification of these attributes insofar as the accompanying attribute value is in
fact the service-specific supported value (see Section 6.7). Specification of an unsupported value, under

these circumstances, must be rejected with an AttributeValueError if the attribute is not fully supported.

6.3.3 Optional Attributes

Optional attributes comprise the remaining attributes. Support for these attributes is optional. 1f an
implementation provides support for any of these additional attributes. that support must be within the

definition of the Filing Protocol.

6.4 Remote Procedure Support

The FilingSubset supports only those procedures which provide the essential functions required for file

retrieval, storage, listing/enumeration and delction. These procedurcs are Logon. Logoff, Continue,

Open, Close, Retrieve, Store, List and Delete.

The FilingSubset also requires all implementations to permit file identification through the use of the

pathname attribute.

This section describes the expected level of support by all Subset implementations for the remote

procedures defined.

6.4.1 Session Support

The Logon, Logoff and Continue procedures are defined to be identical to the Filing Protocol.

6.4.2 Opening and Closing Files

The Subset Open procedure must permit use of the pathname attribute for file identification.
Specification of the parentlD, type and version attributes must be allowed in conjunction with the
pathname attribute although the required set of allowable values for each of these attributes is limited
(the values nullFilelD for parentID, tAsciiText, tDirectory, tUnspecified for type and highestVersion
andlowestVersion for version). A server implementation must not return an AttributeTypeError if the
parentiD, type or version attributes are specified on an Open; instead, an AttributeValueError may be

returned if the value of the attribute is not one of the above.

The Open procedure may be rejected if controls is not the empty sequence or directory is not the

nullHandle.

The Filing Protocol specifies that while a client has a file open, the file may not be dcleted by other
network clients. The Subset does not presume that a service implementation can prevent a previously
opened file from being deleted by other users. regardless of whether they are gencral interactive users or
other network clients. Subset clients should be prepared to deal with directorics or files which cannot

be accessed even after a valid handle is obtained (the error HandleError[problem: invalid] is returned)

The Close procedure is defined to be identical to the Filing Protocol.

6.4.3 Enumerating Files in Directories

The FilingSubset defines a minimal file enumeration capability, the List procedure, which is based on use

of the pathname attribute.

6.4.3.1 Scopes

The FilingSubset requires a minimum level of support for scopes. Specifically, count and filter are the
only scope types which are required to be supported. A Subset service must also permit the matches

filter type which specifies the pathname attribute.

6.4.3.2 Attribute Support

The List procedure is required to return values for all attributes requested. Specifically. non-null values
must be returned for the mandatory and implied attribute types accesslList, childrenUniquelynamed,
createdOn, dataSize, defaultAccesslList, isDirectory, isTemporary, modifiedOn, ordering, pathname,
subtreeSizelLimit, type and version. For the remainder of the Filing attributes, appropriate non-null
values must be returned if that attribute is supported by the implementation; the null, or empty, sequence
(Attribute: TYPE = ReCORD [type: AttributeType, value: SEQUENCE 0 OF UNSPECIFIED]) must be returned

for all unsupported attributes.

The BulkData.immediateSink and BulkData.nullSink transfer types must be supported by all

implementations for returning the appropriate information from a List request.

6.4.4 Storing Files

The Subset Store procedure requires implementations to permit the use of the pathname attribute for
file identification. The type andversion attributes must be allowed in conjunction with the pathname
attribute; however, the required set of allowable values for each of these attributes may be quite small:

tAsciiText, tDirectory, tUnspecified for type and highestVersion for version.

Treatment of the remaining attributes depends upon the leve! of support for those attributes within each
service implementation. A service cannot reject a Store procedure with an AttributeTypeError if any of
the mandatory attributes (except modifiedOn) are specified. An AttributeValueError may be returned if

the accompanying value is determined to be invalid.

