
610E00160
December 1986

~ Xerox Corporation
Information System$·Oivision
xoe Technical Services

< 4tSOakmead Parl<way
.' Sunnyvale. California 94086

Copyright «> 1986, Xerox Corporation. All rights reserved.
XERO)(@,La010,andXDE are trademarks.of XEROX CORPORATION.

Pri ntedi n U~S.A

Preface

This document is one of a series of manuals writtEl'n to aid in programming and operating
the Xerox Development Environment (XDE).

Comments and suggestions on this document and its use are encouraged. The form at the
back of this document has been prepared for this purpose. Please send your comments..to;

Xerox Corporation
Office Systems Division
XDE Technical Documentation, MIS 5827
2300 Geng Road
Palo Alto, California 94303

iii

Preface

iv

Table of contents

1 Introduction

1.1 General structure of system software . 1-1

1.2 Files 1-2

1.3 General characteristics of Pilot 1-2

1.3.1 Processes, monitors, and synchronization 1-4

1.3.2 Virtual memory, files, and volumes. 1-5

1.3.3 Stream, device, and communication interfaces. 1-6

1.4 Pilot concepts. 1-7

1.4.1 Stateless enumerators .. 1-7

1.4.2 Synchronous and asynchronous operations. 1-8

1.5 Notation and conventions. 1-8

1.6 Common Software. 1-9

1.7 What follows . .1-10

2 Environment

2.1 Processor environment 2-1

2.1.1 Basic types and constants 2-1

2.1.2 Device numbers and device types 2-4

2.2 Processor interface 2-5

2.2.1 BitBlt 2-5

2.2.2 TextBlt .2-10

2.2.3 Checksum .2-14

2.2.4 Byte Bit .2-14

2.2.5 Other Mesa machine operations .2-15

2.3 System timing and control facilities .2-18

2.3.1 llniversalidentU1ers .2-18

2.3.2 Network addresses .2-19

2.3.3 Timekeeping facilities . .2-20

2.3.4 Control of system power .2-23

iii

iv

2.4

2.5

2.6

2.7

Table of contents

2.3.5 Pilot's state after booting

Mesa run-time support

2.4.1 Processes and monitors.

2.4.2 Programs and configurations

2.4.3 Traps and signals .

2.4.4 Calling the debugger or backstop

Client startup.

Coordinating subsystems' acquisition of resources

2.6.1 Use of the Supervisor

2.6.2 Supervisor facilities

2.6.3 Exception handling

General object allocation .

2.7.1 Basictypes.

2.7.2 Basic procedures and errors

3 Streams

3.1

3.2

3.3

3.4

3.5

Semantics of streams

Operations on streams

3.2.1 GetBlock and PutBlock .

3.2.2 Additional data transmission operations

3.2.3

3.2.4

3.2.5

3.2.6

Subsequence types .

Attention flags.

Timeouts .

Stream positioning.

Creating streams .

Control over physical record characteristics

Transducers, filters, and pipelines

3.5.1 Representing filters and transducers

3.5.2 Stream component managers

4 File Storage and Memory

4.1 Physical volumes .

4.1.1 Physical volume name and size.

4.1.2

4.1.3

4.1.4

4.1.5

4.1.6

4.1.7

4.1.8

Physical volume errors.

Drives and disks

Disk access, Pilot volumes, and non-Pilot volumes.

Physical volume creation .

Scavenging

Logical volume operations on physical volumes.

Miscellaneous operations on physical volumes.

.2-24

.2-26

.2-26

.2-31

.2-35

.2-36

.2-37

.2-37

.2-38

.2-39

.2-42

.2-42

.2-43

.2-43

3-2

3-3

3-3

3-6

3-7

3-8

3-9

3-9

3-9

.3-11

.3-13

.3-14

.3-18

4-1

4-2

4-2

4-3

4-4

4-6

4-6

4-8

4-9

Pilot Programmer's Manual

4.2 Logical volumes · 4-10

4.2.1 Volume name and size · 4-10

4.2.2 Logical and physical volumes · 4-11

4.2.3 Volume error conditions .4-12

4.2.4 Creating and erasing logical volumes · 4-12

4.2.5 Volume status and enumeration · 4-13

4.2.6 Opening and closing volumes · 4-14

4.2.7 Volume attributes. · 4-15

4.2.8 Volume root directory .4-16

4.3 Files .4-17

4.3.1 File naming .4-17

4.3.2 Addressing within files. .4-18

4.3.3 File types .4-18

4.3.4 File error conditions .4-20

4.3.5 File creation and deletion .4-21

4.3.6 File attributes . .4-21

4.4 Scavenging .4-22

4.4.1 Scavenging a volume .4-23

4.4.2 Scavenger log file .4-24

4.4.3 Operations on log files .4-26

4.4.4 Investigating and repairing damaged pages .4-27

4.5 Virtual memory management .4-29

4.5.1 Fundamental concepts of virtual memory .4-29

4.5.2 Mapping files to virtual memory intervals . .4-32

4.5.3 Explicitly reading and writing virtual memory. · 4-35

4.5.4 Swapping .4-37

4.5.5 Access control . .4-39

4.5.6 Explicit allocation of virtual memory and special intervals. .4-39

4.5.7 Map unit and swap unit attributes, utility operations .4-42

4.6 Pilot memory management .4-43

4.6.1 Zones .4-44

4.6.2 Heaps. · 4-4'9

4.7 Logging .4-55

4.7.1 Writing into the log file · 4-55

4.7.2 Reading a log file .4-58

5 1/0 Devices

5.1 Channel structure and initialization 5-1

5.1.1 Data transfer 5-2

5.1.2 Device specific commands 5-5

5.1.3 Device status 5-5.

5.2 Keyset, keyboards, and mouse 5-6

y

Table of contents

5.3 The user terminal. .5-11

5.3.1 The display image .5-11

5.3.2 Smooth scrolling .5-13

5.3.3 The keyboard and keyset .5-15

5.3.4 The mouse . .5-15

5.3.5 The sound generator .5-15

5.4 Floppy disk channel .5-16

5.4.1 Drive characteristics .5-16

5.4.2 Diskette characteristics .5-17

5.4.3 Status. .5-17

5.4.4 Transfer operations .5-18

5.4.5 Non-transfer operations .5-19

5.5 Floppy file system .5-20

5.5.1 Accessing files on the diskette .5-20

5.5.2 Snapshotting and replication of the floppy volume .5-23

5.5.3 Managing the floppy volume .5-24

5.6 TTY Port channel. .5-28

5.6.1 Creating and deleting the TTY Port channel .5-28

5.6.2 Data transfer .5-29

5.6.3 Data transfer status .5-29

5.6.4 TTY Port operations .5-30

5.6.5 Device status .5-31

5.7 TTY InputJOutput .5-32

5.7.1 Starting and stopping .5-32

5.7.2 Signals and errors .5-33

5.7.3 Output. .5-33

5.7.4 Utilities .5-34

5.7.5 String input operations .5-35

5.7.6 String output operations .5-36

5.7.7 Numeric input operations .5-37

5.7.8 Numeric output operations. .5-38

6 Communication

6.1 Well known sockets 6-2

6.2 Packet exchange . 6-4

6.2.1 Types and constants 6-5

6.2.2 Signals and errors . 6-6

6.2.3 Procedures. 6-7

6.3 Network streams. 6-9

6.3.1 Types and constants .6-10

6.3.2 Creating network streams . .6-12

vi

Pilot Programmer's Manual

6.3.3 Signals and errors . .6-14

6.3.4 Utilities .6-17

6.3.5 Attributes of Network streams. .6-19

6.4 Routing .6-23

6.4.1 Types and constants .6-23

6.4.2 Signals and errors . .6-24

6.4.3 Procedures. .6-24

6.5 RS232C communication facilities. .6-27

6.5.1 Correspondents .6-27

6.5.2 Environment .6-29

6.5.3 RS232C channel .6-32

6.5.4 Procedures for starting and stopping the channel .6-43

6.5.5 Auto-dialing .6-43

6.6 Courier .6-46

6.6.1 Definition of terms . .6-46

6.6.2 Binding .6-46

6.6.3 Remote procedure calling .6-49

6.6.4 Errors. .6-53

6.6.5 Bulk data .6-58

6.6.6 Description routines .6-59

6.6.7 Miscellaneous facilities .6-65

7 Editing and Formatting

7.l. ASCII character definitions 7-1

7.2 Formatting 7-2

7.2.1 Binding 7-2

7.2.2 Specifying the destination of the output 7-2

7.2.3 String editing 7-2

7.2.4 Editing numbers 7-3

7.2.5 Editing dates 7-4

7.2.6 Editing network addresses. 7-5

7.3 Strings 7-5

7.3.1 Sub-strings. 7-6

7.3.2 Overflowing string bounds. 7-6

7.3.3 String operations 7-6

7.4 Time .7-10

7.4.1 Binding .7-10

7.4.2 Operations. .7-10

7.5 Memory stream .7-12

7.5.1 Errors. .7-12

7.5.2 Procedures. .7-12

vii

VUl

Table of contents

8 System Generation and Initialization

8.1

8.2

8.3

8.4

8.5

System components .

Pilot initialization

Volume initialization.

8.3.1 Formatting physical volumes

8.3.2 Checking drives for bad pages

8.3.3 Microcode and boot files

8.3.4 Miscellaneous operations

Communication initialization.

Booting

8.5.1

8.5.2

8.5.3

8.5.4

8.5.5

8.5.6
8.5.7

Creating a boot file.

Writing the contents of a boot file

Making a boot file bootable .

Installing a boot file

Booting a boot file .

Updating a boot file

Atomic saving and restoring of Pilot instances .

9 The Backstop

9.1 Implementing a backstop .

9.1.1 Initializing a backstop log file

9.1.2 Control flow

9.1.3 Logging errors.

9.2 Reading backstop log files

10 Online Diagnostics

10.1

10.2

10.3

10.4

Communication Diagnostics

10.1.1 Ethernet echo testing

10.1.2 Gathering Ethernet statistics

10.1.3 RS232C testing

10.1.4 Dialer testing .

Bitmap Display, Keyboard, and Mouse Diagnostics

Lear Siegler Diagnostics

Floppy Diagnostics

11 TCPIIP Interfaces

11.1 ARPARouter.

11.1.1 Types and constants

11.1.2

11.1.3

Procedures.

References .

8~1

~2

8~3

8~5

8~6

8-6
8-9

.8-12

.8-12

.8-13

.8-13

.8-13

.8-14

.8-14

.8-15

.~15

9-1

9-2

9-2

9-2

9-4

· 10-1

· 10-2

· 10-7

· 10-9
.10-13

.10-14

.10-17

.10-18

11-1

11-1

11-1

11-2

Pilot Programmer's Manual

11.2 TcpStream 11-2

11.2.1 Types and constants 11-2

11.2.2 Procedures. 11-5

11.2.3 Restrictions 11-7

11.2.4 References . 11-8

11.3 ArpaAddressTranslation . 11-8

11.3.1 Errors. 11-8

11.3.2 Procedures. 11-9

11.3.2.1 Host table 11-9

11.3.3 References . .11-10

11.4 ArpaAddressCache .11-10

11.4.1 Procedures. .11-10

11.4.2 References . .11-11

11.5 ArpaHostTable .11-11

11.5.1 Procedures. .11-11

11.5.2 References . .11-12

11.6 ArpaTelnetStream .11-12

11.6.1 Types and constants .11-12

11.6.2 Signals. .11-16

11.6.3 Procedures. .11-16

11.6.4 References . .11-19

11.7 TelnetListener .11-19

11.7.1 Types and constants .11-19

11.7.2 Procedures. .11-20

11.7.3 References . .11-20

11.8 ArpaFilingCommon .11-20

11.8.1 Types and constants- .11-20

11.9 TFTP. .11-22

11.9.1 Types and constants .11-22

11.9.2 Errors and signals . .11-23

11.9.3 Procedures. .11-23

11.9.4 References . .11-24

11.10 ArpaFTP. .11-25

11.10.1 Types and constants .11-25

11.10.2 Errors and Signals . .11-27

11.10.3 Procedures. .11-28

11.10.4 References . .11-30

11.11 ArpaFTPServer .11-30

11.11.1 Types and constants .11-30

11.11.2 Procedures. .11-34

11.11.3 References . .11-34

ix

Table of contents

11.12 ArpaSMTP .11-34

11.12.1 Types and constants .11-34

11.12.2 Signals. .11-35

11.12.3 Procedures. .11-36

11.12.4 References . .11-37

11.13 ArpaSMTPServer. .11-37

11.13.1 Types and constants .11-37

11.13.2 Procedures. .11-38

11.12.3 References . .11-39

11.14 ArpaMailParse .11-39

11.14.1 Types .11-39

11.14.2 Constants and data objects. .11-40

11.14.3 Signals and errors . .11-41

11.14.4 Procedures. .11-41

11.14.5 References . .11-42

Appendices

A Performance Criteria

A.1 Physical memory requirements of Pilot · A-I
A.2 Execution speed and client program profile · A-2

A.2.1 Memory management . · A-2
A.2.2 File management · A-3
A.2.3 Communication via the Ethernet · A-3
A.2.4 Processes · A-3

B Assigning and Managing File Types · B-1

C Pilot's Interrupt Key · C-1

D Utility Pilot .0-1

E Multi-national Considerations · E-1

F References

F.l Mandatory references. F-1

F.2 Informational references. F-l

x

1

Introduction

This document defines and describes the external structure, appearance, and interfaces of
Pilot, the operating system for the Mesa processor, and the other packages released with
it. The description is primarily intended for the designers and implementors of client
programs of Pilot, i.e., applications, certain development and production tools. test
programs, etc. It provides sufficient information to allow the programmer to understand
the facilities available and to write procedure calls in the Mesa language to invoke them.
For each of the facilities of Pilot, this manual lists the procedure names, parameters,
results, the data types of each of the arguments, and the possible signals which can be
generated. These aFe captured in the Mesa DEFINITIONS modules which are part of each
release.

This manual is a reference manual for programmers, who are assumed to be familiar with
the Mesa programming language. It is not a tutorial on how to write programs which use
Pilot. The order of information presented, insofar as possible, tries to minimize the
number of forward references. Cross referencing within the text has been abandoned for a
more comprehensive referencing via the index. It is expected that the reader will go to the
index to locate the description of terms or concepts encountered. References in the text of
the form §1.2.3 refer to section 1.2.3. Deviations from the descriptions given here and the
currently released version of Pilot are noted in the documentation which accompanies the
release.

The specification presented here is adequate for the majority of programs which need to
interface with Pilot and make use of its facilities. In some cases, however, supplementary
facilities will be required in order to permit certain applications to make effective use of
the Mesa hardware and processor. Such facilities, if made generally available, could lead
to degraded performance or degraded reliability of both Pilot and the whole Mesa system.
Therefore, they are not described here but are in supplementary documents which are
made available, along with the corresponding DEFINITIONS modules, only as required.

1.1 General structure of system software

It is important to understand the relationship of the various kinds of software found in a
Mesa processor. There are the following major categories:

I-I

1

1.2 Files

In trod uction

Face.,;, Heads. and Microcode: A face is a Mesa interface that embodies some aspects of
the processor, defined in the Mesa Processor Principles of Operation, and of its I/O
devices. Each face is implemented by a combination of Mesa code, called a head, lower
level machine code, called microcode, and the underlying hardware. The collection of
heads and microcode provides a machine-independent environment in which Pilot and
its clients execute.

Pilot: Pilot is the operating system which manages the hardware resources of, and
provides the run-time support for, all Mesa programs on a machine. Pilot is written in
the Mesa language. Its facilities are explicitly invoked by means of procedure calls
from, or exceptions generated by, client programs.

Common Software: These are collections of modules and configurations which provide
services often useful to applications. They are written in Mesa and call upon Pilot
facilities. Some are released with Pilot while others are released separately.

Applications: Application software actually performs the functions we are marketing.
These programs are written in Mesa and may call upon Pilot and Common Software
for support.

In addition, there are other categories of software which are important but which will not
appear in a final product as delivered to a customer. These include the Mesa compiler and
binder, a number of development tools, test programs, etc. These are designed to operate
in the environment of Pilot.

This document deals with Pilot, and the Common Software released with it. However, it is
not possible to consider Pilot in isolation, and frequent reference must be made to
documents describing the other categories of software. In particular, the Pilot facilities
described here would be inadequate for supporting a modern software development project
in the absence of the Mesa facilities.

The basic facilities of Pilot are incorporated in the object file PilotKernel. bed. There is
also a special version of Pilot in the object file Utili tyPilotKernel. bed; this version
is intended to support small applications and utilities which must run in real memory (see
Appendix 0 for more details). Some of the facilities described in this manual are
implemented in their own object files. In those cases, the name of the object file will be
mentioned in the section that describes the facility.

There is no explicit mention made in this document of the location of files. That
information is contained in the documentation that is issued in conjunction with each
release of Pilot. Readers should consult that documentation to ascertain where files are
located.

