
XEROX

Mesa Processor Principles of Qperation

Version 4.0
May1985

Office Systems Division
2400 Geng Road
Palo Alto, California 94303

Mesa Processor Principles of Operation

Notice

This docu:ment is being provided for information only. Xerox makes no warranties or representations of any kind

relative to this document or its use, including implied warranties of merchantability or of fitness for a particular

purpose. Xerox assumes no responsibility or liability for any errors or inaccuracies that may be contained in the

document, and does not guarantee that the use ofthe information herein will function or perform in an intended

manner.

The information contained hert'ill is subject to change without any obligation of notice on the part of Xerox.

Copyright © 1985 by Xerox Corporation.
All Rights Reserved.

Table of contents

1 Introduction

1.1 Technical Summary 1-2

1.1.1 High Level Languages . 1-2

1.1.2 Compact Program Representation. 1-2

1.1.3 Compact Data Representation . 1-3

1.1.4 Read Only Relocatable Code 1-3

1.1.5 Stack Machine. 1-3

1.1.6 Control Transfers 1-3

1.1.7 Process Mechanism 1-3

1.1.8 Virtual Memory 1-4

1.1.9 Protection . 1-4

1.2 Terminology 1-4

1.2.1 Architecture 1-4

1.2.2 Processor 1-4

1.2.3 Programmer 1-5

1.3 Conventions 1-5

1.3.1 Type Checking. 1-6

1.3.2 Type Representation 1-6

1.3.3 Subrange Types 1-6

1.3.4 Enumerated Types. 1-6

1.3.5 Pointers 1-6

1.3.6 Arrays and Records 1-7

1.3.7 Type Conversion 1-7

1.3.8 Built-in Routines 1-7

1.3.9 Control Flow 1-7

1.3.10 Signals and Errors. 1-7

1.3.11 Instruction Descriptions 1-8

i

Table of contents

2 Data Types

2.1 Basic Data Types 2-1

2.1.1 Unspecified 2-2

2.1.2 Bit, Nibble, Byte 2-2

2.1.3 Basic Operators 2-2
2.2 Numeric Types 2-3

2.2.1 Cardinal 2-4
2.2.2 Integer. 2-4

2.2.3 Real 2-4

2.3 Long and Pointer Types 2-4
2.3.1 Long Types 2-4

2.3.2 Pointer Types 2-5

2.4 Type Conversion . 2-6
2.4.1 Assignment 2-6

2.4.2 SignedJU nsigned Conversions 2-6

2.4.3 Short/Long Conversions 2-7
2.4.4 Pointer Conversions 2-7

3 Memory Organization

3.1 Virtual Memory 3-1

3.1.1 Virtual Memory Mapping 3-2
3.1.2 Memory Map Instructions 3-5
3.1.3 Virtual Memory Access 3-6

3.1.4 Virtual Memory Data Structures 3-7
3.2 Main Data Spaces. 3-10

3.2.1 Main Data Space Access 3-11

3.2.2 Main Data Space Data structures 3-12

3.2.3 Frame Overhead Access 3-15

3.3 Processor Memories 3-16

3.3.1 Control Registers 3-16
3.3.2 Evaluation Stack 3-18

3.3.3 Data and Status Registers 3-20

3.3.4 Register Instructions 3-21

4 Instruction Interpreter

4.1 Interpreter 4-1

4.2 Instruction Formats 4-2

4.3 fnstruction Fetch. 4-2

4.4 Address Calculation 4-3

4.5 Instruction Execution. 4-4

4.6 Exceptions 4-5

11

. Mesa Processor Principles of Operation

4.6.1 Traps and Faults 4-5
·4.6.2 Interrupts 4-7

4.7 Initial State 4-7

5 Stack Instructions

5.1 Stack Primitives . 5-1
5.2 Check Instructions 5-3
5.3 . Unary Operations 5-4
5.4 Logical Operations 5-5
5.5 Arithmetic Operations 5-7
5.6 Comparison Operations 5-11
5.7 Floating Point Operations 5-11

6 Jump Instructions

6.1 Unconditional Jumps. 6-1
6.2 Equality Jumps 6-2
6.3 Signed Jumps. 6-5
6.4 Unsigned Jumps 6-5
6.5 Indexed Jumps 6-6

7 Assignment Instructions

7.1 Immediate Instructions 7-1
7.2 Frame Instructions 7-2

7.2.1 Local Frame Access 7-3
7.2.2 Global Frame Access 7-6

7.3 Pointer Instructions 7-'7
7.3.1 Direct Pointer Instructions. 7-8
7.3.2 Indirect Pointer Instructions 7-12

7.4 String Instructions 7-14
7.4.1 Read String 7-15
7.4.2 Write String 7-16

7.5 Field Instructions 7-16
7.5.1 Read Field. 7-18
7.5.2 'Write Field. 7-19
7.5.3 Put Swapped Field . 7-21

8 Block Transfers

8.1 Interpreter 8-1

8.2 Bit Boundary Block Transfers 8-4
8.3 Byte Boundary Block Transfers 8-6
8.4 Bit Boundary Block Transfer . 8-7

111

Table of contents

8.4.1 Bit Transfer Utilities 8-8

8.4.2 Bit Block Transfer . 8-8

8.4.3 Text Block Transfer 8-16

9 Data Types

9.1 Control Links. 9-1

9.1.1 Frame Control Links 9-2

9.1.2 Indirect Control Links . 9-3

9.1.3 Procedure Descriptors . 9-3

9.2 Frame Allocation. 9-4

9.2.1 Frame Allocation Vector 9-4

9.2.2 Frame Allocation Primitives 9-6

9.2.3 Frame Allocation Instructions . 9-7

9.3 Control Transfer Primitive 9-7

9.4 Control Transfer Instructions. 9-10

9.4.1 Local Function Calls 9-10

9.4.2 External Function Calls 9-11

9.4.3 Nested Function Calls . 9-13

9.4.4 Returns 9-13

9.4.5 Coroutine Transfers 9-14

9.4.6 Link Instructions 9-18

9.5 Traps 9-19

9.5.1 Trap Routines . 9-19

9.5.2 Trap Processing 9-21

9.5.3 Trap Handlers . 9-23

9.5.4 Breakpoints 9-25

9.5.5 XferTraps. 9-26

10 Processes

10.1 Data Structures 10-2

10.1.1 Process Data Area . 10-2

10.1.2 Process State Blocks 10-4

10.1.3 Monitor Locks . 10-6

10.1.4 Condition Variables 10-6

10.1.5 Process Queues. 10-6

10.2 Process Instructions 10-7

10.2.1 Monitor Entry 10-7

10.2.2 Monitor Exit 10-9

10.2.3 Monitor Wait 10-10

10.2.4 Monitor Reentry 10-11

1O.2~5 Notify and Broadcast 10-12

--
iv

Mesa Processor Principles of Operation

10.2.6 Requeue

10.2.7 SetProcessPriority .

10.3 Queue Management

10.3.1 Queuing Procedures

10.3.2 Cleanup Links .

10.4 Scheduling

10.4.1 Scheduler

10.4.2 Process State

10.4.3 Faults.

10.4.4 Interrupts

10.4.5 Timeouts

Appendices

A

B

Values of Constants

Opcodes

References.

Indexes

Primary Index.

Mesa Code Index.

Opcode Names

Opcode Mnemonics

10-13

10-14

10-14

10-14

10-16

10-18

10-18

10-20

10-23

10-24

10-28

A-I

B-1

R-1

P-1

MC-1

ON-1

OM-1

v

Table of contents

Illustrations

2.1 Sixteen Bit W()rd . 2-1
2.2 - Thirty-two Bit Double Word 2-5

2.3 Double Word in Memory 2-5

3.1 Virtual Memory Mapping. 3-3
3.2 Virtual Memory Structure 3-8

3.3 Code Segment 3-9

3.4 Global frame . 3-13

3.5 Local frame 3-15

3.6 Evaluation Stack. 3-18

4.1 Instruction Formats 4-2

6.1 Jump Addressing . 6-1

7.1 String Instructions 7-14

7.2 Field Specifiers 7-17

8.1 BitBlt Source and Destination 8-9

8.2 Source and Destination Functions 8-10

8.3 Gray Brick 8-13

9.1 Frame Heap 9-5

9.2 Port to Port Control Transfers 9-15

9.3 Port to Procedure Control Transfers 9-16

9.4 Procedure to Port Control Transfers 9-17

10.1 Process Queue Structures. 10-8

iv

1

Introduction

This document defines the architecture of the Mesa processor. It specifies the processor's
virtual memory structure, its instruction interpreter, and the Mesa instruction set. (The
organization of the input/output system is described separately.) The Mesa processor is
part of a larger plan for the development and construction of integrated Office Information
Systems.

The Principles of Operation does not discuss the implementation of any particular Mesa
processor, of which there are several models, differing primarily in underlying technology,
configuration, and performance. It does specify the overall design that must be followed to
ensure software compatibility at the instruction set level. The architecture allows
common software systrems to be constructed that operate on all versions of the processor; it
also allows reimplementation of the processor when it is technically or economically
advantageous to do so.

The Principles of Operation, often called the PrincOps (pronounced prince ops), is
composed of nine additional chapters, an Appendix, a list of references, and four indices.

DATA TYPES Basic data types: UNSPECIFIED, BIT, NIBBLE, BYTE; basic logical and arithmetic
operators; numeric types: CARDINAL, INTEGER, REAL; long types; pointer types; type
conversion.

MEMORY ORGANIZATION Virtual memory; memory mapping; memory map
instructions; major data structures; main data spaces; control transfer data
structures; local and global frames; processor registers; evaluation stack; register
instructions.

INSTRUCTION INTERPRETER Instruction formats; instruction fetch; address calculation;
instruction execution; opcode dispatch; exceptions: traps, faults, interrupts; initial
state.

STACK INSTRUCTIONS Stack primitives; check instructions; unary operations; logical
operations; arithmetic operations; comparison operations; floating point operations.

JUMP INSTRUCTIONS Unconditional jumps; equality jumps; signed inequality jumps;
unsigned inequality jumps; indexed jumps.

1-1

1 Introduction

ASSIGNMENT INSTRUCTIONS Immediate instructions; frame instructions: local access,
global access; pointer instructions: direct, indirect;· string instructions; field
instructions.

BLOCK TRANSFERS Word boundary block transfers, checksum; byte boundary block
transfers; bit boundary block transfers: bit transfer utilities, bit block transfer, text
block transfer.

CONTROL TRANSFERS Control links: frame links, indirect links, procedure descriptors;
frame allocation; control transfer primitive (XFER); control transfer instructions:
local calls, external calls, nested calls, returns, coroutine transfers; traps;
breakpoints; xfer traps.

PROCESSES Process data structures; process instructions; process queue
management; scheduling; faults; interrupts; timeouts.

APPENDIX Values of constants; register indexes; fixed memory locations; fault queue
indexes; system data indexes; opcode assignments.

Section 1.1 lists the major technical characteristics of the processor; § 1.2 defines some
frequently used and often confusing terminology; §1.3 explains the coding conventions
used in describing the ?peration of the processor.

1.1 Technical Summary

1-2

All Mesa processors have the following characteristics that distinguish them from other
computers:

1.1.1 High-Level Languages

The Mesa architecture is designed to efficiently execute high-level languages in the style
of Algol, Mesa, and Pascal. That is, constructs of the programming language such as
modules, procedures, and processes all have concrete representations in the processor and
main memory, and the instruction set includes opcodes to implement these language
constructs efficiently (for example, in procedure call and return). The processor does not
"directly execute" any particular high-level programming language, however.

1.1.2 Compact Program Representation

The Mesa instruction set is designed primarily for a compact, dense representation of
programs. Instructions are variable in length. The most frequently used operations and
operands are encoded in a single-byte opcode; less frequently used combinations are
encoded in two bytes, and so on. The instructions themselves are chosen based on their
frequency of use, and this design principle leads to an asymmetrical instruction set. For
example, there are eight different instructions that can be used to store variables into
local frames in memory, but only four that load local variables onto the stack from
memory; this occurs because typical programs perform many more stores than loads. In
some cases, a particular operation is performed so infrequently that it is not provided as
an instruction, and must therefore be programmed in software (for example, a quad word
add). There are other cases in which an instruction is provided for an infrequently used

M.esa.Processor Principles of Operation 1

operation because the function performed is required at the instruction set level for
technical or effieiency reasons (such as for disable interrupts or checksum calculations).

1.1.3 Compact Data Representation

The instruction set of the processor includes a wide variety of operations for accessing
partial and multiword fields of the memory's basic information unit, the sixteen-bit word.
Except for system data structures defined by the architecture, there are no alignment
restrictions on the allocation of variables, and data structures are generally assumed to be
tightly packed in memory.

1.1.4 Read Only Relocatable Code

The instructions associated with a program are organized separately from the data it
declares in a structure called a code segment. All code segments are entirely read-only.
They are also relocatable without modification, since no information in a code segment
depends on its location in virtual memory.

1.1.5 Stack Machine

The Mesa processor is a stack machine; it has no general-purpose registers. (It does
include special-purpose registers for maintaining processor status and state.) The
evaluation stack is used as the destination for load instructions, the source for store
instructions, and as ooth the source and the destination for arithmetic instructions. It is
also used for parameter passing. The primary motivation for a stack is not to simplify
code-generation, but to ach~eve compact program representation. Since the stack is
assumed as the source and destination of one or more operands, specifying operand
locations requires no bits in the instruction - they are implied by the opcode.

1.1.6 Control Transfers

The architecture is designed to support modular programming. It therefore suitably
optimizes the transfers of control between modules. The Mesa processor implements all
transfers with a single primitive called XFER, which is a generalization of the notion of a
procedure or subroutine call. All of the standard procedure-calling conventions (such as
call by value, call by reference (result), and call by name) and all transfers of control
between contexts (procedure call and return, nested procedure calls, coroutine transfers,
traps, and process switches) are implemented using the XFER primitive. To support
arbitrary control-transfer disciplines, activation records (called frames) are allocated by
XFER from a heap rather than a stack; this method also allows the heap to be shared by
several processes.

1.1.7 Process Mechanism

The architecture is designed for applications that expect a large amount of concurrent
activity. The Mesa processor provides for the simultaneous execution of up to one
thousand asynchronous, preemptable processes on a single processor. The process
mechanism implements monitors and condition variables to control the synchronization
and mutual exclusion of processes along with the sharing of resources and information
among them. Scheduling is event-driven, rather than time-sliced. Interrupts, timeouts,

1-3

1 Introduction

and communication with I/O devices are also supported by the process mechanism .
. Supportfor multiple processors is under development.

1.1.8 Virtual Memory

The Mesa processor provides a single large, uniformly-addressed virtual memory, shared
by all processes. The memory is addressed linearly as an array of 232 sixteen bit words,
and, for mapping purposes, is further organized as an array of 224 pages of 256 words each;
it has no other programmer-visible substructure. Each page can be individually write
protected, and the processor records the fact that a page has been written into or
referenced.

1.1.9 Protection

The architecture is designed for the execution of cooperating, not competing, processes.
There is no protection mechanism (other than the write-protected page) to. limit the
sharing of resources among processes. There is no "supervisor mode" nor "privileged"
instructions.

1.2 Terminology

1-4

In this section, the terms architecture, processor, and programmer are defined. Several
stylistic conventions used throughout the PrincOps are also explained in this and the
following sections.

Note: Paragraphs beginning with the word "Note" contain comments intended for the
reader of this manual. They generally point out or explain an important convention
concerning the document or the code contained within it; they do not describe the Mesa
processor itself.

1.2.1 Architecture

As used in the PrincOps, the term architecture refers to the characteristics of the
processor, as seen by a programmer writing executable instructions for the machine. The
term does not refer to the way the processor is integrated with other hardware and
software components to form a computer system. Nor does it refer to the way hardware
and firmware components might be integrated to form any specific implementation of the
processor.

Note: Paragraphs beginning with the phrase "Design Note" contain important points
about the design of the processor architecture. They will be of interest both to
implementors and to programmers.

1.2.2 Processor

The term processor actually refers to a particular implementation of the Mesa processor
(or more likely, to all such implementations). A processor is the collection of hardware and
microcode that behaves in a manner consistent with the description contained in this

Mesa Processor Principles of Operation 1

manual. Each Mesa processor must achieve the same result as the code appearing here,
although the implementation, and in m~ny cases even the algorithm, may be different.

For ~xample, as mentioned above, every Mesa processor includes an evaluation stack
whose behavior is described in §3.3.2. There are several ways to implement a stack,
varying in such details as where the stack pointer points (to the top element? to the next
available entry?) and how the checks for underflow and overflow are made. The processor
may use any implementation so long as the stack pointer as seen by the programmer
always points to the next available entry on the stack, as described in §3.

Note: Paragraphs beginning with the phrase "Implementation Note" describe
implementation techniques. Generally, these suggest efficiency improvements or point
out restrictions in addition to those contained in the code. They are directed primarily at
the microcoder and the hardware designer who will implement the processor.

1.2.3 Programmer

The term programmer refers to the person writing instructions to be executed by the
processor. Because the Mesa processor is designed for use in conjunction with high-level
languages, the programmers in question are usually authors of compiler code generators
or low-level operating system functions. A "typical" applications programmer sees the
processor not at the instruction set level, but rather at the programming language level.

Note: Paragraphs beginning with the phrase "Programming Note" are intended
primarily for the programmer. Techniques for exploiting a feature of the processor are
described in such paragraphs. Also, they often begin with the phrase "It is the
programmer's responsibility to ensure that ... " or "It is illegal for a program to ... ". As
discussed above, these notes are often directed to the authors of the compiler or the
operating system, rather than to a "typical" programmer.

Note: The statements contained in programming notes concerning the legality of a
program and the conditions that it (and the programmer) must satisfy all have the same
intention; they mean that if the condition is violated, the program may produce undefined
results, and further, that the results obtained during execution may be different on
different implementations ofthe processor.

1.3 Conventions

The PrincOps describes the processor using Mesa itself; the data structures and
algorithms are written in the Mesa language. Familiarity with the Mesa Language
Manual [21 is assumed. The term code is used to refer to the Mesa source code in this
document that describes the behavior of the processor; it does not refer to the programs
that execute on the machine. Likewise, the term routine is used to refer to a part of the
code (usually a procedure), whereas program and procedure refer to the instructions being
executed by the processor. These distinctions must constantly be kept in mind.

Coding conventions beyond standard ~esa style are described in this section. The code in
this document makes several assumptions that are not generally known to a Mesa
programmer: these assumptions are outlined below. Certain language features normally
available (notably those involving pointer dereferencing, variant records, coroutines, and

1-5

1

1-6

Introduction

. processes) are not allowed in PrincOps code, primarily to simplify and clarify the
descriptions.· These omissions are also identified.

1.3.1 Type Checking

One of the primary reasons for describing the Mesa processor in Mesa is to bring type
checking to bear on the specification; in particular, all of the code contained in this
document has been compiled by the Mesa compiler to verify its syntactic and type
correctness. However, because main memory is inherently type less, it has not been

. possible to utilize the language's type system fully, while keeping the description simple
and short. In particular, all references to main memory yield values of (some variant of)
type UNSPECIFIED, and there are many pointers to UNSPECIFIED in the code. When possible, the
values are assigned to temporary variables to make their types clear, but the temporaries
may not have a concrete realization in the processor.

1.3.2 Type Representation

The code assumes that the underlying representation of the basic types is binary, that
unsigned numeric quantities are represented in true binary notation, and that signed
quantities use two's-complement representation.

1.3.3 Subrange Types

Except for INTEGER, all subranges used in the code have a lower bound of zero. As a result,
there is no automatic biasing of subranges. Subranges occupy only the number of bits
required to store their range of values when represented as binary numbers. With one
exception (the stack pointer; see §3.3.2), subranges occupy exactly an integral number of
bits; that is, the upper bound of all subranges is one less than a power of two.

1.3.4 Enumerated Types

Enumerated types are represented by assigning (binary) zero to the first value, one to the
second value, two to the third, and so on; all enumerated types in this document are
declared MACHINE DEPENDENT. As with subranges, enumerated types occupy only the
number of bits required to represent all of their values. All enumerations occupy an
integral number of bits (that is, the number of elements in each enumeration is a power of
two).

1.3.5 Pointers

Both virtual- and real-memory addresses are represented by LONG POINTER types; short
POINTERS are converted to long pointers before dereferencing. The dereferencing operator
(i) is used to follow a pointer and obtain the word(s) it addresses in real memory. This
operator is applied only to LONG POINTERS that have been converted from virtual into real
addresses.

Mesa Processor. Principles of Operation 1

1.3.6 Arrays and Records

Arrays and records are used to define the structures used by the processor. Their
semantics are as described in the Mesa Language Manual[l], except that their
components are restricted to the types defined in §2. Two additional conventions are used
in the code.

First, each array element is at least one word long and is always a multiple of the word
size. No additional packing is specified; that is, there are no packed arrays that would lead
to hidden addressing calculations below the level of a word address. In addition, the fields
of a record always account for all of the bits in the words occupied by the structure,
whether or not they are used. No extra bits remain free. All records are declared MACHINE

DEPENDEN-T so that this will be checked by the compiler.

Second, two distinguished field names are used in defining record structures. The name
reserved, usually accompanied by an initial value, indicates that neither the processor nor
the programmer uses the field. If an initial value is given, the processor may assume that
the field always has that value, and the programmer must ensure its integrity. On the
other hand, the name available indicates that the field may be used by the programmer,
and therefore must be left undisturbed by the processor.

1.3.7 Type Con version

Conversion between types is modeled using the Mesa operators INTEGER, CARDINAL, and
LONG, together with a number of built-in routines. Details of the conversions between
specific types are contained in §2.4.

1.3.8 Built-in Routines

The code assumes the implementation of a number of basic routines for which a more
detailed description is not given; for example, the And and Or routines are used as
implementations of the standard logical operators, and are not described further. A
complete list of these routines is contained in §2.

1.3.9 Control Flow

Although the code is written as a collection of routines, there are several cases where
procedure calls and returns can be replaced by jumps in the implementation. For example,
simple opcodes are described as single routines, but the calls that invoke them could be
replaced by jumps (or more likely, dispatches) from the main loop of the instruction
interpreter. Their returns could be replaced by jumps back to opcode fetch. Similarly,
certain utility routines are always invoked at the logical end of opcode processing, and
therefore need not actually be called as procedures. A jump to their beginning addresses
could be used instead. These routines could return by jumping back to the location in the
interpreter to which the opcode would have returned, had a true procedure call been used.

1.3.10 Signals and Errors

Signals are used for global transfers of control across one or more procedure calls. There is
only one signal declared in the code: Abort (§4.1). It is used to describe exception

1-7

1 Introduction

processing. This signal is raised in exactly two places: by the trap and the fault routines.
It is caught by the main loop of the instruction interpreter, and is never restarted.

An unnamed ERROR is used to indicate conditions that must be established by the
programmer but need not be verified by the processor (for example, the Setup routine in
§8.2.2.3).

On some occasions, these two conventions are used together; a few routines catch Abort
and raise ERROR (for example, the Save Process and LoadProcess routines in §10.4.2.1). This
combination indicates that it is illegal for the routine to suffer a trap or fault (as when all
the memory it references must be resident).

Implementation Note: None of the statements in the code that contain an unnamed
ERROR need be included in an implementation of the processor. If a program could cause the
code to generate an ERROR, the program is illegal. It may produce undefined results.

1.3.11 Instruction Descriptions

Each instruction is defined as a separate routine. The name of the routine is the same as
the mnemonic for the opcode. Complex instructions are broken down into multiple
routines, which are assumed to be nested in their parent opcode routine unless they are
shared by more than ane instruction. The generic form of an instruction description is
illustrated below.

OPCOOE Name

Details not covered in the summary ofthe instruction class appear here.

OPCODE: PROCEDURE =
BEGIN

END;

Fine points and notes appear here.

1.4 Indices

1-8

There are four indexes in the PrincOps: the Primary Index, Mesa Code Index, which is an
index of the types, constants, and routines contained in the code, and the Opcode Names
Index and Opcode Mnemonics Index, which are indexes of the opcode routines organized
by instruction names and mnemonics. In these indexes, bold face page numbers indicate
where the primary, defining information can be found; plain page numbers designate
further references.

2

Data Types

This chapter describes the characteristics of the basic data types used by the Mesa
processor. The descriptions contained here give only the essential properties of the types.
The legal operations on each type are explicitly enumerated elsewhere (and are more
restrictive than allowed by the Mesa language).

Note: The routines appearing in this chapter are solely defined for use by the code
contained in subsequent chapters. These routines need not be implemented by the
processor (although several will be), since they are not available directly to the
programmer.

For example, the following routine is useful in describing the processor but is not provided
as an instruction:

Log: PROCEDURE [count: CARDINAL] RETURNS [CARDINAL];

This routine returns the number of bits required to store the number of values given by its
argument, assuming an unsigned, unbiased binary representation.

2.1 Basic Data Types

The primary unit of storage is the sixteen-bit word.

WordSize: CARDINAL = 16;

The most significant bit of a word is numbered zero; the least significant bit is numbered
fll'teen:

o 15

Figure 2.1 Sixteen-Bit Word

Variables of most common types occupy a single word.

2-1

, 2

2-2

,Data Types

2.1.1. Unspecified

Unless they have other specific properties (described in the following sections), words are
declared as type UNSPECIFIED, a type that is essentially just a bit string. Only a subset of the
basic operators (§2.1.3) apply to this type; in particular, arithmetic operators are not used
with UNSPECIFIEDS.

BLOCK: TYPE = ARRAY [0 .. 0) OF UNSPECIFIED;

A BLOCK is used as a placeholder to represent a region of storage of indeterminate size.

2.1.2 Bit, Nibble, Byte

The following types, which occupy one, four, and eight bits respectively, are used to
represent the substructure of a word:

BIT: TYPE = [0 .. 2);

NIBBLE: TYPE = [0 .. 16);

BYTE: TYPE = [0 .. 256);

A byte is often interpreted as two adjacent nibbles; likewise, a word can be interpreted as
two adjacent bytes. The structures NibblePair and BytePair reflect these interpretations:

NibblePair: TYPE = MACHINE DEPENDENT RECORD [left (0: 0 .. 3), right (0: 4 . .7): NIBBLE];

BytePair: TYPE = MACHINE DEPENDENT RECORD [left (0: 0 . .7), right (0: 8 .. 15): BYTE];

Two routines are used to extract the bytes of a word:

HighByte: PROCEDURE [u: UNSPECIFIED] RETURNS [BYTE] =
BEGIN

pair: BytePair = u;
RETURN [pa i r.1 eft];

END;

LowByte: PROCEDURE [u: UNSPECIFIED] RETURNS [BYTE] =
BEGIN

pair: BytePair = u;
RETURN[pair.right];

END;

The architecture also defines several double word (thirty-two bit) types; see §2.3.

2.1.3 Basic Operators

Fundamental operators are defined for all types: they are assignment (+-) and comparison
for equality (=) and inequality (#). In addition, the processor implements the primitive
operations found in most ALUs; these include the logical operations Not, And, Or, Xor,

and Shift, as well as the arithmetic operators negation (-), addition (+), subtraction (-),
and ArithShift. Note that comparison (for other than equality) is not considered a basic
operator, since its result depends on whether the operands are signed or unsigned (§2.2).

Mesa Processor Principles of Operation 2

. Such operations can not be performed on UNSPECIFIEDS, which are neither signed nor
unsigned.

2.1.3.1 Basic Logical Operators

The following standard logical operations on bit strings are primitive:

Not: PROCEDURE [UNSPECIFIED) RETURNS [UNSPECIFIED];

Odd: PROCEDURE [UNSPECIFIED] RETURNS [BOOLEAN];

Odd returns TRUE if the least significant bit of its argument is one, and FALSE otherwise.

And: PROCEDURE [UNSPECIFIED, UNSPECIFIED] RETURNS [UNSPECIFIED];

Or: PROCEDURE [UNSPECIFIED, UNSPECIFIED) RETURNS [UNSPECIFIED];

Xor: PROCEDURE [UNSPECIFIED, UNSPECIFIED) RETURNS [UNSPECIFIED];

Shift: PROCEDURE [data: UNSPECIFIED, count: INTEGER] RETURNS [UNSPECIFIED];

Rotate: PROCEDURE [data: UNSPECIFIED, count: INTEGER] RETURNS [UNSPECIFIED];

In Shift, data is shifted the number of bits specified by count; the shift is to the left if count
is positive and to the right if it is negative. If count is zero, the result is the value of data
unchanged; if the ab~olute value of count is greater than fifteen, the result of the
operation is zero. In all cases, zeros are supplied to vacated bit positions. In Rotate, data
is rotated the number of bits given by count; it is left-rotated if count is positive and right
rotated if negative. If count is zero, data is returned unchanged.

2.1.3.2 Basic Arithmetic Operators

The basic arithmetic operators, negation, addition, and subtraction, assume a two's
complement binary representation. If overflow is ignored, the result can be considered
either signed or unsigned (see also the section on arithmetic types below).

The following shift routine is also used in the code, but is not provided as an instruction:

ArithShift: PROCEDURE [data: INTEGER, count: INTEGER] RETURNS [INTEGER];

This operation is similar to logical shift, except that when shifting right, a copy of bit zero
(the sign bit) is shifted into the left of data; when shifting left, bit zero is undisturbed.

2.2 N urneric Types

The numeric types include signed and unsigned fixed point numbers. There is also a
provision for a floating point representation of real numbers (see §2.2.3). The operations
on numeric types include the fundamental operators (§2.1.3), the basic arithmetic
operators (§2.1.3.2), and the comparison operators «, < = I > =, and », plus
multiplication (*), division (I), and remainder (MOD).

2-3

2 DataTypes

2.2.1 Cardinal

Unsigned numbers are of type CARDINAL and occupy a single word. The values zero through
65,535 are represented using true binary notation. All operations performed on cardinals
produce unsigned results in the range given above.

2.2.2 Integer

2.2.3

Signed numbers are of type INTEGER and occupy a single word. The values -32,768 through
32,767 are represented using two's-complement binary notation. All operations performed
on INTEGERS produce signed results according to the rules of algebra. F.or multiplication,
the product is negative if exactly one of the multiplicand or the multipiier is negative and
the other operand is not zero.

Multiylicand Multiylier Product
positive positive positi ve
positive negative negative
negative positive negative
negative negative positive

For division and rema~nder, the dividend and the remainder have the same sign; that is,
the results satisfy the following equation: dividend = quotient * divisor + remainder.

Dividend Divisor Quotient Remainder
positive positive positive positive
positive negative negative positive
negative positive negative negative
negative negative positive negative

Real

Except that they occupy two and four words respectively, the formats of REAL and LONG REAL

types are not defined by the architecture.

Design Note: Adoption of the proposed IEEE floating point standard [2] is currently in
progress.

2.3 Long and Pointer Types

2-4

The processor implements several long (double-word) types, as well as both short and long
pointer types. The representations of these types are defined as extensions of the types
described above.

2.3.1 Long Types

The architecture supports double-word configurations of the types UNSPECIFIED, CARDINAL,

INTEGER, and POINTER (see below). These types occupy thirty-two bits, wherein the most
significant bit of a double word is numbered zero, and the least significant bit is numbered
thirty-one.

Mesa Processor Principles of Operation 2

o 16 31

Figure 2.2 Thirty-two Bit Double Word

When these types are stored in memory, the low-order (least significant) sixteen bits
occupy the first memory word (at the lower numbered address), and the high-order (most
significant) sixteen bits occupy the second memory word (at the higher memory address).

address n n + 1

Figure 2.3 Double Word in Memory

Design Note: This inconsistent convention is solely for the convenience and efficiency of
operations that use the evaluation stack (§3.3.2).

The following constructs are used to extract the subcomponents of an arbitrary long type:

Long: TYPE = MACHINE DEPENDENT RECORD [

low (0). high (1): UNSPECIFIED];

HighHalf: PROCEDURE [u: LONG UNSPECIFIED] RETURNS [UNSPECIFIED] =
BEGIN

long: Long = LOOPHOLE(U];

RETURN(long.high];

END;

LowHalf: PROCEDURE (U: LONG UNSPECIFIED] RETURNS [UNSPECIFIED] =
BEGIN

long: Long = LOOPHOLE(U];

RETuRN(long.low];

END;

All of the operations applicable to UNSPECIFIED, CARDINAL, and INTEGER types are also valid for
their long counterparts, with the same semantics and restrictions, except for the range of
the results. In addition, shifting operations are defined for long types:

LongShift: PROCEDURE (data: LONG UNSPECIFIED, count: INTEGER]

RETURNS [LONG UNSPECIFIED];

LongArithShift: PROCEDURE [data: LONG INTEGER, count: INTEGER]

RETURNS [LONG INTEGER];

2.3.2 Pointer Types

Values of type POINTER and LONG POINTER are memory addresses occupying single and double
words, respectively. In addition to the fundamental operations, all of the basic logical
operators and the basic arithmetic operators, addition and subtraction, can he applied to
pointers. For arithmetic purposes, pointers are always unsigned.

2-5

2 Data.Types

Design Note: Like all long types, the components of LONG POINTERS appear in memory with
the least significant word occupying the lower-numbered memory address (§2.3.1).

2.4 Type Conversion

2-6

This section defines the conversions performed between the types defined above. Except
for the operators already defined (HighByte, LowByte, etc.), and for the cases involving the
numeric and pointer types described below, conversions between operands are performed
by the standard assignment operator (~), which means "copy the bits". -

2.4.1 Assignment

In the- statement left ~ right, if either operand is more than sixteen- bits wide, both must
be the same width. Otherwise, if right is shorter than left, sufficient high-order zeros are
supplied. In general, when operands smaller than a word appear in an expression, they
are considered to be embedded in a word by zero extending (not sign extending), just as in
the expression "int + 6", the constant is assumed to be extended as necessary. If more
than sixteen bits are required, the lengthening of an operand is always made explicit
(using LONG, defined below). Likewise, if bits other than zeros are required, a built-in
operation is used. For example:

SignExtend: PROCEDURE [Z: BYTE] RETURNS [INTEGER] =
BEGIN

RETURN[IF Z IN [O .. 177B] THEN Z ELSE Z-400B];

END;

SignExtend defines the conversion of a signed byte to a sixteen-bit integer.

The shortening of an operand is always indicated explicitly by using Low8yte, LowHalf, or
some other explicitly coded function (see, for example, the ReadField and WriteField

routines defined in §7.5).

2.4.2 Signed/Unsigned Conversions

Conversions between signed and unsigned numbers of the same length are performed
using the operators CARDINAL and INTEGER. Given i: INTEGER and c: CARDINAL, the following
examples illustrate their usage:

i ~ INTEGER[C]; -- check c < = LASTltNTEGER]

c ~ CARDINAL[i]; -- check; > = FIRST[CARDINAL]

The INTEGER conversion implies a check that the cardinal is less than 32,768 (yielding an
ERROR if it fails); the CARDINAL conversion implies a check that the integer is non-negative.
With appropriate change in range, the same conversions also apply to LONG CARDINAL and
LONG INTEGER.

Mesa Processor Principles of Operation 2

2.4.3 Short/Long Con versions

Conversions from short to long are performed using the LONG operator. Given i: INTEGER, Ii:
LONG INTEGER, c: CARDINAL, and Ie: LONG CARDINAL, the following table defines the conversion
rules:

Ii Eo- LONG[i];

Ii Eo- LONG[e];

Ie Eo- LONG[i];

Ie Eo- LONG[e];

-- sign extend

-- supply high-order zeros

-- check non-negative

-- supply high-order zeros

The LONG operator applied to an UNSPECIFIED always produces a LONG UNSPECIFIED by prefixing
high-order zeros.

Conversions from long to short values are performed using the built-in routines defined
above (for example, Low Byte or LowHalf). These operations do not check for loss of
significant bits. If a check is required, it appears explicitly in the code.

2.4.4 Pointer Conversions

Conversions of constants to pointers are performed using a LOOPHOLE. The mapping of
virtual to real memory addresses is the subject of §3.1.1; conversions from short to long
pointers involve special addressing considerations described in §3.2.1.

2-7

· 2.Data Types

2-8

3

Memory Organization

This chapter describes the memory structures of the Mesa processor. It discusses the
virtual memory, distinguished regions of the virtual memory called Main Data Spaces,
and the programmer-accessible memories of the processor. This chapter also identifies
most of the data structures residing in these memories used by the processor. The
chapters on control transfers (§9) and the process mechanism C§10) define other structures
in detail.

3.1 Virtual Memory

All Mesa processors implement a large virtual address space. Virtual memory is
organized as a single uniform array of words shared by all processes, addressed by thirty
two bit virtual addresses. A virtual address is mapped into a real address before an actual
fetch or store operation occurs. Virtual addresses are represented by either long or short
pointers.

For mapping purposes, virtual and real memory are further structured as a uniform array
of pages. A page is a contiguous array of 256 words whose address is a multiple of the page
size. (Therefore, it lies on a page boundary.)

PageSize: CARDINAL = 256;

PageNumber: TYPE = LONG CARDINAL; -- [0 .. 224)

Page: TYPE = ARRAY [o .. PageSize) OF UNSPECIFIED;

Note: Although a PageNumber is actually a subrange of LONG CARDINAL, the current
version of the Mesa language does not support this feature.

Both virtual and real memory consist of up to 224 pages (232 sixteen-bit words).

RealPageNumber: TYPE = PageNumber;
VirtualPageNumber: TYPE = PageNumber;

A block of 256 pages aligned on a 64K-word bounda~y is called a bank. Unless otherwise
noted, all memory sizes are stated ih units of sixteen-bit words; for example, banks are
64K words.

3-1

3

3-2

Memory Organization

A virtual address occupies two words: the smallest virtual address is zero and the largest
is 232_1. The most significant bit of the address is numbered zero. The least significant is
numbered thirty-one. Virtual addresses are represented by values of type LONG POINTER.

As with all LONG data types, when a long pointer is stored inmemQry, the least significant
word appears at the lower-numbered address (§2.3.1).

Within distinguished regions of the virtual memory, called Main Data Spaces, data can be
referenced using short pointers. These addresses occupy a single word and are represented
by values of type POINTER. §3.2 discusses the structures contained in Main Data Spaces and
the conversion of short to long pointers.

Design Note: Mesa processors may implement virtual and real address spaces smaller
than 232 words (see' below). Regardless of the actual size of virtual memory, long pointers
always occupy two words, and the unused bits must be zero ..

3.1.1. Virtual Memory Mapping

Virtual addresses are mapped into real addresses via the mapping mechanism. The
implementation of the mapping operations is processor-dependent, and it is modeled in
this document by the operations ReadMap and WriteMap. Logically, these operations
implement an array of.real page numbers indexed by virtual page number, except that the
array can have holes, allowing for an associative or hashed implementation.

The address-translation process is identical for all memory accesses, whether they
originate from the processor or from VO devices. There is no method for bypassing the
address-translation mechanism and directly referencing a main memory location using a
real address. The virtual-to-real mapping can always be determined using the map
instructions (§3.1.2).

Like virtual memory, real memory is referenced by thirty-two bit addresses in the range
[0 .. 232_1]. However, the real address space isnot necessarily contiguous or complete; there
may be gaps where no real memory resides, and some models of the processor may
implement less than 232 words of real memory. The size of a gap in the real address space
must always be a multiple of the page size and begin on a page boundary.

The mapping mechanism identifies the real page that corresponds to a given virtual page
(if any). Each virtual page is mapped individually, and a contiguous region of virtual
memory does not necessarily correspond to a contiguous block of real memory. A thirty
two bit virtual address is mapped into a thirty-two bit real address, as illustrated in
Figure 3.1.

The mapping mechanism is described by an array, indexed by the virtual page number,
containing the associated real page numbers. It also contains the access flags, sonie of
which are processor-dependent. The flags have the following format, although some
reserved bits may not be present in all implementations of the processor:

MapFlags: TYPE = MACHINE DEPENDENT RECORD [

reserved (0: 0 .. 12): UNSPEClFIED[O .. 17777B],

protected (0: 13 .. 13): BOOLEAN,

dirty (0: 14 .. 14): BOOLEAN,

referenced (0: 1 5.1 5): BOOLEAN 1;

,Mesa Processor"Principles of Operation 3

o 7

I virtual page number word J virtual address

0 23 31

Map

0

224_1

0 23

0 7

real page number word real address

o 23 31

Figure 3.1 Virtual Memory Mapping

Design Note: The processor returns zero as the value of each unimplemented reserved bit.
Any unimplemented bits supplied by the programmer when writing the map are ignored.

The flags encode access properties of the real page, if one is assigned. These bits can be
read and written both by the processor and by the programmer using the map instructions
defined in §3.1.2. Three of the flags, protected, dirty, and referenced, are defined by the
architecture. Other processor-dependent flags (up to thirteen) may also be defined. The
write-protect bit (protected) is set by the programmer. It prohibits writin, into the page,
causing a write-protect fault if a store is attempted. The dirty bit (dirty) is set by the
processor if a store is done into a non-write protected page. The referenced bit (referenced)
is set by the processor on any read or write access of a word within the page.

A distinguished encoding of the flags called vacant signifies that the virtual page is not
present in real memory (that is, it is unmapped). If a read or write operation is performed
on a page with flag bits set to vacant, a page fault occurs.

Vacant: PROCEDURE [flags: MapFlags) RETURNS [BOOLEAN] =
BEGIN
RETURN[flags.protected AND flags.dirty AND -flags.referenced];
END;

The mapping operation is defined by the following routine, which maps a virtual address
into a real address. Both types of addresses are represented by LONG POINTERS, but the Mesa

3-3

3

3-4

Memory Organization

dereferencing operator (i) is applied only to real addresses in the instruction descriptions
that follow.

Map: PROCEDURE [virtual: LONG POINTER, op: {read, write}] RETURNS [real: LONG POINTER] =
BEGIN
mf: MapFlags;
rp: RealPageNumber;
adrs: LONG CARDINAL = LOOPHOLE[virtual];
vp: VirtualPageNumber = adrslPageSize;
wa: LONG CARDINAL = adrs MOD PageSize;
[flags: mf, real: rp] +- ReadMap[vp];
IF Vacant[mf] THEN PageFault[virtual];
IF op = write THEN

IF mf.protected THEN WriteProtectFault[virtual]
ELSE mf.di rty +- TRUE;

mf.referenced +- TRUE;
WriteMap[virtual: vp, flags: mf, real: rp];
RETURN[lOOPHolE[rp*PageSize + wall;
END;

Note: The PageFault and WriteProtectFault routines do not return control to Map.
Instead, they raise the .Abort signal (§4.1).

Implementation Note: Operations on the map must be atomic with respect to accesses by
other processors and I/O devices. That is, after the ReadMap has taken place, other
accesses must be prohibited until the following WriteMap completes (or a fault occurs).

Design Note: When accessing data structures declared to be resident in real memory, the
processor need not maintain the dirty and referenced flags. The resident structures are
the Process Data Area and the State Vectors that it points to (§10.1.1).

The operations ReadMap and WriteMap are implementation-dependent, and are
described by the following interface:

ReadMap: PROCEDURE [virtual: VirtualPageNumber]
RETURNS [flags: MapFlags, real: RealPageNumber];

WriteMap: PROCEDURE [
virtual: VirtualPageNumber, flags: MapFlags, real: RealPageNumber];

These operations have the following properties (see also §3.1.2):

It is illegal to attempt to map more than one virtual page to the same real page.
This restriction allows an associative or hashed implementation of the map in
which there is only one map entry for each real memory page.

In the case where ReadMap returns flags indicating vacant, the value of the real
page number returned by the operation is undefined.

[n the case where WriteMap is supplied with flags indicating vacant, the value of
the real page number supplied by the caller is ignored.

Mesa Processor Principles of Operation 3

Implementation Note: Each implementation of the processor may handle out-of-bounds
virtual addresses differently. The hardware may be designed to make ReadMap and
WriteMap return the appropriate' flags for this condition. Otherwise, SetMap and
GetMapFlags can be used to do address checking.

Programming Note: The maximum size of virtual memory can be determined by
attempting to map a real page to each possible virtual page and then checking the flags of
its map entry for vacant.

3.1.2 Memory Map Instructions

The map instructions are used to maintain the correspondence between virtual and real
pages. The SetMap instruction replaces an entry in the map. GetMapFlags reads the flags
and real page number from a map entry, given a virtual page number; SetMapFlags reads
an entry and updates it with new flags obtained from the stack, provided the flags do not
indicate vacancy. Note that SetMap and SetMapFlags must atomically update the map,
and that no mapping operations may occur while the map is being updated.

Implementation Note: The atomicity requirements on SetMap and GetMapFlags may be
replaced with a rule allowing only one processor in the system ever to write the map. Such
a rule would imply that the privileged processor must preset the map flags for each
addressing operation performed by the other processors or I/O controllers.

Programming Note: It is illegal to map more than one virtual page to the same real page,
so the results of such an operation are undefined. A detailed discussion of the properties of
the map can be found in the previous section.

The stack and the Push(Long) and Pop(Long) routines are defined in §3.3.2.

SM Set Map

If the flags specify that the page is vacant, Set Map ignores the real page number, except
to pop it from the stack.

SM: PROCEDURE =
BEGIN

mf: MapFlags = Pop(];
rp: RealPageNumber = PopLong[];
vp: VirtualPageNumber = PopLong(];
WriteMap[virtual: vp, flags: mf, real: rp]
END;

GMF Get Map Flags

Ifthe flags returned indicate a vacant map entry, the real page number is undefined.

GMF: PROCEDURE =
BEGIN

mf: MapFlags;
rp: RealPageNumber;
vp: VirtualPageNumber = PopLong[];
[flags: mf, real: rp] ~ ReadMap[vp];

3-5

3-6

Memory Organization

Push[mf);
PushLong[rp];
END;

SMF Set Map Flags

If the old flags indicate a vacant entry, the real page number is undefined, and the new
flags taken from the stack are ignored.

SMF: PROCEDURE =
BEGIN
mf: MapFlags;
rp: RealPageNumber;
newMf: MapFlags = Pop[];
vp: VirtualPageNumber = PopLong[];
[flags: mf, real: rp] +- ReadMap(vp];
Push[mf];
PushLong[rp];
IF -Vacant[mf] THEN

WriteMap[virtual: vp, flags: newMf, real: rp];
END;

Programming Note: SetMapFlags cannot change the status of an entry from vacant to
non-vacant, since that would require a new real page number. SetMap must be used for
this purpose.

3.1.3 Virtual Memory Access

In the code that follows, the Fetch and Store routines are used to perform the mapping
operation. They return a LONG POINTER that is the real address produced by Map. This
notation allows the use of the Mesa operator (i) to dereference the pointers. Wherever
this operator appears, a real memory access takes place, and all real memory accesses are
denoted by this operator. There are no virtual address dereferences in this document, and
the code does not make use of Mesa's implicit pointer-dereferencing rules. Notice that
wherever calls on Fetch or Store appear, a page fault or write-protect fault might result (in
the form of an Abort signal; see §10.4.3).

Fetch: PROCEDURE [virtual: LONG POINTER]
RETURNS (real: LONG POINTER] =

BEGIN
RETURN(Map[virtual, read]];
END;

Store: PROCEDURE [vi rtual: LONG POINTER]
RETURNS [real: LONG POINTER] =

BEGIN
RETURN[Map[virtual, write]];
END;

To allow convenient access to double-word structures, the following operation is also
defined, which checks for faults on each word ofthe data:

Mesa Processor Principles of Operation

ReadDbl: PROCEDURE [virtual: LONG POINTER]

RETURNS [data: LONG UNSPECIFIED] =
BEGIN

temp: Long;

temp.low ~ Fetch[virtual] i ;
temp.high ~ Fetch[virtual + 1] i;
RETURN[lOOPHOlE[temp]];

END;

3

Design Note: There are currently no requirements to provide a double-word store
operation that is atomic with respect to page faults (see §4.6.1).

3.1.4 Vi!tual Memory Data Structures

This section summarizes the data structures of the architecture that are global to the
entire virtual memory. Other structures are local to and replicated in each Main Data
Space, and are described in §3.2.2. The overall structure of virtual memory is illustrated
in figure 3.2.

3.1.4.1 Reserved Locations

A contiguous area beginning at page zero of virtual memory is reserved for the booting
process (see §4.7). Page zero normally is not used thereafter. It should not be allocated by
the programmer, so that most uses of zero long pointers will cause faults.

PageZero: LONG POINTER = LOOPHOle[LONG[O]];

During booting, the initialization process may construct and store in mam memory
information about the machine configuration, device and controller identification,
diagnostic information, and error status, in addition to the software necessary for initial
program bootstrap. The format, content, and size of this area is processor-dependent;
however, it is always contained within the first 64K of virtual memory (called bank zero)
beginning at page zero.

BootArea: LONG POINTER TO BootData = LOOPHOLE[LONG[O]];

BootData: TYPE = BLOCK;

On most processors, one or more pages are reserved for communication between va
devices or controllers and the processor. The format, content, size, and location of this area
is processor-dependent; however, it is always contained within the first 64K of virtual
memory.

IOArea: LONG POINTER TO IOData;

IOData: TYPE = BLOCK;

Other reserved virtual memory locations may be assigned by the programmer. Real
memory locations may be reserved for I/O devices, but these areas must be mappable to
any virtual memory address by the programmer.

3-7

3 Memory Organization

V' 1M Irtua emory

Reserved

Locations

Boot Data

10 Page

Process Data Area

PSBs

State

VE!'Ctors

Code Segment

I
Prefix

code bytes

Code

Segment

I

3-8

0

JMDS

64K

I PSB
I I

I GF

I LF

I
CB

r PC
I 1

I

Main Data Space

....".-...... Allocation Vector
--'

System Data Table

ESC Trap Table

Global Frame

Local Frame

128K

Main Data

Space

L.. _________I 232 _1

Figure 3.2 Virtual Memory Structure

· ., .. MesaR~ocessorPrinciples of Operation 3

3.1.4.2 Process Data Structures

The Process Data Area (PDA) contains information recording the state of each process and
a pool of state vectors used to save the state of a preempted process. Substructures of the
PDA support the handling of faults, interrupts, and timeouts.

