
XEROX Xerox Development Environment

Mesa Language Manual

--~

XDE3.0·3001
Version 3.0
November 1984

PRELIMINARY

Office Systems Division
Xerox Corporation
3450 Hillview Avenue
Palo Alto, California 94304

Xerox Development Environment

Notice

This manual is the current release of the Xerox Development Environment (XDEl and may be revised by Xerox

without notice. No representations or warranties of any kind are made relative to this manual and use thereof.

including implied warranties of merchantability and fitness for a particular purpose or that any utilization

thereof will be free from the proprietary rights of a third party. Xerox does not assume any responsibility or

liability for any errors or inaccuracies that may be contained in the manual or have any liabilities or obligations

for any damages. including but not limited to special. indirect or consequential damages. arising out of or in

connection with the use of this manual or products or programs developed from its use. No part of this manual.

either in whole or part. may be reproduced Of transmitted mechanically or electronically without the written

permission of Xerox Corporation.

Copyright © 1984 by Xerox Corporation.
All Rights Reserved.

Table of contents

1 Introduction

1.1 Syntax notation . 1-2

2 Basic data types and expressions

2.1 A slice of Mesa code 2-1
2.1.1 Basic lexical structure . 2-3

2.2 Simple declarations 2-4
2.3 The fundamental operations: assignment, equality and inequality 2-4
2.4 Basic types 2-5

2.4.1 The numeric types INTEGER and CARDINAL. 2-5
2.4.2 Type BOOLEAN 2-6
2.4.3 Type CHARACTER 2-7
2.4.4 Escape conventions for literals. 2-7
2.4.5 The numeric types LONG INTEGER and LONG CARDINAL 2-7
2.4.6 Type REAL 2-8
2.4.7 Relations among basic types 2-9
2.4.8 Long to short conversion 2-11
2.4.9 Predeclared identifiers. 2-12

2.5 Expressions 2-12
2.5.1 Numeric operators. 2-13
2.5.2 Relational operators 2-16
2.5.3 BOOLEAN operators . 2-17
2.5.4 Assignment expressions 2-18
2.5.5 Operator precedence 2-19
2.5.6 Function-like operators 2-19
2.5.7 Function-like operators on types 2-20

2.6 Initializing variables in declarations . 2-20

Table of contents

2.6.1 Compile-time constants 2-21
2.7 More general declarations 2-22

3 Common constructed data types

3.1 The element types 3-3
3.1.1 Enumerated types . 3-4
3.1.2 Subrange types 3-8

3.2 Arrays 3-11
3.2.1 Declaration of arrays 3-13
3.2.2 Array constructors . 3-15
3.2.3 Keyword array contructors. 3-16

3.3 Records 3-17
3.3.1 Field lists 3-18
3.3.2 Declaration of records 3-19
3.3.3 Qualified references 3-21

;.

3.3.4 Record constructors 3-22
3.3.5 Default field values 3-24
3.3.6 Extractors . 3-26

r "
3.3.7 Machine-dependent records 3-28

3.4 The types POINTER and LONG POINTER 3-30
3.4.1 Constructing pointer types. 3-32
3.4.2 Pointer operations . 3-33
3.4.3 Long pointers 3-35
3.4.4 Automatic dereferencing 3·36

3.5 Type determination 3-37
3.5.1 Type conversion 3-38
3.5.2 Balancing· 3-40
3.5.3 Free conformance • 3-41

3.6 Determination of representation • 3-42
3.7 Extended defaults 3-45
3.8 The null value NIL • 3-47

4 Ordinary statements

4,1 Assignment statements 4-2
4.1.1 Assignment expressions 4-2
4.1.2 Restrictions on assignment. 4-3

4.2 IF statements . 4-3
4.2.1 IF expressions 4-4

4.3 SELECT statements . 4-5
4,3.1 Forms and options for SELECT 4-6

Mesa Language Manual

4.3.2 The NULL statement. 4-7

4.3.3 SELECT expressions 4-8

4.4 Blocks 4-8

4.4.1 GOTO statements 4-9

4.4.2 OPEN clauses 4-12

4.5 Loop statements 4-14

4.5.1 Loop control 4-15

4.5.2 GOTOs, LOOPS, EXITS, and loops 4-18

5 Procedures

5.1 Procedure types 5-3

5.1.1 Procedure values and compatibility • 5-5

5.2 Procedure calls 5-6

5.2.1 Arguments and parameters 5-8

5.2.2 Termination and results 5-8

5.3 Procedure bodies . 5-9

5.3.1 RETURN statements 5-10

5.3.2 Operations which deal with intact parameter records 5-11

5.3.3 Defaults in argument and result records 5-12

5.4 A package of procedures 5-13

5.4.1 The example 5-15

5.4.2 Invoking procedures in other modules 5-16

5.5 Nested procedures 5-17

5.5.1 Scopes defined by procedures 5-18

5.6 Inline procedures • 5-18

6 Other data types and storage management

6.1 Strings 6-2

6.1.1 String literals and string expressions 6-3

6.1.2 Declaring strings 6-4

6.1.3 Long strings 6-5

6.2 Array descriptors. 6-5

6.2.1 Array descriptor types . 6-6

6.2.2 Long descriptors 6-8

6.3 Base and relative pointers 6-9

6.3.1 Syntax for base and relative pointers 6-9

6.3.2 A relative pointer example. 6-10

6.3.3 Relative pointer types . 6-11

6.3.4 Relative array descriptors 6-12

6.4 Variant records 6-13

6.5

6.6

Table of contents

6.4.1 Declaring variant records .

6.4.2 Bound variant types

6.4.3 Accessing entire variant parts, and variant constructors

6.4.4 Accessing components of variants

6.4.5 Defaults and variant records

Sequences

6.5.1' Defining sequence types

6.5.2 MACHINE DEPENDENT sequences

6.5.3 Allocating sequences .

6.5.4 Operations on sequences

6.5.5 StringBodies and TEXT

Dynamic storage allocation

6.6.1 Zones .

6.6.2 Allocating storage.

6.6.3 Releasing storage .

6.6.4 Imple~enting uncounted zones

7 Modules, programs, and configurations

7.1

7.2

7.3

7.4

7.5

7.6

Interfaces

The fundamentals of Mesa modules

7.2.1 Including modules: the DIRECTORY clause

7.2.2 Accessing items from an included module

7.2.3 Scopes for identifiers in a module .

7.2.4 Implications of recompiling included modules

DEFINITIONS modules

7.3.1 READONlY variables.

7.3.2 Default fields in interfaces.

7.3.3 Inline procedures in interfaces.

7.3.4 Usage hints for INllNE procedures in interfaces *.

PROGRAM modules: IMPORTS and EXPORTS

7.4.1 IMPORTS, interface types and interface records

7.4.2 Importing program modules

7.4.3 Exporting interfaces and program modules.

7.4.4 IMPORTS in DEFINITIONS modules and implicitly imported interfaces

Access control: PUBLIC and PRIVATE .

7.5.1 Access attributes in declarations .

7.5.2 Access attributes in TYPE definitions

7.5.3 Default global access .

7.5.4 Accessing PRIVA TE names of other modules *.

Exported (opaque) types

7.6.1 Interface modules .

6-15

6-1S

6-1S

6-20

6-25

6-25

6-26

6-27

6-2S

6-29

6-30

6-30

6-30

6-31

6-32

6-33

7-1

7-4

7-5

7-7

7-9

7-10

7-12

7-13

7-14

7-15

7-16

7-17

7-17

7-1S

7-20

7-21

7-22

7-23

7-24

7-25

7-25

7-25

7-26

7.7

7.8

7.9

7.10

Mesa Language Manual

7.6.2 Client modules.

7.6.3 Implementation modules

Dot notation and interface items

The Mesa configuration language; an introductory example

7.8.1 Lexicon: a module implementing LexiconDefs .

7.8.2 LexiconClient: a client module .

7.8.3 Binding, loading, and running a configuration: an overview

7.8.4 A configuration description for running LexiconClient .

ClMesa: syntax and semantics

7.9.1 IMPORTS, EXPORTS, and DIRECTORY in C/Mesa

7.9.2 Explicit naming,lMPoRTS, and EXPORTS ~

7.9.3 Default names for interfaces and instances *
7.9.4 Multiple exported interfaces from a single component *
7.9.5 Multiple components implementing a single interface *
7.9.6 Nested (local) configurations

7.9.7 Package creation: EXPORTS ALL

Loading and running modules and configurations

7.10.1 Making copies of modules .

7.10.2 How the loader binds interfaces

7.10.3 STARTing, STOPping, and REsTARTing module instances

7.10.4 Loading and starting configurations, control modules

8 Signaling and signal data types

8.1

8.2

8.3

Declaring and generating SIGNALS and ERRORS

8.1.1 ERROR in expressions

Control of generated signals

8.2.1 Preparing to catch signals: catch phrases

8.2.2 The scope of variables in catch phrases.

8.2.3 Catching signals

8.2.4 RETRY and CONTINUE in catch phrases

8.2.5 Resuming from a catch phrase: RESUME .

Signals within signals

9 Processes and concurrency

9.1

9.2

Concurrent execution, FORK and JOIN

9.1.1 A process example.

9.1.2 Process language constructs

Monitors.

9.2.1 An overview of monitors

9.2.2 Monitor locks .

7-27

7-27

7-28

7-29

7-30

7-32

7-33

7-33

7-34

7-35

7-36

7-38

7-38

7-40

7-41

7-41

7-42

7-42

7-43

7-43

7-44

8-2

8-3

8-4

8-4

8-5

8-6

8-10

8-11

8-12

9-1

9-1

9-2

9-4

9-4

9-5

9.3

9.4

9.5

9.6

Table or contents

9.2.3 Declaring monitor modules, ENTRY and INTERNAL procedures.

9.2.4 Interfaces to monitors .

9.2.5 Interactions of processes and monitors.

Condition variables .

9.3.1 Wait, notify, and broadcast

9.3.2 Condition variable timeouts

More about monitors .

9.4.1 The lOCKS clause

9.4.2 Monitored records

9.4.3 Monitors and module instances.

9.4.4 Multi-module monitors

9.4.5 Object monitors

9.4.6 Explicit declaration of monitor locks

9.4.7 Inline ENTRY procedures.

Signals

9.5.1 Signals and processes

9.5.2 Signals and monitors

Initialization .

Appendices

A Pronouncing Mesa

B Programming conventions

B.l Names

B.1.1 Capitalization.

B.1.2 Qualification .

B.1.3 Module naming

B.2 Types.

B.3 Exceptions: SIGNAls and ERRORs

B.3.1 General

B.3.2 In DEFINITIONS modules

B.3.3 In PROGRAM modules

B.4 Module histories .

B.5 Documentation of definitions modules

B.6 Module organization

B.7 Layout

B.S Spaces

B.9 Miscellaneous

9-6

9-7

9-S

9-S

9-S

9-11

9-12

9-12

9-13

9-13

9-14

9-16

9-17

9-17

9-17

9-17

9-17

9-19

A-I

B-1

B-1

B-2

B-3

B-4

B-5

B-5

8-5

B-6

B-6

B-7

B-7

B-7

B-S

B-9

Mesa Language Manual

C Mesa machine dependencies

C.1

C.2

Numeric limits

ASCII character set and ordering of character values.

D Binder extensions

0.1

0.2

E

F

Index

Code packing .

0.1.1 Syntax.

0.1.2 Restrictions

External links

0.2.1 Syntax

0.2.2 Restrictions

Mesa reserved words

Collected grammar

C-1

C-1

0-1

0-1

0-2

0-2

0-3

0-3

E-l

F-1

1-1

1

Introductio·n

This manual concentrates on the Mesa programming language. Mesa is really a
programming system of which the language is but one part. Other components of the
system are documented separately, as are the details of preparing, compiling, debugging
and running Mesa programs.

Each chapter of this manual discusses some aspect of the language, using examples as
well as descriptions of semantics and syntax. The chapters emphasize different language
features and provide different levels of detail. The complete treatment of some features
requires more than one chapter. Generally, earlier chapters introduce topics, and later
ones supply additional detail. Titles of chapters, sections and subsections indicate the
language issues with which they deal.

In each major section, information is presented at three levels:

(1) Ordinary usage (motivation, forms and semantics), frequently with examples.

(2) Syntax equations (when appropriate).

(3) Fine points (if applicable): restrictions, special cases, references to later
material, precise semantics, etc.

Level (1) is intended to offer a basic understanding of Mesa. Reading only first level
material should be adequate to begin programming in the language. Levels (2) and (3)
supply more detail and provide information about the full power of Mesa.

As a rule, these levels of discourse occur separately and in the indicated order. A section
with a heading followed by an asterisk (*) deals with specialized material that can be
skimmed or skipped entirely on first reading. Occasionally, fine points or syntactic details
are presented within first-level material. The reader will be able to distinguish between
levels by their appearance. Fine points are written in a small font. like this. Syntax equations
and syntactic categories appear in the following font: FontForSyntax.

Any italicized word or phrase is important. If a Mesa technical term is being introduced, it
will be in italics; if a term is used before being defined, it will be italicized to warn the
reader that it should not be taken lightly and that it has a particular meaning in Mesa.
Occurrences of a technical term, once defined, are not distinguished. Lastly, names

1-1

1 Introduction

appearing in programs are italicized in both the program text itself and the explanations
of that text.

Programming examples are indented relative to the surrounding text.

1.1 Syntax notation

1-2

Mesa's grammar is described by syntax equations written using a variation of Backus
Naur Form (or BNF). For those unfamiliar with BNF, an explanation follows. Reading
and understanding that explanation is imperative for full use of this manual; in a first
reading, details of the syntax equations can safely be skipped. Those familiar with BNF
should scan this section to discover the particular variation being used.

An individual syntax equation defines a portion of the Mesa grammar. It specifies a rule
for forming some class of phrases in the language. A phrase class has a name, e.g.,
Program, and is defined by one or more syntax equations. Phrase names are always
printed in the syntax font when their use is meant to be technically accurate. For example,
an Octal Digit, which can be any ofO, 1,2, ... ,7, is defined by the equation:

OdalDigit ::= 011121314151617

Each equation consists of a· phrase name on the left, followed by the operator :: =
(pronounced "is defined to be"), in turn followed by a {ormation rule for that phrase class.
A formation rule consists of one or more alternatives, separated by the syntactic operator
vertical bar, I (pronounced "or"). The ordering of alternatives is not critical. In the
definition of OdalDigit, "3" is an alternative.

Each alternative is a sequence of symbols, where a symbol is either a phrase name (in the
syntax font) or a syntactic literal. In a syntax equation, a literal symbol stands for itself.
The reserved words of Mesa, such as BEGIN, appear as literals; they are always written
using upper-case characters in the font shown. The digits 0, 1, 2, etc. and special
characters, such as :::, + and -, also are used to form literal symbols. Some composite
symbols are formed from more than one special character, e.g., ::: >. Spaces in syntax
equations are used only to separate the items in the rules and have no special significance.

The phrase name empty is often used as one of the alternatives in a formation rule. It
means that the rule permits an "empty" phrase as one of its alternatives (Le., an actual
phrase is optional; it mayor may not occur in the result of applying the formation rule).

Comments embedded in syntax rules are preceded by a double dash, --, and appear to the
right, e.g.,

Digit :: = OctaiDigit 1819 -- a decimal digit is an Octal Digit
an80ra 9

Often, only part of the total definition of a phrase class is given. To indicate that there are
other ways of forming phrases of that class, an ellipsis (. ..) is used as an alternative within
the rule. The defmition of Statement is distributed throughout much of the manual in this
way. When a certain statement form, such as the AssignmentStmt, is being discussed, the
following partial rule appears:

Mesa Language Manual 1

Statement :::1 AssignmentStmt I ... -- this is just an example

One can read this as, "A Statement is defined to be an AssignmentStmt, among other
things."

Within a single alternative, the order of symbols is important. The alternative acts as a
"template" for forming an actual phrase; literal names and literal characters are copied,
while substitutions are made for the phrase names. Consider the following example:

ReturnStmt .:::1 RETURN I RETURN Constructor

("A ReturnStmt is defined to be RETURN or RETURN followed by a Constructor.") The second
alternative means that RETURN and some actual phrase defined by Constructor occur in
exactly that order.

Syntax equations can indicate recursive substitution; for example:

IdList :::1 identifier I identifier. IdList

In a Mesa program, an identifier is basically a name. This equation defines an IdList to be
a list of one or more names, with commas separating them if there is more than a single
name in the list.

Fine points:

This result is explained as follows. The formation rule for IdList consists of two alternative rules:

Rule 1: (First alternative) "An IdList is defined to be an identifier," Le., anyone name can replace an

IdList.

Rule 2: (Second alternative) "An IdList is defined to be an identifier followed by a comma followed by

another IdList," i.e., name.ldList can replace an IdUst.

To derive a single name. use Rule 1 as shown below. (Note: The substitutions are emphasized by

writing them in italics.)

IdUst .. - name

To derive two names separated by acomma:

IdList name, IdList

name. name

To derive three names separated by commas:

IdList :: = name,ldList

(by Rule1)

(by Rule 2)

(by Rule 1)

(by Rule 2)

name. name,ldList (by Rule 2)

name. name. name (by Rule II

To derive n names separated by commas. use Rule 2 n - 1 times and then use Rule 1.

The following syntax equation also relies on recursion:

1-3

1

1-4

In trod uction

StmtSeries ::. empty I Statement I Statement; StmtSeries

The equation is read as, "A StmtSeries is defined to be empty. or a single statement, or a
series of statements separated by semicolons; the last statement may be followed by a
semicolon. "

Fine point:

A trailing semicolon is possible because:

1) A StmtSeries may take the form specified by the third alternative, "Statement
StmtSeries."

2) After some number of further substitutions using the third alternative, the recursive

reference to StmtSeries may take the ~empty" form. Le., Statement; empty."

31 empty is replaced by nothing at all. i.e Statement ;".

Commas and semicolons are used as major separators for a variety of constructs in Mesa.
To distinguish between such constructs, a convention is adopted that the suffix "list" on a
phrase name implies a sequence separated by commas, while "Series" implies a sequence
separated by semicolons. This convention is reflected in the phrase names IdUst and
StmtSeries above.

Mesa is a living language that has undergone many changes since its initial
implementations. Extensions and refinements continue to be made. Consequently, the
BNF found in this manual may not be an exact copy of the current Mesa grammar, but it is
a very close approximation. The "official" grammar used by the parser of the Mesa 11.0
compiler has been reproduced in Appendix F.

2

Basic data types and expressions

This chapter discusses how to declare, initialize and assign values to variables. It also
describes the basic types for numeric, character and boolean data, as well as the operators
used to construct expressions having these types.

The Mesa language is strongly typed. The programmer is given a collection of predefined
types and the ability to construct new ones, and is encouraged to choose or invent suitable
types for each particular application. Every variable and constant in a Mesa program
must be declared to have one of these types; every constant has a type; and every
expression has a type derived from its components and context. All types can be deduced
by static analysis of the program, and the language requires that each value be used in a
way consistent with its type according to rules specified here and in chapter 3. The type of
an object determines its representation and structure as well as the set of applicable
operations. In addition, the type system can be used to partition the universe of objects and
a void confusion, even among classes of objects that are represented identically.

2.1 A slice of Mesa code

The example below is an excerpt from a Mesa program. It assigns to gcd the greatest
common divisor (GCD) of a pair of integers, m and n (where m, nand gcd are integer
variables in the program from which this excerpt was taken; we assume their values need
not be preserved). The example uses the Euclidean Algorithm for finding the GCD of two
numbers and works as follows:

Ifboth m and n are zero, the GCD is zero (by convention).

Otherwise, repeat the following until n is zero: find the remainder of dividing m by
n; set m to the value of n; then set n to the remainder. The final value of m is the
GCD of the original m and n _except that it may be negative; taking its absolute
value gives the GCD.

2-1

2

2-2

Basic data types and expressions

Example 1. Slice of Mesa Code Using the Euclidean Algorithm

-- Given are integers m and n, which can be altered. (1)
If m = 0 AND n = 0 THEN ged - 0 - by convention (2)
ELSE (3)
U~ W
r. INTEGER; (5)
UNTIL n = 0 (6)
~ m
r - m MOD n; -- r gets remainder of min (8)
m - n; n - r; -- update variables (9)
ENDlOOP; (10)

ged --- incase one ofm orn was negative --ABS(m); (11)
END; (12)

The example contains twelve lines of source code, including comments. The numbers in
parentheses at the right side are for reference only and are not part of the source code.
Comments begin with the symbol "--" and terminate at line endings. They may also be
completely embedded within lines, in which case they both begin and end with "_w".

Line (2) begins an IF statement that uses the values of In and n to select between two
alternatives. Ifboth values are zero, the assignment statement following THEN is executed;
it assigns the value 0 to ged (the character "-" is Mesa's assignment operator). If either is
nonzero, the assignment is skipped and the compound statement following ELSE (lines (4)
through (12) inclusive) is executed. (Distinguishing th~ two cases is actually unnecessary,
but doing so illustrates more features of Mesa.>

The second alternative is a block, a series of declarations followed by a series of
statements, all bracketed by "BEGIN" and "END." Line (5) declares a variable roftype INTEGER

for use within that block. A semicolon separates the declaration from the statements that
follow it.

The iteration in the algorithm is performed by the loop (UNTIL n=O DO ••• ENDLOOP), which
contains three embedded assignment statements. The loop repeats until n is equal to zero.
If it is zero at the outset, the embedded statements are not executed at all. Statements are
separated by semicolons. A semicolon at the end of a statement series that is embedded in
another statement (such as the series in the loop) is optional; it is permissible to write a
semicolon after every statement in the series.

Within the loop, line (8) assigns to r the value of the expression "m MOD n," which gives the
remainder of dividing m by n. Line (9) updates m to contain the previous value of nand
then updates n for the next iteration, if any. Control transfers from the end of the loop, line
(10), back to line (6), where the new value of n is tested. If it is not zero, the loop is
repeated; otherwise, execution continues with the Ill'St statement after the loop, line (11).

When control reaches the assignment statement in line (11), m either has its original
value (if n was zero) or contains the value n had just before it became zero. The expression
"ABS [m]" has the form used for calling a function 'And passing it one or more arguments;
square brackets enclose the argument list. Normal parentheses, "(" and ")," are used only
for nested expressions, e.g., "a*(b+cI(d-e)*f)." The assignment places the absolute value
of minto ged; this is the correct result. At this point, the reader is urged to trace through

Mesa Language Manual 2

the example with initial values for m and n of 15 and 12, respectively; the result should be
gcd=3.

2.1.1 Basic lexical structure

The names gcd, m, nand r in the example are called identifiers. The general form of an
identifier is given by the following (informal) syntax:

An identifier is a sequence consisting of any mixture of upper-case letters, lower
case letters or digits, the first of which is a letter. Upper and lower case letters are
different and do distinguish identifiers.

The following, valid identifiers are all distinct:

aBc Abc DiskCommandWord display Vector MachI x32y40

Certain identifiers consisting entirely of capital letters are reserved for use by the Mesa
language. Some, such as IF, are punctuation symbols; others name built-in types, such as
INTEGER, or functions, such as ABS. All such words that have special meaning and are not to
be defined by the programmer are called reserved words. It is legal for the programmer to
use fully capitalized identifiers, but he risks a clash with a reserved word (possibly a new
one in some future version of the language). This can be easily avoided by including at
least one digit or lower case letter in any identifier. Appendix E lists the current set of
reserved words.

Mesa uses the blank (or space) character to separate basic lexical units of the language
(such as reserved words and identifiers). Blanks are significant separators of lexical units.
They may not be embedded in identifiers, composite symbols (such as > =), or numeric
literals (such as 1000). Blanks are meaningful in STRING constants (§ 6.1.1), and there is a
CHARACTER constant for space (§ 2.4.3). As a separator, any sequence of contiguous blanks is
equivalent to a single blank. A TAB character also behaves exactly as a blank when used
as a separator.

A carriage-return character behaves as a blank for separating lexical units also, but it has
one extra function: if the last part of a line is a comment, the carriage return acts as the
terminator of that comment. Multiline comments (those containing carriage returns) may
be inserted into source code by beginning each new line with "--." Long comments (either
containing carriage returns or not) may be bracketed with matched pairs of double angle
brackets. (< < and > ». All characters within the brackets are ignored, .with the
exception of nested long comment brackets. Care should be taken to insure that any code
being commented out does not contain any unmatched pairs of angle brackets within
comments initiated by "--." Line breaks have no significance as statement separators. For
example, the single loop statement in the example extends over a number of lines, and a
semicolon is used to separate ~wo statements in a series.

Semicolons are used for separating declarations, series of declarations from following
statements, and statements in a series from one another. Semicolons act as a separator
between declarations, rather than being required after each declaration. They cannot be
used with abandon, however; care is necessary when writing IF statements (§ 4.2.1) or SELECT

statements (§ 4.3.1). Multiple statements can be written on a single line, separated by
semicolons.

2-3

2 Basic data types and expressions

2.2 Simple declarations

The example (Euclidean Algorithm) contains the following declaration:

r: INTEGER;

This declares r to be a variable of type INTEGER (§ 2.4.1), one of Mesa's built-in types. More
than one variable can be declared at the same time. For instance,

%,y, divisor: INTEGER;

declares identifiers %, y and divisor as variables of type INTEGER. These examples reflect the
two primary purposes of every declaration:

to designate one or more identifiers as variables, and

to specify their type.

A declaration al ways begins with a single identifier or a list of identifiers. Conventionally,
"list" is used to denote a single item as well as multiple items separated by commas. An
identifier list (ldList) is defined as follows:

IdList ::. identifier I
identifier. IdList

A declaration begins with an IdList followed by a colon. The colon is followed by a type
specification (INTEGER, for instance, is a type specification).

2.3 The fundamental operations: assignment, equality and inequality

2-4

The example contains the following five assignment statements:

gcd O
r+-mMOOn
m n
n r
gcd ABs[m)

An assignment statement has the following syntax:

AssignmentStmt :: =- LeftSide +- RightSide I ...

LeftSide :: =- identifier I ... - plus forms for array indexing, etc.

RightSide ::. Expression

The RightSide may be any expression (§ 2.5) provided that its type conforms to that of the
LeftSide. "Conforms" is defined in subsection 2.4.6 and is discussed further in section 3.5;
for now, it can be taken to mean: "is the same as." The LeftSide may be a simple variable
or a component of an aggregate variable (such as an element of an array). In any event, a
LeftSide denotes a variable, something capable of receiving values. A LeftSide cannot, for
example, be a constant, while a RightSide can.

Mesa Language Manual 2

The assignment operation (-), the equality operation (=) and the inequality operation
(#) are called the fundamental operations. They can be applied to values of most types
(including, for instance, entire arrays). The rules governing which pairs of operands may
be used in a fundamental operation are detailed in section 3.5.

2.4 Basic types

The types of variables in a Mesa program fall into two broad classifications, user-defined
types and built-in types. Chapter 3 describes how a programmer can define new data types
using type constructors; this section discusses the basic, built-in types. These include
several numeric types (INTEGER, LONG INTEGER, NATURAL, CARDINAL, LONG CARDINAL and REAL), a
type for logical values (BOOLEAN), and a type for ind.ividual character values (CHARACTER).

The built-in type STRING (for sequences of characters) is described in chapter 6.

2.4.1 The numeric types INTEGER, CARDINAL, and NATURAL

Mesa provides two single word numeric types, one with values ranging over the signed
integers; the other, over the unsigned integers. Neither type completely mirrors the
corresponding mathematical abstraction (the integers ~ or the natural numbers N,
respectively) because a finite representation is used for values of each type. The range of
the type INTEGER is (approximately) symmetric about zero, and values of type INTEGER are
represented as signed numbers. The range of the type CARDINAL is some finite interval of
the natural numbers that includes zero, and values of type CARDINAL are represented as
unsigned numbers. "Signed" and "unsigned" are not types; rather, they describe the
machine representation of a numeric value. There is an additional type, NATURAL, whose
range oflegal values is the intersection of that for INTEGER and CARDINAL.

The programmer must choose an appropriate type for each numeric variable. CARDINALS

offer a somewhat greater positive range than INTEGERS, and this is significant in a few
applications, e.g., those that manipulate addresses that might be the same size as the word
size. More importantly, declaring a variable to have type CARDINAL asserts that its value is
always nonnegative; the compiler can use such assertions to perform more checking and to
generate better code. Programmers are encouraged to declare as much information about
each variable as possible; the ranges of numeric variables can be further constrained by
using subrange types (§ 3.1.2) .

. The types INTEGER and CARDINAL are distinct and not interchangable. They are, however,
closely related. Mesa allows most combinations of these types to occur within assignments
and arithmetic expressions (but not relational expressions). Care is necessary to avoid
ambiguity and failures of representation when values with different representations are
mixed. This is discussed further in subsection 2.4.6 and sub-subsection 2.5.1.1.

The major advantage of NATURAL is that it can be compared to either INTEGER or CARDINAL

(§ 2.5.2). It also requIres fewer bits to represent, so a NATURAL and a BOOLEAN can be packed
into a single word inside a record.

2.4.1.1 Numeric literals

A numeric literal is an instance of the phrase class number, defined as follows:

2-5

2

2-6

Basic data types and expressions

A number is a sequence of digits. The digits may optionally be followed by the letter
B, H or D, which in turn may optionally be followed by another sequence of digits
denoting a scale factor. No spaces are allowed within numeric literals.

If 0 is specified explicitly, or if neither B, D, nor H appears, the number is treated as
decimal. The letter B means the number is octal (radix 8). A scale factor indicates the
number of zeros to be appended to the first sequence of digits; the scale factor itself is
always a decimal number. The syntax for numeric literals in base 16 notation
(hexadecimal) is one or more hexadecimal digits (0-9, A-F) followed by the character H.
The first character must be a valid decimal digit (0-9) or the literal will scan as a valid
Mesa identifier. Lowercase letters may also be used for a through fand for the suffix. The literals below
all denote the same value:

6400 64000 64D2 14400B 144B2 1900H 19H2

A numeric literal always denotes a non-negative number (Le., -5 is considered to be an
expression in which the unary negation operator is applied to the literal 5 to produce an
INTEGER value). To be valid in a context requiring a CARDINAL, the value of the literal must
be a valid CARDINAL number. Similarly, if an INTEGER is required by context, the value must
be a valid (positive) INTEGER. (§ 2.4.5 for more details). Note that literal values of type REAL

have a syntax discussed in subsection 2.4.6.

2.4.2 Type BOOLEAN

A BOOLEAN value can be either TRUE or FALSE; these are the only literals oftype BOOLEAN; Le.,

BooleanLiteral ::. FALSE I TRUE

BOOLEAN expressions are used in conditional statements (following IF) and in certain loop
constructs. For instance, the following skeletal form describes the flow of control in
Example 1:

IFm=OAND n=OTHEN ••.

ELSE

UNTILn=O

DO

ENDLOOP;

The expression "n=O" is a BOOLEAN expression; its value is TRUE if the value of n is zero and
FALSE otherwise. The expression" m = 0 AND n = 0" is also a BOOLEAN expression; its value is
TRUE just ifboth relations are. The relational and logical operators discussed in subsections
2.5.2 and 2.5.3 all yield BOOLEAN values.

Variables of type BOOLEAN can be assigned values and appear as operands (although not of
arithmetic operators) just as any other Mesa variables. For example, the above program
outline could validly be replaced by the following:

mlsZero, nlsZero: BOOLEAN;

mIsZero - (m = 0); nIsZero - n= 0; -- compute whether m and n are zero

Mesa Language Manual

If mIsZero AND nIsZero THEN ...

ELSE

2.4.3 Type CHARACTER

UNTIL nIsZero=TRUE
DO

nIsZero - n = 0;

ENDLOOP;

-- equivalent to just nIsZero by itself

recompute whether n is zero just
before testing

2

A value of type CHARACTER represents a single character of text. CHARACTER values are
ordered (according to the order specified in appendix C) and can be compared using the
normal arithmetic relations. CHARACTER values are distinct from numbers, and they cannot
be assigned to variables with numeric types. Limited arithmetic is, however, allowed on
characters (§ 2.5.1.3). See also the functions ORO and VAL (§ 2.5.6).

A characterLiteral is written as an apostrophe (') immediately followed by a single
character (which can be a blank, carriage-return, semicolon, apostrophe, or any other
character) or as an octal number followed by C. For example:

lowerCaseA - 'a;

mark -' ;
endMarker -'; ;
asciiCR - 15C;

-- mark is set to be a blank. Here a blank is significant
-- endMarker is set to be a semicolon
-- an Ascii Carriage Return character,

2.4.4 Escape conventions for literals

Mesa provides an escape convention to allow non-printing characters in character and
string literals (cf. the escape convention for the language C). The escape character is \, and
the following codes are recognized:

\n, \N, \r. \R
\t. \T
\b. \B
\f. \F
\1. \L
\ddd
\\
\'
\"

Interpretation

Ascii.CR
Ascii.TAB
Ascii.BS
Ascii.FF
Ascii.LF
dddC
\

..
2.4.5 The numeric types LONG INTEGER and LONG CARDINAL

-- note that\n is LF in C.
-- where d is an octal digit, ddd S 3778

For some applications, the ranges of the numeric types introduced in subsection 2.4.1 are
too limited. Mesa provides both a predefined type LONG INTEGER, with signed representation,
and a predefined type LONG CARDINAL, with unsigned representation, for such applications.
These types offer greater ranges, but their values occupy more storage and are generally
more time-consuming to manipulate than those of INTEGER and CARDINAL.

2-7

2-8

Basic data types and expressions

In an implementation, values of types INTEGER and CARDINAL are expected to be represented
by single machine words, while values of types LONG INTEGER and LONG CARDINAL are
expected to occupy two words. For this reason, INTEGER and CARDINAL will be referred to as
slwrt numeric types; LONG INTEGER and LONG CAROINAL, as long numeric types. On a machine
using two's complement arithmetic and a word length of N bits, the following table
indicates the range spanned by each numeric type (.... " replaces the mathematician's
comma in this interval notation):

INTEGER [_2N•1 .. 2N•1)

NATURAL [0 .. 2N•1)

CARDINAL [0 .. 2N)

LONG INTEGER [_22N·l .. 22N.l)

LONG CARDINAL [0 .. 22N)

The actual ranges for these types are given in appendix C, the machine dependencies
appendix.

Long numeric constants are denoted by numeric literals defined by the phrase class
number (§ 2.4.1.1). The allowable type of any decimal or octal literal is determined by its
value, as summarized by the following table (using the conventions introduced in the
preceding paragraph):

Range

[O .• 2N·1)

[2N.l- .. 2N)

[2N .. 22N·l)

[22N•1 .. 22N)

Allowable Types

INTEGER, CARDINAL, NATURAL, LONG INTEGER, LONG CARDINAL

CARDINAL, LONG INTEGER, LONG CARDINAL

LONG INTEGER, LONG CARDINAL

LONG CARDINAL

As in the case of short numeric types, the types LONG INTEGER and LONG CARDINAL are distinct
but closely related. Mesa allows most combinations of'these types and the types INTEGER

and CARDINAL to occur within assignments, arithmetic expressions and relational
expression~, but care is necessary when this is done (§ 2.4.6 and § 2.5.1.1).

2.4.6 The numeric type REAL

The values of Mesa's type REAL are approximations of mathematical real numbers. These
approximations are sometimes called floating-point numbers . ..
Mesa has adopted the proposed IEEE standard for floating-point arithmetic (see e.g.,
Coonen. "An implementation guide to a proposed standard for floating-point arithmetic,"
Computer, January 1980, pp. 68-79). In support of this, the language provides floating·
point literals and the compiler performs a limited number of operations upon floating
point constants. A floating-point constant is known as a realLiteral.

Mesa Language Manual

Syntax

Primary

real Literal

unsealed Real

fraction

:: • ···lreaILiteral -- (§ 2.5)

:: • unscaledReal

:: .
:: .

1 unscaledReal scaleFactor
1 wholeNumber scaleFactor

wholeNumber fraction
1 fraction

. wholeNumber

2

sealeFactor :: . E optSign wholeNumber 1 e optSign wholeNumber

optSign :: . emptyl + 1-

wholeNumber :: . digit I wholeNumber digit

An unscaledReal has its usual interpretation as a decimal number. The scaleFactor, if
present, indicates the power of 10 by which the unscaledReal or wholeNumber is to be
multiplied to obtain the value of the literal.

Mesa represents REAL numbers by 32 bit approximations as defined in the IEEE standard.
The rounding mode used to convert literals is "round-to-nearest." A literal that overflows
the internal representation is an error; one that underflows is replaced by its so-called
"denormalized" approximation. In Mesa, the value of the unscaledReal in a literal must be
a valid LONG INTEGER when the decimal point is deleted.

No spaces are allowed within a realLiteral. Note that such a literal can begin, but not end,
~ith a decimal point. Thus, the interpretation of [0 ... 1) is unambiguous but perhaps
surprising; use [0 ... 1) or[O.O .. O.ll instead. (See SubRangeTC in subsection 2.5.2.)

Operations

The compiler performs the following operations involving floating-point constants:

U nary negation (with - 0 = 0)
ABS

Fixed-to-Float (in "round-to-nearest" mode).

Other operations are deferred until runtime, even if all their operands are constant, so
that the programmer can control the treatment of rounding and exceptions (see the
proposed standard).

2.4.7 Relations among basic types

If two types are completely interchangable, they are said to be equivalent. A value having
a given type is acceptable in any context requiring a value of any other type equivalent to
it; there is no operational difference between two equivalent types. None of the basic types
discussed in section 2.4 is equivalent to another basic type.

One type is said to conform to another if any value of the first type can be assigned to a
variable of the second type. A type trivially conforms to itself or to any type equivalent to

2-9

2

2-10

Basic data types and expressions

itself. In more interesting eases, an automatic application of a conversion function may be
required prior to the assignment. Conformance and its implications are discussed further
in section 3.5.

There are nontrivial conformance relations involving the types INTEGER, LONG INTEGER,

NATURAL, CARDINAL, LONG CARDINAL and REAL. These relations allow certain combinations of
the numeric types to be mixed, not only in assignments but also in arithmetic and
relational operations (§ 2.5.2). They also permit these types to share denotations of
constants (§ 2.4.5). The conformance relations can be summarized as follows:

INTEGER, NATURAL. LONG INTEGER. CARDINAL and LONG CARDINAL conform to INTEGER (note
§ 2.4.8).

INTEGER. NATURAL. LONG INTEGER, CARDINAL and LONG CARDINAL conform to CARDINAL (note
§ 2.4.8).

INTEGER, NATURAL, LONG INTEGER, CARDINAL and LONG CARDINAL conform to NATURAL (note
§ 2.4.8).

INTEGER, NATURAL, LONG INTEGER, CARDINAL and LONG CARDINAL conform to LONG INTEGER.

INTEGER, NATURAL, LONG INTEGER, CARDINAL and LONG CARDINAL conform to LONG CARDINAL.

INTEGER, NATURAL, LONG INTEGER, CARDINAL, LONG CARDINAL and REAL conform to REAL.

Pairs of numeric types not on this list do not conform; e.g., it is not possible to assign a
REAL to a CARDINAL.

Particular care is required when numeric types with different representations are
intermixed. Mathematically, ~ :J N; however, it is not necessarily true that INTEGER :J
CARDINAL or that LONG INTEGER :J LONG CARDINAL. For instance, with the assumptions above,
the intersection of INTEGER and CARDINAL is [O .. 2N-1). Within this interval, the signed and
unsigned representations agree, and the interpretation of a short numeric value is
unambiguous. If a CARDINAL value lies in this range, it can validly be assigned to an INTEGER

variable, and vice-versa; outside this range, the value represented by a given word depends
upon whether it is viewed as a CARDINAL or as an INTEGER. Similar considerations apply to
LONG CARDINAL and LONG INTEGER.

Example:

With the assumptions above and word length N= 16, the unsigned value 177777B
and the signed value - 1 are encoded by the same bit pattern.

Assignment of an unsigned value to an INTEGER variable, or of a signed value to a CARDINAL

variable, implicitly invokes a conversion function, which is just an assertion that the
value to be assigned is an element of CARDINAL n INTEGER (i.e., a NATURAL). If bounds

" checking is requested of the compiler, code will be inserted before each cross assignment to
insure that the value is within range; otherwise, it is the responsibility of the programmer
to ensure that the conversion is valid. In many cases this is not too difficult, but
programmers are urged to avoid mixing signed and unsigned representations when this is
possible. It almost always is.

Mesa does guarantee that LONG T ~ T for any type T and that LONG INTEGER :J CARDINAL;

thus it is always valid to assign a short numeric value to a LONG INTEGER variable or a short

Mesa Language Manual 2

unsigned value to a LONG CARDINAL variable. The properties of conversion to type REAL are
not specified by the language.

Fine points:

A built in procedure FLOAT is automatically applied to convert a value from type LONG INTEGER to
REAL. Short numeric values are converted rarst to LONG INTEGER and then to REAL.

Conversion from a short numeric value to a LONG INTEGER (and thus to a REAL) is substantially more
efficient when the value has an unsigned representation.

N either BOOLEAN nor CHARACTER conforms to any other basic type.

Examples:

i:INTEGER;

(valid)

(invalid)

n: CARDINAL;

i-O:
ii-a:
x-n:
x -ii:

i-x;
n-TRUE;

2.4.8 Long to short con version

ii: LONG INTEGER; x: REAL;

Mesa provides conversion from types LONG INTEGER and LONG CARDINAL to INTEGER, CARDINAL,

and any subranges thereof. If you request bounds checking, the compiler will insert code to
check that the values are is the proper range, otherwise the values are simply truncated to
fit the destination.

In order to avoid surprises caused by loss of precision, the compiler issues a warning
whenever there is an implicit shortening from a two word quantity to a smaller one. To
avoid a warning, you should use an explicit range assertion (§ 3.1.2.2). For reasons of
backward compatibility, no explicit range assertion is required when storing a single word
quantity into a smaller sub range variable. For example:

i: INTEGER; C: CARDINAL; li: LONG INTEGER; 8: TYPE = [0 .. 10);

5:8;

i 4-Ii; - gets a warning

i 4-INTEGER [li]; -no warning

C 4-Ii; - gets a warning

C 4-CARDINAL [Ii]; -no warning

54-Ii; - gets a warning

54-8[li]; -no warning

54-i; -- no warning!

54-8[i}; - no warning

2-11

2 Basic data types and expressions

In all cases, warning or not, the compiler will generate code to check the suitability of the
right hand side value ifbounds checking (the /b switch) is requested.

2.4.9 Predeclared identifiers

The following predeclared identifiers may be used to make programs less verbose:

BOOL: TYPE:: BOOLEAN;

CHAR: TYPE = CHARACTER;

NAT: TYPE = NATURAL;

INT : TYPE = LONG INTEGER;

2.5 Expressions

2-12

Expressions are constructs describing rules of computation for evaluating variables and
for generating new values by the application of operators. The overall syntactic rule for an
expression is given by

Expression :: a Disjunction I AssignmentExpr IlfExpr I SelectExpr I ...

The Disjunction form, which is discussed in this section, includes all the numeric
operations, relational operations, and BOOLEAN (logical) operations. An AssignmentExpr
allows one to write multiple assignments in a single statement; it is discussed in
subsection 2.5.4. The IfExpr and SelectExpr forms are discussed in chapter 4.

The basic unit from which expressions are built is called a Primary. This syntactic class
includes references to variables, literals, function calls (chapter 5), and any arbitrary
expressions embedded in parentheses:

Primary ::. Variable I literal I (Expression) I FunctionCalil •.. I rea/Literal

Variable ::. LeftSide

Literal ::. number I BooleanLitera/ I characterLiteral

FunctionCall :: = BuiltinCall1 Call -- defined in chapter 5

Recall that every expression has a well-defined type in Mesa. The general rules for
determining the type of an expression from the types of its constituent parts are given in
section 3.5. This section outlines the types of the basic expression forms (as functions of
the types of their operands). For example, the type of a Primary is the type of the Variable
or literal involved, or reduces to the type of the Expression within parentheses, or is the
type of the value returned by the BuiltinCall (some of which are defined below) or the Call of
a user-defined procedure (§ 5.1).

Some operators are numeric and some are BOOLEAN. The next sections discuss the numeric
operations, the relational operations, and the operations applicable only to BOOLEAN

values. Considered together, the operators form a single hierarchy with respect to their
precedence, which is described with each operator class and summarized in
subsection 2.5.5.

Mesa Language Manual 2

2.5.1 Numeric operators

The operations on numeric values are addition, subtraction, multiplication, division,
modulus, and arithmetic negation. The syntax for this group of operations is

Factor :: . Primary I -Primary I +Primary

Product :: . Factor I Product MultiplyingOperator Factor

Mu Iti plyi ngOperator :: . * III MOD

Sum :: . Product I Sum AddingOperator Product

AddingOperator :: . +1-

These operators have their usual mathematical meanings. The division operation on
integers, I, always truncates toward zero; thus - (ilj) = - ilj = iI-j. The MOD operator
yields the remainder of dividing one number by another (MOD is not applicable to REAL

operands). MOD is defined by the relation (ilj)*j + (i MOD j) = i, and the sign of the result of
MOD is always the sign of the dividend. (This is the reason that line 11 of Example 1 takes
the absolute value of the computed gcd; if m.= -12 and n=8 initially, the gcd would be
- 4 if its absolute value were not taken.)

The built-in function MIN computes the minimum value in a list of expressions; similarly,
the MAX function, the maximum value. The built-in function ASS computes the absolute
value of its argument. The syntax for calls on the built-in functions is

BuiltinCall ::. MIN [Expressionlist] I
MAX [Expressionlist] I
ASS [Expression 11

-- other built-in functions later

Expressionlist ::. Expression I ExpressionList , Expression

For the arithmetic operators and built-in functions, the order in which the operands are
evaluated is undefined, but the syntax implies a precedence ordering that controls the
association of operators with their operands. In that ordering, unary negation precedes the
multiplying operators, which in turn precede the adding operators. Sequences of operators
of the same precedence associate from left to right (with the exception of the embedded
assignment operator, § 2.5.4). Thus, an expression such as a+b*-c does not specify the
order of evaluation of a, band c but does require that the operations be performed in the
following order: negate c; then multiply the result by b; finally, add that result to the
valueofa.

Examples:

i,j, k: INTEGER; m., n: CARDINAL;

Factors: n
15
(i+j+k)
-15

2-13

2

2-14

Basic data types and expressions

MIN [i,}, k, - 15]
3.1416

Products: m*n

Sums:

iI-15
nMOD8

mln*10
- k*(i + 1)12 MOD 3

i+ 1
-i+}
}-i
n-nMOD8

m- mln·n

2.5.1.1 Domains 01 the numeric operators·

-- same as (mln)*l0 because of left-associativity
-- same as «(- k)*(i + 1))/2) MOD 3

-- same as n - (n MOD 8) because of precedence
-- same as m MOD n

In principle, each arithmetic operator designates the corresponding mathematical
function. Unfortunately, the hardware underlying any implementation of Mesa does not
provide this function but only a set of related partial functions. For each operator, the
compiler must choose as appropriately as possible from this set. The choice is made by
considering the types of the operands.

Example:

With the usual assumptions, 177777B and - 1 are represented by the same bit pattern.
The value of 177777B > 0 is TRUE, but that of -1 > 0 is FALSE.

Mesa provides the operators +, -, ., I, MIN, MAX and ASS for all the numeric types. The
operation MOD is defined for all numeric types except REAL; the operation of unary
negation, for all but CARDINAL and LONG CARDINAL. For each of these operators, the type of
the result is the same as the type of the operands. Additionally, the result of the operation
is considered to have signed representation if all the operands have signed representation,
and to have unsigned representation if all the operands have unsigned representation.
Thus, adding two INTEGER values yields an INTEGER result, and dividing one CARDINAL by
another yields a CARDINAL result.

Fine points:

Division and modulus operations on .short numeric values are substantially more efficient if their
operands are unsigned.

Addition, subtraction, and comparison of long numeric values are fast; multiplication and division are
done by software and are relatively slow.

Although the mathematical integers (ID and real numbers are closed under all these
operations (except division by zero), the subranges defining the types INTEGER, LONG INTEGER,

NATURAL, CARDINAL and LONG CARDINAL generally are not. When the result of an operation
falls outside the range of its assumed type, a representational failure called overflow or
underflow occurs. In the current version of Mesa, it is the programmer's responsibility to
guard against overflow and underflow conditions.

The implications of Mesa's conventions for subtraction are worth emphasizing. If both
operands have valid signed representations, the result has a signed representation. Ifboth

Mesa Language Manual 2

have only unsigned representations, the result has an unsigned representation and is
considered to overflow if the first operand is less than the second.

Example:

i: INTEGER; m, n: CARDINAL;

i-~-n; -- should be used only if it is known that m > = n

i-If m > = n THEN m- n ELSE -(n- m); -- a safer form (§ 3.6)

The arithmetic operations are defined for operands that all have the same type, but it is
possible to mix numeric types (and thus representations) within an expression. In this
case, operands are converted as necessary to the "smallest" type to which all the operands
conform, the operation for that type is applied, and the result also has that type. The rule
for expressions involving type REAL is easy to state:

If any operand has type REAL, the REAL operation is used.

The rules governing combination of numeric operands with differing representations
involve some additional concepts and are stated in section 3.6. Again, the programmer
should try to avoid such combinations when possible. (Recall that literals in INTEGER n
CARDINAL have whatever representation is required by context.)

2.5.1.2 The operator LONG *

The built-in function LONG converts any value with a short numeric type to a long numeric
type and provides explicit lengthening of pointer types to long pointer types (§ 3.4.3) or
explicit lengthening of an array descriptor type (§ 6.2). A value with a signed
representation is converted to LONG INTEGER; one with an unsigned representation, to either
LONG INTEGER or LONG CARDINAL as required. The syntax is as follows:

BuiltinCall :: = ... 1 LONG [Expression]

This operation is necessary when the standard conversion rules do not give the desired
result. It can also be used to emphasize the conversion.

Example:

LONG [m*n] -- "short" multiplication, overflow lost
LONG [ml*LONG [nl -- "long" multiplication

Fine points:

Lengthening a single-precision expression is substantially more efficient if that expression has an

unsigned representation.

The Mesa implementation provides standard procedures (not part of the language) for performing certain

multiplication and division operations in which the operands and results do not all have the same length.

These procedures provide less expensive equivalents of. e.g., LONG [m!*lONG [nl.

2-15

2

2-16

Basic data types and expressions

2.5.1.3 CHARACTER operators •

Limited CHARACTER arithmetic is possible and is sometimes useful for manipulating the
encodings of CHARACTER values. The following arithmetic operations are defined for
operands of type CHARACTER:

A CHARACTER value plus or minus a short numeric value yields a CHARACTER value.

Subtracting two CHARACTER values yields an INTEGER value.

No other arithmetic operations on characters are allowed. Since the results of character
arithmetic depend upon details of the character encoding, such arithmetic should be used
with discretion.

Examples:

C: CHARACTER; digit: INTEGER;
digit +- c - '0;
c+-c + ('A-'a) -- converts lower case to upper

2.5.2 Relational operators

The relational operators include = and # (not equal), <. < = (less than or equal), > =
(greater than or equan, >, and their negatives (e.g., NOT<, - <, - > =, etc.). These
operators always yield BOOLEAN results, depending on the truth or non-truth of the re lation
expressed. The operators = and # apply to most types; the others, to any ordered type (Le.,
to any type whose values are considered to be ordered). Ordered types include INTEGER, LONG

INTEGER, NATURAL, CARDINAL. LONG CARDINAL, REAL, BOOLEAN, CHARACTER, enumerated types
(§ 3.1), and subranges of ordered types (§ 3.1).

The relational operators also include the composite operator IN, which takes a numeric
value as its left operand and an interval as its right operand. Its value is TRUE if the left
value lies in the interval and FALSE otherwise. The syntax for relational operators is

Relation

RelationTail

RelationalOperator

Not

SubRange

SubRangeTC

Interval

::. Sum 1 Sum RelationTaii

::. RelationalOperator Sum I
Not RelationalOperator Sum I
IN SubRange 1
Not IN SubRange

::. <1<=1=1#1>1>=

::. -I NOT

::. SubRangeTC I ... - explained in chapter 3

:: = Interval I ... -- explained in chapter 3

:: = [Expression •• Expression) 1
(Expression •. Expression) 1

Mesa Language Manual

(Expression .. Expression 11
[Expression .. Expression 1

2

The extra syntax for SubRange and SubRangeTC is placed here to be consistent with later
uses of the class Interval in chapter 3. The syntax for intervals follows mathematical
notation; a square bracket indicates the inclusion of the respective end point in the
interval, while a parenthesis indicates its exclusion. For example, the following intervals
all designate the range from -1 to 5 "inclusive:

[- 1 .. 51 [- 1 .. 6) (- 2 .. 6) (- 2 .. 51

In the above examples, - 1 is the lower bound of each interval; the upper bound is 5. The
bounds of an interval are its end points, regardless of whether the interval is written as a
closed, half-open or open one. The bounds are not required to be constants. An interval
with an upper bound less than its lower is said to be empty; no values lie in such an
interval. For example, the following are all empty intervals:

[-1.. -2] [-1.. -1) (-2 .. -1) (-2 .. -2]

Intervals may use real numbers as endpoints. Recall from subsection 2.4.6 that a
realLiteral can begin, but not end, with a decimal point. Consequently, [0 ... 1] (three dots) is
unambiguous but is better expressed as [0.0 .. 0.1].

Examples:

Relations:

Fine point:

n = 15
m#n
i < =j
(i < j) = (j < k)
n IN [1 .. 5)

i NOT IN [- 1 .. 51

--orm -= n

-- = with two BOOLEAN operands
-- n > = 1 and n < 5
-- only legal if; ;s Signed (because - 1 is)

The relational operators, like the arithmetic operators, denote families of hardware operations when they
have numeric operands. Again, there is one operation for each numeric type. If there is a unique
"smallest" type to which all the operands conform, they are converted to that type as necessary and then
the comparison is performed. There is no unambiguous choice of such a type for numeric operands with
different representations; an attempt to compare two such values is an error. The precise rules appear in
section 3.5.

2.5.3 BOOLEAN operators

The operators NOT (logical negation), AND and OR apply only to BOOLEAN values. The syntax
is

Negation :::. Relation I Not Relation

Conjunction :: = Negation I Conjunction AND Negation

Disjunction :: = Conjunction I Disjunction OR Conjunction

2-17

2

2-18

Basic data types and expressions

NOT negates the logical value of a BOOLEAN expression. p AND q has the value TRUE if and
only if both p and q are TRUE. p OR q is TRUE if at least one of p or q is TRUE.

When evaluating a BOOLEAN expression, evaluation of primaries is guaranteed to take
place from left to right. In the operation AND or OR, the second operand is evaluated only if
the first operand's value does not determine the value of the expression.

Fioe points:

.. % AND y" is equivalent to the IfExpr "IF JC THEN y ELSE FALSE"; i.e., when % is FALSE, y is not evaluated.

"% OR y" is equivalent to the IfExpr "IF JC THEN TRUE ELSE y"; i.e., when % is TRUE,y is not evaluated.

rt is therefore safe to have expressions of the form .. % AND y, ~ where y is defined only when % is TRUE. e.g.,
"%#OANDcJ% > 2,"or"p=NILORp.(=O."

Examples:

Negations: NOT i= 15
-q
-(pANDq)

Conjunctions: i < = j AND j < k
pAND -q
i=5 ANDj NOT IN [-1..1]

Disjunctions: m>n OR m= 15
-pOR-q

2.5.4 Assignment expressions

- same as NOT(i = 15)
- q must be of type BOOLEAN

The assignment operation can be embedded in other expression forms. When it is, the
result of the operation has the type of the LeftSide and the value received by the LeftSide
in the assignment. The" +-" operator has the lowest precedence of any operator. Its syntax
is the same as that of the AssignmentStmt:

AssignmentExpr ::. LeftSide +- RightSide

If this form is used to perform multiple. assignments, it is important to note that" +-" is
right-associative. Thus, the assignment expression a+-b+-b+ 1 first assigns the value of
b+ 1 to b and then assigns b's new value to a.

Examples:

Assignment Expressions:
m+-15
m+-n+-lS
m+-n+-n+l
i+-(j+-(j + 1) MOO n)*2

-- same as m+-(n+-(n+ 1»
- all these parentheses are necessary

Rules governing assignments of numeric values when the types are not identical are
summarized in subsection 2.4.7.

Mesa Language Manual 2

Fine point:

Because the order of evaluation of the primaries is not defined, expressons such as "(i-j) + (j-k)" have
unpredictable values and should not be used.

2.5.5 Operator precedence

The following table summarizes the precedences of the unary and binary operators
introduced in this section. The order is from highest precedence (tightest binding of
operands) to lowest; operators on the same line have the same precedence.

-,+
., I, MOD

+,-
=,#, <, <=, >, >=,IN
-,NOT
AND
OR

-- unary negative and positive

-- addition and subtraction

Parentheses can be used to explicitly control the association of operands with operators.

2.5.6 Function-like operators

There are a number of unary operators whose application looks like a function call, such
as the LONG operator (§ 2.5.1.2).

BuiltinCall

PrefixOp

:: = ... I PrefixOp [Expression] I VAL [Expression]

::- ABS I
BASE I
LENGTH I
LONG I
ORO I
PREO I
succ

--(§2.5.1)
-- (§ 6.2)
--(I 6.2)
--(I 2.5.1.2)

The operators PREO and succ operate upon values of any ordered type except REAL. For
numeric and character types, succ [xl and PREO [xl are equivalent to x+ 1 and x-I
respectively. For enumerated types (§ 3.1.1), the values are successor and predcessor of x
in the enumeration; a bounds fault occurrs if there is no such element and you requested
bounds checking, otherwise you get undefined results and possibly overflow.

The operator ORO (ordinal) provides a LOOPHOLE-free mechanism (§ 3.5.1.2) for converting a
character or enumerated value into a numeric value. For example, given the standard
ASCII representation for characters, ORO [,A] = 101B.

The VAL operatol" is the inverse of ORO. It must be used in a situation where the compiler
can determine the type of the result from context. For example:

c: CHARACTER +-VAL(101B); -setsc to 'A

2-19

2 Basic data types and expressions

All of the PrefixOps can be invoked using "dot notation" as well as using brackets. Thus
x.SUCC may be used instead of succ [x I.

2.5.7 Function-like operators on types

There are several function-like operators with arguments of type TYPE.

BuiltinCall

TypeOp

:: = ... I TypeOp [TypeExpression J I
SIZE [TypeExpression , Expression]

:: • SIZE I FIRST I LAST I NIL

The operators FIRST and LAST are applicable to all element types (§ 3.1), including INTEGER,

NATURAL, CARDINAL, and CHARACTER, as well as LONG INTEGER and LONG CARDINAL. When applied
to the numeric types other than REAL, they may supply information about the range of
values supported by a particular implementation. When applied to an enumerated type
(§ 3.3.1) they yield the least and greatest elements, respectively, of the enumeration.

The operator SIZE is used to find the number of machine words occuppied by an object of any
type. The result is a CARDINAL value. The two parameter form of the operator is used to
determine the number of machine words occuppied by a PACKED ARRAY of elements of the
specified type (§ 3.2 and 3.3).

The operator NIL returns a nil value of a POINTER type (§ 3.4).

If the TypeExpression can be parsed as an Expression, these operators may be written in
"dot notation." Thus INTEGER.LAST is equivalent to LAST [INTEGER], but LONG INTEGER.LAST or
even (LONG INTEGER).LAST is not allowed. For another example of a situation where this
cannot be done, see the section on variant records (§ 6.4).

2.6 Initializing variables in declarations

2-20

A variable may be given an initial value in a declaration. For example, the Boolean
variable delimited could be set initially FALSE by using the declaration:

delimited: BOOLEAN +- FALSE;

Variables (of the same type) can be initialized collectively:

n, nO: INTEGER +- -7;

This declares two separate integer variables n and nO and initializes each to -7.

Any expression that could be used as the RightSide of an assignment can be used to
initialize a variable:

i: INTEGER +- ABS[n);
iSquared: INTEGER +- i*i;
j: INTEGER +-iSquared-i+ 1;

-- this will set i to 7
-- iSquared is initialized to 49
-- j is initialized to 49 - 7 + 1 = 43

All initializations shown so far have taken "assignment" (or "+-") form. There is another
form, the "fixed" (or" =") initialization. For example,

Mesa Language Manual 2

octalRadix: INTEGER = 8;

This means that octalRadix is to have a fixed value. It is never valid as the LeftSide of an
assignment. We call octalRadix a constant because its value can never change after it is
initialized (recall that the number 8 is called a literal). Normally, the term "constant" will
include the term "literal"; if the distinction is important, then "literal" will be used.

Initial values for ILXed initialization can be arbitrary expressions. Paraphrasing· the
earlier example:

iO: INTEGER = ABS[-octalRadixl; iOSquared: INTEGER = iO*W;
jO: INTEGER = WSquared-W+ 1;

The initializing expression can use values that are not known at compile time. In this
example, if octalRadix did not have fixed initialization, the values of iO, iOSquared, andjO
would be computed and assigned at run-time. Variables are initialized in the order of
appearance in a declaration, and later declarations can use variables initialized earlier, as
shown by the example.

2.6.1 Compile-time constants

Wherever possible, the Mesa compiler evaluates expressions containing only constants. If
a variable is initialized using the fixed form and the expression can be evaluated at
compile time, then that variable has a known value. Since it can never appear as the
LeftSide of an assignment operator, it too becomes a compile-time constant (the variables
iO, iOSquared, andjO in the previous section are all compile-time constants).

Example:

beta: INTEGER = 3;
alpha: INTEGER = beta-I;

In this case, alpha is a compile-time constant (with the value 2), since the expression
beta-l involves only compile-time constants. Compile-time constants need not occupy
memory at run-time; the compiler can replace references to compile-time constants, such
as alpha and beta, by their known values.

Fine points:

Knowledge of compile-time constant values can also be exploited when analyzing expressions, processing
other declarations, or generating object code.

One side effect of this propagation of constants is that the representation of a numeric constant is known
at compile-time. For instance, alpha above is declared to be an INTEGER, but because its value is 2, it may
also be used as a CARDINAL However, declaring the type of alpha determines what kind of arithmetic
(signed or unsigned) will be used to compute its value, whether at compile-time or run-time (§ 2.5.1 l.

In certain contexts, an expression is required to yield a compile-time constant value. A (sublexpression
denotes such a constant if all the operands are compile-time constants and the operation is not one of
those listed below (current restrictions):

Any arithmetic or relational operation with operands of type REAL.

2-21

2 Basic data types and expressions

Application of any function (chapter 5) other than a built-in function or simple INLINE procedures

(but no guarantees are made for INLINE procedures).

The @operation (§ 3.4), except in some cases where constants have been LOOPHOLEd (§ 3.5.1.2)

to pointer types.

2.7 More general declarations

2-22

Preceding sections have introduced all the syntactic components of a declaration. The
general form is defined as follows:

Declaration ::. IdList: TypeSpecification Initialization; Declaration I
IdUst : TypeSpecification Initialization

For the moment, TypeSpedfication is defined as one of the built-in types; chapter 3
describes other forms of Type Specification.

TypeSpecification :: == PredefinedType I ...

Predefi nedType :: == INTEGER I CARDINALI NATURAL

BOOLEAN I CHARACTER I
LONG INTEGER I LONG CARDINAL I REAL I
STRING I -- see chapter 6
WORD I -- see fine point below
UNSPECIFIED I -- see fine point below
MONITORLOCK I - see chapter 9
CONDITION -- see chapter 9

An Initialization is formally defined as follows:

Initialization

Fine points:

:: == empty I
+- Expression I
= Expression I

--other forms are given later

The predefined type WORD is provided to describe values on which bit-by-bit logical operations are to be

performed. CurrenUy. it is a synonym for CARDINAL.

The predefined type UNSPECIFIED is a device for bypassing most type checking. An UNSPECIFIED value is

a single machine word, and it matches the type of any object that occupies at most a single machine word,

including INTEGER, NATURAL, CARDINAL, CHARACTER, BOOLEAN, UNSPECIFIED, STRING, and any user

defined type (chapter 3) that fits in a single machine word.

For nUIlleric operations, its representation is similarly fluid. If a CARDINAL and an UNSPECIFIED value

are the operands of some arithmetic operation, then the UNSPECIFIED value is considered to be unsigned.

If an UNSPECifiED is combined with a signed value, it is .treated as if it were signed too. If an
UNSPECIFIED is combined with an UNSPECIfiED, they are both treated as signed.

Less type checking is sacrificed by using LOOPHOLE (§ 3.5.1.2) than by declaring variables with type

UNSPECIFIED.

3

Common constructed data types

Mesa encourages the programmer to augment the collection of predefined types by
constructing new types. Types can be defined to describe objects that are structured
collections of related values (e.g., a vector of Booleans, a table, or a complex number
consisting of real and imaginary components). Mesa's type system has other, perhaps less
obvious applications. These include expressing some of the programmer's knowledge
about a class of variables (e.g., that all take on values restricted to some known interval),
separating variables with different semantics into different classes so that they cannot be
confused (e.g., to avoid "comparing apples and oranges"), hiding implementation details of
abstractions (e.g., to prevent the user of a table-lookup package from depending upon the
internal organization of the table), and facilitating the introduction of synonyms to
provide better description and improved readability.

Programmer-created types have the same status as Mesa's built-in types. They can be
used to declare variables and to construct additional new types. In addition, values of most
constructed types can be operands of the fundamental operations (-,=, #).

