
Rochester Institute of Technology
RIT Scholar Works

Theses Thesis/Dissertation Collections

8-1-1986

A Study of the Xerox XNS Filing Protocol as
Implemented on Several Heterogenous Systems
Edward Flint

Follow this and additional works at: http://scholarworks.rit.edu/theses

This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion
in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.

Recommended Citation
Flint, Edward, "A Study of the Xerox XNS Filing Protocol as Implemented on Several Heterogenous Systems" (1986). Thesis.
Rochester Institute of Technology. Accessed from

http://scholarworks.rit.edu?utm_source=scholarworks.rit.edu%2Ftheses%2F5525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F5525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/etd_collections?utm_source=scholarworks.rit.edu%2Ftheses%2F5525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F5525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/theses/5525?utm_source=scholarworks.rit.edu%2Ftheses%2F5525&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu

Rochester [nstitute of Technology

School of Computer Science and Technology

A Study of the Xerox XNS Filing Protocol as Implemented

on Several Heterogenous Systems

August. 1986

Ed Flint

A thesis. submitted to the Faculty of the School of Computer Science and Technology. in partial

fullfillment of the requirements for the degree of Master of Science in Computer Science.

Approved by

Leslie Jill Miller 8/7/86

John L. Ellis 8/26/86

James E. Heliotis 8/23/86

Title of Thesis:

A Study of the Xerox XNS Filing Protocol as Implemented on Several Heterogeneous Systems

(Edward Flint hereby grant permission to the WaUace Memorial Library, of RlT, to reproduce my

thesis in whole or in part. Any reproduction wiU not be for commercial use or profit.

Date: September 25, 1986

Table of Contents

Table of Contents 2

Abstract
... 5

KeyWords and Phrases 5

Computing Review Subject Codes 5

1. Introduction
... 6

2. XNS Architecture
.8

2.1. ISO Model 8

2.2. Servers, Services and Clients 10

2.3- XNS Protocols and Standards 12

2 3.1. Physical/Data Link Protocols 12

2 3 2 Internet Transport Protocols 1 2

233 Courier (Remote Procedure Call Protocol) 13

234 Application Protocols 14

3. Filing Protocol Overview . . .

I"

3.1. Clients and Servers .

1~

32 Procedures . . 18

33- Sessions

34. Users and Authentication

19

20

20

21

21

7 1

3 5. Files: content and attributes

36. Handles

3.""

Controls

38. Scopes

39. Errors 22

Implementation Descriptions . . 24

4.1. Attribute Acceptance - Services . 25

4.1.1. Xerox 8037 File Service 25

4 1.2 VAX/VMS File Service 25

4.1.3. UNLX File Service
2"

4 2 Attribute Usage - Clients 28

42 1 XDEFileTool . . .28

42 2 VAX/VMS Client . . 29

4.2 3. UNLX Client . . .29

43. Procedure Support - Services ... 30

4.3.1. Xerox
803"

File Service 30

>_

4 32 VAX/VMS File Service 30

4.3.3- UNLX File Service 32

4.4. Procedure Support - Clients 33

4.4.1. XDEFileTool 33

4.4.2 VAX /VMS Client . . 35

4.4.3. UNLX Client. ... 35

Implementation Incompatibilities . .

3"

5.1. Areas of Incompatibility
3~

51.1. Non-support of Filing constructs by the native operating system 38

5.1.2. Alternate specifications in the Filing Protocol . 38

5.2 Resolving incompatibilities 39

52 1. Non-support of Filing constructs by the native operating system 39

5.2.2 Alternate specifications in the Filing Protocol 42

FilingSubset 45

6.1. Overview 45

6.1.1. Motivation . 45

6.12 Requirements and Goals 46

6.2 Definition
4"

6.3. Attributes ... 48

6.3.1. Mandatory Attributes 48

6.3.1.1. createdOn 48

63 12 dataSize . 48

6.3.1.3. isDirectory 48

6.3 1 4 modifiedOn . 49

6.3.I 5 pathname . 49

6.3-1.6. type 50

6.32. Implied Attributes 50

6.3-3. Optional Attributes 50

6.4. Remote Procedure Support . 50

6.4.1. Session Support . 51

64 2 Opening and Closing Files . . 51

6.4.3 Enumerating Files in Directories 52

6.4.3-1. Scopes . 52

6.4.3-2 Attribute Support 52

6.4.4. Storing Files . 52

6 4 5 Retrieving Files 54

-3-

6.4 6. Deleting Files .54

6.5. Remote Procedure Restrictions . .54

6.6. Remote Errors .56

6.7. Procedures and Attributes 56

6.8. Courier Definition 60

References
6"

Appendices

A FilingSubset Implementor's Guide 69

B. Filing Protocol . . "0

Abstract

The Xerox Network System is composed of heterogeneous processors connected across a variety of

transmission media A series of protocols is defined to describe the communication mechanisms between

system elements. One of these protocols, the Filing Protocol, defines a general purpose file management

system. Current implementations of the protocol, although derived from the Xerox specification, fall

short of providing the interconnect!vity between elements desired in a heterogeneous network system

The definition of an easily implemented protocol subset that provides the common file system functions

of retrieval, storage, enumeration/location and deletion is derived from experiences with several

implementations This definition and an accompanying implementation document provide a mechanism

to guide future implementations toward increased interconnectivity

Keywords and Phrases

Network Protocols, Distributed File Systems

Computing Review Subject Codes

C.2 2 [Computer-Communication Networks]: Network Protocols Protocol architecture, C24

[Computer-Communication Networks]: Distributed Systems Distributed applications, D 4 3

[Operating Systems]. File Systems Management - Distributedfile systems,

->-

1. Introduction

The Xerox Network Systems (XNS) architecture defines a series of protocols for use between systems in

a distributed computing environment These protocols provide a mechanism for communicating between

a variety ofmachines across a variety of transmission media, and encompass the full range of the ISO/OSI

reference model from the physical through application layers. Application protocols are defined for

filing, printing, network object lookup and user authentication

The Xerox Network Systems provide a general purpose file management system which is heirarchical in

nature and supports a wide variety of functions, including file transfer, access control, file location and

enumeration, random access, serialization and deserialization of directory heirarchies. The Filing Protocol

represents a formal definiton of this file system as well as a guide for accessing the system.

As the network model has been refined, implementations of this model became more prevalent It

became clear that there are many operating systems and application processes which 1) have a specific

need for certain portions, or just a subset, of the Filing functions and/or 2) do not have the requirements

or resources to support the Filing Protocol in its entirety. For example, a subset intended for simple file

transfer and enumeration has a range of uses within the areas of distributed printing electronic

publishing and interconnectivity of heterogeneous systems.

Currently several commercial implementations of the Filing Protocol exist for different system

configurations. Although each of these implementations is based upon the XNS specification for Filing, in

reality, each of these implementations falls short of the full implementation The result is a lack of

interconnectivity because there is no formal definition of a standard Filing subset to guide coordination of

the implementation schemes

This thesis is divided into several sections documenting the evolution of a subset of the Filing Protocol

for use as a simple file transfer protocol The thesis was motivated by my inital experiences involved

with providing compatible file transfer functionality between three existing Filing implementations M\

work resulted in the formal definition and incorporation of the FilingSubset Protocol into the Xerox

Filing Protocol and the development of the accompanying implementor's guide.

Section 2 is an overview of the XNS architecture and the relationship between the XNS protocol family

and the ISO/OSI Reference Model Section 3 describes the concepts and terms defined by the Filing

Protocol as a foundation for understanding the more detailed discussions in later sections Section 4

describes several existing Filing implementations and points out the incompatibilities evidenced between

them. This description highlights the difficulty in providing interoperability between various

implementations. Section 5 presents a specific solution to the problems from these implementations of

the Filing Protocol. The choices made in this section are then formalized into a subset of the Filing

Protocol that provides the intended file transfer functionality This formal specification of the

FilingSubset Protocol is presented in Section 6. Appendix A includes the FilingSubset Implementor's

Guide, a detailed implementation strategy for the FilingSubset Protocol. This strategy describes the

implementation of the protocol from general perspective and describes specific support required on the

UNIX and VMS operating systems. A copy of verion 6 of the Xerox Filing Protocol is included in

Appendix B for reference This version contains the Xerox definition of the FilingSubset Protocol, which

is an edited version of the specification presented in Section 6 of this thesis

2. XNS Architecture

The XNS architecture defines a family of protocols and standards to provide for the exchange and

handling of information within a distributed network environment. This architecture is an outgrowth of

the 3MB Ethernet used within Xerox from the early ^"O's into the 1980s. This experimental network

was developed at Xerox's Palo Alto Research Center (PARC) and has been the subject of numerous

published papers.

The XNS protocols represent a refinement of the early research protocols As the architecture graduated

to the 10MB Ethernet and other transmission media, research continued into numerous application areas

and products were developed to provide greater diversity and richer functionality

This section presents an overview of the XNS architecture and its relationship to the ISO/OSI reference

model The intent is to provide the reader with some background on the structured approach of the XNS

architecture and the interrelationship between the various protocols that it defines This inter

relationship is important in understanding the definition and use of the Filing Protocol later in this thesis

2.1. ISO Model

In 1981 the International Organization for Standardization (ISO) defined a reference model [11] for Open

Systems Interconnection (OSI) consisting of
"

layers of protocols as shown in Figure 2 1 Each of these

layers offers distinct functions that depend upon the lower layers and in turn are relied upon by the

higher layers. The layers included in this model
are-

Layer 1: Physical This layer performs the actual transmission of data over the physical

communication medium

Layer 2 Data Link This layer provides reliable transmission by organizing the data into

frames and providing error detection and optionally correction

-8-

User Process User Process

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application Protocols

Presentation Protocols

Session Protocols

Transport Protocols

Network Protocols

Data Link Protocols

Physical Protocols

*-
Application

i

1 i

*
Presentation

t
-

Session

a

Transport

t
?

Network

t
^

Data Link

a

* Physical

End System A

Layer 3: Network

Layer 4 Transport

Layer 5: Session

Transmission Medium ncj System B

Figure 2 1 ISO/OSI Reference Model Protocols

The responsibility of this layer is to organize higher level data into

packets which are transmitted to the recipient To perform this, the

network layer must provide for packet addressing and routing

This layer provides reliable end-to-end transmission independent of

any intermediate nodes

The session layer provides for the establishment, management,

svnehronization and termination of a user level connection from source

to destination This connection exists independent of the underlying

transport connections

Layer 6: Presentation This layer translates user data objects into the form transmitted

between systems Common translations may include data compression,

encryption and character code conversions.

Layer 7: Application This layer performs applications specific to the environment in which

the network is used

The XNS architecture is organized into a series of protocol layers which closely resemble the ISO model

However, in several instances, a single XNS layer corresponds to multiple ISO layers The XNS layers and

their association to the ISO model is depicted in Figure 2 2

2.2. Servers, Services and Clients

Two terms used quite frequently when describing the XNS architecture are those of clients and servers.

Any device attached to the network for the purposes of pro\ ding a service to network users is referred

to as a server The collection of software which accomplishes a specific task by following a defined

protocol for interaction is commonly referred to as a service

Several types of servers are evident in the XNS environment A dedicated server performs a specific task

and nothing else. A print server is an example of such a dedicated server A server may also be a general

purpose computer capable of providing several services simultaneously, such as naming authentication

and mail services In addition, a user workstation may function as a network server on occasion, for

example, a temporary file serv ice.

The entity which makes requests of a service is called a client Clients typically perform work on behalf

of a user; however, services may in fact be clients of other services under certain conditions, such as

when a file service contacts an authentication serv ice to validate user credentials

10-

Interpress Mail

Format

Raster

Encoding

Standard

Information Format and Encoding Standards

Layer 7

Application
Printing

Protocol

Filing

Protocol

Mail

Transport

Protocol

Gateway

Access

Protocol

Basic Application Services

Clearing

house

Protocol

Authenti

cation

Protocol

Time

Protocol

Font

Standards

Character

Code

Standard

Application Support Environment

Layer 6

Presentation

Layer 5

Session

Courier Message Stream

Object Stream

Block Stream

Bulk Data Transfer Protocol

Courier

Layer 4

Transport

Layer 3

Network

Echo

Protocol

Sequenced

Packet

Protocol

Packet

Exchange

Protocol

Error

Protocol

Routing

Information

Protocol

Internet Datagram Protocol

Internet Transport Protocols

Layer 2

Data Link

Layer 1

Physical

Ethernet

Data Link Layer

Ethernet

Physical Layer

Ethernet

X2s

Virtual Circuit

S\ nchrunous

Point-to-Point

Protocol

RS-232, RS 449, X.21, etc.

Figure 2 2 XNS Protocols

-ll

2.3. XNS Protocols and Standards

2.3.1. Physical/Data Link Protocols

The primary transmission medium used by XNS is the Ethernet [7]. The Ethernet specification describes

both the physical and data link layers as defined by the ISO model. XNS also supports other standard

physical interfaces (RS-232, RS-449 and X 21) and data link protocols (X 25 and synchronous
point-to-

point protocol).

2.3.2 Internet Transport Protocols

Typically, a network consists of many sub-network configurations which are connected in some manner

Each of these sub-networks may use a different physical transmission medium However, an internet

protocol provides the functions which allow these sub-networks to be addressed as a single uniform

network The XNS network, like other packet switching networks, routes each packet, or datagram,

individually This concept differs from that of a virtual circuit in that no prior setup is necessary between

the respective source and destination nodes before data can be exchanged A transport protocol must

provide the mechanisms to insure that packets are delivered to the receiver in the same order in which

they were sent, with no duplication or omission

The XNS Internet Transport Protocols [9] provide these services through several layered protocols, each

performing a distinct function.

The Internet Datagram Protocol defines the fundamental unit of data an internet packet, which is passed

within the internet, and also defines the means for these packets to be addressed, routed and delivered

Each packet contains addressing information (source and destination addresses), control information

(checksum, length, packet type and transport control) and data (encoded higher lev el protocol data).

The Sequenced Packet Protocol (SPP) provides for the reliable delivery of packets from source to

destination. It is this protocol that guarantees the deliv cry of packets in order with no duplication or

ommission.

-12-

The Packet Exchange Protocol (PEP) provides a facility for efficient request-response oriented

communication. This is typically used when a single internet packet can contain the response data and

the reliability achieved through the use of the Sequenced Packet Protocol is not required

The Error Protocol provides a standard mechanism for errors to be communicated

The Routing Information Protocol defines the means by which network routing tables are maintained.

Each network node must maintain a routing table which is used to route indiv idual packets from one

network to another This protocol provides for the broadcast and maintenance of the information

contained within the tables

The Echo Protocol defines a simple means to verify the existence and correct operation of any network

host.

2.3.3 Courier (Remote Procedure Call Protocol)

The Courier Protocol [6] defines the manner in which clients and servers interact within the distributed

XNS environment Courier defines a single request reply, or transaction, mechanism upon which all

higher level XNS protocols are based

Courier is based upon the remote procedure call model, where an active client invokes operations

provided by a passiv e network server A Courier call is analagous to a subroutine call where arguments

are passed on the call and values may be conveyed on the return, as shown in Figure 2 3

CALL procedure arguments

RETIRN results

-or--

ABORT error, arguments

Figure 2 3 Courier model

Passive

Courier is defined as consisting of three layers the block stream, the object stream and the message

stream The block stream encapsulates the binary data from higher layer packets for transmission by the

13-

Sequenced Packet Protocol. The object stream imposes structure onto this binary data in the form of

common data types (such as booleans, cardinals, strings, etc). The message stream structures these data

types into Courier procedure calls and replies

The message and data types supported by Courier also form the definition for a language in which all XNS

application level protocols are written. The formal definition for higher level protocols consists of

transaction-oriented expressions written in this Courier language

There may be instances where applications desire to send large amounts of data for which it does not

make sense to pass the data as a procedure argument. For this reason, Courier also includes a Bulk Data

Protocol [2] which defines the mechanism for transmitting simple streams of data between two Courier

applications. For the purposes of transmission, this data may be v iewed as a single Courier data object

which is interpreted based upon the context of a recent Courier call Bulk data transfers may take place in

two forms: immediate, where the initiator is either the sender or receiver of the data and third party,

where the initiator causes the data to be sent from a separate sender to another receiver

2.3.4 Application Protocols

The XNS application protocol layer consists of a set of protocols and standards that support and enhance

those protocols. This layer is further subdivided into three distinct levels, the Application Support

Environment, Basic Application Services and Information Format and Encoding Standards

The lowest level, the Application Support Environment, provides those services used by the majority of

higher level applications Specifically this level prov ides the following functions to present a secure and

reliable network for the higher levels:

location of resources and individuals within the network

user authentication

a common time base for the entire network

a common character encoding format for files and Courier strings

14-

standardization for the use of fonts and font services

The Clearinghouse Protocol [4] defines the mechanisms for object naming and addressing within the

network. The Clearinghouse service and associated database is decentralized and replicated throughout

the network. This protocol defines the information stored by the service and the means whereby users

can retrieve the information.

The Authentication Protocol [1] defines the methods used by clients and servers to identify each other in

a secure and reliable manner. This protocol defines the credentials which a user provides to gain access

to the network services and the procedures employed by clients and services to verify these credentials

The Time Protocol [14] defines a standard format for the representation of time within the network and

the manner in which network clients receive the current time from a network time service

The Character Code Standard [3] defines the encoding of character data within the network This

encoding provides character assignments for Ascii and ISO 646 characters as well as special characters

from many different alphabets, mathematical symbols and graphics characters

The second level, consisting of the Basic Application Protocols, defines the protocols needed by users of

the network on a regular basis These protocols provide the following common applications

a global network file system

remote printing

mail services

interactive terminal services

The Printing Protocol [12] defines the manner in which print requests are communicated to print servers

and the status of print requests is determined

The Filing Protocol [8] defines a general purpose distributed file system and the mechanism for transfer of

files within the network.

It-

The Gateway Access Protocol supports terminal emulation and file exchange between non-XNS clients

and XNS services as well as XNS clients and non-XNS services

The Mail Protocol defines the format of mail messages and the means employed to send and receive these

messages.

The third level, consisting of the Information and Encoding Standards, defines specific formats or

languages for the encoding and decoding of files within the network This level provides a uniform

format for similar files in an effort to provide users with the ability to edit, print or transmit a file

anywhere within the network, regardless of host hardware or software

Interpress [10] defines a standard representation for documents which are to be printed It is this

language that is interpreted by a print service prior to the actual printing. Interpress prov ides dev ice

independence for the creators of print files within the network.

The Raster Encoding Standard is the definition of a general purpose encoding for digital images This

standard is used to represent stand-alone images to be viewed as well as images included within

Interpress files

16-

3. Filing Protocol Overview

The Xerox Network Systems provide a general purpose file management system which is hierarchical in

nature and supports a wide variety of functions, including file transfer, access control, file location and

enumeration, random access, serialization and deserialization of directory heirarchies The Filing Protocol

represents a formal definiton of this file system as well as a guide for accessing the system.

The protocol being defined by this thesis evolved as a subset of the Filing Protocol because there were

existing implementations of the Filing Protocol and compatability with these implementations could be

preserved. Since the Filing Protocol contained the level of functionality desired for the protocol being

defined, that functionality simply needed to be separated from the full protocol into the definition of the

subset.

A brief description of the basic concepts of the Filing Protocol is presented here to provide a background

for the remainder of the thesis A detailed description of the protocol is not intended, since many of these

details are not relevant to this thesis. Instead, the complete Xerox specification of the Filing Protocol is

included, for reference, in Appendix B The description of the protocol that follows defines the terms and

concepts intrinsic to understanding the work presented later

3.1 Clients and Servers

The Xerox Filing Protocol is a formal specification of a general purpose file system It defines the

interaction that takes place between a. filing client, an entity requesting work to be done on behalf of a

user, and afile service; the entity accepting requests for work

A client may have an explicit user interface, where specific user
inputs control the client process actions,

or it may be invoked during the execution of a process where there is no user interaction

A file service mav, but is not required to, exist on a separate processor or server Multiple separate file

services mav in fact reside on a single server A general time-sharing computer may provide a file service

to allow some level of file access to users not resident on that machine

All files within a file service are organized in a heirarchical manner Each service contains a single root

directory which in turn contains various descendant subdirectories and files All files residing directly in

a directory are referred to as children of the directory file. The directory which contains a file is, in turn,

that file's parent.

3.2 Procedures

The Filing Protocol defines a set of procedures for various levels of file access and transfer The

procedures defined in the Xerox specification are

Session Management-

Logon

Logoff

Continue

establish a session

terminate a session

retain an open session during a period of
inactivity-

File Access- -

Open

Close

open a file

close a file

Create create a file with no content

Delete delete a file

Access Control Management-

ChangeControls

GetControls

UnifyAccessLists

Attribute
Management-

ChangeAttributes

modify the controls in effect for a previously opened file

retrieve the controls in effect for a previously opened file

unifv the access lists for a subtree

modifv the attributes for a file

-18-

GetAttributes retrieve the attributes for a file

3.3

Remote File Management-

Copy

Move

File Transfer-

Retrieve

Store

Replace

Serialize

Deserialize

Random Access- -

ReplaceBytes

RetrieveBytes

File Enumeration-

Find

List

Sessions

copy a file and its descendants to another directory

move a file and its descendants to another directorv

retrieve the contents of a file

create a file with contents

replace the contents of an existing file

encode a file and its descendants into a stream of bvtes

reconstruct a file and its descendants from a stream of bytes

overwrite or append to the existing content of a file

read a range of bytes from an existing file

locate and open a file in a directory

return attributes about files in a directory

The Filing Protocol is a session oriented protocol, in that an explicit user logon must be performed to

establish a session, with a subsequent logoff terminating the session All procedure calls issued by the

client relative to the initial logon request take place in the context of that session

A unique identifier called a session handle is used by both client and service processes to maintain the

context of a user session LIpon successful validation of the user credentials, the service creates the

19-

session handle and returns it to the client. This handle is then used on all subsequent client calls within

the same session until a logoff occurs. The logoff signals termination of the session and causes the client

and service to discard the corresponding session handle

Sessions may vary greatly in their duration and amount of activity A file service may terminate a session

at any time when a remote procedure call is not in progress.

3.4 Users and Authentication

Each session requires that some user identification be presented to the service process The Filing

Protocol provides for the use of both primary and secondary credentials. Primary credentials are in a

form defined in the Authentication Protocol [1] and are validated against a network Authentication

service. Secondary credentials are file service specific and may be required as needed by the underlying

service operating system The service performs the necessary validation of the credentials presented as a

part of logging on to the service

3.5 Files: content and attributes

The basic unit of operation within the Filing Protocol is that of a file A file is a logical grouping of data

which is stored as a single unit

Each file is viewed as either temporary or permanent Temporary files do not reside in any directory and

only exist for the duration of all sessions which have the file open Permanent files reside in a specific

directory and remain there until explicitly deleted

Each file consists of two distinct parts content and attributes The content of the file is the data actually

contained in the file as a sequence of eight bit bytes This data is uninterpreted by the file serv ice except

in the case where a specific format is defined for the transfer of the data

Attributes are additional data items associated with a file's content that mav be used to prov ide additional

identification or description of a file Attributes may either be interpreted, in which case they have a

-20-

specific meaning to a file service and result in a defined behavior, or uninterpreted, in which case they

are stored on the file service but interpreted only by the client

Each attribute is designated by an attribute type, many of which are defined by the Filing Protocol. Each

of these defined attribute types must be interpreted by all file services implementing the Filing Protocol.

Attributes normally are obtained and modified by explicit client action; however, certain procedures do

result in file service modification of attributes.

Interpreted attributes exist in several different categories;

identification related filelD. isDirectory, isTemporary. name, pathname, type and version

content related checksum, dataSize and storedSize

parent related parentlD and position

event related createdBy, createdOn, modifiedBy, modifiedOn, readBy and readOn

directory related childrenUniquelyNamed, numberOfChildren, ordering, subtreeSize and

subtreeSizeLimit

access related accessList and defaultAccessI.ist

3.6 Handles

Filing clients issue requests to a file service to operate on files When a service creates a new file or

opens an existing file on behalf of a client, a file handle is created and returned to the client This handle

is used by the client and service to identify the file within the context of a session The handle is

discarded once the file is closed or the session is terminated

The actual structure of a file handle is service specific and is only interpreted by the file service

3.7 Controls

A client may request access to a file with certain access characteristics to be imposed by the service

These characteristics, called controls, are presented with the request to open the file and specify the

-21

intended interaction with a file by the client. Controls can be used by the service to determine the level

of interaction with a file that can occur simultaneously by several clients. Since controls are relative to a

given file handle, they can also be used to control access by the same client if a file is opened multiple

times in a single session. Specifically, controls can designate:

lock

timeout

access

a type of lock (none, share or exclusive)

a timeout period to be used in waiting for a lock

a set of access permissions requested for a file

3.8 Scopes

When clients enumerate or locate files, they specify arguments, called scopes, to describe the selection

criteria to use Scopes can specify the following:

count

depth

direction

filters

the maximum number of files to present to the client

the nesting level of descendants to consider during the search

the direction of examination, either from beginning to end or end to beginning

the conditions on attributes to be used for identification (condition is True or

False, condition equal to a constant, or a logical combination of conditions)

3.9 Errors

Consistent with the Courier model, the Filing Protocol will return appropriate errors when a procedure

call cannot be serviced correctly Specifically, the following classes of errors may be returned

AccessError

ArgumentError

the desired file access is not possible

a specified argument (attribute, control or scope) type or value was

invalid

AuthenticationError the user could not be validated

ConnectionError

HandleError

InsertionError

RangeError

ServiceError

SessionError

SpaceError

TransferError

UndefinedError

the bulk data connection could not be established

the specified file handle was invalid

the specified file could not be inserted into the directory

the specified random access byte range was invalid

the session could not be created or terminated

the specified session handle was invalid

the specified storage for the file could not be allocated

the bulk data transfer encountered a problem

an implementation dependant problem occured

2-\-

4. Implementation Descriptions

This section presents descriptions of several existing implementations based upon the Xerox Filing

Protocol definition. These descriptions are intended to demonstrate the potential areas of incompatibility

arising from the differences in each implementor's choice of a specific subset.

This section will discuss the following implementations : 1) the Xerox Network Systems
803"

File Server

and Xerox Development Environment FileTool client, 2) Implementation A for VAX/VMS and 3)

Implementation B for VAX/4 2BSD UNLX and System V UNIX The anonymous identification of the latter

two implementations results from the proprietary nature of the corresponding commercial products

They are included in the discussion because they are working examples of different implementations,

each of which attempted to support useful functionality . They provide concrete examples of the various

forms of incompatibilities which may be experienced.

The descriptions presented will compare the implementations with regard to two categories: attribute

acceptance/usage and procedure support The discussion of attribute acceptance and usage focuses on

the acceptance and retention of Filing attributes by a file service and the usage of attributes by the

clients. The discussion of procedure support describes where the implementations differ from the Filing

Protocol in their support for Filing procedures This description does not encompass the full detail of

these implementations, rather, it is intended to provide a perspective on the alternatives available when

implementing a subset of the protocol and the interoperability problems which are a result of these

alternatives.

The problems pointed out in this section provide the motivation for this thesis They forcibly

demonstrate the need for a single well defined protocol, in order to achieve interoperability between

heterogeneous implementations Section 5 describes some of the specific choices made in defining this

standard subset and Section 6 specifics the resulting Filing Protocol subset which provides the desired

file transfer facility.

-24-

4.1 Attribute Acceptance - Services

Table 4.1 lists the attributes allowed on those procedures accepted by at least two of the various server

implementations. From this table, it is evident that only a small subset of attributes is actually accepted

and subsequently retained by each of the implementations and that the intersection of all three represents

an even smaller subset

4.1.1 Xerox 8037 File Service

The Xerox
803"

File Service supports the full Filing Protocol with respect to attribute support The List

and GetAttributes procedures allow specification of any attributes and will return appropriate v alues for

the attributes requested. The Open and Store procedures allow only those attributes specified as legal in

the series of tables in Section 3 10 of the Filing Protocol [8] Attribute specification is also supported for

the Copy, Deserialize, Move and Replace attributes although they are not included in Table 4 1 since

neither the VMS or UNIX implementations support these procedures

4.1.2 VAX/VMS File Service

The VAX/VMS service only supports those attributes which readily map into specific VMS file system

constructs In addition, the range of attributes supported is not consistent across each of the procedures

implemented. Attributes that are not included in the table are not accepted and the corresponding

procedure is rejected However, not all attributes accepted on various procedures are, in turn, retained

by the file service.

A List procedure is rejected if an attribute type other than createdBy, createdOn, dataSi/e filell),

isDirectory, modifiedOn, name, readOn, type or version is specified Appropriate values are returned for

each of these attributes

The Open procedure only accepts the filell), name, parentlD and version attributes The Open will be

rejected if the parentlD value is not nullfilerD

-2->-

Procedure Xerox 8037 File Service
VAX/VMS

File Service

UNK

File Service

ChangeAttrlbutes accessList

checksum

childrenUniquelyNamed

createdBy

createdOn

defaultAccessList

name

ordering

position

subtreeSizeLimit

type

version

procedure not supported all attribute types

Create accessList

checksum

childrenUniquelyNamed

createdby

createdOn

dataSize

defaultAccessList

isDirectory

isTemporary

name

ordering

position

subtreeSizeLimit

type

version

procedure not supported all attribute t\pcs

GetAttrlbutes

(values returned for

these attributes)

all attribute types procedure not supported dataSize

isDirectun

modifiedOn

name

type

List

(values returned for

these attributes)

all attribute types createdBy

createdOn

dataSize

filelD

isDirectory

modifiedOn

name

readOn

type

version

dataSize

isDireann

modifiedOn

name

type

Table 4.1

Service acceptance of attribute types

26-

Procedure Xerox 8037 File Service
VAX/VMS

File Service

UNIX

File Service

Open filelD

name

parentlD

pathname

version

file ID

name

parentlD

version

all attribute types

Store accessList

checksum

childrenUniquelyNamed

createdby

createdOn

dataSize

defaultAccessList

isDirectory

isTemporary

name

ordering

position

subtreeSizeLimit

type

version

createdBy

createdOn

dataSize

isDirectory

name

type

version

all attribute types

Table 4 1 (continued)
Service acceptance of attribute types

The Store procedure is rejected if the client specifies an attribute type other than createdBy , createdOn,

dataSize, isDirectory, name, type or version Only the attributes name, type and version are actually

retained with the file; values for the other attributes arc accepted but ignored

The ChangeAttributes, Create and GetAttributes procedures are not supported by the VMS

implementation.

4.1.3 UNLX File Service

The UNLX file service supports a different subset of Filing attributes Again, only those attributes readily

mapped into Unix file system constructs are supported and retained with the files The file service will

accept, but not retain, attributes which it docs not support

.

The ChangeAttributes procedure only allows the name attribute to be specified. If the name attribute is

not specified, the procedure is rejected; however, specification of other attributes does not cause the

procedure call to be rejected.

The Create, Open and Store procedures accept all attributes and do not reject the procedure call

according to the legality of the attributes as specified in the Filing definition. Although specification of

the isDirectory and name attributes are necessary for the service to process the Open procedure call, the

procedure is not rejected if either of these attributes are missing. All attributes specified on the Create

and Store procedures, with the exception of isDirectory and name are not retained

The dataSize, isDirectory, modifiedOn, name and type attributes are accepted by the GetAttributes and

List procedures and appropriate values returned Other attributes are accepted, but values are simply

omitted from the list returned to the client.

4.2 Attribute Usage - Clients

Table 4.2 compares the use of attributes by clients on those procedures supported by one or more clients

For each procedure, the client may use any combination of the attributes listed This table in conjunction

with Table 4 1 is useful in identifying the incomptabilities between the various clients and services

4.2.1 XDE FileTool

The Xerox FileTool uses a subset of the defined Filing attributes depending upon the higher level user

function being performed. For example, the Open procedure may specify the pathname or filelD attribute

depending upon whether a prev ious GetAttributes was performed to determine the filelD attribute value.

The List procedure only requests those attributes actually specified by an option in the user interface

Usage of attributes by the FileTool client is legal as defined by the tables in Section 3. 10 of the Filing

Protocol [8].

-28-

Procedure XDE FileTool
VAX/VMS

Client
UNLX Client

ChangeAttributes procedure not used procedure not used name

Create procedure not used procedure not used name

type

GetAttributes pathname procedure not used dataSize

modifiedOn

name

type

List createdBy

createdOn

dataSize

modifiedOn

name

pathname

readOn

type

version

dataSize

isDirectory

name

type

dataSize

modifiedOn

name

type

Open file ID

name

pathname

name isDirectory

name

Store createdOn

dataSize

name

type

dataSize

isDirectory

name

type

dataSize

modifiedOn

name

type

Table -4 2

Client usage of attribute types

4.2.2 VAX/VMS Client

The VAX/VMS client only uses those atributes necessary to identify files and maintain round-trip

integrity of the data between Xerox and corresponding VMS services Those attributes supported include

dataSize, isDirectory, name and type

4.2.3 UNLX Client

The UNLX client also makes use of only a small set of attributes for the same reasons as the VMS client

However, the modifiedOn attribute is also specified on several procedures even though it is illegal as

defined by the Filing Protocol.

-29-

4.3 Procedure Support - Services

Table 4 3 depicts the level of support for Filing defined procedures by the various implementations Each

non-empty entry describes digressions from the Filing Protocol that are evidenced by these

implementations.

4.3.1 Xerox 8037 File Service

The Xerox
803"7

File Service implementation was the original implementation of the Filing Protocol and

provides support for much of the protocol as defined Some anomalies are present which are of specific

importance when considered in conjunction with the other implementations

The List procedure does not allow specification of the pathname attribute on a filter of type matches

The Create and Store procedures allow the isDirectory and type attributes to have conflicting values The

isDirectory attribute is the sole indicator of directory files on the file service; specification of a tDircctory

type value without an accompanying isDirectory value of TRUE does not create a directory on the file

service

4.32 VAX/VMS File Service

The VAX/VMS implementation supports a limited set of procedures The Logon, Logoff, Open, Close,

Delete, Store, Retrieve, List and Continue routines are the only procedures supported Of these, only the

Logoff, Close, Delete and Continue procedures do not impose some restrictions
upon their use

The Logon procedure will only accept Authentication credentials of type simple An appropriate

rejection is issued if other credentials types are specified

The Open procedure is restrictive in the type of attributes it allows The acceptance of attributes is

described in Section 4.1.1.

The Store procedure also imposes restrictions on the types of attributes accepted and subsequently

retained as discussed in Section 4 1.1. Only controls of type exclusive lock are accepted; all others arc

30-

Procedure Xerox File Service
VAX/VMS

File Service

UNLX

File Service

Logon - credentials (simple) credentials (not in Xerox

form)

Logoff - - -

Open "" attribute support

controls (only exclusive lock)

attribute support

all controls accepted but not

implemented

Close - - -

Create "* not supported attribute support

all controls accepted but not

implemented

Delete -- - -

GetControls - not supported not supported

ChangeControls ~ not supported not supported

GetAttributes - not supported -

ChangeAttrlbutes - not supported -

Move - not supported not supported

Store controls (only exclusive lock)

remove CR from tText

records

separate procedure for tText

storage

all controls accepted but not

implemented

Retrieve - added CR to tText records separate procedure for tText

retrieval

Serialize - not supported not supported

DeSerialize - not supported not supported

Find - not supported not supported

List "" scopes (count or filter of type

matches on pathname or

equal on version attribute)

implemented own

wildcarding procedures

scopes (not implemented)

Continue - -
-

UnifyAccessLlsts
- not supported not supported

RetrieveBytes - not supported not supported

ReplaceBytes - not supported not supported

Table 4 3

Service implementations Non-support of procedures

31

rejected. A conversion of file content is performed on incoming files of type tText to preserve the

editability of simple text files throughout the network The service assumes that a carriage return is the

record delimiter and subsequently strips these characters to form records when writing to VMS files

The Retrieve procedure performs the inverse conversion of file content if the file being transferred is of

type tText. Specifically, a carriage return character is inserted at the end of each record as it is entered

into the bulk data stream

The VMS service does not allow storage or retriev al of directory files

The List procedure only allows specification of a few types of scopes: 1) count or 2) filter of type

matches on the name and 3) filter of type equal on the version attribute. In addition, the count scope is

not used when formatting the returned attribute list The List procedure also imposes restrictions on

acceptance of attribute types as described in Section 4.1.1.

4.3.3 UNLX File Service

The UNLX service implementation supports only the Logon, Logoff, Open, Close, Create, Delete,

ChangeAttributes, GetAttributes, Store, Retrieve, List and Continue procedures The Logoff, Close, Delete

and Continue are the only procedures which impose no restrictions beyond the Filing Protocol definition

The Logon procedure accepts only credentials in the simple form; however, the encoding of the

credentials data does not adhere to the Authentication Protocol, since the XNS model of authentication is

not supported

The Open and Create procedures impose restrictions on the types of attributes accepted, as described in

Section 4. 1.3. In addition, several non-Filing attributes are defined and are required by the service to

identify files. These procedures also accept all controls types, even though no form of controls is

provided by the service.

The Store procedure, like Open and Create, accepts all controls types without providing specific support

for them. The preservation of editability of simple text files is also provided, but in a manner unlike that

32-

chosen by the VMS implementation. Specifically , an implementation-specific procedure is defined which

is used to store files of type tText. The content of these files is actually maintained across the bulk data

stream by defining a format for encoding the data into the bulk data stream

The Retrieve procedure is identical to that defined in the Filing definition. However, a separate routine is

implemented for retrieval of files of type tText. This procedure simply performs the inverse of the

encoding performed by the analagous Store procedure.

The List procedure was totally incompatible with the Filing definition since the scope selection

mechanism was not implemented The client used an implementation-specific procedure to establish the

context for wildcard searches on the service The List procedure was then used to determine the next file

matching the previously specified file specification and return the requested attributes.

4.4 Procedure Support - Clients

Table 4.4 describes those procedures used by the various client implementations and any restrictions on

their use Many of the restrictions described are complementary to restrictions enforced by the

corresponding file service.

4.4.1 XDE FileTool

The Xerox client only uses the Logon, Logoff, Open, Close, Delete, GetAttributes, Store, Retrieve, List and

Continue procedures All procedures are implemented in accordance with the Filing definition The

Delete procedure does, however, make use of multiple transport connections specifying a single Filing

session handle. Although this feature is allowed by the definition of Courier, it is not used by the other

client implementations.

Controls specified on the Open and Store procedures are of type empty The List specifies a filter of type

matches on the name attribute

33-

Procedure XDE FileTool VAX/VMS Client UNLX Client

Logon - credentials (simple) credentials (not in Xerox

form)

Logoff - -
-

Open attribute use

controls (empty)

attribute use

controls (empty)

attribute use

controls (empty)

Close - -
-

Create not used not used attribute use

Delete uses multiple transport

connections for a single

session

-- --

GetControls not used not used not used

ChangeControls not used not used not used

GetAttributes - not used attribute use

ChangeAttrlbutes not used not used attribute use

Move not used not used not used

Store attribute use

controls (empty)

attribute use

controls (empty)

add CR to tText records

attribute use

controls (empty)

separate procedure for tText

storage

Retrieve - remove CR from tText

records

separate procedure for tText

retrieval

Serialize not used not used not used

DeSerialize not used not used not used

Find not used not used not used

List scopes (only filter of type

matches on name attribute)

attribute use

scopes (only filter of type

matches on name attribute)

attribute use

implemented own

wildcarding procedures

scopes (not implemented)

Continue ~ -
-

UnifyAccessLists not used not used not used

RetrleveBytes not used not used not used

ReplaceBytes not used not used not used

Table 4 4

Client implementations - Non-support of procedures

-34

4.4.2 VAX/VMS Client

The VMS client implements the same procedures as FileTool with the exception of the GetAttributes

procedure. Attribute usage on those procedures is legal as defined by the protocol, although only a

limited number of attributes are used, as described in Section 4 2.2

Simple credentials are specified by the client on a Logon procedure.

Controls specified on the Open and Store are empty The List procedure performs selection with a filter

of type matches on the name attribute.

The Store and Retrieve procedures perform the same conversion of tText file content as the VMS service

4.4.3 UNLX Client

The UNLX client implements the ChangeAttributes and Create procedures in addition to the procedures

supported by the XDE client The subset of attributes implemented for use on those procedures is

described in Section 4.2 3

The Logon procedure uses credentials of type simple, but does not encode the data according to the

Xerox Authentication Protocol

Empty controls are specified on the Open, Create and Store procedures The Create procedure is
only-

used to create empty directory files However, the type attribute is used to convey a type of tDirectory

without an accompanying isDirectory attribute This use is legal according to the Filing definition but is

in conflict with the Xerox file serv ice implementation

The client also uses two implementation-specific procedures for the storage and retrieval of type tText

files. These procedures perform the same encoding 'decoding of file content as their counterparts

implemented in the UNLX file service

Wildcard listing is also performed via an implementation-specific procedure which is used by the client

to set up an initial search context The list procedure is then used to retrieve the desired attributes about

35-

each file matching the wildcard criteria The Filing selection mechanism of scopes is not implemented by

the client.

-36-

5. Implementation Incompatibilities

A well defined protocol, such as the Filing Protocol, minimizes the opportunities for incompatibilities

within implementations of the protocol. However, implementation of only a portion of the full protocol

increases the possibility that the interoperability will be reduced. Section 4 describes specific points

where the implementations discussed were not compatible because there was only a small intersection in

the subsets of the protocol chosen for implementation. The resulting disparity in implementation

strategies points out the need for a single subset which is supported across all implementations.

Maximum compatibility between implementations of a subset protocol is based on a well-specified set of

procedures and attributes which form a required basis for all implementations to support. This definition

must precisely specify the actions performed by each of the procedures and the handling of the defined

attributes within each of those procedures. A richer set of functions may be implemented as incremental

levels of support beyond the defined base level

This section discusses the potential areas of incompatibility and selects specific solutions that are used to

build the specification of the subset protocol in Section 6 Alternatives are selected based on the need for

file transfer between heterogeneous systems.

5.1 Areas of incompatibility

The descriptions of the various Filing Protocol implementations in Section 4 indicate many areas of

incompatibility between the implementations The causes of the incompatability witnessed in these

implementations can be div ided into two categories:

non-support of Filing constructs by the native operating sy stem

alternate specifications in the Filing Protocol

3^-

5.1.1 Non-support of Filing constructs by the native operating system

The XNS protocols were defined for use in a distributed system consisting of homogenous processors and

operating systems. As heterogeneous processors and operating systems were introduced into this

environment, the need to implement the protocol on top of existing file sy stems became critical because

a great deal of host software was already based on the underlying file system

Successful implementation of the Filing Protocol on an existing file system must integrate Filing

constructs with the native operating/file sy stem, thus enabling the protocol to act as a natural extension

of the native system In many cases, the mapping of defined Filing constructs to existing file systems is

not easily accomplished. This is due to the inability of the native operating or file system to provide

Filing functionality in the following areas:

procedure support

attribute retention and retrieval

use of controls to insure file integrity

syntax of file names

deletion of directories and all descendants

5.1.2 Alternate specifications in the Filing Protocol

The Filing Protocol is the detailed definition of a complete file system In many cases the richness of the

protocol allows alternative methods to achieve the same results For implementations not supporting the

full protocol, these alternatives lead to incompatible implementations

The following examples point out several alternatives for specific actions which exist in the Filing

Protocol:

specification ofOpen attributes to identify a file

38-

opening a file by use of the pathname attribute on Open or successive opening of nested

directories specifying the name attribute

use of the isDirectory and type (tDirectory) attributes to designate a directory on a Store

5.2 Resolving Incompatibilities

Resolution of the above-stated incompatabilities is required to support interoperability between different

implementations. This section proposes particular solutions to these problems. These choices are used as

the basis for the subset protocol definition presented in Section 6.

The alternatives chosen are based upon the requirements of the protocol subset The protocol is intended

to provide:

common file system functions of retrieval, storage, enumeration and deletion

round-trip equality of file content

compatibility with common host processing activities (i.e., text editing, backup/restore,

etc.)

preservation of attributes essential to the above functions

5.2.1 Non support of Filing constructs by the native operating system constructs

The usefulness of a Filing Protocol implementation on a specific operating system requires successful

integration of Filing constructs with the existing file system. Much of this integration depends upon the

features provided by the host operating/file system Each of the areas presented in Section 5 1.1 are

examined and a specific alternative is presented, under the constraint of keeping the subset as small as

possible.

Procedure support

The initial step in supporting a subset of the full protocol on an existing file system is to decide which

procedures must be implemented The functions of retrieval, storage, enumeration and deletion can be

-39-

easily accomplished with the following set of procedures: Logon, Logoff, Open, Close, Delete, Store,

Retrieve, List and Continue. The remaining Filing procedures introduce added functionality and

complexity that is not essential to the common file exchange functions desired or simply duplicate

actions that can be performed by one of the above procedures

The GetAttributes and List procedures allow retrieval of the attributes associated with a given file or

files, respectively. List allows the client to specify the selection criteria for the files to be listed, while the

GetAttributes procedure is constrained to a single file which has previously been opened The desire to

support specification of wildcard file formats led to the choice of the List procedure in the set of

mandatory procedures. The GetAttributes procedure is not considered essential since the specification of

a single file on a List can be used to obtain the same results

The Create and Store procedures allow the creation of empty and non-empty files, respectively

However, the Store procedure can also be used to create empty files by sending a bulk data stream

containing no data or by specifying BulkData nullSource as the source stream Since use of the Store is the

sole procedure for convey ing file content to a service, use of the Create is not essential for the creation of

empty files. A given serv ice must allow the use of a null bulk data stream on the Store procedure to effect

creation of an empty file

This set of implemented procedures provide the context for discussion of other incompatibilites

Problems evidenced on procedures which are not included in this list are irrelevant to the remaining

discussion

Attribute retention and retrieval

The support for retention and retrieval of Filing attributes is the largest area of discrepancy between the

implementations discussed previously Each implementation uses its own subset of attributes for the

desired functions and assumes compatability only with similar implementations

Comparing the facilities provided by different operating and file systems with the requirements of the

subset protocol indicate a set of attributes which are commonly implementable and useful across all

-40-

systems. These core Filing attributes convey the information which is most useful to other host utilities

The Filing attributes createdOn, dataSize, isDirectory, modifiedOn, pathname and type are designated as

the set of attributes which must be supported by all implementations. This level of support implies that a

service implementation must retain the value for each of these attributes when presented on a Store

procedure and must also return the appropriate value when requested on a List Clients are also

responsible for retaining these attributes when retrieving a file from a service

The majority of the remaining Filing-defined attributes do not easily map to existing file system

constructs on many popular file systems In some cases (i.e
, createdBy, filelD), legal Filing values cannot

be maintained by the file system; in others (i.e., accessList, ordering, version), the functionality implied

by the attribute is non-existant

The definition of these mandatory attributes, in combination with the set of required procedures

provides the backdrop for the discussion of more specific problems as they relate to these procedures

and attributes

Use ofcontrols to insurefile integrity

Controls are used by the Filing Protocol to insure file integrity by controlling multi-client access to files

When dealing with existing file systems, this functionality may already exist, although in a potentially

different form.

For those procedures designated as mandatory, it is reasonable to assume that the default access

mechanisms provided by the resident operating system are sufficient The ability to implement Filing-

defined controls may require changes to the resident file
system and therefore contradict a major goal of

defining the subset protocol Therefore, no specific support for controls is required or assumed by a

given service implementation

-4l

Syntax offile names

One of the most obvious inconsistencies across heterogeneous systems is that of file name conventions

The constraints imposed upon file names by various systems can sometimes lead to verv complicated

conversion algorithms. The definition of the Xerox pathname syntax in the Filing Protocol introduces yet

another convention for implementations to consider

When coupling the intended use of the implementations with the desire for ease of implementation, the

obvious strategy is to allow specification of pathname values in the syntax of the intended service file

system. This strategy implies that the filename syntax on two systems may be radically different, but in

most cases, the user knows the conventions of the intended sy stem and can specify an appropriate value

The specification of service-specific wildcard file names on a List is also allowed by this scheme The

need to define and implement any mapping algorithms is eliminated; however, individual

implementations may still support alternate syntaxes (such as the Filing pathname sy ntax) as desired

Deletion ofdirectories and all descendants

Deletion of directories as specified in the Filing Protocol implies deletion of all descendant files for that

directory. Support for this feature mav differ from system to system depending upon the structure of the

resident file system For this reason, deletion of directories is not required and a given serv ice is allowed

to return an appropriate error

5.2.2 Alternate specifications in the Filing Protocol

The Filing Protocol allows the use of alternate mechanisms for accomplishing specific functions The

existence of these alternatives implies that more than one method can be used to effect a given result

This in turn fosters incompatibility when an implementation chooses to support one alternative without

providing support
for the others

The resolution of this class of problem involves mandating support for one of the alternatives All

implementations are required to support the single alternative defined by the subset protocol Support

for other alternatives may exist at the discretion of individual implementations This provides a common

ground for all implementations to perform the desired actions and thus maximizes interoperability with

other implementations.

Specification ofOpen attributes to identify a file

The Filing Protocol allows a client to specify a given file on an Open procedure through the combination

of several attribute types: filelD, name, parentlD, pathname and version. Since the filelD, name, parentlD

and version types are not included in the set of mandatory attributes to be supported by each

implementation, use of the pathname attribute becomes the required method of identifying files on an

Open.

Use of thepathname attribute on an Open or successive opening ofnested directories

For historical reasons, several implementations of the Filing Protocol have used the name attribute with

an accompanying directory handle to identify a file on an Open The name attribute specifies the name of

the file as it exists relative to the directory associated with the supplied directory handle Since the value

for the name attribute is relative to the immediate parent, the client must successively issue an Open (and

Close) for each directory identified as an ancestor of the desired file For instance, to open the file

A/B/C/D (assuming the Xerox specified pathname syntax), the client would open A, open B, (close A),

open C, (close B) and open D. Use of the pathname attribute allows the client to simply specify the

absolute form, A/B/C/D, on the Open.

In Section 5.2.1 5 the syntax of the pathname attribute value was defined to be service-specific This

implies that a given client may not know a given serv ice syntax and thus be unable to parse the pathname

value and call the successive Opens Since pathname was previously defined to be a mandatory attribute

and the form of the pathname value is specified relative to the root directory, use of the successive

Opens is not encouraged A service implementation may require use of the pathname attribute on the

Open with an accompanying directory handle value of nullHandle It is recognized that in certain cases,

the inability of the client to know the appropriate serv ice syntax may in fact cause the serv ice to open a

43

file different from that intended by the client. However, for the implementations examined by this thesis,

the number of these cases is relatively small

Use of the isDirectory and type (tDirectory) attributes to designate a directoryfile

The Filing Protocol includes two mechanisms for specifying directory files Although there appears to be

a redundancy in this definition, actual implementations use only the isDirectory attribute to designate a

directory file. A type value of tDirectory when not used in conjunction with an isDirectory value of True,

will create a non-directory file of type tDirectory.

To prevent confusion on the part of clients, this ambiguity is resolved by dictating that the isDirectory

and type (tDirectory) attributes are essentially the same Specification of one without the other will have

the same effect; conflicting values when both attributes are specified will result in an error This allows

directory files to be created on a service by specifying either an isDirectory value of True, a type value of

tDirectory, or both.

-44

6. FilingSubset

The previous sections have provided background related to the the development of a subset of the Filing

Protocol primarily for use as a file transfer protocol between heterogeneous systems. This section

presents the formal specification of the FilingSubset, a subset protocol of the Filing Protocol that makes

use of the choices identified in Section 5 The specification which follows was edited and subsequently

adopted by Xerox as the definition of the FilingSubset Protocol included in version 6 of the Filing

Protocol (Appendix B).

6.1 Overview

6.1.1 Motivation

The Filing Protocol represents the specification of a general purpose filing system which defines the

interaction that takes place between client and server processes within the Xerox Network System This

protocol acts as the definition of the file system as well as a guide on how to use that system

As the formal specification for a file system, the Filing Protocol provides mechanisms for file access,

transfer and management As the network model matured, the addition of new network processors and

application processes introduced requirements for varying levels of filing service The motivation to

provide a consistent base level of service across all processors increased with the inability of new

implementations to provide the full level of serv ice stated in the Filing Protocol The motivations for

defining a consistent subset for implementation across a wide v ariety of processors stems from several

areas including:

the ability to allow file exchange without the support necessary for a full level of service

the ability to provide XNS Filing access to the native file sy stem
resident on a

foreign'

host

the ability to allow XNS Filing access to the files on a sy stem whose primary purpose is not

to provide a file service

-4V

the inability of the native operating system on several
foreign'

hosts to support Filing

features and constructs

the expense of software development and resource utilization necessary to support the full

Filing Protocol

6.1.2 Requirements and Goals

The definition of a subset of the Filing Protocol is guided by a set of requirements and goals In general,

the requirements are to provide a useful and compatible level of service within the context of the Filing

Protocol. The requirements set forth for the definition of the FilingSubset are:

provide the common file system functions of retrieval, storage, enumeration and deletion.

facilitate compatibility by remaining a proper subset of the Filing Protocol

build upon the Xerox Network Systems Authentication model in addition to the native

operating system model for authentication

retain round-trip equality of file content.

A set of goals is also defined which, although not required nor guaranteed, are important to the overall

usefulness for elements implementing the subset The following goals are desirable in the definition of

the FilingSubset:

round-trip preservation of attributes (the ability to store a file on a remote system and

retrieve it at a later date with all attributes intact)

the ability to perform common processing activities on a file regardless of on which system

it currently resides (for example, text editing, data base listing and backup/restore).

ease of implementation of both client and server code on a wide variety of sy stems

-46-

6.2 Definition

The FilingSubset defines a guaranteed minimal level of service which is supported by both clients and

servers implementing the Subset. This service is defined as a set of restrictions on the Filing Protocol

definition. The mandatory restrictions define specific implementation alternatives specific to the

FilingSubset.

The FilingSubset is a proper subset of the Filing Protocol. This guarantees that both actions and

responses defined in the subset are identical to those in the Filing Protocol. The subset also guarantees

that clients that implement the subset can interact with a service implementing the full Filing Protocol In

addition, a client using the full protocol can interact with a subset service by restricting its use of

procedures and arguments to those included in the subset definition

In all cases, the procedures, arguments and errors defined in the subset are identical to those in the Filing

Protocol. In providing a lower level of service, the subset does, however, restrict the choices available

for argument and error values The subset also allows recognizes that it may not be possible for a given

service to support the semantics of certain operations The subset dictates appropriate errors to be

returned under those conditions

Maximum interoperability is ensured when both client and serv er implementations support this minimum

level and make no assumptions regarding the availability of a broader functionality. However, increased

levels of functionality, up to full Filing, may be supported by individual implementations with the

restriction that appropriate actions be taken in the event that the additional functionality is not supported

by other implementations.

The complete Courier definition of the FilingSubset is presented in Section 6 8

6.3 Attributes

In defining a minimum level of Filing service, the FilingSubset differentiates three levels of support for

file attributes. These levels are mandatory, implied and optional.

6.3.1 Mandatory Attributes

Mandatory attributes represent the specific set of attributes whch must be interpreted by all Subset

implementations. These attributes are guaranteed to be retained by any service implementing the

FilingSubset and must also be accepted on specific procedure calls to the extent that they are legal

arguments on that same procedure within the Filing Protocol.

The attributes createdOn, dataSize, isDirectory, modifiedOn, pathname, and type are defined by the

Subset as mandatory and must be supported by all Subset implementations In addition, an

implementation must support the type values tAsciiText, tDirectory and tUnspecified This support

implies that a service implementation must accept these attributes on a Store procedure, if they are legal

arguments, and must also return the appropriate non-null value when requested with a List procedure

6.3.1.1 createdOn

The createdOn attribute is identical to that in Filing

6.3.1.2 dataSize

The Filing Protocol states that the dataSize attribute contains the number of eight-bit bytes in the

content of the file. The FilingSubset recognizes that it not always straightforward for specific

implementations to determine the actual content size, so all Subset implementations should regard the

value of the dataSize attribute as an estimate of the file size rather than the amount of valid data in the

file.

6.6.1.3 isDirectory

The isDirectory attribute is identical to that in Filing

-48-

6.3.1.4 modifiedOn

The modifiedOn attribute is identical to that in Filing.

6.3.1.5 pathname

The FilingSubset requires all implementations to permit the use of the pathname attribute to identify a

file. The value of the pathname attribute will always specify a remote file's access path in a form which

is recognized by the service. A Subset client should make no assumptions as to the syntax of this attribute

since it will vary from service to service.

Two types of pathname values are supported by Filing: 1) absolute, which is specified from the root file

and 2) relative, which is specified relative to an accompanying directory Handle or parentlD attribute

All FilingSubset service implementations are required to allow specification of the absolute syntax for the

pathname attribute on an Open, List or Store procedure However, when the absolute form is specified

on one of these procedures, a FilingSubset service is permitted to reject the procedure if the directory

Handle specified on the call is not the nullHandle. Likewise, the procedure may be rejected if the

parentlD attribute is not the nullfilelD if it is specified on an Open or Store procedure in conjunction

with the absolute pathname form.

FilingSubset services are not required to support a relative pathname syntax A service may reject a

procedure call with an AttributeValueError if the pathname value specified is in the relative form

Clients should recognize that support for this syntax may not be provided by a given serv ice and there is

no explicit mechanism to determine if such support does exist. Use of the relative pathname syntax by a

client may result in either an undefined
behavior or rejection from the serv ice

The value of the pathname attribute returned from a List procedure should always be an absolute

pathname so that it can be used directly for subsequent operations

-49-

6.3.1.6 type

The tAsciiText, tDirectory and tUnspecified values must be supported by all FilingSubset

implementations.

FilingSubset services should also permit the specification of these types on the Open call This usage of

the type attribute indicates the client s intention to receive the file as the specified type regardless of the

file type as stored on the service.

6.3.2 Implied Attributes

Those non-mandatory attributes which receive an default value when a file is created are designated

implied attributes. In maintaining consistency with the Filing Protocol, the Subset requires that

implementations must allow specification of these implied values for the accessList,

childrenUniquelyNamed, defaultAccessList, isTemporary, ordering, subtreeSizeLimit and version

attributes even though the attribute may not be fully supported by the implementation A Store

procedure must allow specification of these attributes insofar as the accompany ing attribute value is in

fact the service-specific supported value (see Section 6"). Specification of an unsupported value, under

these circumstances, must be rejected with an AttributeValueError if the attribute is not fully supported

6.3-3 Optional Attributes

Optional attributes comprise the remaining attributes Support for these attributes is optional If an

implementation provides support for any of these additional attributes that support must be within the

definition of the Filing Protocol

6.4 Remote Procedure Support

The FilingSubset supports only those procedures which prov ide the essential functions required for file

retrieval, storage,
listing/enumeration and deletion These procedures are Logon, Logoff, Continue,

Open, Close, Retrieve, Store, List and Delete

-50-

The FilingSubset also requires all implementations to permit file identification through the use of the

pathname attribute.