PDA: LONG POINTER TO ProcessDataArea;

The structure and content ofthe Process Data Area are described in §10.1.1. The location
of the PDA is defined in Appendix A.

3.1.4.3 Code Segments

An arbitrary number of code segments may be allocated anywhere in virtual memory
other than in the reserved locations. (The BootArea may include code, however.) A code
segment contains read-only instructions and constants for the procedures that comprise a
Mesa program module; it is never modified during the course of normal ~xecution. A code
segment is relocatable without modification; no information in a code segment depends on
its location in virtual memory.

Optional Control Links

I CB
I

I I

I

0 31 CB mod 4 = 0 Prefix

I PC
I byte n byte n + , I

0 15 byte n + 2 byte n + 3

Figure 3.3 Code Segment

The beginning of the currently-executing code segment is pointed to by the CB register (the
code base, a long pointer). The code segment is quad-word aligned (that is, CB modulo 4 =
0), and no part of a code segment may cross a 64K word boundary. These restrictions must
be enforced by the programmer.

CodeSegment: TYPE = MACHINE DEPENDENT RECORD [

available (0): ARRAY [0 . .4) OF UNSPECIFIED,

code (4): BLOCK];

Note: The array code is of zero length, and is just a place-holder in the record declaration
for the beginning of the actual code bytes for the code segment.

3-9

·Memory Organization

In addition to a small amount of space availiable to the programmer, the code segment
may contain a number of control links located immediately before the word pointed to by
the code base (control links are described in §9.1.). These links are used to call procedures
or reference variables in other program modules. The links must also be contained in the
same 64K bank as the rest of the code segment.

The program counter (PC) points to instruction or operand bytes in the code segment. It is a
byte offset, relative to the code base. The code bytes are addressed left-to-right within a
word, byte zero being bits zero through seven, byte one being bits eight to fifteen. Since
the program counter is sixteen bits, it can reference up to 64K bytes of code starting at the
code base. (This is the maximum size of a code segment.)

Design Note: It is illegal for a program to unmap the page to which the PC currently
points, to clear the referenced bit, or to modify the dirty bit of that page. It is also illegal to
write into the current code segment pointed to bycB .

. Implementation Note: These restrictions allow the processor to cache a portion of the
current instruction stream and the map entry of the current code page, and to set its map
flags only when the page is first referenced.

Several instructions use the code base in conjunction with a word offset into the code
segment to obtain operands. These instructions call the following routine:

ReadCode: PROCEDURE [offset: CARDINAL]
RETURNS [UNSPECIFIED] =
BEGIN
RETURN[Fetch[CB + LONG[offset]] i];
END;

Programming Note: Because code segments do not cross 64K boundaries, the calculation
CB + LONG [offset] can be implemented as a short addition of the offset to the least
significant word of the code base, with no possibility of overflow into the high-order word.

3.2 Main Data Spaces

3-10

A Main Data Space (MDS) is a contiguous region of 64K words of virtual memory. All short
pointers access memory locations within an MDS, and all local and global frames (§3.2.2.2)
are allocated within an MDS. The purpose of Main Data Spaces is to allow the most
commonly used data structures to be referenced by single word rather than long (double
word) pointers.

MdsHandle: TYPE = LONG POINTER TO MainDataSpace;
MainDataSpace: TYPE = BLOCK;

Main Data Spaces are 64K-word. aligned and thus do not cross 64K word boundaries.
Several MDSs can be allocated in virtual memory, but only one is current; its address is
contained in the thirty-two bit MDS register (§3.3.1 l.

Mesa Processor Principles of Operation 3

3.2.1 Main Data Space Access

A short pointer is a sixteen-bit quantity that addresses a location within the current MDS

relative to its base. To construct a thirty-two bit virtual address from a short pointer, it is
simply added to the MDS register. The following routine is used to perform this conversion:

LengthenPoi nter: PROCEDURE [ptr: POINTER] RETURNS [LONG POINTER] =

BEGIN
offset: CARDINAL = LOOPHOLE[ptr];
RETURN[MDS + LONG [offset]];

END;

Design Note: Because the MDS is 64K-word aligned and short pointers are restricted to a
64K range within the MDS, a concatenation operation can replace the addition that
appears above. All operations on short pointers are performed modulo 216, ignoring
overflow.

Programming Note: A Main Data Space can be less than 64K, but the processor is
ignorant of the size of the current MDS. It is up to the programmer to ensure that short
pointers do not exceed the actual size of the MDS.

The Lengthen Pointer instruction converts a short pointer to a long pointer using
LengthenPointer. Notice that it treats zero (the standard value of NIL) as a special case.

LP Lengthen Pointer

LP: PROCEDURE =
BEGIN
ptr: POINTER = Pop[];
PushLong[

IF ptr = LOOPHOlE[O] THEN LONG[O]
ELSE LengthenPointer[ptr]];

END;

The routines below are defined in terms of Fetch, Store and ReadDbl (§3.1.3) for mapping
short pointers. They use the value of the MDS register to lengthen the short pointers.

FetchMds: PROCEDURE [ptr: POINTER]
RETURNS [real: LONG POINTER] =

BEGIN
RETURN [Fetch[LengthenPoi nter[ptr]ll;
END;

StoreMds: PROCEDURE [ptr: POINTER]
RETURNS [real: LONG POINTER] =

BEGIN
RETURN [Store[LengthenPoi nter[ptr]]];
END;

ReadDblMds: PROCEDURE [ptr: POINTER]

RETURNS [data: LONG UNSPECIFIED] =

BEGIN

3-11

3

3-12

Memory Organization

RETURN[ReadDbl [Lengthen Poi nter[ptr]]];
END;

3.2.2· Main Data Space Data Structures

The following sections summarize the data structures contained in each Main Data Space.
These include page zero, the control-transfer data structures, and local and global fraqles.
Other structures in the MOS may be allocated by the programmer.

3.2.2.1. Reserved Locations

The data structures given in this section are located at fixed addresses in each Main Data
Space; when not specified here, their locations are defined in Appendix A.

Page zero of each Mosis not normally used (except during the booting process; see §4.7). It
should not be allocated by the programmer, so that most references through zero short
pointers will cause faults.

Each Main Data Space contains an Allocation Vector (AV), a System Data table (so), and
an ESC Trap Table (ETT). These data structures are used by the control-transfer
mechanism described in detail in §9. A brief summary is contained below:

AV: POINTER TO AliocationVector;

The procedure-calling mechanism allocates space· for local variables dynamically from a
frame heap, rather than a stack. This method allows for arbitrary control-transfer
disciplines in addition to simple call-return. It also allows several processes to share the
same heap. The Allocation Vector is used to maintain the heap and to simplify the
allocation and deallocation of frames, so that the common cases can be implemented by the
processor. The details of the allocation mechanism are described in §9.2.

SO: POINTER TO System Data;

The System Data table is used to contain pointers (in the form of control links; see §9.1) to
the trap-handling routines called when the processor determines that execution of the
current instruction cannot be completed. (Details of the trap mechanism are described in
§9.5.) This table is also used to contain pointers (also in the form of control links) to
commonly used runtime facilities (see §9.4.2).

ETT: POINTER TO EscTrapTable;

The ESC Trap table is used to contain pointers (in the form of control links; see §9.1) to trap
handling routines called when the program executes an ESC or ESCL opcode which is
implemented in software. (Details of the trap mechanism are described in §9.5.)

3.2.2.2 Local and Global Frames

To minimize the amount of addressing information needed to specify the location of an
operand (and to maximize locality of reference), variables declared in Mesa programs and
procedures are stored in frames and referenced relative to the beginning of these
structures. Frames are contiguous linear structures in virtual memory that reside

Mesa Processor Principles of Operation 3

entirely within a Main Data Space. They are referenced relative to the MDS register using
short pointers.

Programming Note: Except for the restriction that frames are contained entirely within
a Main Data Space, the maximum size of a frame is not specified by the architecture.

Frames are of two types. Global frames contain the global variables declared in a program
module. They are allocated statically when the module is loaded. Local frames contain
the local variables declared in a procedure. They are allocated dynamically when the
procedure is called, and they are deallocated when it returns. In addition to local and
global variables, frames contain a small amount of overhead information used to record
the size of the frame along with the linkages between procedure calls, between procedures
and their containing modules, and between modules and their corresponding code
segments. The details are described below.

Global Frames

A global frame represents an instance of a program module. It contains the module's
globally-declared variables, preceded by a few overhead words. The first global variable is
called global zero, the next global one, and so on.

GlobalFrameHal')dle: TYPE = POINTER TO GlobalVariables;
GlobalVariables: TYPE = BLOCK;

Design Note: Global zero must be quad-word aligned. The overhead words and the first
four global variables must lie in the same page. This alignment simplifies page-faulting.

o 14 15

F~+--- trapxfers

word IillffiillIji2QliijJ2E2[!J[:t-- codel inks

code base
ptr to CodeSegment

Figure 3.4 Global frame

The overhead words contain the location of the code segment from which instructions will
be fetched when the module executes (the codebase field). These words also contain the
flag bits trapxfers and codelinks used during control transfers (§9.3). Their remaining
fields are available for use by the software.

GlobalFrameBase: TYPE = POINTER TO GlobalOverhead;

GlobalWord: TYPE = MACHINE DEPENDENT RECORD [

available (0: 013): [0 37777B],

3-13

3

3-14

Memory Organization

trapxfers (0: 14 .. 14): BOOLEAN,
codelinks (0: 15 .. 15): BOOLEAN];

GlobalOverhead: TYPE = MACHINE DEPENDENT RECORD [
avai lable (0): UNSPECIFIED,
word (1): GlobalWord,
codebase (2): LONG POINTER TO CodeSegment,
global (4): GlobaIVariables];

Note: The array GlebalVariables is of zero length, It is just a place-holder in the record
declaration for the starting address of the global variables.

The following routine is used to convert a global frame handle to a pointer to its overhead
words:

GlebalBase: PROCEDURE [frame: GlobalFrameHandle]
RETURNS [GlobalFrame8ase] =
BEGIN
RETURN [LeOPHOLE[frame-SIZE [Global Overhead]]];
END;

Design Note: If a program modifies the overhead words of its own global frame, this
modification may have no effect on their values as seen by the processor until the next
control transfer irito that module. This feature allows the processor to cache this (read
only) information in internal registers ..

In addition to the overhead words, a number of control links can be located immediately
before the global frame's overhead words. These links are used to call procedures and to
reference variables in other program modules. Control links and the codel inks bit are
discussed in §9. Also, see the Load Link instruction in §9.4.2.

Local Frames

A local frame represents an instance of a procedure. It contains the procedure's locally
declared variables, preceded by a few overhead words. The first local variable is called
local zero, the next local one, and so on.

Local FrameHandle: TYPE = POINTER TO LocalVariables;
LocalVariables: TYPE = BLOCK;

Design Note: Local zero and the overhead words must be quad-word aligned. The
overhead words and the first four local variables must lie in the same page. This
alignment simplifies page-faulting.

The overhead words contain the byte-relative location in the code segment from which
instructions will be fetched when the procedure executes (the pc field). The global/ink
points to the procedure's global frame. It is used to gain access to the procedure's global
variables. (It points to global zero, not to the overhead words.) The returnlink is a control
link that normally points to the local frame of the procedure that created the current local
frame (by a transfer of control; see §9.3). The overhead words also contain the frame's size,
represented by a frame-size index (§9.2). The remaining field is available for use by the
software.

Mesa,ProcessorPrinciplesof Operation

word

return link

global link

pc

0------

o 7 8

fsi

GlobalFrameHandle

. 15

Figure 3.5 Local frame

LocalFrameBase: TYPE = POINTER TO LocalOverhead;

LocalWord: TYPE = MACHINE DEPENDENT RECORD [
available (0: 0 .. 7): BYTE,
fsi (0: 8 .. 15): FSlndex);

LocalOverhead: TYPE = MACHINE DEPENDENT RECORD [
word (0): LocaJWord,
returnlink (1): ShortControlLink,
globallink (2): GlobalFrameHandle,
pc (3): CARDINAL,
local (4): LpcaIVariables];

3

Note: The array LocalVariables is of zero length. It is just a place-holder in the record
declaration for the starting address of the local variables.

The following routine is used to convert a local frame handle into a pointer to its overhead
words.

LocalBase: PROCEDURE [frame: LocalFrameHandle]
RETURNS [Local FrameBase] =
BEGIN
RETURN [LOOPHOLE [frame-slzE[Local Overhead]]];
END;

3.2.3 Frame Overhead Access

The overhead instructions are used to access overhead words of local and global frames.
Read Overhead Byte obtains a pointer to a frame from the stack and moves a word from
the overhead of that frame to the stack. Write Overhead Byte obtains a pointer to a frame
from the stack and moves a word from the stack to the overhead of that frame.

Programming Note: Overhead words of frames must be accessed only by the overhead
instructions. This restriction allows implementations to cache overhead words.

Programming Note: The programmer must ensure that the alpha byte (§4. 2) In the
overhead instructions is within the interval [1 .. 4].

3-15

3 . Memory Organization

ROB Read Overhead Byte

ROB: PROCEDURE =
BEGIN

alpha: BYTE = GetCodeByte[J;
ptr: POINTER = Pop[];
IF alpha -IN [1..4]THEN ERROR;

Push[FetchMds[ptr-alpha] i];
END;

WOB Write Overhead Byte

WOB: PROCEDURE =
BEGIN

alpha: BYTE = GetCodeByte[];
ptr: POINTER = Pop[];
IF alpha -IN [1..4] THEN ERROR;

StoreMds[ptr-alpha] i ~ Pop[];
END;

3.3 Processor Memories

3-16

This section describes those processor memories (usually called registers) visible to the
programmer. An implementation of the architecture will typically include other internal
registers as well. Several control registers are used to direct the execution of programs.
The evaluation stack, which replaces the general-purpose registers found in most processor
architectures, is also described. The data and status registers available to the
programmer are listed, and the instructions used to access registers are defined.

3.3.1 Control Registers

The registers described below designate the process currently being executed by the
processor, the ~ain Data Space in which it is executing, the frames to which it has direct
access, and the location of the instructions being interpreted. All of the registers declared
as pointer types contain virtual-memory addresses.

The state of the current process is recorded in a Process State Block (PSB). Its index into a
table of such blocks located in the Process Data Area is contained in the register PSB.

PSB: Psblndex;

The process state block contains, among other things, a pointer to the MDS in which the
process is running. It also contains either a pointer to the process' local frame or a pointer
to another structure (a State Vector) containing the process' evaluation stack (§3.3.2) and
frame pointer. Details of the process structures are contained in §10.

The virtual address of the current Main Data Space is contained in the MDS register. The
value of this register normally is changed only by a process switch (see § 1 0). It can also be
read and written using the register instructions (§3.3.4).

MDS: MdsHandle;

Mesa Processor Principles of Operation 3

Implementation Note: Because the address of the MDS is always a multiple of 64K, MDS

can be implemented using a sixteen-bit register.

Before a program can be run, an execution environment called a context must be
established for it. In addition to a Main Data Space, a context includes:

• a pointer to the program's code segment,

• a pointer to its current instruction (the program counter), and

• pointers to its local and global data.

This information is stored in the overhead words of the program's local and global frame
(§3.2.2.2).

The processor includes dedicated registers (described below) that contain pointers to the
current local frame, global frame, and code segment, along with the current program
counter. These registers are updated by the control-transfer instructions described in §9.
Notice that a local frame is sufficient to determine all of the other registers: given a local
frame pointer, the program counter is obtained from its pc field, the global frame pointer
from its globallink field, and the code segment address from the global frame's codebase
field. For this reason, the terms frame and context are often used interchangeably in the
PrincOps, as are the terms control transfer and context switch.

The address of the local frame ofthe current context is contained in the sixteen-bit register
IF (a short pointer). Its value is obtained directly from a Process State Block, from a State
Vector, or via a control transfer (§9).

LF: LocalFrameHandle;

To access the overhead words of the current local frame, the procedure LocaIBase[LF] is
used. The register Lf points to local zero, not to the overhead words. The format of a local
frame is defined in §3.2.2.2.

The address of the global frame of the current context is contained in the sixteen bit
register Gf (a short pointer). Its value is obtained using LocaIBase[Lf].globallink.

Gf: GlobalFrameHandle;

T9 access the overhead words of the current global frame, the procedure GlobalBase[Gf] is
used; the register GF points to global zero, not to the overhead words. The format of a
global frame is defined in §3.2.2.2.

The address of the code segment ofthe current context is contained in the register cs (the
code base, a long pointer). Its value is obtained using GlobaIBase[GFj.codebase. The
format of a code segment is described in §3.1.4.3.

cs: LONG POINTER TO CodeSegment;

The current offset into the code stream is contained in the register PC (the program
counter). It contains the byte offset, relative to the code base CB of the next byte to be
fetched. It is obtained initially (on a control transfer) using LocaIBase[Lfj.pC or from an
entry vector.

3-17

3-18

Memory Organization

PC: CARDINAL;

Except during execution of jump instructions and control transfers, the PC is maintained
by the instruction-fetch routine GetCodeByte described in §4.3.

3.3.2 Evaluation Stack

The Evaluation Stack (usually just called the stack) is an array of registers normally
accessed in a last in, first out manner. It is used as the source and destination of most
transfers to and from memory. It is also used to pass parameters and results from one
context to another during control transfers. Most arithmetic and logical operators also
obtain their operands from the stack and return their results to the stack.

15P

1 0 15

I I I ----

0 2 cS5-1

Figure 3.6 Evaluation Stack

The stack is represented by an array of Stack Depth words and the Push and Pop routines.
The variable SP (the stack pointer) indexes the next word above the top of the stack, so that
the stack is empty when SP = 0 and full when SP = Stack Depth. The Stack Count routine
returns the number of words currently on the stack. The value of c5S, the stack size, is
given in Appendix A.

StackDepth: CARDINAL = cSS;

StackPointer: TYPE = [o .. StackDepth];

SP: Stack Poi nter;

stack: ARRAY [o .. StackDepth) OF UNSPECIFIED;

StackCount: PROCEDURE RETURNS [StackPointer] =
BEGIN

RETURN{SP];

END;

Push (PushLong) adds a word (two words) to the top; Pop (PopLong) removes the top word
(two words) from the stack. If a push or pop would cause the stack pointer to be
incremented or decremented out of range, a trap is generated.

Programming Note: The state of the stack after a stack error is undefined. Such an error
is always fatal: it is illegal to resume a program that has generated a stack error (§4.6.1,
§9.5).

Implementation Note: A stack error must always be detected by the processor, but it
need not be reported during the execution of the instruction that caused it. This allows for

Mesa Processor .Principles of Operation 3

pipe lining in the arithmetic unit of the processor. A speedy report about the stack error
(by the processor) is helpful for debugging, however. Otherwise, if another process switch
occurs, the wrong process may be indicated as having a problem.

Push: PROCEDURE [data: UNSPECIFIED] =
BEGIN
IF SP = StackDepth THEN StackError[];
stack[sp] +- data;
sp +- SP + 1;
END;

Pop: PROCEDURE RETURNS [UNSPECIFIED] =
BEGIN
IF SP = 0 THEN StackError[];
SP +- SP-l;

RETURN[stack[sp]];
END;

PushLong: PROCEDURE [data: LONG UNSPECIFIED] =
BEGIN
Push[LowHalf[datall;
Push[HighHalf[data]l;
END;

PopLong: PROCEDURE RETURNS [LONG UNSPECIFIED] =
BEGIN
long: Long;
long. high +- Pop[];
long.low +- Pop(];
RETURN[LOOPHOLE [long]];
END;

Note that double-word quantities are placed on the stack so that the least significant word
is at the lower-numbered stack index (that is, on the bottom).

The stack is the primary source of instruction operands and the primary destination of
results. The load instructions push words from memory onto the stack. The store
instructions pop the stack into memory. The conditional jump instructions test words on
the top of the stack and branch based on the result. The arithmetic instructions (or
operands) pop their operands from the stack and push a result back onto the stack.
Indirect instructions fi~d their pointers on the stack. .

Normally, the stack may contain results of previous computations that are to be combined
with the result of the current instruction by execution of the operations following.
However, a few instructions are minimal stack; that is, they require that the stack be
empty except for their operands. These instructions call the following routine after
popping their operands from the stack:

3-19

3

3-20

.. Memory Organization

MinimalStack: PROCEDURE =
BEGIN

IF SP#O THEN StackError[];
END;

Some operations leave results or partial results above the top of the stack, that is, at
stack[sp] and stack[sp + 1]. These results are not normally used, but they can be obtained
using a Recover instruction (§5.1), which increments the stack pointer without disturbing
the stack's contents. There is a corresponding Discard instruction that discards the top
element of the stack by decrementing the stack pointer. These instructions are
implemented using the following routines:

Recover: PROCEDURE =
BEGIN

IF SP = StackDepth THEN StackError[];
SP~SP+ 1;

END;

Discard: PROCEDURE =
BEGIN

IF SP = 0 THEN StackError[];
SP ~ SP-l;

END;

The Multiply instruction (§5.5) provides an example of the use of Recover. It leaves the
most significant word of a double-word result above the top of the stack. This allows a
single instruction to function as both a single- and a double-precision operation.

In no cases are more than two words left above the top of the stack, and at most SP + 2

elements of the stack need be stored when its contents are saved (see §9.S.3).

Since the stack may not actually be implemented as an array, certain words left above the
top of the stack may be lost. In particular, if more than two Recover instructions are
executed sequentially, the excess Recovers may yield undefined results. In addition, even
if they are not actually destroyed by the instruction, the original stack operands may not
be recovered if the instruction changed the contents of the stack and changed the value of
the stack pointer. (For example, one can not in general recover the original dividend after
a divide, but the operand of a store instruction can always be recovered.> Exceptions to
this rule are those instructions that leave results explicitly above the top of the stack.
These values can always be obtained by Recovers (for example, MUL, and DIV).

Implementation Note: The intention of these restrictions is to allow the top few elements
of the stack to be implemented using fast registers as a cache. The restrictions limit the
cases in which the contents ofthe cache must be written back to the stack.

3.3.3 Data and Status Registers

The following additional data and status registers are accessible to the programmer using
the register instructions (§3.3.4). In some models of the processor, these actually may be
implemented in main memory or other auxiliary storage.

Mesa Processor Principles of Operation 3

Each processor has a unique identification number guaranteed to be different from all
others. This register is read-only.

PIO: READONL Y ARRAY [0 .. 4) OF UNSPECIFIED;

D~sign Note: Currently, only 48 bits are implemented, and the first (high-order) word
must be zero.

Most models of the processor include a maintenance panel for displaying error and status
information to service personnel. This register is optional; if it is present, it is a write-only
register.

MP: CARDINAL;

The interval timer allows high-resolution measurements of program performance and
external events. It is incremented by one, modulo 232, at a constant rate. The units of the
timer, called pulses, are processor-dependent, but must be in the range i-100
microseconds.

IT: LONG CARDINAL;

The wakeup mask register contains a bit mask indicating which interrupt levels are
assigned for internal use by the processor (see § 10.4.4). It is read only.

WM: READONL Y CARDINAL;

The wakeup pending register records the occurrence of wake ups that will later be
translated into interrupts by the processor (see §10.4.4).

WP: CARDINAL;

The wakeup disable counter is used to control interrupt processing (see § 10.4.4).

woe: CARDINAL;

The process timeout counter is used to time out waiting processes (see § 10.4.5).

PTe: CARDINAL;

The xfer trap status is used to control trapping of control transfers (see §9.5.5).

XTS: CARDINAL;

Additional data and status registers may be present in the processor and available to the
programmer. Inclusion of the IEEE standard floating-point instructions may add such
registers. Details of the format and content of these registers are under development.

3.3.4 Register Instructions

The register instructions read and write the contents of the programmer-visible registers
defined in the previous sections.

3-21

3-22

,Memory Organization

RRIT Read Register IT

RRIT: PROCEDURE =
BEGW'

PushLong[IT];
END;

RRMOS Read Register MOS

RRMDS: PROCEDURE =
BEGIN

Push[HighHalf[MDS]];
END;

RRPSB' Read Register PSB

RRPTe

RRPSB:PROCEDURE =
BEGIN

Push[Handle[PSB]];
END;

Read Register PTe

RRPTC:PROCEDURE =
BEGIN

Push[PTcj;
END;

RRwoe Read Register woe

RRWP

RRXTS

WRIT

RRWDC: PROCEDURE =
BEGIN

Push [WDC];
END;

Read Register WP

RRWP: PROCEDURE =
BEGIN

Push[wp];
END;

Read Register XTS

RRXTS: PROCEDURE =
BEGIN

PUSh[XTS];

END;

Write Register IT

WRIT: PROCEDURE =
BEGIN

Mesa,Proce.ssor Principles of Operation

WRMDS

IT of-' PopLong[];
END;

Write Register MOS

WRMDS: PROCEDURE =
BEGIN

WRMP

MDS of-' LongShift[LONG[POp[]], WordSizel;
END;

Write Register MP

WRMP: PROCEDURE =
BEGIN

WRPSB

MP of-' Pop[];
END;

Write Register PSB

WRPSB: PROCEDURE =
BEGIN

WRPTe

PSB ~ Index[P.op[]];
END;

Write Register PTe

WRPTC: PROCEDURE :;:

WRwoe

BEGIN

PTC ~ Pop[];
time~IT;

END;

Write Register woe

WRWDC: PROCEDURE =
BEGIN

WRWP

WDe ~ Pop[];
END; .

Write Register WP

WRWP: PROCEDURE =
BEGIN

WRXTS

WP ~Pop[];

END;

Write Register XTS

WRXTS: PROCEDURE :;:

BEGIN

XTS ~ Pop[];
END;

3

3-23

3

3-24

M.emoryOrganization

Programming Note: Reading (writing) a write-only (read-only) register yields undefined
results.

Programming Note: Writing the MOS register does not modify the other registers that
define the current context. Matching local and global frames must exist in the new MDS at
the MOS relative locations pointed to by the If and GF registers.

The following table lists the sections in which each of these registers is defined (if it is not
discussed in detail above). Unless otherwise noted, the register can be both read and
written by the programmer.

PSB

MOS

PIO

MP

IT

WM

WP

woe
PTe

XTS

Current Process State Block handle (§10.1.1).

Current Main Data Space address.

Quad word processor id, read only.

Maintenance panel, write only.

Double word interval timer.

Wakeup mask register, read only (§10.4.4).

Wakeup pending register (§ 10.4.4.1).

Wakeup disable counter (§l0.4.4.3).

Ptocess timeout counter (§10.4.5).

Xfer trap status (§9.5.5).

Programming Note: The current local frame register (IF) and global frame register (GF)

can be read using the LAO and GAO instructions (§7.2). They can be written by a control
• transfer (§9.4). The current code base (eB) can be obtained from the global frame.

4

Instruction Interpreter

This chapter describes the operation of the Mesa instruction interpreter. Only the main
loop is contained here; the individual instructions are covered in other chapters. The
instruction formats, instruction fetch, effective address calculation, and opcode dispatch
are defined in this chapter. A description of exception processing (traps, faults, and
interrupts) is also included. In the last section, the initial state ofthe processor is defined.

4.1 Interpreter

After initialization, the processor repeatedly interprets instructions as coded in the
Processor routine. This task includes checking for pending interrupts and possible
timeouts before the execution of each instruction.

Abort: ERROR = CODE;

Processor: PROCEDURE =
BEGIN

Initialize[];
DO ENABLE Abort = > LOOP;

interrupt: BOOLEAN ~ CheckForlnterrupts[];
timeout: BOOLEAN ~ CheckForTimeouts[];
IF interrupt OR timeout

THEN Reschedule(preemption: TRUE]

ELSE IF running THEN Execute[];
ENDLOOP';

END;

The initial state of the processor and its memories is defined in §4.7. The checks for
pending interrupts and timeouts are discussed briefly in §4.6.2 and more throughly in
§10.4. Reschedule and running are also defined there. The Execute routine defines
instruction fetch, instruction decode, and opcode dispatch. (Details are in §4.3 and §4.5.)

In the event of an exception, the trap and fault routines use the signal Abort to return
control to the main loop. In this situation, the processor continues executing instructions
using the machine state established by the trap or fault routine; the intermediate state of
the current opcode routine (and any routines that it has called) is discarded as a result of

4-1

4 Instruction Interpreter

catching the signal. Abort is the only signal defined in the code. It is raised only by the
trap and fault routines (see §4.6.1), and it is unwound only by the Processor routine.

4.2 Instruction Formats

The Mesa instruction set is composed of variable-length instructions of one, two, or three
bytes in length. The most frequently used operations are encoded in a single byte. The
first byte is always part of the opcode, and since there are more than 256 instructions,
some extended opcodes occupy two or more bytes (the assignment of opcode values is given
in the Appendix). In addition to the opcode, an instruction can contain one or two operand
bytes, called alpha and beta. Additional operands may be present on the evaluation stack.
The following illustration shows the possible instruction formats:

a 7

@ 0 @

@ B ~ @ B
@ B ~ ~ @ @

Figure 4.1 Instruction Formats

Design Note: The maximum size of an instruction is three bytes. Therefore, extended
opcodes of two (or three) bytes can have only one (zero) operand bytes. This restriction
establishes a minimum size for the optional instruction buffer (see §4.3).

Design Note: There are two escape opcodes, one for two-byte instructions (ESC) and one for
three-byte instructions (ESCL). In both cases, the second byte is an extended opcode. This
feature enables the programmer to determine instruction lengths by examining only the
first instruction byte.

Design Note: The opcode values zero and 255 are reserved for internal use by the
processor implementation. The programmer must ensure that t1!ese values will never
appear as opcodes in an instruction stream contained in a code segment.

4.3 Instruction Fetch

4-2

Opcode and operand bytes are fetched from the code segment by the GetCodeByte routine.
It maintains the program counter pcby incrementing it each time a byte is fetched. Thus
the PC always points just beyond the current instruction byte (unless it is explicitly
modified by the instruction, as in a jump). The beginning of the current instruction is
pointed to by the variable saved pc, defined with Execute below (§4.5).

GetCodeByte: PROCEDURE RETURNS [UNSPEClFIEO[0377Bj] =
BEGIN

even: BOOLEAN = (PC MOD 2) = 0;

word: BytePair = ReadCode[pc/2]; PC ~ PC + 1;

.MesaProeess~"Princlples of Operation

RETURN(IF even THEN word.left ELSE word.right];
END;

All operations on the PC are performed modulo 216, ignoring overflow. Backward
jumps are performed by adding large unsigned positive numbers to the pc; this is
equivalent to adding signed, two's-complement negative numbers, since overflow
is ignored.

4

The following routine is used to fetch a word from the code segment; note that the bytes
that make up the word may cross a word boundary in the instruction stream.

GetCodeWord: PROCEDURE RETURNS [UNSPECIFIEDJ-=
BEGIN
word: BytePair;
word.left ~ GetCodeByte[];
word. right ~ GetCodeByte[];
RETURN(word);
END;

Implementation Note: As written, the GetCodeByte routine fetches a full word from
memory each time it i~ called. To avoid these extra memory references, and generally to
speed execution, most models of the processor implement an instruction buffer which
holds the next few bytes of the code stream. Take care to ensure that page faults do not
occur until the word containing the requested byte woul~ have been accessed by calls on
the above routines.

4.4 Address Calculation

There are no fixed address fields or addressing modes defined by the instruction format,
since the address computation performed by an instruction is determined entirely by its
opcode. However, there are some common patterns shared by several instructions. In
general, addresses are computed in one ofthe following ways:

If the operands are on the evaluation stack, the stack pointer is used to address
them (§3.3.2, §5).

If the operands are in the current local or global frame, the registers LF and GF are
combined with an offset taken from the stack, the opcode, or the operand bytes
alpha and beta (§7.2).

Operands elsewhere in memory are referenced using pointers taken from the stack
or from the local or global frame. These pointers are usually combined with offsets
obtained from the stack, the opcode, or the operand bytes alpha and beta (§7.3-5).

Operands located in the code are referenced using an offset from the code base CB or
the pc. These offsets are taken from the stack, the opcode, or the operand bytes
alpha and beta (§6, §7.5.1, and §8.11.

Programming Note: The architecture includes prOVISlOns for mapping code
segments out of virtual as well as real memory (§9.5.1). Absolute virtual pointers
into the code. segment should therefore be used with caution. The processor never

4-3

4 Instruction Interpreter

uses such pointers (except for CBT, and all references to the code are relative to the
code base. Furthermore, interruptible instructions (§4.6.2) must not save the code
base as part of their intermediate state.

A complete definition of address calculation appears in the description of each instruction
contained in the chapters that follow.

4.5 Instruction Execution

4-4

The following routine defines the initial processing of each opcode. Subsequent actions
app.ear in separate routines defined for each instruction (or instruction class). If an opcode
other than ESC or ESCL is unimplemented, an OpcodeTrap is generated (§9.5).
Unimplemented ESC or ESCL opcodes generate an EscOpcodeTrap (§9.5). Identifiers
beginning with z represent values of single byte opcodes, identifiers beginning with a
represent values of ESC opcodes, and identifiers beginning with b represent values of ESCL

opcodes. These conventions are fully listed in Appendix A.

break: BYTE;

savedpc: CARDINAL;

savedsp: StackPointer;

Execute: PROCEDURE =
BEGIN

savedpc E- PC; savedsp E- SP;

Dispatch[GetCodeByte{]];
END;

Dispatch: PROCEDURE [opcode: BYTE] =
BEGIN

SELECT opcode FROM

zLLO = > LLn[O];

zlL 1 = > LLn [1];

zLLB = > LLB[];

zBRK = > BRK[];

zESC = >
SELECT opcode ~ GetCodeByte[] FROM

aMW = > MW[];

aMR = > MR[];

ENDCASE = > EscOpcodeTrap[opcode];
zESCL = >

SELECT opcode ~ GetCodeByte[] FROM

bROB = > ROB[];

ENDCASE = >. EscOpcodeTrap[opcode];

Mesa Processor, Principles of Operation

ENDCASE = > OpcodeTrap[opcodeJ;
END;

4

Execute begins by saving the current values of the program counter and stack pointer
before each instruction is executed (and before its opcode is fetched). This method allows
the trap and fault routines to restore these variables to their original values so "that the
aborted instruction can be restarted (see below). Most jump instructions also use savedpc
as the base for relative addressing (§6). The break byte and Dispatch are used by the
breakpoint mechanism (§9.5.4).

4.6 Exceptions

An exception occurs when the processor determines that execution of the' current
instruction should be halted (perhaps before it has even begun), and that some other
context or process should be run. There are three types of exceptions: traps, faults, and
interrupts.

4.6.1 Traps and Faults

A trap results when the processor detects some condition that will not allow the current
instruction to complete successfully (for example, a stack error or a zero divisor). An
enumeration of these conditions is contained in §9.5.1. A trap causes the current context
to be saved by a trap routine, a part of the processor. The trap then invokes a software trap
handler using a transfer of control much like a procedure call (an XFER; see §9.3). This
transfer does not change the current process, the Main Data Space, or the evaluation
stack. The XFER may itself cause a trap (or a fault). Details of the context-switching
mechanism and the trap routines are contained in §9.

An instruction experiences a fault if it causes a page fault (§3.1.1), a write protect fault
(§3.1.l), or a frame allocation fault (§9.2). A fault calls a fault routine, which causes a
process switch. This changes not only the current context, including the evaluation stack,
but also the MDS and PSB registers as well, and makes a software fault handler ready, if it is
not currently ready. (A trap handler, on the other hand, runs in the same process, and
uses the same Main Data Space, as the context that caused the trap.) Details of the
process switching mechanism and the fault routines are contained in § 10.4.

Exceptions can occur at any time during the execution of an instruction. Therefore, care
must be taken to define the state of the context when an exception occurs. This precaution
allows the programmer to correct the cause of the problem (if possible) and restart the
instruction that trapped, faulted, or was interrupted. Stated more precisely: if an
exception occurs, the processor state, including the current context, the evaluation stack,
and the other registers (defined in §3.3) must be restored to a state which, when used to
restart the context, can result in the completion of the instruction as though the exception
had not occurred. This is call the Restart rule, and like all good rules, there are exceptions
involving fatal errors from which processing can not be resumed. They are discussed
below.

The restart rule is intended to allow trap and fault handlers themselves to experience
traps and faults. No matter how deeply nested the processor becomes in exception
routines, only the last exception handler actually will get control. This handler will see
the state of a context or a process that was not the original state or context. It only sees

4-5

4

4-6

Instruction Interpreter

the state or context {which was excepted} of which it got control. When the trap or fault
handler. completes exception processing, it restarts the context in which its exception
occurred~ Oc.casionally the restart causes another trap or fault; it can even cause the same
trap again.

The restart rule applies under a wide range of conditions. One extreme includes
recoverable FAULTS, such as page faults, where the entire processor state from the
beginning of the opcode is restored. For some cases of faults, the restart rule is used to
restore only a partial state of the processor. At the other extreme are fatal traps. The
processor is responsible only for leaving as much information as possible for debugging
purposes. The following paragraphs cover these instances in more detail.

Generally, the pro~essoradheresto the restart rule by restoring itself to what its state had
been at the beginning of the current instruction. Because Execute saves the initial values
of the stack pointer and program counter, the opcode routines are free to remove operands
from the stack and fetch operand bytes, knowing that the trap and fault routines (§9.5.2,
§10.4.3) will restore the Sp and P<: in the event of an exception (interrupts are handled
differently; §4.6.2L The opcodes do not, however, push results back onto the stack. That
method would destroy the original operands! They must be preserved until all possibility
of a trap or fault has passed. Instead, the opcode routines use temporary variables to hold
intermediate results until exceptions are no longer possible (for example, see ROO, ROB,

ROLO, and ROLB in §7.3.Ll and XFER in §9.3).

Another approach to recovering from a fault is to save and restore the processor state at
any point where a fault may occur. This restores only that part of the state that had been
altered. Because of its complexity, this approach is used only for lengthy opcodes such as
those that transfer large blocks of data {see below}.

Certain changes in the state of the computation are allowed even if a subsequent trap or
fault could occur. In particular, any operation that is idempotent, and therefore by
definition can be performed any number of times with the same result, can be completed
before a subsequent operation that may cause a trap or fault. Likewise, instructions that
update multiword structures in memory are not required to do so atomically. The restart
rule can be interpreted to mean that the entire instruction is re-executed, without
considering the effects of other processes that may have executed between the time of the
exception and the resumption of the instruction. For example, instructions that store LONG

types are not required to update the double word atomically. They can store the first word,
and if a fault occurs on the second word, establish a state that will cause both words to be
stored (the first for a second time) when the instruction is restarted; the modified locations
need not be restored to their original values when the fault occurs (see SLOO, SLOB, WOBL in
§7).

Programming Note: Multiword structures that must be updated atomically with respect
to page faults should not be allocated across a page boundary. If a data structure requires
synchronized access by several processes, the locking mechanism provided by monitors
(§lO) can be used.

For instructions that operate on large multiword structures, efficiency considerations
discourage the strict interpretation of the restart rule. Strict interpretation would imply
that the entire operation be started over. The BLT instruction (§8), which copies a block of
up to 64K words from a source to a destination address, is an example. Each time around
its main loop, it modifies the processor state so that the word transferred is no longer

MesaProcessOltPrinciples.ofOper.a.tion 4

specified by the instruction operands. If an exception occurs during the next iteration,
resumption results in transfer of the remaining words, without disturbing the data
previously moved. All of the block-transfer instructions use this algorithm. Because of
potentially long execution times, they also check for interrupts in their main loops.

Finally, there is an exception to the restart rule: some traps are considered fatal, so a
context that experiences these traps can never be resumed (correctly). The state of the
context is therefore undefined. Fatal traps have names that end with "Error" (e.g.,
StackError, RescheduleError). Depending on the type of error, either the current context,
the current process, or the entire system may be unresumable (see §9.5).

Implementation Note: Although the state of a context that experiences a fatal trap is
undefined, the processor should make an attempt to establish a context that is meaningful
to the programmer for debugging purposes. Ideally, the program counter should point to
the offending instruction, and the stack and stack pointer should reflect its operands. At a
minimum, the value of the local frame pointer IF should be available, since little
debugging is possible without it.

4.6.2 Interrupts

An interrupt occurs in response to a request for service, called a wakeup, from an external
device or controller. Its effect is to notify a condition variable, which may make a software
interrupt handler ready (if one is waiting). This may in turn cause a pz:ocess switch
(depending on the handler's priority; see § 10.4).

As mentioned above, interrupts are handled differently with respect to the restart rule;
Wake ups are buffered in the status register WP (wakeups pending), but otherwise ignored
by most instructions (except the block transfers). If the main loop of the Processor routine
detects a non-zero value in this register, execution ofthe current instruction is not started,
and a possible process switch occurs, the details of which are described in §lO.4. Because
the check for interrupts is made before instruction execution begins (in fact, before the
opcode is fetched), most instructions are not concerned with the possibility of an interrupt.
However, the block transfer instructions (§8) are implemented in a fashion that allows
their execution to be suspended and later resumed, as explained above.

4.7 Initial State

The routine below defines the initial conditions when the processor first starts execution;
it sets up the processor registers and the current context. Initialize presumes that the
memory map has been set to reflect all of the available real memory. Each real memory
page must be entered in exactly one map entry corresponding to some existing virtual
page, but not all mapped virtual memory need be contig~ous. The protected flag of these
map entries must be FALSE, but the dirty and referenced flags maybe in an undefined state.
The flags of all other map entries not assigned to real pages must be vacant (see §3.1.1).
The reserved locations in the BootArea and the IOArea must be mapped.

Design Note: Not all of the real memory attached to the machine needs to be made
available to the processor at initialization. In particular, so called buffered devices that
require dedicated real memory will normally make this memory known to the software
through the device implementation.

4-7

4-8

Instruction Interpreter

Initialization turns off interrupts, clears the process timeout registers, clears the XFER trap
status register, and sets the running flag (§10). It empties the stack, initializes the MDS to
the first 64K, and clears the break byte (§9.5.4). Initialize then performs an XFER through a
fixed location in the System Data table. (sBoot is defined in Appendix A.)

Initialize: PROCEDURE =
BEGIN

-- Process registers

WP~O;

WOC~1;

XTS ~o;

time ~IT;
running ~TRUE;
-- Context initialization

SP~O;

break ~O;
PSB ~O;

MOS ~ LOOPHOLE[LONG[O]];

XFER[dst: @so[sBoot], src: 0, type: call];
END;

Note that a trap or fault during the initial XFER results in an undefined machine state.
(The call from the f!1ain program to Initalize is outside the scope oftheAbort catch phrase.)

Programming Note: Except for the execution of the XFER (whose destination is an
indirect control link), initialization does not reference main memory or disturb its
contents.

5

Stack Instructions

The stack instructions manipulate the evaluation stack; except for the code stream, they
do not reference memory. All of the usual logical and arithmetic operations (including
some comparisons) are described in this chapter, as are primitives for manipulating the
stack pointer and the order of the elements on the stack. Support for range checking and
NIL pointer checking is also included. The basic arithmetic operators and the Not, And, Or,
Xor, Shift, LongNot, LongAnd, LongOr, LongXor, LongShift, and SignExtend routines are
defined in §2. The stack routines Push, Pop, Recover, and Discard are discussed in §3.3.2.

Note: None of the stack instructions operate on a stack element "in place"; they always
remove their operands to check for stack underflow.

5.1 Stack Primitives

The instructions below are used to maintain the stack. Recover obtains the word above
the top of the stack; Recover Two obtains the double· word above the top of the stack.
Discard removes the word on top of the stack; Discard Two removes the double word on top
of the stack. Exchange interchanges the order of the top two words of the stack; Double
Exchange interchanges the order of the top two double words of the stack. Duplicate makes
a copy of the top word of the stack; Double Duplicate makes a copy of the top double word
of the stack. Exchange Discard interchanges the order of the top two words on the stack,
then removes the top word.

REC Recover

REC: PROCEDURE =

BEGIN

Recover[];
END;

REC2 Recover Two

REC2: PROCEDURE =
BEGIN

Recover[];
Recover[];
END;

5

5-2

Stack Instructions

DIS Discard

DIS: PROCEDURE =
BEGIN

Oiscard[];
END;

DIS2 Discard Two

0152: PROCEDURE =
BEGIN

Oisc.ard[];
Discard[];
END;

There are limitations on how many Recover instructions can follow particular
instructions, and on when they may not yield meaningful results. See §3.3.2 for a
discussion of these restrictions ..

EXCH Exchange

EXCH: PROCEDURE .=

BEGIN

v: UNSPECIFIED = Pop[];
u: UNSPECIFIED = Pop[];
Push{v]; Push[u);
END;

OEXCH Double Exchange

OEXCH: PROCEDURE ==

BEGIN

v: LONG UNSPECIFIED = PopLong[];
u: LONG UNSPECIFIED = PopLong[];
PushLong(v]; PushLong[u);
END;

DUP Duplicate

DOUP

OUP: PROCEDURE =

BEGIN

u: UNSPECIFIED = Pop[];
Push[u); Push(u);
END;

Double Duplicate

OOUP: PROCEDURE =

BEGIN

U: LONG UNSPECiFIED = PopLong[];
PushLong[u]; PushLong[u];
END;

Mesa. Processor Principles of Operation

EXOIS Exchange Discard

EXDIS: PROCEDURE =
BEGIN

u: UNSPECIFIED = Pop(];
v: UNSPECIFIED = Pop[];
Push[u];
END;

5.2 Check Instructions

The check instructions are used to implement runtime checks on array indexes,
subranges, and pointers. They restore their first parameter to the stack for use by
subsequent instructions, providing that the check succeeds (or for use by the trap handler,
ifthe check fails).

BNDCK Bounds Check

BNDCK: PROCEDURE =
BEGIN

range: CARDINAL = Pop[];
index: CARDINAL = Pop(];
Push[indexl;
IF index> = range THEN BoundsTrap[];
END;

BNDCKL Bounds Check Long

BNDCKL: PROCEDURE =
BEGIN

NILCKL

range: LONG CARDINAL = PopLong[];
index: LONG CARDINAL = PopLong[];
PushLong[index];
IF index> = range THEN BoundsTrap[];
END;

Nil Check long

NILCKL: PROCEDURE =
BEGIN

ptr: LONG POINTER = PopLong[];
nil: LONG POINTER = LOOPHOLE[LONG[oll;

PushLong[ptr];
IF ptr = nil THEN PointerTrap[];
END;

BoundsTrap and PointerTrap are defined in §9.5.1.

5-3

5 StackInstructions

5.3 Unary Operations

5-4

The unary instructions operate on the top single- or double-word element of the stack.
They treat their operands as signed (two's complement) or unsigned binary numbers.

Programming Note: As long as overflow is ignored and does not occur, these instructions
can be used both for signed and unsigned operations. Mesa does no overflow checking.

NEG Negate

NEG: PROCEDURE =
BEGIN

i: INTEGER = Pop[];
Push[-il;
END;

INC Increment

INC: PROCEDURE =
BEGIN

s: CARDINAL = Pop[];
PUSh(S+l];
END;

DINC Double Increment

.
DINe: PROCEDURE =

BEGIN

s: LONG CARDINAL = PopLong[];
PushLong[s + 1];
END;

DEC Decrement

Dec: PROCEDURE =

BEGIN

ADDSB

s: CARDINAL = Pop[];
PUSh[S-l];
END;

Add Signed Byte

ADDSB: PROCEDURE =

BEGIN

alpha: BYTE = GetCodeByte[];
i: INTEGER = Pop(];
Push[i + SignExtend[alphall;
END;

Mesa Processor Principles of Operation

. DBL Double

. oBl: PROCEDURE =
BEGIN
u: UNSPECIFIED = POp[];
Push[Shift{u, 1]];
END;

DDBL Double Double

ooBl: PROCEDURE =
BEGIN
u: LONG UNSPECIFIED = PopLong[];
PushLong[LongShift[u, 1]];
END;

TRPL Triple

TRPL: PROCEDURE =
BEGIN
s: CARDINAL = Pop[];
Push[s * 3];
END;

LINT lengthen Integer

LINT: PROCEDURE =
BEGIN
i: INTEGER = Pop[];
Push[il;
PUSh[IF i < 0 THEN -1 ELSE 0];
END;

SHIFTSB Shift Signed Byte

SHIFTSB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[);
u: UNSPECIFIED = Pop[];
shift: INTEGER = SignExtend[alpha];
IF shift -IN [-15 .. 15] THEN ERROR;
Push[Shift[u, shift]];
END;

5.4 Logical Operations

5

The logical instructions perform bitwise logical functions on the top two single- or double
word elements of the stack. The And instruction and Inclusive ilnd Exclusive Or are defined
in terms of the primiti yes in §2.1. 3.1. The Shi ft instruction shifts u by ABS [shift] bits, left if
shift is positive, right if shift is negative. Bits shifted off either end of u are lost; zeroes are
shifted into u as necessary. A shift count greater than fifteen always yields a zero result.