A new type identifier is declared using the following syntax:

TypeDeciaration :: = idList: TYPE = TypeSpecification ;

Each identifier in the idlist is thereby declared to name the type denoted by the
TypeSpecification. If this declaration form is compared to a normal declaration, i.e.,

Declaration :: = Idlist: TypeSpecification Initialization;

it can be seen that "TYPE" fills the role of a TypeSpecification, and" = TypeSpecification"
plays the role of Initialization. In fact, the newly declared identifier has type "TYPE" and a
value (which must be constant, hence the" =") that is a TypeSpecification.

There are several predeclared identifiers that may be used to make programs less verbose.

BOOL: TYPE = BOOLEAN;

CHAR: TYPE = CHARACTER;

INT: TYPE = LONG INTEGER;

3-1

3

3-2

Common constructed data types

NAT: TYPE .. NATURAL;

Any predefined Mesa type (§ 2.7) is a valid TypeSpecification; thus the following are valid
type declarations:

SignedNumber: TYPE = INTEGER;

U nsignedN umber: TYPE = CAROINAL;

Truth Value: TYPE = BOOLEAN;

Char: TYPE = CHARACTER;

These type identifiers are now valid type specifications and can be used to declare
variables:

i,j: SignedNumber;
n: UnsignedNumber;
b: Truth Value;
c: Char,

After this series of declarations, i andj have type SignedNumber, which is equivalent to
INTEGER; n has type UnsignedNumber, which is equivalent to CARDINAL; etc. This is a trivial
way of defining new types. A more interesting way uses a type constructor as the
TypeSpecification and generates a truly new type, not just an additional name for an
existing one. A TypeSpecification can be defined as

TypeSpecification ::. PredefinedType I
Typeldentifier I
TypeConstructor

(TYPE itself is not a TypeSpecification; it can be used only to declare types.)

There is an important point worth emphasizing here. A TypeSpecification that is a
PredefinedType or a Typeldentifier denotes an existing type and yields the same type
every time it is used. A declaration such as the one of SignedNumber introduces a
synonym for the name of an existing type. Synonyms can be more descriptive and thus
improve readability, but they do not partition the set of values. The types SignedNumber
and INTEGER are fully equivalent, and values with these types can be used interchangably.
On the other hand, a TypeConstructor constructs a new type. The rules for equivalence
and conformance of constructed types depend upon the forms of their constructors and are
discussed as the constructors are introduced. [n some cases, each appearance of a
constructor generates a unique type, i.e., writing the same sequence of symbols twice
generates two distinct, incompatible types. For this reason, programmers usually should
name such a type, using a TypeOeclaration, and thereafter use the type's identifier. Of
course, introducing an identifier for a constructed type can make a program easier to read
and modify in any case.

The PredefinedTypes are described in chapter 2 (except for STRING in chapter 6 and process
related types in chapter 9).

The simplest form of a Typeldentifier is given by

Typeldentifier ::. identifier I - which is a declared type
-- other forms given in chapters 6 and 7

Mesa Language Manual 3

The rest of this chapter discusses the attributes and uses of some common constructed
types: enumerations, subranges, arrays, records, and pointers. The syntax for
TypeConstructor is

TypeConstructor ::. EnumerationTC
SubrangeTC
ArrayTC
RecordTC
PointerTC
LongTC
ProcedureTC
ArrayDescri ptorTC
RelativeTC
SignalTC
ProcessTC

-- for enumerations
- for subranges
- for arrays
- for records
-- for pOinters
-- for long pointers, etc
-- see chapter 5
-- see chapter 6
-- see chapter 6
- see chapter 8
- see chapter 9

(The suffix "TC" is to be understood as an abbreviation for "TypeConstructor.")

Enumerations define a set of values by giving a list of identifiers. These identifiers can be
viewed as members of an ordered set.

Subranges define types with values drawn from those of a larger, encompassing type but
restricted to lie in a specified interval. The subrange takes on the characteristics of the
enclosing type; for example, a subrange of INTEGER can be used to declare variables that
behave as INTEGERS but are constrained to take values within some interval.

Arrays are sequences of components that are homogeneous with respect to type and are
accessed by computed indices ("subscripting"). Records are sequences of components that
have potentially different types and are accessed using fixed component names
("selection"). Records and arrays are Mesa's aggregate data types.

Pointers are scalar values used to access data objects indirectly. A pointer value is
represented by an address. Pointers can be used to build structures such as linked lists and
tree structures. Long pointers are pointers capable of spanning a larger address space
than ordinary pointers.

This chapter concludes with a discussion of type determination, the process by which Mesa
decides whether an expression has an acceptable type for a given operation. This is closely
related to questions of the equivalence and conformance of types.

3.1 The element types

This section describes a class of types called element types. Their common properties are
the following:

(1) They are ordered types; values of an element type can be operands of all the
relational operators (§ 2.5.2).

(2) They are scalar types; a value of an element type does not have any visible or
directly accessible internal structure insofar as the language is concerned.

3-3

3

3-4

Common constructed data types

(3) They can be used to declare subrange types (§ 3.1.2).

(4) They are the only types allowed as index types of arrays (§ 3.2).

The element types are INTEGER, NATURAL, CARDINAL, CHARACTER, BOOLEAN, the types generated
by EnumerationTC, and the types generated by SubrangeTC. Because of (3) above, this
definition is recursive; subranges of subranges are allowed. The definition of the class
ElementType is

ElementType ::. INTEGER I NATURAL ICARDINAL I CHARACTER I BOOLEAN I
EnumeratiDnTC I
SubrangeTC

Fine point:

Note that LONG INTEGER and LONG CARDINAL, although ordered scalar types, are not element types,

i.e •• one cannot use long numeric values as array indices. As a notational convenience, it is possible to

declare sub ranges of these types provided that the resulting sub range is in fact a valid sub range of

INTEGER or CARDINAL.

3.1.1 Enumerated types

Consider the following declarations and a typical assignment:

channelSlale: INTEGER;
disconnected: INTEGER = 0;
busy: INTEGER = 1;
available: INTEGER = 2;

channelS late - busy;

Suppose channelSlate is a variable that is intended to range over a set of three "states"
named disconnected, busy, and available, which are represented by values 0, 1, and 2.
These values have no real significance; 5, 6, and 7 would serve equally well. Enumerated
types are well suited to such an application (where the underlying values are
unimportant). The above declarations could be replaced by a single declaration of a
variable with an enumerated range:

channelSlale: {disconnected, busy, available};

channelS late - busy;

The effect is the same as before; channelS late is a variable with values ranging over the
same "states," and similar assignment statements can be used.

The enumeration has some advantages over the original declarations:

It is more convenient; the programmer does not have to provide values for
disconnected, busy, and available.

It allows more type checking. In the INTEGER case, one could assign any short
numeric value to channelState.

Mesa Language Manual 3

It helps documentation; an enumeration shows all of its possible values.

An enumerated type is constructed by specifying a list of identifiers between braces, "{ ... }".
These identifiers are not variables, but constants of that enumeration called identifier
constants. They represent nothing more than their own names.

The type constructor EnumerationTC is defined as follows:

EnumerationTC ::. { IdList }

The IdList supplies all the identifier constants for the enumeration, and duplication of
identifiers is illegal. Separately specified enumerations are distinct. Every appearance of
an EnumerationTC generates a new type that is not equivalent to, and does not conform to,
any other enumeration. Thus the declarations

foreground: {red, orange, yellow, green, blue, violet};
background: {red, orange, yellow, green, blue, violet};

specify two different enumerations. It is illegal to assign background to foreground,
despite the fact that the same identifier list appears in each declaration. Occasionally, the
inability to declare any further variables with the same type can be used to advantage by
the programmer. Otherwise, the best way to avoid such problems is first to declare a type
and then to declare variables using the identifier of that type; for example:

Color: TYPE = {red, orange,yellow,green, blue, violet};
foreground: Color;
background: Color;

This allows the assignment of background to foreground as well as the declaration of
further variables with the same type (perhaps initialized differently).

The identifier constants in two different enumerated types have no association
whatsoever and do not need to be distinct from one another. To identify unambiguously
the enumeration from which a constant is taken, one can, and sometimes must, qualify the
identifier constant by giving the name of the intended enumerated type. For example,
given the additional declaration

Fruit: TYPE = {orange, lemon};

Color[orange) denotes a color and Fruit[orangel denotes a fruit. More generally, the syntax
used for this form of qualification is

Primary ::. • •• 1 Typeldentifier [identifier] 1

Typeldentifier.identifier

(This adds a new case to the syntactic definition of Primary, which already allows an
identifier constant.) The "dot" form of qualification is discussed in subsection 3.3.3.

Often qualification is not necessary; for instance, the following is permitted:

hue: Color;
hue +- orange; -- the type of hue implies Color[orange)

3-5

3

3-6

Common constructed data types

In the following situations, an identifier constant need not be qualified, because the
intended enumerated type is established by the context:

as the RightSide of an assignment

as an initializing Expression

as a component in an array or record constructor (§ 3.2.2 and 3.3.4)

as an argument of a procedure (chapter 5)

as an array index (§ 3.2)

as the right operand of a Relation, including that part of a Relation used to label an
arm in a discrimination (§ 4.3)

as the bounds in a SubrangeTC (§ 3.1.2)

The values of an enumeration are ordered. The ordering is given by the order of
appearance in the IdList used to construct the enumerated type. The leftmost identifier has
the smallest value, and values increase from left to right. The following relations all have
the value TRUE:

Color[redl < Color[orange]
Color[red] < violet
hue IN [red .. yellow] - assuming hue = orange

There are two additional built-in functions that are applicable to enumerations: FIRST
[TypeSpecification] yields the smallest value of the specified enumeration; e.g., FIRST
[Colorl = red. Similarly, LAST [TypeSpecification] produces the greatest value in an
enumeration; e.g., LAST [Color] = violet. It is also possible to iterate over all values of an
enumeration (§ 4.5).

The predefined type BOOLEAN is really an enumerated type, and its definition is

BOOLEAN: TYPE = {FALSE, TRUE};

Thus, FALSE < TRUE, FIRST [BOOLEAN] = FALSE, and LAST [BOOLEAN] = TRUE. The BOOLEAN constants
TRUE and FALSE may always be used without qualification since Mesa contains the
predefined symbols

TRUE: BOOLEAN = TRUE;
FALSE: BOOLEAN = fALSE;

The operators ORO and VAL provide a LOOPHOLE-free mechanism for converting between
numbers and en~merated type values.

Color: TYPE = {red, orange, yellow, green, blue, indigo, violet};
c: Color;
y: Color +- yellow;
i: CARDtNAL;

Mesa Language Manual 3

C VAL(3); -- assigns green
i ORD[y); -- assigns 2
i y.ORD; -- also assigns 2
i Color.green.ORD; -- assigns 3
i green. ORO; -- illegal

Notice that the use of the adjective Color is required before the identifier green to
establish the context of the intended enumerated type to which the ORD operator is to be
applied.

The VAL operator must be used in a context where the desired type is known, such as
assignment, parameter passing or any of the other situations described above for which
qualification is not necessary.

Fine point:

"Dot notation" is a form of qualification that was used in Mesa originally to refer unambiguously to a

named component of some record (§ 3.3.3). This notational formalism has been extended to a number of

other situations requiring qualification, including the denotation of an identifier constant of an

enumerated type (also § 6.4.4.1 and § 7.6.5>. Thus, Color.red is equivalent to Color(redl.

3.1.1.1 Machine dependent enumerations

Sometimes a programmer can enumerate the values of some type but requires control of
the encoding of each value or of the number of bits used to represent the type (usually for
future expansion). Machine-dependent enumerations are provided for such applications.

Syntax

EnumerationTC

MachineDependent

ElementList

Element

Examples

.. -.. -

.. -.. -

.. -.. -

.. -.. -

MachineDependent { ElementList }

empty I MACHINE DEPENDENT

Element I ElementList, Element

identifier I
identifier (Expression) I
(Expression)

Status: TYPE = MACHINE DEPENDENT {off(O), ready(I), busy(2), finished(4),
broken(7)}

Tint: TYPE = MACHINE DEPENDENT {red, blue, green, (255)} - reserve 8 bits

Each Expression in an EnumerationTC must denote a compile-time constant, the value of
which is a CARDINAL.

In an enumerated type with the MACHINE DEPENDENT attribute, the values used to represent
the enumeration constants are assigned according to the following rules. If a
parenthesized expression follows the element identifier, the value of that expression is
used; otherwise, the representation of an element is one greater than the representation of

3-7

3

3-8

Common constructed data types

the preceding element. If you specify only a representation, the corresponding element
(normally a place holder) is anonymous. If the representation of the initial element is not
given, the value zero is used.

You cannot explicitly specify the representation of any element unless the attribute
MACHINE DEPENDENT appears in the type constructor. Two element identifiers cannot be
represented by the same value (either given explicitly or determined implicitly as
described above). The ordering of elements determined by position in the ElementList must
agree with the ordering determined by the (unsigned) arithmetic ordering of the
representations.

Sparse Enumerations

A machine-dependent enumerated type is sparse if there are gaps within the set of values
used to represent the constants of that type or if the smallest such value is not zero. Mesa
currently takes the following position on gaps: they are filled by valid but anonymous
elements of the enumerated type. These elements can be generated only by the operators
FIRST, LAST, suce and PRED (or by the iteration forms that implicitly use these operators). For
example, suee [busy) is an anonymous element with the representation 3.

If you use a sparse enumerated type as the index type of an array, the array
itself will have components for all elements of the enumeration, including the
anonymous ones. The latter are awkward to access (except through ALL) and
may cause problems in constructors, comparison operations, ete., as well as
wasted space. (For example, ARRAY Tint OF INTEGER would occupy 256 words.>

3.1.2 Subrange types

In many cases, the values of a variable are inherently range-limited. For instance, a value
for day (of the month) lies in the range [1..31]. In other eases, the range is limited by
design. For instance, a value for year might be limited to the range [1900 .. 1999]. Mesa
permits the user to declare such variables in the following way:

day: CARDINAL [1 .. 31);
year: CARDINAL [1900 .. 1999];

Since these intervals cover a subrange of CARDINAL, the variables day and year are called
subrange variables. It is useful to think of day and year as having type CARDINAL with the
additional constraint that values are restricted to the specified intervals.

Subrange types have a number of advantages and uses. Subrange declarations
unambiguously document the range of values intended for a variable and thus aid
software maintenance. The compiler is able to optimize storage allocation when dealing
with range-restricted variables (for example, in arranging the fields of a record, § 3.3) and
can take advantage ofsubrange declarations to generate more efficient object code.

The general form of a SubrangeTC is

SubrangeTC ::. Typeldentifier Interval/
Interval

Mesa Language Manual 3

The Typeldentifier must evaluate to an ElementType. Thus, one can declare types that are
subranges of INTEGER, NATURAL, CARDINAL, CHARACTER, BOOLEAN, enumerated types, and other
subrange types. For example,

SymmetricRange: TYPE = INTEGER [-1..1);

Positive~nteger: TYPE = CARDINAL [1..LAST [INTEGER]];

U pperCaseLetter: TYPE = CHARACTER ['A . .'Z);
DegenerateType: TYPE = BOOLEAN [TRUE •• TRUE);

CoolColor: TYPE = Color(yellow .. LAST [Color]]; -- excludes red, orange, yellow
AthroughM: TYPE = UpperCaseLetter['A . .'Ml; -- subrange of a subrange

The base type for a subrange is that type of which it is a subrange and which is not itself a
subrange; e.g., the base type for both UpperCaseLetter and AthroughM is CHARACTER.

The Expressions that define the end points of an interval must have types that conform to
the type denoted by the Typeldentifier (or yield short numeric values if the identifier is
omitted). Also, for the purpose of defining a subrange type, the end points must be compile
time constants.

Fine point:

It is permissable for the interval defining a subrange type to be empty. e.g., [0 .. 0). It is not legal to use a

variable of such a type, but an empty sub range is sometimes useful for specifying the bounds of an array

in a recorddeclaration(§ 3.2),

A subrange type conforms to its base type, and a base type conforms to any of its subrange
types. By extension, any two sub range types with the same base types are mutually
conforming (even if they do not overlap in any way). A more revealing point of view is that
the value of a subrange variable has the base type as its type, and an assignment of a
value to a subrange variable makes an associated assertion that the value is in the
appropriate interval. A violation of such an assertion is called a range error. It is the
programmer's responsibility to guard against range errors. However, the compiler has an
option that applies boupds checking to insert run-time tests to detect range errors. As
implied by this viewpoint, appropriate literals of the base type serve as literals of the
subrange type, and any operations dermed on the base type automatically extend to the
subrange type (but usually without closure).

Examples:

n: CARDINAL [0 .. 10]; m: INTEGER [-5 .. 5];

m +-0; n +-0;
n+-n+1;
n+-m;

-- inherited literals
- not valid if n = 10
-- only valid if miN [0 .. 5]

The preceding discussion implies that subrange restrictions can be ignored in answering
many type-related questions; in this sense, subrange types are "weak." Two subrange
types are equivalent if their base types are equivalent and if the corresponding bounds are
equal. For these types, equivalence is much stronger than conformance. Equivalence
becomes important when subrange types are used in the construction of other types.

3-9

3

3-10

Common constructed data types

FIRST and LAST are applicable to all subrange types and yield the corresponding bound. For
example, FIRST [CoolColorJ = green and LAST [AthroughM] = 'M. It is also possible to iterate
over all values in a subrange (§ 4.5).

3.1.2.1 Subranges of numeric types *

The description above applies to sub ranges of both enumerated and numeric types.
Numeric subranges introduce one further complication, which is the question of
representation. Omission of the initial Typeldentifier in a SubrangeTC is permissable if
and only if each bound in the Interval specifies a short numeric value. In that case, INTEGER

or CARDINAL is the base type, and the choice depends upon the representations of the
bounds.

A numeric subrange type has a signed representation if both bounds are elements of
INTEGER and at least one is not an element of INTEGER n CARDINAL. Similarly, it has an
unsigned representation if both bounds are elements of CARDINAL and at least one is not an
element of INTEGER n CARDINAL. If both bounds are elements of INTEGER n CARDINAL, values of
that subrange type are considered to have both representations. Any other combination of
bounds is illegal.

Examples:

51: [-10 .. 10);
52: [100 .. 33000];
s3: [0 .. 10);

Fine point:

-- signed representation
-- unsigned representation (if 33000 > LAST [INTEGER])

- both representations

There is currently a shortcoming in the symbol table representation that requires that the lower bound of

a numeric subrange be a valid INTEGER value. Thus CARDINAL [40000 .. 40005) is not a legal sub range

type.

With respect to the choice of signed or unsigned versions of arithmetic and relational
operators, a quantity with both representations is treated flexibly. When combined with
an unsigned value, the quantity is considered to be unsigned; the unsigned operation and
result are chosen. When combined with a signed value, the quantity is considered to be
signed; the operation and result are signed. The rules governing combinations of values
with both representations depend upon the context in which the result is used; the default
is to choose signed representation and INTEGER operations. The precise rules are discussed
in section 3.6.

Examples:

i: INTEGER; n: CARDINAL;

(signed) 51 + 1
51 + s3
s3-i

-- plus the decfarations above

Mesa Language Manual

(unsigned)

Fine point:

s2 + 1
s2 + s3
s3* n

3

The representation assumed for a literal also depends upon context. In fact, any short numeric constant c

is treated as ifits type were [c .. cl.

3.1.2.2 Range assertions *

Assignment to a subrange variable implies an assertion about the range of the expression
being assigned. The programmer may make such an assertion explicitly, for any
expression, by using a range assertion. If S is an identifier of a subrange type and e is an
expression with a type T conforming to S, the Primary S [e) has the same value as e and is
additionally an assertion that e IN [FIRST [SnT] .. LAST [SnT]] is TRUE. In addition to user
defined types, the basic types INTEGER, NATURAL and CARDINAL may be used in range
assertions.

A program that violates one of its range assertions is in error. In addition to providing
documentation and (optional) run time checking, a subrange assertion affects the
attributes attached to an expression. For example, an assertion of an INTEGER range (or a
signed subrange) forces the result to be treated as a value with signed representation. This
is useful for controlling the choice of an operation when the intended one cannot correctly
be inferred from the operands (§ 3.6).

Examples:

i: INTEGER; n: CARDINAL; S: TYPE = [0 .. 101;

3.2 Arrays

CARDINAL [il
S[n]

-- i is asserted to be nonnegative
-- asserts n IN [0 .. 10]

Arrays are indexable collections of homogeneous components. The components of a given
array will have the same type, and each component corresponds to one index value in a
range of indices associated with that array. The index range of an array is itself a type
called an index type. The index type and component type together determine the type of the
array.

earningsPerQuarter: ARRAY [1..4] OF INTEGER;

declares a variable with a constructed array type having an index type of [1..4] and a
component type of INTEGER. Thus, earningsPerQuarter is an array of four integer elements:
earningsPerQuarter[I], earningsPerQuarter[2], ... , earningsPerQuarter[4]. earnings
PerQuarter by itself refers to the entire array variable. (Aggregate variables and
components of aggregates are generally called "variables." If a distinction is needed, the
term component is used and always means an item contained within an aggregate.)

An index type must be an INTEGER, NATURAL, CARDINAL, CHARACTER, BOOLEAN, EnumerationTC,
or SubrangeTC (the element types). Ordinarily, one only uses subranges of INTEGER or

3-11

3

3-12

Common constructed data types

CARDINAL as an index type. A one-to-one correspondence exists between the components of
an array and the values of the index type. This allows array elements to be accessed via
"indexed references." An indexed reference selects and accesses the component
corresponding to a particular index value. In its simplest form, it consists of the name of _
an array followed by a bracketed Expression with a type conforming to the array's index
type.

An index type can be specified using a type identifier:

Quarter: TYPE = [1..4];
profit,loss, earnings: ARRAY Quarter OF INTEGER;

thisQuarter: Quarter;

earnings(thisQuarter) profit[thisQuarterl-loss[thisQuarterl;

The arrays profit, loss, and earnings have Quarter as their index types, and thisQuarter is
a subrange variable with type Quarter.

Index types may also be enumerations or subranges thereof. For example,

CallType: TYPE = {longDistance, tieLine, toll, local, inPlant};
nearbyCalls: ARRAY CallType[toll .. inPlantJ OF CARDINAL;

nearbyCalls(local] nearbyCalls[locall + 1;

Components may be of any desired type. In particular, the component type may itself be an
array type. This allows an approximation of multidimensional arrays, which are
otherwise absent in Mesa. For example, a two-dimensional data structure can be declared
and used as follows:

Matrix3by4: TYPE = ARRAY [1..3] OF ARRAY [1..4] OF INTEGER;

~y:Matrix3by4;

mxy[3][4] 0; - clear last component.

In the assignment statement, mxy is an expression of array type (with index type [1..3]
and component type ARRAY [1..4] OF INTEGER). ~y[3] is an indexed reference to the third
component of ~y. This in turn yields an expression of array type (with index type [1..4]
and component type INTEGER). Thus, ~y(3][4] is an indexed reference to the fourth
component of that subarray. Because of left-associativity, ~y[3][4] is the same as
(mxy[3])[4].

An array constructor (§ 3.2.2) consists of an optional type identifier followed by a list of
values (syntactically, Expressions) enclosed in brackets. The list specifies values for
components of an array in index order. The declaration below uses an array constructor to
initialize an array that can be used as a translation table; i.e., octalChar[nl holds the
character denoting octal digit n:

octalChar: ARRAY [0 .. 7] OF CHARACTER = ['0, 'I, '2, '3, '4, '5, '6, '7];

Note that the number of values in the list (eight) matches the number of indices in the
index type. This is required for array constructors. A special form using the replicator ALL

Mesa Language Manual 3

is available for abbreviating array constructors in which all components have the same
value. For example, the following two declarations are equivalent:

dashes: ARRAY [0 .. 7] OF CHARACTER +- [' -, • -, '-, '-, '-, '-, '-, '-];

dashes: ARRAY [0 .. 7] OF CHARACTER +-ALL ['-I;

Array variables may also be initialized using other array values. Consider the following
example:

fresh Vector: ARRAY [0 .. 3) OF CARDINAL = ALL [0];
current Vector: ARRAY [0 .. 3) OF CARDINAL +- fresh Vector;

In this case, current Vector is initialized with fresh Vector's value, Le., all three of
current Vector's elements are initially set to zero. Because the declaration of fresh Vector
uses fixed initialization, assignment either to the entire array or to one of its elements is
illegal.

When the operands of any of the fundamental operations (+-, = ,IF) are arrays, the
operation is applied on a component-by-component basis. The initialization of
current Vector above uses assignment in this way. Similarly, the expression "current Vector
= fresh V ector" yields the result TRUE if and only if all three components of each array are
equal (as they are in the above example).

3.2.1 Declaration of arrays

Arrays are declared using the array type constructor, ArrayTC:

ArrayTC ::. PackingOption ARRAY IndexType OF ComponentType

PackingOption - elements word aligned ::. empty I
PACKED -- elements potentially packed within words

IndexType

ComponentType

::. ElementType I
Typeldentifier

::. TypeSpecification

Two array types are equivalent if both their index types and their component types are
equivalent and if they are both packed or both unpacked (see below). An array type
conforms to another if the two types are equivalent. Conforming arrays need not be
declared together (unlike RECORD or enumerated declarations where separately declared
types are unique even if they look the same (§3.2.2». For example:

IndexType: TYPE = [0 .. 10)
ArrayTypel : TYPE = ARRAY IndexType OF INTEGER;

ArrayType2 : TYPE = ARRAY [0 .. 10) OF INTEGER;

ArrayType3 : TYPE = ARRAY [0 .. 10) OF INTEGER;

Array 1 : ArrayTypel ; Array2: ArrayType2; Array3: ArrayType3;

3-13

3

3-14

Common constructed data types

Arrays ArrayJ, Array2, and Array3 all conform to one another. Thus, it is possible to
assign or compare array variables with separately constructed types if those types are
structurally identical.

Fine point:

In addition. one array type freely conforms to another if the component type of the first freely conforms to
that of the second. the index types are equivalent, and they are both packed or both unpacked (§ 3.5).
Packed array types with non-equivalent component types do not freely conform, as their elements may
well occupy different numbers of bits within a word.

Declarations of initialized array variables take the form

IdList: ArrayTC Initialization

The initializing expression must have an array type that conforms to the one being
declared.

The previous section describes indexed references to array components. A formal
definition follows:

IndexedReference ::. Variable [Expression] !
(Expression) [Expression]

LeftSide :: •... !lndexedReference

The Variable or parenthesized Expression must be of some array type, and the bracketed
Expression must conform to the index type for that array type. An IndexedReference is
itself part of the definition ofa Leftside (and therefore ofa Variable, § 2.5).

Fine points:

If you specify the PACKED attribute for an array type. the granularity of packing is 1,2.4.8 or 16n bits
and is determined by the component type oftha array. Unless an array is packed. each component is

"aligned," i.e., begins on a word boundary. Thus a packed array of CHARACTER wastes no space.

Since packed array elements are not necessarily word aligned, one cannot use the @ operator (§ 3.4) to
generate the address of an element.

The value of the construct SIZE [T, n) is the size. in words, of the storage required by a packed array ofn
items of type T.

The length of an array is the number of its elements. For variables with an array type, the length is fixed
and known at compile-time. <Dynamic arrays are possible in Mesa through the use of array descriptors.
discussed in subsection 6.2.1 or sequences discussed in section 6.5. I

The IndexType ofan array may legally be an empty interval. In this case, no storage is allocated for
the array. This is useful when the array appears as the last component ofa RECORD (§ 3.3) and the user
will be obtaining storage for each record plus some number of array elements from a free storage
manager. Note that (O •• OJ is not equivalent to [1..1 I. since the intervals specify different initial indices for
the array. The use of sequences (§6.5) instead of dummy arrays is strongly encouraged.

Mesa Language Manual 3

Three function-like operators are relevant to arrays (and more relevant to array descriptors): LENGTH,

BASE, and DESCRIPTOR. These are discussed in section 6.2, but a brief summary is provided below. For
this summary, arg denotes an expression with some array type.

-- yields the number of array elements.

--yields a pOinter value for locating the first array element.

LENGTH [arg)

BASE [arg)

DESCRIPTOR [arg) -- yields arg's array descriptor value (consisting of base and length).

3.2.2 Array constrncto.rs

In the preceding examples, array constructors are used only for initialization. Actually.
constructors for arrays may be used in any RightSide context. An array constructor is
defined as follows:

Primary ::. Constructor 1 •••

Constructor ::. OptionalTypeld [ComponentList 11 ALL [Component 1

OptionalTypeld ::. Typeldentifier 1 empty

ComponentList ::. PositionalComponentList 1
-- other forms for record constructors

PositionalComponentList

Component

::. Component 1
PositionalComponentList , Component

::. empty 1
Expression 1

NULL

- elided component
-- explicit component
-- voided component

The empty components in a constructor are said to be elided, and NULL components are said
to be lJoided. The values of both elided and voided components are undefined when the
component type does not have a default value (§ 3.3.5). In the first form of array
constructor. using OptionalTypeld [ComponentListl. the number of Expressions plus
elided or voided components must match the length implied by the array type. The type of
each Expression must conform to the array's component type. The expressions (and elided
or voided components) are taken in order to form a sequence that is the constructed array
value.

Consider the following example:

Triple: TYPE = ARRAY [1..31 OF CARDINAL;

triplet: Triple +- Triple[11, 12, 13];

The declaration assigns 11 to triplet[1], 12 to triplet[2] and 13 to triplet[31.

When the array type is implied by context, the Typeldentifier may be omitted. Thus, the
declaration above could be written as

triplet: Triple +- [11, 12, 13];

3-15

3

3-16

Common constructed data types

Taken out of context, the constructor [II, 12, 131 is ambiguous; it could be assigned to any
array of three numeric elements; for example:

trio: ARRAY {Patty, Laverne. Maxine} OF LONG INTEGER - [11,12, 131;

The second form of constructor, using ALL, is only valid when the array type is implied by
context. The type of the Expression must conform to the array's component type. The value
of the constructor is an array in which the specified value is replicated a number of times
equal to the length of the array. The expression is evaluated just once. In the case of an
array of arrays, the structure must be mirrored by nesting in the constructor, as shown by
the following example:

allOnes: Matrix3by4 - ALL [ALL [1)];

Fine points:

The value of an elided or voided component of an array constructor is not defined, but it will have some

value. In particular, if the statement

triplet -[1 .. 3];

is executed after the previous assignment to triplet, the value of triplet(2) is undefined. If the element type

of the array has a default (§3.7), then the elided element will have that value.

Any array constructor in which all components are compile-time constants is a compile-time constant.

Also, selection from an array that is a compile-time constant using a constant index yields a compile-time

constant.

3.2.3 Keyword array constructors

If the index type of the array is an enumeration or a subrange thereof, one can use a
keyword array constructor where the individual element positions are named. The
acceptable keywords are the constants appearing in the enumeration. In the case of a
subrange, the endpoints must be defined by expressions involving only those constants,
the operators FIRST, LAST, SUCC and PRED, and identifiers equated by declaration to such
expressions. It is possible to specify the same optional default value (§3.7) for each
component of an array by assigning a default value (including NULL) to the component type
of the array at the time that component type is declared. If this is done, keyword items can
be omitted, the corresponding elements receive the default value. For example,

Element: TYPE = {red, green, blue};
BooIFalse : TYPE = BOOLEAN +-FAlSE ;

Set: TYPE = PACKED ARRA Y Element OF BoolFalse ;
s, t: Set;
s +-[red: TRUE]; -- equivalent to [TRUE, FALSE, FALSE]

t+-[red: TRUE, blue: TRUE] -- equivalent to [TRUE, FALSE, TRUE]

The rules for when components of an array or record constructor may be omitted, elided, or
voided are explained more fully in subsection 3.3.5.

Mesa Language Manual 3

3.3 Records

A record is an aggregate that allows a group of related data items of different types to be
packaged together. In the definition of a record type, the type of each individual
component must be supplied, as in the following example:

MilitaryTime: TYPE = RECORD [hrs: [0 .. 24), mins: [0 .. 60)];
oldTime, newTime: MilitaryTime;

Here, MilitaryTime is a newly defined type, and oldTime and newTime are record
variables ofthat type. MilitaryTime is a two-component record type, where the first record
component is named hrs and the second mins. Every MilitaryTime record contains both
components, but different record objects have their own values for these components.

A constructor of a record type contains a field list after the word RECORD. Each element in
the list specifies one (or more) components of the record. For MilitaryTime, the field list is
[hrs: [0 .. 24), mins: [0 .. 60». The component names, hrs and mins, are called field names.
They are used to refer to components in any MilitaryTime record. For instance, the first
component of oldTime may be selected using the qualified reference, "oldTime.hrs."

One can construct an entire record value using a record constructor. For instance, the
constructors below yield MilitaryTime values with hrs components that have the value 13
and mins components that have the value of the expression "y+ 1":

MilitaryTime[13, y+ 1]
MilitaryTime{hrs: 13, mins: y+ 1]
MilitaryTime[mins:y+ I, hrs: 13]

The second constructor is an example of a keyword constructor, since it specifies the name
of the component (e.g., as "hrs:") with which a value is to be associated. The third example
shows that record components need not be specified in order of field declaration provided
that keywords notation is used in the record constructor.

A default value (§3.3.5) can be specified for any field in the definition of a record type. The
default is used in constructing records of that type when no value is specified in the
constructor. Defaults are useful for suppressing detail and ensuring initialization of fields.
In the following example, the two constructors have the same value:

Datum: TYPE = RECORD

value: INTEGER,

nReads: CARDINAL - 0,
nWrites: CARDINAL-1

];

Datum[x]
Datum[value: x, nReads: 0, nWrites: 11

The basic operations on (non-variant) record values include the fundamental operations
(=, #, -), qualification, the unambiguous reference to a named component of some
record, and extraction, the expansion of record objects and assignment of their components

3-17

3

3-18

<;;ommon constructed data typ't!s

to individual variables in a single statement. Variant records are records of the same type
that do not necessarily contain the same components. They are discussed in chapter 6.

3.3.1 Field lists

There are two kinds of field lists, depending on whether the fields are "named" or
"unnamed." (Field lists used to construct multi-component record types are almost always
named.)

Syntax equations:

FieldList

UnnamedFieldList

NamedFieldList

FieldDescription

DefaultOption

Examples:

::. [UnnamedFieldList) I [NamedFieldList]

::. TypeSpecification /
TypeSpecification , UnnamedFieldList

::. IdList : FieldDescription DefaultOption /
NamedFieldList ,ldList : FieldDescription

DefaultOption

::. TypeSpecification

::. empty /4- DefaultSpecification -- see subsection 3.3.5

[i: INTEGER, b: BOOLEAN, c: CHARACTER]

[INTEGER, BOOLEAN, CHARACTER]

- a named field list
- a similar, but unnamed field list

[(1: CHARACTER, {2, /3: INTEGER] - components listed and declared together
[(1: CHARACTER, {2: INTEGER, /3: INTEGER] - equivalent to the previous

Note that if one field is named, all must be named. Also, field names must be unique
within a given field list. (The same identifiers may be used as field names in other field
lists, however, or as names of declared variables.)

Field descriptions in a named field list contain a type specification, indicating the type of
the field. Any type may be specified, including an array type or (some other) record type.

Fine points:

A field's type specif!cation must not imply an infinite nesting of records. For instance, the following is

illegal:

A: TYPE = RECORD [b:BI:

B: TYPE = RECORD [0: A I:

Field lists occur in constructors of types other than records, such as PROCEDUREs (chapter 5), SIGNAls
(chapter 8), and in variant record specifications (chapter 6),

Unnamed field lists are normally used when component names would be ignored if they were present.

This is common for functions that return single-component results. Unnamed field lists are sometimes

used in specifying the input parameters for procedure variables that are to be set to one of several actual

Mesa Language Manual 3

procedures. (However, an unnamed field list does not allow Calls using such a procedure variable to refer
to the parameters by name.)

3.3.2 Declaration of records

The type constructor RecordTC is defined as follows:

RecordTC ::,. RECORD FieldList I
-- plus variant records (chapter 6)

where FieldList is defined in the previous section. Separately declared record types are
unique, even if they look the same. Every appearance of a record constructor creates a new
type that is not equivalent to, and does not conform to, any other record type. In the
example:

ReeTypel: TYPE = RECORD [a,b: INTEGER);

reel: ReeTypel;

ReeType2: TYPE = RECORD [a,b: INTEGER);

ree2: ReeType2;

ree3: RECORD [a,b: INTEGER);

ree4: RECORD [a,b: INTEGER);

the record variables reel, ree2, rec3, and ree4 all have different, non-conforming types.
None of these can be assigned to any of the others (despite the similarity of their
components). It is, of course, legal to assign to a component any value with a conforming
type. For example:

rec1.a ... ree2. b ... ree3.a ... 5;
ree4.a ... reel.a; rec4.b ... rec1.b;

Any single-component record type conforms to the type of its single component, but not
vice versa. The automatic conversion in this case requires no computation.

Example:

Bundle: TYPE = RECORD [value: INTEGER];

reeVar: Bundle;
intVar: INTEGER;

intVar ... ree Var;
intVar ... reeVar+ 1;
reeVar ... Bundle[intVar];
ree Var. value ... int Var;

-- means intVar ... recVar.value
-- operand conversion
- a constructor

This conversion simplifies dealing with functions that return single-component records
(chapter 5). It also provides a way of partitioning a set of variables that can be checked by
the type system. In the example above, a direct assignment of intVar to recVar is invalid.
Furthermore, no other single-component record type, such as

Prime: TYPE = RECORD [value: INTEGER];

3-19

3

3-20

Common constructed data types

can be confused with Bundle; assignment of a Bundle value to a Prime, or a Prime to a
Bundle, is illegal. Either a Bundle or a Prime can, however, appear as a numeric operand.
Defining Bundle and Prime as synonyms for INTEGER would not provide this additional
checking.

Because of the uniqueness of constructed record types, record variables are typically
declared in two steps: first the record type, then the record variables. The general form is:

identifier: TYPE = RecordTC;
IdList: identifier Initialization;

Record variables can also be declared directly:

IdList: RecordTC Initialization;

-- define record type.
-- same identifier as just defined

This form is not very useful because the (anonymous) record type is not available for
purposes such as declaring other records ofthe same type or writing constructors.

The Initialization shown in these general forms applies to the entire record variable, not to
individual components. Any Initialization must have the proper record type. Initialization
of record variables is shown in the next example.

noon:
midnight:
time:

Fine points:

MilitaryTime = [hrs:12, mins:O];
MilitaryTime = [hrs:O, mins:O];
MilitaryTime +- midnight; - start time at midnight.

The Mesa compiler packs record components into machine words. The components may be arranged in an
order that differs from the left-to-right order of the fields in the type constructor. All records of the same
type have the same component arrangement.

Normally. the user is unconcerned with the actual arrangement of record components. When component
arrangement is important. the user may specify "MACHINE DEPENDENT" records (§ 3.3.6),

Except in MACHINE DEPENDENT records. components are packed for storage efficiency. Some fields may
be aligned (to the beginning of a word boundary) and some may not. Components occupying a full word or

more are always aligned: arrays, INTEGERs and pointers, for example. Subrecords mayor may not be

aligned, depending on their size. Packed arrays that don't fit completely within a word are aligned, even
ifthere would have been space in the preceding word for some of the elements. As an example:

FourBits: TYPE = PACKED ARRA Y [0 •• 4) OF BOOLEAN;
Record: TYPE = RECORD(a, b, c, d: FourBits); .- fits in a single word

The function-like operator SIZE (§ 2.5.6) is often used to find the number of machine words occupied by a
record of some type.

Mesa Language Manual 3

3.3.3 Qualified references

Qualification is used to refer unambiguously to a named component of some record. The
general form (which extends the definition ofa LeftSide) is

QualifiedReference ::. Variable. identifier 1
(Expression) . identifier

LeftSide ::. • •• 1 QualifiedReference

The field name is said to be "qualified by" the record value (the Variable or Expression) to
the left of the dot. The operator associates from left-to-right in the case of multiple
qualification. For example:

Latitude: TYPE = RECORD [degs:[0 .. 360), mins, secs:[0 .. 60)];
Longitude: TYPE = RECORD [degs:[- 90 .. 90 I, mins, secs:[0 .. 60)];
Position: TYPE = RECORD [latitucie: Latitude, longitude: Longitude];
somePosition: Position;

Some of the possible qualified references to components of somePosition are listed below:

Qualified Reference Refers To

somePosition.latitude 1st sub-record

somePosition.longitude 2nd sub-record

somePosition.latitude.degs 1st component of 1st sub-record

somePosition.longitude.secs 3rd component of 2nd sub-record

The association order for qualification means that names must occur in the proper
sequence; e.g., somePosition.mins.longitude is incorrect. Also, a qualified reference must
be complete, i.e., names may not be skipped (as in somePosition.secs, which would be
ambiguous in any event).

Qualified references and indexed references have the same precedence (the highest
possible) and may be intermixed. For example:

recordOfArrays: RECORD [a,b: ARRAY [0 .. 100) OF CARDINAL1;

arrayO/Records:[1..5] OF RECORD [il ,i2,i3: CARDINAL];

arrayO/Records[5].i3 +- recordOfArrays.a(O); - ("Iast" gets "first")

Fine point:

Qualification briefly opens up a given "name scope." For instance, in the record qualification, rec.x, the

qualified name,.:c, must name a field of ree and selects that I18Id. Scope is treated more fully in chapter 7.

3-21

3

3-22

Common constructed data types

3.3.4 Record constructors

A record constructor assembles a record value from a set of component values. In the
following example, a constructor is used as a RightSide of an assignment.

MonthName: TYPE = {Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec};

Date: TYPE = RECORD

[
day: [1 .. 311,
month: MonthName,
year: [1900 .. 2000)
];

birthDay: Date;
now: [1900 .. 2000) - 1984;
birthDay -Date[25,Apr, now-331;

This constructor yields a record value with type Date. The record assigned to birthDay
contains the following component values:

Comeonent Y.!!!!!!

day 25
month Apr
year now-33 (which is 1951)

A Constructor is a Primary and may not be used as the LeftSide of an assignment.

Record constructors are of two kinds: keyword constructors and positional constructors.
Within both kinds, the component value for a particular field may either be supplied or be
omitted. If it is omitted, the value of the field is determined by the DefaultOption
appearing in the declaration of the field (§ 3.3.5).

Syntax equations:

Primary

Constructor

OptionalTypeld

ComponentList

KeywordComponentList

PositionalComponentList

KeywordComponent

::. • •• 1 Constructor

::. OptionalTypeld [ComponentList]

::. Typeldentifier 1 empty

::. KeywordComponentList I
PositionalComponentList

::. KeywordComponent I
KeywordComponentList , KeywordComponent

::. Component I
PositionalComponentList , Component

::. identifier: Component

Mesa Language Manual

Component :: .. empty I
Expression I
NULL

3

-- elided component
-- explicit component
-- voided component

The initial Typeldentifier, if present, must name the type of the record being constructed.

In keyword constructors, the correspondence between constructor components and record
components is strictly "by name." Keyword names may not be repeated in a constructor, but
the order is irrelevant. For example, the following keyword constructors are equivalent:

Date(day: 25, month: Apr,year: now-331
Date[month: Apr, day: 25,year: now-331

All of these keyword constructors specify values for all the components. In the following
example, the first keyword constructor elides the month component (the place for the
component value is specified, but no value is given); the second voids the month
component (by specifying NULL instead of a value):

Date(day: 25, month: ,year: now-331
Date(day: 25, month: NULL,year: now-331

-- month is elided
-- month is voided

The distinction between an elided and a voided field arises in the treatment of defaults
(§ 3.3.5). Since the declaration of Date specifies no default value for month, both of these
examples construct records with a second component that has an undefined value.

In a positional constructor, the correspondence between constructor components and
record components is strictly "by position." The first constructor component corresponds to
the first record component, the second value to the second component, etc. Positional
constructors may be used for both records and arrays (§ 3.2.2). It does not matter whether
or not fields are named in the definition of the record type. The following three
constructors are equivalent:

Date(day: 25, month: ,year: now- 33) - value of month is undefined (elided)
Date(25, , now- 33] -- value of 2nd component is undefined (elided)
Date(25, NULL, now - 33] -- value of 2nd component is undefined (voided)

Positional constructors may elide or void components as shown above, and trailing fields
(only) can be omitted by omitting the final commas. The positional constructor "[]" is
considered to omit, not elide, its first component.

Keyword and positional notations may not be mixed in a single constructor. The order of
evaluation of components is not specified for either kind of constructor.

The initial Typeldentifier in a constructor may be omitted when the constructor is used as:

the RightSide of an assignment (unless the LeftSide is an extractor, § 3.3.6)

an expression in an Initialization

a component of an enclosing record or array constructor

an argument of a procedure

3-23

3

3-24

Common constructed data types

the right operand of a Relation.

In other cases, an initial Typeldentifier must appear. It is never incorrect to supply the
identifier, and sometimes doing so improves readability.

Fine point:

Any l'8Cord constructor in which all components al'e compile-time constants is a compile-time constant.

Also, a field selected (l'om a l'8Col'd that is a compile-time constant is itselfa compile-time constant.

3.3.5 Default field values

The definition of most types, including those in this chapter, allows a default specification
for the type being defined. The default specification for a type is most useful when that
type is used as a component of a record or as the component type of an array (§3.7).

The definition of a record type is unique in that it may specify a default value for each field
of the record overriding, if necessary, any default specification the particular component
type may have already had. All these default specifications are optional; if present, they
can be used in constructing records and arrays when no values for the corresponding fields
are specified in constructors. However, there are different ways of not specifying a value
for a field in a constructor. An elided field, as discussed in the preceding section, supplies
the field, but supplies no value. An omitted field is simply not present at all. In a keyword
constructor, a field is omitted by omitting the keyword entirely; in a positional
constructor, trailing fields (only) can be omitted by omitting the final commas. The
positional constructor .. []" is considered to omit, not elide, its first component. Fields in an
array constructor, however, can only be omitted if the index type of the array is an
enumeration or a subrange thereof(§3.2.3). A field is voided by specifying the word NULL or
TRASH as the value of the field (§3.7). A discussion of the semantics of omit, elide, and void
follows the default specification given below.

In the following example, all constructors have the same value.

Interval:TVPE = RECORD

[
range: INTEGER,

origin: INTEGER +- 0,
direction: {up, down} +- up
];

lnterval[range: 10, origin: 0, direction: up]
Interval[range: 10, origin: , direction:]
lnterval[range: 10)
I nterval[1 0]

-- all fields specified
.- origin, direction elided
- origin, direction omitted
- origin, direction omitted

(positional form)

The syntax for specifying defaults in a NamedFieldList or for any type of declaration (§3.7)
follows:

Mesa Language Manual

OefaultOption ::. empty 14- OefaultSpecification

OefaultSpecification ::. empty 1
Expression 1
TRASH 1
NULL 1
Expression 1 TRASH 1
Expression 1 NULL

Note: In the final two lines, the vertical bar denotes itself and is embedded within
an alternative.

3

In a OefaultSpecification, the Expression must have a type that conforms to the type of the
corresponding field. -

Suppose that R is a record type with a field II of type T or that II is simply a variable that
has been defined to have type T. The above syntax allows five forms for the DefaultOption
in the declaration of II. No matter which form is used, a constructor of an R may explicitly
specify a value for the field II. The various options control whether the existence of the field
must be made evident in the constructor, whether an explicit value must be supplied and,
if not, what action is taken. The options are interpreted as follows:

(1) II: T
In a constructor, the value of II can be left undefined, but that must be indicated
explicitly, by eliding or voiding the field. II cannot be omitted. This rule also
applies to an unnamed field.

(2) II: T 4-.

Every constructor must supply an explicit value (not NULL) for II.

(3) II: T 4-e

If a constructor elides or omits II, the value of the expression e is used; voiding the
field is not permitted.

(4) II: T 4- TRASH

As in (1) above, except that the constructor may omit II entirely. If the field is
omitted, elided or voided, its value is undefined.

(5) II: T 4- e ITRASH

As in (3) above, except that a constructor may explicitly void II. If the field is
omitted or elided, the value of e is used; if it is voided, its vaiue is undefined.

If the first or second form is used, the field cannot be omitted from a constructor; these
forms are useful when such omission is likely to indicate a programming error. Omission
is permitted by the other forms, which differ in the default action for an omitted or elided
field. These forms are appropriate when a field has some common and meaningful default
value (the third and fifth cases) or, alternatively, is relevant only in unusual
circumstances (the fourth case). The last three forms are particularly suitable for
extending the definition of a record type; constructors in existing programs need not be
modified.

In the fourth and fifth cases, NULL can be used in place of TRASH with the same results.

3-25

3

3-26

Common constructed data types

Fine points:

The second form of field declaration guarantees that the field u has a well-defined value. Constructors
cannot void this field. and declaration of a record ofthis type (or allocation by NEW. § 6.6.2) must include
a constructor that sets this field.

If the Expression form of a default specification is used. that expression is evaluated at the time of
construction but in the context of the declaration of the record, i.e .• the expression is treated as a
parameteriess procedure invoked by evaluation of the constructor (see chapter 5).

The default value of a field cannot be specified in terms of other fields in the same record. Default values
for fields of record types defined in DEFINITIONS modules (§ 7.3.2) must be compile-time constants.

Examples:

R: TYPE = RECORD

[
u1: CARDINAL,

u2: CARDINAL +-,

u3: CARDINAL +- 3,
u4: CARDINAL +-TRASH,

u5: CARDINAL +- 51 NULL

);
- the following are valid
R(v1: 1, u2: 21
R[u1: , u2: 2, u5:)
R[v1: 1, u2: 2, u5: NULL1

- the following are not valid
R[]
R[vl: 1, u2: NULL, u3: NULL]

3.3.6 Extractors

- means R[ul: 1, u2: 2, u3: 3, u4:TRASH, u5:'5]
- means R[u1: , u2: 2, u3: 3, u4: TRASH, u5: 5]
-meansR[vl: 1, u2: 2, u3: 3, u4: TRASH, u5: NULL]

- neither vI or u2 may be omitted
- neither v2 nor u3 may be voided

Extractors are used to "explode" record objects and assign their components to individual
variables in a single statement. For example, the extractor below assigns the components
of birthDay (defined in subsection 3.3.4) to the variables dd, mm, and yy, in that order:

dd: [1..31]; mm: MonthName; yy: [1900.,2000);
[dd, mm, yy] +- birthDay;

This has the same effect as the following three separate assignments, except that birthDay
is evaluated only once:

dd +- birthDay. day; mm +- birthDay. month; yy +- birthDay.year;

An extractor resembles a constructor in form, but there are some important differences:

The "components" of an extractor specify LeftSides, not Expressions.

Extractors always begin with a left bracket, never with a Typeldentifier.

Mesa Language Manual 3

The type of the record value assigned to an extractor must be known to the compiler. This
means that the following (rather useless) statement is invalid because the constructor's
type cannot be determined:

[dd, mm, yy 1-[25, Apr, 1943]; -- invalid

The statement should specify the type of the constructed value:

[dd, mm, yy J - Date[25 , Apr, 1943]; -- valid

Extractors, like constructors, may use keywords. This allows an extractor to be written
without regard to the record's component order. For instance, the following statements are
equivalent to the first one in this section:

[day: dd, month: mm, year: yy] - birthDay;
[month: mm, day: dd, year: yy] - birthDay;

Extractors may elide or omit any item, in which case the corresponding record component
is not assigned. The extractors shown below are equivalent:

[day: dd, month: ,year: yy) - birthDay;
[day: dd, year: yy) - birthDay;
[dd, , yy] - birthDay;

-- month elided
- month omitted
-- 2nd component elided

A positional extractor may omit trailing components without supplying trailing commas.
The year component of birthDay is omitted below.

[dd, mml- birthDay;

Syntax equations:

AssignmentStmt :: =- ••• 1 Extractor - RightSide

Extractor ::. [KeywordExtractList J I
[PositionaIExtractList]

Keyword ExtractList :: =- KeywordExtract 1

KeywordExtract, KeywordExtractList

KeywordExtract :: = identifier: Extractltem

PositionalExtractList :::11 Extractltem 1

Extractltem , PositionalExtractList

Extractltem -- component is ignored :::11 empty 1
LeftSide -- component is assigned to LeftSide

The identifiers in a KeywordExtractList must be field names for the record type. Note that
an extraction list can be empty, in which case the effect is to discard a record value.

Fine point:

An Extractltem may itself be an Extractor. This allows extraction from records embedded within

records. In particular, this form is useful in situations where a single-component record is not

3-27

3

3-28

Common constructed data types

automatically converted to its single component. e.g •• extraction from a record that is the only component
of a return record.

3.3.7 Machine dependent records

Machine-dependent records are provided for situations in which the exact position of each
field is important. (A first time reader is referred to section 6.4 for a complete discussion of
variant records.) You can explicitly specify word- and bit-positions in the declaration of
the record type.

Syntax

VariantFieldList

CommonPart

NamedFieldList

NamedField

FieldldList

Fieldld

Tag

FieldPosition

Examples

:: • CommonPart FieJdld : Access VariantPart I
VariantPart I

::.

:: .
::.

:: .
:: .
:: .
:: .

NamedFieldList I
UnnamedFieldList I
empty

NamedFieldList , I empty

NamedField I NamedFieldList, NamedFieJd

FieldldList :
Access TypeSpecification DefaultOption

FieJdld I FieldldList, Fieldld

identifier I identifier (FieldPosition)

FieJdld I ...
Expression : Expression .. Expression I
Expression

InterruplWord: TYPE = MACHINE DEPENDENT RECORD [

channel (0: 8 .. 10): [O .. nChannels), - nChannels < = 8
device (0: 0 .. 7): DeviceNumber,
stopCode(O: 11..15): MACHINE DEPENDENT {jinishedOK(O), errorStop(1),powerOf/{3)},
command (1: 0 .. 31): ChannelCommand];

Node: TYPE = MACHINE DEPENDENT RECORD [

type (0: 0 .. 15): Typelndex,
rator(l: 0 .. 13): OpName,
rands (1: 14 .. 47): SELECT valence (1: 14 .. 15): * FROM

nonary = > [],
unary = > [left (2): POINTER TO Node),
binary = > [left (2), righl(3): POINTER TO Node)
ENDCASEI

An identifter with an explicitly specified FieJdPosition can occur only in the declaration of
a field of a record defined to have the MACHINE DEPENDENT attribute. If the position of any

Mesa Language Manual 3

field of a record is specified, the positions of all must be. Each Expression in a FieldPosition
must denote a compile-time constant, the value of which is an unsigned integer.

The first expression appearing in a FieldPosition specifies the (zero-origin) record-relative
index of the word containing the start of the field; the second and third specify the indices
(zero-origin) of the first and last bits of the field with respect to that word. The second and
third expressions may specify a bit offset greater than the word size if the word offset is
adjusted accordingly. Similarly, the difference between the second and third expressions
may exceed the word size. If the bit positions are not specified, a specification of
O .. n-WordSize-l is assumed, where n is the minimum number of words required by the
type of the field. Note that in the preceeding example, in the field position for left, a single
word quantity could be given equivalently as (1: 16 .. 31) or as (2: 0 .. 15).

Each field must be at least wide enough to store any value of the corresponding type.
Values are stored right-justified within the fields. The current implementation of Mesa
imposes the following additional restrictions on the sizes and alignment of fields:

A field smaller than a word (16 bits) cannot cross a word boundary.

Any field occupying a word or more must begin at bit zero of a word and have a
size that is a multiple of the word size.

A variant part (§ 6.4) may begin at any bit position (as determined by its tag
field); the tag must be the first thing in the variant part.

If the sizes of all variants of a record type are less then a word, those sizes must
be equal; otherwise, the size of each variant of the type must be a multiple of
the word length.

In the definition of a machine-dependent record type, explicitly specified field positions
must not overlap. For a variant record type, this requirement applies to the variant part
(including the tag) considered in conjunction with the fields of the common part; the tag
and fields particular to each variant must lie entirely within the variant part.

The order of fields in a record type declaration need not agree with the order of those fields
in the representation of the record; however, no gaps are permitted. For variant records,
the fields of at least one variant (including the tag field) must fill the position specified for
the variant part.

Fine point:

An earlier, purely positional, form of machine dependent record remains for compatibility. The new form
is encouraged because it provides better documentation and is usually easier to use. An example of the
purely positional form:

InterruptWord:-TYPE = MACHINE DEPENDENT RECORD

delJice: DelJiceNumber.
channel: [0 .. 71.
stopCode: {finishedOk. errorStop. powerOffl.

3-29

3 Common constructed data types

command: Ch4nMlCommand

I:

In this case, the user takes full responsibility for component arrangement. Components are positioned
exactly as given, from left to right in machine words. In general, "fill" components are needed to ensure
that no field crosses a word boundary (unless it starts on one). Components (such as Ch4nMICommand)
may themselves be aggregates occupying more than one word

It is also the user's responsibility to "fill out" the record to a full word if the record crosses a word
boundary. (Interrupt Word might be correct for a H,·bit machine, but not for a machine having a.-larger
word length).

3.4 The types POINTER and LONG POINTER

3-30

POINTERS and LONG POINTERS provide efficient indirect access to objects that reside in virtual
memory. All Mesa processors provide a single large, uniformly addressed virtual memory
organized as an array of words. Virtual addresses occupy two words and are represented
by values of type LONG POINTER.

Within a distinguished region of the virtual memory, called the main data space, data
may be referenced using short pointers; these addresses occupy a single word and are
represented by values of type POINTER. The main data space (MDS) is a contiguous region of
64K words of virtual memory in which system data structures and all local and global
frames of executing processes reside. The purpose of the main data space is to allow
commonly used data structures to be referenced by single word pointers. The use of the
main data space for general allocation of other data structures is strongly discouraged.

Dynamically allocated data structures typically reside outside the main data space and
are accessed via long pointers. (Short) pointers may be used by programs that indirectly
address local and global variables, although for generality, such accesses are often done by
long pointers as well. (Short) pointers are also used within the operating system. We begin
our discussion of pointer types with (short) pointers for two reasons: long pointer types are
constructed from pointer types using the type constructor LONG, and all the standard
operations that can be applied to pointers can be applied to long pointers as well.

A pointer may refer to only one specific type of item. For instance, the following pointer
provides access only to objects of type INTEGER:

intPtr: POINTER TO INTEGER;

Another pointer might be specified to point only to BOOLEAN objects:

booLPtr: POINTER TO BOOLEAN;

These are different types of pointers since they have different reference types, INTEGER and
BOOLEAN. Furthermore, since INTEGER and BOOLEAN are incompatible types, these pointer
types are also incompatible; i.e., assignment of booLPtr to intPtr, or vice versa, is
disallowed.

A pointer value is represented by the address of some data object, called the pointer's
referent. The postfix operator t may be applied to a pointer value of any type to yield that
value's referent. The process of "following" a pointer to its referent is called dereferencing.

Mesa Language Manual 3

A de referenced pointer designates a variable. When the pointer is declared as above, the
variable can be used as a LeftSide or as a Primary. Thus intPtr t and boolPtr tare
variables of type INTEGER and BOOLEAN respectively. The statement

boolPtr t +-(intPtr t = 0);

is executed by following intPtr to obtain a INTEGER value, testing that value, and assigning
the result to the BOOLEAN variable referenced by boolPtr.

Sometimes a pointer is created simply to identify an object or to allow indirect access to a
value that is not to be modified. Mesa provides readonly pointers for such applications. A
value with a readonly pointer type cannot be used to update its referent. For example, the
declaration

ROintPtr: POINTER TO READONLY INTEGER;

declares a readonly pointer. ROintPtr t is a Primary with type INTEGER but not a valid
LeftSide.

Any type specification is permitted as the reference type of a pointer type. The pointers
declared below reference a named record type.

Person: TYPE = RECORD

[
age:[O .. 200],
sex: {male,{emale},
party: {Democratic, Republican}
];

candidate 1 , candidate2: Person;
winner, loser: POINTER TO Person;

Pointers to record objects may be used to qualify field names. If record candidate 1 is the
referent of winner, then qualifications such as

winner. age winner.sex winner.party

select the corresponding components of candidatel. However, if candidate2 were the
referent, these same qualifications would select components of candidate2. When applied
to a pointer, the operation of selection implies dereferencing. For example, winner.age
specifies dereferencing winner to obtain a record variable'of type Person and then
performing normal field selection on that record. Thus winner. age is an abbreviation of
winner t .age.

It is common to define a record type containing components that are pointers referencing
objects with the same record type. For example, the type declared as follows:

FamilyMember: TYPE = RECORD

[

someone: Person,
mother, father: POINTER TO FamilyMember
];

3-31

3

3-32

Common constructed data types

might be used to create a tree of related persons in which the relations are expressed
directly by pointer linkages.

The fundamental operations (=, #, 4-) applied to pointer values deal with the pointers
themselves, not with their referents. In the examples:

winner loser;
winner t loser t ;

the first sets winner to point to the same Person as loser; the second assigns the referent of
loser to the referent of winner, and thus has a quite different effect.

The full set of relational operators can be applied to pointers declared to be ordered; for
example:

orderedPtr: ORDERED POINTER TO Person;

The ordering is determined by the memory addresses that represent the pointers, not by
the properties of the referents. Pointers not declared to be ordered can be only be compared
using the operators = and:#.

There is one pointer literal, NIL. It conforms to any unordered pointer type and denotes a
pointer value that has no valid referent. For example:

If intPtr = NIL THEN boolPtr NIL;

A pointer with value NIL should not be dereferenced; the result is undefined.

Pointer values .. are most commonly obtained from alloeators that provide and manage
storage for a class of objects. The unary prefix operator @ also generates pointers. Wh~m
applied to a variable with type T, it yields a pointer to that variable with type POINTER TO T;
for example:

winner @candidatel;

Pointer generation should be done with caution; it is possible for the resulting pointer to
outlive the referenced object. A non-NIL pointer value with no valid referent is said to be a
dangling reference. The language does not prevent dereferencing such a pointer, but doing
so produces an undefined result. It is the users responsibility to avoid dereferencing a
dangling (or uninitialized) reference.

3.4.1 Constructing pointer types

The type constructor for pointers is deimed as follows:

PointerTC

Ordered

Base

::. Ordered Base POINTER TO ReadOnly TypeSpecification I
Ordered Base POINTER Interval TO ReadOnly TypeSpecification

::. empty I ORDERED

::. empty I BASE

Mesa Language Manual 3

ReadOnly ::. empty I READONL Y

The TypeSpecification in a PointerTC specifies the reference type of the pointer type. Two
pointer types are equivalent if their reference types are equivalent and if their attributes
ReadOnly and Ordered are specified identically. Thus equivalent pointer types can be
constructed in separate places, but they must have the same structure. One pointer type
conforms to another if the two reference types are equivalent, if either the ReadOnly
attributes are identical or the second is READONLY and the first is not, and if either the
Ordered attributes are identical or the first is ORDERED and the second is not. The Base
attribute is ignored in determining conformance (base pointers are discussed in section
6.3).

[n the following examples, the first type in each pair conforms to the second, but the
second does not conform to the first:

POINTER TO FamilyMember
ORDERED POINTER TO Person
ORDERED POINTER TO Date

Fine points:

POINTER TO READONLY FamilyMember
POINTER TO Person
POINTER TO READONL Y Date

If one pointer type conforms to another, it conforms freely (§ 3.5.31. Conformance of pointer types is
extended by the following rule: one pointer type conforms freely to another if the second is READONL Y,

the reference type of the first conforms freely to the reference type of the second, and the Ordered
attributes satisfy the restriction above.

The second form of PointerTC constructs a sub range of a pointer type. Sub ranges of pointers have the
usual properties of sub ranges; e.g., a pointer subrange type and its base type mutually conform (but not
freely). The values of a subrange pointer are restricted to the given interval land can potentially be stored
in smaller fields). Subrange pointer types are not recommended for general use. They are intended
primarily for constructing relative pointer types (§ 6.3) which, unlike the subrange types, do not allow
dereferencing without relocation.

The attribute BASE specifies that values with that pointer type are to be used as base values for
relocating relative pointers (§ 6.3). Such values may also be used as ordinary pointers.

3.4.2 Pointer operations

The general form of an indirect reference is:

IndirectReference ::. Variable f I
(Expression) f

LeftSide ::. •. ·llndirectReference

The postfix operator f performs explicit dereferencing of the pointer expression it follows.
Its precedence is the same as indexing and qualification (the highest possible), and these
operations can be intermixed. For example:

group: ARRAY [0 .. 10) OF POINTER TO FamilyMember;

group[i] f . mother f .someone -- ««group[i]) f }.mother) f }.someone

3-33

3

3-34

Common constructed data types

If p is an arbitrary pointer expression, then p f can be read as "p's referent" or "referent of
p." Application of the f operator produces a variable that may be used as a Primary.
Unless p is a readonly pointer, p f (or any of its components) may also be used as a
LeftSide. The definition of conformance implies that an ordinary pointer can be assigned
to a readonly pointer, but not vice versa. Thus. the referent of a readonly pointer is not
necessarily immutable; Le., its value might change during the lifetime of the READONLY

pointer. The Mesa language only prevents updates of the object through those pointers to
it that are declared to be readonly.