1.3 General characteristics of Pilot

1-2

-Pilot is not a general purpose operating system. Instead, it is a nucleus of software which
serves as an interface between a Mesa processor and all other software. In particular,.
Pilot defines a "Basic Machine" which is an abstraction of the physical resources provided
by the hardware. The purpose of this Basic Machine is to define a standard interface

Pilot Programmer's Manual 1

which is relatively independent of the :;ize, speed, particular model, and configuration
upon which it is operating. It thus provides a uniform environment in which clients can be
designed and programmed. Furthermore, it insulates these as much as possible from
variations in hardware configuration from site to site and from time to time.

In general, Pilot is designed around the notion that its clients are a cooperative system of
programs all serving a common purpose. Thus, it is far more tolerant and permissive than
most operating systems. It delegates much more control of system resources to its users.
It permits programs and subsystems to recover gracefully from errors, but it also places
more responsibility on them to ensure the overall well-being of the machine and of the
networks to which it is connected.

The major facilities of the Basic Machine can be regarded as falling roughly into three
main categories:

Mesa run-time support including processes, monitors, and synchronization facilities

Virtual memory, files, and volumes

Stream, device, and communication interfaces

Each of these categories are described below in so~e detail.

Some facilities and concepts normally associated with operating systems have been
deliberately o~itted from Pilot. For example,

Master Mode and Protection: :r'here is no "ironclad" mechanism which protects Pilot
from errant or malicious client programs, or even which protects client programs from
each other. Instead, Pilot consists simply of a group of Mesa modules, and relies on
such facilities as Mesa type-checking to provide the redundancy necessary to detect
errors. The protection relationship between Pilot and its clients is the same as that
between any two systems built in Mesa.

Job Control: Since product systems have no explicit concept of "job", Pilot provides no
job control facilities. Instead, groups of related processes which support a particular
application control themselves and their use of resources in response to external
stimuli from the human user, or from other system elements via the Network Services
(NS) Communication System.

Billing and Accounting Functions: Since the product architecture is designed around
the concept of a distributed network oflow cost system elements, there is no need to do
detailed billing or to account for the use of resources within a single system element.
In those few applications where economic management of resources is required or
desired, such as in central file servers, this function is performed at a higher level, not
within Pilot.

Competitive Allocation of Resources: The allocation of major system resources will
generally be on a cooperative rather than a competitive basis. Thus, Pilot does not
contain elaborate resource allocation functions. Instead, resources and resource
management can often be planned statically when systems are configured. Where
dynamic resource control is required, such as in the sharing of physical memory, Pilot
provides facilities which allow the applications to state their current requirements.

1-3

•

1

1-4

Introduction

Complex Services: Pilot does not provide very complex services or facilities such as
directories, display and keyboard management routines, command languages, or
human-engineered interfaces. These are all provided by client programs, and are
likely to vary across the product lines.

1.3.1 Processes. monitors. and synchronization

Within a system element, there will almost always be several activities occurring
concurrently. For example, the display will be updated at the same timp as the human
user is typing on the keyboard, and perhaps both of these will take place at the same time
files are being read, text is being edited, or documents are being transferred to other
system elements. To support this kind of concurrent ac'tivity, Mesa (with the help of the
Mesa processor and Pilot) provides the following facilities:

Processes, which represent asynchronous activities,

Monitors, which arbitrate access to shared resources, and

Condition variables, which provide flexible interprocess synchronization.

These facilities are actually features of the Mesa language, but are described here for
completeness.

The concept of process is a fundamental architectural concept in all Mesa software. Mesa
processes are intentionally "lightweight". They are much more like Mesa procedures
than, say, entire application programs. A process is instantiated in much the same way
that a Mesa procedure is called. When this is done, the result is a separate, independently
executing thread of control, with its own local data (if any). A process has the same status
as a procedure. A process may call procedures, access local or global data, and spawn new
instances of processes, subject to the standard Mesa name scoping constraints. A typical
application may utilize many processes, and the whole processor may contain hundreds of
process instances at one time. These can be created and deleted frequently (tens, or even
hundreds of times per second if this proves useful).

The general philosophy of programming with processes in Mesa is that one or a collection
of modules manages a particular resource or common data structure. Each process which
needs to access that resource or data structure calls the procedures defined in those
modules. To impose order on the possible chaos which could result from asynchronous
manipulation of the data, the concept of monitor lock is provided. A monitor lock is a data
structure which contains the interlocks sufficient to guarantee that only one process at a
time may gain access to the data. It serves as an orderly "meeting ground" through which
otherwise asynchronous processes may synchronize their activities and ensure the
consistency of the data or resource which they are sharing.

In many cases, the exclusive access guarantee of the monitor mechanism is not sufficient
to express the desired pattern of coordination among cooperating processes. The condition
variable facility provides additional flexibility in synchronizing such interactions, by
allowing one process to wait for some event, and another process to notify it when the
event occurs. Condition variables also provide the basic means in Pilot and Mesa by which
a process may wait for an event and time out after a specified period of elapsed time if that
event does not occur.

Pilot Programmer's Manual 1

In Pilot, the interfaces to sharable system resources are presented as procedures which
client programs may call. These procedures almost always define sYn[:hronous operations,
even when they involve the operation of an asynchronously operating device connected to
the Mesa processor. Thus, some of them may take a long time to complete. In general, if
an application program cannot tolerate such a long wait, or could make better use of its
time, it should fork a new process instance to call the Pilot procedure and do the waiting
for it. Later, when the results are actually required, the two process instances can be
synchronized and one of them deleted. This is the general mechanism.by which
asynchronous activity is managed by both Pilot and client programs. The single exception
to this is in the area of direct control of physical devices, in which Pilot provides a more
primitive means of implementing overlapped, concurrent activity. Very few clients will
be directly involved with this interface to Pilot.

1.3.2 Virtual memory, files. and volumes

Pilot provides an integrated system for managing main memory and file storage. In
particular, it implements a single, monolithic, page-oriented, virtual memory shared by
all Mesa software, including Pilot itself. This virtual memory consists of 220 to 232 I6-bit
words, depending upon the hardware processor. The memory is organized into 256-word
pages. To complement the virtual memory, Pilot provides a system of files, each of which
may contain up to 223 pages (i.e., 232 bytes). Files are aggregated into volumes each of
which also may contain up to 223 pages. Files are accessed via the virtual memory
swapping mechanism, as described below.

Traditionally, virtual memories are implemented in operating systems by swapping the
contents of virtual pages between real memory and some form of backing store. In Pilot,
the files serve the role of backing store. Any page of virtual memory which contains
information must have associated with it a page from a file to and from which it can be
swapped. In the case of pages containing Mesa object code (which are always read-only),
the backing file is just the object code file output by the Mesa system. In the case of virtual
memory which "buffers" the contents of files containing long-term data, the files
themselves act as the backing store. Finally, for pages containing temporary data which
is purely internal to the current execution of the program, Pilot provides private,
temporary, anonymous files for backing storage. In UtilityPilot based systems, pages for
temporary data are only supplied from the processor's real memory.

Files are associated with virtual memory by m.apping a file or portion of a file to virtual
memory. The interval of virtual memory used is normally allocated as part of the mapping
operation. Each map unit, or mapped interval, is typically subdivided into swap units, for
swapping purposes, as described in the next paragraph. Pilot also provides operations to
remove the mapping when it is no longer required.

Whenever a process attempts to reference (i.e., fetch or store) a virtual memory location
within a map unit, the page containing that location may not be present in real memory.
Ifit is not, Pilot must read it into real memory. Execution of the process is suspended until
the swapping is completed. Pilot provides swapping in two ways:

under the control of the client program, in the form of swapping commands -- these are
commands by which the client program informs Pilot that certain intervals of virtual
memory will be needed in the immediate future and that swapping should be initiated
as soon as possible; An interval is no longer needed and should be swapped out; An

1-5

1

1-6

Introd uction

interval is not likely to be referenced soon. so Pilot should write it out and release the
real memory allocated to it.

on demand -- if the page referenced is neither in real memory nor the subject of a
recent swapping command to bring it in, Pilot will itself initiate a swapping action to
bring in the that page and any adjoining swapped-out pages of the containing swap
unit.

Typically, intervals containing code, and intervals containing local and global frames will
be swapped on demand, while those which contain the major client data structures and
data from files will be swapped under client program control. Swapping performance can
be improved by organizing the Mesa code file(s) so that related procedures are located in
the same interval of virtual memory, typically by use of the packager. Pilot further
improves performance by attempting to allocate the pages of a file contiguously on the file
storage medium so that an interval can be swapped in a single UO operation.

A client which wishes to read from a file will map that file into a virtual memory interval
and then use explicit or demand swapping to cause it to be swapped into real memory. If
the file is being updated in place, the client will simply store into the relevant locations of
virtual memory. Subsequently, when the interval is unmapped or otherwise swapped out
of real memory, the file will reflect the new contents. [f, on the other hand, the file is not
being updated in place, the client program can copy the contents of a virtual memory
interval to a portion of a file, and copy a portion of a file to a virtual memory interval,
without altering the mapping of the interval.

Pilot supports access to files on local volumes. Each existing file is uniquely defined
within that volume. If that volume is implemented on a removable ~edium, it (and all of
its files) may be removed and remounted on another system element.

Files are identified by file ids. When a new file is created, a new file id is issued. The file is
uniquely identified to Pilot by presenting Pilot with its id and the id of the containing
volume. Client may not generate file ids, but they may store them, copy them, and pass
them to other programs.

An important interval of virtual memory recognized by the Mesa processor and the Mesa
system is the main data space (MDS). This is a contiguous subset of virtual memory
consisting of 216 words (256 pages), any part of which may be addressed by a sixteen-bit
Mesa POINTER. An MOS contains the low-level data structures and mechanisms, such as
local and global frames and trap handlers, necessary for executing Mesa processes.
Conversely, each process is associated with one and only one MOS. Although the Mesa
processor supports multiple coexisting MDS's, Pilot does not. Thus, any Pilot-based
system has only one MDS, which is shared by all of the system's processes.

1.3.3 Stream. device. and communication interfaces

Pilot supports a sophisticated, packet-switched, communication system. The heart of this
system is a software package called the router.

Information received from one Pilot client for transmission to another Pilot client (on the
same or another system element> is broken into packets for delivery. These packets,
encapsulated in the Xerox Internet Transport Protocols and including both source and

Pilot Programmer's Manual 1

destination addresses, are passed to the router. If the destination cli~nt is on the local
machine, the packet is passed to that client.

For remote destination clients, the router determines if there is a communication path
from the local machine to the final destination machin~. [f no path exists, the packet
cannot be transmitted, and an appropiate status is set. Otherwise the best available path
is selected and the packet is transmitted via the first communication link of the path on
route to its final destination. This physical transmission may take place on anyone of a
number of communication devices, including the ethernet or telephone lines.

The router sends and receives packets via ethernet device dri vers and by other
communication device drivers which may be added in the future. On the Pilot client side,
the router is accessed by the NetworkStream and PacketExchange interfaces (see Chapter 6).

Pilot establishes a style and some standards for the construction of (f0 device drivers by
defining the notion of channel. This makes the style of usage of the various (f0 drivers
similar enough to be somewhat predictable and standard enough that a client constructed
I/O device driver can be included in Pilot without a formal integration. All of the Pilot
supplied and Pilot-required device drivers conform to this style and these standards.

One such Pilot-supplied device driver is the ethernet device driver. The ethernet device
driver not only may be used to transmit Internet Transport Protocol packets through the
router as described above, but may also be used as an ordinary device driver for non-NS
communication with non-NS stations.

When sequential data is to be transported between a Pilot client and an I/O device or
another Pilot client, it is usually possible to do this in a device and format independent
way. The Pilot Stream Package accomplishes this. The mechanism for transcribing a
sequential stream of data on or off an 110 device is provided by a client written or Pilot
supplied transducer. Modifications to t~e data stream (e.g., code conversion) are
accomplished by a client or Pilot /ilter. The stream package provides a basic set of
transducers and filters and, more important, a way of assembling them sequentially into
processing and transmitting pipelines.

One kind of stream supported directly by Pilot is the Network stream referred to above.
This kind of stream is capable of receiving data from a Pilot client on one machine and
transmitting it to another client on a different machine.

1.4 Pilot concepts

There are methodologies which are used repeatedly in the design of the Pilot functions.
They are described here.

1.4.1 Stateless enumerators

Many Pilot functions return information to the client of the form of a list of items whose
length cannot be a priori known. Consequently, Pilot functions that supply this type of
information do so by passing back an item of the list for each call for the information.
These functions are created in a very sty lized way.

The basic idea is that the client, on its first call to such a function, supplies a value which
no item of the list can have. This item is usually has a name of the form nullobject, for

1-7

1 Introduction

whatever object is being enumerated. The function retl!rns a member of the list. If the
client, on its next call on the list function, supplies the previously returned value, Pilot
will return another member of the list. This goes on until the list is exhausted where upon
Pilot returns nullobject, indicating the end of the list.

These types of functions are called statetess enumerators. A reference to a stateless
enumerator will always be accompanied by the beginning and ending values. Usually the
items of the list are not returned in any particular order. If there is some order imposed,
this will be pointed out in the description of the function.

1.4.2 Synchronous and asynchronous operations

When a Pilot function is called, it mayor may not return before the requested operation
has been completed. If Pilot waits until the operation is done (the usual case), the
operation is called synchronous. If the operation queues the operation and returns before
it has completed, it is dubbed asynchronous. If no mention is made of the type of a
particular operation, the operation is synchronous. Almost all Pilot operations are
synchronous.

1.5 Notation and conventions

1-8

At the beginning of each section are listed the names of the DEFINITIONS modules containing
the Pilot facilities described in that section. The procedure and type definitions contained
in each of the interface modules are presented in this document as pseudo-Mesa
declarations of the form:

ModuIeName.TypeName: TYPE •••• ;

ModuIeName.ProcedureName: PROCEDURE (ParameterList] RETURNS (ResultsList];

ModuIeName.SignaIName: SIGNAL (ParameterList) RETURNS [ResultsList);

That is, each definition is listed with its own name qualified by the DEFINITIONS module
name. Any Mesa program which invokes the facilities of Pilot must list the names of the
relevant DEFINITIONS modules in its DIRECTORY dause. It may then refer to one of these
variables, procedures, types, or signals by its fully, qualified name. This style of explicit
qualification is strongly recommended (i.e., as opposed to opening the scope of the
DEFINITIONS module by an OPEN clause, and using the unqualified name).

Accompanying these Mesa declarations is the explanation of the function of each
procedure, the conditions under which it may be invoked, and the SIGNALS and ERRORS it can
raise. In this explanatory text, the explicit interface qualification is usually dropped,
since it is clear from the context.

The following rules apply to all the operations discussed in this manual. Exceptions to the
rules will be mentioned explicitly.

1) If the explanatory text of an operation does not explicitly say that a specific error
is raised, then the operation does not raise the error.

Pilot Programmer's Manual 1

2) [fan operation returns hy raising an error, then the operation will appear to have
only. raised the error.

3) If an operation is to operate on a object already operated on (e.g.,
Space.MakeReadOnly on a read-only object), then the operation will return
successfully. That is, most operations are idempotent.

4) All operations that may be performed outside the body of a catch phrase. may be
performed within the body of the catch phrase (e.g., Pilot holds no monitor locks
while raising a signal or error).

5) Invoking an operation with a count parameter of zero, is equivalent to invoking
the operation with a count of one minus one (i.e., zero is not a special case).

Note: A paragraph in this form headed by the word "Note" contains additional
information about how the operations are intended to be used. These are included to help
the programmer to design his program to take best advantage of the Pilot facilities.
Ignoring these notes will not produce incorrect programs, but it may produce programs
that execute slowly, or require excessive amounts of system resources.

Caution: Paragraphs labeled with "Caution" are intended as warnings to programmers.
In general, these apply to features or aspects of Pilot which can be easily misused, and
which will result in incorrect or inconsistent operation if they are misused. In particular,
Pilot is not likely to be able to detect errors cautioned against in these paragraphs .. It is the
programmer's responsibility to avoid making these mistakes.

For example, an error which Pilot cannot detect is the "dangling reference" problem. In
many cases, Pilot defines a class of abstract objects and provides client programs handles
for accessing such objects. If one client program should request Pilot to destroy a
particular object, then later another client program requests Pilot to create a new one of
the same type, Pilot may reuse the handle of the old, destroyed one. If the first client
program inadvertently retains and uses copies of the old handle, these will now look like
legitimate handles for the new object. Pilot may not be able to detect the condition and
chaos is likely to ensue.

Metasymbols are indicated wit~ italics. It is expected that some specific instance will be
filled in for the metasymbol, such as in the case of nullobject in the preceding section. A
possible instance of a nullobject might be null Handle.

1.6 Common Software

This manual also includes descriptions of the Common Software. Common Software is
not included in PilotKernel.bcd, but is made available as separate object files. Clients
which make no use of Common Software need not be burdened with its presence. Common
Software comes in two varieties, Product and Development. Those Common Software
packages denoted as Product Common Software are intended to be used in products.
Development Common Software consists of packages that are used internally, in the
development environment; they should not be used in product systems. Only Product
Common Software is described in this manual.

1-9

1 Introduction

Because the Common Software packages are not included in PilotKernel.bcd, the name of
• the implementing object file, how to bind, t!tc. IS presented at the beginning of each section

describing a Common Software package.