5-5

5 Stack Instructions

AND And

AND: PROCEDURE =
BEGIN

v: UNSPECIFIED = Pop[];
u: UNSPECIFIED = POp[];
Push[And[u, v]];
END;

DAND Double And

DAND: PROCEDURE '"

BEGIN

v: LONG UNSPECIFIED = Poplong[];
u: LONG UNSPECIFIED = PopLong[];
PushLong[LongAnd[u, v]];
END;

lOR Inclusive Or

lOR: PROCEDURE '"

BEGIN

v: UNSPECIFIED = Pop[];
u: UNSPECIFIED = Pop[];
Push[Or(u, v]];
END;

DIOR Double Inclusive Or

DIOR: PROCEDURE =

BEGIN

v: LONG UNSPECIFIED = PopLong[];
u: LONG UNSPECIFIED = Poplong[];
PushLong[LongOr[u, v]];
END;

XOR Exclusive Or

XOR: PROCEDURE '"

BEGIN

v: UNSPECIFIED = Pop[l;
u: UNSPECIFIED = Pop[];
Push[Xor[u, vll;
END;

DXOR Double Exclusive Or

OXOR: PROCEDURE =

BEGIN

v: LONG UNSPECIFIED = Poplong[];
u: LONG UNSPECIFIED = Poplong[];

5-6

Mesa Processor, Principles of Operati9n

Pushlong[LongXor[u, v]];
END;

SHIFT Shift

SHIFT: PROCEDURE =

BEGIN

DSHIFT

shift: INTEGER = Pop[];
u: UNSPECIFIED = Pop[];
Push[Shift[u, shift]];
END;

Double Shift

DSHlfT: PROCEDURE =
BEGIN

shift: INTEGER = Pop[];
u: LONG UNSPECIFIED = PopLong[];
PushLong[LongShift[u,shift]];
END;

ROTA TE Rotate

ROTATE: PROCEDURE =

BEGIN

rotate: INTEGER = Pop[];
u: UNSPECIFIED = Pop[];
Push[Rotate[u, rotate]];
END;

5

Programming Note: The Not function is obtained by using Xor with one operand set to
ones.

5.5 Arithmetic Operations

The following instructions perform arithmetic functions on the top two single- or double
word elements of the stack. They treat their operands as signed (two's complement) or
unsigned binary numbers, and leave their results on the stack.

ADO Add

ADD: PROCEDURE =
BEGIN

t: CARDINAL = Pop[];
5: CARDINAL = Pop[];
Push[s + tl;
END;

5-7

5

5-8

.. Stack Instructions

SUB Subtract

SUB: PROCEDURE =

BEGIN
t: CARDINAL = Pop[];
s: CARDINAL = Pop[];
Push[H];
END;

The Double Add and Double Subtract instructions take thirty-two bit signed or unsigned
operands and push a thirty-two bit result.

DADO

DSUB

Double Add

DADO: PROCEDURE =

BEGIN
t: LONG CARDINAL = PopLong[];
s: LONG CARDINAL = PopLong[];

PushLong[s + t];
END;

Double Subtract

DSUB: PROCEDURE =.

BEGIN
t: LONG CARDINAL = PopLong[];
s: LONG CARDINAL = PopLong[];
PushLong[s-t];
END;

Programming Note: If overflow is ignored, the result of an add or subtract instruction
can be considered to be either signed or unsigned.

The Add Double to Cardinal and Add Cardinal to Double instructions take a thirty-two bit
and a sixteen-bit operand and push a thirty-two bit result.

ADC Add Double to Cardinal

AOC: PROCEDURE =
BEGIN
t: LONG CARDINAL = PopLong[];
S: CARDINAL = Pop[];
PushLong[LONG[S] + t1;
END;

ACD Add Cardinal to Double

ACD: PROCEDURE =

BEGIN
t: CARDINAL = Pop[];

S: LONG CARDINAL = PopLong(];

Mesa Processor Principles of Operation

PushLong[s + LONG[t]];
END;

5

The Multiply instruction computes the thirty-two bit product of the top two elements ofthe
stack. The least significant word of the product is pushed onto the stack; the most
significant word is left above the top of the stack, so it can be obtained using a Recover
instruction.

MUL Multiply

MUl: PROCEDURE =
BEGIN
t: CARDINAL = Pop[];
s: CARDINAL = Pop[];
PushLong[LONG[sj*t] ;
Discard[];
END;

Programming Note: If the most significant word of the product is not recovered, the
operation can be considered either signed or unsigned if overflow is ignored; otherwise it is
unsigned.

DMUL Double Multiply

MUl: PROCEDURE =
BEGIN
t: LONG CARDINAL = PopLong[];
s: LONG CARDINAL = PopLong[];
PushLong[s*tj;
END;

The divide instructions divide a signed (unsigned) sixteen-bit dividend by a signed
(unsigned) sixteen-bit divisor. The quotient is pushed onto the stack, and the remainder is
left above the top of the stack so it can be obtained using a Recover instruction. In SDIV, the
signs of the results are computed according to the rules of algebra (§2.2.2l. In all divide
instructions, a DivZeroTrap occurs ifthe divisor is zero (see §9.5.1).

SDIV Signed Divide

SOIV: PROCEDURE =
BEGIN
k: INTEGER = Pop[];
j: INTEGER = Pop(];
IF k = 0 THEN DivZeroTrap[];
Push[j/kJ;
Push[j MOD kj;
Discard[];
END;

5-9

5

5-10

Stack Instructions

UDIV Unsigned Divide

UDIV: PROCEDURE =
BEGI.N
t: CARDINAL = Pop[];
S: CARDINAL = Pop[];
IF t = 0 THEN DivZeroTrap[];
Push(slt];
Push[s MOD t];
Discard[];
END;

The Long Unsigned Divide instruction divides an unsigned thirty-two bit dividend by an
unsigned sixteen-bit divisor. The sixteen-bit quotient is pushed onto the stack, and the
remainder is left above the top of the stack so it can be obtained using a Recover
ins tructio n.

LUDIV Long Unsigned Divide

LUDIV: PROCEDURE =

BEGIN
t: CARDINAL = Pop[];
s: LONG CARDINAL = PopLong[];
IF t = 0 THEN DivZeroTrap[];
IF HighHalf[s] > = t THEN DivCheckTrap[];
Push(LowHalf[slLONG[t]]];
Push[LowHalf[s MOD LONG[t]]];
Discard(];
END;

A DivCheckTrap (§9.5.1) is generated if the most significant word of the dividend is greater
than the divisor, indicating that the quotient would overflow sixteen bits.

The double divide instructions divide a signed (unsigned) thirty-two bit dividend by a
signed (unsigned) thirty-two bit divisor. The quotient is pushed onto the stack, and the
remainder is left above the top of the stack so it can be obtained using a Recover Two
instruction. In SDDIV, the signs of the results are computed according to the rules of
algebra (§2.2.2). In all divide instructions, a DivZeroTrap occurs if the divisor is zero (see
§9.5.1).

SDDIV Signed Double Divide

SDDIV: PROCEDURE =
BEGIN
k: LONG INTEGER = PopLong[];
j: LONG INTEGER = PopLong[];
IF k = 0 THEN DivZeroTrap[];
PushLong(j/kl;
PushLong[j MOD kl;
Discard[],

Mesa.Processor. Principles of Operation

UDDIV

Discard(];
END;

Unsigned Double Divide

UDDIV: PROCEDURE =

BEGIN

t: LONG CARDINAL = PopLong[];
s: LONG CARDINAL = PopLong[];
IF t = 0 THEN DivZeroTrap[];
Push Long [sit];
PushLong[s MOD t];
Discard[];
Discard[];
END;

5.6 Comparison Operations

5

The double compare instructions compare two thirty-two bit signed or unsigned operands
and push zero, one, or minus one depending on whether the operands compare equal,
greater, or less.

DCMP Double Compare

DCMP: PROCEDURE =
BEGIN

k: LONG INTEGER = PopLong[];
j: LONG INTEGER = Poplong[];
Push[

SELECT TRUE FROM

j>k=>"
j<k=>-"
ENDCASE = > oj;

END;

UDCMP Unsigned Double Compare

UDCMP: PROCEDURE =

BEGIN

t: LONG CARDINAL = PopLong[];
s: LONG CARDINAL = PopLong[];
Push[

SELECT TRUE FROM

s>t=>"
s<t=>-"
ENDCASE = > oj;

END;

5.7 Floating Point Operations

The floating point instruction set is currently under development (see §2.2.3).

5-11

5 Staeklnstructions

5-12

6

Jump Instructions

The jump instructions are of four types: unconditional, conditional, indexed, or absolute.
The conditional jumps test against zero or compare two signed or unsigned operands. The
indexed jumps index tables of displacements found in the current code segment. They are
used to implement case statements.

All jumps are program-counter-relative, and all displacements are measured in bytes,
relative to the first byte of the instruction (recorded in savedpc). The following example
shows the two possible successors of a Jump Less Byte instruction (defined in §6.3):

t:rget if! > ; k ----...,~ target if j < k ~.

f JLB I 4 Ll3 I J2 I LIN 1 ADD

Figure 6.1 Jump Addressing

Note: Most of the jump opcodes add signed displacements, obtained by sign-extending
alpha, to the unsigned pc. The only unsigned jump displacements are in the Jump Indexed
instructions. All but JIW have their displacement in [-32768,32767]. Arithmetic on the PC

is al ways performed modulo 216, and overflow is ignored.

6.1 Unconditional Jumps

These instructions add a small constant, a sign-extended byte, or an INTEGER to the pc.

In Jump n

In: PROCEDURE [n: [2 .. 8]] =
BEGIN

pc ~savedpc + n;
END;

6-1

6 Jump. Instructions

JB Jump Byte

J8: PROCEDURE =
BEGIN

disp: BYTE = GetCodeByte[];
PC ~ saved PC + SignExtend[disp];
END;

JW Jump Word

JW: PROCEDURE =
BEGIN

disp: INTEGER = GetCodeWord[];
PC ~ savedpc + disp;
EN~;

The Jump Stack instruction sets the PC to the value popped from the stack:

J5 Jump Stack

JS: PROCEDURE =
BEGIN

PC ~ Pop[];
END;

The Catch instruction is used by the software to mark the code .and indicate (in alpha) the
catch phrase index. Except for its effects on the PC, Catch is a no-op.

CATCH Catch

CATCH: PROCEDURE =
BEGIN

alpha: BYTE = GetCodeByte[];
END;

6.2 Equality Jumps

6-2

The equality jumps compare the top two elements of the stack or the top element and a
constant (alpha or zero) for equality and jump accordingly. The jump pair opcodes compare
the top of the stack with a four-bit field of alpha, and add a second four-bit field of alpha to
the PC if the comparison succeeds.

JZn Jump Zero n

JZn: PROCEDURE [n: [3 .. 4]] =
BEGIN

U: UNSPECIFIED = Pop(];
IF U = 0 THEN PC ~ savedpc + n;
END;

Mesa Processor Principles of Operation 6

JNZn Jump Not Zero n

JNZn: PROCEDURE [n: [3 .. 4]] =
BEGIN

U: UNSPECIFIED:: Pop[];
IF U # 0 THEN PC E- saved PC + n;
END;

JZB Jump Zero Byte

JZB: PROCEDURE =
BEGIN

disp: BYTE = GetCodeByte[];
data: UNSPECIFIED = Pop[];
IF data = 0 THEN PC E- savedpc + SignExtend [disp];
END;

JNZB Jump Not Zero.Byte

JNZB: PROCEDURE =
BEGIN

disp: BYTE = GetCodeByte[];
data: UNSPECIFIED = Pop[];
IF data #0 THEN PC ~ savedpc + SignExterid[disp];
END;

JEB Jump Equal Byte

JEB: PROCEDURE =
BEGIN

disp: BYTE = GetCodeByte[];
v: UNSPECIFIED = Pop[];
U: UNSPECIFIED = Pop[];
IF U = V THEN PC ~ saved PC + SignExtend[disp);
END;

JNEB Jump Not Equal Byte

JNEB:PROCEDURE =
BEGIN

disp: BYTE = GetCodeByte[];
v: UNSPECIFIED = Pop[];
U: UNSPECIFIED = Pop[];
IF U # V THEN PC ~ savedpc + SignExtend[disp];
END;

JDEB Jump Double Equal Byte

JOEB: PROCEDURE =
BEGIN

disp: BYTE = GetCodeByte[];
v: LONG UNSPECIFIED = PopLong[];

6-3

6

6-4

Jump Instructions

JDNEB

u: LONG UNSPECIFIED = PopLong[];
IF u = V THEN PC ~ savedpc + SignExtend[disp];
END;

Jump Double Not Equal Byte

JDNEB:PROCEDURE =
BEGIN

disp: BYTE = GetCodeByte[];
v: LONG UNSPECIFIED = PopLong[];
u: LONG UNSPECIFIED = PopLong[];
IF u # V THEN PC ~savedpc + SignExtend[dispj;
END;

JEP Jump Equal Pair

JEP: PROCEDURE =
BEGIN

pair: NibblePair = GetCodeByte[];
data: UNSPECIFIED = Pop[];
IF data = pair.left THEN PC ~ savedpc + pair.right + 4;
END;

JNEP Jump Not Equal Pair

JNEP: PROCEDURE =
BEGIN

pair: NibblePair = GetCodeByte[];
data: UNSPECIFIED = Pop[];
IF data # pair.left THEN PC ~ savedpc + pair.right + 4;
END;

JEBB Jump Equal Byte Byte

JNEBB

JEBS: PROCEDURE =
BEGIN

byte: UNSPECIFIED = GetCodeByte[];
disp: BYTE = GetCodeByte[];
data: UNSPECIFIED = Pop[];
IF data = byte THEN PC ~ saved PC + SignExtend[disp];
END;

Jump Not Equal Byte Byte

JNEBB:PROCEDURE =
BEGIN

byte: UNSPECIFIED = GetCodeByte[];
disp: BYTE = GetCodeByte[];
data: UNSPECIFIED = Pop[];
IF data # byte THEN PC ~ savedpc + SignExtend[disp];
END;

Mesa Processor Principles of Operation

6.3 Signed Jumps

The signed jump instructions compare· the top two elements of the stack as two's
complement signed operands and add a sign-extended alpha to the PC if the comparison
succeeds.

JLB Jump Less Byte

JLB: PROCEDURE =
BEGIN

disp: BYTE = GetCodeByte[];
k: INTEGER = Pop(];
j: INTEGER = Pop[J;
IF j < k THEN PC +- savedpc + SignExtend[disp];
END;

JLEB Jump Less Equal Byte

JLEB: PROCEDURE =
BEGIN

disp: BYTE = GetCodeByte[];
k: INTEGER = F'op[];
j: INTEGER = Pop(];
IF j <=. k niEN PC +- savedpc + SignExtend[disp];
END;

JGB Jump Greater Byte

JGB: PROCEDURE =
BEGIN

disp: BYTE = GetCodeByte[];
k: INTEGER = Pop[];
j: INTEGER = Pop{];
IF j > k THEN PC +- savedpc + SignExtend[disp];
END;

JGEB Jump Greater Equal Byte

JGEB: PROCEDURE =
BEGIN

disp: BYTE = GetCodeByte[];
k: INTEGER = Pop[];
j: INTEGER = Pop[];
IF j > = k THEN PC +- saved pc + SignExtend[disp];
END;

6.4 Unsigned Jumps

The unsigned jump instructions compare the top two elements of the stack as unsigned
operands and add a sign-extended alpha to the PC if the comparison succeeds.

6-5

6 Jumplnstructions

JULB Jump Unsigned Less Byte

JULEB

JUGB

JUGEB

JULB:PROCEDURE =
BEGIN

disp: BYTE = GetCodeByte[];
v: CARDINAL = Pop[];
u: CARDINAL = Pop[];
IF u < V THEN PC ~ savedpc + SignExtend[disp);
END;

Jump Unsigned Less Equal Byte

JULEB: PROCEDURE =
BEGIN

disp: BYTE = GetCodeByte[];
v: CARDINAL = Pop[];
U: CARDINAL = Pop(];
IF U < = V THEN PC ~ saved PC + SignExtend[disp];
END;

Jump Unsigned Greater Byte

JUGB: PROCEDURE =
BEGIN

disp: BYTE = GetCodeByte[];
v: CARDINAL = Pop[];
u: CARDINAL = Pop[];
IF u > V THEN PC ~savedpc + SignExtend[disp];
END;

Jump Unsigned Greater Equal Byte

JUGEB: PROCEDURE =
BEGIN

disp: BYTE = GetCodeByte[];
v: CARDINAL = Pop[];
U: CARDINAL = Pop(];
IF u > = v THEN PC ~ savedpc + SignExtend[disp];
END;

6.5 Indexed Jumps

6-6

The indexed jumps update the PC from a table of byte displacements located in the code
segment at offset base from the code base CB. Ifindex is less than limit, the index added to
base is used to extract a displacement from a table located in the current code segment.
This displacement is then added to the pc. If index is out of range, no jump occurs. Jump
Indexed Byte uses a table of eight bit entries, Jump Indexed Word uses sixteen-bit entries.
The entries in both tables contain displacements measured in bytes. Note that in JIB, the
displacement is not sign-extended.

· Mesa Processor Principles of Operation

JIB Jump Indexed Byte

JIB: PROCEDURE =
BEGIN

disp: BytePair;
base: CARDINAL = GetCodeWord[];
limit: CARDINAL = Pop[];
index: CARDINAL = Pop[J;
IF index < limit THEN

BEGIN

disp ~ ReadCode[base + indexl2j;
PC ~ savedpc + (

IF (index MOD 2) = 0 THEN disp.left ELSE disp.right);
END;

END;

JIW Jump Indexed Word

JIW: PROCEDURE =
BEGIN

disp: CARDINAL;

base: CARDINAl. = GetCodeWord[];
limit: CARDINAL = Pop[];
index: CARDINAL = Pop[];
IF index < limit THEN

BEGIN

disp~ ReadCode[base + index];
PC ~ savedpc + disp;
END;

END;

The ReadCode routine is defined in §3.1.4.3.

6

6-7

6 Jump Instructions

6-8

7

Assignment Instructions

The assignment instructions move words, double words, bytes, and arbitrary fields of
words between the stack and memory. These include the immediate instructions, which
obtain their operands from the code stream, the frame instructions, used to access local
and global variables, and the instructions that dereference pointers (direct and indirect).
The string and field instructions read and write substructures smaller than a word.

Design Note: In instructions- that access both the stack and memory, if both a fault error
and a stack error are possible, it is undefined which will occur first.

7~1 Immediate Instructions

The immediate instructions load one- or two-word constants onto the stack. Operands (if
any) are obtained from the code stream.

LlN1 Load Immediate Negative One

LlN1: PROCEDURE =
BEGIN

PUSh[177777sj;
END;

LINI Load Immediate Negative Infinity

LINI: PROCEDURE =
BEGIN

PUSh[100000B];
END;

LIDO Load Immediate Double Zero

LIDO: PROCEDURE =
BEGIN

Push Long[LONG [oJ];
END;

7-1

7 Assignment Instructions

Lin Load Immediate n

lin: PROCEDURE [n: [0 .. 10]] =
BEGIN
Push[nl;
END;

LIB Load Immediate Byte

LIB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
Push[alphaj;
END;

LlNB Load Immediate Negative Byte

Note that al pha is not sign-extended.

lINB: PROCEDURE =
BEGIN
alpha: BYTE =. GetCodeByte{];
Push[BytePai r[377B, al pha]];
END;

LlHB load Immediate High Byte

lIHB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte{];
Push[BytePair[alpha, all;
END;

lIW Load Immediate Word

lIW: PROCEDURE =
BEGIN
u: UNSPECIFIED = GetCodeWord[];
Push(u};
END;

7.2 Frame Instructions

7-2

The local and global frame instructions move one or two words between the stack and the
frame. The opcodes differ primarily in their addressing modes: for frequently addressed
variables, the offset of the variable in the frame is given by the instruction's opcode. Less
frequently referenced frame variables are addressed by a one-byte offset obtained from
alpha. Instructions are also provideq for generating the address of a local or global
variable.

Mesa.P.rocessorPrmciplesof Operation 7

7.2.1 Local Frame Access

The load local, store local, and put local instructions provide access to the local frame
variables of the current context. The local-address instructions each generate a short
pointer to a local variable, given its offset in the frame.

LAn Local Address n

LAn: PROCEDURE [n: [0 .. 3,6,8]] =
BEGIN

PUSh[LF + nl;
END;

LAB Local Address Byte

LAB: PROCEDURE =
BEGIN

alpha: BYTE = GetCodeByte(];
PUSh[LF + alpha];
END;

LAW Local Address Word

LAW: PROCEDURE =
BEGIN

word: UNSPECIFIED = GetCodeWord[];
PUSh[LF + word];
END;

Programming Note: Local variables at offsets larger than 255 words from the base of the
frame can be accessed by generating their addresses on the stack and then using the direct
pointer instructions defined in §7.3.1.

7.2.1.1 Load Local

The load local instructions move one or two words onto the stack from the local frame.

LLn Load Local n

LLn: PROCEDURE [n: [0.11]] =
BEGIN

Push[FetchMds[LF + nl i];
END;

LLB Load Local Byte

LLB: PROCEDURE =
BEGIN

alpha: BYTE = GetCodeByte[];
Push[FetchMds[lF + alpha] i];
END;

7-3

7

7-4

Assignment Instructions

LLDn Load Local Double n

LLDn:PROCEDURE [n:·[0 .. 8,10]] =
BEGIN

Push[FetchMds[LF + nl i];
Push[FetchMds[LF + n + 1] i];
END;

LLDB Load Local Double Byte

LLOB: PROCEDURE =
BEGIN

alpha: BYTE = GetCodeByte[];
Push[FetchMds[LF + alpha] i];
Push[FetchMds[LF + alpha + 1] i];
END;

7.2.1.2 Store Local

The store local instructions move one or two words from the stack to the local frame.

SLn Store Local. n

SLn: PROCEDURE [n: [0 .. 10]] =
BEGIN

StoreMds[LF + nl i ~ Pop[];
END;

SLB Store Local Byte

SLB: PROCEDURE =
BEGIN

alpha: BYTE = GetCodeByte[];
StoreMds[LF + alpha] i ~ Pop[];
END;

SLDn Store Local Double n

SLOn: PROCEDURE [n: [0 .. 6,8]] =
BEGIN

StoreMds[LF + n + 1] i ~ Pop[];
StoreMds[LF + n] i ~ Pop[];
END;

SLOB Store Local Double Byte

SLOB: PROCEDURE =
BEGIN

alpha: BYTE = GetCode8yte(];
StoreMds[LF + alpha + : 1 j ~ Pop[];

M~saProcessorPrinciples ·of Operation

StoreMds{lF+ alpha] i ~ Pop[];
END;

7

7.2.1.3 Put Local

7.2.1.4

The put local instructions move one or two words from· the stack into the local frame,
leaving its operands on the stack.

PLn Put Local n

Pln: PROCEDURE [n: {0.3]1 =
BEGIN
Sln[n];
Recover[l;
END;

PLB Put toca I Byte

PlS: PROCEDURE [n: [0.3]] =
BEGIN
SlS[];
Recover[];
END;

PLDO Put Local Double Zero

PlDO: PROCEDURE =
BEGIN
SLOn[O];
Recover[];
Recover[];
END;

PLDB Put Local Double Byte

PlOS: PROCEDURE =
BEGIN
SLOS[];
Recover[];
Recover[];
END;

Add Local

The Add Local Zero to Immediate Byte instruction adds local zero and a small constant
from alpha and pushes the sum on the stack.

ALOIB Add Local Zero to Immediate Byte

ALOIS: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte(];

7-5

7

7-6

AssignmentInstructions

Push[FetchMds[LF] i + alpha];
END;

7.2.2 Global Frame Access

The load global and store global instructions provide access to the global frame variables
of the current context. The global address instruction generates a short pointer to a global
variable, given its offset in the frame.

GAn Global Address n

GAn: PROCEDURE In: [0 .. 1]] =
BEGIN
PUSh[GF + n];
END;

GAB Global Address Byte

GAB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
PUSh[GF + alpha];
END;

GAW Global Address Word

GAW: PROCEDURE =
BEGIN
word: UNSPECIFIED = GetCodeWord[];
PUSh[GF + word];
END;

Programming Note: Global variables at offsets larger than 255 words from the base of
the frame can be accessed by generating their addresses on the stack and then using the
direct pointer instructions defined in §7.3.1.

7.2.2.1 Load Global

The load global instructions move one or two words onto the stack from the global frame.

LGn Load Global n

LGn: PROCEDURE In: [O.~2]] =
BEGIN
Push[FetchMds[GF + n] i];
END;

LGB load Global Byte

LGB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];

Mesa Processor Principles, of Operation

LGDn

LGDB

Push[FetchMds[GF + alpha] j];
END;

Load Global Double n

LGOn: PROCEDURE [n: [0,2]] =
BEGIN
Push[FetchMds[GF + n] i 1;
Push[FetchMds[GF + n + 1]j];
END;

Load Global Double Byte

LGD8;PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
Push(FetchMds[GF + alpha] j];
Push[FetchMds[GF + alpha + 1] i];
END;

7.2.2.2 Store Global

The store global instructions move one or two words from the stack to the global frame.

SGB Store Global Byte

SGDB

5GB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
StoreMds(GF + alpha] i ~ Pop[];
END;

Store Global Double Byte

5GDB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
StoreMds[GF + alpha + 1] i ~ Pop[];
StoreMds[GF + al pha] i ~ Pop[];
END;

7.3 Pointer Instructions

7

The pointer instructions are divided into two types: direct and indirect. They move a word
or pair of words between the stack and memory using a pointer obtained from the stack or
from the local or global frame. Most pointer instructions have variants that dereference
either short or long pointers.

Implementation Note: In the long-pointer variants of these instructions, any addition to
the pointer must be calculated using double-word arithmetic, to account for the case in
which ptr + offset may carry into the most significant word of the pointer.

7-7

7

7-8

... Assignment Instructions

7.3.1 Direct Pointer Instructions

The direct pointer instructions obtain a pointer from the stack and move a single or double
word stack operand to or from the specified location. The pointer is usually modified by a
small offset contained in the opcode or alpha.

7.3.1.1 Read Direct

The read direct instructions obtain a long or short pointer from the stack, add to it a small
displacement from the opcode or alpha, and perform a single- or double-word push to the
stack from memory.

Rn Read n

Rn: PROCEDURE [n: [0 1]] =
BEGIN
ptr: POINTER = Pop[];
Push[FetchMds[ptr + nl i];
END;

RB Read Byte

RB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
ptr: POINTER = Pop(];
Push[FetchMds[ptr + alpha] i 1;
END;

RLO Read Long Zero

RLO: PROCEDURE =
BEGIN
ptr: LONG POINTER = PopLong[];
Push[Fetch[ptr] i 1;
END;

RLB Read Long Byte

RLB: PROCEDURE =
BEGIN

alpha: BYTE = GetCodeByte[];
ptr: LONG POINTER = PopLong[];
Push[Fetch[ptr + LONG[alpha]] i];
END;

ROO Read Double Zero

RDO: PROCEDURE =
BEGIN
ptr: POINTER = Pop[];
U: UNSPECIFIED = FetchMds[ptr] i ;

· ,MesaProcessor.Principies of Operation

v: UNSPECIFIED = FetchMds[ptr + 1] l' ;
Push[u]; Push[v];
END;

ROB Read Double Byte

ROB: PROCEDURE =
·BEGIN
alpha: BYTE = GetCodeByte[];
ptr: POINTER = Pop[]; _
u: UNSPECIFIED = FetchMds[ptr + alpha] l' ;
v: UNSPECIFIED = FetchM?s[ptr + alpha + 1J l' ;
Push[u]; Pushfv];
END;

RDLO Read Double Long Zero

ROLO: PROCEDURE =
BEGIN
ptr: LONG POINTER = PopLong[];
U: UNSPECIFIED = Fetch[ptr] i ;
v: UNSPECIFIED-.= Fetch[ptr + 111' ;
Push(u]; Push[v];
END;

RDLB Read Double Long Byte

ROLB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
ptr: LONG POINTER = PopLong[];
U: UNSPECIFIED::: Fetch [ptr + LONG[alpha]] l' ;
V: UNSPECIFIED = Fetch[ptr + LONG[al pha] + 1] i ;
Push(u]; Push[v];
END;

RC Read Code

RC: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
offset: CARDINAL = Pop[];
Push[ReadCode[offset + alpha]];
END;

7.3.1.2 Write Direct

7

The write direct instructions obtain a long or short pointer from the stack, add to it a small
displacement from the opcode or alpha, and perform a single- or double-word pop from the
stack to memory_

7-9

7

7-10

Assignment Instructions

WO Write Zero

Wo: PROCEDURE =
BEGIN
ptr: POINTER = Pop{];
StoreMds[ptr] i +- Pop[];
END;

WB Write Byte

WB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
ptr: POINTER = Pop[];
StoreMds[ptr + alpha] i +- Pop[];
END;

WLB Write Long Byte

WLB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
ptr: LONG POINTER = PopLong[];
Store(ptr + LONG[alphall i +- Pop[];
END;

WDB Write Double Byte

WDLB

WDB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
ptr: POINTER = Pop[];
StoreMds[ptr + al pha + 1] i +- Pop[];
StoreMds[ptr + alpha] i +- Pop[];
END;

Write Double Long Byte

WDLB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
ptr: LONG POINTER = PopLong[];
Store[ptr + LONG[alpha] + 1] i +- Pop[];
Store[ptr + LONG[alphall i +- Pop[];
END;

7.3.1.3 Put Swapped Direct

The put swapped direct instructions obtain a short pointer from the stack, add to it a small
displacement from the opcode or alpha, and perform a single- or double-word store to
memory. They leave the pointer on the stack for use by subsequent instructions.

Mesa Rr.ocessor.:P»-ineiples=of Operation' 7

("Swapped" refers to the order of the address and the data on the stack. The data is given
first (from the TOS down) followed by the address for swapped instructions).

PSB Put Swapped Byte

PSB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
U: UNSPECIFIED = Pop[];
ptr: POINTER = Pop[];
StoreMds[ptr + alpha] i ~ u;
Recover[];
END;

PSDO Put Swapped Double Zero

PSDO: PROCEDURE =
BEGIN
v: UNSPECIFIED = Pop[];
U: UNSPECIFIED = Pop[];
ptr: POINTER = Pop[];
StoreMds[ptr + 1·] i ~ v;
StoreMds[ptr] i ~ u;
Recover[];
END;

PSDB Put Swapped Double Byte

PSDB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
v: UNSPECIFIED = Pop[];
u: UNSPECIFIED = P-op[];
ptr: POINTER = Pop[];
StoreMds[ptr + al pha + 1] i ~ v;
StoreMds[ptr + alpha] i ~ u;
Recover[];
END;

PSlB Put Swapped Long Byte

PSlB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
U: UNSPECIFIED = Pop[];
ptr: LONG POINTER = PopLong[];
Store[ptr + LONG[alpha]] i ~ u;
Recover[];
Recover{];
END;

7-11

7

7-12

Assignment Instructions

PSDlB Put Swapped Double long Byte

PSDLB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
v: UNSPECIFIED = Pop[];
U: UNSPECIFIED = Pop[];
ptr: LONG POINTER = PopLong[];
Store[ptr + LONG[alpha] + 1) i ~ v;
Store{ptr + LONG[alpha]] i ~ u;
Recover[];
Recover{];
END;

7.3.2 Indirect Pointer Instructions

The indirect pointer instructions obtain a pointer from the local or global frame or the
stack and move a single-space or double-word stack operand to or from the specified
location. The pointer is modified by a small offset contained in the opcode or alpha.

7.3.2.1 Read Indirect

The read indirect instructions perform a single- or double-word push using a pointer
obtained from the local or global fram.e. Most of these instructions treat alpha as a pair;
pair.left specifies the offset of the pointer in the frame, and pair.right is added to the
pointer.

RliOn Read Local Indirect Zero n

RlIOn: PROCEDURE (n: (0 .. 3]] =
BEGIN
ptr: POINTER = FetchMds(LF] i ;
Push{FetchMds(ptr + n] i];
END;

RliP Read Local Indirect Pair

RlilP

RlIP: PROCEDURE =
BEGIN
pair: NibblePair = GetCodeByte[];
ptr: POINTER = FetchMds[LF + pair.left] i ;
Push[FetchMds[ptr + pair.right] i];
END;

Read local Indirect Long Pair

RUL?: PROCEDURE =
BEGIN
pair: NibblePair = GetCodeByte(];
ptr: LONG POINTER = ReadDblMds[LF + pair.left];

Mesa Processor Principles of Operation

Push[Fetch{ptr + LONG[pair.rightl1 i];
END;

RGIP Read Globa/lndirect Pair

RGILP

RGIP: PROCEDURE =
BEGIN
pair: NibblePair = GetCodeByte[];
ptr: POINTER = FetchMds[GF + pair.left] i ;
Push[FetchMds[ptr + pair.right] i];
END;

Read GloballndirectLong Pair

RGILP: PROCEDURE =
BEGIN
pair: NibblePair ::: GetCodeByte[];
ptr: LONG POINTER::: ReadDblMds[GF + pair.left];
Push[Fetch[ptr + LONG[pair.right]] i);
END;

RLDIOO Read local Double Indirect Zero Zero

RlDIP

RLDIOO: PROCEDURE :::
BEGIN
ptr: POINTER::: FetchMds[LF] i;
U: UNSPECIFIED ::: FetchMds[ptr] i ;
v: UNSPECIFIED::: FetchMds[ptr + 1] i ;
Push[u]; Push[v];
END;

Read local Double Indirect Pair

RLDIP: PROCEDURE :::
BEGIN
pair: NibblePair :::: GetCodeByte[];
ptr: POINTER::: FetchMds[LF + pair.left] i ;
U: UNSPECIFIED::: FetchMds[ptr + pair.right] i ;
v: UNSPECIFIED ::: FetchMds[ptr + pai r.right + 1] i;
Push[uj; Push[v);
END;

RLDILP Read Local Double Indirect long Pair

RLDILP: PROCEDURE :::
BEGIN
pair: NibblePair ::: GetCodeByte[];
ptr: LONG POINTER::: ReadDblMds[LF + pair.left];
u: UNSPECIFIED :::: Fetch[ptr + LONG[pair.right]] i ;
v: UNSPECIFIED ::: Fetch[ptr + LONG[pair.right] + 1] i ;
Push[uj; Push[vl;
END;

7

7-13

7 Assignment Instructions

7.3.2.2 Write Indirect

The write indirect instructions perform. a single- or double-word pop to memory using a
pointer obtained from the local frame. They treat alpha as a pair, in which pair.left

specifies the offset ofthe pointer in the frame, and pair.right is added to the pointer.

WLIP

WLILP

Write Local Indirect Pair

WLlP: PROCEDURE =
BEGIN

pair: NibblePair = GetCodeByte[];

ptr: POINTER = FetchMds[LF + pair. left] i;
StoreMds[ptr + pair.right] i ~ Pop[];
END;

Write Local Indirect Long Pair

WLlLP: PROCEDURE =
BEGIN

pair: NibblePair = GetCodeByte[];
ptr: LONG POINTER = ReadDblMdS[LF + pair.left];

Store[ptr + LO.NG[pair.rightj] i ~ Pop[];
END;

WlDILP Write Local Double Indirect Long Pair

WLDtLP: PROCEDURE =
BEGIN

pair: NibblePair = GetCodeByte[];

ptr: LONG POINTER = ReadDbIMdS[LF + pair.left];
Store[ptr + LONG[pair.right] + 1] i ~ Pop(];

Store{ptr + LONG[pair. right]] i ~ Pop[];

END;

7.4 String Instructions

7-14

The string instructions read or write eight-bit bytes contained in packed arrays. The
address of the word containing the byte is computed as the sum of a short or long pointer
obtained from the stack plus a byte offset divided by two. The offset is the sum of an index
taken from the stack and the instruction's alpha byte.

I· alpha _I· index

0 15

I
t t

ptr target byte

Figure 7.1 String Indexing

Mesa Processor Principles of Operation 7

The least significant bit of the offset selects the byte that is read or written; zero specifies
the most significant byte. The data byte is obtained from the stack, ignoring the high
order byte of the stack word, or written to the stack, clearing the high-order byte.

The following routines are used by the string instructions (and elsewhere) to fetch and
store a byte:

FetchByte: PROCEDURE [ptr: LONG POINTER, offset: LONG CARDINAL]

RETURNS [BYTE] =
BEGIN

word: BytePair = Fetch[ptr + offsetl2] i;
RETURN[IF (offset MOD 2) = 0 THEN word.left ELSE word.right];

END;

StoreByte: PROCEDURE [ptr: LONG POINTER, offset: LONG CARDINAL, data: BYTE) =
BEGIN

word: BytePair = Fetch[ptr + offsetl2] i ;
Store[ptr + offsetl2) i ~ IF (offset MOD 2) = 0

THEN BytePair[data, word.right]

ELSE BytePair[word.left, data);

END;

Implementation Note: In the long-pointer variants of these instructions, the offset must
be calculated using double-word arithmetic, to account for the case in which alpha +

index may carry into the most significant word of the pointer.

7.4.1 Read String

The read string instructions clear the high-order byte of the data word written to the
stack.

RS Read String

RS: PROCEDURE =
BEGIN

alpha: BYTE = GetCodeByte[];

index: CARDINAL = Pop(J;

ptr: POINTER = Pop[];

Push[FetchByte[ptr: ptr, offset: alpha +. index]];

END;

RLS Read Long String

RlS: PROCEDURE =
BEGIN

alpha: BYTE = GetCodeByte(];

index: CARDINAL = Pop[];

ptr: LONG POINTER = Poplong[];

Push[FetchByte[ptr: ptr, offset: LONG[alpha] + LONG[indexll];

END;

7-15

7 Assignment Instructions

7.4.2 Write String

The write string instructions ignore the high-order byte of the data word obtained from
the stack.

WS Write String

WS: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
index: CARDINAL = Pop[];
ptr: POINTER = Pop[];
data: BYTE = LowByte[Pop(]];
StoreByte[ptr: ptr, offset: alpha + index, data: datal;
END;

WLS Write Long String

WLS: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
index: CARDINAL = Pop[];
ptr: LONG POINTER = PopLong[];
data: BYTE = LowByte[Pop[]];
StoreByte[ptr: ptr, offset: LONG[alpha] + LONG[index], data: data];
END;

7.5 Field Instructions

7-16

The field instructions either read or write a field of a word in memory. The word is usually
addressed by a short or long pointer found on th~ stack. The read indirect operations
obtain the required pointer from the local frame.

The field is described by a field specifier or a field descriptor, which is usually found in the
alpha and beta bytes of the instruction. The stack operations take their field descriptors
from the stack. Field specifiers are defined as follows:

FieldSpec: TYPE = MACHINE DEPENDENT RECORD [
pos (0: 0 . .3): NIBBLE,
size (0: 4.7): NIBBLE];

The pos specifies the most significant bit of the field (the most significant bit of a word is
bit zero), and size is one less than the width of the field in bits (a field never has zero
width). Figure 7.2 illustrates some examples offield specifiers.

Note that fields described by field specifiers do not cross word boundaries.

In addition to field specifiers, some instructions include an offset, a quantity added to the
pointer to obtain the address of the word containing the field. This offset is included in a
field descriptor.

""Mesa Processor Principles of_Op.er.ation

pos = 0
size = 0

pos = 5
size = 2

pos = 0
size = 15

o

o 5

o

7

Figure 7.2 Field Specifiers

FieldDesc: TYPE = MACHINE DEPENDENT RECORD [
offse:t (o: 0.7): 9YTE,
field (0: 8 .. 15): FieldSpec];

7

15

15

15

The following routines are used by the field instructions (and elsewhere) to perform the
basic functions offield extraction and insertion:

MaskTable: ARRAY [o .. WordSize) OF UNSPECIFIED = [
1,3,7,179,379,778,1778,3779,7779,17779,

37778,77779,177779,377778,777778,17777791;

ReadField: PROCEDURE [source: UNSPECIFIED, spec: FieidSpec1
RETURNS [UNSPECIFIED] =
9EGIN
shift: CARDINAL[G .. WordSize);
IF spec.pos + spec.size + 1 > WordSize THEN ERROR;
shift ~ WordSize-{spec.pos + spec.size + 1);
RETURN[And[Shift[source, -shift], MaskTable(spec.size]]];
END;

WriteField: PROCEDURE [dest: UNSPECIFIED, spec: FieldSpec, data: UNSPECIFIED]
RETURNS [UNSPECIFIED] =
9EGIN
mask: UNSPECIFIED;
shift: CARDINAL[O .. WordSize);
IF spec.pos + spec.size + 1 > WordSize THEN ERROR;
shift ~ WordSize-(spec.pos + spec.size + 1);
mask ~Shift[MaskTable[spec.size], shift];
data ~And[Shjft[data, shift], mask];
RETuRN[Or[And[dest, Not[maskll, data]];
END;

Design Note: If an instruction contains a field specifier in which pos + size + 1 >
WordSize, the l'esults are undefined.

7-17

7, Assigrime:nUnstructions

7-18

7.5.1 Read Field

The read field instructions push a field from a word in memory onto the stack. They right
justify the word and supply high-order zeros if necessary.

RF Read Field

RF: PROCEDURE =
BEGIN

desc: FieldDesc = GetCodeWord[];
ptr: POINTER = Pop[];

Push(ReadField[FetchMds[ptr + desc.offset] i I desc.field]);
END;

ROF Read Zero Field

ROF: PROCEDURE =
BEGIN
spec: FieldSpec = GetCodeByte[];

ptr: POINTER = Pop[];
Push[ReadField[FetchMds[ptrl i I spec]];
END;

RLF Read Long Field

RF~ PROCEDURE =
BEGIN

desc: FieldDesc = GetCodeWord[];
ptr: LONG POINTER = PopLong[];
Push[ReadField[Fetch[ptr + LONG[desc,offsetj] i I desc.field]];
END;

RLOF Read Long Zero Field

RLOF: PROCEDURE =
BEGIN
spec: FieldSpec = GetCodeByte[];
ptr: LONGPOINTER.= PopLong[];
Push[ReadField[Fetch[ptr] i I spec]];
END;

RLFS Read Long Field Stack

RLFS: PROCEDURE =

BEGIN
desc: FieldDesc = Pop[];
ptr: LONG POINTER = PopLong[];
Push[ReadField[Fetch[ptr + LONG [desc,offset]] i ,desc.field]];
END;

Mesa Processor Principles of Operation

RCFS Read Code Field Stack

ReFS: PROCEDURE =
BEGIN
desc: FieldDesc = Pop[];
offset: CARDINAL = Pop[];
Push[ReadField[ReadCode[offset + desc.offset], desc.field]];
END;

7

Programming Note: The Read Code Field Stack instruction is used for accessing constant
structures (arrays and records) located in the current code segment when the offset of the
word containing the field is not constant.

RLlPF Read Local Indirect Pair Field

RLlLPF

RLlPF: PROCEDURE =
BEGIN
pair: NibblePair = GetCodeByte[];

spec: FieldSpec = GetCodeByte[];
ptr: POINTER = FetchMds[LF + pair.left] i ;
Push[ReadField[FetchMds(ptr + pair.right] i I spec]];
END;

Read Local Indirect Long Pair Field

RLiLPF: PROCEDURE =
BEGIN
pair: NibblePair = GetCodeByte[];
spec: FieldSpec = GetCodeByte[];
ptr: LONG POINTER = ReadDblMds(LF + pair.left];
Push[ReadField[Fetch[ptr + LONG[pair.right]] i I spec]];
END;

7.5.2 Write Field

The write field instructions pop a value from the stack into a field of a word in memory.
The value is right-justified in the field, ignoring leftover significant bits. Write Swapped
Zero Field takes the pointer and the data in the opposite order on the stack, so that the
pointer can be obtained using a Recover instruction.

WF Write Field

WF: PROCEDURE =
BEGIN
desc: FieldDesc = GetCodeWord{];
ptr: POINTER = Pop[];
data: UNSPECIFIED = Pop[];
StoreMds[ptr + desc.offset] i ~ WriteField[

FetchMds(ptr + desc.offsetl i ,desc.field, datal;
END;

7-19

7-20

Assignment Instructions

. WOF Write Zero Field

WOF: PROCEDURE =
BEGIN
spec: FieldSpec = GetCodeByte[];
ptr: POINTER = Pop[];
data: UNSPECIFIED = Pop[];
StoreMds[ptr] i E- WriteField[FetchMds[ptr] i . spec, data];
END;

WLF Write Long Field

WLF: PROCEDURE =
BEGIN
desc: FieldDesc = GetCodeWord[];
ptr: LONG POINTER = Poplong[];
data: UNSPECIFIED = Pop[];
Store(ptr + LONG[desc.offsetj] i E- WriteField[

Fetch [ptr + LONG [desc.offset]] i , desc.field, data];
END;

WLOF Write Long Zero Field

WLOf: PROCEDURE =
BEGIN
spec: FieldSpec = GetCodeByte[];
ptr: LONG POINTER = Poplong(];
data: UNSPECIFIED = Pop[];
Store[ptr] i E- WriteField[Fetch[ptr] i , spec, data];
END;

WlFS Write long Field Stack

WSOF

WLFS: PROCEDURE =
BEGIN
desc: FieldDesc = Pop(];
ptr: LONG POINTER = Poplong[];
data: UNSPECIFIED = Pop[];
Store[ptr + LONG[desc.offset]] i E- WriteField[

Fetch [ptr + LONG[desc.offset]] i , desc.field, data];
END;

Write Swapped Zero Field

WSOF: PROCEDURE =
BEGIN
spec: FieldSpec = GetCodeByte[];
data: UNSPECIFIED = Pop(];
ptr: POINTER = Pop[];
StoreMds[ptr] i E- WriteField[FetchMds[ptr] i , spec, data];
END;

Mesa Processor Principles of Operation

7.5.3 Put Swapped Field
.

The put swapped field instructions leave the pointer on the top of the stack.
,

PSOF Put Swapped Zero Field

PSOF: PROCEDURE =
BEGIN
WSOF[];

Recover[];
END;

PSF Put Swapped Field

PSF: PROCEDURE =
BEGIN
desc: FieldDesc = GetCodeWord[];
data: UNSPECIFIED = Pop[J;
ptr: POINTER = Pop[];
StoreMds(ptr + desc.offsetl i +- WriteField(

FetchMds[ptr + desc.offsetl i ,desc.field, datal;
Recover[];
END;

PSLF Put Swapped long Field

PSlF: PROCEDURE =
BEGIN
desc: FieldDesc = GetCodeWord[];
data: UNSPECIFIED = Pop(];
ptr: LONG POINTER = PopLong[];
Store(ptr + LONG(desc.offset]] i +- WriteField(

Fetch [ptr + LONG(desc.offset]] i ,desc.field, datal;
Recover(];
Recover[];
END;

7

7 -21

7 Assignment Instructions

7-22

8

Block Transfers

The block transfer instructions move multiword structures from a source address to a
destination address, or they compare two multiword structures for equality. They include
word block transfers, word block comparisons, byte block transfer, bit block transfer, and
text block transfer. The last two operations are designed specifically for manipulating
rectangles and text on a bitmap display.

Because of potentially long execution times, all of the block transfer instructions check for
pen~ing interrupts- (§4.6.2L When a wakeup is detected, they save their intermediate
state on the stack and back up the PC so that, when the instruction is restarted, it will
continue transferring from the point of interruption. The check for interrupts is made

. once per iteration of the main loop (the InterruptPending routine is defined in §10.4.4). An
implementation of the processor may make this check less often, if the frequency is
consistent with the interrupt latency requirements in § 1 0.4.4.1.

8.1 Word Boundary Block Transfers

The word block transfer instructions pop a count along with (short or long) source and
destination pointers from the stack. They move words from the source to the destination.
If the source and destination addresses are the same, there will still be a transfer.

Block Transfer and Block Transfer Long move words from the source to the destination in
the forward direction (from low to high addresses). If the source and destination blocks
overlap and the destination address is greater than the source address, words must be
transferred one at a time from the source into the overlap area. This method causes words
in the non-overlap area to be duplicated throughout the destination block. If the
destination address is less than the source address or there is no overlap, then words do not
have to be transferred one at a time, allowing possible speed improvements.

BL T Block Transfer

BLT: PROCEDURE =
BEGIN

DO

dest: POINTER = Pop(];
count: CARDINAL = Pop[];
source: POINTER = Pop[];

8-1

8

8-2

Block Transfers

IF count = 0 THEN EXIT;

StoreMds[dest} l Eo- FetchMdsIsource] i ;
Push[source + 1];
Push[count-1];
Push[dest + 1];
IF InterruptPending[] THEN GOTO Suspend;
REPEAT

Suspend = > PC ~ saved PC;

ENDLOOP;

END;

BL Tl Block Transfer long

In Block Transfer Long, the source and destination addresses are long pointers.

BL TL: PROCE DU RE =
BEGIN

DO

dest: LONG POINTER = PopLong[];
count: CARDINAL = Pop[];
source: LONG POINTER = PopLong[];
IF count = 0 THEN EXIT;

Store[dest] i ~ Fetch[sourcel i ;
PushLong[source + 1];
Push[count-1];
PushLong[dest + 1];
IF InterruptPending[] THEN GOTO Suspend;
REPEAT

Suspend = > PC ~ saved PC;

ENDLOOP;

END;

Block Transfer Long Reversed moves words from the source to the destination in the
backward direction (from high to low addresses). If the source and destination blocks
overlap and the destination address is less than the source address, words must be
transferred one at a time from the source into the overlap area, causing words in the non
overlap area to be duplicated throughout the destination block. As with BLT and BL Tl, If the
destination address is less than the source address or there is no overlap,then words do not
have to be transferred one at a time.

BlTlR Block Transfer Long Reversed

BLTLR: PROCEDURE =
BEGIN

DO

dest: lONG POINTER = PopLong[];
count: CARDINAL = Pop[];
source: LONG POINTER = PopLong[];
!F count = 0 THEN EXIT;

5tore[dest + count] i ~ Fetch[source + count] i ;
PushLong[source];
Push[count-1];

Mesa Processor.Principles of Operation

PushLong[dest];
IF InterruptPending[] THEN GOTO Suspend;
REPEAT

Suspend = > PC ...- saved PC;

ENDLOOP;

END; .