This section describes the expected level of support by all Subset implementations for the remote

procedures defined.

6.4.1 Session Support

The Logon, Logoff and Continue procedures are defined to be identical to the Filing Protocol.

6.4.2 Opening and Closing Files

The Subset Open procedure must permit use of the pathname attribute for file identification

Specification of the parentlD, type and version attributes must be allowed in conjunction with the

pathname attribute although the required set of allowable values for each of these attributes is limited

(the values nullFilelD for parentlD, tAsciiText, tDirectory, tUnspecified for type and highestVersion

andlowestVersion for version). A server implementation must not return an AttributeTypeError if the

parentlD, type or version attributes are specified on an Open; instead, an AttributeValueError may be

returned if the value of the attribute is not one of the above.

The Open procedure may be rejected if controls is not the empty sequence or directory is not the

nullHandle.

The Filing Protocol specifies that while a client has a file open, the file may not be deleted by other

network clients. The Subset does not presume that a serv ice implementation can prevent a
previously-

opened file from being deleted by other users, regardless of whether they are general interactive users or

other network clients. Subset clients should be prepared to deal with directories or files which cannot

be accessed even after a valid handle is obtained (the error HandleErrorfproblem: invalid] is returned)

The Close procedure is defined to be identical to the Filing Protocol

-51

6.4.3 Enumerating Files in Directories

The FilingSubset defines a minimal file enumeration capability, the List procedure, which is based on use

of the pathname attribute.

6.4.3.1 Scopes

The FilingSubset requires a minimum level of support for scopes. Specifically, count and filter are the

only scope types which are required to be supported. A Subset service must also permit the matches

filter type which specifies the pathname attribute.

6.4.3.2 Attribute Support

The List procedure is required to return values for all attributes requested. Specifically, non-null values

must be returned for the mandatory and implied attribute types accessList, childrenUniquelynamed,

createdOn, dataSize, defaultAccessList, isDirectory, isTemporary, modifiedOn, ordering, pathname,

subtreeSizeLimit, type and version. For the remainder of the Filing attributes, appropriate non-null

values must be returned if that attribute is supported by the implementation; the null, or empty, sequence

(Attribute: TYPE = record [type: AttributeType, value: sequence 0 of unspecified]) must be returned

for all unsupported attributes.

The BulkData.immediateSink and BulkData.nullSink transfer types must be supported by all

implementations for returning the appropriate information from a List request

6.4.4 Storing Files

The Subset Store procedure requires implementations to permit the use of the pathname attribute for

file identification. The type andversion attributes must be allowed in conjunction with the pathname

attribute; however, the required set of allowable v alues for each of these attributes may be quite small:

tAsciiText, tDirectory, tUnspecified for type and highestVersion for version

-52-

Treatment of the remaining attributes depends upon the level of support for those attributes within each

service implementation. A service cannot reject a Store procedure with an AttributeTypeError if any of

the mandatory attributes (except modifiedOn) are specified An AttributeValueError may be returned if

the accompanying value is determined to be invalid

Likewise, a service can not reject a Store procedure with an AttributeTypeError if an optional attribute

is specified. The procedure must not be rejected with an AttributeValueError if the accompanying value

is the server-specific supported value as shown in the table in Section
6~

The procedure must be

rejected with an AttributeValueError if the accompanying value is, indeed, not supported by the service

implementation

Ail other attributes must be rejected with an AttributeTypeError if that type is not supported or an

AttributeValueError if the specified value is invalid or unsupported.

The Store procedure may be rejected if controls is not the empty sequence or directory is not the

nullHandle.

The BulkData.immediateSource and BulkData.nullSource transfer types must be supported by all

implementations for sending the file content during a Store request

The Store procedure allows both directory and non-directory files to be created Directory files may be

created by specifying all of the following: 1) isDirectory attribute value of true, 2) type attribute value of

tDirectory and 3) a bulk data stream type of Bulkdata.immediateSource with no file content or the

Bulkdata.nullSource bulk data stream type.

A FilingSubset service is permitted to reject the creation of directory files if that action is not supported

by the service. The error AccessError [problem: accessRightslnsufficient] should be reported if the

service does not allow the creation of directory files A service may optionally only allow creation of

empty directory files. In this case, the error AttributeValueError [problem: unreasonable, type:

isDirectory] should be returned if a client attempts to create a non-empty directory

53-

6.4.5 Retrieving Files

The FilingSubset Retrieve procedure is identical to the Filing Protocol.

The BulkData.immediateSink and BulkData.nullSink transfer types must be supported by all

implementations for returning the file content from a Retrieve request

6.4.6 Deleting Files

The FilingSubset Delete procedure is defined to be identical to the Filing Protocol for non-directory files

The Filing Protocol states that if a Delete procedure is specified where the intended file is a directory, all

descendants of that directory will also be deleted The FilingSubset does not presume that all descendants

of a directory can in fact be deleted when the directory itself is deleted Server implementations that

cannot guarantee this behavior should return the error AccessError [problem: accessRightslnsufficient]

Client implementations should be prepared to deal with this error condition when observed Likewise, an

error encountered during deletion of the directory tree may result in only partial deletion of the files

within that directory tree.

6.5 Remote Procedure Restrictions

The FilingSubset defines a minimum capability that must be supported by all implementations This

minimum level of support is imposed by defining those argument values which all Subset

implementations must accept Specific server implementations may accept a larger range of values;

however, support for these v alues should not be assumed on the part of client implementations To the

extent that additional argument values are supported, this support
must still be compatible with the full

Filing Protocol. Indeed, a valid
implementation must return an error if the expected functionality cannot

be provided. FilingSubset procedures are allowed to return appropriate
errors if the described conditions

are observed for the following procedures and that implementation does not support the functionality

implied by values other than those
specified

-54-

This section summarizes the restrictions in a convenient itemized form. The intent is to provide a list of

those conditions which may result in an error from a Subset service.

Open--

directory specifies a handle other than nullHandle

controls does not specify the empty sequence

attributes does not contain the pathname attribute type

attributes contains an attribute type other than parentlD, pathname, type or version

the parentlD attribute specifies a handle other than nullFilelD

the type attribute specifies a value other than tAsciiText, tDirectory or tUnspecified

the version attribute specifies a value other than highestVersion

Store -

directory specifies a handle other than nullHandle

controls does not specify the empty sequence

content specifies a source other than type BulkData.immediateSource or

BulkData.nullSource

attributes does not contain the pathname attribute type

attributes contains one of the attribute types filelD, modifiedBy, modifiedOn, name,

numberOfChildren, parentlD, readBy, readOn,
storedSize or subtreeSize

the type attribute specifies a value other than tAsciiText, tDirectory
or tUnspecified

the version attribute specifies a value
other than highestVersion

-->->-

Retrieve-

content specifies a sink other than type BulkData.immediateSink or BulkData.nullSink

List-

directory specifies a handle other than nullHandle

scope includes a scope type other than filter or count

filterType specifies a filter type other than matches

a matches filter contains an attribute type other than pathname

listing specifies a sink other than type BulkData.immediateSink or BulkData.nullSink

types specifies an attribute type other than mandatory or implied attributes

6.6 Remote Errors

Each of the FilingSubset procedures report remote errors identical to the Filing Protocol The FilingSubset

guarantees the return of specific errors for certain conditions Additional errors may be returned under

the appropriate conditions if a specific service can detect the condition

6.7 Procedures and attributes

The tables on the following pages describe the effects of FilingSubset procedures with respect to

attributes. If a procedure never modifies interpreted attributes, no table is given. If an entry in the table is

empty, the corresponding attribute is never changed. Otherwise, a brief indication of the change is given

Where specification of an attribute will result in an error condition, the appropriate error is identified

In the case of List, the table specifies the required return values from a serv ice Although this procedure

does not modify attributes, its behavior is defined by the FilingSubset The Open table specifies the

attribute values that must be allowed by a subset service on the Open The Store table shows both the

attribute types and values that must be allowed by a service as well as the values that must be retained by

-56-

the service regardless of whether a value was specified for the attribute on the procedure.

List

Attribute If
Requested1

accessList returned

checksum returned

childrenUniquelyNamed returned

createdBy returned

createdOn non-nuU value must be returned

dataSize non-null value must be returned

defaultAccessList returned

filelD returned

isDirectory non-null value must be returned

isTemporary returned

modifiedBy returned

modifiedOn non-null value must be returned

name returned

numberOfChildren returned

ordering returned

parentlD returned

pathname non-null value must be returned

position returned

readBy returned

readOn returned

storedSize returned

subtreeSize returned

subtreeSizeLimit returned

type non-null value must be returned

uninterpreted returned

version returned

The FilingSubset states that all attributes which are supported by a server must return an appropriate

value. If an attribute is not supported by a server, then Attribute : type = record [type:

AttributeType, value: sequence oof unspecified] must be returned

The value returned for the dataSize attribute should be viewed by the client as an approximation of

the actual content size

-58-

Open

Attribute If a Parameter

accessList illegal, AttributeTypeError

checksum illegal, AttributeTypeError

childrenUniquelyNamed illegal, AttributeTypeError

createdBy illegal, AttributeTypeError

createdOn illegal, AttributeTypeError

dataSize illegal, AttributeTypeError

defaultAccessList illegal, AttributeTypeError

filelD optional

isDirectory illegal, AttributeTypeError

isTemporary illegal, AttributeTypeError

modifiedBy illegal, AttributeTypeError

modifiedOn illegal, AttributeTypeError

name optional

numberOfChildren illegal, AttributeTypeError

ordering illegal, AttributeTypeError

parentlD optional

pathname file with this value is opened

position illegal, AttributeTypeError

readBy illegal, AttributeTypeError

readOn illegal, AttributeTypeError

storedSize illegal, AttributeTypeError

subtreeSize illegal, AttributeTypeError

subtreeSizeLimit illegal, AttributeTypeError

type file with this value is opened

uninterpreted ignored

version | optional |

1

The FilingSubset permits the use of type to indicate that the transferred form of the file is of the

specified type. This may impose some form of alteration on the actual file content as the file is

transferred. If a specified type is not supported by the implementation, the procedure should be

rejected with an AttributeValueError.

2

FilingSubset implementations are not required to support this attribute If support is not provided,

the service should return an AttributeTypeError

3
The Filing Protocol allows the combination of parentlD, pathname and version However, a given

subset implementation is free to reject the Open with an AttributeValueError if either parentlD is

not equal to nullFilelD or version is not highestVersion and the implementation does not support

either attribute

-59-

Store

Attribute If a
Parameter1

Supported Values If not a
Parameter5

accessList set if value supported [defaulted: true] set to [defaulted: true]

checksum set if type supported unknownChecksum set appropriately

childrenUniquelyNamed set if value supported TRUE
FALSE4 TRUE/FALSE4

createdBy set if type supported -

currently logged-in user

createdOn set -- current date and time

dataSize initial allocation (hint) - number of bytes transferred

defaultAccessList set if value supported [defaulted: true] set to [defaulted: true]

filelD illegal, AttributeTypeError - system-assigned value

isDirectory set - FALSE

isTemporary set if value supported FALSE FALSE

modifiedBy illegal, AttributeTypeError -

currently logged-in user

modifiedOn illegal, AttributeTypeError - current date and time

name illegal, AttributeTypeError - implementation dependant

numberOfChildren illegal, AttributeTypeError -- 0

ordering set if value supported defaultOrdering defaultOrdering

parentlD illegal, AttributeTypeError - filelD of resulting parent

pathname set - consistent with ancestr>

position set if type supported - depends on parent's ordering

readBy illegal. AttributeTypeError -

readOn illegal, AttributeTypeError - nullTime

storedSize illegal, AttributeTypeError - set appropriately

subtreeSize illegal, AttributeTypeError - set appropriately

subtreeSizeLimit set if value supported nullSubtreeSizeLimit nullSubtreeSizeLimit

type set if \alue supported tAsciiText, tDirectory,

tUnspecified

tDirectory or tUnspecified

uninterpreted set if type supported - null

version set if value supported highestVersion next available

The FilingSubset must treat attributes in one of four ways (1) An attribute marked
"illegal"

will be

rejected with AttributeTypeError (2) An attribute marked
"set"

must not be rejected with

AttributeTypeError and must normally accept non-null values In unusual cases it may reject a
non-

null value, such as a string which is too long (3) An attribute marked "set if value
supported"

must

not reject with AttributeTypeError. It must not result in an
AttributeValueError if the value is one

of the supported values as listed above An AttributeValueError may be reported for other values

which cannot be supported. (4) An attribute marked "set if type supported
"

must be rejected with

AttributeTypeError or AttributeValueError if the implementation does not fully support the type or

value respectively.

The FilingSubset does not require support for this attribute
If support is not provided, an

AttributeTypeError should be reported

The types tAsciiText, tDirectory and tUnspecified
must be supported by all implementations

The supported value for childrenUniquelyNamed is implementation specific depending upon

whether version is supported If multiple versions are supported, childrenUniquelyNamed is TRUE

These values are the default values if the attribute
type is supported by the implementation

-60-

6.8 Courier Definition

The complete Courier definition of the FilingSubset follows. All Courier types are identical to those

specified in the Filing Protocol.

FilingSubset: program 1500 version 1 =

BEGIN

DEPENDS UPON

BulkData(O) version 1,

Clearinghouse (2) version 3,

Filing (10) version 6,

Authentication (14) version 3;

- TYPES AND CONSTANTS -

-- Attributes--

AttributeSequence: type = Filing.AttributeSequence;

AttributeTypeSequence: type = Filing.AttributeTypeSequence;

allAttributeTypes: Handle = Filing.allAttributeTypes;

-- Controls --

ControlSequence: type = Filing.ControlSequence;

ControlTypeSequence: type = Filing.ControlTypeSequence;

-- Handles and Authentication --

Credentials: type = Filing.Credentials;

SecondaryType: type = Filing.SecondaryType;

Handle: type = Filing.Handle;

nullHandle: type = Filing.nullHandle;

Session: type = Filing.Session;

Verifier: type = Authentication.Verifier;

-- Scopes --

ScopeSequence: type = Filing.ScopeSequence;

- REMOTE PROCEDURES -

-- Logging On and Logging Off
'--

-61-

Logon: procedure [
service: Clearinghouse.Name, credentials: Credentials, verifier: Verifier]

returns [session: Session]
reports [AuthenticationError, ServiceError, SessionError, UndefinedError] =

Filing.Logon;

Logoff: procedure [session: Session]
reports [AuthenticationError, ServiceError, SessionEror, UndefinedError] =

Filing.Logoff;

Continue: procedure [session: Session]
reports [AuthenticationError, SessionError, UndefinedError] =

Filing.Continue;

-- Opening andClosing Files --

Open:PROCEDURE [attributes: AttributeSequence, directory: Handle,
controls: ControlSequence, session: Session]

returns [file: Handle]

reports [AccessError, AttributeTypeError, AttributeValueError, AuthenticationError,

ControlTypeError, ControlValueError, HandleError, SessionError, UndefinedError] =

Filing.Open;

Close: procedure [file: Handle, session: Session]
reports [AuthenticationError, HandleError, SessionError, UndefinedError] =

Filing.Close;

-- Deleting Files --

Delete: procedure [file: Handle, session: Session]

reports [AccessError, AuthenticationError, HandleError, SessionError, UndefinedError] =

Filing.Delete;

-- Transferring Bulk Data (File Content) --

Store: procedure [directory: Handle, attributes: AttributeSequence,

controls: ControlSequence, content: BulkData.Sink, session: Session]

returns: [file. Handle]

reports [AccessError, AttributeTypeError, AttributeValueError, AuthenticationError,

ConnectionError, ControlTypeError, ControlValueError, HandleError, InsertionError,

SessionError, SpaceError, TransferError, UndefinedError] = Filing.Store;

Retrieve: procedure [file: Handle, content: BulkData.Sink, session: Session]

reports [AccessError, AuthenticationError, ConnectionError, HandleError, SessionError,

TransferError, UndefinedError] = Filing.Retrieve;

-- Listing Files in aDirectory
--

List: procedure [directory: Handle, types: AttributeTypeSequence,

scope: ScopeSequence, listing: BulkData.Sink, session: Session]

reports [AccessError, AttributeTypeError, AuthenticationError, ConenctionError,

HandleError, ScopeTypeError, ScopeValueError, SessionError, TransferError,

UndefinedError] = Filing.List;

-62-

-REMOTE ERRORS -

--problem with an attribute type or value --

AttributeTypeError: error [problem: ArgumentProblem, type: AttributeType] =

Filing.AttributeTypeError;

AttributeValueError: error [problem: ArgumentProblem, type: AttributeType] =

Filing.AttributeValueError;

-- problem with an control type or value --

ControlTypeError: error [problem: ArgumentProblem, type: ControlType] =

Filing.ControlTypeError;

ControlValueError: error [problem: ArgumentProblem, type: ControlType] =

Filing.ControlValueError;

-- problem with an scope type or value --

ScopeTypeError: error [problem: ArgumentProblem, type: ScopeType] =

Filing.ScopeTypeError;

ScopeValueError: error [problem: ArgumentProblem, type: ScopeType] =

Filing.ScopeValueError;

ArgumentProblem: type = Filing.ArgumentProblem;

-- problem in obtaining access to a file
--

AccessError: error [problem: AccessProblem] = Filing.AccessError;

AccessProblem: type = Filing.AccessProblem;

-- problem with a credentials or verifier
--

AuthenticationError: error [problem: AuthenticationProblem] =

Filing.AuthenticationError;

--problem with a bulk data transfer --

ConnectionError: error [problem: ConnectionProblem] = Filing.ConnectionError;

ConnectionProblem: type = Filing.ConnectionProblem;

-- problem with a fde handle --

HandleError: error [problem: HandleProblem] = Filing.HandleError;

HandleProblem:TYPE = Filing.HandleProblem;

-problem during insertion in directory (or changing
attributes) -

InsertionError: error [problem: InsertionProblem]
= Filing. InsertionError;

InsertionProblem: type = Filing. InsertionProblem;

--problem during random access operation
--

RangeError: error [problem: ArgumentProblem]
= Filing.RangeError;

-63-

--problem during logon or logoff --

ServiceError: error [problem: ServiceProblem] = Filing.ServiceError;
ServiceProblem: type = Filing.ServiceProblem;

--problem with a session --

SessionError: error [problem: SessionProblem] = Filing.SessionError;
SessionProblem: type = Filing.SessionProblem;

-- problem obtaining space for file content or attributes

SpaceError: error [problem: SpaceProblem] = Filing.SpaceError;

SpaceProblem: type = Filing.SpaceProblem;

-- problem during bulk data transfer --

TransferError: error [problem: TransferProblem] = Filing.TransferError;

TransferProblem: type = Filing.TrasnferProblem;

-- some undefined (and implementation-dependent) problem occurred --

UndefinedError: error [problem: UndefinedProblem] = Filing.UndefinedError;

UndefinedProblem: type = Filing.UndefinedProblem;

- INTERPRETED ATTRIBUTE DEFINITIONS -

accessList: AttributeType = Filing.accessList;

AccessList: type = Filing.AccessList;

checksum: AttributeType = Filing.checksum;

Checksum: type = Filing.Checksum;

childrenUniquelyNamed: AttributeType = Filing.childrenUniquelyNamed;

ChildrenUniquelyNamed: type = Filing.ChildrenUniquelyNamed;

createdBy: AttributeType = Filing.createdBy;

CreatedBy: type = Filing.CreatedBy;

createdOn: AttributeType = Filing.createdOn;

CreatedOn: type = Filing.CreatedOn;

dataSize: AttributeType = Filing.dataSize;

DataSize: type = Filing.DataSize;

defaultAccessList: AttributeType = Filing.defaultAccessList;

DefaultAccessList: type = Filing.DefaultAccessList;

FilelD: AttributeType = Filing.FilelD;

FilelD: type = Filng.FilelD;

-6-4-

isDirectory: AttributeType = Filing. isDirectory;
IsDirectory: type = Filing.IsDirectory;

isTemporary: AttributeType = Filing. IsTemporary;

isTemporary: type = filing.IsTemporary;

modifiedBy: AttributeType = Filing.modifiedBy;

ModifiedBy: type = Filing.ModifiedBy;

modifiedOn: AttributeType = Filing.modifiedOn;

ModifiedOn: type = Filing.ModifiedOn;

name: AttributeType = Filing.name;

Name: type = Filing.Name;

numberOfChildren: AttributeType = Filing.numberOfChildren;

NumberOFChildren: type = Filing.NumberOfChildren;

ordering: AttributeType = Filing.ordering;

Ordering: type = Filing.Ordering;

pathname: AttributeType = Filing.pathname;

Pathname: type = Filing.Pathname;

parentlD: AttributeType = Filing.parentlD;

ParentlD: type = Filing.ParentlD;

position: AttributeType = Filing.position;

Position: type = Filing.Position;

readBy: AttributeType = Filing. readBy;

ReadBy: type = Filing. readBy;

readOn: AttributeType = Filing. readOn;

ReadOn: type = Filing.ReadOn;

storedSize: AttributeType = Filing.storedSize;

StoredSize: type = Filing.StoredSize;

subtreeSize: AttributeType = Filing.subtreeSize;

SubtreeSize: type = Filing.SubtreeSize;

subtreeSizeLimit: AttributeType = Filing.subtreeSizeLimit;

SubtreeSizeLimit: type = Filing.SubtreeSizeLimit;

type: AttributeType = Filing.type;

Type: type = Filing.Type;

version: AttributeType = Filing.version;

Version: type = Filing.Version;

- BULKDATA FORMATS -

-65-

-- Attribute series Format, used in List --

StreamofAttributeSequence: type = Filing.StreamOfAttributeSequence;

-- Line -orientedASCII text file format, used in file interchange --

StreamOfAsciiText: type Filing.StreamOfAsciiText;

end;

-66-

References

[1] Xerox Corporation. Authentication Protocol. Xerox System Integration Standard, Stamford,

Connecticut, April 1984, XNSS 098404 (XSIS 098404).

[2] Xerox Corporation, Bulk Data Transfer, Xerox System Integration Standard, Stamford,

Connecticut, April 1984, XNSS 0381 12 (XSIS 0381 12), Addendum la.

[3] Xerox Corporation Character Code Standard. Xerox System Integration Standard,

Stamford, Connecticut, April 1984, XNSS 058404 (XSIS 058404).

[4] Xerox Corporation Clearinghouse Protocol Xerox System Integration Standard, Stamford,

Connecticut, April 1984, XNSS 0^8404 (XSIS 0^8404).

[5] Xerox Corporation. Clearinghouse Entry Formats Xerox Network Systems Standard,

Stamford, Connecticut, April 1984, XNSS 168404 (XSIS 168404).

[6] Xerox Corporation Courier: The Remote Procedure Call Protocol Xerox Network Systems

Standard, Stamford, Connecticut, December 1981, XNSS 0381 12 (XSIS 0381 12)

[7] Digital Equipment Corporation, Intel Corporation, and Xerox Corporation The Ethernet. A

Local Area Network: Data Link Layer and Physical Layer Specifications Version 2.0.

September 1980.

[8] Xerox Corporation Filing Protocol Xerox Network Systems Standard, Stamford,

Connecticut, May 1986, XNSS 108605 (XSIS 108605)

[9] Xerox Corporation Internet Transport Protocols Xerox Network Systems Standard,

Stamford, Connecticut, December 1981,
XNSS 0281 12 (XSIS 0281 12)

[10] Xerox Corporation Interpress Electronic Printing Standard. Version 30 Xerox Network

Systems Standard, Stamford, Connecticut, January 1986, XNSS 1048601 (XSIS 048601)

[11] International Organization for Standardization. ISO Open Systems Interconnection- Basic

ReferenceModel ISO/TC 9"7SC 16 N '19, August 1981

[12] Xerox Corporation Printing Protocol Xerox Network Systems Standard, Stamford.

Connecticut, April 1984, XNSS 1 18404 (XSIS 1 18404)

[13] Xerox Corporation Secondary Credentials Formats. Xerox Network Systems Standard,

Stamford, Connecticut, May 1986, XNSS 258605 (XSIS 258605)

[14] Xerox Corporation Time Protocol Xerox Network Systems Standard, Stamford,

Connecticut, October 1982, XNSS 088210 (XSIS 088210).

-68-

A. FilingSubset Implementor's Guide

During the course of development of the FilingSubset Protocol, it was recognized that there was a need

for an implementation guide to accompany the protocol specification. This guide would provide a

concise scheme for the implementation of the protocol to maximize interoperability. The FilingSubset

Implementor's Guide was written as a response to this need. This document describes the

implementation of the FilingSubset Protocol from both a client and service perspective This description

is presented at two levels: 1) independent of any underlying file system and 2) specific support for

implementation in the UNIX and VMS operating sy stems

A copy of the FilingSubset Implementor's Guide is included in the same form in which it is being

distributed by Xerox.

-69-

FILINGSUBSET

IMPLEMENTOR'S GUIDE

XEROX

Ed Flint

July 1986

Notice

This document is being provided for informational purposes only. Xerox makes no warranties or

representations of any kind relative to this document or its use, including the implied warranties of

merchantability and fitness for a particular purpose. Xerox does not assume any responsibility or liability
for any errors or inaccuracies that may be contained in the document, or warrant that the use of the

information herein will produce results in an intended manner.

The information contained herein is subject to change without any obligation of notice on the part of

Xerox.

All text and graphics prepared on the Xerox 8010 Information System.

Copyright 1986, Xerox Corporation All rights reserved.

XEROX 3
and XNS are trademarks of XEROX CORPORATION.

U NIX is a trademark of AT&T Bell Laboratories.

Printed in USA.

TABLE OF CONTENTS

1. Introduction i

1.1 Purpose 1

12 Document organization 1

1.3 Document conventions 2

1.3.1 Notation 2

1 3.2 Notation for Courier examples 2

13.3 Notation for C examples 3

2. XNS protocol dependencies s

2.1 Internet Transport Protocols 5

2.1. 1 Relationship of transport to FilingSubset session 5

2 2 Courier and Bulk Data Protocols 6

2 3 Clearinghouse Protocol 6

2.3.1 Implementation with a Clearinghouse service 6

2.3 2 Implementation without a Clearinghouse service 7

2.4 Authentication Protocol 8

2.4.1 Implementation with an Authentication Service 8

2.4.2 Implementation without an Authentication Service 9

2.5 Time Protocol 10

nentation 1 1

3 1 Opening a session 1 1

3 3 1 Maintaining an open session 12

3 2 Closing a session 13

3.3 Enumerating a file(s) 13

3.4 Storing a file(s) 14

3 4. 1 Overwriting an existing remote file 14

3 4 1 Bulk data transfer 15

3.5 Retrieving a file(s) 15

3 5. 1 Overwriting an existing local file 16

3 5.2 Bulk data transfer 16

3 6 Deleting a file(s) 16

3 7 Creating a directory 17

4. Service implementation

4 1 Common data structures

4 1 1 Session handle

4 1 2 File handle

4 2 Common support

4.3 Procedures

4 3 2 Logoff

4 3.3 Continue

4.3.4 Open

4 3.5 Close

5. UNIX system interface

19

20

20

21

4 2.1 Session validation 21

4 2.2 Use of the continuance timer 21

4 2.3 File handle validation 22

22

43 1 Logon 22

24

24

24

26

4.3.6 List 26

4 3.7 Store 27

4.3.8 Retrieve 30

4.3.9 Delete 31

33

5. 1 Attribute support

5 1.1 Mandatory attributes

5 1 2 Implied attributes

5 1 .3 Optional attributes

5 2 Client procedure support

5.2.1 Continuance timer support

5 2 2 Determining mandatory attribute values

5 3 Service procedure support

5.3.1 Logon

5.3.2 Continue

5.3.3 Open

5.3.4 List

5.3.5 Store

5.3.6 Retrieve

5.3.7 Delete

6. VMS system interface

6 1 Attribute support

6.1.1 Mandatory attributes

6.1 2 Implied attributes

33

34

39

39

40

40

41

42

43

45

45

47

48

51

52

55

55

56

64

FILINGSUBSET IMPLEMENTOR'S GUIDE

6.1.3 Optional attr,bu:es 6a

6 2 Client procedure support 65

6.2.1 Continuance timer support 65

6.2.2 Determining mandatory attribute values 66

6 3 Service procedure support 68

6.3.1 Logon 69

6.3.2 Continue 69

6.3.3 Open 70

6.3.4 List 72

6.3.5 Store 76

6.3 6 Retrieve 79

6 3.7 Delete 79

Appendices:

A. References 83

FILINGSUBSET IMPLEMENTOR'S GUIDE

TABLE OF CONTENTS

vi ULifcOsrjISETIMPLbMfcNIWS GUIOE

TABLE ZFCZsr:\T5

LIST OF TABLES

Tables:

4.1 Primary and secondary credentials combinations 23

5.1 UNIX supported values for implied attributes 39

6 1 VMS supported values for implied attributes 65

FILINGSUBSET IMPLEMENTOR'S GUIDE

LIST OF TABLES

""FILINGSUBSET IMPIIMENTO^S GUIDE

INTRODUCTION

The FilingSubset Protocol defines a minimal capability to store, retrieve, enumerate and

delete files of a remote service. Maximum interconnectivity is ensured when both client and

service implementations support this specified minimum level of service and make no

assumptions regarding the availability of a broader functionality

The FilingSubset Protocol has been designed to provide XNS access to native file system- on

heterogeneous hosts in a straightforward and easily implementable fashion The

FilingSubset specification defines the behaviour between clients and services without

respect to a specific implementation.

1.1 Purpose

The FilingSubset Implementor's Guide describes a framework for implementation of the

FilingSubset Protocol which can serve as a handbook for future implementors. This

document presents:

a client mapping ofcommon user functions to FilingSubset procedure-

service support for the FilingSubset

recommended use of and support for FilingSubset procedures and attributes "n

the
UNIX'"

4 2BSD,
UNIX'"

4.3BSD,
UNIX"-

System V and VAX/VMS operating

systems

Through the use of specific implementation examples, the reader will be shown a common

method for implementing the protocol within the above operating systems and thereby

further interconnectivity and reduce the potential for implementation inconsistencies

The examples presented in this guide describe a consistent implementation of the required

functionality of the FilingSubset Protocol. These examples are by no means the only method

for providing the facility desired; they have been chosen because they offer a simple and

clearly understood framework for an actual implementation, regardless of the interface to

the lower level XNS protocols.

1.2 Document organization

Chapter 2 of this document describes the relationship between the FilingSubset Protocol and

other XNS protocols in terms of the support required for FilingSubset implementations

Chapter 3 describes a client implementation for translating common user functions into the

appropriate FilingSubset procedures Chapter 4 presents a service implementation at a level

independent of the underlying file system interface Each of these chapters deals with the

INTRODUCTION

recommended use of the FilingSubset for interaction between client and server. Chapter 5

details the support for FilingSubset procedures and attributes with regard to the UNIX

4 2BSD, UNIX 4 3BSD and UNIX System V operating systems. Support for the<e same

procedures and attributes for the VAX/VMS operating system is described in Section 6

1.3 Document conventions

Courier text and examples are depicted in special fonts, and generally conform to a certain

style. Examples illustrated through the use of C code are also depicted in a special font. The

rules and stvle are set forth below.

1.3.1 Notation

Throughout this document, special fonts are used to depict Courier text/examples and C

examples instead of using quote marks or other
delimiters. This convention also aids the eye

in discriminating between various examples and the exposition.

Items in this font indicate elements of the Courier language and are almost always in upper

case. This font indicates items that are defined using the Courier language. Identifiers will

have their first letter capitalized if they are the name of a type, error or procedure;

identifiers with a lowercase first letter are usually the names of variables, arguments or

results.

Items in this font indicate C code examples. Identifiers which are entirely uppercase are the

names of user defined C constants or macros. Identifiers will have their first letter

capitalized if they represent the name of a structure type, constant Courier value or Courier

defined procedure. Those identifiers with a lowercase first letter are usually the names of

user defined variables, arguments or results.

1.3.2 Notation for Courier examples

In the examples that follow, a call to a remote procedure is denoted by the name of the

procedure followed by the arguments supplied to it. A return from a remote procedure i*

denoted simply by the results, preceded - when confusion might otherwise result - by the

keyword returns. The argument or result list is modeled as a record; the arguments or

results as the record's components. Accordingly, Courier's standard notation for record

constants is used to specify arguments and results lists.

For example, if the procedure Add is defined as:

Add: procedure [first, second: cardinal]

returns [sum: cardinal] = 99;

then a call to that procedure would be denoted by:

Add [first: 7, second: 5]

FILINGSUBSET IMPLEMENTOR'S GUIDE

;NTROOUCT'ON

and the call would yield the result

[sum: 12] or returns [sum: 12]

Fine point: The above notation for procedure calls should not be confused with the -tandard notation for a cecnni

constant selected by means of a choice data type The wn are ^.:mlar tn appearance but otherwise unrelated

Examples of remote errors are either just the name of the error, if it is defined without

arguments:

overflow

or the same as a procedure call if it is defined with arguments For example, if Overflow

were defined as:

Overflow: error [carry: cardinal] = 99;

then an example of its use might be:

Overflow [carry: 1]

indicating that Overflow was reported with argument carry having the value 1

Courier requires values for a SEQUENCE OF UNSPECIFIED to be a sequence of numbers So as to

retain readability in examples, the content of a SEQUENCE of unspecified is described using

Courier notation. The reader should understand that the numeric representation of these

types is what should be used as the content of the sequence.

1.3.3 Notation for C examples

Code examples are used in this document to describe the interface to the native file system

All examples are written in the C language as described in "The C Programming
Language,"

Kernighan and Ritchie, Prentice-Hall, 1978.

The examples in Chapters 5 and 6 will present routines or portions of routines which make

use of the resident system interface to provide the necessary support for attributes or

procedures. These examples are intended to be working examples; however, the procedure

and variable names are chosen for maximum clarity and may not necessarily adhere to the

restrictions of a particular compiler

FILINGSUBSET
IMPLEMENTOR'

GUIDE

INTRODUCTION

FILINGSUBSET IMPLEMENTOR'S GUIDE

2. XNS PROTOCOL DEPENDENCIES

All implementations of the FilingSubset Protocol require, as a prerequisite, working

implementations or at least knowledge of several other XNS protocols Specifically, the

FilingSubset is dependent upon the XNS Internet Transport, Courier, Bulk Data,

Clearinghouse, Authentication and Time Protocols.

Although the intent of this document is not to describe actual implementations of these

supporting protocols, this section discusses specific portions of these protocols which must be

implemented and recommends certain implementation restrictions which will further the

interconnectivity of FilingSubset implementations.

2.1 Internet Transport Protocols

Any FilingSubset implementation requires a functional implementation of the following

Internet Protocols [8|: Internet Datagram Protocol, Sequenced Packet Protocol (SPP),

Routing Protocol and Error Protocol.

Although the Packet Exchange Protocol (PEP) is not essential to the implementation of the

FilingSubset, a PEP implementation is recommended since it should be used for locating

Clearinghouse and Authentication services on the network

2.1.1 Relationship of transport connection to FilingSubset session

Implicit within the layered architecture of the XNS protocols is the notion that a higher

level connection exists independent of the transport connection supporting it The XNS

architecture allows complete independence between transport and session connections, >o

that one or more transports may be used to communicate procedure calls to a single session,

and a single transport may be used to communicate procedure calls to one or more sessions

With this in mind, some FilingSubset implementations may wish to restrict a -ession

connection to a single transport connection In order to provide the greatest degree of

interconnectivity, FilingSubset clients should restrict all operations pertaining to a given

FilingSubset session to a single transport connection That is to say. clients should endeavor

to keep the transport alive during the
life of the session, and should not divide operations on

a given session among different
transport connections.

The XNS architecture permits a further
distinction to be made between the SPP and Courier

connections. Within this model, a single transport connection implies both a single Courier

connection and a single SPP connection.

XNS PROTOCOL DEPENDENCIES

2.2 Courier and Bulk Data Protocols

AH FilingSubset procedures are defined in the Courier language and also pass arguments

and convey results as Courier data types: therefore, implementation of the
Courier Remote

Procedure Call Protocol |fi| is required by all FilingSubset implementations

The FilingSubset is an application level protocol based on the Courier remote procedure call

model. As such, all subset clients issue the initial connection request to the Courier well

known socket. Implementation of a FilingSubset service implies the existence of such a

Courier listener which accepts incoming requests and creates a
connection which the subset

service subsequently uses.

The FilingSubset Protocol uses the Bulk Data Protocol [2 1 to transfer file contents and

enumerated lists. All FilingSubset implementations must support, at a minimum, the

BulkData. immediate and BulkData.null transfer choices. Third party bulk data transfers

need not be supported for operation of the FilingSubset.

2.3 Clearinghouse Protocol

The Clearinghouse Protocol [4| is used to interrogate a Clearinghouse service for

information about objects within the network, such as users, services, etc. It is recommended

that FilingSubset implementations use the Clearinghouse service when those functions are

required: however, a subset implementation can perform without a Clearinghouse service

Alternative methods are presented for those cases where a Clearinghouse service does not

exist or the implementation of such a service is non-trivial.

2.3.1 Implementation with a Clearinghouse service

FilingSubset client implementations may make use of the Clearinghouse Protocol for two

specific functions: 1) location ofClearinghouse servers and 2) location and description of file

services.

2.3.1.1 Location of a Clearinghouse server

Locating a Clearinghouse server is a prerequisite to the use of a Clearinghouse for other

activities. The BroadcastForServers operation described in Section 3 8 and Appendix E of the

Clearinghouse Protocol f4| is the recommended procedure for locating a Clearinghouse

server

Use of the BroadcastForServers procedure implies that a functional implementation of the

Packet Exchange Protocol exists

2.3.1 .2 Location and description of file services

In most instances, a FilingSubset client will possess the name of the service for which a

connection is desired The client must translate this name into the unique network
addrc"

FILINGSUBSET IMPLEMENTOR'S GUIDE

XNS PROTOCOL DEPENDENCIES

which is used by the Internet Transport Protocols In addition, the client must determine
whether the name identifies a properly registered file service and if so. what U^el f the

Filing Protocol are provided, what level of Authentication is supported and the .-.-quired

secondary credentials item types

This is accomplished by issuing a Courier Retrieveltem procedure call to a Clearing
service requesting the fileService property The values returned from this procedure a

described in Clearinghouse Entry Formats [5| and contain the follow in-

O'ise

re

the distinguished object name of the server, type Clearinghouse.ObjectName

a description of the file service, type STRING

a list of network addresses, sequence of Clearinghouse.NetworkAddress

the Authentication levels supported by the service, type

AuthenticationLevelValue

the level of Filing Protocol support provided by the service

the secondary credentials item types required by that service

The Clearinghouse service may report an error indicating that the name supplied does not

identify a file service.

2.3.2 Implementation without a Clearinghouse service

Under some circumstances, the use of a Clearinghouse service may not be possible or the

implementation costs too great Alternatives to Clearinghouse use are presented here.

however, their use will result in a lesser degree of functionality, robustness and securitv

Each of these methods may he used as individual or collective replacements for the

respective Clearinghouse procedures

2.3.2.1 Location of a Clearinghouse server

A simpler mechanism of caching Clearinghouse server addresses may be used to avoid

implementation of the BroadcastForServers procedure This requires maintaining a single

file which contains the host name and network address of the Clearinghouse servers tthin

commonly used domains

For example, the file Sales. map could contain entries for the clearinghouse servers which

service the sales domain, as follows

sales-cleannghousel 1*1-123-456-789

sales-clearinghouse2 1*1-98 7-654-321

This mechanism is quite easily implemented and can provide service for the more commonly

used domains However, it is not reasonable to employ this mechanism as a means to access

all domains on the network since the volume of data would be quite large and the data itself

would be subject to change as the network changes

FILINGSUBSET IMPLEMENTOR'S GUIDE

XNS PROTOCOL DEPENDENCIES

2.3.2.2 Location and description of file services

A mechanism similar to that described above
for locating Clearinghouse servers could also

be employed for locating file services However, this will only provide the name to address

translation and will not allow the client to determine the file service's requirements

regarding levels of Authentication support,
protocol support and secondary credentials. ,\

client should be prepared to receive appropriate error conditions from the service if the

service does not support the FilingSubset Protocol or requires credentials different from

those supplied.

If a Clearinghouse service does exist and its address can be ascertained with either of the

previously mentioned methods, then location of the file service as specified in Section 2.3.1 2

is preferable to maintaining a large and dynamic file
of file service addresses.

2.4 Authentication Protocol

FilingSubset clients and services rely on the Authentication Protocol. This defines 1) the

format of the user's network credentials and verifiers and 2) the protocol to use when

communicating with Authentication services to create and validate these credentials and

verifiers

FilingSubset services should provide support for immediate credentials of which there are

two types: simple or strong. Clients may use either of these types although the use of strong

credentials is encouraged because they incorporate a greater level of network security

However, support for strong credentials requires the use of an Authentication Service.

Subset clients provide both primary and secondary credentials and a verifier on a Logon

Primary credentials are those credentials that resolve a client's identity to a Clearinghouse
name. Validation of primary credentials is accomplished through use of the Authentication

Protocol [1| unless a client uses nullPrimaryCredentials which indicates that network

authentication is not to be performed.

Secondary credentials communicate host-specific authentication information. These

credentials are validated according to the mechanisms defined by the host operating system

for the service. As such, the format of secondary credentials are service-specific. Secondare
Credentials Formats [9| describes a set of well-known secondary item types to be employed

by services.

c

2.4.1 Implementation with an Authentication Se rvice

Successful use of the Authentication Protocol is predicated on interaction with an

Authentication Service. An Authentication Service is located in much the same wav as a

Clearinghouse service The BroadcastForServers operation, as described in Section 3.6 of the
Authentication Protocol, is used This operation requires a working implementation of the

Packet Exchange Protocol: however, an alternate mechanism, similar to that suggested in
bection 2 3 2 1 of this document, may be employed.

FILINGSUBSET IMPLEMENTOR'S GUIDE

XNS PROTOCOL DEPENDENCIES

2.4.1.1 Primary credentials

A client does not require interaction with an Authentication Service to create simple

credentials and a verifier. The credentials consist of the user's distinguished Clearinghouse
name or alias, of type Clearinghouse.Name, while the verifier is of type HashedPassword
The verifier value is computed using the algorithm in Section 5 1 of the Authentication
Protocol.

A FilingSubset service validates simple credentials by issuing a CheckSimpleCredentials
call to an Authentication Service The subset service passes the client supplied credentials
and verifier and receives a boolean response, which if true indicates a valid verifier

Appropriate errors are returned if the verifier is invalid

Strong primary credentials are manufactured by an Authentication Service at the request of
a client initiating a conversation. These credentials are then passed to a FilingSubset

service which performs the validation using the procedure described in Section 2.9 1 of the

Authentication Protocol.

2.4.1.2 Secondary credentials

Secondary credentials are created by a client depending upon the set of SecondaryltemType
values required by the FilingSubset service The client determines the necessary types by

issuing a request to a Clearinghouse service. The required items of SecondaryltemType are

then combined to form the secondary credentials passed to the service If a Clearinghouse

service is not available, the service will reject a Logon when a client supplies the wrong set

of secondary item types for the service. In this case, the item types required by the service

will accompany the error so that the client may use these to repeat the Logon with the

correct item types.

Secondary credentials are also available in the simple and strong types and it is

recommended that a FilingSubset service support both of these types Simple secondary

credentials are validated by the service using the mechanisms supplied by the host

operating system.

Strong secondaries are simple secondaries encrypted with the client's conversation key, as

used to form the strong primary credentials. The unencrypted simple secondary value is

formed, then padded with zero bits to a multiple of 64 bits and encrypted using the client's

conversation key as described in Section 5 3 of the Authentication Protocol.

2.4.2 Implementation without an Authentication Service

FilingSubset clients and services can operate successfully without the use >f an

Authentication Service by reiving on validation of the secondary credentials only

FILINGSUBSET IMPLEMENTOR'S GUIDE

2.4.2.1 Primary
credentials

The use of simple and strong primary
credentials is precluded if use of an Authentication

Service is not possible, since the use of either
type of credentials involves interaction with

the service.

A client can, instead, use nullPrimaryCredentials
which indicates to the service that network

authentication is not to be performed.

2.4.2.2 Secondary credentials

Secondary credentials of strength none or simple can be employed by subset clients and

services without requiring an Authentication Service. Strong secondaries cannot be used

since they are encrypted with a conversation key which is created by the Authentication

Service.

The use of simple secondaries is identical to that described in Section 2.4.1.2.

The use of secondaries of strength none is not encouraged since a client must use

nullPrimaryCredentials when an Authentication Service is not available. This would provide

no user authentication within the network or on the specific service.

2.5 Time Protocol

FilingSubset implementations do not explicitly require use of the Time Protocol as it applies

to the use of network time servers However, several FilingSubset attributes are defined in

XNS Time format, which will imply a conversion to/from the native operating system time

format.

FILINGSUBSET IMPLEMENTOR'S
GUIDE

3. CLIENT IMPLEMENTATION

A FilingSubset client interacts with a FilingSubset service on behalf of a user This user

may be a human being, where commands are input from an interactive user interface, or
another software entity, where actions are requested via a procedural interface. In all cases,
the user initiates the interaction between client and service; the service never initiates

activity with a client.

The client is responsible for translation of user requests into FilingSubset procedures to

effect the desired user action. The FilingSubset procedures, in turn, provide the client with

low level access to the file system of remote hosts. It is the client's responsibility to sequence

these procedure calls and maintain an appropriate control state to provide the desired

action.

The FilingSubset client presented in this section allows the user to perform the following
actions:

open a session

close a session

enumerate a file or files in a directory

store a file or files on a remote service

retrieve a file or files from a remote service

delete a file or files on a remote service

create an empty directory on a remote service

Only those functions supported by the FilingSubset are used by this client All pathnames

presented to the service are specified in absolute syntax, where the nullHandle is used to

specify the parent directory. Attribute integrity is assured by conveying all legal mandatory

attributes to the service on a Store and retaining all mandatory attributes in the local file

svstem on a Retrieve. The use of a single transport connection for the session implies that

the client cannot enumerate the candidate files for retrieval or deletion on one connection.

then simultaneously open a second connection to perform the retrieval or deletion Instead.

the client must save the enumerated list returned by the service and use this list .vhen

performing the retrieval or
deletion later

3.1 Opening a session

Prior to accessing any files on a file service, a client must open a Courier connection to a

subset service and perform a Logon. This procedure returns a session handle which is used

on subsequent procedure calls until a Logoff is issued or the connection is closed Upon

11

CLIENT IMPLEMENTATION

return from the Logon, the client may issue other
procedure calls to the service by including

the returned session handle on those calls.

In some scenarios, a user may specify
either a file service name or a network address for the

intended service. In the case where a name is specified, this name must be translated to the

associated network address via the procedure
outlined in Section 2.3 before the Logon can be

performed.

L'ser credentials are created as defined by the Authentication Protocol. Clients must supply

both primary and secondary
credentials and a verifier to the service. The client should use

the appropriate primary and secondary
credentials based upon the Authentication level

supported by the service, as determined by the procedure outlined in Section 2.3. Secondary

credentials are created according to the
procedure outlined in Section 2.4. 1.2.

Once the Logon has successfully completed, the client may open a default directory,

generally the root. This is not necessary
when the client uses the absolute pathname syntax

for all file identification, since specification of the nullHandle as a directory handle implies

the root.

The root file may be opened by specifying the nullHandle for the directory file handle along

with an empty attribute sequence, [SEQUENCE 0 OF unspecified]. The use of nullHandle with the

empty attribute sequence will imply the root directory regardless of any service-specific

pathname syntax.

3.1.1 Maintaining an open session

Once a session has been successfully established, the client is responsible for keeping that

session open, especially during long periods of inactivity. This is accomplished by issuing

Continue procedures at specific intervals to ensure that the service does not terminate the

session.

Once the Logon has completed, the client issues a Continue to the service to determine the

service specific continuance value. The value returned is specified in seconds, so the client

should decrease this by some factor (i.e., \) and establish a timeout mechanism which will

issue another Continue at the expiration of the interval. This allows the client to issue the

next Continue well before the service timeout interval.

Once the timeout mechanism is in place, any FilingSubset call including the Continue, is

considered to be activity and causes the service to reset its timer. The client should cancel

any pending timer prior to issuing any procedure and reset the timer upon successful

completion of each procedure. Once the Logoff has successfully completed, the client should

cancel any pending timer without reestablishing it.

The XNS architecture allows any given session to exist over multiple transport connections

The definition of the FilingSubset does not preclude use of this facility; however, it is

recognized that not all subset services can support this function. Clients should not assume

that this facility exists and, should be able to operate correctly with only a single
transport

connection for each session. Likewise, clients should, where possible, prevent an early

termination of the transport connection.

12
FILINGSUBSET IMPLEMENTOR'S GUIDE

CLIENT MPLEMEN'A'CN

3.2 Closing a session

A user will typically close a connection once the desired interaction with that ^erv ice has

been completed. Closing a connection requires a Logoff to release the session hunaie

followed by a close of the Courier connection used for that session and usually, the

underlying SPP connection. After successfully completing the Logoff, the client should aiso

cancel any pending continuance timer alarm's.

3.3 Enumerating a file(s)

It is often useful to enumerate the pathnames of files in a given directory and optionally to

retrieve additional attributes of those files. This is accomplished through the List procedure

A client is responsible for specifying those attributes which will be returned along with the

search criteria to be used. Subset services are only required to provide support for

mandatory and implied attributes; therefore, the client should restrict the requested

attribute types to the set of mandatory attributes: createdOn, dataSize, isDirectory,

modifiedOn, pathname and type. A request for other attribute types may result in return

values which are either null or constant for the service implementation. A client may also

specify allAttributeTypes to request that values for all attributes supported by the service be

returned.

Clients should only request those attributes which are of interest to the user Asking for

unnecessary attributes may result in more performance overhead on the service and

undoubtedly results in a larger amount of transferred
data.

The FilingSubset allows use of the pathname attribute in the specification of the selection

criteria and requires all services to support the absolute pathname syntax. Clients should

specify a scope of type filter, with a filter type of matches
on the attribute pathname which

has a value in the absolute form. This guarantees that the service will accept the

specification criteria. Since the pathname value specified in the filter is in absolute form, the

nullHandle should be supplied as the directory handle on the List. The service will return

appropriate errors if the pathname value specified is non-existent or inaccessible.

The stream ofenumerated data returned to the client is of type StreamofAttributeSequence

The client interprets this stream and present the results to the user This stream contains

one AttributeSequence for each file listed where each AttributeSequence contains an

attribute value for each requested attribute. Those
attributes defined by the FilingSubset to

be mandatory or implied will contain a non-null value whereas those attributes defined as

optional may have a null value (Attribute: [type: AttributeType, value: sequence o of

unspecified]) if the service does not support the
requested attribute.

Due to restrictions in the underlying operating
system, a given service may actually perform

the enumeration as a two step
process: 1) enumerate the candidate files and 2) determine the

requested attributes. This implies
that an individual file may be deleted anci/or inaccessible

at the time the service
determines the attribute values. If a file no longer exists, that file will

simply not be returned by the service in the enumerated list. If a file has become

inaccessible, all attributes
except pathname will have null values

FILINGSUBSET IMPLEMENTOR'S GUIDE

CLIENT IMPLEMENTATION

3.4 Storing a file(s)

A new file is created on a remote service
through use of the Store procedure. The client is

responsible for specifying all mandatory
attributes (except modifiedOn, which is illegal) on

the Store. In addition, the client must
determine if the file exists on the service and delete

the existing file, if desired, when the service
does not support multiple versions of a file with

the same name.

Several FilingSubset procedures may be executed during the course of storing a file or files

on a remote service. Since a user may provide a file specification which contains wildcard

characters, the client must first enumerate the
possible files on the local file system and

then store each file individually, with or without user confirmation.

The client lists the specified files on the local file system using the standard host operating

system facility. For each file listed, the values for the corresponding mandatory

FilingSubset attributes (createdOn, dataSize, isDirectory, modifiedOn, pathname and

type) should be determined. Having accomplished this, the client can create the file on the

remote service by issuing a Store followed by a Close to release the file handle created on the

Store.

The Store procedure should specify the following arguments: the directory handle

nullHandle, an AttributeSequence containing values for all mandatory attributes except

modifiedOn, the empty sequence for controls, the bulk data stream type

BulkData.immediateSource and the session handle returned on the Logon The file is read

from the local system and transferred via a bulk data stream to the service If the file is

successfully created, a file handle is returned by the service.

If the Store was successful, a Close is issued to release the returned file handle This will

specify the file handle and the current session handle. Once the file has been closed, the

sequence of Store and Close can be repeated for each file to be stored.

3.4.1 Overwriting an existing remote file

The possibility exists that a given FilingSubset service implementation does not support

multiple versions of similarly named files and will not allow the client to overwrite an

existing file on the service. In this case, the error InsertionError [problem: fileNotUnique] is

returned by the service. A client who wishes to achieve the effect of overwriting an existing

file on a service which does not support multiple versions must first delete the existing file

and then perform the Store.

A client can determine if the file exists on the service and if it should be deleted by

enumerating the desired file requesting the childrenUniquelyNamed attribute. If the file is

not found, the service returns the error AccessError [problem: fileNotFound] and the client

may continue with the Store. If the file does exist and the value returned for

childrenUniquelyNamed is false, then the client may store the file and the service will

create the next highest version. If the value for childrenUniquelyNamed is true, then the

client may choose to either not perform the Store or first delete the existing file and then do

the Store.

14
FILINGSUBSET IMPLEMENTOR'S GUIDE

Cl:entimpiementation

W hen the existing file must be deleted, the client should issue an Open and Delete -.rr-.iijr u
the scenario described in Section 3.6.

3.4.2 Bulk data transfer

File content is transferred from the client to service in a bulk data stream. The format of the

data in this stream will vary depending upon whether the transferred file is of tvpe

tAsciiText.

A file of type tAsciiText is transmitted as a StreamOfAsciiText. This represents an encoding
of the records within the file, where a record is determined by the native operating system

definition. The client must strip any operating system specific data from the record along
with the record delimiter, if one exists, and transmit this as type AsciiString The boolean

lastByteSignificant must also be set to reflect whether the length of the record was odd or

even, since AsciiString is actually a sequence OF unspecified These lines are then formatted

into the StreamOfAsciiText and transmitted.

Any files which are not of type tAsciiText are simply sent as a single uninterpreted stream of

bytes. The service writes this stream to the local file system with no change of format.

3.5 Retrieving a file(s)

Similar to storing files, the client is responsible for retaining ail mandatory attributes of a

file retrieved from a remote service. On operating systems where multiple versions are not

supported, the client must also determine if the local file exists and needs to be deleted

before the file can be retrieved. A client also has the option to override the service's notion of

the file type and, in turn, force the service to transfer the file as a specified type

A user may provide a file specification which contains wildcard characters. This implies that

the client must first enumerate the possible files and then retrieve each one individually

This enumeration has another purpose, in that it retrieves the attributes of the file as stored

on the remote service, so that the client can retain these attributes on the local file system

Initially, the client performs a List in a manner similar to Section 3 3 The user-supplied file

specification is provided as the pathname attribute value and all mandatory attributes are

requested in types. The service returns a bulk data stream containing a sequence of

AttributeSequence for each file found which matches the pathname value No subsequent

procedures can be issued before the entire bulk data stream is received, so the data received

by the client must be retained until it can be used
for the retrieval sequence later

For each file to be retrieved, the client issues an Open to obtain a file handle, a Retrieve to

transfer the file and a Close to release the file handle. The Open requires the following

arguments: an AttributeSequence containing the pathname attribute value returned from

the List, the directory handle nullHandle, the empty sequence for controls and the session

handle returned from the previous Logon If the client wishes to request a particular type of

transfer, the desired value for the type attribute would also be included in

AttributeSequence. The file handle returned from the Open is then used on the subsequent

Retrieve and Close calls.

The Retrieve procedure requires the
file handle returned from the Open, a bulk data stream

type of
BulkData.immediateSink and the session handle obtained on the Logon The

FILINGSUBSET IMPLEMENTOR'S GUIDE
1 5

CLIENT IMPL. . TATION

resulting bulk data stream is received from the service and written to the local file
.\11

attributes returned from the List should be retained along with the file in the local fi|e

system. Sections 5 and 6 of this document
describes how this is done on the UNIX and VMS

operating systems, respectively.

Once the Retrieve has completed, either successfully
or unsuccessfully, a Close procedure is

issued specifying the file handle and the current session handle. Once the file has been

closed, the next file can be retrieved as
determined by the enumerated data returned from

the List.

3.5.1 Overwriting an existing local file

Some operating systems do not support the ability to create multiple versions of the same

named file. On those systems, the client may
wish to allow the user to decide whether to

overwrite an existing local file or not. To accomplish this, the client
must determine if the

specified local file exists. If the file does not exist, the client may
continue with the Retrieve

If the file does exist, the user may be prompted for a response. If the file is not to be

overwritten, the client will not retrieve this file and continue with the next file in the

enumerated list. Otherwise, the file is deleted via the local mechanisms and the file

subsequently retrieved.

3.5.2 Bulk data transfer

File content is transferred from the service to client in a bulk data stream. The format of the

data in this stream will vary depending upon whether the transferred file is of type

tAsciiText.

A file of type tAsciiText is transmitted as a StreamOfAsciiText. This represents an encoding

of the records within the file, where a record is determined by the native operating system

definition. The client must format the data from each AsciiString within this stream

according to the local operating system conventions and write it to the local file Specifically.

any line delimiters required by the local system will have to be added to the string as it is

written. Since the string is transmitted as a SEQUENCE OF unspecified, the boolean

lastByteSignificant is used to determine if the client should ignore the last byte of the data

string. Decoding of the StreamOfAsciiText is operating system specific and implies that the

true value for the dataSize attribute may be different than that supplied by the service

Any files which are not of type tAsciiText are sent as a single uninterpreted stream of bytes

The client writes this stream to the local file system with no change of format.