The syntax used for address generation is

Primary ::. • •• 1 @ LeftSide

The prefix operator @ produces the address ofits operand. If x is a variable of type T whose
access path does not involve a long pointer, the value of@x is a pointer to x, and its type is
POINTER TO T. Otherwise @x is a long pointer to x, and its type is LONG POINTER TO T. @x can
be read as "address of x." The operand for @ must be a valid LeftSide (it cannot be a
constant or an arbitrary expression, for instance). The operator's precedence is lower than
that of f ; e.g., @x t is equivalent to @(x t) (or simply x).

Fine points:

If a variable is declared with fixed form (tt=") initialization, its address may be taken with the @

operator if and only if the pointer to which it is assigned has the READONL Y attribute.

There are variables that cannot be the referents of pointers and thus cann~t be the operands of @. In
addition, a pointer value is represented by a word address. Therefore. a referent must lie on a word
boundary; an object having this property is called aligned. Variables are aligned except in the following
cases:

Elements of packed arrays are not aligned.

Any component of a record that occupies less than a single word is not aligned (but arrays, even if
packed, are always aligned unless they are small enough to fit entirely within a partial word in
the record).

Care must be taken so that a pointer to a declared variable does not exist longer than the variable to
which it points. Consider the following example (which assumes familiarity with procedures. local
variables and global variables):

pointerl. pointer2: POINTER TO INTEGER; •• two:global variables

RiskyProc: PROCEDURE [i: INTEGER I = - i is a local variable
BEGIN
local: INTEGER;

pointer! -@i;
pointer2 -@local;

RETURN
END;

- and so is local

- risky: i will disappear upon RETURN
-likewise

- the "risky" pointers are valid up to this point, but
-0 NOT after this statement is executed.

Mesa Language Manual 3

After the RETURN statement is executed. local storage is released for other purposes; thus the pointers
will reference unpredictable data when that storage is reused. One should use pointers with referents

existing at least as long as the pointers.

Another common mistake is to return the address of a local variable as follows:

IncorrectProc: PROCEDURE RETURNS[POINTER TO INTEGER] =
BEGIN

local: INTEGER;

RETURN [@locall; •• WRONG, local is deallocated upon RETURN

END;

Pointers that are declared to be ORDERED may be used as operands of all the relational
operators (§ 2.5.2). For this purpose, they behave as unsigned numeric values. The
definition of conformance implies that an ordered pointer can be assigned to an unordered
pointer variable, but not vice versa. NIL is not a valid ordered pointer constant, and the
relation of its value to other pointer values is undefined. Also, the @ operator always
produces an unordered pointer value.

The following fine points cover pointer capabilities that should be used with caution (and avoided when possible).

Some of these capabilities circumvent normal type·checking, and may result in unpredictable results if used.

The type POINTER TO UNSPECIFIED (or simply POINTER) has the following two properties. which are
almost unrelated: It can be dereferenced to yield a value of any type whose size is a single word, and it
conforms to any other pointer type, and conversely.

Limited arithmetic can be performed on pointers, but programmers are encouraged to use BASE and
RELATIVE pointers (chapter 6) if the purpose oithe arithmetic is simple relocation. A short numeric value
added to, or subtracted from, a pointer produces another pointer with the same type. Also, the difference
of two pointer values with equivalent types is a CARDINAL.

3.4.3 Long pointers

Long pointer types are constructed as follows:

LongTC :: = LONG TypeSpecification

Long pointers may be created by lengthening (short) pointers as described below. In
particular, NIL is automatically lengthened to provide a nun long pointer when required by
context. The standard operations on pointers (de referencing, assignment, testing equality,
comparing ordered pointers) all extend to long pointers.

Both automatic and explicit lengthening (using the operator LONG) are provided for pointer
types, and the type POINTER TO T conforms to (but is not equivalent to) the type LONG POINTER

TO T. Lengthening an expression with the first of these types produces a value with the
second; i.e., the reference type and the Base, Ordered and ReadOnly attributes are
unchanged.

3-35

3

3-36

Common constructed data types

The operator @ applied to a variable of type T produces a pointer of type LONG POINTER TO T
if the access path to that variable itself involves a long pointer and of type POINTER TO T
otherwise.

Fine points:

Two conforming pointer types conform freely only ifboth are long pointers or both are not.

NIL is lengthened in a standard way and has a universal representation. All other pointers are
lengthened in a hardware dependent way.

[f either operand in a pointer addition or subtraction is long, aU operands are lengthened and the result is
long.

Examples:

R: TYPE = RECORD [f T, ...);
p, q: POINTER TO R;
pp, qq: LONG POINTER TO R;
pT: POINTER TO T;
ppT: LONG POINTER TO T;

-- the following are valid.

pp - qq; pp - NIL; pp - p;
pp = qq, pp = NIL, pp = q;
pT - @p.f, ppT - @pp.f,
ppT-@p.f,

- the followin,g are not valid.

pp = ppT;
p - pp; pT - @pp.f,

3.4.4 Automatic dereferencing

--long comparisons

-- pointer lengthened

- incompatible types
-- no automatic shortening

Automatic dereferencing converts a pointer RightSide of type POINTER TO T into one of type
T if that RightSide is followed by dot qualification (§ 3.3.3), a bracketed array index, or a
bracketed argument list (the last two are syntactically identical). For example, in the
following two statements, the LeftSides are equivalent:

winner.party- Democratic;
winner t .party - Republican;

Automatic multilevel dereferencing is possible. Given the following declarations, the
three final assignment statements have the same effect:

actuaLArray: ARRAY [0 .. 20) OF INTEGER;

arrayPtr: POINTER TO ARRAY [0 .. 20) OF INTEGER - @actualArray;
arrayFinger: POINTER TO POINTER TO ARRAY [0 .. 20) OF INTEGER -@arrayPtr;
actuaLArray[1] - 3;
arrayPtr[I] -3;
arrayFinger[I] - 3;

-- arrayPtr t [1] - 3
-- arrayFinger t t [I) - 3

Mesa Language Manual 3

Fine points:

The pointer attribute BASE inhibits automatic dereferencing in the context of subscript or argument
brackets (16.3),

A pointer expression following OPEN or WITH (14.4.2 and 6.4.41 will be dereferenced an arbitrary
number of times (not just oncel to obtain an expression designating a record.

3.5 Type determination

Every expression in a Mesa program has a type that can be deduced by static analysis of
the program text. Such analysis is called type determination. The language imposes
constraints on the type of each expression according to the context in which it is used. A
program that does not violate any of these constraints is type-correct; every valid Mesa
program must be type-correct.

In principle, every variable and every expression has an inherent type derived from its
structure. The inherent type of a variable is established by declaration; the form of a
literal implies its type, and each operator produces a result with a type that is a function of
the types of the operands. Inherent types of some expression forms are listed below:

Expression Inherent Type of Expression

34
NIL

%<y

[34 .. 34) which has base types INTEGER and CARDINAL(§ 3.1.2.1)
POINTER TO UNSPECIFIED

%

array[i]
@%
(% +-e)

BOOLEAN

declared type of %
type specified for the components of array
POINTER TO type of %
typeof%

The type rules in Mesa take two general forms, which are the following:

The exact type required by the context is known, and a given type must conform to
it. The required type is called the target type.

The exact type required is not implied by context, but a relation that must be
satisfied by a set of types is known. The process of satisfying that relation is called
balancing.

Situations in which the target type is known are simpler and more common; they will be
discussed first.

All assignment-like contexts establish a target type for the expression to be assigned.
These contexts include not only assignment itself (where the target type is the type of the
LeftSide) but also initialization, record construction (where the target type for each
component expression is the declared type of the corresponding field), array construction,
parameter list construction, and the like.

Example:

LType: TYPE = RECORD [c: CType];
lVar: LType;

3-37

3

3-38

Common constructed data types

LVar +- anyExp;
lVar -LType[c: someExpl;
lVar.c +- someExp;

The following rule applies to assignments:

-- target type of anyExp is L Type
-- target type of someExp is CType ...
-- .,. which is more obvious here

There is neuer any automatic dereferencing or type conversion of any kind for the
leftSide of an assignment, and the inherent type of the leftSide is the target type of
the right side. (Of course, a leftSide may contain subexpressions, such as array
subscripts, that are themselves right sides and subject to conversion.)

Certain other contexts imply a target type. For example, the target type for an array
subscript is the index type of the array. Also, the target type of the expression following IF,

WHILE, etc., is BOOLEAN.

If the inherent type of an expression is equivalent to the target type, the use of that
expression is type-correct. If it is not equivalent, it may still be possible to obtain
conformance by applying various type conversions, which are sometimes called coercions.
In Mesa, there is at most one sequence of conversions that can be applied automatically to
convert a value from one type to another. When implicit conversion from the inherent type
to the target type is impossible, the program is in error; e.g., assigning a BOOLEAN value to
an INTEGER variable is never valid.

Fine points:

When the target type is well defined. certain expression forms may be abbreviated. Identifier constants
need not be qualified. and explicit identification of the type of a constructor is optional. The abbreviated
constructs have no inherent type when viewed out of context. and they cannot be used in situations
requiring implicit conversion. For example,

Color: TYPE = {red, orange, yellow, green, blue, uiolet};
i: CARDINAL -Color.green.ORD -- qualification of green ;s required

An Extractor never has an inherent type; the extraction is controlled by the inherent type of the
RightSide, which therefore cannot be abbreviated or converted. For example.

r: RECORD [inner: RECORD [fl, /2: INTEGER)];

[i,j] +- r.inner; -- the field selection cannot be omitted

3.5.1 Type conversion

There are four automatic type conversions that can be applied to establish type
conformance. All have been discussed in preceding sections. They are the following:

(1) A value with a subrange type may be converted to a value with its base type, and
vice versa (§ 3.1.2).

(2) A value with a single-component record type may be converted toa value with
the type of that component (§ 3.3.2).

Mesa Language Manual 3

(3) A value with a short numeric, pointer or array descriptor type may be lengthened
to a value with the corresponding long type (§ 2.4.5, 2.5.1.2,3.4.3,3.2.1 (and 6.2)).

(4) A value with any numeric type may be converted to type REAL (§ 2.4.6).

The first of these is a somewhat special case; as mentioned in subsection 3.1.2, it is more
accurate· to view this as a pair of conversions that are applied unconditionally when
evaluating, and assigning to, a subrange variable.

Examples:

Fine points:

r: RECORD [f INTEGER);

i: INTEGER;

ii: LONG INTEGER;

i +-r;
ii -r;

-- i -r.f
-- ii +- LONG [r.n

A number of the conversions used to achieve conformance require computation and cannot be applied
recursively to the constituents of constructed types. For example, INTEGER conforms to LONG INTEGER,

but ARRAY InduType OF INTEGER does not conform to ARRAY Inde%Type OF LONG INTEGER. subsection
3.5.3 discusses the concept of "free" conformance and the rules governing such cases.

There is one other automatic conversion, de referencing, that is applied only in certain syntactic contex:ts
(§ 3.4.4). It is never applied automatically to achieve type conformance in an assignment.

3.5.1.1 ISTYPE predicate and NARROW operator

Let T be a type and x be a variable. The expression ISTYPE [x,T] has the value TRUE if the
type of x is T and FALSE otherwise. The ISTYPE operator is useful for describing the meaning
of the NARROW operator as explained below. ISTYPE cannot be used with numeric variables to
test for interval membership; use IN instead.

NARROW is used to restrict the type of variable.

NARROW [x, T] allows a value x to be viewed as a value of type T, and succeeds if and only if
ISTYPE [x,T] is TRUE. It may be thought of as approximately the following Mesa code:

IF ISTYPE [x, T] THEN LOOPHOLE [X,T] ElSE ERROR Runtime.NarrowFault;

(See chapter 8 for ERROR'S, sub-subsection 3.3.1.2 for LOOPHOLE syntax, and the Pilot
Programmer's Manual for details of the Runtime interface.)

NARROW, when used with the ISTYPE predicate (e.g.

IFISTYPE[U, Typel)THEN{ul: Typel+-NARROW[U); ... };

-where u is a variant record)

can be used to discriminate a variant record in a situation where only one tag value is
reasonable (§ 6.4.4.1). Such use of NARROW causes the compiler to generate a run-time test

3-39

3

3-40

Common constructed data types

of the variant tag. Observe that ifthe type Typel can be determined from context, it need
not be supplied as an explicit parameter to the NARROW.

The NARROW operation can also be applied at compile-time to view a value of some opaque
type T (§ 7.6) to be of the concrete type T'. This is particularly useful when the opaque
value is embedded within some larger composite type .

. An expression of the form NARROW [x, T1 cannot appear on the left of an assignment
operator. One can usually narrow a suitable pointer and dereference it as a left-hand side.
For example:

x: S;
NARROW (x, T] - valueO(l'ypeT; --illegal
NARROW [@X, POINTER TO TJ f - valueO(l'ypeT; --okay

3.5.1.2 Unchecked type conversion: the LOOPHOLE operator

Sometimes it is necessary to subvert Mesa's type checking, particularly in programs that
manipulate low-level representations of objects. A Primary with the form

LOOPHOLE (Expression, TypeSpecification)

has the same value as the Expression (viewed as a sequence of bits) and the type denoted
by TypeSpecification. This "conversion" never requires any computation. The only
restriction is that values with the inherent type of Expression must be represented in the
same number of machine words as values of the type TypeSpecification. If Expression is a
valid LeftSide, then LOOPHOLE[Expression, TypeSpecificationJ is also. When the target type
is well-defined, the TypeSpecification may be omitted. For example:

b: BOOLEAN; n: CARDINAL;
n - LOOPHOLE [b, CARDINAL];
n - LOOPHOLE [b];
LOOPHOLE [n, BOOLEAN]- b;

-- to discover the representation
-- also acceptable
-- as a LeftSide

Since LOOPHOLE bypasses most checking, its use should be limited as much as possible.

3.5.2 Balancing *

Many of Mesa's operators are generic; Le., the operation performed depends upon the types
of the operands. Examples are the fundamental operators = and #, which accept two
operands with arbitrary (but compatible) types and produce a BOOLEAN result. In this case,
neither operand has a defined target type. Instead, it is necessary to find some type to
which the inherent type of each operand conforms: any automatic type conversions are
applied to the operands as necessary to produce values of that type, and the operation is
then performed. The common type is the "least upper bound," Le., the one requiring the
fewest conversions.

Examples:

R: TYPE = RECORD [f: INTEGER];
RR: TYPE = RECORD [if: LONG INTEGER);
i: INTEGER;

Mesa Language Manual 3

ii: LONG INTEGER;

rl, r2: R;
rr: RR;

i = ii
r1 = r2
r1 = i
rl = rr

-- LONG [i I = ii
- -compared as records
-- r1.f = i
-- LONG [rl.f1 = rr.f

Balancing is also applied to IF expressions (§ 4.2.0, SELECT expressions (§ 4.3.3), and the
arithmetic and relational operators.

Fine points:

Many generic operators do not propagate the target type of the expression in which they appear; instead,
the operands are balanced and combined to produce a result that is converted further if necessary. For
example,

ii-i+r; -- ii -LONG [i + r.fl

ii +- LONG [i 1 + r; -- ii +- LONG [i 1 + LONG[r.fl

The current version of Mesa does not fully implement balancing when lengthening (or conversion to

REAL) is required. The restrictions are:

Operands of MIN and MAX and the alternatives of conditional expressions are lengthened to

match the expression's target type, if any, and otherwise to match the type of the first operand.

The endpoints of an interval in the right operand of IN are lengthened to match the type of the

left operand, but the left operand is never lengthened.

The expressions selecting the arms of a selection (§ 4.3) are lengthened to match the type of the

selecting expression, but that expression is never lengthened.

3.5.3 Free conformance *

A number of the conversions used to achieve conformance require computation and cannot
be applied recursively to establish the conformance of types constructed from pairwise
conforming types. For example, INTEGER conforms to REAL, but the conversion from INTEGER

to REAL transforms the representation. Thus a POINTER TO INTEGER and POINTER TO REAL cannot
validly have the same re.ferent, and these types do not conform.

The relation of free conformance is less restrictive than strict type equivalence but is
defined so that it can be computed recursively. Loosely speaking, one type freely conforms
to another if a value of the first can always be used as a value of the second without any
computation or run-time check of validity. The relations of equivalence, free conformance
and conformance are not independent. Equivalence always implies free conformance; if
two types are equivalent, each freely conforms to the other. Also, free conformance implies
conformance; if one type freely conforms to another, the first also conforms to the second.

Of the automatic conversions discussed in subsection 3.5.1, only a restricted form of the
first (subrange conversion) can be applied to establish free conformance. The restriction
(which arises from the representation of subrange values in Mesa) is the following:

3-41

3 Common constructed data types

The subrange type T [i .. j) conforms freely to T if i = FIRST [T] and to T [i .. k J ifj S k.

If automatic conversion (1) of subsection3.5.1 must be applied in any other circumstance
or if 'application of conversion (2), (3) or (4) of that section is required to establish the
conformance of two types, they do not conform freely.

Of the constructed types discussed in this chapter, array and pointer types also have rules
for free conformance less restrictive than equivalence. To summarize:

One array type conforms freely to another if the index types are equivalent and the
component type of the first freely conforms to the component type of the second
(§ 3.2.1).

One pointer type freely conforms to another whenever the first pointer type
conforms to the second as defined in subsection 3.4.1.

Free conformance is also important for procedure types (§ 5.1) and variant records (§ 6.4).

In the following pairs of types, the first conforms to the second (but does not freely
conform):

[0 .. 100)
[5 .. 10)
INTEGER
POINTER TO Person

[0 .. 10)
[0 .. 10)
REAL
LONG POINTER TO Person

In the following pairs, the first type freely conforms to the second (but is not equivalent):

POINTER TO [0 .. 10)
POINTER TO READONL Y [0 .. 10)
ARRAY [0 .. 10) OF [0 .. 10)

Fine point:

POINTER TO READONLY [0 .. 100)
POINTER TO READONLY [0 .. 100)
ARRAY [0 .. 10) OF CARDINAL

Note that POINTER TO [0 .. 10) does not conform to POINTER TO [0 .. 100) so that the following is illegal:

p: POINTER TO [0 .. 10); q: POINTER TO [0 .. 100);

--nowpt = 99

3.6 Determination of representation *

3-42

This section discusses the rules used by Mesa for choosing between signed and unsigned
versions of the numeric operations. These rules assume that there are conversion
functions (taking the form of range assertions for short numeric types, § 3.1.2.2) that
convert values from CARDINAL to INTEGER (from LONG CARDINAL to LONG INTEGER) and vice versa.
In both directions, the "conversion" amounts to an assertion that the value is an element
of INTEGER n CARDINAL (LONG INTEGER n LONG CARDINAL). Such assertions must be verified by
the programmer.

Mesa Language Manual 3

For ~ny arithmetic expression, the inherent representations of the operands and the target
representation of the result are used to choose between the signed and unsigned versions of
the arithmetic and relational operators.

The target type determines the target representation. The preceding section describes the
derivation of target types; in addition, a range assertion establishes the asserted type as
the target type of its operand. If all valid values of the target type are nonnegative, the
target representation is unsigned; otherwise, it is signed. The arithmetic operators
propagate target representations unchanged to their operands, but the target
representation of an operand of a relational operator is undefined. The target
representation is also undefined in all other cases in which the target type is undefined.
Thus each (sub)expression has at most one target representation.

The inherent representation of a Primary is determined by its type (if a variable, function
call, etc.), by its value (if a compile-time constant), or explicitly (if a range assertion).
Possible inherent representations are signed and unsigned; in addition, a compile-time
constant in INTEGER n CARDINAL or a Primary with an inherent type that is a subrange of
INTEGER n CARDINAL is considered to have both inherent representations. Inherent
representations of operands are propagated to results as described below.

The operation denoted by a generic operator is chosen by considering first the inherent
representations of its operands, next the target representation, and finally a preferred
default. If the operation cannot be disambiguated in any of these ways, the expression is
considered to be in error. The exact rules follow:

If the operands have exactly one common inherent representation, the operation
defined for that representation is selected (and the target representation is
ignored).

If the operands have no common inherent representation but the target
representation is well-defined, the operation yielding that representation is chosen,
and each operand is "converted" to that representation (in the weak sense discussed
above).

If the operands have both inherent representations in common, and if target
representation is well-defined, it selects the operation. If the operands have both
inherent representations in common but the target representation is ill defined, the
signed operation is chosen.

If the operands have no representation in common and the target representation is
ill-defined, the expression is in error.

In all cases, the inherent representation of the result is determined by the selected
operation.

The unary operators require special mention. Unary minus converts its argument
to a signed representation if necessary and produces a signed result.

Example:

If m and n have unsigned representation, both the following are legal and assign
the same bit pattern to i, but the first overflows if m < n.

3-43

3

3-44

Common constructed data types

i..-m-n; i..-IFm >= nTHENm-nELSE -«n-m);

ABS is a null operation on an operand with an unsigned representation; it always yields a
value with unsigned representation. The target representation for the operand of LONG (or
of an implied lengthening operation) is unsigned.

Examples:

i,j: INTEGER; m, n: CARDINAL; s, t: [0 .. 77777B]; b: BOOLEAN

- the statements on each of the following lines are equivalent.

i..- m+n; i "-INTEGER(m+n)
i..-j+n; i..-n+j; i..-j+INTEGER[n)
i ..- 8 + t; i ..-INTEGER (8) + INTEGER [t)
n ..- s + t; n..- CARDINAL (8) + CARDINAL [t]
S ..- 8 - t; 8 ..- CARDINAL [S) - CARDINAL [t)
b ..- 8 - t > 0; b..- INTEGER [s I-INTEGER [t) > 0

i..- -m; i..- -INTEGER[m)

-- unsigned addition
-- signed addition
-- signed (overflow possible)
-- unsigned (overflow impossible)
-- unsigned (overflow possible)
-- signed (overflow impossible)

i..- m+n*(j+n); i "-INTEGER[m) + (INTEGER[n)*(j+INTEGER(nJ))
n..-m+n*(j+n); n..-m + (n*(CARDINAL[j]+n»
i ..- m + n*(8 + n); i..- INTEGER [m + (n *(CARDINAL [S] + n»]

b ..- S IN [t - 1 .. t + 1]; b +-INTEGER [S) IN [INTEGER [t - 1) .• INTEGER (t + 1]]
FOR 8 IN (t-l .. t+ I) ... ; FOR S IN (CARDINAL (t-l] .. CARDINAL[t+ 1]] ...

The following statements are incorrect because of representational ambiguities.

b..-i > n; b..-i+nIN[s •. j]

SELECT i FROM m = > ... ; t = > ... ; ENDCASE

Fine point:

When an INTEGER is lengthened. its inherent type is LONG INTEGER. When a CARDINAL or NATURAL is
lengthened, its inherent type is LONG INTEGER and LONG CARDINAL

LongCardinal: LONG CARDINAL;

_ Longlnteger: LONG INTEGER;

-Integer: INTEGER;

Cardinal: CARDINAL;

The following statements are valid:

IF Long Integer < Integer THEN ••• ;

IF LongCardinal < Cardinal THEN .•• ;

IF Longl nteger < Cardinal THEN .•. ;

The following statement is invalid:

IF LongCardinal < Integer THEN •.. ;

Mesa Language Manual 3

3.7 Extended defaults

As previously explained, you can associate a default initial value with a type (not just with
a field of a record). If a type is constructed from other types using one of Mesa's type
operators (e.g., RECORO), the default value for that type is determined by the default values
of the component types and by rules associated with each operator and by any default
specification for the record type itself. When you declare a named type, you have the
option of explicitly specifying a default for that type.

With this extension, you will find that uses of defaults in Mesa generally fall into two
classes. Default values for fields of records and arrays make the corresponding
constructors more concise and more convenient to use. On the other hand, the usual
reason for associating a default initial value with a type is to ensure that storage allocated
for that type is well-formed, i.e., that any variable of such a type always has a meaningful
value. There is some interaction between these uses; the default value of a record type is
partly determined by any default values specified for its fields, and a record field may
inherit its default value from the type of that field. The details appear below.

The rules for inheritance of defaults are designed to provide the following property
(currently not quite preserved by sequence (§ 6.5) or variant record types (§ 6.4.5»: if a
type T has been given a non-NUll default value, any type derived from T will have a
defined and non-NUll default value for any embedded component of type T. Because of the
potential cascading effect implied by this, you should carefully consider the relative costs
and benefits of specifying a default, especially one that does not include NUll as an
alternative.

Defaults are }gnored in determining equivalence and conformance of types. Thus, it is
possible to have two compatible types with different default initializations.

Specification of Default Initialization

None of the built-in types (INTEGER, CARDINAL, NATURAl,BOOlEAN, CHARACTER, STRING and REAL)
has a default initial value. All of the transfer types PROCEDURE, PROGRAM, SIGNAL, ERROR, and
PROCESS have a default initial value of Nil.

The following rules determine the default initial value of a type designated by an
expression involving a type operator:

The default initial value for a type constructed using RECORD (or ARRAY) is defined
field-by-field (or element-by-element). For each field (element), it is the default
value for that field if there is one; otherwise, it is the default initial value for the
type ofthat field (element) or is undefined if there is no such default.

Types constructed using other operators have no implied default initialization.

The default initial value of a type designated by a declared type identifier T depends upon
the form of the declaration of T, as follows:

T: TYPE = TypeExpr;

T receives all the attributes of TypeExpr including any default.

3-45

3

3-46

Common constructed data types

T: TYPE = TypeExpr +- e~

T receives all the attributes ofTypeExpr except that its default initial value is e.

Emmples

Flag: TYPE = BOOLEAN +- FALSE;
Reel: TYPE = RECORD[f Flag];
Rec2: TVPE = RECORD(f Flag] +-[];
Rec3: TVPE = RECORD if. Flag] +- [TRUE];
Rec4: TYPE = Rec3;
Rec5: TYPE = Rec3 +- [f FALSE];

- default value ;s [f FALSE)
- ditto (the field defaults)
- explicit default
- default value ;s [f TRUE]
- default value ;s [f FALSE)

Any DefaultSpecification is acceptable in a type declaration (§ 3.3.5). A declaration giving
a type T a NULL default cannot, however, equate T to a type with a default that does not
include NULL. A default appearing in a type definition within a DEFINITIONS module must be
either NULL or an expression with a compile-time constant value.

Default values associated with types are used

to initialize local variables of procedures and programs, in the absence of explicit
initialization,

to initialize variables that are dynamically allocated using NEW (§ 6.6.2), in the
absence of explicit initialization (see below),

to construct records (except argument and result records), in the absence of an
explicit value for a field in the constructor and of a default value for that field in the
record declaration,

to construct arrays, in the absence of an explicit value for an element (see below).

Defaulted Array Elements

Elements in an array constructor may be voided or elided. Omission of elements is
permitted in a keyword constructor (see below) but not in a positional constructor. The
empty constructor (m is a keyword constructor with all items omitted. An elided or
omitted element receives the default value for the type of the components of the array (if
any); the value of a voided element is undefmed.

ALL abbreviates a positional constructor of the appropriate length; thus ALL [] elides all·
elements (defaulting if possible) and ALL [NULL] voids all positions.

Fine point:

The examples below illustrate the generality and complexity that default values may have. In the

example below. the assignment statement assigns 2 to group{l 1.4 to group(2J. 3 to group(3 1.4 to group[41.
and 3 to group(51.

GradeRanlle:TYPE = CARDINAL[O •• 41-3;

GradeType: TYPE = ARRA V[O •• 41 OF GradeRanlle

group: GratkType;

Mesa Language Manual

,roup -[2,4, ,4,1; ··two fields elided

A final example:

3.8 The null value NIL

Subran,e: TYPE = CARDINAL [0 .. 41- 21 TRASH;

Array: TYPE = ARRAY [0 .. 41 OF Subran,e - [I, I, ,TRASH,l II TRASH;

Record: TYPE = RECORD

[

r1: CARDINAL - TRASH,

r2: Subran,e - 4, ··overrides previous default specification

r3: Subrange,

r4:Array,

r5: CARDINAL -771 TRASH

1-[, ,3, [0,1,2,3,41,1:

Color: TYPE = {red, orange, blue, white} -;

Ne.tedRec: TYPE = RECORD
[

n1:Color,

n2: Record -[r1: 10, r2:. r3: TRASH. r4: [3.3.3.3,31, r5: 21

);

Ptr. TYPE = LONG POINTER TO Color - NIL;

u1:Array;

u2:Record;

03: NestedRec - [red);

04: Colo,. - red;

-the following are valid

u1- [2,4, ,4. I; .. means Array[2,4.2.4,21

u2 - [r3: TRASH, r5: 4); •• means Record[r1: TRASH. r2: 4. r3: TRASH.

r4:U,l,2,TRASH,II, r5: 41

u2 -[r3: 1, r4: [1,2,3,4,1, r5: 6); •• means Record[r1: TRASH. r2: 4. r3: I,

r4: [1,2,3,4,21, r5: 61
u2 - []; •• means Record[r1: TRASH, r2: 4, r3: 2,

r4:[1,1.2.TRASH.lI. r5: 77 I
u2 -[r1: TRASH, r4: TRASH, r5: 61; •• means Record[r1: TRASH, r2: 4, r3: 2,

r4:TRASH,r5:61

03 -[n1: red, n2: {r4: (4, ,4, ,4]]); •• means NestedRec[n1: red,

- n2: [r1: TRASH, r2: 4. r3: 2. r4: {4.2,4.2.41, r5: 771

3

In Mesa, null values are available for all address-containing types. An address-containing
type is one constructed using POINTER, DESCRIPTOR, PROCEDURE, PROGRAM, SIGNAL, ERROR,

PROCESS, UNCOUNTED lONE or a LONG or subrange form of one of the preceding. The built-in
type STRING is address-containing.

3-47

3

3-48

Common constructed data types

Fine point:

A relative pointer or relative descriptor type is not considered to be address-containing in Mesa .

Null values are denoted as follows:

If T designates any address-containing type, NIL [T] denotes the
corresponding null value.

Whenever T is implied by context, NIL abbreviates NIL [T].

If T is not implied by context, NIL means NIL [POINTER TO UNSPECIFIED) and thus
matches any POINTER or LONG POINTER type.

A fault will occur if you attempt either to dereference a null value or to transfer
control through a null value.

4

Ordinary statements

Statements are the units of action in Mesa; they control the flow of execution and the
updating of variables. This chapter treats ordinary statements: those statements having
wide applicability (such as assignment statements); later chapters cover the remaining
statements. The following syntax lists the phrase names of all the statement forms
covered in this chapter:

Statement ::. AssignmentStmt IlfStmt 1 SelectStmt 1 NullStmt 1
Block 1 GotoStmt 1 LoopStmt 1 ExitStmt I ••.

Some statements have expression counterparts, with the same general purposes but
slightly different constraints. For instance, assignment can be performed by an expression
as well as a statement. The expression forms covered in this chapter are

Expression ::. • •• 1 AssignmentExpr IlfExpr 1 SelectExpr

In Mesa, certain statement forms such as the IF statement contain other statements. These
statements in turn may contain still other statements, and so forth. Consequently, the
term "statement" should be understood to encompass the large and small alike.

The dynamic successor of a statement embedded within another depends upon the
embedding form. For simplicity, the discussion assumes that most statements occur in the
middle of a hypothetical series of statements. Execution paths within a statement are
described for each form of control statement, and the successor is described in terms of a
postulated "Ne%t·Statement." Ne%t-Statement represents nothing more than completion of
a given statement; another statement mayor may not appear at that point in an actual
program.

Although execution of a statement can be aborted prior to its normal completion, the
discussion of statement sequencing also assumes normal termination of each statement
unless otherwise stated.

In the examples, Stmt-O, Stmt-l, Stmt-2, etc. denote arbitrary statements, the details of
which are irrelevant.

4-1

4 Ordinary statements

4.1 Assignment statements

4-2

Syntax:

AssignmentStmt ::. leftSide +- RightSide I
Extractor - RightSide

The RightSide must be an expression with a type conforming to the type of the left-hand
side. The left-hand side must be a valid recipient of data such as a declared variable or a
component. For assignment statements, a left-hand side may also be an extractor (§ 3.3.6):

Examples:

i -3; a-b+c;
birthDay. month - Apr; birthTable(Toml.year -1955;
[mm, dd, yy] - birthDay; - an extractor as the leftSide

4.1.1 Assignment expressions

Assignment operations may be carried out by expressions, as well as by assignment
statements. The syntax for an assignment expression is:

AssignmentExpr ::. leftSide - RightSide I
Extractor - RightSide

Assignment expressions can be used for performing multiple assignments in a single
statement, and for saving the value of an intermediate expression without having to write
a separate statement:

x2 -xl-xO-v;
arrayU-j+ll-x [i);
component

-- set xO, xl, and x2 to the value in v
--j is changed while changing the array

Evaluation of the first statement proceeds as if it were written:

Note that x2 - C.') is an assignment statement. The assignment expression, xO - v, yields
the value assigned to xO, this becomes the RightSide value for the other assignment
expression, and so on.

The difference between an assignment expression and an assignment statement is that
the expression yields a value (in addition to performing assignment).

An assignment statement with an Extractor as its left side may be used as an expression.
This allows multiple extractions, among other things. The value of such an assignment is
the value ofits right side.

An AssignmentExpr is an Expression. Its type is the type of the leftSide, and its value is
the value actually assigned (possibly after type conversion) of the RightSide. The
assignment operator has the lowest possible precedence. As a stylistic rule, an assignment
expression embedded in another expression is enclosed in parentheses.

Mesa Language Manual 4

Fine point:

In an expression such as the following:

a[k+-k + 1) + b[k);

the order of evaluation is undefined. and the embedded assignment may be executed either before or after
evaluation of b(.). Such use of embedded assignments should be a voided.

4.1.2 Restrictions on assignment

The assignment operations defined upon certain types have been restricted so that
variables of those types can be initialized (either explicitly or by default> when they are
created but cannot subsequently be updated. A variable is considered to be created at its
point of declaration or, for dynamically allocated objects, by the corresponding NEW

operation.

The following types have restricted assignment operations:

MONITORLOCK (§ 9.2)

CONDITION (§ 9.3)

any type constructed using SEQUENCE (§ 6.5)

any type constructed using ARRAY in which the component type has a restricted
assignment operation.

any type constructed using RECORD in which one of the field types has a restricted
assignment operation.

Note that the restrictions upon assignment for a type do not impose restrictions upon
assignment to component types. Thus selective updating of fields of a variable may be
possible even when the entire variable cannot be updated; e.g., the timeout field of a
CONDtnON variable can be updated by ordinary assignment. Also, you may apply the
operator @ to obtain the address of the entire variable in such a situation.

4.2 IF statements

An IF statement is a control statement that functions as a two-way switch:

IfStmt ::. IF Predicate ThenClause ElseClause

Predicate ::. Expression

ThenClause ::. THEN Statement

ElseClause ::. empty I ELSE Statement

4-3

4

4-4

Ordinary statements

A simple IF statement is shown below.

IF u = 0 THEN WriteString["Done."[ELSE U "-1;
Next·Statement

The BOOLEAN expression (u = 0) is called the Predicate of the IF statemen~. The Predicate is
evaluated first, and if TRUE, the Statement in the ThenClause is executed (in this case a call
on the procedure WriteString). Upon its completion, execution continues at Next·
Statement. If the Predicate value is FALSE, the Statement in the ElseClause, "v v-I", is
executed; ifthere is no ElseClause control goes directly to Next·Statement.

Other examples:

IF (flag = on) AND i IN [m .. n] THEN i i + iDelta ELSE i m;

IF winner - = NIL THEN
BEGIN -- this Statement is a block (§ 4.4)
totalAge totaLAge + winner.age;
IF winner.party = Democratic THEN demoScore demoScore + 1
ELSE gopScore gopScore + 1;
END; -- end of the ThenClause

Note that a semicolon cannot follow a ThenClause when an ElseClause is present.

If the Statement in a ThenClause is a second IF statement, then the outer IF may have an
ElseClause only if the inner one does; i.e., an ElseClause "belongs" to the innermost
possible IF. For example:

IFa > = o THEN
IF a > 0 THEN b 1
ELSE b O;

- a > 0 means set b to 1
-- a = 0 means set b to 0
-- no action if a < 0

It is recommended that "IF ••• THEN IF" combinations be avoided entirely unless the second IF
has an ElseClause. Often, a single IF statement is sufficient. For example, let pI and p2 be
arbitrary predicates. Then the following two statements have identical effect:

IF pI AND p2 THEN Stmt; - recommended form (§ 2.5.3)

IF pi THEN IF p2 THEN Stmt; -longer form

Fine point:

If the Predicate is a compile-time constant, the compiler does not produce object code for the text that
would never be executed. This also holds for IF expressions.

4.2.1 IF expressions

The IF statement has a counterpart that is an expression. Its syntax is similar to that of an
IfStmt:

IfExpr ::. IF Predicate THEN Expression ELSE Expression

There are two differences between an IfExpr and an IfStmt:

Mesa Language Manual 4

The clauses of an IF expression contain expressions, not statements;

An IF expression must have an ELsE-clause.

Examples:

slope +- IF Y = 0 THEN max ELSE xly; -- avoid division by zero.

b +-IF a > = 0 THEN <IF a > 0 THEN 1 ELSE 0) ELSE - 1;

Evaluation of an IF expression begins with evaluation of the Predicate (in the first
example, y = 0). If it is TRUE, the expression in the ThenClause (Le., max) is evaluated, and
its value becomes the value of the IF expression. If the predicate is FALSE, the ElseClause
expression (i.e., xl]) is evaluated, and its value becomes the value of the IF expression. The
second example sets the value of b to -1,0, or + 1, depending on whether a is negative,
zero, or positive, respectively.

The ThenClause and ElseClause expressions must conform to some common type (possibly
after type conversion, as outlined in subsection 3.5.1). The type to which they conform is
the IF expression's inherent type.

An IF operator has the same precedence as an assignment operator, i.e., the lowest possible
precedence. IF expressions should be enclosed in parentheses when embedded in other
expressions.

4.3 SELECT statements

The SELECT statement chooses for execution at most one statement from an ordered list of
statements. The choice is based upon the relation between a given expression and
expressions associated with each selectable statement. Thus, this statement form permits
multi way branching, not just the two way branching of an IF statement.

A SELECT statement is shown below. The separator"= >" should be read as "chooses." The
entire statement may be read as follows: "Select, using x's value, from the comparisons
preceding the substatements. First, (x's value) 'equal to zero' chooses Stmt-l. Second, 'in
subrange m through n' chooses Stmt-2. Third, 'less than m' chooses Stmt-3. Otherwise,
choose nothing."

SELECT x FROM
=0
IN [m .. n)
<m
ENDCASE

= > Stmt-l;
= > Stmt-2;
= > Stmt-3;

The next four sections cover various forms of SELECT, their precise syntax, and the
expression counterpart of the SELECT statement. The term "SELECT," used by itself, includes
both statement and expression forms.

4-5

4

4-6

Ordinary statements

4.3.1 Forms and options for SELECT

Syntax equations:

SelectStmt ::. SELECT Leftltem FROM

StmtChoiceSeries
ENOCASE FinalStmtChoice I

Leftltem ::. Expression

StmtChoiceSeries ::. empty I
Testlist = > Statement I

-- (the head)
-- (the arms)
-- (the foot)

TestList = > Statement; StmtChoice Series

FinalStmtChoice ::. empty I
= > Statement

TestList ::. Test I TestList, Test

Test

Example:

i:[0 .. 5];

SELECT i FROM

::. Expression I
RelationTail

- no operator implies an equality test

o =>i+-i+l; --i=O
< 3 = > BEGIN j +- i; i +- i-I END; - i = 1 or i = 2
=5 = >i +-0; -- i=5
ENOCASE = > i +- 2; -- i = 3 or i = 4 (none of the above)

Next-Statement

In the execution of a SELECT statement, the Leftltem is evaluated first; a sequence of
comparisons then follows. Each arm of the SELECT statement begins with one or more Tests.
The Expression in each Test is evaluated and compared with the value of the Leftltem. The
evaluation occurs in order, from left to right, and continues until a comparison succeeds or
the TestList for that particular arm is exhausted. If a test succeeds, control passes
immediately. to the statement following the TestList in that arm (no further Tests are
evaluated, even in that same list). If all Tests in a given arm fail, the next arm in the
series is tried. After a test succeeds and its associated statement is executed, control passes
to Next-Statement. Thus, at most, one statement can be chosen in a given execution of a
SELECT statement.

When combined with the Leftltem (perhaps with an implied .. = "), each Test must be a
valid Relation. The type of the Expression in a Test must conform to the type of the
Leftltem. If a Test uses "IN Subrange," the base type of the subrange must conform to the
type of the Leftltem.

Mesa Language Manual

A single SELECT arm may specify more than one test:

SELECT i*j + k FROM

1, IN [7 .. 10)
2,5, > 10
ENDCASE;

= > Stmt-I;
= > Stmt-2;

- values: 1,7,8,9,10
-- values: 2, 5, 11,12, '"

4

A final choice may be appended to a SELECT to handle all remaining cases; it follows
ENDCASE. For example:

PriorityState: TYPE = RECORD [iO, iI, i2, i3: BOOLEAN);

oldState, newState: PriorityState;

SELECT TRUE FROM

oldState.iO = > Stmt-O;
oldState.iI, newState.iO = > Stmt-I;
oldState.i2, newState.iI = > Stmt-2;
oldState.i3, newState.i2 = > Stmt-3;
ENDCASE = > Stmt-99;

-- picks the first TRUE state

Ifthis SELECT statement does not choose one of the first four statements, the final statement
(Stmt-99) is executed.

Fine points:

If all SELECT arms (or those in some contiguous subseriesl specifY constant values in each Test, the
compiler can produce code using a "jump table" for efficient selection (It only does this if the set of
interesting values is sufficiently "dense").

The other alternatives for SelectStmt apply to variant records and are discussed in chapter 6.

The expressions in the SELECT arms are lengthened as necessary to match the type of the Leftltem, but
the Leftltem is never lengthened.

4.3.2 The NULL statement

The NULL statement, which serves only as a placeholder, is often useful as the statement in
an arm of a SELECT statement:

NullStmt ::,. NULL

For example:

SELECT currentChar FROM

IN ['0 .. '9] = > Stmt-1;
IN ['A .. 'Zl = > Stmt-2;
IN ['a .. 'z] = > Stmt-3;
SP = > NULL;

ENDCASE = > Stmt-99;

- handle digits.
- handle capital letters.
- handle small letters.
- ignore blanks.
- handle all other chars.

4-7

4 Ordinary statements

4.3.3 SELECT expressions

4.4 Blocks

4-8

The SELECT statement has an expression counterpart. There are three differences between
the expression and statement forms of SELECT:

(1) The choices in each arm must be expressions, not statements.

(2) The arms are terminated by commas, not semicolons.

(3) ENDCASE must be followed DY" = >" and a final (expression) choice.

Its syntax is defined by

SelectExpr ::. SELECT Leftltem FROM

ExprChoiceList
ENDCASE = > Expression

I·· .
ExprChoiceList ::. empty I

TestList = > Expression I

-- (the head)
-- (the arms)
- (the foot)

TestList = > Expression, ExprChoiceList

Leftltem and TestList are defined in subsection 4.3.1.

For example:
pt: INTEGER; - point on a line.
lo, hi: INTEGER - 0; - bounds for a line segment, initially a null segment

PointPosition: TYPE = {le{tMargin, rightMargin, inside, outside, degenerate};
position: PointPosition;

position - SELECT pt FROM
IN (lo .. hi) = > inside,
NOT IN [lo .. hi] = > outside,
< hi = > le{tMargin, - =lobut#hi
> lo = > rightMargin, -- = hi but #10
ENDCASE = > degenerate; -- =lo and = hi

A SELECT expression is executed just as a SELECT statement, except that the selected arm
yields a value, which becomes the value of the SELECT expression as a whole. The inherent
type of a SELECT expression is the one to which all the expressions in the arms conform
(§ 3.5.3).

A SELECT operator has the same precedence as an assignment operator, Le., the lowest
possible precedence. SELECT expressions should be enclosed in parentheses when embedded
in other expressions.

A block is a way of packaging a series of statements so that they can be used where only a
single statement is permitted syntactically. In its simplest form a block is a pair of
"brackets," BEGIN and END, with a series of statements (of any form) between them. The
general syntax is:

Mesa Language Manual

Block

StatementSeries

DeciarationSeries

::= BEGIN
OpenClause
EnableClause
DeciarationSeries
StatementSeries
ExitsClause
END

:: = empty I
Statement I

-- optional; subsection 4.4.2
-- optional; subsection 8.2. 1
-- optional

-- optional; subsection 4.4.1

Statement; StatementSeries

:: = empty I DeciarationSeries Declaration

4

The bracket pair { } can be used any place the bracket pair BEGIN END can be used (but not
conversely).

Fine point:

A semicolon terminates every declaration and therefore is not mentioned as a separator here.

In the following IF statement, a block takes the place of the single Statement normally
allowed in a ThenClause:

IF Lo > hi THEN
BEGIN
temp: INTEGER -Lo;
Lo - hi;
hi -temp;
END

-- Exchange Lo and hi.

A semicolon must separate each statement in the StatementSeries but is optional after the
last statement.

The optional DeciarationSeries in a block introduces new identifiers, such as temp above,
with scope smaller than an entire procedure (or module) body. Scope is discussed further
in subsections 4.4.2 and 5.5.1 and in chapter 7.

Fine point:

During the execution of a Mesa program. frames are allocated at the procedure and module level only
(§ 5.2). Any storage required by variables declared in an internal Block (one used as a Statement) is
allocated in the frame of the smallest enclosing procedure or module. When such internal blocks are
disjoint, the areas of the frame used for their variables over lay one another.

Ordinarily, when a block is executed, every statement in its StatementSeries is executed,
and Next-Statement is the successor of the entire block. It is possible, however, to jump out
of a block, as described in the next section on GOTOs.

4.4.1 GO TO statements

A more general form of a block allows a series of labeled statements to be written
immediately preceding its END. One can jump to anyone of these statements from within

4-9

4

4-10

Ordinary statements

the block only, using a GOTO statement. There are two consequences of this way of
constraining the GOTO:

A GOTO may only jump forward in the program, never backward.

A GOTO may only jump out of a block, never into one.

The syntax for the ExitsClause of a block and for the GOTO statement is the following:

ExitsClause

ExitSeries

Label List

Label

GotoStmt

A simple example:

::. empty I
EXITS ExitSeries I
EXITS ExitSeries ;

::-. empty I

-- optional final semicolon

LabelList = > Statement I
LabelList = > Statement; ExitSeries

::. Labell LabelList , Label

::. identifier

::. GOTO Labell GO TO Label

IF input. status /I open THEN

BEGIN

IF input./ileHandle = defaultlnput THEN GOTO useDefault;
- processing for non-default file

IF input./ileN umber = ttyN umber THEN GOTO /ilelsDefault;
If input.lengtk = 0 THEN GOTO newFile;

-. compute number of pages in the file
EXITS

useDefault, /ilelsDefault = > -- mUltiple labels are allowed
BEGIN input +- ttylnput; pages +- maxPages END;

newFile = > pages +- 0;
END; - end of the ThenClause and the IF statement

Next-Statement

The Labels in this example are useDefault, /ilelsDefault, and newFile (it is helpful to view
the labels as the names of conditions or reasons for which the block is being left). If any
one of the GOTOS is executed, control transfers immediately to the statement labeled with
the identifier used in the GOTO. The normal successor of anyone of the labeled statements
is Next-Statement, which is also the normal successor of the last statement in the main
body of the block (i.e., the one just before EXITS).

Since one block can appear within the body of another, a GOTO can jump directly out of one
(or more) blocks to the ExitsClause of an enclosing block. For example,

BEGIN -- outer block

BEGIN-- inner block

Mesa Language Manual

IF i = iMax THEN GO TO endOfArray;

END;

i-i+l;
EXITS

endOfArray = > i - 0;
END;

Next-Statement

4

-- jump to end of outer compound

-- end of inner

-- end of outer

If the GOTO statement is executed, control jumps to the exit labeled endOfArray. The
chosen statement (i-O) is executed and control then goes to Next-Statement. The
identifiers used as Labels are only known inside the block in which they appear, and it is
possible to use the same identifier as a label in a number of blocks. [fthis is done in nested
blocks, a GOTO naming that identifier will always go to the statement with that label in the
smallest enclosing block. Generally, using the same label in nested blocks is a bad idea.

Since Mesa allows declarations in any block, it is possible to declare a procedure (§ 5.5)
within the scope of the Labels of a block. Jumping out of a procedure into a surrounding
block is disallowed. Such a result may be obtained, however, by use of the SIGNAL
machinery (see chapter 8). For example, the following is illegal:

BEGIN

p: PROCEDURE =
BEGIN

GOTO panicExit; -- illegal -- ...
END;

... p(]; ...
EXITS

panicExit = > ...
END

The desired result is achieved with the following program (see chapter 8 for a description
of signals and catch phrases):

BEGIN

Panic: SIGNAL = CODE;

p: PROCEDURE

BEGIN

. .. SIGNAL Panic; ...
END;

... p[! Panic = > GOTO panicExit]; ...
EXITS

panicExit = > ... ;
END

A statement in an ExitsClause may contain a GOTO, but the label in the GOTO can only refer
to labels in surrounding blocks, not to labels in the same ExitsClause as the GOTO. For
example, the following is legal:

4-11

4

4-12

Ordinary statements

BEGIN -- outer

BEGIN -- inner

EXITS
endOfFileReached = > BEGIN ... GOTO outO/Data END;
END; - end of inner

EXITS
outOfData = > ... ;

END - end of outer

4.4.2 OPEN clauses

An OPEN clause allows more convenient reference to the fields of a record. In the simplest
form, it allows /ieldname as an abbreviation for recordname./ieldname. If the name of the
record is complicated (e.g., candidateList(tableOjObjects[i1J), this can make programs
much more readable. The programmer should be cautioned, however, that this is merely a
syntactic shorthand; the code generated is actually recordname./ieldname and recordname
is recomputed each time. Thus, in the example above, if i or tableOfObjects is changing
within the scope of the OPEN, each reference to a field can potentially access a different
element of candidateList. Similarly, an OPEN clause may simplify access to an interface
which it opens (§ 7.2.2.2). The syntax for OPEN follows:

OpenClause

Open List

Openltem

AlternateName

::. empty I OPEN OpenList ; -- note the terminal semicolon

::. Openltem I OpenList , Openltem

::. AlternateName: Expression I
Expression

::. identifier

The scope of an OPEN clause (the portion of the program over which the synonym can be
used) is the body of a block or loop, including the optional EXITs clause (§ 4.5). The following
diagram summarizes the scope of the various parts of a Block. The scope of each phrase
extends over others with greater indentation. .

BEGIN
OpenClause

EnableClause
DeclarationSeries

StatementSeries
ExitsClause

END

An Openltem using an AlternateName allows a simple identifier to replace an expression
as the designator of some record object. For example, the two blocks below are equivalent:

PersonChain: TYPE = RECORD [p:POINTER TO Person, next: POINTER TO PersonChain]
candidateList: POINTER TO PersonChain; -- Person is defined in section 3.4

Mesa Language Manual

BEGIN OPEN c: candidateList.p;
IF c.party = Republican AND c.age < 30 THEN youngRepublicans -
youngRepublicans+ 1;

IF c.sex = Female THEN women - women + 1;

END

BEGIN

IF candidateList.p.party = Republican AND candidateList.p.age < 30 THEN

youngRepublicans - youngRepublicans + 1;
IF candidateList.p.sex = Female THEN women - women+ 1;

END

4

The OPEN statement does not provide a general renaming capability; it merely allows more
convenient access to the fields of a record. Each Expression in an Open List must either
have a record type or be a pointer to a record. When the AlternateName form is used, the
alternate identifier always designates the opened record, even if the Expression is a
pointer to that record.

The form of OpenClause without an AlternateName allows access to the fields of a record
object as though they were simple variables. For example, using this feature in the above
example allows omission of the "c."s:

BEGIN OPEN candidateList.p;
IF party = Republican AND age < 30 THEN youngRepublicans -
youngRepublicans + 1;

IF sex = Female THEN women - women + 1;

END

Note: if the AlternateName form is used, qualification of record fields using the alternate
name is mandatory.

Besides record objects, it is possible to open a module (chapter 7) or an interface to simplify
access to the identifiers available from the module, or items from an interface. However,
the use of the AlternateName form of OpenClause is most strongly encouraged in these
cases because the reSUlting code is more clear.

If an OpenClause contains multiple Openltems, the opened expressions might refer to
records having some selector names the same. In the example below, x is a selector name
for two records, recVar and recVar.subRecord. An unqualified occurrence of x is taken to
be the x component of the rightmost opened record (recVar.subRecord). To refer to an
earlier opened record, explicit qualification is necessary (the AlternateName form should
be used).

i,j: INTEGER;

RecordType: TYPE = RECORD

[

a, b, x: INTEGER,

subRecord: RECORD [x, y: INTEGER)

];

recVar: RecordType;

4-13

4 Ordinary statements

BEGIN OPEN rl: recVar. recVar.subRecord;
i - rl.a + rl.b * rl.x; j -x-y;
END;

The above block is equivalent to:

BEGIN

i -recVar.a + recVar.b * recVar.x; j -recVar.subRecord.x-recVar.subRecord.y;
END;

Fine points:

The range of text affected by an Openltem includes any further items in the Openlist. The
OpenC/ause itself may use implied qualification or alternate names (from earlier Openltems).
Thus, in the above example. one could have said

OPEN rl: recVar, rl.subRecord;

rather than

OPEN r 1: rec Var, rec Var.s ubRecord;

Opened expressions are evaluated at each use, whether used implicitly or explicitly under an alternate
name. This is essential for dealing with relocating allocation schemes. To avoid confusion, however. it is
recommended that ordinary pointers be updated before entering the statement sequence headed by an
OpenClause. In that way. names in the statement sequence will remain consistent, i.e., will apply to
the same objects throughout. Consider an extension of the above example:

a: ARRAV(O .. 10) OF RecordType;
BEGIN OPEN r: ali];

r.x -2;
i -i + 1;
j -r.X;

END;

p: POINTER TO RecordType;
p- ...
BEGIN OPEN r: p t ;

r.y +-2;
p- ...
j -r.y;

END;

··assume i IN [0 .. 9)

.- reevaluation of OPENed expression with new

.- value of i, this r.x is not the one just stored into

-- p gets a new value

-- p gets a new value

-- field of newly pointed to record

4.5 Loop statements

4-14

In Mesa, a loop is a statement containing a series of statements that are to be executed
repeatedly. All the ways of controlling how many times a loop should be repeated include
the ability to repeat it zero times: i.e., to bypass it entirely. Example 1 in section 2.1 contains
the following loop statement:

Mesa Language Manual

UNTILn = 0
DO

r-mMODn;

m-n; n-r;
ENDLOOP

4

-- r gets remainder of min

"UNTIL n=O" is the loop control for this loop. A variety of loop controls are available in
Mesa: they include control by a Boolean expression, as above, and control by iteration
over a subrange, as in the following example:

FOR i IN [O •• N) DO ali] - ali] + b[i] ENDLOOP

This will execute the assignment Ntimes, with i taking the values 0, 1, ... , N -1 on
successive iterations. If N = 0, the assignment is not executed at all.

The formal syntax ofloop statements is

LoopStmt ::. LoopControl
DO

OpenClause
EnableClause
DeciarationSeries
StatementSeries
LoopExitsClause
ENDLOOP

-- optional; may be empty

-- optional (§ 4.4.2)
-- optional (§ 8.2.1)

-- optional; may be empty

The portion between DO and ENDLOOP is the body of a loop. Subsequent sections discuss the
forms ofLoopControl, the LoopExitsClause and GOTOS in loops.

The scopes of identifiers introduced in the various components of a loop are summarized by
the following diagram (cr. Block, § 4.4.2):

LoopControl
DO

OpenClause

ENDLOOP

EnableClause
Declaration Series

StatementSeries
LoopExitsClause

As in the case of a block, any exit labels are visible within the EnableClause, and any catch
phrase (§ 8.2.1) in the EnableClause is not enabled within the LoopExitsClause.

4.5.1 Loop control

The syntax for LoopControl is

LoopControl ::. IterativeControl ConditionTest -- either may be empty

Condition Test ::. empty I WHILE Expression I UNTIL Expression

If both the IterativeControl and the Condition Test are missing from a loop, it will repeat
indefmitely (unless terminated by an embedded GOTO or EXIT, § 4.5.2).

4-15

4

4-16

Ordinary statements

If a LoopControl includes a Condition Test. the boolean expression in the test is
(re)evaluated before each execution of the loop body, including the first. If the
Condition Test succeeds. the body of the loop is executed; if it fails, the loop is finished
(terminates conditionally) and control continues at Next-Statement (or at a FINISHED clause,
§ 4.5.2>' A WHILE test succeeds if the value of the expression is TRUE. In the following
example. i has the values 1, 2, 3, ...• 9 in successive executions of the body of the loop, and
the value 10 when Next-Statement is reached (assuming that there are no other
assignments to i):

i +-1;
WHILE i < 10

DO ••• i+-i+l;
Next-Statement

-- this statement is not part of the loop

••• ENDLOOP;

An UNTIL test succeeds if the value of the expression is FALSE: Le., it is the opposite of WHILE.

The following loop is equivalent to the one above:

i +-1;
UNTIL i > = 10

DO ••• i+-i +1;
Next-Statement

- this statement is not part of the loop

••• ENDLOOP;

An IterativeControl provides a way of executing a loop (no more than) a computed number
of times. It may be followed by a ConditionTest. It optionally updates a specified
ControlVariable prior to each iteration so that, e.g., statements in the body have access to
(a simple function of) the number of iterations. A loop that finishes by satisfying the
implicit test associated with an Iteration or a Repetition is said to terminate normally.

IterativeControl :: . empty I Repetition I Iteration I Assignation

Repetition :: . THROUGH LoopRange

Iteration :: . FOR ControlVariable Direction IN LoopRange I
FOR Control Variable: TypeExpression Direction IN LoopRange

LoopRange :: . SubrangeTC I Typeldentifier I
BOOLEAN I CHARACTER

Direction ::- empty I DECREASING

Assignation :: . FOR ControlVariable +-lnitiaIExpr. NextExpr I
FOR ControlVariable: TypeExpre~ion+-lnitiaIExpr. NextExpr

ControlVariable :: . identifier

InitialExpr :: . Expression

NextExpr :: . Expression

In the Repetition form of Iterative Control, a LoopRange specifies how many times the loop
body is to be executed. For example,

THROUGH [1..100] DO .•. ENDLOOP

Mesa Language Manual 4

executes the body 100 times. A loop range can have any element type (§ 3.1) or any
subrange of LONG INTEGER or LONG CARDINAL. The bounds of a sub range can be arbitrary
expressions and do not have to be compile-time constants (as they do in a SubrangeTC).

A Repetition and a ConditionTest may be combined in a single loop control. For example,

THROUGH [low .. highl WHILE linelsConnected DO •.. ENDLOOP

Normal termination occurs after high-low + 1 iterations; conditional termination can
occur sooner if linelsConnected is FALSE prior to some iteration. Note that if low> high, the
interval [low .. highl is empty and the loop body is not executed.

Iteration and Assignation, the two forms of IterativeControl that include a
ControlVariable, begin with the keyword FOR. If the first option of either Iteration or
Assignation is used, then the control variable must be a variable declared separately in
the program. Its type becomes the target type for the various expressions in the remainder
of the IterativeControl. The forms of Iteration and Assignation with ":TypeExpression"
declare a new control variable. That variable cannot be explicitly updated (except by the
FOR clause itself). Its scope is the entire LoopStmt introduced by the Iteration or
Assignation including any LoopExitsClause. Note, however, that the value of a control
variable used in an Iteration is undefined in the FinishedExit (§ 4.5.2).

An Iteration steps through a sub range much as a Repetition, which is described above. In
addition, it may specify a Direction: whether to begin at the lower bound of the range and
step up (empty) or at the upper bound and step down (DECREASING). In any case, the size of
the step is always one; for (a subrange of) an enumerated type, this really means stepping
from an element to its successor (if the direction is increasing) or to its predecessor (if the
direction is DECREASING). The control variable is assigned the current control value each
time around the loop.

When a loop terminates normally, the final value of the control variable is not defined.
The only way to ensure that the control variable's rmal value is well defined is to
terminate the loop conditionally or forcibly (e.g., using EXIT or GOTO, § 4.5.2).

The following examples shift the components of an array vee (indexed from [O .. LENGTH[vec]))

left or right one position, leaving one element unchanged:

FOR i IN [1..LENGTH [vee))
DO

vec[i - 1] +- vee [i];
ENDLOOP;

FOR i DECREASING IN [l..LENGTH [vee])
DO

vec[i] +- vee [i - 1];
ENDLOOP;

- "Left-shift" vee's elements.

- "Right-shift" vee s elements

In the second case, i is initially set to the value LENGTH [veel-l and decremented by one for
each subsequent iteration. During the last execution of the loop, i has the value 1.

Bounds expressions in a LoopRange are evaluated exactly once, before the first execution
of the loop body. Subsequent alteration of variables used in those expressions does not
affect the number of iterations. When an Iteration is combined with a ConditionTest in a
single loop control, the control variable is updated and tested before the ConditionTest is
evaluated.

4-17

4

4-18

Ordinary statements

In an Assignation, the value of the InitialExpr is assigned to the control variable prior to
the first iteration. Before each subsequent iteration, the NextExpr is (re)evaluated and
assigned to that variable. There is no implicit test associated with an Assignation as there
is for an Iteration; thus, the user must either use a GOTO (§ 4.5.2) to terminate the loop or
include a ConditionTest in the LoopControl with the Assignation. As ~ith an Iteration,
the control variable is updated for each iteration before any Condition Test is evaluated.
This form is useful for scanning a list structure, as in the following example:

NodeLink: TYPE = POINTER TO Node;
node, headO{List: NodeLink;
Node: TYPE = RECORD

[
list Value: SomeType,
ne%t: NodeLink - either NIL (end of list) or pointer to next element
);

FOR node 4- headO{List, node.ne%t UNTIL node = NIL

DO •.. ENDLOOP;

Fine point:

The control variable can be altered within a loop. but this is not recommended. An iterative loop control

updates the variable according to its current value. If the statement sequence assigns a new value to the

control variable. the expected series of values may be disrupted (by omission or duplication). For control

variables declared in the Iteration or Assignation. altering the control variable is not allowed.

4.5.2 GOTOs, LOOPS, EXITS, and loops

A loop may be forcibly terminated by a GOTO (or an EXIT, see below). The LoopExitsClause
serves the same purpose as the ExitsClause in a Block; there are just three differences:

(1) The LoopExitsClause is bracketed by REPEAT and ENDLOOP instead of EXITS and END;

(2) The LoopExitsClause may contain a final statement labeled with the keyword
FINISHED; this statement is executed if the loop terminates normally or
conditionally, but not if it is forcibly terminated.

(3) There is a special case of the more general GOTD, called EXIT, which simply
terminates a loop forcibly without giving control to any statement in the
LoopExitsClause.

There is another kind of GOTO statement, LOOP, which does not terminate the loop but skips
the remainder of the loop body in the current iteration.

Syntax equations:

LoopExitsClause

LoopExits

::. empty I REPEAT LoopExits

::. ExitSeries I
ExitSeries ; I
FinishedExit I
ExitSeries; FinishedExit

Mesa Language Manual

FinishedExit

LOopCloseStmt

ExitStmt

::. FINISHED = > Statement I
FINISHED = > Statement;

::. LOOP

::. EXIT

·4

The LOOP statement is used when there is nothing more to do in the iteration, and the
programmer wishes to go on to the next repetition, if any. For example,

stuff: ARRAY [0 .. 100) OF PotentiallyInterestingData;
Interesting: PROCEDURE [PotentiallyInterestingData) RETURNS [BOOLEAN);
i: CARDINAL;

FOR i IN [0 .. 100) DO
-- some processing for each value of i

IF -lnteresting[stuff[i 11 THEN LOOP;
-- process stuftf.i 1

ENDLOOP;

The example used in the previous section to illustrate ConditionTests can be rewritten
using a GOTO and a LoopExitsClause as follows:

i +-1;
DO
IF i > = 10 THEN GOTO quit;
... i +-i+ 1; ...
REPEAT

quit = > NULL;
ENDLOOP;

Next-Statement

- first statement in the body

-- do nothing but exit the loop

Frequently, forcible loop termination requires no special processing in the
LoopExitsClause. The EXIT statement simplifies this case by not requiring a labeled
statement in that clause; in fact, no LoopExitsClause need be present. The above example
can be further rewritten to use EXIT, as follows:

i +-1;
DO
IF i > = 10 THEN EXIT;
... i+-i+l; ...
ENDLOOP;

Next-Statement

- first statement in the body

An EXIT is less general than a GOTO. For instance, if one has a loop nested within another
and wants to exit from both, EXIT cannot be used because it terminates only the inner loop.
A GOTO can jump to the ExitsClause of any enclosing loop or block. The ExitsClause of
either a block or a loop is considered to be outside of the block or loop. Thus, an EXIT can
appear in any ExitsClause (provided there is an outer loop), and it causes forcible
termination of the smallest surrounding loop.

4-19

4

4-20

Ordinary statements

The following example shows a typical loop that is terminated only by execution of an EXIT

statement.

BuflndexType: TYPE = [l..max):
buf: ARRAY BuflndexType OF INTEGER;

i, x: BuflndexType;

FOR i +- x, (IF i = max THEN 1 ELSE i + 1)

DO

IF buf[i I = 0 THEN EXIT;

buf(i] -0;
ENOLOOP;

-- Starting at point x,

-- do something and then
-- quit on a "clear" entry, or
-- clear until one is found.