8

The Block Transfer Code and Block Transfer Code Long instructions move words from a
source block in the code segment addressed by an offset from the current code base CB. In
Block Transfer Code the destination address is a short pointer. In Block Transfer Code
Long the destination address is a long pointer. The ReadCode routine is defined in
§3.1.4.3.

Bl TC Block Transfer Code

BlTCL

BLTC: PROCEDURE =
BEGIN

DO

dest: POINTER = Pop[];
count: CARDINAL = Pop[];
source: CARDINAL = Pop[];
IF count = 0 THEN EXIT;

StoreMds[destj i ...- ReadCode[source];
Push[source T 11;
Push[count-l];
Push[dest + 11;
IF IntenruptPending[] THEN GOTO Suspend;
REPEAT

Suspend = > PC ...- saved PC;

ENDLOOP;

END;

Block Transfer Code Long

BLTCL: PROCEDURE =
BEGIN

DO

dest: LONG POINTER = PopLong[];
count: CARDINAL = Pop[];
source: CARDINAL = Pop[];
IF count = 0 THEN EXIT;

Store[destl i ...- ReadCode[source];
Push[source + 1];
Push[count-l1;
PushLong(dest + 1];
IF InterruptPending[] THEN GOTO Suspend;
REPEAT

Suspend = > PC ...- saved PC;

ENDLOOP;

END;

8-3

8 . Block Transfers

Implementation Note: If an interrupt occurs, the value of the (virtual) code base may be
different when the instruction is resumed; therefore, it should not be part of the
intermediate state saved on the stack.

Implementation Note: Since code segments are read-only, there can be no overlap in the
block transfer code instructions. Therefore words do not have to be transfered one at a
time, nor do they have to be transfered in the forward direction.

CKSUM Checksum

The Checksum instruction incrementally updates a single word checksum based on the
contents of the source block. The updated checksum is returned on the stack.

CKSUM: PROCEDURE =
BEGIN
cksum: CARDINAL;
DO

source: LONG POINTER = PopLong[];
count: CARDINAL = Pop(];
cksum ~ Pop[];
IF count = 0 THEN EXIT;
Push[ChecKsum[cksum, Fetch[source] i]];
Push[count-l];
PushLong[source + 1];
IF InterruptPending[] THEN GOTO Suspend;
REPEAT

Suspend = > PC ~ saved PC;
RETURN;

ENDLOOP;
IF cksum = 177777B THEN cksum ~O;
Push[cksum];
END;

The checksum is a ones' complement add-and-left-cycle as computed by the following
routine.

Checksum: PROCEDURE [chksum: CARDINAL, data: CARDINAL] RETURNS [CARDINAL] =
BEGIN
temp: CARDINAL;
temp ~ chksum + data;
IF chksum > temp THEN temp ~ temp + 1;
IF temp> = 100000B THEN temp ~ temp*2 + 1 ELSE temp ~ temp*2;
RETURN[temp];
END;

8.2 Block Comparisons

8-4

The block comparison instructions pop a count and pointers from the stack. They compare
two blocks of memory. returning TRUE if they are equal and FALSE otherwise. In Block Equal
Long, the blocks are addressed by long pointers.

Mesa Processor Principles of Operation

BLEl Block Equal Long

BLECL

BLEL: PROCEDURE =
BEGIN
DO

ptrl: LONG POINTER - PopLong[];
count: CARDINAL - Pop[];
ptr2: LONG POINTER - PopLong[];
IF count = 0 THEN

BEGIN PUSh[TRUE]; EXIT; END;
IF Fetch[ptr1] i # Fetch[ptr2] i THEN

BEGIN PUSh[FALSEj; EXIT; END;
PushLong[ptr2 + 1];
Push[count-,];
PushLong(ptr1 + 1];
IF InterruptPending(] THEN GOTO Suspend;
REPEAT

Suspend = > PC _ saved pc;

ENDLOOP;
END;

Block Equal Code Long

8

In Block Equal Code Long, ope block is addressed by a long pointer and the other is
addressed by an offset from the current code base cs. (The ReadCode routine used here is
defined in §3.1.4.3.)

BLECL: PROCEDURE =
BEGIN
DO

ptr: LONG POINTER - PopLong[];
count: CARDINAL - Pop(];
offset: CARDINAL - Pop[];
IF count = 0 THEN

BEGIN PUSh[TRUEl; EXIT; END;
IF Fetch[ptr] i # ReadCode[offset] i THEN

BEGIN PUSh[FALSE]; EXIT; END";
Push[offset + 1];
Push[count-l];
PushLong[ptr + 1];
IF InterruptPending(] THEN GOTO Suspend;
REPEAT

Suspend = > PC - saved pc;
ENDLOOP;

END;

Implementation Note: If an interrupt occurs, the value of the (virtual) code base may be
different when the instruction is resumed: therefore, it should not be part of the
intermediate state sa ved on the stack.

8-5

8 Block Transfers

Implementation Note: In the block comparison instructions, it does not matter whether
words are fetched in forward or backward order.

8.3 Byte Boundary Block Transfers

8-6

The -byte block transfer instructions pop a count, short source and destination offsets, and
long source and destination pointers from the stack. They move bytes from the source to
the destination. If the source and destination addresses are the same, there will still be a
transfer.

Byte Block Transfer moves bytes from the source to the destination in the forward direction
(from low to high addresses). If the source and destination "blocks overlap and the
destination address is greater than the source address, bytes must be transferred one at a
time from the source into the overlap area, so bytes in the non-overlap area are duplicated
throughout the destination block. If the destination address is less than the source
address or there is no overlap, then bytes do not have to be transferred one at a time. Some
speed impr?vements become possible as a result.

The FetchByte and StoreByte routines are defined in §7.4.

BYTBlT Byte Block Transfer

BYTBlT: PROCEDURE =
BEGIN
DO

sourceOffset: CARDINAL +- Pop[];
sourceBase: LONG POINTER +- PopLong[];
count: CARDINAL +- Pop[];
destOffset: CARDINAL +- Pop[];
destBase: LONG POINTER +- PopLong[];
IF count = 0 THEN EXIT;
sourceBase ~ sourceBase + LONG[sourceOffsetJ2];
sourceOffset ~sourceOffset MOD 2;
destBase ~ destBase + LONG [destOffsetJ2];
destOffset ~ destOffset MOD 2;
StoreByte[

destBase, LONG [destOffset], FetchByte(sou rceBase, LONG [sou rceOffset]]];
IF sourceOffset = 1 THEN

BEGIN sourceBase ~ sourceBase + 1; sourceOffset ~ 0; END
ELSE sourceOffset ~ 1 ;
IF destOffset = 1 THEN

BEGIN destBase ~ destBase + 1; destOffset ~ 0; END
ELSE destOffset ~ 1;

PushLong(destBase];
Push[destOffsetj;
Push(count-1];
Push Long(sourceBase 1;
Push [sou rceOffset];
IF InterruptPending(] THEN GOTO Suspend;
REPEAT

Suspend = > PC ~ saved PC;

Mesa Processor Principles of Operation

ENDLOOP;

END;

8

Byte Block Transfer Reversed moves bytes from the source to the destination in the
backward direction (from high to low addresses). As with other Block Transfer
instructions, if the source and destination blocks overlap and the destination address is
less than the source address, bytes must be transferred one at a time from the source into
the overlap area. Bytes in the non-overlap area are duplicated throughout the destination
block. However, if the destination address is less than the source address or there is no
overlap, bytes do not have to be transferred one at a time.

BYTBL TR Byte Block Transfer Reversed

BYTBLTR: PROCEDURE =
BEGIN

DO

sourceOffset: CARDINAL +- Pop[];

sourceBase: LONG POINTER +- PopLong[];
count: CARDINAL +- Pop[];

destOffset: CARDINAL +- Pop[];

destBase: LONG POINTER +- PopLong[];
IF count = 0 THEN EXIT;

sourceBase ~ sourceBase + LONG[sourceOffsetl2];

sourceOffset ~ sourceOffset MOD 2;

destBase ~ destBase + LONG[destOffsetl2];
destOffset ~ destOffset MOD 2;
StoreByte(

destBase, LONG[destOffset], FetchByte(sourceBase, LONG[sourceOffset]]];

IF sourceOffset = 0 THEN

BEGIN sourceBase ~ sourceBase - 1; sourceOffset ~ 1; END

ELSE sourceOffset ~ 0;
IF destOffset = 0 THEN

BEGIN destBase ~ destBase - 1; destOffset ~ 1; END

ELSE destOffset ~ 0;
PushLong(destBase];
Push[destOffset];

Push[count-1];

PushLong[sourceBase];
Push(sourceOffset];

IF InterruptPending[] THEN GOTO Suspend;

REPEAT

Suspend = > PC ~ saved PC;

ENDLOOP;

END;

8.4 Bit Boundary Block Transfers

The bit boundary block transfer instructions include Bit Block Transfer (BITBLTl, for
operating on rectangular arrays of bits in memory, and Text Block Transfer (TXTBLr), for
converting arrays of characters into their bitmap representations.

8-7

8

8-8

... Block Transfers

8.4.1 Bit Transfer Utilities

The transfer instructions described'below operate on arbitrary bit boundarie~. The
followmgstructure is used· to addres'sbits:

BitAddress:TYPE = MACHINE DEPENDENT RECORD [
word Co): LONG POINTER,
reserved (2: 0 .. 11): [O.,7777B] E-O,
bit (2:12,.lS): [o .. WordSize)];

The Bump routine is used to increment (or decrement) a bit address by a bit offset.

Bump: PROCEDURE [address: BitAddress, offset: LONG INTEGER] RETURNS [BitAddress] ::
BEGIN
offset E- offset + LONG[address.bit];
RETURN[

BitAddress[

END;

word: address.word + LongArithShift[offset, -Log[WordSizeJ],

bit: And [LowHalf[offset], WordSize-l]]];

Implementation Note: Because the reserved field of a bit address is guaranteed to be
zero,the extraction address. bit can be replaced by a word access.

The following routines are used to read and write individual bits within a word. The
source (destination) is specified by a base bit address and a bit offset. The ReadField and
WriteFie/d routines are defined in §7.5.

ReadBit: PROCEDURE [address: BitAddress, offset: INTEGER] RETURNS [BIT] =
BEGIN
spec: FieldSpec;
address E- Bump[address, LONG[offset]];
spec E- Fie/dSpec[pos: address.bit, size: 0];
RETuRN[ReadFie/d[Fetch[address.word] i, spec]];
END;

WriteBit: PROCEDURE [address: BitAddress, offset: INTEGER, bit: BIT] =
BEGIN
spec: FieldSpec;
word: UNSPECIFIED;
address E- Bump[address, LONG[offset]];

wordE- Fetch[address.wordl i;
spec E- FieldSpec[pos: address. bit, size: 0];
Store[address.wordl i E- WriteField[word, spec, bit];
END;

8.4.2 Bit Block Transfer

The BITBlT instruction manipulates rectangular arrays of bits. It accesses source bits and
destination bits, performs a function on them, and stores the result in the destination bits.

·Mesa Processor Principles of.Operation 8

Successive bit pairs are obtained by scanning a source bit stream and a destination bit
stream. The instruction operates successively on lines of bits called items; it processes
width bits from a pair oflines, and then moves down to the next item by adding srcBpl (bits
per line) to the source address and dstBpl to the destination address. It continues until it
has-processed height-lines.

Figure 8.1 illustrates a possible configuration of source and destination rectangles, which
are always of the same size and dimensions, embedded in separate bitmaps.
Approximately half of the items have been moved to the destination, and the location of
the next item is highlighted in the source bitmap and shown as a dotted line in the
destination bitmap.

Destination Bitmap
Source Bitmap

dst ~ II ~ ~~_ width

T 'r------------.

~I
src ----,

T
item

height

height

1 1

II O(~- width --~·~I

I o(~------ dstBpl I ~~ ____ srcBpl

Figur-e 8.1 BitBlt Source and Destination

8.4.2.1. BitBlt Arguments

The argument to Bit Block Transfer is a short pointer to a record containing the source and
destination bit addresses and bits per line, the width and height (in bits) of the rectangle
to be operated on, and a word of flags that indicate the operation to be performed. The
width and height of the rectangle are restricted to a maximum of 32,767. The argument
record must be aligned on a sixteen-word boundary.

Note: Review the section on Gray Flag for the relationship between SrcBpl and the gray
flag in BitBltFlags.

BitBltArg: TYPE = MACHINE DEPENDENT RECORD [

dst (0): BitAddress,
dstBpl (3): INTEGER,

src (4): BitAddress,
srcBpl (7): INTEGER,

width (8): CARDINAL,

height (9): CARDINAL,

flags (10): BitBltFlags,
reserved (11): UNSPECIFIED ~ oj;

8-9

8

8-10

Block Transfers

The flag bits specify the direction of the operation, the overlap of the operands, whether
the source is interpreted as a gray bf'-ick, and the function to be performed on the source
and destination bits.

BitBltFlags: TYPE = MACHINE DEPENDENT RECORD [
direction (0: 0 .. 0): Direction,
disjoint (0: 1 .. 1): BOOLEAN,
disjointltems (0: 2 .. 2): BOOLEAN,
gray (0: 3.3): BOOLEAN,
srcFunc (0: 4 . .4): SrcFunc,
dstFunc (0: 5 .. 6): DstFunc,
reserved (0: 7 .. 15): [0 .. 777B] ~O];

Source and Destination Functions

The following routine describes the functions available for combining the source and
destination rectangles (arg is the argument record). These functions are also shown in
figure 8.2.

SrcFunc: TYPE = MACHINE DEPENDENT {null, complement};
DstFunc: TYPE = MACHINE DEPENDENT {null, and, or, xor};

Function: PROCEDURE [dst, src: BIT] RETURNS [BIT] =
BEGIN
src ~ SELECT argo flags.srcFunc FROM

null = > src,
complement = > Not[src],
ENDCASE = > ERROR;

dst ~ SELECT argo flags.dstFunc FROM
null = > src,
and = > And[src, dst],
or = > ar[src, dst],
xor = > Xor[src, dst],
ENDCASE = > ERROR;

RETURN[dst];
END;

src n

c

dst

n

S

-s

a

s·d

-s'd

0

s+d

-s+d

x

sed

-sed

Figure 8.2 Source and Destination Functions

...... Mesa Processor Principles of Operation 8

The src field has two options; the null selection indicates using the source rectangle "as is"
for the destination function. The complement selection will invert the source bits in the
destination function .

. The dst field determines the function to be used for changing bits in the destination
rectangle. The null selection causes the destination to be "replaced" with the source bits.
There is no boolean operation in this case. Anding the destination bits with the source bits
leaves only those bits in common in the destination. "Painting" the destination requires
oring. This operation will leave the union of the two sets of bits in the destination. The
last function is the xor. It essentially masks out the matching bits leaving the union but
not the intersection of the bits in the destination rectangle.

Direction Flag

The direction flag indicates whether the operation should take place forward (left to right,
from low to high memory addresses) or backward (right to left, from high to low memory
addresses). This allows an unambiguous specification of overlapping BitBlts, as in
scrolling.

Direction: TYPE = MACHINE DEPENDENT {forward, backward};

If the direction is backward, the source and destination addresses point to the beginning of
the last item of the blocks to be processed, and the source and destination bits per line
must be negative. This restricts the width of the bitmaps involved to a maximum of 32,767
bits.

Adjustments of the arguments required by a change in direction are performed by the
ComputeDirection routine which appears after the BITBLT opcode.

Disjoint Flag

If the operation's source and destination are completely disjoint, the implementation
performs the operation in the most efficient horiz<:mtal and vertical directions, given by
the following processor dependent variables:

xPreference, yPreference: Direction;

Both the direction and the disjointltems flags in the argument record are ignored when
disjoint is set.

Disjoint/tems Flag

If the individual items of the source and destination are disjoint, but the rectangles
otherwise overlap, the disjointltems flag should be set (and the disjoint flag should be
clear). The implementation can then perform the operation so that, within each item, the
bits are processed in the most efficient horizontal direction. The items are processed in the
order indicated by direction.

If neither disjoint nor disjointltems lS set, the implementation processes the items and the
bits within items in the direction indicated by the di rection Oag.

Programming Note: Correct specification of disjoint and disjointltems is the
responsibility of the programmer. The implementation makes no attempt to verify claims

8-11

8

8-12

Block Transfers

about overlapping source and destination arguments. If, in the course of instruction
execution, a bit is used as a destination bit and then subsequently as a source bit, the
results are undefined.

Gray Flag

The gray flag allows repetitive bit patterns to be specified in a condensed format. The
usual appllcation is for generation of various shades of gray on the display, but any
repetitive pattern within the limits stated below may be supplied.

If the gray option is specified, the srcBpl field of the argument record is reinterpreted as
follows:

GrayParm: TYPE = MACHINE DEPENDENT RECORD [

reserved (0: 0 .. 3}: NIBBLE +- 0,

yOffset (0: 4 .. 7): NIBBLE,

widthMinusOne (0: S .. 11): NIBSLE,

heightMinusOne (0: 12 .. 1 s): NIBBLE];

The fields grayParm.widthMinusOne and grayParm.heightMinusOne define the width
(less one) in words and height (less one) in bits, respectively, of a gray brick located at
arg.src. Note, the term "brick" refers to a rectangular area containing the gray pattern to
be copied. Conceptually, this brick is replicated horizontally and vertically to tile a plane
of dimensions arg.width by arg.height. This plane becomes the source rectangle of the
operation. The brick is a maximum of sixteen words wide and sixteen lines high.
Patterns, therefore, are also limited to a repetition rate of sixteen in each direction. To
guarantee correct repeatability of the pattern in the horizontal direction, the width of the
gray brick (in bits) is usually a multiple of the repetition rate. The height of the gray brick
is usually equal to the vertical repetition rate.

Proper alignment of the gray pattern with the destination bitmap requires the initial x
and y-offsets into the brick along with its width and height. The initial x-offset is derived
from arg.src as follows: arg.src.word always points to the beginning of the first line to be
transferred (not to the origin of the gray brick). The x-offset of the first bit to be
transffered is supplied by arg.src.bit. This bit is always in the first word of the line. The
initial y-offset is the number of lines down from the origin of the brick. It is specified by
grayParm.yOffset. Subtracting th~ y-offset times the brick width from arg.src.word gives
the origin of the gray brick.

Design Note: Since the brick is word-aligned and the repetition rate is sixteen or less, the
initial x-offset can never exceed fifteen.

Design Note: The gray case is always forward and completely disjoint (disjointltems is
ignored).

Design Note: Allowing grayParm.widthMinusOne to be greater than zero allows gray
patterns having repetition rates of other than 1, 2, 4, 8, or 16 in the horizontal direction.
Patterns with other repetition rates may be desirable, but are not mandatory. While the
BitBlt code allows values greater than zero for grayParm.widthMinusOne, the initial
implementation is restricted to a value of zero.

Mesa Processor Principles of Operation 8

Gray Brick

arg .src.word
- - I l~ arg.src.bit ..

.. .

- t
yOffset

~
- .

height

.

!
Destination Bitmap l--oEE---- width

Figure 8.3 Gray Brick

8.4.2.2. Interruptibility

The Bit Block Transfer instruction checks for interrupts after it completes each item. If a
pending interrupt is detected, the current state of the BITBL T is saved on the stack. When
the instruction is restarted, the stack count is used to distinguish the restart case. The
actual format of the stack is processor-dependent. The following routines are assumed to
save and restore the intermediate state:

PushState, PopState: PROCEDURE;

Design Note: If any of the values of the arguments (in memory) change between
the time of an interrupt and the subsequent restart of the instruction, the effects of
the instruction are undefined. This allows the original values in the argument
record to be saved as part of the intermediate state.

8.4.2.3. BitBlt Routines

BITBLT Bit Block Transfer

BITBLT: PROCEDURE =
BEGIN

line: CARDINAL;

arg: BitBltArg;
grayParm: GrayParm;
lastGray: [0 .. 15);

grayWidth: INTEGER;

grayBump: LONG INTEGER;

xDirection, yDirection: Direction;
IF StackCount[] = 1 THEN Setup[] ELSE PopState(];
MinimaIStack[];
WHILE line IN [O .. arg.height) DO

8-13

8

8-14

Block Transfers

BitBltltem [];

arg.src ('- Bump[arg.src,

!.F arg.flags.gray THEN
IF (line MOD grayParm.heightMinusOne + 1) = lastGray

THEN grayBump
ELSE lONG[grayWidthj

ELSE LONG[arg.srcBplll;
arg.dst ('- Bump[arg.dst, LONG[arg.dstBpl]];
line ('-line + (IF yDirection = forward THEN 1 ELSE -1);
IF InterruptPending[] THEN GO TO Suspend;
REPEAT

Suspend = > {PushState[]; PC ('- savedpc};
ENDLOOP;

END;

BitBltltem: PROCEDURE =
BEGIN

. offset, pos: INTEGER;
offset ('-IF xDirection = forward THEN 0 ELSE arg.width-1;
THROUGH [o .. arg.width) DO

pos ('-IF arg.flags.gray THEN
«offset -+- arg.src.bit) MOD ABs[grayWidth])-arg.src.bit ELSE offset;

WriteBit[
arg.dst, offset, Function[ReadBit[arg.dst, offset], ReadBit[arg.src, pos]]];

offset ('- offset + (IF xDirection = forward THEN 1 ELSE -1);
ENDLOOP;

END;

The routines given below are used to set up the BitBIt operation on first entry. They fetch
the argument record, perform error checks on its fields, choose a direction, adjust the
arguments accordingly, and compute the gray brick boundaries.

Setup: PROCEDURE =
BEGIN
ptr: POINTER TO BitBltArg = Pop[];
arg ('- FetchBitBltArg[ptr];

IFarg.flags.reserved # 0 OR arg.reserved # 0
OR arg.src.reserved # 0 OR arg.dst.reserved # 0
OR (-arg.flags.gray AND arg.srcBpl = 0) OR arg.dstBpl = 0
OR arg.width > 32767 OR arg.height > 32767

THEN ERROR;
IF argo flags.gray THEN

BEGIN
grayParm ('- LOOPHOLE[arg.srcBpl];
IF grayParm.widthMinusOne # 0
OR grayParm.reserved # 0
OR arg.flags.direction # forward
OR -arg.flags.disjoint OR arg.dstBpl < 0

THEN ERROR;
grayWidth ('-INTEGER[(grayParm.widthMinusOne + 1)*WordSizel;
grayBump ('- -grayWidth*grayParm.heightMinusOne;
END

· Mesa Processor Principles of Operation

ELSE

IF (arg.flags.direction = forward AND (arg.srcBpl < 0 OR arg.dstBpl < 0))

OR (arg.flags.direction = backward AND (arg.srcBpl > 0 OR arg.dstBpl > 0»
THonf ERROR~

ComputeDirection[];
IF argo flags.gray THEN

lastGray ~ IF yDirection = forward
THEN grayParm.heightMinusOne-grayParm.yOffset
ELSE grayParm. yOffset;

line ~ IF yDirection = forward THEN 0 ELSE arg.height-1;
END;

FetchBitBltArg: PROCEDURE [ptr: POINTER TO BitBltArg]RETURNS [BitBltArg] =
BEGIN
Arglndex: TYPE = [O .. SlzE[BitBltArg]);

temp: ARRAY Arglndex OF UNSPECIFIED;
IF And[ptr, 17B] # 0 THEN ERROR;
FOR i: Arglndex IN Arglndex DO

temp[i] ~ FetchMds[ptr + i] i;
ENDLOOP;

RETURN[LOOPHOLE[templl;
END;

ComputeDirection: PROCEDURE =
BEGIN
yDirection ~ xDirection ~ arg.flags.direction;
IF arg.flags.disjoint AND yDirection # yPreference THEN

BEGIN
yDirection ~ yPreference;
IF arg.flags.gray THEN

BEGIN
arg.src ~ Bump[arg.src,

grayWidth*«grayParm.yOffset + arg.height-1)
MOD (grayParm.heightMinusOne + 1)-grayParm.yOffset)];

grayWidth ~ -grayWidth;

grayBump ~ -grayBump;
END

ELSE
BEGIN
arg.src ~ Bump(argosrc, arg.srcBpl*{arg.height-1)];
arg.srcBpl ~ -arg.srcBpl;

END;
arg.dst ~ Bump[arg.dst, arg.dstBpl*{arg.height-1)1;
arg.dstBpl ~-arg.dstBpl;
END;

IF arg.flags.disjoint OR argo flags.disjoi ntltems THEN xDirection ~ xPreference;
END;

8

Implementation Note: The products computed in Setup and ComputeDirection are
thirty-two bit signed numbers (LONG INTEGERS) produced by multiplying an integer by a

8-15

8

8-16

Block Transfers

cardinal. Since the cardinal is known to be less than 32,768, a short-integer multiply can
be used.

Implementation Note: Much of the complexity in ComputeDirection comes from
reversing direction in the gray case. This can be avoided if yPreference is forward, since
all legal gray BitBltsspecify a forward direction.

8.4.3 Text Block Transfer

The Text Block Transfer instruction operates on an array of characters. It implements
three functions useful for generating the font representation of the text in a bitmap.

Function: TYPE = MACHINE DEPENDENT {display, format, resolve, unused};

The format function is used to calculate the number of characters that will fit on a line
and the number of spaces that may be added to the line, given its right margin (in micas).
The display function converts characters to their font representation in the destination
bitmap, optionally widening or narrowing pad characters to perform line justification.
The resolve function is used to record the horizontal bit position of the origin of each
character in the bitmap; it also handles justification. This function is used when
determining which character in a text line has been selected with a pointing device.

Note: In the following section, the directional references used refer to the association wi~h
conventional Xerox bitmap displays. The top left of a CRT display is considered the point
of origin for x- and y-coordinates. The x-coordinate increases horizontally from left to
right across the screen. The y-coordinate increases vertically from the top of the screen to
the bottom. So for instance, referring to the bit-position in left-to-right, top-to-bottom
order is only for conceptual purposes.

8.4.3.1 Font Representation

The font determines the height and width (in bits) of the characters and the bit pattern to
be transferred. The font also contains two flag bits for each character: the first specifies
whether the character is a pad character (widenable for justification), and the second
specifies whether the character is a stop character (terminating a TextBlt operation).

The precise format of the font is private to the implementation; the following types and
routines are used in the TXTBL T code to access the font. FontRecord contains the font
information TXTBLT needs. rasters indicates the font's raster specification. spacingWidths
specifies the width of a character in bits. printerWidths gives the printing width of the
character. The flags consist of pad and stop. pad is set to TRUE if the character is a pad
character; stop is set to TRUE if the character is a stop character. rasterlnfos includes the
number of bits to the left or right of the character's origin and specifies the offset ofthe
character's raster. height is the height of the font measured in bits; it is constant for all
characters. To allow for kerned fonts, DisplayWidth returns the width of the entire font
representation of the character, which includes the left and right kerning not included in
the spacingWidth. Bit returns the individual bits ofa character's· font representation.

FontHandle points to the font information TextBlt needs. FontRecord is the concrete type
of a Font. FontRecord must be aligned on a sixteen-word boundary.

Mesa Processor Principles of Operation

Font: TYPE;
FontHandle: TYPE=- LONG POINTER TO Font;

fontRecordAlignment: NATURAL = 16;

FontRecord: TYPE = MACHINE DEPENDENT RECORD [
rasters(O): FontRasters,
spacingWidths(2): 5pacingWidths,
printerWidths(4): Pri nterWidths,
flags(6): FlagsArray,
rasterl nfos(8): Rasterlnfos,
height(10): CARDINAL];

The following types makeup FontRecord:

FontBitsPtr: TYPE = LONG BASE POINTER TO ARRAY [0 .. 0) OF UNSPECIFIED;

FontRasters: TYPE = LONG BASE POINTER TO < < rasters> > ARRAY [0 .. 0) OF WORD;

8

The data at FontRasters is a base pointer for the character raster data. For a particular
character, Rasterlnfo.offset (defined below) is added to this base to get the address of the
character's raster. The raster format includes the scan lines within the dimensions given
by spacingWidths and height. The scan lines are tightly packed together, so that the last
bit of a scan line is immediately followed by the first bit of the next. The .height of the
raster is constant for all characters. Each raster begins on a word boundary.

The memory order of the bits in the raster correspond to the memory order in which
TextBlt will paint them into the destination bitmap. Said another way, TextBlt paints the
first scan line of the raster into the appropriate place in the first scan line of the
destination bitmap, and so on. Similarly, the first bit of a raster's scan line is painted into
the appropriate first bit of the scan line in the destination bitmap, and so on.

The first scan line in memory corresponds to the top line on the screen (of Xerox
conventional bitmap displays). The first bit of the scan line corresponds to the left pixel of
the line. For this case, the first scan line in the raster will be the topmost row of the
character, and the first pixel (most significant bit) of a scan line will be the leftmost pixel
of its row.

Byte: TYPE = CARDINAL [0 .. 255];

5pacingWidths: TYPE = LONG POINTER TO PACKED ARRAY Byte OF SpacingWidth;
5pacingWidth: TYPE = Byte;

PrinterWidths: TYPE = LONG POINTER TO ARRAY Byte-oF PrinterWidth;
PrinterWidth: TYPE = CARDINAL;

FlagsArray: TYPE = LONG POINTER TO PACKED ARRAY Byte OF Flags;

Flags: TYPE = MACHINE DEPENDENT RECORD [
pad(O:O .. O): BOOLEAN,
stop(O: 1..1): BOOLEAN];

8-17

8

8-18

Block Transfers

The pad flag allows the character to have its width increased or decreased (in bits) for line
justification. The stop flag will specify a stop character to terminate a TextBlt operation.

Rasterlnfos: TYPE '= LONG POINTER TO ARRAY. Byte OF Rasterlnfo;

Rasterlnfo: TYPE = MACHINE DEPENDENT RECORD {
leftKern: BOOLEAN,
rightKern: BOOLEAN,
offset: RasterOffset};

If Rasterlnfo.leftKern == TRUE, the character's raster has one column preceeding the char's
origin, and will be written into the destination bitmap with one column preceeding the
current position (bitPos). If Rasterlnfo.rightKern == TRUE, the raster extends one column
past the spacing width into the space for the next character; that character's raster should
begin coincident with the current character's last column (one column preceeding where it
would normally go). Rasterlnfo.offset is the offset for the address ofthe character's raster.

RasterOffsetDomain: TYPE = CARDINAL [0 .. 377778];
RasterOffset: TYPE = FontRasters RELATIVE POINTER [O .. 377778} TO < < raster» UNSPECIFIED;

RasterOffsetFromDomain: PROC [domain: RasterOffsetDomain]
RETURNS [RasterOffset] = INUNE {RETURN[LOOPHOLE[domain]]};

RasterDomainFromOffset: PROC [offset: RasterOffset]
RETURNS [RasterOffsetDomain] = INUNE {RETURN[LOOPHOLE[offset]]};

maxLeftKern: CARDINAL = 1;
maxRightKern: CARDINAL = 1;

MaxLeftKern and maxRightKern support kerning up to one pixel in the respective
direction.

Design Note: Although the architecture permits it, the specification is not intended to
encourage the creation of a different font format for each implementation of the processor.
A new format may be specified only if significant performance improvement can be gained
and is required.

8.4.3.2. TextBlt Arguments and Results

TextBlt's static arguments are passed via a short pointer to a record. The argument record
must be aligned on a sixteen-word boundary. Arguments updated and returned by
TextBlt are passed (and returned) on the stack (see the opcode description below).

Txt8ltArg: TYPE = MACHINE DEPENDENT RECORD (
reserved (0: 0 .. 13): [O .. 37777B] ~ 0,

function (0: 14 .. 15): Function,
last (1): CARDINAL,
text (2): LONG POINTER TO ARRA Y CARDINAL OF BytePai r,
font (4): FontHandle,
dst (6): LONG POINTER,
dst8pl (8): CARDINAL,
margin (9): CARDINAL,

Mesa Processor Principles of Operation 8

space (10): INTEGER,

coord (11): LONG POINTER TO ARRAY CARDINAL OF CARDINAL];

TextBlt proceeds through the characters of arg.text from index through arg.last unless a
stop character is encountered (for example, note that index, shown in the TextBlt Routines
section, is a byte offset). It maintains the bitPos (postion of the first bit of the character's
raster) and the printPos (postion of the first bit of the printed character) of the origin of
each character, and increments the count of the number of pad characters processed.
During the format function, the scan is also terminated before the right arg.margin (in
micas) is passed. The display function ors the character's font bits into the destination
bitmap specified by arg.dst and arg.dstBpl (bits per line). The resolve function saves the
bitPos ofthe origin of each character in the array arg.coord.

Programming Note: Because of kerning, the display function may place bits into the
destination bitmap to the left of the bitPos of the leftmost character and to the right of the
right margin. It is the programmer's responsibility to initialize the bitPos to allow for the
left kerning of the first character, and to supply a bitmap wide enough to allow for the
maximum possible right kerning. (At present this maximum is one bit.)

Justification can be accomplished using the display and resolve functions with
appropriate settings of the arg.space and count values; arg.space is added to the width of
every pad character (it may be negative), and count is incremented each time a pad
character is encountered (it may also be initially negative). Since the amount of white
space to be absorbed by (or squeezed out of) pad characters is rarely an even multiple ofthe
number of pad characters, pad characters encountered have arg.space + 1 added to their
widths as long as count is negative. Thus if sixteen bits need to be added to the width of
the line in order to justify it, but it contains only thirteen pad characters, arg.space would
be set to one, and count would be initialized to negative three. This operation will result in
widening the first three pad characters by two bits each and the remaining ten pad
characters by one bit each.

TextBlt returns, in place of the argument pointer on the stack, an indication of its
completion condition: normal if the last character was processed, margin if the right
margin was reached (format only), and stop if a terminating character was detected.

Result: TYPE = MACHINE DEPENDENT {normal, margin, stop, unused};

The display font (arg.font), character array (arg.text), and destination bitmap (arg.dst)
must not cross 64K boundries. (For bitmaps larger than 64K, the display lines can be
created in a private buffer and transferred to the display bitmap using the Bit Block
Transfer instruction.) As in BITBLT, the maximum value ofdstBpl is 32,767. This limitation
also applies to horizontal bit positions. The effects of the instruction are undefined if there
is any overlap in memory among the arguments (arg), display font (arg.font), character
array (arg.text), widths array (arg.coord), or the destination bitmap (arg.dst).

8.4.3.3. Interruptihility

The Text Block Transfer instruction checks for interrupts after it processes each character.
As with all block transfers, the intermediate state of the operation is saved on the stack
when an interrupt is detected. This saving operation consists of pushing the updated

8-19

8

8-20

. Block Transfers

values of the original arguments. The actual format of the stack can be processor
dependent.

Design Note: If any of the values of the arguments (in memory) change between the time
of an interrupt and the subsequent restart of the instruction, the effects of the instruction
are undefined. The original values in the argument record are thereby allowed to be saved
as part of the intermediate state.

8.4.3.4. TextBlt Routines

TXTBLT Text Block Transfer

TXTBl T: PROCEDURE =
BEGIN

result: Result;
arg: TxtBltArg;
font: FontRecord;
ptr: POINTER TO TxtBltArg = Pop[];
count: INTEGER ~ Pop[];
printPos: CARDINAL ~ Pop[];
bitPos: CARDINAL ~ Pop[];
index: CARDINAL ~ Pop(];
MinimaIStack[];
arg ~ FetchTxtBltArg(ptr];
IF arg.reserved #0 OR arg.dstBpl > 32767 THEN ERROR;

UNTlt index >arg.last DO

char: BYTE;

IF arg.function = resolve THEN Store[@arg.coord{indexJ] i ~ bitPos;
char ~ FetchChar(arg.text, index);
IF font.flags[char).stop THEN GO TO Stop;
IF printPos + font.printerWidths[char] > arg.margin

THEN GOTO Margin;
IF arg.function = display THEN DisplayChar[bitPos, char];
bitPos ~ bitPos + font.spacingWidths(char];
printPos ~ printPos + font.printerWidths[char];
IF font.flags[char].pad THEN

BEGIN

IF arg.function = (display OR format) THEN

BEGIN

bitPos ~ bitPos + arg.space;
IF count < 0 THEN bitPos ~ bitPos + 1;

END;

count ~ count + 1;

END;

index ~ index + 1;
IF InterruptPending(] THEN GO TO Suspend;
REPEAT

Suspend = >
BEGIN

PushState[ptr];
PC ~ saved PC;

Mesa Processor Prtnciples of Operation

GO TO Done;
END;

Stop = > result~stop;
Margin = > result ~margin;
FINISHED = > result ~ normal;

ENDLOOP;
PushState[result};
EXITS Done = > NULL;
END;

8

The routines below are used by the TXTBLT code. They fetch the argument record, fetch a
character from the text array, and move a character from the display font into the
destination bitmap. The type BitAddress and the routines Sump, ReadSit, and WriteSit
are defined in §8.4.1.

FetchTxtSltArg: PROCEDURE [ptr: POINTER TO TxtBltArg] RETURNS [TxtBltArg] =
BEGIN
Arglndex: TYPE = [O .. SIZE[TxtBltArg]);
temp: ARRAY Arglndex OF UNSPECIFIED;
IF And{ptr, 17B] # 0 THEN ERROR;
FOR i: Arglndex IN Arglndex DO

temp[i] ~ EetchMds[ptr + i] i ;
ENDLOOP;

RETURN[LOOPHOLE[temp]];
END;

FetchChar: PROCEDURE [
ptr: LONG POINTER TO ARRAY CARDINAL OF BytePai r, index: CARDINAL]

RETURNS [BYTE] =
BEGIN
data: BytePair = Fetch[@ptr[indexl2]] i;
RETURN[IF (index MOD 2) = 0 THEN data.left ELSE data.right];
END;

DisplayChar: PROCEDURE [pas: CARDINAL, char: BYTE] =
BEGIN
count: CARDINAL ~ 0;
dst: BitAddress ~ [word: arg.dst, bit: oj;
width: CARDINAL = DisplayWidth(arg.font, char];
pas ~ pas - {IF font.rasterlnfo[char].leftKern THEN 1 ELSE O};
THROUGH [o .. font.height) DO

FOR inc: CARDINAL IN [o .. width) DO
bit: BIT E- Bit[arg.font, char, count];
offset: INTEGER E-INTEGER[pOS + inc];
WriteBit[dst, offset, Or(bit, ReadBit[dst, offset]]];
count ~ count + 1;
ENDLOOP;

dst ~ Bump[dst, LONG[INTEGER[arg.dstBpl]]];
ENDLOOP;

END;

8-21

8

8-22

Block Transfers

Bit: PROC [font: FontHandle, char: Byte, scanLine, pixel: CARDINAL] RETURNS [SIT] = {
raster: LONG POINTER TO PACKED ARRAY OF BIT =
LOOPHOLE [font. raster + font. rasterl nfos[char]. offset];
bit: CARDINAL = scanLine*displayWidth[font, char1 + pixel;
RETuRN[raster[bitIl} ;

[This definition of Bit has been recast above in terms of explicit scanline and pixel.]

DisplayWidth: PROC [font: FontHandle, char: Byte] RETURNS [CARDINAL] = {
RETuRN[font.spacingWidths[char]
+ (IF font.rasterlnfo[char].leftKern THEN 1 ELSE 0)

+ (IF font.rasterlnfo[charj.rightKern THEN 1 ELSE O)]};

Programming Note: The programmer should ensure that the calculation pos - {IF
font.rasterlnfo[char].leftKern THEN 1 ELSE O} does not underflow, that is, the pos of the first
character must allow for its left kerning. The programmer must also ensure that the
maximum offset does not exceed 32,767.

Implementation Note: Because the destination bits per line does not exceed 32,767,
conversion of arg.dstBpl to a long integer can be performed by supplying high-order zeros.
Likewise, the conversion of pos + inc to an integer need not be range-checked.

Design Note: For short (or narrow) characters, considerable optimization of the
DisplayChar inner loops is possible by adding information to the font format (the starting
vertical location and the height of each character are examples). Because the character is
ored into the destination, the white space surrounding the character need not actually be
stored in the bitmap. Note, however, that such optimizations may substantially increase
the amount of storage required for the font.

PushState: PROCEDURE [data: UNSPECIFIED] =
BEGIN
Push [index];
Push[bitPos1;
Push[printPos];
Push[count];
Push[dataJ;
END;

PushState handles the stack both for the intermediate state (in the case of an interrupt)
and for the final results of the instruction. In the former case the last item pushed is the
pointer to the argument record, in the latter case the last item is the result ofthe TextBlt.

9

Control Transfers

Control transfers are a generalization of the notion of a procedure or subroutine call. In
the Mesa architecture, there is a single primitive called XFER, which effects a control
transfer from one context to another (§9.3). Variations of this primitive are used to
implement procedure calls, nested procedure calls, returns, coroutine transfers, traps, and
process switches. Included in XFER is a mechanism for the allocation and destruction of
local frames (activation records). This mechanism is described in §9.2.

Contexts are created (and destroyed) by transfers of control, the most common of which is a
procedure call. Instructions that implement various forms of procedure call (local,
external, nested, etc.) and procedure return are described in §9.4. The processor also
implements a general coroutine facility based on ports (§9.4.5). Ports allow contexts to
transfer control without destroying their state. The ports mechanism may be used to
implement, among other things, non-preemptive scheduling of contexts. (Preemptive
scheduling is the subject of § 10, which discusses the process mechanism.)

Strictly speaking, the contents of the evaluation stack are also part of the state of a
context, but the stack is not saved or restored by a control transfer. (It is preserved by a
process switch; see §10.4.2.) Instead, the stack is used to pass parameters and return
results from one context to another. Before and after each transfer, the source and
destination contexts must agree on the number and type of the stack elements. Because
traps (§9.5) are also implemented as control transfers, there are cases in which the
configuration of the stack is not known by the destination context. Therefore, certain
instructions save and restore the contents of the evaluation stack and the stack pointer
(§9.5.3). To implement a breakpoint mechanism for debugging, these instructions also
preserve the context's break byte (§9.5.4).

Furthermore, control transfers do not modify the MDS (Main Data Space) or PSB (Process
Status Block) registers. These registers are controlled by the process-switching
mechanism (§10). Transfers of control are limited to contexts residing in the current Main
Data Space.

9.1 Control Links

Contexts are represented by control links, which have one of three formats. The simplest
form is a frame link, which is a pointer to a local frame. It represents a context as described
above. An indirect link is a pointer to a control link, and is used to establish linkages for

9-1

. 9-2

c'on1r.olTransfers

nested procedures and ports: An indirect link is converted to a context by dereferencing it.
Finally, control links of type procedure· descriptor are used to represent contexts that do
not yet exist. They contain all the information necessary to create the context, as well as to
transfer control to it after it has been created.

Control transfers take as an argument a destination control link. The least significant bits
of the control link determine the type of transfer to be performed. They are encoded as
follows:

ControlLink: TYPE = LONG UNSPECIFIED;

ShortControlLink: TYPE = UNSPECIFIED;

LinkType: TYPE = {frame, procedure, indirect};

TaggedControlLink: TYPE = MACHINE DEPENDENT RECORD [
data (0: 0 .. 13): [0 .. 37777B],
tag (0: 14 .. 15): [0 .. 3],
fill (1): UNSPECIFIED];

ControlLinkType: PROCEDURE [link: Control Link] RETURNS [LinkType] =
BEGIN
cI: TaggedCoritrolLink = LOOPHOlE[link];
RETURN[

SELECTcI.tag FROM
0=> frame,
2 = > indirect,
ENDCASE = > procedure];

END;

The internal structure of each of the variants of a control link is described below. The use
of control links during transfers of control is covered in the section on XFER (§9.3).

9.1.1 Frame Control Links

A frame control link is used to transfer control to an existing context (for example, a return
from a procedure). The link is a pointer to the local frame of the context.

FrameLink: TYPE = LocalFrameHandle;

MakeFrameLink: PROCEDURE [link: Control Link] RETURNS [FrameLink] =
BEGIN
IF Control Li nkType[1 ink] # frame TH EN ERROR;
RETURN[LowHalf[1 ink]];
END;

Note that the frame handle points to the beginning of the frame variables, not to the
overhead words. Frame links always point to local frames, never to global frames.

Programming Note: To ensure that the tag bits of a frame control link have the proper
values, frames must be allocated at addresses that are zero modulo four .

Mesa Processor Principles of Operation 9

Programming Note: The high-order word of a FrameLink is not used and may be left
un initialized by the programmer.

9.1.2 Indirect Control Links

An indirect control link is a short pointer to a control link.

IndirectLink: TYPE = POINTER TO Control Link;

MakelndirectLink: PROCEDURE [link: ControlLink] RETURNS [lndirectLink] =
BEGIN
IF ControILinkType[link] :# indirect THEN ERROR;
RETURN[LowHalf{1 ink]];
END;

Indirect controllin~s are used to establish linkages between contexts when calling nested
procedures C§9.4.3) and ports (§9.4.5).

Programming Note: To ensure that the tag bits of an indirect control link have the
proper values, control links pointed to by indirect links must be allocated at addresses that
are two modulo four.

Programming Note: The high-order word of an IndirectLink is not used and may be left
uninitialized by the programmer.

9.1.3 Procedure Descriptors

A procedure descriptor is used to create a new context. It contains the information
necessary to obtain the global frame pointer GF, the code segment pointer CB, the local
frame pointer LF, and the starting PC value for the procedure. It consists of two fields:

ProcDesc: TYPE = MACHINE DEPENDENT RECORD [
taggedGF(o): UNSPECIFIED,
pc (1): CARDINAL];

MakeProcDesc: PROCEDURE [link: ControlLink] RETURNS (ProcDesc] =
BEGIN
IF ControILinkType[link] :# procedure THEN ERROR;
RETU RN [LOOPHOLE [I ink]];
END;

The taggedGF is the global frame pointer or'ed with 1. This result becomes the new value
of GF. The coae base is then obtained from the global frame using GF. The PC field contains
the starting byte PC for the procedure (relative to the code base CB). The first byte of code
contains the frame size index (fsi) for the local frame required. This index is used to
allocate a local frame whose address is loaded into the LF register (see §9.2).

The following is a sketch of this process (ignoring traps and other types of control
transfers). §9.3 contains a complete description.

proc: ProcDesc;

9-3

9 C.ontrol Transfers

GF ~ And [proc.taggedG F, 177776B];
CB ~ ReadDbIMds[@GlobaIBase(GFl.codebase];
PC ~ proc.pc;
fsi: FSlndex = GetCodeByte(];
pc~pc + 1;
IF ~ Alloc{fsi];

The next section describes frame allocation in more detail.

9.2 Frame Allocation

9-4

The procedure call-return mechanism and the Allocate Frame and Free Frame instructions
allocate and free frames from the Frame Heap in the Main Data Space. The heap is •
accessed using a structure called the Allocation Vector, which begins at a fixed location in
each Main Data Space. Allocate and Free Frame make use of two more primitive
operations, Alloe and Free. Allo takes a frame size index and returns the address of a frame
of the requested size (or larger if indirection occurs). If Alloc cannot satisfy the request, it
causes a fault (§lO.4.3). Free takes a frame pointer and returns the frame to the
appropriate list in the Allocation Vector. The structure of the Allocation Vector and the
Frame Heap is illustrated in figure 9.1.

9.2.1 Frame Allocation Vector

To implement heap allocation, each Main Data Space contains a preallocated pool of
frames of the most frequently-used sizes. The pool is organized as a vector of pointers to
lists of frames of the same size, and frame sizes are encoded by their index into this vector.
Since frames begin o~ four-word boundaries, the low-order two bits of the pointers
comprising the lists are not needed to address the frames. Instead, these bits are used as a
tag, encoded as shown below:

AV: POINTER TO AliocationVector = LOOPHOlE[mAV];
AliocationVector: TYPE = ARRAY FSlndex OF AVltem;

FSlndex: TYPE = [0.256);

AVltem: TYPE = MACHINE DEPENDENT RECORD [
data (0: 0 .. 13): [0 .. 37777B],
tag (0: 14 .. 15): MACHINE DEPENDENT {frame, empty, indirect, unused});

The frames of each size are arranged in a linked list, with the AVltem at the head of the
list. If the tag field is frame (zero), the AVltem points to the first frame on the list, which
will be the next one of this size allocated. The following routine is used to construct the
frame pointer in this case:

AVFrame: PROCEDURE [avi: AVltemj
RETURNS [LocaIFrameHandle] =
BEGIN
IF avi.tag # frame THEr-J ERROR;
RETURN[lOoPHOLE[avi J];
END;

AV

x

y

z

Mesa Processor Principles of Op.eration 9

Note that the pointer addresses the first local variable of the frame. The frame actually
begins at the frame address minus the size of the frame overhead (§3.2.2.2).

Allocation Vector Frames with size index x

1 I x 1 x 1 x

1

1
1
0 10 l 0 11
1

I
I
I ,

Frames with size index y

1 y I y

, Tag Meaning
I
I 0 frame
I

1 empty
1 2 indirect

0 10 I 2 r-- 3 unused

1
I
I
I ,

Frames with size index z

1 z 1 z J z

1
1

0 I 0 1 0 11
1

1
a typical 15

Figure 9.1 Frame Heap

When allocation occurs, AVFrame[AVltem] is returned to the requester. The contents of
the word it points to (an AVltem, including tag bits) replaces the AV entry. Thus, frames
are allocated from (and returned to) the head of the list, and the Allocation Vector entry
usually points to the next frame to be allocated. The following routine decodes an AVltem
into a pointer to the next item on the list:

9-5

9

9-6

Control Transfers

AVLink: PROCEDURE [avi: AVltem]

RETURNS [POINTER TO AVltem] =
BEGIN

IF avi.tag # frame THEN ERROR;
RETURN[LOOPHOLE[aviJ];
END;

The last frame in a list contains either an end-of-list tag (empty) or an indirect tag
(indirect). When the last frame is allocated, its AVltem is stored in the Allocation Vector
as described above. At the next request for a frame of that size, if the tag of the AVltem is
indirect, its data field is used as a frame size index to access another (larger) frame list.
This list may in turn contain an indirect tag. An indirect AVltem normally is placed in the
last frame on a list, because a larger frame size may be needed if that list becomes
exhausted. If the tag is empty, an exception occurs. Since several processes may share the
same Main Data Space (and thus share the same Allocation Vector and Frame Heap), a
fault rather than a trap is generated (§ 1 0.4.3).