Likewise, a service can not reject a Store procedure with an AttributeTypeError if an optional attribute
is specified. The procedure must not be rejected with an AttributeValueError if the accompanying value
is the server-specific supported value as shown in the table in Section 6.” The procedure must be
rejected with an AttributeValueError if the accompanying value is, indeed, not supported by the service

implementation.

All other attributes must be rejected with an AttributeTypeError if that type is not supported or an

AttributeValueError if the specified value is invalid or unsupported.

The Store procedure may be rejected if controls is not the empty sequence or directory is not the

nullHandle.

The BulkData.immediateSource and BulkData.nullSource transfer types must be supported by all

implementations for sending the file content during a Store request

The Store procedure allows both directory and non-directory files to be created. Directory files may be
created by specifying all of the following: 1) isDirectory attribute value of TRUE, 2) type attribute valuc of
tDirectory and 3) a bulk data stream type of Bulkdata.immediateSource with no file content or the

Bulkdata.nullSource bulk data stream type.

A FilingSubset service is permitted to reject the creation of directory files. if that action is not supported
by the service. The error AccessError [problem: accessRightsinsufficient] should be reported if the
service does not allow the creation of directory files. A service may optionally only allow creation of
empty directory files. In this case, the error AttributeValueError [problem: unreasonable, type:

isDirectory] should be returned if a client attempts to create a non-empty directory.

6.4.5 Retrieving Files
The FilingSubset Retrieve procedure is identical to the Filing Protocol.

The BulkData.immediateSink and BulkData.nullSink transfer types must be supported by all

implementations for returning the file content from a Retrieve request.

6.4.6 Deleting Files
The FilingSubset Delete procedure is defined to be identical to the Filing Protocol for non-directory files.

The Filing Protocol states that if a Delete procedure is specified where the intended file is a directory, all
descendants of that directory will also be deleted. The FilingSubset does not presume that all descendants
of a directory can in fact be deleted when the directory itself is deleted. Server implementations that
cannot guarantee this behavior should return the error AccessError [problem: accessRightsinsufficient)].
Client implementations should be prepared to deal with this error condition when observed. Likewise, an
error encountered during deletion of the directory tree may result in only partial deletion of the files

within that directory tree.

6.5 Remote Procedure Restrictions

The FilingSubset defines a minimum capability that must be supported by all implementations This
minimum level of support is imposed by defining those argument values which all Subset
implementations must accept. Specific server implementations may accept a larger range of values;
however, support for these values should not be assumed on the part of client implementations. To the
extent that additional argument values are supported, this support must still be compatible with the full
Filing Protocol. Indeed. a valid implementation must return an error if the expected functionality cannot
be provided. FilingSubset procedures are allowed to return appropriate errors if the described conditions

are observed for the following procedures and that implementation does not support the functionality

implied by values other than those specified

This section summarizes the restrictions in a convenient itemized form. The intent is to provide a list of

those conditions which may result in an error from a Subset service.

Open--

Store--

directory specifies a handle other than nullHandle

controls does not specify the empty sequence

attributes does not contain the pathname attribute type

attributes contains an attribute type other than parentlD, pathname, type or version
the parentlD attribute specifies a handle other than nullFilelD

the type attribute specifies a value other than tAsciiText, tDirectory or tUnspecified

the version attribute specifies a value other than highestVersion

directory specifies a handle other than nullHandle
controls does not specify the empty sequence

content specifies a source other than type BulkData.immediateSource or

BulkData.nullSource
attributes does not contain the pathname attribute type

attributes contains one of the attribute types fileID, modifiedBy, modifiedOn, name,

numberOfChildren, parentID, readBy, readOn, storedSize or subtreeSize
the type attribute specifies a value other than tAsciiText, tDirectory or tUnspecified

the version attribute specifies a value other than highestVersion

Retrieve--

. content specifies a sink other than type BulkData.immediateSink or BulkData.nullSink
List--

. directory specifies a handle other than nullHandle

o scope includes a scope type other than filter or count

o filterType specifies a filter type other than matches

. a matches filter contains an attribute type other than pathname

. listing specifies a sink other than type BulkData.immediateSink or BulkData.nullSink

. types specifies an attribute type other than mandatory or implied attributes
6.6 Remote Errors

Each of the FilingSubset procedures report remote errors identical to the Filing Protocol. The FilingSubset
guarantees the return of specific errors for certain conditions. Additional errors may be returned under

the appropriate conditions if a specific service can detect the condition.