1.7 What follows

1-10

The rest of the manual describes the interfaces to Pilot and the Common Software
packages in terms of the Mesa data types and procedures used by clients. These types and
procedures are embodied in one or more Mesa interfaces (DEFINITIONS modules) made
available to programmers of client software. The description is organized according to the
major resources managed by Pilot.

Chapter 2 describes the interface provided by Pilot to various Mesa processor features.
Described are the various constants and types associated with the processor. It also
describes the run-time support needed to execute Mesa programs. This chapter includes
the descriptions of facilities to support the Mesa concepts of process, monitor, and
condition variable and the various traps, procedures. and signals defined by the Mesa
language. It describes some basic, low-level system facilities provided by Pilot. These
include: universal identifiers. by which volumes and other objects are named; network
addresses, which control communication via the Xerox Internet Transport Protocols;
several forms of timekeeping facilities; and facilities for controlling system electrical
power.

In Chapter 3, the general concept of a stream is introduced .. Streams may be superimposed
upon files, communication facilities, and devices in order to achieve a high level, medium
independent means of accessing and distributing information.

Chapter 4 describes the file management and virtual memory facilities of Pilot.

Chapter 5 describes the facilities by which client software can exercise control over
hardware devices. These facilities are meant primarily for situations in which streams
are no.t suitable. This chapter is a model for individual device interfaces, some of which
are described in this manual, and others of which are implemented by clients.

Chapter 6 describes the communication facilities of Pilot.

Chapter 7 describes miscellaneous editing and formatting packages.

Chapter 8 describes how to initialize the system, and how to get a client to start execution.

Chapter 9 describes facilities for automatically handling system errors and signals. The
processing of error conditions is done by a separate program referred to generically as a
backstop.

2

Environment

This chapter describes the constants, types, and procedures, available to the Pilot
programmer, which describe the system element and make available at the client level,
certain features of the abstract machine. It contains the basic levels of the system.

2.1 Processor environment

Environment: DEFINITIONS ••• ;

This s~ction captures all of the basic constants describing the processor and peripherals.
The first section describes the processor and the second defines the constants pertinent to
the peripheral devices attached to the processor.

2.1.1 Basic types and constants

Pilot is specifically designed to execute on system elements defined by the Mesa Processor
Principles of Operation. For convenience, the basic types and constants of that
architecture are captured symbolically in the DEFINITIONS module Environment.

The following definitions define the basic word, byte and character sizes of the Mesa
processor.

Environment.Byte: TYPE = [0 .. 255];

Environment.Word: TYPE = [0 •• 65535];

Environment.bitsPerWord: CARDINAL = 16;

Environment.bitsPerByte. Environment.bitsPerCharacter: CARDINAL = 8;

Environment.logBitsPerWord: CARDINAL = 4;

Environment.bytesPerWord. Environment.charsPerWord: CARDINAL =
bitsPerWord I bitsPerCharacter;

Environment.logBitsPerByte. Environment.logBitsPerChar: CARDINAL = 3;

2-1

2

2-2

Environment

'Environment.logBytesPerWord. Environment.logCharsPerWord: CARDINAL = 1;

All constants of the form log ... are base 2 logarithms of their respective quantities. The
following type is a general purpose descriptor for a sequence of bytes in virtual memory
(see section §4.5 for a description of virtual memory).

Environment.Block: TYPE. RECORD[
blockPointer: LONG POINTER TO PACKED ARRAY [0 .. 0) OF Environment.Byte.
startl ndex. stoplndexPlusOne: CARDINAL];

The following constant defines an empty block.

Environment.nuIlBlock: Environment:Block • [NIL. 0.0];

The following definitions characterize the basic page size of the Mesa processor.

Environment.wordsPerPage: CARDINAL II 256;

Environment.bytesPerPage. Environment.charsPerPage: CARDINAL II wordsPerPage *
bytesPerWord;

Environment.logWordsPerPage: CARDINAL = 8;

Environment.logBytesPerPage. Environment.logCharsPerPage: CARDINAL II

10gWordsPerP.age + 10gBytesPerWord;

The following definitions characterize the maximum virtual memory address space
available to Pilot clients.

Environment.maxPageslnVM: CARDINAL II Environment.lastPageCount;

This is one less than the number of VM pages provided by the hardware. The highest
numbered VM page is reserved for system purposes.

Environment.maxPageslnMDS: CARDINAL II 256;

Environment.PageNumber: TYPE = LONG CARDINAL; --[0 .• 224..1)--

Environment.firstPageNumber: Environment.PageNumber = 0;

Environment.lastPageNumber: Environment.PageNumber II 16777214; __ 224_2--

Note: Because LONG subrange types are not implemented in the current version of Mesa,
the current version of Pilot defines PageNumber as a LONG CARDINAL and defines the
constants firstPageNumber and lastPageNumber to specify FIRsT[PageNumber] and
LAsT[PageNumber]. Similarly for PageCount and Page Offset below.

Environment.PageCount: TYPE II LONG CARDINAL --[0 .. 224_1]--;

Environment.firstPageCount: Environment.PageCount = 0;

Environment.lastPageCount: Environment.PageCount = lastPageNumber + 1; -- 224_1

Pilot Programmer's Manual

Environment.PageOffset: TYPE .. Environment.PageNumber;

Environment.firstPageOffset: Environment.PageOffset .. 0;

Environment.lastPageOffset: Environment.PageOffset .. lastPageNumber;

Caution: Substituting LAST[Environment.PageNumber] or LAST[Environment.PageCount] for

the above constants will yield incorrect results.

Environment.Base: TYPE = LONG BASE POINTER;

Environment.first64K: Environment.Base = ... ;

first64K is the base pointer to the first 64K of virtual memory.

Environment.maXINTEGER: INTEGER .. LAST[INTEGER);

Environment.minINTEGER: INTEGER .. FIRST[INTEGER);

Environment.maXCARDINAL: INTEGER .. LAST[CARDINAL);

Environment.maXLONGINTEGER: INTEGER .. LAST(LONG INTEGER);

Environment.minLONGINTEGER: INTEGER" FIRST(LONG INTEGER) ;

Environment.maXLONGCARDINAL: INTEGER .. LAST[LONG CARDINAL) ;

The following types allow direct manipulation of long values.

Environment.Long, Environment.LongNumber: TYPE = MACHINE DEPENDENT

RECORD [SELECT OVERLAID * FROM

Ie = > [Ie: LONG CARDINAL],

Ii • > [Ii: LONG INTEGER),

Ip = > [Ip: LONG POINTER],

lu .. > [Iu: LONG UNSPECIFIED),

num .. > [Iowbits, highbits: CARDINAL],

any .. > [low, high: UNSPECIFIED],

ENDCASE];

The following structure is used to address bits (used principally by BitBlt).

Environment.BitAddress: TYPE .. MACHINE DEPENDENT RECORD [

word: LONG POINTER,

reserved: [O .. LAST[WORD]/Environment.bitsPerWord) Eo- 0,
bit: [O .. Environment.bitsPerWord)];

Note that the reserved field must be zero.

The following operation returns a LONG POINTER to the first word of a page.

Environment.LongPointerFromPage: PROCEDURE [page: Environment.PageNumber]

RETURNS (LONG POINTER);

2

2-3

2

2-4

Environment

The following operation returns the number of the page containing pointer. If'pointer is
NIL, the value returned is undefined-no signal is raised.

Environment.PageFromLongPointer: PROCEDURE [pointer: LONG POINTER]
.RETURNS [Environment.PageNumber);

2.1.2 Device numbers and device types

Device: DEFINITIONS ... ;

DeviceTypes: DEFINITIONS ... ;

Definitions are provided for devices and classes of devices attached to the system element.
These constants are defined in the interfaces Device and DeviceTypes. Definitions in the
interface Device serve to identify the individual devices attached to the system element.

Device.Type: TYPE. RECORD [CARDINAL];

Device.nuIiType: Device.Type • (0);

Device.Ethernet: TYPE = CARDINAL [5 .. 16);

Device.Pil~tDisk: TYPE = CARDINAL [64 .. 1024);

All Ethernet type devices will have a value in the range defined by Ethernet. All devices
capable of containing a Pilot physical volume will be in the range defined by PilotDisk.

Device types provide a means of classifying the different devices attachable to the system
element. Device types· for Ethernet devices are:

DeviceTypes.anyEthernet: Device. Type • .,. ;

DeviceTypes.ethernet: Device.!ype •... ;

DeviceTypes.ethernetOne: Device.Type •... ;

A type of anyEthernet indicates that the device is an Ethernet but of unspecified type. A
type of ethernet indicates that the device is a 10 megabit Ethernet. A type of ethernetOne
indicates that the device is a 3 megabit Ethernet.

The specific device types assigned to Pilot disks are:

DeviceTypes.anyPilotDisk: Device.Type •... ;

DeviceTypes.sa1000: Device.Type •... ;

DeviceTypes.sa1004: Device.Type •... ;

DeviceTypes.sa4000: Device.Type •... ;

DeviceTypes.sa4008: Device.Type •... ;

Pilot Programmer's Manual 2

DeviceTypes.t300: Device.Type = ... ;
DeviceTypes.t80: Device.Type = ... ;

DeviceTypes.cdc9730: Device.Type = ... ;

DeviceTypes.q2000: Device.Type = ... ;

DeviceTypes.q2010: Device.Type = ... ;

DeviceTypes.q2020: Device.Type = ... ;

DeviceTypes.q2030: Device.Type = ... ;

DeviceTypes.q2040: Device.Type = ... ;

DeviceTypes.q2080: Device.Type = ... ;
A type of anyPiiotDisk indicates that the device is a Pilot disk but of unspecified type.

A type of sa1000 indicates that the device is some unspecified disk of the Shugart
Associates SA1000 family. Similarly, a type of sa4000 indicates that the device is some
unspecified disk of the Shugart Associates SA4000 family. A type ofsa1004 indicates that
the device is an SA1004 disk, a type ofsa4008, an SA4008 disk.

A type of t300 indicates that the device is a Century Data Systems T-300 disk. A type of
t80 indicates that the device is a Century Data Systems T-80 disk. A type of cdc9730
indicates that the device is a Control Data Corporation CDC-9730 disk.

A type of q2000 indicates that the device is some unspecified disk of the Quantum 2000
family. Types ofq2010, q2020, q2030, q2040, and q2080 indicate Quantum disk devices of
type 2010, 2020, 2030, 2040, and 2080, respectively.

Other device types included in the interface are:

DeviceTypes.null: Device.Type = Device.nuIiType;

DeviceTypes.sa800: Device.Type = ... ;

A type of sa800 indicates that the device is some unspecified disk of the Shugart
Associates sa800 family.

When indicating devices capable of holding a Pilot volume, Pilot will report a correct
device type, although it may not be as specific as possible (i.e., a Shugart SA4008 disk
might be reported as either DeviceTypes.anyPiiotDisk or DeviceTypes.sa4000 or
DeviceTypes.sa4008.

The following Extras interfaces are interim for this release. In future releases, all Extras
interfaces will be merged with their parent interfaces.

DeviceTypesExtras.anyFloppy: Device.Type = ... ;

2-5

2 Environment

DeviceTypesExtras.sa850: Device.Type = ... ;
DeviceTypesExtras.sa455: Device.Type = ., . ;
DeviceTypesExtras.sa456: Device.Type = ... ;

DeviceTypesExtraExtras.m2235: Device. Type •... ;

DeviceTypesExtraExtras.m2242: Device.Type •... ;

DeviceTypesExtraExtras.m2243: Device.Type = ... ;

A type of any Floppy indicates that the device is a floppy drive but of unspecified type.

A type ofsa850 indicates that the device is a Shugart Associates SA-850 floppy drive.
Similarly, a type ofsa455 or sa 456 indicates that the device is a Shugart SA-455 or SA-
456 floppy drive, respectively.

A type of m2235 indicates that the device is a Fujitsu 26MB rigid disk drive. Similarly, a
type ofm2242 or m2243 indicates that the device is a Fujitsu 50MB or 80 MB rigid disk
drive, respectively.

2.2 Processor interface

2-6

This section presents interfaces, provided by Pilot, that permit access to features provided
by the underlying Mesa processor which are not provided by the Mesa language. These
interfaces define pseudo-faces-types defined by the hardware and operations directly
implemented by the hardware. Pilot merely exports the definitions for the use of its
clients. The types and operations are defined below.

2.2.1 BitBlt

BitBlt: DEFINITIONS ... ;

The Bit Block Transfer operation in this interface is BITBLT which operates on rectangular
arrays of bits in memory. The instruction accesses source bits and destination bits,
performs a function on them, and stores the result in the destination bits.

Successive bit pairs are obtained by scanning a source bit stream and a destination bit
stream. The instruction operates successively on lines of bits called items; it processes
width bits from a pair of lines, and then moves down to the next item by adding srcBpl (bits
per line) to the source address and dstBpl to the destination address. It continues until it
has processed height lines.

Figure 2.1 illustrates a possible configuration of source and destination rectangles, which
are always of the same size and dimensions, embedded in separate bitmaps.
Approximately half of the items have been moved to the destination, and the location of
the next item is highlighted in the source bitmap and shown as a dotted line in the
destination bitmap.

BitBlt.BITBLT: PROCEDURE [ptr: BBptr]

Pilot Programmer's Manual 2

Destination Bitma
Source Bitmap

dst ~ c~- width ----:J~~I

T r-------'

src --.

T
Item

height

height ------1 1
width

I ~----- dstBpl -------~~I I ~---- srcBpl

Figure 2.1 BitBlt Source and Destination

The argument to Bit Block Transfer is a short pointer to a record containing the source
and destination bit addresses and bits per line, the width and height (in bits) of the
rectangle to be operated on, and a word of flags that indicate the operation to be
performed. The width and height of the rectangle are restricted to a maximum of 32,767.
The argument record must be aligned on a sixteen word boundary.

BitBlt.AlignedBBTable: PROCEDURE rip: POINTER TO BBTableSpace] RETURNS [b: BBptr] ;

BitBlt.BBTableSpace: TYPE. ARRAY [1 .• SIZE[BBTable] + BBTableAlignment) OF UNSPECIFIED;

BitBlt.BBTableAlignment: CARDINAl" • 16;

AlignedBBTable ensures that the BBTabie will be on a sixteen word boundary.

BitBlt.BBptr, BitBlt.BitBltTablePtr: TYPE = POINTER TO BBTable;

BitBlt.BBTable, BitBlt.BitBltTable: TYPE = MACHINE DEPENDENT RECORD [
dst: BitAddress,
dstBpl: INTEGER,
src: BitAddress,
srcDesc: SrcDesc,
width: CARDINAL,
height: CARDINAL,
flags: BitBltFlags,
reserved: UNSPECIFIED.- 0);

This table contains all the arguments for specifying the resultant bit pattern. The
following types are used to make up a BitBltTable (BBTable).

BitBlt.BitAddress: TYPE • Environment.BitAddress;

BitAddress is used to address bits.

2-7

2

2-8

Environment

BitBlt.SrcDesc: TYPE == MACHINE DEPENDENT RECORD [
SELECT OVERLAID * FROM
gray == > [gray: GrayParm],
srcBpl == > [srcBpl: INTEGER],
ENDCASE);

The description of the source may be a pattern to be repeated or may be particular bits. In
the case of a pattern, the gray field would be selected. This is described in detail under
Gray Flag following.

BitBlt.BitBltFlags: TYPE == MACHINE DEPENDENT RECORO[
direction: Direction +-forward.
disjoint: BOOLEAN +- FALSE,
disjointltems: BOOLEAN +- FALSE,
gray: BOOLEAN +- FALSE,
srcFunc: SrcFunc +- null,
dstFunc: DstFunc +- null.
reserved: [0 511 0);

Direction Flag

The direction flag indicates whether the operation should take place forward (left to right,
from low to high memory addresses) or backward (right to left, from high to low memory
addresses). This allows an unambiguous specification of overlapping BitBlts, as in
scrolling.

BitBlt.Direction: TYPE == {forward, backward};

If the direction is backward, the source and destination addresses point to the beginning of
the last item of the" blocks to be processed, and the source and destination bits per line
must be negative. This restricts the width of the bitmaps involved to a maximum of 32,767
bits.

Disjoint Flag

If the operation's source and destination are completely disjoint, the implementation
performs the operation from left to right, top to bottom.

Both the direction and the disjointltems flags in the argument record are ignored in the
case that disjoint is set.

Disjoint/tems Flag

If the individual items of the source and destination are disjoint, but the rectangles
otherwise overlap, the disjointltems flag should be set (and the disjoint flag should be
clear); this allows the implementation to perform the operation so that, within each item,
the bits are processed in the most efficient horizontal direction. The items are processed in
the order indicated by direction.

If neither disjoint nor disjointltems is set, the implementation processes the items and the
bits within items in the direction indicated by the direction flag.

Pilot Programmer's Manual 2

Gray Flag

The gray flag allows repetitive bit patterns to be specified in a condensed format. The
usual application is for generation of various shades of gray on the display, but any
repetitive pattern within the limits stated below may be supplied.