The frame heap should contain enough frames to satisfy the majority of allocation
requests. In response to an exception, the programmer can supply more frames of the
appropriate size and retry the operation.

9.2.2 Frame Allocation Primitives

The Alloc and Free primitives are defined below. Note that the FrameFault routine, defined
in §10.4.3, does not return control to Alloe; instead, it raises the Abort signal C§4.1).

Alloe: PROCEDURE [fsi: FSlndex] RETURNS [LocaIFrameHandle] =
BEGIN
item: AVltem;

slot: FSlndex ~ fsi;
DO

item ~ FetchMds[@Av[slotll i ;
IF item.tag # indirect THEN EXIT;

IF item.data > LAST[FSlndex] THEN ERROR;
slot ~ item.data;

ENDLOOP;

IF item.tag = empty THEN FrameFault[fsi];

StoreMds[@Av[slotll i ~ FetchMds[AVLink[itemll i ;
RETURN[AVFrame[itemll;

END;

Free: PROCEDURE [frame: LocalFrameHandlel =
BEGIN

word: LocalWord = FetchMds[@LocaIBase[frame].wordj i ;
item: AVltem = FetchMds(@Av[word.fsi]] i ;
StoreMds[framel i ~ item;
StoreMds[@Av[word.fsij] i ~frame;
END;

Mesa Processor. Principles of Operation 9

Note that no assignments are performed until all possibility of a trap or fault has passed.
Routines that call Alloe and Free are mindful of the fact that they have side-effects on the
Frame Heap.

Programming Note: The Allocation Vector can be shorter than the maximum size
specified above. In that case, it is the programmer's responsibility to ensure that no fsi
greater than the size of the A v is used, since the processor does no dynamic bounds
checking on fsi's.

Design Note: The actual frame sizes associated with each frame size index and the
distribution of the number of frames of each size allocated is established by the
programmer. Programmers can also designate certain fsi's for special purposes by
ensuring that those indices are not generated in the fsi field of code-segment entry vectors.
In addition, classes of frames (for instance, resident and non-resident frames) can be
designated by using separate ranges of index values for each class. The architecture need
not be aware of any of these properties offsi's.

9.2.3 Frame Allocation Instructions

The Alloe and Free primitives are used by the control-transfer instructions. Frames can
also be allocated from the heap by programmers using the following instructions:

AF Allocate Frame

AF: PROCEDURE =
BEGIN

fsi: FSlndex = Pop(];
Push[Alloc[fsi]];
END;

FF Free Frame

FF: PROCEDURE =
BEGIN

frame: LocalFrameHandle = Pop[];
Free[framel;
END;

Programming Note: Programmers can utilize all of the storage obtained by an Allocate
Frame instruction, including frame overhead words. However, the frame size index in the
overhead region must be preserved so that it is available for use by the Free primitive.

9.3 Control Transfer Primitive

The control transfer instructions, the trap mechanism, and the process-switching facility
all make use of a primitive operation called XFER. The various forms of XFER are
distinguished by the ways they generate the source and destination arguments, whether
the current local frame is to be freed, their processing of the source and destination links,
and some subtle differences in handling traps (discussed in §9.5).

9-7

9

9-8

. Control Transfers

The idea behind XFER is that a single primitive may be used to construct a variety of control
disciplines, including proced1l:re calls and returns, nested procedure calls, coroutine
transfers, traps, and process switches.

Note: In the XFER code, npc and nlF designate the new values ofpe and IF, required because
these registers cannot be modified due to the possibility of a trap or fault. Such
temporaries for GF and CB are unnecessary, since the trap and fault routines do not
reference them (§9.5.2, §10.4.3).

XferType: TYPE = MACHINE DEPENDENT {return(o), call(l)i locaICall(2), port(3), xfer(4),
trap(S), processSwitch(6), unused(7)};

XFER: PROCEDURE [
dst: Control Link, src: ShortControlUnk, type: XferType,free:BooLEAN ~ FALSE] =
BEGIN
APe: CARDINAL;
nlF: LocalFrameHandle;
push: BOOLEAN ~ FALSE;
nDst: ControlLink ~dst;
IF type = trap AND free THEN ERROR;
WHILE Control LinkType[nDst] = indirect DO

link: IndirectLink ~ MakelndirectLink[nDst];
IF type = trap THEN ERROR;
nDst ~ ReadDbIMds[link];
push ~TRUE;
ENDLOOP;

In the case of an indirect control link, XFER follows the pointer until a frame link or
procedure descriptor is located. The initial processing of a procedure descriptor was
explained in §9.1.3; XFER completes the control transfer by initializing the local frame
returned by Alloc with a pointer to the procedure's global frame and the procedure's return
link (the source of the XFER).

If either the global frame pointer or pc are zero, the procedure descriptor is unbound and
an UnboundTrap occurs. A CodeTrap is generated if the code base obtained from the
global frame is odd. Recall also that the Alloc routine may generate a FrameFault (§9.2).

SELECT Control Li nkType[nDst] FROM
procedure = >

BEGIN
word: BytePair;
proc: ProcDesc = MakeProcDesc[nDst];
GF ~And[proc.taggedGF, 177776B];
IF GF = LOOPHOlE[O] THEN UnboundTrap[dst];
CB ~ ReadDbIMds(@GlobaIBase[GF].codebase];
IF Odd[lowHalf[CBJ] THEN CodeTrap[GF];
npc ~ proc.pc;
IF npc = 0 THEN UnboundTrap[dst];
word ~ ReadCode(npC/2j;
nlF ~ Alloc(IF npc MOD 2 = 0 THEN word.left ELSE word.right];

Mesa Processor Prin.ciples of Operation

npc Eo- npc + 1;
StoreMds[@locaIBase[nlFj.globallink] i Eo- GF;
StoreMds[@locaIBase[nlFj.returnlink] i Eo- src;
END;

9

Design Note: It is important to notice that, after the Alloc completes, references to the
new local frame nlF can not cause page faults, since Alloc references the first variable of
the frame, and the frame overhead words are guaranteed to be in the same page.

Programming Note: It is illegal for a program to write-protect any page pointed to by the
frame allocation vector. Such frames would be successfully removed from the frame heap
by Alloc, but would be lost when the subsequent write-protect fault occurred.

Programming Note: CodeTraps can be used to implement a variety of features that
depend on detecting all control transfers ipto a program. For example, this mechanism can
be used by software to map code segments out of uirtual memory. It can also be used (in
conjunction with an auxiliary bit) to detect the first time control is passed to a program.

To effect a frame transfer, XFER loads the state from the destination, obtaining the PC and
global frame from the ~ocal frame and the code base from the global frame. In addition to
UnboundTrap and CodeTrap, a frame transfer can also result in a Control Trap if the
destination frame is zero. This trap is used to implement ~ort linkages (§9.4.5), as well as
to detect uninitialized control links.

frame = >
B.EGIN

frame: Framelink = MakeFramelink[nDst];
IF frame = lOOPHOLE{O] THEN ControITrap(src];
nlF Eo- frame;
GF Eo- FetchMds[@locaIBase{nlF].globallink] i ;
IF GF = lOOPHOlE[O] THEN UnboundTrap[dst];
CB Eo- ReadDbIMds[@GlobaIBase[GF].codebase];
IF Odd[lowHalf{cs]] THEN CodeTrap[dst];
npc Eo- FetchMds[@locaIBase(nLF].pc] i ;
IF npC = 0 THEN UnboundTrap(dstj;
IF type = trap THEN

BEGIN

StoreMds[@locaIBase(nlF].returnlink] i Eo- src;
Disablelnterrupts[] ;
END;

END;

ENDCASE;

If the destination is a frame and the XFER is performing a trap, it saves the source of the
transfer in the return link of the destination and disables interrupts (see §9.5.2l.

9-9

9 Control Transfers

If the original destination was an indirect control link, the original source and destination
links are left above the top of the stack so that the context receiving control can access
them (for example, the Link Byte instruction §9.4.3 or the Port In instruction §9.4.5).

Finally, XFER will optionally free the current local frame to the frame heap. This feature is
used by the return instructions and XFER and Free to implement context destruction.

If push THEN
BEGIN

Push[LowHalf[dst]]; Push[srcl;
Discard[J; Discard[];
END;

• IF free THEN Free[LF];
LF ~ nLF; PC ~ npc;
CheckForXferTraps[dst: dst, type: type];
END;

Design Note: Because the current frame is running, references to LF by Free cannot cause
page faults (but, Free may fault on the Allocation Vector).

Design Note: Page faults due to Free cannot occur (see §9.5.2) because traps never free the
source frame. If traps qid specify free = TRUE, the trapped context would be discarded.

Programming Note: It is illegal for a program to unmap or write-protect its current local
or global frame or to modify explicitly the dirty or referenced map flags of either frame's
first page using the map instructions (§3.1.2).

9.4 Control Transfer Instructions

9-10

Several types of control transfers are implemented using the XFER primitive: local function
calls, external function calls, nested function calls, returns, and port calls are described in
this section. The use OfXFER to implement traps is discussed in §9.5.

All control transfers except Return (§9.4.4) begin by storing the PC in the local frame.
When stored, the PC points to the beginning of the next instruction. The stored value is
therefore the byte offset of the instruction to be executed when the current local frame is
resumed. (If the instruction causes a trap or fault, this value of the PC will be overwritten
with savedpc by the trap or fault routine, so that the instruction will be restarted.)

9.4.1 Local Function Calls

Local {unction calls are used to transfer to a procedure located in the current code segment.
These instructions are optimizations of the XFER mechanism, made possible by the fact that
a particular code segment is compiled as a single unit. Using these instuctions, the
compiler can build the information necessary to find the procedure that should be called
into the code itself, rather than by using a procedure descriptor, which would be the
normal case.

The Local Function Call instruction is an optimized version of the procedure descriptor
form of XFER that does not modify the current. global frame pointer or code base. In this
case, there is no possibility of a CodeTrap.

Mesa Processor.Principlesof.Operation

LFC Leca~ Function Call

LFC: PROCEDURE =
BEGIN
word: BytePair;
npc: CARDINAL;
nLF: LoealFrameHandle;
StoreMds[@LoeaIBase[LFj.pe] i ~ PC;
npc ~ GetCodeWord[];
IF npc = 0 THEN UnboundTrap[LOOPHOLE[LONG[O]]];
word ~ ReadCode[npd2j;
nLF ~Alloe[IF npc MOD 2 = 0 THEN word.left ELSE word.right];
npc ~ npc + 1;
StoreMds[@LoeaIBase[nLFj.globallinkj i ~ GF;
StoreMds[@LoeaIBase[nLFj.returnlinkj i ~ LF;
LF ~ nLF; PC ~ npc;
CheckForXferTraps[

dst: LOOPHOLE[ProeDese[taggedGF: Or(GF, 1], pc: pc-1]], type: loeaICall];
END;

9

Design Note: As in XFER, after the Alloe completes, references to the new local frame nlF
cannot cause page faults.

9.4.2 External Function Calls

The external function calls transfer control to a control link contained in the global frame
or code segment. The following routine is used to obtain the link:

FetehLink: PROCEDURE [offset: BYTE] RETURNS [Control Link] =
BEGIN
word: GlobalWord = FetehMds[@GlobaIBase(GFJ.wordj i ;
RETURN[

IF word.codelinks THEN ReadDbl(CB-LONG[(offset + 1)*2]]

ELSE ReadDbIMds[GlobaIBase[GFj-(offset + 1)*2]];

END;

Links are stored either just before the overhead words of the global frame or in an area
preceding the code segment. A bit in the flag word of the current global frame indicates
the link location (§3.2.2.2).

Design Note: If the links are stored in the code segment, they must be contained in the
same 64K bank as the code base. This ensures that the calculation of the address of the
link will not underflow in the low-order word or cause a borrow from the high-order word.
Since frames are always completely contained in a Main Data Space, this calculation is
also accurate if the links are stored in the global frame. Note, however, that the links do
not necessarily lie in the same page as the beginning of the global frame or code segment.

The external. function calls (and some other instructions) all make use of the routine
below, which first saves the PC in the current frame and then XFERS to the destination,
supplying LF as the source. The standard default for free is specified.

9-11

9

9-12

GontrolTransfers

Call: PROCEDURE [dst: ControlLink] =
BEGIN
StoreMds[@LocaIBase[LF].pC] i ~PC;
XFER[dst: dst, src: LF, type: call];
END;

Single-byte external call instructions are provided for the first thirteen external links. A
two-byte version uses alpha as the link number, which allows up to 256 external
references per module.

EFCn External Function Call n

EFCn: PROCEDURE [n: [0 . .12]] =
BEGIN
Call[FetchU nk[h]];
END;

EFCB External Function Call Byte

EFCB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
Call [FetchLi nk[al phall;
END;

The Stack Function Call instruction XFERS to a control link obtained from the top of the
stack.

SFC Stack Function Call

SFC: PROCEDURE =
BEGIN
link: Control Link = PopLong[];
Call[link];
END;

The following instruction XFERs to control links in the System Data table described in §9.5.
The SD contains control links for kernel procedures that implement runtime support
routines. Control links for trap handlers (§9.5.1) are also contained in the So.

KFCB Kernel Function Call Byte

KFCB: PROCEDURE =
BEGIN
alpha: SDlndex = GetCodeByte[];
Call[ReadDbIMds(@SD[alpha]]J;
END;

9.4.3 Nested Function Calls

The Link Byte instruction is executed on entry to nested procedures. It establishes the
static link to the enclosing context (the local frame of the lexically enclosing procedure).

Mesa Processor Principles of Operation 9

Link Byte recovers the original destination link of the last XFER (normally an indirect
control link) from above the stack, subtracts alpha, and stores the result in local zero.

LKB Link Byte

LKB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
link: ShortControlLink;
Recover(]; link Eo- Pop[];
StoreMds[LF] i Eo-link - alpha;
END;

Programming Note: Because only control transfers through indirect control links leave
source and destination links above the top of the stack, the LKB instruction must be
executed after control transfers are made using indirect control links.

Programming Note: Nested procedure variables can be represented not by a procedure
descriptor, but by a pointer to a procedure descriptor (an indirect link). In this case, the
descriptor is allocated in the local frame of the enclosing procedure at ~n offset known to
the programmer. This offset is used in the LKB instruction at the beginning of the nested
procedure, which then "Uses local zero as the static link to access the enclosing procedure's
variables. In order for the pointer to the descriptor to be recognized as an indirect control
link, the descriptor must be allocated at an address equal to two modulo four.

9.4.4 Returns

The following instructions are used to return from a procedure, freeing its frame. Note
that the PC is not saved in the current local frame, since the frame is about to be

. deallocated.

RET Return

RET: PROCEDURE :::
BEGIN
dst: Control Link ::: LONG[FetchMds[@LocaIBase[LF].returnlink] i];
XFER[dst: dst, src: 0, type: return, free: TRUE];
END;

Programming Note: Although there are separate local and external function call
instructions, there is a single return, so that a context need not be concerned with how it
was called.

9.4.5 Coroutine Transfers

The coroutine instructions are used to transfer control through ports, which are two-word
structures located in the Main Data Space. Ports have the following runtime structure:

PortLink: TYPE::: POINTER TO Port;

Port: TYPE::: MACHINE DEPENDENT RECORD [
inport (0): FrameLink,

9-13

9

9-14

Control Transfers

unused (1): UNSPECIFIED,
outport (2): ControILink];

Ports are allocated in memory so that PortLi nks are indirect control links. That is, they are
found at addresses of two modulo four. When control is directed intoa port, the i nport is
used as the destination ofthe XFER. If the inport is non-zero, it contains a pointer to a frame
that is said to be pending on the port (ready to receive control). Otherwise, a ControlTrap
results. When control is directed out of aport, the outport is used as the destination of the
XFER. The outport may contain any type of control link, including a frame, a procedure, or
the address of another port. If it contains zero, the port is not linked to another context,
and a Control Trap results. Port calls are compatible with procedure calls, because control
can leave a context using a port call and enter a context that uses a procedure call
discipline (and vice versa). The various cases are shown in figures 9.2-4.

The Port Out instruction obtains the destination port link from the stack. It saves the
current PC and sets the inport to the current context. It then XFERS to the outport,
specifying the port itself (not the current context) as the source of the transfer. The Port
Out instruction is always immediately followed statically by a Port In instruction, as
shown in figure 9.2.

PO Port Out'

po: PROCEDURE =
BEGIN
reserved: unspecified = Pop[];
port: PortLink = Pop[];
StoreMds[@LocaIBase[LFl.pc] i ~ PC;

StoreMds[@port.inport] i ~ LF;
XFER[dst: ReadDbIMds[@port.outport], src: port, type: portl;
END;

POR Port Out Responding

paR: PROCEDURE =
BEGIN
po[];
END;

Programming Note: There are two Port Out instructions, with different opcodes but
identical semantics. The trap handler uses them to determine the intended usage of the
port if a Control Trap occurs on the transfer. By convention, a sending port uses po, and a
responding port uses POR [2].

Programming Note: The high-order word of a PortLink is not used and may be left
uninitialized by the programmer.

The Port In instruction saves the return link in the outport; that link had been left above
the stack by the XFER invoked by the preceeding transfer instruction. Note that if the
return link is zero, the Port In was preceded dynamically by a Return (or Return Zero), and
the link is not sa ved. The instruction also clears the inport, so that any transfer directed at
the port will cause a control trap.

Mesa Processor Principles of Operation

Context P

PC: < P1

P1: PO P
P2: PI

running

Context P

PC: P2

P1 : POp

P2: PI

pending

Context P

PC: P2

P1 : PO p

P2: PI

pending

Port P Portq

inport: 0 Lr inport: 0

outport: q outport: p

(1) Q has transferred to P via the PO at Q1.
Control is in P, but not yet at P1. Q is pending on q.

Port p Port q

inport: P Lr inport: Q

o.utport: q outport: p

(2) P has executed the PO at P1, and control has passed to Q.

Context 0

PC: 02

01: POq

02: PI

pending

Context 0

pc: Q2

01: POq

02: PI

pending

P is now pending on p, but Q has not yet executed the PI at Q2.

Port P Port q

inport: P IL inport: 0

outport: q outport: p

(3) Q has executed the PI at Q2, saving the link (an indirect

Context 0

PC: > Q2

01: POq

02: PI

running

link to p) in q.outport. Any attempt to transfer to Q through q
will trap, since q.inport has been cleared. P remains pending on p.

Figure 9.2 Port to Port Control Transfers

9

9-15

9-16

Context P

PC: < P1

P1: PO P
P2: PI

running

Context P

PC: P2

P1: POp

P2: PI

pending

Context P

PC: > P2

P1: PO P

P2: PI

running

Port P

inport: 0

outport: 0

(1) Control is in P, before Pl; p.outport
contains a procedure descriptor for context Q.

Port p

Inport: P "I outport: 0

(2) P has executed the PO at Pl, and Q has been created.
P is now pending on p, and Q's return link points to p.

Port P

inport: 0

outport: 0

(3) Q has executed the RET, which called XFER[dst: p, src: OJ.
P has executed the PI at P2, which has cleared p's inport.

Figure 9.3 Port to Procedure Control Transfers

Context 0

PC: < 01

ReturnLink: p

01: RET

running

Mesa Processor Principles of Operation 9

Context P

PC: < P1

P1: SFC
P2: __ _

RET

running

Context P

PC: P2

P1: SFC

P2: .--

RET

pending

Context P

PC: > P2

P1: SFC
P2: __ _

RET

running

Portq Context 0

inport: 0 PC: 01

outport: ?
00:
01 :

02:

03:

(1) Control is in P (a procedure), about to execute the SFC at P1.
The stack contains an indirect link to q. Q is pending on q.

POq

PI

POq

PI

pending

Port q Context 0

pc: > 01 inport: 0

L outport: P
00: POq

01 : PI

02: POq

03: PI

running

(2) Control has passed to Q, and the PI at Q1 has been executed.
The inport has been cleared, and the outport contains P (a frame handle).

Port q

inport: 0

outport: P

(3) Q has executed the PO at Q2, returning control to P
through the outport. Q is again pending on q.

Figure 9.4 Procedure to Port Control Transfers

Context 0

pc: 03

00: POq

01 : PI

02: POq

03: PI

pending

9-17

9

9-18

Control Transfers

PI Port In

. PI: PROCEDURE =
BEGIN

port: PortLink;
src: ShortControlLink;
Recover[]; Recover[];
srn- Pop[]; port of- Pop[];
StoreMds[@port.inportl i of- 0;
IF src # 0 THEN

StoreMds[@port.outport] i of-src;
END;

Programming Note: Because only control transfers made through indirect control links
leave source and destination links above the top of the stack, the PI instruction must only
be executed after control has been transferred using·an indirect control link.

Programming Note: If a pre-emption occurs before the Port In completes execution,
another process may enter the port, since a frame is still pending on it. This would
eventually lead to a situation in which two processes were executing in the same local
frame. For this reason, ports cannot be shared by multiple processes.

9.4.6 Link Instructions

The load link instruction loads a control link (or other data) from the global frame or the
code segment onto the stack. .

LlKB load Link Byte

LLKB:PROCEDURE =
BEGIN

alpha: BYTE = GetCodeByte[];
Pushlong[FetchLi nk[al pha]];
END;

The read link instructions perform a single- or double-word push using a pointer obtained
from the link area.-

RKIB Read link Indirect Byte

RKDIB

RKIB: PROCEDURE =
BEGIN

alpha: BYTE = GetCodeByte[];
ptr: LONG POINTER = Fetchlink[alphal;
Push[Fetch[ptrl i];
END;

Read link Double Indirect Byte

RKDIB: PROCEDURE =
BEGIN

alpha: BYTE = GetCodeByte[];

9.5 Traps

Mesa Processor. Principles of Operation

ptr: LONG POINTER = FetchLink[alpha];
Push[Fetch[ptr] it
Push[Fetch[ptr + 1] i];
END;

9

Traps indicate the occurrence of exceptional conditions encountered in the course of
instruction execution. In some cases, a trap indicates that a serious error has occurred, one
which precludes continued execution of the context (for example, a StackError). In other
cases, the trap will cause a software trap handler to take some corrective action and
continue normal execution (e.g., CodeTrap). The trap handler is invoked using an XFER,
which itself might generate a nested trap.

Both the XFER code in §9.3 and the trap routines defined in this section obey the restart rule
given in §4.6.1 by using temporary variables and recursion. This stringency is
particularly important in the case of breakpoints, code traps, and XFER traps when they are
mixed with frame allocation faults and page faults. (Fault processing is discussed in
§10.4.3.)

9.5.1 Trap Routines

The following paragraphs summarize the traps that can be generated by the processor.
Trap handlers for traps other than EscOpcodeTrap are represented by control links located
at preassigned indexes in the System Data table, which resides at a fixed address within
each Main Data Space. The location of the System Data table and the assignments of
indexes to trap conditions are given in Appendix A.

so: POINTER TO System Data = LOOPHOLE{mSD];
System Data: TYPE = ARRAY SDlndex OF Control Link;

SDlndex: TYPE = [0 .. 256);

Trap handlers for unimplemented ESC or ESCL opcodes are represented by control links
located in the ESC Trap table, which resides at a fixed address within each Main Data
Space. The ESC Trap table is indexed by opcode value. Its location is given in Appendix A.

ETT: POINTER TO EscTrapTable = LOOPHOLE[mETT];
EscTrapTable: TYPE = ARRAY BYTE OF Control Link;

A brief explanation of each trap is given below, together with a description of its
parameters and a reference to the section(s) that call the trap routine. Traps are listed
alphabetically.

BoundsTrap: PROCEDURE [] = {TrapZero[@so{sBoundsTrap]]};

The Bounds Check instruction generates this trap in response to an out-of
range value (§5.2).

BreakTrap: PROCEDURE (] = {TrapZero[@sD[sBreakTrap]]};

This trap is invoked by the Break instruction (§9.5.4).

9-19

9

9-20

Control Transfers

CodeTrap: PROCEDURE [gf: GlobalFrameHandle] = {
. TrapOne[@SO[sCodeTrap}, gf]};

An XFER generates this trap if the code base of the destination context is odd.
The parameter is the global frame ofthe new context (§9.3).

ControlTrap: PROCEDURE [src: ShortControl Link] = {
TrapOne[@so(sControITrap], src]};

This trap is generated by an XFER if the destination of a frame transfer is zero.
The parameter is the source ofthe original transfer (§9.3).

DivCheckTrap: PROCEDURE [] = {TrapZero[@so(sDivCheckTrap]]};

The long Unsigned Divide instruction generates this trap if the quotient
would overflowa single word (§5.5).

DivZeroTrap: PROCEDURE [] = {TrapZero[@so[sDivzeroTrap]]};

An attempt to divide by zero generates this trap (§5.5).

EscOpcodeTrap: PROCEDURE [opcode: BYTE] = {TrapOne[@ETT[opcode],
opcode]};

This trap is generated when instruction execution detects an unimplemented
ESCor ESCL opcode (§4.5).

InterruptError: PROCEDURE [] = {TrapZero[@sO(slnterruptErrorl]};

This trap is generated by the Disable and Enable Interrupts instructions if the
wakeup disable counter woe would underflow or overflow as a result of the
operation (see §10.4.4.3).

OpcodeTrap: PROCEDURE [opcode: BYTE] = {TrapOne[@so[sOpcodeTrap], opcode]};

This trap is generated when instruction execution detects an unimplemented
opcode (§4.5).

PointerTrap: PROCEDURE [] = {TrapZero[@so[sPointerTrap]]};

This trap is generated when the Nil Check Long instruction detects a zero
pointer (§5.2).

ProcessTrap: PROCEDURE [] = {TrapZero[@sO[sProcessTrap]]};

The Monitor Reentry instruction generates this trap when the process's abort
bit has been set (§10.2.4).

RescheduleError: PROCEDURE [] = {TrapZero[@so[sRescheduleErrorl]};

This trap is generated by the scheduler when the scheduler was entered at an
inappropriate time. Inappropriate entry may be caused by interrupts having
been disabled while a process opcode causing scheduler entry was being
executed. If interrupts were disabled and a page fault, write-protect fault, or
frame fault caused entry to the scheduler, the RescheduleError may also be
called (§10.4.1).

StackError: PROCEDURE [] = {TrapZero[@sO[sStackError]]};

Any instruction that manipulates the evaluation stack may cause this trap if
the stack routines detect that the stack pointer SP would become illegal as a
result ofthe operation (§3.3.2).

Mesa Processor Principles of Operation

UnboundTrap: PROCEDURE [dst: Controllink] = {
TrapTwo[@SO[sUnboundTrap], dst]};

An XFER generates this trap whenever it encounters a zero destination control
link or a zero PC. The parameter is the destination of the original transfer
(§9.3).

HardwareError: PROCEDURE [] = {TrapZero[@so[SHardwareErrorl]};

Miscellaneous machine-dependent hardware errors generate this trap.

9

Design Note: There are three exceptions to the restart rule: in the event of a stack error, a
reschedule error, or an interrupt error, the state of the processor is undefined. These three
traps represent fatal software errors trom which it is generally impossible to resume
execution. In a stack error (§3.3.2), the trapped context is not resumable. In a reschedule
error (§10.4.1) or an interrupt error (§10.4.4.3), no process may continue execution.

Programming Note: Resuming a context that has experienced a stack error produces
undefined results, as does continuation of process-scheduling after a reschedule error or
an interrupt error. The processor reports these three conditions for debugging purposes
only; they never occur in correct programs.

9.5.2 Trap Processing

When a trap occurs, the action taken is similar to a normal control transfer to the trap
handler, with the following differences:

The trap mechanism stores the trap parameters starting at local zero in the
handler's frame. There can be up to four words of parameters (there are
currently at most three). Because some instructions, including many XFERs,
leave information above the top of the stack, the entire stack must be
preserved unmodified; therefore, trap parameters cannot be passed on the
stack.

For similar reasons, the XFER performed by the trap routine does not save its
source and destination links above the top of the stack (see the description of
XFER in §9.3).

Programming Note: This implies that trap handlers can not in general be
nested procedures or ports, since these programs begin with instructions (link
Byte and Port In) that access the control links left above the top of the stack by
the previous XFER.

If the transfer performed by the trap routine specifies a frame as its
destination, XFER stores the source of the transfer in the return link of the trap
handler and disables interrupts.

Design Note: Because several processes can share a Main Data Space (and
therefore share the trap handlers in its System Data table), fixed-frame trap
handlers are not re-entrant and must run with interrupts disabled. They also
cannot cause traps or faults.

9-21

9

9-22

Control Transfers

Programming Note: The use of fixed: .. frame trap handlers should be
restricted to the most primitive performance monitoring and debugging
functions ..

Design Note: Because traps are implemented as control transfers, the MDS register and
the PSB register are not modified by trap processing. This implies that the trap handler
runs in the same MDS (and in the same process) as the trapped context.

The precise actions that must be taken by the processor when a trap occurs are shown by
TrapZero (no parameters), TrapOne (one parameter), TrapTwo (one long parameter), and
the common Trap routine.

TrapZero: PROCEDURE [ptr: POINTER TO Control Link] =
BEGIN
Trap[ptr};
ERROR Abort;
END;

TrapOne: PROCEDURE [ptr: POINTER TO Control Li nk, parameter: UNSPECIFIED] =
BEGIN
Trap(ptrl;
StoreMds[LF] l' ~ parameter;
ERROR Abort;
END;

TrapTwo: PROCEDURE [ptr: POINTER TO Control Link, parameter: LONG UNSPECIFIED] =
BEGIN
Trap[ptr];
StoreMds[LF] i ~ LowHalf[parameter};
StoreMds[LF + 1] i ~ HighHalf[parameter];
ERROR Abort;
END;

Trap: PROCEDURE [ptr: POINTERToControILink] =
BEGIN
handler: ControlLink = ReadDbIMds[ptr];
PC ~ savedpc; SP ~ savedsp;
IF ValidContext[] THEN StoreMds[@LocaIBase[LF] .. pC] i ~ PC;
XFER[dst: handler, src: LF, type: trap};
END;

Design Note: The storing of the trap parameter(s) cannot cause a page fault, because the
XFER has already guaranteed the presence of the trap handler's first four locals (and its
overhead words).

The trap routine must check that the context is valid before saving the PC .. This covers the
occurrence of a trap during a process switch before a valid frame has been obtained (see
§10.4 .. 1).

Design Note: Because the frame is currently running, saving the PC can not cause a page
fault.

Mesa Processor Principles of Operation 9

Since the processor will always re-establish the initial state of the current instruction, all
traps appear to occur between instructions. If an instruction causes more than one trap,
the traps will occur sequentially, and the processor will restart the instruction when the
handler for each trap returns. Because instructions are restarted rather than continued
from the point of an exception, there is no need for a trap handler to consider the effects of
multiple traps on a single instruction, nor does the handler need to concern itself with the
continuation of partially completed instructions.

9.5.3 Trap Handlers

The complete state of a context includes not only the current local frame LF, but the
evaluation stack (§3.3.2) and the break byte (§9.5.4) as well. Instructions are provided to
dump and load this state using a state vector, defined as follows:

StateHandle: TYPE = LONG POINTER TO StateVector;

StateWord: TYPE = MACHINE DEPENDENT RECORD [
break (0: 0 .. 7), stkptr (0: 8 .. 15): 8YTE];

StateVector:. TYPE = MACHINE DEPENDENT RECORD [
stack (0): ARRAY [o .. StackDepth) OF UNSPECIFIED,
word (14): StateWord,
frame (15): LocalFrameHandle,
data (16): BLOCK];

Design Note: The size of a state vector is processor dependent (§lO.4.2.1). Its minimum
size, cSv, is given in Appendix A. •

The state instructions make use of the routines below to save and restore the break byte,
the stack pointer (and savedsp), and the evaluation stack. Since there are never more than
two valid entries above the top of the stack, a maximum ofsp + 2 entries need be saved.

SaveStack: PROCEDURE [state: StateHandlel =
BEGIN
FOR sp: StackPointer IN [O .. MIN[SP + 2, StackDepth]) DO

Store[@state.stack[spl] i ~ stack[sp];
ENDLOOP;

Store[@state.word] i ~ StateWord[break, SP];
sp ~ savedsp ~ 0;
break ~ 0;
END;

LoadStack: PROCEDURE [state: StateHandle] =
BEGIN
word: StateWord = Fetch[@state.word] i;
FOR sp: StackPointer IN [O .. MIN[word.stkptr + 2, StackDepth]) DO

stack[sp] ~ Fetch[@state.stack[sp]] i ;
ENDLOOP;

SP ~ savedsp ~ word.stkptr;
break ~word.break;
END;

9-23

9

9-24

. Control Transfers

The first instruction executed by a trap handler will normally be a Dump Stack, which will
empty the stack by saving its contents in the handler's local frame, at an offset given by
alpha.

DSK Dump Stack

DSK: PROCEDURE =
BEGIN

alpha: BYTE = GetCodeByte[];
state: POINTER TO StateVector = LOOPHOLE[LF + alpha];
SaveS tack [Lengthen Poi nter[state]];
END;

Programming Note: Since trap parameters are stored starting at local zero, the
programmer must arrange that the state vector referenced by the Dump Stack instruction
is not allocated in the first four frame locations.

When the handler is ready to continue execution of the trapped context, it must reload the
stack. The Load Stack instructiop is available for this purpose.

lSK load Stack

LSK: PROCEDURE =
BEGIN

alpha: BYTE = GetCodeByte[];
state: POINTER TO StateVector = LOOPHOLE[LF + alpha];
LoadStack[LengthenPoi nter[state]];
END;

Since the entire stack is reloaded, it is not necessary to preserve the stack's old contents in
case offaults while reloading. If the Load Stack does fault, the stack may be only partially
loaded, but the entire operation will be retried when execution resumes.

~fter the stack is reloaded, the handler must resume the trapped context. There are two
instructions available for this purpose: one that frees the handler's frame, and one that
enables interrupts. The programmer provides the source and destination of a control
transfer.in the trap handler's frame. Typically, the source is zero, and the destination is
the original trapped context. This will retry the instruction that caused the trap.

TransferDescriptor: TYPE = MACHINE DEPENDENT RECORD [

src (0): ShortControlLink,
reserved (1): UNSPECIFIED ~O,

dst (2): ControlLink] ;

XF XFER and Free

XF: PROCEDURE =
BEGIN

ptr: POINTER TO TransferDescriptor = LOOPHOLE(LF + GetCodeByte[)];
XFER[

dst: ReadDbIMds(@ptr.dst], src: FetchMds[@ptr.src] i ' type: xfer, free: TRUE];

END;

Mesa Processor Principles,of Operation

XE XFER and Enable

XE: PROCEDURE =
BEGIN ENABLE Abort = > ERROR;
ptr: POINTER TO TransferDescriptor = LOOPHOLE[LF + GetCodeByte[]];
StoreMDS[@LocaIBase[LF].pc] i ~ PC;
XFER[dst: ReadDbIMds[@ptr.dst], src: FetchMds[@ptr.src] i I type: xfer];
Enablelnterrupts[];
END;

9

Programming Note: It is the programmer's responsibility to ensure that XFER and Enable
does not cause a trap or fault (see §9.5.2). This instruction is intended for use by fixed
frame trap handlers, which must run with interrupts disabled.

Programming Note: Some traps indicate error conditions that :will normally be handled
by software executed in place of the trapped instruction; re~execution may therefore be
inappropriate. For example, the unimplemented instruction trap handler may choose to
emulate the effects of the offending instruction in software. In this case, it is always
possible for the trap handler to complete the instruction by advancing the program
counter ofthe trapped context (and perhaps also adjusting the contents of the stack).

9.5.4 Breakpoints

The single byte Break instruction causes a distinguished trap when encountered in the
instruction stream. It is used for program debugging. To install a breakpoint, the
programmer replaces the opcode of the broken instruction with a Break instruction,
remembering the original opcode value. When the processor attempts to execute the
broken instruction, a trap to a software-supplied breakpoint handler results. (The
processor's break byte is normally zero.) BreakTrap is defined in §9.5.2.

BRK Break

BRK: PROCEDURE =
BEGIN
IF break = 0 THEN BreakTrap[]
ELSE

BEGIN
Dispatch[break];
break ~ 0;
END;

END;

As with all traps, the first instruction of the breakpoint trap handler should be a Dump
Stack, which will save the state of the broken context. To proceed from a break point, the
programmer can replace the Break instruction with the original opcode; however, it is
usually desirable to leave the breakpoint in place, by first inserting the original opcode
into the break field of the state vector of the broken context, then performing a Load Stack
instruction. The Load Stack sets the processor's break byte from the state vector. The
Break instruction notices a non-zero break byte and dispatches on it (§4.5), rather than
performing a breakpoint trap; it then clears the break byte when the broken instruction
completes execution.

9-25

9

9-26

Control Transfers

Design Note: It is important to notice that the break byte is not cleared until the broken
instruction has completed execution successfully. In particular, if the dispatch on the
original opcode results in a trap orfault, the break byte must be saved with the state of the
trapped or faulted process, and the break byte associated with the new context
(established by the trap or fault routine) must remain undisturbed. In the code above, the
Abort signal raised by the trap or fault routine prevents execution of the statement break
~O.

Programming Note: It is possible to place a breakpoint anywhere except in the current
breakpoint trap handler itself. Also note that, if the break byte is ever set to zBRK, infinite
recursion occurs.

9.5.5 Xfer Traps

A method of trapping to software on each transfer of control, conditioned by the trapxfers
flag in the global frame of the destination, is available. It is intended for performance
measurement and debugging.

CheckForXferTraps: PROCEDURE [dst: Control Link, type: XferType] =
BEGIN
IF Odd[XTSj THEN

BEGIN
word: GlobalWord = FetchMds[@GlobaIBase[GF].word] i ;
IF word.trapxfers THEN

BEGIN
XTS ~ Shift[XTS, -1];
Trap[@SO[sxferTrap] ! Abort = > ERROR];
StoreMds[LF] i ~ LowHalf[dstj;
StoreMds[LF + 1] i ~ HighHalf[dstj;
StoreMds[LF + 2] i ~ type;
ERROR Abort;
END

END
ELSE XTS ~ Shift[XTS, -1];
END;

10

Processes

This chapter describes the process mechanism implemented by the Mesa architecture. It
includes a description of the data types and structures used to support processes, monitor
locks, condition variables, and fault queues. It also defines the process instructions, the
process queue-management routines, and the scheduling algorithms. The last section on
scheduling includes a description of the state-vector allocation performed by the
scheduler, as well as .a discussion of exceptional conditions that invoke the scheduler
(faults, interrupts, and timeouts) and the processing that they receive.

The procesa facilities are used for controlling the execution of multiple processes and
guaranteeing mutual exclusion. The intended application of the process mechanism is the
management of access to shared resources (such as the processor). Asynchronous
communication with I/O devices is also supported by the process mechanism.

The process implementation is based on queues of small objects called Process State Blocks
(PSBS), each representing a single process. When a process is not running, its PSB records
the state associated with the process, including the process' Main Data Space, its
evaluation stack (possibly), and the frame (context) it was last executing. Only in the case
of a pre-emption is the stack saved in a state vector as part of the process state. In other
cases, the stack is known to be empty. PSBs also record the process' priority and a few flag
bits associated with the process (see §10.1.2).

When a process is running, its state is contained in the processor's control registers
described in §3. 3.1. These registers include all of those that constitute a context (including
the evaluation stack), plus the PSB and MDS registers. The PSB register points to the process'
PSB, and the MDS register addresses its Main Data Space. These registers are modified
when a process switch takes place.

The contents of the MDS register is normally modified only by a process switch (it can also
be read and written using the register instructions defined in §3.3.4). Several processes
can share a single Main Data Space, or an MDS can be restricted to contain a single
process. As long as the MDS register contains a legal value, the processor can execute
programs in an environment containing no processes (that is, one in which the content of
the PSB register and the current PSB are undefined). The processor begins execution in this
state (§4,n

lO-l

10 Processes

Each Process State Block is a member of exactly one process queue. There is one queue for
each monitor lock, condition variable, and fault handler in the system. A process that is
not suspended on a monitor lock, waiting on a condition variable, or faulted is either
running or is on the ready queue, waiting for the processor. The semantics of each monitor
and condition queue are assigned by the programmer. Except for the ready queue and the
fault queues, there are no fixed assignments of queues to resources.

The primary effect of the process instructions and the scheduler is to move PSBs back and
forth between the ready queue and a monitor or condition queue. A process moves from the
processor to a monitor queue when it attempts to enter a locked monitor. It moves from the
monitor queue to the ready queue when the monitor is unlocked (by some other process).
Similarly, a process moves from the processor to a condition queue when it waits on a
condition variable, and moves to the ready queue when the condition variable is notified,
or when the process has timed out.

Each time a process is requeued, the scheduler is invoked. The scheduler saves the state of
the current process in its PSB and state vector, chooses the highest-priority runnable
process, removes that process from the ready queue, and loads its state into the processor
registers. To simplify the scheduler's task, all of the process queues are kept sorted by
priority.

Certain exceptional cqnditions result in process switches rather than traps. These also
manipulate the process queues and call the scheduler. Faults (in particular, page faults,
write protect faults, frame allocation faults) cause the current process to be placed on a
fault queue. The fault's associated condition variable is then notified. An interrupt causes
one of the sixteen preassigned condition variables to be notified. Finally, a timeout causes
a waiting process to be made ready, even though the condition variable on which it is
waiting was not notified by another process.

10.1 Data Structures

10-2

A global data structure is used to store the Process State Blocks. This section describes
that global data structure, called the Process Data Area (PDA), as well as the details of
Process State Blocks, monitor locks, condition variables, and process queue. Details of
queue management, however, are postponed until §10.3.

10.1.1 Process Data Area

The Process Data Area is located at a fixed address in virtual memory and is 64K-aligned
(the value of mPDA is given in Appendix A):

POA: LONG POINTER TO ProcessDataArea = LOOPHOLE[mPDA];

The Process Data Area contains all of the process structures except for monitor locks and
condition variables, which are allocated by the programmer. The PDA has the following
structure:

ProcessDataArea: TYPE = MACHINE DEPE~JDENT RECORD [

SELECT OVERLAID * FROM

header = > [
ready: Queue,

Mesa Processor Principles of Operation

count: CARDINAL,
unused: UNSPECIFIED,
available: ARRAY [0 . .5) OF UNSPECIFIED,
state: StateAllocationTable,
interrupt: InterruptVectorj
fault: FaultVector],

blocks = > [
block: ARRAY [0 .. 0) OF ProcessStateBlock],

ENDCASEj;

10

The PDA contains a resident array of Process State Blocks indexed by a Psblndex. The
initial elements of the array are allocated to other global state information. The first PSB is
at index StartPsb, after the PDA header. A zero index is used to denote the null process.

PsbNull: Psblndex = 0;
Psblndex: TYPE = [0 .. 1024);

StartPsb: Psblndex =
(SlzE[ProcessDataAreaj + slzE{ProcessStateBlockj-l)/SIZE{ProcessStateBI ockj;

The index of the currently running process is maintained in a processor register, which is
also accessible to the programmer.

PSB: Psblndex;

The header of the Process Data Area includes the ready queue and a count of the number
of PSBS (not including overhead) in the PDA. There is also a small block available to the
programmer, a table of pointers to state vectors used to save the context and stack of pre
empted processes (§ 10.4.2), an array of condition variables assigned to interrupt levels
(§ 1 0.4.4), and a structure used to represent fault queues and their associated condition
variables (§ 10.4.3). The PSBs and state vectors follow the header.

Design Note: The count field is used only to determine the number of processes involved
in the timeout scan (§1O.4.5). Additional PSBs may be allocated by the programmer.

A PSB is active if it is running or is on a process queue; only active PSBs may be referenced
by the process instructions.

Programming Note: The programmer typically allocates a fixed number of PSBs, stores
this number in the header as the count, and makes the PSBs active (by placing them on the
ready queue) as processes are created. Because the timeout scan examines all the PSBs
indicated by the count field, the timeout value associated with each inactive process must
be set to zero (§1O.4.5).

All of the pointers contained in the Process Data Area (and in the State Allocation Table)
are relative to the starting location of the PDA (just as short pointers are relative to the
origin of an MDS). Like Main Data Spaces, the PDA is aligned on a 64K boundary.

LengthenPdaPtr: PROCEDURE {ptr: POINTER] RETURNS [LONG POINTER] =
BEGIN
offset: CARDINAL = LOOPHOLE[ptr];

10-3

10

10-4

Processes

RETURN[PDA + LONG[offsetJ];
END;

OffsetPda: PROCEDURE [ptr: LONG POINTER] RETURNS [POINTER] =
BEGIN
IF HighHalf[ptr - PDA] # 0 THEN ERROR;
RETURN[LowHalf[ptr - PDA]];
END;

FetchPda: PROCEDURE [ptr: POINTER] RETURNS [LONG POINTER] =
BEGIN
RETURN[Fetch[LengthenPdaPtr[ptr]]];
END;

StorePda: PROCEDURE [ptr: POINTER] RETURNS [LONG POINTER] =
BEGIN
RETURN [Store[LengthenPdaPtr[ptr]]];
END;

Implem~ntation Note: Because the PDA is 64K-word aligned and its relative pointers are
restricted to a 64K range, a concatenation operation can replace the addition that appears
above, and an extraction of the low-order word can replace the subtraction.

It is often convenient to reference PSBs using PDA-relative pointers rather than indexes.
The following routines.con vert between the two representations:

PsbHandle: TYPfi = POINTER TO ProcessStateBlock;

Handle: PROCEDURE [index: Psblndex] RETURNS [PsbHandle] =
BEGIN
RETURN[lOOPHOlE [i ndeX*SIZE [ProcessStateBI ocklJ];
END;

Index: PROCEDURE [handle: PsbHandle] RETURNS [Psblndex] =
BEGIN
RETURN[LOOPHOLE[handle]JSIZE[ProcessStateBlock]];
END;

Design Note: All of the process data structures containing a Psblndex are laid out so that
the low-order bit of the index lies at bit twelve of a word. Because PSBs are eight-word
aligned, this allows the conversion fr9m index to handle to be performed by masking out
the low-order three and the high-order three bits of the word containing the index. Thus,
the 10-bit index is extracted from a 16-bit word and converted into a PDA-relative pointer.

Implementation Note: Because the Process Data Area and the tables pointed to by it are
resident, the processor need not maintain the dirty and referenced map flags of the pages
containing these structures (§3.1.1).

10.1.2 Process State Blocks

A PSB records the state of a process, and it therefore contains the following fields:

A link word, used for maintaining the queue structure. This word also contains the
process' priority and some flag bits.

Mesa Processor Principles of Operation 10

A flag word containing fields used primarily by the programmer. This word also
includes a single flag bit and a cleanup link used for maintaining the queue
structure.

A process context representation, which is either a pointer to the frame the process
was last executing, or a pointer to a state vector containing the evaluation stack
and the frame pointer.

The timeout value associated with each process (see §10.4.5).

The high-order sixteen bits of the (64K-aligned) address of the Main Data Space in
which the process is running.

Two words of sticky flags for floating-point operations.

Process State Blocks are therefore eight words long, and are always eight-word aligned.

ProcessStateBlock: TYPE = MACHINE DEPENDENT RECORD [

link (0): PsbLink,
flags (1): PsbFlags,
context (2): POINTER,

timeout (3): Ticks,
mds (4): CARDINAL,

available (5): UNSPECIFIED,

sticky (6): LONG UNSPECIFIED];

The link word, in addition to the process' priority and a queue link, contains three flag
bits: failed indicates that the last instruction executed by the process was an unsuccessful
Monitor Entry (§ 10.2.1) or Monitor Reentry (§ 1 0.2.4); permanent indicates that the PSB's
context is a state vector that is permanently assigned to the process; preempted records
whether the PSB was pre-empted. If it was pre-empted, the saved context includes the
evaluation stack and the frame pointer, otherwise it contains only the frame pointer.

Priority: TYPE = [0 .. 7];

PsbLink: TYPE = MACHINE DEPENDENT RECORD [

priority (0: 0 .. 2): Pri ority,
next (0: 3 .. 12): Psblndex,
failed (0: 13 .. 13): BOOLEAN,

permanent (0: 14 .. 14): BOOLEAN,

preempted (0: 15 .. 15): BOOLEAN];

The flag word, in addition to a cleanup link and several fields available to the
programmer, contains flags that indicate whether the process is waiting on a condition
queue and also whether there is an abort pending for the process. If the latter flag is set (by
the programmer), the Monitor Reentry instruction causes a trap (§10.2.4).

PsbFlags: TYPE = MACHINE DEPENDENT RECORD [

available (0: 02): [07],

cleanup (0 3 12): Psblndex,
reserved (0: 13.13): BIT~O,

10-5

.lU

10-6

Processes

waiting (0: 14 .. 14): BOOLEAN,

abort (0: 15 .. 15): BOOLEAN];

Design Note: Process State Blocks must be resident in real memory, and may not be
write-protected. No reference to a PSB may cause a fault.