3.6 Deleting a file(s)

File deletion is accomplished in a manner similar to that of storage and retrieval A List,

requesting the pathname attribute, is performed to enumerate the candidates for deletion

For each file returned, the file is deleted by the sequence of procedures: Open and Delete

The List is executed specifying the arguments: the directory handle nullHandle, an

AttributeTypeSequence containing only the pathname attribute, a scope of type filter
with

a filter type of matches including the user supplied file specification as the pathname

16
FILINGSUBSET IMPLEMENTOR'S GUIDE

CLIENT 'MPLEMENtat:gn

attribute value, the bulk data stream type BulkData.immediateSink and the current session

handle. The bulk data stream returned will contain a pathname attribute value for each file

matching the user specification. The entire bulk data transfer must complete before the

client can continue with the file deletion. This implies that the enumerated list will have to

be retained for use later.

Each file in the returned bulk data list is opened via Open, specifying an AttributeSequence

containing the pathname attribute value returned from the List, the directory handle

nullHandle, the empty sequence for controls and the current session handle. Upon successful

completion, a file handle is returned which is used by the client on the subsequent Delete.

Appropriate errors will be returned from the service if the file does not exist or is

inaccessible.

The Delete requires the file handle returned from the Open and the current session handle

Once the file is deleted, the file handle associated with that file is invalidated by the service

A Close should be issued to release the associated file handle if an error occurs on the

deletion.

The client should be aware that a given service may or may not support deletion of directory
files and their descendants. If a service does not support deletion of directory files, the

service will return the error AccessError [problem: accessRightslnsufficient] A client

should not assume that the file was in fact deleted unless the Delete returns successfully

A service may not always guarantee that all descendants of a directory file will, in turn, be

deleted. When the service cannot support this feature or encounters a problem deleting the

descendants, the error AccessError [problem: accessRightslnsufficient] is reported Clients

should be aware that when this error is reported, a portion of the directory tree may still

remain on the service.

3.7 Creating a directory

The FilingSubset allows directory files to be created by using the Store procedure and

providing an isDirectory attribute value of true. A given service may allow or disallow the

creation of a directory file and, if allowed, may also only allow the creation of empty

directory files.

The sequence of steps used to create a directory file is almost identical to that of storing a

file. The client supplies the following arguments on the Store procedure: the directory

handle nullHandle, an AttributeSequence containing the set of mandatory attributes where

the value for isDirectory must be true and the value for type should be tDirectory, the empty

sequence for controls, the bulk data stream type of BulkData.nullSource and the current

session handle. No bulk data is transferred to the service since the source stream specified is

of type BulkData.nullSource. The service returns a file handle
upon successful completion

Once the directory is successfully created, a Close must be issued to release the file handle

FILINGSUBSET IMPLEMENTQR"S GUIOE
1 7

JENT IMPLEMENTATION

18
FILINGSUBSET IMPLEMENTOR'S GUIDE

SERVICE IMPLEMENTATION

A FilingSubset service interprets Courier procedures and provides the necessary interfaces

to the local operating system. As such, a service implementation must accept the procedures

defined by the FilingSubset: Logon, Logoff, Continue, Open, Close, Store, Retrieve and

Delete.

This section describes how to support these procedures in a FilingSubset service

independent of any underlying file system. Each procedure is discussed in detail, describing
the actions required to interface to the local file system, acceptable procedure argument

values and the use of specific error return values.

The service implementation described in this section provides support for the minimal

functionality defined by the FilingSubset as summarized in Section E.3 7 of the Filing
Protocol. Specifically, all file identification is performed with the pathname attribute in the

absolute form with an accompanying nullHandle directory handle. All mandatory and

implied attributes are supported and retained with stored files. The creation of empty

directory files is supported, although not required by the FilingSubset; however, creation of

non-empty directories and retrieval of directories is not supported. Additional comments

may also be provided for common functions which are above the minimal functionality but

may be of merit to specific implementation schemes.

Several sections of the implementation scheme presented here assume that a FilingSubset

session is supported by a single transport connection, where loss of the transport implies loss

of the session. This implementation also relies on the premise that a single instance of a

process (as defined by the local operating system) will service a single session from the

initial establishment of a Courier connection to the subsequent termination of the session

This allows the state of the session to be maintained internal to the process and eliminates a

reliance on interprocess communication. The scenarios described here would need to be

enhanced to remove these restrictions.

4.1 Common data structures

A service is responsible for creation and maintenance of several data structure> which

reflect the current state of a client's interaction with the service. The session handle is used

to maintain the state of a FilingSubset session over the life of the session. The file handl

maintains the state ofa file that a client has opened on the remote service.

e

19

4.1.1 Session handle

The session handle contains two items: a token which is a unique service specific value

representing the session, and a verifier which
is an Authentication verifier used to enforce

security on consecutive session
procedure calls.

The item token is generated by the service when the session handle is created. The value

given to token is an identifier which is used by the service to point to a session context block.

This context block actually contains
various entries relevant to the associated session, such

as:

the state of the session (i.e., logged on, file currently open, store in progress,

retrieve in progress, etc)

identification of the underlying Courier connection

the primary credentials of the
user who is logged on

the current verifier

a list of handles for files which are currently open in the session

The session state is updated by each procedure processing routine to reflect the current

activity of the session. This updating ensures consistency across procedure calls and allows

errors to be returned for inappropriate calls sequences.

4.1.2 Fi handle

A file handle is used by the client and service to identify files which are to be accessed on the

service. Upon completion of a successful Open or Store, a file handle is returned which

identifies the file to the service on subsequent calls. This handle value is used to point to a

file context block which contains information relevant to the associated file such as

the pathname attribute value for the file as specified on the Open or Store

the type attribute value specified by the client on the Open

an appropriate entry for each of the mandatory attribute values, createdOn,

dataSize, isDirectory, modifiedOn and type

a field indicating whether the file is physically open, closed, etc.

any operating system specific structures as needed by the implementation

An Open procedure sets the pathname and type fields to the values specified in the

AttributeTypeSequence provided. The remaining mandatory attribute values are

determined and set appropriately. Any operating s>stem specific structures are aU

initialized at that time. The values contained in the context block allow subsequent

procedures to discern relevant information about the file bv looking in this context block

rather than interacting with the local file sv>tem.

20

FILINGSUBSET IMPLEMENTOR'S GUIDE

SERVICE IMPLEMENTATION

A Store sets the pathname field and all attribute value fields to those values provided on rhP

Store. The service will then retain these values in the local file system.

4.2 Common support

Many of the procedure routines perform a common set of actions in addition to any procedure
specific processing required. All routines, with the exception of Logon, must verify the

session and reset the continuance mechanism prior to other actions. Also, all routines which

specify a file handle (Close, Retrieve and Delete) must check the file handle for validity

4.2.1 Session validation

The session handle provided on each call subsequent to the Logon, must be validated by the
service. Specifically, two functions are accomplished by this validation 1) the verifier

included in the session handle is revalidated and 2) the internal state of the session is

checked for consistency. .

4.2.1.1 Verifier validation

The verifier included in the seission handle may be one of two types simple or strong,

depending upon the primary credentials type provided by the Logon that created the session

handle. The implementation presented here uses simple credentials, the validation of strong
credentials is described in the Authentication Protocol[\\.

The mechanism for validating a simple verifier involves saving the Logon verifier within

the session context block. Each subsequent procedure call simply compares the verifier

within the session handle against the saved verifier and returns the error

AuthenticationError [problem: verifierlnvalid] if they do not match

4.2.1.2 Session consistency validation

The session context block created at Logon is used to validate the internal state of the

session. The token within the session handle points to the session context block

corresponding to the associated session. Specifically, the service verifies that the session

state reflects an open session. If the token value is invalid or the context block pointed to

represents a session which is not open, the error SessionError [problem: tokenlnvalid) is

returned.

4.2.2 Use of the continuance timer

A service cannot always expect that a client will terminate a session explicitly The service

should also maintain the option of terminating an open session after some specified period ot

inactivity. To enforce this, a service specific continuance value is maintained This value

FILINGSUBSET IMPLEMENTOR'S GUIDE 11

SERVICE IIV
rATI0N

defines, in seconds, the interval
which must

elapse between successive client procedure calls

before the service will terminate the
session.

Upon completion of a successful Logon, the service establishes an internal continuance

timer which will cause the execution of a
routine to terminate the session upon expiration of

this interval During each successive
procedure call from the client, the processing routine

cancels the previous timer and rearms the
mechanism again. After a Logoff is successfully

completed, the service cancels the
previous timer and does not reset the

interval.

If the continuance interval expires before the
client issues its next procedure call, the service

can terminate the session bv closing any
open files, releasing the associated file context

blocks, closing the underlying Courier
connection and releasing the session context block.

4.2.3 File handle validation

The Close, Retrieve and Delete procedures require the file handle for a file previously

opened on the service. To maintain consistency, the
service should perform a verification of

the file handle in each of these routines.

These routines do not allow the specified file handle to be nullHandle. If nullHandle is used,

the error HandleError [problem: nullDisallowed] is returned.

The state entry within the file context block is also checked to insure that the file was

previously opened. The error HandleError
[problem: invalid] is returned if the file pointed to

by the file handle is not open.

Some FilingSubset implementations may not guarantee that a previously opened file is not

deleted by another utility on the system. These services should check for file existence each

time the file handle is used and should report the error HandleError [problem: invalid] if the

file no longer exists.

The ownership of a previously opened file may also be altered by other utilities even though

the client has a valid file handle. If the service is presented with a valid file handle, but

cannot access the file that the handle references, then the error AccessError [problem.

fileChanged] is reported.

4.3 Procedures

4.3.1 Logon

Logon: procedure [service: Clearinghouse.Name, credentials: Credentials, verifier: Verifier]

returns [session: Session]

reports [AuthenticationError, ServiceError. SessionError, UndefinedError] = Filing.Logon;

Logon establishes a session which is used to control the subsequent interaction between

client and service. This procedure is accompanied by three arguments: service,
credentials

and verifier. Service is the distinguished name of the service being connected to while

credentials and verifier describe the credentials to be used in validating a user.

22
FILINGSUBSET IMPLEMENTOR S GUIDE

SERVICE IMPLEMENTATION

This procedure initially verifies that
*

le service being connected to is in fact the service

currently processing the procedure It is possible for multiple FilingSubset services to reside

on the same network server, where each service has the same or a different root directory
Each service should maintain an internal tag to identify itself This tag is used to validate

the service name provided on the Logon

Secondary-

Primary

none simple strong

nullPrimaryCredentials legal legal illegal

simple legal legal illegal

strong legal illegal legal

Table 4 1 Primary and secondary credentials combinations

User credentials are validated according to the type and strength of credentials supplied

The error AuthenticationError [problem: secondaryCredentialsTypelnvalid] should be

returned if the combination of primaries and secondaries is not allowed as shown in fable

4 1

The primary user credentials and verifier are validated as specified by the Authentication

Protocol. Credentials of type nullPrimaryCredentials are not subject to any validation A set

of simple primary credentials and verifier are validated by passing them to an

Authentication Service on a CheckSimpleCredentials procedure A return value of true

indicates that the verifier is good. If the Authentication Service returns an

AuthenticationError, the accompanying problem can be returned to the FilingSubset client

as AuthenticationError [problem: problem]. The error ServiceError [problem:

cannotAuthenticate] is returned if the Authentication Service can not be contacted A set of

strong primary credentials and verifier are validated as described in the Authentication

Protocol with an appropriate error being returned if the credentials are invalid.

Secondary credentials are validated via the host operating system validation procedures.

with appropriate errors being returned to the client if the validation fails. If a required

SecondaryltemType is not supplied by the client, the error AuthenticationError [problem:

secondaryCredentialsTypelnvalid] is returned, indicating the item types required Subset

services should report AuthenticationError [problem: secondaryCredentialsRequired] if

secondary credentials
of strength none are used in conjunction with nullPrimaryCredentials

On hybrid hosts, the Logon routine may also have to alter the effective identity of the

process to be that of the user specified in the secondary credentials. This action is dependent

upon the host operating system and is accomplished by the local mechanisms as required

This alteration would be performed to ensure that user access to and ownership of files can

be handled by the standard host
mechanisms.

To be consistent with the Filing Protocol, the process should not position itself in a default

working
directory other than the root for the given service It is the client's responsibility to

perform any positioning subsequent
to a successful Logon: this implies that the client mav

open the root explicitly On some hybrid host services, it may be advantageous tor the

service to position itself to the appropriate root directory during the Logon since use of the

FILINGSUBSET IMPLEMENTOR'S GUIDE
23

SERVICE
IMPLEMENTATION

nullHandle by a client implies the service
root directory. The error ServiceError [problem:

serviceUnavailable] should be reported if this positioning
fails.

Once this has been accomplished, the procedure
creates a session handle, initializes the state

of this handle and returns the handle to the
client. If an error occurs in creating the session

handle, the error ServiceError [problem:
serviceUnavailable] should be returned. In a case

where a single service process is responsible
for a session, the error ServiceError [problem:

serviceFull] should be reported if a Logon is attempted prior to the Logoff which terminate,

the current session.

4.3.2 Logoff

Logoff: procedure [session: Session]

reports [AuthenticationError, ServiceError, SessionError, UndefinedError]
= Filing.Logoff;

Logoff indicates that the client is terminating the session. This procedure has one

argument: session which is the handle of the session to be ended

This procedure initially verifies that the session handle supplied is indeed valid using the

procedure in Section 4 2 The Logoff routine not only verifies that the session is currently

open, it also has to determine if any other actions are in progress. Subset clients are

encouraged to maintain a single Courier connection for each session, so the service is not

required to support simultaneous actions. When the Logoff is issued while another

operation is in progress, the error ServiceError [problem: sessionlnUse] is returned.

During the existence of the session, it is possible that some files have been opened and not

subsequently closed. Prior to returning to the client, all files which are currently open

within this session are closed and the associated file context blocks released.

4.3.3 Continue

Continue: procedure [session: Session]

returns [continuance: cardinal]

reports [AuthenticationError, SessionError, UndefinedError] = Filing.Continue;

Continue registers a client's interest in maintaining an open session during a long period of

inactivity. This procedure passes session, the handle of the session to be continued.

Processing of a Continue involves verification of the session handle and resetting of the

continuance mechanism, as explained in Section 4.2.

4.3.4 Open

Open: procedure [attributes: AttributeSequence, directory: Handle,
controls: ControlSequence, session: Session]

returns [file: Handle]

reports [AccessError, AttributeTypeError, AttributeValueError,
AuthenticationError, ControlTypeError, ControlValueError, HandleError,
SessionError, UndefinedError] = Filing.Open;

24
FILINGSUBSET IMPLEMENTOR'S

GUIDE

SERVICE MPLMENTATiON

Open makes a file available for use by the client. The following arguments are passed in 'he
Open procedure: attributes identifies the file to be opened; directory specifies the starting

directory in which to look for the file; controls specify the controls applied to the resulting
file handle and session is the client's session handle.

Initially, the session handle is verified and the continuance timer reset. Argument values

and attribute types and values contained in attributes are then checked for validity. The

FilingSubset defines restrictions on the argument values and attribute types and values

provided on the Open. The following errors are returned for the respective conditions:

AttributeTypeError [problem: disallowed, type: attribute type]

an attribute type other than parentlD. pathname, type or version is

specified

AttributeTypeError [problem: duplicated, type: attribute type]

the parentlD, pathname, type or version is specified more than once

AttributeTypeError [problem: illegal, type: attribute type]

an attribute type not defined by the Filing Protocol is specified

AttributeValueError [problem: illegal, type: attribute type]

an illegal attribute value is specified

AttributeValueError [problem: unimplemented, type: parentlD]

a parentlD value other than nullFilelD is specified

AttributeValueError [problem: unimplemented, type: version]

a version value other than lowestVersion or highestVersion is specified

ControlTypeError [problem: disallowed]

controls is not the empty sequence

HandleError: [problem: invalid]

directory is not nullHandle

A file handle is allocated and initialized by setting the pathname and type entries from the

corresponding attribute values. If no values are specified, an appropriate default is used (i.e ,

the root pathname for the service and the actual file type as determined by the service). The

pathname value is used to identify the file when it is opened. The type attribute conveys the

client's intention to have the file content transfer be of this type when retrieved. To be

consistent with its treatment of directory files, a service may only allow the tAsciiText and

tUnspecified type values to be specified. The error AttributeValueError [problem:

disallowed, type: type] would be returned if another type was requested.

The service then verifies that the file exists and the user has permission to access the file

The error AccessError [problem: accessRightslnsufficient] is returned if the user does not

have access to the file. AccessError [problem: fileNotFound] is returned to indicate that the

file does not exist. The service determines the values for the isDirectory and type attributes

and saves these in the file context block. The operating system specific structures are also

initialized once the file is opened. If successful, the file handle is inserted into the open file

queue in the session context block and returned to the client.

A service should allow the specification of an empty AttributeSequence in conjunction with

use of nullHandle for directory. This is used to open the root of the file service regardles.s of

FILINGSUBSET IMPLEMENTOR'S GUIDE
2S

SERVICE
IMPLEMENTATION

any service specific pathname syntax The file handle returned to the client, in this case,

should not be nullHandle.

4.3.5 Close

4.3.6 List

Close: procedure [file: Handle, session: Session]

reports [AuthenticationError, HandleError. SessionError, UndefinedError]
= Filing.Close;

Close indicates that a client no longer needs a file handle within the specified session.

Arguments to this procedure are file, the handle to be closed and session, the session handle.

The accompanying session handle is validated and the continuance mechanism reset. The

file handle is checked for validity as described
in Section 4 2.3 and, if successful, the file is

closed and the handle removed from the open queue in the session context block.

List: procedure [directory: Handle, types: AttributeTypeSequence,

scope: ScopeSequence, listing: BulkData.Sink, session: Session]

reports [AccessError, AttributeTypeError, AuthenticationError,

ConnectionError, HandleError, ScopeTypeError, ScopeValueError, SessionError,

TransferError, UndefinedError] = Filing.List;

List enumerates files within a directory and returns the requested attributes associated with

those files. This procedure include the following arguments: directory, the handle for the

directory to be enumerated; types, the attribute types to be returned; scope, the selection

criteria for enumeration; listing, the bulk data sink to receive the attribute list and session,

the handle of the session to be continued.

The List procedure initially verifies the session handle and resets the continuance timer. The

argument values and attribute types provided on the call are validated and the following
errors reported if the specified conditions occur:

AttributeTypeError [problem:duplicate, type: attribute type]

an attribute type is specified more than once

AttributeTypeError [problem:illegal, type: attribute type]
an attribute type not defined in the Filing Protocol is specified

ScopeTypeError [problem:illegal, type: scope type]
a scope type not defined in the Filing Protocol is specified

ScopeTypeError [problem:missing, type: scope type]
a scope type of count or filter is not specified

ScopeTypeError [problem: unimplemented. type: scope type]
a scope type other than count or filter is specified

ScopeValueError [problem: illegal, type: scope type]
an illegal pathname attribute value is specified
an illegal count value is specified

26
FILINGSUBSET IMPLEMENTOR'S GUIDE

SERVICE IMPLEMENTATION

ScopeValueError [problem: unimplemented, type: filter]
a filter type other than matches is specified
a matches attribute type other than pathname is specified

TransferError [problem: aborted]
a bulk data sink type other than BulkData.immediateSink or

BulkData.nullSink is specified

The routine can return if listing specifies BulkData.nullSink If BulkData.immediateSink is
specified, the pathname attribute value is then used to enumerate the candidate files bv the
host operating system. The attributes requested are retrieved for each file enumerated and

transferred as a bulk data stream to the client.

The stream is formatted as a StreamofAttributeSequences with a single AttributeSequence
for each file enumerated. The ordering of the AttributeSequence types within the stream is
determined by the associated ordering value for the directory listed. If the ordering
attribute is not supported by the service, the ordering will be defaultOrdering ([key: name,
ascending: true, interpretation: string]).

The FilingSubset states that values must be returned for all attributes requested. If the
attribute is mandatory or implied, a non-null value is returned. If an implied attribute is not

supported, the value returned is the service default value for that attribute. The value

returned for unsupported optional attributes will be null (attribute: [type: attribute type,
value: SEQUENCE 0 of unspecified]); optional attributes which are supported return valid

values. If types requests allAttributeTypes, then the service must return non-null values for
all mandatory, implied and supported optional attributes.

The error AccessError [problem.accessrightslnsufficient] is returned if the requested file is

inaccessible by the user. AccessError [problem:fileNotFound] is returned if the pathname

value results in no files being enumerated.

Some service implementations may perform the file and attribute enumeration in two steps.

Thus, the possibility exists that the service can enumerate the directory, but may not be able
to access individual files later to determine values for the requested attributes. If an

individual file has been deleted, then the file will not be included in the bulk data stream

returned to the client. If the user no longer has permission to access the file, the service will

return null values for all attributes except the pathname attribute This implies to the client

that the requested attribute values are not accessible on the service even though the parent

directory is accessible.

4.3.7 Store

Store: procedure [directory: Handle, attributes: AttributeSequence.

controls: ControlSequence, content: BulkData.Source, session: Session]

returns [file: Handle]

reports [AccessError, AttributeTypeError, AttributeValueError,

AuthenticationError, ConnectionError, ControlTypeError, ControlValueError,

HandleError, InsertionError, SessionError, SpaceError, TransferError,

UndefinedError] = Filing.Store;

Store creates a file with the specified content and the specified attributes. Store uses five

arguments: directory specifies the directory in which to insert the file; attributes, the

attributes to give to the created file; controls, the controls to be applied to the resulting file

FILINGSUBSET IMPLEMENTOR'S GUIDE 27

SERVICE
IMPLEMENTATION

handle; content, the bulk data source
used to send the file contents and session, the current

session handle.

Fl_
[.

., , ,. ,nj

rPcpts the continuance mechanism. The following
Store verifies the session handle and resets mc -.

"S

. ,
[

., ,tj rocfrirtions on argument values
and attribute tvpe>

errors are returned if the associated
restricuuna a .

^.

occur:

AttributeTypeError [problem: disallowed,
type: attribute type]

an attribute tvpe of filelD, modifiedBy,
modifiedOn, name,

numberOfChildren, parentlD,
readBy, readOn, storedSize or

subtreeSize is specified

AttributeTypeError [problem: duplicated,
type: attribute type]

a valid attribute is specified more than once

AttributeTypeError [problem: illegal, type: attribute type]

an attribute type not defined by the Filing Protocol is specified

AttributeTypeError [problem: missing, type: pathname]

a pathname attribute value
is not specified

AttributeTypeError [problem: unimplemented type: attribute type]

an attribute type of checksum, createdBy or position is specified

AttributeTypeError [problem: unreasonable, type: type]

the isDirectory value is true and the type value is not tDirectory

the type value is tDirectory and the isDirectory value is false

AttributeValueError [problem: illegal, type: attribute type]

an illegal attribute value is specified

AttributeValueError [problem: unimplemented. type: accessList]

an accessList value other than [defaulted: true] is specified

AttributeValueError [problem: unimplemented. type: childrenUniquelyNamed]

a childrenUniquelyNamed value other than the service specific value is

specified

AttributeValueError [problem: unimplemented, type: defaultAccessList]

a defaultAccessList value other than [defaulted: true] is specified

AttributeValueError [problem: unimplemented, type: isTemporary]

an isTemporary value other than false is specified

AttributeValueError [problem: unimplemented, type: ordering]

an ordering value other than defaultOrdering is specified

AttributeValueError [problem: unimplemented, type: subtreeSizeLimit]

a subtreeSizeLimit value other than nullsubtreesizeLimit is specified

AttributeValueError [problem: unimplemented, type: type]

a type value other than tAsciiText, tDirectory or tUnspecified is specified

28
FILINGSUBSET IMPLEMENTOR'S

GUIDE

SERVICE IMPLEMENTATION

AttributeValueError [problem: unimplemented, type: version]
a version value other than highestVersion is specified

ControlTypeError [problem: disallowed]
controls is not the empty sequence

HandleError: [problem: invalid]

directory is not nullHandle

TransferError: [problem: aborted]
a bulk data source type other than BulkData.immediateSource or

BulkData.nullSource is specified

If content specifies BulkData.nullSink, the routine returns to the client. Otherwise, a file

handle is created and the values supplied for the mandatory attributes cached in the file

context block. Table E 4 of the Filing Protocol [7] describes the values to be given to
any-

mandatory attributes not specified on the procedure call. The value for the dataSize

attribute should be the number of bytes as stored on the local file system once the bulk data

transfer has completed.

The specified file is created using the local operating system procedures and the necessary

operating system specific structures initialized in the file context block. The error

AccessError [problem: accessRightslnsufficient] is reported if the user does not have

permission to create the file. If the file exists, the error InsertionError [problem:

fileNotUnique] is reported to the client. If no space exists on the service to create the file, the

error SpaceError [problem: mediumFull] is returned. The previously allocated file context

block is released if an error is reported.

The content of the file is read from the bulk data stream and written to the file on the local

file system. If any problems are encountered while reading the bulk data stream or writing

to the file system, the service sends an out-of-band notification to the client to abort the bulk

data transfer, reports the error TransferError [problem: aborted], and deletes the partial

file. If the client aborts the bulk data transfer, the same error is also reported and the partial

file deleted.

Upon successful completion of the bulk data transfer, the attribute values contained in the

file context block are stored with the file through the use of the local file system

mechanisms The file handle is queued onto the session context block and the file handle

returned to the client. If an error is reported after the file handle has been created, the

associated context block is freed.

Files of type other than tAsciiText are transferred as an uninterpreted sequence of bytes and

are written to the local file system with no formatting. The data transferred in the bulk data

stream will be of type StreamOfAsciiText for a file of type tAsciiText. Each AsciiString within

this stream will be written to the file in the appropriate format for the local operating

system. The value of lastByteSignificant will indicate whether the last byte in each

AsciiString.bytes should be written to the file.

To indicate that the file to be created is a directory, a client will set the isDirectory value to

TRUE. A true value for the isDirectory attribute also implies a type value of tDirectory if the

type value is not specified; however, a type of tDirectory does not imply an isDirectory value

of true If both the isDirectory and type values are specified and they are in conflict, the error

AttributeTypeError [problem: unreasonable, type: type] should be reported This error

FILINGSUBSET IMPLEMENTOR'S GUIDE 29

SERVICE
IMPLEMENTATION

would also be reported if a type value of tDirectory
is specified with no associated isDirectory

value.

A subset service is not required to support the creation of directory files and will report

AccessError [problem: accessRightslnsufficient]
if directory creation is not allowed.

Furthermore, a service which does support directory creation is not required to allow the

creation of non-empty directory files. A service which does not support this feature reports

the error AttributeTypeError [problem: unreasonable, type: isDirectory] if the client

specifies an isDirectory value of true in conjunction with BulkData.immediateSource and a

non-zero length data transfer.

4.3.8 Retrieve

Retrieve: procedure [file: Handle, content: BulkData.Sink, session: Session]

reports [AccessError, AuthenticationError, ConnectionError, HandleError,

SessionError, TransferError, UndefinedError]
= Filing.Retrieve;

Retrieve transfers the contents of a file on the service to the client. Three arguments

accompany the Retrieve procedure: file, the handle of the file to be transfered, content, the

bulk data sink to receive the file contents and session, the handle of the session to he

continued.

The Retrieve routine verifies the session handle and resets the continuance timer as

described in Section 4.2, The supplied file handle is verified, as described in Section 4 2.3,

and the following error reported if the corresponding restriction on argument values occur:

TransferError: [problem: aborted]

a bulk data sink type other than BulkData.immediateSink or

BulkData.nullSink is specified

If content specifies BulkData.nullSink, the procedure returns. If BulkData.immediateSink is

specified, then the file identified by the file handle is read from the local file system and

written to a bulk data stream for transfer to the client. If an error is encountered while

either reading the file or writing to the bulk data stream, an out-of-band notification is sent

to abort the transfer and the error TransferError [problem: aborted] is reported to the client

If the client, for some reason, aborts the transfer, then the same error is reported.

The bulk data stream may be formatted depending upon the type of the file being
transferred. The type is determined from a combination of the type attribute value as it was

specified on the previous Open and the type attribute value of the file as it exists on the local

file system. If the client specified a type on the Open, the file content is transferred as that

type. If type was not specified, the locally determined file type is used. The service

determines the correct transfer type by examining the respective values in the session

context block at the time of the transfer.

Files of a type other than tAsciiText are transferred as a single uninterpreted stream of

bytes. A file of type tAsciiText will be transferred in the bulk data stream as type

StreamOfAsciiText. Each line of the input file is stripped of any operating system specific

data, including line delimiters, and encoded into an AsciiString. If the number of characters

in the line is odd then lastByteSignificant is set to false, otherwise it is set to true.

FilingSubset services are not required to permit the retrieval of directory files A service

which does not allow this reports the error AccessError [problem: accessRightslnsufficient]

30
FILINGSUBSET IMPLEMENTOR'S GUIDE

SERVICE IMPLEMENTA'ION

The isDirectory entry in the file context block is used to determine if the file is indeed a

directory.

4.3.9 Delete

Delete: procedure [file: Handle, session: Session]
reports [AccessError, AuthenticationError, HandleError, SessionError,

UndefinedError] = Filing.Delete;

Delete deletes an existing file. The following arguments are passed in the Delete procedure:

file, the handle of the file to be deleted and session, the current session handle.

The session handle is verified, the continuance mechanism rearmed and the file handle

verified as described in Section 4 2. The file specified by the file handle will then be deleted

Different actions may be taken depending upon whether the file is a directory as determined

by examining the isDirectory entry in the file context block. L'pon successful deletion of the

file, the associated file handle is removed from the open file queue in the session context

block and released.

FilingSubset services are not required to allow deletion of directory files If directory

deletion is not supported, then the error AccessError [problem: accessRightslnsufficient] is

reported. A service that does in fact support deletion of directories may not be able to

guarantee that all descendants of that directory will in fact be deleted, in accordance with

the Filing Protocol. The error AccessError [problem: accessRightslnsufficient] should also be

reported for this condition. Clients should recognize that in the situation where this error is

reported, the portion of the directory structure that cannot be deleted, along with other files

which would have been encountered had the deletion continued may be retained on the

service.

FILINGSUBSET IMPLEMENTOR'S GUIDE

CEMENTATION

32

FILINGSUBSET IMPLEMENTOR'S GUIDE

5. UNIX SYSTEM INTERFACE

Implementation of the FilingSubset under UNIX requires both procedure and attribute

support within the native operating and file systems. This section presents an

implementation scenario which describes the necessary interactions with the UNIX system.

Theis section describes those interface procedures required by the client and service

implementations presented in Sections 3 and 4. These are by no means the only method for

providing the facility desired; they have been chosen either because they have actually been

tested or are more likely to be portable between various versions of UNIX In those cases

where differences arise between implementations on UNIX 4.2BSD, UNIX 4 38SD and UNIX

System V, these differences are noted.

In several instances, the examples presented will be identical to the VMS counterparts

presented in Section 6. This replication is done in an effort to make both the UNIX and the

VMS sections complete stand-alone sections.

Several of the examples presented are predicated on the assumption that a separate UNIX

process instance handles all procedure calls from the time the Courier connection has been

established on the initial Logon call until the subsequent Logoff call. The examples also

assume the definition of Filing defined constants and Courier defined data tvpes In the

examples, the string
"Fiimg_"

is prepended to structure and variable names which are

defined by the Filing Protocol

5.1 Attribute Support

The FilingSubset Protocol distinguishes three classes of attributes: mandatory, implied and

optional. This section describes specific scenarios under the UNIX operating system for

services to retain attributes so that they may be interpreted by other native

operating system utilities and returned when requested by network clients

clients to retrieve and retain the attributes when dealing with remote services

All attributes presented here are discussed with respect to two areas: 1) where attributes

must be retained in the native file structures and 2) how they may be retrieved from the-e

structures and transferred toother FilingSubset clients and services Retention of attributes

is of importance to FilingSubset clients when retrieving files from a service and by -><-rvices

when a client requests
creation of a file on the service Likewise, retrieval ofuttribut.es from

the native file structures is used by clients when issuing
a- Store and by services when

returning attributes
on a List procedure.

33

UNIX SYSTEM INTERFACE

5.1.1 Mandatory Attributes

Mandatory attributes are those attributes
which must be interpreted by all FilingSubset

implementations. These attributes are guaranteed to be retained by any serv,ce

implementing the FilingSubset
Protocol and must be accepted in specific procedure calls to

the extent that they are legal arguments of the corresponding procedure in the Filing

Protocol. Additionally, clients may wish to to retain these attributes when retrieving files

from a service.The FilingSubset defines the following mandatory attributes: createdOn,

dataSize, isDirectory, modifiedOn,
pathname and type.

Each of these attributes is discussed with respect to the areas of retention and retrieval.

Retention of an attribute value describes a mechanism for saving the specified XNS

attribute value within the UNIX file system along with the file contents. Retrieval of

attribute values presents methods for deriving the XNS value from the UNIX file system. In

each of these cases, the values may need to
be converted from one form to the other

In the case of the createdOn and modifiedOn attributes, the retention and retrieval of

attribute values requires a conversion between the UNIX and XNS formats. The createdOn

and modifiedOn values are always specified in XNS Time format [10|. XNS time is based on

the number of seconds since 00:00:00 Jan. 1, 1901 Greewich Mean Time. The UNIX operating

system maintains time in a form specifying seconds since 00:00 00 GMT, Jan. I, 1970 To

convert XNS time values to UNIX time values, the constant 2177452800 must be subtracted

from the XNS value. Note that this constant is the XNS encoding for the UNIX time 00:00 00

GMT, Jan. I, 1970 (((1970-1901) years
*
365 days/year -- 17 leap days)

*
24 hours/day

*
60

minutes/hour
*
60 seconds/minute |. Conversion from UNIX format to XNS format simply

requires adding the constant to the UNIX value.

5.1.1.1 createdOn

The createdOn attribute is useful in determining if similarly named files on different file

servers within the network are identical. This is especially true on systems such as UNIX

where versions are not supported. The ability to retain the createdOn date must be coupled

with a mechanism for native utilities to provide this date on demand. This can be

accomplished on UNIX by retaining the createdOn vuiue in the file status field

stat. stjntime. This allows non-network UNIX users to access this date easily also allows the

network client and service to determine and modify this date If this file is modified by local

UNIX uilities, the date will change, in effect implying a new version to network users.

[Retention!

The createdOn value is first converted to UNIX form as described above and then retained

in the UNIX file status block field, stat.stjntime, by issuing a utimes call (4 2BSD or 4 38SDI

or a utime call (4.2BSD, 4 3BSD and System V).

UNIX SVSTEVI N7Es"FACE

The following example illustrates useof the mme procedure for retaining the createdOn and
modifiedOn values:

include <sys/types . h>

'define XNS.TIMEJJIFFERENCE 2177452800 / difference between base times /

/

routine :

set_create_time

input:

pointer to file context block

where

if no createdOn value was specified on Store, createdon == a

if createdOn value was specified on Store. createdOn != o. value is

in XNS time format

returns :

none

set_create_time(f l le_context_block)

file_handle *f 1 le_context_block;

{

time_t time_buf fer[2] ;

time_t time() ;

if (f i le_context_block->createdon)
/

save createdOn if specified

time_buf fer[0]= f i le_context_b lock->createdon -

xns_t:me_DI?feRMCE :

e'se /
else, set to current date/time /

time_buf fer[0]= time(0):

time_buffer[
1]= time(0):

/
set modifiedOn ;o current date'time /

ut ime(f i le_contex t_b lock
-

>pathname ,:i me suffer):

[Retrieval/

Network processes can retrieve the createdOn value by issuing a stat call on the file and

returning the stat . st_mtime value after adding the conversion constant described dnove.

5.1.1.2 dataSize

The FilingSubset defines the value of the dataSize attribute to be an estimate of the number

of eight-bit bytes within the file content. The UNIX file system maintains a file size, in bytes,

which can be used for the dataSize value.

FILINGSUBSET IMPLEMENTOR'S GUIDE 35

UWIX SYSTEM INTERFACE

[Retention!

Since the dataSize value is regarded as an
estimate of the native storage size, a UNIX service

does not need to explicitly save this value.
It will be retained by the UNIX file system once

the file is created.

[Retrieval]

The dataSize value can be returned by issuing a stat call on the
desired file and returning

the stat. st size value.

5.1.1.3 isDirectory

The isDirectory is a boolean designating whether the file is a directory or not. Since UNIX

differentiates between directory and non-directory files, this value is retained in the format

of the file and derived from the stat file structure field, stat . st_mode.

[Retention!

Retention of the isDirectory attribute implies that the file be created differently based on the

attribute value. When the value is FALSE, the standard UNIX file creation routines (open,

creat, fopen, etc.) can be used. If the value is TRUE, the directory file can be created with the

mkdi r system call (4.2BSD and 4.3BSD) or the mkdi r command (4.2BSD, 4.3BSD and System V)

[Retrieval!

The isDirectory attribute value can be determined by issuing a call to the stat routine. This

returns a file status block which contains the field stat . st_mode. The isDirectory value will

be true if the returned stat.stjnode value is TRUE when logically anded with the constant

S IFDIR.

5.1.1.4 modifiedOn

The modifiedOn attribute is retained in the UNIX file status field stat .st_a time.

[Retention!

The modifiedOn attribute is retained in the stat .statime field by a call to utimes '4 2BS0

and 4.3BSD) or utime (4.2BSD, 4 3BSD and System V). When a file is created by a FilingSubset

client or service, the modifiedOn value becomes the current date and time If no value is

specified for the modified date on the utimes routine, the current date and time will be used.

[Retrieval/

The modifiedOn value is returned to network processes by issuing a stat call on the file and

returning the stat.st_atime value added to the UNIX to XNS time conversion constant

described in Section 5.1.1.

UNIX SYSTEM INTERFACE

5.1.1.5 pathname

The FilingSubset requires all service implementations to allow the specification of files bv

the pathname attribute value. The syntax of the attribute value is defined to be service

specific, which implies that the pathname value will in fact be the UNIX file name. Likewise,
the pathname value can be easily derived from the UNIX file name when listing the parent
directory.

The context for use of the pathname attribute within the FilingSubset restricts the use of

wildcard characters to the matches attribute value on the List procedure.

[Retention]

The pathname attribute value specified will be used as the UNIX file name when actually

creating the file. This value is retained by the parent directory file once the file is

successfully created.

[Retrieval]

A FilingSubset service is allowed to require the pathname attribute when accessing a file.

As such, the value is always specified by the client, except on a List when the service must

enumerate the parent directory. The mechanism presented in Section 5.3.4 using the is

command will always return a fully specified UNIX filename to the service.

5.1.1.6 type

The ability to transfer files between systems and retain generic file types is advantageous to

the users of a heterogeneous network. In particular, the ability to transfer a text file to

another system and preserve the editability of that file by the native text editors on the

receiving system without explicit conversion is especially beneficial.

All FilingSubset implementations must support the type attribute values: tAsciiText,

tDirectory and tUnspecified. The UNIX operating system does not provide an explicit

mechanism to distinguish between text and binary files, so support for this distinction must

rely on the client or service making
a good guess as to the file type based upon analysis of the

file content.

Generally, the distinction can be made that files containing only Ascii characters will be

treated as tAsciiText and all other files (excluding directories) will be treated as

tUnspecified

[Retention!

The tDirectory file type is retained in a manner similar to the isDirectory attribute When

the attribute value is tDirectory. the directory is created via a the system call iKd-r >4 2BSD

and 4 3BSD) or the command mkdi r (4.2BSD, 4.3BSD and System V).

Since the UNIX'operating system does not create text and non-text files differently the

service does not explicitly
retain the attribute value when storing the file Instead, the

distinction is made when the type attribute is retrieved.

FILINGSUBSET IMPLEMENTOR'S GUIDE
3?

UNIX SYSTEM INTERFACE

[Retrieval]

The tDirectory file type can be determined in a manner similar to that of the isDirectory
attribute. A call to stat will return a file status block which contains the field stat.st mode

The type value will be set to tDirectory if the returned stat.stjnode value is true when

logically anded with the consant S_IF0IR.

Since the UNIX file system does not provide explicit file types to distinguish between
tAsciitext and tUnspecified, this distinction must be made based on the file content A

simple, but effective method for determining the file type is to read a selected number of

bytes from the file and look for any byte sequences which contain non-ASCII characters (i e

any character is 0 or has the high-order bit set). If any
non-ASCII characters are found then

the file can be assumed to be tUnspecified; if only ASCII characters are found, then the

tAsciiText type can be assumed. It should be noted that this method will not discern the

correct type in all cases; however, it is possible for the client to override the service

determined value by specifying the desired type on the Open call.

The routine get_type is defined to return the file type.

^include <stdio.h>

^define CHARS TO READ 2048

routine :

get_type

input:

pointer to pathname of file

returns :

Cardinal containing Filing defined file type

Cardinal get_type(pathname)

char 'pathname;

{

FILE ,file_desc:

char
buffer[CHARS_T0_REA0];

mt count:

char *ptr;

Cardinal type:

'f ((file_desc= fopenf pathname.
"r"

))) (
type =

Filing tUnspecified: ,. c/*
if error, assume -.Unspecified

'

return(type) ;

>

if ((count=

fr..d(buff.r.siz.of(ch.r,.CHARS TO READ. file desc,) - 0)
type = Fi 1 mg_tUnspecif ied: ,.

. ,
/if error, assume tUnspecified

type= Fil ing_tAsciiText;
/*

assume tAsci i Text
" '

uKnXWsfEtoiNVEAHACE

for (ptr=
buffer; ptr < buffer + count 1:) {

if (("ptr ==0)1 (ptr++ & 0200)) {

type = Fil mg_tUnspecif ied:

break;

}

}

/' for each character /

/*
if 0 or hign order 3

'

t

/
assume tUnspecified /

}

fclose(f i1e_desc);

return(type);

/
close file /

5.1.2 Implied attributes

Implied attributes are those attributes which obtain an implicit value when a new file is

created. All subset implementations are required to permit the specification of the implied

(default) value for these attributes. A service implementation may reject a Store procedure if

the value for an implied attribute is not the default value and the service does not support

the retention of non-default vaiues for the attribute.

The implied attributes defined in the FilingSubset are accessList, childrenUniquelyNamed,

defaultAccessList, isTemporary, ordering, subtreeSizeLimit and version

Table 5.1 specifies the default values for these attributes on the UNIX operating system.

Since the attribute values are identical for every file unless otherwise supported, no explicit

provision for retention and retrieval of these attributes is needed. The service should verify

that the associated value is indeed the default on a Store and return the default values

when requested on a List procedure.

Attribute Supported Values

accessList Ulelaulted: tri fi

childrenUniquelyNamed TRIE

defaultAccessList Idetaulted: trif.I

isTempnrarv KAL-.E

orderine defaultOrrlerints

subtreeSizeLimit nullSulUreeSizeLimil

version
hitjhe>tVer>>i<>n

Table 5 1 UNIX supported values for

implied attributes

5.1.3 Optional attributes

Those attributes which are defined
as interpreted in the Filing Protocol but are not defined

as either mandatory or
implied within the FilingSubset are classified as optional attributes

These attributes are not
required to be supported by any FilingSubset service Conventions

FILINGSUBSET IMPLEMENTOR'S GUIDE
39

UNIX SYSTEM INTERFACE

for retaining and retrieving values
for these attributes are not discussed here, since they are

outside the definition for required functionality
in the FilingSubset.

5.2 Client procedure support

Client routines require various UNIX system calls to perform functions specific to the UNIX

operating system and to access the UNIX file system. Examples of this interaction are

discussed in this section.

5.2.1 Continuance timer support

A FilingSubset client must issue a Continue procedure at specific time intervals to prevent

the service from terminating the session for lack ofactivity. This mechanism is implemented

via use of the alarm and signal UNIX routines. Three routines are defined for use by the

client: set_continuance_timer, reset_continuance_t imer and cancel_continuance timer. In

addition, the routine sendcontinue is referenced. This routine will send a Continue to the

service to maintain the open session.

set_contmuance_timer calls send_contmue to determine the service continuance value then

initializes the timer mechanism to send a SIGALRM signal before the expiration of that

interval.

^include <signal . h>

extern send_cont inue() ;

Cardinal continuance;

/
expiration routine, will send continue /

/
continuance value, in seconds /

/*

returned from service /

routine :

set_continuance_timer

called after a successful Logon

set_continuance_timer()

{

continuance=
send_cont inue() ;

continuance1
cont inuance/3 ;

alarm(O) ;

signal (SIGALRM. send_continue) ;

al arm(continuance);

/'
get service value /

/*

insure we expire before service */

I*
cancel any previous alarm /

/*

set routine to catch alarm

/
set alarm /

UNIX SYSTEM INTERFACE

reset_cont-inuance_timer cancels any pending timer and reissues a new timer request.

routine:

restwcpntmuance_timer

called after any FilingSubset procedure call

reset_contmuance_timor()

{

alarm(O) ;

alarm(continuance) ;

/
cancel previous alarm /

/*
then, reset alarm /

}

cancel_continuance_timer cancels the previous request and turns off handling of the SIGAUM

signal.

routine:

cancel

called after a successful Logoff

cancel_continuance_timer()

{

alarm(O) ;

signal(SIGALRM.SIG_IGN);

}

/*
cancel any previous alarm /

/
set routine to ignore a lam /

5.2.2 Determining mandatory attribute values

When a client performs a Store, values for the mandatory attributes may accompany the

remote procedure call Each of these values, with the exception of pathname and type, can

be obtained locally by using the stat system call. The routine getattnoutes illustrates how

to accomplish this.

^include <sys/types .h>

^include <sys/stat.h>

extern LongCardinal createdon;

extern LongCardinal modifiedon;

extern Boolean lsdirectory;

extern Cardinal datasize;

extern Cardinal type:

FILINGSUBSET IMPLEMENTOR'S GUIDE 41

UNIX SYSTEM INTERFACE

/

routine:

get_attnbutes

input:

pointer to pathname of file

returns:

-1 success

I error

/

get_attributes(pathname)

char 'pathname:

{

struct stat file_stat:

if (stat(pathname.&file_stat)
-1)

'*
stat flle v

return(1) ;

createdon= f i le.stat .
stjntime * XNS_TIME_DIFFERENCE :

/
createdOn /

modifiedon= f i le_stat . st_atime * XNS_TIME_DIFFERENCE :
/

modifiedOn /

/ file name /

datasize= f i le_stat . st_size:

if ((file_stat.st_mode 4 SJFDIR)
!= 0) {

isdi
rectory.= TRUE:

type- F i 1 ing_tOi rectory ;

} else (
isdirectory= FALSE:

type=
get_type(pathname) :

}

return(-1) ;

>

/
dataSize /

/*
type and isDirectory /

5.3 Service procedure support

A FilingSubset service implemented on the UNIX operating system will need to use various

system calls to access the local file system and provide UNIX specific procedure support.
This

section presents detailed examples of this interaction.

Client access to files on a subset service is controlled through the use of a file handle The

implementation presented in Section 4 describes the value of the file handle as a pointer to a

file context block. To provide the necessary functionality, this context block will contain some

items which are operating system specific.

UNIX SYSTEM INTERFACE

For the implementation presented here, the following items are contained in the file context
block:

a copy of the pathname attribute value as specified on the Open or Store

a cardinal identifying the file type requested by the client on the Open

a cardinal specifying the file type as determined by the service

a cardinal specifying the dataSize value for the file

a boolean specifying the isDirectory value for the file

a long cardinal specifying the createdOn value for the file in XNS format

a long cardinal specifying the modifiedOn value for the file in XNS format

a FILE file descriptor used to access the opened file

The following C structure defines the structure used in this section:

typedef file_handle {

char "pathname: /
pointer to pathname value /

Cardinal type; /
client requested type (from Open i /

Cardinal truetype:
/

file system file type /

Cardinal datasize;
/

dataSize ^alue /

Boolean isdirectory;
/

isOirectory /

LongCardinal createdon;
/

createdOn value */

LongCardinal modifiedon;
/

-nodifiedOn value
*'

FILE file_desc:
/

ptr to file descriptor for open i 1 e /

};

5.3.1 Logon

The Logon procedure is responsible for validating the user attempting the connection and, if

successful, altering the process ownership to that of the user This alteration of ownership

ensures that the process is subject to the normal access/protection mechanisms employed by

the UNIX operating system when subsequent procedure calls request access to files on the

service.

The user name and password entries of the secondary credentials supplied on the Logon are

validated against the standard UNIX account file '/etc passwdi Once this has been

completed, the user ID and group ID of the process is changed to that of the respective us-er us.

determined from the password file entry for the user The process is also positioned to the

appropriate root file for the service, generally the UNIX root
"/"

This provides a working

directory which can be associated with nullHandle.

FILINGSUBSET IMPLEMENTOR'S GUIDE 43

UNIX SYSTEM INTERFACE

rp.
c

.

_
. f;_ :c Hpfined to perform these functions.

lhevenfyandposition_user routine is
aeimcu ^ y

^include <pwd.h>

/((define SERVICE_ROOT
"/"

/

routine:

verifyand position_user

input:

user name derived from secondary credentials

user password derived from secondary credentials

returns:

-1
-

success

else Filing Error, Problem

/

Filing Error ven fyandposi t ion_user(user_name . user_password)

char 'user name:
/*

user name derived from secondary credentials '

char *user_password;
/

user password derived from secondary credentials 'i

{

struct passwd 'pwd_entry;

struct passwd getpwnam();

char 'crypt:

Filmg_Error error_value:
/

Filing error, problem pair /

/
set to Filing AuthenticationError /

error_val ue .

error= Fil ing_Authenticati onError;

error_val ue . prob 1 em= Authentication_secondaryCredentialsInval id:

/
determine if user is valid /

if ((pwd_entry=
getpwnam(user_name)) == (struct passwd *)0)

return (error_va 1 ue) :

/*

determine if password is valid

if (strcmp(pwd_entry->pw_passwd.crypt(user_password.pwd_entry->pw_pass*d)))

return (error_value) ;

/

set process user ID /

if (setuid(pwd_entry->pw_uid) ==
-1)

return(error_value) :

/*
set process group ID /

if (setgid(pwd_entry->pw_gid) -1)

return (error_value) :

/*
position in service root

'

if (chdir(SERVICE_ROOT) ==
-i) (

er ror_v a lue. errors Fil ing_Serv iceError:

error_value.problem= Fi 1 ing_serv iceUnaval 1 able ;

return(error_value) :

}

return(-I)

UNIXSYSTEM INTERFACE

5.3.2 Continue

The continuance mechanism is defined to allow services to close a session if it has been idle

for a long period of time or the session needs to be terminated for other reasons Each service

maintains a continuance value which is the number of seconds that it will keep a session

open between successive procedure calls. This allows the service to set a timeout mechanism

to notify it when this time interval has passed and allow it to disconnect the active session.

This mechanism is armed once a session has been successfully established by a Logon and is

terminated once the session is ended with a Logoff. Additionally, each routine which

processes a FilingSubset procedure, as described in Section 4, should rearm the timer

The alarm and signal routines are used to implement this mechanism for UNIX services.

alarm is used to set the timer mechanism for the specified interval while signal is used to

indicate whether the service is to handle or ignore the alarm.

The routines set_contmuance_timer, reset_continuance_timer and cancel_continuance_t imer

are defined. The service routine contmuanceexpi ration is referenced by

set_continuance_timer and would execute at the expiration of a timeout interval. At that

time, this routine would close the current session in a manner similar to that proposed for

the Logoff procedure in Section 4 4

set_contmuance_timer initially establishes the timeout mechanism

#i nc 1 ude <signal . h>

Cardinal continuance;

extern continuance_expi rat ion() ;

/
continuance value, m seconds /

/*
expiration routine */

5.3.3 Open

rout me :

set cont i nuance_t imer

set_contmuance_timer()

{

alarm(O);

'"

cancel any previous alarm /

signal (SIGALRM. cont inuance_exp i rat ion) :
/

set routine to eaten alarm /

alarm(continuance);

''
set alarm /

The reset
contmuance_timer and cancel imer routines are identical to the

client routines specified
in Section 5.2.1.

The Open procedure opens
a file for subsequent access by the client. The file is identified bv

the value specified for the pathname attribute. UNIX
does not support multiple versions, so

FILINGSUBSET IMPLEMENTOR'S GUIDE
45

UNIX SYSTEM INTERFACE

the version values lowestVersion and
highestVersion are accepted but indicate the same

file.

With respect to the UNIX file system, there is no guarantee that the file cannot be deleted by
other utilities running outside of the process

that has the file open. Since there is no benefit
to physically opening the file during processing of an Open, the Open routine will simply

determine if the file exists and the user has permission to access the file. Subsequent
procedures which require physical access to the file will be responsible for actually

performing the open.

The stat_f ile routine is defined to accomplish this. The UNIX routine stat is used to fill in
the attribute entries within the file context block. In addition, a call to get_type is issued to

determine the file type as stored on the UNIX file system. This allows subsequent file
transfer procedures to determine values for the mandatory attributes dataSize, isDirectory
and type simply by examining the file context block. The possible error returns are

accessRightslnsufficient if the file cannot be accessed, fileNotFound, if the file or some

component of the pathname does not exist and accessRightslndeterminate if any other error

occurs.

^include <errno.h>

^include <sys/types . h>

^include <sys/stat.h>

/

rout ine :

stat_f ile

input :

pointer to file handle

returns :

-1 success

else Filing Error. Problem

f ile_context_block entries filled in

/

Filing_Error stat_f 1 le(f 1 1 e_con tex t_b lock)

file_handle *f ile_context block;

{

struct stat file_stat;

Filing Error error value; /. c,i
-

' / Filing error, problem pair /

error value. errors Filing AccessError-
/ *c ,u.^i-esstrror. /

default to AccessError /

if (
stat(file_context_block->pathname.&file_stat) ==-!){

switch (errno) {

case EACCES:
/"

user has no access
* '

error_value. problem^ F , l ing_accessRightsInsuf f ic lent :

return(error_value) ;

case ENOTDIR-

/

directory doesn't exist
"

case ENOENT:
/*
file doesn

'

t exist
*

error_value. problem, Fi 1 mg_f , leNotFound:

return(error_value) ;

UNIX SYSTEM INTERFACE

5.3.4 List

default: /
all other errors

e r ro r_v a lue. problem= Fi 1 mg_accessRightsIndetennnate:

return (error_val ue) ;

}

}

f ile_context_block->datasize= f ile_stat .st_size: /
dataSize */

/
file type /

if ((file_stat.st_mode & S_IFDIR) != 0) {
/

type and isOirectory /

f i le_context_block->isdirectory= TRUE;

truetype* Fi 1 ing_tOi rectory ;

} else {

f i le_con tex t_block->isdi rectory
= FALSE :

f ile_context_block->truetype=
get_type(f i le_context_block->pathname i :

}

return(
-

1) ;

}

The List procedure enumerates a directory looking for the specified file or files and returns

the requested attributes for each file found. The file specification to be listed is specified in

the pathname attribute value on a filter of type matches This procedure is unique in that it

is the only procedure which will allow wildcard characters in the pathname syntax which is

interpreted by the service.

This function is easily accomodated through the use of the UNIX is command which lists a

directory and returns the files matching some file name criteria The service uses the pooen

routine to execute the is command and read the subsequent output. Use of the -id switches

result in the output being formatted one file name per line with the file name being fully

specified from the UNIX root ("/"). The file names are also returned in ascending order by

name which is the defaultOrdering value for the UNIX implementation Each file name

returned can then be used to determine the attribute values as requested on the List If for

any reason the popen routine is not successful, the AccessProblem accessRightslnsufficient

is returned.

The routine l ist_directory is defined to perform this function. [Note: A slightly altered

version of the get attributes routine presented in Section 5 2.2 can be used to determine the

mandatory
attributes for a file. I

^include <stdio.h>

^include
<errno.h>

/

routine :

1 ist_di rectory

input:

pointer to UNIX file specification

47

FILINGSUBSET IMPLEMENTOR'S GUIDE

UNIX SYSTEM INTERFACE

5.3.5 Store

returns :

-1 success

else Filing Error. Problem

*/

Filing_Error list di rectory(f i
le_spec)

char 'file ^pec; /* pathname attribute
from filter of type matches /

{

Fil ing_AttnbuteSequence
attnbute_sequence:

FILE pipe_desc:

FILE popen();

char command[256] ;

Filing_Error error_value:

''

Fl1in9 error- problem pair V

error_value.
error= Fi 1 ing_AccessError ;

/ default to AccessError V

strcpy(command.Vbm/ls -Id "):
'' frm appropriate command /

strcat(command .
f l le_spec) ;

if (
(pipe_desc= popen (command)) == NULL) {

/*
issue command /

error_value.
problems Fi 1 mg_accessRightsInsuf f icient :

return(error_value) :

}
/

read each file name /

while (fgets(f ilename,MAX_FILENAME_LENGTH.pipe_desc)
!= NULL) {

/

insert implementation specific routines here:

determine the values for the requested attributes

make an attribute sequence

write the attribute sequence to the bulk data stream

/

}

pclose(pipe_desc) :

return(
- I) ;

The Store procedure is used to create both directory and non-directory files A different

system call is used to create directory files under UNIX, so the service will take an

appropriate action based on the values of the isDirectory and type attribute values as stored

in the file context block.

Non-directory files are stored by creating the specified file, reading the bulk data stream.

writing to the file and closing the file. The createdOn and modifiedOn attribute values are

retained once the file is closed as described in Section 5.1.

After the Store routine has validated the argument and attribute values, a file handle is

allocated. The create_fiie routine is then called to physically create the file. Appropriate

values for AccessProblem are returned if the file cannot be created for any reason. The

service does not allow overwriting an existing file and returns an error if the file exists.