6.7 Procedures and attributes

The tables on the following pages describe the effects of FilingSubset procedures with respect to
attributes. If a procedure never modifies interpreted attributes, no table is given. If an entry in the table is
empty, the corresponding attribute is never changed. Otherwise, a brief indication of the change is given

Where specification of an attribute will result in an error condition, the appropriate error is identified

In the case of List, the table specifies the required return values from a service. Although this procedurc
does not modify attributes, its behavior is defined by the FilingSubset. The Open table specifics the
attribute values that must be allowed by a subset service on the Open. The Store table shows both the

attribute types and values that must be allowed by a service as well as the values that must be retained by

the service regardless of whether a value was specified for the attribute on the procedure.

The FilingSubset states that all attributes which are supported by a server must return an appropriate
value. If an attribute is not supported by a server, then Attribute : TYPE = RECORD [type:

List

Attribute If Requested’

accesslList returned

checksum returned
childrenUniquelyNamed | returned

createdBy returned

createdOn non-null value must be returned
dataSize non-null value must be returned?
defaultAccessList returned

filelD returned

isDirectory non-null value must be returned
isTemporary returned

modifiedBy returned

modifiedOn non-null value must be returned
name returned

numberOfChildren returned

ordering returned

parentiD returned

pathname non-null value must be returned
position returned

readBy returned

readOn returned

storedSize returned

subtreeSize returned

subtreeSizeLimit returned

type

non-null value must be returned

uninterpreted

returned

version

returned

AttributeType, value: SEQUENCE 0 OF UNSPECIFIED] must be returned.

The value returned for the dataSize attribute should be viewed by the client as an approximation of

the actual content size .

Open

Attribute If a Parameter
accessList illegal, AttributeTypeError
checksum illegal, AttributeTypeError
childrenUniquelyNamed | illegal, AttributeTypeError
createdBy illegal, AttributeTypeError
createdOn illegal, AttributeTypeError
dataSize illegal, AttributeTypeError
defaultAccessList illegal, AttributeTypeError
fileiD optional®
isDirectory illegal, AttributeTypeError
isTemporary illegal, AttributeTypeError
modifiedBy illegal, AttributeTypeError
modifiedOn illegal, AttributeTypeError
name opl’.ionalz
numberOfChildren illegal, AttributeTypeError
ordering illegal, AttributeTypeError
parentiD optional 3
pathname file with this value is opened
position illegal, AttributeTypeError
readBy illegal, AttributeTypeError
readOn illegal, AttributeTypeError
storedSize illegal, AttributeTypeError
subtreeSize illegal, AttributeTypeError
subtreeSizeLimit illegal, AttributeTypeError
type file with this value is openedl
uninterpreted ignored
version opt;ional5

The FilingSubset permits the use of type to indicate that the transferred form of the file is of the
specified type. This may impose some form of alteration on the actual file content as the file is
transferred. If a specified type is not supported by the implementation, the procedure should be
rejected with an AttributeValueError.

FilingSubset implementations are not required to support this attribute. If support is not provided,
the service should return an AttributeTypeError. '

The Filing Protocol allows the combination of parentiD, path.name and version. However, a given
subset implementation is free to reject the Open with an AttributeValueError if either parentlD 1s
not equal to nullFilelD or version is not highestVersion and the implementation does not support

either attribute.