10.1.3 Monitor Locks

Unlike Process State Blocks, monitor locks are allocated by the programmer. They serve
as queue headers, and therefore contain a Psblndex pointing into the body of the queue
(the queue structure is defined in §1O.1.5). A monitor queue contains all of the processes
suspended on the monitor lock.

In addition to the queue pointer, a monitor lock includes a lock bit; when set, the lock bit
indicates that some process is executing inside the monitor. If another process attempts to
enter the monitor while the lock is set, that process is suspended by placing it on the
monitor queue.

Monitor: TYPE = MACHINE DEPENDENT RECORD [

reserved (0: 0 .. 2): [0.7] f-O,

tai I (0: 3 .. 12): Psblndex,
available (0: 13 .. 14): [0 .. 3],

locked (0: 15 .. 15): BOOLEAN];

Design Note: Monitor locks need not be resident (although some may be).

10.1.4 Condition Variables

Condition variables are also allocated by the programmer. Like monitor locks, they serve
as queue headers, and contain a Psblndex pointing into the body of the queue. A condition
queue contains all of the processes waiting on the condition.

In addition to the queue pointer, a condition variable contains two flag bits: abortable is
set (by the programmer) if processes waiting on the condition can be aborted C§10.2.4);
wakeup is set in response to a fault (§10.4.3) or an interrupt (§ 10.4.4).

Condition: TYPE = MACHINE DEPENDENT RECORD [

reserved (0: 0 .. 2): [0.7] f- 0,

tail (0: 3 .. 12): Psblndex,
available (0: 13 .. 13): BIT,

abortable(o: 14 .. 14}: BOOLEAN,

wakeup (0: 15 .. 15): BOOLEAN];

Design Note: Except for those contained in the PDA, condition variables need not be
resident.

10.1.5 Process Queues

A queue is represented by a long pointer to a queue header, declared as type Queue. A
queue header is either a monitor lock, a condition variable, a fault queue, or the ready

,. Mesa Processor Principles of Operation 10

field of the Process Data Area. The header contains a field called tail, which is the index of
the last PSB on the queue (queue entries are always Process State Blocks).

QueueHandle: TYPE = LONG POINTER TO Queue;
Queue: TYPE = MACHINE DEPENDENT RECORD [

reservedl (0: 0 .. 2): [0 .. 7] ~O,

tail (0: 3 .. 12): Psblndex.
reserved2 (0: 13 .. 15): [0 .. 7]];

Design Note: The formats of monitor locks and condition variables are carefully designed
to match the structure of a Queue, so that they can function as queue headers. When
functioning as queue headers, they define additional flags in the reserved2 field.

The last entry on the queue is chained to the first through its link field, which is also a PSB
index, and each entry is chained to the next using its link field. If the queue contains one
entry, the header points to it, and it is linked to itself. An empty queue is represented by a
null index in the queue header. An overall diagram showing a hypothetical arrangement
ofpSB's in the various queues.is contained in Figure 10.1.

10.2 Process Instructions

The process instructions are used to enter and exit monitors, to wait on condition variables
and subsequently to re-enter the monitor. They are also used to notify and broadcast
condition variables. Two primitives for manipulating the process queues: are also
available. The process instructions are all minimal stack (§3.3.2); that is, their operands
always begin at the bottom of the stack. This minimizes the cases in which a State Vector
is needed to save the stack of a process (§ 10.4.2).

10.2.1 Monitor Entry

The Monitor Entry instruction is executed near the beginning of each monitor entry
procedure. It either sets the monitor lock, or if the monitor is already locked, causes the
current process to be suspended by placing it on the monitor queue.

ME Monitor Entry

ME: PROCEDURE =
BEGIN
m: LONG POINTER TO Monitor = PopLong[];
mon: Monitor;
MinimaIStack[];
mon ~ Fetch(m] i ;
IF -mon.locked THEN

BEGIN
mon.locked ~ TRUE;
Store[m] i ~ mon;
PUSh[TRUE];
END

ELSE EnterFailed[ml;
END;

10-7

10 Processes

Monitor Lock

I tail l~
0 15

highest priority lowest priority

Condition Variable

I I tail I 1-1 --~---------""----------Ol
o 15 t

highest priority lowest priority

R d L ea lY 1St

I tali I
0 15

PSB Register

PSB I
I

Current PSB It

highest priority 0 typical 15 lowest priority

Figure 10.1 Process Queue Structures

10-8

· Mesa Processor Principles of Operation 10

If the monitor was eI?-tered successfully, Monitor Entry returns TRUE on the stack, which is
tested by a Jump Zero Byte instruction immediately following the ME.

If monitor entry was not successful, the PSB's failed bit is set, and the current process is
moved to the monitor queue. The scheduler is then invoked (§l0.4.1).

EnterFailed: PROCEDURE [m: LONG POINTER TO Monitor] =
BEGIN

link: PsbLink ~ Fetch[@PDA.block[psBj.link] t ;
link.failed ~TRUE;
5tore[@PDA.block[psBj.link] t ~ link;
Requeue[src: @PDA.ready, dst: m, psb: PSB];
Reschedule[];
END;

When the process later becomes ready, Reschedule notices that its failed bit had been set,
and places FALSE onto the evaluation stack. FALSE causes the Jump Zero instruction
following the ME to loop back to the instructions to acquire the monitor lock. This allows
for a situation in which some other process has locked the monitor between the time a
suspended process is made ready and the time it executes the Monitor Entry. This same
technique is used by the Monitor Reentry instruction (§lO.2.4), which also calls
EnterFailed.

10.2.2 Monitor Exit

The Monitor Exit instruction is executed at the end of each monitor entry procedure. It
unlocks the monitor and causes the highest-priority process suspended on the monitor
queue (if any) to be made ready.

MX Monitor Exit

MX: PROCEDURE =
BEGIN

m: LONG POINTER TO Monitor = PopLong[];
MinimaIStack[];
IF Exit[mj THEN Reschedule[];
END;

The Exit routine clears the monitor lock and checks the contents of the monitor queue. If
the queue is not empty, the first process on the queue is made ready. The Exit routine is
also used by the Monitor Wait instruction (§10.2.3).

Exit: PROCEDURE [m: LONG POINTER TO Monitor] RETURNS [requeue: BOOLEAN] =
BEGIN

mon: Monitor ~ Fetch[m] t;
IF mon.locked = FALSE THEN ERROR;

mon.locked ~ FALSE;

Store[m] t ~ man;
IF requeue ~ (mon.tail # PsbNull) THEN

BEGIN

link: PsbLink = Fetch[@PDA.block[mon.tailj.linkj t ;
Requeue[src: m, dst: @PDA.ready, psb: link.next];

10-9

10-10

Processes

END;
END;

Programming Note: The programmer should ensure that a Monitor Exit instruction is
executed only when the monitor is locked.

10.2.3 Monitor Wait

The Monitor Wait instruction is executed within a monitor to wait on a condition variable.
It is always followed (statically) by a monitor re-entry sequence, which computes the
monitor and condition pointers and executes a Monitor Reentry instruction (§10.2.4).
Monitor Wait first unlocks the monitor, as in Monitor Exit. It then moves the current
process onto the condition queue (also setting its waiting bit and timeout value) and cans
the scheduler.

MW Monitor Wait

MW: PROCEDURE =
BEGIN

t: Ticks = Pop[];
c: LONG POINTER TO Condition = PopLong[];

m: LONG POINT.ER TO Monitor = PopLong[];
flags: PsbFlags;

cond: Condition;

requeue: BOOLEAN;

MinimaIStack[];

CleanupCondition(c];
requeue ~ Exit[ml;

flags ~ Fetch[@PDA.block[psBl.flags] i ;
cond ~ Fetch[cl i ;
IF -flags.abort OR -cond.abortable THEN

BEGIN

IF cond.wakeup THEN

BEGIN
cond.wakeup ~ FALSE;

Store[c] i ~ cond;
END

ELSE

BEGIN
Store[@PDA.block[PSB].timeout] i ~

IF t = 0 THEN 0

ELSE MAX[l, LowHalf[LONG[PTC] + LONG[t]l];

flags.waiting ~TRUE;

Store[@PDA.block[PSB].flags] i ~ flags;

Requeue[src: @PDA.ready, dst: c, psb: PSBj;

requeue ~ TRUE;

END;

END;

IF requeue THEN Reschedule(];

END;

Mesa Processor Principles of Operation 10

There are two conditions under which the process executing the wait is not moved to the
condition queue, but instead remains on the ready list: when the PSB of the process
indicates that there is an abort pending, or when the condition variable indicates that
there is a wakeup waiting (§10.4.4.2).

Monitor Wait also sets the timeout value of the process to the current value of the process
timeout counter plus the time interval supplied on the stack. A value of zero indicates that
the process should not be timed out while waiting. Timeout processing is described more
completely in §l0.4.5; CleanupCondition is defined in §10.3.2.

10.2.4 Monitor Reentry

Monitor Reentry is used to re-enter a monitor after a wait. If the monitor is locked, the
process will be placed on the monitor queue as in the Monitor Entry instruction. Reentry
differs from entry because Monitor Reentry will clean up the condition variable and clear
the PSB's cleanup link.

MR Monitor Reentry

MR: PROCEDURE =
BEGIN

c: LONG POINTtR TO Condition = PopLong[];
m: LONG POINTER TO Monitor = PopLong[];
mon: Monitor;
MinimaIStack[];
mon ~ Fetch[ml i;
IF -mon.locked THEN

BEGIN

flags: PsbFlags;
CleanupCondition[c];
flags ~ Fetch(@PDA.block[psBj.flags] i ;
flags.cleanup ~ PsbNull;
Store(@PDA.block[psB].flags] i ~ flags;
IF flags. abort THEN

BEGIN

cond: Condition = Fetch[c] i ;
IF cond.abortable THEN ProcessTrap[];
END;

mon.locked +- TRUE;

Store[ml i ~ mon;
PUSh[TRUE];

END

ELSE EnterFailed[m);
END;

Monitor Reentry, like Monitor Entry, is always followed by a Jump Zero Byte instruction.
The Jump Zero Byte loops back to the instructions to acquire the monitor lock. This loop
allows for a situation in which some other process still holds or has just locked the monitor
between the time the notify (or timeout) signal causes the process to be made ready and
the time it executes the Monitor Reentry.

10-11

10

10-12

Processes

If the monitor is not locked, Monitor Reentry checks for a pending abort. If the condition
variable allows aborts, a process trap is generated, so the monitor is not entered. Trap
processing is described in detail in §9.5.

Programming Note: If the process trap handler intends to resume the trapped context, it
must ensure that the monitor lock is acquired. This preserves the invariant that the lock
is held when control is (textually) inside the monitor.

Programming Note: Between a Monitor Wait and the subsequent Monitor Reentry, a
process must not execute another Monitor Wait. In particular, the program used to
compute and load the monitor and condition pointers and the associated timeout interval
onto the stack (and any trap routines invoked by this program) must not wait.. See the
programming note in section §10.3.2.

10.2.5 Notify and Broadcast

The Notify Condition and Broadcast Condition instructions are used to wake up processes
waiting on condition variables. A notify moves the first entry on a condition queue to the
ready queue. A broadcast makes all entries on the queue ready.

NC Notify Condition

NC: PROCEDURE =
BEGIN

c: LONG POINTER TO Condition = PopLong[];
cond: Condition;
MinimaIStack[];
CleanupCondition(c];
cond ~Fetch[c] i ;
IF cond.tail # PsbNul1 THEN

BEGIN

WakeHead(c];
Reschedule[j;
END;

END;

If the condition queue is empty, a notify has no effect except to clean up the queue
(§10.3.2).

BC Broadcast Condition

BC: PROCEDURE =
BEGIN

c: LONG POINTER TO Condition = PopLong[];
requeue: BOOLEAN;

MinimaIStack[];
CleanupCondition(c];
FOR cond: Condition ~ Fetch[cl i, cond ~ Fetch[cl i WHILE cond.tail # PsbNull DO

WakeHead[cl; requeue ~ TRUE;

ENDLOOP;

Mesa. Processor Principles of Operation

IF requeue THEN Reschedule[];
END;

10

The preceeding routine performs the equivalent of a Notify on each process on the
condition queue. WakeHead is used to remove the head of the queue each time around the
loop. If the condition queue is empty, a broadcast has no effect except to cleanup the queue
(§10.3.2).

The following routine is used by the instructions Notify and Broadcast, and by the routine
NotifyWakeup (§10.4.4.2). It moves the first PSB from a condition queue to the ready queue
and clears the waiting flag.

WakeHead: PROCEDURE [c: LONG POINTER TO Condition] =
BEGIN

cond: Condition = Fetch[c] i ;
link: PsbLink ~ Fetch[@PDA.block[cond.tail].link] i;
flags: PsbFlags ~ Fetch(@PDA.block[link.nextj.flagsj i ;
flags.waiting ~ FALSE;

Store[@PDA.block[link.next].flags] i ~ flags;
Store[@PDA.block(link.nextj.timeoutj i ~ 0;
Requeue[src: c, dst: @PDA.ready, psb: link.next];
END;

WakeHead also clears the timeout value of the process, so that it will not be timed out
while running. Timeouts are discussed in §10.4.5.

10.2.6 Requeue

The Requeue instruction gives programmers access to the process mechanism's queue
handling primitives. It removes a process from the source queue and inserts it (according
to priority) into the destination queue, unconditionally invoking the scheduler.

REQ Requeue

REQ: PROCEDURE =
BEGIN

psb: PsbHandle = Pop[];
dstque: QueueHandle = Poplong[J;
srcque: QueueHandle = PopLong[];
MinimaIStack[];
Requeue[src: srcque, dst: dstque, psb: Index[psb]];
Reschedule[];
END;

Note that the Requeue instruction takes a PsbHandle, not an index.

Programming Note: In Requeue, the programmer should ensure that the psb is on the
source queue (or that the source queue is zero).

10-13

10 Processes

10.2.7 Set Process Priority

The Set Process Priority instruction allows the programmer to change the priority of the
current process.

SPP Set Process Priority

SPP: PROCEDURE =
BEGIN

priority: Priority = Pop(J;
link: PsbLink;
MinimaIStack[];
link E- Fetch[@PDA.block[psB].link] i;
link.priority E- priority;
Store[@PDA.block[psBj.linkj iE-link;
Requeue{src: @PDA.ready, dst: @PDA.ready, psb: pss1;
Reschedule[];
END;

10.3 Queue Management

10-14

This section defines the small number of primitives used to maintain the process queues.
In particular, operations are defined to remove a PSB from a queue (Dequeue) and to insert
a PSB into a queue in priority order (Enqueue). Section 10.3.2 discusses cleanup links.

10.3.1 Queuing Procedures

The Req!Jeue routine is used to maintain the process queue structures. It removes the
process indexed by psb from the source queue src and inserts it into a destination queue dst
according to its priority. Requeue is implemented using the two more primitive
operations Dequeue and Enqueue.

Requeue: PROCEDURE [src, dst: LONG POINTER, psb: Psblndex] =
BEGIN

IF psb = PsbNull THEN ERROR;

Dequeue(src, psb];
Enqueue[dst, psb];
END;

First, Dequeue is invoked to remove the psb from the source queue. Dequeue traverses
src looking for the process immediately preceeding psb (called prev), so that the psb can be
removed from the queue. Dequeue then updates the queue header, if it points to the psb
being removed. The algorithm is complicated by the fact that the location of the queue
header (condition variable) of the source queue may not be known (src = 0). This condition
occurs when a waiting process is timed out (§10.4.5) and can possibly occur when the
programmer executes a Requeue instruction. In this latter case, the psb's cleanup link is
set to the original value of its link field, pointing back to the source queue from which it
will later be removed by CleanupCondition (described at the end of this section).

Dequeue: PROCEDURE [src: LONG POINTER, psb: Psblndex1 =
BEGIN

MesaProcessor Principles of Operation

link: PsbLink;
prev: Psblndex;

queue: Queue;
que: QueueHandle = src;
IF que # LOOPHOLE[O] THEN queue +- Fetch[que] i ;
link +- Fetch[@poA.block[psb].link] i ;
IF link.next = psb THEN prev +- PsbNul1
ELSE

BEGIN
temp: PsbLink;
prev +-IF que = LOOPHOLE[O] THEN psb ELSE queue.tail;
DO

temp +- Fetch[@poA.block[prev].link] i ;
IF temp. next = psb THEN EXIT;

prev +-temp.next;
ENDLOOP;

temp. next +-link.next;
Store[@poA.block[prev].linkj i +-temp;
END;

IF que = LOOPHOLE[O] THEN
BEGIN
flags: PsbFiags +- Fetch[@poA.block[psb].flags] i;
flags.cleanup +-link.next;
Store[@poA.block[psbj.flagsj i +-flags;
END

ELSE IF queue.tail = psb THEN
BEGIN
queue.tail +- prev;

Store[quel i +- queue;
END;

END;

10

Enqueue inserts the psb into the destination queue dst in priority order. First, it checks
for the simple case, when dst is empty. Second, Enqueue tries to add psb to the end of dst if
its priority is less than or equal to the priority of the last entry in the queue. Failing that,
it searches the destination queue and eventually inserts the psb after all other processes of
equal or higher priority, just before the first process oflower priority.

Enqueue: PROCEDURE [dst: LONG POINTER, psb: Psblndexj =
BEGIN
que: QueueHandle = dst;

queue: Queue +- Fetch[que] i ;
link: PsbLink +- Fetch[@poA.block(psbl.linkj i ;
IF queue.tail = PsbNull THEN

BEGIN
link.next +- psb;
Store[@PDA.block(psbj.link] i +-link;

queue.tail ~ psb; Store[quel i ~ queue;
END

ELSE
BEGIN
currentlink, nextlink: PsbLink;

10-15

10

10-16

Processes

prev: Psblndex ~queue.tail;
currentlink~ Fetch[@PDA.block[prev}.link] i ;
IFcurrentlinic.priority > = link.priority THEN

BEGIN
queue.tail ~ psb;
Store[quel i ~ queue;
END

ELSE
DO

nextlink ~ Fetch[@PDA.block[currentlink.nextj.linkj i;
IF link. priority > nextlink.priority THEN EXIT;

. prev ~currentlink.next; currentlink~ nextlink;
ENDLOOP;

link.next ~currentlink.next; Store[@PDA.block[psbj.link] i ~ link;
currentlink.next ~ psb; Store[@PDA.block[prev}.linkl i ~currentlink;

END;
END;

10.3.2 Cleanup Links

The CleanupCondition. routine must be invoked before accessing a condition queue, since
its queue pointer may not be correct. Inaccuracy occurs when the tail of a condition queue
(pointed to by the header) is removed from the queue by a timeout: the location of the
header is unknown in that case, so the pointer cannot be properly updated. (This situation
may also occur when using the Requeue instruction.) Fortunately, in addition to the link
described above, each PSB also contains a second queue link, called the cleanup link, which
is used to maintain the queue structures when the location of the queue 'header is not
known.

When Dequeue detects this situation (the source queue is zero), it sets the PSB's cleanup
link to the old value of its link field, which points to the next PSB on the queue.
CleanupCondition finds the correct head of the condition queue by following the cleanup
link into the queue from which the PSB was removed. From there, it locates the tail to
which the condition variable should point. Notice, however, that the cleanup link might
point to a PSB that also has its cleanup link set because it was also removed from the queue
by a timeout! CleanupCondition therefore follows the cleanup links until there are no
more, declares the resulting PSB to be the head of the queue, and then follows the normal
queue links until the tail is found.

CfeanupCondition: PROCEDURE [c: LONG POINTER TO Condition] =
BEGIN
link: PsbLink;
flags: PsbFlags;
psb, head: Psblndex;
cond: Condition ~ Fetch[c] i ;
IF (psb ~ cond.tail) # PsbNull THEN

BEGIN
flags ~ Fetch[@PDA.block[psbj.flagsj i '
IF flags.cleanup # PsbNul1 THEN

BEGIN
DO

Mesa ProcessorPrin.ciples of Operation

IF flags.cleanup = psb THEN

BEGIN

cond.wakeup ~ FALSE;

cond.tail ~ PsbNull;
Store[c] i ~ cond;
RETURN;

END;

psb ~flags.cleanup;
flags ~ Fetch{@PDA.block[psbj.flags] i ;
IF flags.cleanup = PsbNull THEN EXIT;

ENDLOOP;

head·~psb;

DO

link ~Fetch[@pDA.block[psb].link] i;
IF link. next = head THEN EXIT;

psb ~ link.next;
ENDLOOP;

cond.tail ~ psb;
Store(c] i ~ cond;
END;

END;

END;

10

Note that CleanupCondition itself updates only the condition variable; the cleanup links.
in the PSBs removed from the condition queue are reset by the Monitor Reentry instruction
(§10.2.4).

Programming Note: Between a Monitor Wait and the subsequent Monitor Reentry, a
process must not execute another Monitor Wait; in particular, the program used to
compute and load the monitor and condition pointers and the timeout interval onto the
stack (and any trap routines invoked by that program) must not wait. If the first wait
times out, the PSB's cleanup link will be set. Any subsequent wait would destroy the
original cleanup link. Also, any fault that occurs between a Monitor Wait and the
subsequent Monitor Reentry will result in the process being requeued, first, to a fault
service queue and, later, to the Ready Queue again. For example, a page fault on the code
page is possible. The first of these requeues is carried out without calling
CleanUpCondition, and the second must also avoid CleanUpCondition, or the cleanup link
will be smashed. For this reason, the process must removed from the fault service queue to
the Ready Queue by means of the FEQ opcode; Notify Condition and Broadcast Condition
must not be used.

Design Note: CleanupCondition is an idempotent operation; that is, cleaning up a
condition variable that is already clean has no effect. It is therefore permissible for an
instruction to clean up a condition variable before checking for other possible traps or
faults.

Design Note: Because only processes waiting on condition variables can be timed out,
there is no need for a corresponding routine to clean up monitor locks.

10-17

10

10-18

Processes

lOA Scheduling

The scheduler implementsoverj:lll changes in the machine state called process switches.
Process switches result when the current process yields control of the processor and a
higher-priority process is ready, or when the current process is removed from the ready
queue, either by its own commission or by a pre-emption. The current process may stop
running as a result of performing any of the following actions:

.' attempting to enter a monitor,

• exiting a monitor,

• waiting on a condition variable,

• attempting to reenter a monitor; or

• executing a REO or spp instruction.

In addition, any of the following pre-emptions may cause the current process to stop
running:

• a fault, which notifies a fault handler (§10.4.3),

• an interrupt, which notifies a condition variable (§10.4.4), or

• a timeout, whIch makes a waiting process ready (§ 1 0.4.5).

All of these conditions result in a possible process switch by calling the scheduler
(Reschedule) described in the next section. In all cases, process switches take place
between instructions. Either the current instruction is completed, or the state of the
processor at the beginning of the current instruction is restored. See §4.6.1for a precise
statement of the restart rule.

10.4.1 Scheduler

The scheduler is invoked whenever a process has moved to or from the ready queue. In
particular, Reschedule is called by the process instructions that call Requeue and by the
Fault, Interrupt, and Ti meoutScan routines (described in later sections).

Reschedule finds the highest priority runnable process in the ready queue, saves the state
of the current process (if any), and loads the state of the new process into the processor
registers. In the case that no runnable process exits, the scheduler sets running to false.
This action causes the main loop (§4.1) to cease instruction execution (it continues to check
for interrupts and timeouts).

To be runnable, the pro<:.ess must have a state vector in which to save the evaluation stack
and context, in case the process is pre-empted, by a fault, interrupt, or timeout.
Reschedule therefore checks whether the process has a permanent state vector
(link.permanent = TRUE), the process' context already points to a state vector
(link.preempted = TRUE) or a state vector for the process' priority is otherwise available
(see §10.4.2.2).

Mesa Processor Principles of Operation

running: BOOLEAN;

Reschedule: PROCEDURE [preemption: BOOLEAN oE- FALSE] =
BEGIN
link: PsbLink;

.. psb: Psblndex;

queue: Queue;
IF running THEN SaveProcess[preemption];
queue oE- Fetch[@poA.ready] i ;
IF queue.tail = PsbNul1 THEN GO TO BusyWait;
link oE- Fetch[@poA.block[queue.tail].link] i;
DO

psb oE-link.next; link oE- Fetch[@poA.block[psb].link] i ;

10

IF link;permanent oRlink.preempted OR -EmptyState[link.priority] THEN EXIT;
IF psb = queue. tai I THEN GO TO BusyWait;
ENDLOOP;

PSB oE- psb; PC oE- saved PC oE- 0;
LF oE- LoadProcess[]; running oE- TRUE;
XFER[dst: LONG[LF], src: 0, type: processSwitch];
EXITS

BusyWait = >
BEGIN

END;

IF -lnterruptsEnabled[] THEN RescheduleError[];
running oE- FALSE;
END;

Design Note: It is an invariant of the design that pOA.state[poA.block[psBj.link.priority] #
o OR link.permanent. 'l'hat is, a state vector must be available in case the current process
is preempted (see §10A.2).

After saving the state of the current process (if any), Reschedule clears the PC register (and
resets saved pc) to indicate that a process switch is in progress. 'l'his is necessary in case
the subsequent XFER causes a trap or fault, which normally saves the PC in the current
frame. This must be avoided if the frame is mapped out or the PC has not yet been loaded
(because of a fault on the global frame, for example).

Implementation Note: Any invalid value of the PC can be used in the implementation, as
indicated by the following routine, which returns FALSE if a process switch is in progress.
Eight is the minimum size of a code segment entry vector.

ValidContext: PROCEDURE RETURNS [BOOLEAN] =
BEGIN
RETURN[PC > = SlzE[CodeSegmentj*2j;
END;

If no runnable process can be found on the ready queue, Reschedule sets running to FALSE,
causing the instruction interpreter (§4.1l to enter a "busy wait" loop, waiting for an
interrupt (§10AA) or a timeout (§1O.4.5). When in this state, interrupts must be enabled;
otherwise, a trap occurs in the context of the last running process (§9.5).

10-19

10

10-20

Processes

Programming Note: A RescheduleErrof' is fataL If the trap handler attempts to resume
normal process switc~ing, theresults"are undefined; This condition is reported by the
processor for debugging purposes only.

10.4.2 Process State

A process' state is saved in its PSB and perhaps also in one of a· number of state vectors
allocated to the process' priority level. A state vector preserves the process' stack and local
frame pointer, and also has room for a fault parameter (the format is defined in §9.5.3).
The process state saving and restoring routines and a description of the algorithms for
state vector allocation and deallocation are included in this section.

10.4.2.1 Saving and Loading Process State

The SaveProcess and LoadProcess routines are used by the scheduler to save the state of a
running process and to reload the state of a ready process. The SaveStack and LoadStack
routines are defined in §9.5.3.

The stack is empty when a process is moved to or from the ready queue by the process
instruction. For that reason, a state vector is needed only in the case of a pre-emption
caused by a fault, an interrupt, or a timeout. The state vector is obtained using the
AliocState routine described in the next section. Otherwise, the state of the process is
contained entirely within the PSB.

SaveProcess: PROCEDURE [preemption: BOOLEAN] =
BEGIN ENABLE Abort = > ERROR;
link: PsbLink +- Fetch[@PDA.block[psa].linkj i ;
IF ValidContext[] THEN StoreMds[@LocaIBase[LF].pC] i +- PC;
IF link. preempted +- preemption THEN

BEGIN
state: StateHandle;
IF -link.permanent THEN state +- AllocState[link.priority]
ELSE state +- LengthenPdaPtr(Fetch[@PDA.block[psa].context] i];
SaveStack[state];
Store[@state.frame] i +- LF;
IF -link.permanent THEN

Store[@PDA.block[psB].context] i +- OffsetPda[state];
END

ELSE
IF -link.permanent THEN Store[@PDA.block[psa].context] i +- LF
ELSE

BEGIN
state: StateHandle +

LengthenPdaPtr[Fetch[@PDA.block[psB].context] i];
Store[@state.frame] i +- LF;
END;

Store[@PDA.block[PSB].link] i +-link;
END;

Mesa Processor Principles of Operation 10

Design Note: The ENABLE for Abort indicates that SaveProcess (and AllocState· and
SaveStack) can not generate page faults (or write-protect faults). The state vector must be
resident because the fault parameter is saved in it. (see § 10.4.3).

SaveProcess must check that the context is valid before saving the PC in the current local
frame. This check covers the case of a trap or fault during a process switch that has not yet
obtained a valid context. SaveStack handles the correct setting of savedsp as well as the
stack pointer SP.

Programming Note: Saving the process state does not update the mds field of the PSB. If
the program modifies the MDS register, it should also update the current PSB (if that is the
effect desired).

The LoadProcess routine reverses the actions of SaveProcess, freeing the state vector if one
was allocated. Note that LoadStack sets savedsp as well as SP to the value obtained from
the state vector.

LoadProcess: PROCEDURE RETURNS [frame: LocalFrameHandle) =
BEGIN ENABLE Abort = > ERROR;
mds: CARDINAL;
link: PsbLink Eo- Fetch[@PDA.block[psBj.link) i ;
frame Eo- Fetch[@PDA.block[psB).context) i ;
IF link. preempted THEN

BEGIN

state: StateHandle Eo- LengthenPdaPtr[frame);
LoadStack [state);
frame Eo- Fetch[@state. frame) i ;
IF -link. permanent THEN FreeState[link.priority, state);
END

ELSE

BEGIN
IF link.failed THEN

BEGIN
PUSh[FAlSE); link.failed Eo- FALSE;
Store[@PDA.block[PSB).link) i Eo-link;
END;

IF link.permanent THEN
BEGIN
state: StateHandle Eo- LengthenPdaPtr[frame);
frame Eo- Fetch[@state.frame) i ;
END;

END;
mds Eo- Fetch[@PDA.block[PSB).mds) i ;
MDS Eo- LongShift[LONG[mdsj, WordSize);
END;

Design Note: The ENABLE for Abort indicates that LoadProcess (and LoadStack and
FreeState) can not generate page faults (or write-protect faults); until the LoadProcess has
completed, the state vector is unavailable for reuse by a subsequent fault.

10

10-22

Processes

LoadProcess checks for the presence of the failed bit set by the Monitor Entry and Monitor

Reentry instructions. In this case, it pushes FALSE onto the stack so that the following Jump

Zero Byte instruction will loop back to the monitor entry sequence (see § 10.2.1).

Implementation Note: In the case of a fault (see §10.4.3), some implementations of the
processor may save additional processor state in the state vector for use by a subsequent
load. However, except for the size of the state vector required (which must be constant for
all processes), the presence of this additional information must be inuisible to the
programmer.

10.4.2.2 State Vector Allocation

State vectors are allocated much like frames, using an array of pointers to lists of free
state vectors called the State Allocation Table (SAT). A separate list is provided for each
priority level, but unlike frame allocation, there is no provision for indirect lists. All
pointers in the SAT are relative to the base ofthe Process Data Area.

StateAllocationTable: TYPE =: ARRAY Priority OF POINTER TO StateVector;

The scheduler uses the following routine to ensure that a state vector is available at the
correct priority level before running a process:

EmptyState: PROCEDURE [pri: Priority] RETURNS [BOOLEAN] ::

BEGIN

state: POINTER TO StateVector = Fetch[@PDA.state[prij] i ;
RETURN[state = LOOPHOLE[O]];

END;

The allocation routine simply returns the element of the array indexed by the requested
priority, updating the array to point to the next item on the list. FreeState returns the
state vector to the head of the list in the obvious way.

AllocState: PROCEDURE [pri: Priority] RETURNS [state: StateHandle] =
BEGIN

offset: POINTER = Fetch[@PDA.state[pri]] i;
IF offset = LOOPHOLE[O] THEN ERROR;

state ~ LengthenPdaPtr[offset];

Store[@PDA.state[prij] i ~ Fetch[state] i ;
RETURN[state];

END;

FreeState: PROCEDURE [pri: Priority, state: StateHandle] =
BEGIN

Store[statel i ~ Fetch[@PDA.state[prij] i ;
Store[@PDA.state[prill i ~ OffsetPda[state];

END;

There is no provision for trapping .or faulting when a state-vector list is empty. The
scheduler guarantees that, when it runs a process, there is a state vector available for the
subsequent pre-emption that may occ~r.

Mesa Processor Principles of Operation 10

Programming Note: Because there must be one state vector for each pre-emptible
process, the number of state . vectors in each list determines the degree of pre-emptive
mUlti-programming allowed at the corresponding priority-level.

10.4.3 Faults

A fault is an exception that causes a process switch. There are three such exceptions: a
page fault, a write protect fault, and a frame-allocation fault. Each type of fault has an
associated queue where faulted processes are kept, as well as an associated fault-handler,
represented by a condition variable that is notified when the fault occurs. This
information is organized as a substructure of the PDA.

FaultVector: TYPE = ARRAY Faultlndex OF Fa.ultQueue;

Faultlndex: TYPE = [o .. s);

FaultQueue: TYPE = MACHINE DEPENDENT RECORD [

queue (o): Queue,
condition (1): Condition];

Fault proc~ssing is logically much like trap processing (§9.5.2), with the following
differences:

• The fault parameter is saved in the state vector of the current (faulted) process,
rather than in the frame of the trap handler .

• The fault results in a process switch rather than a control transfer. The fault
handler can therefore run in a Main Data Space different fronfthe faulted process.

The precise actions that must be taken by the processor when a fault occurs are shown by
FaultOne (single word parameter), FaultTwo (double word parameter), and the common
Fault routine.

FaultOne: PROCEDURE [fi: Faultlndex, parameter: UNSPECIFIED] =
BEGIN

psb: Psblndex = Fault[fi];
state: POINTER TO StateVector = Fetch[@POA.block[psb].context] i ;
StorePda[@state.data[o]] i +- parameter;
ERROR Abort;
END;

FaultTwo: PROCEDURE [fi: Faultlndex, parameter: LONG UNSPECIFIED] =
BEGIN

psb: Psblndex = Fault[fi];
state: POINTER TO StateVector = Fetch[@poA.block[psb].contextl i ;
StorePda[@state.data[o]] i +- LowHalf[parameter];
StorePda[@state.data[1]1 i +-HighHalf[parameter];
ERROR Abort;
END;

Fault: PROCEDURE [fi: Faultlndex] RETURNS [Psblndex] =
BEGIN

faulted: Psblndex = PSB;

10-23

10

10-24

Processes

Requeue[src: @poA.ready, dst: @poA.fault[fi].queue, psb: faulted];
[] ~ NotifyWakeup(@poA.fault[fj].condition1;

PC ~ save:dpc; sp ~ savedsp;

Reschedule[preemption: TRUE];
RETURN[faulted];

END;

Fault saves the PSB index of the faulted process, moves the process to the appropriate fault
queue, and notifies the fault handler using NotifyWakeup (because there is no monitor
controlling access to the fault condition variables; see §10.4.4.2). It then restores the PC

and SP and invokes the scheduler. The fault routines store their parameters i.n the state
vector of the faulted process. The three possible faults have the following parameters:

FrameFault: PROCEDURE [fsi: FSlndexj = {FaultOne[qFrameFault, fsi]};

A frame of the requested size (or larger) could not be allocated. The value of the
parameter is the frame size index requested by XFER' or the Allocate Frame

instruction (§9.2.2).

PageFault: PROCEDURE [ptr: LONG POINTER] = {FaultTwo[qPageFault, ptr]};

WriteProtectFau"lt: PROCEDURE [ptr: LONG POINTER] = {
FaultTwo[qWriteProtectFault, ptr]};

An access to an unmapped page (a store into a write -rotected page) was attempted.
The value of the fault parameter is the virtual address used by the memory
reference that faulted (§3.1.1).

The sizes of fault parameters determine the value of cSV, the minimum size of a state
vector; it is defined in the Appendix.

Because the fault routine always re-establishes the initial state of a faulted instruction,
multiple faults on a single instruction are invisible to the programmer, and there is no
need for the fault handler to concern itself with possible partial side effects of the
instruction or with the continuation of partially completed instructions.

Programming Note: After correcting the cause of the fault, the fault handler must use
the Requeue instruction (instead of NC or BC) to remove the faulted process from the fault
queue and make it ready.

10.4.4 Interrupts

An array of reserved condition variables is allocated in the Process Data Area for
servicing interrupts on one of sixteen interrupt-levels. An interrupt is implemented by
notifying one of these conditions:

InterruptVector: TYPE = ARRAY InterruptLevel OF Interruptltem;

InterruptLevel: TYPE = [o .. WordSize);

Interruptltem: TYPE = MACHINE DEPENDENT RECORD [

condition (0): Condition, available (1): UNSPECIFIED];

Mesa Processor Principles of Operation 10

When an external event occurs that requires service from an interrupt process, a wakeup
is generated. Wakeups include signals from devices and controllers, and perhaps also
internal signals within the processor (for example, clocks or timers). Wakeups are held
pending until completion of the current instruction, when they are translated into
interrupts by the processor.

Design Note: Some interrupt levels may·be reserved for internal use by the processor.
One level typically is used to implement the check for timeouts (§l0.4.5). The (read-only)
wakeup mask register indicates the reserved levels (defined in Appendix A):

WM: UNSPECIFIED = cWM;

This register has the same format as WP; bit i corresponds to interrupt level i (see below).

10.4.4.1 Checking for Interrupts

Because interrupts occur only between instructions, wake ups received during the
execution of the current instruction are buffered in the wakeup pending register WP. A
device or controller requesting service from the process assigned to interrupt level i sets
bit i of this register to one. It must do so atomically with respect to reads and writes of this
register performed by other devices and the processor.

WP: UNSPECIFIED;

Before fetching and executing each instruction, the processor calls CheckForlriterrupts,
which invokes the following routine to test for the presence of an interrupt:

InterruptPending: PROCEDURE RETURNS [BOOLEAN] =
BEGIN

RETURN[WP # 0 AND InterruptsEnabled[]];
END;

Implementation Note: For maximum execution speed, the WP # 0 test should always be
done before the InterruptsEnabled[] test, since interrupts are almost always enabled.

The WP register saves only one wakeup request for each interrupt level per instruction
execution, and the check for pending wakeups is made once before the beginning of each
instruction (except for interruptible instructions; see below) by the main loop of the
instruction interpreter (§4.1). A particular implementation of the processor may check for
interrupts more or less often than shown in the description, as long as it meets the
following requirements:

Interrupts must always appear to the programmer to happen between the execution
of two instructions. If a wakeup is noticed after the execution of an instruction has
begun, the processor must be restored to its state at the beginning of the instruction
before the wakeup can be translated into an interrupt; alternately, the processor
may complete the current instruction before processing the wakeup. Certain
instructions with long execution times are interruptible, for example, the block
transfer instructions (§8L They check for pending wake ups during execution and
make special provisions for restart in the event of an interrupt.

10-25

lU

10-26

Processes

The worst case response to the highest-priority interrupt will occur when the
interrupt request is raised in conjunction both with the timeout scan and with an
opcode that requires a long execution time without interrupt checks. To avoid
making response time worse than it must be, opcodes should check for interrupts at
intervals small compared to the timeout scan.

Programming Note: The software must be written to be robust in the face of lost
wakeups. The timeout mechanism described in the next section is designed to assist the
programmer with this requirement.

10.4.4.2 Interrupt Processing

The Interrupt routine translates each pending wakeup into a notify of the condition
associated with that wakeup's interrupt level. Higher interrupt levels are always
processed first. Notice that the interrupt level is independent of the priority of the process
waiting on the condition variable. The level affects only the order in which interrupt
processes with the same priority are moved to the ready queue.

CheckForlnterrupts: PROCEDURE RETURNS [BOOLEAN] =
BEGIN
IF InterruptPending[]

THEN RETURN[lnterrupt[]]
ELSE RETURN(FALSE];

END;

Interrupt: PROCEDURE RETURNS [BOOLEAN] =
BEGIN
mask: UNSPECIFIED ~ 1;
wakeups: UNSPECIFIED;
requeue: BOOLEAN ~ FALSE;
wakeups ~wp; wp ~o;
FOR level: InterruptLevel DECREASING IN InterruptLevel DO

IFAnd(wakeups, mask] # 0 THEN
NotifyWakeup(@POA.interrupt(level].condition] OR

requeue ~ requeue;
mask ~ Shift(mask, 1];
ENOLOOP;

RETURN{requeue];
END;

Implementation Note: The two assignment operations wakeups ~ WP and WP ~ 0 must
be performed atomically with respect to devices that write into the wakeup pending
register.

Both faults and interrupts move a process to the ready queue by performing a variation of
the standard notify operation (§10.2.5). Condition variables in the interrupt vector (and in
the fault vector) make use of an additional bit. It records a wakeup in case no process is
waiting on the condition. This record is necessary because another process (the device, in
this case) can notify the condition without entering the monitor that normally protects a
condition variable. If the device notifies the interrupt process between the time the
process decides to wait on the condition variable (for example, it checks the status and
finds the device busy) and the time the process actually executes the wait instruction, the

. Mesa Processor Principles of Operation 10

notify would be lost. To prevent this, the processor converts a pending wakeup (and a
fault) into a NotifyWakeup, which sets a wakeup bit in the condition variable if no process
is waiting on the condition.

NotifyWakeup: PROCEDURE [c: LONG POINTER TO Condition] RETURNS [BOOLEAN} =
BEGIN
cond: Condition;
requeue: BOOLEAN ~ FALSE;
CleanupCondition[c];
cond ~ Fetch[c]l' ;
IFCond.tail = PsbNlll1 THEN

BEGIN
cond.wakeup ~TRUE;
Store[c]l' ~ cond;
END

ELSE
BEGIN
WakeHead[c];
requeue ~ TRUE;
END;

RETURN[requeue];
END;

The Monitor Wait instructions (§10.2.3) do not wait when the wakeup bit is set.

Programming Note: Since interrupts (and faults) perform a notify rather than a
broadcast, only a single process should be waiting on the conditions in the interrupt vector
and the fault queue.

10.4.4.3 Disabling Interrupts

Generation of interrupts is controlled by the wakeup disable counter woe. It counts the
number of times interrupts have been disabled. The minimum value ofWdcMax is given
in Appendix A.

woe: CARDINAL;
WdcMax: CARDINAL = cWDC;

InterruptsEnabled: PROCEDURE RETURNS [BOOLEAN] =
BEGIN
RETURN[wDe = 0];
END;

Disablelnterrupts: PROCEDURE =
BEGIN
wDC~wDe + 1;
END;

Enablelnterrupts: PROCEDURE =
BEGIN

10-27

10

10-28

. Processes

woe~woe-l;

END;

The instructions shown below allow the programmer to disable and enable interrupts.
They generate a trap if the wakeup disable counter would be incremented or decremented
out of range (§9.5J.

01 Disable Interrupts

EI

01: PROCEDURE =
BEGIN

IFWDC=- WdcMax THEN InterruptError[];
Disablelnterrupts[};
END;

Enable Interrupts

EI: PROCEDURE =
BEGIN

IF woe = 0 THEN InterruptError[];
Enablelnterrupts[];
END;

Programming Note: A counter (rather than a flag) allows the programmer to disable and
enable interrupts without regard to the previous state of the register, provided that the
maximum value of the counter is not exceeded.

10.4.5 Timeouts

A process can be timed out by the processor, so it does not wait indefinitely on a condition
queue. When a process executes a Monitor Wait instruction (§10.2.3), it specifies a time
interval that limits the amount of time the process will spend in the condition queue. If
the process is still on the queue after this interval has elapsed, it will be made ready by the
processor. When the process next executes, it appears to the programmer as if it had
received a notify. Thus, lost notifies will not cause processes to wait forever.

To implement timeouts, each PSB has a timeout field which indicates when its
corresponding process should be timed out. The Monitor Wait instruction (§10.2.3)
generates this value by adding its time interval operand to the current value of the time
(obtained from a processor register; see below). A value of zero indicates that the process
should not be timed out. Unless a process is waiting on a condition queue, its timeout is
always zero; that is, only waiting processes can be timed out.

Timeouts are measured in ticks, where the conversion between ticks and real time is
processor-dependent. A tick is on the order of 40 milliseconds. The upper and lower limits
on the size ofa tick are specified in Appendix A. TimeOutlnterval is the size of the timeout
interval measured in the units of the interval timer IT (§3.3.3).

Ticks: TYPE = CARDINAL;

TimeOutlnterval: LONG CARDINAL;

Mesa Processor Principles of Operation 10

Design Note: The size of the timeout interval should be chosen so that the overhead of
checking for process timeouts is acceptably low. Consider the expected number of
processes in the system and the time required to perform the timeout scan, along with the
minimum and maximum available timeout intervals.

The current value of the time, measured in ticks, is kept in a programmer-accessible
processor register called the process timeout counter. The accuracy of this timer measured
against real time is not specified by the architecture.

PTe: Ticks;

Programming Note: Because the accuracy of the PTe is unspecified, programmers should
use the interval timer IT whenever accurate knowledge of real or elapsed time is necessary.
Moreover, there is no guarantee-that a timeout will occur within the interval specified by
a wait instruction, only that it will occur at approximately that time.

The CheckForTimeouts routine is called by the main loop of the processor (§4.1). It checks
to see if a timeout interval has elapsed by comparing the current value of the interval
timer with its value at the last call (saved in the private global variable time). If
interrupts are enabled and a timeout interval has elapsed, the processor increments the
process timeout counter and calls TimeoutScan to check for PSBS that should be timed out.

time: LONG CARDINAL;

CheckForTimeouts: PROCEDURE RETURNS [BOOLEAN] =
BEGIN
temp: LONG CARDINAL = IT;
IF InterruptsEnabled[]
AND temp - time> = TimeOutlnterval THEN

BEGIN
time~temp; PTC~PTe + 1;

IFPTC = OTHENPTe~PTC + 1;

RETURN[TimeoutScan[]];
END

ELSE RETURN{FALSE];
END;

Programming Note: The Process Timeout Counter does not tick while interrupts are
disabled. If interrupts remain disabled for an extended period, the processor makes no
attempt to timeout processes that should have been notified during that period.

Implementation Note: The implementation need not follow the above algorithm exactly,
as long as it appears to the programmer that a timeout occurs only between instructions,
and that the scan occurs at intervals of approximately one timeout interval. In particular,
the scan may be initiated by an interrupt internal to the processor, rather than by a call
from within the main loop, or the scan can be done in parallel with the processor, as long
as the timeout itself is properly synchronized with instruction execution.

The timeout scan examines the timeout of each process in the timeout vector. Processes
with zero timeouts are ignored. If the timeout is equal to the current value of the process
timeout counter, the timeout is cleared and the process is moved from an unknown

10-29

10

10-.30

Processes

condition queue to the ready queue. At the end of the scan, if any processes have been
made ready, the routine returns TRUE.

TimeoutScan: PROCEDURE RETURNS [BOOLEAN] =
BEGIN
requeue: BOOLEAN Eo- FALSE;
count: CARDINAL = Fetch[@PDA.count] t;
FOR psb: Psblndex IN [StartPsb .. StartPsb + count) DO

timeout: Ticks Eo- Fetch[@PDA.block[psb].timeout] t ;
IF timeout # 0 AND timeout = PTe THEN

BEGIN
flags: PsbFlags Eo- Fetch[@PDA.block[psb1.flags] i;
flags.waiting Eo- FALSE;
Store[@PDA.block[psb].flags] i Eo-flags;
Store[@PDA.block[psb].timeoutj i Eo-O;
Requeue[src: lOOPHOlE[LONG[p]L dst: @poA.ready, psb: psb];
requeue Eo- TRUE;
END;

ENDLOOP;
RETURN [requeue];
END;

Because the condition queue containing the process is unknown, zero is passed as the
source queue to Requeue, which makes special provisions for handling this case (§10.3).

Design Note: It is the programmer's responsibility to ensu.re that the count reflects the
PSBs that should be examined, and that the timeout of any PSB not representing an active
process is set to zero (see §10.1.1).

A-I

A

Values of Constants

Appendix A defines the values of constants referenced in the preceding chapters. Where
applicable, each constant description identifies the section where the constant is defined.

1. Miscellaneous Constants

The stack size defines the maximum number of sixteen-bit words contained in the
evaluation stack. Notice that the stack pointer must represent values in the range [0.c5S]

inclusive (§3.3.2).

(55 Stack Size

c55: CARDINAL = 14;

The minimum size of a state vector is defined by c5V (§9.5.3). It includes enough space for
the control link used by the Load Stack instructions (L5K) and for the longest fault
parameter (§10.4.3). The actual size is processor dependent (§10.4.2.1).

c5V State Vector Size

c5V: CARDINAL = SIZE[StateVector] + MAX[

51ZE[Controi Li nk], 5IZE[FSlndex], 5IZE[LONG POINTER]];

The contents of the wakeup mask register is processor dependent. It records the interrupt
levels reserved for internal use by the processor (§ 10.4.4).

cWM Wakeup Mask -

cWM: CARDINAL;

The maximum value of the wakeup disable counter is processor dependent, but must be
greater than or equal to (WDC (§lO.4.4).

,woe Wakeup Disable Counter

A

A-2

.. Values of Constants

cWDe: CARDINAL = 7;

The minimum and maximum durations of a tick, measured in milliseconds, are given by
the following constants (§1O.4.5).

cTrek Mininum and Maximum Tick Size

cTickMin: CARDINAL = 15;

cTickMax: CARDINAL = 60;

2. Constant Memory Locations

The following constants define the locations of the fixed data structures of the
architecture. Notice that the MDS data structures appear at the same relative location in
each Main Data Space.

To keep it from interfering with the booting process, the Process Data Area is located at
. the beginning of the second bank (§10.1.1).

mPOA Process Data Area

mPDA: LONG CARDINAL = 2000008;

The frame Allocation Vector starts at page one in each Main Data Space (§9.2.1).

mAV Allocation Vector

mAV: CARDINAL = 4008;

The System Data table starts at page two in each Main Data Space (§9.5.1).

msoSystem Data Table

mSD: CARDINAL = 10008;

The ESC Trap table begins at page three in each Main Data Space. It is a maximum of four
pages long (§9.1.3.1).

mETT ESC Trap Table

mETT: CARDINAL = 20008;

3. Fault Queue Indexes

Three of the possible eight entries in the fault vector are used by the processor. The
remaining entries are reserved (§10.4.3).