UNIX SYSTEM INTERFACE

^include <stdio.h>

^include <errno.h>

routine:

create_f ile

input:

pointer to file handle

returns :

"1 success

else Filing Error, Problem

f ile_context_block->f ile_desc filled in

Fil ing_Error create_f l le(f i le_context_blocx)

file_handle *f 1 le_context block;

{

FILE fopen();

Filing_Error error_value: /*

Filing error, problem pair /

/
open *"iie 'or n-.e /

if (f ile_context_block->f i le_lescs

f open! f 1 le_context_3 lock-^oatiname .
"*

'

)) {

switch (errno) {

case EACCES: /
user has no access /

error_value. errors Fil ing_Accessrror:

error_/alue. prob lem= Fil ing_accessrigntslnsufficient:

return(rror_val ue) :

case EEXIST: /
f^e exists /

error value. errors Filing
InsertionError-

error_value.problem= Fil in~g^_f lleNotUnique:

return(error value):

case ENOENT:

break :

/no such file. OK /

case ENOTDIR:
<"

no such director/ /

error_value.
errors Fil ing_AccessError

error_/alue.problems Fil ing_fileNotFound:

re turn i error_value) :

case EMFILE:
/*

orocess file tao'e full /

case ENFILE:
'*

system file table full */

error_v a lue. errors F il
ing_Spacerror-

error val ue . prob
lems F i 1 mg_al locat lonExceeded ;

return(error_value);

default:
'*

any other error /

error val ue . prob lems F i 1 ing_accessRigh t s Indetermi nate ;

return i error_value) :

FILINGSUBSET IMPLEMENTOR'S GUIDE 49

UNIX SYSTEM INTERFACE

return(-1) ;

Once the file has been successfully created, the Store routine will save the attribute

specified on the procedure call in the file context
block. Default values will be assigned for

all mandatory attributes not
specified. The bulk data stream will be read and written to the

file. If the file transfer is tAsciiText, then the appropriate decoding of AsciiString must be

performed to allow the UNIX line delimiters (the linefeed character,
octal 012) to be added to

the file. This can be accomplished by writing the contents of AsciiString.bytes to the file

followed by a call to fputc as follows:

{

mt count:

/
character count is sequence length 2 /

counts sequence_length(Asci iStnng.bytes)/2:

if (!AsciiString. lastByteSignif icant)
/

if count is odd. /

count--;
I*

decrement by 1 /

/
write characters */

fwnte(AsciiStrmg. bytes, si zeof(char), count, fi le_contex t_b lock->file_3esc);

fputc(
' \n'

. f i le_context_block->f i le_desc) :
/

then line feed /

}

FilingSubset services are not required to support directory creation. If directory creation is

supported, the service may optionally restrict this to only allow the creation of empty

directories. Directory files can be created easily on UNIX with the mkdi r command: however,

the format ofdirectory files is operating system dependent and therefore does not encourage

the transfer of directory file contents The created! rectory routine is provided to illustrate

the creation of empty directory files.

/

routine

create_di rectory

input :

pointer to file handle

returns :

-I success

else Filing Error, Problem

*/

Filing_Error create_di rectory (f i le_con"text_b 1 ock)

file_handle *f ile_context_block;

{

mt status;

Filing_Error error_value: ,.

Flling error problem 3air /

error_value. errors Fi 1
mg_AccessError; /

default to AccessError /

UN'X SYSTEM INTERFACE

statuss 0;

if (fork() == 0) { /

execute commana /

execl(
"/bm/mkdir"

,

"rnkdir"

. f i le_context_block->pathname . 3) ;

exit(-l);

}

wait(&status) ;

if (status) { /
error reports accessRightslnsufficient /

error_value. prob lems Fil ing_accessRightsInsuf f icient ;

return(error_value) ;

}

return(-l) ;

5.3.6 Retrieve

The Retrieve procedure transfers a file from a service to the calling client. FilingSubset

services are not required to allow the retrieval of directory files This is true of the

implementation presented here, however, the fact that a file is a directory or not is

determined at a higher level. If the file is not a directory, then the file is opened and the

content transferred via a bulk data stream to the client

The open_file routine physically opens the file for reading via the 'open subroutine Any

errors encountered during this are returned as type AccessProblem

^include <stdio.h>

^include <errno.h>

/

routine

open_f i le

input:

pointer to file handle

returns :

-1 success

else Filing Error. Problem

f ile_context_block->f ile_desc filled in

/

Fil ing_Error open_f i 1 e(f 1 1 e_con tex t_b loc< >

file_handle f i le_context_block ;

{

FILE *fopen() ;

Filing_Error error_value:

'*

F'''"9 error proD'em :a,r
'

error
value= F 1 1 mg_AccessError ;

'
default to Accesstrror

FILINGSUBSET IMPLEMENTOR'S GUIDE
51

UNIX SYSTEM INTERFACE

/*
open file /

if (
file_context_block->file_desc=

fopen(f ile_context_block->pathname.
"r"

)) {

switch (errno) {

case EACCES:
'*

user has n0 access *'

error_value.
problems Fi 1 ing_accessnghtslnsuf f icient;

return(error_value) ;

case ENOENT:
'*
n such file ''

case ENOTDIR:
'*

no sucn directory v

error_value. prob
lem= Fil mg_f i leNotFound:

return(error_value) ;

default:
''

a11 other errrs */

error value.
problem1 F i 1 ing_accessRightsIndeterminate;

return(error_value) ;

}

}

return(-1) ;

}

The content of the file is then read and written to the bulk data stream. Files of type

tAsciiText are transferred as a StreamOfAsciiText. The content of the file as read from the

file must be encoded into this form for transmission to the client. This involves removing the

UNIX line delimiter (the linefeed character, octal 012) before representing the data as an

AsciiString.

5.3.7 Delete

The Delete procedure is used by clients to delete files. If the specified file is a directory, a

FilingSubset service is not required to support the deletion of that file and optionally all

descendants of the file. The UNIX rm command provides a relatively simple mechanism for

providing this facility. The delete_file routine decides on the required processing based

upon whether the file is a directory or not. Directory files are deleted by specifying the -r

switch on rm. The -f switch is also used to force the deletion, if necessary. Errors encountered

during the deletion of the directory and its descendants are returned as AccessProblem

accessRightslnsufficient.

Non-directory files are deleted with the U NIX un 1 1 nk routine. Appropriate errors are reported

as type AccessProblem

^include (errno. h>

routine:

delete_f i le

input :

pointer to file handle

returns:

-1 success

else Filing Error, Problem

'/

UNIX SYSTEM

Fil mg_Error delete_f ile(f ile_handle)

file_handle *f i le_context_block;

{

mt status :

Filing_Error error_value; /

Filing
error.-

problem pair /

error_value. errors Fi 1 ing_AccessError;
/

default to AccessError /

if (f
ile_context_block->isdirectory) {

if (fork() == 0) { /
use rm -rf for directories /

execl(
Vbin/rm"

,
"-rf

"

, f i le_con tex t_b lock->path name
.0) ;

exit(-l);

}

wait(&status) :

if (status) (
/

error reports accessRightslnsufficient /

e r ro r_v a lue. problems Fi 1 ing_accessRightsInsuf f icient ;

return (error_val ue) :

}

} else {
/*

use unlink for non -ai rec tor i es /

if (un 1 ink(f i le_contex t_b 1 ock- >pathname) =-
-I) {

switch (errno) {

case EACCES:
/

jser has no access /

error_val ue. prob lems Fil ing_accessRigntsInsufficient:

return(error/a lue);

case ENOENT:
/

no sucn f i 1 e /

case EN0T0IR:
/"

no sucn directory /

error va 1 ue . prob lem= F 1 1 ing_f 1 1 eNotFound :

return(error_val ue) ;

default:
/*

a'1 "Jther errors
'

error va 1 ue . prob 1 ems i 1 ing_accessR ign ts Indetermi nate :

return (error_v a lue) :

}

}

}

return) -1) :

FILINGSUBSET IMPLEMENTOR'S GUIDE

UNIX SYSTEM INTERFACE

*L. VMbSYSibM INTEKFACF

Implementation of the FilingSubset under VMS requires both procedure and attribute

support within the native operating and file systems. This section presents an

implementation scenario which describes the necessary interactions with the VMS system

This section describes those interface procedures required by the client and service

implementations presented in Sections 3 and 4. These are by no means the only method for

providing the facility desired; they have been chosen because they are consistent with the

UNIX routines of the previous section, except in those instances where appropriate VAX C

routines do not provide the necessary funtionality Several procedures are alluded to but

cannot be provided, due to the lack of support for certain features from the VAX C run-time

library and the proprietary nature of the VMS operating system. In these cases, it is assumed

that the appropriate functions can be provided through the use of internal VMS functions.

In several instances, the examples presented will be identical to the UNIX counterparts

presented in Section 5. This replication is done in an effort to make both the UNIX and the

VMS sections complete stand-alone sections.

Several of the examples presented are predicated on the assumption that a single VMS

process instance handles all procedure calls from the time the Courier connection has been

established on the initial Logon call until the subsequent Logoff call. The examples also

assume the definition of Filing defined constants and Courier defined data types. In the

examples, the string
"Fiimg_"

is prepended to structure and variable names which are

defined by the Filing Protocol.

6.1 Attribute Support

The FilingSubset Protocol distinguishes three classes of attributes: mandatory, implied and

optional. This section describes specific scenarios under the VMS operating system for

services to retain attributes so that they may be interpreted by other native

operating system utilities and returned when requested by network clients

clients to retrieve and retain the attributes when dealing with remote services

All attributes presented here are discussed with respect to two areas 1) where attributes

must be retained in the native file structures and 2) how they may be retnevf-a from these

structures and transferred to other FilingSubset clients and services Retention of attributes

is of importance to FilingSubset clients when retrieving files from a service and to services

when a client requests creation
of a file on the service Likewise, retrieval of attributes from

the native file structures is used by clients when issuing a Store and by services .vhen

returning attributes
on a List procedure.

55

VMS SYSTEM INTERFACE

6.1.1 Mandatory Attributes

Mandatory attributes are those attributes
which must be interpreted by all FilingSubset

implementations. These attributes are guaranteed to be retained by any service

implementing the FilingSubset Protocol
and must be accepted in specific procedure calls to

the extent that they are legal arguments of the corresponding procedure in the Filing

Protocol. Additionally, clients may wish to retain these attributes when retrieving files from

a service. The FilingSubset defines the following mandatory attributes: createdOn,

dataSize, isDirectory, modifiedOn, pathname
and type.

Each of these attributes is discussed with respect to the areas of retention and retrieval

Retention of an attribute value describes a mechanism for saving the specified XNS

attribute value within the VMS file system along with the file contents. Retrieval of

attribute values presents methods for deriving the XNS value from the VMS file system. In

each of these cases, the values may need to be converted
from one form to the other.

In the case of the createdOn and modifiedOn attributes, the retention and retrieval of

attribute values requires a conversion between the VMS and XNS formats. The createdOn

and modifiedOn values are always specified in XNS Time format [10 1. XNS time is based on

the number of seconds since 00:00:00 Jan. 1, 1901 Greewich Mean Time. The VMS operating

system maintains time in a 64 bit quadword specifying 100 nano-second intervals from

00:00:00, Nov 17, 1858 in local time. VMS has no knowledge of offset from Greenwich Mean

Time nor daylight saving time (DST) adjustments. Therefore, the conversion mechanism

must adjust according to the local values for these offsets.

For a given machine, the difference between the Jan. 1968 and Nov 1858 base values, and

the local difference from GMT are constants. Thus the combined offset can be calculated at

process initialization. The set_base_time routine converts the earliest representable XNS

time (00:00:00 Jan. 1, 1968) to VMS format and adjusts it by the appropriate GMT offset, as

expressed in VMS format.

/finclude rms

^include ssdef

^include descnp

double xns_base_time:
/

VMS value for <NS earliest time /

routine:

set_base_t ime

input

gmt_difference local GMT offset m VMS ASCII time format

maximum offset is 12 hours from GMT

(i.e.. for EST. "Q 5:0:0.0")

east_of_gmt Boolean representing east/west of GMT

(TRUE east. FALSE west)

returns

xns_base_time set to appropriate vms time value

-1 if unsuccessful

set_base_time(gmt_difference.east of_gmt)

struct dscSdescnptor 'gmt_di f ference; /. local GMT offset /

Boolean east of nmtea5t_or_gmt .
,

direction
'

VMS SYSTEM INTERFACE

{

double time. gmt_offset:

Static $DESCRIPTOR(XNS_EARLIEST_TIME,"01-JAN-1968 0:0:0.0");

/*
convert earliest representable <NS time to VMS '"orT.at *'

if ((errors
sys$bintim(&XNS_EARLIEST_TIME.&time)) ! = SS$_^ORMAL)

return(-1) ;

/
convert GMT offset to VMS format V

if ((errors sys$bintim(gmt_dif ference,&gmt_of f set)) != SS$_N0RMAL)

return(-I);

if (east_of_gmt) {
/

if east, subtract offset; if west, add offset /

if ((error= 1 ib$subx(&time ,&gmt_off set ,&xns_base_time)) != SS$_NORMAL)

return(-1) ;

} else {

if ((errors 1 ib$addx(&time ,&gmt_of f set ,4xns_base_time)) != SS$_J0RMAL)

return(-1) ;

}

}

The conversion from XNS time to VMS time is then accomplished by subtracting the XNS

representation for earliestTime (2114294400) from the XNS time and adjusting for any

daylight savings time offset. The resulting value will be the number of seconds from

00:00:00 Jan. 1, 1968. This value is multiplied by 10 million, to convert to 100 nano-second

intervals and the previously computed VMS constant for the XNS earliest time added to

create an VMS value.

The routine convert_xns_time illustrates this:

^include ssdef

-define XNS_EARLIEST_TIME 2114294400
^~

double xns_base_time:
/*

VMS value for <NS earliest time v

/

rout i ne :

convert me

input :

xns_time
- <NS time value

^5 QSI function which will indicate whetner daylight savings t me is

in effect on local machine (TRUE dst in effect)

returns

corresponding VMS time value (64 oit quadword)

-1 if error occurs

double convert_xns_time(xns_time)

LongCardinal xns_time;

{

double vms_time:

FILINGSUBSET IMPLEMENTOR'S GUIDE

VMS SYSTEM INTERFACE

long ten_million= 10000000:

long addends 0;

/ get difference from XNS earliest time /

xns_time xns_time
XNS_EARLIEST_TIME ;

if (IS OST)
/" adjust for daylight savings time /

xns_time= xns_time 3600;

/ convert to 100 nano-second intervals /

if ((errors 1 ibSemul (&xns_time,8.ten_mil 1 ion
,&addend.&vms_time)) !=

SS$_N0RMAL)

return(-1) ;

/
make relative to Nov. 17. 1858 local standard time /

if ((errors 1 ib$addx(&vms_time.xns_base_time ,&vms_time)) !=
SS$_N0RMAL)

return(-1) ;

return(vms_time) ;

}

Retrieval of the createdOn or modifiedOn attributes involves using the reverse of the above

conversion. The routine convert_vms_time illustrates the conversion from VMS to XNS

format.

^include ssdef

-define XNS_EARLIEST_TIME 2114294400

double xns_base_time:
/

VMS value for XNS earliest time */

routine :

convert_vms time

input:

vms_value pointer to 64 bit quadword containing VMS value

xns_value pointer to LongCardinal to receive XNS value

IS_FILE_OST function which will indicate whether daylight savings

time is in effect for the specified vms_time

(TRUE dst m effect)

returns :

ns_value XNS time value

-1
-

if error occurs

convert_vms_time(vms_value . xns value)

double *vms_value:

LongCardinal **ns_value;

{

double date:

long ten_millions
10000000:

long remainder;

int error;

VMS SYSTEM INTERFACE

/
get difference from earliest time /

if ((errors 1 ib$subx(vms_val ue.Sxns_base_time.&date)) != SS$_NORMAL)

return(-1) ;

/
convert to seconds (divide by ;eo million)

if ((error= 1 ib$edi v(&ten_in 1 1 ion
,&date.xns_value.

& remainder))
:= SS$_NORMAL)

return(-1) ;

/
relative to earliest XNS time /

xns_value= xns_value + XNS_EARLIEST_TIME;

if (IS_FILE_OST)
/

adjust for local OST offset, when in effect /

xns_value
-

xns_value * 3600; /
add 1 hour (60 mm 60 sec) /

6.1.11 createdOn

The createdOn attribute is useful in determining if similarly named files on different file

systems within the network are identical. The ability to retain the createdOn date must be

coupled with a mechanism for native utilities to provide this date on demand. This can be

accomplished on VMS by setting the xabsqcdt field of the xabdat file structure to the

createdOn value prior to creating the file. This allows non-network VMS users to access this

date easily and also allows the network client and service to determine and modify this date.

[Retention!

The createdOn value is converted from XNS format to VMS format using the

convert xns_time routine described in Section 6.1.1. The VMS value can then be retained by

placing the value in the
xab$q_C0T field before creating the file, as illustrated below

^include rms

^include ssdef

struct xab_date_format (

unsigned: 32:

unsigned: 32:

}:

/
xab defined format for date/t'me /

/
alleviates compiler typing prooiems */

routine :

set_create_time

input :

pointer to file context bloc*

where

if no createdOn value was specified on Store, createdon == 1

if createdOn value was specified on Store, createaon = 0. /alue is

in XNS time format

returns :

sets xab$q_cdt if appropriate

set_create_time(f i le_con tex t_b lock)

file handle "f ile_context_block:

FILINGSUBSET IMPLEMENTOR'S GUIDE
59

VMS SYSTEM INTERFACE

/ this alleviates compiler typing problems /

struct xab_date_format
date_format;

double
date_double;

} vms_time;

if (file_context_block->createdon) {
/

save createdOn if specified V

if
((vms_time.date_double=

convert!xns_time(file_context_block->createdon))

!=
-l)

file_context_block->xab.xab$q_cdt= vms_time.date_foroiat:

}

[Retrieval]

Network processes can retrieve the createdOn value by requesting the file creation date

(ATR$C_CREDATE) when performing an I0$_ACCESS QIO to the disk ACP and converting from

VMS to XNS format using the convert_vms_time routine
from Section 6. 1.1.

The VAX C stat routine can also be used to determine the value for the createdOn attribute.

In this case, the returned value stat.st_ctime is converted to XNS time in a manner similar

to the UNIX mechanism. The value returned from stat is specified as seconds since 00:00 00

GMT, Jan. I, 1970. To convert to XNS format, the constant 2177452800 must be added to

this value. Note that this constant is the XNS encoding for the time 00:00 00 GMT, Jan. 1,

1970 [((1970-1901) years
*
365 days/year -l- 17 leap days)

*
24 hours/day

*
60

minutes/hour*

60 seconds/minute |.

6.1.1.2 dataSize

The FilingSubset defines the value of the dataSize attribute to be an estimate of the number

of eight-bit bytes within the file content. The VMS file system maintains a file size, in bytes,

which can be used for the dataSize value. Since the VMS value accounts for appropriate

formatting overhead, this value may not be equivalent to the actual file content size

(Retention/

Since the dataSize value is regarded as an estimate of the native storage size, a VMS service

does not need to explicitly save this value. An appropriate value will he retained by the VMS

file system once the file is created.

[Retrieval]

The dataSize value can be determined in one of two ways: issuing an I0$_ACCESS QIO to the

Files- 11 ACP requesting the file attributes (ATR$c_RECATTR) or invoking the VAX C stat

routine. The dataSize value can be computed by combining the FAT$L_EFaLK and
fat$w_ffbyte

values returned from the QIO as follows:

VMS SYSTEM INTERFACE

^include fatdef

/

routine :

compute_datasize

input:

file_attnbutes FAT structure containing returned file attributes

returns:

XNS dataSize value as a LongCardinal

LongCardinal
compute_datasize(f i le_attributes)

struct fat vms_value:

(

int blockcount;

/*
need to swap 16-bit words /

block_count= (f 1 le_attnbutes . fat$l_efblk << 16) 1

(f ile_attributes. fat$w_efblk >> 16);

/
dataSize is (block_count-l) 512 * kbytes used in last block /

return (((block_count- 1)5 12)+fi le_at tributes . f at$w_f fbyte) :

}

The stat.st_size value returned from stat will yield the dataSize value directly

6.1.1.3 isDirectory

The isDirectory is a boolean designating whether the file is a directory or not Since VMS

differentiates between directory and non-directory files, this value is retained in the format

of the file and retrieved in one of several ways.

[Retention/

Retention of the isDirectory attribute implies that the file be created differently based on the

attribute value. When the value is FALSE, the standard RMS file creation routines (s/sScreate

or sysSopen) or VAX C file creation routines (open, creat, fopen, etc.) can be used. If the value

is TRUE, the directory file can be created with the VAX C mkdir or LIBSCREATEOIR routine

[Retrieval!

The isDirectory attribute value can be determined by issuing an to$_ACCESS QiO to the Files-

1 1 ACP requesting the file characteristics of the file or
through use of the VAX C stat routine

The isDirectory value will be TRUE if the value from the QIO is true when logically unded with

the constant FCH$M_0IRECTORY. Likewise, if the stat.st_mode value returned from stat is true

when logically anded with S_IF0IR, the isDirectory value will be true

FILINGSUBSET IMPLEMENTOR'S GUIDE *1

VMS SYSTEM INTERFACE

6.1.1.4 modifiedOn

The modifiedOn attribute is retained in the
xab$Q_R0T field of the xab file structure.

[Retention/

The modifiedOn attribute is set to the current date and time when a file is created by a

FilingSubset client or service. VMS will set the XA8$Q_RDT field to the current date and time

when a file is created unless otherwise specified.

[Retrieval]

The modifiedOn value is returned to network processes by requesting the revision date

(atr$c_Rvdate) on an IO$_ACCESS QIO to the Files-1 1 ACP The returned value can then be

converted to XNS time as described in Section 6.1.1. The VAX C stat routine cannot be used

to determine a value for the modifiedOn attribute since it does not return the xabsqjdt

value.

6.1.1.5 pathname

The FilingSubset requires all service implementations to allow the specification of files by

the pathname attribute value. The syntax of the attribute value is defined to be service

specific, which implies that the pathname value will in fact be the VMS file name. Likewise,

the pathname value can be easily derived from the VMS file name when listing the parent

directory.

The context for use of the pathname attribute within the FilingSubset restricts the use of

wildcard characters to the matches attribute value on the List procedure.

[Retention/

The pathname attribute value specified on a Store will be used as the VMS file name when

actually creating the file. This value is retained in the VMS file system once the file is

successfully created.

[Retrieval!

A FilingSubset service is allowed to require the pathname attribute for accessing a file As

such, the value is always specified by the client, except on a List when the service must

enumerate the parent directory The mechanism presented in Section 6.3.4 using the

IO$_ACCESS QIO to the Files-1 1 ACP will return a fully specified VMS filename that the service

can return to the client.

6.1.1.6 type

The ability to transfer files between systems and retain generic file types is advantageous to

the users of a heterogeneous network. In particular, the ability to transfer a text file to

another system and preserve the editability of that file bv the native text editors on the

receiving system without explicit conversion is especially beneficial.

VMS SYSTEM INTERFACE

All FilingSubset implementations must support the type attribute values: tAsciiText.

tDirectory and tUnspecified. The VMS operating system provides an explicit mechanism to

distinguish between various file types; however, it is possible that several VMS file types

will map to a single Filing type value. In general, a VMS client or service will choose a single

VMS file type to represent the various Filing type values when creating files on either the

Retrieve or Store procedures. This may result in a given implementation not creating the

file in the correct format as desired by the user However, without support for VMS-specific

attributes, this cannot be avoided. Generally, files containing only Ascii characters will be

treated as tAsciiText and all other non-directory files will be treated as tUnspecified

[Retention]

The tDirectory file type is retained in a manner similar to the isDirectory attribute When

the attribute value is tDirectory, the directory is created via the VAX C mkdir or the

LIB$CREATE_OIR routine.

It is possible to represent the tAsciiText and tUnspecified file types as one of several VMS file

types. Without explicit support for VMS-specific attributes, the client or service

implementation must make a choice, which may be what the user wants or not. One

solution is to create tAsciiText files as VMS files with the following VMS attributes:

sequential organization, variable record format with implied carriage control Files of type

tUnspecified can be created as VMS files with sequential organization and undefined record

format.

[Retrieval]

Values for the type attribute can be determined in one of two ways, either a call to stat or an

I0$_ACCESS QIO to the Files- 1 1 ACP asking for both file characteristics (ArR$c_UCHAR) and

record attributes (ATR$c_RECATTR).

The tDirectory file type can be determined in a manner similar to that of the isDirectory

attribute. The type value will be set to tDirectory if the file characteristics value returned

from the QIO is TRUE when logically anded with the consant fch$m_0IRECT0Ry Likewise, if the

value stat.stjnode value returned from stat is TRUE when logically anded with SJFDIP, the

type value will be set to tDirectory.

The file organization and record format values (stat.st_fab_rfm and stat st_'ab_-at

returned from stat or fatjb_RType and fat$b_RATTRIB returned from the QIO) can be usrd to

determine non-directory values for the type
attribute. The type tAsciiText can be assumed if

the file has the following VMS record attributes: variable or fixed record format with implied

carriage control or stream, streamlf or
streamer record formats Files of any other record

format can be assumed to be of type tUnspecified The following routine illustrates this

process:

/(?include fatdef

routine :

get_type

1 nput :

record format VMS record format (F4B$B_RFM,

record'attributes VMS record attributes (FAB$B_RAT)

63

FILINGSUBSET IMPLEMENTOR'S GUIDE

VMS SYSTEM INTERFACE

returns :

Cardinal containing
XNS type value

/

Cardinal get_type(
record_format.

record_attnbutes)

mt record_f crmat;

mt record_attnbutes;

(

/ stream,
streamlf and streamer assumed tAscnText /

if ((record_format FAT$M_STM) II

(record_format == FAT$C_STMLF) II

(record_format
== FAT$C_STMCR))

return(Fil ing_tAsci iText) :

/
variable with implied carriage control assumed tAsciiText /

else if ((record_format == FATSCJ/AR) &&

(record_attnbutes
= = FAT$M_CR))

return(Fil ing_tAsci iText) ;

/ fixed with implied carnage control assumed tAsciiText

else if ((record_format
== FAT$C_FIX) &&

(recordattnbutes
= = FAT$M_CR))

return (Fi 1 ing_tAsci iText) ;

/
all else, assume tUnspecified /

else return(Fil ing_ tUnspecified):

}

The contents of files which are determined to be of type tAsciiText will be transferred in the

form StramofAsciiText. The specific encoding/decoding of the bulk data stream is discussed

in Sections 6.3.6 (Store) and 6 3.7 (Retrieve).

6.1.2 Implied attributes

Implied attributes are those attributes which obtain an implicit value when a new file is

created. All subset implementations are required to permit the specification of the implied

(default) value for these attributes. A service implementation may reject a Store procedure if

the value for an implied attribute is not the default value and the service does not support

the retention of non-default values for the attribute.

The implied attributes defined in the FilingSubset are accessList, childrenUniquelyNamed,

defaultAccessList, isTemporary, ordering, subtreeSizeLimit and version

Table 6.1 specifies the default values for these attributes on the VMS operating
system.

Since the attribute values are identical for every file unless otherwise supported, no explicit

provision for retention and retrieval of these attributes is needed. The service -should verify

that the associated value is indeed the default on a Store and return the default values

when requested on a List procedure.

6.1.3 Optional attributes

Those attributes which are defined as interpreted in the Filing Protocol but are not defined

as either mandatory or implied within the FilingSubset are classified as optional attributes

64
FILINGSUBSET IMPLEMENTOR'S GUIDE

VMS SYSTEM INTERFACE

Attribute Supported Values

accessList (defaulted: TRL'El

childrenUniquelyNamed TRUE

defaultAccessList [defaulted: tri El

isTemporary FALjE

ordering defaultOrdering

subtreeSizeLimit nullSubtreeSizeLimit

version highestVersion

Table 6. 1 VMS supported values for

implied attributes

These attributes are not required to be supported by any FilingSubset service. Conventions

for retaining and retrieving values for these attributes are not discussed here, since they are

outside the definition for required functionality in the FilingSubset.

6.2 Client procedure support

Client routines require various VMS, RMS and VAX C routines to perform functions specific

to the VMS operating system and to access the VMS/RMS file system. This interaction is

discussed in this section.

6.2.1 Continuance timer support

A FilingSubset client must issue a Continue procedure at specific time intervals to prevent

the service from terminating the session for lack of activity This mechanism is implemented

via use of the alarm and signal VAX C routines. Three routines are defined for use by the

client: set continuance timer, reset_cont inuance_t imer and cance i muance_tmer In

addition, the routine send_contmue is referenced. This routine will -end a Continue to the

service to maintain the open session.

set
contmuance_timer calls send_contmue to determine the service continuance value ur.a

then initializes the timer mechanism to send a SIGAlSm signal before the expiration of that

interval.

/Kinclude signal

extern send_contmue() ;

Cardinal continuance:

/
e<pirafon routine, will send continue

/
continuance valje. in seconds

/
returned from service '

routine :

set
contmuance_timer

FILINGSUBSET IMPLEMENTOR'S GUIDE
65

VMS SYSTEM INTERFACE

called after a successful
Logon

set_continuance_timer()

{
continuance1 send_continue() ;

continuances continuance/3;

alarm(O) ;

signal (SIGALRM, send_continue) ;

a larm(continuance) ;

/
get service value */

/
insure we expire before service /

/
cancel any previous alarm /

/
set routine to catch alarm /

/
set alarm /

reset continuance timer cancels any pending
timer and reissues a new timer request.

routine:

reset
continuance_timer

called after any FilingSubset procedure call

/

reset_continuance_timer()

{

al arm(0) ;

alarm(continuance);

}

/
cancel previous alarm /

/
reset alarm /

cancel contmuance_timer cancels the previous request and turns off handling of the SIGALRM

signal.

/

routine :

cancel_continuance_ timer

called after a successful Logoff

cancel_contmuance_timer()

{

alarm(O) :

signal(SIGALRM.SIG_IGN);

/
cancel any previous alarm /

/
set routine: to ignore alarm

'

6.2.2 Determining mandatory attribute values

When a client performs a Store, values for the mandatory attributes may accompany
the

remote procedure call. Most of these values, with the exception of pathname and type, can

be obtained locally by using the stat system call. The routine get_attnbutes illustrates
how

to accomplish this.

The stat routine returns the various file dates in a form similar to UNIX. The conversion

mechanism described in Section 6.1.1 is not required to convert this value to XNS format

VMS SYSTEM INTERFACE

Instead the conversion mechansim for use with the stat routine described in Section 6 11.1

is used. The XNS time is computed by adding the returned value to the constant

2177452800, which represents the base time (00:00:00 GMT Jan 1, 1970).

^include stat

^define XNS_TIME_0IFFERENCE 2177452800 /
seconds between base times /

extern LongCardinal createdon;

extern LongCardinal modifiedon;

extern Boolean isdirectory;

extern Cardinal datasize;

extern Cardinal type;

/

routine

get_attnbutes

input:

pathname service-specific pathname of file

returns:

-I success

I error

/

get_at tributes (path name)

char 'pathname:

{

struct stat file_stat;

if (stat(pathname,&f ile_stat)
==

-l)
/*

stat file /

return(1) ;

createdons f i le_stat . st_ctime * XNS_TIME_0IFFERENCE:
/

createaOn /

modifiedons f i le_stat . stjntime ? XNS_TIME_0IFFERENCE :
/

modifiedOn /

datasize= f i le_stat . st_size: aataSize /

if (file_stat.st_mode & S_IFDIR) {
'*

directory file /

isdirectorys TRUE:

type= tOirectory;

.
else {

*
non-di rectory /

isdirectorys FALSE:

type= get type(f 1 1 e_stat . st_f ab_rfm. f i le_stat . st_fab_rat j ;

}

return(-1) ;

}

67

FILINGSUBSET IMPLEMENTORS GUIDE

VMS SYSTEM INTERFACE

6.3 Service procedure support

A FilingSubset service implemented on the VMS operating system may use various VMS,

RMS and VAX C routines to access the local file system and provide VMS-specific procedure

support. This section presents detailed
examples of this interaction.

Client access to files on a subset service is controlled through the use of a file handle. The

implementation presented in Section 4 describes the value of the file handle as a pointer to

to a file context block. To provide the necessary functionality, this context block will contain

some items which are operating system
specific.

For the implementation presented here, the following items are contained in the file context

block:

a copy of the pathname attribute
value as specified on the Open or Store

a cardinal identifying the file type requested by the client on the Open

a cardinal specifying the file type as determined by the service

a cardinal specifying the dataSize value for the file

a boolean specifying the isDirectory value for the file

a long cardinal specifying the createdOn value for the file in XNS format

a long cardinal specifying the modifiedOn value for the file in XNS format

fab ,
xabdat . rab and nam file structures used when accessing a file

an appropriate buffer for use with the rab structure

The following C structure defines the structure used in this section:

typedef file_handle {

char 'pathname:

Cardinal type;

Cardinal truetype;

Cardinal datasize:

Boolean isdirectory;

LongCardinal createon;

LongCardinal modifiedon:

struct fab file_fab;

struct rab file_rab;

struct xabdat file_xab;

struct nam file_nam;

char file_buffer[32767];

/*
pointer to pathname value */

/
client requested type (from 3oen) /

/
file system file type /

/
dataSize value

'

/*

isOirectory /

/
createdOn value /

/*
modifiedOn value */

/
file access block (FAB) /

/
record access block (RAB) /

/
extended attribute block (XA80AT)

/
name block (NAM) /

/*

input/output buffer 32767s max size "/

VMS SYSTEM NTERFaCE

6.3.1 Logon

The Logon procedure is responsible for validating the user attempting the connection and, if

successful, altering the process ownership to that of the user. This alteration of ownership
ensures that the process is subject to the normal access/protection mechanisms employed by
the VMS operating system when subsequent procedure calls request access to files on the

service. The user name and password entries of the secondary credentials supplied on the

Logon are validated against the standard VMS L'AF file. Once this has been completed, the

UIC and privileges of the process are changed to that of the respective user as determined

from the authorization file entry for the user.

The process is also positioned to the appropriate root directory for the service, which

corresponds to a VMS disk/directory pair (generally the VMS root, [000000], on a specific

disk). This provides a VMS disk and directory which can be associated with nullHandle as the

root for the service. The examples in this section use the external variable

service_root_device to specify the default device for the service. The Logon procedure will

set this variable to the appropriate value.

VMS does not export routines to perform these services and the nature of these routines is

such that they are proprietary to VMS. Because of this, no routines are presented here.

Instead it is assumed that implementors of a VMS service will have access to VMS internal

documentation which describes the VMS mechanisms for performing the required functions.

6.3.2 Continue

The continuance mechanism is defined to allow services to close a session if it has been idle

for a long period of time or the session needs to be terminated for other reasons Kach service

maintains a continuance value which is the number of seconds that it will keep a session

open between successive procedure calls. This allows the service to set a timeout mechanism

to notify it when this time interval has passed and
allow it to disconnect the active session

This mechanism is armed once a session has been successfully established by a Logon and is

terminated once the session is ended with a Logoff Additionally, each routine vhich

processes a FilingSubset procedure, as described in Section 4, should rearm the timer

The alarm and signal routines are used to implement this mechanism for VMS services alarm

is used to set the timer mechanism for the specified interval while signal is used to indicate

whether the service is to handle or ignore the alarm

The routines set_continuance_timer,
reset_continuance_timer and cancel_contmuance_timer

are defined. The service routine contmuance_expiration is referenced by

set_contmuance_timer and would execute at the expiration of a timeout interval At that

time, this routine would close the current session in a manner similar to that proposed for

the Logoff procedure in Section
4.4.

set_contmuance_timer initially establishes the timeout
mechanism

/^include signal

Cardinal continuance:

extern
continuance_expi ration(

/
continuance ^alue. 'n seconds

"
expiration routine /

FILINGSUBSET IMPLEMENTORS GUIDE
69

VMS SYSTEM INTERFACE

6.3.3 Open

/*

routine :

set_continuance_timer

V

set_continuance_timer()

(

alarm(O);

f* cance1 anv previous alarm /

signal(SIGALRM.continuance_expiration);

/
set routine to catch alarm /

alarm(contmuance);

''
set a,ann v

}

The reset_continuance_timer and
cancel_continuance_timer routines are identical to the

client routines specified in Section 6.2.1.

The Open procedure opens a file for subsequent access by the client. The file is identified by

the value specified for the pathname attribute. VMS supports multiple versions, so the

version values lowestVersion and highestVersion will indicate different files if more than

one version exists. If the pathname does not contain a version specification, the string
";-0"

or
";0"

can be catenated to the pathname value to indicate the lowest version or highest

version of a file, respectively. When an explicit version value is specified along with a

pathname value that contains a version, the explicit version value will take precedence over

the pathname value.

The Open routine first performs a call to stat_file to determine values for the dataSize,

isDirectory and type attributes for the desired file. This allows the subsequent file transfer

procedures to access necessary information simply by examining the file context block.

^include stat

/

rout 1 ne :

stat_f ile

input:

pointer to file handle

returns:

-I success

l failure (specific errors will be determined on trie subsequent file

open)

f ile_context_block filled in

/

stat_f i le(f i 1 e_con tex t_b lock)

file_handle *f i le_context_block;

{

struct stat file_stat;

VMS SYSTEM INTERFACE

/'
stat does not return detailed errors so specific errors il1 De "etjmed

"hen the actual open is attempted /

if (stat(f ile_context_b1ock->pathname.&f ile_stat) ==
-l)

return(1);

f ile_context_block->datasize= f i le_stat.st_size; dataSize /

if (file_stat.st_mode & S_IF0IR) {

f ile_context_block->isdirectory= TRUE: /

directory /

f ile_con tex t_b lock->truetype= Fil ing_tOi rectory;

} else {

f i le_context_block->isdirectory= FALSE: /

non-directory /

f i le_context_block->truetype= get_type(file_stat.st_fab_rf-n.

f ile_stat . st_fab_-at) :

}

return(-1) ;

}

The routine openfiie is subsequently called to open the file. This routine will be called

regardless of any errors that are returned from stat_fiie, since specific error conditions

cannot be determined until the open is atempted. The only possible errors are:

accessRightslnsufficient if the file cannot be accessed, fileNotFound if the file or some

component of the pathname does not exist, and accessRightslndeterminate if any other error

occurs.

^include rms

/

rout ine :

open_f i le

input:

pointer to file handle

returns :

-I success

else Filing Error. Problem

f ile_context_block entries filled in

/

Fil mg_Error open_f ile(f i 1 e_con tex t_b lock)

file_handle f i le_context_block ;

C

mt error;

....,-
^aliio-

/*

Filing error, problem pair
'

Filing_Error error_vaiue. *

error_value.
errors F i 1 ing_Accessrror :

'
set to Filing AccessError /

file context
block->f i

le.fab= cc$rms_fab;

/'
initialize ^B -

file'context block->fHe_fab. fab$l_f
na= cbptr->pathname:

strlen(cbptr-

>patnname) ;

FABSM.GE^ , FABSM_8R0:

71

FILINGSUBSET IMPLEMENTOR'S GUIDE

VMS SYSTEM INTERFACE

6.3.4 List

file_context_block->file_fab.fab$b_shrsFA8$M_NIL;

errors
sys$open(&f i 1
e_context_block->fi le_f ab) ;

/
open file /

if (error = RMS$_NORMAL) {

if (error == RMSS.FNF)
>'
n such file /

error_value.
problems Fil ing_f ileNotFound:

else if (error
== RMS$_PRV)

'
user has no access /

error value
Fi 1 ing_accessRightsInsuf f icient ;

else

/
all other errors /

error_value.problem= Fi 1 ing_accessRightsIndeternnnate;

return (error_value) ;

}

file_context_block->f ile_rab= cc$rms_rab;
/

initialize RAB /

file_context_block->f
ile_rab.rab$l_fab= &f i le_con tex t_b lock- >fi le_fab;

file_con tex t_b lock-
>file_rab.rab$l_ubf= f ile_context_block->f i le_buf fer;

f ile_context_block->f
ile_rab.rab$*_usz= MAX_RECORD_SIZE ;

error= sys$connect(&f l le_context_block->f i le_rab) :
/

connect rab to fao /

if (error != RMS$_NORMAL) {

error_value.problems Fil ing_accessRights Indeterminate :

return (error_val ue) ;

}

return(-1) ;

}

The List procedure enumerates a directory looking for the specified file or files and returns

the requested attributes for each file found. The file specification to be listed is specified in

the pathname attribute value on a filter of type matches. This procedure is unique in that it

is the only procedure which will allow wildcard characters in the pathname syntax which

are interpreted by the service.

This function is easily accomodated through the use of the I0$_ACCESS QIO to the Files-1 1 ACP

which lists a directory and returns the files matching some file name criteria along with

various file characteristics requested. The file names are returned in ascending order by

name which is the Filing Protocol defaultOrdering

The routine l ist_directory is defined to perform this function. This routine performs a VMS

SYSIASSIGN to the service disk device as specified by service_root_device. The routine

get_directory_id is then called to parse the specified pathname to return the VMS file

identifier for the appropriate directory, l ist_di rectory then repetitively performs an

IOSACCESS QIO to retrieve the next filename matching the pathname specification taken from

the filter of type matches. Appropriate VMS file characteristics are requested so that the

values for the FilingSubset defined mandatory attributes can be returned to the client

atrscjjchar is used to determine the value for the isDirectory attribute The type and

dataSize values are determined from the values returned from atr$c_RECATTR. The

createdOn and modifiedOn values come from atr$c_credate and atr$c_revdate respectively

72
FILINGSUBSET IMPLEMENTOR'S GUIDE

VMS SYSTEM INTERFACE

The resulting filename buffer specified on the QIO will return the VMS specific pathname

value.

The error AccessError accessRightslnsufficient is returned if an error is encountered during

the SYSSASSIGN or returned from get_directory_id. If an error occurs when accessing an

individual file, that file is simply omitted from the list returned.

^include rms

^include ssdef

^include descnp

#mclude atrdef
/

assumes include files which define oublic /

^include fibdef /
structures ATR, FIB, FAT. FCH and IOSB /

^include fatdef /
these are not necessarily included in VAX C /

/((include fchdef

^include iosb

^define EVENT_FLAG 2
/

event flag for QIO use "/

extern char "serv ice_root_device :
/*

VMS device xnown as service root ''

/

routine:

1 ist_directory

input :

file_spec pointer to /MS file specification

returns :

-I success

else Filing Error, Problem

/

F 1 1 mg_Error 1 ist_di rec to ry(f llespec)

cnar fiie spec:
/*

pathname attribute f'rom
*ilt=-

zr type -natcnes /

int error;

struct fib fib= 0;

struct atr attnbutes[5] :

cnar f i le_name[NAMSC_MAXRSS] ;

cnar
result_name[NAM$C_MAXRSS]:

long length:

double creation_date:

double revis ion_date;

struct fat record_attnbutes :

long
f ile_charactenstics :

short
channel :

struct iosb io_status:

Filmg_Error error_value;

/

following are used to hold mandatory
attributes until 3dded to

outgoing
bulk data stream /

LongCardinal createdon:

LongCardinal modifiedon;

Cardinal datasize:

Boolean isdirectory

: 73

FILINGSUBSET IMPLEMENTOR'S GUIDE

VMS SYSTEM INTERFACE

Cardinal type;

String pathname;

struct dsc$descriptor_s resul
t_name_descnptor ;

struct dsc$descnptor_s
device_descnptor ;

struct dsc$descriptor_s f ib_descnptor;

struct dsc$descriptor_s f ile_descnptor;

error_value. errors Fil ing_AccessError ;
/

set to Filing AccessError v

f ib.f ib$*_nmctl= FIB$M_WILD:
'* turn on wildcard mechanism /

/" fill in directory id /

if (get_directory_id(f
ile_spec.&f ib)

== 1) {

error_value. problem= Fil mg_accessRightsInsuf f icient;

return(error_value) ;

}

/ VMS descriptor setup /

/ file name returned from QIO /

resul
t_name_descnptor.dsc$a_pointer= resul t_name;

/*
pathname value

/

resul
t_name_descriptor.dsc$w_lengths NAM$C_MAXRSS+t :

resul t_name_descnp tor .dsc$b_c lass
s OSC$K_CLASS_S;

resul t_name_descnptor.dsc$b_d type= OSC$K_DTYPE_T ;

/
device known as service root

"

dev i ce_descnp tor dsc$a_po inters service_root_device:

device_descriptor .

dsc$w_lengths
strlen(serv ice_root_dev ice);

device_descnptor.dsc$b_class= OSC$K_CLASS_S:

device_descnptor.dsc$b_dtypes DSC$K_DTYPE_T ;

/ file identifier block '

f ib_descriptor . dsc$a_po inters &f ib :

f ib_descnptor.dsc$w_length= FIB$K_SMALLSIZE ;

f ib_descnp tor. dsc$b_c lass = DSC$K_CLASS_S;

f ib_descnptor.dsc$b_dtypesDSC$K_OTYPE T;

input pathname value

f i le_descnp tor. dsc$a_po inters f ile_spec:

f i le_descriptor .dsc$w_length=strlen(file spec);

f ile_descnptor.dsc$b_class= OSC$K_CLASS_S;

f ile_descnptor .dsc$b_dtype=0SC$K_0TYPE T;

/

set up VMS attribute structures to be returned /

attnbutes[0].atr$w_size= ATR$S_UCHAR; /
fne characteristics /

attnbutes[0].atr$w_type= ATR$C_UCHAR; /

isOirectory value
'

attnbutes[0].atr$l_addr= &f i le_charac ten sties ;

attnbutes[l].atr$w_sizes
ATR$S_RECATTR; /

record attributes /

attnbutes[l].atr$w_type=
ATR$C_RECATTR: /-

type and dataSize values /

attnbutes[l].atr$l_addr=
&record_attnbutes :

attnbutes[2].ATR$w_SIZE= ATR$s_CREOATE ;
/.

creation date /

attnbutes[2].atr$w_type=
ATR$C_CREDATE; /

createdOn value /

attnbutes[2].atr$l_addr= Screation date;

VMS SYSTEM INTERFACE

attnbutes[3].atr$w_size= ATR$S_REVOATE: /

revision date
"

attnbutes[3].atr$w_type= ATRSC_REVOATE ;
/

modifiedOn /alue /

attnbutes[3].atr$l_addr= &revision_date;

attributes[4].atr$w_sizes
attnbutes[4] .atr$w_type=0;

if ((error= sys$assign(&device_descriptor ,&channel ,0 ,0)) != SS$_NORMAL) {

error_value. prob lems Fi 1 ing_accessRightsInsuf f icient ;

return(error_value) ;

}

while (TRUE) {
/

get each file matching file_spec

f ib.f ib$w_f id[0]= f ib.f ibSw_fid[l]= f ib. f ib$w_f id[2]s 0:

/
returns next file and characteristics /

sysSqiow(EVENT_FLAG, channel . IOS_ACCESS| IOSM_ACCESS.&io_status .0.0 .

&f ib_descnptor,&f ile_descnptor.&length .iresul t_name_descnptor ,

attributes. 0) ;

/*
break out wnen no file returned /

if (io_status. s_status ! = SS$_N0RMAL) {

if (f ib.f ib$l_*cc 4& (io_status.s_status != SSS_NOMOREcILES))

continue;
/*

any other error simply omit file from list "'

else break;

}
/*

determine mandatory attribute /alues */

strncpy(pathname, resul t_name. 1 ength) ;
/

patnname from -esult_name
*-'

(pathname+length
)s '/0';

/
convert createdOn. modifiedOn to NS format /

convert_vms_time(&creation_date .createdon) :

convert_vms_time(&revision_date.
modi f ledon) ;

/
compute dataS'ze value

'

datasize= compute_datasize(recordattnbutes) ;

/
set isDirectory and type as appropriate ''

,f (file_charactenstics & FCH$M_DIRECTORY) {

isdirectorys TRUE:

type1 tDirectory;

} else (
isdirectorys FALSE:

type= get_type(
record_attnbutes .

f at$b_rtype .

record_attnbutes.fatSb_rattr-b):

}

75

FILINGSUBSET IMPLEMENTOR'S GUIDE

VMS SYSTEM INTERFACE

/
insert implementation

specific
routines here:

make an attribute
sequence

from createdon. datasize. isdirectory.

modifiedon.
pathname and type variables

(if other non-mandatory
attributes arerequested. appropriate values

must also be returned)

write the attribute
sequence to the bulk data stream

/

'/

return(-1) ;

routine:

get_directory_id

input:

file_spec pointer to pathname value

file_fib pointer to fib structure to fill in directory id info

returns :

-1 success

1 error occurred

get_directory_id(file_spec,file_fib)

char *file_spec;

struct FIB "file fib:

struct fab

struct nam

f ile_fab;

file nam;

file_fabs cc$rms_fab:

f i le_fab .

fab$l_fna= file_spec:

file_fab.fab$b_fnss strlen(file_spec);

/
initialize fab /

file_nam= cc$rms_nam;

file fab.fab$l nam= &file nam;

/
i n i t i al i ze nam /

if (sys$parse(&f ile_fab)

return(I) ;

i*
use sys$parse to obtain directory id

SS$_N0RMAL)

f ile_f ib->f ib$w_did[0]= f i le_nam. nam$w_did[0]

f i le_f ib->f ib$w_did[
t]s f i le_nam.nam$w_did[1]

f i le_f ib->f ib$w_did[2]s f i le_nam. nam$w_did[2]

6.3.5 Store

return(-1) ;

The Store procedure is used to create both directory and non-directory files A different

method is used to create directory files under VMS, so the service will take an appropriate

VMS iYSTEM INTERFACE

action based on the val

context block.

ues of the isDirectory and type attribute values as stored in the file

After the Store routine has validated the argument and attribute values, a file handle is
allocated. The create_f ile routine is then called to actually create the file with the specified

attributes and default values for unspecified mandatory attributes. A FilingSubset service
will always create a new version of a file. If a specified pathname includes a specific version

and that version already exists, the service will return InsertionError fiieNotUnique.

Appropriate values for AccessProblem are returned if the file cannot be created for any other

reason.

^include rms

^define MAX RECORO SIZE 32767

/<

routine :

create_f ile

input:

pointer to file handle

returns :

-1 success

else Filing Error, Problem

file context block structures filled in

/

Fil ing_Error create_file(file_context_block)

file_handle *f i le_context_block :

{

/
naximum yMS record size /

int error:

Filmg_Error error_value;

error_value. errors Fil ing_AccessError;

/

Filing error, grodlem pair /

'
set default Filing error

ile_context_block->f
ile_fab= ccSrms_fab:

/'
initialize CAB /

ile_context_block->f 1 le_f ab .
f ab$l J

na= f i le_con text
lock- >patnname :

i le context_block->f i le_fab .
f ab$b_fns= strienf f i le_conte< t_bloc* -^at h name) ;

ile_context_block->f ile_fab .

fab$l_alq= f i le_context_block
-

>dataSi ze/5 12 * l:

ile context_block->f ile_fab.
fab$l_fops fab$m_mxv:

ile context block->f i le_f ab .
f ab$w_mrs= *Ax_REC0R0_SIZE :

/
pick VMS . ype "com type /a.

if (file
context_block->type

== Fil mg_tAscn Text) f

f ile_con tex t_b
lock->file_fab.

fab$b_rfm= 'ABSC_/AR:

file
context_block->file_fab.fab$b_rat=FAB$M_CR:

} else if (
file_context_block->type = =

'

1 1 mg_tUnsoecif ied I (

file_context_block->file_fab.fab$b_r*nsFAB$C_U0F.

/ initialize < AB
*
/

If i le_:onte< t_block->f i le_ab ;

file
context_block->f

ile_xabs cc$rms_xabdat ;

/
save createdOn. per Section 6.1.1.1 /

set
create_time(f ile_con tex t_b lock) ;

FILINGSUBSET IMPLEMENTOR'S GUIDE

77

VMS SYSTEM INTERFACE

errors sys$create(&f i
le_context_block->f i le_f ab) ;

/
create file V

if (error != RMSS.NORMAL) {
'*

check for errors ''

if (error == RMSS.PRV)
/#

n0 P^vilege v

error_value.
problems Fi 1 ing_accessRightsInsuf f icient;

else if (error
== RMS$_FEX) {

' me exists v

error_value.
error= Fil ing_InsertionError;

error_value.
problems Fi 1 mg_f i leNotUnique:

} else

'*
a11 others ''

error_value.
problems Fi 1 ing_accessRightsIndeterminate ;

return(error_value) ;

}

file_context_block->file_rabs cc$rms_rab;
/

initialize RAB /

file_context_block->file_rab.rab$l_fab= &f ile_context_block->f i le_fab:

file_context_block->file_rab.rab$rbf= f i le_context_block->f i le_buf fer;

file_context_block->f
ile_rab.rabSw_rszs MAX_REC0R0_SIZE ;

/
connect RAB to FAB /

if (errors
sys$connect(f i

le_context_block->f i le_rab)) != RMS$_N0RMAL)

error_value Fil ing_accessRights Indeterminate;

return (error_value) ;

}

return(-I) ;

}

After the file is successfully created by create_f ile, the bulk data stream will be read and

written to the file and the file is closed. Files of type tAsciiText will have to be decoded to

determine the correct record size before writing the record as illustrated below:

{

int count;

/*
character count is sequence length * 2 */

count= sequence_length(AsciiStnng. bytes)/2:

if ('.AsciiString . lastByteSignif icant)
'

if count is odd. 'I

count--;
/

decrement by 1 "

f i le_context_block->rab. rabJb_rszs count:
/

set count m rab
'

nte characters

"'

sysSput(&f ile_context_block->fab) ;

}

FilingSubset services are not required to support directory creation. If directory creation is

supported, the service may optionally restrict this to only allow the creation of empty

directories. Directory files can be created easily on VMS with the VAX C mkdir or the

LIB$CREATE_DIR routines; however, the format ofdirectory files is operating system
dependent

- " m i i.rtr4v.i

and therefore does not encourage the transfer of directory file contents The crest* 3--o,.0,

routine is provided to illustrate the creation of empty directory files

/

rout i ne :

create_directory
input :

pointer to file handle

returns :

"1 success

else Filing Error, Problem

/

Fil ing_Error create_di recto ry(f i 1 e_con tex t_b lock)

file_handle mf ile_context_block;

{

ir|t status:

Filing_Error error_value: /

Filing error, aroblem pair ,

error_value. errors F 1 1 ing_AccessError; /
default to AccessError /

/

create jirectory /

if (mkdir(f i le_contex t_block->pathname . 0) ==

-1) {

error_v alue. prob lem= Filmg_iccessRigntsInsufficient:

return(error_value);

}

return(-I) ;

6.3.6 Retrieve

The Retrieve procedure transfers a file from a service to the calling client FiliniiSubset

services are not required to allow the retrieval of directory files The VMS implementation

does not allow the retrieval ofdirectory files since the format of these files is VMS-specific If

the file is not a directory, then the file is opened and the content transferred via a buik data

stream to the client.

The Retrieve procedure assumes that the file was previously opened by an Open procedure

and that the appropriate f i le_context_block fields have been initialized. The content >(the

file is then read and written to the bulk data stream.

Files of type tAsciiText are transferred as a StreamOfAsciiText The content of 'tic file a-.

read from the file must be encoded into this format for transmission to the client

6.3.7 Delete

The Delete procedure is used by clients to delete files If the specified file :s a directory a

FilingSubset service is not required to support the deletion of that file and all ,ts

descendants. VMS does not provide a simple mechanism for supporting the deletion of non-

FILINGSUBSET IMPLEMENTOR'S GUIDE
79

VMS YSTEM INTERFACE

empty directories, therefore the service
returns AccessProblem accessRightslnsufficient if

the directory file cannot be deleted.

The VMS delete routine is used to delete the
specified file. The delete routine will return an

error if the file is a non-empty
directory. Appropriate Filing errors are reported as type

AccessProblem

The following procedure illustrates the file
deletion mechanism:

^include errno

/

routine:

delete_f i le

input:

pointer to file handle

returns :

-t success

else Filing Error, Problem

F 1 1 ing_Error delete_file(fi le_context_b lock)

file_handle *f i le_context_block;

{

int status :

Filing Error error_value;
/

Filing error, problem pair
'

error_val ue .

errors F i 1 i ng_AccessError :
/

set to Filing AccessError /

/*
attempt delete of directory, success only if empty /

if (f ile_context_block->isdirectory) (

if (delete(f i le_context_block->pathname) ==-].){

error_val ue .

problems Filmg_accessRightsInsufficient:

return(error_value) ;

}

} else { /
use delete for non-directories /

if (delete(f ile_context_block->pathname) ==-!){

switch (errno) {

case EACCES: /
uSer has no access

<

case EPERM: /
user has no access

*'

error_value. prop lem= Fi 1 l ng_accessRightsInsuf f ic ient :

return(error_value) ;

case ENOENT: / no such file *'

case EN0TDIR: /.
no such directory

error_value.proolem= Fil ing_f i leNot Found :

return(error_value) ;

default: /
all other errors /

error_value. prob lems f i 1 ing_accessRights Indeterminate:

return(error_value) ;

}

}

}

VMS SYSTEM INTERFACE

return(-1) ;

41

FILINGSUBSET IMPLEMENTOR'S GUIDE

VMS SYSTEM INTERFACE

A, REFERENCES

The following documents describe those protocols and data structures referenced within tfu.-

guide.

[1] Xerox Corporation. Authentication Protocol. Xerox Network Svstem.-. Standard

Stamford, Connecticut; April 1984; XNSS 098404 (XSIS U98404).

This reference defines the Authentication Protocol apon which the Filing and

FilingSubset Protocols rely for authentication.

[2| Xerox Corporation. Bulk Data Transfer Xerox Network Sy-tems Standard Stamford,

Connecticut; April 1984; XNSS 038112 (XSIS 0381 12). Addendum la Augments [61

This reference defines the Bulk Data Transfer Protocol upon which the Filing and

FilingSubset Protocols rely for bulk data transfer

[3| Xerox Corporation. Character Code Standard Xerox Network Systems Standard

Stamford, Connecticut; April 1984; XNSS 058404 (XSIS 058404).

This reference defines the character set and the string format which provide the basi-

for Courier's string data type.

[4| Xerox Corporation. Clearinghouse Protocol. Xerox Network Systems Standard

Stamford, Connecticut; April 1984; XNSS 073404 IXS1S 0784O4).

This reference defines the protocol which FilingSubset implementation- u-e to

provide various services. It also defines the structure of user names which appear a-

various file attributes

[5| Xerox Corporation. Clearinghouse Entry Formats Xerox Network Sv stems Standard

Stamford, Connecticut, April 1984. XNSS 168404 i XSIS 168404)

This document defines Clearinghouse property
types and the structure of their entries

in terms ofCourier data types

[fil

[81

Xerox Corporation. Courier The Remote Procedure Call Pmtocnl. Xerox Network

Systems Standard. Stamford, Connecticut; December 1981. XNSS 033112 XSIS

038112).

This reference defines the Courier language, in terms ot which the filing and

FilingSubset Protocols are defined.

Xerox Corporation. Filing Protocol Xerox Network Systems Standard Stamf-rd.

Connecticut. May 1986. XNSS 108605 (XSIS 108605.

This reference defines the Filing and
the FilingSubset

Protocols

Xerox Corporation. Internet
Transport Protocols Xerox Network Systems Standard

SUmford.Connecticut:Decemberl981:XNSS028112.XSIS028ll^
Th.s reference defines the Sequenced Packet Protocol upon which Cur..r n h,> for

data transport.

83

REFERENCES

[9| Xerox Corporation. Secondary
Credentials Formats. Xerox Network System*

Standard. Stamford, Connecticut; May 1986; XNSS 258605 (XSIS 258605).

This reference documents specific type assignments and data formats for secondary

credentials. Implementations of FilingSubset on hybrid hosts may require secondary

authentication information.