The NextExpr, "IF i = max THEN 1 ELSE i+ I," makes bufbehave as a ring buffer.

Sometimes one must detect normal (as opposed to forcible) termination of a loop, perhaps
to take some "finishing" action. A final labeled statement with the label FINISHED (which
may not appear as the identifier in a GOTO) provides this facility. For example,

FOR i IN [O .. nEntries) DO

IF a [i] = x THEN GO TO found;
REPEAT

found = > old - TRUE;

FINISHED = >
BEGIN

a[i -nEntriesI -x;
nEntries +- nEntries + 1;
old -FALSE

END;

ENDLOOP;

The FINISHED exit is taken if and only ifthe loop terminates normally or conditionally (Le.,
when the loop range is exhausted in the case above). Upon entry to a FINISHED exit, the
value of the ControlVariable is undefined. Note that if an EXIT statement is executed, the
FINISHED statement is not executed.

5

Procedures

Procedures provide one of the most important abstraction mechanisms in :Mesa. The
definition of a procedure assigns a name to a function or action. The computation
performed by a procedure is specified by a series of statements and can be expressed in
terms of parameters of the procedure. In addition, a procedure can produce one or more
values, called its results. To invoke or call a procedure, the programmer simply names it
and supplies arguments corresponding to the parameters. He need not be concerned with
the internal workings of the procedure and can use its meaningful name to denote the
function or action.

The GCD computation in section 2.1 is of limited use as it stands because it depends upon
(and changes) variables m, nand gcd declared somewhere in its environment. It can
usefully be packaged as a procedure with parameters m and n, as in:

.
Gcd: PROCEDURE [m, n: INTEGER] RETURNS [CARDINAL] =

BEGIN

r: INTEGER;

UNTIL n=O
DO

r-mMODn; m-n; n-r;
ENDlOOP;

RETURN [ABS [ml1
END;

The parameters of a procedure constitute the fields of a record, called the parameter record
of the procedure. When calling a procedure, the arguments are evaluated and assembled
into an argument record using a constructor (§ 3.3.4). "Applying" a procedure value to that
argument record invokes the procedure. Consider the procedure call Gcd [x+ 1, y]. This
evaluates x+ 1 and y, constructs an argument record from these values, and then calls
procedure Gcd, passing it the argument record.

Within the procedure, the argument record is assigned to the parameter record, and fields
of the parameter record are accessed as simple variables (i.e., that record is OPENed). Thus,
the effect of the call above is to assign the value of x + 1 to m and the value of y to n before
the statements within Gcd are executed.

5-1

5

5-2

Procedures

A procedure may return values to the point of its call. These results constitute a result
record. There can be any number of results, and their types may differ. Within a
procedure, a RETURN statement assembles the results into a record and then returns control
to the caBer. The procedure Gcd returns a result record with one component, of type
CARDINAL. Thus, the form Gcd[x+ 1, y] is an expression with a record type. Because of the
automatic conversion from a single-component record to the component (§ 3.5.1), it can
also be used in any context accepting a value of type CARDINAL.

The following assignment has an effect similar to that of the entire example in section 2.1:

gcd - Gcd[m, nJ

Note that arguments are always passed by value in Mesa. The arguments m and n (for
which declarations must exist at the point of call in this easel are completely distinct from
the parameters m and n, and execution of Gcd does not change the values of the former.

A procedure declaration, as illustrated above, defines an actual procedure. It introduces an
identifier, supplies some procedure type for that identifier, and defines the computation to
be performed by specifying a block called the procedure body. Such a declaration uses fixed
form initialization and closely parallels the declaration of an ordinary variable with =
initialization, such as,

octalRadix: CARDINAL = 8;

Other declaration forms may also be used, including procedure variables with values that
can be updated to designate different actual procedures. In Mesa, procedures are full
fledged data objects.

A procedure type is defined by specifying its parameter and result records. For example,
the type of Gcd is

PROCEDURE em, n: INTEGER] RETURNS [CARDINAL]

Procedure types constructed with different parameter and result records are different.
Thus, the type system helps to ensure that, even when procedure variables are used, a
proper argument record is constructed for each procedure call (Le., that the number and
types of the arguments are correct), and that the result record is used correctly in the text
surrounding the procedure call.

Since a procedure body is a block, it may contain declarations. These declare local
variables for that procedure. Local variables are created when the procedure is called, may
be directly accessed only from within it, and are destroyed when the procedure returns.
Within a procedure body, the named fields of the parameter and result records are also
considered local variables; they have the same lifetime and can be referenced without
qualification. The local variables of Gcd are m, nand r;

Because this local storage is allocated and released dynamically, any Mesa procedure can
be invoked recursively and used in a reentrant fashion. Thus, the following alternative
declaration of Gcd, which directly mirrors a recursive definition of the greatest common
divisor, is valid:

Mesa Language Manual

Oed: PROCEDURE [m, n: INTEGER I RETURNS [CARDINALI =

Fine points:

BEGIN

RETURN [IF n = 0 THEN ABS [ml ELSE Oed[n, m MOD nl1
END;

5

Although both versions ofGcd compute the same function, the recursive one is potentially extravagant in
its use oftime and space, especially since an iterative version is so easy to derive. This demonstrates an
advantage of procedural abstraction: the second definition of Gcd could be replaced by the first without
effect on any caller of Gcd.

The compiler detects cases of simple tail recursion such as that above and converts the procedure to an
iterative one. Examples in section 5.4 demonstrate more appropriate uses ofrecursion.

A procedure body may also access variables declared outside the actual procedure. Such
variables are nonlocal to the procedure; they exist longer than any single invocation of the
procedure and must be defined in the enclosing program text.

Mesa also has extensive facilities supporting the separate compilation of packages of
procedures and variables; these packages are called modules (chapter 7). These facilities
allow one module to name and use the procedures in another, but the type-correct usage of
argument and result records is still checked at compile-time.

If a procedure is called from many places, the "packaging" of code provided by the
procedure body makes a program more compact. Procedure calls and returns, however,
introduce some runtime overhead. If a procedure is called from exactly one place, that
overhead is unnecessary. If it is called from time-critical code or if the body of the
procedure is very simple, the overhead can be unacceptable. Mesa provides inline
procedures for such applications. The call of an inline procedure is replaced by a modified
copy of its body. This mechanism eliminates most of the overhead, but retains many of the
advantages of procedures, such as introducing structure, improving readability, and
isolating detail.

The foregoing discussion is only an introduction to procedures. The rest of this chapter
provides further detail.

5.1 Procedure types

Procedure types are constructed by the syntactic form ProcedureTC,. which is defined as
follows:

ProcedureTC :: - PROCEDURE Parameterlist ReturnsClause

ParameterList ::- empty I Fieldlist

ReturnsC!ause ::= empty I RETURNS Resuitlist

ResultList ::- FieldList

FieldList :: = -- (§ 3.3.1)

5-3

5

5-4

Procedures

The ParameterList and ResultList are FieldLists and define record types. If either is
missing, the corresponding record type is "empty." A procedure type is fully determined by
its parameter and result record types.

Default specifications are permitted for fields of a ParameterList or a ResultList, even if the
FieldList is an unnamed one.

Fine points:

The form [1 is permitted in the declaration of a ParameterList or ReturnsClause (it is equivalent to

omitting the list or clause I.

Note that constructors of procedure types require specification of the field lists; it is not possible to use a
separately defined record type to specify an entire parameter or result record.

These records. unlike regular records. are not packed; every component is aligned (begins on a word
boundary I to allow efficient passing of arguments and results.

PROC is acceptable as a short form of PROCEDURE.

A few typical procedure types are shown below:

PROCEDURE

PROCEDURE [x: INTEGER, flag: BOOLEAN J
PROCEDURE RETURNS [i: INTEGER]

PROCEDURE RETURNS [i: INTEGER, b: BOOLEAN]

PROCEDURE [x: INTEGER] RETURNS [y: INTEGER)

-- takes no arguments; returns no results
-- takes two arguments
-- returns a single value
-- returns two results
-- takes and returns one value

These are all distinct types; none conforms to any of the others.

Values with procedure types are allowed in Mesa; one may have procedure variables,
arrays of procedures, records with <;omponents that have procedure types, and procedures
with procedure parameters or results. The fundamental operations =, # and - may be
applied to procedure values with conforming types.

Constructors of procedure types appear most commonly in the declarations of actual
procedures, but they may occur wherever a TypeSpecification is valid. Thus, a
ProcedureTC can appear in such constructs as:

A variable declaration:

ErrorHandler: PROCEDURE [which: ErrorCode[- DefaultHandler;

A type declaration:

ListProc: TYPE = PROCEDURE [in: List] RETURNS [out: List];
First, Rest, Last: ListProc;

A field list (notice the parameters less Than and swap):

Sort: PROCEDURE [

first, last: CARDINAL,

less Than: PROCEDURE [CARDINAL, CARDINAL] RETURNS [BOOLEAN].

Mesa Language Manual

swap: PROCEDURE [CARDINAL, CARDINALI

I;

An array declaration:

tOps: ARRAY OpNames OF PROCEDURE [T, T I RETURNS [T I;

5.1.1 Procedure values and compatibility *

5

Equivalence and conformance of procedure types are defined in terms of relations between
fields of their ParameterLists and ResultLists. If the number of parameters or results
differs, one procedure type neither conforms to, nor is equivalent to, another. Otherwise,
correspondi~g fields, matched according to position, are considered. Two procedure types
are equivalent if, for each pair of fields, the names are identical (or both are unnamed), the
types are equivalent, and both DefaultOptions are empty. One field is compatible with
another if the names are identical or if either is unnamed, and if the types are equi valent.
A procedure type conforms to another if all corresponding fields are compatible. Default
specifications do not affect conformance.

All the assignments in the following example are valid because the types of the procedures
conform:

Handle: TYPE = POINTER TO Person;

SignedNumber: TYPE = INTEGER;

lnt: TYPE = INTEGER;

ProcA: PROCEDURE [h: Handle, u: SignedNumber I;
ProcB: PROCEDURE [h: Handle, u: lnt I;
ProcC: PROCEDURE [POINTER TO Person, INTEGERI;

ProcA - ProcB; ProcA - ProcC;
ProcC -IF flag THEN ProcA ELSE ProcB;

Fine points:

In the current version of Mesa. the name of the component of a single-element parameter or result record

is ignored when comparing two procedure types for conformance.

If one procedure type conforms to another. it also conforms freely (§ 3.5_3 l. Free conformance of procedure

types is defined by the following less restrictive rule: One field is compatible with another if the names

are identical or either is unnamed, and if the type of the first freely conforms to the type of the second.

One procedure type freely conforms to another if. for the ParameterList. each field of the second is

compatible with the corresponding field of the first and. for the ResultList. each field of the first is
compatible with the corresponding field of the second.

In the following example. recall that Handle conforms freely to ReadOnlyHandle but not vice versa:

ReadOnlyHandle: TYPE = POINTER TO READONL Y Person;

ProcX: PROCEDURE (In: ReadOnlyHandle] RETURNS [out: Handle I;

ProcY: PROCEDURE (In: ReadOnlyHandle] RETURNS (out: ReadOnlyHandle];

ProcZ: PROCEDURE [In: Handle 1 RETURNS [out: ReadOnlyHandle I;

5-5

5 Procedures

-- valid assignments

ProcY -ProcX; ProcZ -ProcY;procZ -ProcX;

-- invalid assignments

ProcX -ProcY; ProcX -ProcZ; ProcY -ProcZ;

In determining the conformance of two procedure types, default specifications are ignored.
Thus, it is possible to assign a procedure value to a procedure variable with differently
specified defaults. In a procedure call, the type of the variable appearing in the call, not
the declaration of the actual procedure, determines the treatment of defaults. Thus, the
initializing declarations in the following example are valid. Note that the declaration of
Proc2 declares a procedure constant that is indistinguishable from Proc1 except for the
default value ofits argument.

Which: TYPE = {procI,proc2,proc3};

ProcI: PROCEDURE [p: Which - procI 1 =
BEGIN

END;

Proc2: PROCEDURE [p: Which - proc2 I = ProcI;

Proc3: PROCEDURE [p: Which I - Proc1;

-- some calls
Proc1 [I;
Proc2 [I;
Proc3 [proc3);

-- equivalent to Proc 1 [proc 1 1
-- equivalent to Proc 1 [proc2 1
-- note that Proc3 [1 is not legal

5.2 Procedure calls

5-6

The syntax for calling a procedure is

CallStmt

Call

:::11 Variable I Call

:::11 Variable [ComponentList II ...

where the Variable has some procedure type. Other forms ofeall, discussed in chapter 8, specify ~catch
phrases" for dealing with signals (or errors) that are generated because of the call.

In a procedure call, the arguments are packaged into a record. Therefore, a procedure call
may use all the syntax for record constructors in passing arguments. Components
(arguments) may be specified using either keyword or positional notation. Arguments not
explicitly specified may be supplied by default. The following calls ofGcd are equivalent:

Gcd[x+ 1,y 1 Gcd[m: x+ 1, n: y I Gcd[n: y, m: x+ II

Fine point:

The orders of evaluating the items in constructors (including argument lists) and the operands of infix

operators (except AND and OR) are subjectto change. In particular. programs that assume a left-co-right
order of procedure calls in these contexts (e.g., Divide[Pop{]. Pop[]]) are unlikely to work correctly.

Mesa Language Manual 5

If the ReturnsClause in a ProcedureTC is not empty, then its ResultList specifies the
number and types of the results returned by a procedure of that type. It may be a named or
an unnamed FieldList (§ 5.3.1 discusses the RETURN statement).

Procedures that return results must be called from within Expressions that use the results
in some way. Such function references are valid Expressions. Procedures that do not return
results are used in call statements. A procedure that does not return results is called by
simply writing a CallStmt as a statement by itself. For example,

group: ARRAY (1..N 1 OF POINTER TO Person;
Younger: PROCEDURE [(irst, second: CARDINALI RETURNS (BOOLEAN I =

BEGIN RETURN [group[(irst I.age < group[second Lagell END;

Exchange: PROCEDURE [(irst, second: CARDINALI =
BEGIN

t: POINTER TO Person;
t -- group[(irst 1; group((irst I -- group[second I; group[second 1 -- t
END;

Sort [(irst: 1, last: N, lessThan: Younger, swap: Exchange I;

A call statement is ordinarily used to obtain side effects. :vtost often, these take the form of
changes to variables that are not local to the invoked procedure, but they may also involve
input or output. A function may also have side effects as well as return results. On
occasion, only the side effects are important, and the user wishes to ignore the returned
results. An easy way to do this is to assign the result record to an empty extractor:

[]-F[x]; -- call F and discard its result record.

A call that supplies no arguments is written with an empty constructor, "[1".

Fine point:

When a procedure call with no arguments is itselfa statement, the empty brackets may be omitted. When

such a call is used as an expression, the empty brackets are mandatory; otherwise, the value of the

expression is the value of the procedure variable, not the value of its results. For example, consider the

two procedure variables in the following:

Prod: PROCEDURE RETURNS [INTEGER];

Proc2: PROCEDURE RETURNS [INTEGER];

-- here the program assigns values to the procedure variables

IF Prod =Proc2 THEN ... -- compare the procedure variables

IF Proc[I=Proc2(I THEN ... -- compare their results (integers)

At the time a call occurs, a specific activation is executing, the caller's activation. The
effect of a call is to suspend execution of the caller, to create a new activation of the called
procedure (including new storage for all parameters and local variables), and to begin
execution of that activation. An important consequence of this structuring of procedure
control is that all Mesa procedures are inherently capable of being recursive and reentrant.

5-7

5

5-8

Procedures

5.2.1 Arguments and parameters

Arguments are values supplied at call-time; parameters are variables that are local to a
given activation. The association of arguments with their parameters amounts to
assignment, much as if the following were written:

InRec: RECORD [argl: Type 1 , arg2: Type2, ...);

InRec -[argl: vall, arg2: va12, ...);

paraml: Typel;
param2: Type2;
[paraml,param2, ...) -lnRec;

-- in the caller

-- in the called procedure

This is not just an idle analogy. The semantics of assignment accurately describe how
arguments are associated with parameters. The following are direct consequences of this:

An argument of a procedure need only conform to its parameter, just as for
assignment.

All arguments are passed by value in Mesa: i.e., the value of an argument, not its
address, is assigned to the parameter. Of course, this value itself can be an address
(for example, if Typel were POINTER TO TypeX).

5.2.2 Termination and results

A procedure terminates by executing a RETURN statement, which constructs a (perhaps
empty) result record. The return operation then terminates execution of the current
procedure activation and restarts the caller from the point at which it was suspended by
the call. As part of the return, storage for the parameters and local variables of the
returning procedure is released.

Since the value of a procedure is its result record, the components of that record can be
assigned to variables using an extractor. Alternatively, any single component (if named)
can be referenced by a field selector. The procedure ReturnExample returns three integer
results and may be used as indicated:

ReturnExample: PROCEDURE [option: [1..41] RETURNS [a, b, c: INTEGER] =
BEGIN. . . -- body defined in § 5.3. 1 --. . . END;

x, y, z: INTEGER;

case:[1..4);

x - ReturnExample[case l.a;
[b: y, c: zl - ReturnExample[casel;
x - (ReturnExample(casel.c+ 1) MOD 10;

-- get a component only
- extractor a subset of the results
-- use c component

Ifa procedure returns an empty result record, the call does not have a value and can only
be used as a statement.

If a procedure returns a single-component result record, extraction and selection are valid.
In addition, the component may be (and usually is) accessed directly because of the
automatic coercion from a single-component record to its single component. In the

Mesa Language Manual 5

following example, the first two calls of Gcd are valid and equivalent; the third ill ustrates
typical use within an expression:

gcd -Gcd[m, nl;
[gcd) -Gcd[m, nl;
relPrime -Gcd[m, nl= 1;

Fine points:

-- (coercion)
-- (explicit extraction)
-- (coercion)

[n the declaration of ReturnExample, [a, h, c: INTEGER 1 defines a unique type for the result record.

Because of the conformance rule lor record types (§ 3.3.2), it is impossible to declare a variable with that

type. [f a procedure is to return a record value with a particular type T, it must return a single·component

record where that component is a record of type T.

For similar reasons, the result record ofG below is not directly acceptable as the argument record of F.

F: PROCEDURE [x,y: INTEGERI;

G: PROCEDURE [!: INTEGERI RETURNS [x,y: INTEGER I;

With these declarations, the call FlGU]] is not legal, but see subsection 5.3.2 for syntax (APPL Y[F, GUlll

that allows this operation. [t would also be legal with the following declarations:

T: TYPE = RECORD (x,y: INTEGER I;

F: PROCEDURE [In: T I;
G: PROCEDURE (i: INTEGERI RETURNS [out: T I;

Note, however, that F takes and G returns only a single value now, one oftype T.

5.3 Procedure bodies

An actual procedure declaration looks like the declaration of a procedure variable followed
by a special kind of = initialization, a ProcedureBody. The TypeSpecification appearing
in the declaration determines the type of the body as well as that of the procedure
identifier. It may be any TypeSpecification equivalent to a ProcedureTC. ProcedureBody
is a special form of initialization defined as follows:

Initialization :: = ... 1 = ProcedureBody I ~ Procedure Body

Procedure Body :: = InlineOption Block -- see section 4.4 for Block

InlineOption :: = empty IINLINE

If the attribute INLINE appears, the procedure body is an inline one; any call of the procedure
is replaced by a modified copy of the body (§ 5.6).

Only a procedure initialized with = to a ProcedureBody is called an actual procedure; its
meaning cannot change because it cannot be assigned to. If, however, it is initialized to a
ProcedureBody using - initialization, its value can be changed by assignment, and it is
considered a procedure variable. lnitialization using - is not permitted for an inline
procedure.

5-9

5

5-10

Procedures

In addition to other statement forms, a procedure body can contain RETURN statements
(described in the next section). There is an implicit RETURN at the end of each procedure
body if one does not appear explicitly.

A ProcedureBody defines a scope for declarations. Identifiers declared within it are local
to the procedure and are unknown outside it. There must be no duplicates among the
names in a procedure's Parameterlist, Resultlist, and local variables. Names in the
Parameterlistcan be used to write a keyword constructor (§ 3.3.4) in a call ofa procedure.
Similarly, names in the Resultlist can be used in keyword extractors (§ 3.3.6) and as
qualifiers (§ J.3.3) to access the results returned by a procedure. Within a procedure, any
named fields of parameter and result records act just as local variables; the former are
initialized with the values of the actual parameters. A Parameterlist for an actual
procedure should be a named field list so that the procedure body can reference the
parameters.

Fine point:

Although the parameters and results act as local variables within the block that is the procedure body,

the scopes are slightly different. The scope of the named parameters and results includes any

OpenClause, EnableClause or ExitsClause of that block; the scope of the local variables does not (§ 4.4.2l.

5.3.1 RETURN statements

There are several basic forms of RETURN statements, two of which are discussed in this
section: RETURN and RETURN followed by a constructor. When either form is executed, control
returns to the point from which the procedure was called. In addition, the RETURN can
supply results in the form of a constructor conforming to the type of the procedure's
Resultlist:

ReturnStmt :: =- RETURN I RETURN [Componentlist] I. . .

There may be any number of RETURN statements in a procedure body. The form of a RETURN

statement depends upon the ReturnsClause in the definition of the procedure type. There
are three cases to be considered:

no ReturnsClause (empty result record)
an unnamed field list as the Resultlist
a named field list as the ResultList

If there is no ReturnsClause, the ReturnStmt must be just "RETURN." An explicit RETURN

statement can be omitted at the end of the procedure in this case.

If an unnamed field list is used for the ResultList, each ReturnStmt must include a
positional constructor. That constructor must match the field list exactly, with one
component for every field: omission, elision and voiding are not allowed (unless the
ResultList has defaults). In this case, there is no implied return at the end of the procedure.

If the ResultList is a named field list, either form of ReturnStmt is acceptable. If no explicit
constructor appears, the current values of the named result variables define the value of
the result record. An explicit constructor may use either positional or keyword notation;
again, omission, elision and voiding are disallowed (unless the ResultList has defaults). A
RETURN statement is optional at the end of the procedure; if omitted, an implicit RETURN of
the result variables is provided. Examples follow:

Mesa Language Manual

ReturnExample 1: PROCEDURE [option: [1..4 II RETURNS [a, b, c: INTEGER 1 =
BEGIN

a-b-c-O;
SELECT option FROM

1 = > RETURN [a: 1, b: 2, c: 31;
2 = > RETURN [1, 2, 31;
3 = > RETURN;

ENDCASE = > b - 4;
c -9;
END;

-- keyword parameter list
-- positional version of option 1

--a=b=c=O

-- implicit return: a = 0, b = 4, c = 9

ReturnExample2: PROCEDURE [g: INTEGER 1 RETURNS [INTEGER - 3, INTEGER - 41 =
BEGIN

SELECT g FROM

o = > RETURN [,21;
1 = > RETURN [8,];
2 = > RETURN [,];

3 = > RETURN [5];
5 = > RETURN [];

ENDCASE;

END;

-- elide first result; returns [3,2]

-- elide second result; returns [8,4]
-- elide both results; returns [3,4]
-- omit second result; returns [5,4]
-- omit both results; returns [3,4]

-- implicit return: [3,4]

5.3.2 Operations which deal with intact parameter records

5

Procedures in Mesa logically take and return "records." These so called parameter and
result records differ from other records in the language in several ways: they are
unpacked, and, as indicated earlier, type equivalence is somewhat more relaxed, they
must be assignable field by field in order to be assignable - fields must have assignable
types and identical names (if there is more than one field and both records have named
fields). The reason for requiring names to match is to disallow exporting Proc: PROCEDURE

[from, to: POINTERI to an interface where the declaration is Proc: PROCEDURE [to, from:
POINTER] (§ 7.4).

Consider the following declarations:

Prod: PROCEDURE [x: CARDINALI RETURNS [a: TI, b: T21 = ...

Proc2: PROCEDURE RETURNS [a: TI, b: T2] = ...

Proc3: PROCEDURE [a: TI, b: T2] = ...

Note that Prod and Proc2 have compatible return records.

The following statement is legal inside Prod:

RETURN Proc2[]; -- call Proc2 and then pass its return record along to my caller.

You can even say something like:

RETURN (IF boolexp THEN Proc2[] ELSE ProcI[x + 2]); -- note the tail recursion in
-- the ELSE case.

The return record of a procedure may also be passed along to another procedure as its
argument record. The syntax is as follows:

5-11

5

5-12

Procedures

APPl Y [Proc3, Proc2[)); -- the return record of Proc2 is compatible with
-- Proc3's parameter record.

Just as the expression after RETURN must have a type compatible with the return record of
the procedure, the second parameter of the APPLY must have a type compatible with the
argument record of the procedure that is the first parameter to the APPLY. In the case of the
RETURN, parentheses may be required for certain complicated expressions.

The APPLY and RETURN constructs also work for the argument and RESUME records of SIGNALS

and ERRORS (§ 8.2.5).

5.3.3 Defaults in argument and result records

You may specify default values for the fields of argument and result records. Such default
values must be constructed from constants or variables that are declared outside of the
procedure type definition. In particular, you cannot use either a value of another field of
the same record or, in the case of a result record, a value from the associated argument
record to define such a default.

You may omit a field in the constructor of an argument or result record only if the
definition of that record specifies an explicit default value for the field. Default initial
values associated with the types of such fields are not inherited. (This protects you from
assigning a value to a return variable and then forgetting to mention it in a RETURN

statement, causing the default for its type to be returned.) On the other hand, protection
against ill-formed storage is inherited; you may not void or elide a field unless the type of
that field allows a NULL initialization.

Defaults that you specify in the declaration of a result record serve two purposes. Since the
fields of such a record can be used as local variables within the procedure body, a default
specification affects the initialization of those variables; in addition, it allows abbreviation
in the constructors of the corresponding return records. The precise rules are:

Upon entry to a procedure, each field of the result record is initialized with the
default value specified for that field, if any; otherwise, it is initialized with the
default initial value for the type of that field, if there is one; otherwise, its initial
value is undefined.

If a RETURN is followed by an explicit constructor, the default specifications
appearing in the declaration of the result record control the values of any omitted or
elided fields, even if other assignments have been made to the result variables within
the procedure body. If the RETURN either stands by itself, without such a constructor,
or is implicit, the return record is constructed using the current values of the result
variables.

Examples

T: TYPE == INTEGER -1;

Proc1: PROC [i: INTEGER - 0, j: T];

Proc2: PROC RETURNS [m: T, n: INTEGER - 2J == {
-- m initialized to 1 (from n, n to 2
Proc1U: 31; -- Procl[i:0,j:3);

Mesa Language Manual

Proc1[i: 3\;

m-4; n-5;
RETURN;

5

-- illegal (j does not default to 1)

-- returns [4, 51
-- also returns [4, 5\
-- returns [4,2\

RETURN [m, nl;
RETURN [ml;
RETURN [NULL, nl;
RETURN [, nl;
RETURN [6, 71;

-- illegal (declaration of T disallows voiding of m)

-- illegal (m does not default to 1 or 4)

-- returns [6, 71
... }; -- implicitly returns [4,5\

5.4 A package of procedures

This section contains an example of a simple module, BinaryTree, which is designed to
create and manage a data base structured as a binary tree. It is typical of the ways in
which related procedures are packaged together. The example illustrates many of the
issues discussed in the previous sections and introduces the use of modules and interfaces
in Mesa.

The binary tree implemented by the example is a data structure containing nodes linked
by pointers. Any node points to at most two others (its sons), and a node is pointed to by
exactly one other node (its parent). A special root node exists and is referenced by a pointer
not in the tree. Every node also contains a value, which for simplicity in the example is
just an INTEGER. When the program starts, the tree is empty, and any call to SeekValue will
return a count of zero.

The nodes in this particular binary tree are records with four components:

-- an integer value (with unspecified interpretation), value
count
left
right

-- the number of duplications of the value in the data base,
-- pointer to a "left" son node (or NIL), and
-- pointer to a "right" son node (or NIL).

There are rules of association between the values and the nodes:

The first supplied value is entered into the root node.

A given value exists in only one node; duplications are counted.

If node E points to "left" son L, then all values in the subtree rooted at L are less
than the value in E. If node E points to "right" son G, then all values in the subtree
rooted at G are greater than the value in E.

When the module is started, the tree is initialized to be empty. Thereafter, the module
itself executes no code, but its procedures can be called to alter the tree that it manages.
For instance, other modules call PutNewValue to insert new values into the tree.

PutNewValue calls another of BinaryTree's procedures, FindValue, which traverses the
tree seeking a node that already has a given value. FindValue may find such a node, or it
may fail by reaching a higher-valued node with a NIL left son or a lower-valued node with a
NIL right son. If FindValue finds a node with the given value, PutNewValue increments
that node's count. Otherwise, PutNewValue sets up a new node and attaches it to the node
returned by FindValue.

5-13

5

5-14

Procedures

This strategy is chosen for simplicity, but it can be a poor way to construct a binary tree.
For instance, if the values are entered in strictly decreasing order, the tree becomes a
linear list ofleft nodes. To find the lowest-valued node, every node must be examined.

The reader should read the explanation following the example in conjunction with the
example itself.

Example 2. A Package of Procedures

1: DIRECTORY

2: Storage: USING [publicZonel,
3: OrderedTable: USING [UserProc l;
4:
5: BinaryTree: PROGRAM IMPORTS Storage EXPORTS OrderedTable =
6: BEGIN

7:
8: -- type definitions and compile-time constants
9: Node: TYPE = LONG POINTER TO BinaryNode;
10: BinaryNode: TYPE = RECORD [

11: value: INTEGER, count: CARDINAL, left, right: Node];
12:
13: -- a global variable
14: root: Node;
15:
16: -- public (exported) procedures:
17: Seek Value: PUBLIC PROCEDURE [val: INTEGER] RETURNS [count: CARDINAL] =
18: BEGIN

19: node: Nod.€;
20: found: BOOLEAN;

21: [found, node] -FindValue[vall;
22: RETURN [IF found THEN node. count ELSE 0]
23: END;

24:
PutNewValue: PUBLIC PROCEDURE [val: INTEGER] =

BEGIN

node, nextNode: Node;
alreadylnTree: BOOLEAN;

- Use FindValue to find where to put ual:
[alreadylnTree, nodel-FindValue[vall;

-- see if it is in the tree

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

IF alreadylnTree THEN node.count - node. count + 1
ELSE BEGIN -- name "external" UNCOUNTED ZONE publicZone by qualification

-- allocate and initialize new node
nextNode - Storage.publicZone.NEw[BinaryNode - [val, 1, NIL, NIL)];

IF root = NIL THEN root - nextNode
ELSE IF val < node. value THEN node. left - nextNode ELSE node. right - nextNode:
END;

END;

Mesa Language Manual 5

39:
40: Enumerate Va'lues: PUBLIC PROCEDURE [userProc: OrderedTable. UserProc I =
41: BEGIN

42: -- a local procedure (§ 5.6)
43: Walk: PROCEDURE [node: Node I RETURNS [keepGoing: BOOLEAN I =
44: BEGIN -- walk through the tree in order by increasing value using recursion
45: RETURN [node = NIL -- don 't examine empty (sub) trees
46: OR (

47: Wal[node.left I -- enumerate the lesser· valued nodes first
48: AND userProc [node.value, node. count] -- enumerate this node
49: AND Walk [node.right I -- then enumerate the greater-valued nodes
50:))
5l: END; -- of Walk
52: [) - Walk [root]; -- just start enumerating at the root
53: END;

54: -- a procedure that is private to this module
55: FindValue: PROCEDURE [val: INTEGER) RETURNS [inTree: BOOLEAN - FALSE, node: Node) =
56: BEGIN

57: nextNode: Node - root;
58: IF root = NIL THEN RETURN [FALSE, NIL);

59: UNTIL nextN ode = NIL

60: DO

61: node - nextNode;
62: nextNode - SElECT val FROM

63: < node. value = > node. left,
64: > node. value = > node. right,
65: ENDCASE = > NIL;

66: ENDLOOP;

67: RETURN [val = node. value, node)
68: END;

69:
70: -- mainline statements
71:
72:

root - Nil;

END.

5.4.1 The example

-- always start at the root

-- make tree initially empty

Each line of the source code in Example 2 is numbered for convenient reference; other
than that, the code could be compiled as it stands.

The body of a PROGRAM module resembles a procedure body: BEGIN, followed by declarations,
then some statements, and finally END. The declarations and statements are both optional,
but it would be unusual to omit the declarations.

In this example, the module BinaryTree declares five actual procedures: SeekValue (lines
17-23), PutNewValue (lines 25-38), EnumerateValues (lines 40-53), Walk (lines 43-51) and
FindValue (lines 55-68). It also declares two types (Node and BinaryNode), and a single
global variable (root). The scope of these declarations is the entire body of the module
(lines 6-72). For example, PutNewValue, EnumerateValues and FindValue all reference
the global variable root.

When a module is created and started (chapter 7), the global variables are created and any
statements in its body are executed. BinaryTree has just one such statement (line 71),
which creates the initial empty tree by assigning Nil to root. Storage for activations of
modules is not released when control reaches the end of the main body. Global variables

5-15

5

5-16

Procedures

such as root continue to exist and may be used to retain data shared by the actual
procedures in the module.

The procedure EnumerateValues has two major distinguishing features: it takes a
procedure value as a parameter, and it contains the declaration of a nested procedure
(Walk). For each node in the tree, EnumerateValues calls the procedure value userProc
that it received as an argument, passing it the value in that node and its replication count.
If userProc returns TRUE, the enumeration of the values continues; if it returns FALSE,

EnumerateValues terminates and returns to its caller. The values are generated in order
from least to greatest.

The nested procedure Walk is recursive and traverses the tree by first traversing the left
subtree, then visiting the root, and finally traversing the right subtree. This postorder
traversal delivers the values in increasing order (the reader should convince himself that
it does). The expression in lines 47-50 depends upon the definitions of AND and OR (§ 2.5.3)
to terminate the traversal as soon as userProc returns FALSE. The first procedure call occurs
only if node is not NULL; the second only if the first is called and returns TRUE; the third only
if the first and second are called and both return TRUE. Section 5.6 treats local procedures
in more detail.

5.4.2 Invoking procedures in other modules

The DIRECTORY section at the beginning of a module lists the interfaces used in that module.
The identifier Storage, for example, must be the name of a (DEFINITIONS) module. Such
modules allow the independent development of interface definitions and the sharing of
such definitions. Storage and OrderedTable are said to be included by BinaryTree. The
optional USING clause provides' compiler-checked documentation of exactly which
identifiers are used in a module but defined in the associated interface.

The IMPORTS list (§ 7.4.1) on line 5 allows BinaryTree to access a variable (publicZone)
defined in the interface Storage, which has the following (skeletal) form:

Storage: DEFINITIONS =
BEGIN

publicZone: UNCOUNTED ZONE;

END.

The example uses explicit qualification (dot notation) to name publicZone (line 34).

The EXPORTS list (§ 7.4.3) names the single interface OrderedTable, which is defined as
follows:

OrderedTable: DEFINITIONS =
BEGIN

-- types
UserProc: TYPE = PROCEDURE [val: INTEGER, count: CARDINAL) RETURNS [continue:
BOOLEAN];

-- the interface
SeekValue: PROCEDURE [val: INTEGER] RETURNS [count: CARDINAL):

PutNewValue: PROCEDURE [val: INTEGER):

Mesa Language Manual 5

Enumerate Values: PROCEDURE [userProc: U serProcl:
END.

Other modules access the PUBLIC procedures in BinaryTree (Seek Value, PutNewValue and
EnumerateValues) by importing this interface (just as BinaryTree imports Storage); they
have no other access to BinaryTree. For example, FindValue is private to BinaryTree, so it
is only called from within the module (lines 21 and 30). The definition of the type UserProc
is included in the interface so that it is publicly available for defining procedures to be
passed to EnumerateValues. ~ote that BinaryTree also obtains the definition of this type
from the interface (ime 40),

5.5 Nested procedures

Actual procedures may be declared within procedure bodies. A nested procedure is one
declared within (and local to) some enclosing procedure. Nesting of procedure declarations
restricts the scope of the names of the inner procedures. In addition, the enclosing
procedure establishes an environment for the inner: this is especially useful when the
inner procedure is passed as a parameter.

The value of a nested procedure (and any activation of that value) is "tied" to the local
variables of the enclosing procedure and, indirectly, to the local variables of the procedure
or module in which the enclosing one is declared. An activation of the nested procedure
references those variables available at its point of declaration. A different acti vation of the
enclosing procedure declares a nested procedure with a different value, one with .its
nonlocal variables tied to that other instance of the enclosing procedure.

The following example uses the interface OrderedTable defined in subsection 5.4.2 and
illustrates a typical application of a nested procedure.

AuerageValue: PROCEDURE RETURNS [INTEGER] =
BEGIN

sum, n: INTEGER:

AddValue: OrderedTable. U serProc =
BEGIN

n +- n + count; sum +- sum + count*ual;
RETURN [continue: TRUE]

END;

sum -n -0;
OrderedTable.E numerate Values [AddValue I

-- a nested procedure

RETURN [IF n= 0 THEN 0 ELSE (IF sum<O THEN sum - (n/2) ELSE sum + (n/2)/n]
END;

The procedure AuerageValue computes the average value of the ualue fields in the binary
tree. It declares and initializes a pair oflocal variables (n and sum) that are updated by the
nested procedure AddValue, but must have a greater lifetime than any individual
activation of AddValue. Note that a similar effect could be achieved here by making nand
sum global variables; the suggested solution restricts their scope (and thus, the
opportunity for accidental misuse).

Execution of A uerage Value involves a second nested procedure, the procedure Walk within
EnumerateValues. The latter's parameter userProc serves a purpose similar to that of sum
or n in Auerage Value. Since there is nothing to prevent a recursive call of

5-17

5 Procedures

EnumerateValues from some actual procedure corresponding to userProc, making
userProc a global variable in the module BinaryTree could be disastrous.

Fine point:

Because a nested procedure is tied to an activation of the enclosing procedure leven when it references no

nonlocal variables). the value of a nested procedure should not be assigned to a variable with a lifetime

greater than that of the enclosing procedure instance.

In a sense, all procedures are "locai-' procedures. They are either local to some enclosing
procedure or local to some module (recall that static variables are local to the module
declaring them>. This nesting can continue to an arbitrary number of levels. (The level is
important only to the extent that it influences name scopes, a topic covered in the next
section.)

5.5.1 Scopes defined by procedures

Each procedure body defines a new scope for names declared in that procedure. Such
names represent variables that are local to the body. The scope for a local variable is such
that:

(1) the local variable is unknown outside of that procedure body, and

(2) a non-local variable is unknown inside the procedure if its name matches some
local variable's name.

Within a procedure body, a block (§ 4.4) can be used to further restrict the scope of a local
variable. In the following example, scopes for the procedures are indicated by comments:

SomeModule: PROGRAM =
BEGIN

var: INTEGER;

OuterProc: PROCEDURE

BEGIN

var: BOOLEAN

LocalProc: PROCEDURE =
BEGIN

var: CHARACTER;

END;

END;

END.

-- the varOflNTEGER type is used here

-- the var of BOOLEAN type is used here

-- the var of CHARACTER type is used here

-- the var of BOOLEAN type is used here

-- the var of INTEGER type is used here

5.6 Inline proced ures *

5-18

An actual procedure is said to be inline if the attribute INlINE appears before the body in the
declaration of that procedure. Any call of the procedure is replaced by an inline expansion,
which is a modified copy of the procedure's body. The code of the procedure and any storage
required for local variables are merged with the code and storage of the calling procedure

Mesa Language Manual 5

or module. Thus, INLINE procedures can be used to eliminate the overhead of a procedure
call and return (usually at the cost of a longer object program).

The rules for expanding an INLINE ensure that the presence or absence of the INLINE attribute
has no effect upon the meaning of a program. Execution of the expansion must always
produce a result with the same logical behavior as the result of applying the following
operations:

(1) For each argument, create a uniquely named variable local to the caller, and
initialize that variable with the value of the argument.

(2) If there is a result record with named fields. enclose the body of the INLINE

procedure in a block containing a declaration of each such field.

(3) In the resulting block, replace each reference to a field of the parameter list by
the identifier introduced in the first step for the corresponding argument.

Any global variables of the procedure body refer to the corresponding variables accessible
at its point of declaration, not the point of call.

Fine points:

A catch phrase can be attached to the call of an in line procedure (§ 8.2.11. The arguments are evaluated

outside the scope of the catch phrase.

The Mesa compiler attempts to discover many of the common cases in which "call by name" is equivalent

to the "call by value" substitution described above. When it discovers such a case, the argument is

substituted directly for the corresponding parameter.

The attribute INLINE is never mandatory. Deleting INLINE is always valid, but adding it is
not. No inline procedure can be recursive, either directly or indirectly through a chain of
in line procedure calls. Consider a procedure Proc declared as follows:

Proc: PROCEDURE [u: INTEGER I RETURNS [INTEGERI = INLINE

BEGIN

RETURN [v*v + 3*u + 11
END;

Because of its INLINE attribute, Proc cannot be used in any of the following situations:

When Proc itself is the operand of one of the fundamental operations of assignment
(proc Var +- Proc, GeneratorProc(Procl, etc.) or comparison (Proc = AnotherProc).

When Proc itself is used as an alternative in a conditional expression, e.g.,
(IF predicate THEN Proc ELSE AnotherProc Hx I.

When Proc is the operand of FORK (§ 9.1).

WhenProc is to be exported to an interface (§ 7.4.3).

5-19

5

5-20

Procedures

Fine points:

Since arguments are evaluated before procedures are called. usage such as Proc(Proc(.rll does not make

Proc recursive.

Additional restrictions apply when an inline procedure is declared in a DEFINITIONS module (§ 7.3.3).

6

Other data types and storage
management

This chapter introduces a number of new data types: strings, array descriptors, sequences,
and zone types. Relative pointers are also discussed, and the definition of record types is
extended to include variant records.

In Mesa, the type STRING is really "POINTER TO StringBody"; a StringBody contains a packed
array of characters, a maxlength field giving the length of that array, and a length field
indicating how many of the characters are currently significant.

A sequence is an indexable collection of items, all of which have the same type. In this
respect, a sequence resembles an array; however, the maximum length of the sequence is
specified at run-time when the object containing that sequence is allocated, and this
maximum length cannot subsequently be changed. It is the programmer's responsibility
to keep track of the number of items in the sequence which have been assigned
meaningful values.

An array descriptor describes the location and length of an array. For ordinary arrays,
these are fixed at compile-time. Values of array descriptor type, however, have location
and length items that can vary. These array descriptors may represent arrays that are
dynamic, but they may also represent ordinary arrays. For efficiency, users often pass
array descriptors to procedures instead of passing the entire arrays themselves.

Relative pointers require the addition of a base pointer to obtain an absolute pointer. This
allows data structures with internal references that are independent of memory location.

Variant records contain a set of common fields and a variant portion with a specified set of
different possible interpretations.

Dynamic variables in Mesa are allocated in zones. Zones are not necessarily associated
with fixed areas of storage; rather they are objects characterized by procedures for
allocation and deallocation. There is a standard system zone, but programs that allocate
substantial numbers of similar dynamic variables can often improve performance by
segregating each kind into its own zone. NEW is used to allocate a dynamic variable from a
zone, and FREE to release it.

6-1

6 Other data types and storage management

6.1 Strings

6-2

In Mesa, a STRING represents a finite, possibly empty, sequence of characters. Associated
with a string are the following:

text

maxlength

length

a PACKED ARRA Y of characters.

the maximum number of characters that text can hold.

the number of significant characters in text; may vary from
zero up to maxlength.

STRING is a predefined type in Mesa. Each program contains the following relevant pre
declarations:

STRING: TYPE = POINTER TO StringBody;
StringBody: TYPE = MACHINE DEPENDENT RECORD [

length: CARDINAL,

maxlength: -- read only-- CARDINAL,

text: PACKED ARRAY [0 .. 0) OF CHARACTER);

Suppose s is a STRING variable. Then s.length and s.maxlength refer to the first two
components of the StringBody currently pointed to by s. The type StringBody is "built
into" the Mesa language so that the ith character of the text array, s.text[i), may be
abbrevif;lted sci]. The index type of text in the declaration is used only to specify a starting
index of O. It is better to think of a particular STRING as having an index type
[O .. s.maxlength).

The value of s.maxlength is assigned when a StringBody is created and is a constant: it
may not appear as a LeftSide in the user:S program. However, s.length can be used as a
LeftSide. In fact, the user is responsible for setting and changing the length when
appropriate (Le., s.length is meant to reflect the "meaningful" length of the character
sequence). Suppose, for instance, that s initially points to a StringBody, having no
significant characters, i.e., s.length = O. Then the user might append characters as follows:

s{s.length] +- anotherChar; s.length +- s.length+ 1;

(Actually, characters are seldom appended in this manner. The recommended practice is to
use string-handling procedures provided by the Mesa system. These are documented in the
Mesa Programmer's Manual and the Pilot Programmer's Manual.)

Since strings in Mesa are actually pointers to string bodies, several strings may refer to
the same body. Therefore, a change to that structure would manifest itself in all such.
strings. Keep the following in mind:

When an item has type STRING, think ''pointer to string-body".

Fine point:

While the programmer cannot assign to the maxlength field with an assignment statement, it can be set
(along with the length) in a constructor, e.g.,

Mesa Language Manual

AllocateString: PROCEDURE [ma.xLength: CARDINALI RETURNS [s:STRINGI =
BEGIN

s -AllocateWords [SIZE[StringBodyl + (ma.xLength + 11/21

s t -StringBody [length: 0, ma.xlength: ma.xLength, te.xt: I;

END;

6

This is the way to initialize a StringBody when the space for it comes from some general storage allocator.

Note that the te.xt field cannot be set with the constructor since the ARRAY is of length zero in the

declaration. See also subsection 6.5.5.

6.1.1 String literals and string expressions

A string literal is a sequence of characters enclosed in quotation marks, " ... ". A quotation
mark within a string constant is represented by a pair of quotation marks (""). Here are
some examples of string literals:

"The first example contains
some embedded
carriage-returns. "

"A single quote mark (') isn't a double quotation mark(tI") ... "

to!"

"" -- an empty string

A string literal is an Expression of type STRING. Its value is a constant pointer to a constant
StringBody in which:

length
maxlength

= number of characters given, and
= length

The fundamental operations are defined for string Expressions. The fundamental
operations deal with string expressions as pointer values; e.g., +- assigns one string pointer
to another string pointer, = compares two strings for the same pointer value, and #
compares two strings for different pointer values.

Fine point:

The StringBody of a string literal is normally allocated in the global frame of the module in which the
literal appears (it is copied there from the code segment when the module is STARTed). Unfortunately,

such strings can consume substantial amounts of space in the (permanent and unmovable) global frame

area. The programmer can indicate that the StringBody should be allocated in the global frame by
following the literal by a G (e.g., "abc"m.

If a string literal is followed by L (e.g., "abc"Ll, the StringBody is allocated in the local frame of the

innermost procedure enclosing the literal; the StringBody is initialized by copying it from the code

segment whenever an instance of that procedure is invoked. As a corollary, the space is freed and the

StringBody disappears when the procedure returns. This allows smaller global frames. but it is

important to insure that pointers to local string literals are not assigned to STRING variables with
lifetimes longer than that of the procedure.

If there is a "global" copy ofa string literal, saying L is a no-op. Since it is already in the global frame,

it is not also copied into the local frame.

6-3

6

6-4

Other data types and storage management

6.1.2 Declaring strings

String variables are declared like ordinary variables, but there is one additional form of
initialization (for strings only): '

Initialization ::. . .. +- [Expression J I = [Expression]

The Expression must be a compile-time constant expression of type CARDINAL. At run-time,
Mesa creates a StringBody with maxlength equal to this Expression's value, length equal
to zero, and text uninitialized. The declared string variable is then set to point to this
StringBody.lf an IdList is declared with this form of initialization, all of the listed variables
initially point to the same StringBody .

Some examples:

currentLine, nowLine: STRING +- [256];
stringBuffer: STRING +-[stringMax+someExtra];

This would allocate two StringBodys in the local frame of the program or procedure
containing the declarations. The strings currentLine and nowLine would point to one
StringBody, with maxlength 256. The string stringBuffer points to the other StringBody.
(Note that stringMax and someExtra must be compile-time constants.) Since the initial
ization is done with "+-", it is legal to assign new pointer values to these string variables.
The space for the string bodies is recovered when the procedure returns; care should be
exercised to avoid assigning such a string pointer to a variable with a longer lifetime.

The following are examples offixed form string initialization:

whatWasThat: STRING = "Eh?";
goofed: STRING = what Was That;

In this case, Mesa would allocate and fill in a StringBody for the string literal "Eh?".
whatWasThat and goofed would be compile-time constants having the same string value:
i.e., they would both point to the same StringBody. In fact, any other references to the
same string literal will point to the same StringBody. For example:

huh: STRING = "Eh?";
answer: STRING +- "Eh?";

The strings huh and answer would point to the same StringBody as what Was That.

Fine point:

Since string literals can be assigned to string variables (pointer assignment), it is possible to modify the

text of a literal. Doing this can lead to significant confusion. For example:

sl: STRING -"abcdefg";

81[2] -'x;

WriteString["abcdefg"] -- will write "abxdefg"

String variables can be declared with +- initialization or without any initialization:

Mesa Language Manual

stdErrorMsg: STRING - "It seems that we have made a mistake."

{irstReply, reply: STRING - "Yes";
oldBuffer, newBuffer: STRING;

IF quickDialog THEN stdErrorMsg - whatWasThat;

IF reply[O] = '? THEN
IF (irstReply[O) = '? THEN HelpaLot[]
ELSE HelpaLittle[]; .

oldBuffer - newBuffer - stringBufferl;

IF stringBufferl #stringBuffer2 THEN newBuffer - stringBuffer2;

Fine point:

6

The Mesa system contains procedures you should use when allocating blocks of data. These procedures

are helpful for applications involving an arbitrary number of strings or strings of arbitrary length. The

procedures are documented in the Mesa Programmer's Manual and Pilot Programmer's Manual.

6.1.3 Long strings

A STRING isjust a pointer, so LONG STRING is also a predefined type:

LONG STRING: TYPE = LONG POINTER TO StringBody;

It is perhaps curious to note that declaring a LONG string says nothing about its actual or
potential maxlength.

As indicated earlier, Mesa has a facility for allocating string bodies in the local frame of a
procedure by saying localString: STRING Eo- [exp]. You can also say longLocalString: LONG
STRING Eo- [exp] as well (exp must be constant in either case). Note that you need not declare
a local string to be LONG if you are only passing it to other procedures; the compiler will
lengthen the pointer for you.

Most system routines deal with LONG STRINGS since most StringBodys are allocated
dynamically from UNCOUNTED ZONEs (§ 6.6.1).

6.2 Array descriptors

A full description of an array contains several items of information. Consider a typical
array declaration:

schedule: ARRAY [0 .. 999] OF Date;

The following things are known about schedule:

base = @schedule[01,
index type = [0 .. 999] (a sub range of INTEGER or CARDINAL),

minlndex = 0,

6-5

6

6-6

Other data types and storage management

length = 1000,
component type = Date

All of these items except base are compile time constants, and the value of base is the
address of a fixed place in the frame, chosen by the compiler. Mesa provides a mechanism
for dynamic arrays, where the base and length can vary at run-time. The implementation
does not allow for a variable minIndex. Dynamic arrays are implemented by array
descriptors. Array descriptors are present in Mesa mainly for backward compatibility.
When possible, use sequence-containing types for allocation of arrays with dynamically
computed size; use array descriptor types only for parameter passing when necessary.

6.2.1 Array descriptor types

An array descriptor type is constructed much like an array type:

DescriptorTC

ReadOnlyOption

PackingOption

For example,

:: III DESCRIPTOR FOR ReadOnlyOption ArrayTC I
DESCRIPTOR FOR ReadOnlyOption PackingOption ARRAY OF

TypeSpecification

:: = empty I READONl Y

:: III empty I PACKED

events: DESCRIPTOR FOR ARRAY [0 .. 999] OF Date;

IfREADONlY is specified, the contents of the array cannot be changed via the descriptor.

The value of events is an array descriptor (a record-like object containing items similar to
those described previously for schedule except that the base is not fixed). The next
declaration specifies an array descriptor in which the base and the length are variable:

history: DESCRIPTOR FOR ARRA Y OF Date;

Indexing can be used to access components of events and history as if they were actual
arrays instead of array descriptors. Since no index type is specified for history, it has an
indefinite index type starting at zero with no specified upper bound. This is equivalent to
declaring the index type as [0 .. 0).

Two array descriptor types are equivalent if they specify equivalent types for their array
components and if they have equivalent index-sets (or if both index-sets are unspecified).
Note that DESCRIPTOR FOR ARRAY [0 .. 2) OF T and DESCRIPTOR FOR ARRAY [1..3) OF T are different
types, even though the lengths and element types are the same. Expressions of equivalent
descriptor types may be compared for equality (= or #).

The rules for assignment are somewhat more relaxed. If al has type DESCRIPTOR FOR ARRAY
OF T, and a2 has type DESCRIPTOR FOR ARRAY [0 .. 10) OF T, then the assignment al - a2 is
legal, but the assignment a2 - al is not.

In any case, for assignments and comparisons, both operands must be array descriptors,
and it is the descriptors themselves, not the arrays that they describe which are the values

Mesa Language Manual 6

operated on. It would be an error to attempt to assign events to schedule because the first is
a descriptor and the second is an actual array.

There are three function-like operators relevant to array descriptors: DESCRIPTOR, BASE, and
LENGTH. DESCRIPTOR returns an array descriptor result and has three distinct forms which
are treated syntactically as built in functions:

BuiltinCall :: = DESCRIPTOR [Expression] I
DESCRIPTOR [Expression. Expression 11
DESCRIPTOR [Expression. Expression. TypeSpecification] I
BASE [Expression 11 LENGTH [Expression 11

LeftSide :: =- Expression. BASE I
Expression. LENGTH I ...

The first form takes an argument of some array type, e.g.,

events - DESCRIPTOR [schedule];

The result is an array descriptor for schedule. The second form needs two arguments:

base: POINTER TO UNSPECIFIED

length: CARDINAL
-- address of the minlndex component
-- number of components

This form is usually assigned to an array descriptor variable which was declared without
an explicit index type.

In those rare situations where the compiler cannot deduce the component type of the
descriptor from context, a form of the DESCRIPTOR construct is provided which takes three
arguments. The third one is a TypeSpecification, the component type.

The following example provides a fresh array of 64 Dates:

Allocate: PROCEDURE [blkSize: CARDINAL] RETURNS [POINTER TO UNSPECIFIED);

history - DESCRIPTOR [Allocate [64*SIZE[Datel1,64];

The expressions BASE[.] and LENGTH[) take one argument (of array descriptor or array
type). BASE yields the base of the described array, and LENGTH yields its length. For
example:

events - DESCRIPTOR [schedule 1; -- describe the entire array
events - DESCRIPTOR [BASE [schedule], 5]; -- describe the first 5 elements

One can assign to the individual fields of an array descriptor by using the "dot notation,"
forms of BASE and LENGTH. For example:

events.LENGTH - 4; -- describe only 4 elements

There is no special form for constructing DESCRIPTORS for packed arrays. The PACKED

attribute is deduced from context. In the two or three argument form of DESCRIPTOR for

6-7

6

6-8

Other data types and storage management

packed arrays, the second argument (the LENGTH) is the number of elements. At present,
the DESCRIPTOR operator cannot be applied to packed arrays which occupy less than a word.

It is usually more efficient to pass array descriptors as arguments, rather than arrays.
Since arguments are passed by value, an array argument causes a copy of the entire array
to be made twice (once to put it into an argument record, and once to copy it into a local
variable in the called procedure). The next example shows a case in which array
descriptors must be used, since passing by value would not work:

Table: TYPE = DESCRIPTOR FOR ARRAY OF INTEGER;

SortlnPlaee: PROCEDuRE[loealTable: Table);
thisArray: ARRAY [O .. this) OF INTEGER;

thatArray: ARRAY [O .. that) OF INTEGER;

anyTable: Table - OESCRIPTOR(thisArray);

SortInPlaee[anyTablel;

SortInPlaee[DESCRIPTOR [thatArray II;

-- sorts in situ

-- sorts this Array

-- sorts thatArray

A StringBody (§ 6.0 contains an array, text, of characters. One must be careful when
constructing a DESCRIPTOR for this array. Recall that the bounds of text are [0 .. 0). This
declaration is used since the actual length of text varies from STRING to STRING. For this
reason, the "one argument" form should not be used to construct a DESCRIPTOR for text.

textarray: DESCRIPTOR FOR PACKEO ARRA Y OF CHARACTER;

s: STRING;

textarray - DESCRIPTOR [s.text); -- LENGTH [lextarray] is incorrect
textarray - DESCRIPTOR [BASE [s.text), s.lengthl; -- correct

6.2.2 Long descriptors

The BASE portion of an array descriptor is essentially a pointer. Just as the language allows
the type LONG POINTER, it also allows the type LONG DESCRIPTOR. The syntax is
straightforward:

TypeConstructor :::1 ... 1 LongTC

LongTC :::1 LONG TypeSpecification

TypeSpecification :::1 ... 1 DescriptorTC

All the standard operations on array descriptors (indexing, assignments, testing equality,
LENGTH, etc.) extend to long array descriptors. The type of BASE [dese] is long if the type of
dese is long. The LENGTH of an array descriptor is a CARDINAL, whether the descriptor (i.e. its
BASE) is LONG or short.

Long array descriptors are created by applying DESCRIPTOR [I to an array that is only
accessible through a long pointer, or by applying DESCRIPTOR [,) or DESCRIPTOR [, , I to
operands the first of which is long. When a short array descriptor is assigned to a long one,
the pointer portion is automatically lengthened. Alternatively, an array descriptor can be
explicitly lengthened by the operator LONG []. Consider the following examples:

Mesa Language Manual

d: DESCRIPTOR FOR ARRA Y OF T;
dd: LONG DESCRIPTOR FOR ARRA Y OF T;
i. n:. CARDINAL;

pp: LONG POINTER TO ARRAY [0 .. 10) OF T;

6

dd - DESCRIPTOR [pp t I;
dd - DESCRIPTOR [pp, 5];
dd-d;

-- descriptor for the entire array
-- descriptor for half of the array

pp - BASE [ddl;
n -LENGTH [ddl;

6.3 Base and relative pointers

-- automatic lengthening
-- BASE of long is long
-- LENGTH is always a CARDINAL

Mesa provides relative pointers, Le., pointers that are relocated by adding some base value
before they are dereferenced. Relocation has the further effect of mapping a value with
some pointer type into a value with a possibly different pointer type. Relative pointers are
expected to be useful in such applications as the following:

Conserving Storage. Relative pointers can adequately identify objects stored within
a zone of storage if the base of that zone is known from context. If the zone is of
known and relatively small maximum size, fewer bits are needed to encode the
relative pointers. Since a relative pointer and the corresponding base value can
have different lengths, relative pointers can be shorter than absolute pointers to the
same objects. Overall storage savings are possible when all the base values can be
contained in a small number of variables shared among many different object
references.

Providing Movable Storage Zones. If all interobject references within a storage zone
are encoded as zone-relative pointers, the zone itself can be organized to contain
only location-independent values. Moving the zone, possibly via external storage,
requires only that a set of base pointers be updated.

Designating Record Extensions. Sometimes it is convenient to extend a record by
appending information (especially variable-length information) to it. Pointers
stored in, and relative to the base of, the extended record provide location
independent and type-safe access to the extensions.

6.3.1 Syntax for base and relative pointers

The syntax for base and relative pointer type constructors is as follows:

PointerTC

BaseOption

TypeConstructor

RelativeTC .. -

ORDERED BaseOption POINTER Optionallnterval
PointerTail

empty 1 BASE

.•• 1 RelativeTC

Typeldentifier RELATIVE TypeSpecification

In a PointerTC, a nonempty Optionallnterval declares a subrange of a pointer type, the
values of which are restricted to the indicated interval (and can potentially be stored in

6-9

6

6-10

Other data types and storage management

smaller fields). Normally, such a subrange type should be used only in constructing a
relative pointer type as described below, since its values cannot span all of memory.

A BaseOption of BASE indicates that pointer values of that type can be used to relocate
relative pointers. Such values behave as ordinary pointers in all other respects with one
exception: subscript brackets never force implicit de referencing. Subscript brackets are
used together with relative pointers to relocate relative pointers (see below). The attribute
BASE is ignored in determining the assignability of pointer types.

A RelativeTC constructs a relative pointer or relative array descriptor type. The
Typeldentifier must evaluate to some (possibly long) pointer type which is the type of the
base, and the TypeSpecification must evaluate to a (possibly long) pointer or array
descriptor type.

The referent of a relative pointer is specified by using subscript-like notation in which the
type of the "array" is the base type and that of the "index" is the relative pointer type.
Thus if base is a base pointer and offset is a relative pointer (to n, the form

base[offsetl

denotes an expression of type T, and the value of that expression is (LOOPHOLE

[base) + offset) r .

6.3.2 A relative pointer example

Consider the BinaryTree example from section 5.4. In this program, an ordered table is
stored as a binary tree. The tree is stored in the following Mesa data structure:

Node: TYPE = POINTER TO BinaryNode;
BinaryNode: TYPE = RECORD [value: INTEGER, count: CARDINAL,left, right: Nodel;

Suppose that the BinaryNodes are allocated from a contiguous region of memory. If the
programmer now wishes to put the current state of the ordered table on secondary storage,
it is not sufficient to simply write out the region of memory containing the B inaryN odess.
This is because the data would make sense only if read back into exactly the same place in
memory, a restriction that is difficult to live with. The difficulty stems from the absolute
pointers used in the nodes. The problem can be solved by changing the definition of Node.
If the BinaryNodes are allocated from a region of type TreeZone,let

TZBase: TYPE = LONG BASE POINTER TO TreeZone;
Node: TYPE = TZBase RELATIVE POINTER TO BinaryNode;

The procedure FindValue would be written as follows:

nulLNode: Node = <some value never allocated(§ 6.3.3»;
tb: TZBase - ... ;
root: Node - nullNode; --list is initially empty

FindValue: PROCEDURE [val: INTEGER) RETURNS [inTree: BOOLEAN - FALSE, node: Node I =
BEGIN

nextNode: Node - root;
IF root = nullNode THEN RETURN [FALSE, nullNodel;

Mesa Language Manual 6

UNTIL nextN ode = nullN ode 00

node - nextNode;
nextNode - SELECT ual FROM

< tb[nodel.ualue = > tb[nodel.left,
> tb[nodel.ualue = > tb[nodel.right,
ENDCASE = > nullNode;

ENDLOOP;

RETURN [ual = tb[nodel.ualue, node);
END;

The other procedures of BinaryTree can easily be rewritten to use the new definition of
Node. The compiler would aid in the translation, since any unrelocated dereferencing of a
Node would be a compile-time error.

This new implementation of BinaryTree has the feature that the TreeZone could be moved
around in memory, or written and read on secondary storage, and only the base pointer tb
need be updated to reflect the new position of the TreeZone.

6.3.3 Relative pointer types

An important topic to consider is the interaction of the re lati ve pointer constructs with the
type machinery of Mesa.

A RelativeTC constructs a relative pointer type whenever both the Typeldentifier and the
TypeSpecification evaluate to pointer types. Let a RelativeTC be

Typeldentifier RELATIVE TypeSpecification,

where

Typeldentifier is of type

[LONG] BASE POINTER [SubRangebl TO [READONLV] Tb ,

TypeSpecification is of type

[LONG] [ORDERED] [BASE] POINTER [SubRangerl TO [READONLV) T r ,

and the brackets indicate optional attributes. Relative pointer values must be relocated
before they are dereferenced. If base and offset are base and relative pointers respectively,
offset t ,offset·field, etc. are compile-time errors.

If the TypeSpecification says READONLV, a relocated pointer cannot be a leftSide.

The base type must be designated by an identifier (rather than a TypeSpecification)
to avoid syntactic ambiguities. Note that the form

LONG Typeldentifier RELATIVE TypeSpecification -- wrong

does not have the effect of lengthening the base type and furthermore is always in
error, since LONG cannot be applied to a relative type. The type designated by the
TypeSpecification can be lengthened (to give a relative long pointer) using the form

6-11

6

6-12

Other data types and storage management

Typeldentifier RELATIVE LONG TypeSpecification.

Short relative pointers are never made long automatically. With respect to other
operations (assignment, testing equality, comparison if ordered, etc.), relative pointers
behave like ordinary pointers. In particular, the amount of storage required to store such a
pointer is determined by the TypeSpecification.

Fine points:

In some applications, there is no obvious type for the base pointer, i.e., it might not be possible or

desirable to describe a storage zone using a Mesa type declaration. In such cases, a declaration such as

BaseType: TYPE = BASE POINTER TO RECORD [UNSPECIFIED I

generates a unique type that will not be confused with other base types.

The declaration of a relative pointer does not associate a particular base value with that pointer, only a
basing type. Thus some care is necessary ifmultiple base values are in use. Note that the final type of the
relocated pointer is largely independent of the type of the base pointer. Sometimes this observation can

be used to help distinguish different classes of base values without producing relocated pointers with
incompatible types. Consider the following declarations:

baseA: BaseA;

baseB: BaseB;

OffsetA: TYPE = BaseA RELATIVE POINTER TO T;

OffsetB: TYPE = BaseB RELATIVE POINTER TO T;

offsetA: OffsetA;

offsetS: OffsetS .