Mesa Processor Principles of Operation

qFQ Fault Queue Indexes

qFrameFault: CARDINAL = OB; qPageFault: CARDINAL = 1 B;

qWriteProtectFault: CARDINAL = 2B;

4. System Data Table Indexes

A

Fifteen of the possible 192 entries in the System Data table are used by the processor.
Other entries in the range [0 . .37B] are reserved. The remaining entries are available for
use by the software (§9.5.1). See also the KFC8 instruction (§9.4.2).

sSO System Data Table Indexes

s8oot: CARDINAL = 1 B;

sBreakTrap: CARDINAL = OB;

sControlTrap: CARDINAL = 6B;

sDivZeroTrap: CARDINAL = 12B;

sOpcodeTrap: CARDINAL = 5B;

sProcessTrap: CARDINAL = 158;

sStackError: CARDINAL = 2B;

sXferTrap: CARDINAL = 4B;

sBoundsTrap: CARDINAL = 16B;

sCodeTrap: CARDINAL = 7B;

sDlvCheckTrap: CARDINAL = 13B;

slnterruptError: CARDINAL = 14B;

sPointerTrap: CARDINAL = 17B;

sRescheduleError: CARDINAL = 3B;

sUnboundTrap: CARDINAL = 118;

sHardwareError: CARDINAL = lOB;

Design Note: The location of sBoot must be equal to two modulo four, so that the initial
XFER (§4.7) will interpret it as an indirect control link (§9.1.2).

5. Opcode Assignments

The opcode assignments, which are the same for each implementation of the processor, are
under development.

A-3

A Values of Constants

A-4

B

Opcodes

Approximate conventions in opcode names:

initial letter:
J -
L
p-
R-

s
w-

Jump. Conditional and unconditional jump instructions
Load. Simple load oflocal or global variable
Put. Store (simple or indirect) but leave the value on the stack
Read. Indirect load through pointer; if pointer is on stack, replace it with
value.
Store. Simple store oflocal or global variable
rite~ Indirect store through pointer

terminalletter(s):
B - Byte. The next byte is an eight-bit datum
BB - Byte Byte. The next two bytes are a pair of eight-bit data
F - Field. The next two bytes are an eight-bit word offset and two four-bit

numbers indicating position and size of a subword field. When the F is
preceded by a number, that number is the offset and only the pos/size byte
follows.

n - Represents a family of instructions having a range of values for n.
P - Pair. The next byte is a pair offour-bit data
W - Word. The next two bytes are a sixteen-bit datum (high byte first)

other letters:
C- Code.
D - Double. Refers to operations on 32-bit data.
Fe - Function Call.
G - Global.
I - Indirect.
L - Local.
L - Long. Refers to operations using 32-bit pointers.
S- Signed.
S - Stack.
S - String. Involves indexing memory as an array of bytes.
S - Swapped. The "normal" order of data then pointer for Write instructions is

reversed.
U - Unsigned. For 16- and 32-bit unsigned comparisons.

B-1

B

B-2

Opcodes

Description conventions:

Data val-uesa-nd pointers are sixteen-bit unless identified as 32-bit. When the potential
for confusion exists, both 16- and 32~bit quantities: are noted. All sixteen~bit pointers are
MDSrelativ~.

The first operand byte is called alpha, and the second is called beta. In the case of
subdivided bytes, the nibbles are called alpha.left and alpha. right (or beta.left and
beta.right). If two operand bytes are considered as a sixteen-bit quantity, it is called
alphabeta and is equal toalpha*256+ beta. Sign-extended operand bytes are sxalpha and
sxbeta. The high and low bytes of sixteen-bit data are called data. high and data.1ow.

L is the address of the current local frame; G is the address of the current global frame; C
is the address of the current code segment. Land G are sixteen-bit MDS relati ve pointers.

In the unobvious cases, stack content at the beginning of the instruction will be given as
"Stack has x, y, z." in bottom to top order. 32-bit quantities are stored in the stack with the
least significant word on the bottom; in memory the least significant word is stored in the
lower address.

lln load local n (n == 0 .. 11)

Load from location L + n.
llB Load Local Byte

Load from location L + alpha.
LLDn Load Local Double n (n == 0 .. 8, 10)

Load from locations L + nand L + n + 1.
LLDB Load local Double Byte

Load from locations L + alpha and L + alpha + 1.
SLn Store Local n (n = 0 .. 10)

Store into L + n
SLB Store Local Byte

Store into L + alpha.
SLDn Store Local Double n (n = 0 .. 6,8)

Store into L + n + land L + n.
PLn Put Local nCn = 0 .. 3)

Stack has data. Store data into L + n; leave data on stack.
PLB Put Local Byte

Stack has data. Store data into L+alpha; leave data on stack.
PLDn Put Local Double n (n = 0)

Stack has 32-bit data. Store data into locations L + nand L + n + 1; leave data on
stack.

PLDB Put Local Double Byte
Stack has 32-bit data. Store data into locations L+alpha and L+alpha+1; leave
data on stack.

LGn Load Global n (n == 0 .. 2)

Load from G+ n.
LGB Load Global Byte

Load from G+alpha.
LGDn Load Global Double n (n = 0,2)

Load from locations G+ nand G+ n + 1.
LGDB Load Global Double Byte

Load from locations G + alpha and G+ alpha + 1.

Mesa Processor Principles of Operation B

SGB Store Global Byte
Store intoG+alpha.

BNDCK Bounds Check
Stack-has value, limit. IF value -IN [O . .limit) THEN trap ELSE discard limit.

BRK Breakpoint
IF resuming from debugger THEN execute broken opcode ELSE trap.

Rn Read n (n = 0 .. 1)
Stack has pointer. Load from pointer + n.

RB Read Byte
Stack has pointer.; Load from pointer + alpha.

Rln Read long n (n = 0)
Stack has 32-bit pointer. Load from pointer + n.

RlB Read long Byte
Stack has 32-bit pointer. Load from pointer + alpha.

ROn Read Double n (n = 0)
Stack has pointer. Load from pointer + nand pointer + n + 1.

ROB Read Double Byte
Stack has pointer. Load from locations pointer + alpha and pointer + alpha + 1.

RDln Read Double long n (n = 0)
Stack has 32-bit pointer. Load from pointer + n and pointer + n + 1.

RDlB Read Double Long Byte
Stack has 32-bit·pointer. Load from pointer + alpha and pointer + alpha + 1.

Wn Write n (n = 0)
Stack has data, pointer. Store data into pointer + n.

WB Write Byte
Stack has data, pointer. Store data into pointer + alpha.

PSB Put Swapped Byte
Stack has pointer, data. Store data into pointer + alpha; leave pointer on stack (but
not datal.

WlB Write Long Byte
Stack has data, 32-bit pointer. Store data into pointer + alpha.

PSlB Put Swapped Long Byte
Stack has 32-bit pointer, data. Store data into pointer + alpha; leave pointer on
stack (but not data).

WDB Write Double Byte
Stack has 32-bit data, pointer. Store data into pointer + alpha and
pointer + alpha + 1.

PSDn Put Swapped Double n (n = 0)
Stack has pointer, 32-bit data. Store data into pointer+n and pointer+n+ l;leave
pointer on stack (but not data).

PSDB Put Swapped Double Byte
Stack has pointer, 32-bit data. Store data into pointer + alpha and
pointer + alpha + 1; leave pointer on stack (but not data).

WDlB Write Double long Byte
Stack has 32-bit pointer, 32-bit data. Store data into pointer + alpha and
pointer + alpha + 1.

PSDlB Put Swapped Double Long Byte
Stack has 32-bit pointer, 32-bit data. Store data into pointer + alpha and
pointer + alpha + 1; leave pointer on stack (but not data).

RLlOn Read Local Indirect Zero n (n = 0 .. 3)
Pointer is in L + O. Load from pointer + n.

B-3

B

B-4

Opcodes

RliP Read local Indirect Pair
Pointer is in L + alpha.left. Lead fr-om pointer + alpha.right.

RlilP Read local Indirect long Pair
32-bit pointer is: in L+ alpha.left and L + alpha.left + 1.
pointer + alpha.right.

RLDlOn Read local Double Indirect Zero n (n = 0)

Load from

32-bit pointer is in L + 0 and L + I. Load from pointer + n and pointer + n + I.
RLDIP Read local Double Indirect Pair

Pointer is in L + alpha.left. Load from pointer + alpha. right and L + alpha. right + 1.
RlDllP Read local Double Indirect long Pair

32-bit pointer is in L + alpha.left and L. + alpha.left + 1. Load from
pointer + alpha. right and L + alpha:right + I.

RGIP Read Global Indirect Pair
Pointer is in G+ alpha.left. Load from pointer + alpha.right.

RGILP Read Global Indirect long Pair
32-bit pointer is in G+alpha.left and G+alpha.left+1. Load from
po in ter + alpha. righ t.

WliP Write local Indirect Pair
Pointer is in L + alpha.left. Store into pointer + alpha.right.

WLILP Write local Indirect long Pair
32-bit pointer is In L + alpha.left and L + alpha.1eft + 1. Store into
pointer + alpha.fight.

WlDILP Write local Double Indirect long Pair
S.tack has 32-bit data. 32-bit pointer is in L + alpha.left and L + alpha.left + I.Store
data into pointer + alpha. right and pointer + alpha. right + I.

RS Read Stri ng
Stack has pointer, index. Fetch word from pointer + (indexJ2); IF index MOD 2 = 0
THEN push wordl256 ELSE push word MOD 256.

RLS Read long String
Stack has 32-bit pointer, index. Fetch word from pointer + (indexl2); IF index MOD
2 = 0 THEN push word. high ELSE push word.low.

WS Write String
Stack has data, pointer, index. Fetch word from pointer + (indexJ2); IF index MOD 2
= 0 THEN word. high ~ data ELSE word.low ~ data; Store word at
pointer+ (indexJ2).

WLS Write long String
Stack has data, 32-bit pointer, index. Fetch word from pointer + (indexJ2); IF index
MOD 2 = 0 THEN word.high ~ data ELSE word.low ~ data; Store word at
pointer + (indexJ2).

ROF Read Zero Field
Stack has pointer. Fetch word from pointer + 0; push subword described by alpha.

RF Read Field
Stack has pointer. Fetch word from pointer + alpha; push subword described by
beta.

RLOF Read long Zero Field
Stack has 32-bit pointer. Fetch word from pointer + 0; push subword described by
alpha.

RlF Read long Field
Stack has 32-bit pointer. Fetch word from pointer + alpha; push subword described
by beta.

Mesa Processor Principles of Operation B
«

RLFS Read Long Field Stack
Stack has 32-bit pointer, fieldDesc; Fetch werd from pointer + fieldDesc.high; push

.. subword described by fieldDesc.1ow.
RltPF Read Local Indirect Pair Field

Pointer is in L+alpha.left.Fetch word. from pointer+alpha.right; push subword
described by beta.

RLlLPF Read Local Indirect Long Pair Field
32-bit pointer is in L + alpha.left. Fetch word from pointer + alpha. right; push
subword described by beta. .

WOF Write Zero Field
Stack has data, pointer. Fetch word from pointer + 0; put data in subword described
by alpha; store word to pointer + o.

WF Write Field
Stack has data, pointer. Fetch word from pointer+alpha; put data in subword
described by beta; store word to pointer + alpha.

PSF Put Swapped Field
Stack has pointer, data. Fetch word from pointer + alpha; put data in sub word
described by beta; store word to pointer+alpha; leave pointer on stack (but not
data).

PSOF Put Swapped Zero Field
Stack has pointer, data. Fetch word from pointer + 0; put data in subword described
by alpha; store word to pointer + 0; leave pointer on stack (but not data).

WSOF Write Swapped Zero field
Stack has pointer, data. Fetch word from pointer+O; put data in subword described
by alpha; store word to pointer + O.

WLOF Write Long Zero Field
Stack has data, 32-bit pointer. Fetch word from pointer + 0; put data in subword
described by alpha; store word to pointer + O.

WLF Write Long Field
Stack has data, 32-bit pointer. Fetch word from pointer + alpha; put data in
subword described by beta; store word to pointer + alpha.

PSLF Put Swapped Long Field
Stack has 32-bit pointer, data. Fetch word from pointer + alpha; put data in
sub word described by beta; store word to pointer + alpha; leave pointer on stack (but
not data).

WLFS Write Long Field Stack
Stack has data, 32-bit pointer, fieldDesc. Fetch word from pointer + fieldDesc.high;
put data in subword described by fieldDesc.low; store word to pointer + alpha.

SLOB Store Local Double Byte
Store into L + alpha.

SGDB Store Global Byte
Store into G+alpha.

LLKB Load Link Byte
Fetch from G-2 and test link location bit.
o = > Load from G-6-(2*alpha) and G-6-(2*alpha) + 1
1 = > Load from C-2-(2*alphal and C-2-(2*alpha) + l.

RKIB Read Link Indirect Byte
Fetch 32-bit pointer as described in LLKB; load from pointer + O.

RKDIB Read Link Double Indirect Byte
Fetch 32-bit pointer as described in LLKB; load from pointer + 0 and pointer + l.

LKB Link Byte
Recover word from above the top of stack; store word-alpha in L + O.

B-5

H

B-6

Opcodes

SHIFT Shift
Stack has data, count. Shift data by count bits; left if count is positive; r~ght if count
is negative.

SHIFTSB Shift Signed Byte
Stack has data. Shift data by sign-extended alpha; left if positive; right if negative.

CATCH Catch
Two byte noop used by Mesa runtime system.

In Jump n (n = 2 .. 8)
Unconditional jump. New PC is PC + n.

JB Jump Byte
Unconditional jump. New PC is PC + sxalpha.

JW Jump Word
Unconditional jump: New PC is PC + alphabeta.

JEP Jump Equal Pair
Stack has data. IF data = alpha.left THEN new PC is PC + alpha.right + 2.

JEB Jump Equal Byte
Stack has datal, data2. IF datal = data2 THEN new PC is PC + sxalpha.
JEBB Jump Equal Byte Byte

Stack has data. IF data = alpha THEN new PC is PC + sxbeta.
JNEP Jump Not Equal Pair

Stack has data. IF data # alpha.left THEN new PC is PC + alpha. right + 2.
JNEB Jump Not Equal Byte

Stack has datal, data2. IF datal # data2 THEN new PC is PC + sxalpha.
JNEBB Jump Not Equal Byte Byte

Stack has data. IF data # alpha THEN new PC is PC + sxbeta.
JlB Jump less Byte

Stack has datal, data2. IF datal < data2 (signed) THEN new PC is PC + sxalpha.
JGEB Jump Greater Equal Byte

Stack has datal, data2. IF datal > = data2 (signed) THEN new PC is
PC + sxalpha.

JGB Jump Greater Byte
Stack has datal, data2. IF datal> data2 (signed) THEN new PC is PC + sxalpha.

JlEB Jump less Equal Byte
Stack has datal, data2. IF datal < = data2 (signed) THEN new PC is
PC + sxal pha.

JUlB Jump Unsigned less Byte
Stack has datal, data2. IF datal < data2 (unsigned) THEN new PC is
PC + sxalpha.

JUGEB Jump Unsigned Greater Equal Byte
Stack has datal, data2. IF datal > = data2 (unsigned) THEN new PC is
PC + sxalpha.

JUGB Jump Unsigned Greater Byte
Stack has datal, data2. IF datal > data2 (unsigned) THEN new PC is
PC + sxalpha.

JULES Jump Unsigned less Equal Byte
Stack has datal, data2. IF datal < = data2 (unsigned) THEN new PC is
PC+sxalpha.

JZn Jump Zero n (n = 3 .. 4)

Stack has data. IF data = 0 THEN new PC is PC + n.
JZB Jump Zero Byte

Stack has data. IF data = 0 THEN new PC is PC + sxalpha.

Mesa Processor Principles of Operation B

JNZn Jump Not Zero n (n = 3 .. 4)
Stack has data. IF data # 0 THEN new PC is PC + n.

JNZB Jump Not Zero Byte
Stack has data. IF data # OTHEN new PC is PC + sxalpha.

JDEB -_. Jump Double Equal
Stack has 32-bit datal,· 32-bit data2. IF datal = data2 THEN new PC is
PC + sxalpha.

JONEB Jump Double Not Equal
Stack has 32-bit datal, 32-bit data2. IF datal # data2 THEN new PC is
PC + sxalpha.

JIB Jump Indexed Byte
Stack has index, limit. IF index < . limit THEN { fetch disp from
C+alphabeta+(indexl2); new PC is PC + IF index MOD 2 = 0 THEN disp.high
ELSE disp.low}.

JIW Jump Indexed Word
Stack has index, limit. IF index < limit THEN { fetch disp from
C + alphabeta + index; new PC is PC + disp}.

REC Recover
Recover- the value above the top of stack, i.e. increment the stack pointer without
changing any stack values.

REC2 Recover 2
Recover the two· values above the top of stack, i.e. increment the stack pointer by
two without changing any stack values.

DIS Discard
Discard the top value on the stack, i.e. decrement the stack pointer.

DIS2 Discard 2
Discard the toptWQ values on the stack, i.e. decrement the stack pointer by two.

EXCH Exchange
Interchange the top two values on the stack.

DEXCH Double Exchange
Interchange the top two 32-bit values on the stack.

DUP Duplicate
Duplicate the top value on the stack.

DDUP Double Duplicate
Duplicate the top 32-bit value on the stack.

EXDIS Exchange Discard
Equivalent to the sequence EXCH; DIS.

NEG Negate
Stack has data. Push O-data.

INC Increment
Stack has data. Push data + 1.

DEC Decrement
Stack has data. Push data-I.

DINC Double Increment
Stack has 32-bit data. Push data + 1

DBL Double
Stack has data. Push data *2.

DDBl Double Double
Stack has 32-bit data. Push data*2.

TRPL Triple
Stack has data. Push data*3.

8-7

B

B-8

Opcodes

AND And
Stack has datal, data2. Push datal AND data2.

lOR tnclusive Or
Stack has datal, data2. Push datal OR data2.

-ADDSB- -Add- Signed Byte
Stack has data. Push data + sxalpha.

ADD Add
Stack has datal, data2. Push datal + data2.

SUB Subtract
Stack has datal, data2. Push datal-data2.

DADO Double Add
Stack has 32-bit datal, 32-bit data2. Push datal+ data2.

DSUB Double Subtract
Stack has 32-bit datal, 32-bit data2. Push datal-data2.

ADC Add Double to Cardinal
Stack has 32-bit datal, 16-bit data2. Push datal +data2.

ACD Add Cardinal to Double
Stack has l6-bit datal, 32-bit data2. Push datal +data2.

ALOIB Add Local Zero Immediate Byte
Fetch data from L + 0; Push data + alpha.

MUL Multiply
Stack has datal·, data2. Push the 32-bit value datal *data2 then decrement the
stack pointer. The effect is to leave the 16-bit product on the stack and the high 16
bits of the product above the stack.

DCMP Double Compare
Stack has 32-bit datal, 32-bit data2. Compare datal and data2 (signed) and push-l
if datal < data2; 0 if datal = data2; + 1 if datal> data2.

UDCMP Unsigned Double Comp~re
Stack has 32-bit datal, 32-bit data2. Compare datal and data2 (unsigned) and push
-1 if datal < data2; 0 if datal = data2; + 1 if datal> data2.

LIn Load Immediate n (n = 0 .. 10)
Pushn.

L1N1 Load Immediate Negative 1
Push -1.

LINI Load Immediate Negative Infinity
Push -32768.

LIB Load Immediate Byte
Push alpha.

LIW Load Immediate Word
Push alphabeta.

LINB Load Immediate Negative Byte
Push alpha-256. (I.e. set the high byte to all ones).

LIHB Load Immediate High Byte.
Push alpha*256.

LIDO Load Immediate Double 0
Push two words of zero.

LAn Local Address n (n = 0 .. 3,6,8)
Push l6-bit value L + n (not the contents of).

LAB Local Address Byte
Push I6-bit value L + alpha.

LAW Local Address Word
Push I6-bit value L + alphabeta

·Mesa Processor Principles of Operation

GAn Global Address n (n =0 .. 1)
Push IS-bit value G+n.

GAB Global.Address Byte
. Push IS-bit value G+alpha.

GAW Global Address Word
Push IS-bit value G+ alphabeta.

EFCn External Fundion Call" (n = 0 .. 12)
Fetch link n as described in LLKB andXFER to it.

EFCB ' External Fundion Call Byte
Fetch link alpha as described in LLKB and XFER to it.

LFC Local Function Call
00 the last half of XFER (frame allocation and set new PC) using alphabeta as the
PC of the new procedure.

SFC Stack Function Call
Stack has 32-bit controlLink. XFER to controlLink.

RET Return
Fetch return Link from L-l; XFER to return Link with a source of zero.

KFCB Kernel Function Call Byte
Fetch link from SO(alpha] and XFER to it.

ME Monitor Enter
Stack has 32-bit pointer 'to monitor lock. IF the monitor is unlocked THEN lock it
ELSE enqueue current process on monitor queue and reschedule.

MX Monitor Exit
Stack has 32-bit pointer to monitor lock. Unlock the monitor; IF the queue is not
empty, wake up the first waiting process and reschedule.

Bl T Block Transfer
Stack has sourcePointer, count, destPointer. "Transfer count words beginning at
source Pointer to locations beginning at destPointer. This instruction is
interruptable; if interrupted it leaves updated values on the stack and the
isntruction is restarted after the interrupt with this new data.

Bl TL Block Transfer Long
Stack has 32-bit sourcePointer, IS-bit count, 32-bit destPointer. See BLT for
remainder of description.

BL TC Block Transfer Code
Stack has I6-bit offset, count, destPointer. sourcePointer is C + offset; see BLT.

Bl TCl Block Transfer Code Long
Stack has IS-bit offset, count, 32-bit destPointer. sourcePointer is C + offset; see
BLT.

LP Lengthen Pointer
Stack has pointer .. IF pointer = 0 THEN push 0 ELSE push MOS.

ESC Escape
Use alpha for a secondary opcode dispatch (see below). This instruction is always
exactly two bytes long. Unimplemented instructions trap through the
ESCTrapTable.

ESCL Escape Long
Like ESC except this instruction is always exactly three bytes long.

RESRVD Reserved
Opcodes 0 and 255 are reserved for implementation dependent uses, e.g. one
implementation implemented interrupts by forcing the next opcode dispatch to go to
opcode 0 and sorting out the state there. These codes are never generated by the
compiler and should not be assigned any programmer accessible function.

B-9

B

B-IO

Opcodes

Escape opcode alpha bytes:

There are two Escape opcodes, ESC and ESCL. These decode their alpha bytes from a
single eight-bit address space. The sole purpose of having two different instructions is so
that all Mesa opcodes have one fixed length. This permits (relatively) simple hardware to
pre-fetch and pre-decode instructions based only on their first byte. In the list below, codes
beginning with "a" are used exclusively with ESC to form a two-byte opcode.. Codes
beginning with "b" are used exclusively with ESCL (and the following beta byte) to form a
three-byte opcode.

aMW Monitor Wait
Stack has 32-bit monitor Pointer, 32-bit conditionPointer, I6-bit timeout. Unlock
monitor (and wakeup waiting process if any); enqueue current process on condition
with timeout value; reschedule. Exceptions: IF condition has wakeup waiting OR
process has been aborted THEN current process continues to run.

aMR Monitor Reenter
Stack has 32-bit monitorPointer, 32-bit conditionPointer. IF monitor locked THEN
enqueue on monitor queue and reschedule ELSE {test for aborting and trap if

- appropriate; lock monitor and proceed}.
aNC Notify Condition

Stack has 32-bit conditionPointer. Wakeup the first process on the condition queue
and reschedule if awakened.

aBC Broadcast Condition
Wakeup all process on the condition queue and reschedule if any awakened.

aREQ Requeue
Stack has 32-bit queuePointerl, 32-bit queuePointer2, I6-bit process. Dequeue
process from queuel and enqueue it on queue2. IF either queue was the ready list
THEN reschedule.

aSM Set Map
Stack has 32~bit virtualPage, 32-bit realPage, flags. Set up the indicated virtual to
real mapping.

aSMF Set Map Flags
Stack has 32-bit virtualPage, flags. Set the flags in the indicated map entry.

aGMF Get Map Flags
Stack has 32-bit virtualPage. Push the flags of the indicated virtual page.

aAF Allocate Frame
Stack has index. Allocate a frame from the indicated list (as in a procedure call) and
push the 16-bit address ofthe frame.

aFF Free Frame
Stack has pointer. Fetch index from pointer-3 and link the frame onto the indicated
list.

aPI Port In
Recover source and portAddress from above stack. Store 32-bit zero at
portAddress + 0; IF source # 0 THEN extend it with a high order zero and store at
portAddress + 2 and portAddress + 3.

aPO Port Out
Stack has portAddress. Store L at portAddress + 0; fetch link from portAddress + 2
and portAdress + 3 and XFER to it with a source of portAddress.

aPOR Port Out Responding
Identical to Port Out. The distinction between the two is used by a trap handler to
decide how to recover from port faults.

.Mesa Processor Principles of Operation B

aSPP Set Process Priority
Stack has priority. Dequeue current process from ready queue; change its priority;
enqueue process on ready queue and reschedule.

aDI Disable Interrupts
Increment the WakeupDisableCounter thus disabling any interrupt processing and
process timeouts. Trap if the counter overflows.

aEI Enable Interrupts
Decrement the WakeupDisableCounter; if the new value is zero, interrupts are now
enabled. Trap if the counter underflows.

aXOR Exclusive Or
Stack has datal, data2. Push datal XOR data2.

aDAND Double And
Stack has 32-bit datal, 32-bit data2. Push datal AND data2.

aDIOR Double Inclusive Or
Stack has 32-bit datal, 32-bit data2. Push datal OR data2.

aDXOR Double Exclusive Or
Stack has 32-bit datal, 32-bit data2. Push datal XOR data2.

aROTATE Rotate
Stack has data, count. Rotate data by count MOD 16 bits; left if count is positive;
right if count is negative.

aDSHIFT Double Shift
Stack has 32-bit.data, count. Shift data by count bits; left if count is positive; right
if count is negative.

aUNT Lengthen Integer
Stack has data. Sign extend data from 16 to 32 bits.

aJS Jump Stack
Stack has newpc. Unconditional jump to newpc (relative to C as all pc values are).

aRCFS Read Code Field Stack
Stack has offset, fieldDesc. Fetch word from C + offset + fieldDesc.high; push
sub word described by fieldDesc.low.

bRC Read Code
Stack has offset. Load from C + offset.

aUDIV Unsigned Divide
Stack has datal, data2. Push quotient and remainder from datalldata2; decrement
the stack pointer so as to leave the remainder above the stack.

alUDIV Long Unsigned Divide (should be Double, not Long)
Stack has 32-bit datal, 16- bit data2. Push quotient and remainder from
datalldata2; decrement the stack pointer so as to leave the remainder above the
stack. Trap if the quotient will not fit in 16 bits.

bROS Read Overhead Byte
Stack has pointer. Load from pointer-beta. All access to local and global frame
overhead is done through this instruction (and a WOB) so that the processor could
cache this data.

bWOB Write Overhead Byte
Stack has data, pointer. Store data at pointer-beta. All access to local and global
frame overhead is done through this instruction (and aRaB) so that the processor
could cache this data.

bDSK Dump Stack
Dump the evaluation stack and stack pointer starting at L + beta. No more than
two values above the top of stack need be stored.

bXE Xfer and Enable
XFER using destination stored at L + beta and L + beta + 1 and source stored at

B-11

B

B-12

Opcodes

L+beta+2 and L+beta+3; at the end of the XFER, decrement the
WakeupDisableCounter .

. ' bXF . Xfer and Free
XFER using destination stored' at L + beta and L+ beta + I and source stored at
L + beta + 2 and L + beta + 3; at the end of the XFER, free the current local frame.

bLSK Load Stack
Load the evaluation stack and stack pointer from locations starting at L + beta. No
more than two values above the top of stack need be loaded.

aBNOCKL Bounds Check Long
Stack has 32-bit value, 32-bit limit. IF value -IN [O . .limit) THEN trap ELSE
discard limit.

aNILCK Nil Check
Stack has pointer. IF pointer == 0 THEN trap ELSE leave pointer on stack.

aNllCKl NIL Check long
Stack has 32-bit pointer. IF pointer = 0 THEN trap ELSE leave pointer on stack.

aBl TlR Block Transfer Long Reverse
Stack has 32-bit source Pointer, IS-bit count, 32-bit destPointer. Working
backwards through memory, transfer count words beginning at
sourcePointer + count-I to locations beginning at destPointer + count-l. This
instruction is interruptable; ifinterrupted it leaves updated values on the stack and
the isntruction is restarted after the interrupt with this new data.

aBlEl Block Equal Long
Stack has 32-bit pointerl, IS-bit count, 32-bit pointer2. Compare count words
beginning at pointerl and pointer2; push 1 if all words are equal; 0 otherwise. This
instruction is interruptable like BLT.

aBlECL Block Equal Code Long
Stack has IS-bit offset,' IS-bit count, 32-bit pointer2. Like BLEL with pointerl =
C+offset.

aCKSUM Checksum
Computes the XNS protocol checksum of a block of words. Interruptable.

aBITBl T Bit Block Transfer
Stack has pointer to parameters record. Performs many operations on rectangular
areas in memory. Used mostly in conjunction with bitmap display data. Known in
some quarters as RasterOp.

aTXTBL T Test Block Transfer
Stack has pointer to parameters record. Specialized code for measuring and
displaying textual data in bitmapped display memory.

aBYTBL T Byte Block Transfer
Stack has 32-bit destPointer, destIndex, count, 32-bit sourcepointer, sourcelndex.
Like BLT except operates on byte sequences with potentially different alignments.

aBYTBL TR Byte Block Transfer Reverse
Stack has 32-bit destPointer, destlndex, count, 32-bit source pointer, sourcelndex.
Like BYTBLT except operates on byte sequences from high to low addresses.

aVERSION Version
Returns processor dependent data about the type of processor and the version of
microcode.

aOMUL Double Multiply
Stack has 32-bit datal, 32-bit data2. Push 32-bit product datal *data2; overflow is
ignored.

aSDIV Signed Divide
Stack has 32-bit datal, 32-bit data2. Push quotient and remainder from

Mesa Processor Principles of Operation B

datalldata2; decrement the stack pointer so as to leave the remainder above the
stack.

aSDDlV' Signed Double Divide
Stack has 32-bit datal, 32-bit data2. Push quotient and remainder from
datalldata2; decrement the stack pointer by 2 so as to leave the remainder above
the stack. -

aUDDIV Unsignedigned Double Divide
Stack has 32-bit datal, 32-bit data2. Push quotient and remainder from
datalldata2; decrement the stack pointer by 2 so as to leave the remainder above
the stack.

-- Floating Point (IEEE standard format, 32-bit only)

aFADD Floating Add
aFSUB Floating Subtract
aFMUL Floating Multiply
aFDIV Floating Divide
aFCOMP Floating Compare

Returns -1,0, + llike DCMP.
aFIX Fix

Returns 32-bit integer
aFLOAT Float

Takes 32-bit integer.
aFIXI Fix to Integer

Returns I6-bit integer.
aFIXC Fix to Cardinal

Returns I6-bit unsigned number.
aFSTICKY Floating Sticky Flags

Sets floating point sticky flags, returns old value.
aFREM Floating Remainder

Returns the fractional part of a quotient.
aROUND Round·

Rounds operand to 32-bit integer.
aROUNDI Round to Integer

Rounds to I6-bit integer.
aROUNDC Round toCardinal

Rounds to I6-bit unsigned number.
aFSQRT Floating Square Root
aFSC Floating Scale

-- Cedar collector and allocator

aRECLAIMREF
aALTERCOUNT
aRESETSTKBITS
aGCSETUP
a144
aENUMERATERECLAIMABLE
a146
aCREATEREF
a150
aREFTYPE
aCANONICALREFTYPE
aALLOCQUANTIZED
aALLOCHEAP

B-I3

B

B-14

Opcodes

aFREEOBJECT
aFREEQUANTIZED
aFREEPREFIXED

-- Read I Write Registers
aWRPSB Write Register PSB

Set the id of the current process.
aWRMDS Write Register MDS

Set the current value ofMDS.
aWRWP Write Register Wakeups Pending

Bit mask of interrupts not yet processed.
aWRWDC Write Register Wakeup Disable Counter

Controls the taking of interrupts.
aWRPTC Write Register Process Tick Counter

The counter which controls process timeouts.
aWRIT Write Register Interval Timer

The high resolution (1-100 microseconds).
aWRXTS Write Register Xfer Trap Status

Governs the taking of a trap on evry XFER.
aWRMP Write Register Maintenance Panel

Four digit decimal LED display.
aRRPSB
aRRMDS
aRRWP
aRRWDC
aRRPTC
aRRIT
aRRXTS

-- Processor Dependent Instructions

alNPUT I/O Input
Stack has IS-bit IIO register number. Returns IS-bit data.

aOUTPUT 1/0 Output
Stack has 16-bit 1/0 register number, IS-bit data.

aLOADRAMJ Load Control Store and Jump
Overwrite your own control store and execute the new code.

-- Dandelion Instructions

aBANDBLT Band Block Transfer
Specialized code for printers.

#,2-2
*,2-3
+,2-2
·,2-2
<,2-3
< =,2-3
=,2-2
>,2-3
>=,2-3
t, 1-7,3-3,3-6

Mesa Code Index

Abort, 1-8,3-4,3-6,4-1,4-8,9-6,9-22,
10-20,10-21,10-23

abort, 9-20,10·6,10-10
abortable, 10·6, 10·6
Alloc,.g-4, 9-6, 9-8, 9-11
AllocationVector, 3-12, 9·4
AllocState, 10-20, 10·22
alpha, 4-2, 4-3, 6-3, 7-5, 9-12
And, 2-2, 2-3, 5-2, 5-6, 7-17,10-26
ArithShift, 2-2, 2-3
AV, 3-12,9-4
available, 1·8
AVFrame, 9-4
AVltem, 9·4
AVLink, 9·6
beta, 4·2, 4-3
BIT,2·2

Bit, 8-16, 8·21B
BitAddress, 8·8, 8-21
BitBltArg, 8·9
BitBltFlags, 8-9
BitBltltem, 8·14
BLOCK, 2-2

blocks, 10-3
BootArea, 3·7, 3-9, 4-7
BootData, 3·7
BoundsTrap, 5-4, 9·20
break, 4·4,4-8,9-25
BreakTrap, 9-20, 9-25

Broadcast, 10·12
Bump, 8·8, 8-21
BusyWait, 10-19
BYTE,2-2

BytePair, 2-2
Call, 9-12
CARDINAL, 1-8,2·4,2-4,2-5,2-6
CB, 3-9, 3-10, 3·17, 3-24, 4-3, 6-7, 8~3,

8-5,9-3
CheckForlnterrupts, 4-1,10-25,10·26
CheckForTimeouts, 4-1,10·29
CheckForXferTraps, 9·26
Checksum, 8·4
cleanup, 10·5, 10-17
CleanupCondition, 10-10, 10-14, 10·16,

10-27
codebase, 3·13, 3-17
codelinks, 3·13
CodeSegment, 3·9, 3-17
CodeTri3P, 9-8, 9-11, 9·20
ComputeDirection, 8·15
Condition, 10·6, 10-24
context, 10·5, 10-20, 10-23
Control Li nk, 9·2
ControlLinkType, 9·2, 9-8
Control Trap, 9-9, 9-14, 9-20
coord,8·19
count, 10-3, 10-3
c55,11·1
c5V, 9-23, U-1
cTickMax, 11-2
cTickMin, 11-2
cWDC, 10-27, 11·1
cWM, 10-25,11-1
data, 9-2
Dequeue, 10-14, 10-14, 10-16
Direction, 8·11
direction, 8·10, 8-11, 8-16
dirty, 3-2, 3-4, 3-10, 9-10,10-4

Me-1

MC-2

Mesa Code Index

Disablelnterrupts, 10·27
Discard; 3·20, 5·2, 5-10,5-11,9-10
disjoint, 8·10, 8-11
disjointltems, 8·10, 8-11
Dispatch, 4·4, 9-25
display, 8·16
DisplayChar, 8·21
DisplayWidth, 8-16, 8·22
DivCheckTrap, 5-11, 9·20
DivZeroTrap, 5-10, 5-11
dst,8·9, 10-15
dstBpl,S·9
DstFunc,8·10
dstEunc, 8·10
empty, 9·4, 9-6
EmptyState, 10-19, 10·22
ENABLE, 10-20
Enqueue, 10-14, 10·15
EnterFailed, 10·7,10-11
ERROR, 1·9,7-17,8-14,8-21,10-14,10-20
EscOpcodeTrap, 4-4, 9·20
EscTrapTable, 3-12, 9·19
ETT,3-12
ETT, 9·19, 9-20
Execute, 4-1,4·4,4-6
Exit, 10·9
failed, 10-5
Fault, 10-18, 10-23
fault, 10·3, 10-23
Faultlndex, 10·23
FaultOne, 10-23
FaultQueue, 10·23
FaultTwo, 10-23, 10-24
FaultVector, 10-23
F_etch, 3·6, 3-6, 3-11
FetchBitBltArg,8-15
FetchByte, 7·15, 8-6
FetchChar, 8-21
FetchMds, 3-11
FetchPda, 10·4
FetchTxtBltArg, 8-21
FieldDesc, 7·17, 7-18
FieldSpec, 7·16, 7-18, 8-8
Flags, 8·17
flags, 8·9
FlagsArray, 8·17
Font, 8·16
font, S·18, 8-22
FontHandle, 8-16, 8·17
FontRecord,8-16,8·17
fontRecordAlignment, 8·17
format, 8·16
frame, 9·4, 9-6, 9·9
FrameFault, 9-6, 10·24
FrameLink,9·2
Free, 9-4, 9-6, 9-10

free, 9·8, 9-10, 9-12
FreeState, 10-21, 10·22
fsi, 9-6,10-24
FSlndex, 9-4, 10-24

.. Function, S·10, 8·16
function, 8·18
GetCodeByte, 3-18, 4·2, 5-5
GetCodeWord,4·3
GetMapFlags, 3·5
GF, 3·17, 3-24, 4-3, 9-3
GlobalBase, 3·14,3-17
GlobalFrameBase, 3·13
GlobalFrameHandle, 3·13, 3-17,9-20
globallink, 3·14, 3-17
GlobaIOverhead,3·14
GlobalVariables, 3·13
GlobaIWord,3·13
gray, 8·10
GrayParm, 8·12
Handle, 10-4
HardwareError, 9·21
header, 10-2
height, 8-9, 8-16
heightMinusOne, 8·12
HighByte, 2-2,2-6
HighHalf, 2-5, 10-4, 10-23
Index, 10-4, 10-13
indirect, 9-4,9-6
IndirectLink,9·3
Initialize, 4-7, 4·8
inport,9·14
INTEGER, 1-7,1-8,2-4,2-4,2-5,2-6,8-14
Interrupt, 10-18,10·26
interrupt, 10·3
InterruptError, 9·20
Interruptltem, 10-24
InterruptLevel, 10-24, 10-26
InterruptPending, 8-1, 8-14,10·25,

10-26
InterruptsEnabled, 10-19-, 10-25, 10-27,

10-29
InterruptVector, 10-24
IOArea, 3-7, 4-7
IOData, 3·7
IT, 3·21, 3-24
last, 8·18
leftKern, 8·18
lengthenPdaPtr, 10·3, 10-22
LengthenPointer, 3·11
Lf, 3-17, 3-24, 4-3, 4-7, 9-3, 9-8, 10-19
LinkType, 9-2
LoadProcess, 1-9, 10-20, 10·21
LoadStack, 9·24, 10-20, 10-21
LocaIBase,3·15,3-17
LocaIFrameBase,3-15
localFrameHandle, 3·14, 3-17

Mesa Processor Principles of Operation

LoeaIOverhead,3-15
LoealVariables, 3-14
loealWord; 3"15
locked, 10-0
Log,2~1-

LONG, 1-8, 2-7, 3-2, 7-8, 7-12, 7-18, 8-13
Long, 2-5 - .-
LONG CARDINAL, 2-6
LONG INTEGER, 2-6,8-15
LONG POINTER, 1-7,2-5,3-2, 3-3, 3-6
LONG REAL, 2-4
LongAnd, 5-2, 5-7
LongArithShi ft, 2-5
LongNot, 5-2
LongOr, 5-2, 5-7
LongShift, 2-5, 5-2, 5-8, 10-21
LongXor, 5-2, 5-8
LOOPHOLE, 2-7
LowByte, 2-2, 2-6
LowHalf, 2-5, 2-6, 10-4, 10-23
MACHINE DEPENDENT, 1-7
MainDataSpace, 3-10
MakeFrameLink,9-2
MakelndirectLink, 9-3 .
MakeProcDesc, 9-3
Map, 3-4
MapFlags, 3-2
margin, 8-18, 8-19
MaskTable, 7-17
mAV, 9-4,11-2
maxLeftKern, 8-18
maxRightKern, 8-18
MOS, 3-10, 3-13, 3-16, 3-22, 3-24, 4-5, 4-8,

9-1,9-22,10-1,10-21
mds, 10-5, 10-21
MdsHandle, 3-10, 3-16
mETT,11-2
MinimalStack, 3-20
MOD, 2-3
Monitor, 10-6
MP, 3-21, 3-24
mPDA, 10-2, 11-2
mSD, 9-19, 11-2
Multiply, 3-20
next, 10-5
NIBBLE,2-2
NibblePair, 2-2
nLF,9-8
normal, 8-19
Not, 2-2, 2-2, 5-1, 5-8, 7-17
Notify, 10-12
NotifyWakeup, 10-13, 10-23, 10-26
nPC, 9-8
Odd,2-3
offset, 8-18
OffsetPda, 10-4, 10-20, 10-22

opcode, 9-20
OpcodeTrap; 4-4, 9-20
01',2-2,2-3,5-2,5-7,7-17 .
outport, 9-14
pad; 8-16, 8-17
Page, 3·1
PageFault, 3-4,10-24
PageNumber, 3-1
PageSize, 3·1 t
PageZero, 3 .. 7
pair, 6-3,7-12
pc, 3-10,3-18,4-2,4-6,6-2,6-3,8-1,9-3,

9-8,9-10,9-21,10-19,10-20,10-23
pc, 9-3
pc, 3-14, 3-17
POA, 3-9, 10-2
permanent, 10-5
PIO, 3-21, 3-24
POINTER, 1-7,2-4,2-5
PointerTrap, 5-4, 9-2(}
Pop, 3-5, 3-18, 5-2
PopLong, 3-5,3-19
PopState, 8-13
Port, 9-14
PortLink,9-14
preempted,10-5
preemption, 4-1, 10-18
PrinterWidth,8-17
Pri nterWidths, 8-17
printerWidths, 8-16
Priority, 10-5, 10-22
priority, 10-5, 10-19, 10-20
ProcDesc, 9-3
procedure, 9-2, 9-8
ProcessDataArea, 10-2
Processor, 4-1, 4-7
ProcessStateBlock, 10-5
ProcessTrap, 9-20,10-11
protected, 3-2
PSB, 3-16, 3-24, 4-5, 4-8, 9-1, 9-22, 10-1,

10-3,10-13
psb, 10-13, 10-15
PsbFlags, 10-5
PsbHandle, 10-4,10-13
Psblndex, 3-16,10-3,10-4,10-6
PsbLi nk, 10-5
PsbNull,10-3
PTe, 3-21, 3-24,10-29,10-30
Push, 3-5,3-18,5-2
push, 9-8, 9-10
Push Long, 3-5,3-19
PushState, 8-13, 8-22
qFrameFault, 10-24, 11-3
qPageFault, 10-24, 11-3
Queue, 10-6, 10-7
QueueHandle, 10-7

MC-3

MC-4

Mesa Code Index

qWriteProtectFault, 10-24, 11-3
raster, 8-21
RasterDomainFromOffset, 8·18
Rasterlnfo, 8·18
rasterlnfo, 8-16
Rasterlnfos, 8-18
RasterOffset, 8-18
RasterOffsetDomain, 8-18
RasterOffsetFromDomain, 8-18
rasters, 8-16, 8-17
Read Overhead Byte, 3-15
ReadBit, 8-8, 8-14, 8-21
ReadCode,°3-10, 6-8, 8-3,8-5
ReadDbl, 3-7, 3-11
ReadDblMds, 3:.11
ReadField, 2-6, 7-17, 7-18, 8-8
ReadMap, 3-2,3-4
ready, 10·2, 10-19
REAL,2-4

RealPageNumber, 3·1
Recover, 3·20, 5-2, 5-10, 7-5,7-11,7-21,

9-13
referenced, 3·2, 3-4, 3-10, 9-10,10-4
Requeue, 10·14, 10-18; 10-30
Reschedule, 4-1, 10-9,10-19
RescheduleError, 4-7, 9-20,10-19
reserved, 8-18
reserved, 1-8,8·12,10-7
resolve, 8·16
Result, 8-19
returnlink,3·14
rightKern, 8-18
Rotate, 2-3, 5-8
running, 4-1, 4-8,10-18
saved PC, 4-2, 4·4, 9-10,10-19
savedSP, 4·4, 9-23, 10-20
SaveProcess, 1-9, 10-20
SaveStack, 9·23, 10-20
sBoot, 4-8, 11·3
sBoundsTrap, 9-20, 11·3
sBreakTrap, 9-20, 11-3
sCodeTrap, 9-20, 11-3
sControlTrap, 9-20, 11-3
50,3-12,4-8,9-19
SDlndex, 9-19
sDivCheckTrap, 9-20, 11·3
sDivZeroTrap, 11-3
SetMap, 3-5
SetMapFlags, 3-5
Setup, 1-9,8-14
SHardwareError, 9-21
sHardwareError, 11-;).
Shift, 2-2, 2-3, 5-2, 5-6, 5-8, 7-17,10-26
ShortControlli nk, 9-2
ShortcontrolLink, 9-20
SignExtend, 2-6, 5-2, 5-5, 6-3

slnterruptError, 9-20,11·3
sOpcodeTrap, 11-3
5P, 3-18,3-20,4-6,4-8,9-21,10-20,

10-23
space, 8-19
SpacingWidth, 8-17
SpacingWidths, 8·17
spacingWidths, 8-16
sPointerTrap, 9-20, 11·3
sProcessTrap, 9-20,11-3
src, 8-9,10-14
srcBpl, 8-9, 8-12
SrcFunc, 8-10
srcFunc, 8-10
sRescheduleError, 9-20, 11·3
sStackError, 9-21, 11·3
stack,3·18
StackCount, 3·18
StackDepth, 3-18
StackError, 4-7, 9-19, 9·21
StackPointer, 3·18
StartPsb, 10·3
state, 10·3, 10-22
StateAllocationTable, 10·22
StateHandle, 9-23
StateVector, 9·23,10-22
StateWord,9·23
stop, 8-16, 8·17, 8·19
Store, 3·6, 3-6, 3-11
StoreByte, 7·15, 8-6
StoreMds, 3·11
StorePda, 10·4
sUnboundTrap, 9-21, 11·3
sXferTrap, 11·3
SystemData, 3-12, 9-19
tag, 9·2, 9-3, 9·4
TaggedControILink,9-2
taggedGF,9-3
tail,10·6
text, 8-18
Ticks, 10-28, 10-30
time, 4-8, 10-29
timeout, 10-30
TimeOutlnterval,10-28
TimeoutScan, 10-18, 10-29, 10-29
TransferDescriptor, 9-25
trap, 9·8
TrapOne, 9-20, 9-22
TrapTwo, 9-21,9-22
trapxfers, 3·13, 9-26
TrapZero, 9-20, 9-21, 9·22
TxtBltArg, 8·18
UnboundTrap, 9-8, 9-11, 9·21
UNSPECIFIED, 1-7,2·2,2-4,2-5
Vacant, 3·3
ValidContext, 10·19, 10-20

· Mesa Processor. Principles-of Operation

VirtualPageNumber, 3-1
waiting, 10-6
WakeHead, 10-13, 10-27
wakeup, 10-6, 10-6, 10-17, 10-27
woe, 3-21, 3-24, 4-8, 9-20, 10-27
WdcMax, 10-27
width,8-9
widthMinusOne, 8-12
WM, 3-21, 3-24, 10-25
WordSize, 2-1, 7-17, 8-8, 10~21
wP, 3-21, 3-24, 4-7, 4-8,10-25,10-25
Write Overhead Byte, 3-15
WriteBit, 8-8, 8-14,8-21
WriteField, 2-6, 7-17, 7-19, 8-8
WriteMap, 3-2, 3-4
WriteProtectFault, 3-4, 10-24
XFER, 1-3,4-5,4-8,9-1,9-2,9-7,9-8,9-10,

9-14,9-19,9-21,10-19,10-24,11-3
Xor, 2-2, 2-3, 5~2, 5-7, 5-8
xPreference, 8-11
XTS, 3-21,3-24, 4-8
XTS, 9-26
yOffset, 8-12
yPreference, 8-11
z8RK,9-26
t, 2-2, 2-6