[10| Xerox Corporation. Time Protocol. Xerox Network Systems Standard. Stamford
Connecticut; October, 1982; XNSS 088210 (XSIS 088210).

This reference defines the Time Standard upon which the Filing and FilingSubset
Protocols rely for the definition of the format for time and date quantities.

84

FILINGSUBSET IMPLEMENTOR'S GUIDE

B. Filing Protocol

A copy of the
Xerox Filing Protocol is included for reference purposes. This document defines both the

Filing and
FilingSubset Protocols

Filing Protocol

Xerox System Integration Standard

XEROX

XNSS 108605

May 1986

Copyright* 1986, Xerox Corporation. All rights reserved.

XEROX and Interpress are trademarks of XEROX CORPORATION.

Printed in U.S.A.

FILING PROTOCOL

XEROX

XNSS 108605

May 1986

Notice

ThisXeroxNetwork Systems Standard describes the Filing Protocol.

This document is being provided for informational purposes only. Xerox makes no warranties or

representations of any kind relative to this document or its use, including the implied warranties of

merchantability and fitness for a particular purpose. Xerox does not assume any responsibility or liability
for any errors or inaccuracies that may be contained in the document, or in connection with the use of this
document in anyway.

The information contained herein is subject to change without any obligation of notice on the part of

Xerox.

All text and graphics prepared on the Xerox 8010 Information System.

Copyright 1986, Xerox Corporation. All rights reserved.
XEROX , XNS, and 8010 are trademarks of XEROX CORPORATION
Printed in U.S.A.

PREFACE

This document is one of the family of publications that describe the network protocols

underlying Xerox Network Systems (XNS).

Xerox Network Systems comprise a variety of digital processors interconnected by means of

a variety of transmission media. System elements communicate both to transmit

information between users and to economically share resources. For system elements to

communicate with one another, certain standard protocols must be observed.

Comments and suggestions on this document and its use are encouraged. Please address

communications to:

Xerox Corporation

Xerox Network Systems Institute

2300 Geng Road

Palo Alto, California 94303

XEROX SYSTEM INTEGRATION STANDARD

,w
FILING PROTOCOL

TABLE OF CONTENTS

1. introduction

1.1 Purpose 1

1.2 Relationship to other protocols 1

1.3 Documentation organization 2

1.4 Document conventions 2

1.4.1 Notation

1.4.2 Notation for examples

2. Overview

2.1 Clients and services

2.2 Users, authentication, and sessions

2.3 Files, content, and attributes

2.4 Directories

2.5 Handles and controls

2.6 Creating, deleting, and accessing files

2.7 Enumerating and locating files in directories

2.8 Serializing and deserializing files

2.9 Transferring data

3. Remote procedures

3.1 Logging on and off

3.1.1 Credentials

3.12 Sessions

3.1.3 Logon

3.14 Logoff

3.1.5 Continue

3.2 Opening and closing files

3.2.1 File handles

3.2.2 Opening files

3.2.3 Closing files

3.3 Accessing and modifying
controls

3.3.1 Controls

3.3.2 Accessing controls

3.3.3 Modifying controls

3.4 Arrpina and modifying
attributes

XEROX SYSTEM INTEGRATION STANDARD

11

11

11

14

14

15

15

16

16

17

19

19

19

22

22

23

3.4.1 Attributes 23

3.4.2 Accessing attributes

3.4.3 Modifying attributes 25

3.5 Locating and listing files in
directories 2S

3.5.1 Scopes 26

3.5.2 Locating files 3J

3.5.3 Listing files 3J

3.6 Accessing and modifying the
content of files 33

3.6. 1 Uninterpreted file format 33

3.6.2 Storing files 33

3.6.3 Retrieving files 34

3.6.4 Replacing files 35

3.6.5 Random access to files 35

3.7 Creating and deleting files 37

3.7.1 Creating files 37

3.7.2 Deleting files 38

3.8 Copying and moving files 38

3.8.1 Copying files 39

3.8.2 Moving files 39

3.9 Serializing and deserializing files 40

3.9.1 Serialized file format 40

3.9.2 Serialize 4|

3.9.3 Deserialize 4J

3. 10 Procedures and attributes 43

4. Attributes 59_

4.1 Classes of attributes 59

4. 1 . 1 Interpreted vs. uninterpreted 59

4.2 Definition of attributes

4.1.2 Environment vs. data 60

4.1.3 Primary vs. derived 61

ributes 61

4.2.1 How attributes are defined 61

4.2.2 Identification-related attributes 62

4.2.3 Content-related attributes 65

4.2.4 Parent-related attributes 66

4.2.5 Event-related attributes 67

4.2.6 Directory-related attributes 69

4.2.7 Access-related attributes 71

FILING PROTOCOL

TABLE OF CONTENTS

5. Remote errors 75

Appendices:

5.1 Access errors
75

5.2 Argument errors 77

5.3 Authentication errors 78

.5.4 Connection errors

5.5 Handle errors

80

81

5.6 Insertion errors 81

5.7 Range errors 82

5.8 Service errors 83

5.9 Session errors 84

5. 1 0 Space errors 84

5.11 Transfer errors 85

5.12 Undefined errors 86

A. References 87

B. Type assignment procedures 89

B.1 Common file types 89

C. Program declaration 91

P. Examples 1_3

E. FilingSubset 109

F. Pathname syntax

E.I Overview 109

E.2 Definition 110

E.3 Procedures 111

E.4 Attributes 116

E.5 Remote errors 118

E.6 Procedures and attributes 118

E.7 Program declaration 123

129

XEROX SYSTEM INTEGRATION STANDARD

FILING PROTOCOL

LIST OF TABLES

3.1 ChangeAttributes 44

3.2 Copy 45

3.3 Create 46

3.4 Delete 47

3.5 Deserialize 48

3.6 Move 49

3.7 Open 50

3 8 Replace 51

3.9 ReplaceBytes 52

3.10 Retrieve 53

3.11 RetrieveBytes 54

3.12 Serialize 55

3.13 Store 56

3.14 UnifyAccessLists 57

E.1 FilingSubset and Filing attribute classes 116

E.2 List 120

E.3 Open 121_

E.4 Store L"

XEROX SYSTEM INTEGRATION STANDARD

FILING
PROTOCOL

INIKUUUUIUN

In any information handling system, storage of information is one of the most basic
functions. A component of the system may store information in order to protect it from
certain failures, release a more crucial storage area, or communicate the information to
some other part of the system. In a distributed system, these goals are even more

fundamental. Storage of information in another physical location can protect it against even
catastrophic failures at the original location, and communication of information to other

parts of the system is crucial.

In a distributed system, filing functionality is provided by a file service. A file service is

similar to a conventional file system, the principal difference being that it offers its services
to clients residing in other system elements. The file service defined here provides such

features as:

storage and retrieval of files

hierarchically structured directories

searching and sorting by arbitrary file attributes

operations on subtrees of files

recording offile activity

1.1 Purpose

This document defines the Xerox Filing Protocol, the protocol for interaction between clients

and file services. It is both a guide for using a file service, and a specification for the

implementation of such a service. It does not describe any particular implementation of the

protocol.

Typically a file service is associated with other support mechanisms such as backup and

archival features. These features are considered to be invisible to the network client, and are

not addressed in this specification.

This protocol provides a general filing facility to support a wide variety of applications

However, it is not intended to directly support network administration functions, printing,

electronic mail, or other distributed
activities. These are subjects ofother specifications.

1.2 Relationship to other protocols

The protocol defined in this document is an application-level protocol. It employs several

other protocols. Requests of a file service are communicated using the request-reply or

transaction discipline defined by Courier [6]. Every type of request is modeled as a remote

procedure as defined in Courier; every
exceptional condition that may arise is modeled as a

XEROX SYSTEM INTEGRATION STANDARD

remote error. All parameters transferred between the client and the file service obey the

conventions described in the Courier specification. This present specification, therefore,

constitutes a Courier remote program.

The contents of files and other large data items are transferred using the protocol described

in the BulkData TransferProtocol addendum [3].

The Filing Protocol also depends upon the standard time format defined in the Time Protocol

[8], and on the Clearinghouse Protocol [5] and the Authentication Protocol [2].

1.3 Document organization

Chapter 2 of this document gives an overview of the concepts defined in the standard.

Chapter 3 defines the remote procedures needed to interact with a file service. Chapter 4

defines the meaning and use of the attributes that are interpreted by the file service.

Chapter 5 defines the remote errors reported by the file service when exceptional conditions

occur.

Appendix A lists other documents which supplement the specification. Appendix B describes

the administrative procedures for obtaining ranges of file types and attribute types.

Appendix C lists the Filing remote program in its entirety. Appendix D gives examples of

interactions between a client and a file service. Appendix E defines a subset of the Filing

Protocol. Appendix F defines a common syntax for the expression of file pathnames.

1 .4 Document conventions

Courier text and examples are depicted in special fonts, and generally conform to a certain

style. The rules and style are set forth below.

1.4.1 Notation

Throughout this document, special fonts are used to depict Courier text instead of using

quote marks or other delimiters. This convention also aids the eye in discriminating
between Courier text and the exposition. Items in this font indicate elements of the Courier

language and are almost always in upper case. This font indicates items that are defined

using the Courier language.

Identifiers that are defined in this protocol (as opposed to being defined by Courier) will have

their first letter capitalized if they are the name of a type, error, or procedure, identifiers

with a lowercase first letter are usually the names of variables, arguments, or results.

1 .4.2 Notation for examples

In the examples that follow, a call to a remote procedure is denoted by the name of the

procedure followed by the arguments supplied to it. A return from a remote procedure is

denoted simply by the results, preceded when confusion might otherwise result by the

FILING PROTOCOL

keyword returns. The argument or result list is modeled as a record; the arguments or

results as the record's components. Accordingly, Courier's standard notation for record

constants is used to specify argument and result lists.

For example, if the procedure Add is defined as:

Add: procedure [first, second: cardinal]

returns [sum: cardinal] > 99;

then a call to that procedure would be denoted by:

Add [first: 7. second: 5]

and the call would yield the result:

[sum: 12] or returns [sum: 12]

Fine point: The above notation for procedure calls should not be confused with the standard notation for a record

constant selected by means ofa choice data type. The two are similar in appearance butotherwise unrelated.

Examples of remote errors are either just the name of the error, if it is defined without

arguments:

Overflow

or the same as a procedure call if it is defined with arguments. For example, if Overflow

were defined as:

Overflow: error [carry: cardinal] - 99;

then an example of its use might be:

Overflow [carry: 1]

indicating that Overflow was reported with argument carry having the value 1

Courier requires values for a sequence of unspecified to be a sequence of numbers. So as to

retain readability in examples, the content of a sequence of unspecified is described using

Courier notation. The reader should understand that the numeric representation of these

types is what should be used as the content of the sequence.

xerox system
integration standard

wrrRODucnuN

filing
protocol

Z"
UVtKVTtW

To better understand the description of the file service, it is necessary to understand a

number ofconcepts and terms. Most of the concepts described below will be familiar as those

ofconventional file systems, but there are a few that are considerably different.

2.1 Clients and services

This standard defines a protocol for the communication of filing requests. Requests to store a

file, to delete a file, or to list a directory are all examples of filing requests.

A service is an entity (software or hardware) that accepts and responds to submitted requests

for some type of service. A file service is a service that handles filing requests A client of a

service is an entity that submits requests to that service. In this document, where the service

is not otherwise specified, the service is assumed to be a file service. A client may or may not

be operating on behalfofa human being.

All interaction between the client and the service is initiated by the client. The service never

spontaneously interacts with a client.

2.2 Users, authentication, and sessions

A client always interacts with a service on behalfof a user. The user may be a human being,

or may be some other entity (such as another
service). In any event, the user has a user name

that distinguishes him from other users.

Before making use ofa file service a client
must log on. The client presents credentials which

identify him to the file service. The service responds by establishing a session and returning

a session handle which is used to identify the client (and the state of this interaction) in

future requests.

Credentials represent the client's proof of identity and permit the service to identify the

party initiating the interaction. Where only a Clearinghouse
distinguished name is required

to identify the initiator, the standard mechanisms of the Authentication Protocol [2] are

used. Credentials that resolve a client's identity to a Clearinghouse name are the clients

primary credentials.

A file service implemented on a host whose authentication
requirements go beyond those

satisfied by the primary
authentication mechanisms of the Authentication Protocol may

require additional
authentication information. This additional authentication

information

xerox system integration standard

is referred to as secondary credentials. A host requiring secondary
credentials is a hybrid

host.

Once appropriate credentials have been provided by the client, a
session is established. A

session encapsulates the state of the client with respect to the interaction then being
initiated. For example, the session keeps track of files that

are open, locks that are held, and

the name of the user on whose behalf the client is operating. The
session handle is included

in all subsequent requests in order to identify the client and its
state. When interaction is

complete, the client logs off. This terminates the session, freeing any
allocated resources and

invalidating the session handle. The client must log on again before any
further interaction

may occur.

Sessions may vary greatly in duration. In some patterns of use a session is established to

perform a single operation and then terminated. In others, a session may last a very long
time even though it is largely inactive. The file service reserves the right to terminate a

session at any time that a remote procedure call is not in progress. This might occur if a

session remains inactive for a long period, or if the system element supporting the file

service has to be shut down.

There may be several sessions simultaneously in existence for the same user whether or not

they were established by the same client.

2.3 Files, content, and attributes

The file service stores and operates on files. A file is a body ofdata that has been grouped and

provided to the file service for the purpose of short- or long-term storage. Every file is either

temporary or permanent. A permanent file resides in a directory and exists until it is

explicitly deleted. A temporary file does not reside in a directory. It exists only until it is

closed by all sessions that have opened it.

A file consists of two types of information, content and attributes. The content of a file is the

data actually contained within the file. Usually, the content is the file's reason for existence

The content is a series of eight-bit bytes, uninterpreted by the file service. The content of a

file is obtained or modified only by explicit action.

Attributes are data items that identify the file, describe its content, or are in some other way
associated with the file. Attributes vary widely in purpose, structure, and behavior. Some

attributes have a particular meaning to the file service, and specifying such an attribute

results in a defined behavior in the file service. These attributes are said to be interpreted.

All other attributes are uninterpreted. Such attributes, if specified, are associated with the

file and, when requested, are returned unchanged.

Every attribute is identified by its attribute type. A number of attribute types are defined by
this standard. All attributes having these types must be interpreted by every file service

implementing this standard. A client may also define attributes that are useful in its

particular application.

A number ofprocedures accept arbitrary attributes. However, not all attributes are allowed
in all contexts. Where an attribute is allowed, and the default behavior when it is

unspecified are given in chapter 3.

filing
protocol

Attributes may be obtained or modified by explicit action. In addition, attributes are
obtained when a directory is listed, and interpreted attributes are modified implicitly by
many procedures.

Attributes are described in detail in chapter 4, but in order to give some of the flavor of them
a few are mentioned here.

The filelD attribute uniquely names the file within the file service (no other file stored in the
file service has the same value of filelD), and may therefore be used to identify the file to file
service procedures. This attribute is not human-sensible, and its structure is private to the
particular implementation of the file service. For a given file, the value of this attribute
remains constant for the duration ofa session.

The name attribute associates a human-sensible string name with a file. This attribute may
be used to identify a file (as in conventional file systems), or it may merely be a descriptive
string. Several files may have the same name, even within the same directory. The version,
also an attribute, is a number that is assigned to the file in such a way that the name-version

pair is unique within the file's containing directory.

The type attribute is intended to describe the nature of the content or attributes of the file in

order to communicate how this file is to be interpreted by potential users of the file. The type
of a given file is specified by the client when the file is created. The file service does not

enforce any interpretation of the type on the content or attributes. Several frequently-used

types are defined in this standard. A client may also assign types of its own.

2.4 Directories

Every file is either a directory or a non-directory. A directory is a special type of file which

can reference other files. A directory also has all of the characteristics of a non-directory in

that it can have content and attributes. However, a directory cannot be temporary

Within a file service, files exist in a hierarchical structure Every permanent file resides at

some level in this hierarchy. The files directly referenced by a directory are its children. The

descendants of a directory include its children and the children of its descendants. The

directory which directly references a file is that file's parent. The ancestors
of a file include

its parent and the parents of its ancestors. In each file service, there is a root file which is the

file that has no parent and is an ancestor of all other permanent files.

2.5 Handles and controls

To manipulate a file, a client must open that file. The
file is then said to be open within the

session, and will stay open
until the session ends or the file is explicitly closed. Opening a file

marks it as "in use"(so that other clients cannot delete it, for example), and indicates that

the file will be used in some way in the near
future. Closing a file clears this "in

use"

mark

and indicates that the file will not be used in
the near future.

The file to be opened may be specified by giving either its filelD
or its name. Since a file's

filelD is uniquewithin the file service, no
other qualification is necessary. The name-version

pair however is directory-relative. Therefore,
the ID of the parent must also be specified

xerox system integration stanoard

when opening a file with a
name-version pair. A file may also be

opened by specifying some

condition on the attributes of the file.

When a new file is created or an existing file is opened,
the file service returns a handle. The

structure of a handle is private to the implementation of the file service. This handle is

presented in subsequent operations to identify this file to the file service,
and remains valid

until either the session ends or the file is closed using this
handle. The handle is relative to

the session and so cannot be used in conjunction with any session
other than the one used to

obtain it.

A clientmay wish to explicitly specify certain
characteristics of its intended interaction with

the file. These characteristics are called controls. For example, a
client may obtain a share

lock, specifying that no other clients are allowed to modify the file while it is in use. Or, a

clientmay specify that if the file is in use in a way
that conflicts with its own use, it wishes to

be notified immediately rather than waiting for access to the
file. Controls persist only as

long as the handle exists; they are lost when the file is
closed.

If a file is opened several times, several handles result. These handles are distinct, and the

file remains open within the session until all handles have been presented in requests to

close the file. Controls applied to a file are associated with a particular handle. If several

handles for the same file exist, a change to the controls of one handle does not affect the

others. Also, locks obtained on multiple handles to a file within the same session do not

conflict with one another. However, for a session, the effective lock for a file is the most

restrictive one obtained for that file within the session.

2.6 Creating, deleting, and accessing files

A number ofprocedures exist for creating new files, deleting files that are no longer needed,
andmodifying files in various ways.

A file can be created without storing its content. This is especially useful for the creation of

directories. A file can also be created and filled with data transferred to the file service.

Finally, a file can be created that is a copy ofan existing file.

An existing file may be deleted. The attributes of a file may be accessed or modified, and the

content of a file may be accessed, modified, or replaced. In addition, a file may be moved to

another directory.

Since directories are also files, all of these procedures may be applied to directories as well as

non-directories. When directories are copied, moved or deleted, all descendants are copied,

moved or deleted as well.

2.7 Enumerating and locating files in directories

Several procedures enumerate files in a directory, performing some action when files are

encountered that satisfy some criteria. The procedures differ in the action taken. If the client

lists files in a directory, the attributes of all files that satisfy the criteria are furnished to the

client. If the client searches for a file, the first file that satisfies the criteria is opened and its

handle returned to the client.

filing PROTOCOL

The arguments that describe how enumeration is to proceed, and the criteria to be satisfied,
are scopes. Scopes include the direction of enumeration (front-to-back or back-to-front), a
condition on the attributes of the files, and the maximum number of files that may satisfy
the condition.

2.8 Serializing and deserializing files

The subtree of files consisting of a particular file and all of its descendants is sometimes a

useful entity with which to work, and the file service's procedures are designed to make it

easy to operate on such subtrees. However, there are times when it is useful to encapsulate
all of the information in such a subtree so that the information can be stored or manipulated

outside the file service.

A serialized file is a series of eight-bit bytes that encapsulates a file's content, its attributes,

and its descendants. The file service provides a procedure that serializes a file, producing
such a series of bytes, and another procedure that deserializes the series of bytes,

reconstructing the file's content, attributes, and descendants.

2.9 Transferring data

For those filing procedures that intrinsically require the transmission of a large amount of

data, the BulkData Transfer Protocol [3] is employed. Basically it works as follows: between

the call to a remote procedure and the return from that procedure, the sender (either client

or service) uses the bulk data transfer mechanism to send to the receiver the attributes or

the content of the designated file(s). Note that the Bulk Data Transfer Protocol allows the

data to be sent to, or retrieved from, a system element different than that of the client.

XEROX SYSTEM INTEGRATION STANDARD

10 FILING
PROTOCOL

3. KCIVIUI C ri\UV.CUUI\C3

The Filing Protocol is a Courier-based definition of a file service. It defines the data

structures and procedures that constitute the Filing remote program. To be considered a file

service, an implementationmust implement each of these procedures.

Each procedure description includes a declaration of the procedure in Courier's standard

notation, a description of the procedure's arguments and results, and frequently
an example

of its use. The interaction of these procedures with attributes is
described in chapter 4, and

the errors these procedures report are described in
chapter 5.

The following definition gives the program and version numbers of the Filing Protocol and

lists all otherCourier-based protocols which are
referenced from this program.

Filing: program 10 version 6

BEGIN

DEPENDS UPON

BulkData(O) version 1,

Clearinghouse (2) version 3,

Authentication (14) version 3.

Time (15) version 2;

END.

This indicates that Filing is program number 10. This document defines
version 6. Filing

references some types and
constants that are defined in other protocols as shown in he

*^tJ% protocols are documented in the Authentication Protocol 2] the

BulkDal Transfer Protocol [31. the
Clearinghouse Protocol [5], and the Time

Protocol [8].

Fine
Point- The Filing Protocol definition depends

upon the Clearinghouse
and Authenticate remote program

e^n^

Protocolswithin the Filing Protocol
are compatible

with earuer versions
ofthose protocols.

3.1 Logging on and off

i-

*mctWon When interaction is complete,
it logs

Before making use ofa
fileservice, . et^^Zll^ identifies the state of its

off. After logging on, a
client is given a session nana

interaction with the file service

3.1.1 Credentials

When a

-*~.i cnrh as Filing the client is required to

client makes userf-^SK^^^^' """ f" "*

present credentials
to the service

C^entui V

^ Where Qnly a clearinghouse

permit the service to identify
the initiator

oi

11

XEROX SYSTEM INTEGRATION STANDARD

distinguished name is required to identify the initiator, the standard mechanisms of the

Authentication Protocol [2] are used. Credentials that resolve a client's identity to a

Clearinghouse name are the client'sprimary
credentials.

Services implemented on hosts whose authentication
requirements go beyond those satisfied

by the primary authentication mechanisms of the Authentication Protocol may require

additional, authentication information. This additional authentication information is

referred to as secondary credentials. A host requiring secondary credentials is a hybrid host.

Credentials: type record [
primary: PrimaryCredentials,

secondary: SecondaryCredentials];

Credentials are used by the client to communicate primary and secondary authentication

information to a service. The primary portion ofCredentials is used by the client to supply

primary credentials as specified in the Authentication Protocol. The secondary portion of

Credentials permits additional secondary authentication information to be supplied.

3.1.1.1 Primary credentials

Primary credentials resolve a client's identity to a Clearinghouse name. This form of

authentication information is defined in the Authentication Protocol [2]. The definition of

PrimaryCredentials reflects this relationship.

PrimaryCredentials: type = Authentication.Credentials;

nullPrimaryCredentials: PrimaryCredentials Authentication.nullCredentials;

Two levels of authentication security are defined for primary credentials, simple and strong.

Simple credentials encapsulate an identity using straightforward encoding and hashing
functions. Encryption is used in creating strong credentials to provide a much greater level

of security. Strong credentials make it impossible for one client to impersonate another

Refer to the Authentication Protocol documentation for a more complete explanation of these

credentials forms. The primary credentials constant nullPrimaryCredentials is used to

denote that no primary credentials information is being specified.

3.1.1.2 Secondarycredentials

Secondary credentials are used to communicate host-specific authentication information

They are similar to primary credentials in that a strength corresponding to each primary

authentication level is defined. The strength of an instance of secondary credentials is

linked to the authentication level of the associated primary credentials.

Strength: type * (none(O). simple(1), strong(2)};
SecondaryCredentials: type = choice Strength of {

none > [],

simple > Secondary,

strong * > EncryptedSecondary};

SecondaryCredentials defines the data type for secondary authentication information

Secondary credentials of strength none are defined to permit a client to avoid the

specification ofany secondary authentication information if that is appropriate or desired

12
FILING PROTOCOL

A secondary of simple strength represents the most basic form of secondary authentication

information. The secondary authentication information is encoded in a straightforward wav

using Courier conventions. No encryption is used (see further details below), therefore
information contained in a simple secondary is not immune to eavesdropping threats. A

simple secondary may only be specified if the acompanying primary credentials are simple
or null.

Secondaries of strength strong are used to encapsulate secondary authentication

information in a secure manner. Strong secondary credentials are identical to corresponding
simple secondary credentials except that the authentication information is encrypted after

being encoded using standard Courier conventions. A strong secondary may only be

specified if the accompanying primary credentials are also strong. The conversation key
supplied with the associated primary credentials is used to encrypt the secondary

authentication information contained within the strong secondary.

^"*"^-s^^ Secondary

Primary ^^\^^
none simple strong

nullPrimaryCredentials legal legal illegal

simple legal legal illegal

strong legal illegal legal

Table 3.1 Primary and secondary credentials combinations

Table 3.1 summarizes the valid combinations of primary and secondary credentials

information which may appear in Credentials.

SecondaryType: type = sequence 10 of SecondaryltemType;

SecondaryltemType: type long cardinal;

The secondary authentication requirements of a hybrid host are described by a value of

SecondaryType. A secondary type is made up of a set of item types Individual secondary

item types are used to define the structure and interpretation
of an element of secondary

authentication information. Well-known secondary item types are described in Secondary

Credentials Formats [10] along with the
administrative procedure used to define new item

types.

Secondary: type = sequence 10 of Secondaryltem;

Secondaryltem: type record!

type: SecondaryltemType.

value: sequence of unspecified);

Secondary defines the
structure of secondary

authentication information. A secondary value

comprises a set of secondary items, each designating
an item type and a corresponding value

of that type. Clients are expected
to supply a hybrid host an appropriate se of secondary

authentication items. A hybrid service which does not receive the correct set of secondary

items indicates the nature of the problem and the secondary item types required by

reporting
AuthenticationError (see 5.3).

13

XEROX SYSTEM INTEGRATION STANDARD

EncryptedSecondary: type sequence ofAuthentkation.Block;

EncryptedSecondary is an encrypted form of a secondary. An encrypted secondary is

obtained by padding an unencrypted secondary
with an appropriate number of zero bits and

encrypting using the algorithm outlined in the Authentication Protocol (the unencrypted

value must be a multiple of 64 bits, hence the
zero-padding). The key to be used in the

encryption process is the conversation key supplied in the associated strong primary

credentials.

3.1.2 Sessions

The Logon procedure returns a session handle which is then used as a parameter in calls to

almost all other Filing procedures. This structure identifies the state of the client's

interaction with the file service.

Session: type = record [token: array 2 of unspecified, verifier: Verifier);

Verifier: type Authentication.Verifier;

tok 2n identifies the session to the file service, thereby identifying the user and the state of

hi: :teraction with the file service. It does not change during the life of the session and is

uninterpretable by the client. Verifier is defined by the Authentication Protocol [2]. It is

included in order to substantiate that all procedure calls using the session handle originated

from the same client that established the session and are not replays of previous calls. Note

thatwhile the token remains unchanged within a session, the verifier may change with each

new call.

3.1.3 Logon

A session is used to access the files of a file service. Logon is called to begin a session. The

client identifies a particular service to be accessed by supplying the distinguished name of

the service as an argument. When an explicit service is not specified (the supplied name is

null), the distinguished default service provided by the system element is assumed. In either

case, the file service verifies that the request is valid, creates a session, and returns the

session handle.

Logon: procedure [

service: Clearinghouse.Name, credentials: Credentials, verifier: Verifier]
returns [session: Session]

reports [AuthenticationError. ServiceError. SessionError. UndefinedError] 0;

Arguments: service is the distinguished name of the service to be accessed with the session;

credentials identify the client to the service (see 3.1.1); verifier is described in the

Authentication Protocol [2].

Results: session is a session handle, session.token is to be used in subsequent calls to the file

service within this session. Ifsession.verifier is a simple verifier, then a simple verifier must

be used in all subsequent interactions with the file service within this session.

Example:

A typical log-on call might be the following:

14
FILING PROTOCOL

Logon [service: [organization: "Xerox", domain: "Office Systems", object: "TestFS"].
credentials: [credentials -object], verifier: simpleVerifier]

returns [session: [token: [11B. 27734B], verifier: simpleVerifier]]

The specific value for the credentials argument would be of type Credentials (which can take

several forms). The result of this call is that the client is logged on, a session is created, and a

session handle is returned to the client. The token of the session handle has the value [11B,

27734B] (the numbers here have no intrinsic meaning; they are provided for illustrative

purposes only). The verifier argument is either created as defined in the Authentication

Protocol [2], or obtained from an authentication service. The verifier result is used

throughout the rest of the session as ameans of continuing the authentication of the session.

This and the remaining examples denote this verifier value as simpleVerifier. The session

handle result is used in all subsequent calls to the file service until a logoff request is made.

3.1.4 Logoff

Logoff is called to end a session. The file service verifies that the request is valid, destroys

the session, releases any allocated resources, and invalidates the session handle.

Logoff: procedure [session: Session]

reports [AuthenticationError. ServiceError, SessionError, UndefinedError] 1;

Arguments: session identifies the session to be ended.

Example:

To end the session that was created in the Logon example, the client would make the

request:

Logoff [session: [token: [11B. 27734B1. verifier: simpleVerifier]]

Notice that the same session handle token is specified that was returned by the Logon

request. The effect of the logoff for the client is that the session handle is no longer an

acceptable argument for file service requests.
To obtain another valid session handle, the

clientmust log on again.

3.1.5 Continue

Continue registers interest in a session.
A client who wishes a session to remain

in existence

through some period of inactivity may call Continue to prevent the file service from

terminating it due to
inactivity.

Continue: procedure [session: Session]

returns [continuance: cardinal]

reports [AuthenticationError.
SessionError. UndefinedError]

- 19,

Arguments: session refers to the
session that is to be

continued.

XEROX SYSTEM INTEGRATION STANDARD

15

Results: continuance is in seconds. Under normal conditions,
the file service will not

terminate the session unless it has been
inactive for longer than this number of seconds. The

call to Continue, as well as all other remote
procedure calls, registers as activity.

Example:

If a client wanted to discover what the timeout period
for a file server was, it could make the

following request:

Continue [session: [token [11B. 27734B]. verifier: simpleVerifier])

returns [continuance: 600]

The returned value of 600 (seconds) indicates the frequency with which the client must poll

or make file service requests to avoid the session being terminated due to inactivity. In this

example, to avoid timing out a file service request must be made
at least every 10 minutes.

3.2 Opening and closing files

A file must be opened before it can be used. It should be closed when it is no longer needed.

While open, a file handle is used to refer to it. The file handle encapsulates the state of the

file within the session.

3.2.1 File handles

The file service returns a file handle when a file is opened.

Handle: type = array 2 of unspecified;

The handle identifies the file to the file service. It is relative to the session. A handle created

during one session cannot be used in conjunction with any other session. A handle remains

valid until it is explicitly destroyed (by presenting the handle in a request to close or delete

the file) or until the session ends, whichever comes first.

nullHandle: Handle - [0,0];

The constant nullHandle is a reserved value of Handle. In certain procedures where a

directory file may be specified, nullHandle is used to imply the roof file (the file within a file
service which has no parent and is an ancestor ofall other permanent files).

Specific mention will be made where nullHandle is allowed as a procedure parameter

Unless otherwise indicated, it is disallowed.

The client may hold several handles for the same file in the same session. Each handle is

distinct and has its own state; destroying one leaves the others intact. A file is not closed

until all handles for it are destroyed.

16
FILING

PROTOCOL

3.2.2 Opening files

Open makes a file available for use. The attributes identify the desired file. The file service
prepares it for use, applies the specified controls, and creates and returns a file handle for
the file. The file is also marked "in

use"

so that it cannot be moved or deleted in other

sessions.

Open: procedure [attributes: AttributeSequence. directory: Handle,
controls: ControlSequence, session: Session]

returns [file: Handle]

reports [AccessError, AttributeTypeError, AttributeValueError,
AuthenticationError, ControlTypeError, ControlValueError. HandleError,
SessionError, UndefinedError] - 2;

Arguments: attributes identifies the file as described below; directory specifies a starting

directory in which to look for the file (it may be the null handle); controls specifies the
controls to be applied to the new handle, session is the client's session handle. Only the

following interpreted attributes may be included in attributes:

parentlD: the starting directory is the directory which has this filelD; ifomitted, the starting
directory is the root directory. Specifying a directory handle is equivalent to specifying its

filelD as parentlD in the attribute list. If both are explicitly specified, the corresponding

filelDsmust be equal;

filelD: open the file which has this filelD. If parentlD or directory is specified, the file must

be a child of the starting directory (but ifneither is specified, the file may be anywhere);

name: open the file which has this name and is a child of the starting directory;

pathname: open the file which has the specified pathname. The first component of the

pathname must be a child of the starting directory (if the starting directory is omitted, the

root directory is used). Every file included in the path except the last must be an accessible

directory. The version attribute may also be specified, but is ignored if the last file named by

pathname includes an explicit version specification.

type: open the file with the specified type;

version: open the file which has this version number; if omitted, the file with the highest

version is opened.

Uninterpreted attributes are ignored. The attribute sequence may not include more than

one of filelD, name, or pathname. If none
are present, the root file is opened and parentlD

and directory must have null values
or be omitted; otherwise an error will be reported. The

version attribute may only be specified
if name or pathname is specified. In summary, the

attribute sequence must be equivalent to
one of the following (where optional attributes are

designated with brackets):

a) filelD [parentlD] [type]

b) name [parentlD] [type] [version]

c) pathname [parentlD] [type] [version]

Results: file is the file handle for the
file being opened.

XEROX SYSTEM INTEGRATION STANDARD

17

Examples:

If a client wanted to open a file for which it already had the filelD, it might make the

request:

Open [attributes: [[type: filelD, value: [17B, 33B, 744B. 6B, 225BJ]],

directory: nullHandle,

controls: [\.

session: [token: [11B.27734B], verifier: simpleVerifier]]

returns [file: [7244B, 352B]]

The file is specified by a filelD attribute (type = filelD) where the filelD was [17B, 33B,

744B, 6B, 225B] (here again the numbers are only illustrative). No controls were specified.

The session handle came from a previous Logon request (in this case, from the Logon

example). The file service returned a file handle, [7244B, 352B], that must be used when

accessing this file in other file service requests.

To open a file named
"Letters"

within the directory opened in the above example, the

following remote procedure call could be made:

Open[

attributes: [

[type: parentlD. value: [17B, 33B, 744B, 6B, 225B]],

[type: name, value: "Letters"]],

directory: nullHandle,

controls: [].

session: [token: [11B, 27734B], verifier: simpleVerifier]]

returns [file: [72478,1 B]]

Here the directory file was specified by a parentlD attribute, and the file name by a name
attribute. Again, no controls were specified. The file service located at least one file name
"Letters"

in the designated directory, opened the one with the highest version number, and
returned its file handle. Note that exactly the same effect could be achieved by specifying a

value for directory instead of specifying a parentlD attribute, as in the following call:

Open [

attributes: [[type: name, value: "Letters"]],
directory: [7244B, 352B],

controls: 0.

session: [token: [11B. 27734B], verifier: simpleVerifier])

The value used for directory was taken from the first Open example.

If the client wished to open a file for which it could provide an access path, it could make the
request:

Open[

attributes: [type: pathname, value: "Finance!1/Correspondence! ?/Memo!4").
directory: nullHandle,

controls: [).

session: [token: [11B, 27734B], verifier: simpleVerifier]]

returns [file: [170956B.3B]]

18
FILING PROTOCOL

In this example, the client has supplied an access path (pathname) to the file named

"Memo". The null value supplied for directory implies that the path is relative to the root

directory. Implicitly, the service searches for a directory within the root named "Finance",
the highest version of a directory within

"Finance"

named "Correspondence", and finally
the file itself.

3.2.3 Closing files

Close is called to indicate that a handle to a file is no longer needed in the specified session.

The file service releases acquired resources (such as locks associated with the handle) and
invalidates the file handle. If the file is temporary and no other file handle exists for it, the

file is deleted.

Close: procedure [file: Handle, session: Session]

reports [AuthenticationError, HandleError, SessionError, UndefinedError] 3;

Arguments: file is the handle to be closed; session is the client's session handle.

3.3 Accessing and modifying controls

A client may specify controls which characterize its intended use of a file handle. Controls

may be specified when or after a file is opened. They apply only to a single file handle.

3.3.1 Controls

When a file is opened, a file handle is returned which has some assumed characteristics For

example, possession of a handle by one client prevents other clients from moving or deleting

a file, but does not prevent them from reading or modifying the
file. This characteristic of a

handle is an example of a control. Controls define the nature of file access that a handle

gives to the client who holds it.

ControlType: type = (lock(0),timeout(1),access(2)};

ControlTypeSequence: type = sequence 3 of ControlType;

Control: type * choice ControlType of {

lock > Lock,

timeout > Timeout,

access > AccessSequence};

ControlSequence: type *= sequence 3 of Control;

Controls may be specified in any
procedure that returns a file handle The specified controls

apply only to the returned handle. There exist procedures to obtain and modify controls

applying to a specific
handle.

XEROX SYSTEM INTEGRATION STANDARD

19

3.3.1.1 Locks

A lock on a file is a restriction on the use of the file by other sessions.
A client might specify a

lock if itwishes to prevent certain types of access to the file
while it is operating on

it-

Lock: type = {none(0),share(1),exclusive(2)};

An exclusive lock is more restrictive than a share lock, which is more restrictive than a none

lock.

If a session has opened a file but no lock has been applied, then other sessions are prevented

frommoving or deleting the file.

If a session has opened a file and a share lock has been applied, then other sessions are

prevented from moving or deleting the file, and from acquiring an exclusive lock on the file.

If a session has opened a file and an exclusive lock has been applied, then other sessions are

prevented from moving or deleting the file, and from acquiring a share or exclusive lock on

the file.

The file service acquires the locks that it needs to ensure correct execution of procedures

called by the client. It always acquires a share lock when a client explicitly reads the content

of a file, and an exclusive lock when a client explicitly changes the content or attributes of a

file, or when children are added to or removed from a directory. Depending on the

implementation, it may also acquire other locks as necessary to ensure its own correct

operation. Since the file service guarantees it will obtain the locks it requires, the client

never needs to explicitly acquire locks unless it wants additional protection. For example, if

a client wishes to prevent modification of a file by other sessions during execution of a

procedure that reads the file, it need not acquire a lock. The file service acquires a share lock

and holds it for the duration of the procedure. However, if the client wishes to prevent

modification of a file between calls to two procedures that read the file, a share lock should be

obtained before the first procedure is called and released after the second procedure returns.

Locks are maintained on a per-session basis; the lock effectively held by a session is the most

restrictive lock held on any handle to a file within the session. For example, if two handles to

a file exist in the same session and a share lock is applied to one while an exclusive lock is

applied to the other, then an exclusive lock for the file is held by the session. These locks do

not provide any protection between file accesses made in the same session. The client must

provide such protection if it is needed, although the file service will prevent conflicting

requests from damaging data (for example, by serializing requests within a session where

necessary).

A lock on a file provides no protection for the path to that file. Without specifically

protecting the path, it is possible for a separate session to modify an ancestor of a locked file.

If no lock is specified, none is assumed.

3.3.1.2 Timeouts

When a client requests a lock that is unavailable, the file service waits until it becomes

available or until the timeout expires, whichever occurs first. If the lock becomes available,
it is acquired and execution continues. If the timeout expires, an error is reported. The

20
FILING PROTOCOL

length of the wait is ordinarily an implementation-dependent constant. However, clients
who wish to specify a particular value may do so.

Timeout: type - cardinal;

The timeout value is given in seconds. The timeout associated with a handle applies to any
request to acquire a lock on that handle. Ifa timeout of zero is specified, the file service does
not wait. In this case if the requested lock is unavailable, an error is immediately reported.
Conversely, a very large timeoutmay cause the file service to wait a very long time for a lock
to become available. Such timeouts should be used with care.

If defaultTimeout is specified, an implementation-dependent default is applied. When the

current timeout value is requested from the file service, the actual timeout value, rather

than defaultTimeout, is returned:

defaultTimeout: Timeout 177777B;

Ifno timeout is specified, defaultTimeout is assumed.

3.3.1.3 Access

Access determines what operations are allowed for a particular file handle. An Access is a

set ofpermissions, each ofwhich enables a particular form of access to a file (or its children).

If a particular access has not been enabled, the handle may not be used in any operation

which would require that access to the file.

AccessType: type {
- all files - read(O), write(1), owner(2),

- directories - add(3), remove(4)};

AccessSequence: type = sequence 5 ofAccessType;

fullAccess: AccessSequence [177777B];

Each type ofaccess enables particular forms ofaccess to a file as follows:

reacj The client may read the file's content and attributes. If the file is a

directory, the client may also enumerate its
children and search for files in

the directory.

wrjte The client may change the file's content and data attributes, and may

delete the file. If the file is a directory, the client may also change

environment attributes and access lists of the
directory's children.

owner The client may change the file's
access list.

add if the file is a directory, the client may
add children to it (using any of the

operations that create files).

remove If the file is a directory, the client may
remove children from it.

The effective access available to a
client is the logical and of the

access last specified for the

handle (with ChangeContro.s or in the
operation which returned the handle) and the access

allowed by the file?s access
control list (see 4.2.7). A

client's effective access may be

empty^
The constant fullAccess, when

specified as a control value, requests that all
access

XEROX SYSTEM INTEGRATION STANDARD

21

permissions be permitted. In operations which
return handles, fullAccess is assumed if a

specification ofaccess emitted.

3.3.2 Accessing controls

GetControls returns the controls in effect for a given
handle. Only the values of the specific

controls requested are returned. Since different controls may be obtained with varying

degrees ofdifficulty, the client should request only those
controls that it needs.

GetControls: procedure [

file: Handle, types: ControlTypeSequence, session: Session]

returns [controls: ControlSequence]

reports [AccessError.AuthenticationError,ControlTypeError,

HandleError, SessionError, UndefinedError] 6;

Arguments: file i file handle of interest; types is a sequence of the types ofcontrol items

that are desired; n is the client's session handle.

Results: controls quence of control items correspor... ng one-for-one with the items

specified in types

Example:

To obtain the values for timeout and lock for a file the following request should be made:

GetControls [file: [7244B, 352B], types: [timeout, lock],

session: [token: [11B, 27734B], verifier: simpleVerifier]]

returns [controls: [timeout 60, lock none]]

The file handle has a timeout value of one minute and a lock of none. The file service could

also have returned the results:

[controls: [lock none, timeout 60]]

The order of both types and controls is not significant and, in particular, they do not have to

match.

3.3.3 Modifying controls

ChangeControls modifies the controls that apply to a given handle. The specified control

values are changed. If a lock is specified, the file service attempts to acquire it, and if

successful, any prior lock is released.

ChangeControls: procedure [

file: Handle, controls: ControlSequence, session: Session]
reports [AccessError,AuthenticationError, ControlTypeError,

ControlValueError, HandleError, SessionError, UndefinedError] 7;

22 FILING PROTOCOL

Arguments: file is the file handle whose controls are to be modified; controls is a sequence of
the control items to be set; session is the client's session handle.

3.4 Accessing and modifying attributes

Attributes are data that describe a file or are otherwise associated with it. They are obtained
when a directory is listed, and may be modified implicitly by many procedures. In addition,

they may be obtained or modified by explicit action. Attributes vary widely in purpose,

structure, and behavior.

3.4.1 Attributes

An attribute is a data item that is associated with a file. Attributes may identify the file,

describe its structure, record historical activity, or perform any other desired function. Some

attributes have a particular meaning to the file service and specifying such an attribute

results in a defined behavior in the file service. Such attributes are said to be interpreted.

All other attributes are uninterpreted. Uninterpreted attributes, when specified, are stored

with the file and, when requested, returned unchanged.

AttributeType: type * long cardinal;

AttributeTypeSequence: type = sequence of AttributeType;

allAttributeTypes: AttributeTypeSequence [37777777777B];

Attribute: type = record!

type: AttributeType, value: sequence of unspecified];

AttributeSequence: type = sequence ofAttribute;

Attributes may be specified when a file is created and explicitly changed at any time. In

addition, some procedures
allow certain attributes to be specified. For example, when a file

is copied, the resulting file may be
given a different name.

Every attribute has an attribute type which identifies the purpose and structure of the

attribute Some attribute types are defined by this standard. All
attributes having these

defined types must be interpreted by every file service.
Chapter 4 contains a comprehensive

discussion of interpreted attributes. A customer or vendor may also define attributes that

are of use in his particular application.
Such attributes have types allocated from a range

assigned to the customer or vendor.

An attribute's value should be a Courier representation appropriate to the type of the

attribute. The file service enforces this for
interpreted attributes. For example, an

attribute

sequence containing a name
and a version might

appear as follows.

[[type: name, value: "Annual Report"],
[type: version, value: 1]]

Conceptually every file has a value
for every attribute.

If the attribute is uninterpreted and

SZTK or if an interpreted
attribute is not meaningful for the file then the

vaLe is [1 a zZlength sequence. By convention,
this is taken to mean the attribute is

not

letnd ^auributetJ to be -?

*-J
~

^^^r^

XEROX SYSTEM INTEGRATION STANDARD

23

REMOTE PROCEDURES

Attributes that are zero-length sequences are not returned. However, an attribute whose

type has been named in an attribute type sequence is returned,
even if it is null.

Many procedures take an AttributeSequence as an
argument. However, the set of allowed

attributes in the sequence varies from procedure to procedure. The restrictions on the

various attributes are described for each procedure.

3.4.2 Accessing attributes

GetAttributes returns attributes of the specified file. The file service obtains the requested

attributes and returns them to the client. Since different attributes may be obtained with

varying degrees ofdifficulty, the client should request only those attributes that it needs.

GetAttributes: procedure [file: Handle,

types: AttributeTypeSequence, session: Session]

returns [attributes: AttributeSequence]

reports [AccessError,AttributeTypeError,

AuthenticationError, HandleError, SessionError, UndefinedError] 8;

Arguments: file is a file handle for the file whose attributes are to be examined; types is a

sequence of the types ofattributes that are desired; session is the client's session handle.

Results: attributes is a sequence of attributes corresponding one-for-one with the items

specified in types (or containing all non-null attributes if types is allAttributeTypes).

Access: read access to file (or to file's parent).

Examples:

To obtain a file's name and isDirectory attributes, the following request would be made:

GetAttributes [file: [7244B, 352B], types: [name. isDirectory],
session: [token: [11B.27734B], verifier: simpleVerifier)]

RETURNS [

attributes: [

[type: name, value: "Old Letters").

[type: isDirectory, value: true]]]

The name of the file turned out to be "Old Letters", and it is a directory-type file. Note that

the components ofattributes could have been returned in either order.

To obtain the uninterpreted attribute whose type is 733B, the following request would be

made:

GetAttributes [file: [7244B, 352B], types: [733B],
session: [token: [11B. 27734B], verifier: simpleVerifier])

returns [attributes: [[type: 733B, value: []]]]

The result indicates that the value of the attribute was null; that is, it had never been set.

REMOTE PROCEDURES

3.4.3 Modifying attributes

3.4.3.1 ChangeAttributes

ChangeAttfibutes modifies attributes of the specified file. The changes may have other
effects on the file depending on the attribute.

ChangeAttributes: procedure [file: Handle,
attributes: AttributeSequence, session: Session]

reports [AccessError, AttributeTypeError,AttributeValueError,
AuthenticationError, HandleError, InsertionError, SessionError. SpaceError,
UndefinedError] 9;

Arguments: file is a file handle for the file to be modified; attributes is a sequence of the

attributes to be modified; session is the client's session handle.

Access: write access is required for file if only data attributes are changed; write access to
file's parent is required for environment attribute changes. If access list attributes are

changed, write access to file's parent or owner access to file is required as well.

Example:

To change a file's name to "Design Memo", and the value of an uninterpreted attribute type

733B to the two words [644B, 3217B], the following request would be made:

ChangeAttributes [file: [7244B, 1B],

attributes: [

[type: name, value: "Design Memo"),

[type: 733B, value: [644B, 321 7B]]],

session: [token: [11B, 27734B], verifier: simpleVerifier]]

3.4.3.2 UnifyAccessLists

Access attributes (accessList and defaultAccessList) may be modified for a given file using

ChangeAttributes, but it is sometimes necessary or useful to unify the effective access lists

ofan entire subtree of files. UnifyAccessLists is used for this purpose

UnifyAccessLists: procedure [directory: Handle, session: Session]

reports [AccessError, AuthenticationError, HandleError, SessionError,

UndefinedError] 20;

Arguments: A handle to the subtree of files whose access lists
are to be unified is given by

directory; session is the client's session handle.

Access: Write access is required to directory

The accessList and defaultAccessList attributes of each
descendant file within the subtree

rooted by directory are given
defaulted values. The cumulative result is that

all files within

the subtree obtain the same effective access
controls as those in place for directory

ytbI

" '

2S
XEROX SYSTEM INTEGRATION STANDARD

REMOTE PROCEDURES

Changes to a file's access list attributes, whether by ChangeAttributes or UnifyAccessLists,

take immediate effect for all handles to the file within the client's session and all new

handles acquired by the client's session or other sessions. Access list changes within one

session are not guaranteed to affect clients ofother existing sessions until those sessions end

3.5 Locating and listing files in directories

A client may examine the files in a directory. Scope information describes the files of

interest, and how they are to be examined. Depending on the specific procedure called, either

the attributes of files of interest are returned to the client or the first file of interest is

opened.

3.5.1 Scopes

Scope items determine what files in a directory are of interest to the client and how they are

to be examined. The client may specify: the direction of listing or searching, what files are to
be examined, and in the case pf listing, the maximum number of files. Scope-type

parameters are effective only in the procedure to which they are arguments.

ScopeType: type = (count(0). direction(1),filter(2),depth(3)};

Scope: type = choice ScopeType of {
count > Count,

depth > Depth,

direction > Direction,

filter > Filter};

ScopeSequence: type = sequence 4 of Scope;

3.5.1.1 Count

Count specifies the maximum number of files the client wishes to see.

Count: type cardinal;

For example, if a directory is being listed and the client specifies a Count of five, no more

than five sequences of attributes will be returned, even if there are more than five files in

the directory. The constant unlimitedCount should be used if no restriction is desired (the

client wishes to see all files that satisfy the other criteria).

unlimitedCount: Count 177777B;

If count is not specified, unlimitedCount is assumed. When searching for a file, count is
ignored.

26
FILING PROTOCOL

REMOTE PROCEDURES

3.5.1.2 Depth

Depth specifies to what depth the client wishes descendant files to be considered.

Depth: type . cardinal;

Specifying a Depth of one includes only the immediate descendants of the directory being
enumerated; a depth of two includes the immediate descendants of directory files referenced
by the directory being enumerated. In general, a file is included in the enumeration if fewer
than depth ancestors separate it from the directory being enumerated. A descendant

directory is always considered before its descendants within the enumeration.

allDescendants: Depth = 177777B;

The constant allDescendants should be used if no restriction is desired (the client wishes to

consider all descendants).

Ifno enumeration depth is specified, a Depth ofone is assumed.

3.5.1.3 Direction

Direction specifies whether enumeration of the directory is to proceed from beginning to end

or from end to beginning. The actual order of files is determined by the ordering attribute:

Direction: type = (forward(O). backward(1)};

If the direction is forward, enumeration starts with the first file in the ordering If the

direction is backward, enumeration starts with the last file. Direction affects both listing

(files are listed in the specified direction) and searching (the first encountered file that

matches the specified criteria is returned).

Ifno direction is specified, forward is assumed.

3.5.1.4 Filters

Filter specifies a condition that distinguishes files of interest from other files in the directory

The condition is one of: the constants true or false, a relation between an attribute and a

constant; a logical combination of
conditions.

FilterType: type = {
-- relations --

less(O), lessOrEqual(l), equal(2),

notEqual(3), greaterOrEqual(4), greater(5),

-- logical --

and(6), or(7). not(8).

constants --

none(9),all(10),

--patterns

matches(11)>;

27

XEROX SYSTEM INTEGRATION STANDARD

Filter: type . choice FilterType of {

less, lessOrEqual, equal, notEqual. greaterOrEqual, greater
- >

record [attribute: Attribute, interpretation: Interpretation).

and, or > sequence of Filter,

not > Filter,

none, all > > record [],

matches > [attribute: Attribute)};

Interpretation: type * (none(O), boolean(1), cardinal(2), longCardinal(3),

time<4), integer(5), longlnteger(6), string(7)};

A filter whose value is and [filter^ filter^. filtern] is satisfied only ifall of/i/ten, filter,

filtera are satisfied.

A filter whose value is or [filter\, filter. filter^ is satisfied when at least one of filteri,

filter2, filtern is satisfied.

A filter whose value is not filter is satisfied when filter is not satisfied.

A filter whose value is none [] is never satisfied, while a filter whose value is all [] is always

satisfied.

A filter whose value is matches [] is satisfied if the corresponding string attribute of a file

satisfies the string pattern of the filter. Twowildcard characters are defined: asterisk (*) and

sharp sign (#). An asterisk within a string pattern matches zero or more characters within a

string attribute; a sharp sign matches any single character. Wildcard characters meant to be

interpreted literally within a pattern must be escaped. A wildcard character is escaped by

preceding it with the apostrophe character 0). To include the escape character literally in a

string pattern, itmust be escaped as well.

For example, consider a directory that references five files with the following attributes:

name version

1 Alpha 1

2 Beta 1

3 Beta 2

4 Delta 1

5 Gamma 6

The following filters will select the files mentioned in the comment:

matches [attribute: [type: name, value: "B*"]]
-- files 2 and3

matches [attribute: [type: name, value: "#####"])
files 1,4 and5-

Within a pathname attribute, the above wildcard characters may be used to specify string

pattern matches of individual pathname components; the wildcard characters are used to

match only the name portion ofa pathname component. Two consecutive asterisk characters

within a wildcarded pathname match multiple components. In both cases, all versions of a

file with a given name are considered to match. Explicit version specifications may be

included using any of the version designators (see 4.2.2.5). Pathname syntactical

28 FILING PROTOCOL

name version

Profit-Loss Statements

Fiscal 1983

1

1

First Quarter

Second Quarter

Third Quarter

Fourth Quarter

Fourth Quarter

Fiscal 1984

1

1

1

1

2

2

First Quarter

SecondQuarter

1

1

characters may be included in pathname filters with appropriate escaping (preceding
individual characters with the escape character)

For example, consider a subtree often files with the following attributes.

1

2

3

4

5

6

7

8

9

10

The following filters will select the files mentioned in the comment:

matches [attribute: [type: pathname, value: "Profit-Loss Statements/*"]]
-files 2 and8-

matches [attribute: [type: pathname, value: "Profit-Loss Statements/**"]]
-- files 2, 3, 4, 5, 6, 7, 8, 9, and 10 -

matches [attribute: [type: pathname, value: "Profit-Loss Statements/**First*"]]
-files 3 and9-

matches [attribute: [type: pathname, value: "Profit-Loss Statements/**F*!-n]]
-- files 2, 3, 6, 8, and 9 -

All other filters are relations between a constant attribute value and the corresponding

attribute of a file. Each of these filters is satisfied if the file's attribute, when interpreted in

an appropriate way and compared to the constant value given in the filter, satisfies the

specified relation.

The interpretation component provides the file service with the information it needs to

properly compare the attribute in the file to the constant value. The file service needs this

information only for uninterpreted attributes. For attributes that the file service itself

interprets the standard interpretation is used, and any specified interpretation is ignored (if

the standard interpretation is not one of the values of Interpretation, it is assumed to be

none). Attribute values with the given interpretation are compared as follows:

none Values are compared word-by-word, starting with the first. That is,

corresponding sixteen-bit words are
compared as though they were of type

cardinal, starting with the first, until an unequal pair is found The

relationship of this unequal pair is considered to be the relationship of the

two attributes. If the attributes are equal up to the length of the shorter,

the longer attribute is considered to be greater.

boolean true is greater than false

cardinal Values are compared as unsigned sixteen-bit numbers.

XEROX system integration standard
29

longCardinal Values are compared as unsigned thirty-two-bit
numbers.

time Values are compared as points in a linear time
span where a later time is

considered to be greater than an earlier time. Because of the time

encoding, this comparison is not the
same as for longCardinal.

integer Values are compared as signed sixteen-bit numbers.

longlnteger Values are compared as signed thirty-two-bit numbers.

string Values are compared according to an implementation-dependent string-

sorting algorithm. It is recommended
that strings be sorted in a way that

allows direct presentation of strings to human users (for example, in

alphabetical order) and that essentially equivalent strings
(for example,

strings that differ only in case) be considered to be
equal.

If the value of an attribute is not a valid representation of a value of the stated

interpretation, that attribute is considered to be less than any attributes that are valid

representations.

Ifno filter is specified, nullFilter is assumed.

nullFilter: Filter - all [];

Example:

Consider a directory that references five files with the following attributes:

name version

1 Alpha 1

2 Beta 1

3 Beta 2

4 Delta 1

5 Gamma 6

The following filters will select the files mentioned in the comment:

all [] -all five ofthe files
-

none [)-- none of the five files
-

equal [attribute: [type: name, value: "Beta"], interpretation: string]
-- files 2 and 3; note that interpretation is ignored

greaterOrEqual [attribute: [type: version, value: 2], interpretation: none]
-- files 3 and 5; note that interpretation is ignored

not or [equal [attribute: [type: name, value: "Beta"), interpretation: string],
greater [attribute: [type: version, value: 1], interpretation: cardinal]]

files 1 and 4; note that interpretations are ignored -

An implementation is not required to support all possible attributes in filters. If a particular

value of a filter is not supported then the implementation may report ScopeValueError

30 -ElUNG
PROTOCOL

[unimplemented, filter) when that value is specified. However, every implementation must

support all possible combinations of relations on the name, position, and version attributes.

3.5.2 Locating files

Find is called to locate and open a particular file in a directory. The file service enumerates

the directory's children in the specified direction (the ordering is determined by the ordering
attribute of the directory) and opens the first file that meets the specified criteria, reporting
an error if there is none.

Find: procedure [directory: Handle, scope: ScopeSequence,

controls: ControlSequence, session: Session]

returns [file: Handle]

reports [AccessError,AuthenticationError, ControlTypeError,ControlValueError,

HandleError, ScopeTypeError, ScopeValueError, SessionError, UndefinedError] 17;

Areuments: directory is a file handle for the directory whose children are to be enumerated

(the null handle may be specified); scope specifies characteristics of the enumeration and

the search criteria; controls specifies the controls to be applied to the new handle; session is

the client's session handle.