If BaseA and BaseB are distinct types (see the preceding point), so are OffsetA and OffsetB. Expressions

such as baseA [offsetS) and offsetA - offsetB are then errors, but baseA [offsetA 1 and baseB [offsetBl have
the same type 17').

The base type must have the attribute BASE. Conversely, the attribute BASE always takes precedence in
the interpretation of brackets following a pointer expression. Consider the following declarations:

p: POINTER TO ARRAY Inde:tType OF ••• ;

q: BASE POINTER TO ARRAY 1 nde:tType OF ••••

The expression p[e) will cause implicit dereferencing of p and is equivalent to p t [e I. On the other hand,
q[e) is taken to specify relocation of a pointer, even if the type of e is Inde:tType and not an appropriate
relative pointer type. In such cases, the array must (and always can) be accessed by adding sufficient

qualification, e.g., q t [e); nevertheless, users should exercise caution in using pointers to arrays as base
pointers.

Mesa currently supplies no special mechanisms for constructing relative pointers. It is
expected that such values will be created by user-supplied allocators that pass their
results through a LOOPHOLE or from pointer arithmetic involving LOOPHOLES. FIRST and LAST

may also be used to create relative pointers in certain cases:

Base: TYPE = LONG BASE POINTER TO RECORD(UNSPECIFIED];

IntPtr: TYPE = POINTER [0 .. 200) TO INTEGER;

Node: TYPE = Base RUATIVE IntPtr;
nullNode: Node = FIRsT[Node]; -- Never allocate this value

Mesa Language Manual 6

Note that relative pointers don't have a built-in NIL like other pointers. It is up to the
programmer to create his own null value like that above. Another popular ·null value is
LAST(Nodel. One can only use FIRST or LAST if the pointer has a subrange specification. A
sub range of [O .. CARDINAL.LASTI can be used if the entire word is to be used for the relative
pointer.

For more information about base and relative pointers, read about Pilot memory
management and the system supplied interface Zone in the Pilot Programmers Manual.

6.3.4 Relative array descriptors

A RelativeTC constructs a relative array descriptor type whenever the Typeldentifier
evaluates to a pointer type and the TypeSpecification evaluates to an array descriptor
type. Let a RelativeTC be

Typeldentifier RELATIVE TypeSpecification,

where Typeldentifier is of type

(LONG] BASE POINTER [SubRangeb] TO (READONLVI Tb,

and TypeSpecification is of type

[LONG] DESCRIPTOR FOR [READONLV]ARRAV Ti OF Tc ,

and the brackets indicate optional attributes. Relative array descriptor values must be
relocated before they are indexed. The relocation yields an expression with type

ARRAV Ti OF Tc.

Relative array descriptor types are entirely analogous to relative pointer types; indeed,
values of such types can be viewed as array descriptors in which the base components are
relative pointers. If the TypeSpecification says READONLY, the relocated array (or its
elements) cannot be a LeftSide.

In the constructor of a relative array descriptor type, the TypeSpecification must evaluate
to a (possibly long) array descriptor type.

In the notation introduced above, a reference to an element of the described array has the
form

base[offset][i]

where i is the index of the element.

Currently, relative array descriptor values must be constructed using LOOPHOLES.

6.4 Variant records

Section 3.3 discussed "ordinary" record types, where every record object of a single type
has the same number and types of components. Such records are not always adequate for
programming applications. For example, in the symbol table for a compiler, all the records
could have certain components in common: some standard linkage, a string representing
the symbol, and a category field indicating whether the symbol stands for an operator,

6-13

6

6-14

Other data types and storage management

constant, variable, label, etc. Different categories of symbols would then need further
components that were not the same in all the records. .

Variant records are designed for such applications: a variant record consists of an optional
common part followed by a variant part. The common part contains components that are
common to all records of this type. The variant part contains the components of each
variant of the record.

The specification of a variant record type has the appearance of an ordinary record
specification: RECORD [field listl. If the record has any common components, these are
specified first; then the variant part is specified. Subsection 6.4.1 discusses variant record
declaration more completely.

The variant part really represents a set of alternative extensions to the common part. The
record type as a whole can be viewed as follows:

Common Part Variant Part

Field list for the common part ---- 1---- field list for variant 1
1---- field list for variant 2
1---- ...
1---- field list for variant n

Each individual variant is identified by one or more adjectives. Suppose record type
ClassRec is declared to have a set of variants named classl, class2, and class3. Then
variables could be declared as follows:

someClass: ClassRec;

firstClass: classl ClassRec;
secondClass: class2 ClassRec;
thirdClass: class3 ClassRec;

-- sometimes one class, sometimes another

-- strictly a class1 ClassRec
-- strictly a class2 ClassRec
-- strictly a class3 ClassRec

Types like class3 ClassRec are bound variant types. ClassRec and class3 ClassRec are both
type specifications, but the latter is bound to a particular variant. A variable which is
declared as a bound variant contains a definite variant; these components can be accessed
as if they were common components. .

The field list for any variant may itself have a variant part (and a variant in that part may
have its own variant part, etc.). It is possible to have a type like small class3 ClassRec (i.e.,
the field list for the class3 variant has a variant part which, in turn, has a small variant).

The record, someClass, presents a problem. During the course of execution, someClass
might contain a class 1 , class2, or class3 variant record. (Mesa allocates enough storage to
hold the largest variant specified for ClassRec type records.) The problem is determining
which variant applies at a given time.

To decide which kind of variant a record object contains, some form of tag is needed. This
tag is normally specified as part of the record, in which case every such record object will
contain an "actual tag" denoting the variant it represents. Instead of storing a simple tag,
it may be possible to "compute" the tag value whenever it is needed (possibly by inspecting
some values in the common part). Such computed tags are much less safe than explicit

Mesa Language Manual 6

ones. For instance, you could refer incorrectly to a "class2" component of someClass when
it held a classl variant record. The result would be undefined.

It is possible to construct an entire variant for the variant part (§ 6.4.3) by qualifying a
constructor (for that variant) with the variant's name (an adjective, in other words).
Suppose for example that ClassRec has common components c1 and c2 followed by a
variant part named up, and that the classl variant has components x and y. Then the
record constructor below constructs an entire classl variant:

ClassRec[c1: uall, c2: ual2, up: classl [x: ual3,y: ual41 I

Components of an unbound variant can be accessed using the record's tag value (whether
actual or computed). A variation of SELECT beginning with the keyword WITH is used for this
purpose (§ 6.4.4). An example follows (given that ClassRec has a computed tag):

WITH someClass SELECT currentTag FROM

classl = > Stmt-l; -- someClass is a bound class 1 variant here
class2 = > Stmt-2; -- someClass is a bound class2 variant here
class3 = > Stmt-3; -- someClass is a bound class3 variant here
ENDCASE;

6.4.1 Declaring variant records

Variant records, like ordinary records, are usually declared in two steps:

identifier: TYPE = RecordTC; -- define record type

IdUst : Typeldentifier Initialization; -- declare the records

Initialization for variant records (§ 6.4.3) is similar to that for ordinary records. The (now
complete) definition of RecordTC follows. It extends the partial definition given in
subsection 3.3.7 and includes machine-dependent record types:

RecordTC

MachineDependent

VariantFieldList

CommonPart

VariantPart

Access

Tag

.. -.. - MachineDependent RECORD [VariantFieldList I

:: .. empty I MACHINE DEPENDENT

:: = CommonPart Fieldld : Access VariantPart I
VariantPart I
NamedFieldList I
UnnamedFieldList I

:: = empty I NamedFieldList ,

:: = SELECT Tag FROM VariantList ENDCASE

:: = em pty I PUBLIC I PRIVATE

:: = Fieldld: Access TagType I
COMPUTED TagType I
OVERLAID Tag Type

-- see section 7.5.

6-15

6

6-16

Other data types and storage management

TagType .. -.. - TypeSpedfication I *

VariantList :: = empty I Variant I
Variant VariantList

Variant :: = fieldldList = > [VariantfieldList) , I
fieldldList = > NULL.

The TypeSpecification in TagType must be equivalent to some enumeration or
enumerated subrange type. If the CommonPart is not empty, it must be a NamedFieldList.
If there is no CommonPart, the VariantPart itself need not be named.

The following example shows many of the possible variations resulting from the above
syntax definitions. It is unnecessarily complex for the application, but does show a number
offeatures. It would be worthwhile to parse the declaration yourself using the definitions
given above. The example might be used to describe the various "accounts" in a bank;
there would be a table of such entries, one per account.

Service: TYPE = {savings, checking, depositBox};
Account: TYPE = RECORO

number: CAROINAL,

specifics: SELECT type: Service FROM

];

savings = > [term: [30 .. 365J, intRate: PerCent, balance: Money],
checking = >

[

balance: Money,
monthlyFee: SELECT COMPUTEO {free, notfree} FROM

notfree = > [monthlyFee: Money),
free = > [],
ENDCASE

I,
depositBox = > [fee: Money, dueDate: Date, paid: BOOLEAN),

ENOCASE -- no variant can be attached to the ENDCASE

Each arm of a VariantPart specifies a single variant. An arm may be empty (as in the case
of a free checking Account) if that variant needs no components of its own. Although the
syntax above states that all the arms must end with a comma, the one before the ENDCASE is,
in fact, optionaL

Fine point:

In the declaration ofa variant record, the form NULL may be used instead of I].

The adjectives are identifier constants from some enumeration. Their type can be given
explicitly, or implicitly as an enumeration whose members are the adjectives used in the
variant part. In any case, the enumerated type is the "tag's" type for a variant part. There
are three possible forms for the tag, and they represent:

Mesa Language Manual

an actual tag with an explicit enumerated type (e.g., type in Account),
an actual tag implicitly defined (e.g., easyTag in NoCommon below), or
a computed tag (e.g., the monthlyFee for a checking Account).

6

If an actual tag is used, it is allocated in the common part of the record and may be
accessed and used like any other common component, but it may not appear as a LeftSide,
since that would compromise the type-safeness of such variant records. The only wayan
actual tag with an explicit enumerated type can be set is with a record constructor which
constructs the entire variant part (§ 6.4.3). Not all possible values from the tag's
enumeration type have to be used as adjectives preceeding the "= >" in the Variant
declaration, some values may be omitted. However, if one uses an "omitted" value as a
qualifier for a variant record constructor, a compilation error results (since, of course,
there is no variant for that value).

An asterisk, ".", is used to indicate that the type of an actual tag is being defined
implicitly by the set of adjectives naming the variants LO that tag's variant part. For
example, consider the record declaration below:

NoCommon: TYPE = RECORD

[-- no common part
variantPart: SELECT easyTag: • FROM

i = > [compI: INTEGER),

j, k = > [x, compI: STRING),

ENDCASE);

The implicit type of easy Tag is {i,j, k}. Note: you can't declare variables of the same type as
easy Tag. Thus, declaring a tag with an explicit enumerated type is often the preferred
method.

Computed tags are always unnamed. In fact, they are not really tags at all: when one
needs to know which variant a record with a computed tag contains, some computation
must be done. Exactly how the variant "tag" is computed is strictly up to the program
using it. For instance, to determine whether a checking Account was free or not, the
program might look at some property of the Account number (such as whether it was odd
or even).

An OVERLAID tag is a special case of a computed tag. The differences occur in the ways in
which fields of the record are accessed (§ 6.4.4).

Fine point:

Special care must be exercised when declaring a MACHINE DEPENDENT variant record. Recall that

MACHINE DEPENDENT records can contain no "holes" between fields. For variant records, this leads to

the following rules: If the minimum amount of storage required for each variant is a word or less, each

variant must be "padded" to occupy the same number of bits as the longest. Otherwise, each variant must

occupy an integral number of words.

6-17

6

6-18

Other data types and storage management

6.4.2 Boun~ variant types

The declaration of a variant record specifies a type, as usual. This is the type of the whole
record. The variant record type itself defines some other types: one for each variant in the
record. Consider the following example:

Stream Type: TYPE = {disk, display, keyboard};
StreamHandle: TYPE = POINTER TO Stream;
Stream.: TYPE = RECORD[

Get: PROCEDURE [StreamHandle) RETURNS [Item),
Put: PROCEDURE [StreamHandle, Item],
body: SELECT type: Stream Type FROM

disk = > [
file: FilePointer,
position: Position,
SetPosition: PROCEDURE [POINTER TO disk Stream, Position),
buffer: SELECT size: • FROM

short = > [b: ShortArray),
long = > [b: LongArrayJ,
ENDCASE],

display = > [
first: DisplayControlBlock,
last: DisplayControlBlock,
height: ScreenPosition,
nLines: [0 .. 100]];

keyboard = > [],
ENDCASE)i

The record type has three main variants: disk, display, and keyboard. Furthermore, the
disk variant has two variants of its own: short and long. The total number of type
variations is therefore six, and they are used in the following declarations:

r: Stream;
rDisk: disk Stream;
rDisplay: display Stream;
rKeyb: keyboard Stream;
rShort: short disk Stream;
rLong: lOrJ.g disk Stream;

The last five types are called bound variant types. The rightmost name must be the type
identifier for a variant record. The other names are Adjectives modifying the type
identified to their right. Thus, disk modifies the type Stream and identifies a new type.
Further, short modifies the type disk Stream and identifies still another type. Names must
occur in order and may not be skipped. For instance, short Stream would be wrong since
short does not identify a Stream variant.

A ragged variant record is a variant record type whose arms do not all occupy the same
number of words. For example

Mesa Language Manual

Variant: TYPE = RECORD [SELECT tag: * FROM

short = > [C: CARDINALI.

long = > [lc: lONG CARDINALI.

ENDCASE);

6

It is illegal to use the .. =" or .. #" operation to compare two variables whose types are
unbound ragged variant records. The reason is that such a comparison would produce an
incorrect result if gabage bits at the ends of the records were different, but all other bits
were identical. Indeed, if a small variant is allocated to exact size, the trailing bits aren't
really there. and the comparison might attempt to read from an illegal address.

However, it is legal to use" =" or .. #" to compare two bound variants, or to compare a
bound variant with an unbound one.

Furthermore, it is illegal to use" =" or .. #" on any RECORD or ARRAY type which directly or
indirectly contains an unbound ragged variant record.

The formal definition of Typeldentifier can now be completed (it was only partially defined
in chapter 3):

Typeldentifier

Adjective

:::11 ••• 1 Adjective Typeldentifier 1

Typeldentifier . Adjective

:::1 identifier

where Adjective is an adjective of the variant part in the type specified by Typeldentifier.
Note that the recursive use of Typeldentifier in the first line allows a sequence of
adjectives. Sub-subsection 6.4.4.1 discusses the use of dot notation with variant records.

6.4.3 Accessing entire variant parts, and variant constructors

Mesa does not allow an entire variant part to occur on the right of an assignment. The only
way to assign to an entire variant part is via a constructor, not by copying the variant part
of an already initialized record.

This section considers accesses to entire variant records (e.g., for initialization) and the
variant part of the record as a whole. The next section covers accesses to individual
components in a variant part.

The actual tag, type, in the body variant part may be accessed by qualification:

IF r.type= keyboard THEN Stmt-I;

It is also possible to construct values of a variant record type. The syntax of a constructor
for a variant part is the same as that of a normal constructor except that the identifier
preceding the "[" must be present and must be one of the adjectives used in defining the
variant. For example, some of the following declarations use constructors to initialize the
variables:

myDisplay: display Stream +- [myGet, myPut, display[dl,d,h,S));
yourDisplay: display Stream +- myDisplay;

6-19

6

6-20

Other data types and storage management

currentStream: Stream - myDisplay;
s: Stream - [SysGet, SysPut, disk[rp, 0, SysSetPos, long[all 1 1;

The keyboard variant of Stream is a NULL variant; so there are no components for that
variant in a keyboard constructor:

rKeyb - Stream[Get: Kget, Put: Kput, body: keyboard[1];

A side effect of assigning a bound variant value to a variable is that the actual tag of the
record is also changed. This is the only way to change the uariant contained in a uariable
(except in the case ora COMPUTED tag). This restriction ensures type-safeness. For example,
the following assignment changes the type tag for r :

r.body - keyboard{);

If one is assigning a completely bound variant value, bu, say (which could be a constructor,
of course) in an AssignmentExpr (§ 2.5.4.), then the type of the AssignmentExpr is the type
of bu, not the type of the LeftSide, which might not be a bound variant.

6.4.4 Accessing components of variants

When a record is a bound variant, the components of its variant part may be accessed as if
they were common components. For example, the following assignments are legal:

rDisplay.last - rDisplay.{irst;
rDisk.position - rShort.position;

Components of an unbound variant may not be accessed in this way. If a record is not a
bound variant (e.g., r in the previous section), the program needs a way to decide. which
variant it is before accessing variant components. More importantly, however, this must
be type-safe. For this reason, the process of discriminating among possible variants and
then accessing within a variant part is combined in one syntactic form, called a
discrimination, which is a generalization of SELECT.

A discrimination closely mirrors the form of SELECT used to declare a variant part.
However, the arms in a discriminating SELECT contain statements or Expressions, and,
within a given arm, the discriminated record value is uiewed as a bound uariant.
Therefore, within that ar~, its variant components may be accessed. The syntax
equatio~s for variant record declaration follow:

SelectStmt

SelectVariant

Choice Series

Tagltem

::.. . .. 1 Select Variant

:: = WITH Openltem SELECT Tagltem FROM

ChoiceSeries
ENDCASE FinalStmtChoice 1

:: .. empty 1
Adjectivelist = > Statement 1

AdjectiveList = > Statement; ChoiceSeries

:: = empty 1

Expression
-- the actual tag is used
-- compute the tag value

Mesa Language Manual

FinalStmtChoice :: = empty I = > Statement

SelectExprVariant :: = WITH Openltem SELECT Tagltem FROM

ChoiceList

ChoiceList

Openltem

ENDCASE = > Expression I

:: .. empty I
AdjectiveList = > Expression I
AdjectiveList = > Expression, Choicelist

:: = Expression I
AlternateName : Expression

6

The value discriminated is the one given in the WITH clause, which behaves just like an
OPEN clause (§ 4.4.2) to simplify naming the record value in the arms of the SELECT. The
following example discriminates on r:

WITH strm: r SELECT FROM

display = >
BEGIN

strm.first-strm.last;
strm.height-73;
strm.nLines-4;
END;

disk = > WITH strm SELECT FROM

short= > b[O]-lO;
long = > b[O]-lOO;
ENDCASE;

ENDCASE = > strm.body - disk[GetFp["Alpha"], 0, SysSetPos, short[]];

In this example, the tag implicitly used for the outer WITH clause is type.

First, suppose r contains a variant record of display Stream type. Then the first arm is
chosen by this SELECT. Within it, strm (but not r) is considered a record of display Stream
type; so all components of the display variant may be accessed in the statement chosen by
that arm (as they are in the example).

Suppose r contains a variant record of disk Stream type. Then the actual tag has the value
disk, and the second arm is chosen. In this example, only one of the disk components is
accessed, its variant part. The inner SELECT uses variant record strm. Within the outer arm,
Mesa knows that strm (but not r) is a record of disk Stream type by definition.
Consequently, the tag implicitly used for this SELECT is the tag specified for the disk Stream
type (namely, size). This is why strm: r was used in the WITH clause instead of just r. Use of
strm: r ensures that within the disk arm, the identifier strm will have type disk Stream
and be available for use by the inner WITH clause.

If the tag value of size is short, then the chosen arm accesses component b in the short disk
Stream variant record; if it is long, then the chosen arm accesses component b in the long
disk Stream variant record.

However, the ENDCASE for the inner SELECT could have accessed components that are
common to a disk Stream (file, position, SetPosition, variant part buffer, and actual tag

6-21

6

6-22

Other data types and storage management

size, plus all the original common components: Get, Put, variant part body, and actual tag
type).

Suppose, lastly, that r does not contain a variant record of display Stream or disk Stream
type: the outer ENDCASE statement will be chosen. This statement accesses the common
component body (the entire variant part is considered a common component), and gives the
record a specific variant type (short disk Stream) by wholesale assignment. An ENDCASE
may only access common components; it may not access components of variants in the given
type.

If the labels on an arm of a discrimination identify more than one variant structure, the
record is not considered to be discriminated within that arm and only the common fields
are accessible (cf. ENDCASE).

Since the outer variant part of Stream was declared using an actual tag, the tag's value is
obtained from the record itself, and no Expression follows the keyword SELECT. (Both SELECTs
above have this form.)

The Expression in the WITH clause's Openltem must represent either a variant record or a
pointer to a variant record (e.g., r in the above). The alternate name is essentially a
synonym for that Expression (e.g., strm in the above). If it is a pointer, however, the
alternate name designates a record value, not a pointer value in each arm of the SELECT. In
the following example, the display arm is correct, and the disk arm is in error:

rp: StreamHandle;
proc: PROCEDURE [StreamHandlel;
WITH sRec: rp SELECT FROM

display = > proc[@sRec);
disk = > proc[sRec I;
ENDCASE;

-- correct
-- wrong

An open item with no alternative name opens a name scope so that components can be
accessed with implicit qualification (as in the inner SELECT of the first example), but then no
further levels of WITH ... SELECT using the same record can be done within such a
WITH ... SELECT. In addition, there is no way to name the bound variant: only the alternative
name can be used for that purpose. The type of the open item's Expression indicates the
nature of the variant part, including whether the tag is an actual or computed tag, its
enumerated type, and the names of each variant (Le., the adjectives) in the variant part.

If a computed tag had been used, the program would have to supply an Expression
following SELECT to determine the variant. This Expression's value would have to be an
adjective in the applicable variant part. For example, assume that tbl[i I in the following
has type checking Account (§ 6.4.1); then this is a legal (if not very sophisticated)
discrimination for it:

WITH this: tbl[i) SELECT (IF (this. number MOD 2) = 0 THEN free ELSE notfree) FROM
free = > NULL;
notfree = > AddToBill [this.monthlyFeel;
ENDCASE;

Mesa Language Manual 6

The record value in a WITH clause must not represent a completely bound variant (which is
really not a variant at all). For example, a valid discrimination for a disk Stream record,
aDiskStream, follows:

WITH aDiskStream SELECT FROM

short= > b[OI-lO;
Long = > b[OI-lOO;
ENDCASE;

It would be illegal to rewrite this as follows:

WITH alt: aDiskStream SELECT FROM

disk : > WITH alt SELECT FROM

short: > b[O)-lO;
long: > b[O)-lOO;
ENDCASE;

ENDCASE;

-- wrong!

An OVERLAID record is a special case of a computed variant record in that there is no explicit
tag field in the record. The fields of the individual variants may be accessed using a
"computed" WITH construct in the same manner as a COMPUTED record. In addition, any field
name of a variant that is unambiguous (i.e., it appears in only one variant) can. be
referenced without discrimination. In essence, the programmer is telling the compiler
"When I use a fieldname, you can trust me that the record has the proper variant."
Consider the following example:

TrustMe: TYPE = RECORD[

SELECT OVERLAID * FROM

one = > [c: CHARACTER, i: CARDINAL, next: POINTER TO TrustMe),
two = > [b: BOOLEAN, next: POINTER TO TrustMe),
three = > [s: STRING],

ENDCASE];

t: TrustMe;
t.e --legal

--legal t.b
t.next -- illegal, both variants one and two contain such a field

Fine point:

In the declaration of TrustMe above. the two next fields were of the same type, but occupied different

positions within the record. Even if they did occupy the same position, one could still not refer to t.next.

The ambiguity is one of variant. not of value.

6.4.4.1 Dot notation for discriminated variant types

If V is a type expression designating some variant record type with variant a, then V.a is a
type expression designating the discriminated type. Thus forms such as

Stream. disk Stream. disk. long Stream.disk.long[80]

are equivalent to

6-23

6

6-24

Other data types and storage management

disk Stream long disk Stream long disk Stream(80)

The dot form is preferred because it is similar to that of other expressions.

Mesa also allows Stream[disk) and Stream[disk)[long), but use of this form is not
encouraged.

Fine point:

Certain type attributes may also be obtained using dot notation. These include SIZE, FIRST, LAST, and NIL.

There is a restriction, however. (n order for T.SIZE to parse, T must be syntactically valid as an

expression, not just a type expression, e.g., you can't say disk Stream.SIZE, or even (disk
Streaml.SIZE, but you can say Stream.disk.SIZE lor SIZE [disk Stream).

6.4.4.2 Discriminating SELECT

The Mesa construct for discriminating a variant record, WITH exp SELECT FROM ••• , has the
semantics of opening exp (possibly dereferenced, if exp is a pointer) by name within the
arms of the SELECT. This leads to inefficient code if exp is complicated, and to potential
chaos if exp is changed within one of the arms. Mesa has a form of discrimination where
the variant record (or pointer thereto) is copied before the selected statement is executed.
Thus the form

WITH v SELECT FROM

vl:Tl=>51;
v2: T2 = > 52;

vn: Tn = > 5n;

ENDCASE = > 5e ;

is equivalent to

u:T= v;
If u #: NIL AND ISTYPE [u, TI) THEN {vI: Tl -NARROW luI; 51}

ELSE If u #: NIL AND ISTYPE [u, T2) THEN {v2: T2 - NARROW luI; 52}

ELSE If u #: NIL AND ISTYPE [u, Tn] THEN {vn: Tn -NARROW luI; 5n}

ELSE 5e ;

where T is the type ofv. The tests against NIL are omitted ifT does not have a NIL value.

Note that this form always copies the discriminated value. Thus

r: LONG POINTER TO Stream; -- where Stream has variants including disk

WITH r SELECT FROM

x: LONG POINTER TO Stream. disk = > { ... x ... };
-- x is a copy of r of type LONG POINTER TO Stream. disk

ENDCASE;

WITH r i SELECT fROM

Mesa Language Manual 6

x: Stream.disk = > { ... x ... }; -- x is a copy of r i of type Stream. disk

ENDCASE;

Contrast these with the other form of variant record discrimination, which does not copy
the discriminated value and reevaluates the discriminating expression each time that it is
used within the selected statement:

WITH x: r SELECT FROM

disk => { ... x ... };

ENDCASE;

6.4.5 Defaults and variant records

-- x is a synonym for r i ' with type Stream.disk

You may specify a default for the entire variant part in the declaration of a variant record
type by writing a default specification after the ENDCASE. In the absence of such a
specification, the default value of that part, including the tag, is undefined.

The default initial value of a discriminated variant record type has a tag value
corresponding to the discriminating adjective, and defaults for the other fields of the
variant part are those implied by the fields selected by that tag. In particular, the
declaration or allocation of a variable with discriminated record type sets the tag
correctly. For example,

VRec: TYPE = RECORD [

common: INTEGER - 0,
variant: SELECT tag: * FROM

red = > [rl: BOOLEAN - FALSE],

green = > [g1: INTEGER - 0]
ENDCASE - red(TRUE]! NULL]; -- default for whole variant part

v: VRec; -- initial value is [common: 0, variant: red(r 1: TRUE]]

vI: VRec +- [common: 10); -- initial value is [common: 10, variant: red[r 1: TRUE)]

v2: VRec +- [variant: NULL); -- tag and variant part are undefined, common = 0
v3: VRec - NULL; -- illegal (declaration of common does not allow NULL)

rv: red VRec; -- initial value is [common: 0, variant: red(r 1: FALSE]]

gv: green VRec; -. initial value is [common: 0, variant: green[g 1: 0)]

6.5 Sequences

A sequence in Mesa is an indexable collection of objects, all of which have the same type. In
this respect, a sequence resembles an array; however, you cannot specify the length of the
sequence when its type is declared, only when an instance of that type is created. Mesa
provides sequence-containing types for applications in which the size of an array is not
known at compile time. Note however, that only a subset of a more general design for
sequences has been implemented. The contexts in which a sequence type may appear are
somewhat restricted, as are the available operations on them. The subset provides enough
functionality to accommodate most uses of sequences, but you may encounter some
annoying restrictions.

6-25

6

6-26

Other data types and storage management

A sequence type is considered to be a union of some number of array types, just as the
variant part of a variant record type is a union of an enumerated collection of record types.
This has the following consequences:

A sequence type can be used only to declare a field of a record. At most one such field
may appear within a record, and it must occur last.

A sequence-containing record has a tag field that specifies the length of the
sequence, and thus the set of valid indices for its elements.

To access the elements of a sequence, you use ordinary indexing operations; no
discrimination is required.

Fine point:

In this sense. all sequences are overlaid. but simple bounds checking is sufficient to validate each access.

The use of sequence-containing variables is more restricted than is currently enforced for
variant records. The length of a sequence is fixed when the object containing that
sequence is created, and it cannot subsequently be changed. In addition, ~esa imposes the
following restrictions on the uses of sequences:

You cannot embed a sequence-containing record within another data structure. You
must allocate such records dynamically and reference them through pointers. The
NEW operation is convenient for this purpose (§ 6.6.2).

You cannot deri ve a new type from a sequence-containing type by fixing the length;
Le., there is no analog of a discriminated variant record type.

There are no constructors for sequence-valued components of records, nor are such
components initialized automatically.

The following sections describe sequences in more detail.

6.5.1 Defining sequence types

You may use sequence types only to declare fields of records. A record may have at most
one such field, and that field must be declared as the final component of the record:

Syntax

VariantPart

SeqTag

BoundsType

TypeSpedfication

.. - I .. - ...
PackingOption SEQUENCE SeqTag OF TypeSpedfication

:: = identifier: Access BoundsType I
COMPUTED BoundsType

::= IndexType

.. - I .. -
Typeldentifier [Expression]

Mesa Language Manual 6

The TypeSpecification in VariantPart establishes the type of the sequence elements. The
BoundsType appearing in the SeqTag determines the type of the indices used to select
from those elements. It is also the type of a tag value that is associated with each
particular sequence object to encode the length of that object. For any such object, all valid
indices are smaller than the value of the tag. If T is the BoundsType, the sequence type is
effectively a union of array types with the index types

llFIRST [Tl • • FIRST [Tn, llFIRST [T] •• SUCC [FIRST [T])), ... llFIRST [T] •• LAST [Tn

and a sequence with tag value v has index type llFIRST[T] .. v). Note that the shortest
sequence is empty, and the longest has LAST [T] - FIRST [T] - 1 elements. For example, if a
sequence has a BoundsType of CARDINAL, it could have at most LAST[CARDINALI- 1 elements.

If you use the first form of SeqTag, the value of the tag is stored with the sequence and is
available for subscript checking. In the form using COMPUTED, no such value is stored, and
no bounds checking is possible.

Examples:

StackRep: TYPE = RECORD [

top: INTEGER ~ -1,
item: SEQUENCE size: [O .. LAST [INTEGER}] OF 71

N umber: TYPE = RECORD [

sign: {plus, minus},
magnitude: SELECT kind: * FROM

short = > [val: [0 .. 1000)],
long = > [val: LONG CARDINAL],

extended = > [val: SEQUENCE length: CARDINAL OF CARDINAL]

ENDCASE]

WordSeq: TYPE = RECORD [SEQUENCE COMPUTED CARDINAL OF WORD I

Fine point:

The final example is a recommended method for imposing an indexable structure on raw storage.

If S is a type containing a sequence field, and n is an expression with a type conforming to
CARDINAL, both Sand Sen) are TypeSpecifications. They denote different types, however,
and the valid uses of those types are different, as described below.

6.5.2 MACHINE DEPENDENT sequences

You may declare a field with a sequence type within a MACHINE DEPENDENT record. Such a
field must come last, both in the declaration and in the layout of the record, and the total
length of a record with a zero-element sequence part must be a multiple of the word
length. If you explicitly specify bit positions, the size of the sequence field also must
describe a zero-length sequence; that is, it must account for just the space occupied by any
tag field.

Examples:

6-27

6

6-28

Other data types and storage management

Node: TYPE = MACHINE DEPENDENT RECORD[
info (0: 0 .. 7): CHARACTER,
sons (0: 8 .. 15): SEQUENCE nSons (0: 8 .. 15): [0 .. 256) OF POINTER TO Node I

CharSeq: TYPE = MACHINE DEPENDENT RECORD [
length (0): CARDINAL,
char (1): PACKED SEQUENCE COMPUTED CARDINAL OF CHARACTER I

6.5.3 Allocating sequenct!s

If S is a record type with a sequence as its final component, S[nl is a type specification
describing a record with a sequence part containing exactly n elements. The expression n
must have a type conforming to CARDINAL. Its value need not'be a compile-time constant;
however, you can use specifications of this form only to allocate sequence-containing
objects (as arguments of NEW) or to inquire about the size of such objects (as arguments of
SIZE). In particular, you cannot use Sen) to define or construct a new type or to declare a
variable.

The value of the expression SlzE[S[nll has type CARDINAL and is the number of words
required to store an object of type S having n components in its sequence part.

The value of the expression Z.NEW [Sen)) has type POINTER TO S (or LONG POINTER TO S,
depending upon the type of the zone z, § 6.6.2). The effect of its evaluation is to allocate
SlzE[S[nll words of storage from the zone z and to initialize that storage as follows:

Any fields in the common part of the record receive their default values.

The sequence tag field receives the value succn[FIRST [T]], where T is the type of the
tag.

The elements of the sequence part have undefined values.

To supply initial values for the fields in the common part, you may use a constructor for
type S in the call to NEW. There are currently no constructors for sequence parts, however,
and you must void the corresponding field. In any case, you must explicitly program any
required initialization of the elements of the sequence part. In Mesa, this is true even if
the element type has non-NULL default value.

Examples:

ps: POINTER TO StackRep - Z.NEW [StackRep(100)]; -- s.top = - 1

pn: POINTER TO Node - Z.NEW [Node[degree[c)] - [info: c, sons: NULL))

pxn: POINTER TO extended Number - Z.NEW [extended N umber[2* k]]

Note that n specifies the maximum number of elements in the sequence part and must
conform to CARDINAL no matter what BoundsType Ti appears in the SeqTag. The value
assigned to the tag field is succn[FIRST(Ti!l. A bounds fault occurs if this is not a valid value
of type Ti, i.e., if n ~LAST[T] -FIRST[T] + 1, and you have requested bounds checking.

If FIRST [Td = 0, SUccn[FIRST [Td) is just n, i.e., the interpretation of the tag is most intuitive
ifTi is a zero-origin subrange. Usually you will specify a BoundsType (e.g., CARDINAL) with

Mesa Language Manual 6

a range that comfortably exceeds the maximum expected sequence length. If, however,
some maximum length N is important to you, you should consider using [O .. N] as the
BoundsType; then the value of the tag field in a sequence of length n (n S N) is just nand
the valid indices are in the interval [O .. n).

6.5.4 Operations on seq uences

You can use a sequence-containing type S only as the argument of the type constructor
POINTER TO. Note that the type of Z.NEW [Sen]] is POINTER TO S. The operations defined upon a
sequence-containing type are

ordinary access to fields in the common part

readonly access to the tag field (if not COMPUTED)

indexing of the sequence field

constructing a descriptor for the components of the sequence field (if not COMPUTED L

There are no other operations upon either a sequence-containing record or the sequence
type embedded within the record. In particular, you cannot assign or compare sequences
or sequence-containing records (except by explicitly programming operations on the
components).

You may use indexing to select elements of the sequence-containing field of a record by
using ordinary subscript notation, e.g., s.seq[i]. The type of the indexing expression i must
conform to the BoundsType appearing in the declaration of the sequence field and must be
less than the value of the tag, as described above. The result designates a variable with the
type of the sequence elements. A bounds fault occurs if the index is out of range and the
sequence is not COMPUTED and you ha ve requested bounds checking.

By convention, the indexing operation upon sequences extends to records containing
sequence-valued fields. Thus you need not supply the field name in the indexing
operation. Note that both indexing and field selection provide automatic dereferencing.

Examples:

ps i .item[ps.top] ps.item[ps.top) ps[ps.top] -- all equivalent

You may apply the DESCRIPTOR operator to the sequence field of a record; the result is a
descriptor for the elements of that field. The resulting value has a descriptor type with
index and component types and PACKED attribute equal to the corresponding attributes of
the sequence type. By extension, DESCRIPTOR may be applied to a sequence-containing
record to obtain a descriptor for the sequence part. The DESCRIPTOR operator automatically
dereferences its argument (multiple times if necessary) until it finds something of a type
to which it applies.

You cannot use the single-argument form of the DESCRIPTOR operator if the sequence is
COMPUTED. The multiple-argument form remains available for constructing such descriptor
values explicitly (and without type checking).

6-29

6 Other data types and storage management

[n any new programming, you should consider the following style recommendation: use
sequence-containing types for allocation of arrays with dynamically computed size; use
a~ray descriptor types only for parameter passing.

Examples:

DESCRIPTOR [pn t) DESCRIPTOR [pn.sons) -- equivalent

6.5.5 StringBvdies and TEXT

The type StringBody illustrates the intended properties and uses of sequences. For
backward compatibility, it is not defined as a sequence. (The declarations of the types
STRING and StringBody are given in section 6.U

The operations upon sequence-containing types have, however, been extended to
StringBody so that its operational behavior is similar. [n these extensions, the common
part of the record consists of the field length, maxlength serves as the tag, and text is the
collection of indexable components (packed characters). Thus z.NEW [StringBody[nll
creates a StringBody with maxlength = n and returns a STRING; if s is a STRING, sCi] is an
indexing operation upon the text of s, DESCRIPTOR [s) creates a DESCRIPTOR FOR PACKED ARRA Y OF

CHARACTER, but whose length is the max length of the string rather than the more useful
DESCRIPTOR{BASE[S . text), s.length).

Fine point:

There are two anomalies arising from the actual declaration of StringBody: s.text(i) never uses bounds
checking, and DESCRIPTOR[s.textl produces a descriptor for an array oflength O.

Type TEXT

The type TEXT, which describes a structure similar to a StringBody as a true sequence, is
predeclared in Mesa. Its components length and maxLength are declared to have a type
compatible with either signed or unsigned numbers (but with only half the range of
INTEGER or CARDINAL).

TEXT: TYPE = MACHINE DEPENDENT RECORD [

length (0): NATURAL +- 0,
text (1): PACKED SEQUENCE maxLength (1): NATURAL OF CHARACTER]

6.6 Dynamic storage allocation

6-30

In Mesa, you can use zones to perform dynamic allocation and deallocation of variables.
You are responsible for managing the storage and guarding against dangling pointers.
Associated features handle certain routine aspects of allocation and deallocation (such as
computing sizes), provide proper default initialization of newly allocated variables, and
reduce the number of LOOPHOLES required to deal with an allocator.

6.6.1 Zones

A zone need not be associated with any specific storage area: it is just an object
characterized by procedures for allocation and deallocation, as described below. The

Mesa Language Manual 6

storage managed by a zone is said to be uncounted. In a zone, object management is the
responsibility of the programmer, who must explicitly program the deallocation.

To use a zone, you must have available procedures that manage the zone and implement
the required set of operations. Most users will use a standard package such as those
described in the Pilot Programmer's Manual.

A zone object has a value and a type. You will normally obtain a zone value from a
package that implements zones. Typically, such a package constructs a zone (and perl--aps
an initial storage pool) according to user-supplied parameters.

Mesa provides two types for zones, UNCOUNTED ZONE and MDSZone. Transactions with
objects having tpese types are generally in terms of LONG POINTER and POINTER values
respectively.

Fine points:

Syntactically, UNCOUNTED ZONE is a type constructor. MDSZone is a predeclared identifier; you may

think of it as a synonym for MDS RELATIVE UNCOUNTED ZONE (which you currently cannot write

directly).

You may declare variables having zone types; fixed initialization is recommended. Zone
types may also be used to construct other types.

6.6.2 Allocating storage

The operator NEW allocates new storage of a specified type, initializes it appropriate ly, and
returns a pointer to that storage. The NEW operation is considered an attribute of a zone,
which must be specified explicitly.

Syntax

Primary

Initialization

OptCatch

.. -.. -

.. -.. -

.. -.. -

" ·1
Variable. NEW [TypeSpecification Initialization OptCatch) 1
(Expression) . NEW [TypeSpecification Initialization OptCatch]

empty 1-lnitExpr 1 = InitExpr

empty 1 ! Catch Series

The value of the Variable or Expression identifies the zone to be used, either directly or
after an arbitrary number of dereferencing operations. The TypeSpecification determines
the type of the allocated object. If an InitExpr is provided, it must conform to the specified
type and its value is used to initialize the new object; otherwise, the default value
associated with that type (if any) is used. Any signals raised or propagated by the
allocation procedure will activate a Catch Series attached to NEW. Signals raised during the
evaluation of the InitExpr will not be caught, but you can enclose the statement in a block
with an ENABLE (§ 8.2.1). The initialization is done before the value of the expression is
available, so the value of the pointer is not available to the catch code. For example:

r - Z.NEW[T - buggyinit); -- r is not set until after buggyinit finishes

6-31

6

6-32

Other dat~ types and storage management

The value of the Primary is a pointer to the newly allocated object. The type of that pointer
depends upon the type of the zone and the form of the Initialization. [f the argument of NEW

is some type T, the type of the result is

LONG POINTER TO T, if the type of the zone is equivalent to UNCOUNTEO ZONE

POINTER TO T, ifthe type of the zone is equivalent to MDSZone.

[f you specify fixed (=) initialization, the result is a read-only pointer with type LONG

POINTER TO REAOONL y T or POINTER TO READONL Y T respective ly.

The InitExpr cannot be the special form for string body initialization ([Expression D. You
can, however, allocate string bodies with dynamically computed sizes as described in
subsection 6.5.5. If you do so, the Initialization must be empty.

6.6.2.1 Allocating variant records

[f the type expression T is a bound variant type (§ 6.4.2), then only enough space is
allocated to hold that particular variant. [n addition, the variant tag is initialized to the
proper value (along with any default field values), For example, given the declaration of
Account from subsection 6.4.1:

a: LONG POINTER TO Account +- Z.NEW(Account.savings);

allocates sufficient storage to hold the savings variant of Account, and sets the tag of a i to
be savings. There is some danger in this operation; since a is an undescriminated pointer,
Mesa will allow a program to assign a new value to a f ' [f a new value is a larger variant,
the assignment will write beyond the end of the space allocated by the original NEW.

6.6.3 Releasing storage

Uncounted zones have a FREE operation; when applied to an object, FREE releases the storage
allocated for that object.

Syntax

Statement .. - I .. - ...
Variable. FREE [Expression OptCatch II
(Expression) • FREE [Expression OptCatch]

The zone used in a FREE operation is determined as described for NEW; it must be the zone
from which the variable was originally allocated. The argument of FREE is the address of a
pointer to the variable to be deallocated; FREE sets the pointer to NIL and deallocates the
storage for the variable in that order. This can lead to de referencing NIL if the zone is a field
of a record pointed to by the freed pointer.

p.Z.FREE(@p] ; .. will set p to NIL before evaluating p.z

Any signals raised or propagated by the deallocation procedure will activate a CatchSeries
on a FREE.

Mesa Language Manual 6

It is the responsibility of a implementor of an UNCOUNTED ZONE to treat freeing of NIL as a no
op. Thus the following two statements are equivalent, but the one with the explicit test
will be considerably faster if the probability of NIL is high.

IF P # NIL THEN z.FREE[@p);

z.FREE(@p) ;

6.6.4 Implementing uncounted zones

This section describes the assumptions currently made by the compiler about the user
supplied implementations of uncounted zones. These assumptions are compatible with the
style of "object-oriented" programming that has proven successful in a number of
applications. You need to read this section only if you are designing a storage
management package.

An UNCOUNTED ZONE dealing with LONG POINTER values is represented by a two word value,
which the compiler assumes to be a long pointer compatible with the following skeletal
structure:

U ncountedZoneRep: TYPE = LONG POINTER TO MACHINE DEPENDENT RECORD [

procs (0:0 .. 31): LONG POINTER TO MACHINE DEPENDENT RECORD [

alloc (0): PROC [zone: UncountedZoneRep, size: CARDINAL] RETURNS [LONG POINTER].

dealloc (2): PROC [zone: UncountedZoneRep, object: LONG POINTER)

-- possibly followed by other fields--),
data (2:0 .. 31): LONG POINTER -- optional, see below
-- possibly followed by other fields--];

If z is an UNCOUNTED ZONE, the code generated for p - Z.NEW[TI is equivalent to

p - z t .procs t .ailoc[z, slzE[Tll

and the code generated by Z.FREE(@p] is equivalent to

{temp: LONG POINTER - p; P - NIL; z t .procs t .dealloc[z, temp)}.

Remember that it is the responsibility of dealloc to treat an input value of NIL as a no-op.

Within this framework, you may design a representation of zone objects appropriate for
your storage manager. In general, you should create an instance of a UncountedZoneRep
for each instance of a zone. The record designated by the procs pointer can be shared by all
zones with the same implementation. The data pointer normally designates a particular
zone and/or the state information characterizing that zone. Note that the compiler makes
no assumptions about the designated object and does not generate any code referencing
the data field. The extra level of indirection provided by that field is not obligatory; you
may replace it with state information contained directly in the UncountedZoneRep.

The compiler assumes a similar (but single word) representation for an MDSZone value;
the skeletal structure is as follows:

MDSZoneRep: TYPE = POINTER TO MACHINE DEPENDENT RECORD [

procs (0:0 .. 15): POINTER TO MACHINE DEPENDENT RECORD [

alloc (0): PROC [zone: MDSZoneRep, size: CARDINAL) RETURNS [POINTER],

6-33

6

6-34

Other data types and storage management

dealloc (2): PROC [zone: MDSZoneRep, object: POINTER I
-- possibly followed by other f;elds-- I.

data (1 :0 .. 15): POINTER -- optional
-- possibly followed by other fields-- I;

7

Modules, programs, and
configurations

In Mesa, large programs are constructed by linking or binding together individual
modules. A module is the basic unit of compilation and also the smallest self-contained
executable program unit. Most of this chapter deals with how modules are combined to
build large systems.

There are two kinds of modules. Definitions modules serve primarily as "blueprints" or
specifications for how the parts of a system will fit together. They provide a common set of
definitions that can be referenced by other modules being compiled. The second kind of
module, called a program, contains actual data and executable code_ Program modules can
be loaded and interconnected to form complete systems_

The Mesa compiler translates, or compiles a program module's source code (which is a text
file) into an object module. An object module is a binary file containing object code, symbol
table information, and data structures to be used in binding this module together with
others. Compiling a definitions module produces symbol table information only, which
may then be used in compiling other modules of either type.

7.1 Interfaces

An interface is a connection among programs: it allows code in one module to access parts
of other modules, specifically procedures, signals (chapter 8) and variables. Interfaces are
defined by definitions modules (§ 7.3), which contain declarations for public items and
allow the compiler to do type checking across inter-module references. The interface,
considered as a record, also provides the data structure for binding programs together.

The procedures, signals, and variables that implement a given abstraction are often
collected in a single interface. For example, an interface for an allocator might consist of
declarations of procedures for allocating and freeing blocks of storage, and pointers to
shared blocks of storage. The data types and constants required by these procedures (for
parameters and return values) are usually defined in the same definitions module. Such
non-interface type definitions are available for use when compiling other modules, but are
not considered part of the interface specified by that definitions module.

A program module containing references to variables, procedures, or signals defined by
some definitions module must import the interface corresponding to the definitions

7 -1

7

7-2

Modules, programs, and configurations

module. Actual binding occurs later when the compiled module is coupled with other
compiled program modules (§ 7.7).

The actual implementation of an interface is usually provided by a single program
module, although it may be realized by a group of modules, each supplying a part. In any
case, ifa program module implements all or part of the interface specified by a definitions
module, it is said to export that interface. The compiler checks that the procedures and
variables in the implementing module(s) are type-compatible with those in the exported
interface (§ 5.2).

A program's object module contains a set of interface records, one for each imported
interface, and a set of export records, one for each exported interface (a single program
module can implement more than one interface). Binding a group of modules together into
a system involves the association of imported interface records with exported interface
records for all the modules in the group. Until this binding has been done, imported items
are dangling references; an attempt to use one will result in an error at run-time.

The following definitions module, [0, provides a minimal (and unrealistic) interface to a
computer terminal:

[0: DEFINITIONS =
BEGIN

-- Interface definitions
ReadChar: PROCEDURE RETURNS [CHARACTER);

ReadLine: PROCEDURE (input: STRING); -- reads from terminal into input

WriteChar: PROCEDURE [ouput: CHARACTER);

WriteLine: PROCEDURE [output: STRING);

[Olmpl: PROGRAM;

-- Non-interface definitions
CR: CHARACTER = 015C;

END. --10
-- an ASCII Carriage-Return character

The interface record for [0 is imported by the following CopyDriuer program module. The
program reads lines from the terminal and retypes them. When the user types a line
beginning with a period, it writes a parting message and stops.

DIRECTORY

[0;

CopyDriuer: PROGRAM IMPORTS [0 =
BEGIN

input: STRING = [2561; -- 256-character string to hold input lines typed by
-- user

- the main body of the program starts here:

DO

10.ReadLine [input);
IF input [0] = '. THEN EXIT;

lO. WriteLine [input);
ENDlOOP;

-- infinite loop; only left by EX-IT

-- read a line into input
-- quit if first character ,is a period
-- otherwise copy it back to the user

Mesa Language Manual

10. WriteLine ("End of example."):
10. WriteChar (IO.CR!;
END.

7

-- final output
--leave terminal on a new line
-- CopyDriuer

The skeleton of a module that implements the 10 interface follows. It EXPORTS 10 and
IMPORTS nothing.

DIRECTORY

10;

101mpl: PROGRAM EXPORTS 10 =
-- this module implements the procedures of the interface specified by 10.
BEGIN

terminalState: {off, on, hung} - off; -- initial state of the terminal
ReadChar: PUBLIC PROCEDURE RETURNS [CHARACTER! = BEGIN ... END;

ReadLine: PUBLIC PROCEDURE [input: STRING! = BEGIN ... END;

WriteChar: PUBLIC PROCEDURE [ouput: CHARACTER! = BEGIN ... END;

WriteLine: PUBLIC PROCEDURE [output: STRING] = BEGIN ... END;

END. --IOlmpl

After compiling the above modules, the next step is binding them together. Binding is the
process of matching import records to export records.

A separate language, C/Mesa, is used to describe binding. This language has a syntax
similar to Mesa's, but is much smaller. C/Mesa "programs" are processed by a program
called the Binder. The C/Mesa source code is called a configuration; binding a
configuration results in an object file, called a binary configuration description (BCD) file.
An object file produced by the Mesa compiler is actually a very simple BCD file containing
object code and binding information for just one module.

Object files can be loaded and run. (Actually, it is the individual modules in the BCD that
are loaded). The loading process supplies actual memory addresses where required, then
the modules in the BCD can be started (§ 7.9). The following configuration describes a
system of three modules: CopyDriver, 101mpl, and CopyControl.

Copier: CONFIGURATION

CONTROL CopyControl =
BEGIN CopyDriver; 10lmpl; CopyControl; END.

This configuration specifies how the CopyDriver, fOlmpl, and CopyControl object modules
are to be bound together; just listing the names is all that is usually required in a
configuration. After binding, the loader can load the complete system using the BCD for
Copier. CopyControl is named as the CONTROL module for the BCD, so starting the loaded
object file would actually result in starting CopyControl, which follows:

DIRECTORY

10, CopyDriver;

CopyControl: PROGRAM IMPORTS CopyDriver, fO =
BEGIN

START IO.IOlmpl;
START CopyDriver;
END.

-- so its variables (e.g., terminalState) are initialized
-- to initialize its variables and run its main body code

7-3

7 Modules. programs. and configurations

This example is simple, but Copier and CopyControl would still be simple even if the
system had 50 modules instead of just two. For this example, they seem like excess
baggage, but for a larger system, they are invaluable because:

(a) they describe exactly how the various modules are bound together and
initialized;

(b) C/Mesa allows Mesa's compile-time checks on types to extend to binding time;

(c) loading and linking with this scheme can be very efficient.

We can now give the details of Mesa DEFINITIONS and PROGRAM modules. Section 7.S
discusses C/Mesa and the binding process.

7.2 The fundamentals of Mesa modules

The complete syntax for a module is the following:

CompilationUnit .. - Directory .. -
ModuleName : ModuleHead = GlobalAccess
ModuleBody

Access :: == empty I PUBLIC I PRIVATE

Directory " - empty I DIRECTORY IndudeList ; I DIRECTORY; .. -
ExportsList .. - empty I EXPORTS I -- see subsection 7.4.3 .. -

EXPORTS IdUst

FileName .. - stri ng Literal -- see subsection 6. 1. 1 .. -
GlobalAccess :: == Access -- see subsection 7.4.3

ImportsList :: :I empty I IMPORTS I -- see subsection 7.4.1
IMPORTS InterfaceList

Indudelist :: == Indudeltem I
IndudeList,lncludeltem

Includeltem :: == identifier UsingClause I
identifier:FROM FileName UsingClause I
identifier:TYPE UsingClause I
identifier:TYPE identifier UsingClause

ModuleBody .. - Block. -- section 4.4 .. -
-- note the terminating period

ModuleHead .. - DEFINITIONS LocksClause ImportsUst ShareList I .. -
ProgramTC ImportsUst ExportsList ShareList

Interfaceltem .. - identifier I identifier: identifier .. -
InterfaceList .. - Interfaceltem IlnterfaceUst, Interfaceltem .. -
LocksClause :: = empty I -- see subsection 9.4. 1

LOCKS Expression I
LOCKS Expression USING identifier: TypeSpecification

ModuleName :: = identifier IldUst

7-4

Mesa Language Manual

ProgramTC

ShareList

UsingClause

Fine point:

7

:: = PROGRAM ParameterList ReturnsClause I
MONITOR ParameterList ReturnsClause LocksClause

:: = empty I SHARES IdList -- see subsection 7.5.4

:: = empty I USING [IdList] I USING [)

ImportsList (Exports List): The form IMPORTS(EXPORTS) may be used when the corresponding list is

empty. This reflects the view that IMPORTS and EXPORTS introduce formal parameter lists. even though

their punctuation omits [and I.

A definitions module may perform two functions: it may define an interface, and it may
contain declarations of constants and types. Definitions modules are further discussed in
section 7.3.

The text of a program module X implicitly defines a frame type, FRAME [Xl. Values of this
type are created dynamically by loading X and can only be accessed indirectly; i.e., a
program may have variables of type LONG POINTER TO FRAME [Xl, but never of type fRAME[Xl.
A program's frame contains storage for its variables, along with some system overhead.
This frame is sometimes referred to as the module's global frame.

We will first deal with the initial syntactic unit which is common to all modules (the
Directory clause), then with OEFINITIONS modules as a whole. After these sections there is a
complete example including

a DEFINITIONS module,

a PROGRAM module that implements it,

a client program that uses it, and

a configuration that binds the programs together into a system.

7.2.1 Including modules: the DIRECTORY clause

A given module may include previously compiled modules for the following reasons:

It might need to use some of the symbols defined by those modules.

It may need to import the interfaces defined by those modules.

It might refer to instances of such modules in order to START them, to make new
instances of them, or to access their data.

A module that includes another is called a client of that module. Suppose module A is
included in module B. This means that when compiling B, the compiler must have access
to A's object file in order to obtain the information needed by B. In normal programming
practice, only definitions modules are included in other modules. Only in rare
circumstances will a program module be included in another module. Including a module
is not simply an insertion of text from one module into another-it is important to read these
sections carefully to use this capability correctly.

7-5

7

7-6

Modules, programs, and configurations

The following is a simple but complete DEFINITIONS module:

Simple: DEFINITIONS =
BEGIN

limit: INTEGER = 86;
Range: TYPE = [-limit .. limit];
Pair: TYPE = RECORO(/irst, second: Rangel;
PairPtr: TYPE = POINTER TO Pair;
END.

Suppose that the above source code is contained in a file named "Simple. mesa." After
compilation, anyone who has a copy of the object file for Simple (which will be named
"Simple. bed" by the compiler), may then include it in other modules. The ".bcd" portion of
the file name stands for binary configuration description (§ 7.8 .3), The". bed" part of the
name need not be specified in the directory section (see belowl.

A module that includes other modules begins with a Directory clause, which performs two
functions:

(1) It associates a Mesa identifier with the name of a file containing an object module
(usually the identifier and the name of the object module are the same).

(2) [t checks that the given identifier matches the ModuleName of the module in the
object file.

An Includeltem entry in a directory clause defines the following things about the included
module:

the local name by which the including program refers to it,

the external name of the file that contains its object module, and

the ModuleName that it must have.

The system provides convenient defaults for the common case in which all of these names
are simply derivable from one another. The more complex forms may be used to handle
unusual cases. The following table illustrates the the various forms of an Includeltem and
the resulting names:

Includeltem form local name file name ModuleName

name name name. bed name

name: TYPE name name. bed name

name: TYPE moduleName name name. bed moduleName

name: FROM "fileName" name f ile.ame • bed name

name: FROM "fileName.ext" name file.ame.ext name

The name: TYPE moduleName form can be used to include several different object files
with the same ModuleName. [n the FROM form, any characters may be used in the
fileName field, not just Mesa identifier characters. The file name described here may be
overridden when the compiler is invoked-see the Mesa User's Guide for details.

Mesa Language Manual 7

7.2.1.1 Enumerating items from an included module: the USING clause

A module may list the symbols it expects to access from an included module in the USING

clause of an Includeltem. If a USING clause is present, it must list all of the symbols to be
included; the compiler will not allow access to any symbol not in the list. Warnings will be
issued for symbols appearing in the list that are not referenced in the module. The USING

clause thus accurately documents the symbols that are defined in each included module.

Here is an example of a DIRECTORY with a USING clause:

DIRECTORY

Simples USING [Range, Pairl,
String;

A module with this DIRECTORY statement would be allowed to use the symbols Range and
Pair defined in Simple, but would not be allowed to use any other symbols defined there.
Access to symbols defined in String is not restricted.

The USING clause only allows and restricts access to symbols. Actual references to the
symbols must be made in one of the ways described below. The form USING [I is permitted
and is used to emphasize that the only use made of the module is to export items to it.

7.2.2 Accessing items from an included module

An identifier p defined in a definitions module Defs can be named in an including module
User in one of two ways:

Qualification: p can be named as Defs.p in User.

OPEN clauses: In the scope of a clause of the form "OPEN Defs", the simple name p
suffices.

The remainder of this section gives more detail on these methods.

7.2.2.1 Qualification

As explained above, an identifier in an included module may be named using
qualification, as in SimpLe.Pair. SimpLe.Pair means "the item named Pair in Simple." As a
rule, qualification provides more readable code than using OPEN. In the following example,
qualification is the only access method used:

DIRECTORY

SimpLe;

Table: DEFINITIONS =
BEGIN

limit: INTEGER = 256;
Index: TYPE = [O .. limit);

-- this has no connection with Simple. limit

PairTable: TYPE = ARRAY Index OF Simple.Pair;
StringTable: TYPE = ARRAY Index OF STRING;

END.

7-7

7

7-8

Modules, programs, and configurations

A module that includes Table may use the symbols Table itself defines; however, to use
Pair, the module would have to include Simple (as in the next section's example). Declared
symbols in the included module do not include record component names: they are part of a
record's type specification and can be used wherever the record type is known.

A qualified name may denote a type defined in an included module e.g., the type
Simple.Pair. Thus, the syntax for Typeldentifier includes the case

Typeldentifier ::. . .• , identifier. identifier

7.2.2.2 OPEN clauses

The following program TableUser includes both Simple and Table. It accesses names from
Simple by qualification, but uses an OPEN clause to access items from Table:

DIRECTORY

Simple USING [Pair),
Table;

TableU ser: PROGRAM =
BEGIN OPEN Table;
vlndex: INTEGER -limit;
vString: StringTable;
vPair: PairTable;

-- (Notice the OPEN-clause.)
-- this is Table.limit because of the OPEN

StoreString: PUBLIC PROCEDURE[s: STRING, v: Index] =
BEGIN

vString(v] - s;
END;

StorePair: PUBLIC PROCEDURE [t: Simple.Pair] RETURNS [ok: BOOLEAN] =
BEGIN

ok - vlndex < = limit;
IF ok THEN vPair[vlndexl - t;
END;

END.

In the scope of the OPEN clause, the names limit, StringTable. PairTable, and lndex are
those in Table. The scope of these OPEN clauses follows the same rules as the OPEN clauses
for records described in subsection 4.4.2., including the ability to specify an alternative
name to use in the scope of the OPEN. In fact, a single OPEN clause can contain Openltems
that open either modules or records.

Table could have been in an OPEN clause anywhere that one is permitted. This feature can
be used to help the readers of a program. For example, if the names from Table were only
needed in the procedure StoreString, we could put an "OPEN Table" on its BEGIN rather than
on the BEGIN for the whole module. This would localize the region of the program where a
reader would have to consider whether an identifier is from an included module or not.
Note that qualification is still required to reference Simple.Pair even though Pair appears
in the USING clause.

Mesa Language Manual 7

7.2.3 Scopes for identifiers in a module

The use of identifiers appearing in modules falls into two broad categories, defining
occurrences (e.g., to the left of the ":" in a declaration), and name references (such as the
appearance of a name in an Expression). Scope rules determine which defining occurrence
goes with a given reference. In Mesa, these rules are lexical, i.e., they depend only on the
textual structure of the module.

A name scope is a contiguous region of a module (e.g., everything between a BEGIN ... END

pair, or between a [... I pair) and may contain other name scopes nested within it. The
parts of a name scope which are not also in some nested name scope are called a simple
name scope, and they obey the following rule:

Within a simple name scope, there can be at most one defining occurrence of a gi ven
identifier.

An important corollary of this rule is that a given identifier is either undefined in a simple
name scope or it has exactly one meaning.

:-.few name scopes are created by the following:

OPEN clauses
declarations within a Block or Loop
enumerated types and their subrange types
loop control variables
record types that use named field lists
procedure types that use named parameters or results
actual procedures
exit regions for loops and compound statements
the heads and arms of discriminating SELECT statements

The meaning of a name reference, which is not itself qualified, is determined by the
following rule:

Use the innermost enclosing name scope that defines the referenced identifier. (If
none of the scopes do so, the identifier is undefined and there is an error.)

In a qualified name reference, the qualification supplies the name scope for the qualified
identifier. For example,

Simple.Pair

rDisk.Get

winner. party

(§ 7.2.2.1) qualification by module name; name scope is the
definitions module Simple

(§ 6.4.2) record qualification; name scope is the type disk
Stream, the type of rDisk

(§ 3.4) pointer qualification; name scope is the type Person,
the reference type of winner

The rule of scope is simple for a qualified reference:

7-9

7

7-10

Modules. programs. and configurations

The qualified identifier is associated with its definition in the specified scope. (If
there is no such defined name, the qualified identifier is undefined and there is an
error.)

OPEN clauses may introduce multiple name scopes, which are nested, outer to inner, 10

order from left to right. Consider the following revision of the earlier TableUser module:

DIRECTORY

Simple,
Table;

TableUser: PROGRAM =
BEGIN OPEN Simple, Table:

StorePair: PUBLIC PROCEDURE [t: Pairl RETURNS[ok: BOOLEAN 1 =

Notice that we no longer need qualification for the parameter t of procedure StorePair. The
process by which the referent of Pair is found is the following: look for such a definition in
the current module declarations; then try the next outer scope, which according to the
OPEN was Table; then look in the next (and outermost) scope given by the OPEN (Simple) at
which point a defining occurrence is found. ':-';otice that a reader might be uncertain where
Pair was obtained from, since he would have to perform this process of scanning name
scopes mentally. This is why the use of OPEN (without renaming) is considered bad
programming practice.

Localizing the scope of identifiers from included modules is so important that the
following naming guidelines are recommended:

(1) Place a USING clause on items in the DIRECTORY. This collects in one place a list of
all symbols referenced from each included module. The list is always accurate
because the compiler checks it on each compilation. (There is a utility program
that will generate the USING clauses automatically.)

(2) Use explicit qualification as the normal way of naming an external item.

(3) It is acceptable to OPEN an interface or record over a limited scope (e.g., a
procedure or a block) within which identifiers from that interface are used
heavily. Records should only be opened using the renaming form, e.g., OPEN rwln:
recordWithLongName. A renaming OPEN is also the recommended form for
opening included modules. For example,

BEGIN OPEN DUD: DebugUsefuLDefs;
DUD.LongCopyRead[...];

DUD.LongCopyWrite[... I;
END

7.2.4 Implications of recompiling included modules

Consider a set of modules Adefs, Userl, and User2 where Adefs is included in Userl and
User2. For simplicity, assume Userl and User2 include only module Adefs. Suppose Adefs

Mesa Language Manual 7

and User! have already been compiled, but Adefs is recompiled for some reason before
U ser2 is compiled. Then User 1 must also be recompiled.

In general, recompiling Adefs will invalidate the current version of Userl. This is obvious
when Adefs undergoes significant change between compilations, but it may also be true
when seemingly innocuous changes are made. In fact, if User! uses record or enumeration
types defined by Adefs, the current version of User! is invalidated when Ade(s is
recompiled even if no changes are made to its source code!

For example, suppose Adefs defines RECORO type Account which is used by User 1 as the
type ofrl and by User2 for r2. Normally, one would expect these records to have the same
type. If events occur as follows, however, they will not:

Adefs is compiled.
User! is compiled including (old) Adefs.
Adefs is recompiled.
User2 is compiled including (new) Adefs.

The record types for rl and r2 will differ because of the way Mesa guarantees uniqueness
for record types. The compiler associates a "time stamp" (e.g., time of compilation) with
each record type. Old Adefs defined Account at one time and new Adefs defined it a later
time; this makes them different (non-equivalent) record types which only "look" the same.