Store

Attribute If a Parameter’ Supported Values If not a Parameter®
accessList set if value supported [defaulted: TrRug] set to [defaulted: TRug]
checksum set if type supported unknownChecksum set appropriately

childrenUniquelyNamed

set if value supported

TRUE 'FALSE.‘

TRUE/FALSE4

createdBy set if type supported -- currently logged-in user
createdOn set -- current date and time
dataSize initial allocation (hint) - number of bytes transferred

defaultAccessList

set if value supported

set to [defaulted: TRuE]

fileiD

illegal, AttributeTypeError

system-assigned value

1sDirectory set -- FALSE

isTemporary set if value supported FALSE FALSE

modifiedBy illegal, AttributeTypeError -- currently logged-in user
modifiedOn illegal, AttributeTypeError - current date and time
name illegal, AttributeTypeErrorZ -- implementation dependant

numberOfChildren

illegal, AttributeTypeError

0

ordering

set if value supported

defaultOrdering

parentlD illegal, AttributeTypeError - filelD of resulting parent
pathname set -- consistent with ancestry
position set if type supported -- depends on parent’s ordering
readBy illegal, AttributeTypeError --

readOn illegal, AttributeTypeError -- nullTime

storedSize illegal, AttributeTypeError -- sct appropriately

subtreeSize

illegal, AttributeTypeError

set appropriately

subtreeSizeLimit

set if value supported

nullSubtreeSizeLimit

nullSubtreeSizelimit

type

set if value supportedj

tAsciiText, tDirectory,
tUnspecified

tDirectory or tUnspecified

uninterpreted

set if type supported

null

version

set if value supported

highestVersion

next available

The FilingSubset must treat attributes in onc of four ways (1) An attribute marked “illegal” will be
rejected with AttributeTypeError (2) An attribute marked “set” must not be rejected with
AttributeTypeError and must normally accept non-null values In unusual cases it may reject a non-
null value, such as a string which is too long (3) An attributc marked “set if value supported” must
not reject with AttributeTypeError. It must not result in an AttributeValueError if the value is one
of the supported values as listed above An AttributeValueError may be reported for other values
which cannot be supported. (4) An attribute marked 'set if type supported” must be rejected with
Attribute TypeError or AttributeValueError if the implementation does not fully support the type or

value respectively.

The FilingSubset does not require support for this attribute If support is not provided, an
AttributeTypeError should be reported
The types tAsciiText, tDirectory and tUnspecified must be supported by .aII implementations
The supported value for childrenUniquelyNamed is implcmcntation. specific ficpcnding upon
whether version is supported If multiple versions are supported, childrenUniquelyNamed is TRUE
These valucs are the default values if the attribute type is supported by the implementation

-60-

6.8 Courier Definition

The complete Courier definition of the FilingSubset follows. All Courier

specified in the Filing Protocol.

FilingSubset: PROGRAM 1500 VERSION 1 =
BEGIN
DEPENDS UPON

BulkData (0) VeERrsION 1,

Clearinghouse (2) version 3,

Filing (10) VERSION 6,

Authentication (14) VERSION 3;
--TYPES AND CONSTANTS --
-- Attributes--
AttributeSequence: TYre = Filing.AttributeSequence;
AttributeTypeSequence: Tyre = Filing.AttributeTypeSequence;
allAttributeTypes: Handle = Filing.allAttributeTypes;

--Controls --

ControlSequence: TyPe = Filing.ControlSequence;
ControlTypeSequence: Type = Filing.ControlTypeSequence;

-- Handles and Authentication --
Credentials: Type = Filing.Credentials;
SecondaryType: TYpe = Filing.SecondaryType;

Handle: Tyre = Filing.Handle;

nullHandle: Type = Filing.nullHandle;

Session: TYPE

Filing.Session;

Verifier: Tyre = Authentication.Verifier;

-- Scopes --

ScopeSequence: Type = Filing.ScopeSequence;

--REMOTE PROCEDURES --

-- Logging On and Logging Off --

types are

identical to those

Logon: PROCEDURE [
service: Clearinghouse.Name, credentials: Credentials, verifier: Verifier]
RETURNS [session: Session]
REPORTS [AuthenticationError, ServiceError, SessionError, UndefinedError] =
Filing.Logon;