Results: file is a file handle for the file that was found.

Access: Read access is required to directory.

Example:

If one wanted to find in a directory the last occurring file whose name attribute is "Notice",

the following call would be made:

Find [directory: [7244B, 352B],

scope: [direction backward,

filter equal

[attribute: [type: name, value: "Notice"), interpretation: string]],

controls: [],

session: [token: [11B.27734B], verifier: simpleVerifier]]

returns [file: [31 B.6435B]]

The scope specifies that the directory is to be searched from the end to the beginning looking

for a file whose name equals "Notice". No
controls are to be applied. Such a file was found; it

was opened and its handle was returned.

3.5.3 Listing files

List enumerates the files in a directory, returning
some of their attributes. The file service

enumerates the directory in the specified direction (the ordering is determined by the

ordering attribute of
the directory), and sends the requested attributes for files that meet

the specified criteria. Since
different attributes may be obtained with varying degrees of

difficulty, the client should
request only the

attributes that are needed.

XEROX SYSTEM INTEGRATION STANDARD

31

The files in the directory may change while the operation is in progress so that the set of

attributes returned may not reflect the state of the directory at any single
point in time. The

client may prevent such changes, if necessary, by acquiring a share lock on the directory

before calling List. Also, the client may call other procedures while listing,
but ifone of these

procedure calls affects the directory being listed, the effects may or may not be reflected in

the remainder of the list. Note that if a depth greater than one has been specified,

descendants of the directory being listed must also be considered.

List: procedure [directory: Handle, types: AttributeTypeSequence,

scope: ScopeSequence, listing: BulkData.Sink, session: Session]

reports [AccessError, AttributeTypeError,AuthenticationError,

ConnectionError, HandleError, ScopeTypeError,

ScopeValueError, SessionError, TransferError, UndefinedError) 18;

Areuments: directory is a file handle for the directory to be enumerated (the null handle

may be specified); types is a sequence of the types of attributes that are desired; scope

specifies characteristics of the enumeration and the search criteria; listing specifies the sink

that is to receive the requested attributes in accordance with the Bulk Data Transfer

Protocol [3], session is the client's session handle.

Access: Read access is required to directory.

The transferred bulk data is a single object of type StreamOfAttributeSequence.

StreamOfAttributeSequence: type choice of {

nextSegment(O) > record [

segment: sequence of AttributeSequence,

restOfStream: StreamOfAttributeSequence],

lastSegment(l) > sequence of AttributeSequence};

There is one AttributeSequence for each file listed, and each AttributeSequence is a

sequence of attributes, corresponding one-for-one with the items specified in types or

containing all non-null attributes ifallAttributeTypes was specified.

Example:

If a client wants to enumerate the children of a directory backward, obtaining name and

version attributes for files whose version attribute is greater than 1, it would make the

following call:

List [directory: [7244B, 352B], types: [name, version],

scope:

[direction backward,

filter greater

[attribute: [type: version, value: 1], interpretation: cardinal),

listing: sampleSink,

session: [token: [11B, 27734B], verifier: simpleVerifier]]

Before List returns, the list of files satisfying the criteria would be sent via bulk data

transfer as a StreamOfAttributeSequence from the file service. The destination of the data

would be determined by the sampleSink. The data might have the following form:

nextSegment [

segment: [[

[type: name, value: "Report ToManagement"),

32 FILING PROTOCOL

RtMOTE PROCEDURES

[type: version, value: 3]]],

restOfStream:

nextSegment [

segment: [[

[type: name, value: "Quarterly Performance"],
[type: version, value: 2]]],

restOfStream:

lastSegment [[

[type: name, value: "Personnel Summary").
[type: version, value: 2]]]

))

3.6 Accessing and modifying the content of files

The content of a file may be set to a value by storing it or replacing it. The content may be

obtained by retrieving it.

3.6.1 Uninterpreted file format

Procedures in this section transfer the content of a file using the bulk data transfer

mechanism. The transferred data is a single uninterpreted data object consisting of a

sequence ofeight-bit bytes. The length of the file is exactly the number of bytes transferred

3.6.2 Storing files

Store creates a file with a specified content. When a new file is created with the specified

attributes in the specified directory, it is filled with data sent by the client using bulk data

transfer, and a file handle for the file is returned.

Store: procedure [directory: Handle, attributes: AttributeSequence,

controls: ControlSequence, content: BulkData.Source, session: Session]

returns [file: Handle]

reports [AccessError, AttributeTypeError. AttributeValueError,

AuthenticationError, ConnectionError, ControlTypeError, ControlValueError,

HandleError, InsertionError,

SessionError, SpaceError, TransferError, UndefinedError]
12;

Arguments: directory is a file handle for the directory
into which the new file is to be placed

(the null handle may be specified); attributes specifies the
characteristics of the new file.

controls specifies the controls to be applied to the returned handle; content specifies the

source that is to supply the content of the file in accordance with the Bulk Data Transfer

Protocol [3); session is the client's
session handle.

33

XEROX SYSTEM integration standard

Results: file is a file handle for the newly created file. Between the call to the remote

procedure and the return, the file service uses the bulk data transfer
mechanism to retrieve

the content of the new file.

Access: Add access is required to directory (if it is not the null handle).

Example:

A client wanting to store the data obtained from a source into a file called
"Document"

in a

directory, and to acquire an exclusive lock on the returned file handle, would make the call:

Store [directory: [7244B, 352B],

attributes: [

[type: name, value: "Document"),

[type: dataSize, value: 275B]],

controls: [lock exclusive],

content: sampleSource,

session: [token: [11B, 27734B], verifier: simpleVerifier]]

Before the procedure returned to the client the file service would retrieve the data from

sampleSource using bulk data transfer and store it in the file:

... 275B eight-bit bytes transferred to the file ...

returns [file: [71 B, 21 33B]]

The file handle returned has an exclusive lock applied to it.

3.6.3 Retrieving files

Retrieve transfers to the client the content ofan existing file.

Retrieve: procedure [file: Handle, content: BulkData.Sink, session: Session]

reports [AccessError,AuthenticationError, ConnectionError, HandleError,

SessionError, TransferError, UndefinedError] 13;

Arguments: file is a file handle for the file whose content is being retrieved; content specifies

the sink that is to receive the content of the file in accordance with the Bulk Data Transfer

Protocol [3]; session is the client's session handle.

Access: Read access is required to file.

Example:

To reverse the process of the previous example and retrieve a file from the file service, a

typical call would be:

Retrieve [file: [71 B, 21 33B],

content: sampleSink,

session: [token: [11B.27734B], verifier: simpleVerifier]]

34 FILING PROTOCOL

ntmuic rnuvtDURE5

Before the file service returns from the remote procedure call it transfers the requested data
via bulk data transfer from the file server to the destinations specified by sampleSink:

... 275B eight-bit bytes transferred to sampleSink ...

3.6.4 Replacing files

Replace replaces the content of an existing file with data received from the specified source

Replace: procedure [file: Handle, attributes: AttributeSequence,
content: BulkData.Source, session: Session]

reports [AccessError, AttributeTypeError, AttributeValueError,

AuthenticationError, ConnectionError, HandleError,

SessionError, SpaceError, TransferError, UndefinedError] 14;

Arguments: file is a file handle for the file whose content is being replaced; attributes

specifies characteristics of the resulting file; content specifies the source that is to supply the

new content of the file in accordance with the Bulk Data Transfer Protocol [3]; session is the

client's session handle.

Access:Write access is required to file.

3.6.5 Random access to files

3.6.5.1 Byte ranges

A byte range specifies a contiguous sequence of bytes within the content of a file. A range is

defined by a byte offset within the content of the file and a count of the bytes in the range

ByteAddress: type long cardinal;

ByteCount: type long cardinal;

A ByteAddress specifies a byte offset within the content of a file. A ByteAddress is valid for a

given file if included in the interval [0..dataSize-1], where dataSize is the value of the file's

dataSize attribute as returned by the GetAttributes operation. A ByteCount is a non-zero

count used to specify a number of bytes.

endOfFile: long cardinal - 37777777777B;

The constant endOfFile is defined for use in referring to the logical end of a file. As a byte

address, endOfFile is used to refer to
the byte position at the end of a file where new data can

be appended. As a byte count, endOfFile can be used to represent a count of bytes ending

with the last byte defined for a file, regardless of the file's exact
size

ByteRange: type - record [firstByte: ByteAddress,
count: ByteCount];

A contiguous sequence ofbytes within a file is
defined by a ByteRange; firstByte specifies the

starting byte of this sequence;
count specifies the number of

bytes in the sequence

xerox system integration standard

3.6.5.2 RetrieveBytes

RetrieveBytes allows clients to read a range ofbytes within a file. The requested bytes of file

content are returned as a result of the call.

RetrieveBytes: procedure [file: Handle, range: ByteRange,

sink: BulkData.Sink, session: Session]
reports [AccessError, HandleError, RangeError, SessionError, UndefinedError] 22;

Arguments: file is a handle to the file whose data is to be read; range defines the sequence of

bytes to be returned; sink specifies the sink that is to receive the requested data bytes in

accordance with the BulkData Transfer Protocol [3]; session is the client's session handle.

Access: Read access is required to file.

Example:

To obtain the ten bytes of a file's content beginning with its fifteenth byte, the client could

make the request:

RetrieveBytes [

file: [411 7B.256B],

range: [firstByte: 14, count: 10],

sink: sampleSink,

session: [token: [11B, 27734B], verifier: simpleVerifier]]

The data is transferred by means ofbulk data transfer to the specified sink.

3.6.5.3 ReplaceBytes

ReplaceBytes is used to change the content of a file. The operation may be used to overwrite

existing data of a file or append new data to a file.

ReplaceBytes: procedure [

file: Handle, range: ByteRange, source: BulkData.Source, session: Session]

reports [AccessError, HandleError. RangeError. SessionError, SpaceError,

UndefinedError] 23;

Arguments: file is a handle to the file whose data is to be replaced; range specifies the region

of the file to be written; source specifies the source that is to supply the data bytes which are

to be used to replace or extend those of the file; session is the client's session handle.

Access:Write access is required to file.

The range argument and the data supplied via source must be consistent; otherwise, an

error is reported. If the firstByte component of range is equal to endOfFile, the supplied data

is appended to the file; otherwise, the supplied data replaces data within the specified byte

range of the file. In case of append, ReplaceBytes must guarantee that all of the supplied

data is appended successfully, or none of it is.

36 filing PROTOCOL

REMOTE PROCEDURES

Examples:

To overwrite the first nine bytes ofdata within a file, a client would make the request:

ReplaceBytes[

file:[4117B.256B],
range: IfirstByte: 0, count: 9],

source: sampleSource,

session: [token: 11B.27734B], verifier: simpleVerifier]]

To append six bytes of new data to a file, a client would make the request:

ReplaceBytes!

file: [4117B, 256B],

range: [firstByte: endOfFile, count: 6],

source: sampleSource,

session: [token: 11B, 27734B], verifier: simpleVerifier]]

3.7 Creating and deleting files

A file may be created without transferring any data Any existing file may be deleted,

freeing the resources assigned to the file and removing any association with a directory.

3.7.1 Creating files

Create creates a file. A new file is created with the specified attributes in the specified

directory and a handle for the file is returned. Create is particularly useful for creating

directories. Usually, a non-directory has content, making Store a more appropriate

operation.

Create: procedure [directory: Handle, attributes: AttributeSequence.

controls: ControlSequence, session: Session]

returns [file: Handle]

reports [AccessError,AttributeTypeError,AttributeValueError.
AuthenticationError.

ControlTypeError, ControlValueError, HandleError,
InsertionError. SessionError,

SpaceError, UndefinedError] 4;

Arguments, directory is a file handle for the directory into which the created file is placed

(the null handle may be specified); attributes specifies the
characteristics of the new file;

controls specifies the controls to be applied to the returned handle; session is the client's

session handle.

Results: file is a file handle for the
newly-created file.

Access: Add access is required to
directory.

xerox system integration standard

37

Examples:

To create a temporary file with default values
for all attributes, the following call would be

made:

Create [directory: nullHandle, attributes: [[type: isTemporary,
value: true]), controls: [),

session: [token: [11B. 27734B], verifier: simpleVerifier]]

returns [file: [4661 B, 361 B]]

To create a new directory with a name attribute of "Financial
Documents"

and a children-

UniquelyNamed attribute of false, a client wouldmake the
call:

Create [directory: [7244B, 352B],

attributes: [

[type: name, value: "Financial Documents"),

[type: isDirectory, value: true],

[type: childrenUniquelyNamed, value: false]],

controls: [lock share],

session: [token: [11B.27734B], verifier: simpleVerifier)]

returns [file: [4661B.372B]]

The resulting file handle has a share lock
applied to it.

3.7.2 Deleting files

Delete deletes an existing file. The file is closed and deleted, freeing the resources allocated

to the file and removing any association with a directory. If the file is a directory, all

descendants are also deleted.

Delete: procedure [file: Handle, session: Session]

reports [AccessError, AuthenticationError, HandleError, SessionError,

UndefinedError] 5;

Arguments: file is a file handle for the file to be deleted (it must be the session's only file

handle for this file); session is the client's session handle.

Access: Remove access to file's parent is required; write access to file (and each descendant).

3.8 Copying and moving files

A file which is identical to an existing file may be created by copying the existing file. The

new file may be temporary, or it may be inserted in a directory. An existing file may also be

moved to a directory. The file is removed from its old directory if it resided in one.

38
FILING PROTOCOL

3.8.1 Copying files

fhe^aret: ed a will Th f

^ f" ***" U **^^ haS **"*".

fik and a7oft!7 I 5
T^ "*** * SCt f fileS whkh are C0Pies of the sPe^^d

fie calo

ltS

derfCendant^;
* ^serts the new structure into the specified directory Afile cannot be copied into itselfor any of its descendants.

Copy: procedure [file.destinationDirectory: Handle, attributes-
AttributeSequence. controls: ControlSequence, session: Session]

returns [newFile: Handle]
reports [AccessError. AttributeTypeError, AttributeValueError

AuthenticationError. ControlTypeError, ControlValueError, HandleError
InsertionError, SessionError. SpaceError. UndefinedError] . 10;

Arguments: file is a file handle for the file to be copied; destinationDirectory is a file handle
for the directory into which the copy is to be placed (the null handle may be specified)
attributes specifies the characteristics of the new file and overrides those of the original fi]e:

controls specifies the controls to be applied to the returned handle; session is the client's
session handle.

Results: newFile is a file handle for the newly-created file.

Access: Add access to destinationDirectory is required, and read access to file (and each

descendant of file).

Example:

The following call will copy a file along with any of its descendants, changing its name to

"Summary, Section 2":

Copy [file: [4661 B, 361 B],

destinationDirectory: [7244B, 352B].

attributes: [[type: name, value: "Summary, Section 2"]],
controls: [],

session: [token: [11B, 27734B], verifier: simpleVerifier]]

returns [newFile: [37B, 1627B]]

3.8.2 Moving files

Move changes the directory structure of the file service without creating or deleting any

files. The file service moves the specified file into the specified directory. If it was previously

a child of another directory, it is removed from that directory. If the file was temporary, it

becomes permanent. If the file has descendants, they are moved as well (that is, they remain

descendants of the file). A file may not be moved into itselfor any of its descendants.

Move: procedure [file. destinationDirectory: Handle,

attributes: AttributeSequence, session: Session]

reports [AccessError,AttributeTypeError,AttributeValueError, AuthenticationError,

HandleError, InsertionError, SessionError, SpaceError, UndefinedError] -11;

Arguments: file is a file handle for the file to be moved (it must be the session's only file

handle for this file); destinationDirectory is a file handle for
the directory into which the file

XEROX SYSTEM INTEGRATION STANDARD 39

is to be placed (the null handle may not be specified); attributes modify the characteristics of

the file; session is the client's session handle.

Access: Read and write access are required to file; remove access is required for file's parent

and add access is required to destinationDirectory.

Example:

To move a file and all of its descendants to a new directory, make the call:

Move [file: [37B.1627B],

destinationDirectory: [4661 B, 372B],

attributes: [[type: 351B, value: true]],

session: [token: [11B, 27734B], verifier: simpleVerifier]]

This call will change attribute 35IB of the file to true in the process.

3.9 Serializing and deserializing files

At times, it is useful to compress all of the information contained in a file and all of its

descendants into a series of eight-bit bytes, in order to transfer it to another file service,

store it on some other medium, or manipulate it in some other way. The format of data in

this series of bytes is the serialized file format. Serializing a file produces a series of bytes

which contains all of the information in the file and its descendants, while deserializing such

a series ofbytes recreates a file and its descendants.

3.9.1 Serialized file format

Procedures in this section transfer a serialized file to a sink or from a source using the bulk

data transfer mechanism. The data is a single object of type SerializedFile, encoded in its

standard representation. A serialized file starts with the version number of the serialized

format to distinguish it from other versions of serialized files.

SerializedFile: type record [version: long cardinal, file: SerializedTree];

currentVersion: long cardinal 3;

Each file consists of its attributes, its content, and all of its children. The attribute sequence

contains attributes that apply to this file, in arbitrary order. The sequence of children is in

the order of the directory.

SerializedTree: type record [

attributes: AttributeSequence,

content: record [data: BulkData.StreamOfUnspecified,
lastBytelsSignificant: boolean],

children: sequence of SerializedTree);

?0 FILING PROTOCOL

The content of a file is represented as a stream of sixteen-bit words followed by an indication
of whether or not the last byte of the last word is significant (that is, whether or not the
length in bytes is even). Ifnot, the last byte has the value zero and should be ignored

3.9.2 Serialize

Serialize encodes all of the information of a file and its descendants into a series of bytes The

file (including its attributes and content) and all descendants are serialized into a series of

bytes.

Serialize: procedure [file: Handle. SerializedFile: BulkData.Sink, session: Session)
reports [AccessError, AuthenticationError, ConnectionError, HandleError, SessionError,

TransferError. UndefinedError] 15;

Arguments: file is a file handle for the file which is being serialized; SerializedFile specifies
the sink that is to receive the serialized file in accordance with the Bulk Data Transfer

Protocol [3]; session is the client's session handle.

Access: Read access is required to file and each of its descendants.

Example:

To transfer a file in serialized form to another system element, make the call:

Serialize [file: [71B.2133B],

SerializedFile: sampleSink, session: [token: [11B.27734B], verifier: simpleVerifier]]

The file is transferred as a SerializedFile by means ofbulk data transfer to the specified sink

It has the following form.

[version: 3, file: [

attributes: [

[type: checksum, value: 27451676B],

...
other attributes ...

[type: modifiedOn, value: 22635230000B]],

content: [data: lastSegment [... 276 bytes ...]. lastBytelsSignificant: false],

children:!]]]

The file was 275 bytes long, and notice that there were no descendants of the specified file.

3.9.3 Deserialize

new

ants are

Deserialize reconstructs a file and its descendants from a serialized representation. A

file is created in the specified directory, its attributes, content and descendants

constructed from the serialized file, and a file handle for the file is returned. During

deserialization, some attributes (for example,
numberOfChildren) are ignored because the

attribute duplicates information that is
implicit in the rest of the data. If the deserialized file

duplicates an existing file (in name), the deserialized file is created with an appropriate

version number. It does not replace the existing
file.

Deserialize: procedure [directory: Handle,
attributes: AttributeSequence.

controls: ControlSequence.
SerializedFile: BulkData.Source. session: Session]

XEROX SYSTEM INTEGRATION STANDARD

returns [file: Handle]

reports [AccessError, AttributeTypeError,AttributeValueError,

AuthenticationError,ConnectionError,ControlTypeError,ControlValueError,

HandleError, InsertionError, SessionError, SpaceError, TransferError,

UndefinedError] 16;

Arguments: directory is a file handle for the directory into which the file is to be placed (the

null handle may be specified); attributes specify the characteristics of the new file

(overriding corresponding attributes specified in the serialized file); controls specifies the

controls to be applied to the returned handle; SerializedFile specifies the source that is to

supply the file in accordance with the Bulk Data Transfer Protocol [3]; session is the client's

session handle.

Deserialize ignores attributes in the serialized file that are not allowed to be specified rather

than reporting an error. Attributes that are not specified are given default values.

Results: file is a file handle for the newly created file.

Access: Add access is required to directory (if it is not the null handle).

Example:

To deserialize a serialized file, and in the process, change its name to "Old Letters", the

client should make the call:

Deserialize [directory: [7244B, 352B).

attributes: [[type: name, value: "Old Letters"]],

controls: [).

SerializedFile: sampleSource,

session: [token: [11B, 27734B], verifier: simpleVerifier]]

The serialized file is transferred as a SerializedFile via bulk data transfer from the source

specified by sampleSource to the file service:

[version: 3, file:

[attributes: [

[type: checksum, value: 0],

... other attributes ...

[type: modifiedOn, value: 22635237112B]],

content: [data: lastSegment [] , lastBytelsSignificant: true],
children:

[attributes: [

[type: checksum, value: 547375333B],

... other attributes ...

[type: modifiedOn, value: 2263522457B]],

content: [data: lastSegment [... 24B bytes ...]. lastBytelsSignificant: true],
children: [) ID

returns [file: [4117B.256B]]

The serialized file was a directory that had one child.

42 FILING PROTOCOL

REMOTE PROCEDURES

3.10 Procedures and attributes

The tables on the following pages show the effects that the procedures described above have
on the interpreted attributes. The tables are in alphabetical order by procedure name. If a
procedure never modifies interpreted attributes, no table is given. If an entry in the table is

empty, the corresponding attribute is never changed. Otherwise, a brief indication of the

change is given. The tables do not attempt to describe the restrictions on specifying various
combinations ofattributes.

XEROX SYSTEM INTEGRATION STANDARD
43

3

C
O

03

c

-.3
a
u

a>

a

O
tic
c

o

CO

3
.O

<
0)
cn

c
(0

e-rf

cn

c

CO

TJ

c

u
cn

a>

Q

o
0)
Ol

c

<0

rfC

w

Ol

c

w

41

o

o
yt

?rf

C
01
w

<0

a

-

0)
rf-rf

E

u

a

a.

(0

o
c

<

01

3

C

6
01

a>

o>

o

*->

c

01

3
irf

01

E

o
c
10

41
?rf

10

"O
?rf

C
Ol
w

w

3

?*

01
1^

c

10

.c

?rf

I
?rf

c

01
?rf

A

s

c

o

4>

Ol

C

10

-C

u

o>

c

41

o

o

?rf

c
41

<0

a

c

>.

41

u

0)

E
<S
u

a.

CO

* 0* 4) 01 41 01

10
Ol

10

0)

10

o>

01

10

Ol

10
o>

0)

10

oi
-J'

?rf

C

5
a.

a
9/

G
01

a
*a

?rf

(0

10
Ol

10

Ol

0)

10

Ol

10

Ol

* ?rf

41

?rf

4> 41
irf)

Of

3

z
?->

-J

<

?rf

*/

lrf

io

E
3

.X

01

.C

u

o

E
IB

z
>>

01

3

CJ
E
3
c
41
^

.E

>.

CD

D
01
?rf

10
01

c

o

01
?rf

ra
0)

01
N

<o
?rf

10

T3

?rf

Wl

01
u

3

10

0)
*

5v

o

ts
01
w

6

>s

10
w

o
a

E
0)

>.

00

o
Ctf

^

6
o

E

c

O
o

.

6
o

E

01

E

c

C
Ol

rfE

u

O

E
3

C

Ol

c

0)

o

5

o
?^

c
0*
w

10

a

01

E
10

c

rfC

?rf

<0

a

c

o

o
a.

>.

CD

o
10
4>

c

O
o
10

41

41
N

l^

"O
41

o
?rf

4)
N

41

?*

rfO

3

i
41

iZri

V
91
*m

?rf

rfO

3
a

"O
41
?rf

J
Q.
w

01
?rf

c

c

3

c

g

01
>

c

0)

3
Si

>,

c
a

o o

'.?-> u

CO CN

0) CO
a.

O
be CO
c F-

Ex.
Cm.

o

cn
*rf

u
.tu

fc
a

-o

c
4)

Ji

01

a

J?

o
i_

3

3

C

6
Cv
Ol

o>

0

?.

c

Jv

3
irf

Cv

E

o
c

10

cv

10

o
?rf

c
41

3

a.

u
u

3

CV
t/l

3

C

6
Cv
Ol

Ol

o

?rf

C

3
irf

41

E

T3
C

10

10

-o

c

Cv

3

c
0)

u

ra

a,

?->

cn

Q

-

4>
/i

3

C

-6
41

Ol

Ol

o

?rf

c

3

41

E
?3

o
c

10

41
?rf

10

o
?rf

c

CV

3

o
41
?*

c
4>

E
4>

w

C

Cv

cv

jO

3

c

c

cv

c

0

"^

0

cn
.?j

c

S3

-a

c
u

If)

4>

10
>

41

C

gi

10

E
cu
?*

>*

-J

<

W

CV
,/

3

C

a

Ol

Ol

?rf

c
41

3
vrf

41

E
?*

T>
C

10

4>
?rf

<o

-o

c
41

3
w

c

Cv

!o
a

Ol

c

?rf

3
i/\

4i

"o
a

>.

?^

01

C

<0

JZ

1
?rf

c

cv

*/,

v%

c

o
Irf

c

o
a

CV
>

0

cv

4<

E
0

a

01

E

3
e

u

0)
*rf

33

i8

33

.?-)

O
C

41

IO

>

o
41

C

gi

10

E
41
?rf

>.

Ui

-J

<
Ik

41
/

3

C

6
CV
Ol

Ol

o

>.

c

CV

3
u

41

E

o
c

10

4>

10

o
?rf

c

41

3
u

?.

c

Cv

!o
a

Ol

c

Cv

"o

g
3

>.

Irf

Cv
vrf

c

10

it
cv
c

X
?rf

?rf

c

cv

c

o

Ol

c

Cv

o

o

c

cv

iO

a.

c

0
^*

o
c

Cv

a

CV

o a

E

3
c

Cv

X

>

c

i-

u
~rf

i>

.rf

u.

3

CO

Of

10

o>

10 o

Ol

10

Ol

10

Ol

*
41

"io
Ol Ol

?'

4<

Irfl

"io
Ol

"io
Ol

*
?rf

Cv

Ol

O
Ol

_cy

"s
Ol

c

5
a.

o
CV

C
4i

a

0

"S
Ol

*

"io
Ol

o
Ol

"^
Ol

9)
41

rf"

.?j

3
.D

u
?^

rf^

a*
u

E
3

Jrf

1

-a
4>

E
10

z
>.

41

3

0

C

C
41

X

CD

o
41

<0

41

c

O

41

41
IS*

irf^

10

<0

o

.3

irft

**

4i

u
u

<

"5
IO
?-

CV

o

O

>.

o

C
CV

5

>.

n

6
a

E
01
t-

>>

m

o
CV

1
E

c

O
o
41

-6

o

E

4t

E
10

c

c

ev

jE

^

O

CV

X

E
3

C

Ol

c

cv
-o

o

Q

c
4>

10

a

cv

E
10

c

X

10

a

c

g
?rf

o
a

>.

CD

D
10

Cv

C

O
"O
10

Cv

CV
M

Irf^

o
0/

o

CV
ISI

Cv

cv

3

?rf

E

cv
^,

;/!

Cv

Cv

X
3

41

a

o
cv

ov

a.

Cv

c

c

3

C

CV
>

cv
41

c

u

93

0.

3

C

Q
91
Ol

Ol

O

c
01

4>

E
?3

o
c

10

4>
+rf

10

o
?rf

c
4>

D
Ol
?rf

c
01

E
cv

X
3

C

Ol
?rf

c

o

3
01

c

OB

3

C
O

cn

C
o

o

c

o

CO
?<

u

Ce3

0)
i_

CO

00

3
CO
E-

u

0)
.?rf)

0)

E
CO
u

CO

cu

CO

o
c

3
or

41

C

o
c

cv
a

o

c

o
X

10
?rf

c
41

E
*

a

01

3

C

t

o
41

Ol

c?

41

E
x

T3
C

10

cv

10

a
?-

c
4>

*

0)

10
>

o
Ol

c
Ol

E
01 I/I

<

01
I/,

3

C

T>
Ol

Ol

Ol

o

u

cv

a>

E
CO
u

33

a.

CO

10
Ol

01

3
3
X)

o
01

E
10

01

3

g;
E

c
01

Ol

X

>.

CD

o
41
?rf

10
41

C

O
TJ

CV
?rf

10
01

3

JO

"5
T3

o

trf
01

CO

1 1

c
4>

T3
C

41

Q.
41

o

c

o

c

10

a.

Ol

c

?rf

3

4)

*-

o

o

Ol

c

01

o

c
4)

Io
a

c

o

o
C

CV
a
cv
o

&

a

o

o

o
41

5
w

X

>

10

cv
c

10
Ol

0>

10

Ol

cv

C </

O "o

4> ?-

X
3

CV
41

?rf

X
3

41

a
3s

o
CV
?rf

CV

a.

cv
?*

c

E
3

cv
>

CO

0)

3

c

o

cn

C
o

'.?rf
co

0)

a

O
be
c

o

CO
rf->

u

63

41
?*

OJ

Q

Tf

co

e
01

ca

cv

3

C

-6
Cv
Ol

Ol

o

?rf

c

Cv

3

CV

E

o
c

10

Cv
?rf

10

o
?rf

c

CV

3
Srf

X)
4>
?rf

c

CV

E
Cv

Cv

o

cv

cv

X

3
v*

c

c

a
c

o
w

"io

O

5
cv
c

0)
?^

3

.fi

"u
.?rf

rf*J

Of
u

E

u

1

o
cv

E
10

z
>.

Cv

3
g-

E
D
c
4>
W

X

CD

4>
?rf

IO

CV
w-

w

C

O
"O
41
?rf

10

CV

IV

41

10
?-

10

-o

?rf

/*

V*

41
srf

u

3

10

"*
o X

5

CV

5

>s

IO

o
a.

E
4>
l-

>>

CO

o
cv

6
o

E

C

O
o
CV

5

o

E

CV

E
o

c

c

Cv

X

o

X

E
3

C

Ol

c

Cv

p
o

o

c

cv

IO

a

4)

E
10

c

X

10

a

c

g

0
a

>.

CD

o
10

Cv

c

O
o
10

Cv

cv

o
Cv

5

cv
IN*

SA

Cv

Cv

X

3

E
>

Sv
st

*/l

Cv

Cv

X
3

Cv

a

o

Cv
?rf

Cv

a.

cu

c

c

3

C

g

a-

>

CA

9)
.?->

3

c
o

41
CO N
c

Q
*rf

CO 4>
u VI

O

41

o

bo IO

c CO

o

CO
*rf>

u

Ed

?J

c
0)
i_

CO

0.

-

VI

3

C

6
0)

o>

J
?-

c

3

Ol

E

"O
c

10

41
?rf

10

a

c
41

U

o
41
?rf

C

CV

E
01

G
c

?rf

X
3
VI

C

?rf

C
41
?rf

C

o
w

"5

O

i
9)

C

CO
-J

c
co

-o

C
4)

W
CO

4)

Q

>s

Of
*

5

a

o

a
a.
10
?rf

41
vi

41

10
>

o
41

C

gi

v
w>

<o

E
a*
?rf

VI

>.
VI

lit

l/t

-J

<
Ik

01
VI

3

C

6
01
o>

o>

o

?rf

c

4)

3
u

a>

E
^

o
c
10

01
?rf

10

o
?rf

c

41
h.
w

3
w

?rf

c
at

10

a.

Ol

c

3
V,

Cv

o

o

3

>.

4>

w

C

10

s
41

C

X
?rf

i
?rf

c

41
?rf

vt

VI

C

o
sV

?rf

c

i
41
>

10

CV

4>

E

3

E

3
e

u

0)
?rf)

0>

E
CO
u

03

a.

33

.?rf)

O
C

4)

3

Q.

O

a.

a.

10
?rf

41
vi

Ol

(0
>

o
01

c
gi

VI
VI

10

E
01
?rf

VI

>.
i/i

I4J

/>

.J

<
Ik

01
V,

3

C

-6
01

Ol

Ol

o

?rf

c
01

3
w

41

E
?rf

o
c
10

41
?rf

>0

o
?rf

c

0)

3

?*

c
4>

10

Q.

Ol

c

x

3
V,

*

sv

o

g
5

>.
w
?rf

V,

4>

u

C

10

4*

cv
c

X
?rf

i
c

0)
-

c

o
KJ

Ol

c

41

o

o
V,

?rf

C
4>
w

10

a.

c

o
V,

o
C
4>

a.
4>

o i

E

3
c

X

E
'3

N

a*
4>

?rf

x<

3
t/t

3
c

ay

X

jo

io
>

10

?rf

X
4>

C

0)
?J

0)

CO
u

CO

0,

0
Ua

**

v
W*

To
Ol

9t

10

Ol

*

10
o>

10
o<

19
Ol

9> ?rf

41
VI

"5
Ol

.2

10

Ol
?rf

4)
VI

"io
Ol

*

"io
Ol

*
41
v.

"io
Ol

9>

10

o>
"5
Ol

.2

vii

?rf

c

5
a.

o
41

s^

G
41

a
VI

?rf

10

"io
Ol

9>

"5
Ol

*

<0

Ol
"io
Ol

?rf

4>
VI

10
Ol

9> ?^

Ol
VI

?rf

CV
VI

0)
?J

3
.fi

'u
rfrfrf)

<

-J

w
w

(0

E
3
vi

J*

IV

ev
X
u

o
41

E
10

z
>

41

3
g-

E
Z>
c

w

X

>|

CD

o
41
?rf

10

41
w

c

O
o
Ol
?rf

10

u

N

(0
?rf

<0

o

?rf

I/,

-Zi

VI
VI

4>

u
w

<
?rf

3

10
s^

41

9
*

sw

>.

o

t;
41
w

5
VJ

>s

10

o
a

E
01

VI

>s

CD

o
41

5
o

E

c

O
o
JV

6

o

E

01

E
10

c

c

CV

X

o

01

X

E
3

C

Ol

c

V

o

o

9
?rf

c
41

10

a.

4>

E
10

c

X
?rf

10

a

c

g
x^
V)

o
a.

>s

CO

o
0
41

c

O
o
10
41

N

o
4i

o
?rf

VI

41
M

v

4>

41

X
3
VI

?rf

i
LZi
a>

tn

41

w
?rf

X
3
VI

9>
a
>s
?^

"O
41
?rf

41
W

a
w

41
?rf

C

E
3

c

g
VI

>

CO

0)
?rf

3
>
>*

u

C
O

CO

C

-.3
CO
b.

4)

a

O
Of)

c

o

CO
?rf

u

Ed

4>

>

O

co

-?J

c
01

1_

33

B-

c
o

?J

33

C

<v

a

41
VI

3

C

6
41

Ol

Ol

o

?rf

C

41
Ik

3
Srf

cv

E
?rf

T>

c

<0

41

10

o
?rf

c

Jv

w

3
w

o
Cv
?*

c

cv

E
4>

w

U

C

41

JV

?rf

X
3
VI

o
?rf

c
41
?rf

C

o
iv

"5
?rf

o
?rf

$
41

C

c

CV
i_

03

0-

o>

3

c3

CV
VI

3

C

T3
41

Ol

Ol

O

?rf

C
Ol
s-

w

3
w

41

E
X

-o
c

10

41
?rf

10

o
?rf

c

3
u

o
cv
?-

c

41

E
9/

IV

CV

4>

41

X

3
VI

s>-

o
?rf

c
4i

?rf

C

o
IV

"w

0

CV
c

u

0)
^

a>

E
33
L.

CO

a.

CO

rf

o

c

UV

V/1

<
Ik

41
vi

3

C

6
41

Ol

Ol

o

c

3

41

E

T3

C

10

cv

10

T>

C

Cv

3
IV

c

Cv

io
a

Ol

c

?rf

3
v

Cv

"o

g
9)

>>

?rf

VI

CV
w

C

10

$
cv
c

X
?rf

5
?*

c

Cv
?rf

VI

c

0

Ol

c

cv

o

o
VI

?rf

c

cv

IO

a

c

o
vi

XI

c

cv
a.

41

-o

cv

X

_5

>

?rf

X

cv

c

L.

HI

01

S3
i_

33

a.

33

*
VI

IO

Ol

*

10

Ol

10

Ol

10
Ol

10
Ol

?rf

Cv
v

10

Ol

10
Ol

UV

i/i

-1

<
Ik

41

X

VI

3

E

"io
Ol

"io
Ol

91
V*

"Io
Ol

10
Ol

"io
Ol

_4j

"*
Ol

?rf

c

o
a

o

X

G
cv

a
VI

?rf

10

10

Ol

10
Ol

10
Ol

9)

"io
o>

.2

?rf

cv
vt

10
Ol

*
cv
v.

cv
v.

4)
?rf)

3
-fi

u
-j

?j

<

?rf

i/i

-_J

VI

VI

CV
IV

sv

10

E
3
VI

.X

u

41

X
w

-o
41

E
10

z
>.

41

3
g-

E

c
4*

X
IV

>.

CO

T3
CV
?rf

10

a

c

O
o
4>

10

9)

4>

IO
?rf

10

o

?rf

VJ
.J

VI

VI

4>

u
IV

<
?rf

3

10

41

o

9

5
t
4>

5
vi

>.

io
o
a

E
4>

VI

>l

00

o
cv

6
o

E

C

O
o
9)

-5

o

E

41

E
10

c

c
41

X

sJ

o

cv

X

E
3

C

Ol

c

cv

-o

0

o

c

io
a

cv

E
10

c

X
?rf

10

a

c

g
?^

v

0
a.

CO

o
10

Cv

c

o
"0
10

Cv

91
IS)

IA

-o
Cv

5

41

isl

l/l

4i

Cv

X
3
V*

?rf

E

cv
1st

1/1

41
4<

X

3
V

4i

a

0
41
?.

JV

a.

cv

c

c

3

c

0
rfi

Cv
>

CO

0)
rf-rf

3

c
o

so

c

*sS
CO
u

&L
O

o

CO
rf-rf

w

Ed

c

it
O

co

Jl)

3
CO

u

4)
?J

0>

E
CO
L.

ce

a.

33

-_rf

O
C

u

Ol
?rf)

0)

JO
1_

33

a.

CO

<

10

Ol

41

10
Ol

*

10

Ol

10

Ol

10

Ol

0

Ol

10
Ol

*

o
CV
c
41

a

o
VI

CV

10
>

VI

X
?rf

X
?rf

i
9)

10
Ol

10

Ol

10
Ol

fl;

10

Ol

*

o
cv
c
4)

a.

o
VI

Cv
3

10
>

VJ
X
?rf

X
?rf

i
J!

10

Ol

9>

10

Ol

9)

u
h

I
ai
/i

o

>%

o

U
a>
k

5
-^

o

g
3

o
41

C

CV
a

o
VI

CV

10
>

vi

X
?rf

X
?rf

i
9)

X

"5
Ol

(0

Ol

*

10

Ol

10

Ol

*

10
Ol

10

Ol

T3
9)

C

41

Q.

O
VI

41

10
>

VI

X
?rf

X
?rf

i
41

o
CV

o
c
gi

o
CV

c

41

Cv

o
VI

01

<0
>

VI

X
?rf

X

1

0>
-?V

3

*u
?j

<

?rf

VI

VI
VI

41

E
3
vi

w

1

o
01

E
10

z

01

3
g-

E

c
01

3>

X
w

>

CD

+rf

10
4>

w

c

O
o
cv
?rf

10

41

41
N

tn

10
v

10

o

?rf

vi

.J

VI

vi

4<

IV

w

<
?rf

3

10
s^

4>

o

a

91

>i
w

o

trf
01

5
VI

>s

10

&
E
41

VJ

>.

CO

o

5
o

E

c

O
o
01
"?"

5
o

E

41

E
10

c

c
41

X

u
?-

O

01

X

E
3

C

Ol

c

4>

1

9
?rf

c
0)

10

a.

41

E
10

c

X
?rf

10

a

c

o

VI

O
a

>.

CD

o
10
4)

c

O
o
10

Li

41
N

T>
41

41
N

1/1

41

CV

X
3

?rf

i
_i

41
Isl

l/>

41
4>

?rf

*
41

a
5K

o
4>
?rf

CV

Q.
w

CV
?rf

c

E
3

c

g
vi

1

CO

0)

3

o

cn

c 4>

o u

<a

CO a
u a>
01

a
ec

O 00

be CO

c

Et.
t

o

cn
?j

u

Ed

?rf)

c
0)

L.

CO

a.

Cv

Jv

?rf

X

VI

C

c

cv

c

0
IV

"fl

i
cv
c

u

0)
?->

0>

co
i_

33

a.

33

?J

O

C

>.

4>

?rf

2

Q.

o

Q.

a
10

?rf

41
VI

cv
VI

3

C

x>
41

Ol

Ol

o

c

9>

3
Srf

9)

E
?rf

XI

c

10

Cv
?rf

10

XI

c

Cv

3
Irf

XI

Cv

41
s>-

/l

C

10

VI

41
?rf

>s

X

0

5
X

E
3

C

cv
v>

3

C

6
cv
01

01

>s

c

cv

3

CV

E
?rf

X)

c

10

41

10

XI

?rf

c

Jv

3

>l

Cv

3

Q.

0

Q.

a
10

ai
VI

cv

fl

a

5.
0.

a

%

cv

cv

E
33
L.

33
n.

33

1

?rf

cv
VI

10
Ol

9) ?rf

4i

VI

cv
VI

C

g
X
10
u

"S

"5

c

10
01

10
Ol

9/

"io
Ol

10

Ol

9)

"^
Ol

"fl
Ol 01

0
01

10

01

a
01

0

01 01

0
01

9/

fl
Oi

"fl
C7>

V 2i

fl

31

fl
o>

"fl
01

fl
Ol

01
?rf)

3

.fi

u

?j

<

_J

k*

IO

E
3
vi

.V

Irf

41

X
srf

X>
41

E
10

Z
>s

4i

3

CT

c

r>

c

Cv

X
Irf

>.

03

XI

<0
4i

srf

c

O
XI
4<

?rf

10

Cv

IV

Cv

1/^

0

IS

"l

vi

~|

VI

VI

Cv
w

w

<

3
10

"*
X)

O

9/

O

5
vi

>.

10

0
a

E
Cv
i

rfl 1

>s

CO

X)

Cv

5

0

E

C

O
XI

9/

x>

0

E

cv

E
10

c

c

Cv

X

u

g
Cv

X

E
3

c

01

c

Cv

-p
0

Q

c

Cv

0

Cv

E
10

c

X

10

0.

c

rfl

0

>.

CD

X)

10

CV

c

0
XI

fl

Cv

Cv
is,

1/1

X)

JV

0

Cv
M

1/1

Cv

Cv

?rf

X
3

E

i/s

Cv

Cv

X

3

CV

a.
>s

XI

cv

aj

Q.

Cv

c

c

3 >

CO

0)
?J

3
JO

k.
ssv

?->

<

c
o *
cn

C
o

a
4)

10
-?rf

03 a
u 4)

0) te
a

O o>

bfi CO

c 0)

~
-fi

El. CO

EH
o

CO
y_>

CJ
.4)

t=
Ed

?j

c
QV
u

co

a.

41

41
^

?rf

X

3
VI

C

?rf

c

41
?rf

C

o

~m
?-

o
?.

i
9)
C

eZ

E
3

J(
w

CV
X

u
c

i
o
c
Jt

c

3

5
VI

3

C

X)
CV
Ol

Ol

o

c

Jv

3
w

cv

E
?rf

X)
c

10

41
?rf

10

X)
?rf

c

*

3
IV

?rf

C

3

o

E
10

c

o

VI

c
41

?rf

X

41

>.

X

X)
41
VI

10

JV

V

C

Cv
VI

3

C

6
CV
Ol

Ol

o

?rf

c

Jv

3
u

Cv

E
X

X)

c

(0

41
?rf

IO

X)
?rf

c

9)

3

>l

Ol

2

a.

o
^

a.

a.

10
?rf

41
VI

41
41
^

?-

X
3
VI

C

?rf

C
41
?rf

C

o
srf

"io
?rf

o

5
41

C

0)
?rf)

3
.fi

?j

?j

<

?rf

VI

VI
VI

41

sv

10

E
3
VI

.X

IV

CV
X
srf

x>
cv

E
10

Z

4>

3
g-

c

Z>
c
41

X>

X
w

>i

CO

X)

cv
?rf

10

JV

w

C

O
X)
4>
?rf

10
4i

U

41

N

vi

10
?rf

10

X)

?rf

VI

Z2)
VI

VI

CV
U
u

<
?rf

3

10

X)

9
*

>l
w

o

t;
4>

?.

5
VJ

10

o
a

E
41
h-

VI

>.

CD

TJ
CV

X

1
E

c

O
XI
4)
^

X)
o

E

4>

E
10

c

c
4i

3>

X

VJ
^

O

cv
X

E
3

C

Ol

c

01

X)

5

9
?rf

c

Jv

10

a

4(

E
10

c

X
?rf

10

a

c

g
x

vi

o
a

>.

CD

X)
10

41

C

O
X)
10

cv

41

XI
41

o
?rf

41

ul

CV
41

3

4->

i
41

isl

in

4i

01
^

?rf

X
3

Ol

a

X)
4>

*

a.

CV
?rf

c

E
3

c

g
vi

w

Ol

>

cn

01
-rf

3

<

C
O

CO

c

o

01

Q.

o
be

c

o

cn
j

cv

Ed

4)

>
4)

O x.

co

0)

CO

E-

c

$
o
c

-X

c

3

>s

VI

3

g
>

Cv

*
vi

CV
VI

3

C

6
Cv
Ol

Ol

c

cv

3
w

Cv

E

T5

C

fl

Cv

fl

XI

c

Cv

3
w

CV
j

3

-C

u
rf

<

i-

<->

fl

E
3
VI

_X

IV

41

X
IV

X)

Cv

E
a

z
>s

cv

3
g-

c

3
c

cv

X
w

>.

CO

XI

Cv

10

Jv

IV

c

o
X)

cv

fl

Cv

IV

CV
ISI

Irfl

fl
?rf

fl

XI

v.

J

VI

VI

Cv
IV

IV

<

3
10

~9)
-a

Q

9)

>s

o

c
cv

5
VI

>.

fl

o
a

E
cv
1

vi

>s

CO

XI

Cv

6

o

E

c

O
XI

41

-6

o

E

41

E
10

c

Cv

X

g
cv

X

E
3

C

o>

c

Cv

-o

O

Q
?rf

c

Jv

fl

a

Cv

E
o
c

X

a

a.

c

o

VI

o
a

>.

CO

XI

fl

Cv

c

O
XI

10

cv

Cv

l/l

XI

Cv

o

cv

vi

cv
Cv

X
3

1
Cv
is,

Irf**.

Cv
Cv

X

3

Cv

a.

XI

Cv

ai

c.

ai

c

c

3

C

./*

CV
>

cn

4)
J

3

<
C
o

CO

C
o

4)

a

O
bo

o

CO
J

CJ

Ed

OJ

CD
41

>
41

41

ee

co

jD

ca

6-

4>
VI

3

C

6
41

Ol

Ol

o

?rf

C

41
^

w

3
IV

4>

E
?.

X)
c

10

41
?rf

<0

X)
?rf

c
41

3
IV

CJ
-J

3
.fi

u

J

<

VI

i

VI

VI

Cv
w

IV

10

E
3
VI

.X

w

41

X
IV

X)
41

E
10

Z
>i

cv
3
g-

E
o
c

JV

2

X
IV

>.

CD

X)
cv
?rf

10

JV

IV

c

o
XI
41
?rf

10

41

w

CV
N

10
?rf

10

XI

?rf

VJ

VI
VI

4>

w
IV

<
?rf

3

10
SI

cv
XI

Q

X

>.

o

U

ov

6
VI

>l

10

5
a

E
41
1

VI

>S

CD

X)

Cv

6

o

E

c

O
X)
41

6
o

E

4i

E
10

c

c

41

2

X

u

g
41

X

E
3

C

Ol

c

cv

x>
frrf.

o

9
?rf

c

cv

10

a.

41

E
10

c

X
?rf

10

a

c

g

VI

O
a.

CO

X)
10
01

C

O
X)
10

41

41

I?

X)
4>

o
?rf

4)
N

W1

41

?v

X
3

?rf

i
41
IS!

ui

Cv
41

?rf

X
3

41

a.

X)
41
?rf

41
w

a.

ai

c

E
3

c

g
VI

cv
>

CO

0)
-J

3

c

o

4)

CO
fO

c

o
41

.?rf to
to
L.

41
CN

a
^*

O co

be
01

c X!
l^H*

co

eZ
-

o

cn
?V

U
.0)

fc
Ed

as

c

33

c
0)

u
fl

01

Q

C

o
c

-X

c

3

VI

3

g
>

cv

Q.

?v

cv
VI

<v
vi

3

C

6
Cv
Ol

Ol

2
>.

?.

c

Cv

3

cv

E

XI

c

fl

Cv

fl

XI

c

Cv

3
IV

J.

iZ

C

i
o
c

C

3

>i

VI

3

g
>

Cv

Q.

?rf

Cv
vi

91
vi

3

C

c
Cv
CTi

0>

>.

C

Cv

3
irf

cv

E

XI

c

a

cv

fl

XI

c

Cv

3
w

cv
J

C
^

<

vi

l/l

vi

Cv
i->

IV

fl

E
3

_x

IV

Cv

X
IV

XI

CV

E
10

Z
>s

Cv

3

CT

C

D
c

Jv

2

X

>.

00

XI

41

fl

Cv

IV

C

O
X)

Cv
'

fl

cv

IV

cv
fsl

1/1

10
?rf

fl

XI

?rf

VI

_3

VI
vi

CV
u
IV

<
?rf

3

fl

XI

o

o
?rf

IV

Jv

5
VI

10

o
o.

E
cv
\-

VI

CO

XI

9)

-5

o

E

c

O
X)

91

5

o

E

cv

E
a

c

c

JV

2

X

J-/

g
Cv

X

E
3

C

Ol

c

CV

XI

o

9
?rf

c

CV

10

a.

41

E
fl

c

X
?rf

fl

a

c

o

vi

0
a

>.

CO

X)

a

Cv

C

O
XI

a

cv

Cv
isl

u^

XI

Cv

5

Cv

1/^

cv

1/

X

3

E
_j

Cv
1,

vi

Cv

Cv

X

3

Cv

a.

XI

V

E
3

C

a
>

CO

cu
-*v

3
.fi

<
C
o

CO

C
o

at
o
bo
c

o

CO
V

V

Ed

4*
k.

O

CO

CO

JW

.fi

co

E-

V

C
4>

k.

CO
/"I

41
VI

3

C

"6
41

01

o

0

?rf

c
41
^

w

3
iv

41

E
X

x
c

10

41
?rf

10

x
?rf

c
JV

3
u

XI
41
?.

c
41

E
41

iv

c

41

CV
^

?rf

X
3
VI

C

?rf

c
41
?rf

C

O
IV

"io
?rf

0
?rf

$
01

c

k.

0>
?V

4>

E
CO
u

co

33

9

O
c

u7

3
oe

b

?#

3
(0
**

01

J3

o
rf^*

%

>s

0/

fl

a.

o

a
a
a
+*

Oi
k*l

?rf

C
41

X>
C

CV
Cv

CV
XI

c

g
+v

10
?rf

c

cv

E
41

a

E

41
VI

3

C

Ol

Ol

o

c

9)

3
IV

4>

E

X)
c

10

4)
?rf

10

X)
?rf

c

4)
i.

w

3
IV

x
Ol
I

w

Ol
s^

VI

C
10

?rf

VI

41

S.
X

"5

X

E
3

C

UV

3
ee

b

3
(0
**

CV
31

O
?rf

?rf

CV
VI

Ol

3

10
>

XI
41

C
gi

VI

VI

fl

E
41

VI

>
VI

UV

un

1

<
u>

IU

</l

-I

<
Ik

41
VI

3

C

X>
01

01

01

0

c
01
w

3
IV

41

E
?*

X)

c

10

41

?rf

10

XI

?rf

c
JV

3
IV

?-

c

01

X)
c
41

a
41

X)

c

g
?rf

10
?rf

c
4i

E
41

a

E
0

01

c

1
fr*

0

3
10

"5
0

C

10
Cv

Ol

c

?rf

3
VI

4>

"o

g
5
if

?rf

VI

41

iv

C

<0

X
?rf

i
?rf

c
41
?rf

VI

VI

C

O
u

01

c

41

X)

O
VI

?rf

C

CV
k.

<0

Cv

c

0
VI

X)
c
41

a
Cv

X)

E

3
e

>.

01
?rf

5

Cv

O

a
Cv

10

?rf

Ol
VI

>s

01
?rf

2

a.

0

Cv

a

<o

?rf

41
VI

E
'3

N

IS
0)

01

?rf

va

3
>v>

3
e

O

C
ai
w

5
w.

0

0

'C

c

3 3

C

01

X

JS

>

fl
?rf

X

9/
C

k.

V

0>

E
CO
k.

ce

a.

CO

ai "5
?rf

cv
vi

?rf

41
VI

?rf

4>
i/i

C

g
?rf

10
IV

O

"*

"S

E
?rf

4>
VI

"io
Ol

+rf

VI

?rf

41
VI

"io
Ol

_4J

"io
o>

0 ?-

41
VI

"io
01

*
*
VI

"5
01

* ?rf

01
VI

?rf

c

6
Cv

X)
ev

G
41

Cv
VI

?rf

<o

10

01
15
01

v

"io
Ol

9)

"io
Ol

9) ?rf

01
VI

?rf

41
vi

?rf

41
VI

?rf

41
vi

0)
?rf)

3
.fi

k.
>

rf

Of
u
u

fl

E
3
vi

.X

w

01

X
Iv

X)
41

E
10

z
>s

41

3
g-

E
3
c

9/

2

X
IV

>i

CD

X
4>
?rf

10

JV

IV

C

O
X)
Ol
?rf

10

01

iv

cv
N

1/1

10

'io
X)

+rf

VI

VI

VI

41
IV

IV

5
3

's^
41

XI

9
*

0

t;
4>
k.

5
frA

>l

fl
km.

O
a

E
4>
1-

VI

>s

CD

X
41

1
E

c

0
XI
01
s>>

5

0

E

41

E
10

c

c

9/

2

X

0
SI

g
5
X

E
3

c

01

C

^.

41

X)

5

9
iw

c

-

io
a

41

E
10

c

X
?rf

10

Cv

c

g
X
VI

0
a.

>.

CD

X
10
41

c

0
X)
10

Of

91
N

in

X)
*

O
?*

91
N

in

Ol

Cv
^

?rf

X
3

?rf

E

01

in

41

cv

?rf

X
3

01

Cv
>i

XJ
4>
?rf

9/

a.
k_

41
?.

C

E
3

C

g
vi

ai

>

cn

01

3
JO

*->

<

VI
st-<

VI

c vt

o VI

4)
cn IV
c IV

o <
V >l
33 H-

k.

0) C

a 3

o
-*

SL

c
CO

. 0)

X)

o
co

E-

CJ

72
rf

c

33

-a

c
01

CJ
cn

01

a

UJ

3
QC

b
01
?rf

3

10
s

41

3i
o
rf

?rf

cv
m

UJ

3
ce
t-

b
cv
?rf

3
10

O

iw

Ol
1/1

XI
a>

Ol

c

fl

X
IV

SI

ai
VI

3

C

X)
cv
Ol

o>

o

?.

c

01

3
IV

x?

Cv
Ol

c

fl

X
IV

Cv

E

T3
C

fl

Cv
iw

fl

X)

c
a>

3
IV

CJ

CI
rf

3

-C

k. 1

<

vi

J

VI

VI

Cv

5

E
3
VI

-X

IV

a<

X
u

XI
4>

E
fl

Z
>s

cv
3

CT

C

3
c

cv

2

-E

IV

>i

m

3
fl
cv

SJ

c

O
X)

Cv

fl

0/

IV

cv
is,

1/1

fl

fl

Tl

VI

J

VI
VI

cv
w

u

<

"5
fl

cv

X)

a

o

tv
Jv

5
VI

>s

fl

o
Q.

E
Ol
1

VI

>.

CO

X!

CV

6
o

E

C

O
X)

-6

Cv

E
a

c

c

Cv

2

X

g
ai

X

E
3

C

Ol

c

ai

-p
o

g
?rf

c

cv

a

a>

E
a

c

X

fl

a

c

o

vi

o
o.

CO

XI

fl

Cv

c

O
XI

fl

cv

Cv
M

VI

XI
a>

o

vi

cv
IS,

J-

1

1

X

E

cv
s.

1>

Cv

X

3

JV

C

3

C

1

58
FILING PROTOCOL

tli^ MIITMDUICi

An attribute is a data item that is associated with a file. Any information associated with a

file, but which is not a part of the file's content, is contained in the file's attributes

Attributes may help to identify the file so that it can be distinguished from other files.

describe the structure or behavior of the file, record information about certain events in the

life of the file, or perform any other desired function.

Every attribute has an attribute type (or simply type) which identifies the attribute Certain

types are defined in this standard. Other types may be defined by customers or vendors

Types to be defined in this way must be allocated by means of the administrative procedures

described in Appendix B. A customer or vendor is the type owner of attribute types that have

been assigned to him.

Every interpreted attribute has a data type which can be described in the language of

Courier, and every instance of such an attribute should be a well-formed Courier

representation of a value of that data type. To promote sharing of information,

uninterpreted attributes should also be represented according to Courier conventions.

however, this is not mandatory.

Not every attribute is meaningful for all files For example, directory-related attributes

have no meaning for files that are
not directories. Such attributes may not be specified

when

they are inappropriate,
and are always null when

examined

A file service may set an
implementation-dependent limit on the total amount of attribute

data which may be stored in a single file. This limit must not be
less than 32,768 sixteen-bit

words. A file service may also set an
implementation-dependent limit on the total number of

attributes which mav be stored in a single file. This limit must not be less than 128

attributes. Clients should not expect to
be able to store more than

32,768 words of attribute

data, nor more than 128 attributes, on a single
file.

4.1 Classes of attributes

r <- fnoir hehavior varies a great deal
Certain

Since attributes serve a wide variety
of purposes,

\hei^f^bVe^ween a?tributes.
classifications, however, are

helpful in pointing out
similarities

between

41.1 Interpreted vs. uninterpreted

n t* thP file service and specifying
such an

Many attributes have a particular meaning
to *

These attributes are
said t0 be

attribute results in a defined
behavior in the He se

_ ^ q{

.

reted

interpreted. All other
attributes are

uninterpreted,
or client

R0X SYSTEM INTEGRATION STANDARD

attributes varies among file services. This section specifies attributes that must be

interpreted and attributes that cannot be interpreted.