Consider the case where Defsl is included in Defs2, and Defs2 is included in User!. (For
simplicity, assume that Defs2 includes only Defs1 and User! only Defs2.) Suppose that
Defsl is recompiled and then Defs2 is recompiled. Then User! should also be recompiled.
The reason for this is the uniqueness of record types defined in Defs2 and used by User 1.

The (re)compilations of Defsl, Defs2, and User! must occur in a specific order: Defs!.
Defs2, and then Userl. Suppose, however, that User! included Defs2 plus another module
Defs3, and that Defs3 included Defs1. The diagram below illustrates these dependencies.
Included modules are above the modules that include them. The rule for avoiding errors
due to incorrect compilation order is that: a module may not be (re)compiled until all the
modules above it have been.

Defs!

Defs2 Defs3

User!

Thus, User! should be recompiled after Defs2 and Defs3 have both been (re)compiled. The
order in which Defs2 and Defs3 are compiled is unimportant, however. Moral: There is an
important partial order defined on modules by their inclusion relations.

7-11

7 Modules, programs, and configurations

7.3 DEFINITIONS mod ules

7-12

Generally, a DEFINITIONS module contains a set of related definitions. There may be
definitions for compile-time constants, types, procedures, signals, and other variables.
These definitions are used both by the program(s) that implement those procedures and
variables and by programs that only wish to use the items. Separating definitions from
implementations allows programs that call those procedures to be independent of changes
in implementation. The items in a DEFINITIONS module fall Into two classes:

noninterface items:

interface items:

definitions of TYPES and compile-time constants, and

definitions of procedures, signals, programs, and other
variables.

Interface items are variables which are "defined" in a DEFINITIONS module, but must be
exported by some implementing program before they actually exist. Interface items are
further divided into two categories:

transfer items: interface items of type PROCEDURE, SIGNAL, ERROR, or PROGRAM,
and

nontransfer variables: interface items of all other types.

Transfer items are further divided into two cases:

transfer constants:

transfer variables:

transfer items that are constants at run time, and

transfer items whose value varies-either actually or
potentially-at run-time.

Thus every item declared in a DEFINITIONS module is either a noninterface item, a
nontransfer variable, a transfer constant, or a transfer variable. Transfer items are
usually run time constants, and Mesa has special provisions for optimizing this important,
common case.

Declarations of interface items in definitions modules are like declarations of variables in
program modules, with two additional options.

Declaration

ReadOnlyOption

:: == IdList: Access ReadOnlyOption EntryOption
TypeSpecification Initialization I

IdUst : VAR TypeSpecification I

:: == empty I READONL Y

The VAR option is used to distinguish between transfer constants and transfer variables. In
a program module, a declaration such as

SampleProc: PROCEDURE [i: INTEGER];

declares a procedure variable. In a DEFINITIONS module, however, its effect is to define the
name and type of a procedure transfer constant of the interface specified by that
definitions module. Section 7.6 contains an example of a DEFINITIONS module that defines
procedure interfaces. In the same manner, SIGNALs, ERRORS, and PROGRAMS can be declared

Mesa Language Manual 7

in a DEFINITIONS module as transfer constants of the interface. A program definition as an
interface item is discussed in subsection 7.4.3.

The VAR option is used when you want a transfer item in an interface to be a variable at
run time instead of a constant. To continue the above example, a declaration such as

SampleProc: VAR PROCEDURE [i: INTEGER);

creates a variable SampleProc that may be changed at run time. The VAR option is ignored
if applied to nontransfer variables, since they are variables already.

The READONLY option is used to prevent importers from changing a variable. Additionally,
it declares the item to be a variable-just like VAR. READONLY can be used only in an
interface. This option is explained further in the next section.

In addition to providing common access to data structures, interface variables make
default fields (§ 7.3.2) and inline procedures (§ 7.3.3) more useful in DEFINITIONS modules;
that is, interface variables can be used within these definitions to access nonconstant
information in the exporter. Interface variables used for this purpose must be PUBLIC in the
exporter but can be declared with the attribute PRIVATE in the DEFINITIONS module. This
practice is strongly recommended to prevent unintended direct sharing of the variables by
clients of the interface. Note that code within an interface cannot update a READONLY

component ofthat interface.

7.3.1 READONLY variables

The READONLY option can be attached to a variable only in an interface. If this option is
specified, importers can read the variable but not update it; otherwise, importers are able
to read and update the variable freely. Note that a READONLY variable is not necessarily
constant; it can be changed from within a program module exporting the variable.
Consider the following example of non transfer interface variables:

Defs: DEFINITIONS =
BEGIN

varl: T;
var2: READONL Y T;

END.

lmpl: PROGRAM EXPORTS Defs =
BEGIN

var 1: PUBLIC T;
var2: PUBLIC T;

varl -el; ... var2 -e2;

END.

7-13

7

7-14

Modules. programs. and configurations

User: PROGRAM IMPORTS Defs =
BEGIN

Defs.uarl -e3;

IFDefs.uar2 = e4 THEN.

END.

In this example, the exporter lmpl provides storage for the nontransfer interface variables
uarl and uar2. Within lmpl, both are ordinary writable variables, e.g., var2 can be
updated. By importing Defs, the client User gains access to the storage for varl and var2
but cannot change var2.

When the compiled versions of the above three modules are bound and loaded, the links for
var 1 and var2 in User will be set to the addresses of the storage for var I and var2 provided
by lmpl. Although Defs.uarl and Defs.uar2 are referenced indirectly through the pointers
contained in the links, those pointers are invisible to the importer and are always
automatically de referenced. This is the way all imported non transfer variables are
handled. Ifthere is no exporter for one of the variables, say varl, then the invisible pointer
will be NIL, and any access to the variable will generate a runtime fault.

Imported non transfer variables are reached via long pointers (rather than short pointers,
as in earlier versions of Mesa). If User contained the expression @Defs.varl then this
expression has type LONG POINTER TO T (§ 3.4.2). Therefore, within User

p: POINTER TO T -@Defs.varl;

will not compile but

p: LONG POINTER TO T -@Defs.uarl;

will.

Also, observe that

p: LONG POINTER TO T - @Defs.var2;

is illegal because Defs.var2 is READONLY, but that

p: LONG POINTER TO READONLY T - @Defs.var2;

is allowed.

7.3.2 Default fields in interfaces

One valuable use of interface variables is in default values for procedure argument
records (§ 5.1 and 5.2). Default arguments can contain references to procedures (INLINE or
otherwise), signals, and interface variables that are components of the same interface.
These references are bound to values in the same instance of the imported interface as the
one supplying the procedure definition itself. References to non-constant components of

Mesa Language Manual 7

other interfaces require that those interfaces be imported by the DEFINITIONS module and all
its users (§ 7.4.4). For example, interface Defs 1 could contain:

globalQ: PRIVATE Queue; -- an interface variable
Add: PROCEDURE [i: Item, q: Queue - globalQI;

This declaration allows users to Add items to globalQ, but not to access the variable
directly. Thus the statement

Defsl.Add [mylteml;

is equivalent to

Defs l.Add [myltem, Defs l.globalQI;

Fine point:

If a program imports two instances of Defsl, say Dl and D2. the defaulted value for q will be from the

same instance as the called procedure. In other words,

Dl.Add [myltem] is equivalent to Dl.Add [myltem.Dl.globaIQ],

D2.Add [myltem] is equivalent to D2.Add [myltem. D2.globalQ],

In a program module, default arguments of exported procedures (and signals, etc.) require
special attention. Because of the assignment rule, the DefaultOptions specified in the
exporter and in the interface are not required to agree. If the implementor and the clients
are to behave identically with respect to defaults, the same DefaultSpecification must
appear twice.

For example, ifthe interface has the declaration

Proc: PROCEDURE [x: T - ell;

and the exporter has the declaration

Proc: PUBLIC PROCEDURE [x: T - e2] = BEGIN. . . END;

then within the exporter, Proc[] means Proc[e2]; within an importer of the interface, Proc[]
means Proc(el]. The langauge requires only that the types of el and e2 be compatible with
T; if they should also provide the same value, the programmer must ensure this. To avoid
this pitfall, it is recommended that exporters not declare such redundant defaults; to
obtain the default within the exporter, import the interface and invoke as, e.g.,
Defs.Proc[]. This, however, will result in slightly less efficient code.

7.3.3 Inline procedures in interfaces

An INlINE procedure can be declared within a DEFINITIONS module. Any caller of that
procedure must import an instance of the corresponding interface.

Within a DEFINITIONS module, the body of an INllNE procedure can contain references to
procedures (INlINE or otherwise), signals and interface variables that are components of the
same interface. These references are bound to values in the same instance of the imported
interface as the one supplying the in line procedure itself. References to non-constant

7-15

7

7-16

Modules. programs. and configurations

components of other interfaces require that those interfaces be imported by the DEFINITIONS

module and any program that uses that INLINE procedure (§ 7.4.4).

Interface components with the attribute PRIVATE are visible to the bodies of inline
procedures declared within the same DEFINITIONS module. An in line procedure referencing
such components can be imported into a PROGRAM module in which those components are
not visible. Interface components used only as default arguments of imported procedures
or as variables whose only occurrence is in the body of an INlINE procedure should not be
mentioned in the corresponding USING clauses. For eXflllple, suppose that an interface
contains the following declarations:

DomainFault: SIGNAL;

Proc: PROCEDURE [CARDINALI RETURNS [T I;

N: CARDINAL = 100;

Table: PRIVATE ARRAY [0 .. N) OF POINTER TO T;

IProc: PROCEDURE [i: CARDINALI RETURNS [T I = INLINE

BEGIN

IF i-IN [0 . . N) THEN ERROR DomainFault;
RETURN [IF TableU I = NIL THEN Proc[i I ELSE Table[i Ii]

END;

Note that the body of an INlINE procedure (lProc) can contain references to constants (M,
interface procedures (Proc), signals (DomainFault) and interface variables (Table) in the
same interface. If Defsl is an instance of this interface, Defsl.lProc references
Defsl.Table, calls Defsl.Proc, etc. An importer cannot reference Table directly because of
the PRIVATE attribute but can reference it indirectly through IProc.

It is not legal for a PROGRAM module Progl to call an in line procedure defined in some other
PROGRAM module Prog2, even if Progl imports a LONG POINTER TO FRAME [Prog21.

7.3.4 Usage hints for INlINE procedures in interfaces *

Expansion of in line procedures can cause internal data structures of the compiler to grow
rapidly; indiscriminate use of the INLINE attribute can substantially degrade compiler
performance or cause tables to overflow. The current compiler has been organized so that
in line expansion is particularly efficient, and incurs little added overhead, in the
following circumstances:

The INlINE procedure, with an arbitrarily complex body, is defined within a PROGRAM

module and called exactly once in that same module. Thus introducing named
procedures for clarifying and structuring a program can be cheap when such
procedures are called only once.

The INlINE procedure, defined either in a DEFINITIONS module or a PROGRAM module
and called an arbitrary number of times, is very simple, with no local variables, no
named output parameters, and no side effects.

The debugger cannot currently set breakpoints within, or display the expanded source
text of, an INLINE procedure (although it can display the local variables resulting from the

Mesa Language Man ual 7

expansion). Debugging can be easier if the INLINE attribute is used only as needed and is
specified after initial testing has been successfully completed.

7.4 PROGRAM modules: IMPORTS and EXPORTS

A PROGRAM module may contain

definitions of constants and types,

declarations of variables,

actual procedures and signals (chapter 8), and

executable statements of its own (i.e., not part of procedure bodies within itl.

After compilation, a program module contains a set of interface records, one for each
imported interface. An interface record consists of a collection of links, one for each
interface item referenced by the program module. Links provide the binding mechanism
which allows access to other modules' procedures and variables.

At run time a module has a global frame that provides storage for its variables. Storage for
links may be allocated either within the global frame or with the modules' code segment at
the programmer's discretion. Binding and loading fill in the links with procedure
descriptors, signal codes, pointers to program frames and pointers to exported variables.

7.4.1 IMPORTS, interface types and interface records

The IMPORTS list for a program declares the interface records that the program needs and
associates them with DEFINITIONS modules (called interface types). Interface records and
interface types are different! When using an interface type, a program may access only non
interface elements (the data types and constants required by the procedures, signals, and
variables specified in the DEFINITIONS module), but when using an interface record a
program can access both interface and non-interface elements.

The names of interface records and interface types are declared in a PROGRAM module's
IMPORTS list:

-- Example of an explicitly renamed interface record

DIRECTORY Defsl;

Progl: PROGRAM IMPORTS IntRecName: Defs! = ...

The identifier preceding a ":" in an IMPORTS list names an interface record and the name
following the ":" names an interface type. Omitting the name of an interface record in an
IMPORTS list and giving only the name of an interface type means that the record's name is
the same as the type's. For example, writing

7-17

7

7-18

Modules, programs, and contigurations

-- Example of an implicitly named interface record

DIRECTORY Defs2;

Prog2: PROGRAM IMPORTS Defs2 = ...

is the same as writing

DIRECTORY Defs2:

Prog2: PROGRAM IMPORTS Defs2: Defs2 = .. ,

Within the body of Prog2, Defs2 refers to an interface record, not an interface type. In fact,
it is impossible to refer to the interface type Defs2 in this case. Since interface records
permit access to all items included in the named DEFINITIONS module, implicit naming of
interface records is adequate unless you import multiple instances, In the body of Prog 1,
the reference Defsl.x is valid provided x is a non-interface element of Def'>1 (lntRecName.y
can refer to either an interface or non-interface element y of Defs ll.

Sometimes one needs to have access to more than one instance of an interface record at run
time. For example, the Mesa compiler needs to access one instance of a symbol table
package for the program that it is compiling, and at least one for the symbol tables for
modules included by that program. This can be done by importing a number of distinct
interface records for a single interface type, as in the following:

DIRECTORY SymDefs:

PartO{Compiler: PROGRAM IMPORTS mainSym: SymDefs, au.:r:Sym: SymDefs =
BEGIN ... END.

Within the body of PartO{Compiler, one would access an interface element of SymDefs
named LookUp for the main symbol table as mainSym.LookUp, and for the auxiliary
symbol table as auxSym.LookUp.

Fine point:

An interface may have interface aliases; i.e., multiple identifiers (preceding -DEfINITIONS~). In the

DIRECTORY clause of another module. the interface can be referenced using anyone of the (equivalent)

identifiers.

7.4.2 Importing program modules

Any module can include a program module X by naming X in its directory. One can use X
to declare program variables of type LONG POINTER TO FRAME [X]. FRAME [X] is not a valid type
because frames cannot be embedded in other structures.

A module can import a program X by naming it in its IMPORTS list. For example,

DIRECTORY XProg 1, XProg2;

Prog: PROGRAM IMPORTS frame1: XProgl, XProg2 =
BEGIN ... END.

Mesa Language Manu.al 7

This has an effect similar to declaring

frame 1: LONG POINTER TO FRAME [XProg 11 = ... :
XProg2: LONG POINTER TO FRAME [XProg21 = ... ; -- illustrates effect only, this is

-- illegal as a Mesa statement

The declaration for XProg2 is not a valid Mesa statement because FRAME [XProg21 here
refers to the interface record defined in the imports list, not the interface type defined in
the DIRECTORY clause.

Such imported program constants are the analogs of interface records. You can access
variables with a frame pointer, as well as the types and compile-time constants of the
module. Also,. you can execute the mainline code (if any) of a module instance
corresponding to a frame pointer using START and RESTART (§ 7.10.3) and create additional
instances of it using NEW (§ 7.10.1). You cannot, however, access the transfer constants of a
module to which you have only a POINTER TO FRAME, since the symbol table of the imported
program module does not contain sufficient information to allow the compiler to generate
the necessary procedure call.

Accessing values in a program frame as described above treats the frame as a record with
its variables as its components. The price paid for such close coupling with a program is
that the importer must be recompiled whenever the program is.

You cannot get TYPES from a PROGRAM by simply naming the program as an interface type:
you can, though, get TYPES from a PROGRAM'S interface record (i.e., you can't get types if the
program name simply appears in your DIRECTORY clause, but you can get types if you IMPORT
the program). There is a trick to allow access to a PROGRAM's types without actually
importing an instance at run-time. The strategy

DIRECTORY XProg 1 ;

Prog: PROGRAM =
BEGIN

XProgl.TypeName1;

END.

will fail. The compiler is unwilling to access TypeName1 since XProg1 is an interface type.
One may accomplish the desired result by declaring a "dummy" LONG POINTER TO FRAME
[ModuleNamel and using it to access the types. For example:

DIRECTORY XProg 1:

Prog: PROGRAM =
BEGIN

XProg 1 Types: LONG POINTER TO FRAME [XProg 1] = NIL;
--no code is generated above, the pointer isn't even dereferenced

7-19

7 Modules. programs. and configurations

foo: XProgiTypes.TypeNamel; -- valid declaration

END ••

Note that if you are in fact importing module ModuleName (as is done in the first example
of this section), then you already have LONG POINTER TO FRAME [ModuleName J whose name is
ModuleName (either framel or XProg2 in the first example).

7.4.3 Exporting interfaces and program modules

7-20

The EXPORTS list for a program declares the interface records and interface types to which
the program exports items. The name of an exported interface record is the same as the

'name of the interface type (which is the name of the DEFINITIONS module). A program
exporting an interface is often called an implementor of that interface.

A variable or constant is exported from a program module to an interface if (1) the module
exports the interface, (2) the item is declared PUBLIC in the program and, (3) the name of the
item in the program matches the name of an item in the interface. The exported item must
conform to the declaration of the item in the interface; the compiler will check this. Note
that an item may be exported to several interfaces simultaneously.

As described in subsection 7.4.2, an exported PROGRAM is analogous to an exported
interface. All items declared PUBLIC in a program module are exported to the module itself,
as well as to any matching exported interfaces.

Exported transfer constants (§ 7.3) must be defined with fixed (" =") initialization. For
example, if an interface declared

ConstantProc: PROCEDURE [... I RETURNS [... J ; -- a interface transfer constant

then a program module could initialize and export ConstantProc by

ConstantProc: PUBLIC PROCEDURE [... 1 RETURNS [... I = BEGIN ... END;

Exported transfer and non transfer variables (§ 7.3) should be defined with assignment
("-") initialization. For example, if an interface declared

VariableProc: VAR PROCEDURE [... I RETURNS [... J; -- a transfer variable

then a program module could initialize and export VariableProc by

VariableProc: PUBLIC PROCEDURE [... J RETURNS [... I - AnotherProc;

Fine points:

READONL Y exported transfer and nontransfer variables may be defined with fixed initialization if they

do not evaluate to compile time constants (including transfer constantsl. Fixed initialization of such

items with compile time constants is not currently implemented.

If a transfer constant is assigned the value of another transfer constant (remember that

initialization is required), the assigned value must be a procedure whose body is declared within the

current module: it cannot be a procedure constant imported from some interface.

Mesa Language Manual 7

It is important to note that assignment initialization is not performed until the exporting
module is sTARTed, and reference to an interface uariable does not cause a start trap in the
exporter(§ 7.9.4).

7.4.4 IMPORTS in DEFINITIONS modules and implicitly imported interfaces

Recall from section 7.2 that a definitions module can contain an ImportsList. One interface
(Defs2) must import another Wefs 1) if Defs2 requires access to an interface item of Defs I.
e.g., a procedure (INLINE or otherwise) or interface variable in Defsl. All interfaces
mentioned in the ImportsList of a DEFINITIONS module must be unnamed.

An implicitly imported interface is one from which imported values are required for
binding the variables of another explicitly imported interface.

An imported interface is a principal instance if it is the only instance of that interface
imported by a module or if it is not renamed in the imports list.

Consider the example

Defs2: DEFINITIONS
IMPORTS Defsl =
BEGIN

Proc2: PROCEDURE [. . . I = INLINE
BEGIN

-- an unnamed instance of Defsl

... IF Defsl.uar # u THEN Defsl.Proc[...]; ...
END;

END.

Prog 1: PROGRAM
IMPORTS

Defsl,

Defs2,

AnotherDefsl: Defsl
YetAnotherDefsl: Defsl =

BEGIN

-- an unnamed instance of Defsl
-- the principle instance of Defsl
-- an unnamed instance of Defs2
-- the principle instance of Defs2
-- an named instance of Defsl
-- a second named instance of Defsl

Defs2.Proc2[...]; -- expansion references Defsl.Proc, not AnotherDefsl.Proc

END.

Prog2: PROGRAM
IMPORTS Defs2 = -- an unnamed instance of Defs2

-- the principle instance of Defs2
-- Defsl is implicitly imported, its
-- principle instance is created automatically

7-21

7 Modules, programs, and configurations

BEGIN

Defs2.Proc2[... I;

END.

In the example above, Defsl is explicitly imported by Progl and implicitly imported by
Prog2. In Mesa, the variables of Defsl that are used by Defs2 are bound to the principal
instance of Defs 1 in a program module. Furthermore, if a program module imports no
instances of DefI, a principal instance will be created automatically. If module M has no
other reason to mention Defs 1, then Defsl need not appear in either the DIRECTORY or the
IMPORTS list of M. This is the case in Prog2. Explicitly importing a principal instance of
Defsl in such a situation is not an error, and you must do so if

you plan to use positional notation to specify the imports of M in a C/Mesa
configuration description, since the positions of automatically created
interface instances are not defined, or

you already import more than one instance of Defs 1, each of which is
named.

In a ClMesa configuration. principal instances of interfaces are not supplied automatically; you must import
them explicitly if they cross (sub >configuration boundaries.

7.5 Access control: PUBLIC and PRIVATE

7-22

Every name defined in a module possesses an Access attribute, either PUBLIC or PRIVATE (the
module in which a name is defined is called its home module). These are used to determine
whether a .name may be referenced when its home module is included by some other
module. A PUBLIC name can always be used by an including module; a PRIVATE name cannot
generally be used, except by modules which specify that they SHARE the included module.
Sharing modules are called privileged modules; others are called non-privileged modules.
A variable's home module is privileged.

Generally speaking, an Access may be specified

(a) anywhere a name can be declared. This includes normal declarations, named
field lists (for records or parameter lists), preceding SELECT in a record's variant
part, and the declaration for an actual tag in a variant part.

(b) preceding the TypeSpecification in a type definition.

In addition, an Access may be specified

(c) at the beginning of a module (the GlobafAccess), to provide a default Access for
any of the module's identifiers which do not have any explicit access.

The syntax in the following section is intended to supersede earlier definitions of the same
constructs only by showing where attributes may be inserted. Otherwise, the earlier
versions are correct. Each syntax definition is followed by examples of its use.

Mesa Language Manual 7

7.5.1 Access attributes in declarations

The following three subsections deal with the placement of Access options in declarations,
field lists, and in variant records.

7.5.1.1 Declarations

The form of Declaration specifying an Access for its declared names is as follows:

Declaration :: = IdList: Access TypeSpecification Initialization;

Examples:

ql, q2: PUBLIC INTEGER +- 0;
Mine: PRIVATE TYPE = {yes, no, maybe};

Mine can only be used in (i.e., seen from) privileged modules. In non-priviliged modules,
mine effectively does not exist.

7.5.1.2 Field lists

The forms for specifying Access in a NamedFieldList (§ 3.3.1) are as follows:

NamedFieldList

FieldDescription

Example:

blk: PUBLIC RECORD [

a: INTEGER,

:: = IdList: Access FieldDescription I
NamedFieldList , IdUst : Access FieldDescription

:: = TypeSpecification I
TypeSpecification +- Expression

b: PRIVATE INTEGER +-1234,
c, d: BOOLEAN,

e: PRIVATE BOOLEAN];

A non-privileged module could only access components a, c, and d in this case, and then
only using qualified references such as blk.a. Within a non-privileged module, extractors
and constructors cannot be employed for a record type with any PRIVATE components.

7.5.1.3 Variant parts and tags in variant records

The forms for specifying Access in a VariantFieldList or Tag (§ 6.4.1) are as follows:

VariantFieldList :: = CommonPart identifier: Access VariantPart I
VariantPart I
NamedFieldList I
UnnamedFieldList

7-23

7

7-24

Modules. programs. and configurations

CommonPart

VariantPart

:: = empty I
NamedFieldList •

:: = SELECT Tag FROM

VariantList
ENDCASE

-- same as in subsection 6.4. 1

Tag :::a identifier: Access Tag Type I
COMPUTED TagType I
OVERLAID Tag Type

TagType :: = TypeSpecification I '*'

Example:

VarRec: PUBLIC TYPE = RECORD [

link: LONG POINTER TO VarRec,
upl: SELECT tgJ: PRIVATE Etype FROM

ad}l = > [
youGet: Thisltem,
iGet: PRIVATE SELECT tg2: * FROM

ENDCASE J

ad}2 = > ...
ENDCASE I;

-- public common component
-- public variant, private tag

-- a private variant part

Suppose a non-privileged module has a record of type VarRec. Then it could access variant
part upl but neither tag tgl nor variant part iGet. This only prevents it from referring to
tgl by qualification; it may still use a discriminating SELECT (which implicitly accesses tgl)
for records of type VarRec. Thus, an ad}l arm of such a WITH ••• SELECT could access
componentyouGet. However, it would be unable to access component iGet in any case.

Notice that the only way that the tag of a variant can be changed is by writing a variant
constructor (§ 6.4.3).

7.5.2 Access attributes in TYPE definitions

The form for defining a Typeldentifier with an explicit Access is as follows:

Declaration :: = ••. lldList: TYPE = Access TypeSpecification ;

Example:

OurType: PUBLIC TYPE == PRIVATE RECORD [compl: INTEGER, comp2: BOOLEAN);

A non-privileged module could declare records of type OurType, but it could not access the
record components. The module could, however, pass values of type OurType as
parameters, receive them as results from procedures, and use them as operands of a
fundamental operation (-, =, #).

Note: Only names specified within the defined type are affected by this form of attribute
specification. Consequently, it is intended for use only when defining record types and is

Mesa Language Manual 7

just a factorization: the PRIVATE could have been written after each inner colo~; also,
specific fields can be made accessible by writing PUBLIC internally, as shown below:

ALmostPrivateType: PUBLIC TYPE = PRIVATE RECORD [

compl: PUBLIC INTEGER, -- overrides outer PRIVATE

comp2: BOOLEAN I;

An Access applied to a type specification can be specified as PUBLIC, but is pointless (if
OurType is PUBLIC then the type of its component!" would be PUBLIC by default; if OurType is
PRIVATE then their access attribute is irrelevant).

7.5.3 Default global access

As in subsection 7.5.1, if a declaration specifies an Access for a name, then that
unilaterally determines its Access. If not, the given item receives a default Access. The
default may be specified by the programmer in the GlobalAccess for a module: otherwise
one is assumed. For a program module, the default is PRIVATE; for a DEFINITIONS module, it is
PUBLIC. For example,

M 1: PROGRAM = PUBLIC

BEGIN

END.

M3: PROGRAM =
BEGIN

END.

7.5.4 Accessing PRIVATE names of other modules *

.- specified GlobalAccess

-- PRIVATE (by default)

A module may be made privileged to use PRIVATE items in an included module by using a
SHARES clause. This clause lists the included module names whose PRIVATE symbols it needs
to access. Consider the Friend module that follows:

DIRECTORY

SpeciaL, Standard, Private;

Friend: PROGRAM SHARES Private, SpeciaL =
BEGIN

END.

In this case, Friend can use PRIVATE symbols defined by Private and Special but not the
PRIVATE symbols of Standard. There is no particular significance to the ordering of module
names listed after SHARES. Any kind of module may use SHARES (but it ought to be one that
is "a friend," to say the least).

7.6 Exported (opaque) types

An exported type (often called an opaque type) is a TYPE that is declared in an interface and
subsequently bound to some concrete type supplied by a module exporting that interface.

7·25

7

7-26

Modules. programs, and configurations

This is analogous to the treatment of constant procedures (and other. transfer constants) in
interfaces, where the implementations (i.e., the procedure bodies) do not appear in the
interface but are defined separately. The advantages are twofold:

The internal structure of the type is guaranteed to be invisible to clients of the
interface.

There are no compilation dependencies between the definition of the concrete type
and the interfar~ module. The definition of that type can be changed and/or
recompiled at any time (perhaps subject to a size constraint; see below) without
requiring recompilation of either the interface or any client of the interface.

The uses of an exported type are the same as those of any other type, e.g., to construct
other types. The type provided by the interface is constant but has no accessible internal
structure. There are two other important differences between exported procedures and
exported types.

The first is a restriction necessary to ensure type safety across module boundaries.
Different exporters of an interface can supply different implementations of a procedure in
that interface if they are exported to different interface records. This is not true for
exported types; all exporters of a exported type must supply the same concrete type, which is
called the standard implementation of that exported type. Because of this restriction,
clients can safely interassign values with exported type T, no matter how obtained. In
addition, any exporter of T may convert a value of type T to a value of the concrete type it
uses to represent T, and conversely.

The second difference is that it is not necessary to import an interface to access an
exported type defined within it or to distinguish among values of such a type coming from
different imported instances. This is another consequence of the fact that all interfaces
must use a single implementation of the exported type.

7.6.1 Interface modules

An exported type is declared in a definitions module using one of the following two forms:

T: TYPE;

T: TYPE [Expression];

The first introduces a type T, no properties of which are known to the interface or to any
client of the interface. In particular, the size of T is not known; this is adequate and
desirable if the interface and clients deal only with values of type LONG POINTER TO T.

The second form specifies the size of the values used in the representation of the type. The
value of Expression, which must be a compile-time constant with an positive integer
value, gives this size in units of machine words. Supplying the size of an exported type is a
shorthand for exporting a set of fundamental operations (creation, - , =, and #) upon
that type. The eventual concrete type must be one with the standard implementations of
these operations, which are defined as follows:

creation allocate the specified number of words, with no initialization

Mesa Language Manual 7

- copy an un interpreted block of words

=,# compare uninterpreted block of words

A type with non-NULL default value does not match the standard creation operation. Such a
type cannot be exported with known size. Likewise, a variant record with arms that are
not all the same length fails the comparison criterion. You should therefore consider
writing your interfaces in terms of LONG POINTER TO T, where T is a completely opaque
exported type and not subject to these restrictions.

7.6.2 Client modules

An importing module or client has no knowledge of the type T beyond those properties
specified in the interface. If the size is not specified, no operations on T are permitted. If
the size is available from the interface, SIZE [T] is legal: also declaration of variables
(including record fields and array components of type T) and the operations -, =, # are
defined for type T.

7.6.3 Implementation modules

An implementor exports a type T to some interface Defs by declaring the type with the
PUBLIC attribute, and the value that is the concrete type; e.g., in

T: PUBLIC TYPE = S;

S specifies the concrete type. If the size of T appears in the interface, the definition of T in
the exporter must specify a type with that size and the standard fundamental operations
(the compiler checks this).

Within an exporter, Defs.T and T conform freely and are assignment compatible.
Otherwise, Defs. T is treated opaquely there and is not equivalent to T. You should
therefore attempt to write an exporting module entirely in terms of concrete types.
Consider the following example:

Interface Module (Defs):

T: TYPE;
H: TYPE = LONG POINTER TO T;
R: TYPE = RECORD[f H, ...);
Procl:PROC[h:Bn;
Proc2: PROC [r: LONG POINTER TO R I;

Exporting Module:

T: PUBLIC TYPE = RECORD [v: ...);
P: TYPE = LONG POINTER TO T; -- to the concrete type
Proc1: PUBLIC PROC [h: P] = { ... h.v ... };
Proc2: PUBLIC PROC [r: LONG POINTER TO Defs.R 1 = {

q: P = r.t, -- convert to pointer to concrete type
... q.v ... }; --legal (indirect) reference to r.f.v

If the type of h were Defs.H in the implementation of Prod, the reference to h.v would be
illegal. By defining a type such as P and using it within the exporter instead of H, you can

7-27

7 Modules. programs. and configurations

avoid most such problems. Note that Proc1 is still exported with the proper type. This
strategy of creating concrete types in one-to-one correspondence to interface types
involving T fails for record types such as R (because of the uniqueness rule for record
constructors). In this example, you must use Defs.R to define the type of r in the
implementation of Proc2, but a reference to r.{.u is illegal. (n such cases, one may use
redundant assignments, such as the one to q, or the NARROW operator as below.

Exporting :\1odule:

... NARROW [r.{, LONG POINTER TO TJ. v ...

This narrowing of a (pointer to)* the opaque type into a (pointer to)* the concrete type is
legal inside the exporting module, and generates no code. It is usually only necessary
when dealing with opaque record fields defined in included definitions modules.

7.7 Dot notation and interface items

7-28

Mesa has a limited facility to allow an object oriented programming style-one in which
the imported procedures that may be applied to a variable are deduced from context.

Consider the following example:

Defs: DEFINITIONS =
BEGIN

T: TYPE = RECORD (... I:
OpaqueT: TYPE;
P: PROCEDURE [selfT, ... J
Q: PROCEDURE [self OpaqueT, ... I:

END.

DIRECTORY
Defs USING{P,Q, ...].

" ... ,
Prog 1: IMPORTS Defs, AnotherDefs: Defs =
BEGIN

x: LONG POINTER TO LONG POINTER TO T;
y: OpaqueT;

x.P[argsl:

y.Q[otherArgs);

END.

Assume that x and y have type ([LONGI POINTER TO)* T where T is declared in interface Defs
to be either an opaque or record type and * denotes zero or more consecutive occurrences of
[LONG] POINTER TO.

In Prog 1, dot notation can be used to achieve a form of object notation. If x (when
dereferenced) has no field named P, then the expression

Mesa Language Manual 7

x.P[argsl

is interpreted as

Defs .P[x, args I

Mesa will use the principal instance (§ 7.4.4) of the interface of the definitions module in
which x's type is declared, call procedure P of this interface and pass x as the implicit first
parameter to P. If there is a directory entry for Defs with a USING clause then P must be
contained in it.

The interpretation ofy.Q[otherArgsl is similar.

Notes:

The expression x.P abbreviates x.P[] (but one can always supply the empty brackets
to force a particular interpretation, e.g.,

Wefs.ReturnsAProc[xl)[argsl must be written as x.ReturnsAProc[](argsl if
ReturnsAProc has no other arguments or they are all defaulted.

If args uses keyword notation, the rewritten form is

Defs.P[self x, args I

where "self' is the identifier of the positionally first formal parameter of P.

Principal instances of imported interfaces are not created automatically In a
context where dot notation would require the examination of an interface which
was not explicitly declared (c.f. § 7.4.4).

7.8 The Mesa configuration language, an introductory example

This section discusses C/Mesa, the Mesa configuration language, first by example and
then more rigDrously by syntactic definition and detailed semantics. It ends with a
number of detailed examples which explore some of the intricacies of C/Mesa.

We first present an example consisting of three Mesa modules:

An interface (a DEFINITIONS module),

an implementor for it (a PROGRAM module),

and a client for the implementation (also a PROGRAM module).

The example is a program for collecting a set of strings in a sorted binary tree. Since it is
written principally to show the relationships among definitions, implementors, and
clients, several important functional details were omitted. For example, it allocates
storage from the common system zone but doesn't have any way to deallocate it. It has a
single tree rooted in the global frame of Lexiconlmpl, when it might be more useful to pass
in the tree address as a parameter.

7-29

7

7-30

Modules, programs, and configurations

Following the program listings is a sequence of sample configurations for systems
constructed from them. The line numbers in the left margin are provided for ease of
reference and are not part of the source code. First the interface:

dl: Lexicon: DEFINITIONS =
d2: BEGIN

d3: FindString: PROCEDURE [LONG STRING I RETURNS [BOOLEAN);

d4: AddString: PROCEDURE [LONG STRING];

d5: PrintLexicon: PROCEDURE;

d6: END.

7.8.1 Lexicon: a module implementing LexiconDefs

The following module, LexiconImpl, implements the Lexicon interface. That is,

(a) LexiconImpl declares PUBLIC procedures FindString, AddString, and
PrintLexicon, which have procedure types conforming to their counterparts in
the DEFINITIONS module;

(b) LexiconImpl EXPORTS the interface Lexicon.

Lexiconlmpl IMPORTS three interfaces: Heap, lO, and String. The USING clauses of the
DIRECTORY note which procedures and variables are referenced from each.

Details on Mesa system interfaces are contained in the Pilot Programmer's Manual and
Mesa Programmer's Manual. A ficticious interface [0 is used in the example for
simplicity. An actual Mesa program would use one of several output interfaces, depending
upon where it wanted to send the output.

The code for LexiconI mpl follows.

il: DIRECTORY

i2: Heap USING [systemZonel.
i3: 10 USING [WriteLinel,
i4: Lexicon USING [],

i5: String USING [AppendString];
i6:
i7: LexiconImpl: PROGRAM

i8: IMPORTS Heap, 10, String
i9: EXPORTS Lexicon =
il0:
ill: BEGIN

i12:
i13: Node: TYPE = RECORD [llink, rlink: NodePtr, string: LONG STRING];

il4: NodePtr: TYPE = LONG POINTER TO Node;
i15: Comparative: TYPE = {lessThan, equalTo, greaterThan};
i16:
i17: root: NodePtr - NIL;

i18:
i19: FindString: PUBLIC PROCEDURE [s: LONG STRING] RETURNS [BOOLEAN] =
i20: BEGIN RETURN [SearchForString[root, s]]; END;

i21:

Mesa Language Manual

SearchForString: PROCEDURE [n: NodePtr, s: LONG STRING I
RETURNS [found: BOOLEAN I =
BEGIN

IF n = NIL THEN RETURN [FALSE I;
SELECT LexicalCompare[s, n.stringl FROM

less Than = > found - SearchForString[n.llink, sl;
equalTo = > found - TRUE;

greaterThan = > found - SearchForString[n.rlink. sl;
ENDCASE;

RETURN [foundl;
END;

AddString: PUBLIC PROCEDURE [s: LONG STRING I =
BEGIN InsertString[root, s I; END;

InsertString: PROCEDURE [n: NodePtr, s: LONG STRINGI =
BEGIN

NewNode: PROCEDURE RETURNS [n: NodePtrl =
BEGIN

n - Heap.systemZone.NEw[Node +-

7

i22:
i23:
i24:
i25:
i26:
i27:
i28:
i29:
i30:
i31:
i32:
i33:
i34:
i35:
i36:
i37:
i38:
i39:
i40:
i41:
i42:
i43:
i44:
i45:
i46:
i47:
i48:
i49:
i50:
i51:
i52:
i53:
i54:
i55:
i56:
i57:
i58:
i59:
i60:
i61:
i62:
i63:
i64:
i65:
i66:
i67:
i68:
i69:
i70:
i7l:
i72:
i73:

[string: Heap.systemZone.NEw[StringBody[s.lengthll.llink: NIL, rlink: NILIL

String.AppendString[n.string, s);

i74:

RETURN;

END;

IF n = NIL THEN root - NewNode[
ELSE

SELECT LexicalCompare[s, n.string) FROM

-- then just return

lessThan = > IF n.llink # NIL THEN InsertString[n.llink, s)
ELSE n.llink -NewNode[];

equalTo = > NULL; -- already there; just return
greaterThan = > IF n.rlink # NIL THEN InsertString[n.rlink. s)

ELSE n.rlink -NewNode[);
ENDCASE;

END;

LexicalCompare: PROCEDURE [sl. s2: LONG STRING] RETURNS[C: Comparative) =
BEGIN

n: CARDINAL = MIN [sl.length. s2.1ength];
i: CARDINAL;

FOR i IN [O .. n) 00

SELECT LowerCases[sl[i II FROM

< LowerCase[s2[i]] = > RETURN [less Than I;
> LowerCase[s2U]] = > RETURN [greaterThan];
ENDCASE;

ENDLOOP;

c - SELECT sl.length FROM

<s2.length = > lessThan,
>s2.length = > greaterThan,
ENDCASE = > equalTo;

RETURN [c];
END;

-- sl is shorter than s2
-- sl is longer than s2
-- lengths are the same

i75: lower: PACKED ARRAY CHARACTER ['A .. 'Z] OF CHARACTER =
i76: ['a, 'b, 'e, 'd, 'e, 'f,'g, 'h,'i,'j. 'k, 'I. 'm, 'n,'o,'p. 'q, 'r, 's, 't,'u, 'v, 'w, 'x, 'y ,'z);
i77:

7-31

7

7-32

Modules. programs. and configurations

i78: LowerCase: PROCEDURE [c: CHARACTER I RETURNS [CHARACTER) =
i79: BEGIN RETURN [IF C IN ['A . .'ZI THEN lower[c) ELSE cJ; END;

i80:
i8l: PrintLexicon: PUBLIC PROCEDURE =
i82: BEGIN PrintNode[rootJ END;

i83:
i84: PrintNode: PROCEDURE en: NodePtrl =
i85: BEGIN

i86: IF n = NIL THEN RETURN;

i87: PrintNode[n.llink);
i88: [0. WriteLine[n.stringl;
i89: PrintNode[n.rlinkl;
i90: END:

i9l: END.

7.8.2 LexiconClient: a client module

LexiconClient is a client for Lexicon[mpl and IMPORTS Lexicon. It is also a client for the
interface [0 (and also uses the constant CR defined in [0 in section 7.1). The program
provides a simple terminal interface to a user for testing Lexicon[mpl.

cI:
c2:
c3:
c4:
c5:
c6:
c7:
c8:
c9:
clO:
ell:
c12:
cl3:
cl4:
cI5:
cl6:
cI7:
cI8:
cI9:
c20:
c2l:
c22:
c23:
c24:
c25:
c26:
c27:
c28:
c29:
c30:
c3l:
c32:
c33:

DIRECTORY

[0 USING [CR, ReadChar, ReadLine. WriteChar. WriteLinel,
Lexicon USING [AddString, FindString, PrintLexiconl;

LexiconClient: PROGRAM IMPORTS [0, Lexicon =

BEGIN OPEN [0, Lexicon;

s: LONG STRING - [801;
ch: CHARACTER;

DO --loop until stopped by user typing q or 0 (last case below),
WriteChar[CR]; WriteLine{"Lexicon Command: ");
ch - ReadChar[];
WriteChar[ch]; -- Echo the character (ReadChar doesn't).
SELECT ch FROM

'f, 'F = >
BEGIN

WriteLine("ind: "]; -- terminal will read: "find":
ReadLine(s]; -- s will contain the string read from the terminal
IF FindString[s I THEN WriteLine{" -- found"]
ELSE WriteLine[" -- not found"];
END;

'a,'A =>
BEGIN

WriteLine["dd: "];
ReadLine[s);
AddString[s];
END;

Ip,'P = >
BEGIN

W riteLine["rint lexicon"];
WriteChar[CR]; PrintLexicon[];
END;

-- terminal will read: "add":

-- terminal will read: "print lexicon"

Mesa Language Manual 7

c34: 'q, 'Q = >
c35: BEGIN

c36: WriteLine["uit"J; WriteChar[CRI; -- terminal will read: "quit"
c37: STOP:
c38: END:

c39: ENDCASE = > W riteLine["Commands are Find,Add,Print lexicon,and Quit"!;
c40: ENOLOOP:
c41:
c42: END.

7.8.3 Binding, loading, and running a configuration: an overview

A configuration description is a recipe written in C/Mesa that describes how a set of Mesa
modules are to be joined together to form a configuration. This joining is accomplished by
binding the configuration and results in an object file, also called a binary configuration
description (BCD).

The simplest (or atomic) object file is the object module for a Mesa program module. Thus,
the Mesa compiler produces the simplest object files, and the Mesa binder produces more
complex object files from simpler ones. Indeed, a configuration may combine both atomic
and non-atomic object files together into a single, new object file. For these reasons, the
object modules produced by the Mesa compiler have the same form of names as the output
of the binder, i.e., names of the form "BasicName.bcd."

Once a object file has been created, it can be loaded and run.

Loading is a sequence of two actions. The first makes an instance of the configuration by
allocating a global frame for each atomic module in the object file. Each frame has space
for the module's static variables (those declared in the main body of the module) and some
extra space for information used by the Mesa system. Imported procedures and variables
are accessed via links. Space for these links is allocated either in the frame or in the code of
the module.

The second part of loading completes the binding process by filling in the links for each
module instance in the configuration. Some of these links will be connected to procedures
and variables in the same configuration. Others will be connected to procedures and
variables in the running system into which the configuration is being loaded. Unsatisfied
imported links in the running system which are satisfied by exports of the configuration
being loaded are filled in at the same time.

Once a configuration is loaded, each module instance in it has all its interfaces bound.
However, no code has been executed in the instances, so global variables are not
initialized, and no main body has executed. STARTing (§ 7.10.3) an instance executes any
code for initializing static variables and also executes its main body code. For correct
operation, this must occur before any of its procedures are used or before any of its global
variables are referenced. If a module is not explicitly STARTed before one of its procedures is
called, then a trap occurs, and it is automatically started. Subsequent procedure calls will
not repeat this trap and auto-initialization. Section 7.10 details how these mechanisms
generalize for configurations.

7.8.4 A configuration description for running LexiconClient

The following configuration will bind Lexiconlmpl. LexiconClient. and other necessary
modules and can be used to start the client program running. The comments to the right of
each module name indicate which interfaces are imported and exported by that particular

7-33

7 Modules. programs. and configurations

module: they are not part of Con{igl. This configuration is completely self-contained: all
the needed imports are satisfied by exports from modules that are part of the
configuration.

Con{igl: CONFIGURATION

CONTROL LexiconClient =
BEGIN

Fsp;
lOlmpl;
Stringi mpl;
Lexiconlmpl;
LexiconClient;
END.

-- IMPORTS Heap, lO, String
-- IMPORTS lO, Lexicon

EXPORTS Heap
EXPORTS £0
EXPORTS String
EXPORTS Lexicon

To see that this configuration is completely self-contained, notice that LexiconClient
imports lO, which is exported by lOlmpl, and imports Lexicon, which is exported by the
instance of LexiconImpl. Similarly, the import requirements of the other instances are
satisfied by some exported interface in Con{igl.

7.9 C/Mesa: syntax and semantics

7-34

The following is the complete syntax for C/Mesa. It bears a strong resemblance to Mesa
itself, but this grammar describes a completely separate language. A phrase class
beginning with a C indicates a syntactic unit that is unique to C/Mesa. All the other units
have the same syntax (but not necessarily exactly the same semantics) as they do in Mesa.

ConfigDescri ption :: :a CDirectory -- optional
CPacking
Configuration. - note the final period

CDirectory :: :a -- same as in Mesa, only no USING clauses

Configuration :: . identifier: CHead =
CBody

CExports :: . empty I EXPORTS ItemList I EXPORTS ALL

CExpression .. - CPrimary I CExpression THEN CRightSide .. -
CLeftSide .. - Item I [ltemList I .. -
CBody .. - BEGIN CStatementSeries END .. -
CHead .. - CONFIGURATION Clinks Imports CExports ControlClause .. -
ControlClause :: :a CONTROL idlist I empty

CLinks :: = empty I LINKS : CODe I LINKS : FRAME

CPacking .. - empty I CPackSeries ; .. -
CPacklist :: :a PACK Idlist

Mesa Language Manual

CPackSeries

CPrimary

CRightSide

CStatement

CStatementSeries

Imports

Item

ItemList

:: 2 CPackList I CPackSeries ; CPackList

:: 2 CRightSide I CPrimary PLUS CRightSide

:: = Item litem [1 Clinks litem [ldList I Clinks

:: = CLeftSide - CExpression I
CRightSide I
Configuration

:: = CStatement I
CStatementSeries ; I
CStatementSeries ; CStatement

:: 2 empty I IMPORTS ItemList

:: = identifier I identifier: identifier

:: = Item I Item List , Item

7

We will use the term "component" to refer to the parts of a configuration; i.e., for both
atomic modules and configurations containing several modules. When necessary, the kind
of component will be expressly given.

Similarly, we will use the term "interface" to stand for an interface record or a module
instance (if used in discussing imports or exports), and we will distinguish as necessary.
However, "interface" will never include or imply the term "interface type" (§ 7.4.1).

Lastly, we will need to distinguish between instances of components and their prototypes
(the object files) from which such instances are made. Hence, a program prototype is the
object file for a Mesa program module, and a configuration prototype is the analog for
configurations. If the term prototype is used by itself, it includes both cases.

The CPacking and CLinks clauses in the syntax are directives to the Mesa Binder. CPacking
identifies modules whose code should be packed together for swapping purposes. Clinks
specifies for a module or a configuration whether links to imported interfaces should be
stored in the frame or in the code. The use and implications of these optional clauses is
described in Appendix D.

7.9.1 IMPORTS, EXPORTS, and DIRECTORY in C/Mesa

For completely self-contained, simple configurations like Configl, a configuration
description is primarily just a list of component names. An instance of each named
component will be part of the configuration, and if a component imports any interfaces,
they will be supplied by those exported from other components of the configuration.

Configurations need not be self-contained, however, and may themselves import
interfaces to be further imported by their components. In this way, subsystems can be
constructed with some imported interfaces unbound. Loading such a configuration or
naming it as a component in another configuration will supply the necessary interfaces.
Furthermore, a configuration can make exported interfaces available for importation by
other modules and configurations. For example, the interfaces Heap, [0, and String
needed by Configl would normally be supplied by a pre-existing :Vlesa system

7-35

7

7-36

Modules, programs, and configurations

configuration. Therefore, it is really not necessary to include instances of Fsp, 10lmpl, and
Strings/mpl in Configl. Instead, it canjust import them:

c2.1: Config2: CONFIGURATION

c2.2: IMPORTS Heap, 10, String
c2.3: CONTROL LexiconClient =
c2.4: BEGIN

c2.5: Lexiconlmpl;
c2.6: LexiconClient;
c2.7: ENO

The imports clause in a configuration serves the same purpose as in a program module.
The rule for importing is: If some component named in a configuration imports SomeDefs,
and SomeDefs is not exported by a component in the configuration, then it must be
imported. For example, Heap did not have to be imported into Config I, but it did have to be
imported into Config2.

The rule for exports is simpler: If a component in a configuration exports an interface, that
interface may also be exported from the entire configuration. It does not have to be
exported, however. Thus, the programmer controls what is exported from a configuration
and what is hidden from external view.

None of the sample configurations given so far have had a DIRECTORY section. This is
because the default association of a component named Prog is to a file named "Prog.bcd" in
which the ModuleName is also Prog. When this is the case, the programmer does not need
to supply a: DIRECTORY part; one would be needed if the file did not have such a defaultable
name. For example:

DIRECTORY

Prog: FROM "OldProgFile";

could not be omitted if the component named Prog is contained in the file
"OldProgFile.bcd," rather than in "Prog.bcd."

Fine point:

Please refer to subsection 7.4.4, concerning implicitly imported interfaces.

7.9.2 Explicit naming, IMPORTS, and EXPORTS *

In Mesa, names may be given to the interface records in an IMPORTS list (§ 7.4.1); the same
is true in a configuration description. These names can then be used to supply the
interfaces needed by component instances in the configuration. The notation for explicitly
supplying interfaces to a component is similar to that for parameter lists in Mesa (except
that there is no keyword notation for explicit imports parameter lists). For example, lines
c2.1 through c2.5 above could have been written as

Mesa Language Manual

c2a.l: Config2A: CONFIGURATION

c2a.2: IMPORTS alloc: Heap, io: la, str: String
c2a.3: CONTROL LexiconClient =
c2a.4:
c2a.5:

BEGIN

Lexiconlmpl(alloc, io, str!:

7

The interfaces listed after Lexiconlmpl must correspond in order and (interface) type with
the IMPORTS list for Lexiconlmpl (look at Lexiconlmpl in subsection 7.8.1 to check this).

A name may also be given to each component instance in a configuration by preceding the
instance with "identifier :". This facility is necessary to distinguish multiple instances of
the same prototype from one another. For example, we could name the Lexicon! mpl
instance in line c2a.5 as follows:

alex: Lexiconlmpl(alloc. io, str);

Lexiconlmpl exports an interface whose type is Lexicon, and that interface record can also
be named. The following further modification to line c2a.5 names it lexRec:

lexRec: Lexicon - alex: Lexiconlmpl(alloc, io, str!;

Here, as in Mesa, the type of lexRec follows the colon in the declaration, and lexRec is
assigned the (single) interface exported by Lexiconlmpl. However, the type Lexicon is not
actually necessary (it is inferred from Lexiconlmpl's EXPORTS list), and the line could have
been shortened to

lexRec - alex: Lexiconlmpl(alloc, io, str!;

U sing all these explicit naming capabilities, we can now write a new version of the
configuration in which none of the C/Mesa default naming is used:

c3.1: Config3: CONFIGURATION

c3.2: IMPORTS alloc: Heap, io: 10, str: String
c3.3: CONTROllexClient =
c3.4: BEGIN

c3.5: lexRec: Lexicon - alex: Lexiconlmpl(alloc, io, str);
c3.6: lexClient: LexiconClient(io, lexRecl;
c3.7: END.

An exported interface like lexRec need not always be set as the result of including a
component instance like alex in the configuration. One can also assign interface records to
one another as in the following two (equivalent) lines:

anotherLexRec: Lexicon -lexRec;
anotherLexRec -lexRec;

The form of CRightSide in these two statements only copies lexRec, whereas ones like line
c3.5 above involve a "call" on a component prototype. The result of that "call" lS an
instance of the component and a set of results, the interface records exported by it.

7-37

7

7-38

Modules. programs. and configurations

7.9.3 Default names for interfaces and instances *

A component instance that is not explicitly given a name is given a default name equal to
the name of the component prototype. Thus, the body of Con[ig2 is treated as if the
programmer had written:

BEGIN

Lexiconl mpl: Lexiconl mpl;
LexiconClient: LexiconClient·
END.

Similarly, an unnamed interface is given a default name equal to the name of its interface
type. So, another equivalent body for Con[ig2 is

BEGIN

Lexicon: Lexicon -Lexiconlmpl: Lexiconlmpl[);
LexiconClient: LexiconClient;
END.

The empty imports parameter list in "Lexiconlmpl[)" specifies that a new instance of the
prototype Lexiconlmpl is to be created. If the empty imports list were not there, the binder
would interpret the appearance of Lexiconlmpl (the one after the colon) as the name of an
already existing interface (not of an already existing module instance). When no
assignment is specified, the empty imports parameter list is not necessary, as shown in the
earlier examples.

Normally, omitting an imports parameter list (or, equivalently, specifying an empty list)
means that the binder should use the default-named interfaces needed by that component
instance. Thus, we could rewrite a completely explicit (and very wordy, but equivalent)
version of Con[ig2:

c2x.l: Con[ig2X: CONFIGURATION

c2x.2: IMPORTS Heap: Heap, 10: 10, String-. String
c2x.3: CONTROL LexiconClient =
c2x.4:
c2x.5:
c2x.6:
c2x.7:

BEGIN

Lexicon: Lexicon -Lexiconlmpl: Lexiconlmpl[Heap, 10. String);
LexiconClient: LexiconClient[IO, Lexicon);
END.

Notice that the defaults greatly simplify a configuration, but that they also obscure a
great deal of machinery concerned with naming things. It is important that the
programmer not completely forget these details. Otherwise one could commit errors by not
distinguishing between interface records and interface types, or between component
instances and prototypes. For instance, this could be a problem if there are multiple
component instances. Therefore, one is well advised to assign unique names to the
instances.

7.9.4 Multiple exported interfaces from a single component *

A component can export more than a single interface. Assigning these exported interfaces
to interface records is done using a Mesa-like extractor (§ 3.3.6). For example, if we had a

Mesa Language Manual 7

program module StringsAndIOlmpl that exported both String and 10, we could use it in a
modified Config2 as follows:

c4.1: Config4: CONFIGURATION

c4.2: IMPORTS alloc: Heap
c4.3: CONTROL LexiconClient =
c4.4: BEGIN

c4.5: [str: String, io: 10) - StringsAndlOlmpl[);
c4.6: Lexiconlmpl[alloc, io. str);
c4.7: LexiconClient[io. Lexicon);
c4.8: ENO.

Line c4.5 assigns the exported interfaces obtained by instantiating StringsAndlOlmpl
(that is why it has an explicit, although empty imports parameter list following it) and
declares their types as well. It would be equally correct to write

[str, io) - StringsAndlOlmpl[I;

In this case the types for io and str would be inferred from the types of the interface records
exported by StringsAndIOlmpl. However, if the programmer had written instead,

rio. strl- StringsAndlOlmpl[);

with the positions of io and str reversed, that would have been accepted, but would have
caused errors in both lines c4.6 and c4.7 because their inferred types would not match
those explicit imports parameter lists. Be cautious when doing this.

Default names could also have been used for the exported interfaces in line c4.5, and
Config4 could simply have been written as

c4a.l: Config4A: CONFIGURATION

c4a.2: IMPORTS Heap
c4a.3: CONTROL LexiconClient =
c4a.4:
c4a.5:
c4a.6
c4a.7:
c4a.8:

BEGIN

StringsAndlOI mpl;
Lexiconlmpl;
LexiconC lie nt;
END.

This would assign the exported interfaces to the default-named records String and 10 and
would use them in the defaulted import parameter lists for Lexiconlmpl and
LexiconClient. Line c4a.5 could also show what StringsAndIOlmpl exports using the
default names for its exported records. This wou·ld give rise to the statement:

[String, IO] - StringsAndIOlmpl[];

Cases like this require that the user be a ware of the distinction between interface records
and interface types: String names an interface record here, but in line c4.5, it names an
interface type.

7-39

7

7-40

Modules. programs. and configurations

7.9.5 Multiple components implementing a single interface *

An exported interface can be the result of contributions by a number of components. Think
of the interface as a logical unit that may be implemented by a number of cooperating
physical units (i.e., modules and configurations). For example, assume that Lexicon[mpl is
divided into two modules LexiconF AI mpl and LexiconP[mpl, with l.exiconF A[mpl
providing the procedures FindString and AddString. and LexiconPlmpl providing
PrintLexicon. Each exports Lexicon, but neither fully implements that interface. Still,
Lexi~onClient will see a single interface in the following:

c5.1: Config5: CONFIGURATION

c5.2: IMPORTS Heap, [0, String
c5.3: CONTROL LexiconClient =
c5.4:
c5.5:
c5.6:
c5.7:

BEGIN

lexRec: Lexicon - LexiconF AI mpl[);
lexRec - LexiconPlmpl[);
LexiconClient{lO, lexRecl;

c5.8: END.

-- use default imports
-- merge interface contributions

The two separate assignments to lexRec above actually merge the interface elements
exported by the two modules. This merging does not allow any duplication of elements,
and if both modules exported PrintLexicon, for example, an error would be generated
during processing of Config5 by the Binder.

The user may control the merging of interfaces himself using the PLUS operator. To obtain
the same effect as above (but by explicit specification), one could write

lexRecF A - LexiconF AI mpl[];
lexRecP -LexiconPAImpl[);
lexRec -lexRecF A PLUS lexRecP;
LexiconClient(lO, lexRecl;

-- one part
-- the other part
-- the merge
-- same as line c5. 7

If the programmer wanted to use the original LexiconFAImpl, but use LexiconPAImpl's
PrintLexicon in the interface instead of Lexicon's, he could use the THEN operator:

lexRec -LexiconFAlmpl[);
lexR ecP - LexiconP AI mpl[);
lexRecNew -lexRecPTHEN lexRec;
LexiconClient(lO, lexRecNew);

-- defines a complete interface
-- defines one procedure
-- this order is important

The THEN operator makes an interface that includes all the elements defined by lexRecP
(the left operand) together with those from lexRec (the right operand) that do not duplicate
any in lexRecP. This could be- useful if one simply wanted to test a new version of
PrintLexicon procedure without altering LexiconImpl itself during the debugging period.
Also, one could use THEN to provide a number of alternative PrintLexicon procedures, with
the standard one incorporated in LexiconImpl.

Mesa Language Manual 7

7.9.6 Nested (local) configurations

Configurations may be defined within configurations, much like local procedures (§ 5.5)
may be defined within other procedures in Mesa. They can then be instantiated and
parametrized, and they can export interfaces (just like any configuration).

Nested configurations can be used to hide some of the interfaces exported by components
in a configuration. For example, suppose that multiple instances of some component
ProgMod were needed in a configuration, and further suppose that ProgMod exports the
interface ProgDefs. Even if none of the exported ProgDefs interface records are needed in
the configuration, they would each have to be given a unique name to avoid an interface
merging error (§ 7.9.5).

This could be avoided by defining the following nested configuration:

NonexportingPM: CONFIGURATION = BEGIN ProgMod ENO.

Using NonexportingPM in place of ProgMod avoids the duplicate interface problem
because the local configuration does not export the interface ProgDefs produced by
instantiating ProgMod within it.

Nested configurations can also be used to avoid writing sequences of C/Mesa statements
more than once. By collecting such a sequence in a nested configuration, one can get the
effect of writing the whole sequence simply by instantiating the configuration.

The scope rules for names in C/Mesa allows a nested configuration to access interfaces and
other (also nested) configurations outside it. So, one configuration can make instances of
others. However, in its IMPORTS list, a nested configuration must name any interfaces that
its components import but which are not satisfied within it. That is, interfaces are never
automatically imported into a nested configuration ..

7.9.7 Package creation: EXPORTS ALL

ClMesa enables all of a configuration's interfaces to be exported easily using the EXPORTS

ALL alternative ofCExports in section 7.9.

All of a configuration's top-level interface records (but not module instances) can be
exported by including ALL in the exports list. The top-level interface records are those that
are exported by directly contained modules and subconfigurations. For example:

Exporter: CONFIGURATION

IMPORTS ...

EXPORTS ALL =
BEGIN

END.

SubConfigurationl:
SubConfiguration2; ...
Modulel; ...

exports all top level interface records of SubConfigurationl, SubConfiguration2, Modulel,
etc. Ifa module instance must also be exported,just include it in the exports list; e.g.

7-41

7 Modules. programs. and configurations

EXPORTS ALL, Module I

A word of caution, however: EXPORTS ALL will export "hidden" interfaces (§ 7.9.6).

7.10 Loading and running modules and configurations

7-42

This section describes how configurations are loaded and run. Simple, atomic modules are
discussed first, and then more general configurations.

Loading and running an atomic module is a sequence of five actions:

(1) copying its executable code from the object file into memory,

(2) allocating a global frame for its static variables,

(3) filling in links for imported items,

(4) filling in unsatisfied imported links in the running system that are satisfied by
exports of the configuration being loaded.

(5) initializing the module's variables and executing its' main body code.

Actions (1), (2), (3), and (4) are acomplished by the loader. Action (5) can be accomplished
by explicitly starting the instance or by means of a trap on the first call to any of its
procedures. Both of these methods are described below.

7.10.1 Makingcopiesofmodules

A copy of a module may be made using the NEW operator. The syntax for NEW is

Expression :: = ... 1 NEW Variable

The Variable may be the name of a pointer to the frame of a program module or a PROGRAM.

The PROGRAM may be imported or be the module containing the NEW statement. For
example:

proglnstl, proglnst2: LONG POINTER TO FRAME [Prog];

proglnst2 - NEW Proglnstl;

The new instance has a copy of the bindings of the original, and shares its object code.
However, it must be started to supply its program parameters (if any) and to initialize its
global variables. If a module imports a program Proglmpl (§ 7.4.2), the operation "NEW

Proglmpl" makes a copy of Proglmpl.

A PROGRAM is a transfer item (§ 7.3) and may be declared in a definitions module in the
same way as a procedure is. Such a PROGRAM is part of the interface defined by that
definitions module and may be imported by another module as part of that interface.
Copies of that module can then be made using the NEW operation. For example, assume
that the following declaration appears in the definitions module Defs:

ExportedProg: PROGRAM [i: INTEGERI;

Mesa Language Manual 7

Any program that imports Defs will then have access to a value named ExportedProg
which will have been bound (in step (3) of the loading process) to an instance of a program
whose parameter types conform with those of ExportedProg. The only operation that a
program can perform using this value is to START it, RESTART it, or make a copy of it using
"NEW ExportedProg." In summary, a program imported as part of an interface beha ves like
a value that is a pointer to a frame.

If a program Prog wishes to create a copy of itself, it can say:

copy: LONG POINTER TO FRAME [Progl;

copy - NEW Prog;

7.10.2 How the loader binds interfaces

Each instance of a module or configuration may export some interfaces. To make these
exported interfaces available for importation by other instances, the loader maintains a
single global table of all exported interfaces. If any duplicate exported items are created as
the result of loading, they supersede the existing items, as if a THEN (§ 7.9.5) had been done.

Complicated bindings done to hide interfaces, etc. must be done using the binder; only
simple, straightforward bindings should be used at loading time.

7.10.3 STARTing. STopping. and RESTARTing module instances

In a PROGRAM module, any non-constant initialization of global variables, and any
statements not contained within procedures constitute the mainline code for the module.
The process of executing the mainline code is referred to as starting the module. ;vlesa
provides facilities for one program starting another explicitly, but they are almost never
used in real programs. Modules almost never have parameters, they never STOP, and are
either started explicitly by appearing in a CONTROL list of a configuration or implicitly by
means of start traps. Modules that EXPORT variables (§ 7.4.3) need to be started before any
other module attempts to reference those exported variables.

The remainder of this section may be considered as "starred."

The START operation suspends the execution of the program or procedure executing it and
transfers control to a new, uninitialized instance of an atomic module. Additionally, if the
program instance being started requires parameters, they are supplied as part of the
START. Similarly, if the program being started is specified to return results (more details
below), then the START operation must appear in a RightSide context, and the returned
value is the value of the operation. Its syntax is

StartStmt

StartExpr

:: = START Calli .. .

:: = START Calli .. .