If the gray option is specified, the srcBpl field of the argument record is reinterpreted as
follows: Note also that the gray case is always forward and completely disjoint
(disjointltems is ignored).

BitBlt.GrayParm: TYPE =- MACHINE DEPENDENT RECORD [

reserved: [0 .. 15] ~O,
yOffset: [0 .. 15],
widthMinusOne: [0 .. 15],
heightMinusOne: [0 .. 15]);

The fields grayparm.widthMinusOne and grayParm.heightMinusOne define the width
(less one) in words and height (less one) in bits, respectively, of a gray brick located at
arg.src. (see figure 2.2). Note, the term "brick" refers to a rectangular area containing the
gray pattern to be copied. Conceptually, this brick is replicated horizontally and vertically
to tile a plane of dimensions arg.width and arg.height that becomes the source rectangle
of the operation. This brick is a maximum of sixteen words wide and sixteen lines high.
Patterns, therefore, are also limited to a repetition rate of sixteen in each direction. To
guarantee correct repeatability of the pattern in the horizontal direction, it 'is usually the
case that the width of the gray brick (in bits) is a multiple of the repetition rate; the height
of the gray brick is usually equal to the vertical repetition rate.

Proper alignment of the gray pattern with the destination bitmap requires the initial x
and y offsets into the brick in addition to its width and height. The initial x offset is
derived from arg.src as follows: arg.src.word always points to the beginning of the first
line to be transferred (not to the origin of the gray brick). The x offset of the first bit to be
transferred is supplied by arg.src.bit; this bit is always in the first word of the line. The
initial y offset is the number of lines down from the origin of the brick and is specified by
grayParm.yOffset; subtracting the y offset times the brick width from arg.src.word gives
the origin of the gray brick.

Source and Destination Functions

BitBlt.SrcFunc: TYPE = {null, complement};

BitBlt.DstFunc: TYPE = {null, and, or, xor};

The functions available for combining the source and destination rectangles are shown in
Figure 2.3.

The src field has two options; the null selection indicates using the source rectangle as is
for the destination function. The complement selection will invert the source bits in the
destination function.

The dst field determines the function to be used for changing bits in the destination
rectangle. The null selection causes the destination to be "replaced" with the source bits.
There is no boolean operation in this case. Anding the destination bits with the source bits

2-9

2

2-10

Environment

DestinatIon Bitmap

src n

c

arg.src.word -

Gray Brick

I~ arg.src.bit

I ~-- width ----" .. ~I

Figure 2.2 Gray Brick

dst

n a ° x

5 s·d s+d sEed

-5 -s·d -s+d -sEed

Figure 2.3 Source and Destination Functions

t
yOffset

height

1

leaves only those bits in common in the destination. "Painting" the destination requires
oring. This will leave the union of the two sets of bits in the destination. The last function
is the xor. This essentially masks out the matching bits leaving the union but not the
intersection of the bits in the destination rectangle.

2.2.2 TextBlt

TextBlt:DEFINITIONS ... ;

The Text Block Transfer interface operates on an array of characters; it implements three
functions useful in generating the font representation of the text in a bitmap. It may
calculate the number of characters on a line, convert characters to their font
representation, or widen or narrow select characters for justification. There is more
discussion on these functions later in this section.

TextBlt.TextBlt: PROCEDURE [

index: CARDINAL, bitPos: CARDINAL, micaPos: CARDINAL. count: INTEGER,

ptr: POINTER TO TextBltArg)

Pilot Programmer's Manual

RETURNS [
newlndex: CARDINAL, newBitPos: CARDINAL, newMicaPos: CARDINAL,
newCount: INTEGER, result: Result] ;

2

TextBlt proceeds through the text until either there is no more text or a stop character is
encountered; it maintains the bitPos and the micaPos of the origin of each character, and
increments the count of the number of pad characters processed. The new character
positions are returned along with the result of what caused the completion.

TelCtBlt.TextBltArgAlignment: CARDINAL = 16;

TelCtBIt.TextBltArgSpace: TYPE. ARRAY [1..SlzE[TextBltArg] + TextBltArgAlignment) OF
UNSPECIFIED;

TelCtBlt.AlignedTextBltArg: PROCEDURE lip: POINTER TO TextBltArgSpace]
RETURNS [p: POINTER TO TextBltArg]

TextBlt's static arguments are passed via a short pointer to a record; the argument record
must be aligned on a sixteen word boundary.

TelCtBlt.TextBltArg: TYPE = MACHINE DEPENDENT RECORD [
reserved: [O .. 37777BJ +- 0,
function: Function, •• display, format or resolve
last: CARDINAL,·· index of last character to process
text: LONG POINTER TO PACKED ARRAY CARDINAL OF CHARACTER,
font: FontHandle, •• Long Pointer to font information
dst: LONG POINTER,·· destination bitmap (display only)
dstBpl: CARDINAL.·· Bits per line (display only)
margin: CARDINAL, •• mica value of right margin (format only)
space: INTEGER,·· width adjustment to pad characters (display, resolve)
coord: LONG POINTER TO ARRAY CARDINAL [0 .. 0) OF CARDINAL •• widths array for resolve
];

The limits of the text that TextBlt operates on are arg.text to arg.last. Depending on the
function specified (explained below) specific args will be pertinant. During the format
function, the scan is terminated before the right arg.margin (in micas) is passed. The
display function Ors the character's font bits into the destination bitmap specified by
arg.dst and arg.dstBpl (bits per line). The resolve function saves the bitPos of the origin of
each character in the array arg.coord.

Justification can be accomplished using the display and resolve functions with
appropriate settings of the arg.space and count values; arg.space is added to the width of
every pad character (it may be negative), and count is incremented each time a pad
character is encountered (it may also be initially negative). Since the amount of white
space to be absorbed by (or squeezed out 00 pad characters is rarely an even multiple of the
number of pad characters, pad characters encountered have arg.space + 1 added to their
widths as long as count is negative. Thus if sixteen bits need to be added to the width of
the line in order to justify it, but it contains only thirteen pad characters, arg.space would
be set to one, and count would be initialized to negative three; this will result in widening
the first three pad characters by two bits, and the remaining ten pad characters by one bit
each.

2-11

2

2-12

Environment

TextBIt.Function: TYPE = {display. format. resolve};

The TextBlockTransfer implements three functions useful in generating the font
representation o£the text in a bitmap. The format function is used to calculate the number
of characters that will fit on a line, given its right margin (in micas). The display function
converts characters to their font representation in the destination bitmap, optionally
widening or narrowing pad characters to perform line justification. The resolve function is
used to record the horizontal bit position of the origin of each character in the bitmap; it
also handles justification.

Caution: Because of kerning, the display function may place bits into the destination
bitmap to the left of the bitPos of the leftmost character and to the right of the right
margin. It is the programmer's responsibility to initialize the bitPos to allow for the left'
kerning of the first character, and to supply a bitmap wide enough to allow for the
maximum possible right kerning. Kerning is further explained below.

TextBlt.FontHandle: TYPE • LONG POINTER TO Font;

TextBlt.Font: TYPE;

TextBlt.FontHandle points to the font information TextBlt needs. The interface Fonts
describes the TextBlt font type. TextBItFontFormat.FontRecord is the concrete type of a
TextBIt.Font. TextBltFontFormat.FontRecord must be aligned on a sixteen-word boundary.

TextBltFontFormat.fontRecordAlignment: NATURAL = 16;

TextBltFontFormat. FontRecord: TYPE = MACHINE DEPENDENT RECORD [

fontbits(O): FontBitsPtr,
fontwidths(2): FontWidthsPtr,
fontchar(4): FontCharPtr,
rgflags(6): RgFIagsPtr,
height(8): CARDINAL];

The fonowing types make up FontRecord:

.
TextBItFontFormat: FontBitsPtr: TYPE = LONG BASE POINTER TO ARRA Y [0 .. 0) OF UNSPECIFIED;

The data at TextBltFontFormat.FontBitsPtr is a base pointer for the character raster data. For
a particular character, TextBltFontFormat.CharEntry.offset (defined below) is added to this
base to get the address of the character's raster. The raster format includes the scan lines
within the dimensions given by fontwidths and fontchar. The height of the raster is
constant for all characters.

The memory order of the bits in the raster correspond to the memory order that TextBlt
will paint them into the destination bitmap. Said another way, TextBlt paints the first
scan line of the raster into the appropriate place in the first scan line of the destination
bitmap, and so on. Similarly, the first bit of a raster's scan line is painted into the
appropriate first bit of the scan line in the destination bitmap, and so on.

In conventional Xerox bitmap. displays, the first scan line in memory corresponds to the
top line on the screen, and the first bit of a scan line corresponds to the left pixel of the line.

Pilot Programmer's Manual 2

For this case, the first scan line in the raster will be the topmost row of the character, and
the first pixel (most significant bit) of a scan line will be the leftmost pixel of its row.

TextBltFontFormat.FontWidthsPtr: TYPE == LONG POINTER TO FontWidths;

TextBltFontFormat.FontWidths: TYPE =- PACKED ARRAY CHARACTER OF PixelWidth;

TextBltFontFormat.PixeIWidth: TYPE=- CARDINAL [O •• 377B];

The width of the font is dependent on the width of the pixel.

TextBltFontFormat.FontCharPtr: TYPE == LONG POINTER TO FontChar;

TextBltFontFormat.FontChar: TYPE == ARRAY CHARACTER OF CharEntry;

CharEntry must be aligned on a two-word boundary.

TextBltFontFormat.charEntryAlignment: NATURAL == 2;

TextBItFontFormat.CharEntry: TYPE == MACHINE DEPENDENT RECORD [

leftKern(O:O •• O): BOOLEAN,

rightKern(O:1 •• 1): BOOLEAN,

offset(0:2 .. 15): RasterOffset,

mica(1): CARDINAL];

If CharEntry.leftKern = TRUE, the character's raster has one column preceeding the char's
origin, and is to be written into the destination bitmap one column preceeding the current
position (bitPos). If CharEntry.rightKern = TRUE, the raster extends one column past the
spacing width into the space for the next char; that char's raster should begin coincident
with the current char's last column (one column'preceeding where it would normally go).

CharEntry.offset is the offset for the address of the character's raster.

TextBltFontFormaf.RasterOffset: TYPE == CARDINAL [O .• 37777B];

Mica indicates the "physical" width ofthe char (typically in micas).

TextBltFontFormat.RgFlagsPtr, RgflagsPtr: TYPE == LONG POINTER TO RgFlags;

TextBltFontFormat.RgFlags: TYPE == PACKED ARRAY CHARACTER OF Flags;

TextBltFontFormat.Flags: TYPE == MACHINE DEPENDENT RECORD [

pad(O:O •• O): BOOLEAN,

stop(0:1 •• 1): BOOLEAN];

The pad flag allows the character to have its width increased or decreased (in bits) for line
justification. The stop flag will specify a stop character to terminate a TextBlt operation.

TextBltFontFormat.maxLeftKern: CARDINAL == 1;

TextBltFontFormat.maxRightKern: CARDINAL == 1;

2-13

2

2-14

Environment

MaxLeftKern and maxRightKern support kerning up to one pixel in the respective
direction.

TextBlt.Result: TYPE = {normal, margin, stop};

TextBlt returns, in place of the argument pointer on the stack, an indication of its
completion condition: normal if the last character was processed, margin if the right
margin was reached (format only), and stop if a terminating character was detected.

notlnFont is returned if the printer width for the character is a distinguished value
(1777778). This allows the flags to be independent of the font and yet provides a way for
information in the font to cause TextBlt to terminate.

TextBIt.SoftwareTextBlt: PROCEDURE [
index: CARDINAL, bitPos: CARDINAL, micaPos: CARDINAL, count: INTEGER,
ptr: POINTER TO TextBltArg)
RETURNS [
newlndex: CARDINAL, newBitPos: CARDINAL, newMicaPos: CARDINAL,
newCount: INTEGER, result: Result];

SoftwareTextBlt is a software version of TextBlt. It is useful on processors that do not have
microcode support for the TextBlt operation described in this section.

2.2.3 Checksum

Checksum:DEFINITIONS ... ;

This interface produces a checksum for nWords starting at p. Changing the initial value
cs is useful if forming a single checksum for discontinuous areas of memory.

Checksum.ComputeChecksum: PROC [cs: CARDINAL +- 0, nWords: CARDINAL, p: LONG POINTER]
RETURNS [checksum: CARDINAL] ;

Checksum.nuIlChecksum: CARDINAL = 177777B;

This is a ones-complement add-and-left-cycle algorithm.

2.2.4 Byte Bit

ByteBlt: DEFINITIONS ... ;

The only operation in this interface is Byte Bit which provides a Mesa definition of a byte
boundary block transfer operation. It takes descriptions of two byte blocks as arguments,
transfers as many bytes as possible (the MIN of the two lengths), and returns a count of how
many bytes were actually moved.

ByteBlt.ByteBlt: PROCEDURE [to, from: Environment.Block,
overLap: ByteBlt.OverLapOption]
RETURNS [nBytes: CARDINAL];

ByteBlt.OverLapOption: TYPE = {ripple, move};

Pilot Programmer's Manual 2

ByteBIt.StartlndexGreaterThanStoplndexPlusOne: ERROR;

A length of zero in either to or from is acceptable, resulting in no transfer. If a negative
length (startlndex > stoplndexPlusOne) is present in either to or from, ByteBlt signals
ByteBlt.Startl ndexGreaterThanStoplndexPI usOne.

The overLap argument defines the effect of ByteBlt when the source and destination fields
overlap. If overLap is move then the contents of the source field are preserved by the
move. It acts as if the two fields did not overlap. If overLap is ripple then a low address to
high address move takes place with no notice taken of overlapping fields. This mode is
useful for propagating a value throughout a block of storage.

2.2.5 Other Mesa machine operations

Inline: DEFINITIONS ... ;

This interface defines a set of instructions not directly accessible from Mesa. It includes
some logical instructions and some extended-precision arithmetic instructions.

2.2.5.1 Accessing parts of a word or dou ble word

The type Environment.LONG allows direct access to the high-order and low-order words of
LONG values. For convenience, a copy of this type is available in the Inline interface.

Inline.LongNumber: TYPE = Environment.LongNumber;

Alternati vely, the following operations may be used:

Inline.LowHalf: PROCEDURE [LONG UNSPECIFIED] RETURNS [UNSPECIFIED]

Inline.HighHalf: PROCEDURE [LONG UNSPECIFIED] RETURNS [UNSPECIFIED]

LowHalf and HighHalf return, respectively, the least and most significant words of its
argument.

Note: A LONG CARDINAL or LONG INTEGER whose value is in CARDINAL or INTEGER, respectively,
may be directly converted to a short value using a mesa range assertion.

The following procedures return the least and most significant bytes of a word,
respectively.

Inline.LowByte: PROCEDURE [UNSPECIFIED] RETURNS [UNSPECIFIED]

Inline.HighByte: PROCEDURE [UNSPECIFIED] RETURNS [UNSPECIFIED]

2.2.5.2 Copying blocks of words

The following operations copy blocks of words.

Inline.COPY: PROCEDURE [from: POINTER, nwords: CARDINAL, to: POINTER]

2-15

2

2-16

Environment

Inline.Longcopv: PROCEDURE [from: LONG POINTER. nwords: CARDINAL.
to: LONG POINTER]

Inline.LongcopvReverse: PROCEDURE [from: LONG POINTER, nwords: CARDINAL,
to: LONG POINTER)

COpy and Longcopv copy nwords and are equivalent to the following Mesa code fragment:

FOR i IN [O •• nwords) DO (to + i) f Eo- (from + i) t ENDLOOP;

LongCOPYReverse copies nwords and is equivalent to the following Mesa code fragment:

FOR i DECREASING IN [O .. nwords) DO (to + i) f Eo- (from + i) f ENDLOOP;

An upper limit of 65,535 words can be copied in anyone call on Copy, LongCopy, or
LongCopyReverse.

Caution: Many errors in COPY, LongCOPY, and LongCOPYReverse are the result of an
incorrect order of parameters. The keyword constructor call is recommended.

2.2.5.3 Special divide instructions

All of the divide operations described in this section will raise the error
Runtime.ZeroDivisor if the denominator is zero. All except for UDDivMod and SDDivMod,
will raise Runtime.DivideCheck if the quotient is greater than 216_1 (see §2.4.3 for more
information on these errors).

The quotient and remainder of two cardinals or long cardinals can be obtained with the
procedures

Inline.DIVMOD: PROCEDURE [num, den: CARDINAL]
RETURNS [quotient, remainder: CARDINAL]

Inline.UDDivMod: PROCEDURE [num, den: LONG CARDINAL]
RETURNS [quotient, remainder: LONG CARDINAL];

where num is the numerator and den, the denominator. The procedure

Inline.LDIVMOD: PROCEDURE [numlow: WORD. numhigh: CARDINAL. den: CARDINAL]
RETURNS [quotient, remainder: CARDINAL]

is the same as DIVMOD except that the numerator is the double length number
numhigh*216 + numlow.

The operation

Inline.LDngDiv: PROCEDURE [num: LONG CARDINAL. den: CARDINAL]
RETURNS [CARDINAL]

returns the single precision quotient of num by den.