MC-5

Mesa Code Index

MC-6

ACD,5·9
ADC, 5-9
ADD,5·8
ADD58, 5·5
AF,9·7
AlOI8,7·5
AND,5·7
BC,10·13
BIT8lT,8-7
BlECl,8-5
BlEl,8·5
8lT,8.1
BlTC, 8-3

BlTCl.8·3
BlTL,8·2
BlTLR,8-2
BNDCK, 5·4
BNDCKl,5-4
BRK, 9·25
BYTBlT,8·6
BYTBl TR, 8-7
CATCH,6·3
CKSUM, 8·4
DADO, 5-9

DAND, 5·7
DBl,5-6
DCMP, 5·12
DDBl.5-5
DDUP, 5·3
DEC, 5-5
DEXCH,5-3
01,10-29
DINC, 5·5
DIOR,5·7
DIS, 5-3
0152,5-3
DMUl,5-10
D5HIFT,5-8
DSK,9·24

OpCode Mnemonics

DSUB,5-9
DUP, 5·3
DXOR,5·7
EFCB,9-12
EFCn,9-12
EI,10·30
EXCH,5-3
EXDIS,5-4 .
FF,9-7
GAB, 7·6
GAn, 7·6
GAw,7·6
GMF,3·6
INC, 5·5
IOR,5·7
JB,6·3
JOEB,6·4
JONEB,6·5
JEB,6-4
JEBB,6·5
JEP, 6·5
JGB,6·6
JGEB,6-6
JIB,6-7
JIW, 6·8
JlB,6-6

JlEB,6·6
In,6-2
JNEB,6-4
JNEBB,6-5
JNEP, 6-5
JNZB,6-4
JNZn,6·4
Js,6·3
JUGB,6·7
JUGEB,6·7
JUlB,6-7
JUlEB,6-7
JW,6·3

OM-l

OM-2

OpCode Mnemonics Index

JZn,Jj .. 3
JZB,6·3
Kf~ 9-12.11·3
LAB.-7-3
LArr,7·3
LAW, 7·3
_LfCn.9-11
LGB,7·6
LGDB,7·7
LGDn, 7-7
LGn, 7-6
LlB,7·2
LIDO, 7-1
UHB,7-2
Lin, 7-1
LlN1,7-1
lINB,7-2
lINI,7.1
lINT,5-6
LIW, 7·2
LKB,9-13
LLB,7-3
LLDB,7-4
LLDn, 7~4
LLK8,9-18
LLn, 7-3
LP,3·12
LSK,9-24
LUDIV, 5·11
ME,10-8
MR,10·12
MUL,5-10
MW,lO·11
MX,10-1O
NC,10-13
NEG,5-5
NILCKL,5-4
PI,9-15
PLB,7·5
PLDO, 7-5
PLDB,7-5
PLn, 7-5
PO, 9-14
POR,9-14
psof,7-21
PSB,7-11
PSDO, 7·11
PSDB,7-11
PSDLB,7·12
PSF,7-21
PSLB,7·11
PSLF,7-21
ROF,7·18
RB,7-8
Rc,7-9
RCFS, 7-19

ROO, 4·4, 7-8
ROB, 4·6, 7·9
RDLO, 7·9
ROLB, 4·6, 7·9
REC,5-2
REC2,5·2
REQ,10·14
RET, 9-13
RF,7-18
RGILP, 7·13
RGJP, 7-13
RKDIB,9·19
RKIB,9·18
RLO, 7-8
RLOF,7-18
RL8,7·8
RLDIOO, 7-13
RLDILP, 7-13
RLDIP, 7-13
RLF,7-18
RLFS, 7·18
RLIOn, 7-12
RLILP, 7-12
RLlLPF,7-19
RlIP, 7-12
RLlPF,7-19
RLS, 7-15
Rn,7·7
ROB,3-16
ROTATE, 5·8
RRIT,3·23
RRMDS, 3·23
RRPSB,3·23
RRPTC, 3·23
RRWDC, 3·23
RRWP, 3·23
RRXTS, 3-23
RS,7·15
SOD IV, 5·11
SDIV, 5·10
SfC, 9·12
SGB,7-7
SGCS, 7-7
SHlfT,5-8
SHIFTSB, 5·6
SLB,7-4
SLDB,7-4
SLOn, 7-4
SLn,7-4
SM,3·6
SMF,3·7
SPP, 10·14
SUB, 5-9
TRPL,5-6
TXTBLT,8-7
UDCMP, 5·12

Mesa Processor Principles of Operations

UDDIV,S-12
uDlv,5-11
wo,7-10
wOF,7-20
wB,7-10
WDB,7-10
wF.7-19
WLOF.7-20
WL8,7-10
WDLB,7·10
WLDILP, 7-14
WLF,7-20
WLFS, 7-20
WLlLP, 7·14
WLIP, 7-14
wLs,7-16
wM,10-26
wOB,3·17
WRIT, 3-23
WRMDS, 3·24
WRMP, 3-24
WRPSB,3·24
WRWDC.3·24
WRWP, 3-24
WRXTS,3-24
ws,.7-16
wsoF,7-20
xE,9-25
xF,9-25
xOR,5-7

OM-3

OpCode Mnemonics Index

OM-4

·OpCode Names

Add,5-8
Add Cardinal to Double, 5-9
Add Double to Cardinal, 5-9
Add Local Zero to Immediate Byte, 7·5
Add Signed Byte, 5-5
Allocate Frame, 9·7
Allocate Frame, 9-1
And,5-6
Bit Block Transfer, 8-6, 8-7
Bit Block Transfer, 8-7
Block Equal Code Long, 8·5
Block Equal Long, 8-4 e

Block Equal Long, 8-4
Block Transfer, 8·1
Block Transfer, 8-1
Block Transfer Code, 8·3
Block Transfer Code, 8-2
. Block Transfer Code Long, 8·3
Block Transfer Code Long, 8-2
Block Transfer Long, 8·1
Block Transfer Long, 8-1
Block Transfer Long Reversed, 8-2
Block Transfer Long Reversed, 8-1
Bounds Check, 5-4
Bounds Check, 9-20
BoundsCheckLong,~4

Break,9-25
Break,9-20
Broadcast Condition, 10-13
Broadcast Condition, 10-13, 10-18
Byte Block Transfer, 8-5
Byte Block Transfer Reversed, 8-7
Byte Block Transfer Reversed, 8-6
Catch, 6-3
Checksum, 8-4
Decrement, 5-5
Disable Interrupts, 10-29
Disable Interrupts, 9-20
Discard, 5-2

Discard Two, 5-2
Double, 5-6
Double Add, 5-9
Double And, 5-7
Double Compare, 5-12
Double Double, 5-6
Double Duplicate, 5-2
Double Exchange, 5·2
Double Exclusive Or, 5-7
Double Inclusive Or, 5·7
Double Increment, 5-5
Double Multiply, 5-10
Double Shift, 5-8
Double Subtract, 5-9
Dump Stack, 9·24
Dump Stack, 9-26
Duplicate, 5-2
Enable Interrupts, 10-30
Enable Interrupts, 9-20
Exchange, 5·2
Exchange Discard, 5-2
Exclusive Or, 5-7
External Function Call Byte, 9-12
External Function Call n, 9·12
Free Frame, 9-7
Free Frame, 9-1
Get Map Flags, 3-6
Get Map Flags, 3-6
Global Address Byte, 7-6
Global Address n, 7·6
Global Address Word, 7-6
Inclusive Or, 5-7
Increment, 5·5
Jump Byte, 6·3
Jump Double Equal Byte, 6-4
Jump Double Not Equal Byte, 6·5
Jump Equal Byte, 6-4
Jump Equal Byte Byte, 6·5
Jump Equal Pair, 6-5

ON-1

ON-2

OpCode Names Index

Jump Greater Byte, 6·6
Jump Greater Equal Byte, 6·6
Jump Indexed Byte, 6-7
lump Indexed Word, 6·7
Jump Less Byte, 6·6
Jump Less Equal Byte, 6-6
Jump n, 6·2
Jump Not Equal Byte, 6·4
Jump Not Equal Byte Byte, 6-5
Jump Not Equal Pair, 6-5
Jump Not Zero Byte, 6-4
Jump Not Zero n, 6·4
Jump Stack, 6·3
lump Unsigned Greater Byte, 6·7
Jump Unsigned Greater Equal Byte, 6·7
Jump Unsigned Less Byte, 6·7
Jump Unsigned Less Equal Byte, 6·7
Jump Word, 6·3
Jump Zero Byte, 6·4
Jump Zero Byte, 10-10, 10-12
Jump Zero n, 6·3
Kernel Function Call Byte, 9-12
Lengthen Integer, 5·6 .
Lengthen Pointer, 3·12
Link Byte, 9·13
Link Byte, 9-12, 9-21
Load Global Byte, 7·6
Load Global Double Byte, 7-7
Load Global Double n, 7·7
Load Global n, 7·6
Load Immediate Byte, 7·2
Load Immediate Double Zero, 7·1
Load Immediate High Byte, 7-2
Load Immediate n, 7-2
Load Immediate Negative Byte, 7·2
Load Immediate Negative Infinity, 7-1.
Load Immediate Negative One, 7·1
Load Immediate Word, 7-2
Load Link Byte, 9-18
Load Local Byte, 7·3
Load Local Double Byte, 7-4
Load Local Double n, 7-4
Load Local n, 7·3
Load Stack, 9-24
Load Stack, 9-26
Local Address Byte, 7-3
Local Address n, 7-3
Local Address Word, 7-3
Local Function Call, 9·10
Long Unsigned Divide, 5·11
Long Unsigned Divide, 9-20
Monitor Entry, 10·8
Monitor Entry, 10-10, 10-12
Monitor Exit, 10-10
Monitor Exit, 10-10, 10-11
Monitor Reentry, 10·12

Monitor Reentry, 9-20, 10-6, 10-10,
10-11,10-12,10-13,10-18

Monitor Wait, 10·11
Monitor Wait, to-10, 10-11, 10-12,

1043, 10"18, 10-29, 10-30
Multiply, 5-10
Negate, 1i·5
Nil Check Long, 5·4
Nil Check Long, 9-20
Notify Condition, 10-13
Notify Condition, 10-13, 10-18
Port In, 9-18
Port In, 9-21
Port Out, 9-14_
Port Out Responding, 9-14
Put Local Byte, 7-5
Put Local Double Byte, 7·5
Put Local Double Zero, 7-5
Put Local n, 7-5
Put Swapped Byte, 7-11
Put Swapped Double Byte, 7-11
Put Swapped Double Long Byte, 7·12
Put Swapped Double Zero, 7-11
Put Swapped Field, 7-21
Put Swapped Long Byte, 7-11
Put Swapped Long Field, 7·21
Put Swapped Zero Field, 7-21
Read Byte, 7·8
Read Code, 7-9
Read Code Field Stack, 7-19
Read Double Byte, 7·9
Read Double Long Byte, 7-9
Read Double Long Zero, 7-9
Read Double Zero, 7-8
Read Field, 7-18
Read Global Indirect Long Pair, 7-13
Read Global Indirect Pair, 7-13
Read Link Double Indirect Byte, 9·19
Read Link Indirect Byte, 9·18
Read Local Double Indirect Long Pair,

7-13
Read Local Double Indirect Pair, 7-13
Read Local Double Indirect Zero Zero,

7·13
Read Local Indirect Long Pair, 7·12
Read Local Indirect Long Pair Field,

7·19
Read Local Indirect pair, 7·12
Read Local Indirect Pair Field, 7·19
Read Local Indirect Zero n, 7·12
Read Long Byte, 7·8
Read long Field, 7·18
Read Long Field Stack, 7-18
Read Long String, 7-15
Read long Zero, 7·8
Read Long Zero Field, 7-18

Mesa Processor Principles of Operation

Read n, 7-8
Read Overhead Byte, 3·16
Read Register IT, 3-23
Read Register MDS, 3-23
Read Register PSB, 3-23
Read Register PTe, 3-23
Read Register woe, 3-23
Read Register WP, 3-23
Read Register XTS, 3-23
Read String, 7·15
Read Zero Field, 7-18
Recover, 5-2
Recover, 5-2
Recover Two, 5-2
Requeue, 10-14
Requeue, 10-14, 10-15
Return, 9-13
Return, 9-10, 9-16
Return Zero, 9-18
Rotate, 5-8
Set Map, 3-6
Set Map, 3-6
Set Map Flags, 3-7
Set Map Flags, 3-6
Set Proces$ Priority, 10-15
Set Process Priority, 10-14
Shift, 5-8
Shift Signed Byte, 5-6
Signed Divide, 5-10
Signed Double Divide, 5-11
Stack Function Call, 9-12
Store Global Byte, 7-7
Store Global Double Byte, 7-7
Store Local Byte, 7-4
Store Local Double Byte, 7-4
Store Local Double n, 7-4
Store Local n, 7-4
Subtract, 5-9
Text Block Transer, 8-7
Text Block Transfer, 8-7

. Text Block Transfer, 8-7
Triple, 5-6
Unsigned Divide, 5-11
Unsigned Double Compare, 5-12
Unsigned Double Divide, 5-12
Write Byte, 7-10
Write Double Byte, 7-10
Write Double Long Byte,7-10
Write Field, 7-19
Write Local Double Indirect Long Pair, 7-14
Write local Indirect long Pair, 7-14
Write Local Indirect Pair, 7-14
Write Long Byte, 7-10
Write long Field, 7-20
Write Long Field Stack, 7-20
Write Long String, 7-16

Write Long Zero Field, 7-20
Write Overhead Byte, 3-16
Write Register IT, 3-23
Write Register MDS, 3·24
Write Register MP, 3·24
Write Register PSB, 3-24
Write Register PTe, 3-24
Write Register woe, 3-24
Write RegisterWP, 3-24
Write Register XTS, 3-24
Write String, 7-16
Write Swapped Zero Field, 7-20
Write Zero, 7·10
Write Zero Field, 7-20
XFER and Enable, 9-25
XFER and Free, 9-25

ON-3

OpCode Names Index

ON-4

Primary Index

, 4·2,10-3
4K-word aligned, 3-10, 3-11,10-3
4K-word boundary, 3-9
abort

trap, 9-20
abort pending, 10-5, 10-11
aborted instruction, 4-5
above the top of the stack, 3-20,9-10,9-21
access

atomic, 3-4
real memory, 3-6

access flags, 3·2
activation record, 9-1
activation records, 1-4
active process, 10-3, 10-30
addition, 2-2, 2-3, 2-5
additional processor state, 10-22
address

least significant bit, 3-2
most significant bit, 3-1
real, 1-7,3-1
virtual, 1-7,3-1

address calculation, 4-3
address checking, 3-5
address fields, 4-3
address translation, 3-2
addressing

relative, 4-5
addressing modes, 4-3
algebra

rules of, 5-10
Algol,1-3
aligned

64K-word, 3-10, 3-11,10-3
eight-word, 10-4, 10-5
quad-word, 3-9, 3-14
word, 8-12

alignment, 1-4
of gray pattern, 8-12

allocation
state vector, 10-22

Allocation Vector, 3-12, 9-4, 9-5, 9-9,
9-10, A-2

alpha byte, 4-2
And operations, 2-3
applications programmer, 1-6
architecture, 1-2, 1-3, 1-4, 1-5
arguments

textblt, 8-18
arithmetic

double word, 7-7, 7-15
arithmetic instructions, 3-19, 5-8
arithmetic operators, 2-2, 2-5, 3-18, 5-8

basic, 2-3
arithmetic unit, 3-19
array

packed,1-8
array indexes, 5-4
array types, 1-8
arrays, 1-8
associated address mapping, 3-2
assignment, 2-2, 2-6
assignment instructions, 7-1
associative map, 3-4
asymmetrical instruction set, 1-3
asynchronous communication, 10-1
atomic, 3-4, 3-5, 3-7,4-6,10-25, 10-26
backward jumps, 4-3
bank, 3-1,3-10,9-11, A-2
bank zero, 3-7
basic arithmetic operators, 2-3, 5-2
basic data types, 2-1
basic logical operators, 2-3
basic operators, 2-2
beta byte, 4-2
biasing

of sub range, 1-7
binary representation, 1-7, 2-1

P-l

P-2

_ Primary Index

bit, 2-2
flag, 3-3
least significant, 2-1, 2-5, 7-15, 9-2

. low-order,.1Q,4
most significant, 2-1, 2-5, 7-16
reserved,3-2
significant, 7-19
unimplemented, 3-3
wakeup, 10-27

bit block transfer, 8-8
bit boundary,8-8
bit boundary block transfer instructions,

8-7
bit numbering, 2-5
bit strings, 2"3
bit transfer utilities, 8-8
bitblt

destination functions, 8-10
direction flag, 8-11
disjoint flag, 8-11
disjointitems flag, 8-11
gray flag, 8-12
interruptibility, 8-13
overlapping source and destination,
8-12
routines, 8-13
source functions, 8-10

BitBlt argument, 8-9
bitmap, 8-9, 8-16, 8-19
bitmap display, 8-1, 8-16
bitmap representation, 8-7
bits per line, 8-9
BLOCK, 2-2
block comparison instructions, 8-4
block transfer

bit, 8-8
text, 8-16
word, 8-1

block transfer instructions, 4-7, 8-1,10-25
bit boundary, 8-7
word boundary, 8-1

block transfers, 8-1
block-transfer instructions, 4-7
booting, 3-7, 3-12, A-2
borrow, 9-11
boundary

64K-word,3-10
bit,8-8
four-word, 9-4
sixteen-word, 8-9, 8-18
word, 4-3, 7-16

bounds checking, 9-7
break, 9-26
break byte, 9-1, 9-23,9-25,9-26
break trap, 9-20
breakpoint, 4-5, 9-1, 9-19, 9-25

breakpoint handler, 9·25
breakpoint instructions, 9-25
brick, 8-12
broadcast, 10-7, 10-12, 10-27
broken context, 9-26
broken instruction, 9-25, 9-26
buffered device, 4-7
built-in operation, 2-6
built-in routine, 1-8
byte, 2-2

most significant, 7-15
operand,4-2
signed,2-6

byte block transfer instructions, 8-6
byte displacement, 6-7
cache, 3-10,3-15, 3-20
call

external, 9-11
local,9-10
nested, 9-13
nested procedure, 9-1, 9-8
port, 9-14
procedure, 3-13, 4-5, 9-1, 9-8, 9-14
subroutine, 9-1

cardinal, 2-4
carry, 7-7, 7-15
case statement, 6-2
catch phrase, 4-8, 6-3
character

font representation, 8-19
pad,8-16, 8-16,8-19
stop, 8-16, 8-19

check instructions, 5-4
Checksum instruction, 8-4
cleanup link, 10-5, 10-11,10-14,10-16
code, 1-5, 1-6

read only, 3-9
relocatable, 1-4,3-9

code base, 3-9, 4-4, 8-4, 9-11
code segment, 1-4,3-9,3-9,3-13,3-17,

4-2,4-3,6-2,6-7,7-19,8-3,9-11,
10-19
current, 9-10

code stream, 5~2
code trap, 9-19
communication

asynchronous, 10-1
comparison, 2-2
comparison instructions, 5-12
comparison operators, 2-3
compiler, 1-6,1-8

Mesa, 1-7
concurrent activity, 1-4
condition queue, 10-2,10-6,10-10,

10-11,10-12,10-16,10-28
unknown, 10-30

Mesa PrOcessor Principles of Operation

condition variable, 4-7,10-2,10-6,
10-1(},10-11, 10-12, 10-14, 10-16, 10-1S,
10-26

broadcast of, 10-12
notify of, 10-12
reserved, 10-24
waiting on, 10-2

condition variable instructions, 10·12
conditional jump instructions, 3-19
conditional jumps, 6-2
configuration, 3-7
constant memory locations, A-2
constants, A·l

miscellaneous, A-I
values of, A-I

context, 3-17,3-17,4-5,9-3,9-19,10-1,
10-5,1O-1S

broken, 9-26
current, 3-17, 3-24, 4-5, 4-7, 9-14
destruction, 9-10
enclosing, 9-13
restart of, 4·5
state of, 4-5
trapped,9-21,9-22,9-24, 9-25, 10-12

context switch, 3·17
control flow, l-S
control link, 3-10, 3-14, 9-1, 9-12, 9-1S,

9-19, A-I
frame, 9-2
indirect, 9-3, 9-13, A-3
procedure descriptor, 9-3
uninitialized, 9-9

control1inks, 3-12
control register, 3-16, 10-1
control transfer, 1-4,3-14,3-17, 3-1S, 9-1,

9-21,9-26, 10-23
coroutine, 9-14
disciplines, 3-12
trap, 3-21, 9-19, 9-26,

control transfer instructions, 3-17, 9-7,
9-10

control transfer primitive, 9~7
control transfers, 3-12
controller, 3-7, 4-7,10-25
controller identification, 3-7
conventions, 1-6
conversion, 1-8, 2-6

pointer, 2·7
short/long, 2-7
signed/unsigned, 2·6

cooperating processes, 1-5
coroutine, 9-1
coroutine instructions, 9-14
coroutine transfer, 9-1, 9-8, 9-14
correct programs, 9-21
counter, 9-20

process timeout, 3-21 .
wakeup disable, 3-21

CRT display, 8-16
current code segment, 9-10
current context, 3-17, 4-5,4-7,9-14
current frame, 9-10
current global frame, 9-10
current instruction, 4-5, 4-6,4-7,9-23,

10-25
current instruction byte, 4-2
current local frame, 9-10
current process, 4-5, 4-7,10-2,10-3,

10-1S, 10-19
data

global,3-17
local,3-17

data register, 3-20
data representation, 1-4
data structures

main data space, 3·12
process,3-9,10-2
virtual memory, 3·7

data types
basic, 2-1

debugging, 4-7, 9-21, 9-22, 9-25, 9-26,
10-20

dedicated real memory, 4-7
dereference, 3-6, 7-1, 9-2
dereferencing operator, 3-4, 3-6
Design Note, 1-5
destination functions

bitblt,8-10
destination link, 9-10

original,9-13
device, 3-7, 4-7,10-25

buffered, 4-7
device identification, 3-7
diagnostic information, 3-7
direct pointer instructions, 7-8
direction flag

bitblt, 8-11
dirty flag, 3-3
disable interrupts, 9-10,10-27
disjoint items flag

bitblt, 8-11
displacement

byte, 6-7
signed,6-2
jump, 6-2

display origin, 8-16
divide by zero, 9-20
division, 2-3,2-4
double word, 2-2, 2-5, 3-19, 4-6,5-8
double-word types, 2-4
double-precision, 3-20
double-word arithmetic, 7-7, 7-15

P-3

P-4

Primary Index

double-word store, 3-7
efficiency, 4-6
eight-word aligned; 10-4, 10-5
empty queue. 10~7
empty stack, 3-19, 10-20
enable interrupts, 9-24, 10-28
enclosing context, 9-13
enclosing procedure, 9-13
enter, 10-7
entry

monitor, 10-7
entry vector, 9-7, 10-19
Enumerated Types, 1-7
environment containing no processes, 10-1
equality, 2-2
equality jump instructions, 6-3
error status, 3-7
errors, 1-8
ESC Trap Table, 3-12
ESC Trap table, A-2
escape opcode, 4-2
evaluation stack, 2-5,3-16,3-18,4-5,5-2,

9-1
event-driven scheduling, 1-4
exception, 1-8,4-5,4-5,9-6, 10-2
exception handler, 4-5
execution

instruction, 4-4, 10-29
exit, 10-7

monitor, 10-9
extended opcode, 4-2
external call, 9-11
external call instructions, 9-12, 9-13
external event, 10-25
external function call, 9-11
external function call instructions, 9-12,

9-13
external links, 9-12
fatal software error, 9-21
fatal trap, 4-7
fault, 1-9,4-1,4-5,4-5,4-6,7-1,9-6,

9-7,9-10,9-22,9-25,9-26,10-6,
10-17,10-18,10-20,10-23,10-27

page, 3-3
write protect, 3-3

fault handler, 4-5, 10-2, 10-18, 10-23,
10-23, 10-24

fault parameter, 10-20, 10-21, 10-23,
10-24, A-I

fault queue, 10-2, 10-3, 10-23, 10-27
fault queue indexes, A-2
fault recovery, 4-6
fault routine, 4-5, 9-26, 10-24
fault vector, 10-26, A-2
faulted instruction, 10-24

faulted process, 9-26, 10-2, 10-23,
10-23

field,7-16
multiword; 1-4·
partial word, ·1-4

field descriptor, 7-16
field extraction, 7-17
field insertion, 7-17
field instructions, 7-16

put swapped, 7-21
read,7-18
write, 7-19

field specifier, 7-16
first four local variables, 3-14
fixed addresses, 3-12
fixed frame trap handler, 9-22,9-25
fixed point number, 2-3
flag bit, 3-3
flag word, 10-5, 10-5
flags

access, 3-2
Edit, 15-2
editable, 15-2
empty, 15-2
Exec Ops menu, 15-1
Load,15-2
menu, 15-2
non-editable, 15-2 •
Reset, 15-2
Save, 15-2
Store, 15-2
Time, 15-3
User.cm, 15-3

floating point instructions, 3-21,5-12
floating point representation, 2-3
font, 8-16, 8-16
font format, 8-18, 8-22
four-word boundary, 9-4
frame, 3-17

current, 9-10
current global, 9-10
current local, 9-10
global, 3-13, 3-17
local, 3-13, 3-17
maximum size, 3-13

frame allocation, 3-12,9-1,9-4,10-22
frame allocation fault, 4-5, 9-19, 10-2,

10-23
frame allocation instructions, 9-7
frame allocation primitive, 9-6
frame allocation vector, 9-4
frame control link, 9-2
Frame Heap, 9-4
frame heap, 3-12, 9-10
frame instructions, 7-2

global, 7-6

Mesa Processor Principles of Operation

local, 7·3, 7-4
frame link, 9-1, 9·8
frame pointer; 3·16,10-5
frame size index, 3-14, 9-4, 9-7, 10-24
frame sizes; 9-7
frame variables, 9-2
fra.mes, 1.4,3-12
frequently addressed variables, 7-2
function call

external, 9-11
local,9·10
nested,9·13

fundamental operators, 2-2
general-purpose registers, 1-4
global data, 3-17
global frame, 3-10,3-13,3-17,4-3,7-6,7-7,

9-2
current, 9-10

global frame instructions, 7-6
global frame register, 3-24
global frame variables, 7-6
global variables, 3-13
global zero, 3-14, 3-17
gray brick, 8-10,8-12
gray flag

bitblt,8-12
gray pattern, 8-12
handle

local frame, 3·15
handler

fault, 10--24
trap, 4-5, 9-23

hardware designer, 1-6
hardware error, 9-21
hashed address mapping, 3-2
hashed map, 3-4
heap, 9-7
high-level language, 1-3
high-level language support, 1-6
high-order word, 9-11
highest priority runnable process,

10-18
idempotent operation, 4·6,10-17
IEEE standard floating-point

instructions, 3-21
immediate instructions, 7-1
Implementation Note, 1-6
implicity pointer dereferencing, 3-6
inactive process, 10-3
index

frame size, 3-14
indexed jump instructions, 6-7
indexed jumps, 6-2
indexes

fault queue, A-2
system data table, A-3

indexing
string, 7-14

indirect control link, 9-3, A-3
indirect instructions, 3-19
indirect link, 9-1,9-13
indirect pointer instruction, 7-12
inequality, 2-2
infinite recursion, 9-26
initial program bootstrap, 3-7
initial state, 4-7
initialization, 4-7
initialization process, 3-7
input/output, 3-2, 3-7, 10-1
input/output system, 1-2
instruction, 1O~ 19

aborted, 4-5
broken, 9·25, 9-26
current, 4-5, 4-6, 4-7, 9-23,10-25
faulted,10-24
maximum size, 4·2
partially completed, 9-23
variable length, 4·2
wait, 10-29

instruction buffer, 4·3
instruction byte

current, 4-2
instruction descriptions, 1-9
instruction execution, 4·4, 10-18,10-29
instruction fetch, 4·2
instruction format, 4-2, 4-3
instruction interpreter, 1-8,4·1, 10-25
instruction length, 4-2
instruction operand, 4-7
instruction set, 4-2

asymmetrical,1-4
instruction stream, 4-2
instructions

arithmetic, 3-19, 5·8
assignment, 7·1
bit boundary block transfer, 8·7
block transfer, 4-7, 8·1,10-25
breakpoint, 9·25
check,5·4
comparison, 5·12
condition variable, 10-12
conditional jump, 3-19
control transfer, 3-17, 9-7
coroutine, 9·14
direct pointer, 7·8
equality jump, 6·3
external call, 9·12,9-13
external function call, 9·12, 9-13
field,7-16
floating point, 3-21, 5-12
frame, 7-2
frame allocation, 9-7

P-5

P-6

· . Primary Index

global frame, 7·6
immediate, 7·1
indexed jump, 6·7
indirect, 3-19
indirect pointer, 7:.12
interrupt, 10·28
interruptible, 4-4", 10-25
jump, 3-18, 4-5, 6·2
load,3-19
load global, 7·6
load local, 7·3
local call, 9-13
local frame, 7·3, 7-4
local function call, 9-13
logical, 5·6
map, 3-3, 3·5, 9-10
memory map, 3·5
monitor entry, 10·7
monitor exit, 10·9
monitor reentry, 10·11
monitor wait, 10-10
pointer, 7·7
process, 10-2, 10-7, 10-20
put local, 7-5
put swapped direct, 7-10
put swapped field, 7·21
read direct, 7-8
read field, 7·18
read indirect, 7-12
read string, 7-15
register, 3-16, 3-21
return, 9-10, 9-13
signed jump, 6-6
stack,5-2
state, 9-23
store, 3-19
store global, 7-7
store local, 7·4
string, 7~14
three-byte, 4-2
unary, 5-5
unconditional jump, 6·2
unimplemented, 9-25
unsigned jump, 6·6 .
word boundary block transfer, 8-1
write direct, 7·9
write field, 7-19
write indirect, 7·12
write string, 7·16

INTEGER, 2-4
integer

long, 8-22
intermediate state, 4-4
interpreter, 1-8,4·1
interrrupt levels, 10·24

interrupt, 4-5, 4-7,8-4,8-5,8-13, 8-HJ
10-6.10-18,10-19,10-20, 10-24

interrupt checks, 10-26· .
interrupt error, 9-21
interrupt handler, 4~7
interrupt instructions, 10-28
interrupt latency; 8-1
interrupt level, 3-21,10-3,10-26, A-I

reserved, 10-25
interrupt process, 10-25, 10-26
interrupt processing, 3-21, 10-26
interrupt vector, 10-26, 10-27
interruptibility

bitblt, 8·13
textblt, 8-19

interruptible instructions, 4-4, 10-25
interrupts, 3-21,4-7,8-1,10-18

check for, 10-25
disable, 10·27
enable, 10·28
initialization turns off, 4-8

interval timer, 3·21, 10-28, 10-29
invariant, 10-19
items, 8·9
jump, 6-2

backward, 4-3
jump displacement, 6-2
jump instructions, 3-18, 4-5, 6-2

equality, 6-3
indexed, 6-7
signed,6-6
unconditional, 6-2
unsigned, 6·6

jumps, 1-8
justification, 8-16, 8·19
kernel procedures, 9-12
kerning, 8-19

left, 8-18, 8-22
right, 8-18

language
high level, 1-3
programming, 1-6

last in first out, 3-18
least significant bit, 2-1,2-5,3-1,7-15,

9-2
least significant word, 3-10,3-19,5-10
lengthening

of an operand, 2-6
lexically enclosing procedure, 9-13
link word, 10·4
linked list, 9-4, 10-22
links

external, 9-12
load global instructions, 7·6
load instructions, 3-19
load link instruction, 9-18

Mesa Processor Principles of Operation

load local instructions, 7-3
local call, 9-10 '

local call instructions, 9-13
local data; 3-17
local frame, 3-10,3-17,4-3,7-3,7-5,9-2

current, 9-10-
local frame handle, 3-15
local frame instructions, 7-3
local frame pointer, 4-7, 10-20
localframe register, 3-24
local frames, 3-13
local function call, 9·10
local-function call instructions, 9-13
local variable, 7-3, 9-5
local variables, 3-13, 3-15

first four, 3-14
start of, 3-15

local zero, 3-14,3-17,9-13,9-21,9-24
locality of reference, 3-12
locations

reserved, 4-7
reserved main data space, 3-12
reserved virtual memory, 3·7

locked monitor, 10-2 .
logical instructions, 5-6
logical operations

primitive, 2-3
logical operator, 2-5, 3-18, 5-6
logical operators, 1-8
long integer, 8-22
long operations, 2-5
long pointer, 3-1, 3-2, 7-7
long pointer types, 2-4
LONG type, 4-6
long types, 2-4
lost notify, 10-26, 10-28
lost wakeup, 10-26
low-order bit, 10-4
low-order word, 9-11,10-4
Main Data Space, 3-7, 3-10, 3-11, 3-12,

3-16,3-24,4-5,9-1,9-4,9-11,9-19,
9-22,10-1,10-3,10-5, A-2

Main Data Space Access, 3-11
Main Data Space Data Structures,

3-12
main data spaces, 3-1
main loop, 4-1, 4-7,10-18,10-29
maintenance panel, 3-21
map

associative, 3-4
hashed,3-4

map entry, 4-7
map flags, 10-4
map instructions, 3-2, 3-3, 3-5, 9-10
mapping, 3-2, 4-3

virtual memory, 3-2

mapping code segments, 9-9
mapping mechanism, 3-2

mapping operations, 3-2, 3-5
maximum size instruction, 4-2
maximum tick size, A-2
MDS, 3-10, 9-1
MDS register, 3-10, 3-16
memories

processor, 3-16
memory accesses, 3-2
memory address, 2-5
memory locations

constant, A·2
memory map instructions, 3-5
memory organization, 3-1
memory size, 3-1
Mesa, 1-3, 1-6,3-3,3-6
Mesa compiler, 1-7
Mesa processor, 2-1
Mesa program, 3-12
Mesa program module, 3-9
Mesa style, 1-6
micas, 8·16
microcoder, 1-6
minimal stack, 3-19,10-7
minimum size of a state vector, 10-24,

A-I
minimum tick size, A-2
miscellaneous constants, A-I
mnemoni<:-,1-9
MOD,2-3
modular programming, 1-4
monitor, 4-6,10-18
monitor entry, 10-7, 10-22
monitor entry instructions, 10-7
monitor entry procedure, 10-7, 10-9
monitor exit, 10-9
monitor exit instruction, 10-9
monitor instructions

entry, 10-7
exit, 10-9
reentry, 10-11
wait, 10-10

monitor lock, 10-2, 10-6, 10-7, 10-11,
10-17

monitor queue, 10-2, 10-6, 10-7, 10-9,
10-11

monitor wait, 10-9
most significant bit, 2-1, 2-5, 7-16
most significant byte, 7-15
most significant word, 7-7, 7-15
multiple processes, 9-18, 10-1
multiple processors, 1-5
multiple traps, 9-23
multiplication, 2-3, 2-4
multi word field, 1-4

P-7

P-8

Primary Index

multiword structures, 4-6, 8-1
mutual exclusion, 10-1

negation, 2-2, 2-3
nested call, 9-13
nested function call, 9-13
nested procedure, 9-3, 9-13, 9-21
nested procedure call, 9-1, 9-8
nested procedure variable, 9-13
nested trap, 9-19
nibble, 2-2
NIL, 3-11, 5-2
non-preemptive scheduling, 9-1
Not operation, 2-3
notation

true binary, 2-4
two's-complement, 2-4

Note, 1-5
Design, 1-5
Implementation, 1·6
Programming, 1-6

notify, 10-2, 10-7, 10-11, 10-12,10-26,
10-27,10-28

null process, 10-3
number

fixed point, 2-3
real, 2-3

numeric types, 2-3
Odd operation, 2-3
Office Information Systems, 1-2
offset, 4-3

word, 3-10
opcode, 4-2, 4-3

escape, 4-2
extended, 4-2
unimplemented, 4-4, 9-20

opcode assignments, A-3
operand,4-2
operand byte, 4-3
operand locations, 1-4
operating system, 1-6
operation

idempotent, 4-6, 10-17
mapping, 3-2
signed,5-5
unsigned, 5-5

operator
arithmetic, 2-2, 2-3, 3-18, 5-8
basic, 2-2, 2-2
builtin, 2-6
comparison, 2-3,5-12
fundamental,2·2
logical, 1-8,2-3,2-6,3-18, 5-6
unary, 5-5

Or operation, 2-3
original destination link, 9-13
out of range, 9-19

out-of-bounds virtual address, 3-5
overflow, 2-3, 4-3,5-5,5-9,5-11,6-2,

9-20
overhead words, 3-13, 3-i 7, 9-2, 9-7,

9-9,9-11,9-23
overlapping source and destination

bitblt,8-12
packed array, 1-8
pad character, 8-16, 8-16, 8-19
page, 3-1
page boundary, 3-1, 3-2
page fault, 3-3, 3-4, 3-6, 3-7; 3-14, 4-3,

4-5,4-6,9-11,9-19,9-23,10-2;
10-21,10-23

page number
real, 3-2
virtual,3-2

page one, A-2
page size, 3-1, 3-2
page three, A-2
page two, A-2
page zero, 3-7,3-12
parameter passing, 1-4,3-18,9-1
partial field, 1-4
partially completed instruction, 9-23
Pascal, 1-3
PDA,3-9
pending, 9-14
pending abort, 10-12
pending interrupt, 4-1
pending wakeup, 10-25, 10-26, 10-27
performance improvement, 8-18
performance measurement, 3-21,9-26
performance monitoring, 9-22
pipelining, 3-19
pointer, 4-3, 5-4

frame, 3-16,10-5
local frame, 4-7, 10-20
long, 3-1,7-7
relative, 10-4
short, 3-1, 3-10,3-11,3-13, 7-7
zero, 9-20

pointer checking, 5-2
pointer conversion, 2-7
pointer dereferencing

implicit, 3-6
pointer instructions, 7-7

direct, 7-8
indirect, 7-12
put swapped direct, 7-10
read direct, 7-8
read indirect, 7·12
write direct, 7-9
write indirect, 7-12

pointer type, 2-5
pointer types, 1-7

Mesa Processor . Principles of Operation

-Pointers, 1.,.7
pop, 3-18
port, 9-1,9-3, 9-14, 9-18, 9-21

responding; 9-14-
sending, 9-14'

port call,9-14
pre-empted process, 3-9,10-3
pre-emption, 9-18,10-1, 10-18, 10-20, 10-22
pre-emptive multiprogramming, 10-23
primitive

control transfer, 9·7
frame allocation, 9·6
queue handling, 10-13

PrincOps,.l,2,3-17
printing width, 8-16
priority, 4-7,10-1,10-5,10-9,10-13,10-14,

10-15,10-18,10-20,10-22,10-26
procedure, 1-6, 3-9, 3~12, 3-13, 3-14

enclosing, 9-13
lexically enclosing, 9-13
monitor entry, 10-7, 10-9
nested, 9-3, 9-13
queuing, 10·14 _

procedure calls, 1-8, 3-13,4-5,9-1,9-8,
9-14

procedure descriptor, 9-2, 9-3, 9-8,
9-10,9-13

procedure invocations, 3-12
procedure variable

nested, 9·13
procedures.

kernel, 9-12
proceed

from a break point, 9·26
process, 4-5, 4-6,10·1,10-7

active, 10·3, 10-30
cooperating, 1-5
current, 4-5, 4-7,10-2,10-3,10-18

10-19
faulted, 9-26,10-2,10-23
inactive, 10-3
interrupt, 10-25, 10-26
null,10·3
preempted, 10-3
ready, 10-20
runnable, 10-2
running, 10-20
state of, 10·4, 10-20
suspended, 10-2, 10~6, 10-7, 10-9
time out, 3-21
trapped, 9-26
waiting, 10-2, 10-14, lO-28

Process Data Area, 3-4, 3-9, 3-16, 10-2,
10-3,10-4, 10-22, 10-24, A-2

process data structures, 3-9, 10-2
process instruction, 10-20

process instructions, 10-2, 10·7
process mechanism, 1-4
. process queue, 10·6, 10-14

structure, 10-14
_process state, 10-20

loading, 10·20
saving, 10·20

Process State Block, 3-16, 3-17, 3-24,
9-1,10-1,10-4,10-6

process structures, 10-2
process switch, 3-16, 4-5, 4-7, 9-1, 9-7,

9-8,9-23,10-1,.10-2, 10-18,10-23
process timeout counter, 3-21, 10-11,

10·29, 10-29
process trap, 10-12
process trap handler, 10-12
processor, 1-5, 1-5
processor dependent, 9-23, A-I
processor id, 3-21
processor identification number, 3-21
processor memories, 3·16
processor registers, 4-7, 10-2, 10-3

10-18
processor state, 4-5, 4-6, 9-21

additional, 10-22
processor-dependent, 3-21, 8-13
processor-dependent flags, 3-3
program, 1-6

correct, 9-21
program counter, 3-10, 3-17,4-2,4-5,

4-6,4-7,9-25
saving, 9·12, 9-23

program module, 3-13
program representation, 1-3
programmer, 1-6

applications, 1-6
programming language, 1-6
Programming Note, 1-6
protected flag, 3-3
protection, 1-5
PSB,9-1
pulse, 3-21
push, 3-18
put local instructions, 7-5
put swapped direct instructions, 7-10
put swapped field instructions, 7-21
quad~word aligned, 3-9, 3-14
queue, 10-1, 10·6

condition, 10-2, 10-6, 10-10,10-12,
10-16

empty, 10-7
fault, 10-2,10-3, 10-24; 10-27
monitor, 10-2, 10-6, 10-7,10-9
process, 10-6, 10-14
ready, 10-2, 10-3, 10-13, 10-18,

10-26, 10-30

P-9

P-I0

Primary Index

source, 10-30
queue header, 10·6, 10-6, 10-14
queue link, 10-5
queue management, 10·14
queue-handling primitive, 10-13
queueing procedure, 10-14
range checking, 5-2, S-22
raster, S-lS
re-enter, 10-7
read direct instructions, 7·S
read fie ld instructions, 7 ·lS
read indirect instructions, 7-12
read link instruction, 9-1S
read string instructions, 7-15
read-only code, 1-4,3-9
ready list, 10-11
ready process, 10-20
ready queue, 10-2, 10-3, 10-13, 10-lS,

0-19,10-20,10-26,10-30
real address, 1-7,3-1,3-2,3-4
real memory, 3-2,4-3

access, 3-6
dedicated,4-7

real memory size, 3-1
real number, 2-3
real page, 3-2, 3-4,4-7
real page number, 3-2
reals,2-4
records, l-S
Recover instruction, 3-20
rectangles, S·9, S-10
recursion, 9-19
reentrant, 9-22
reentry

monitor, 10-11
region of storage, 2-2
register

control,3-16
data, 3·20
main da ta space, 3-10
processor, 10-2,10-3
status, 3·20
wakeup mask, 3-21, A-I
wakeup pending, 3-21

register instructions, 3-16, 3-21,10-1
registers, 3-16

general purpose, 1-4
special purpose, 1-4

relative addressing, 4-5
relative pointer, 10-4
relocatable code, 1-4, 3-9
remainder, 2-3, 2-4
repetition rate, S-12, S-12
repetitive pattern, S-12
representation

binary, 1-7, 2-1

data, 1-4
floating point, 2-3
program, 1-3
two's-complement, 1-7
type, 1-7

request for service, 4-7
reschedule error, 9-21
reserved bit, 3-2
reserved condition variables, 10-24
reserved interrupt levels, 10-25
reserved locations, 4-7

main data space, 3-12
virtual memory, 3·7

resident, 1-9, 10-3,10-4,10-6
resident data structures, 3-4
resident structure, 3-4
responding port, 9-14
restart, 10-25
restart rule, 4-5, 4-6, 4-7, 9-19, 10-1S

exceptions, 4-7, 9-21
results,3-1S

undefined, 1-6, 1-9
return, 9-1, 9-2, 9-S, 9·13
return instructions, 9-10, 9·13
return link, 9-8, 9-10, 9-16, 9-22
Rotate operation, 2-3
routine, 1-6, 1-9

built-in, 1-8
fault,9-2Q
trap, 4-5, 9-19,9-26

routines, !l-8, 2-1
bitblt, S·13
fault, 10-24
runtime support, 9-12
textblt, 8-20
trap, 9-19, 9-21

rules of algebra, 5-10
runnable process, 10-2,10-18,10-19

highest priority, 10-18
running flag, 4-S
running process, 10-20
runtime checks, 5-4
runtime support routines, 9-12
scan, 10-29
scheduler, 9-20,10-2,10-9,10-10,

10-13,10-18, 10-1S, 10-20, 10-22,
10-24

scheduling, 1-4, 10-18
non-preemptive, 9-1

scrolling, 8-11
sending port, 9-14
shared resources, 10-1
shift, 2-2
shift count, 5-6
Shift operation, 2-3
shifting operations, 2-5

Mesa. Processor .Principles of Operation

short integer multiply, 8-16
short pointer, 3-1, 3-2, 3-10, 3-11, 3-13,

-7-7
short pointer types, 2-4
shorti1ong conversion; 2-7
shortening

of an operand, 2-6
sign extend, 2-6
signal, 4-1
signals, 1-8
signed, 2-2, 2-3
signed byte, 2-6
signed displacements, 6-2
·signedjump instructions, 6-6
signed number, 5-8
signed operation, 5-5
signed-unsigned conversion, 2-6
significant bits, 7-19
single word, 2-5
single-precision, 3-20
sixteen-word boundary, 8-9, 8-18
source functions

bitblt,8-10
source link, 9-10
source queue, 10-30
stack, 1-6,3-18,3-20,4-3,4-5,4-7,

5-2,8-1,8-19,9-1,9-21,9-23,10-1,10-5,
10-7,10-18,10-20
above the top of, 3-20, 9-10, 9-21
empty, 10-20
minimal,3-19
saving, 3-20
size, A-I
underflow, 5-2

stack error, 3-18, 7-1, 9-21
stack instructions, 5-2
stack machine, 1-4
stack pointer, 1-6, 1-7,3-18,4-3,4-5,

4-6,4-7,5-2,9-1,9-21,10-21, A-I
stack primitives, 5-2
state

initial, 4-7
of a context, 4-5
of a process, 10-4
process, 10-20

State Allocation Table, 10-3, 10-22
state instructions, 9-23
State Vector, 3-4, 3-16, 3-17, 10-7
state vector, 9-23, 10-1, 10-2, 10-3,

10-5,10-18,10-19,10-20, 10-21, 10-23,
10-24, 10-5, 10-7, 10-18, 10-20
minimum size of, 10-24, A-I

state vector allocation, 10-22
static link, 9-13, 9-13
status register, 3-20
stop character, 8-16, 8-19

store
double-word, 3-7

store global instructions, 7~7
store instructions, 3~19
store local instructions, 7-4
storing the PC, 9-10
string, 7-14
string indexing, 7-14
stringinstructions, 7·14

read, 7-15
write, 7-16

structure
multiword,4-6
resident, 3-4

subrange types, 1-7
subranges, 1-7
subroutine call, 9-1
subtraction, 2-2, 2-3, 2-5
supervisor mode, 1-5
suspended process, 10-2, 10-6, 10-7,

10-9
synchronized access, 4-6
System Data table, 3-12, 4-8, 9-12,

9-19,9-22, A-2
. system data table indexes, A-3
technical summary, 1~3
temporary variables, 1-7,4-6,9-8,9-19
terminology, 1-5
text block transfer, 8-16
textblt

arguments, 8-18
font representation, 8-16
interruptibility, 8-19
routines, 8-20

three-byte instructions, 4-2
tick, 10:'28, 10-29, A-2
tick size

maximum, A-2
minimum, A-2

time interval operand, 10-28
timeout, 4-1, 10-11, 10-13, 10-16,

10-18,10-19,10-20,10-25,10-28
wakeup mask register, 10-25, A-I
wakeup pending register, 3-21,10-25
wakeup waiting, 10-11
wake ups pending, 4-7
word, 2-1,2-2

high order, 9-11
least significant, 3-10, 3-19
low order, 9-11,10-4
most significant, 7-7, 7-15
substructure, 2-2

word block transfer, 8-1
word boundary, 4-3, 7-16

64K,3-9

P-11

P-12

Primary Index

word boundary block transfer
instructions,S-l

word offset, 3-10
word-aligned,8-12
words

overhead, 3-13
write direct instructions, 7·9
write field instructions, 7·19
write indirect instructions, 7-12
write protect, 4-7
write protected page, 10-24
write string instructions, 7-16
write-protect fault, 3-3, 3-6, 4-5, 9-9,

10-2,10-21, 10-23
XFER, 9-7, 9-10
XFER trap, 9-19
xfer trap, 9 .. 26
xfer trap status, 3-21
Xor operation, 2-3
zero divisor, 5-10, 5-11
zero extend, 2-6
zero pointer, 9-20
zero timeout, 10-29

References

[1] Mesa Language Manual. Version 3.0. [November 1984].

[2] IEEE Standard for Binary Floating-Point Arithmetic. Draft 10.0. [To be published
Summer, 1985J.

R-l

References

R-2

	0001
	0002
	001
	002
	003
	004
	005
	006
	01-01_Introduction
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01_Data_Types
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01_Memory_Organization
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	04-01_Instruction_Interpreter
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01_Stack_Instructions
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01_Jump_Instructions
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01_Assignment_Instructions
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	08-01_Block_Transfers
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-01_Control_Transfers
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	10-01_Processes
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	A-01_Values_of_Constants
	A-02
	A-03
	A-04
	B-01_Opcodes
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	MC-01_Mesa_Code_Index
	MC-02
	MC-03
	MC-04
	MC-05
	MC-06
	OM-01_OpCode_Mnemonics
	OM-02
	OM-03
	OM-04
	ON-01_OpCode_Names
	ON-02
	ON-03
	ON-04
	P-01_Primary_Index
	P-02
	P-03
	P-04
	P-05
	P-06
	P-07
	P-08
	P-09
	P-10
	P-11
	P-12
	R-01
	R-02