Logoff: PROCEDURE [session: Session]
REPORTS [AuthenticationError, ServiceError, SessionEror, UndefinedError] =
Filing.Logoff;

Continue: PROCEDURE [session: Session]
REPORTS [AuthenticationError, SessionError, UndefinedError] =
Filing.Continue;

-- Opening and Closing Files --

Open:PROCEDURE [attributes: AttributeSequence, directory: Handle,
controls: ControlSequence, session: Session]

RETURNS [file: Handle]

REPORTS [AccessError, AttributeTypeError, AttributeValueError, AuthenticationError,
ControlTypeError, ControlValueError, HandleError, SessionError, UndefinedError] =
Filing.Open;

Close: PrOCEDURE [file: Handle, session: Session]
REPORTS [AuthenticationError, HandleError, SessionError, UndefinedError] =
Filing.Close;

--Deleting Files --

Delete: prOCEDURE [file: Handle, session: Session]
REPORTS [AccessError, AuthenticationError, HandleError, SessionError, UndefinedError] =
Filing.Delete;

-- Transferring Bulk Data (File Content) --

Store: PROCEDURE [directory: Handle, attributes: AttributeSequence,
controls: ControlSequence, content: BulkData.Sink, session: Session]

RETURNS: [file, Handle]

REPORTS [AccessError, AttributeTypeError, AttributeValueError, AuthenticationError,
ConnectionError, ControlTypeError, ControlValueError, HandleError, InsertionError,
SessionError, SpaceError, TransferError, UndefinedError] = Filing.Store,;

Retrieve: prOCEDURE [file: Handle, content: BulkData.Sink, session: Session] _
REPORTS [AccessError, AuthenticationError, ConnectionError, HandleError, SessionError,
TransferError, UndefinedError] = Filing.Retrieve;

-- Listing Files in a Directory --

List: PROCEDURE [directory: Handle, types: AttributeTypeSequence,.
scope: ScopeSequence, listing: BulkData.Sink, session: Session] .

REPORTS [AccessError, AttributeTypeError, AuthenticationError, ConenctionError,
HandleError, ScopeTypeError, ScopeValueError, SessionError, TransferError,

UndefinedError] = Filing.List;

.62-

--REMOTE ERRORS --

-- problem with an attribute type or value --

AttributeTypeError: ERROR [problem: ArgumentProblem, type: AttributeType] =
Filing.AttributeTypeError;

AttributeValueError: eRROR [problem: ArgumentProblem, type: AttributeType] =
Filing.AttributeValueError;

-- problem with an control type or value --

ControlTypeError: ERROR [problem: ArgumentProblem, type: ControlType] =
Filing.ControlTypeError;

ControlValueError: eRROR [problem: ArgumentProblem, type: ControlType] =
Filing.ControlValueError;

-- problem with an scope type or value --

ScopeTypeError: ERROR [problem: ArgumentProblem, type: ScopeType] =
Filing.ScopeTypeError;

ScopeValueError: ERROR [problem: ArgumentProblem, type: ScopeType] =
Filing.ScopeValueError;

ArgumentProblem: Tyre = Filing.ArgumentProblem;

-- problem in obtaining access to a file --

AccessError: ERROR [problem: AccessProblem] = Filing.AccessError;
AccessProblem: Type = Filing.AccessProblem;

-- problem with a credentials or verifier --

AuthenticationError: eRROR [problem: AuthenticationProblem] =
Filing.AuthenticationError;

--problem with a bulk data transfer --

ConnectionError: ERROR [problem: ConnectionProblem] = Filing.ConnectionError;
ConnectionProblem: Tyre = Filing.ConnectionProblem;

-- problem with a file handle --

HandleError: ERROR [problem: HandleProblem] = Filing.HandleError;
HandleProblem: Type = Filing.HandleProblem;