Pilot Programmer's Manual 2

If both the quotient and remainder of num and den are desired, the following operation
can be used.

Inline.LongOivMod: PROCEDURE [num: LONG CARDINAL, den: CARDINAL]

RETURNS [quotient, remainder: CARDINAL]

The quotient and remainder oftwo long integers can be obtained with the procedure

Inline.SOOivMod: PROCEDURE [num, den: LONG INTEGER]

RETURNS [quotient, remainder: LONG INTEGER];

2.2.5.4 Special multiply instruction

The double precision product of two cardinals is obtained with

Inline.LongMult: PROCEDURE [CARDINAL, CARDINAL]

RETURNS [product: LONG CARDINAL]

2.2.5.5 Operations on bits

The following operations perform the indicated bitwise logical operations on their
operand(s):

Inline.BitOp: TYPE. PROCEOURE [UNSPECIFIED,UNSPECIFIED) RETURNS [UNSPECIFIED);

Inline.BITANO, BITOR, BITXOR: Inline.BitOp;

Inline.OBitOp: TYPE. PROCEDURE [LONG UNSPECIFIED, LONG UNSPECIFIED)

RETURNS [LONG UNSPECIFIED);

Inline.OBITANO, OBITOR, OBITXOR: Inline.OBitOp;

Inline.BITNOT: PROCEDURE [UNSPECIFIEO] RETURNS [UNSPECIFIED]

Inline.OBITNOT: PROCEDURE [LONG UNSPECIFIED] RETURNS [LONG UNSPECIFIED];

A word or double word can be shifted by the operations

Inline.BITSHIFT: PROCEDURE [value: UNSPECIFIED,count: INTEGER]

RETURNS [UNSPECIFIED]

Inline.OBITSHIFT: PROCEDURE [value: LONG UNSPECIFIED, count: INTEGER]

RETURNS [LONG UNSPECIFIED];

Inline.BITROTATE: PROCEDURE [value: UNSPECIFIED, count: INTEGER]

RETURNS [UNSPECIFIED];

These operations return value shifted by ABs[count] bits. The shift is left if count> 0, and
right if count < O. In both cases, zeros are supplied to vacated bit positions. In the case of
BITROTATE, the bits are shifted circularly.

2-17

2 Environment

Note: A left shift is a multiply by two ignoring overflow; a right shift is an unsigned divide
by two with truncation.

2.3 System timing and control facilities

2-18

System: DEfiNITIONS ... ;

NSConstants: DEfiNITIONS ... ;

This section describes some basic system and control facilities provided by Pilot. It
introduces and discusses: universal identifiers, by which all network resources and other
permanent objects in a network may be named; the means by which communicating
processes are identified; the various forms of timekeeping provided by Pilot; the Pilot
facilities for turning system power on and off; and how a client gets started.

2.3.1 Universal identifiers

A universal identifier may be used for naming all permanent or potentially permanent
objects in the network. Every object and every resource may be assigned a separate,
unique, universal identifier which is different from any other assigned for any other
purpose. Thus, a particular universal identifier can be interpreted unambiguously in any
context or on any processor, and it always refers to the same thing.

Universal identifiers are 5word Mesa objects of the following type.

System.UniversaIlD: TYPE [5];

Pilot issues a new universal identifier, distinct from all others on all other processors at all
times, as a result ofthe operation

System.GetUniversaIlD: PROCEDURE RETURNS [uid: System.UniversaIlD];

A UniversallD has no internal structure perceivable by client programs, and no properties
must be attributed to values of this type except the property of uniqueness. Pilot takes
extreme measures to ensure with a very high probability that UniversaliDs are not
duplicated. The supply of new universal identifiers is limited to an overall processor
average of approximately one or a few per second, though the instantaneous rate of
creating them can exceed this at times. If Pilot detects any danger of compromising the
reliability of the uniqueness property, the process calling GetUniversaliD is delayed until
a new UniversaliD can'be safely issued.

The following are some particular uses of UniversallDs:

System.PhysicaIVolumeID: TYPE = RECORD [System.UniversaIlD];

System.VolumeID: TYPE = RECORD [System.UniversaIlD];

System.nuIllD: System.UniversaliD = ... ;
Note: nul 110 is never returned by GetUniversaliD.

Pilot Programmer's Manual 2

2.3.2 Network addresses

The Internet Transport Protocols are the principal means of communication among
processes which reside on different machines (see §6.2, Network streams). A source or
destination of such communication is identified by its NetworkAddress.

System.NetworkAddress: TYPE .. MACHINE DEPENDENT RECORD[
net: System.NetworkNumber,
host: System.HostNumber,
socket: System.SocketNumber) ;

System.NetworkNumber: TYPE [2];

System.HostNumber: TYPE [3];

System.SocketNumber: TYPE [1];

System.nuIlNetworkAddress: System.NetworkAddress ;

System.nuIlNetworkNumber: System.NetworkNumber ;

System.nuIlHostNumber: System.HostNumber = ... ;

System.broadcastHostNumber: System.HostNumber = ... ;
System.nullSocketNumber: System.SocketNumber ;

System.localHostNumber: READONLY System.HostNumber;

nuliNetworkAddress is never used as a source or destination and so may be used when no
valid address exists.

nuliNetworkNumber is normally not used as a source or destination. However, it can be
used on networks that are unable to obtain a network number.

localHostNumber is the HostNumber of the local machine.

Within a. processor, sockets are used to separate and identify communication meant for
different purposes or destined for different processes. Sockets are associated with network
addresses and are considered to be a reusable resource which is allocated as required.

A NetworkAddress is normally retrieved from a Clearinghouse server. The network
address of the local system element can be discovered with
NetworkStream.AssignLocalAddress (q.v.). Network addresses are guaranteed to be unique
between system restarts, but not across system restarts, i.e., they are reused each time the
system is restarted (see chapter 6).

The case of network addresses of processors which are connected to more than one network
is still to be determined.

2-19

2

2-20

Environment

2.3.3 Timekeeping facilities

There are three forms of timekeeping facilities in Pilot: the date and time-of-day, the
"stopwatch" or interval timing function, and the "alarm clock" facility.

2.3.3.1 Time of day, and date

The time and date are maintained by Pilot and the system hardware, typically in the form
of an accurate, crystal-controlled clock. The following operations are used to access the
clock:

S~tem. GetGreenwichMean Ti me: PROCEDURE
RETURNS [gmt: System.GreenwichMeanTime];

System.GreenwichMeanTime: TYPE = RECORD [LONG CARDINAL];

System.gmtEpoch: System.GreenwichMeanTime • [2114294400];

System.SecondsSinceEpoch: PROCEDURE [gmt: System.GreenwichMeanTime]
RETURNS [LONG CARDINAL];

The gmtEpoch is equivalent to the following:

(67 years * 365 days + 16 leap days) * 24 hours * 60 minutes *60 seconds

The GetGreenwichMeanTime operation returns the time as a count of seconds since a
fixed, arbitrary base time. In particular,

gmt • t corresponds to the time t-System.gmtEpoch seconds after midnight, 1
January 1968. That is, the time system.gmtEpoch + 1 corresponds to 00:00:01,
January 1, 1968 (i.e., one second after midnight, ten years prior t.o the first
pUblication of the Pilot Functional Specification).

The "end of time" occurs 232 seconds after 00:00:01 January 1, 1968. After the "end of
time", new clock readings will not be valid. Two GreenwichMeanTimes can be compared
directly for equality. To find which of two GreenwichMeanTimes comes first, apply
SecondsSinceEpoch to each. This gives the number of seconds that each is after 00:00:00
January 1, 1968. Finally, compare the results to determine which is the later time. That
is, compare SecondsSinceEpoch [t1] to SecondsSinceEpoch [t2] and not t1 to t2.

SystemExtras.ClockFailed: SIGNAL;

PilotSwitchesExtraExtraExtraExtras.ignoreClockFailures:
PilotSwitches.PilotDomainA = '.;

Pilot periodically checks to see if the time-of-day clock is running correctly by
GetGreenwichMeanTime. If it appears that it is not, the signal SystemExtras.ClockFailed
will be raised. If the switch PilotSwitchesExtraExtraExtraExtras.ignoreClockFailures is down,
however, the signal will not be raised.

Pilot Programmer's Manual 2

This signal is resumable, but unless the client sets ignoreClockFailures, the signal will
probably be raised again.

The operation

System.AdjustGreenwichMeanTime: PROCEDURE [
gmt: System.GreenwichMeanTime. delta: LONG INTEGER]
RETURNS [System.GreenwichMeanTime];

has the result gmt + delta. If t is a GreenwichMeanTime then [t + delta] is the
GreenwichMeanTime that is delta seconds after t.

Within the range that they overlap, the times defined here and the Alto time standard
assign identical bit patterns to a particular time. However, the Pilot standard runs an
additional 67 years before overflowing.

Client programs are responsible for converting between Greenwich Mean Time and local
time, taking into account Daylight Saving Time, etc., (see the next section).

The time and date is kept accurately (to within a few seconds per month) by the hardware
and is adjusted as part of system maintenance. In addition, Pilot ensures that all
interconnected system elements on an NS network agree about the current time within a
few seconds of each other, and that they agree with an externally supplied timekeeping
standard if one is available. Prior to calling the client during booting, Pilot'ensures that
the processor clock is set correctly. UtilityPilot clients, however, must set the processor
clock prior to calling any Pilot operation. This is done by using the operations in the
OthelioOps interface. If this is not done, the results of Pilot operations are unspecified.

2.3.3.2 Local time parameters

Client programs may obtain the parameters of the local time zone. In normal network
configurations, Pilot finds the parameters from a server and remembers them in
nonvolatile storage. (Currently.it stores them in the root page of the system physical
volume.) There is also an operation by which a client can set the parameters (typically on
a stand-alone or server machine). The time zone parameters are represented as a record:

System.LocaITimeParameters: TYPE = MACHINE DEPENDENT RECDRD [
direction(o:o .. O): System.WestEast.
zone(0:1..4): [0 .. 12].
zoneMinuteS(1 :0 .. 6): [0 .. 59].
beginDST(0:5 .. 15): [0 .. 366].
endDST(1 :7 .. 15): [0 .. 366]];

System.WestEast: TYPE = MACHINE DEPENDENT {west(o). east(1)};

The fields zone, zoneMinutes, and direction together define the time zone as so many
hours and minutes west or east of Greenwich. Normally zoneMinutes is zero, but there
are a few places in the world whose local time is not an integer number of hours from
Greenwich. beginDST gives the last day of the year on or before which Daylight Savings
Time could take effect, where 1 is January 1st and 366 is December 31st (the
correspondence between numbers and days is based on a leap year). Similarly, endDST
gives the last day of the year on or before which Daylight Savings Time could end. Note

2-21

2

2-22

Environment

that in any given year, Daylight Savings Time actually begins and ends at 2 A.M. on the
last Sunday not following the specified date. If Daylight Savings Time is not observed
locally, both beginDST and endDST are zero.

To find the local time zone parameters, a client calls

System.GetLocaITimeParameters: PROCEDURE [
pvlD: System.PhysicalVolumelD Eo- [nul/ID] J
RETURNS [params: System.LocaITimeParameters];

System.LocaITimeParametersUnknown: ERROR;

This procedure returns the local time zone parameters provided that Pilot could determine
them either by consulting a network time server during initialization or because they had
been previously saved on the system physical volume by a call to SetLocalTimeParameters
(see below). If the parameters cannot be determined in either of these ways, the error
LocalTimeParametersUnknown is raised. A normal Pilot client should always default
pvlD. A UtilityPilot client, on the other hand, must specify the ID of the physical volume
of the normal system drive, if the local time parameters are to be saved on the disk ..

While it is normally unnecessary for a client to do so, the time zone parameters saved in
nonvolatile storage on an individual workstation can be set by calling

System.SetLocaITimeParameters: PROCEDURE [params: System.LocaITimeParameters,
pvlD: System.PhysicalVolumelD Eo- [nulllD));

The main use for this procedure would be in a server, where a system administrator could
set the time zone parameters at system initialization time, in response to an act of
Congress, etc. Pilot guarantees the local time parameters are set from the network or from
the physical volume on the local disk. In UtilityPilot, however, the client must set the
parameters prior to the call on GetLocalTimeParameters.

As with GetLocalTimeParameters, pvlD should always be defaulted by a normal client.

2.3.3.3 Interval timing

It is frequently desired to measure elapsed time at the resolution of microseconds during
the execution of programs. Such measurements can be used in controlling system
behavior, analyzing program or system performance, and stimulating various other
activities. In many cases, the processor underlying Pilot will not provide a timer with a
resolution of one microsecond. As a result, Pilot would have to convert between processor
dependent units and microseconds to provide a timing facility that measured in
microseconds. In many cases, the overhead inherent in this conversion would be large
enough to inhibit the timing offunctions. For this reason, Pulses are provided:

System.Pulses: TYPE = RECORD [pulses: LONG CARDINAL];

A Pulse is a processor dependent unit of time. The actual resolution and accuracy of Pulses
is determined by the accuracy and resolution of the internal clocks of the processor.
Typically, resolution of Pulses will be in the range 1 - 1000 microseconds and it will be

Pilot Program~er's Manual 2

accurate to within 10% or better. The current value of the processor interval timer may be
read by

System.GetClockPulses: PROCEDURE RETURNS [System.Pulses];

A client may convert between pulses and microseconds with the operations:

System.PulsesToMicroseconds: PROCEDURE [p:System.Pulses]
RETURNS [m: System.Microseconds];

System.MicrosecondsToPulses: PROCEDURE [m:System.Microseconds]
RETURNS [P:System.Pulses);

System.Microseconds: TYPE = LONG CARDINAL;

System.Overflow: ERROR;

To perform accurate timings, the user should measure events in terms of Pulses and only
convert to and from microseconds when it is absolutely necessary. In particular, Pulses
should be the time units used in t.he inner loops of programs or in any place where time is
critical.

Conversion in one direction or the other may cause an overflow. When this happens, Pilot
will raise the error Overflow.

Caution: The error Overflow is not"implemented in Pilot 11.0.

The processor interval timer wraps around after a processor dependent period of time,
typically greater than one hour. Thus, Pulses cannot be used to measure events with a
duration in excess of the wrap around period.

2.3.3.4 Alarm clocks

An alarm clock facility is provided by the Mesa process mechanism. A timeout value may
be assigned to any condition variable by means of the operation Process.SetTimeout (see
§2.4.1.2). A process may then "go to sleep" for that period by executing a WAIT operation on
that condition variable. When the timeout expires (or when a NOTIFY operation is executed
on that condition variable, whichever comes first), the process awakens and continues
execution. One convenient way for a process to wait when there is no requirement for a
NOTIFY wakeup is to call Process.Pause (§2.4.1.6).

The resolution of the process timer is on the order of 15-50 milliseconds. It has no accuracy
whatsoever. Thus, a client process must check either the time of day, an interval timer or
the processor timer if it needs to know the time accurately.

2.3.4 Control of system power

The following operations allow the processor to be turned on and off under program
control.

2-23

2

2-24

Enyironment

System.PowerOff: PROCEDURE;

This operation causes the machine t~ be turned off. It does not return. Pilot will cause all
input/output activity to be suspended, purge all of its internal caches, force out all mapped
spaces to their file windows, stop all processes from further execution, and cause the
display to be turned off. The only way to recover from this operation is to turn the system
power on and press the restart button. If there is no power relay, the system element
remains turned on but executing no programs; a unique code is displayed in the
maintenance panel in this situation.

The operation

System.SetAutomaticPowerOn: PROCEDURE [
time: System.GreenwichMeanTime. external Event: BOOLEAN];

sets the internal clock of the processor to automatically turn on the system power at or
after time. If external Event is FALSE, power is turned on at the specified time. If
external Event is TRUE, power is turned on in response to the first external event occurring
after the time specified by time. An external event is an electrical signal made available to
the processor (e.g., the ringing signal ofa data telephone).

If power is already on when this operation would turn it on, there is no effect. The
automatic power on facility may be reset by calling

System.ResetAutomaticPowerOn: PROCEDURE;

2.3.5 Pilot's state after booting

The device that the system was booted (loaded) from may be ascertained by referencing

System.systemBootDevice: READONLY System.BootDevice;

System.BootDevice: TYPE. RECORD [device: Device.Type, index: CARDINAL];

Client programs can determine if they are running upon UtilityPilot with:

System.isUtilityPilot: READONLY BOOLEAN;

Boot switches are used to transmit operational information from the booting agent (e.g.,
Othello) to the running boot file (see client documentation for definitions of applicable
boot switches), The boot switches are made available as

System. Switches: TYPE = PACKED ARRAY CHARACTER OF System.UpDown;

System.UpDown: TYPE. MACHINE DEPENDENT {uP(O). down(1)};

System.switches: READONLY System.Switches;

System.defaultSwitches: System.Switches • ALL[Up);

If a switch is down, then it is active; if a switch is up, then it is inactive. The value of
switches is determined as follows. First, if the booting agent provides switches other than
defaultSwitches, that value is used. Otherwise, if the boot file was constructed (by

Pilot Programmer's Manual 2

MakeBoot) to contain other than defaultSwitches, that value is used. Otherwise,
defaultSwitches is used.