The variable following the word START must represent a global frame pointer or program
variable; i.e., its type must conform to some LONG POINTER TO FRAME type or PROGRAM type.
Here are some examples ofits use:

7-43

7

7-44

Modules, programs, and configurations

START proglnst;
START ExportedProg[5 + j);
x - START progWithResult[firstArg: a, secondArg: bl; --keyword parameter list

When a program is started, it first executes code to initialize any static variables that
were declared with initialization expressions. The initializations are done in the order in
which the variables were declared in the program. Also, they may call both local and
imported procedures (since descriptors for all imported procedures are filled in as part of
loading and the NEW operation).

After all initialization expressions are complete, the mainline statements of the program
are executed. Control can then return to the caller (the program or procedure that
initiated the START) in one of two ways: the started program may STOP, or it may RETURN
with results.

A program that executes a STOP can be RESTARTed later. RESTART is distinct from START
primarily because it cannot pass parameters as START can. If a program does not return
results, it may return either by an explicit use of STOP or by running off the end main body.

If a program declares (in its ModuleHeader) that it returns results, it uses RETURN
statements just as does a procedure (and it cannot use STOP). A RETURN from a program does
not deallocate its global frame. The syntax for RESTART and STOP is

Resta rtS tmt

StopStmt

.. -.. -

.. -.. -
RESTART Variable

STOP

The Variable following RESTART must be a pointer to the frame for a program instance or a
program .. variable, just as for START. A program that has not done a STOP cannot be
RESTARTed. Attempting to do so will result in a run time error.

A module instance can also be STARTed "automatically." If a call is made on a procedure in
a module that has not yet been started, a start trap occurs. The runtime system suspends
the procedure call and STARTS the module with no parameters. When the main body of the
module returns, the trap handler restarts the procedure call that was in progress when the
trap occurred. If a start trapped module expects parameters, a stack error will occur at run
time. If a start trapped module returns results, a different run time error will occur. (See
the next section for further discussion of the start trap for configurations.)

Warning: A module must be STARTed either explicitly or implicitly before any attempt is
made to access its variables through a LONG POINTER TO FRAME.

7.10.4 Loading and starting configurations, control modules

A configuration may contain a number of modules. A non-atomic configuration cannot be
STARTed (what would it mean to start one?), but its CONTROL module can (if it has one).
Basically, the CONTROL module acts as the representative for the whole configuration (since
a C/Mesa configuration description does not contain executable :\1esa statements). Thus, a
program that STARTs the CONTROL module for a configuration has essentially STARTed the
configuration. If the order of starting some of the instances in a configuration is
important, they should all appear in the list of CONTROL modules in the desired order of

Mesa Language Manual 7

starting. The first control module of a configuration is obtained at run time as a result of
the loading process.

A configuration can have a list of control modules. In this case, sTARTing the control
module returned by the loader will cause each module in the list to be sTARTed, in the order
given.

The start trap works for configurations as well as for atomic modules. If a start trap occurs
for a module M in configuration C with control module eM, then the trap handler
automatically starts eM before M. If the handler discover!!, however, that eM has already
been started, it will start M (since eM would have started M if it had intended to). In fact, if
the handler starts eM but still finds M unstarted when eM and any other control modules
STOP, it will start M itself before finally returning from the trap. Then the procedure call
that caused the trap will be allowed to go through.

Fine points:

If an attempt is made to RESTART a program which has not been started, a START trap will occur and then

the RESTART will proceed.

A START may have an optional catchphrase. This is discussed in chapter 8, but the form looks roughly as

follows:

START Ilomelnstance [ComponentList ! CatchPhrase]

C/Mesa allows configurations to be named as control "modules." Control configurations
simplify the use of packages in other programs. For example the configuration

CrossLister: CONFIGURATION
IMPORTS .. .
EXPORTS .. .
CONTROL Lister, CrossStuffA =
BEGIN

END.

Lister;
CrossStuffA;
CrossStuffB;

insures that all of Lister's controls are started (§ 7.10.4) appropriately. Note that
CrossLister can be written without any knowledge of Lister's controls (which may be a
fairly long list that changes over time), and that Lister does not have to export some
control module just so that CrossLister can name it in a control list.

7-45

8

Signaling and signal data types

Signals are used to indicate when exceptional conditions arise during program execution,
and to provide an orderly means of dealing with those conditions, at low cost if none are
generated. (Unless otherwise stated, the term signal may stand for both ERROR and SIGNAL.)

For example, it is common in most languages to write a storage allocator that returns a
null (or otherwise invalid) pointer value if asked for a block whose size is too large. Any
program that calls the allocator then embeds the call in an IF statement, and checks the
return value to make sure that the request was satisfied. What that procedure then does is
a very local decision.

[n Mesa, one could write the allocator as if it always returned a valid pointer to an
allocated block: calls to it would simply assign the returned value to a suitable pointer,
without checking whether or not the allocation worked. If the caller needs to gain control
when the allocator fails, the programmer attaches a CatchPhrase to the call; then if the
allocator generates the signal BlockTooLarge, the caller will be able to catch the signal.

This way of handling exceptions has two important properties, one for the human reader
of the program, and one for execution efficiency:

A reader of a program that calls the allocator can see immediately that an exceptional
condition can arise (by the catch phrase on the call or the catch phrase appended to either
the BEGIN of a block or the DO of a loop statement); he then knows that this is an unusual
event and can read on with the normal program flow: IF statements do not have this
characteristic of distinguishing one kind of branch from the other.

When the program is executing, the code to check the value returned by the allocator on
every call is not present and therefore takes no space or execution time. If a signal is
generated, there is more overhead to get to the catch phrase than a simple transfer; but
since it happens infrequently, the overall efficiency is much higher than checking each
call with an IF statement.

Signals work over many levels of procedure call, and it is possible for a signal to be
generated by one procedure and be handled by another procedure much higher up in the
call chain. We later discuss the mechanisms by which this is done; until then, examples
show signals being caught by the caller of the procedure that generated the signal.

8-1

8 Signaling and signal data types

8.1 Declaring and generating SIGNALS and ERRORS

8-2

In its simplest form, a signal is just a name for some exceptional condition. Often,
parameters are passed along with the signal to help a catch phrase that handles it to
determine what went wrong. A catch phrase can return a result: the program that
generated the signal receives this result as if it had called a normal procedure instead of a
signal. Thus, it is sometimes possible to recover from a signal and allow the routine that
generated it to continue on its merry way. Therefore, from the type viewpoint, signals
correspond very closely to procedures; in fact, th .. type constructor for declaring signals is
just a variation of the one for procedures:

SignalTC

SignalOrError

:: = SignalOrError ParameterList RETURNS ResultList I
SignalOrError ParameterList I
SignalOrError RETURNS ResultList I
SignalOrError

:: = SIGNAL I ERROR

For example, the signal BlockTooLarge might be defined to carry along with it two
parameters, a Zone within which the allocator was trying to get a block, and the number of
words needed to fill the current request. The catch phrase that handles the signal is
expected to send back (i.e., return) an array descriptor for a block of storage to be added to
the zone. The declaration of BlockTooLarge would look like

BlockTooLarge: SIGNAL [z: Zone, needed: CAROINAL)

RETURNS [newStorage: DESCRIPTOR FOR ARRAY OF WORD I;

A signal variable contains a unique name at run-time, which is a code identifying an
actual signal, just as a procedure variable must be assigned an actual procedure before it
can be used. If a procedure is imported from an interface (§ 7.4), any signals that it
generates directly are probably contained in the same interface. Imported signals are
bound by the same mechanisms as procedures. In addition, one may have signal variables
that can be assigned any signal value of a compatible type.

The signal analog of an actual procedure is obtained by initializing a signal variable using
the syntax" = CODE" in place of" = BEGIN. • .END" for procedures. This causes the signal to
be initialized to contain a unique value. The following syntax describes the initialization
for an actual signal:

Initialization :: = = COOE I ...

A signal is generated by using it in a Signal Call as shown in the syntax below:

Statement :: = SignalCalll· ..

SignalCali :: = SIGNAL Calli ErrorCall

ErrorCall :: = RETURN WITH ERROR Calli
ERROR Calli
ERROR -- special error

Mesa Language Manual 8

Call is defined in section 5.2, and the called Expression must have some signal type in this
case. A SignalCall can be used as an Expression as well as a Statement. For example,

newblock - SIGNAL BlockTooLarge[zone, nl;

Thus, generating a signal or error looks just like a procedure call, except for the additional
word ERROR or SIGNAL.

Fine point:

Although it is not recommended, the keywords SIGNAL and ERROR may be omitted (except in the RETURN

WITH ERROR construct), This makes the signal look exactly like a procedure call.

Initialization by SIGNAL = CODE produces a unique value that contains, in part. the global frame index

of the module containing the initialization. If one creates a copy of the module with the NEW statement,

signals raised by the two copies will be different. If the signal is declared and initialized in a procedure,

recursive calls of the procedure will not generate different signal values.

If a signal is declared as an ERROR, it must be generated by an ErrorCal1. If, however, it is
declared as a SIGNAL, it can be generated by any SignalCall, including an ErrorCal1. The
difference between the two is that a catch phrase may not RESUME a signal generated by an
ErrorCall (§ 8.2.5).

Except for a slight difference in the way the error is started (§ 8.2.3), the RETURN WITH ERROR

construct behaves like the ERROR statement. Its primary use is in monitor ENTRY procedures
(chapter 9).

The "special error" in the above ErrorCall syntax equation is used to indicate that
something has gone wrong, without giving any indication of the cause; the statement

ERROR;

generates a system-defined error. Precisely because this construct gives no indication of
the cause of the error, its use is discouraged. It is provided to cover those "impossible"
cases that should never occur in correct programs but which it is always best to check for
(such as falling out of a loop that should never terminate normally, or arriving at the
ENDCASE of a SELECT statement that claims to handle all the casesl. It can only be caught
using the ANY option in a catch phrase(§ 8.2.3). It is customarily handled by the debugger.

8.1.1 ERROR in expressions

An expression with an ERROR type (or SIGNAL type raised as an error) conforms to any other
type.

Color: TYPE = {red, orange, yellow, green, blue, violet};
c: Color;
button: [0 .. 21;
invalidButtonColor: ERROR = CODE;

button - SELECT c FROM

red = > 0,
yellow = > 1,

8-3

8 Signaling and signal data types

blue = > 2,
ENDCASE = > ERROR invalidButtonColor;

In the example, the only valid colors for buttons are red, yellow, and blue. Any other value
results in an error. Such constructs allow an inexpensive way to get to the debugger in
those "impossible" cases that arise from program errors.

Fine point:

[n earlier versions of Mesa. the conformance of ERROR to any type was not implemented. so it was

possible to declare ERRORs that "returned" values. While this is still legal. its use is unnecessary and

highly discouraged.

8.2 Control of generated signals

8-4

Any program that needs to handle signals must anticipate that need by providing catch
phrases for the various signals that might be generated. During execution, certain of these
catch phrases will be enabled at different times to handle signals. Loosely speaking, when
a signal S is generated, each of the procedures in the call hierarchy at that time will be
given a chance to catch the signal, in a last-in-first-out order. Each such procedure P, if it
has an enabled catch phrase, is given the signal S in turn, until one of them stops the
signal from propagating any further (by mechanisms explained below). P may decide to
reject S (in which case the next procedure in the call hierarchy will be considered), or P
may decide to handle S by taking control and attempting to recover from the signal.

8.2.1 Preparing to catch signals: catch phrases

A catch phrase has the following form:

CatchTail

Catch

Catch Seri es

:: = Catch I
ANY = > Statement - ANY must come last

:: = ExpressionList = > Statement

:: = empty I
CatchTail1
Catch; CatchSeries

The expressions in the ExpressionList must evaluate to signals. The special identifier ANY

will match any signal (§ 8.2.3). Note that if ANY occurs, it must be last.

A catch phrase is written as part of an argument list, just after the last argument and
before the right bracket. Catch phrases may appear in a procedure call, SignalCall, NEW,

START. RESTART, JOIN, FORK, or WAIT (but not in a RESUME or RETURN). A catch phrase may also
be appended to the BEGIN of a block or the DO of a loop statement by means of an
EnableClause. The applicable syntax for a call and for a block or loop statement is

Call ::. Variable [ComponentList ! Catch Series] I
Variable [! CatchSeries] I

Mesa Language ,Manual

Block

EnableClause

::,. BEGIN-- (from section 4.4) -- or { ... } for BEGIN ... END
OpenClause
EnableClause
Declarationseries
statementSeries
ExitsClause
END

:: = empty I
ENABLE CatchTail ; I
ENABLE BEGIN Catchseries END; I
ENABLE BEGIN Catch Series ; END; I
ENABLE {Catchseries } ; I
ENABLE {Catchseries ; } ;

8

Note that the EnableClause is always followed by a semi-colon, and BEGIN ... END or { ... }
must be used ifthere is more than one Catch in an EnableClause.

The main difference between the two kinds of catch phrases (ENABLE and !) is the scope of
their influence. A catch phrase on a Call is only enabled during that call. A catch phrase at
the beginning of a compound or loop statement is enabled as long as control is in that
block; it can catch a signal resulting from any call in the block (or generated in the block),

To clarify the scope of influence of ENABLE clauses, the following two diagrams are
reproduced from subsection 4.4.2. The scope of each phrase extends over others with
greater indentation.

BEGIN
OpenClause

END

EnableClause
Declarationseries

statementSeri es
ExitsClause

LoopControl
DO
OpenClause

EnableClause
Declarati onSeri es

statementSeries
LOopExitsClause

ENDlOOP

Note that catch phrases enabled in the EnableClause of a Block or Loopstmt are not in
force in the ExitsClause or LoopExitsClause.

Procedures declared in the Declarationseries (of any enclosed Block) do not inherit the
catch phrases in the EnableClause (this is not shown by the diagrams).

8.2.2 The scope of variables in catch phrases

Catch phrases are called to handle signals (the exact mechanisms are discussed in the
next section). The naming environment that exists when a catch phrase is called (in order

8-5

8

8-6

Sig,nating and signal data types

of innermost to outermost scope) includes any parameters passed with that signal (these
are declared as part of a signal's definition), and any variables to which the procedure or
program activation containing the catch phrase has access.

If a Catch has more than one label (or the label ANY), where the types of those labels are not
identical, then the signal's arguments are not accessible in the Statement chosen by that
Catch.

If, however, there is exactly one type for the signals named in a Catch's ExpressionList,
then the signal's arguments are accessible in the statement following" = >." The names
used are the parameters given in the signal's declaration, just as for procedures. For
example, a catch phrase for signal BlockTooLarge (defined earlier) might be used in a
section of code such as:

-- in StorageDefs
BlockTooLarge: SIGNAl[Z: Zone, needed: CARDINALI

RETURNS [newStorage: DESCRIPTOR FOR ARRAY OF CARDINALI;
GetMoreStorage: PROCEDURE [Z: Zone, n: CARDINALI

RETURNS [DESCRIPTOR FOR ARRA Y OF CARDINAL I;

-- in a user program
p: POINTER TO Account;

p - Allocate[SlzE [Account) !
BlockTooLarge = > RESUME [GetMoreStorage[z, needed]]];

The names z and needed in the catch phrase refer to the parameters passed along with the
signal from Allocate (see subsection 8.2.5 for a discussion of RESUME).

8.2.3 Catching signals

When a signal is generated, the signal code, and a descriptor for the actual arguments of
the signal, are passed to a Mesa run-time procedure named Signaller. Signaller'S
definition is

Signaller: PROCEDURE [s: SignalCode, m: Message);

Here s identifies the signal being generated, and m contains its arguments. <Actually,
different procedures are used to distinguish between SIGNAL, ERROR, and RETURN WITH ERROR.)

Signaller proceeds to pass the signal and its argument record from one enabled catch
phrase to the next in an orderly fashion. Within each procedure invocation, catch phrases
are visited in reverse order of the standard scope rules; inner blocks are visited, then outer
blocks. The order, at the procedure level, follows the current call hierarchy, from the most
recently called procedure to least recently called, beginning with the procedure that
generated the signal itself If the caller of a procedure is the outermost block of code for a
program, the Signaller will follow its return link to continue propagating the signal (the
return link points to the frame that last STARTed the module (§ 7.8.3». Catch phrases are
called by Signaller as if they were procedures of the following type:

Mesa Language Manual

CatchPhrase: PROCEOURE [s: SignalCode, m: Messagel
RETURNS [{Reject, Unwind, Resume}!;

Fine point:

8

If a RETURN WITH ERROR lS used in place of SIGNAL or ERROR. the procedure that generated the error is

first deleted (after releasing the monitor lock. if it is an ENTRY procedure). and propagation of the error

begins with its caller.

Because signals can be propagated right through the call hierarchy, the programmer must
consider catching not only signals generated directly within any procedure that is called,
but also any generated indirectly as a result of calling that procedure. Indirect signals are
those generated by procedures called from within a procedure that you call, and that are
not stopped before reaching you.

When a catch phrase is called, it behaves like a SELECT statement: it compares the signal
code passed to it with each signal value in the ExpressionList of each Catch in the catch
phrase. If the signal code matches one of the signal values, control enters the statement
following the" = >" for that Catch. The Catch is said to have caught or accepted the signal.
If no alternative in a catch phrase accepts the signal, there may be another enabled catch
phrase in some surrounding block. If so, the first catch phrase sends control to the second
one so that it can inspect the signal, and so on until the last enabled catch phrase in that
routine has had a chance at the signal. If no catch phrase in the routine accepts the signal,
control returns to Signaller with a value indicating that the signal was rejected, and
Signaller propagates the signal to the next level in the call hierarchy.

Fine point:

A Catch consisting of "ANY = > Statement" automatically matches any signal code (and is the only

way to catch the unnamed ERROR generated by the standalone ERROR statement discussed in section

8.1). The ANY catchall is intended primarily for use by the debugger, and should generally be avoided. It

matches any signal, including UNWIND and all system·defined signals that might indicate some

catastrophic condition (a double memory parity error, for example I.

Within a catch phrase, you can use the statement REJECT to explicitly reject a signal, i.e., to
terminate execution of that catch phrase and propagate the signal to the enclosing one.

Fine point:

If the same signal, foo, is enabled in several nested catch phrases in a procedure. each is given a chance to

handle foo if the inner ones reject the signal.

Signaller continues propagating the signal up the call chain until it is exhausted, that is,
until the root of the process has considered and rejected the signal. At that point, an
uncaught signal has been generated, and drastic action must be taken.

Mesa guarantees that all signals will ultimately be caught and reported by the debugger to
the user. This is helpful in debugging because the control context that existed when the
signal was generated is still around and can be inspected to investigate the problem.

The declaration of CatchPhrase above indicates three reasons for returning to Signaller.
The third reason, Resume, is discussed in subsection 8.2.5.

8-7

8

8-8

Signaling and signal data types

The first reason, Reject, tells Signaller to propagate the signal to the next visible catch
phrase. There are three ways that a catch phrase can reject a signal: explicitly, with the
REJECT statement, implicitly by not catching the signal, or by catching the signal, but
having the cach phrase "fall off the end" without either a RESUME or an exit.

The second reason, Unwind, is used when a catch phrase has accepted a signal and is
about to do some form of unconditional jump into the body of the routine containing it (this
is the only form of "non-local goto" in Mesa). The jump may be generated by a GOTO

statement (§ 4.4), an EXIT or LOOP (§ 4.5), or a RETRY or CONTINUE (see below). Immediatel:,
preceding such a jump, the catch phrase returns to Signaller with result Unwind; it also
indicates the frame containing the catch phrase and the location for the jump. This causes
Signaller to perform the following sequence of actions:

(1) Starting at the point where the original signal was raised, Signaller passes the
signal UNWIND to each catch phrase that rejected the original signal. fIf a
procedure says RETURN WITH ERROR, this process begins with its caller.) The
propagation path for UNWIND is exactly the same as that of the original signal.
Each catch phrase that rejected the original signal is given the opportunity to
restore any invariants within its scope (by accepting UNWIND). After UNWIND is
passed to the last catch phrase in a given procedure frame, Signaller
deallocates the frame. When UNWIND reaches the catch phrase that accepted
the original signal, it stops. At this point, all frames, beginning with the one
containing the statement that raised the original signal through, but not
including, the frame containing the statement that accepted the original
signal, have been removed from the activation stack. Furthermore, if there are
catch phrases nested within the catch phrase accepting the original signal,
they have had a chance to restore any invariants within their scope.

(2) Signaller then arranges for the jump to take place, and simply does a return to
that frame, destroying itself in the process.

Fine point:

Inner blocks in the frame that caused the UNWIND are unwound so INLINE ENTRY procedures can release

their MONITOR locks (see chapter 91.

Every Mesa program contains the pre-declared value

UNWIND: ERROR = CODE;

Fine points:

One cannot say RETURN in a catch phrase to return from the enclosing procedure. This is an

implementation restriction that may be removed in the future, caused by the way in which a catch phrase

is "called" like a procedure itself.

The UNWIND sequence gives each activation that is to lose control a chance to make consistent any data

structures for which it is responsible. There are no constraints on the kinds of statements that it can use

to do this: procedure calls, loops, or whatever are all legal. However, a catch for the UNWIND should

never perform a control transfer that will also initiate an UNWIND:

START NextPhase[! UNWIND = > GOTO BazlOutl;

Mesa Language Manual 8

Because. in this case. the second UNWIND overrides the original. Signaller will stop propagating the

UNWIND here instead of continuing up to the original catch phrase. Because UNWIND does not return to

the original catch phrase. the control transfer contained there will not take place.

Consider the following example:

Sigl: ERROR = CODE;

Sig2: ERROR = CODE;

Proc 1: PROC [x: CARDINAL I =
BEGIN

ENABLE {

Sigl = > GOTO punt;
Sig2 = > { ... };
UNWIND = > { ... } }

Statement! ;
Statement2;

BEGIN

ENABLE

Sigl = > { ... };
Statement3;
Statement4;
OtherProc[x!

Sig2= > { ... };
UNWIND = > { ... } I;

END;

Statement5;
EXITS

punt = > Statement6;
END;

OtherProc: PROC[X: CARDINAL 1 = {
StillOtherProc[x!

Sigl = > { ... };
Sig2 = > { ... };
UNWIND = > { ... }) };

-- block 1
-- catch phrase 1
-- catch case 1
-- catch case 2
-- catch case 3

--block 2
-- catch phrase 2
-- catch case 4

-- catch phrase 3
-- catch case 5
-- ca tch case 6

-- block 2, scope catch phrase 2

-- end scope catch phrase 1

-- Proc 1, block 1

-- catch phrase 4
-- ca tch case 7
-- catch case 8
-- catch case 9

StillOtherProc: PROC [x: CARDINALI = {
IF x = 0 THEN ERROR SigJ ELSE ERROR Sig2};

Suppose that SigJ is raised by StillOtherProc. Catch phrase 4 will get the signal first. If
catch case 7 rejects the signal, catch phrase 3 sees it next and rejects it implicitly. Catch
phrase 2 will see the signal next. Suppose that catch case 4 also rejects. This brings us to
catch phrase 1, which exits by going to the label "punt." This will cause Signaller to raise
the signal UNWIND in StillOtherProc at the point where SigJ was raised. Consequently, the
catch phrases that previously rejected Sig1 get a chance to see UNWIND: first catch phrase 4
then catch phrase 3 then catch phrase 2. When Signaller gets back to catch phrase 1, it
realizes that this the catch phrase requesting the exit, so it stops propagating UNWIND and

8-9

8

8-10

Signaling and signal data types

allows the branch to happen. The frames are freed for any procedures whose invocations
are completely exited, in this case StillOtherProc and OtherProc.

8.2.4 RETRY and CONTINUE in catch phrases

Besides GOTO, EXIT, and LOOP, there are two other statements, RETRY and CONTINUE, which
initiate an UNWIND. These can only be used within catch phrases.

RETRY means "go back to the beginning of the statement to which this catch phrase
belongs"; CONTINUE means "go to the statement following the one to which this catch phrase
belongs" (what is called Next-Statement in chapter 4).

For a catch phrase in a Call, the catch phrase "belongs" to the statement containing that
Call. Thus, if the signal NoAnswer is generated for the call below, the assignment
statement is retried:

answer - GetReply(Send["What next?"] ! NoAnswer = > RETRY];

On the other hand, if CONTINUE had been used instead, the statement after the assignment
would be executed next (and the assignment would not be performed). For example,
suppose the procedure ReadLine reads characters from a file up to a carriage return and
appends them onto the string buffer. If reading beyond the end of file raises the signal
StreamError, the call

ReadLine(! StreamError = > IF buffer.length > 0 THEN CONTINUE];

deals with the case of no carriage return after that last line in the file. If there is no such
final line, other catch phrases higher on the call chain are given a chance to catch the
signal.

For a catch phrase after ENABLE, there are two cases to consider, blocks and loops. In a
block, the catch phrase "belongs" to the block of smallest scope that contains the ENABLE;

the next section shows an example. In a loop, the catch phrase "belongs" to the body of the
loop, and CONTINUE really means "go around the loop again." The following two examples
are equivalent:

UNTILp=NIL

DO

BEGIN

ENABLE

TryList2 = > BEGIN

p -list2;
CONTINUE;

END

--start loop processing
LoopStatementl;

-- iteration test

-- containing block of ENABLE

-- GOTO statement following end of containing
-- block. Effectively a GOTO the iteration test
-- without any further loop processing.
-- CatchSeries

IF boolCondition THEN SIGNAL TryList2;

Mesa Language Manual

END

ENDLOOP;

UNTILp=NIL

DO

ENABLE

TryList2 = > BEGIN

8

-- containing block of ENABLE

-- iteration test
-- ENABLE belongs to body of UNTIL loop

p -list2;
CONTINUE: -- same effect as LOOP, proceed to iteration test

END

--beginning of loop body
LoopStatement 1;

-- without any further loop processing.
-- CatchSenes

IF boolCondition THEN SIGNAL TryList2;

ENDLOOP;

If we replaced CONTINUE with RETRY in the above two examples, they would still be
equivalent but the point at which control is resumed would be different. Since RETRY means
"go back to the beginning of the statement to which this catch phrase belongs," control
would resume with LoopStatementl without testing the loop condition (or altering the
value of any loop control variable).

In either case, recall that an Unwind is initiated prior to completion of a RETRY or CONTINUE.

If a procedure call in the Initialization clause of a declaration contains a catch phrase, this
catch phrase cannot contain RETRY or CONTINUE since it is in no well defined statement.

8.2.5 Resuming from a catch phrase: RESUME

The third alternative available to a catch phrase, after Reject and Unwind, is Resume.
This option is invoked by using the RESUME statement to return values (or perhaps just
control) from a catch phrase to the routine that generated the signal. To that routine, it
appears as if the signal call were a procedure call that returns some results. The syntax for
RESUME isjust like that for RETURN:

Statement :: = ResumeStmt 1 RETRY 1 CONTINUE I···

ResumeStmt :: = RESUME 1

RESUME [ComponentList 1

When Signaller receives a Resume from a catch phrase, it simply returns and passes the
accompanying results to the routine that originally called it (i.e., that generated the
signal). If the signal was generated by an ErrorCall and a catch phrase requests a Resume,
Signaller simply generates a signal itself (which results in a recursive call on Signaller);
its declaration is

ResumeError: PUBLIC ERROR;

Since it is an ERROR, one cannot legally RESUME it.

8-11

8 Signaling and signal data types

The ability to RESUME and return values gives the ability to deal with exceptional
conditions in a way that is quite inexpensive in the non-exceptional case. For example,
consider the declaration

StringBoundsFault: SIGNAL [s: STRING 1 RETURNS [ns: STRING!;

This signal allows the user to deal with the situation where characters are to be added to a
string that is already "full." Thus, the call

AppendChar[str. c ! StringBoundsFault = >
BEGIN

ns -AllocateString[s.maxlength+ 101;
AppendString[ns. s I;
FreeString(s];
RESUME [str - ns I;
ENOl;

allocates a larger string and updates the local variable whenever the string is about to
overflow. Of course, the procedure AppendChar has to be writt~n in such a way as to deal
with the signal being resumed with a new string value. This application of signals can
cause errors if there are any procedures between the signaller and the catcher that have
their own idea about the location of the string. One possible fix (if such situations are
possible) is to have a second signal

StringMoved: SIGNAL [old. new: STRING I = CODE;

that is raised by AppendChar after StringBoundsFault is resumed.

The presence or absence of the ComponentList depends on whether the signal caught is
declared to return values. In a Catch whose ExpressionList contains more than one signal,
one can RESUME only if all signals have equi valent types. For example:

ASig: TYPE = SIGNAL RETURNS [CARDINAL);

sig1: ASig;
sig2: ASig;
sig3: SIGNAL RETURNS [CARDINAL);

sig4: SIGNAL;

ENABLE

BEGIN

sig1, sig2 = > RESUME [3];
sig1, sig3 = > RESUME [0];
sig1, sig4 = > RESUME [1];
END;

--legal
--legal
-- illegal

8.3 Signals within signals

8-12

What happens if, in the course of handling a signal, firstSignal, a catch phrase (or some
procedure called by it) generates another signal, secondSignal? Handling nested signal
generation is almost exactly like non-nested signal propagation. Generating the signal
will call Signaller (recursively, since the instance of Signaller responsible for the first
signal is still around), and it propagates the new signal back through the call hierarchy by

Mesa Language Manual 8

calling a second activation of Signaller, say "Signaller2." When in the course of doing this
it encounters the previous activation of Signaller ("SignallerI"), then something different
must be done.

If firstSignal is not the same as secondSignal, Signaller2 propagates it right through
SignallerI, and all the activations beyond it are also given a chance to catch secundSignal.

On the other hand, if secondSignal = firstSignal, then all of the routines whose frames lie
beyond SignallerI, up to the frame containing the catch phrase called by S; :;naller 1, have
already had a chance to handle firstSignal, so they are not given it again. In order to skip
around that section of the call hierarchy, Signaller2 simply copies the appropriate state
variables from SignallerI. ~ext, Signaller2 skips over the frame containing the catch
phrase (by following its return link), and continues propagating secondSignal normally.

The main import of nested signals is to consider not only what signals can be generated,
directly or indirectly, by called procedures, but also those that can be generated by catch
phrases in that procedure or even the catch phrases of any calling procedures, also either
directly or indirectly.

8-13

9

Processes and concurrency

Mesa provides language support for concurrent execution of multiple processes. This
allows programs that are inherently parallel in nature to be clearly expressed. The
language also provides facilities for synchronizing such processes by means of entry to
monitors and waiting on condition variables.

The next section discusses the forking and joining of concurrent processes. Later sections
deal with monitors, how their locks are specified, and how they are entered and exited.
Condition variables are discussed, along with their associated operations.

9.1 Concurrent execution, FORK and JOIN

The FORK and JOIN statements allow parallel execution of two procedures. Their use also
requires the new data type PROCESS. Since the Mesa process facilities provide considerable
flexibility, it is easiest to understand them by first looking at a simple example.

9.1.1 A process example

Consider an application with a front-end routine providing interactive composition and
editing of input lines:

ReadLine: PROCEDURE [s: STRING] RETURNS [CARDINAL] =
BEGIN

c: CHARACTER;

s.length - 0;
DO

c - ReadChar[];
IF ControlCharacter[cl THEN DoAction[cl
ELSE AppendChar(s,c);
IF c = CR THEN RETURN (s.length];
ENDLOOP;

END;

9-1

9

9-2

Processes and concurrency

The call

n - ReadLine[bufferl:

will collect a line of user type-in up to a CR and put it in some string named buffer. Of
course, the caller cannot get anything else accomplished during the type-in of the line. If
there is anything else that needs doing, it can be done concurrently with the type-in by
forking to ReadLine instead of calling it:

p: PROCESS RETURNS [CARDINAL);

p - FORK ReadLine[bufferl;

< concurrent computation>

n -JOINp;

This allows the statements labeled < concurrent computation> to proceed in parallel with
user typing (clearly, the concurrent computation should not reference the string buffer).
The FORK construct spawns a new process whose result type matches that of ReadLine.
(ReadLine is referred to as the "root procedure" of the new process.)

Later, the results are retrieved by the JOIN statement, which also deletes the spawned
process. Obviously, this must not occur until both processes are ready (i.e., have reached
the JOIN and the RETURN, respectively); this rendevous is synchronized automatically by the
process facility.

Note that the types of the arguments and results of ReadLine are always checked at
compile time, whether it is called or forked.

The one major difference between calling a procedure and forking to it is in the handling of
signals; see subsection 9.5.1 for details.

9.1.2 Process language constructs

The declaration of a PROCESS is similar to the declaration of a PROCEDURE, except that only
the return record is specified. The syntax is formally specified as follows:

TypeConstructor ::. . .. I ProcessTC

ProcessTC :: = PROCESS ReturnsClause

ReturnsClause :: = empty I RETURNS ResultList -- from section 5. 1

ResultList ::. FieldList -- from section 5. 1

Suppose that fis a procedure and p a process. In order to fork f and assign the resulting
process to p, the ReturnClause of f and that of p must be compatible, as described in
section 5.2.

The syntax for the FORK and JOIN statements is straightforward:

Mesa Language Manual 9

Statement :: = ... I JoinCall

Expression :: = ... I ForkCall1 JoinCall

ForkCall :: = FORK Call

JoinCall :: =r JOIN Call

Call .. - (§ 5.2 and § 8.2.1) .. -
The ForkCall always returns a value (of type PROCESS) and thus a FORK cannot stand alone
as a statement. Unlike a procedure call, which returns a RECORD, the value of the FORK

cannot be discarded by writing an empty extractor. The action specified by the FORK is to
spawn a process parallel to the current one, and to begin it executing the named
procedure.

The JoinCall appears as either a statement or an expression, depending upon whether or
not the process being joined has an empty ReturnsClause. It has the following meaning:
When the forked procedure has executed a RETURN and the JOIN is executed (in either order),

the returning process is deleted, and

the joining process receives the results, and continues execution.

A catch phrase can be attached to either a FORK or JOIN by specifying it in the Call. 0Iote,
nowever, that such a catch phrase does not catch signals incurred during the execution of
the procedure; see subsection 9.5.1 for further details.

There are several other important similarities with normal procedure calls which are
worth noting:

The types of all arguments and results are checked at compile-time.

There is no intrinsic rule against multiple activations (calls and/or forks) of the
same procedure coexisting at once. Of course, it is always possible to write
procedures which will work incorrectly if used in this way, but the mechanism itself
does not prohibit such use.

One expected pattern of usage of the above mechanism is to place a matching FORK/JOIN

pair at the beginning and end of a single textual unit (i.e., procedure, compound
statement, etc.) so that the computation within the textual unit occurs in parallel with
that of the spawned process. This style is encouraged, but is not mandatory; in fact, the
matching FORK and JOIN need not even be done by the same process. Care must be taken, of
course, to insure that each spawned process is joined only once, since the result of joining
an already deleted process is undefined. Note that the spawned process always begins and
ends its life in the same textual unit (i.e., the target procedure of the FORK).

While many processes will tend to follow the FORK/JOIN paradigm, there will be others
whose role is better cast as continuing provision of services, rather than one-time
calculation of results. Such a "detached" process is never joined. If its lifetime is bounded
at all, its deletion is a private matter, since it involves neither synchronization nor
delivery of results. No language features are required for this operation; see the Pilot

9-3

9 Processes and concurrency

Programmer's Manual for the description of the system procedure provided for detaching a
process.

9.2 Monitors

9-4

Generally, when two or more processes are cooperating, they need to interact in more
complicated ways than simply forking and joining. Some more general mechanism is
needed to allow orderly, synchronized interaction among processes. The interprocess
synchronization mechanism provided in Mesa is a varian~ of monitors adapted from the
work of Hoare, Brinch Hansen, and Dijkstra. The underlying view is that interaction
among processes always reduces to carefully synchronized access to shared data, and that
a proper vehicle for this interaction is one which unifies:

- the synchronization

- the shared data

- the body of code which performs the accesses

The Mesa monitor facility allows considerable f1exibility in its use. Before getting into the
details, let us first look at a slightly over-simplified description of the mechanism and a
simple example. The remainder of this section deals with the basics of monitors (more
complex uses are described in section 9.4); WAIT and NOTIFY are described in section 9.3.

9.2.1 An overview of monitors

A monitor is a module instance. It thus has its own data in its global frame, and its own
procedures for accessing that data. Some of the procedures are public, allowing calls into
the monitor from outside. Obviously, conflicts could arise if two processes were executing
in the same monitor at the same time. To prevent this, a monitor lock is used for mutual
exclusion (Le., to insure that only one process may be in each monitor at anyone time). A
call into a monitor (to an entry procedure) implicitly acquires its lock (waiting if
necessary); and returning from the monitor releases it. The monitor lock serves to
guarantee the integrity of the global data, which is expressed as the monitor invariant -
i.e an assertion defining what constitutes a "good state" of the data for that particular
monitor. It is the responsibility of every entry procedure to restore the monitor invariant
before returning, for the benefit of the next process entering the monitor.

Things are complicated slightly by the possibility that one process may enter the monitor
and find that the monitor data, while in a good state, nevertheless indicates that that
process cannot continue until some other process enters the monitor and improves the
situation. The WAIT operation allows the first process to release the monitor lock and await
the desired condition. The WAIT is performed on a condition variable, which is associated by
agreement with the actual condition needed. When another process makes that condition
true, it will perform a NOTIFY on the condition variable, and the waiting process will
continue from where it left off (after reacquiring the lock, of course.)

For example, consider a fixed block storage allocator providing two entry procedures:
Allocate and Free. A caller of Allocate may find the free storage exhausted and be obliged
to wait until some caller of Free returns a block of storage.

Mesa Language Manual

StorageAllocator: MONITOR =
BEGIN
StorageAvailable: CONDITION;
Block: TYPE = RECORD [... I;
ListPtr: TYPE = LONG POINTER TO ListElmt:

-- or some other data type

ListElmt: TYPE = RECORD [block: Block, next: ListPtrJ;
FreeList: ListPtr;

Allocate: ENTRY PROCEDURE RETURNS [p: ListPtr] =
BEGIN
WHILE FreeList = NIL DO

WAIT StorageAvailable
ENDlOOP;

p +- FreeList; FreeList +- p.next;
END;

Free: ENTRY PROCEDURE [p: ListPtr I =
BEGIN
p.next +- FreeList; FreeList +- p;
NOTIFY StorageAvailable
END;

END.

9

Note that it is clearly undesirable for two asynchonous processes to be executing in the
StorageAllocator at the same time. The use of entry procedures for Allocate and Free
assures mutual exclusion. The monitor lock is released while WAITing in Allocate in order
to allow Free to be called (this also allows other processes to call Allocate as well, leading
to several processes waiting on the queue for StorageAvailable).

9.2.2 Monitor locks

The most basic component of a monitor is its monitor lock. A monitor lock is a predefined
type, which can be thought of as a small record:

MONITORLOCK: TYPE = PRIVATE RECORD [locked: BOOLEAN, queue: Queue);

The monitor lock is private; its fields are defined with default initalization and are never
accessed explicitly by the Mesa programmer. Instead, it is used implicitly to synchronize
entry into the monitor code, thereby authorizing access to the monitor data (and in some
cases, other resources, such as I/O devices, etc.) The next section describes several kinds of
monitors which can be constructed from this basic mechanism. In all of these, the idea is
the same: during entry to a monitor, it is necessary to acquire the monitor lock by:

1. waiting (in the queue) until: locked = FALSE (default),

2. setting: locked ~ TRUE.

9-5

9

9-6

Processes and concurrency

9.2.3 Declaring monitor modules. ENTRY and INTERNAL procedures

In addition to a collection of data and an associated lock, a monitor contains a set of
procedures that do operations on the data. Monitor modules are declared much like
program or definitions modules; for example:

M: MONITOR [arguments I =
BEGIN

END.

The procedures in a monitor module are of three kinds:

Entry procedures .

Internal procedures

External procedures

Every monitor has one or more entry procedures; these acquire the monitor lock when
called, and are declared as:

P: ENTRY PROCEDURE [arguments) RETURNS [results) = ...
The entry procedures will usually comprise the set.ofpublic procedures visible to clients of
the monitor module. (There are some situations in which this is not the case; see external
procedures, below). The usual Mesa default rules for PUBLIC and PRIVATE procedures apply.

Many monitors will also have internal procedures: common routines shared among the
several entry procedures. These execute with the monitor lock held, and may thus freely
access the monitor data (including condition variables) as necessary. Internal procedures
should be private, since direct calls to them from outside the monitor would bypass the
acquisition of the lock (for monitors implemented as multiple modules, this is not quite
right; see section 9.4, below). Internal procedures can be called only from an entry
procedure or another internal procedure. They are declared as follows:

Q: INTERNAL PROCEDURE [arguments I RETURNS [results] = ...

The attributes ENTRY or INTERNAL may be specified only on a procedure in a MONITOR module
(or on an INLINE procedure in a definitions module). Subsection 9.2.4 describes how one
declares an interface for a monitor.

Some monitor modules may wish to have external procedures. These are declared as
normal non-monitor procedures:

R: PROCEDURE [argumentsl RETURNS [resultsl = ...
Such procedures are logically outside the monitor, but are declared within the same
module for reasons of logical packaging. For example, a public external procedure might
do some preliminary processing and then make repeated calls into the monitor proper (via
a private entry procedure) before returning to its client. Being outside the monitor, an
external procedure must not reference any monitor data (including condition variables),
nor call any internal procedures. The compiler checks for calls to internal procedures and

Mesa Language Manual 9

usage of the condition variable operations (WAIT, NOTIFY, etc,) within external procedures,
but does not check for accesses to monitor data.

Fine point:

Actually, non·changing read-only global variables may be accessed by external procedure~: It is

changeable monitor data that is strictly off·limits.

Generally speaking, a chain of procedure calls involving a monitor module has the general
form:

Client procedure -- outside module
~

External procedure(s) -- inside module but outside monitor
~

Entry procedure -- inside monitor
~

Internal procedure(s) -- inside monitor

Any deviation from this pattern is likely to be a mistake. A useful technique to avoid bugs
and increase the readability of a monitor module is to structure the source text in the
corresponding order:

M: MONITOR =
BEGIN

< External procedures>
< Entry procedures>
< Internal procedures>
< Initialization (main-body) code>
END.

9.2.4 Interfaces to monitors

In Mesa, the attributes ENTRY and INTERNAL are associated with a procedure's body, not with
its type. Consequently, these attributes are associated with procedure bodies of MONITOR

modules or INUNE procedures of definitions modules. Typically, internal procedures of a
monitor module are not exported anyway, although they may be for a multi-module
monitor (§ 9.4.4).

From the client side of an interface, a monitor appears to be a normal program module,
hence the keywords MONITOR and ENTRY do not appear. For example, a monitor M with
entry procedures P and Q might appear as:

MDefs: DEFINITIONS =
BEGIN

M: PROGRAM [arguments);
P, Q: PROCEDURE [arguments) RETURNS [results);

END.

9-7

9 Processes and concurrency

9.2.5 Interactions of processes and monitors

One interaction should be noted between the process spawning and monitor mechanisms
as defined so far. [fa process executing within a monitor forked to an internal procedure of
the same monitor, the result would be two processes inside the monitor at the same time,
which is the exact situation that monitors are supposed to avoid. The following rule is
therefore enforced:

A FORK may have as its target any procedure except an internal procedure of a
monitor.

Fine points:

In the case of a multi-module monitor (§ 9.4.4) calls to other monitor procedures through an interface

cannot be checked for the INTERNAL attribute. since this information is not available in the interface
(§ 9.2.4).

The JOIN mechanism does not release any monitor locks its process holds while it waits for its argument

process to complete. Executing a JOIN from within an ENTRY procedure of a monitor will result in

deadlock if the process being joined calls ENTRY procedures of the same monitor. Consequently. JOIN

statements within ENTRY procedures require careful consideration by the programmer and are not. in

general. recommended.

9.3 Condition variables

9-8

Condition variables are declared as:

c: CONDITION;

All the fields of a condition variable are private to the process mechanism; condition
variables may be accessed only via the operations defined below. It is important to note
that it is the condition variable which is the basic construct; a condition (Le., the contents
of a condition variable) should not itself be thought of as a meaningful object; it may not be
assigned to a condition variable, passed as a parameter, etc.

9.3.1 Wait, notify, and broadcast

A process executing in a monitor may find some condition of the monitor data which forces
it to wait until another process enters the monitor and improves the situation. This can be
accomplished using a condition variable, and the three basic operations: WAIT, NOTIFY, and
BROADCAST, defined by the following syntax:

Statement ::. . .. I WaitStmt I NotifyStmt

WaitStmt ::. WAIT Variable OptCatchPhrase

NotifyStmt :: =- NOTIFY Variable I BROADCAST Variable

A condition variable c is always associated with some Boolean expression describing a
desired state of the monitor data, yielding the general pattern:

Process waiting for condition:

Mesa Language Manual

WHilE -BooleanExpression DO

WAITe

ENDlOOP;

Process making condition true:

make BooleanExpression TRUE;

NOTIFY c;

9

-- i.e., as side effect of modifying global
-- data

Consider the storage allocator example from subsection 9.2.1. In this case, the desired
BooleanExpression is "FreeList # Nil." There are several important points regarding WAIT

and NOTIFY, some of which are illustrated by that example:

WAIT always releases the lock while waiting, in order to allow entry by other
processes, including the process which will do the NOTIFY (e.g., Allocate must not lock
out the caller of Free while waiting, or a deadlock will result). Thus, the
programmer is always obliged to restore the monitor invariant (return the monitor
data to a "good state") before doing a WAIT.

NOTIFY, on the other hand, retains the lock, and may thus be invoked without
restoring the invariant; the monitor data may be left in in an arbitrary state, so
long as the invariant is restored before the next time the lock is released (by exiting
an entry procedure, for example).

A NOTIFY directed to a condition variable on which no one is waiting is simply
discarded. Moreover, the built-in test for this case is more efficient than any explicit
test that the programmer could make to avoid doing the extra NOTIFY. (Thus, in the
example above, Free al ways does a NOTIFY, without attempting to determine if it was
actually needed.)

Each WAIT must be embedded in a loop checking the corresponding condition (e.g.,
Allocate, upon being notified of the StorageAuailable condition, still loops back and
tests again to insure that the free list is actually non-empty). This rechecking is
necessary because the condition, even if true when the NOTIFY is done, may become
false again by the time the awakened process gets to run. (Even though the freelist
is always non-empty when Free does its NOTIFY, a third process could have called
Allocate and emptied the free list before the waiting process got a chance to inspect
it.)

Given that a process awakening from a WAIT must be careful to recheck its desired
condition, the process doing the NOTIFY can be somewhat more casual about insuring
that the condition is actually true when it does the NOTIFY. This leads to the notion of
a covering condition variable, which is notified whenever the condition desired by
the waiting process is likely to be true; this approach is useful if the expected cost of
false alarms (i.e., extra wake ups that test the condition and wait again) is lower
than the cost of having the notifier always know precisely what the waiter is
waiting for.

The last two points are somewhat subtle, but quite important; condition variables in :Y1esa
act as suggestions that their associated Boolean expressions are likely to be true and
should therefore be rechecked. They do not guarantee that a process, upon awakening

9-9

9

9-10

Processes and concurrency

from a WAIT, will necessarily find the condition it expects. The programmer should never
write code which implicitly assumes the truth of some condition simply hecause a NOTIFY

has occurred.

It is often the case that the user will wish to notify all processes waiting on a condition
variable. This can be done using:

BROADCAST c;

This operation can be used when several of the waiting processes should run, or when
some waiting process should run, but not necessarily the head of the queue.

Consider a variation of the StorageAllocator example:

StorageAllocator: MONITOR =
BEGIN

StorageAvailable: CONDITION;

Allocate: ENTRY PROCEDURE [size: CARDINALI RETURNS [p:ListPtr] =
BEGIN

UNTIL < storage chunk of size words is available> 00

WAIT StorageAvailable
ENDLOOP;

p"- < remove chunk of size words> ;
END;

Free: ENTRY PROCEDURE (p:ListPtr, size: CARDINAL] =
BEGIN

< put back storage chunk of size words>

BROADCAST StorageAvailable
END;

END.

In this example, there may be several processes waiting on the queue of StorageAvailable,
each with a different size requirement. It is not sufficient to simply NOTIFY the head of the
queue, since that process may not be satisfied with the newly available storage while
another waiting process might be. This is a case in which BROADCAST is needed instead of
NOTIFY.

An important rule of thumb: it is always correct to use a BROADCAST. NOTIFY should be used
instead of BROADCAST if both of the following conditions hold:

It is expected that there will typically be several processes waiting in the condition
variable queue (making it expensive to notify all of them with a BROADCAST), and

It is known that the process at the head of the condition variable queue will always
be the right one to respond to the situation (making the multiple notification
unnecessary) ;

Mesa Language Manual 9

If both of these conditions are met, a NOTIFY is sufficient, and may represent a significant
efficiency improvement over a BROADCAST. The allocator example in subsection 9.2.1, m
which fixed length blocks are allocated, is a situation in which NOTIFY is preferrable to
BROADCAST.

As described above, the condition variable mechanism, and the programs using it, are
intended to be robust in the face of "extra" NOTIFYS. The next section explores the opposite
problem: "missing" NOTIFYs.

Fine point:

When a program WAITs. it releases the monitor lock. When it returns from the WAIT, it reacquires the

lock. The address of the condition variable has to be calculated twice. If this address is obtained by a

complicated expression, there is a subtle restriction. The address calculation cannot do a WAIT in the

same process. In other words. consider the procedure

CandProc: PROCEDURE RETURNS [POINTER TO CONDITION];

If a program contains the statement

WAIT CandPrac(] t

then the execution of CondProc cannot WAIT

9;3.2 Condition variable timeouts

One potential problem with waiting on a condition variable is the possibility that one may
wait "too long." There are several ways this could happen, including:

- Hardware error (e.g., "lost interrupt")

- Software error (e.g., failure to do a NOTIFY)

- Communication error (e.g., lost packet)

To handle such situations, waits on condition variables are allowed to time out. This is
done by associating a timeout interval with each condition variable, which limits the delay
that a process can experience on a given WAIT operation. If no NOTIFY has arrived within
this time interval, one will be generated automatically.

The timeout of a condition variable is not client-visible, but it may be changed by calling
procedures in the Process interface. When a CONDITION varaible comes into existence, its
timeout is initialized to "infinity," which disables timeouts. Programs that rely on
condition variables timing out could call 'the procedure Process.SetTimeout (see the Pilot
Programmer's Manual for details). To change the timeout back to "infinity," a program
should call Process.DisableTimeouts.

The waiting process will perceive a timeout as a normal NOTIFY. (Some programs may wish
to distinguish timeouts from normal NOTIFYS; this requires checking the time as we Ii as the
desired condition on each iteration of the loop.)

9-11

9 Processes and concurrency

No facility is provided to time out waits for monitor locks. This is because there would be,
in general, no way to recover from such a timeout.

9.4 More about monitors

9-12

The next few sections deal with the full generality of monitor locks and monitors

9.4.1 The LOCKS clause

Normally, a monitor's data comprises its global variables, protected by the special global
variable LOCK:

LOCK: MONITORLOCK:

This implicit variable is declared automatically in the global frame of any module whose
heading is of the form:

M: MONITOR [arguments I
IMPORTS .. .
EXPORTS ... =

In such a monitor it is generally not necessary to mention LOCK explicitly at all. For more
general use of the monitor mechanism, it is necessary to declare at the beginning of the
monitor module exactly which MONITORLOCK is to be acquired by entry procedures. This
declaration appears as part of the program type constructor that is at the head of the
module. The syntax is as follows:

ProgramTC :: = ... I MONITOR ParameterList ReturnsClause LocksClause

LocksClause :: = empty I LOCKS Expression I
LOCKS Expression USING identifier: TypeSpecification

If the LocksClause is empty, entry to the monitor is controlled by the distinguished
variable LOCK (automatically supplied by the compiler). Otherwise, the LocksClause
must designate a variable of type MONITORLOCK, a record containing a distinguished lock
field (§ 9.4.2), or a pointer that can be dereferenced (perhaps several times) to yield one of
the preceding. If a LocksClause is present, the compiler does not generate the variable
LOCK.

If the USING clause is absent, the lock is located by evaluating the LOCKS expression in the
context of the monitor's main body; i.e., the monitor's parameters, imports, and global
variables are visible, as ar~ any identifiers made accessible by a global OPEN. Evaluation
occurs upon entry to, and again upon exit from, the entry procedures (and for any WAITs in
entry or internal procedures). The location of the designated lock can thus be affected by
assignments within the procedure to variables in the LOCKS expression. To avoid disaster,
it is essential that each reevaluation yield a designator of the same MONITORLOCK. This case
is described further in subsection 9.4.4.

If the USING clause is present, the lock is located in the following way: every entry or
internal procedure must have a parameter with the same identifier and a compatible type
as that specified in the USING clause. The occurrences of that identifier in the LOCKS clause
are bound to that procedure parameter in every entry procedure (and internal procedure

Mesa Language Manual 9

doing a WAIT). The same care is necessary with respect to reevaluation; to emphasize this,
the distinguished argument is treated as a read-only value within the body of the
procedure. See subsection 9.4.5 for further details.

9.4.2 Monitored records

For situations in which the monitor data cannot simply be the global variables of the
monitor module, a monitored record can be used:

r: MONITORED RECORD [x: INTEGER, ... I;

A monitored record is a normal :vIesa record, except that it contains an automatically
declared field of type MONITORLOCK. As usual, the monitor lock is used implicitly to
synchronize entry into the monitor code, which may then access the other fields in the
monitored record. The fields of the monitored record must not be accessed except from
within a monitor which first acquires its lock. In analogy with the global variable case, the
monitor lock field in a monitored record is given the special name LOCK; generally, it
need not be referred to explicitly (except during initialization; § 9.6),

Fine point:

A more general form of monitor lock declaration is discussed in subsection 9.4.6

CAUTION: If a monitored record is to be passed around (e.g., as an argument to a
procedure) this should always be done by reference using a LONG POINTER TO MONITORED

RECORD. Copying a monitored record (e.g., passing it by value) will generally lead to chaos.

The assignment operation is not available for updating objects containing MONITORLOCK or
CONDITION values: updating of such objects must be done component-by-component.

9.4.3 Monitors and module instances

Even when all the procedures of a monitor are in one module, it is not quite correct to
think of the module and the monitor as identical. For one thing, a monitor module, like an
ordinary program module, may have several instances. In the most straightforward case,
each instance constitutes a separate monitor. More generally, through the use of
monitored records, the number of monitors may be larger or smaller than the number of
instances of the corresponding module(s). The crucial observation is that in all cases:

There is a one-to-one correspondence between monitors and monitor locks.

The generalization of monitors through the use of monitored records tends to follow one of
two patterns:

Multi-module monitors, in which several module instances implement a single
monitor.

Object monitors, in which a single module instance implements several monitors.

9-13

9

9-14

Processes and concurrency

Fine point:

These two patterns are not mutually exclusive; multi-module object monitors are possible. and may

occasionally prove necessary.

9.4.4 Multi-module monitors

[n implementing a monitor, the most obvious approach is to package all the data and
procedures of the monitor within a single module instance (if there are multiple instances
of such a module, they constitute separate monitors and share nothing except code). While
this will doubtless be the most common technique, the monitor may grow too large to be
treated as a single module.

Typically, this leads to multiple modules. [n this case the mechanics of constructing the
monitor are changed somewhat. There must be a central location that contains the
monitor lock for the monitor implemented by the multiple modules. This can be done
either by using a MONITORED RECORD or by choosing one of the modules to be the "root" of the
monitor. Consider the following example:

BigMonRoot: MONITOR IMPORTS ••• EXPORTS ••• =
BEGIN

monitorDatuml: .. .
monitorDatum2: .. .

pI: PUBLIC ENTRY PROCEDURE ...

END.

BigMonA: MONITOR

LOCKS root -- could equivalently say root.LOCK
IMPORTS root: BigMonRoot . .. EXPORTS ... SHARES BigMonRoot =
BEGIN

p2: PUBLIC ENTRY PROCEDURE.

x root.monitorDatuml;

END.

BigMonB: MONITOR

LOCKS root

-- access the protected data of the monitor

IMPORTS root: BigMonRoot . .. EXPORTS ... SHARES BigMonRoot =
BEGIN OPEN root;

p3: PUBLIC ENTRY PROCEDURE ...

monitorDatum2 ;

END.

-- access the protected data via an OPEN

The monitor BigMon is implemented by three modules. The modules BigMonA and
BigMonB have a LOCKS clause to specify the location of the monitor lock: in this case, the
distinguished variable LOCK in BigMonRoot. When any of the entry procedures pI, p2, or
p3 is called, this lock is acquired (waiting if necessary), and is released upon returning.

Mesa Language Manual 9

The reader can verify that no two independent processes can be in the monitor at the same
time.

Note that since the LOCK field is private in BigMonRoot. the modules BigMonA and
BigMonB must SHARE BigMonRoot. Another way to accomplish access to the lock would be
to specify a PUBLIC GlobalAccess (§ 7.5) for BigMonRoot.

Fine point:

Using this form of LOCKS clause for a multi-module monitor, introduces undesireable compilation

dependencies. In particular, whenever BigMonRoot is recompiled, so must the rest of the modules

implementing the monitor. This problem can be avoided by exporting an expliCItly declared

MONITORLOCK (§ 9.4.6) to an interface shared by the implementing modules, and locking that

MONITORLOCK.

Another means of implementing multi-module monitors is by means of a MONITORED

RECORD. Use of OPEN allows the fields of the record to be referenced without qualification.
Such a monitor is written as:

MonitorData: TYPE = MONITORED RECORD [x: INTEGER, ...];

MonA: MONITOR [pm: LONG POINTER TO MonitorDatal

LOCKS pm
IMPORTS .. .

EXPORTS ... =
BEGIN OPEN pm;
P: ENTRY PROCEDURE [. .. 1 =

BEGIN

x +-x+l;

END;

END.

-- access to a monitor variable

The LOCKS clause in the heading of this module (and each other module of this monitor)
leads to a MONITORED RECORD. Of course, in all such multi-module monitors, the LOCKS clause
will involve one or more levels of indirection (POINTER TO MONITORED RECORD, etc.) since
passing a monitor lock by value is not meaningful. As usual, Mesa will provide one or
more levels of automatic dereferencing as needed.

More generally, the target of the LOCKS clause can evaluate to a MONITORLOCK (i.e., the
example above is equivalent to writing "LOCKS pmLOCK").

CAUTION: The meaning of the target expression of the LOCKS clause must not change
between the call to the entry procedure and the subsequent return (Le., in the above
example, changing pm would invariably be an error) since this would lead to a different
monitor lock being released than was acquired, resulting in total chaos.

There are a few other issues regarding multi-module monitors which arise any time a
tightly coupled piece of Mesa code must be split into multiple module instances and then
spliced back together. For example:

9-15

9

9-16

Processes and concurrency

If the lock is in a MONITORED RECORD, the monitor data will probably need to be in the
record also. While the global variables of such a multi-module monitor are covered
by the monitor lock, they do not constitute monitor data in the normal sense of the
term, since they are not uniformly visible to all the module instances.

Making the internal procedures of a multi-module monitor PRIVATE will not work if
one module wishes to call an internal procedure in another module. (Such a call is
perfectly acceptable so long as the caller already holds the monitor lock.) Instead, a
second interface (hidden from the clients) is needed as part oftne "glue""holding the
monitor together. Note however, that ~esa cannot currently check that the
procedure being called through the interface is an internal one (§ 9.2.4).

9.4.5 Object monitors

Some applications deal with objects, implemented, say, as records named by pointers.
Often it is necessary to insure that operations on these objects are atomic, Le., once the
operation has begun, the object will not be otherwise referenced until the operation is
finished. If a module instance provides operations on some class of objects, the simplest
way of guaranteeing such atomicity is to make the module instance a monitor. This is
logically correct, but if a high degree of concurrency is expected, it may create a
bottleneck; it will serialize the operations on all objects in the class, rather than on each of
them individually. If this problem is deemed serious, it can be solved by implementing the
objects as monitored records, thus effectively creating a separate monitor for each object. A
single module instance can implement the operations on all the objects as entry
procedures, each taking as a parameter the object to be locked. The locking of the
parameter is specified in the module heading via a locksClause with a USING clause. For
example:

ObjectRecord: TYPE = MONITORED RECORD [...);

ObjectHandle: TYPE = LONG POINTER TO ObjectRecord;

ObjectManager: MONITOR [arguments]
LOCKS object USING object: ObjectHandle
IMPORTS .. .
EXPORTS ... =
BEGIN
Operation: PUBLIC ENTRY PROCEDURE [object: ObjectHandle, ...] =

BEGIN

END;

END.

Note that the argument of USING is evaluated in the scope of the arguments to the entry
procedures, rather than the global scope of the module. In order for this to make sense,
each entry procedure, and each internal procedure that does a WAIT, must have an
argument which matches exactly the name and type specified in the USING subclause. All
other components of the argumentofLoCKS are evaluated in the global scope, as usual.

Mesa Language Manual 9

As with the simpler form of LOCKS clause, the target may be a more complicated expression
and/or may evaluate to a monitor lock rather than a monitored record. For example:

LOCKS p.q.LOCK USING p: LONG POINTER TO ComplexRecord ...

CAUTION: Again, the meaning of the target expression of the LOCKS clause must not
change between the call to the entry procedure and the subsequent return (i.e., in the
above example, changing p or p.q would almost surely be an error).

CAUTION: It is important to note that global variables of object monitors are very
dangerous; they are not covered by a monitor lock, and thus do not constitute monitor data.
If used at all, they must be set only at module initialization time and must be read-only
thereafter.

9.4.6 Explicit declaration of monitor locks

It is possible to declare monitor locks explicitly:

myLock: MONITORlOCK;

The normal cases of monitors and monitored records are essentially stylized uses of this
facility via the automatic declaration of LOCK, and should cover all but the most obscure
situations. For example, explicit delarations are useful in defining MACHINE DEPENDENT

monitored records. (Note that the LOCKS clause becomes mandatory when an explicitly
declared monitor lock is used.) More generally, explicit declarations allow the
programmer to declare records with several monitor locks, declare locks in local frames,
and so on; this flexibility can lead to a wide variety of subtle bugs, hence use of the
standard constructs whenever possible is strongly advised.

9.4.7 [nline ENTRY procedures

The syntax for definitions modules allows the specification of a LOCKS clause. This is to
allow in line ENTRY PROCEOURES to be declared in the interface. In order for this to make
sense, the monitor lock must be an interface variable, or the procedures must deal with an
object style monitor. No special restrictions (other than those that apply to all INLINE

bodies) need be met when declaring inline ENTRY PROCEDURES within the program module of
a monitor.

9.5 Signals

9.5.1 Signals and processes

Each process has its own call stack, down which signals propagate. If the signaller scans to
the bottom of the stack and finds no catch phrase, the signal is propagated to the debugger.
The important point to note is that forking to a procedure is different from calling it, in
that the forking creates a gap across which signals cannot propagate. This implies that in
practice, one cannot casually fork to any arbitrary procedure. The only suitable targets for
forks are procedures which catch any signals they incur, and which never generate any
signals of their own.

9-17

9

9-18

Processes and concurrency

9.5.2 Signals and monitors

Signals require special attention within the body of an entry procedure. A signal raised
with the monitor lock held will propagate without releasing the lock and possibly invoke
arbitrary computations. For errors, this can be avoided by using the RETURN WITH ERROR

construct.

RETURN WITH ERROR NoSuchObject;

Recall from chapter 8 that this statement has the effect of removing the currently
executing frame from the call chain before issuing the ERROR. If the statement appears
within an entry procedure, the monitor lock is released before the error is started as well.
Naturally, the monitor invariant must be restored before this operation is performed.

For example, consider the following program segment:

Failure: ERROR [kind: CARDINALI = CODE;

Proc: ENTRY PROCEDURE [... 1 RETURNS [el, c2: CHARACTER) =
BEGIN

ENABLE UNWIND = > ...

IF condl THEN ERROR Failure[1];
IF cond2 THEN RETURN WITH ERROR Failure(2);

END;

Execution of the construct ERROR Failure[1] raises a signal that propagates until some
catch phrase specifies an exit. At that time, unwinding begins; the catch phrase for UNWIND

in Proc is executed and then Proc's frame is destroyed. Within an entry procedure such as
Proc, the lock is held until the unwind (and thus through unpredictable computation
performed by catch phrases).

Fine point:

If the body of the ENTRY procedure has an EXITS clause. the scope of the ENABLE on the body does not

include the EXITS clause (§ 8.2.11. Consequently. if an error is raised in the EXITS clause of an ENTRY

procedure's outer block. an ENABLE, UNWIND clause on the body of this procedure will not be invoked and

the monitor lock will not be released.

Execution of the construct RETURN WITH ERROR Failure(21 releases the monitor lock and
destroys the frame of Proc before propagation of the signal begins. Note that the argument
list in this construct is determined by the declaration of Failure (not by Proc's RETURNS

clause). The catch phrase for UNWIND is not executed in this case. The signal Failure is
actually raised by the system, after which Failure propagates as an ordinary error
(beginning with Proc's caller).

When the RETURN WITH ERROR construct is used from within an internal procedure, the
monitor lock is not released; RETURN WITH ERROR will release the monitor lock in precisely
those cases that RETURN will.