An interpreted attribute has a Courier data type that is defined in a standard such as this

one, and all values of the attribute conform to that data type. The file service enforces this

constraint. When an interpreted attribute is specified during a procedure call, it results in

some defined behavior on the part of the file service, and this behavior may affect other

attributes or even other files. The value of an interpreted attribute may change, even when

it has not been specified during a procedure call, as a side-effect of that procedure. Various

restrictions may be imposed on the use of an interpreted attribute in certain procedures. In

general, a client cannot always expect an interpreted attribute to remain unchanged during
arbitrary procedure calls.

An uninterpreted attribute should have a defined data type, but the file service does not

know what this data type is and, therefore, cannot enforce it. When an uninterpreted

attribute is specified during a procedure call, it is stored with the file but causes no other

action. In particular, other attributes are unaffected except those that indicate file activity

(modifiedBy, modifiedOn) or position within a parent (position). The values of

uninterpreted attributes do not change except when they are changed explicitly.

Uninterpreted attributes may be passed to any procedure that expects a sequence of

attributes. The value of an uninterpreted attribute is always exactly the value to.which it

was explicitly set by the client.

A file service must interpret any attribute type described as interpreted in this standard A

file service may not interpret any attribute type that is considered to be uninterpreted by the

type owner. In practice, this means that a file service shouldn't ordinarily interpret any
attribute type other than those defined in this standard, since the implementor would not

normally know whether or not the attribute type's owner considers it to be interpreted.

As a result of these rules, a client is guaranteed that any attribute type described as

interpreted in this standard is always interpreted, and that any attribute type considered to

be uninterpreted by the type owner is always uninterpreted. In particular, the client's own
uninterpreted types are guaranteed to be uninterpreted by any file service. The client would
not normally know whether the owner of some other attribute type considers it to be

uninterpreted.

4.1 .2 Environment vs. data

An environment attribute describes the relationship of a file to its environment, such as its

name or parent directory. A data attribute describes aspects of the file that are contained

entirely within the file. This distinction is useful because it determines many of the

differences in attribute behavior.

A data attribute is tightly bound to the file. Data attributes may be thought of as extensions

of the file's content. Data attributes are always carried along when a file is moved, copied, or

deserialized. Data attributes may not be explicitly changed during those procedures which
change the context in which a file resides but not the file itself. In addition, data attributes

may not be used to identify a file when opening it. Examples of data attributes are:

checksum, type, and numberOfChildren.

An environment attribute is much more loosely bound to the file. Environment attributes

may be thought of as part of the file's parent directory. It is common to want to change these
attributes when a file's context changes, as in moving, copying, or deserializing. Some

60
FILING PROTOCOL

ATTRIBUTES

environment attributes may be used to identify a file when opening it. For example, filelD.

name, and version are environment attributes. An uninterpreted attribute may be

considered to be a data or an environment attribute depending on the client's use of the

attribute

4.1.3 Primary vs. derived

A primary attribute is an attribute that carries information for which the attribute is the

only
source, name and ordering are primary attributes.

A derived attribute carries information that is derived from other characteristics of the file

For example, dataSize records the length of the file's content, and numberOfChildren

records the number of children in a directory

4.2 Definition of attributes

The attributes in this standard are defined in a standard format. Certain attributes are

related and use common definitions.

4.2.1 How attributes are defined

Each attribute definition includes a description of the meaning
and purpose of the attribute,

a declaration in Courier notation of the attribute type and of the attribute's data type, a

description of the use of the attribute, a
declaration in Courier notation of significant values

of the attribute, a description of those values,
and a statement of where it is legal to speciiy

the attribute.

Several attributes record the date and time at which some event occurred Time and date

values are encoded in conformance with
the Time Protocol [8].

Time: type Time.Time;

Time attributes can be set to null with
the value:

nullTime: Time -Time.earliestTime;

For each date-and-time attribute, there is a corresponding
user aUnbute

^attribute

records the name of the user
on whose behalf the client

was operating
.hen the particular

event occurred (the name
presented when the

session began)

User: type Clearinghouse.Name;

User names are always
fully-oualified clearinghouse names These names conform to the

conventions described in the
Clearinghouse Protocol [5 j.

XEROX SYSTEM INTEGRATION STANDARD

4.2.2 Identification-related attributes

Identification-related attributes are used to identify the file or to describe major

characteristics of the file.

4.2.2.1 filelD

filelD is an environment attribute that unambiguously and uniquely identifies the file

within the file service.

filelD: AttributeType 4;

FilelD: type array 5 of unspecified;

This attribute names a file within a file service, independent of its parent directory. The

value for a given file is guaranteed to remain constant as long as the file remains in the file

service. The attribute is human-insensible, and its interpretation is implementation-

dependent. In general, clients cannot understand its internal structure. The fact that it is

small and fixed in length makes it more convenient than a conventional string name in

many applications. The distinguished value, nullFilelD, of this attribute is never assigned to

any file.

nullFilelD: FilelD - [0,0,0,0,0];

4.2.2.2 isDirectory

isDirectory is a data attribute that indicates whether the file is a directory or a non-

directory. Certain procedures may not be applied to a file that is a non-directory. Directories

cannot be temporary files.

isDirectory: AttributeType 5;

IsDirectory: type boolean;

4.2.2.3 isTemporary

isTemporary is an environment attribute that indicates whether the file is temporary or

permanent. A temporary file, which can never be a directory, has no parent directory, and it

is deleted as soon as all file handles are closed. A permanent file resides in a directory and is

not deleted until there is an explicit request to do so.

isTemporary: AttributeType 6;

IsTemporary: type boolean;

4.2.2.4 name

name is an environment attribute that contains a human-sensible string name for the file

W FILING PROTOCOL

name: AttributeType 9;

Name: type string;

This attribute may identify a file or it may be merely a description of the file. The name of a
file is not necessarily unique within its parent. However, the name-version pair is always
unique within its parent. No name attribute may have a length of zero, and the length of the
Courier representation must not exceed 100 bytes (depending on the character

representation in the attribute, the maximum number of characters may be considerably
more or less). Capitalization is ignored when names are compared

It is strongly recommended that file names not contain the characters: apostrophe ('),
asterisk (*), sharp sign (#), comma (,), diagonal slash (/), or exclamation point (!). These

characters are intended for use within filter specifications and file pathnames (see Appendix

F).

4.2.2.5 pathname

pathname is an environment attribute specifying an access path to the file relative to the

root file of the service.

pathname: AttributeType 21;

Pathname: type string;

A pathname specifies a hierarchical access path to a file by encoding the name and version

attributes of a set of the file's ancestors. It describes an access path to the file relative to an

assumed base directory. The order of the encoded name-version pairs is significant, the first

specifies the file's ancestor which is a child of the base directory, the second pair identifies a

file whose parent is named by the first, and so forth. The last name and version pair names

the file itself. The pathname attribute of a file is a pathname which assumes the root file as

a base directory.

Name and version portions within a pathname are distinguished by an exclamation

character (!). On retrieval, reserved characters within each name portion are escaped by

preceding them with an escape character, the apostrophe (') (see 4.2.2.4 for the complete list

of reserved characters). As with the name attribute, a name
portion may not have a length of

zero or exceed 100 bytes in the Courier representation of its
unescaped form

A version is specified using a numeric constant, the plus (+) character (designating the

highest version of a file), or the minus (-) character (designating the lowest version). If

omitted, a designation of
highest version is assumed Each name-version pair is delimited

from the next by a diagonal slash
character (/).

The following grammar summarizes
the syntax ofpathname

strings

Pathname : =
NameVersionPairList

NameVersionPairList : =
NameVers,onPa,r |

NameVersionPa.r/NameVersionPa.rList

NameVersionPair : = Name | NamelVersion

Name:= [string with reserved characters escaped not exceeding 100 bytes ,n

unescaped form]

XEROX SYSTEM INTEGRATION STANDARD

63

Version : = [string ofdigits with numeric value in the range (0..65535)]

|
'

+ -i.e. highestVersion

| '- -i.e. lowestVersion

It is recommended that the notation for qualified pathnames defined in Appendix F be used

at any human interface with the file service, such as at an administrative console.

4.2.2.6 type

type is a data attribute that describes the nature of the content or attributes of the file in

order to communicate to potential users of the file how this file is to be interpreted.

type: AttributeType 17;

Type: type long cardinal;

A customer or vendor may define types for files of his own that he wishes to distinguish.

Types to be defined in this way must be allocated by means of the administrative procedures

described in Appendix B.

The file service interprets neither the type nor the content of a file. In particular, the type

may not be used to determine whether a file is a directory or a non-directory. This

information is determined by the isDirectory attribute.

Several commonly-used type values are defined in this standard. Clients are encouraged to

use these types to identify files that have the specified characteristics in order to promote

information sharing. However, the file service does not enforce the specified semantics. See

Appendix B for details.

4.2.2.7 version

version is an environment attribute that distinguishes different files that have the same

name attribute within the same directory. The name-version pair is always unique across

the children of a directory.

version: AttributeType 18;

Version: type cardinal;

This attribute may be specified by the client when a new file is created. Ordinarily, however,
it is omitted, and the new file acquires the next version number. If there are files in the

specified directory with the same name as the new file, the next version number is one

greater than the highest version number associated with any of those files. If there are no

such files, the next version number is 1 .

If lowestVersion or highestVersion is specified, the file to be accessed is the one having the
specified name and the lowest or highest version number within the directory, respectively:

lowestVersion: Version 0;

highestVersion: Version 177777B;

Because an error is reported when the client attempts to create a file with a non-unique

name-version pair, a client should not ordinarily specify either lowestVersion or

highestVersion when creating a file. Within a filter, lowestVersion and highestVersion may

64
FILING PROTOCOL

be specified on.y when the order of enumeration (in procedures Find or Lis,, ,s b, the nacne

4.2.3 Content-related attributes

Content-related attributes describe the content of the filt

4.2.3.1 checksum

s

checksum is a data attribute that helps to verify the validity of the content of the file It is
intended to detect file damage that may occur while the file is stored by a file service.

checksum: AttributeType 0;

Checksum: type cardinal;

The file service computes a checksum whenever the content of a file is transferred Thi
occurs in Store, Retrieve, Replace, Serialize and Deserialize When the content is transferred
to the file service, the computed value is saved in the checksum attribute. If the client has
specified a value for the attribute, it is compared to the computed value and an error is

reported if there is a mismatch. When the content is transferred from the file service, the

computed value is compared with the checksum attribute and an error is reported if there is

a mismatch.

If the checksum is not known because, for example, the file has been damaged while stored

by the file service, the value of the checksum attribute is set to unknownChecksum The

client may also set this value explicitly via ChangeAttributes Any computed value of

checksum is always considered to match unknownChecksum A client might explicitly set

the value to unknownChecksum if the checksum attribute does not match the file's content

due to file damage and the client wishes to retrieve the file without checksum validation

unknownChecksum: Checksum 177777B;

The checksum is a one's complement, add-and-cycle checksum that is computed over the

sixteen-bit words comprising the file's content. Specifically, the checksum is calculated by

initializing it to zero and then, for each successive data word, adding the word (using one's

complement addition) and performing a left cycle of the result. If an odd number of bytes is

transmitted, a last byte of zero is assumed for purposes of the checksum
computation If the

result is the ones-complement value minus zero (177777B), it must be converted to plus zero

(OB) so it won't be interpreted as the unknownChecksum value.

42.3.2 dataSize

dataSize is a data attribute that records the number
of eight-bit bytes in the content of the

file.

dataSize: AttributeType 16;

DataSize: type long cardinal;

HROX SYSTEM INTEGRATION STANDARD

This attribute is not intended to describe the total amount of physical space occupied by the

file when stored in the file service. For example, it does not include the space required to

store attributes, or space overhead required by the file service.

4.2.3.3 storedSize

storedSize is an attribute that records the number of eight-bit bytes occupied by the file

when stored in the file service. The attribute includes the space required to store attributes

and any other overhead associated with storing the file in the
service.

storedSize: AttributeType = 26;

StoredSize: type = long cardinal;

Note that the value of this attribute will normally be a multiple of a service's underlying

unit ofallocation.

4.2.4 Parent-related attributes

Parent-related attributes describe a file's relationship to its parent directory. These

attributes are always null in a file which has no parent (for example, a temporary file).

4.2.4.1 parentlD

parentlD is an environment attribute that is equal to the filelD attribute of the file's parent.

parentlD: AttributeType 12;

ParentlD: type FilelD;

4.2.4.2 position

position is an environment attribute that specifies a file's position within its parent

directory. It is used to indicate starting and ending points for listing and locating files in a

directory, and to specify the insertion point when creating a file in a directory that is ordered

by position (q.v.).

position: AttributeType 13;

Position: type sequence 100 of unspecified;

A position defines a point within the linear span of a directory at which there is at most one

file. A file's position attribute specifies that file's position within its parent directory.

A position value remains valid even if the file to which it applies is moved or deleted. The

position then refers to the point where the file resided. However, a position value is tied to

the ordering of the directory into which it points; therefore, it cannot be used after the

directory has been reordered (by changing its ordering attribute), and it cannot be used to

specify a position within any other directory.

66 FILING PROTOCOL

A position value is uninterpretable by the client. Its internal structure is imple-e-
dependent. Because the file service may embed arbitrary information in the position 'the
clientmay not compare positions, even for equality

Two special values identify distinguished points within a directory The con-an-

firstPos.t.on specifies a point before the first file in the directory, and lastPosition specify a

point after the last file.
"First"

and
"last"

are determined by the directory's ordering

firstPosition: Position [0];

lastPosition: Position [177777B];

4.2.5 Event-related attributes

Event-related attributes record the date and time of significant events in the life of a file,
and the name of the user on whose behalf an event occurred

For performance reasons, the file service does not necessarily change these times and names

exactly when the related event occurs. Rather, it may cache changes for later application, or

may group several changes together. The file service guarantees that if an event occurs

during a session, then the times and names will be updated appropriately sometime during

that session. The file service also guarantees that explicitly-requested changes to times and

names, where allowed, occur immediately.

4.2.5.1 createdBy

createdBy is a data attribute that records the creator of the file's content. It is the name of

the user who last modified the content of the file.

createdBy: AttributeType 2;

CreatedBy: type User;

If the client does not specify this attribute during Create, Store or Replace, the file service

will set it to the name of the current user. However, since the attribute is intended to be the

name of the creator of the content of the file (rather than the physical file itself), it is

strongly recommended that all
clients maintain this name with the file and specify it when

transferring the file to a file service.

42.5.2 createdOn

createdOn is a data attribute that records the
time of creation of the file's content This

attribute is used to maintain the generation time of the file in order to determine the

relative ages of similar files.

createdOn: AttributeType 3;

CreatedOn: type Time;

ser'. ice

If the client does not specify this
attribute during Create

Store or Replace the file

will set it to the current date and
time. However, since the

attribute is in en ed t be

^
time of creation of the content of the

file (rather than the physical file itself,, it i, strong

X"0X SYSTEM INTEGRATION STANDARD

recommended that all clients maintain this time with the file and specify it when

transferring the file to a file service.

4.2.5.3 readBy

readBy is a data attribute that records the name of the user who last
examined the content of

the file.

readBy: AttributeType 14;

ReadBy: type User;

When a new file is created, this attribute is set to empty strings to indicate that the file has

never been read. Subsequently, the file service maintains the attribute.

4.2.5.4 readOn

readOn is a data attribute that records the time at which the content of the file was last

examined.

readOn: AttributeType 15;

ReadOn: type Time;

When a new file is created, this attribute is set to nullTime to indicate that the file has never

been read. Subsequently, the file service maintains the attribute.

4.2.5.5 modifiedBy

modifiedBy is a data attribute that records the name of the last user who changed the file in

any way.

modifiedBy: AttributeType 7;

ModifiedBy: type User;

When a new file is created, this attribute is set to the name of the current user.

Subsequently, the file service maintains the attribute.

4.2.5.6 modifiedOn

modifiedOn is a data attribute that records the time at which the file was last changed in

any way.

modifiedOn: AttributeType 8;

ModifiedOn: type Time;

When a new file is created, this attribute is set to the current time. Subsequently, the file

service maintains the attribute.

6fl FILING PROTOCOL

42.6
Directory-related attributes

Directory-related attributes describe certain aspects of directories In non-direc^e*

directory-related attributes are always null.

4.2.6.1
childrenUniquelyNamed

childrenUniquelyNamed is a data attribute that specifies whether the children of this

directory are constrained to have distinct name attributes The default value of this

attribute is implementation dependent.

childrenUniquelyNamed: AttributeType * 1;

ChildrenUniquelyNamed: type boolean;

When this attribute is true, no two children of the directory may have the same name

attribute, and the file service rejects any attempt to add a file with the same name attribute

as an existing file. When this attribute is false, this restriction is not enforced. Files that

have the same name attribute are distinguished by their version attributes. Comparison of

name attributes is described in 3.5.1.4.

4.2.6.2 numberOfChildren

numberOfChildren is a data attribute that is a count of the directory's children Note that

this is not a count of the directory's descendants.

numberOfChildren: AttributeType 10;

NumberOfChildren: type cardinal;

4.2.6.3 ordering

ordering is a data attribute that specifies the order of enumeration of files in the directory

during certain procedures

ordering: AttributeType 11;

Ordering: type record [

key: AttributeType, ascending: boolean,
interpretation: Interpretation];

Except when ordering by position (described below), the placement of files
in a directory is

determined by the relative values of a particular
attribute. The component key species

which attribute is to be used for ordering ascending
determines whether ordering is to be in

ascending order of the attribute, and
interpretation specifies how the file service should

interpret the attribute if there is not a standard
interpretation for the attribute For

example, a value of

[key: createdOn, ascending: false,
interpretation: time]

...
i-

*j fV,^ f?rct Hip to be delivered should be the one that

specifies that when the directory is listed, the
first iiie to De aen c

has the highest (most recent) createdOn
value.

Mox system integration standard

69

When the attribute used for ordering is an uninterpreted one, the
interpretation to be used

must be specified so that the file service can determine the relative
placement of files. If a

file's attribute value is not a valid Courier representation of the type specified in

interpretation, then it is placed before those files that do have valid values. When the

attribute is an interpreted one, the interpretation specified in the ordering attribute is

ignored; the file service uses the standard interpretation for the attribute. The comparison

rules for various interpretations are described in 3 5.1.4. Interpreted attributes with

standard interpretations other than those defined in this section are ordered as though the

interpretation were none.

The behavior of a directory is somewhat different when the specified key is the position

attribute. In all other cases, the relative placement of files is determined entirely by the

value of the specified attribute. When ordering is by position, however, the relative

placement of files is explicitly determined by the client. When adding a file to the directory,

the client specifies the position at which it would like the file to reside. The following
constants specify ordering by position:

byAscendingPosition: Ordering [

key: position, ascending: true, interpretation: none];

byDescendingPosition: Ordering [

key: position, ascending: false, interpretation: none];

If ordering is by ascending position, a file that is added without specifying its position is

placed at the end of the directory. If ordering is by descending position, a file that is added

without specifying its position is placed at the beginning. Otherwise, there is no difference

between these values.

When the ordering of a directory is changed to an ordering by position, the relative

placement of files in the directory is not affected. In other words, when ordering by position,

the files are initially placed according to their placement in the previous ordering.

Subsequent additions need not conform to the previous ordering.

After a number of additions at the same point within a directory ordered by position, the

density of files in that area may become too great to allow further additions. When this

condition occurs, a procedure attempting to insert a file reports:

InsertionError [problem: positionUnavailable]

The client should call ChangeAttributes specifying an ordering that is the same as the

current ordering. This action redistributes the files without changing their relative

placement.

When no ordering is specified during creation of a new directory, defaultOrdering is used.

When the ordering attribute has this value, or the corresponding value with ascending

equal to false, the ordering is actually based on ascending or descending values of first, the
name attribute, and second, the version attribute, rather than just the name alone:

defaultOrdering: Ordering [key: name, ascending: true, interpretation: string];

File service implementations are not required to support all possible values of this attribute;

however, every file service implementation must support defaultOrdering

7 FILING PROTOCOL

4.2.6.4 subtreeSize

subtreeSize is a data attribute that rt>^-j ,,

directory and all its descendants-
"^ o{ '&*>* byteS^^ *y *

subtreeSize: AttributeType 27;
SubtreeSize: type long cardinal;

"e^8 eqUiVa'ent *" SUmf the~" '**-o^*-, and each of

4.2.6.5 subtreeSizeLimit

subtreeSizeLimit records the maximum number of eight-bit bytes which may be allocated to
a directory and all files it directly or indirectly contains.

subtreeSizeLimit: AttributeType > 28;
SubtreeSizeLimit: type = long cardinal;

This attribute is equivalent to the sum of the storedSize attributes of a directory and each of
its descendants. An operation is rejected if it would cause the value of a directory's subtree
size to exceed the limit specified by the directory's subtreeSizeLimit attribute. The client is
permitted to change the value of a directory's subtreeSizeLimit attribute at any time even if
this would cause it to obtain a value less than the current value of the directory's
subtreeSize attribute.

nullSubtreeSizeLimit: SubtreeSizeLimit = 37777777777B,

When a directory is created and no subtreeSizeLimit is specified, nullSubtreeSizeLimit is

assumed. This value is used to specify that a directory has no cumulative limit on the

amount ofphysical space the directory and its descendants may require.

4.2.7 Access-related attributes

Access-related attributes are used to control access to a file, its content and attributes, and

descendants. Every file has an accessList attribute, which may be defaulted. In addition,

each directory file has a defaultAccessList attribute, which specifies the access for files

within the directory having explicitly defaulted access lists. The ability to modify a file's

access attributes is subject to the access granted the client by the access list in effect for the

file.

When a file is created, it receives defaulted values for its
access lists or those specified by the

client, if supplied. When a file is inserted into a directory, the file receives access lists as

specified by the client; if an access list or default access list is not specified during the

insertion, the respective access list remains
unchanged. Access lists of descendants of the

inserted file are not affected by the insertion.

When the access list of a file must be determined, the accessList attribute of the file is

consulted If this value has been defaulted, then the
defaultAccessList attribute of the file's

parent directory is retrieved. If the
defaultAccessList attribute of the parent is defaulted, the

parent's access list is used. The method of determining the access list of the parent is the

HROX SYSTEM INTEGRATION STANDARD

same as for the original file; this process proceeds recursively until a
non-defaulted list is

encountered or the root directory is reached.

4.2.7.1 accessList

accessList ig an environment attribute that specifies the access permissions to be granted to

particular clients. Each enabled permission permits particular types of access to the

specified client. Clients not represented in the access list ofa file are denied any access to the

file. The access granted a particular client with respect to a file is the union of the

permissions specified in all entries containing a key representing the client.

accessList: AttributeType 19;

AccessList: type record [entries: sequence ofAccessEntry. defaulted: boolean];

AccessEntry: type record [key: Clearinghouse.Name, access: AccessSequence];

An access list is comprised of a set of key/access permission pairs. If a session's user can be

identified with the key portion of an entry, then the permissions specified by the entry are

granted to the session. During retrieval, the defaulted component of a file's accessList

attribute specifies whether the attribute was explicitly set with the file or was defaulted to

that of its parent. On input, the defaulted component is used to explicitly default the value

ofan access list attribute, and in that case, entries must be empty.

The key portion of an individual AccessEntry will typically denote the name of a user or

group of users defined via the Clearinghouse [5]. A limited form of wildcarding is also

permitted within the key of an access list entry with the use of the asterisk character (*). A

wildcard may replace the object portion, the object and domain portions, or all three portions

ofa key. These specifications imply respectively: all users within a domain and organization;

all users within all domains ofan organization; and all clients.

If the access list for a file has no entries, it is said to be empty and no access to the file is

allowed to any client. If the accessList attribute of a file is explicitly defaulted, access to the

file is determined by the defaultAccessList attribute of the file's parent directory (see below).

See 3.3.1.3 for an explanation of the access permissions.

Example:

The following access list specifies read and write access to the user "John Q.
Public"

of the

"Office
Systems"

organization within "Xerox"; read access for the group of users designated

by the Clearinghouse group "UserGroupl"; add access for the user whose alias is

"UserAliasl"; and read access to any user within the
"Xerox"

organization.

AccessList [entries: [

[key: ["John Q. Public", "Office Systems", "Xerox"], access: [[read], [write]]],

[key: ["UserGroupl", "Office Systems", "Xerox"], access: [[read]]].

[key: ["UserAliasl". "Office Systems". "Xerox"]. access: [[add]]].

[key: ["*". "*". "Xerox"], access: [[read]]]].

4.2.7.2 defaultAccessList

defaultAccessList is an environment attribute that applies only to directories. This attribute

specifies the access controls for files within the directory which have explicitly defaulted

72
FILING PROTOCOL

accessList values. If the defaultAccessList of a directory is given the defaulted value, then

the directory's accessList value is used instead.

defaultAccessList: AttributeType - 20;

DefaultAccessList: type AccessList;

XEROX SYSTEM INTEGRATION STANDARD
73

74 FILING PROTOCOL

When a remote procedure completes successfully, it returns results as specified in the

definition of the procedure. However, conditions can arise before or during execution of the
procedure thatmake successful completion of the request impossible For example, the client

may have specified incorrect arguments in a remote procedure call, or some required

resource may be unavailable.

When such conditions occur, an error is reported to communicate to the client the nature of

the problem. Each error encompasses an entire class of possible conditions and the specific

problem is further described by the arguments of the error. For example, HandleError

indicates that something is wrong with a file handle specified in the arguments of a

procedure. The particular problem with the file handle is specified by the argument which is

of type HandleProblem.

When an exceptional condition arises during execution of a remote procedure, the file

service makes every effort to undo the effects of the partial execution so that the file service

appears to the client as though the procedure had never been called. However, the file

service does not guarantee that such effects can always be reversed. Therefore, when an

error is reported, the client must be prepared for the possibility that the procedure was

partially executed. In any event, no files are lost unless deletion was requested.

Each error definition includes a declaration of the error in Courier notation, a description of

its arguments, and examples ofconditions that cause the error to be reported.

5.1 Access errors

AccessError may be reported by any procedure that requires access to a file. It indicates that

access to the file is not possible. The inaccessible file is not necessarily the one whose handle

was specified as an argument to the procedure call because some procedures operate on

additional files. For example, Delete deletes the descendants of a specified file as well as the

file itself.

AccessError: error [problem: AccessProblem] 6;

The argument problem describes the problem in greater detail.

AccessProblem: type {

accessRightslnsufficient(O), -- the user does not have the access rights needed to satisfy

the request; consult description ofindividualprocedures
for specific requirements --

XEROX SYSTEM INTEGRATION STANDARD 75

accessRightslndeterminate(l), - the file service could not determine whether the user

has the access rights needed to satisfy the request; consult description of individual

procedures for specific requirements

fileChanged(2), - while the procedure was executing, the file changed in such a way

that execution could not continue; this condition can occur during List if the ordering

ofthe directory changes

fileDamaged(3), - a file was found to be internally damaged in some way, but not

badly enough to require shutdown ofthe file service -

filelnUse(4), -- even after expiration ofthe timeout, the file service could not acquire a

lock it needed to satisfy the request
--

fileNotFound(5), -- a file was not found in the context in which it was expected
-

fileOpen(6)}; - during an attempt to move or delete a file, another file handle/or the

file was found to exist in the same session

Examples:

If one session calls Retrieve while another session is calling Replace for the same file, and

the timeout on the Retrieve procedure expires before the Replace procedure completes, the

following error is reported:

AccessError [problem: filelnUse]

If List is called and during the execution of List some other session changes the ordering

attribute of the directory being listed, the following error is reported:

AccessError [problem: fileChanged]

IfOpen is called specifying a parentlD and a name and there is no file with that name in the

directory identified by parentlD, the following error is reported:

AccessError [problem: fileNotFound]

IfOpen is called specifying a filelD and there is no file in the file service with that filelD, the

following error is reported:

AccessError [problem: fileNotFound]

If Delete is called specifying a file handle for a directory and the client has opened but not

yet closed a descendant of that directory, the following error is reported:

AccessError [problem: fileOpen]

IfDelete is called specifying a file handle for a directory and the client ofanother session has

opened but not yet closed a descendant of that directory, the following error is reported:

AccessError [problem: filelnUse]

75 FILING PROTOCOL

5.2 Argument errors

There are argument errors for each class ofFiling procedure argument: attributes, controls,
and scopes. A given argument error may be reported by any procedure that has an argument
of the corresponding type. Each class contains two errors. The type-related error indicates

that specifying that attribute type resulted in a problem; the value-related error indicates

that the attribute type was legitimate, but the specified value caused a problem.

AttributeTypeError is reported whenever the attribute type specified in an

AttributeTypeSequence or an AttributeSequence causes some kind of problem.

AttributeValueError is reported whenever the attribute value specified in an

AttributeSequence causes a problem. The argument type indicates the offending attribute

type or the type of the offending attribute value.

AttributeTypeError: error [

problem: ArgumentProblem, type: AttributeType] 0;

AttributeValueError: error [

problem: ArgumentProblem, type: AttributeType] 1;

ControlTypeError is reported when a control type specified in a ControlTypeSequence or

ControlSequence causes a problem. ControlValueError is reported when a control value

specified in a ControlSequence causes a problem. The argument type indicates the offending

control type or the type of the offending control value.

ControlTypeError: error [

problem: ArgumentProblem, type: ControlType] 2;

ControlValueError: error [

problem: ArgumentProblem, type: ControlType] 3;

ScopeTypeError is reported when a scope type specified in a ScopeSequence causes a

problem. ScopeValueError is reported when a scope value specified in a ScopeSequence

causes a problem. The argument type indicates the offending scope type or the type of the

offending scope value.

ScopeTypeError: error [

problem: ArgumentProblem, type: ScopeType] 4;

ScopeValueError: error [

problem: ArgumentProblem, type: ScopeType] 5;

In all of the above errors, the argument problem describes the problem in greater detail.

ArgumentProblem: type {

illegal(O), - this value is never allowed; this
condition can only occur for attribute

values

disallowed(l). -- this type or value is sometimes allowed, but is never allowed by this

remote procedure; this condition can
occur for attribute types and values -

XEROX SYSTEM INTEGRATION STANDARD 77

unreasonable(2), - this type or value is sometimes allowed by this procedure, but not

in the context in which it was supplied; for example, it may conflict with other

arguments; this condition can occur for attribute types and values
-

unimplemented(3), - this type or value is not supported by this implementation ofthe

file service; this condition can only occur for certain values of the
filter scope and the

ordering attribute, but never occurs for types
-

duplicated(4), -- this type is specified more than once in a sequence; this condition

never occurs for values -

missing(5)}; -- this type or value is missing in a context in which it is required;
this

condition can occur for certain attribute types in Open

Examples:

If the name attribute is specified in Create and the specified string contains a character that

is illegal in names, the following error is reported:

AttributeValueError [problem: illegal, type: name]

If the dataSize attribute is specified in Copy, the following error is reported:

AttributeTypeError [problem: disallowed, type: dataSize]

If the ordering attribute is specified in Create and the isDirectory attribute has not been

specified (and therefore defaults to false), the following error is reported:

AttributeTypeError [problem: unreasonable, type: ordering]

Ifa filter based on the value of the filelD attribute is specified in List and the file service does

not support this value of filter, the following error is reported:

ScopeValueError [problem: unimplemented, type: filter]

If the lock control is specified twice in the sequence of controls that is an argument to Store,

the following error is reported:

ControlTypeError [problem: duplicated, type: lock]

Ifno attributes are specified in Open, the following error is reported:

AttributeTypeError [problem: missing, type: filelD]

Ifonly the version attribute is specified in Open, the following error is reported:

AttributeTypeError [problem: missing, type: name]

5.3 Authentication errors

AuthenticationError may be reported by any procedure. The most common occurance of this

error is in response to a Logon operation. The service may detect some problem with the

78 FILING PROTOCOL

client's primary or secondary credentials. Later in the interaction, AuthenticationError is

used to report a problem with the authentication verifier contained in the session handle

AuthenticationError: error [

problem: AuthenticationProblem, type: SecondaryType] 7;

The argument problem describes the problem in greater detail. The argument type

describes the format of secondary credentials information expected by the service. Details of
specific secondary types is documented in Secondary Credentials Formats [10). Where no

interpretation for the type field is indicated, this error argument has the null value and

should be ignored by the client.

AuthenticationProblem: type {

primaryCredentialslnvalid(O), - decryption failed orClearinghouse name was invalid -

verifierlnvalid(l), -- decryption failed or simple password was invalid-

verifierExpired(2). -- a strong verifier was too old -

verifierReused(3), -- service has either seen the same strong verifier before or one

generatedmore recently

primaryCredentialsExpired(4), - expiration date and time of the suppliedprimary

credentials has been exceeded

inappropriatePrimaryCredentials(5), primary credentials were not of the appropriate

strength (strong may be required where simple were supplied) -

secondaryCredentialsRequired(6), -

secondary authentication information required but

none was supplied; type indicates the type ofsecondary credentials required
--

secondaryCredentialsTypelnvalid(7),
- the type of the supplied secondary credentials

was incorrect or the secondary credentials value was improperly formatted for

the specified type; type indicates the type ofsecondary credentials required
-

secondaryCredentialsValuelnvalid(8)};
-- the specified secondary authentication

information was not acceptable to the service; type indicates the type ofsecondary

credentials required

Examples:

If the service requires that clients supply strong primary credentials and only simple

credentials are supplied, the following error is reported:

AuthenticationError [problem: inappropriatePrimaryCredentials, type: []]

If a client specifies null primary credentials with a strong secondary credentials value in

Logon, the following error is reported:

AuthenticationError [problem: inappropriatePrimaryCredentials.type: []]

XEROX SYSTEM INTEGRATION STANDARD 7

Ifa file service requires its clients to supply secondary authentication information and none

is supplied during a Logon request, the following error is reported:

AuthenticationError [problem: secondaryCredentialsRequired.type: [2B, 3B]]

Note that the type argument in the error report indicates the expected format of the

required secondary credentials information.

If a client supplies secondary credentials in a call to Logon, but their format is not that

required by the service, the following error is reported:

AuthenticationError [problem: secondaryCredentialsTypelnvalid, type: [2B, 3B, 8B]]

Note that the type argument in the error report indicates the expected format of the

required secondary credentials information.

5.4 Connection errors

ConnectionError may be reported by any procedure that takes an argument of type

BulkData.Source or BulkData.Sink. It indicates that there is a problem with establishing the

connection for transferring the bulk data.

ConnectionError: error [problem: ConnectionProblem] 8;

ConnectionProblem: type {

communicationproblems

noRoute(O), -- no route to the otherparty could be found

noResponse(l), -- the otherparty never answered
-

transmissionHardware(2), -- some local transmission hardware was inoperable -

transportsmeout(3), -- the otherparty responded but later failed to respond

-- resource problems --

tooManyLocalConnections(4), - no additional connection is possible --

tooManyRemoteConnections(5), -- the otherparty rejected the connection attempt

remote program implementation problems

missingCourier(6), -- the otherparty had no Courier implementation -

missingProgram(7), -- the otherparty did not implement the bulk dataprogram -

missingProcedure(8), -- the otherparty did not implement the procedure -

protOCOlMismatch(9), -- the twoparties have no Courier version in common

parameterlnconsistency(IO), -a protocol violation occurred inparameters --

invalidMessage(1 1), -a protocol violation occurred in message format

returnTimedOut(12), -- the procedure call never returned -

80 FILING PROTOCOL

--

miscellaneous

otherCallProblem(177777B) }; - some otherprotocol violation during a call -

5.5 Handle errors

HandleError may be reported by any procedure that takes an argument of type Handle. It
indicates that there is a problem with the specified file handle.

HandleError: error [problem: HandleProblem] 9;

The argument problem describes the problem in greater detail.

HandleProblem: type {

invalid(O), -- an invalid file handle was specified; it may be an obsolete handle in the
current session or it may be a valid file handle in another session -

nullDisallowed(l), - the null handle was specified as a value for an argument that

requires a valid handle to a file -

directoryRequired(2)}; -- the null handle or a handle to a non-directory was specified as a
value for an argument that requires a handle to a directory -

Examples:

If a handle to a non-directory is specified as the value of destinationDirectory in Move, the

following error is reported:

HandleError [problem: directoryRequired]

If a null handle is specified as the value of file in Copy, the following error is reported:

HandleError [problem: nullDisallowed]

5.6 Insertion errors

InsertionError may be reported by any procedure that inserts a file into a directory whether

the file being inserted is a new file or is being moved from somewhere else. It indicates that

the directory could not accommodate the file.

InsertionError: error [problem: InsertionProblem] 10;

The argument problem describes the problem in greater detail.

InsertionProblem: type {

XEROX SYSTEM INTEGRATION STANDARD 81

positionUnavailable(O), -- the directory is ordered by position, and the density offiles

in the area surrounding the specifiedposition is so great that no
point for insertion is

available; the directory must be reorganized as described in 4.2.6.3

fileNotUnique(1), - the directory already references a file with the same name (ifthe

directory '3 childrenUniquelyNamed attribute is true) or the same name and version

(ifthe directory's childrenUniquelyNamedattribute is false) -

looplnHierarchy(2)}; - the directory is a descendant ofthe file beingmovedor copied
-

Examples:

Ifmany files are inserted at the same point in a directory that is ordered by position and an

attempt is made to insert another file at a point at which there is no position available, the

following error is reported:

InsertionError [problem: positionUnavailable]

If a directory whose childrenUniquelyNamed attribute is true references a file named

"Product
Specification"

and an attempt is made to insert another file with the same name,

the following error is reported:

InsertionError [problem: fileNotUnique]

If directory A is a child of directory B and an attempt is made to move directory B into

directory A, the following error is reported:

InsertionError [problem: looplnHierarchy]

5.7 Range errors

RangeError may be reported by the random access procedures RetrieveBytes and

ReplaceBytes. It indicates an inconsistency or other problem with the range argument

specified by the client.

RangeError: error [problem: ArgumentProblem] 16;

RangeError results if an improper range specification is supplied to a random access

procedure. Two problem types are reported: illegal (such a range can never be specified), and

unreasonable (a range was not valid for a given file).

Examples:

If the client supplies a range with the value [EndOfFile, EndOfFile] to a random access

operation, the service reports the error:

RangeError [problem: illegal]

82 FILING PROTOCOL

If the client supplies a byte range for a given file with a firstByte specification that exceeds

the size of the file, the service reports the error:

RangeError [problem: unreasonable]

5.8 Service errors

ServiceError may be reported by Logon or Logoff. It indicates that the service encountered a
problem while attempting to create or destroy a session.

ServiceError: error [problem: ServiceProblem] 11;

The argument problem describes the problem in greater detail.

ServiceProblem: type {

cannotAuthenticate(O), - the client may not log on because the file service is unable to

determine whether the user's credentials are valid; this could occur if the file service

needs to contact some service that is unavailable -

serviceFull(l), -- the client may not log on because creation ofanother session would

cause the number ofsessions to exceed an implementation-dependent limit
--

serviceUnavailable(2),
- the file service is currently unavailable for use by new clients

sessionlnUse(3), ~ the client may not log offbecause a remote procedure is still

executing

serviceUnknown(4)};
-- the requested service is not supported by this system

element -

Examples:

If the file service must contact another system to determine whether or not the user's

credentials are valid and that system is unavailable, the following error is reported:

ServiceError [problem: cannotAuthenticate]

If the file service allows a maximum of ten concurrent sessions and a client tries to log on

when there are already ten sessions, the following error is
reported:

ServiceError [problem: serviceFull]

If the file service operator has entered a
command to prevent further use of the file service

and a client tries to log on, the following error is
reported:

ServiceError [problem: serviceUnavailable]

If the client has called List and then tries to log off while execution of the procedure is in

progress, the following error is
reported:

ServiceError [problem: sessionlnUse]

XEROX SYSTEM INTEGRATION STANDARD
83

If the client attempts a Logon specifying a name of a service which a given system element

does not support, the following error is reported:

ServiceError [problem: serviceUnknown]

5.9 Session errors

SessionError may be reported by any procedure. It indicates that the session handle is

invalid.

SessionError: error [problem: SessionProblem] 12;

The argument problem describes the problem in greater detail.

SessionProblem: type {

tokenlnvalid(O)}; -- the token component ofthe session handle does not specify a currently

valid session on this file service; the client may have already called Logoff or the

session may have been forcibly terminated by the file service -

Examples:

If the client calls a procedure that requires a session handle and the specified token value

was never issued by Logon, the following error is reported:

SessionError [problem: tokenlnvalid]

5.10 Space errors

SpaceError may be reported by any procedure that must allocate physical space for the

storage of information. It indicates that the request for space could not be satisfied.

SpaceError: error [problem: SpaceProblem] 13;

The argument problem describes the problem in greater detail.

SpaceProblem: type {

allocationExceeded(O),
~ the space required by the procedure caused a directory 's space

limit to be exceeded (the total space occurpied by the directory and all of its

descendants would have exceeded the directory 's subtreeSizeLimit attribute) -

attributeAreaFull(l),
- there was not enough space in the attribute area to satisfy the

request; the limits described in Chapter 4 would have been exceeded

mediumFull(2)};
- there was not enough space in the file service to satisfy the request

--

84 FILING PROTOCOL

Examples:

If the client tries to store a file and its size causes an allocation limit to be exceeded even

though enough physical space is available in the file service, the following error is reported:

SpaceError [problem: allocationExceeded]

If the client tries to store a file and there is physically no space available in the file service
even though no allocation limit has been exceeded, the following error is reported:

SpaceError [problem: mediumFull]

If a file has 128 attributes that are set and the client tries to set another attribute, the

following error is reported:

SpaceError [problem: attributeAreaFull]

5.11 Transfer errors

TransferError may be reported by any procedure that sends data to a sink or receives data

from a source. It indicates that a problem occurred during the transfer.

TransferError: error [problem: TransferProblem] 14;

The argument problem describes the problem in greater detail.

TransferProblem: type {

aborted(O), -- the bulk data transfer was aborted by the party at the other end of the

connection -

checksumlncorrect(l),
-- after transfer ofa file 's content to a sink, the checksum

computed over the data did not match the file 's stored checksum attribute -

formatlncorrect(2). ~ the bulk data received from the source did not have the expected

format

noRendezvous(3),
-- the identifier from the otherparty never appeared

-

wrongDirection(4)};
- the otherparty wanted to transfer the data in the wrong

direction -

Examples:

If the client calls List and then aborts the bulk data
transfer because it has already received

enough data, the following error is reported:

TransferError [problem: aborted]

XEROX SYSTEM INTEGRATION STANDARD
85

If the client calls Retrieve and the checksum computed over the data transferred from the

file service does notmatch the file's checksum attribute, the following error is reported:

TransferError [problem: checksumlncorrect]

If the client calls Deserialize and the transferred data is not a valid serialized file, the

following error is reported:

TransferError [problem: formatlncorrect]

5.12 Undefined errors

UndefinedError may be reported by any procedure. It indicates that some
implementation-

dependent problem occurred that is not covered by another error. This error is normally

reported only when the file service is malfunctioning. The client has no way of recovering

from undefined errors.

UndefinedError: error [problem: UndefinedProblem] 15;

The argument problem describes the problem in greater detail. The meanings of specific

values of this argument are implementation-dependent.

UndefinedProblem: type cardinal;

Examples:

If the file service encounters a disk error in directory structures and it has assigned the

value 7 to this error condition, the following error is reported:

UndefinedError [problem: 7]

86
FILING PROTOCOL

A REFERENCES

The following documents supplement this protocol specification. References [1 and 7] are

informational; they contain helpful motivational and explanatory material, but the Filing
Protocol can be understood without them. References [2-6, 8] are mandatory; they describe

other protocols upon which the Filing Protocol depends.

[1] Digital Equipment Corporation; Intel Corporation; Xerox Corporation The Ethernet, A

Local Area Network: Data Link Layer and Physical Layer Specifications. September

1980; Version 1.0.

This reference contains the data link and physical layer specifications for the Ethernet,

the transmission medium for which Courier's standard representations are optimized.

[2] Xerox Corporation. Authentication Protocol. Xerox Network Systems Standard.

Stamford, Connecticut; May 1986; XNSS 098605.

This reference defines the Authentication Protocol upon which the Filing Protocol

relies for authentication.

[3] Xerox Corporation. Bulk Data Transfer. Xerox Network Systems Standard. Stamford,

Connecticut; April 1984; XNSS 038112 (XSIS 038112); Addendum la. Augments [6].

This reference defines the Bulk Data Transfer Protocol upon which the Filing Protocol

relies for bulk data transfer.

[4] Xerox Corporation. Character Code Standard. Xerox Network Systems Standard.

Stamford, Connecticut;April 1984; XNSS 058404 (XSIS 058404)

This reference defines the character set and the string format which provide the basis

for Courier's string data type.

[5] Xerox Corporation. Clearinghouse Protocol. Xerox Network Systems Standard.

Stamford, Connecticut; April 1984, XNSS 078404 (XSIS
078404).

This reference defines the structure of user names which appear as various file

attributes.

[6] Xerox Corporation. Courier: The Remote Procedure Call Protocol. Xerox Network

Systems Standard. Stamford, Connecticut; December 1981; XNSS 038112 (XSIS

038112).

This reference defines the Courier language, in terms
of which the Filing Protocol is

defined.

[7] Xerox Corporation. Internet Transport Protocols. Xerox Network Systems Standard

Stamford, Connecticut; December 1981;
XNSS 028112 (XSIS 028112).

This reference defines the Sequenced Packet Protocol upon which Courier relies for

data transport.

XEROX SYSTEM INTEGRATION STANDARD
87

[8] Xerox Corporation. Time Protocol. Xerox Network Systems Standard. Stamford,

Connecticut; October 1982; XNSS 088210 (XSIS 088210).
This reference defines the Time Standard upon which the Filing Protocol relies for the

definition of the format of time and date quantities.

[9] American National Standards Institute. American National Standard Code for

Information Interchange. X3.4-1977.

This reference defines the character code assignments useful for text file interchange.

[10] Xerox Corporation. SecondaryCredentials Formats. Xerox Network Systems Standard.

Stamford, Connecticut; May 1986; XNSS 258605.

This reference documents specific type assignments and data formats for secondary

credentials. Implementations of Filing or FilingSubset on hybrid hosts may require

secondary authentication information.

88
FILING PROTOCOL

B- TYPE ASSIGNMENT PROCEDURES

As stated in this document, file types and file attributes are assigned 32-bit numbers that

are unique throughout the distributed system. These file type and attribute number spaces
are administered by Xerox Corporation. To obtain a block of numbers, submit a written

request to:

Xerox Corporation

Xerox Network Systems Institute

2300 Geng Road

PaloAlto, California 94303

Filing Protocol implementors axe encouraged to apply for unique blocks of numbers for their

particular applications. Uniqueness allows systems to freely interconnect without having to

worry about overlapping values for critical fields.

Both file type and file attribute numbers should be used with economy as the total number of

blocks is limited. If a Filing Protocol client or implementation is using a large quantity of

either of these type numbers, the designer has probably misunderstood their utility

B.1 Common file types

Commonly-used values of the type file attribute are defined in this appendix. Clients are

encouraged to use these types to identify files that have the specified characteristics in order

to promote information sharing. However, the file service does not enforce the specified

semantics.

Files that have a format private to a single client, or for which the format is unknown or

uninteresting, are conventionally given
type:

tUnspecified: Type 0;

Files that are directories with no additional semantics (and no content) are conventionally

given type:

tDirectory: Type 1;

Non-directory files containing text conforming to the Character Code Standard [4],

including the Xerox String Encoding defined there (except that no
length information is in

the content) are conventionally given type:

tText: Type 2;

Files that are non-directories containing a single data structure of type SerializedFile are

conventionally given type:

tSerialized: Type 3;

~""^

89

XEROX SYSTEM INTEGRATION STANDARD

Files consisting of attribute information only and no content are conventionally given the

type:

tEmpty: Type - 4;

Non-directory text files whose content can be interpreted as standard ASCII [9] are conven

tionally given the type:

tAscii: type 6;

StreamOfAsciiText defines a standard encoding for line-oriented ASCII textual information.

In this approach to text encoding, individual lines are distinguished by the encoding syntax

and not by specific codes embedded within the strings. This implies that line delimiter

characters are absent from the text encoding; structural information is conveyed entirely by
the encoding.

StreamOfAsciiText: type choice of {

nextLine(O) > recoro[

line: AsciiString,

restOfTert: StreamOfAsciiText],

lastLine(i) > AsciiString};

AsciiString: type <

:cord[

lastByttSignr *nt: boolean,

bytes: sequence of unspecified];

AsciiString is used to represent a series of codes from the ASCII character set [9] as a

sequence of sixteen-bit entities. Each sixteen-bit unspecified value contains two eight-bit

ASCII codes. The boolean lastByteSignificant indicates whether or not the last byte of the

last unspecified value is significant (that is, whether or not the length of the ASCII string in

bytes is even). If lastByteSignificant is false, then the last byte has a zero value and should

be ignored.

Files whose content conforms to the StreamOfAsciiText definition are given the type:

tAsciiText: Type 7;

90 filing protocol

.fWWaKAM
UtLLAKAMUN

The complete declaration of the Filing remote program is given below.

Filing: program 10 version 6

BEGIN

DEPENDS UPON

BulkData (0) version 1,

Clearinghouse (2) version 3,

Authentication (14) version 3,

Time (15) version 2;

- TYPESAND CONSTANTS -

Attributes (individual attributes defined later) -

AttributeType: type longcardinal;

AttributeTypeSequence: type sequence ofAttributeType;

allAttributeTypes: AttributeTypeSequence [37777777777B];

Attribute: type - record [type: AttributeType, value: sequence of unspecified];

AttributeSequence: type sequence of Attribute;

-- Controls

ControlType: type {lock(0),timeout(1).access(2)>;

ControlTypeSequence: type sequence 3 of ControlType;

Control: type - choice ControlType of {

lock > Lock,

timeout > Timeout,

access > AccessSequence};

ControlSequence: type - sequence 3 of Control;

Lock: type -
(none(0),share(1).exclusive(2)};

Timeout: type cardinal; -in
seconds-

jjn,

defaultTimeout: Timeout - 177777B;
- actual value U

mplenun.aUon.dependen,
-

AccessType: type {
- all files - read(0). write(1).

owner(2).

- directories - add(3), remove(4)};

AccessSequence: type .
sequence 5 of AccessType;

fullAccess: AccessSequence
- [177777B];

Scopes

ScopeType: rm . {count(0). directiond).
fflwOJ.P<h<3'

Scope: type - choice
ScopeType of {

count > Count,

depth - > Depth,

91

R0X system integration standard

direction - > Direction,

filter - > Filter};

ScopeSequence: type - sequence 4 of Scope;

Count: type cardinal;

unlimitedCount: Count - 177777B;

Depth: type cardinal;

allDescendants: Depth 177777B;

Direction: type (forward(0),backward(1)};

FilterType: type {
relations

less(O), lessOrEqual(l), equal(2), notEqual(3). greaterOrEqual(4), greater(5),

logical

and(6), or(7), not(8),

- constants -

none(9),all(10),

- patterns

matches(11)};

Filter: type choice FilterType of {
less, lessOrEqual, equal, notEqual, greaterOrEqual, greater >

record [attribute: Attribute, interpretation: Interpretation], - interpretation

ignored ifattribute interpreted by implementor

and, or > sequence of Filter,

not > Filter,

none, all > record [],

matches > record [attribute: Attribute]};

Interpretation: type {none(O). boolean(1),cardinal(2), longCardinal(3),

time(4), integer(5), longlnteger(6), string(7)};

nullFilter: Filter - all [];

--Handles andAuthentication

Credentials: type - record [

primary: PrimaryCredentials,

secondary: SecondaryCredentials];

PrimaryCredentials: type - Authentication.Credentials;

nullPrimaryCredentials: PrimaryCredentials Authentication.nullCredentials;

Strength: type (none(O), simple(1), strong(2)};

SecondaryCredentials: type = choice Strength of {
none > [],

simple > Secondary,

strong > EncryptedSecondary};

SecondaryltemType: type long cardinal;

SecondaryType: type - sequence 10 of SecondaryltemType;

92 FILING PROTOCOL

Secondary: type sequence 10 of Secondaryltem;
Secondaryltem: type record [

type: SecondaryltemType,
value: sequence of unspecified];

EncryptedSecondary: type sequence ofAuthentication.Block;

Handle: type array 2 of unspecified;
nullHandle: Handle - [0,0]; - meaning depends on operation -

Session: type - record [token: array 2 of unspecified, verifier: Verifier];

Verifier: type Authentication.Verifier;

--Random access

ByteAddress: type long cardinal;

ByteCount: type long cardinal;

endOfFile: long cardinal - 37777777777B; -logical end offile-

ByteRange: type record [firstByte: ByteAddress, count: ByteCount];

-- REMOTE PROCEDURES -

- Logging On andOff-

Logon: procedure [

service: Clearinghouse.Name, credentials: Credentials, verifier: Verifier]
returns [session: Session]

reports [AuthenticationError, ServiceError, SessionError, UndefinedError] 0;

Logoff: procedure [session: Session]

reports [AuthenticationError, ServiceError, SessionError. UndefinedError] 1;

Continue: procedure [session: Session]

returns [continuance: cardinal]

reports [AuthenticationError, SessionError, UndefinedError] 19;

-- Opening andClosing Files

Open: procedure [attributes: AttributeSequence. directory: Handle,

controls: ControlSequence, session: Session]

returns [file: Handle]

reports [AccessError,AttributeTypeError,AttributeValueError,

AuthenticationError, ControlTypeError, ControlValueError, HandleError,

SessionError, UndefinedError] 2;

Close: procedure [file: Handle, session: Session]

reports [AuthenticationError, HandleError, SessionError. UndefinedError] 3;

-- Creating andDeleting Files
-

Create: procedure [directory: Handle, attributes: AttributeSequence,

controls: ControlSequence, session: Session]

returns [file: Handle]

reports [AccessError,AttributeTypeError, AttributeValueError.

XEROX SYSTEM INTEGRATION STANDARD 93

AuthenticationError,ControlTypeError, ControlValueError, HandleError,

InsertionError, SessionError, SpaceError, UndefinedError] 4;

Delete: procedure [file: Handle, session: Session]
reports [AccessError,AuthenticationError, HandleError, SessionError,

UndefinedError] - 5;

-- Getting andChangingControls (Transient) -

GetControls: procedure [file: Handle, types: ControlTypeSequence,

session: Session]
returns [controls: ControlSequence]

reports [AccessError,AuthenticationError, ControlTypeError, HandleError,

SessionError, UndefinedError] 6;

ChangeControls: procedure [file: Handle, controls: ControlSequence,

session: Session]

reports [AccessError, AuthenticationError, ControlTypeError,

ControlValueError, HandleError, SessionError, UndefinedError] 7;

--Getting andChangingAttributes (Permanent)

GetAttributes: procedure [file: Handle, types: AttributeTypeSequence,

session: Session]

returns [attributes: AttributeSequence]

reports [AccessError,AttributeTypeError, AuthenticationError, HandleError,

SessionError, UndefinedError] 8;

ChangeAttributes: procedure [file: Handle, attributes: AttributeSequence,

session: Session]

reports [AccessError, AttributeTypeError, AttributeValueError,

AuthenticationError, HandleError, InsertionError, SessionError, SpaceError,

UndefinedError] * 9;

UnifyAccessLists: procedure [directory: Handle, session: Session]

reports [AccessError,AuthenticationError, HandleError, SessionError,

UndefinedError] 20;

CopyingandMoving Files

Copy: procedure [file. destinationDirectory: Handle,

attributes: AttributeSequence, controls: ControlSequence, session: Session]
returns [newFile: Handle]

reports [AccessError,AttributeTypeError,AttributeValueError,

AuthenticationError, ControlTypeError, ControlValueError, HandleError,
InsertionError, SessionError, SpaceError, UndefinedError] 10;

Move: procedure [file, destinationDirectory: Handle,

attributes: AttributeSequence, session: Session]

reports [AccessError, AttributeTypeError, AttributeValueError,

AuthenticationError, HandleError, InsertionError, SessionError, SpaceError,

UndefinedError] 11;

94 FILING PROTOCOL

--

TransferringBulkData (File Content) -

Store: procedure [directory: Handle, attributes: AttributeSequence,
controls: ControlSequence, content: BulkData.Source. session: Session]

returns [file: Handle]

reports [AccessError,AttributeTypeError, AttributeValueError,
AuthenticationError, ConnectionError,ControlTypeError, ControlValueError,
HandleError, InsertionError, SessionError, SpaceError, TransferError,
UndefinedError] 12;

Retrieve: procedure [file: Handle, content: BulkData.Sink, session: Session]
reports [AccessError,AuthenticationError, ConnectionError, HandleError,

SessionError, TransferError, UndefinedError] 13;

Replace: procedure [file: Handle, attributes: AttributeSequence,
content: BulkData.Source, session: Session]

reports [AccessError, AttributeTypeError, AttributeValueError,

AuthenticationError, ConnectionError, HandleError, SessionError, SpaceError,

TransferError, UndefinedError] 14;

-- TransferringBulkData (SerializedFiles)

Serialize: procedure [file: Handle, SerializedFile: BulkData.Sink,

session: Session]

reports [AccessError,AuthenticationError, ConnectionError, HandleError,

SessionError, TransferError, UndefinedError] 15;

Deserialize: procedure [directory: Handle, attributes: AttributeSequence,

controls: ControlSequence, SerializedFile: BulkData.Source, session: Session]

returns [file: Handle]

reports [AccessError,AttributeTypeError, AttributeValueError,

AuthenticationError, ConnectionError, ControlTypeError. ControlValueError,

HandleError, InsertionError, SessionError, SpaceError, TransferError,

UndefinedError] 16;

Random Access to FileData

RetrieveBytes: procedure [file: Handle, range: ByteRange,

sink: BulkData.Sink, session: Session]

reports [AccessError, HandleError, RangeError, SessionError, UndefinedError] 22;

ReplaceBytes: procedure [

file: Handle, range: ByteRange, source: BulkData.Source,
session: Session]

reports [AccessError, HandleError, RangeError, SessionError, SpaceError.