Switch assignments are made by the Manager of Operating Systems. Ranges of switches
are allocated for Pilot, for the Mesa Development Environment, and for product systems.
The following list enumerates those switches currently used by to Pilot and describes their
significance.

Value Meaning

& Hang with a maintenance panel code in lieu of going to the debugger.

o Go to debugger as early as possible in Pilot initialization.
1 Go to debugger as soon as all code is map-logged.
2 Go to debugger just before calling PilotClient.Run.
3 Simulate 192K memory size for a Dandelion with no display.
4 Initialize scratch memory pages to zero.
5 Go to the Ethernet for a debugger.
6 Turn owner checking on for the system zones.
7 Disable map logging (see below).
8 Create a Pilot interrupt key watcher.
9 Simulate 256K memory size for a Dandelion with display.

Go to the debugger as early in initialization of the File manager as possible.
Go to the debugger as early in the initialization of the VM manager as possible.

< Pretend that there is no Ethernet 1 attached to the system element.
= Do not initialize the Communication package at system start-up.
> Pretend that there is no Ethernet attached to the system element.
{ Set the VM backing file size to 750 pages (see below).
I Set the VM backing file size to 1400 pages (see below).
} Set the VM backing file size to 2000 pages (see below).
t Turn checking on the for system zones.

? Make loads tate resident (for debugging on UtilityPilot-based clients).
[Create a tiny heap, with tiny increment values.
% Create a medium-size heap, with medium-size increment values (default).
] Create a large heap, with large increment values}.

1360 Display error code, global frame, and pc on boot loader errors.
1361 Transmit Ethernet packets using IEEE 802.2 Logical Link Layer protocol.
1362 Accept packets from the Ethernet in either IEEE 802.2 Logical Link Layer

or Ethernet version 1.0 format.
/363 Transmit packets to hosts in the format that the receiver desires.
/366 Hold back 48 pages of reserved display memory.
1367 Hold back 64 pages of reserved display memory.
1370 Bypass the debugger substitute by going to the real debugger.
/371 Tile code with one page swap units.
1372 Give display memory to Pilot for client use.
1373 Give display memory to Pilot for client use if no bitmap display.
/374 Allows special clients to set parameters of system zones
/375 Disable map logging (see below).
1376 Delete boot loader so that the memory that it uses can be recycled.

Full map logging is the default case when Pilot is booted if there is a debugger present.
Full map logging includes occasionally going to the debugger to clean up the log. A
debugger is considered present if there is a debugger installed on a volume of type one

2-25

2 Environment

higher than that of the boot file, or if debugger pointers have been set in the boot file, or if
a remote debugger is specified (boot switch "5").

If there is no debugger present, map logging proceeds until the log file fills up and then
logging is disabled. This situation may be forced by setting boot switch /375. Boot switch
"7" will cause Pilot to stop map logging when PilotClient.Run is called (at key stop 2). This
key switch overrides key switch 1375.

The VM backing file is the file which is used to provide the backing file for Pilot data
spaces (q.u.). Under normal circumstances, its size is a function of the size of the volume
booted from. For some logical volumes the default size may be too small. In that event, the
switches "{", "I", and "}" may be used to specify the size of the backing file.

2.4 Mesa run-time support

2-26

This section describes low-level facilities used to support the execution of Mesa programs.
It describes operations to support the Mesa process mechanism; facilities relating to Mesa
program modules; traps, signals, and errors which may be generated by a Mesa program
during execution; and finally, some miscellaneous interfaces.

2.4.1 Processes and monitors

Process: DEFINITIONS ... ;

Most aspects of processes and. monitors are made available via constructs in the Mesa
language and are described in the Mesa Language Manual. Some operations whose
frequency of use does not justify such treatment are cast as procedures.

When a process is FORKed, it is called a live process. When it has been JOINed or when it has
been detached and its root procedure has returned, it is called a dead process. Programs
must take care not to use or retain copies of the PROCESS of a dead process. Since Pilot may
reuse PROCESSes, any operation performed on the PROCESS of a dead process may mistakenly
operate on a different process than the one intended, with unpredictable results.

Most of the operatiens which take a PROCESS as an argument (JOIN, Process.Abort, and
Process. Detach) may generate the following signal:

Process.lnvalidProcess: ERROR (process: PROCESS];

This signal indicates that the argument is not a live process.

The argument of InvalidProcess is actually of type UNSPECIFIED. This is necessary since
there is no generic type which includes all PROCESS types, independent of their result types.
The same is true of all arguments and results discussed in this section that would
otherwise be of type PROCESS.

A PROCESS can be checked for validity by the operation

Process.ValidateProcess: PROCEDURE (UNSPECIFIED]

Pilot Programmer's Manual 2

If the argument does not represent a live process, Process.lnvalidProcess will be raised.
Otherwise, this operation just returns.

Caution: Since Pilot may reuse PROCESSes, ValidateProcess applied to the PROCESS of a
dead process may not raise InvalidProcess. Such a dangling reference will appear
legitimate to ValidateProcess, but is almost certain to cause trouble for any client program
that makes use of it.

2.4.1.1 Initializing monitors and condition variables

Every monitor lock and every condition variable must be initialized before it can be used.
There are three cases:

Any monitor lock or condition variable residing in a global frame will be initialized
automatically when the program is STARTed. Any monitor lock or condition variable
residing in a local frame will be initialized automatically when the procedure is
entered.

Any monitor lock or condition variable allocated dynamically by the NEW operator
(from an uncounted zone or MDS zone) will be initialized automatically upon
allocation.

Any monitor lock or condition variable allocated dynamically by other than the NEW
operator must be initialized?y the programmer using the facilities described below.

Caution: Using uninitialized monitor locks or condition variables, or reinitializing
monitor locks or condition variables once they are in use, will lead to totally unpredictable
behavior.

The following operations are provided for initializing monitor locks and condition
variables which are allocated dynamically by other than the NEW operator:

Process.lnitializeMonitor: PROCEDURE [monitor: LONG POINTER TO MONITORLOCK];

InitializeMonitor sets the monitor unlocked and the queue of waiting processes to empty.
It may be called before or after the monitor data is initialized, but must be called before
any entry procedure is invoked. Once use of the monitor has begun, the monitor mu.st
never be initialized again.

Process.lnitializeCondition: PROCEDURE[condition: LONG POINTER TO CONDITION,
ticks: Process. Ticks];

Process. Ticks: TYPE • CARDINAL;

InitializeCondition sets the queue of waiting processes to empty and the timeout interval
of the condition variable to the specified value, in units of "ticks" of the process timer
clock. It may be called before or after the other monitor data is initialized, but must be
called before any WAIT or NOTIFY operations are performed on the condition variable. Once
use of the condition variable has begun, the condition variable must never be initialized
again.

2-27

2

2-28

Environment

Clients may convert process timer ticks to or from milliseconds using the following
operations:

Process.Milliseconds: TYPE = CARDINAL;

Process.MsecToTicks: PROCEDURE [Process. Milliseconds] RETURNS [Process. Ticks);

Process.TicksToMsec: PROCEDURE [ticks: Process. Ticks]
RETURNS [Process. Milliseconds);

For setting long timeout intervals, the following operation is provided:

Process.Seconds: TYPE = CARDINAL;

Process.SecondsToTicks: PROCEDURE [Process. Seconds}
RETURNS [Process. Ticks];

Caution: Due to the limited range of the process timer, the maximum timeout that
maybe set is about 980 seconds (16 minutes).

2.4.1.2 Timeouts

Condition variables that are initialized automatically do not time out. The time out of any
condition variable may be changed by the operation:

Process.SetTimeout: PROCEDURE
[condition: LONG POINTER TO CONDITION, ticks: Process.Ticks];

The given timeout interval will be effective for all subsequent WAIT operations applied to
the condition variable. This operation will not affect the timeout interval of any processes
currently waiting on the condition variable.

Process.DisableTimeout: PROCEDURE [LONG POINTER TO CONDITION];

DisableTimeout sets the timeout interval for the condition variable to infinity. That is, a
process waiting on the condition variable will never time out. This will be effective for all
subsequent WAIT operations applied to that condition variable. This operation will not
affect the timeout interval of any processes currently waiting on the condition variable.

SetTimeout and DisableTimeout are the only operations that may be used to adjust the
timeout interval of a condition variable once it has been used. In particular,
InitializeCondition must not be used for this purpose.

Caution: Since the Mesa processor reserves some distinguished values of Ticks for special
purposes, the timeout interval of a condition variable should not be set via the Mesa
construct:

condition. timeout Eo- ticks. ··WRONG

Pilot Programmer's Manual 2

2.4.1.3 Forking processes

There is a limit on the number of co-existing processes allowed by Pilot. Attempts to fork
too many processes will result in the error

Process. TooManyProcesses: ERROR;

This may be caught by a catch phrase on the FORK, or by a catch phrase in some enclosing
context.

The'maximum number of coexisting processes is specified to MakeBoot when building a
boot file, See the Mesa User s Guide for details.

A process which is FORKed but will never be JOINed should be detached using the operation

Process.Detach: PROCEDURE [PROCESS);

This operation conditions the process such that when it returns from its root procedure, it
will be deleted immediately.

Caution: Note that a variable of type PROCESS does not return results. If the root procedure
of a process does return results, it will be necessary to loophole the parameter to Detach. In
those cases, care should be exercised because if the results returned take more than 12
words of storage, the storage that contains the results (a local frame) will be discarded and
the space will never be recovered. If there are 12 or less words of results, the results will be
discarded and the storage recovered.

A process may determine its own identity by invoking

Process.GetCurrent: PROCEDURE RETURNS [PROCESS);

2.4.1.4 Priorities of processes

When a process is created with FORK, it inherits the priority of the forking process. A
process may change its own priority with the SetPriority operation.

Process.SetPriority: PROCEDURE [Process.Priority];

Process. priority Background : READONl Y Process.Priority;
Process.priorityNormal: READONl Y Process.Priority;
Process.priorityForeground: READONl Y Process.Priority;

Process.Priority: TYPE = [0 .. 7];

Larger values of Priority correspond to higher priorities. Implementation restrictions
make it necessary to limit ordinary client processes to three priority levels, defined via
exported variables, which are listed above in order of increasing priority. SetPriority
should only be given one of these three constants (or a value previously obtained from
GetPriority, which will be equal to one of these constants).

2-29

2

2-30

Environment

If it is desired to fork a process which runs immediately at a higher priority than the
parent process, the parent can set its own priority to the higher level, fork the new process,
and then restore its own priority.

A process may determine its own priority by calling

Process.GetPriority: PROCEDURE RETURNS [Process.Priority];

2.4.1.5 Aborting a process

A process can be aborted by calling the operation

Process.Abort: PROCEDURE [process: UNSPECIFIED];

The effect of this operation is to generate the error ABORTED the next time the process WAITs
on any condition variable which has aborts enabled. If the process is already waiting, the
error is generated immediately.

ABORTED may be caught by a catch phrase on the WAIT, or by a catch phrase in an enclosing
context. The catch phrase is executed with the corresponding monitor locked.

The intended use of Abort is to provide a means whereby one process may request of
another that the latter should stop what it is doing. An ABORTED signal may occur on any

condition variable which has aborts enabled, and thus every monitor should either be
protected by some catch phrase for it, or contain no condition variables which have aborts
enabled.

A pending abort may be canceled by calling the operation

Process.CanceIAbort: PROCEDURE [process: UNSPECIFIED];

A process may discover if there is an abort pending for it by the operation

Process.AbortPending: PROCEDURE [] RETURNS [abortPending: BOOLEAN];

When a condition variable is initialized, it has aborts disabled. A condition variable may
be set to allow aborts by the operation:

Process.EnableAborts: PROCEDURE [LONG POINTER TO CONDITION];

If a process with an abort pending is currently waiting on the condition variable,
EnableAborts will have no immediate effect on it. However, if the process times out or is
NOTIFYed, it will be aborted at that time.

It is sometimes desirable to avoid aborts while waiting on a given condition variable. This
may be effected by using

Process.DisableAborts: PROCEDURE [LONG POINTER TO CONDITION];

Condition variables are initialized to have aborts disabled. If a process with an abort
pending waits or is waiting on a condition variable, the abort will be delayed until the
process WAITs on some other condition variable which has aborts enabled.

Pilot Programmer's Manual 2

A process can be suspended for a specified number ofticks with the operation

Process.Pause: PROCEDURE [ticks: Process.Ticks];

Pause waits with aborts enabled, and so may raise the error ABORTED. Note that monito'r
locks of the caller are not released during the pause.

The Mesa process mechanism does not attempt to allocate processor time fairly among
processes of equal priority. A process itself will yield the processor to other processes of
equal priority whenever it faults, Pauses or WAITs. If a process does these things only
rarely, it may be desirable for it to occasionally yield control of the processor by calling

Process. Yield: PROCEDURE;

This places the calling process at the rear of the queue of ready-to-run processes of the
same priority. Thus, all other ready processes of the same priority will run before the
calling process next runs. Note however, that these other processes may make arbitrarily
little progress due to page faults, etc.

The logical correctness of client programs must not depend on the presence or absence of
calls to Yield. Priorities and yielding are not intended as a process-synchronization
mechanism. They are only provided to assist in meeting performance requirements.

2.4.2 Programs and configurations

Runtime: DEFINITIONS ... ;

Programs may be validated by

Runtime.ValidateGlobaIFrame: PROCEDURE [frame: Runtime.GenericProgram];

Runtime.GenericProgram: TYPE • LONG UNSPECIFIED;

Runtime.lnvalidGlobalFrame: ERROR [frame: Runtime.GenericProgram];

If frame is not valid, InvalidGlobalFrame is raised. frame may be either a PROGRAM or a
LONG POINTER TO FRAME[<program>]. Normal usage requires a LOOPHOLE.

Pointers to procedure activation records (local frames) may be validated by

Runtime.ValidateFrame: PROCEDURE [frame: UNSPECIFIED];

Runtime.lnvalidFrame.: ERROR [frame: UNSPECIFIED];

If frame is definitely not valid, InvalidFrame is raised. frame should be a POINTER TO
.FRAME[<procedure> D. The checking done by ValidateFrame only verifies that frame
looks like a valid local frame; it is not possible for it to verify that it actually is a valid local
frame.

Runtime.nuIiProgram: PROGRAM = NIL;

2-31

2

2-32

Environment

For backwards compatiblity, a null PROGRAM constant is provided. New client code should
just use NIL.

The PROGRAM containing a PROCEDURE can be obtained using

Runtime.GlobaIFrame: PROCEDURE [link: Runtime.ControlLink1 RETURNS [PROGRAM];

Runtime.ControILink: TYPE • LONG UNSPECIFIED;

ControlLink may be any PROCEDURE. Normal usage requires a LOOPHOLE. If link is an
unbound procedure, Runtime.UnboundProcedure is raised. Runtime.lnvalidGlobalFrame may
also be raised.

A program which was created by NEW < program> may be deleted using

Runtime.UnNew: PROCEDURE [frame: PROGRAM];

UnNew deletes the program and reclaims its storage. All items which were exported by
the program (procedures, variables, signals, and the program itself) become dangling
references and should not be retained or used by any programs which imported them. If
frame is not valid, Runtime.lnvalidGlobalFrame is raised. If the program was not created by
NEW < program>, the debugger is called.

Caution: When a program is UnNewed, there must be no processes executing procedures
in the program or expecting to return to procedures in it. Failure to observe this rule will
lead to unpredictable behavior.

Since UnNew may not be used while any processes are using a program, it is not possible
for a process to UnNew the program in which it is currently executing. Since this is
occasionally desirable, a special operation is provided:

Runtime.SelfDestruct: PROCEDURE;

Self Destruct deletes the program that invokes it and then returns, with no results, to the
first enclosing context which is not in the deleted program. All items which were exported
by the program (procedures, variables, signals, and the program itself) become dangling
references and should not be retained or used by any programs which imported them.

Caution: Since Self Destruct effects a RETURN without results to the first enclosing context
which is not in the deleted program, the procedure which was called from that context
must be declared as having no results; otherwise a stack error will occur.

Caution: When a program is Self Destructed, there must be no other processes executing
procedures in the program or expecting to return to procedures in it. Failure to observe
this rule will lead to unpredictable behavior.

The following operations are used to load configurations and programs. They are
implemented by the object file Loader. bed.