Mesa Language Manual 9

Another important issue regarding signals is the handling of UNWINDS; any entry
procedure that may experience an UNWIND must catch it and clean up the monitor data
(restore the monitor invariant):

P: ENTRY PROCEDURE [••• I =
BEGIN ENABLE UNWIND = > BEGIN < restore invariant> END;

END;

At the end of the outermost UNWIND catch phrase, the compiler will append code to release
the monitor lock before the frame is unwound. It is important to note that a monitor
always has at least one cleanup task to perform when catching an UNWIND signal: the
monitor lock must be released. To this end, the programmer should be sure to place an
enable-clause on the body of every entry procedure that might evoke an UNWIND (directly
or indirectly). If the monitor invariant is already satisfied, no further cleanup need be
specified, but the null catch-phrase must be written so that the compiler will generate the
code to unlock the monitor:

BEGIN ENABLE UNWIND = > NULL;

This should be omitted only when it is certain that no UNWINDS can occur.

Another point is that signals caught by the OptCatchPhrase of a WAIT operation should be
thought of as occurring after reacquisition of the monitor lock. Thus, like all other monitor
code, catch phrases within a monitor are always executed with the monitor lock held.

9.6 Initialization

When a new monitor comes into existence, its monitor data must be set to some
appropriate initial values; in particular, the monitor lock and any condition variables
must be initialized. Mesa takes responsibility for initializing them by the defaulting
mechanism (§ 3.7).

Monitor data in global variables can be initialized using the normal Mesa initial value
constructs in declarations. Monitor locks and condition variables in the global frame will
also be initialized automatically (although in this case, the programmer does not write
any explicit initial value in the declaration).

Records allocated from an UNCOUNTED ZONE using z.NEW will have have any fields of type
MONITORLOCK or CONDITION properly initialized. Any other fields can be set at the time of
creation by either field defaults or by having an initialization constructor within the
application of NEW. It is illegal to set the value of such a record with a constructor after
initialization since the running system may have queues threaded through the private
fields of the MINOTORLOCK or CONDITION. After initialization, such records must be updated
field-by-field rather than with constructors.

9-19

9 Processes and concurrency

Fine point:

If a record containing fields of type MONITORLOCK or CONDITION is allocated from some free storage

managed by means other than the NEW construct, its fields must be explicitly set by calls on operating

system supplied interfaces. See the Pilot Programmer's Manual for descriptions of the appropriate

procedures.

Since initialization code modifies the monitor data, it must have exclusive access to it. The
programmer should insure this by arranging th.at the monitor not be called by its client
processes until it is ready for use.

A

Pronouncing Mesa

The following suggestions may be helpful in reading Mesa programs:

For Read

=> chooses

- gets

n: T nis a T

m·field m's field

pt p's referent

@x address ofx

[a .. b] (the interval) a through b

[a .. b) (the interval) a up to b

(a .. bl (the interval) above a through b

(a .. b) (the interval) above a up to b

FOR i ~}, k ... for i getting first}, thereafter k ...

{ [x,y,zl {ofx,y and z

enabling

We leave as an exercise for the reader the following statement, attributed to Oscar
Hammerstein II.

i-weary AND Sick [trying];

A-l

B.1 Names

B

Programming conventions·

This appendix proposes some style conventions for Mesa programs. Style conventions are
valuable since they make it easier for individuals to understand other programmers' code.
The conventions described here have been in general use within the Systems Development
Department of Xerox for a number of years and have served very well. The conventions
cannot be hard and fast rules, and there can be compelling reasons for not following some
convention in a particular instance. Nevertheless, to the extent that we all usually follow
them, it will help us in reading (and therefore in modifying) one another's programs. The
recommended conventions are summarized below. Each convention is given as a short rule
which may be followed by some examples of its application.

The Mesa compiler only uses blanks, TABs and carriage ·returns as separators for basic
lexical units such as identifiers; extra ones do not hurt. Furthermore, it allows you to
write identifiers in any combination of upper and lower case letters: the identifiers Alpha,
ALPHA, alpha and AlphA are all legal (but different) identifiers.

B.1.1 Capitalization

Capitalize the first letter of a name if it identifies a module (either interface or
implementation), procedure, signal, type, or label, otherwise the first letter is lower case.
Variables, record components, enumerated type literals, and constants should all have a
lower case first letter:

Space: DEFINITIONS = ...
Factorial: PROC [i: LONG INTEGER! RETURNS [LONG INTEGER];

Complex: TYPE = RECORD [real, imag: REAL];

EndOfStream: SIGNAL [nextlndex: CARDINAL];

Handle: TYPE = LONG POINTER TO Object;
nullHandle: Handle = NIL;

Color: TYPE = {red, yellow, blue};

B-1

B

B-2

Programming con ventions

Capitalize the first letter of each embedded word of a multi-word name:

EndO/Stream: SIGNAL [nextlndex: CARDINAL);

nullHandle: Handle = Nil;

Case shift alone should not be used to distinguish identifiers; in general different
identi.fiers should differ in at least two characters. There are some exceptions: if one has a
type, Foo, it is acceptable to declare a variable of that type as foo.

badID, badid, bADid, BADid: LONG INTEGER; _. bad!

handle: Handle; -- acceptable

h:Handle; - acceptable

8.1.2 Qualification

Identifiers from interfaces should be qualified by their interface names or abbreviations
for them:

DIRECTORY

Exec, Format. TTY;
SimpleExample: PROGRAM

IMPORTS Exec, Format, TTY =

ReverseName: Exec.ExecProc = BEGIN ••• END;

execOut: Format.StringProc;

Renaming an interface in an OPEN or IMPORTS clause is acceptable; if you do so, use the
assigned name throughout the module.

DIRECTORY

Exec, Format, TTY;
SimpleExample: PROGRAM

IMPORTS E: Exec, Format, TTY =

ReverseName: E.ExecProc = BEGIN ••• END;

The renaming form of OPEN should be used instead of the unqualified form. There are
virtually no valid reasons for using an unqualified OPEN and many compelling reasons not
to. In the past, programmers would OPEN an interface over a limited scope (e.g., a procedure
or block) within which identifiers from that interface are used heavily, but this practice is
now discouraged in favor of using a renaming open, possibly with a very brief new name.

DIRECTORY

Ascii, TTY;
SimpleExample: PROGRAM

IMPORTS TTY =
BEGIN

OPEN A: Ascii;
h: TTY.Handle;

Mesa Language Man ual

TTY.PutChar(h, A.ControlGl; -- ring the bell

END.

B.1.3 Module naming

All module source file names have the extension ".mesa".

ObjectSupport. mesa
ObjectSupportI mpl. mesa
ListSortRef mesa
SimpleExample. mesa

A DEFINITIONS module does not need any standard suffix on its name.

NSString: DEFINITIONS = .
TIP: DEFINITIONS = .. .
Space: DEFINITIONS = .. .
MFile: DEFINITIONS = .. .

B

A DEFINITIONS module that contains an interface and types used internally in a package but
not exported to the world-at-large often has a name that ends in "Ops."

WindowOps: DEFINITIONS = .
TajoOps: DEFINITIONS = . "

A PROGRAM or MONITOR module name should have the suffix "Imp1" or "Pack" if its name
without the suffix would conflict with the name of a DEFINITIONS module.

ObjectSupport: DEFINITIONS = ...
ObjectSupportlmpl: PROGRAM

EXPORTS ObjectSupport = ...
-- name would conflict with
-- ObjectSupport without Impl

ObjectMachinery: PROGRAM

Fun: PROGRAM =
-- name doesn't conflict with ObjectS upport
-- name conflicts with nothing

A CONFIGURATION file name should have the extension ".config".

FileSystem.config
Spy.config
Compiler.config

A CONFIGURATION module does not need any standard suffix on its name.

FileSystem: CONFIGURATION

EXPORTS MFile = ...
Spy: CONFIGURATION

EXPORTS SpyOps = ...
Compiler: CONFIGURATION

EXPORTS CompilerOps = ...

B-3

B

B.2 Types

8-4

Programming conventions

Name types, subranges, enumerated types, and records rather than defining their
anonymous counterparts. This is especially true in definitions modules.

Decklndex: TYPE = [0 .. 52);
CardDeck: TYPE = ARRAY Decklndex OF Card;
CardDeck: TYPE = ARRAY [0 .. 52) OF Card;

-- yes

-- no

Use closed lower bounds starting at 0 and open upper bounds for interval types.

[0 .. NumberOfltems) -- preferred form
FOR i IN [O .. n) DO IF ali] = a[nl THEN ... ENDLOOP;

Use positional notation for single-component argument lists, record constructors and
extractors provided the arguments have appropriate names and incompatible types.

MFile.Release (file);
execOut.Number [column, columnFormat);

Use a keyword form if the arguments are inappropriately named (and you can't change
the names), or if there are manifest constants which are not self explanatory (numbers,
TRUE, FALSE):

String.StringToNumber[s: Name, radix: 10];

String.StringToNumber[name, 10);

Time.AppendCurrent[s: string, zone: TRUE);

Time.AppendCurrent[string, TRUE];

-- yes
-- no
-- yes

-- no

Use the keyword form when there are two or more constituents if some constituents have
equivalent types. Keyword form should be used when most components are being
defaulted and only a few given values:

stream.Put[
block: [blockPointer: p, startlndex:O, stoplndexPlusOne: nBytes],
endRecord: FALSE);

[parent: parent, mapped: mapped1 ~ Space. GetAttrib utes[space); -- yes
[parent",,,mapped] ~ Space.GetAttributes(space); -- no

N arne procedure parameters in the definitions of procedure types in DEFINITIONS modules:

ExecProc: TYPE = PROC [h:Handle, cleintData: LONG POINTER +- NILI

RETURNS [outcome: Outcome ~ normal];

N arne procedure result fields, especially if there is more than one field or one of the fields
has boolean type (naming can define the sense of the boolean) ..

GetTimes: PROC [h: Handle) RETURNS [create, write, read: Time.packed];
Finditem: PROC [k: Key) RETURNS [v: Value, found: BOOLEAN);

Mesa Language Manual B

It is acceptable to omit the name of a single result when its meaning is perfectly clear:

[sReady: PROC [h: Handlel RETURNS [BOOLEAN); -- PRocname sets sense of BOOLEAN

Procedures with a single argument returning a single result may be named using the
following convention:

< ResultTypeN ame > From < ArgumentTypeN ame >: PROC [a: Argume ntTypeN ame)
RETURNS [r: ResultTypeNamel; e.g.,

PageFromLongPointer: PROC [ptr: LONG POINTER) RETURNS [page: Page);

B.3 Exceptions: SIGNALS and ERRORS

B.3.1 General

Use ENDCASE only to generate an ERROR or to treat "none of the above," but not to handle
specific cases.

Color: TYPE = {red, orange, yellow, green, blue, violet};
c: Color;
button: [0 .. 2);
invalidButtonColor: ERROR = CODE;

button +- SELECT c FROM

red = > 0,
yellow = > 1,
blue = > 2,
ENDCASE = > ERROR invalidButtonColor;

Use SIGNAL or ERROR when generating a SIGNAL or ERROR;

SIGNALfoo;

ERRORglich;

foo;

Avoid using the anonymous ERROR.

-- yes
-- yes
-- no

Signals that return results should pass enough information such that any catcher on the
stack can react to the signal. If a catcher wishes to resolve a problem it should have
enough information to do so.

BufferTooSmall: SIGNAL [offender: Buffer, lengthNeeded: CARDINAL)

RETURNS [newBuffer: Buffer);

Care should be taken with signals that move data structures to be sure that intermediate
procedure instances don't hold onto the address of the old one. See the discussion in
subsection 8.2.5.

8-5

B Programming con ventions

8.3.2 In DEFINITIONS modules

Declare ERRORS as ERRORS and SIGNALs as SIGNALS. Don't declare a SIGNAL and then generate
an ERROR with it at run time.

Try to define a small number of ERRORS and SIGNALS in an interface. :'-formally define a
single ERROR or SIGNAL with a parameter to distinguish the exact reason for it. Only use
separate signals when they must have different types for reasons of resumption.

Error: ERROR [stream: Handle, code: ErrorCode);
ErrorCode: TYPE = {invalidHandle, indexOutO/Range, invalidOperation,

/ileTooLong, /ileNotAvailable, invalid, other};
IOSignal: SIGNAL [sc: SignalCode);
SignalCode: TYPE = {emptyBuffer, unmatchedLeftParen, unmatchedStringDelim,

rubout, unprintable Value. typeMismatch, unknownFormat};
StringBoundsFault: SIGNAL (text: LONG STRING) RETURNS [LONG STRING);

8.3.3 In PROGRAM modules

Only exceptions that are part of the abstraction should emanate from a module. Don't let
exceptions that are "part of" the interfaces of invoked routines excape: handle them
completely within your abstraction, or transform them into exceptions that are part of
your interface (Le., insulate your clients from details of your implementation).

... inputN umber - SelectN umber[
!String.InvalidNumber = > finputNumber -0; CONTINUE}];

Private signals may be used for error conditions which can not be handled by the client:

LogicError: PRIVATE ERROR = CODE;

IF Factorial[4] # 24 THEN ERROR LogicError;

B.4 Module histories

B-6

Introduce the module with one or more comment lines giving the name of the module, the
name of the person who last edited it, and the time when the edit was made.

Very Brief:

-Foo.Mesa 21-Apr-83 By DKnutsen

Brief:

- FILE: OnlineMergSortReflmpl.mesa
-- Last Edited by MBrown on March 9, 82 5:02 pm

Keep a CHANGE LOG at the end of each source module for keeping track of who first
created the module, who has changed it, why it was changed, and when.

Mesa Language Manual

END.

CHANGE LOG

17-Mar-82 17:11:48

23-Aug-82 11: 43: 17

31-Mar-83 9:50:11

DKnutsen

Luniewskl

DKnutsen

-- space. mesa

Created file from Space.mesa of a-Aug-81

Mods for long page numbers and counts

Result of Map and MapAtwas named wrong. Get Page< = >LongPolnter from I'nvlronment.

6-Jul-83 17:2:42 DKnutsen ActivateProc arg IS PROCEDURE, not UNSPECIFIED

8.5 Documentation of definitions modules

B

If a definitions module has no separate documentation, the documentation should be in
the module itself immediately following each item defined. This is typical and convenient
for private definitions files, where the module may be recompiled if it is necessary to
update the documentation. Such a self-documenting definitions file should have complete
descriptions of procedures and signals, with attention to special cases and error conditions
and actions. The module should also contain a conceptual overview, as necessary.

Sort: PROC[

itemList: ItemList,
compare: Proc[ltem, Item} RETURNS [Comparison]] RETURNS [ltemList};

-- Destructive sort of itemList; returns sorted list containing the same
-- items. The order of equal items is not preserved.

If a definitions module has separate documentation, the declarations in the module may
have either no embedded documentation or perhaps terse notes and reminders. This is
typical and convenient for public definitions files, where recompiling the interface to
correct or improve the documentation would be unacceptable.

B.6 Module organization

Significant parameters in the implementation should be named and declared first in the
module.

In general, organize procedures alphabetically. If there are important reasons for
grouping procedures, alphabetize within groups.

B.7 Layout

Write statements one per line, unless several simple statements which together perform a
single function will fit on one line.

Indent the labels of a SELECT (including the ENDCASE) one level, and the statements a second
level (unless a statement will fit on the same line with the label).

8-7

B Programming conventions

SELECT predecessor FROM

NIL = > {listElt.next +-list.first; list. first +-listElt};
list. last = >

BEGIN

list.last.next +-listElt;
list. last +-listElt;
listElt.next +- NIL;

END;

ENDCASE = >
BEGIN

listElt.next +-predecessor. next;
predecessor. next +-listElt;
END;

Indent one level for the statement following a THEN or ELSE (unless it fits on the same line).
Put THEN on the same line with IF, and don't indent ELSE with respect to IF. If the statement
following ELSE is another IF, write both on the same line.

IF (order = userSuppliedl THEN

BEGIN

IF (orderPredicate = NIL) OR (matchPredicate = Nil) THEN RETURN[Nll);

END

ELSE IF rnatchPredicate = NIL THEN matchPredicate +- Equal;

Indent one level for each compound BEGIN-END, DO-ENDlOOP, or bracket pair in a record
declaration.

When the rules for IF and SELECT call for indenting a statement, do not indent an extra level
for a BEGIN.

It is fine to put a compound statement or loop on a single line if it will fit.

If a statement won't fit on a single line, indent the continuation line(s) by one level.

Among other things, these rules have the property that they allow a program to be easily
converted to a form in which the bracketing is implied by the indentation.

Running a source file through the Formatter will give it a "standard" indentation.

B.8 Spaces

B-8

The following rules for spaces should be broken when necessary, but are a good general
guide:

A space after a comma, semicolon, or colon, and none before

No spaces immediately inside bracJ<ets or parentheses

NC? spaces around single-character operations: *,., etc., except for +-.

Mesa Language Manual

B.9 Miscellaneous

SELECT i*j + k FROM

1, IN [7 .. 10) = > {varl - 10, var2 - 20};
2,5, > 10 = > Statementl;
ENDCASE;

B

You may use { ... } for blocks of up to three lines; they typically should only be used on
innermost blocks. Use BEGIN END for longer and enclosing blocks.

Brackets should always be used when calling procedures with no parameters.

proc WithN oParameters;
procWithNoParameters[];

_. no
•• yes

Do not use t with the "" or array indexing operators. Let the compiler do the
dereferencing for you.

Person: TYPE = RECORD

[

age:(0 .. 200),
sex: {male, female},
party: {Democratic, Republican}
];

winner: POINTER TO Person;

winner.party - Democratic; -- winner t .party - Democratic;

actualArray: ARRAY [0 .. 20) OF INTEGER;

arrayPtr: POINTER TO ARRAY [0 .. 20) OF INTEGER - @actualArray;
arrayFinger: POINTER TO POINTER TO ARRAY [0 .. 20) OF INTEGER -@arrayPtr;
actualArray[l] - 3; -- two equivalent statements follow
arrayPtr(1] - 3; -- arrayPtr t (1) - 3
arrayFinger(1] - 3; -- arrayFinger t t (1] - 3

Use SELECT TRUE instead of a long chain OfIF ... ELSE IF ... ELSE IF ... ;

SELECT TRUE FROM

conditionl = > {lengthy consequencel};
condition2 = > {lengthy consequence2};

ENDCASE = > BEGIN ... END;

Always use USING in the DIRECTORY clause. It is sometimes convenient to omit USING clauses
when the program is undergoing massive development, and then use a program called the
Lister to generate them when the program stabilizes. See the Mesa User's Guide for
instructions on how to run the Lister.

B-9

c

Mesa machine dependencies

This appendix contains a number of machine-dependent constants and definitions for the
implementation of Mesa.

C.l Numeric limits

The numeric limits are the following:

FIRST [INTEGER] - 32768 = - 215 and has internal representation 100000B
LAST [INTEGER] = 32767 = 215 - 1 and has internal representation 077777B
LAST [CARDINAL) = 65535 = 216_1 and has internal representation 177777B
FIRST[LDNGINTEGER] = -2147483648 = _231
LAST [LONG INTEGER] = 2147483647 = 231 _1
LAST [LONG CARDINAL] = 4294967295 = 232 - 1

C.2 ASCII character set and ordering of character values

The following list gives the characters of the ASCII character set in increasing order,
accompanied by their literal representations. Control characters are represented as t a.
In addition, a number of special characters such as SP (space), DEL (rubout) are denoted
by their generally accepted names.

Octal Character Octal Character
Value Name(s) Value Name(s)

OOOC NUL lOOC '@
00lC tA 10lC 'A
002C tB 102C 'B
003C tc lO3C ·C
004C to 104C '0
OOSC tE IOSC 'E
006C tF I06C 'F
007C tG,BELL I07C 'G
OIOC tH,BS llOC 'H
OllC tI UIC 'I
Ol2C tJ,LF 112C 'J
Ol3C tK H3C 'K
Ol4C tL 114C 'L
01SC tM,CR USC 'M
Ol6C tN U6C 'N
Ol7C to 117C '0

--
C-l

C Mesa Machine Dependencies

020C tP l20C 'p
021C tQ l2lC 'Q
022C tR 122C 'R
023C is l23C 'S
024C iT 124C 'T
025C tu l25e 'U
026C jV l26e 'V
027C tw 127C 'W
030C tx 130C 'X
03lC ty 13lC 'Y
032C tz 132C 'Z
033C ESC l33C '(

034C 134C '\
035C l35C 'J
036C l36C . t
037C l37C '-040C ' ,SPace 140C
041C '! 141C 'a
042C l42C 'b
043C 'II 143C 'c
044C '$ 144C 'd
045C '% 145C 'e
046C '& 146C 'f
047C ", a single quote 147C 'g
050C '(150C 'h
051C ') I5lC 'j

052C '. 152C 'j
053C '+ 153C 'k
054C , 154C '1
055C

, 155C 'm
056C 156C 'n
057C '/ 157C '0

060C '0 lSOC 'p
06lC '1 ISIC 'q
062C '2 lS2C 'r
063C '3 163C 's
064C '4 164C 't
OS5C 's lS5C 'u
066C 'S 166C 'v
067C '7 167C 'w
070C '8 l70C 'x
071C '9 I71C 'y
072C " 172C 'z
073C " 173C '{ ,
074C '< I74C "
075C '= 175C '}
076C '> 176C '-
077C '? I77C DEL

C-2

D

Binder Extensions

The implementation of the Mesa binder provides two extensions for controlling the space
occupied by Mesa programs at runtime. These are specified with the CPacking and Clinks
clauses (section 7.7).

0.1 Code packing

It is possible to pack together the code for several modules into a single segment. This is
useful for two reasons:

Since the code is allocated an integral number of pages, there is some wasted space
in the last page (''breakage''). If several modules are combined into a single
segment, the breakage is amortized over all the modules, and there is less waste on
the average.

All the modules will be brought into and out of memory together, as a unit; a
reference to any module in the pack will cause all the code to be brought in.
Modules which are tightly coupled dynamically are good candidates for packing (for
example, resident code should probably always be packed).

Of course, it is possible to "over pack" a configuration; the segments might become so large
that there will never be room in memory for more than one of them at a time (this should
remind you of an overlay system). Packing is a tradeoff, and should be used with caution.

0.1.1 Syntax

The segments are specified at the beginning of the configuration by giving a list of the
modules which comprise each one. Any number of PACK statements may appear. The scope
of the packing specification is the whole configuration, and not subconfigurations or
individual module instances, because there is at most one copy of a module's code in any
configuration.

ConfigDescri pti on

CPacking

CPacklist

:: = Directory CPacking Configuration.

:: = empty I CPackSeries;

:: = PACK Idlist

0-1

D Binder Extensions

CPackSeries ::. CPackList I CPackSeries ; CPackList

Each PackList defines a single segment~ the code for all the modules in the IdUst will be
packed into it. The identifiers in the IdList must refer to modules in the configuration, and
not to module instances; it is the code and not the global frames that are being packed (the
frames are always packed when they are allocated by the loader).

It is illegal to specify the same module in more than one Pack List. Even though there may
be mUltiple instances of the module (Le., multiple global frames) in the configuration, the
code is shared by all of them, and therefore can only appear in one pack.

Finally, it is perfectly fine to reach inside a previously bound configuration that is being
instantiated and single out some or all of its modules for packing. Of course, you must
know something about the structure of that configuration in order to do this.

0.1.2 Restrictions

Obviously, the PACK statements apply only if the code is being moved to the output file;
otherwise, the pack lists are ignored (and no warning message is given). This allows the
programmer to debug the configuration without shuffling the code from file to file, thereby
saving time. When making the final version, the packing can be effected with a binder
switch, without having to modify the source of the configuration. description.

Once some modules have been packed together, they cannot be taken apart and repacked
with other modules later on, when they are bound into some other configuration.

Fine point:

If a previously bound configuration contains a pack, referencing any module of the pack gets the whole
thing. So it is possible to pack a module and a pack together, or even to pack two packs. It is never
possible to unpack a pack.

In general, code packing should be specified only to the extent that no unpacking will ever
be desired. Once the packing is done, it can't be undone, unless you start over with the
individual modules.

D.2 Externallinks

D-2

In previous Mesa systems, links to the externals referenced by a program (imported
procedures, signals, errors, frames, and programs) were always stored in the module's
global frame. This allows each instance of a module to be bound differently, and it allows
binding to be done at runtime without modification of the module's code segment.
However, it has two drawbacks:

The links are only referenced by the module's code, and are therefore not needed
when the code is swapped out. Hence, the links logically belong in the code
segment.

If two instances of a module are bound identically (the usual case), the links must be
stored twice.

Mesa Language Manual D

Fine Point:

To determine the amount of space required for external links. see the compiler's typescript file.
Each link occupies two words.

The Mesa binder optionally places links in the code segment. This option is enabled by
constructs in the configuration language, and is further controlled by binder and loader
switches.

0.2.1 Syntax

For each component of a configuration, the link location is specified using the LINKS

construct defined below. The default is frame links.

Clinks :: =- empty I LINKS: CODE I LINKS: FRAME

A link specification can optionally be attached to each instantiation of a module,
overriding the current default, so that the link location can be different for each instance.

CRightSide :: =- Item litem [] Clinks litem [ldList] Clinks

Alternately, the link option can be specified in the configuration header. This merely
changes the default option for the configuration; it will apply to all components (including
nested configurations) unless it is explicitly overridden.

CHead :: = CONFIGURATION Clinks Imports CExports ControlClause

This construction works much like the PUBLIC / PRIVATE options in Mesa, and it nests in the
same way. A link option attached to a configuration changes the default for all
components within it, but that default can be overriden for a particular module (or nested
configuration) by specifying a different link option.

0.2.2 Restrictions

This scheme has the consequence that, ira module with code links has multiple instances,
each instance must be bound the same.

As with code packing, the code links option takes effect only when the code is being moved
to the output file. At this point, the binder will make room for the links as it copies the
code if any module sharing that code has requested code links. Again, this allows a
programmer to debug without the expense of moving the code (using frame links), and
then to effect the code links option with a binder switch, without changing the source of
the configuration description.

Fine point:

Once space for code links has been added to a configuration, it cannot be undone by a later binding. On
the other hand, space for code links can always be added to a (previously bound) configuration, even if it
did not specify code links in its description.

Using code links has one drawback: it slows down the binding and loading process, as the
code must be swapped in and rewritten. The binder must make room in the code segment
for the links, as described above. And because the loader resolves imports of previously

D-3

D

0-4

Binder Extensions

loaded modules, as well as the imports of the module being loaded, it may have to swap in
(and perhaps update and swapout) the code segment for every module in the system.

Fine point:

If a module that is part of the boot file has unresolved code links. they get tilled in when the exporting
module is loaded. Unfortunately, they stay tilled in when the system is booted again, even though the
implementation has not been loaded yet. Modules built into the boot tile should not have unresolved code

links.

Because of the overhead involved, the loader will not automatically attempt to use code
links, even if the space is available in the code segment. A loader switch must be used to
effect this option.

Documentation of binder and loader switches is in the Executive section of the Mesa User's
Guide.

E

Mesa reserved words

Listed below are all of the Mesa reserved words. Words marked with an astrisk are
predeclared rather than reserved. Predeclared identifiers can be redefined (but seldom
should be).

ABORTED EXPORTS

ABS FALSE

ALL FINISHED

AND FIRST

ANY FOR

APPLY FORK

ARRAY FRAME

BASE FREE

BEGIN FROM

BOOl GO

BOOLEAN GOTO

BROADCAST IF

CARDINAL IMPORTS

CHAR IN

CHARACTER INLINE

CODE INT

COMPUTED INTEGER

CONDITION* INTERNAL

CONTINUE ISTYPE

DECREASING JOIN

DEFINInONS LAST

DEPENDENT LENGTH

DESCRIPTOR LOCKS

DIRECTORY LONG

DO lOOP

ELSE LOOPHOLE

ENABLE MACHINE

END MAX

ENDCASE MDSZone

ENDLOOP MIN

ENTRY MOD

ERROR MONITORED

EXIT MONITOR

EXITS MONITORLOCK*

E-l

E Mesa Reserve Words

NARROW RETRY

NAT RETURN

NATURAL RETURNS

NEW SELECT

Nil" SEQUENCE

NOT SHARES

NOTIFY SIGNAL

NULL SIZE

OF START

OPEN STATE

OR STOP

ORO STRING

ORDERED StringBody"

OVERLAID SUCC

PACKED THEN

POINTER THROUGH

PORT TRANSFER

PRED TRASH

PRIVATE TRUE"

PROC TYPE

PROCEDURE UNCOUNTED

PROCESS UNSPECIFIED*

PROGRAM UNTIL

PUBLIC UNWIND"

READONLY USING
REAL" VAL

RECORD VAR

REJECT WAIT

RELATIVE WHilE

REPEAT WITH

RESIDENT WORD'"

RESTART ZONE

RESUME

E-2

F

Collected grammar

Mesa is a living language which has undergone many changes since its initial
implementations. Extensions and refinements continue to be made. Consequently, the
BNF which is found in the chapters of this manual may not reflect the current state of
Mesa syntax. The included BNF, and accompanying explanations, is our strategy for
describing Mesa language concepts accurately. However, the "official" grammar used by
the parser of the Mesa 11.0 compiler has been reproduced in its entirety below. This
grammar accepts a superset of valid Mesa programs. A subsequent pass of the compiler
corrects this deficiency.

compiiationUnit :: . directory identlist proghead block.
I directory identlist defhead defbody .

defbody ::= BEGIN open declist END

I BEGIN open declist; END

I { open declist }
I { open declist ; }

defhead ::= DEFINITIONS locks imports shares = public

directory ::. empty
I DIRECTORY;

I DIRECTORY includelist ;

exports :: II empty
I EXPORTS

I EXPORTS modulelist

idlist :: - id
\ id, idlist

imports :: - empty
\ IMPORTS

\ IMPORTS modulelist

includeitem ::- id : FROM string using
I id : TYPE using

-
F-l

F Collected grammar

I id using
lid: TYPEid using

includelist :: . includeitem
I includelist, includeitem

interface :: . imports exports shares

locks :: II empty
I LOCKS primary lambda

lambda :: . empty
I USING ident typeexp

moduleitem ::. id
lid: id

modulelist :: . moduleitem
I modulelist, moduleitem

proghead :: . PROGRAM arguments interface II public
I MONITOR arguments locks interface = public

shares :: . empty
I SHARES idlist

using :: . empty
I USING[]
I USING [idlist]

typeexp :: . id
I predefinedtype
Itypeid
I typecons

arglist " empty
I fieldlist

arguments :: II arglist returnlist

base :: II empty
I BASE

bounds ::. exp .. exp

default :: II empty
I ~defaultopt

defaultopt :: II empty
I TRASH
I NULL

F-2

Mesa Language Manual

dependent

element

elementlist

elementlist'

fieldlist

identlist

indextype

interval

length

monitored

optbits

ordered

packed

pairitem

pairlist

:: :I

:: ..

:: .
:: ..

:: ..

:: ..

:: =-

:: ..

:: =

:: ..

:: ..

:: :I

:: ..
.. -.. -
:: ..

F

I exp 'I TRASH -- second I embeded puncutation
I exp 'I NULL -- second I embeded pl.!ncutation
lexp

empty
I MACHINE DEPENDENT

id (exp)
I (exp)
lid

empty
I elementlist'

element
I elementlist' , element

[]
I [pairlist]
I [typelist]

id:
I id position:
I id , identlist
I id position, identlist

empty
I typeexp

[bounds]
I [bounds)
I (bounds]
I (bounds)

[exp]

empty
I MONITORED

empty
I: bounds

empty
I ORDERED

empty
\ PACKED

identlist public typeexp default

pairitem
\ pairlist. pairitem

F-3

F Collected grammar

predefinedtype ::. BOOL -- equivalent to BOOLEAN
I BOOLEAN
I CARDINAL
I CHAR -- equivalent to CHARACTER
I CHARACTER

liNT -- equivalent to LONG INTEGER
I INTEGER
INAT -- equivalent to NATURAL
I NATURAL
I REAL
I CONDITION
IMDSZone
I MONITORLOCK
I STRING
I String Body
I UNSPEOFIED
I WORD

pointerprefix :: . POINTER
I POINTER interval

poi ntertype :: . pointerprefix
I pointerprefix TO readonly typeexp

position :: . (exp opt bits)

public :: . empty
I PUBLIC
I PRIVATE

readonly :: . empty
IREADONLY

reclist :: . []
I NULL
I [pairlist]
I [typelist]
I [pairlist • variantpair]
I [variantpart default]
I [variantpair]

returnlist :: . empty
I RETURNS fieldlist

tagtype :: . *
Itypeexp

transfermode :: . PROCEDURE
IPROC
I PORT
I SIGNAL
I ERROR

F-4

Mesa Language Manual F

I PROCESS
I PROGRAM

typeappl :: .. typeappl. id
I id length
I typeid length
I typeappl length

typecons .. - interval .. -
id interval
typeid interval
dependent { elementlist }
dependent monitored RECORO reclist
ordered base pointertype
vARtypeexp
packed ARRAY indextype OF typeexp
DESCRIPTOR FOR readonly typeexp
transfermode arguments
id RELATIVE typeexp
typeid RELATIVE typeexp
UNCOUNTEO ZONE
LONG typeexp
FRAME [id]
typeappl

typeid :: == idid
lid typeid
I typeid'

typeid' .. id. id ..
I typeid' . id

typelist :: == typecons default
I typeid default
lid
I id defaultopt
I typecons default. typelist
I typeid default. typelist
I id • typelist
I id defaultopt • typelist

variantitem :: == idlist = > reclist

variantlist :: = variantitem
I variantlist • variantitem

variantpair :: .. identlist public variantpart default

variantpart .. - SELECT vcasehead FROM variantlist ENDCASE .. -
I SELECT vcasehead FROM variantlist, ENDCASE
I packed SEQUENCE vcasehead OF typeexp

F-5

F Collected grammar

vcasehead

statement

balstmt

basicstmt

binditem

bindlist

block

case head

F-6

::. ident public tagtype
I COMPUTEO tagtype
I OVERLAID tagtype

:: . IF exp THEN statement
IIF exp THEN balstmt ELSE statement
I casehead casestmtlist ENDCASE • > stateme!'it
I basicstmt

:: . IF exp THEN balstmt ELSE balstmt
I casehead casestmtlist ENDCASE • > balstmt
I basicstmt

:: . Ihs
Ihs 4-exp
[explist] 4- exp
block
casehead casestmtlist ENDCASE
forclause dotest DO scope doexit ENDLOOP
EXIT
LOOP
GOToid
GOToid
RETURN optargs
transfer Ihs
Ihs. FREE [exp optcatch]
WAITlhs
ERROR
STOP
NULL
RESUME optargs
REJECT

I CONTINUE
I RETRY
Ilhs 4- STATE
I STATE 4-lhs

:: = exp
lid: exp

::- binditem
I bindlist , binditem

:: . BEGIN scope exits END
I { scope exits}

:: . SELECT exp FROM
I WITH binditem SELECToptexp FROM

Mesa Language Manual F

caselabel :: ,. ident typeexp
I caselabel'

caselabel' :: ,. casetest
I caselabel' , casetest

casestmtitem :: :I caselabel = > statement

casestmtl ist :: :I empty
I casestmtlist'
I casestmtlist' ;

casestmtlist' :: . casestmtitem
I casestmtlist' ; casestmtitem

casetest :: :I optrelation
lexp

catchany :: :II ANY :I > statement

catchcase :: :I Ihslist = > statement

catchhead :: :I empty
I catch head catchcase ;

catchlist :: :I catch head
I catch head catchcase
I catch head catchany
I catch head catchany ;

codelist :: :I orderlist
I codelist ; orderlist

controlid :: :I ident typeexp
lid

declaration :: ,. identlist public entry readonly typeexp initialization
I identlist public TYPE = public typeexp default
I identlist public TYPE optsize

declist :: == declaration
I declist ; declaration

direction :: ,. empty
I DECREASING

doexit :: :I empty
I REPEAT exitlist
I REPEATexitlist FINISHED = > statement
I REPEAT exitlist FINISHED = > statement;

F-7

F Collected grammar

dotest :: . empty
I uNnLexp
IWHILEexp

enables ::- empty
I ENABLE catch case ;
I ENABLE catchany ;
I ENABLE BEGIN catchlist END;
I ENABLE {catchlist} ; .

entry :: = empty
I ENTRY
I INTERNAL

exititem :: . idlist = > statement

exitlist :: . empty
I exitlist'
I exitlist' ;

exitlist' :: II exititem
I exitlist' ; exititem

exits :: . empty
I EXITS exitlist

forclause :: . empty
I FOR controlid direction IN range
I FOR controlid ~ exp • exp
I THROUGH range

initialization :: . empty
I ~ initvalue

I • initvalue

initvalue :: . inline block
I CODE I MACHINE CODE BEGIN codelist END
I MACHINE CODE { codelist }
I TRASH
I NULL
lexp

inline :: II empty
IINLINE

Ihslist :: . Ihs
Ilhslist .Ihs

open :: II empty
I OPEN bindlist ;

F-8

Mesa Language Manual

optargs

optsize

scope

statementlist

statementlist'

transfer

exp

addop

caseexpitem

caseexplist

caseexplist'

conjunct

:: s

:: ,.

:: ,.

:: ,.

:: ,.

:: ,.

.. -.. -

empty
1 [explist]

Ilhs

empty
1 [exp]

open enables statementlist
1 open enables declist ; statemrntlist

empty
1 statementlist'
I statementlist' ;

statement
1 statementlist' ; statement

SIGNAL
1 ERROR
1 RETURN WITH ERROR
1 START
1 RESTART
IJOIN
1 NOTifY
1 BROADCAST
1 TRANSfER WITH
1 RETURN WITH

transferop Ihs
IIF exp THEN exp ELSE exp
1 case head caseexplist ENDCASE = > exp
Ilhs +-exp
1 [explist] +- exp
1 ERROR
1 disjunct

:: = +

1-

:: = caselabel = > exp

::,. empty
1 caseexplist'
1 caseexplist' ,

:::11 caseexpitem
1 caseexplist' , caseexpitem

:::11 conjunct AND negation
1 negation

F

F-9

F Collected grammar

desclist :: == exp • exp opttype
'Iexp

disjunct ::. disjunct OR conjunct
I conjunct

explist ::. orderlist
1 keylist

factor :: . addop primary
Iprimary

ident .. id position :
1 id:

keyitem :: . id: optexp

keylist :: . keyitem
1 keylist • key item

Ihs :: . id
1 char
1 NARROW [exp opttype optcatch]
I LOOPHOLE [exp opttype]
1 APPLY [exp • exp optcatch]
1 (exp)
Ilhs qualifier

multop :: . *
II
I MOD

negation :: . not relation
I relation

not :: .
I NOT

optcatch ::. empty
1 ! catchlist

optexp ::. empty
I TRASH

I NULL

lexp

optrelation :: . not relationtail
I relationtail

opttype . :: == empty
I. typeexp

F-IO

Mesa Language Manual F

orderlist :: :I optexp
I orderlist, optexp

prefixop :: :I LONG

lABS

IPRED

Isuec

lORD

IMIN

I MAX

IBASE

I LENGTH

primary :: :I num
Inum
flnum
string
Istring
NIL

[explist]
prefixop [orderlist]
VAL [orderlist 1
ALL [orderlist]
Ihs . NEW [typeexp initialization optcatch]
typeop [typeexp]
SIZE [typeexp]
SIZE [typeexp , exp]
ISTYPE [exp , typeexp]
@Ihs
DESCRIPTOR [desclist)
Ihs

product .. -.. - product multop factor
I factor

qualifier .. - . prefixop .. -
I·typeop
I. SIZE

I [explist optcatch 1
I·id
It

range :: :I id empty
1 id interval
1 typeid interval
1 interval
1 typeid

relation :: :I sum optrelation
Isum

F-ll

F Collected grammar

relationtail :: III IN range
I relopsum

relop :: :.II! empty

1#
1<
1<==
I>
I> ==

sum :: .. sum addop product
I product

transferop :: :111 SIGNAL

iERROR

I START

IJOIN

iNEW

iFORK

typeop :: :111 FIRST

iLAST

INIL

F-12

!,8-4
+,2-13

Index

;, see semicolon
-,2-13
--,2-3
.,3·21
::=,1-2
= >, 4-5, 8-4
@,3-32
t ,3-30
-,2-2
« ... »,2-3
abbreviated identifier, 3-1
ABS, 2-2
ABS

with unsigned operands, 3-44
Access, 7-22
access control, 7-22

global default, 7-25
in type defintions, 7-24

activation (procedure), 5-7
of nested procedures, 5-17

actual procedure, 5-9
actual tag, 6-20
AddingOperator, 2-13
address-containing type, 3-47
aggregate data type, 3-3
aggregate variable, 3-11
alignment

of arrays, 3-14
of parameter/results records, 5-4
of pointer referents, 3-34

ALL,3-46
in array constructors, 3-12, 3-15
in exports list, 7-41

allocation
of string literal, 6-3
of storage, 6-31

AlternateName, 4·12

AND,2-17
ANY, 8-3

in catch phrase, 8-7
APPLY, 5-9
argumentrecord,5-1
arguments, 5-8

relationship to parameters, 5-8
ARRAY, 6·6,3-11

as argument, 6-7
as compile-time constant, 3-16
assignment, 6-6
component type, 3-11
index type, 3-11
length of, 3-14
READONl Y, 6-6
restrictions on assignment, 4-3

array constructor, 3·12
keyword,3-16

array descriptor, 6-6
ArrayTC, 3-13
Assignation, 4-16
assignment

restrictions on, 4-3
assignment expression, 4-2, 2-18

order of evaluation, 4-3
assignment statement, 2-4, 4-2
AssignmentExpr, 4-2, 2-18
AssignmentStmt, 2-4, 4-2, 3-27
automatic dereferencing, 3-36
B,2-6
Backus-Naur Form, 1-2
balancing, 3-37
BASE, 6-9,3-15

and automatic dereferencing, 3-37
as pointer attribute, 3-33

BASE pointer, 3·35, 6-1
base type, of sub range, 3-9
BaseOption, 6-9
BCD,7-3

I-I

I

1-2

Index

BEGIN, 2·2, 4-8
binary configuration description, 7-3
BinaryTree example, 5·13
binder, 7-33
binding, 7·1

done by loader, 7-43
of imports and exports, 7-17

blank space
as separator, 2-3
in STRING, 2-3
in formatting, B-8

Block, 4·8, 4·9, 8·5
BNF,l-2
BOOLEAN, 2-6. 3·6

as element type, 3-4
BOOLEAN expression, 4-4
BOOLEAN operators, 2·17
bound variant, 6·20
bound variant types, 6-14
bounds checking, 2-10
BoundsType, 6-26
bracket pair, 4·9
BROADCAST, 9·8

when to use, 9-10
BuiltinCall,2·12
C, 2-7, 7-34
call,5·6
call by value, 5-2
Ca II Stmt, 5-6
capitalization of identifiers, B·l
CARDINAL, 2-5

as element type, 3-4
catch, 8-4
catch phrase, 8·4

location of, 8-4
scope of variables in, 8-5
with FORK or JOIN, 9-3
within a monitor, 9-18

CatchPhrase, 8·1
catch Series, 8·4
CHARACTER, 2·7

as element type, 3-4
operations on, 2-16

characterLiteral, 2·7
client, 7-29
client module, 7-5
ClMesa, 7·3

semantics ot, 7-34
syntax of, 7-34

CODE, 8-2
coercion, 3·38
comma, 4-8
comment, 2-3
CommonPart, 3·28
compatability

of procedure types, 5-5

compilation dependencies, 7-26
compilation order, 7-10
compile-time constant, 2-21

array as, 3-16
Component, 3·15
component type, 3·11
ComponentList, 3·15
ComponentType, 3-13
concurrent processes, 9-1
CONDITION, 9-8
condition variable, 9-4

covering, 9-9
updating timeout field, 4-3
timeouts, 9-11

Condition Test, 4-15
CONFIGURATION, 7-34
configuration

control, 7~45
default names in, 7-38
instance of, 7-33
nested,7-41
self-contained, 7-34

configuration description, 7-33
configuration language, 7-29
configuration prototype, 7-35
conformance

of array types, 3-13
of pointers, 3-33
of procedure arguments, 5-8·
of procedure types, 5-5
of subranges, 3-9
of types, 2-4

conformance relations, 2-10
Conjunction, 2-17
constant, 2-4

compile-time, 2-21
identifier, 3-5
run time, 7-12

Constructor, 3-15
constructor

keyword,5-10
CONTINUE, 8·10
CONTROL, 7-34
control configuration, 7-45
control module, 7-3, 7-44
control variable, 4·17
ControlVariable, 4-16
0,2-6
dangling reference, 3-32

in binding, 7-2
data type

aggregate, 3-3
constructed, 3-1

deadlock, 9-9
Declaration, 3·1, 2·22
DeclarationSeries, 4·9

Mesa Language Manual

DECREASING, 4-16
defaults

extended, 3-45
for global access, 7-25
for procedure arguments, 7-14
in an elided/omitted field, 3-24
in argument/result records, 5·12
in parameter list, 5-4
of procedure arguments, 5-6
in record type, 3-17
in record field, 3·24
in result list, 5-4
inheritance of, 3-45
of elided/omitted component, 3-46
of built-in types, 3-45

DefaultOption, 3-18
DefaultSpecification, 3-25
defining occurrences, 7-9
DEFINITIONS, 5-16
DEFINITIONS module, 7·1, 7-5, 7-6
dereferencing, 3-30
DESCRIPTOR, 6-6, 3-15
DescriptorTC, 6·6
determining representation, 3·42
Direction, 4-16
DIRECTORY, 7·4, 5-16

CMesa, 7-35
Disjunction, 2·17
00,2-2,4·15
dot notation, 2-19,3·7

and interface items, 7-28
discriminated variant types, 6-23
with unary operators, 2-20

dynamic array, 6-6
Element, 3·7
element type, 3·3
ElementList, 3·7
ElementType, 3-4
elision

in result record, 5-12
of array component, 3-15
of element in returns list, 5-10
of record component, 3-23

ELSE, 2-2, 4-3
ElseClause, 4-3
empty, 1-2,3-15
empty constructor, 5-7
empty extractor, 3-27
empty interval, 3-14
ENABLE, 8-4, 8-5

scope of, 8-5
EnableClause. 8-5
END, 2-2, 4-8
ENDCASE, 4-7

guidelines for use, B-5
ENDLOOP, 2-2, 4-15

ENTRY attribute, 9-7
entry procedure

declaration of, 9-6
INLlNE,9-17
JOIN statement in, 9-8

enumerated type, 3·5
ordered, 3-6

enumeration, 3-3
machine dependent, 3-7
sparse, 3-8

EnumerationTC, 3-5
equivalence

ofarraytypes,3-13
of pointers, 3-33
of procedure types, 5-5
of record types, 7-11
of sub ranges, 3-9
of types, 2-9

ERROR, 8·1
omission of keyword, 8-3
unnamed, 8-3

ErrorCall, 8·2
EXIT, 4-18, 4-19

in catch phrase, 8-8
EXITS, 4-10
ExitsClause, 8-5, 4·10
ExitSeries, 4·10
ExitStmt, 4·19
expansion

of IN LINE procedure, 5-18
exporting, 7·2

explicit renaming, 7-36
of interface, 7-20
of program module, 7-20
oftype, 7·25

export record, 7-2
EXPORTS, 7·4

C/Mesa, 7-35
EXPORTS ALL, 7·41
ExprChoiceList, 4·8
Expression, 4·1, 2·12
expression

BOOLEAN, 4-4
assignment, 4-2
SELECT,4-8

extended defaults, 3-45
Extractltem, 3·27
Extractor, 3·26
extractor, 3·26

type of, 3-38
Factor, 2·13
field list, 3·17

named, 3-17, 5-10
unnamed, 3-17

field name, 3-17
FieldDescription, 3-18,7-23

I

1-3

I

1-4

Index

Fieldld,3-28
FieldldList, 3-28
FieldList, 3-18
FieldPosition, 3·28
FinalStmtChoice, 4-6
FINISHED, 4-18
FinishedExit, 4-18
FIRST, 3-6, 2·20
floating point, 2·8
FOR, 4-16
FORK, 9-2

target of, 9-8
ForkCall,9-3
FRAME,7-5
frame, 4-9
FREE, 6-1, 6-32
free conformance, 3-41

of arrays, 3-13
of pointers, 3-33
of procedure types, 5-5

FROM, 4-6, 7·4
FunctionCall,2·12
fundamental operation, 2-5

on procedure types, 5-4
on strings, 6-3
standard implementation of, 7-26

GeD,2-1
global frame, 7-5

allocation of, 7-33
allocation ofliterals from, 6-3

GlobalAccess, 7-22, 7-25
GOTO, 4-18

in catch phrase, 8-8
GOTO statement, 4-9
GotoStmt,4-10
H,2-6
home module, 7-22
identUier, 1-3,3-3

abbreviated, 3-1
capitalization of, B-1
case ofletters, 2-3
predeclared, 2-12

identifier, 2-3
identUier constant, 3-5
identUier list, 2-4
IdList, 2-4-3
IF, 2-2,4·3
IF expression, 4-4

target type of, 3-38
IF statement, 4·3

order of evaluation, 4-4
IfExpr, 4-4
IfStmt, 4·3
implementor, 7-29
importing, 7-1

explicit, 7-21

implicit, 7-21
in DEFINITIONS modules, 7-21
explicit renaming, 7-36

IMPORTS, 7·4
C/Mesa, 7-35

ImportsList, 7-21
IN, 2.16, 4-16

balancing and, 3-41
Includeltem, 7-6
mdentation

guidelines for, B-7
index type, 3·11
indexed reference, 3-12
IndexedReference, 3-14, 3-33
IndexType, 3·13
inherent type, 3-37
InitialExpr, 4·16
Initialization, 5-9, 2-22
initialization, 2-20

of monitor, 9-19
of monitored record, 9-19
of relative pointers, 6-12
of signal, 8-2

INUNE,5-9
inUne procedures, 5-3, 5-18

efficiency of, 7-16
expansion of, 5-18
in interface, 7-14

InlineOption, 5·9
instance

of configuration, 7-33
INTEGER, 2-2

as element type, 3-4
declaration of, 2-4

interface, 7-1
exporting, 7-20
system, 7-30

interface item, 7-12
interface record, 7·2

vs. interface type, 7-17
interface type, 7·17
INTERNAL, 9-7
internal procedure

declaration of, 9-6
Interval, 2-16
interval

empty, 2-17
ISTVPE, 3-39
Iteration, 4-16
IterativeControl,4-15
JOIN, 9-2
JOIN statement

in entry procedure, 9-8
JoinCall,9·3
jump table, 4-7
keyword array constructor, 3-16

Mesa Language Manual

keyword constructor, 3·22, 5-10
keyword extractors, 5-10
keyword name, 3-23
KeywordComponent, 3·22
KeywordComponentList, 3·22
KeywordExtract, 3·27
KeywordExtractList, 3·27
Label,4.10
LAST, 3·6, 2·20
Leftltem, 4·6
LeftSide, 2·4·3
LENGTH, 3-15
length,6-1
lexical unit, 2-3
link,7·33
LINKS, 7·34
Literal, 2·12
loading, 7·33
local frame

allocation of literals from, 6-3
local procedures, 5-17
local variables, 5-2
lock, monitor, 9-4
LOCKS, 9·12
LOCKS clause, 9-14
LocksClause, 9·12
LONG, 2·14, 3·35
LONG CARDINAL, 2·7
LONG DESCRIPTOR, 6·8
LONG INTEGER, 2·7
LONG POINTER, 3·30
LONG STRING, 6·5
LongTC, 6·8, 3·35
LOOP, 4·19

in catch phrase, 8-8
loop body, 4-15
loop control, 4·15

direction, 4-17
LOOP statement, 4-19
loop termination

conditional, 4-17
forcible, 4-17
normal,4-17

LDopCloseStmt, 4·19
LoopControl,4·15
LoopExits, 4·18
LoopExitsCtause, 4·18
LOOPHOLE, 3·39
LDopRange, 4·16

evaluation of bounds, 4-17
LoopStmt, 4-15
MACHINE DEPENDENT enumeration, 3-7
MACHINE DEPENDENT record, 3-20

positional form, 3-29
MACHINE DEPENDENT SEQUENCE, 6-27
MachineDependent, 3·7

main data space, 3-30
mainline code, 7-43
MAX, 2·13

balancing, 3-41
maxlength

of string, 6·1
MDS, 3-30
MDSZone,6·31
MIN,2·13

balancing, 3-41
MOO, 2·2, 2-13
module, 7·1

accessing items in, 7-7
atomic, 7-33
change log for, B-6
copy of, 7-42

• DEFINITIONS, 7-5, 7-6
format of, B-7
indentation of, B-7
monitor, 9-6
naming conventions, B-2
OPENing, 4-13
organization of, B-7
privileged,7-22
program, 7-1
RESTARTing, 7-44
STARTing, 7-43
sToPping, 7-44

MONITOR, 7-5, 9·6
monitor, 9-4

deadlocked, 9-8
entry procedure, 9-6
external procedure, 9-6
initialization of, 9-19
internal procedure, 9-6
module

declaration of, 9-6
structure of, 9-7

multi-module, 9-13
object, 9-13

monitor lock, 9-4
and UNWIND, 9-18
exported,9-15
restrictions on assignment, 4-3
updating of, 9-13

MONITORLOCK, 9-5, 2-22, 9-12
MONITORED RECORD, 9-12, 9-14

initialization of, 9-19
multiple implementors, 7-40
MultiplyingOperator, 2-13
name scope, 7-9, 3-21
named field list, 5-10

as result list, 5-10
NamedField, 3-28
NamedFieldList, 3-18, 7-23
naming

I

1-5

I

1-6

Index

in configurations, 7-36
of modules, B-2
of types, B-3

NARROW, 3-39, 7-28
NATURAL, 2·5

as element type, 3-4
Negation, 2-17
nesting

of configurations, 7-41
of procedures, 5-16
of signals, 8-12

NEW, 6-1
. of module instance, 7-19

Next·Statement, 4·1
NextExpr, 4·16
NIL, 2·20, 3·32

lengthening of, 3·35
non· privileged module, 7-22
non-interface item, 7·12
non-local variable, 5·3
non-transfer variable, 7·12

exported,7-20
NOT,2·16
NOTIFY, 9·4

when to use, 9-10
NULL, 4-7,3-24
NULL statement, 4-7
NullStmt, 4·7
number, 2·5
number, floating point, 2-8
numeric literal, 2·5
numeric type, 2·5

long, 2·8
short, 2·8
subrange of, 3-10

object file, 7-33
object module, 7·1
object notation, 7-28
object-oriented programming, 7-28
omission

of element in returns list, 5-10
opaque type, 7·25
OPEN,4-14

guidelines for use of, B-2
OPEN clause, 4-12, 7·8

scope of, 4-12
OpenClause, 4·12

-Openltem, 4-14
operations

on characters, 2-16
operators

BOOLEAN, 2·17
precedence of, 2-19
numeric, 2-12
relational, 2-16

OptionalTypeld, 3·15

OR, 2·17
ORO, 2·19
ORDERED, 3-32
ORDERED POINTER, 3·32
ordered type, 2-16, 3-3
ordinary statement, 4-1
PACK, 7·34
PACKED, 6-6, 3·14
packing

during binding, 7-35
in parameter or result record, 5-4

PackingOption, 3·13
parameter record, 5·1
. alignment of, 5-4

ParameterList, 5·3
parameters, 5-8

of procedure, 5·1
of signals, 8-2
relationship to arguments, 5-8

phrase class, 1·2
PLUS, 7·40
POINTER, 6-9, 3·32
pointer, 3-3

arithmetic on, 3·35
BASE, 3-35, 6-1
dereferencing,6·12
lengthening, 3-35
O'RDERED, 3-32
READONL Y, 3·31
reference type, 3-30
referent, 3-30
relational operations on, 3-34
RELATIVE, 6-9,3-35,6-10
subrange, 3-37

pointer subrange type, 3-33
POINTER TO UNSPECIFIED, 3·35
PointerTC,6-9,3·32
positional constructor, 3-22
positional notation

ofimports, 7·22
PositionalComponentList, 3·15
Positional ExtractList, 3·27
precedence,2-13

of IF operator, 4-5
of assignment operator, 4-2

PRED,2·19
PredefinedType, 2·22
Predicate, 4·3
Primary, 3·5, 2·12·3
principal instance

ofimportecI interface, 7-29
ofinterface, explicit, 7-21

PRIVATE,7·4
interface components, 7-15
declaration of, 7-22
in type definitions, 7-24

Mesa Language Manual

PRIVATE items
accessing, 7-25

privileged module, 7-22
PROC, 5-4
PROCEDURE, 5·3
procedure, 5·1

activation of, 5·7
actual, 5-2
arguments of, 5-1
default arguments for, 7-14
entry, 9-12
forked,9-2
inline, 5-3
in monitor module, 9-6
internal, 9-6
"local," 5-12
nested, 5-16
results of, 5-1
termination of, 5-8

procedure call, 5·1, 5·6
procedure types, 5·3

equivalence of, 5-5
free conformance of, 5-5

procedure variable, 5-4, 5-9
ProcedureBody, 5-9
ProcedureTC, 5-3
PROCESS, 9-1
processes, 9-1

concurrent, 9-2
detached, 9-3
synchronized, 9-4
waiting, 9-8

Product, 2·13
PROGRAM, 7-5, 5-14, 7-42
program module, 7·1
program variable, 7-18
prototype

configuration, 7-35
program, 7-35

PUBLIC, 7-4,5·17,7-13
declaration of, 7-22
in type definitions, 7-24

qualification, 3-17, 3-21
ofidentifier constant, 3-5
of identifiers, 7-7
ofitems from OPEN module, 4-13
of pointer referents, 3-31

QualifiedReference, 3·21
range assertion, 3-U
range error, 3-9
READONLY, 3-33, 7-12
READONLY POINTER, 3-31
REAL, 2·8
realLiteral, 2·8
RECORD, 3·19
record,3·l6

basic operations on, 3-17
declaration of, 3-19
initialization of, 3-20
MACHINE DEPENDENT, 3-28
monitored, 9-12
OVERLAID, 6-23
packing of, 3-20
parameter/return, 5-12
restrictions on assignment, 4-3
single-component, 5-2

record constructor, 3·17
record types

equivalence of, 7-11
RecordTC, 3·19, 6·15
recursion, 5-2
reentrant procedures, 5-2, 5-7
reference type of pointer, 3·30
REJECT,8·7
relational operators, 2·16
RelationalOperator, 2-16
RELA TIVE, 6·9
relative array descriptors, 6-13
relative pointer, 3-35, 6·1

creating with FIRST, 6-12
relative pointer types, 6-11
RelativeTC, 6-9
REPEAT, 4·18
Repetition, 4·16
reserved words, 2·3
RESTART,7-19
result record, 5·2

alignment of, 5-4
ResultList, 5·3
results of procedure, 5·1
RESUME, 8-11
ResumeStmt, 8-11
RETRY, 8-10
RETURN, 5-2

default values for, 5-12
return link, 8·6
RETURN WITH ERROR, 8·2, 9-18
RETURNS, 5·3
ReturnsClause, 5·3

absence of, 5-10
ReturnStmt, 5·10
RightSide, 2-4
root procedure, 9-2
running, 7-42
run-time error, 7-2
scalar type, 3-3
scaleFactor, 2·9
scope

defined by procedures, 5-18
of ENABLE clause, 8-5
of identifiers, 7-9
of local variables, 5-17

I

1-7

I

1-8

Index

of OPEN clause, 7-8
of procedure, 5-10
of qualified reference, 7-9
of variables in catch phrases, 8-5

scope guidelines, 7-10
SELECT,4-5
SELECT expression, 4-8
SELECT statement, 4·5

order of evaluation, 4-6
SelectExpr, 4·8
SelectStmt, 4-6
self-contained (configuration), 7-34
semicolon, 2-2

as separator, 4-9
following ThenClause, 4-4

SeqTag. 6·26
SEQUENCE, 6·26
sequence, 6·1

MACHINE DEPENDENT, 6-27
allocation of, 6-28
declaration of, 6-25
initialization of, 6-28
limitations of, 6-25
operations on, 6-29
tags, 6-26

SHARE,7-22
SHARES, 7-5
side effects, 5-7
SIGNAL,8-1

actual, 8-2
catching, 8-6
declaration of, 8-2
guidelines for use, B-5
indirect, 8-7
in monitored procedures, 9-17
in forked procedures, 9-17
initialization of, 8-2
nested,8-12
omission of keyword, 8-3
parameters of, 8-2
rejection of, 8-8
uncaught, 8-7

SignalCall,8-2
Signaller, 8-6
SignalOrError, 8-2
SignalTC, 8-2
signed number, 2·5
single-component record, 5-2
SIZE,2·20

of array, 3-14
of record, 3-20
of type, 7-27

space, see blankspace
sparse enumeration, 3-8
START,7-19
start trap, 7-21

Statement, 4·1
statement

assignment, 4-2
EXIT,4-19
GOTO, 4-9
LOOP, 4-19
NULL, 4-7
OPEN, 4-12
ordinary, 4-1
SELECT, 4-5

StatementSeries, 4·9
static variables, 7-33
STOP, 7-44
STRING, 6-1, 2-22
string

allocation, 6-32
declaration of, 6-4
initialization of, 6-4

string expression, 6·3
string literal, 6-3

allocation, 6-3
string variable, 6·4
String Body, 6-2

initialization, 6-2
Subrange, 4-6
sub range , 3-3
subrange type, 3·8
sub range variable, 3-8
SubrangeTC, 3-8
succ,2-19
Sum, 2-13
syntax

of C/Mesa, 7-34
of module, 7-4

TAB,2-3
Tag, 3·28
target type, 3·37
TC,3-3
Test, 4·6
Testlist, 40 6
TEXT,6·30
THEN, 2-2, 4-3, 4-4, 7-40
ThenClause, 4-3
THROUGH,4-16
time out of condition variable, 9-11
transfer constant, 7-12

exported,7-20
transfer item, 7-12
transfer variable, 7·12

exported, 7-20
trap, 7-33
TRASH, 3-24
TYPE,3-1
type

access control of, 7-24
address-containing, 3-47

Mesa Language Manual

concrete, 7-25
equivalent, 2-9
exported,7-25
of procedure, 5-4-
opaque, 7-25
ordered,2-16,3-3
naming of, B-3
procedure, 5-3

type conformance, 2-9
type constructor, 2-5, 3-2
type conversion, 3-38

automatic, 3-38
type definitions

non-interface, 7-1
type determination, 3-3
type identifier, 3·2
type rule, 3-37
type specification, 2-4
TypeConstructor, 3·2
TypeDeciaration, 3-1
Typeldentifier, 3-2, 6-19,7-8
TypeSpecification, 3-2, 2-22, 6-26
uncaught signal, 8-7
UNCOUNTEO ZONE, 6-5
unnamed field list

as ResultList, 5-10
UnnamedFieldList, 3-18
unsigned number, 2-5, 3-35
UNSPECIFIED, 2-22
UNTIL, 2-2, 4-15
UNWINO, 8-8, 9-19

and monitor locks, 9-18
USING, 7-5, 5-16

in monitor lock clause, 9-12
in object monitors, 9-16

USING clause, 7-10
VAL, 2-19
VAR,7-12
Variable, 2-12
variable

READONLY, 7-13
condition, 9-4
local,5-2
nonlocal, 5-3
procedure, 5-4,5-9
program, 7-18
static, 7-33
subrange, 3-8

variant record, 6-1
accessing components of, 6-19
access control, 7-23
actual tag, 6-17
allocation from zones, 6-32
allocation of, 6-25
assignment, 6-19
bound,6-18

computed tag, 6-17
declaration of, 6-15
defaults, 6-25
discrimination, 6-20
initialization, 6-15, 6-19
notation, 6-23
ragged,6-18
tag, 6-14

VariantFieldList, 3-28
VariantPart, 6·26
voiding

in result record, 5-12
of array component, 3-lS
of component, 3-23
of element in returns list, 5-10
of record field, 3-24

WAIT,9-4
WHILE,4-15
WHILE expression

target type of, 3-38
WORD,2-22
zone, 6-1

allocation of, 6-32
deallocation, 6-32

I

1-9

OFFICE SYSTEMS DIVISION

Reader's Feedback

Xerox's Technical Publications Departments want to provide documents that meet
the needs of all our product users. Your comments help us correct and improve our
publications. Please take a few minutes to respond. If you have comments on the
product this document describes, contact your Xerox representative.

1. Did you find any errors in this publication? What were they? On which pages?

2. Were there any areas that were hard to understand because of descriptions or
wording? What were they? Where?

3. Did this publication give you all the information you needed? If not, what was
missing?

4. Was this manual at the right level for your needs? If not, what other types of
publications do you need?

5. What one thing could we do to improve this manual foryou?

NAME DATE -- ----------
TITLE COMPANY -------------------- ---------------------------------
ADDRESS

--~--------------~.
CITY STATE ZIP -------------------- ---------------------- ------------
XDE3.0-3001

	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	2-01_Basic_Data_Types_and_Expressions
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01_Common_Construced_Data_Types
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	4-01_Ordinary_Statements
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	5-01_Procedures
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01_Other_Data_Types_and_Storage_Management
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	7-01_Modules_Programs_and_Configurations
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	8-01_Signaling_and_Signal_Data_Types
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	9-01_Processes_and_Concurrency
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	A-01_Pronouncing_Mesa
	B-01_Programming_Conventions
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	C-01_Mesa_Machine_Dependencies
	C-02
	D-01_Binder_Extensions
	D-02
	D-03
	D-04
	E-01_Mesa_Reserved_Words
	E-02
	F-01_Collected_Grammar
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	replyA