UndefinedError] 23;

- Locating andListing Files in aDirectory
-

Find: procedure [directory: Handle, scope: ScopeSequence,

controls: ControlSequence, session: Session]

returns [file: Handle]

reports [AccessError,AuthenticationError, ControlTypeError,

ControlValueError, HandleError, ScopeTypeError, ScopeValueError,

SessionError. UndefinedError] 17;

XEROX SYSTEM INTEGRATION STANDARD 95

List: procedure [directory: Handle, types: AttributeTypeSequence,

scope: ScopeSequence, listing: BulkData.Sink, session: Session]

reports [AccessError,AttributeTypeError,AuthenticationError,

ConnectionError, HandleError, ScopeTypeError, ScopeValueError, SessionError,

TransferError, UndefinedError] 18;

- REMOTE ERRORS -

problem with an attribute type or value

AttributeTypeError: error [problem: ArgumentProblem,

type: AttributeType] 0;

AttributeValueError: error [problem: ArgumentProblem,

type: AttributeType] 1;

-- problem with a control type or value

ControlTypeError: error [problem: ArgumentProblem, type: ControlType] 2;

ControlValueError: error [problem: ArgumentProblem, type: ControlType] 3;

-- problem with a scope type or value

ScopeTypeError: error [problem: ArgumentProblem, type: ScopeType] 4;

ScopeValueError: error [problem: ArgumentProblem, type: ScopeType] 5;

ArgumentProblem: type {

illegal(O), ~ this type or value is never allowed

disallowed(l), -- this type or value is not allowed in thisprocedure

unreasonable(2), this type or value does not make sense in this context

unimplemented(3), - this type or value is not supported in this implementation

duplicated(4), - this type or value is specified twice

missing(S)}; - this type or value is required but not specified

problem in obtaining access to a file

AccessError: error [problem: AccessProblem] 6;

AccessProblem: type {
accessRightslnsufficient(O), - the user doesn't have access

accessRightslndeterminate(l), -- cannot determine whether the user has access --

fileChanged(2), - in such a way that the procedure cannot continue

fileDamaged(3), -- this file should not be used -

filelnUse(4), - file is still unavailable after expiration of timeout --

fileNotFound(5), - the file does not exist in the specified context

fileOpen(6)}; ~ file cannot be moved or deleted while another handle exists -

problem with a credentials or verifier

AuthenticationError: error [problem: AuthenticationProblem, type: SecondaryType] 7;

AuthenticationProblem: type {

primaryCredentialslnvalid(O), - decryption failed orClearinghouse name was invalid -

verifierlnvalid(l),
-- decryption failed or simplepassword was invalid -

verifierExpired(2), - a strong verifier was too old -

verifierReused(3), - verifier has been reused or is out ofsequence -

primaryCredentialsExpired(4),
~

validity ofprimary credentials has lapsed -

inappropriatePrimaryCredentials(5), - primary credentials were too weak -

96 FILING PROTOCOL

secondaryCredentialsRequired(6), -- secondary authentication information required but

none was supplied; type indicates the type ofsecondary credentials required
-

secondaryCredentialsTypelnvalid(7). - the specified secondary credentials type was

incorrect or the secondary credentials value was improperly formatted for the
specified type; type indicates the type ofsecondary credentials required

-

secondaryCredentialsValuelnvalid(8)}; - the specified secondary authentication

information was not acceptible to the service; type indicates the type ofsecondary

credentials required

problem with a bulk data transfer

ConnectionError: error [problem: ConnectionProblem] 8;

ConnectionProblem: type {

-- communicationproblems

noRoute(O), -- no route to the otherparty could be found -

noResponse(l), -- the otherparty never answered

transmissionHardware(2), -- some local transmission hardware was inoperable

transportTimeout(3), -- the otherparty responded but later failed to respond -

resourceproblems

tooManyLocalConnections(4). - no additional connection is possible -

tOOManyRemoteConnections(5), -- the otherparty rejected the connection attempt
-

- remote program implementation problems

missingCourier(6), -- the otherparty had no Courier implementation
-

missingProgram(7),
-- the otherparty did not implement the bulk data program

-

missingProcedure(8),
-- the otherparty did not implement the procedure

-

protOCOlMismatch(9),
-- the twoparties have no Courier version in common -

parameterlnconsistency(IO), -a protocol violation occurred in parameters
-

invalidMessage(11), -- a protocol violation occurred in message format
--

returnTimedOut(12), the procedure call never returned --

miscellaneous

OtherCallProblem(177777B) }; -- some otherprotocol violation during a call
-

problem with a file handle --

HandleError: error [problem: HandleProblem] 9;

HandleProblem: type {

invalid(O), -- this file handle is not valid
-

nullDisallowed(l),
- the null handle is not allowed here

-

directoryRequired(2)};
- the handle must designate a directory -

-problem during insertion in directory
(or changing attributes)

-

InsertionError: error [problem: InsertionProblem] 10;

InsertionProblem: type {

positionUnavailable(O).
-- no

"point"

at which to insert in order-by-position
-

xerox system integration standard
97

fileNotUnique(1), -- identifying information(e.g. name) is not unique
-

IOOplnHierarchy(2)}; -- cyclic directory structures are illegal -

problem during random access operation

RangeError: error [problem: ArgumentProblem] 16;

--problem during logon or logoff

ServiceError: error [problem: ServiceProblem] 11;

ServiceProblem: type {

cannotAuthenticate(O), - cannot reach authentication service,
for example -

serviceFull(l), - no more logons can be accepted

serviceUnavailable(2), - logons are not being accepted -

sessionlnUse(3)}; - cannot logoffwhile an operation is inprogress
-

problem with a session

SessionError: error [problem: SessionProblem] 12;

SessionProblem: type {

tokenlnvalid(O)}; -- the token is invalid -

problem obtaining space for file content or attributes

SpaceError: error [problem: SpaceProblem] 13;

SpaceProblem: type {

allocationExceeded(O),
- specifically-allocated file space exceeded

attributeAreaFull(l),
- no more attributes may be storedwith file

mediumFull(2)};
- no more room is available on the storage medium

problem during bulk data transfer

TransferError: error [problem: TransferProblem] 14;

TransferProblem: type {

aborted(O), ~ the transfer was aborted by the source or sink

checksumlncorrect(l),
- after transfer ofa file's content to a sink, the checksum

computed over the data did not match the file's stored checksum attribute -

formatlncorrect(2), - bulk data received from source did not have the expected format

noRendezvous(3),
- the identifier from the otherparty never appeared

-

wrongDirection(4)};
-- otherparty wanted to transfer the data in the wrong direction

-

some undefined (and implementation-dependent) problem occurred

UndefinedError: error [problem: UndefinedProblem] 15;

UndefinedProblem: type cardinal; -- implementation-dependent

INTERPRETEDATTRIBUTEDEFINITIONS -

accessList: AttributeType -19;

AccessEntry: type record [key: Clearinghouse.Name, access: AccessSequence] ;

AccessList: type record [entries: sequence ofAccessEntry, defaulted: boolean];

specification ofaccess permissions
-

98 FILING PROTOCOL

checksum: AttributeType 0; -- checksum over content offile
-

Checksum: type cardinal;

unknownChecksum: Checksum 177777B;

childrenUniquelyNamed: AttributeType - 1; - all children uniquely named -

ChildrenUniquelyNamed: TYPE - boolean; - default value is implementation-dependent -

createdBy: AttributeType 2; -- name ofuser whose action changed createdOn -

CreatedBy: type User;

createdOn: AttributeType 3; -- date file's content was created -

CreatedOn: type Time;

dataSize: AttributeType 16; - number ofbytes ofdata in file's content -

DataSize: type long cardinal;

defaultAccessList: AttributeType 20;

-- access inherited by children with defaulted access lists

DefaultAccessList: type AccessList;

filelD: AttributeType 4; -ID offile -

FilelD: type array 5 of unspecified; -- implementation-dependent -

nullFilelD: FilelD - [0,0,0,0.0];

isDirectory: AttributeType 5; -- file is a directory (potentially has children) --

IsDirectory: type boolean;

isTemporary: AttributeType 6; - file is temporary (cannot be a directory)

IsTemporary: type boolean;

modifiedBy: AttributeType 7; -- name ofuser whose action changed modifiedOn

ModifiedBy: type User;

modifiedOn: AttributeType 8; -- date file was last modified -

ModifiedOn: type Time;

name: AttributeType 9; - descriptive name offile (relative to parent)
-

Name: type string; - must not exceed 100 bytes (not characters)
-

numberOfChildren: AttributeType 10; - number ofchildren in this directory -

NumberOfChildren: type cardinal;

ordering: AttributeType 11; -order ofchildren for Find, List
-

Ordering: type record!

key: AttributeType. ascending: boolean,
interpretation: Interpretation];

- interpretation ignored ifattribute interpreted by implementor
-

defaultOrdering: Ordering [key: name, ascending: true, interpretation: string];

byAscendingPosition: Ordering [key: position, ascending: true, interpretation: none];

byDescendingPosition: Ordering [key: position, ascending: false, interpretation: none]

parentlD: AttributeType 12; - ID ofparent directory of this file
-

ParentlD: type FilelD;

XEROX SYSTEM INTEGRATION STANDARD
"

pathname: AttributeType 21; -- accesspath to file relative to root file -

Pathname: type string;

position: AttributeType - 13; - reference toposition within directory -

Position: type sequence 100 of unspecified;

firstPosition: Position [0];

lastPosition: Position - [177777B];

readBy: AttributeType 14; - name ofuser whose action changed readOn
-

ReadBy: type User;

readOn: AttributeType 1 5; ~ date file's content was last read -

ReadOn: type Time;

StoredSize: AttributeType 26; - number ofbytes physically allocated to stored file -

StoredSize: type long cardinal;

subtreeSize: AttributeType 27;

number ofcontent bytes in directory and all descendants

SubtreeSize: type - long cardinal;

nullSubtreeSizeLimit: SubtreeSizeLimit. 37777777777B;

subtreeSizeLimit: AttributeType = 28;

limitation on number content bytes in directory andall descendants -

SubtreeSizeLimit: type * long cardinal;

type: AttributeType 17; - file type; assigned by client -

Type: type longCardinal;

version: AttributeType 18; -- version number offile (relative toparent)

Version: type cardinal;

lowestVersion: Version 0;

highestVersion: Version 177777B;

-- CommonDefinitions

Time: type Time.Time; -- seconds

nullTime: Time Time.earliestTime;

User: type Clearinghouse.Name;

- BULKDATA FORMATS -

SerializedFile Format, used in Serialize andDeserialize

SerializedFile: type record [version: long cardinal, file: SerializedTree];

currentVersion: long cardinal 3;

SerializedTree: type record [

attributes: AttributeSequence,

content: record [data: BulkData.StreamOfUnspecified,
lastBytelsSignificant: boolean],

children: sequence of SerializedTree];

100 FILING PROTOCOL

Attribute Series Format, used inList -

StreamOfAttributeSequence: type choice of {
nextSegment (0) > record [

segment: sequence of AttributeSequence,
restOfStream: StreamOfAttributeSequence],

lastSegment (1) > sequence of AttributeSequence};

-- Line-orientedASCII text file format, used in file interchange --

StreamOfAsciiText: type choice of {
nextLine(O) > record [

line: AsciiString,

restOfText: StreamOfAsciiText],

lastLine(1) > AsciiString};

AsciiString: type record [

lastByteSignificant: boolean,

bytes: sequence of unspecified] ;

- FILE TYPES -

Clients are encouraged to use thesepredefined types to identify files that have the specified

characteristics, to promote information sharing

tUnspecified: Type 0; -- nothing is known about the content or attributes ofa file of this

type; it is useful for files that have a private format

tDirectory: Type 1 ; -- this file is a directory, and it has no content (only children)

tText: Type 2; - this file is not a directory, and its content conforms to the string encoding

described in the Character Code Standard -

tSerialized: Type 3; -- this file is not a directory, and its content conforms to the serialized

file format

tEmpty : Type 4; ~ this file is not a directory, and is comprised ofattribute information only

and no content

tAscii: Type 6; -- this file is not a directory, and its content is comprised ofASCII data
-

tAsciiText: Type 7; -- this file is not a directory, and its content conforms to the
stream of

ASCII text definition -

END. -ofFiling
-

XEROX SYSTEM INTEGRATION STANDARD
101

102
FILING PROTOCOL

This appendix gives an example of a complete session of interaction with the file service
annotated with the Purpose of each procedure, the task to be performed, and the section of
this document in which the procedure is explained. In this session, the client

t opens and lists the directory
"Utters"

within the directory "Development"

retrieves a file and changes one of its attributes

deletes all files thatmeet a certain characteristic

stores a new file, and copies it to a different directory

moves the retrieved file to the same directory

lists the two directories -

First, the client logs on to the file service (3.1.3). The constant userCredentials denotes a
value ofcredentials appropriate for this client to log on to the file service (obtained from an

authentication service or by other means). A session handle is returned which is used in

subsequent operations.

Logon [service: [organization:
"Xerox,"

domain: "Office
Systems,"

object: "TestFS"],
credentials: userCredentials, verifier: simpleVerifier]

returns [session: [token: [41 B, 3B], verifier: simpleVerifier]]

Most clients wish to remain logged on to the file service until an explicit logoffoccurs even if

there are periods of inactivity. To
"remind"

the file service that the client is still interested

in the session, the client probes the file service (3.1.5).

Continue [session: [token: [41 B, 3B], verifier: simpleVerifier]]

returns [continuance: 600]

Because the client just logged on, the first Continue has little effect (the session is unlikely

to be terminated so soon), but it does let the client know that it should Continue again before

ten minutes (600 seconds) have elapsed. A client would typically instruct some background

process to call Continue again within that period, however, in this example it is assumed

that this session is logged offbefore the next Continue is necessary.

Next, the client opens a directory which resides in the root directory and has the name

"Development"
(3.2.2). The file service opens a file within the root directory because no

parentlD attribute was specified.

Open[

attributes: [[type: name, value: "Development"]],

directory: nullHandle,

XIROX SYSTEM INTEGRATION STANDARD

controls: fl.

session: [token: [41B.3B], verifier: simpleVerifier]]

returns [file: [365B, 21B]]

The client needs the filelD auribute of this directory for use in future procedure calls so it

specifies that attribute in a call to GetAttributes (3.4.2).

GetAttributes [file: [365B, 21B], types: [filelD],
session: [token: [41B,3B], verifier: simpleVerifier]]

returns [attributes: [[type: filelD, value: [OB. OB. 2B, 33B, 6334B]]]]

The client again calls Open (3.2.2), this time to open the directory
"Letters"

within the

directory
"Development."

The parentlD attribute is specified to indicate that the file being
openedmust be inside

"Development."

Open[

attributes: [

[type: name, value: "Letters"],

[type: parentlD, value: [OB. OB, 2B, 33B, 6334B]]],

directory: nullHandle,

controls: [],

session: [token: [41B,3B], verifier: simpleVerifier]]

returns [file: [214B.22B]]

Again, the filelD is determined for future reference.

GetAttributes [file: [214B, 22B], types: [filelD],

session: [token: [41 B, 3B], verifier: simpleVerifier]]

returns [attributes: [[type: filelD. value: [0B,0B,477B,1162B,5B]]]]

Now, the client lists the files in
"Letters"

starting at the last file and moving toward the

beginning. It is assumed that the directory's ordering is defaultOrdering. The attributes to

be returned are filelD, name, version, and type. Notice that the attributes of the three files

are sent to the client as bulk data. Before calling List (3.5.3) the client must have

constructed bulkDataSinkl, a Bulk Data Transfer Sink, and this may have required making

a remote procedure call according to the Bulk Data Transfer specification.

List [directory: [214B, 22B], types: [filelD, name, version, type],

scope: [direction backward], listing: bulkDataSinkl,

session: [token: [41 B, 3B], verifier: simpleVerifier]]

- the following record is transferred as bulk data ~

nextSegment [

segment: [[

[type: filelD, value: [OB. OB, 65B, 11743B. 2634B]].

[type: name, value: "Recent Purchases"],

[type: version, value: 2],

[type: type, value: tUnspecified]]],

restOfStream:

104 FILING PROTOCOL

EXAMPLES

nextSegment [

segment: [[

[type: filelD, value: [OB, OB. 1762B.153B.7775B]],
[type: name, value: "Information Request"],
[type: version, value: 1],

[type: type, value: tText]]].

restOfStream:

lastSegment [[
[type: filelD. value: [OB. OB. 3633B, 1102B. 5B]].

[type: name, value: "Expense Report"],
[type: version, value: 1],

[type: type, value: tUnspecified]]]

]]

The client now wishes to retrieve the content of the file named "Recent
Purchases."

To open

it the client can directly specify the filelD obtained in the previous procedure (along with the
parentlD to make sure that the file has not moved in the meantime). The client also specifies

a lock since the subsequent procedures need to proceed without interruption.

Open [attributes: [

[type: filelD. value: [OB, OB, 65B, 1 1743B, 2634B]],

[type: parentlD. value: [OB. OB, 477B, 1 162B, 5B]]],
directory: nullHandle,

controls: [lock exclusive],

session: [token: [41 B, 3B], verifier: simpleVerifier]]

returns [file: [602B, 24B]]

The client now wishes to retrieve the content of the file. Before calling Retrieve (3.6.3) the

client must have constructed bulkDataSink2, a Bulk Data Transfer Sink, and this may have

requiredmaking a remote procedure call according to the Bulk Data Transfer Protocol.

Retrieve [file: [602B. 24B], content: bulkDataSink2,

session: [token: [41B.3B], verifier: simpleVerifier]]

- the data is transferred as bulk data
-

It is assumed that attribute type 4416B is assigned to the client and that this attribute is

used as a
"marker"

to indicate that the file has been retrieved. Since the file has now been

retrieved, the client proceeds to set the
attribute to true usingChangeAttributes (3.4.3).

ChangeAttributes [file: [602B. 24B],

attributes: [[type: 4416B, value: true]],

session: [token: [41 B, 3B], verifier: simpleVerifier]]

The client doesn't yet close the file (in case it is needed later), but the exclusive lock is no

longer needed so the lock is changed (3.3.3).

ChangeControls [file: [602B. 24B], controls: [lock none],

session: [token: [41 B, 3B], verifier: simpleVerifier]]

Now the client deletes all files that have
types other than tUnspecified This is done by

repeatedly calling Find (3.5.2) with the appropriate criteria and deleting the result, until

xerox system integration standard
1 05

Find no longer succeeds. If there are many files in a directory, List (3.5.3) might be a more

appropriate procedure for this purpose.

Find [directory: (21 4B, 22B],

scope: [filter notEqual

[attribute: [type: type, value: tUnspecified], interpretation: longCardinal]],

controls: [].

session: [token: [41B, 3B], verifier: simpleVerifier]]

returns [file: [710B.27B]]

Now that the file has been found (the returned file handle refers to the file named

"Information Request"), the client deletes it (3.7.2).

Delete [file: [710B, 27B], session: [token: [41B, 3B], verifier: simpleVerifier]]

The client tries again to find a file that satisfies the criteria. This time, however, no such file

exists. All files left in the directory are of type tUnspecified.

Find [directory: [214B, 22B],

scope: [filter notEqual

[attribute: [type: type, value: tUnspecified], interpretation: longCardinal]],

controls: [],

session: [token: [41 B, 3B], verifier: simpleVerifier]]

reports AccessError [problem: fileNotFound]

The next step is to store a new file in the
"Letters"

directory. The type is tText and the name

is "August Progress
Report."

The creator and the date of creation are also specified. The

specified dataSize is a hint. It could have been omitted or even specified incorrectly (within

the available space on the file service) without affecting anything but performance. Notice

that the file's content is sent to the file service as bulk data. Before calling Store (3.6.2) the

client must have constructed bulkDataSourcel, a Bulk Data Transfer Source, and this may

have requiredmaking a remote procedure call according to the Bulk Data Transfer Protocol.

Store [directory: [214B, 22B],

attributes: [

[type: name, value: "August Progress Report"],

[type: type, value: tText].

[type: createdBy: value:

[organization:
"Xerox,"

domain: "Office
Systems,"

object: "Kabcenell"],

[type: createdOn: value: 2263526570B],

[type:dataSize, value: SOB]],

controls: [], content: bulkDataSourcel,

session: [token: [41B.3B], verifier: simpleVerifier]]

- the data is transferred as bulk data -

returns [file: [71 7B.23B]]

The client then copies this file just stored in
"Letters"

into
"Development"

giving the copy

the name "Current
Progress"

(3.8.1).

106 FILING PROTOCOL

Copy [file: [717B.23B], destinationDirectory: [365B.21B],
attributes: [[type: name, value: "Current Progress"]],
controls: []. session: [token: [41B, 3B], verifier: simpleVerifier]]

returns [file: [3104B. 20B]]

The client then closes both the stored file and its copy (3.2.3).

Close [file: [717B.23B],

session: [token: [41B.3B], verifier: simpleVerifier]]

Close [file: [3104B.20B],

session: [token: [41B,3B], verifier: simpleVerifier]]

The file retrieved earlier ("Recent Purchases"), which is still open, is now moved from
"Letters"

to
"Development"

without specifying any attributes (3.8.2).

Move [file: [602B. 24B], destinationDirectory: [365B, 21B],

attributes: [], session: [token: [41B,3B], verifier: simpleVerifier]]

Finally, the files in directories
"Development"

and
"Letters"

are listed, from beginning to

end this time. Notice that "Recent
Purchases"

has acquired a version number of 1; version

numbers are not preserved when moving between directories. Also notice that the filelD of

"Recent
Purchases"

has not changed.

-

mbulkDataSink3m

is established for the bulk data transfer -

List [directory: [365B. 21 B], types: [filelD. name, version, type],

scope: [],

listing: bulkDataSink3,

session: [token: [41B. 3B], verifier: simpleVerifier]]

- bulk data for
"Development"

-

nextSegment [

segment: [[

[type: filelD, value: [OB, OB, 47103B. 51 1 B, 60B]],

[type: name, value: "Current Progress"]

[type: version, value: 1],

[type: type, value: tText]]],

restOfStream:

nextSegment [

segment: [[

[type: filelD, value: [OB. OB. 477B. 1162B, 5B]].

[type: name, value: "Letters"],

[type: version, value: 1],

[type: type, value: Type tDirectory]]],

restOfStream:

lastSegment [[

[type: filelD. value: [OB. OB. 65B, 1 1743B, 2634B]].

[type: name, value: "Recent Purchases"],

[type: version, value: 1],

XEROX SYSTEM INTEGRATION STANDARD
107

[type: type, value: tUnspecified]]

]]

- mbulkDataSink4
"

established for the bulk data transfer -

List [directory: [214B, 22B], types: [filelD, name, version, type],

scope: [], listing: bulkDataSink4,

session: [token: [41B.3B], verifier: simpleVerifier]]

- bulk data for "Letters
"
-

nextSegment [

segment: [[

[type: filelD. value: [OB, OB, 4267B, 31 5B. 5516B]],

[type: name, value: "August Progress Report"],

[type: version, value: 1],

[type: type, value: tText]]],

restOfStream:

lastSegment [[

[type: filelD, value: [OB, OB, 3633B, 1102B, 5B]],

[type: name, value: "Expense Report"],

[type: version, value: 1],

[type: type, value: tUnspecified]]]

]

The session is then logged off (3.1.4). Termination of a session closes all remaining file

handles opened within the session so it is not necessary to close them explicitly.

Logoff [session: [token: [41 B, 3B], verifier: simpleVerifier]]

108 FILING PROTOCOL

riLIIMVJ JUDit I

E.1 Overview

The FilingSubset Protocol defines a minimal capability to store, retrieve, enumerate, and

delete files ofa remote service. Hosts whose primary role is not that of a network file service

may support this protocol in order to provide a limited file transfer and file management

capability.

Because the native file system interfaces of many systems may not easily support the

general features of the Filing Protocol, the FilingSubset Protocol has also been designed to

facilitate straightforward implementation on heterogeneous systems.

E.1 .1 Motivation

The Filing Protocol provides a standardized means of accessing and transferring named

collections ofdata between cooperating system elements in an internetwork. This protocol

offers an exceedingly rich functionality; however, the extent of this richness may make the

full protocol too difficult and expensive in development cost to justify in a host whose

primary role is not that ofa network file service.

In distributed processing applications, it is also desirable to enable two hosts to exchange

files even though it is not intended that either system provide a comprehensive file service.

Further, it is often desirable to provide network access to files residing on heterogeneous

systems, if the addition of this feature does not require changes to native file system

interfaces .

In summary, a number ofdesires motivate the definition ofa simple filing capability:

support file exchange without requiring an exceedingly rich functionality.

provide XNS file access to the native file systems ofheterogeneous network hosts.

facilitate network access to the files on a system whose primary purpose is not that of a

file service.

ease the difficulty in supporting the Filing Protocol
on native operating systems.

permit implementation on diverse systems in a
straightforward way.

E.1.2 Requirements and Goals

The definition of the FilingSubset
Protocol is guided by a set of requirements and goals In

general, the requirements
are to provide a minimal but useful level of service within the

^

109

XEROX NETWORK SYSTEMS STANDARD

context of the Filing Protocol. The requirements guiding the definition of the FilingSubset

Protocol are:

provide the common file system functions of storage, retrieval, enumeration and

deletion.

foster compatibility by remaining a proper subset of the Filing Protocol.

facilitate implementation on heterogeneous systems.

ensure round-trip equality of file data.

A set of goals is also defined which, although not required nor guaranteed, are important to

the overall usefulness for elements implementing the subset. The following goals are

desirable in the definition of the Filing Subset:

ease of implementation ofservice provider and client software on a variety of systems.

round-trip preservation of attributes (the ability to store a file on a remote system and

retrieve it at a later date with all attributes intact).

the ability to perform common processing activities on a file regardless of which system

it currently resides on (for example, text editing, data base listing and backup/restore).

E.2 Definition

The FilingSubset Protocol specifies a minimal level of file service which subset client and

service implementations must support. Maximum interconnectivity is ensured when both

client and service implementations support this minimum level of service and make no

assumptions regarding the availability of a broader functionality. However, increasing
levels of functionality may be supported by individual FilingSubset implementations.

Corresponding client implementations must always be prepared to deal with only the

minimum functionality defined here; in this way the client achieves the greatest level of

compatibility with differing subset implementations, all of which support at least the

minimum.

FilingSubset is defined as a subset of the Filing Protocol. This guarantees that the style of

interaction between a subset client and service is consistent with that of the Filing Protocol.

This method of definition also guarantees that clients which implement the subset may

interact with a service implementing the Filing Protocol by issuing calls with the different

Courier program number and specifying appropriate parameter values. In addition, a client

using the Filing Protocol can interact with a FilingSubset service by restricting its use of

remote operations and arguments to those defined here (again by using the appropriate

Courier program number and specifying appropriate parameter values).

Note: Clients should not assume that an arbitrary FilingSubset service implementation will

support multiple Courier connections for a single session; a servce may not allow a session

obtained on one connection to be used on any other connection.

Note: In order to foster compatability between different FilingSubset client and service

implementations, it is recommended that implementations avoid terminating the

connection supporting their interaction too quickly or unnecessarily. Short periods of

inactivity should not result in termination of the connection.

110 FILING PROTOCOL

riUNVj 3UD3C I

In all cases, the operations, arguments, and errors defined in the subset are identical to

those in the Filing Protocol. In providing a minimal level of service, the subset does,
however, restrict the choices available for argument and error values.

The complete Courier definition of the FilingSubset Protocol is presented in section E.7.

E.3 Procedures

The FilingSubset supports those Filing operations which provide the essential functions

required for file storage, retrieval, enumeration, and deletion. These procedures are Logon,

Logoff, Continue, Open, Close, Retrieve, Store, List, and Delete

The FilingSubset Protocol also requires that all implementations permit file identification

to be performed through the use of the pathname attribute. The syntax and interpretation of

pathname attribute values is service-dependent.

E.3.1 Session support

The Logon, Logoff, and Continue operations are included in the FilingSubset and are

identical to the corresponding operations of the Filing Protocol.

E.3.2 Opening and closing files

The Open operation is included in the FilingSubset and is identical to the corresponding

operation of the Filing Protocol. All implementations must permit use of the pathname

attribute for file identification in Open. The parentlD, type, and version attributes must be

supported in conjunction with the pathname attribute; however, the set of required values

for each of these attributes may be limited (nullFilelD for parentlD, tUnspecified, tAsciiText,

and tDirectory for type, and lowestVersion and highestVersion for version). This implies

that a subset service implementation may not return an AttributeTypeError if the parentlD,

type or version attributes are specified on an Open; instead, an AttributeValueError may be

returned if the value of the attribute is not one of the above

The Open procedure may be rejected if controls is not the empty sequence or directory is not

the nullHandle.

The Filing Protocol specifies that while a client has a file open,
the file may not be deleted by

other clients. The FilingSubset Protocol does not require this behavior; that is, a service

implementation need not prevent a previously opened file from being deleted by other users,

regardless ofwhether they are general interactive users or
other network clients. The error

to be reported by the service in this case is
HandleProblem[problem: invalid] Subset clients

should be prepared to deal with directories or files which cannot be accessed even after a

valid handle is obtained.

The Close procedure is defined to be
identical to the Filing protocol.

XEROX NETWORK SYSTEMS STANDARD

E.3.3 Enumerating files

The FilingSubset Protocol defines a minimal file enumeration capability based on the

pathname attribute. Attribute types and values are handled in a manner consistent with

the Filing Protocol.

E.3.3.1 Scopes

The FilingSubset Protocol requires aminimum level of support for the scope types defined in

Filing. Specifically, only the count and filter scope types must be supported. However, not

all scope values for these types need be supported. At a minimum the filter scope type must

permit the matches filter type and permit its use for at least the pathname attribute type.

Example:

The following is an example of the required matches filter type (assuming the Filing
pathname syntax):

filter [matches [attribute: [type: pathname, value: "Document Archive/**"]]]

-- all files contained in the "DocumentArchive "directory

E.3.3.2 Attributes

A FilingSubset implementation of the List operation must return a value for each of the

attribute types requested by a client. Non-null values must always be returned for the

attribute types createdOn, dataSize, isDirectory, isTemporary, modifiedOn, pathname and

type. An appropriate non-null value must also be returned for the childrenUniquelyNamed

attribute type if the listed file is a directory (a null value for this attribute is appropriate for

non-directories).

Appropriate null values must be returned for all attribute types not supported by an

implementation. Note that this behavior is consistent with Filing in that each attribute

requested by a client is represented in the results ofa List call whether or not the service can

supply a meaningful value for the attribute.

Example:

An implementation which did not support the position attribute would return the following

in response to a client request for this attribute's value:

attribute: [type: position, value: sequence 0 of unspecified]

-- an appropriate null-value response to an unsupported attribute

E.3.3.3 Bulk data

Two Bulk Data Transfer [3] choices, BulkData.immediateSink and BulkData.nullSink, must

be supported by all FilingSubset implementations of List. Other bulk data choices may be

supported but are not required. In response to the use of an unsupported bulk data choice by

a client, a subset service must report the error TransferError [problem: aborted].

112 FILING PROTOCOL

E.3.4 Storing files

The FilingSubset Store procedure is defined to be identical to the corresponding operation in
Filing. At a minimum all implementations must permit the use of the pathname attribute
for file identification. The type and version attributes must be permitted in conjunction with
the pathname attribute; however, the set of required values for each of these attribute types
is small tUnspecified, tAsciiText, and tDirectory must be permitted for type, highestVersion
for version.

Treatment of other client-supplied attributes depends on which attributes a subset service

implements. A FilingSubset service must not reject a Store operation with an

AttributeTypeError if the createdOn, dataSize, isDirectory, pathname, type, or version
attributes is specified. An AttributeValueErrormay result if the accompanying value for any
of these attributes is invalid.

Similarly, a FilingSubset service may not reject a Store operation with an

AttributeTypeError if the accessList, childrenUniquelyNamed, defaultAccessList,
isTemporary, ordering, or subtreeSizeLimit attributes is specified. The service must not

report an AttributeValueError if the value of one of these attributes is as shown in the

attribute tables ofE.6. Ifother values are supplied and these are not supported by the subset

implementation then an appropriate AttributeValueError must be reported.

A service implementation may support more than this minimal attribute capability but is

not required to do so.

The Store procedure may be rejected if the controls argument is not the empty sequence or

the directory argument is not the nullHandle.

The semantics of the Store operation permit both non-directory and directory files to be

created. In the Filing Protocol a directory represents a special kind of file that may reference

other files; a directory in Filing also has all of the characteristics of a non-directory file,

namely attributes and content. FilingSubset implementations are not required to support

this entire functionality.

A subset service may allow or refuse to allow directory files to be created by its clients at its

discretion. If directory file creation is not permitted, the error AccessError [problem:

accessRightslnsufficient] must be reported.

Note: The Store operation must always result in the creation of a new file or an error report;

existing files are never overwritten by this operation.

Example:

A FilingSubset client attempting to create a new directory might specify (assuming the

FilingProtocol pathname syntax):

Store [directory: nullHandle,

attributes: [

[type: pathname, value: "Projects/Correspondence/Pending"].

[type: isDirectory, value: true],

[type: type, value: tDirectory]],

controls: 0.

content: BulkData.nullSource,

session: [token: [11B.27734B], verifier: simpleVerifier]]

XEROX NETWORK SYSTEMS STANDARD
113

Note that the specification of BulkData.nullSource for content is equivalent to the

specification ofBulkData.immediateSource with zero bytes transferred.

A subset service supporting directory creation is not required to support directory files

having data content. To reject a request to create a directory with content a service should

report the error AttributeValueError [problem: unreasonable, type: isDirectory].

E.3.4.1 Bulk data

Two Bulk Data Transfer [3] choices, BulkData.immediateSource and BulkData.nullSource,

must be supported by all FilingSubset implementations of Store. Other bulk data choices

may be supported but are not required. In response to the use of an unsupported bulk data

choice by a client, a subset service must report the error TransferError [problem: aborted].

E.3.5 Retrieving files

The FilingSubset Retrieve operation is identical to the Filing Protocol equivalent. This

operation transfers the content ofan existing file to the client.

E.3.5.1 Bulk data

Two Bulk Data Transfer [3] choices, BulkData.immediateSink and BulkData.nullSink, must

be supported by all FilingSubset implementations of Retrieve. Other bulk data choices may
be supported but are not required. In response to the use of an unsupported bulk data choice

by a client, a subset service must report the error TransferError [problem: aborted].

E.3.6 Deleting files

The FilingSubset Delete operation is identical to the Filing Protocol equivalent. This

operation permits a client to delete existing files.

The Filing Protocol specifies that a Delete operation applied to a directory file will result in

the deletion of the directory and all its descendants. This behavior is not required of all

subset implementations, although consistency with Filing is desirable. If a subset service

implementation does not support the Filing behavior then it should report the error

AccessError [problem: accessRightslnsufficient]. Client implementations should always be

prepared to deal with this failure report.

E.3.7 Summary of remote procedure restrictions

The FilingSubset Protocol defines the minimum capabilities which all implementations

must provide. A subset client may attempt to use more than the minimum functionality
required of a subset service but should not assume that the additional procedure or

argument capabilities will be available. Similarly, a subset service implementation may

support greater capabilities than those defined here, but must always provide the support

expected by a client obeying the restrictions defined here.

This section summarizes the restrictions which govern the expected behavior of

FilingSubset client and service implementations. The intent is to provide a convenient list of

the argument values which must be allowed by all subset implementations and those

exceptions which may validly result in an error response to the client. To assure maximum

114 FILINGPROTOCOL

FILINGSUBSET

compatability, clients are advised to restrict their use of protocol capabilities to those listed
here.

A subset implementation may report an appropriate error for a given procedure if any of the
stated conditions is observed:

Open

directory specifies a handle other than nullHandle

controls is not the empty sequence.

attributes does not contain the pathname attribute type.

attributes contains an attribute type other than parentlD, pathname, type, or

version.

the parentlD attribute specifies a value other than nullFilelD

the type attribute specifies a type other than tAsciiText, tDirectory, or tUnspecified

the version attribute specifies a value other than lowestVersion or highestVersion.

Store

directory specifies a handle other than nullHandle

controls is not the empty sequence.

content specifies a bulk data source type other than BulkData.immediateSource or

BulkData.nullSource.

attributes does not contain the pathname attribute type.

attributes contains one of the attributes: filelD, modifiedBy, modifiedOn, name,

numberOfChildren, parentlD, readBy, readOn, storedSize, or subtreeSize

the type attribute specifies a type other than tAsciiText, tDirectory, or tUnspecified

the version attribute specifies a value other than highestVersion.

Retrieve

content specifies a bulk data sink type other than BulkData.immediateSink or

BulkData.nullSink.

List

directory specifies a handle other
than nullHandle.

scope includes a scope type other than filter or count.

filterType specifies a filter type other than matches.

a matches filter specifies an attribute
type other than pathname

XEROX NETWORK SYSTEMS STANDARD
115

listing specifies a bulk data sink type other than BulkData.immediateSink or

BulkData.nullSink.

E.4 Attributes

The Filing Protocol distinguishes two classes of attributes, namely interpreted and

uninterpreted attributes. A service implementing Filing must support any attribute type

described as interpreted in the standard and is required to preserve the values of

uninterpreted attributes as explicitly set by the client. FilingSubset implementations are

not required to conform to these requirements.

In order to specify the attribute requirements ofFilingSubset implementations it is useful to

distinguish three attribute classes rather than the two used by Filing. The FilingSubset

attribute classes are mandatory, implied, and optional. The relationship of the attribute

classes of the FilingSubset Protocol and those of the Filing Protocols is shown in Table E.1.

Filing Attribute FilingSubset

Interpreted

createdOn

dataSize

isDirectory
modifiedOn

pathname

type

accessList

childrenUniquelyNamed

defaultAccessList

isTemporary
ordering

subtreeSizeLimit

version

checksum

createdBy
filelD

modifiedBy
name

numberOfChildren

ordering
parentlD

position

readBy
readOn

storedSize

subtreeSize

uninterpreted

Mandatory

Implied

Optional

Uninterpreted

Table E. 1 Relationship ofFilingSubset and Filing attribute classes.

E.4.1 Mandatory attributes

Mandatory attributes are those attributes which must be interpreted by all FilingSubset

implementations. These attributes are guaranteed to be retained by any service

implementing the FilingSubset and must also be accepted on specific procedure calls to the

extent that they are legal arguments of the corresponding procedure of the Filing Protocol.

FilingSubset implementations must support the following mandatory attributes:

createdOn, dataSize, isDirectory, modifiedOn, pathname, and type. Support for an

attribute means that a service implementation will accept the attribute on a Store

116 FILING PROTOCOL

FILINGSUBSET

procedure, if properly specified, and will return the appropriate non-null value when

requested with a List procedure.

E.4.1.1 createdOn

The createdOn attribute is as defined in the Filing Protocol.

E.3.1.2 dataSize

The Filing Protocol states that a file's dataSize attribute specifies the number of eight-bit

bytes in the content of the file. The FilingSubset Protocol recognizes that it may not be

straightforward for specific implementations to determine the actual content size of a file.

Therefore, FilingSubset clients should regard the value of a file's dataSize attribute as an

estimate of the file's size rather than the actual size itself.

E.4.1.3 isDirectory

The isDirectory attribute is as defined in the Filing Protocol. Typically this attribute need

not be stored since it can be derived from context.

E.4.1.4 modifiedOn

The modifiedOn attribute is as defined in the Filing Protocol.

E.4.1.5 pathname

The FilingSubset Protocol requires that all implementations support the pathname

attribute. This is the primary means by which a client may identify a file of interest. The

value of the pathname attribute must specify the access path to a remote file in a form which

is recognized by the particular service. This means that a FilingSubset client should make

no assumptions regarding the syntax of this attribute since it may vary from service to

service.

It should also be noted that the Filing Protocol permits its clients to make use of
directory-

relative pathnames in various operations. A FilingSubset client may not assume that this

support will be provided by a given subset service; it is not required. All FilingSubset

operations which accept directory handle arguments may report an error if a non-null

directory handle is specified.

The syntax of the pathname attribute values
returned by the List procedure should always

be ofan absolute form so that they may be used directly in subsequent
operations.

E.4.1.6 type

All FilingSubset implementations
must support at least the following values of the type

attribute: tAsciiText, tDirectory and tUnspecified (refer to E.7 or appendix B for the

definition of these types). The type attribute
describes the nature of the content or attributes

ofa file in order to communicate to
potential users of the file how the file is to be interpreted

A service implementing the Filing
Protocol interprets neither the type nor the content of a

file. In order to facilitate the
convenient interchange of text files between systems having

vconv MFTWORK SYSTEMS STANDARD

different text file representations, the FilingSubset Protocol relaxes this behavior of the

Filing Protocol.

A client may request that a file be transferred in a particular format by specifying the type

attribute in the Store operation or in an Open call preceding a Retrieve. The type attribute

value tUnspecified implies that the file content should be transferred uninterpreted.
Round-

trip data equality must be guaranteed by a subset service if the client specifies tUnspecified

on storing and again on retrieval of a given file; this applies even to text files which the

client designates as tUnspecified.

The type attribute value tAsciiText is used to indicate that a file's content should be

interpreted as text and transferred using the StreamOfAsciiText encoding. This may require

interpretation by the client or service to or from a native text representation. FilingSubset

implementations should attempt to honor requests to interpret files as text files, since the

mapping to and from native text format permits native mode text manipulation within each

system. There are cases where round-trip data equality cannot be guaranteed for files of type

tAsciiText; retrieving a file that has been stored as tAsciiText using the tUnspecified type

may not have predictable results.

E.4.2 Implied attributes

Implied attributes are those non-mandatory attributes that obtain an implicit value when a

new file is created using the Filing Protocol. To maintain consistency in the attribute

behaviors defined in the Filing Protocol for this class of attribute, all subset imple

mentations are required to permit the specification of the implied (default) value for each of

these attributes (see E.6). The implied attribute types are: accessList, childrenUniquely

Named,defaultAccessList, isTemporary, ordering, subtreeSizeLimit and version.

A FilingSubset implementation of the Store procedure must always permit the specification

of implied attributes. However, specification of an unsupported (non-default) value may

validly be rejected with the errorAttributeValueError.

E.4.3 Optional attributes

Optional attributes are those attributes which are uninterpreted by the Filing Protocol or

which are not otherwise specified as mandatory or implied. If an implementation provides

support for any of these additional attributes, that support must conform to the definition of

the attribute in the Filing Protocol.

E.5 Remote errors

All errors from the Filing Protocol are similarly defined in the FilingSubset Protocol.

E.6 Procedures and attributes

The tables on the following pages describe the effects of FilingSubset procedures on

attributes. If a procedure does not modify interpreted attributes, no table is shown. When a

procedure modifies an attribute, a brief indication of the change is given. Where

118 FILING PROTOCOL

specification of an attribute will result in an error condition, the
appropriate error is

identified.

In the case of List, the table specifies the attribute values a service must return. Although

this procedure does notmodify attributes, its behavior is defined by the FilingSubset

119

XEROX NETWORK SYSTEMS STANDARD

Table E.2 List

Attribute If
Requested1

accessList returned

checksum returned

childrenUniquelyNamed returned (null for non-directory)

createdBy returned

createdOn non-null value must be returned

dataSize non-null value must be returned

defaultAccessList returned

filelD returned

isDirectory non-null value must be returned

isTemporary non-null value must be returned

modifiedBy returned

modifiedOn non-null value must be returned

name returned

numberOfChildren returned

ordering returned

parentlD returned

pathname non-null value must be returned

position returned

readBy returned

readOn returned

storedSize returned

subtreeSize returned

subtreeSizeLimit returned

type non-null value must be returned

uninterpreted returned

version returned

An appropriate value for each attribute supported by a FilingSubset implementation

must be returned if requested. Even if an attribute is not supported, an appropriate null

value must be returned (see E.3.3.2).

The value returned for the dataSize attribute should be interpreted by the client as a

close approximation of the actual content size.

120 FILING PROTOCOL

FILINGSUBSET

Table E.3 Open

Attribute IfRequested1

accessList illegal

checksum illegal

childrenUniquelyNamed illegal

createdBy illegal

createdOn illegal

dataSize illegal

defaultAccessList illegal

filelD open if type
supported2

isDirectory illegal

isTemporary illegal

modifiedBy illegal

modifiedOn illegal

name open if type
supported2

numberOfChildren illegal

ordering illegal

parentlD open if type
supported3

pathname file with this value is opened

position illegal

readBy illegal

readOn illegal

storedSize illegal

subtreeSize illegal

subtreeSizeLimit illegal

type open if value supported

uninterpreted ignored

version open if type supported

1
A FilingSubset service implementation should report an AttributeTypeError if any of

the attribute types designated as
"illegal"

is supplied in the arguments to Open.

2
FilingSubset implementations may support this attribute type but are not required to do

so; if support is not provided, an
AttributeTypeError should be reported when the client

specifies the attribute.

3 FilingSubset implementations may report
AttributeValueError if parentlD is not equal

to nullFilelD, or version is not lowestVersion or highestVersion and the implementation

does not support the attribute value.

4
The type attribute may be used to indicate

a desired transfer format. This may imply a

transformation of the actual file content as the file is transferred. If a specified type is

not supported by the implementation, an
AttributeValueError should be reported.

XEROX NETWORK SYSTEMS STANDARD
121

Table E.4 Store

Attribute Ifa
Parameter1

Supported Values Ifnot a
Parameter4

accessList set if value supported (defaulted: mit] set to [defaulted: true]

checksum set if type supported unknownChecksum set appropriately

childrenUniquelyNamed set if value supported implementation dependant

createdBy set if type supported currently logged-in user

createdOn set current date and time

dataSize initial allocation (hint) approximate file size

defaultAccessList set if value supported [defaulted: true] set to [defaulted: true)

filelD illegal, AttributeTypeError system-assigned value

isDirectory set FALSE

isTemporary set if value supported FALSE

modifiedBy illegal. AttributeTypeError currently logged-in user

modifiedOn illegal. AttributeTypeError current date and time

name set if type
supported2

implementation dependant

numberOfChildren illegal, AttributeTypeError 0

ordering set if value supported defaultOrdering defaultOrdering

parentlD illegal, AttributeTypeError filelD of resulting parent

pathname set consistent with ancestry

position set if type supported depends on parent's

ordering

readBy illegal, AttributeTypeError
...

readOn illegal. AttributeTypeError nullTime

storedSize illegal,AttributeTypeError set appropriately

subtreeSize illegal. AttributeTypeError set appropriately

subtreeSizeLimit set if value supported nullSubtreeSizeLimit nullSubtreeSizeLimit

type set if value
supported3

tUnspecified , tAsciiText,

or tDirectory

tUnspecified or tDirectory

uninterpreted set if type supported null

version set if value supported highestVersion next available

1
FilingSubset implementations must treat attributes in one of four ways: 1)

"illegal"

attributes must be rejected with AttributeTypeError; 2) attributes designated
"set"

must

not be rejected with AttributeTypeError and must normally accept non-null values

(although an invalid value should be rejected, such as a string which is too long); 3) An

attribute marked "set if value
supported"

must not result in an AttributeTypeError; the

value of such an attribute may not result in an AttributeValueError if the value is one of

the supported values shown above. Other values for these attributes may result in

AttributeValueError; 4) An attribute designated "set if type
supported"

must be rejected

with AttributeTypeError or AttributeValueError if the implementation does not fully
support the type or value, respectively.

2
The name attribute, ifsupportecd, may not be specified with the pathname attribute.

3
The type attribute values tAsciiText, tDirectory, and tUnspecified must be supported.

4
These valuesmust be assumed if the attribute type is supported by the implementation.

122 FILING PROTOCOL

FILINGSUBSET

E.7 Program declaration

The complete declaration of the FilingSubset remote program is given below All

FilingSubset Courier definitions are identical to the corresponding definitions of the Filing
Protocol.

FilingSubset: program 1500 version 1

BEGIN

DEPENDS UPON

BulkData (0) version 1,

Clearinghouse (2) version 3,

Filing (10) version 6,

Authentication (14) version 3;

-- TYPESAND CONSTANTS -

Attributes (individual attributes defined later) --

AttributeSequence: type Filing.AttributeSequence;

AttributeTypeSequence: type Filing.AttributeTypeSequence;

allAttributeTypes: Handle Filing.allAttributeTypes;

-- Controls

ControlSequence: type Filing.ControlSequence;

ControlTypeSequence: type Filing.ControlTypeSequence;

-- Handles andAuthentication

Credentials: type Filing.Credentials;

SecondaryType: type Filing.SecondaryType;

Handle: type Filing.Handle;

nullHandle: Handle Filing.nullHandle;

Session: type Filing.Session;

Verifier: type Authentication.Verifier;

-- Scopes

ScopeSequence: type Filing.ScopeSequence;

- REMOTE PROCEDURES
-

LoggingOn andOff

Logon: procedure!

service: Clearinghouse.Name.
credentials: Credentials, verifier: Verifier)

returns [session: Session]
,

reports (AuthenticationError. ServiceError,
SessionError, UndefmedErrorl .

Filing.Logon;

XEROX NETWORK SYSTEMS STANDARD
123

Logoff: procedure [session: Session]

reports [AuthenticationError, ServiceError, SessionError, UndefinedError]

Filing.Logoff;

Continue: procedure [session: Session]

returns [continuance: cardinal]

REPORTS-[AuthenticationError, SessionError, UndefinedError] Filing.Continue;

- Opening andClosingFiles -

Open: procedure [attributes: AttributeSequence, directory: Handle,

controls: ControlSequence, session: Session]

returns [file: Handle]

reports [AccessError, AttributeTypeError, AttributeValueError,AuthenticationError,

ControlTypeError, ControlValueError, HandleError, SessionError, UndefinedError] a

Filing.Open;

Close: procedure [file: Handle, session: Session]

reports [AuthenticationError, HandleError, SessionError, UndefinedError]

Filing.Close;

DeletingFiles

Delete: procedure [file: Handle, session: Session]

reports [AccessError, AuthenticationError. HandleError, SessionError, UndefinedError]

Filing.Delete;

-- File Transfer -

Store: procedure [directory: Handle, attributes: AttributeSequence,

controls: ControlSequence, content: BulkData.Source, session: Session]

returns [file: Handle]

reports [AccessError, AttributeTypeError, AttributeValueError,AuthenticationError,

ConnectionError, ControlTypeError, ControlValueError, HandleError, InsertionError,

SessionError, SpaceError, TransferError, UndefinedError] Filing.Store;

Retrieve: procedure [file: Handle, content: BulkData.Sink, session: Session]

reports [AccessError, AuthenticationError, ConnectionError, HandleError, SessionError,

TransferError, UndefinedError] Filing.Retrieve;

Listing Files in aDirectory

List: procedure [directory: Handle, types: AttributeTypeSequence,

scope: ScopeSequence, listing: BulkData.Sink, session: Session]

reports [AccessError,AttributeTypeError,AuthenticationError,ConnectionError,

HandleError, ScopeTypeError, ScopeValueError, SessionError, TransferError.

UndefinedError] Filing.List;

- REMOTE ERRORS -

problem with an attribute type or value

AttributeTypeError: error [problem: ArgumentProblem.type: AttributeType]

Filing.AttributeTypeError;

124 FILING PROTOCOL

FILINGSUBSET

AttributeValueError: error [problem: ArgumentProblem,type: AttributeType]

Filing.AttributeValueError;

- problem with a control type or value --

ControlTypeError: error [problem: ArgumentProblem. type: ControlType]

Filing.ControlTypeError;

ControlValueError: error [problem: ArgumentProblem. type: ControlType]

Filing.ControlValueError;

-- problem with a scope type or value

ScopeTypeError: error [problem: ArgumentProblem, type: ScopeType]

Filing.ScopeTypeError;

ScopeValueError: error [problem: ArgumentProblem, type: ScopeType]

Filing.ScopeValueError;

ArgumentProblem: type Filing.ArgumentProblem;

-- problem in obtaining access to a file

AccessError: error [problem: AccessProblem] Filing.AccessError;

AccessProblem: type Filing.AccessProblem;

problem with a credentials or verifier

AuthenticationError: error [problem: Authentication.Problem.type: SecondaryType] -

Filing.AuthenticationError;

--problem with a bulk data transfer --

ConnectionError: error [problem: ConnectionProblem] Filing.ConnectionError;

ConnectionProblem: type Filing.ConnectionProblem;

-- problem with a file handle

HandleError: error [problem: HandleProblem] - Filing.HandleError;

HandleProblem: type Filing.HandleProblem;

-problem during insertion in directory
(or changing attributes)

-

InsertionError: error [problem: InsertionProblem]
- Filing.lnsertionError;

InsertionProblem: type Filing.lnsertionProblem;

- problem during random access operation
-

RangeError: ERROR [problem: ArgumentProblem]
- Filing.RangeError;

- problem during logon or
logoff-

ServiceError: error [problem: ServiceProblem]
- Filing.ServiceError;

ServiceProblem: type Filing.ServiceProblem;

XEROX NETWORK SYSTEMS STANDARD

125

-- problem with a session

SessionError: error [problem: SessionProblem] Filing.SessionError;

SessionProblem: type Filing.SessionProblem;

- problem obtaining space for file content or attributes -

SpaceError: error [problem: SpaceProblem] Filing.SpaceError;

SpaceProblem: type Filing.SpaceProblem;

-- problem during bulk data transfer -

TransferError: error [problem: TransferProblem] Filing.TransferError;

TransferProblem: type Filing.TransferProblem;

-- some undefined (and implementation-dependent) problem occurred

UndefinedError: error [problem: UndefinedProblem] Filing.UndefinedError;

UndefinedProblem: type * Filing.UndefinedProblem;

-- INTERPRETEDATTRIBUTEDEFINITIONS -

accessList: AttributeType Filing.accessList;

AccessList: type Filing.AccessList;

checksum: AttributeType Filing.checksum;

Checksum: type Filing.checksum;

childrenUniquelyNamed: AttributeType Filing.childrenUniquelyNamed;

ChildrenUniquelyNamed: type Filing.ChildrenUniquelyNamed;

createdBy: AttributeType Filing.createdBy;

CreatedBy: type Filing.CreatedBy;

createdOn: AttributeType Filing.createdOn;

CreatedOn: type Filing.CreatedOn;

dataSize: AttributeType Filing.dataSize;

DataSize: type Filing.DataSize;

defaultAccessList: AttributeType Filing.defaultAccessList;

DefaultAccessList: type Filing.DefaultAccessList;

filelD: AttributeType Filing.filelD;

FilelD: type Filing.FilelD;

nullFilelD: FilelD [0.0,0,0,0];

isDirectory: AttributeType Filing. isDirectory;

IsDirectory: type Filing.IsDirectory;

isTemporary: AttributeType Filing. isTemporary;

IsTemporary: type Filing.IsTemporary;

126 FILING PROTOCOL

modifiedBy: AttributeType - Filing.modifiedBy;
ModifiedBy: type Filing.ModifiedBy;

modifiedOn: AttributeType Filing.modifiedOn;
ModifiedOn: type Filing.ModifiedOn;

name: AttributeType Filing.name;

Name^pc Filing.Name;

numberOfChildren: AttributeType - Filing.numberOfChildren;
NumberOfChildren: type . Filing.NumberOfChildren;

ordering: AttributeType Filing.ordering;
Ordering: type - Filing.Ordering;

pathname: AttributeType Filing.pathname;

Pathname: type Filing.Pathname;

parentlD: AttributeType Filing.parentID;
ParentlD: type Filing.ParentID;

position: AttributeType Filing.position;

Position: type Filing.Position;

readBy: AttributeType Filing.readBy;

ReadBy: type Filing.ReadBy;

readOn: AttributeType Filing. readOn;

ReadOn: type Filing.ReadOn;

storedSize: AttributeType Filing.storedSize;

StoredSize: type Filing.StoredSize;

subtreeSize: AttributeType Filing.subtreeSize;

SubtreeSize: type Filing.SubtreeSize;

subtreeSizeLimit: AttributeType Filing.subtreeSizeLimit;

SubtreeSizeLimit: type Filing.SubtreeSizeLimit;

type: AttributeType Filing.type;

Type: type Filing.Type;

version: AttributeType Filing.version;

Version: type Filing.Version;

lowestVersion: Version 0;

highestVersion: Version 177777B;

-- BULKDATA FORMATS -

Attribute Series Format, used inList -

StreamOfAttributeSequence: type choice of {

nextSegment (0) - > record [

segment: sequence ofAttributeSequence,

XEROX NETWORK SYSTEMS STANDARD 127

restOfStream : StreamOfAttributeSequence],

lastSegment (1) > sequence of AttributeSequence};

-- Line-orientedASCII text file format, used in file interchange -

StreamOfAsciiText: type choice of {

nextLine(O) > record [
line: AsciiString,

restOfText: StreamOfAsciiText],

lastLine(1) > AsciiString};

AsciiString: type record [

lastByteSignificant: boolean,

bytes: sequence of unspecified];

-- FILE TYPES -

Clients are encouraged to use these predefined types to identify files that have the specified

characteristics, topromote information sharing

tUnspecified: Type 0; -- nothing is known about the content or attributes ofa file ofthis

type; it is useful for files that have aprivate format

tDirectory: Type 1 ; - this file is a directory, and it has no content (only children)

tAsciiText: Type 7; ~ this file is not a directory, and its content is comprised ofline-oriented

ASCII data -

end; -ofFilingSubset-

128 FILING PROTOCOL

F.
__^

PATHNAME SYNTAX

In many applications it is necessary or useful to identify files by their user-sensible names

and not file identifiers. A pathname specifies a hierarchical access path to a file by encoding

the name and version attributes of its ancestors. A qualified pathname is a pathname

prefixed by a designation of its network location.

In order to promote information sharing, it is strongly recommended that the following

syntax be used in any user interface involving qualified pathnames (pathnames which

include a service designation).

QualifiedPathname: = Service Pathname

Service: = (ClearinghouseName)

ClearinghouseName: = Clearinghouse.Name

Pathname : = NameVersionPairList

NameVersionPairList : = NameVersionPair | NameVersionPair/NameVersionPairList

NameVersionPair : = Name| NamelVersion

Name : = [--
string with reserved characters

escaped not exceeding 100 bytes in

unescaped form]

Version : = [--
string ofdigits with numeric value

in the range (0..65535) -]

|
'

+ -- i.e. highestVersion

| '- -- i.e. lowestVersion

Note that the syntax defined for pathnames is consistent with the definition of the

pathname attribute in 4.2.2.5.

Example:

(Development:Office
Systems:Xerox)Filing/Protocol/Pathname Syntax Definition! +

This pathname identifies the
highest version of the file having the name "Pathname Syntax

Definition"

within the
"Protocol"

subdirectory of the
"Filing"

directory. The named file is

stored with the
"Development:Office

Systems:Xerox"

file service.

129

XEROX SYSTEM INTEGRATION STANDARD

	Rochester Institute of Technology
	RIT Scholar Works
	8-1-1986

	A Study of the Xerox XNS Filing Protocol as Implemented on Several Heterogenous Systems
	Edward Flint
	Recommended Citation