Runtime.RunConfig: PROCEDURE [
file: File.File, offset: File.PageCount, codeLinks: BOOLEAN oE- FALSE1;

Pilot Programmer's Man~al

Runtime.LoadConfig: PROCEDURE [
file: File.File, offset: File.PageCount, codeLinks: BOOLEAN ~ FALSE]
RETURNS [PROGRAM];

Runtime.NewConfig: PROCEDURE [
file: File.File, offset: File.PageCount, codeLinks: BOOLEAN ~ FALSE];

Runtime.ConfigError: ERROR [type: Runtime.ConfigErrorType];

Runtime.ConfigErrorType: TYPE., {
badCode, exportedTypeClash, invalidConfig, missingCode, unknown};

Runtime.VersionMismatch: SIGNAL [module: LONG STRING];

2

These operations load a configuration or program from the object file contained in file
starting at page offset of the file. offset enables one to skip leader pages, pack many object
files into one, etc. Each program in the object file will be loaded with code links if (1)

codeLinks ., TRUE, and (2) the object file is a configuration, and (3) the program or a
configuration containing the program specified LINKS: CODE, and (4) a configuration
containing that configuration or program was packaged, or bound specifying code copying.
If a program is loaded with code links, its links are written into the object file. The three
operations differ as follows. LoadConfig loads the object file and returns a PROGRAM. The
PROGRAM is used to start the object file. If the object file is a configuration, PROGRAM is one
of the configuration's control programs (= NIL if the configuration has no control
programs); if the object file is not a configuration, PROGRAM is the program itself. A
subsequent START <program> will initialize the loaded programs (note that START NIL is a
no-operation). RunConfig both loads and starts the object file. NewConfig loads the object
file and throws away the PROGRAM, thus preventing it from being explicitly started. Using
NewConfig is only appropriate if the configuration does not require initialization; its use
is not recommended.

If an object file being loaded imports an interface item and there are several instances of
that interface item being exported by already-loaded objects files, the import is bound to
the most-recently loaded instance of the interface item. If an object file being loaded
imports an interface item which it itself exports, the import is bound to the one it exports.

If the object file being loaded imports or exports a version ofa program which differs from
a version exported or imported by already-loaded files, Runtime.VersionMismatch is raised,
passing the name of the offending program. Resuming this signal allows loading to
proceed; the imported items with mismatched versions remain unbound. The signal is
raised once for each mismatch encountered.

Note: If Version Mismatch is resumed, the system will be exporting two different versions
of various programs. Object files loaded subsequently which import these programs may
get Version Mismatch against the "bad" version; however, if the signal is resumed and the
correct version is found, the desired binding will be done.

If the code for any of the programs is not contained in the object file (typically because a
configuration was not bound with code copying), Runtime.ConfigError[missingCode] is
raised. If the object file exports a TYPE that differs from that exported by an already loaded
program, Runtime.ConfigError[exportedTypeClash] is raised. If any program in the object
file is loaded with code links but the volume containing file is read-only, volu:ne.ReadOnly

2-33

2

2-34

Environment

is raised. If the object file contains a definitions module, is not compatible with the current
version of Mesa, or is not an object file at all, Runtime.ConfigError[invalidConfig] is raised.
If the object file is not completely contained in the file, space.Error{noWindow] is raised.
Any of the errors raised by Space. Map may also be raised. ConfigErrorTypes of badCode
and unknown are not used at present.

Caution: If a program in the boot file imports an item which is satisfied by a
configuration which is loaded at run-time, the importing program must have frame links.
If this rule is not followed, the link to the imported item will be written into the boot file,
and will be a dangling reference when the boot file is invoked at later times.

A object file which was loaded at run-time may be unloaded by

Runtime.UnNewConfig: PROCEDURE [link: Runtime.ControILink];

UnNewConfig unloads the dynamically-loaded object file associated with link. link may be
any PROCEDURE or PROGRAM in the object file. UnNewConfig frees the storage of all
PROGRAMS of the object file, and un maps and deallocates the virtual memory containing its
code. All items that were bound to the object file are reset to unbound.

Caution: When an object file is UnNewConfiged, there must be no processes executing
procedures in programs of the object file or expecting to return to procedures in them.
Failure to observe this rule will lead to unpredictable behavior.

The time at which the currently running boot file was built by MakeBoot is returned by

Runtime.GetBuildTime: PROCEDURE RETURNS {System.GreenwichMeanTime];

The time at which a configuration was bound is returned by

Runtime.GetBcdTiml!: PROCEDURE RETURNS [System.GreenwichMeanTime];

This operation returns the bind or compile time of the outermost configuration containing
the caller of GetBcdTime. If there are no containing configurations, GetBcdTime returns
the compile time of the caller.

The next two operations are useful for debugging and determining what has been loaded.

Runtime.GetCaller: PROCEDURE RETURNS {PROGRAM];

GetCaller returns the PROGRAM that called the client's PROGRAM. More precisely, it returns
the PROGRAM of the innermost enclosing context which is outside the PROGRAM that
contains the procedure called GetCalier.

Runtime.lsBound: PROCEDURE [link: Runtime.ControILink] RETURNS [BOOLEAN];

IsBound returns TRUE if the imported procedure link is bound (Le., if link is being exported.
Normal usage requires a LOOPHOLE. link may also be an imported variable or an imported
PROGRAM.

Caution: Unexpected results can be experienced using code links, run-time loading and
IsBound. In particular, if a program in the boot file is loaded with code links and imports
an item which is satisfied by a configuration which is loaded at run-time, the program will

Pilot Programmer's Manual 2

have links which appear to be bound but are actually left over from a previous boot
session. Boot file importers of unbound items should be bound with frame links.

A pointer to the data portio,n of a program compiled with the Table Compiler is returned
by

Runtime.GetTableBase: PROCEDURE [frame: PROGRAM] RETURNS [LONG POINTER];

GetTableBase may raise Runtime.lnvalidGlobalFrame.

2.4.3 Traps and signals

Programming errors and other errors encountered by Mesa programs result in signals or
errors. The first five errors described below are related to specific language features and
are described in more detail in the Mesa Language Manual.

Runtime.StartFault: ERROR [dest: PROGRAM];

StartFault is raised if dest was STARTed but it had been started previously (perhaps by a
start trap), or ifdest was RESTARTed but it had not sTopped.

Note: If a program does START <program> but program is not valid,
Runtime.lnvalidGlobalFrame is raised. This will happen if program is an unbound import.

Runtime.ControIFault: ERROR [source: Runtime.ControILink] ;

Control Fault is raised if a program attempts to transfer to a null control link while
executing in the local frame denoted by source. This error passes the control link that was
used. In the current version of Mesa, Control Fault may be raised on an attempt to call an
unbound PROCEDURE (instead of UnboundProcedure).

Runtime.UnboundProcedure: ERROR [dest: Runtime.ControILink);

UnboundProcedure is raised if a program attempts to call an unbound PROCEDURE. This
error passes the PROCEDURE that was called.

Caution: In the current version of Mesa, Control Fault may be raised instead of
UnboundProcedure.

Runtime.LinkageFault: ERROR;

A transfer has been attempted through a port that has not been connected to some other
port or procedure (the link field of the port was NIL).

Runtime.PortFault: ERROR;

A transfer has been attempted to a port which is not pending (the frame field of the
destination port is NIL). This error is used to handle the transients normally occurring
while initializing coroutines.

BoundsFault: SIGNAL;

2-35

2

2-36

Environment

A value being assigned to a subrange variable or being used in an indexing operation was
out of range. This signal may also be raised if an attempt is made to assign a signed value
to an unsigned variable and vice versa. This signal is only raised by programs which have
been compileq. sp~cifying bounds checking. REsuMEing this signal will allow the program to
use the illegal value, with unpredictable results.

NarrowFault: ERROR;

An attempt was made to use the NARROW operator on a value x to make it of TYPE T, but the
type of the value of x was some other. For example, an attempt was made to narrow a
(pointer to a) variant record to a (pointer to a) specific variant, but the value of x was some
other variant.

PointerFault: SIGNAL;

An attempt has been made to dereference a NIL pointer. This signal is only raised by
programs which have been compiled specifying nil checking. REsuMEing this signal will
use the NIL value, almost invariably causing an immediate address fault.

Note: Pilot leaves virtual address NIL t and LONG Nil t unmapped. Attempts to dereference
a NIL pointer will usually cause an address fault.

Runtime.ZeroDivisor: SIGNAL;

An attempt was made to divide by zero. If this signal is RESUMEd, the result of the divide
operation is undefined.

Runtime.DivideCheck: SIGNAL;

An attempt was made to perform a division involving LONG operand(s) whose result could
not be expressed in a single word. If this signal is RESUMEd, the result of the divide
operation is undefined.

2.4.4 Calling the debugger or backstop

A program can explicitly invoke the debugger or backstop by calling

Runtime.CaIlDebugger: PROCEDURE [LONG STRING];

Client program execution is suspended. The debugger prints the string provided and
awaits user commands. A Proceed command resumes client program execution after the
call to CallDebugger. (If continuing execution at this point is not reasonable, the call to
Call Debugger should be placed inside a non-ter~inating loop.)

A program may also invoke the debugger or backstop by calling

Runtime.lnterrupt: PROCEDURE;

The debugger prints ,,*** Interrupt ***" and awaits user commands. Interrupt is typically
called by a user input handling process in response to some user action such as typing a
special keyboard key.

Pilot Programmer's Manual 2

2.5 Client startup

PiiotClient: DEFINITIONS ... ;

Pilot imports precisely one client interface, called PiiotClient. The PilotClient interface is
defined as follows:

PiiotClient: DEFINITIONS =
BEGIN
Run: PROCEDURE [];
END.

The client configuration must export a PROCEDURE called PiiotClient.Run. Pilot initializes
itself and without explicitly STARTing any client programs calls Run, the first client
procedure, as follows:

Process. SetPri oritY[Process. pri orityNorma I] ;
Process.Detach[FORK PiiotClient.Run[]];

This will cause a start trap within the program containing Run, and will thus start the
control module(s) of the containing configuration, if any. Run is responsible for loading
and starting all client programs, creating spaces, forking processes, etc. It may freely use
the Mesa NEW statement, refer to any known file, and use any facility of Pilot. It mayor
may not have a user interface, depending upon the application it implements.

2.6 Coordinating subsystems' acquisition of resources

Supervisor: DEFINITIONS ... ;

SupervisorEventlndex: DEFINITIONS ... ;

This interface provides a facility for notifying interested clients of events which typically
have a fairly widespread impact. The Supervisor can be used for managing the orderly
acquisition and release of shared resources such as a file, a removable volume, or, in the
case of restarting the machine from a restart file, the entire processor. The Supervisor
facility has some similarities to the Ethernet, in that it provides a way to broadcast
information (within a single processor) to an expandable collection of interested client
software.

The Supervisor accommodates a model of the entire client system as a collection 'of
subsystems which depend on some basic resource. To handle this model, the Supervisor
maintains a database which describes dependency relationships, and provides a way to
invoke the subsystems in a clients-first or implementors-first order.

Consider the event where a user indicates that he wants to withdraw a removable volume
from a system element. The subsystems which are using the volume must release it in an
orderly manner. Since the volume typically will be used by lower-level subsystems to
build higher-level abstractions for its clients, the higher-level abstractions must also be
released, and indeed must be released before the lower-level subsystem may release the
volume. Thus, the releasing of a volume should normally proceed in a clients-first order.

2-37

2

2-38

Environment

Similarly, when a volume is added to a system, the subsystems which would like to use it
should acquire it in an orderly manner, typically implementing subsystems first.

Events for which the Supervisor may be useful include:

• Making a restart file.

• Restarting the system element from a restart file.

• Removing or adding a physical or logical volume.

• Turning power off (possibly with Automatic Power On enabled}.

• The appearance/disappearance of some service or resource on this or another system
element.

The implementation module is Supervisorlmpl. bed.

2.6.1 Use of the Supervisor

Each subsystem should obtain a subsystem handle from the Supervisor and export it to its
clients. The handles are used by clients to declare, to the Supervisor, which subsystems
they depend on. Each subsystem also registers an agent procedure. When an interesting
event happens, the Supervisor is invoked to notify, in proper order, the agent procedures of
all·subsystems, informing them of the event. Upon return from this enumeration, all
subsystems will have been notified of the event.

Since several lowest-level subsystems may utilize the same basic resource, the event of
releasing a resource might be organized as follows: the enumeration would have each
subsystem release its use of the resource, and then the caller of the enumeration would
actually release the basic resource.

On the other hand, acquisition of a new resource is slightly different. The enumeration
would declare the availability of a new resource. The lowest level subsystems might
implement some higher-level resource on it, and then that subsystem's clients could
interrogate it for the new resources when their agent procedures were called.

For example, in the event of removing a physical volume from the system element, the
agent procedure for a subsystem might perform the following actions:

1. Put the subsystem's processes to sleep, or into some quiescent state;

2. Browse through the subsystem's database and locate any objects which were built
upon files residing on the physical volume to be removed; this step may well involve
calls to some lower-level subsystems to determine the physical location of their
objects;

3. Delete or otherwise make inactive any objects based on these files and update the
database accordingly;

4. Reawaken its processes;

Pilot Programmer's Manual 2

5. Return.

The enumeration of subsystems is typically invoked from a very high level, not from
within a monitor implementing a resource which is acquired or released.

2.6.2 Supervisor facilities

An Event is a value that names a particular event in which some subsystems may be
interested.

Supervisor.Event: TYPE = RECORD [eventlndex: Supervisor.EVentlndex];

Supervisor.Eventlndex: TYPE = CARDINAL;

Supervisor.n ullEvent: Supervisor. Event = Supervisor .Event[LAST[Supervisor. Eventl ndex]];

The domain of Event is shared by all of the Supervisor's clients, who therefore must agree
on the meaning of the values. If some software that uses events runs in several disparate
systems (e.g., Star and Tajo), then those systems must agree on the values of the events
which are common to both systems. In this case, there is a common definitions module,
SupervisorEventlndex, which defines subdomains for those events common to each
system, and subdomains for those events unique to each system. Also disallowed is the
defining of one element of Event to correspond to more than one event. That is, there
cannot be any catch-all Events.

The basic structure of the SupervisorEventlndex interface is a set of subrange definitions. The
following ranges are defined.

SupervisorEventlndex.Eventlndex: TYPE. Supervisor.Eventlndex;

SupervisorEventlndex.MesaEventlndex: TYPE = CARDINAL [0 .. 1024];

SupervisorEventlndex.CommonSoftwareEventlndex: TYPE = CARDINAL (1024 .. 1280];

MesaEventlndex's are used by Mesa source and
CommonSoftwareEventlndex's are used by product common software.

object files.

Note: Each client of SupervisorEventlndex interface should maintain an interface which
defines the Events in its subrange.

Each software component or subsystem which is interested in events should register an
AgentProcedure, which will be called when events occur:

Supervisor.AgentProcedure: TYPE = PROCEDURE [event: Supervisor. Event,
eventData: LONG POINTER TO UNSPECIFIED, instanceData: LONG POINTER TO UNSPECIFIED];

Supervisor.nuIiAgentProcedure: Supervisor.AgentProcedure = NIL;

When an agent procedure is called, it should first examine event, and ignore ones which it
does not recognize or care about. The agent procedure may use facilities upon which it
depends (see DependsOn below). eventData is supplied by the software that caused the

2-39

2

2-40

Environment

notification of the event, and its interpretation depends on event. eventData might be
declared as

eventData: LONG POINTER TO RECORD [SELECT COMPUTED event.eventlndex FROM ... ENDCASE;

instanceData is supplied when the agent procedure is declared to the Supervisor, and may
be used to convey to the agent procedure any data necessary for a particular instance of its
parent program. An AgentProcedure of NIL may be used for subsystems which do not wish
to have an associated agent procedure. For backwards compatiblity, a null
AgentProcedure constant is provided. New, client~ode should just use NIL.

The client's AgentProcedure must not call back into the Supervisor, either directly or
indirectly, as this will cause the containing process to hang on a monitor lock.

To participate in the event mechanism, each implementing subsystem must register itself
with the Supervisor. When it does, the Supervisor returns a SubsystemHandle, which is
used to identify the subsystem to the Supervisor, and to the subsystem's clients.

Supervisor.SubsystemHandle: TYPE [1);

Supervisor.nuIiSubsystem: READONLY Supervisor.SubsystemHandle;

Supervisor.CreateSubsystem: PROCEOURE [agent: Supe~visor.AgentProcedure Eo- NIL,
i nstanceData: LONG POINTER TO UNSPECIFIED Eo- NIL]
RETURNS [handle: Supervisor.SubsystemHandle];

This operation creates a new subsystem object and causes an agent procedure and a set of
instance data to be associated with it. The returned subsystem handle typically is made
available to the subsystem's clients. The agent procedure for the subsystem will be called
when events happen, passing instanceData to it at that time.

A subsystem is deleted by

Supervisor .DeleteSubsystem: PROCEDURE [handle: Supervisor.SubsystemHandle];

Supervisor.lnvalidSubsystem: ERROR;

InvalidSubsystem is raised if handle does not describe a valid subsystem. Clients must
take care to not retain nor use the SubsystemHandle of a deleted subsystem.

Operations are provided for declaring the dependency relationships between subsystems,
and for inquiring about current dependencies:

Supervisor.AddDependency: PROCEDURE [client. implementor: supervisor.SubsystemHandle];

Supervisor.CyclicDependency: ERROR;

Supervisor.RemoveDependency: PROCEDURE [client. implementor:
supervisor.SubsystemHandle];

Supervisor.NoSuchDependency: ERROR;

Pilot Programmer's Manual 2

Add Dependency declares that client is directly dependent on implementor and directly
uses its services. Typically, this declaration is made because a client subsystem needs to
act on some event either before or after the subsystems which he depends on act on it.
Duplicate direct dependencies are ignored. If implementor is already registered as being
directly or indirectly dependent on client, CyclicDependency is raised. If client or
implementor do not describe a valid subsystem, Supervisor.lnvalidSubsystem is raised.