-- problem during insertion in directory (or changing attributes) --

InsertionError: ERROR [problem: InsertionProblem] = Filing.InsertionError;
InsertionProblem: Type = Filing.InsertionProblem;

-- problem during random access operation --

RangeError: ERROR [problem: ArgumentProblem] = Filing.RangeError,

-63-

-- problem during logon or logoff --

ServiceError: erRROR [problem: ServiceProblem] = Filing.ServiceError;
ServiceProblem: Type = Filing.ServiceProblem;

-- problem with a session --

SessionError: eRROR [problem: SessionProblem] = Filing.SessionError;
SessionProblem: Type = Filing.SessionProblem;

-- problem obtaining space for file content or attributes --

SpaceError: erRROR [problem: SpaceProblem] = Filing.SpaceError;
SpaceProblem: Type = Filing.SpaceProblem;

-- problem during bulk data transfer --

TransferError: ERROR [problem: TransferProblem] = Filing.TransferError;
TransferProblem: Type = Filing.TrasnferProblem;

-- some undefined (and implementation-dependent) problem occurred --
UndefinedError: errOR [problem: UndefinedProblem] = Filing.UndefinedError;
UndefinedProblem: Type = Filing.UndefinedProblem;

--INTERPRETED ATTRIBUTE DEFINITIONS--

accesslist: AttributeType = Filing.accesslList;
AccessList: TYype = Filing.Accesslist;

checksum: AttributeType = Filing.checksum;
Checksum: Type = Filing.Checksum;

childrenUniquelyNamed: AttributeType = Filing.childrenUniquelyNamed;
ChildrenUniquelyNamed: Type = Filing.ChildrenUniquelyNamed:;

createdBy: AttributeType = Filing.createdBy;
CreatedBy: Tyre = Filing.CreatedBy;

createdOn: AttributeType = Filing.createdOn;
CreatedOn: Type = Filing.CreatedOn;

dataSize: AttributeType = Filing.datasize;
DataSize: Type = Filing.DataSize;

defaultAccessList: AttributeType = Filing.defagltAccessList;
DefaultAccesslist: Type = Filing.DefaultAccessList,

FilelD: AttributeType = Filing.FilelD;
FileID: Tyre = Filng.FilelD;

G-

isDirectory: AttributeType = Filing.isDirectory;
IsDirectory: Type = Filing.IsDirectory;

isTemporary: AttributeType = Filing.IsTemporary;
isTemporary: Type = filing.IsTemporary;

modifiedBy: AttributeType = Filing.modifiedBy;
ModifiedBy: TYpe = Filing.ModifiedBy;

modifiedOn: AttributeType = Filing.modifiedOn;
ModifiedOn: Type = Filing.ModifiedOn;

name: AttributeType = Filing.name;
Name: TYPe = Filing.Name;

numberOfChildren: AttributeType = Filing.numberOfChildren;
NumberOFChildren: Tyre = Filing.NumberOfChildren;

ordering: AttributeType = Filing.ordering;
Ordering: Type = Filing.Ordering;

pathname: AttributeType = Filing.pathname;
Pathname: Type = Filing.Pathname;

parentID: AttributeType = Filing.parentlD;
ParentID: TypPe = Filing.ParentID;

position: AttributeType = Filing.position;
Position: Type = Filing.Position;

readBy: AttributeType = Filing.readBy;
ReadBy: Type = Filing.readBy;

readOn: AttributeType = Filing.readOn;
ReadOn: Type = Filing.ReadOn;

storedSize: AttributeType = Filing.storedSize;
StoredSize: Type = Filing.StoredSize;

subtreeSize: AttributeType = Filing.subtreeSize;
SubtreeSize: Type = Filing.SubtreeSize;

subtreeSizelLimit: AttributeType = Filing.suptrgeSizeLimit;
SubtreeSizelimit: Type = Filing.SubtreeSizeLimit;

type: AttributeType = Filing.type;
Type: Type = Filing.Type;

version: AttributeType = Filing.version;
Version: Type = Filing.Version;

--BULK DATA FORMATS --

-65-

-- Attribute series Format, used in List --

StreamofAttributeSequence: Tyre = Filing.StreamOfAttributeSequence;
--Line-oriented ASCII text file format, used in file interchange --
StreamOfAsciiText: Type Filing.StreamOfAsciiText;

END;

-66-

References

(1] Xerox Corporation. Authentication Protocol. Xerox System Integration Standard. Stamford,

Connecticut, April 1984, XNSS 09840+ (XSIS 09840+).

(2] Xerox Corporation, Bulk Data Transfer, Xerox System Integration Standard, Stamford,

Connecticut, April 198+, XNSS 038112 (XSIS 038112), Addendum 1a.

(3] Xerox Corporation Character Code Standard. Xerox System Integration Standard,

Stamford, Connecticut, April 198+, XNSS 05840+ (XSIS 058404).

(4] Xerox Corporation. Clearinghouse Protocol. Xerox System Integration Standard, Stamford,

Connecticut, April 1984, XNSS 07840+ (XSIS 07840-4).

(5] Xerox Corporation. Clearinghouse Entry Formats Xerox Network Systems Standard,

Stamford, Connecticut, April 1984, XNSS 16840+ (XSIS 16840-).

[6] Xerox Corporation. Courier: The Remote Procedure Call Protocol. Xerox Network Systems

Standard, Stamford, Connecticut, December 1981, XINSS 038112 (XSIS 038112).

(7] Digital Equipment Corporation, Intel Corporation, and Xerox Corporation The FLthernet. A
Local Area Network: Data Link Layer and Physical Layer Specifications Version 2.0.

September 1980.

(8] Xerox Corporation. Filing Protocol Xerox Network Systems Standard, Stamford.

Connecticut, May 1986, XNSS 108605 (XSIS 1086053)

(9l Xerox Corporation. Internet Transport Protocols. Xerox Network Systems Standard,

Stamford, Connecticut, December 1981, XNSs 028112 (X5IN 028112)

[10] Xerox Corporation. Interpress Electronic Printing Standard, Version 3.0. Xerox Network

Systems Standard, Stamford, Connecticut, January 1986, XNSS 1048601 (XSIS 048601).

6™

(11]

(12]

[13]

[14]

[nternational Organization for Standardization. /SO Open Systems Interconnection- Basic

Reference Model 1SO/TC 97/SC 16 N 719, August 1981

Xerox Corporation. Printing Protocol Xerox Network Systems Standard, Stamford.

Connecticut, April 198, XNSS 11840+ (XSIS 11840+4).

Xerox Corporation. Secondary Credentials Formats. Xerox Network Svstems Standard,

Stamford, Connecticut, May 1986, XNSS 258603 (XSIS 238605).

Xerox Corporation. Time Protocol. Xerox Network Systems Standard, Stamford,

Connecticut, October 1982, XNSS 088210 (XSIS 088210).

-68-

A. FilingSubset Implementor’s Guide

During the course of development of the FilingSubset Protocol, it was recognized that there was a need
for an implementation guide to accompany the protocol specification. This guide would provide a
concise scheme for the implementation of the protocol to maximize interoperability. The FilingSubset
Implementor’'s Guide was written as a response to this need. This document describes the
implementation of the FilingSubset Protocol from both a client and service perspective. This description
is presented at two levels: 1) independent of any underlying file system and 2) specific support for

implementation in the UNIX and VMS operating systems.

A copy of the FilingSubset Implementor’s Guide is included in the same form in which it is being

distributed by Xerox.

-69-

FILINGSUBSET
IMPLEMENTOR'S GUIDE

XEROX

Ed Flint
July 1986

Notice

This document s being provided for informational purposes only. Xerox makes no warranties or
representations of any kind relative to this document or its use, including the implied warranties of
merchantability and fitness for a particular purpose. Xerox does not assume any responsibility or hability
for any