RemoveDependency declares that client is no longer directly dependent on implementor.
If client was not directly dependent on implementor, NoSuchDependency is raised. If
client or implementor do not describe a valid subsystem, Supervisor.lnvalidSubsystem is
raised.

Supervisor.DependsOn: PROCEDURE [client, implementor: Supervisor.SubsystemHandle]
RETURNS [BOOLEAN];

DependsOn returns TRUE if and only if client is directly or indirectly dependent on
implementor. If either client or implementor does not describe a valid subsystem,
Supervisor.lnvalidSubsystem is raised.

When an event happens, the client program that caused the event notifies the registered
subsystems with the following operation:

Supervisor. Notify All Su bsystems: PROCE DURE [event: Supervisor. Eve nt,
eventData: LONG POINTER TO UNSPECIFIED, whichFirst: Supervisor.Clientslmpls];

Supervisor.Clientslmpls: TYPE. {clients, implementors};

This operation calls the agent procedures of all subsystems. If whichFirst is clients, a
subsystem is notified only after all of its clients have been notified. If whichFirst is
implementors, a subsystem is notified only after all of its implementors have been
notified. See the definition of AgentProcedure for a description of eventData. If a
subsystem handle does not describe a valid subsystem, Supervisor.lnvalidSubsystem is
raised.

Caution: No client of Tajo, CoPilot, or the Development Environment, versions 11.0,
should call NotifyAIiSubsystems. It will cause these systems to crash or hang.

For events which are only of interest to a separable set of subsystems and for which it is
desired to avoid swapping in the code of all agent procedures, NotifyRelatedSubsystems
maybe used.

Supervisor.NotifyRelatedSubsystems: PROCEDURE [event: Supervisor. Event,
eventData: LONG POINTER TO UJQSPECIFIED, which, whichFirst: Supervisor.Clientslmpls,
subsystem: Supervisor .SubsystemHandle];

This operation calls the agent procedures of all subsystems which are directly or indirectly
clients or implementors of subsystem. For which equal to clients, it calls all agent
procedures which are direct or indirect clients of subsystem. For which equal to
implementors, it calls all agent procedures which are the direct or indirect implementors
of subsystem. For whichFirst equal to clients, it visits a subsystem only after all of its
clients have been visited. For whichFirst equal to implementors, it visits a subsystem only
after all of its implementors have been visited. See the definition of AgentProcedure for a

2-41

2 Environment

description of eventData. If subsystem does not describe a valid subsystem,
Supervisor.lnvalidSubsystem is raised.

Caution: NotifyRelatedSubsystems is not implemented in Pilot 11.0.

For events which are only of interest to the immediate clients or implementors of a
subsystem and for which it is desired to avoid swapping in the code of all agent procedures,
NotifyDirectSubsystems may be used.

Supervisor.NotifyDirectSubsystems: PROCEDURE [event: Supervisor. Event.
eventData: LONG POINTER TO UNSPECIFIED +- NIL. which: Supervisor.Clientslmpls.
subsystem: Supervisor.SubsystemHandle);

This operation calls the agent procedures of all subsystems which are directly related to
subsystem. For which equal to clients, it calls the agent procedures of all subsystems
which are direct clients of subsystem. For which equal to implementors, it calls the agent
procedures of all subsystems which are direct implementors of subsystem. See the
definition of AgentProcedure for a description of eventData. If subsystem does not
describe a valid subsystem, Supervisor.lnvalidSubsystem is raised.

2.6.3 Exception handling

Handling recoverable error conditions encountered during an enumeration of subsystems
requires some special consideration. Exceptions in Mesa are usually handled by signals.
In the context of the Supervisor, these are not appropriate since the subsystems are
enumerated sequentially, not recursively, and therefore the previously-invoked agent
procedures are not in a position to catch a signal or an UNWIND.

Thus, the following procedure is suggested: The agent detecting an error condition would
signal an error to the caller of NotifyxSubsystems. That caller would catch the signal,
unwind, and then call NotifyxSubsystems for an inverse event to the one being aborted.
Thus, each agent would then be given the chance to back out of any actions he had taken.
If there is no naturally-occurring inverse event, an artificial one can be defined
specifically for backing out of particular kinds of aborted events. In some cases, a two
phase protocol may be necessary to handle an event properly.

If no special information needs to be communicated while aborting an enumeration, the
following signal may be used:

Supervisor .En u merationAborted: ERROR;

The caller ofthe"enumeration should catch it.

2.7 General object allocation

2-42

ObjAlloc: DEFINITIONS ... ;

This section describes the facility used to control the allocated/free state of a collection of
objects. A typical application of this facility would be a storage allocator using ObjAlloc to
manage its underlying database.

Pilot Programmer's Manual

2.7.1 Basic types

ObjAlIoc.AllocFree: TYPE = MACHINE DEPENDENT (free(O), alloc(1)};

ObjAIIOc.AllocationPool: TYPE = PACKED ARRAY [0 .. 0) OF ObjAIIOc.AllocFree;

ObjAlloc.AllocPooIDesc: TYPE ,. RECORD [allocPool: LONG POINTER TO ObjAlloc.AllocationPool,
poolSize: ObjAlloc.ltemCount];

ObjAlloc.lnterval: TYPE,. RECORD [first: ObjAlloc.ltemlndex, count: ObjAlloc.ltemCount];

ObjAlloc.ltemlndex: TYPE ,. LONG CARDINAL;

ObjAlloc.ltemCount: TYPE ,. LONG CARDINAL;

2

An ObjAlloc.AllocationPool describes the allocated/free state of an ordered set of objects.
Each object is identified by a name, called an ObjAlloc.ltemlndex. The location and size of
an ObjAlloc.AllocationPool is given by an ObjAlloc.AllocPooIDesc.

Note: The location must be word aligned, and the size is given in terms of the number of
objects in the pool.

An ObjAI~oc.lnterval describes a range of objects by giving the ObjAlloc.ltemlndex of the first
object, and the number of objects in the range.

2.7.2 Basic procedures and errors

ObjAlloc.Allocate: PROCEDURE [pool: ObjAlloc.AllocPooIDesc, count: ObjAlloc.ltemCount,
wiliTakeSmaller: BOOLEAN ~ FALSE] RETURNS [interval.objAlloc.lnterval];

ObjAlloc.Error: ERROR [error: ObjAlloc.ErrorType];

ObjAlloc.ErrorType: TYPE" {insufficientSpace, invalidParameters};

ObjAlloc.Allocate finds, and marks as allocated, a range of count objects. If wi IITakeSmalier
is FALSE and count contiguous objects can not be found, ObjAlloc.Error[insufficientSpace] is
raised. IfwiliTakeSmalier is TRUE, ObjAlloc.Allocate will allocate the largest range of objects
whose size does not exceed count. In this case, ObjAlloc.Error[insufficientSpace] will only be
raised if no free objects can be found. In either case, the returned range is guaranteed to be
the range with the smallest first name that meets the needs inferred by count and
willTakeSmaller.

ObjAlloc.ExpandAliocation: PROCEDURE [pool: ObjAlloc.AllocPooIDesc,
where: ObjAlloc.ltemlndex, count: ObjAlloc.ltemCount,
wiliTakeSmaller: BOOLEAN ~FALSE] RETURNS [extendedBy.ObjAlloc.ltemCount];

An allocated range can be expanded using ObjAlloc.ExpandAliocation. If the objects
[where .. where + count) are all free, they are marked as allocated, and extendedBy is set
to count. If only the objects [where .. where + countFree) are free, where
0< ,. countFree<count, the result depends upon the value of wiliTakeSmalier. If
wiliTakeSmalier is FALSE, extendedBy is returned as zero and no objects are marked

2-43

2

2-44

Environment

allocated. If willTakeSmalier is TRUE, the objects [where .. where + countFree) are marked
as allocated and extended By is returned as countFree.

ObjAlloc.Free: PROCEDURE [pool: ObjAlloc.AllocPooIDesc. interval: ObjAlloc.lnterval.
validate:BooLEAN +-TRUE);

ObjAlloc.AlreadyFreed: ERROR [item: ObjAlloc.ltemlndex);

A range of objects is freed by calling ObjAlloc.Free. If not all of the named objects are
contained in pool, ObjAlloc.Error[invalidParameters) is raised and no objects are marked
free. Ifvalidate is TRUE then an attempt to free an already free object results in the signal
ObjAlloc.AlreadyFreed(item) being raised, with item as the smallest index of a free object in
the interval. No objects are freed in this case. If validate is FALSE, the specified objects are
marked as free with no checking performed.

ObjAlloc.lnitializePool: PROCEDURE (pool: ObjAltoc.AllocPooIDesc. initialState:
ObjAlloc.AllocFree] ;

An ObjAlloc.AllocationPool may be initialized by calling ObjAlloc.lnitializePool. It will set
the initial state of all of the objects in the pool to the specified state.

Note: In any call to ObjAlloc.Allocate. ObjAlloc.ExpandAliocation. ObjAlloc.Free, or ObjAlloc.
InitializePool, an ADDRESS FAULT may result if any part of the allocation pool is unmapped.
Additionally, it is the clients responsibility to serialize access to the database. ObjAlloc
provides no serialization.

3

Streams

Stream: DEFINITIONS ••• ;

The Stream Facility described in this section provides to Pilot clients a convenient,
efficient, device- and format-independent interface for sequential access to a stream of
data. In particular:

It provides a vehicle by which processes or subsystems can communicate with each
other, whether they reside on the same system element or on different system
elements.

It permits processes or subsystems to transmit arbitrary data to or from storage media
in a device-independent way.

It defines a standard way for transforming the detailed interface for a device into a
uniform, high level interface which can be used by other client software.

It provides an environment for implementing simple transformations to be performed
on the data as it is being transmitted.

It provides optional access to and control over the mapping of data onto the physical
format of the storage or transmission medium being used.

The stream package provides several facilities, not all of which may be important to an
individual client. First, there is the stream interface, the set of procedures and data types
by which a client actually controls the transmission of a stream of information. Each of the
operations of the stream interface takes as a parameter a Stream.Handle which identifies
the particular stream being accessed. Second, the stream package defines the concepts of
transducer and /ilter. A transducer is a software entity (e.g., module or configuration)
which implements a stream connected to a specific device or medium. A filter also
implements a stream, but only for the purpose of transforming, buffering, or otherwise
manipulating the data before passing it on to another stream. Transducers and filters may
be provided either by Pilot or by clients. Third, the stream package provides a standard
way of concatenating a sequence of filters (usually terminated with a transducer) to form a
compound stream called a pipeline. A pipeline is accessed by means of the normal stream
operations, and causes a sequence of separate transformations to be applied to data

3-1

3 Streams

t10wing oetween the client program at one end and the physical storage (or transmission)
medium at the other.

Pipelines permit clients to interpose new stream manipulation programs (filters and
transducers) between cWmts (producers and consumers of data) without modifying the
interfaces seen by the clients. For example, a data format conversion program can obtain
its data either from a magnetic cassette or from a floppy disk, using the same stream
interface, and hence the same program logie, for both. Similarly, filters performing such
functions as code conversion, buffering, data conversion, and encryption, may be inserted
into a pipeline without affecting the way the client sends and receives data through the
stream interface.

The stream facility transmits arbitrary data, regardless of format and without prejudice to
its type or characteristics. The data may comprise a sequence of bytes, words, or arbitrary
Mesa data structures. The stream facility does not presume or require the encoding of
information according to any particular protocol or convention. Instead, it permits clients
to define their own protocols and standards according to their own needs.

In this chapter, sections 3.1, 3.2, and 3.3 will be of interest to all clients. Section 3.4 will be
of interest only to those clients wishing to control the physical record characteristics of a
particular stream. Section 3.5 will be of interest only to those clients wishing to
implement their own filters or transducers. In addition, the clients of a particular stream
type (e.g., disk, tape) will normally have to consult separate documentation regarding the
details of that kind of stream.

3.1 Semantics of streams

3-2

The stream facility supports transmission of a sequence of eight-bit bytes. This sequence
may be divided into identifiable subsequences, each of which has its own subsequence type.

Stream.Byte: TYPE = Environment.Byte;

Environment.Byte: TYPE = [0 .. 256);

Stream.SubSequenceType: TYPE = [0 .. 256);

A subsequence may be null: i.e., it may be of zero length and contain no bytes but still
contain the SubSequence Type information. This information allows all subsequences to
be easily identified and separated from each other while shielding clients from the
bothersome problems of control-codes (i.e., embedding control codes into the stream,
making them transparent, and building a parser to implement such transparency).

Additionally, an attention flag may be inserted into a stream sequence. Attention flags are
transmitted through the stream as quickly as possible, possibly bypassing bytes and
changes in SubSequenceType which were transmitted earlier but which are still in
transit. This provides a simple mechanism for implementing breaks (similar to the
"attention-key" of many time-sharing systems). A byte of data is associated with an
attention flag for the use of client protocols. Note that the attention flag and the data byte
occupy a byte in the stream sequence.

Streams have no intrinsic notion of the bytes passing through them being grouped into
physical records. The client program can completely ignore physical record structure and

Pilot Programmer's Manual 3

is thus relieved of the hurden of dealing with the associated packing and unpacking
problems. If, however. it becomes necessary to control or determine the underlying
physical record structure, as determined by the particular storage (or transmission)
medium, the interface provides extended facilities which allow this.

All of the procedures described here are synchronous. That is, an input operation does not
return until the data is actually available to the client, and an output operation does not
return until the data has been accepted by the stream and client buffers may be reused.
Note, however, that a stream component may do internal buffering and that the
acceptance of data means only that the stream component itself has a correct copy and is in
a position to proceed asynchronously to write or send it.

Streams in Pilot are inherently full duplex. Separate processes may be transmitting and
receiving simultaneously. The stream interface does not guarantee mutual exclusion
among different processes attempting to access the same stream. However, individual
transducers or filters may restrict themselves to half duplex operation and may
implement such mutual exclusion or more elaborate forms of synchronization as is
appropriate. Documentation for such filters and transducers should be consulted on a case
by-case basis for details.

3.2 Operations on streams

The stream interface provides operations for sending and receiving data, for sending state
information, and for dealing with stream positions. In addition, a Delete operation is
provided to delete a stream. A create operation is not provided. Streams are only created
by individual stream components, namely, pipelines, transducers and filters.

A client program identifies a particular instance of the stream interface by means of a
Stream.Handle.

Stream.Handle: TYPE = ... ;

A Stream.Handle identifies an object (see §3.5.1) which embodies all of the information
concerning the transfer of data to or from the client program via stream operations. It is
passed as a parameter to each of the data transmission operations of the following sections
to specify the stream to which the operations apply.

A stream may be deleted by the operation:

Stream.Delete: PROCEDURE [sH:Stream.Handle);

The client must ensure that there are no outstanding references to the stream being
deleted. Failure to observe this caution will result in unpredictable effects.

3.2.1 GetBlock and PutBlock

The principal operations for transferring blocks of data are Stream.GetBlock and
Stream.PutBlock. Both are inline procedures. Each of these takes a parameter specifying
the block of virtual memory to or from which bytes are to be transmitted.

Stream.Block: TYPE = Environment.Block;

3-3

3

3-4

Streams

Environment.Block: TYPE = RECORD [
blockPointer: LONG POINTER TO PACKED ARRAY [0 .. 0) OF Environment.Byte,
startlndex. stoplndexPIusOne: CARDINAt];

A Block describes a section of memory which will be the source or sink of the bytes
transmitted. The section of memory described is a sequence of bytes (not necessarily word
aligned) which must lie entirely within a mapped space. blockPointer selects a word such
that a startlndex ofzero would select the left byte of that word (i.e., bits 0 - 7). The selected
block cOl"sists of the bytes blockPointer[iJ for i in (startlndex .. stoplndexPlusOne). ~otice
that a Block cannot describe more than 216_1 bytes or 215_1 words. A Stream. Block can
describe any part of virtual memory.

Some of the operations of this section and the next may cause signals to be generated. If
such a signal is resumed, transmission continues from where it left off so that any changes
made by the catch phrase to the Block record or to the input options (see below) are
ignored. If, however, such a signal is RETRved, the next byte of the stream sequence is
transmitted to or from the byte specified by the current value of the Block record or input
options, either of which might have been updated by the catch phrase. In no case is the
stream sequence itself "backed up". Bytes previously received from input are not re
received, and bytes previously transmitted on output are not withdrawn.

The primary block input operation is Stream.GetBlock.

Stream.GetBlock: PROCEDURE [sH: Stream.Handle, block: Stream.Block]
RETURNS [bytesTransferred: CARDINAL, why: Stream.CompletionCode,
sst: Stream.SubSequenceType);

Stream.CompletionCode: TVPE = {normal, endRecord, sstChange, endOfStream,
attention, timeout};

The parameter block describes the virtual memory area into which the bytes will be
placed. GetBlock does not return until the input is terminated. Its exact behavior,
however, is controlled by a set of input options which may be set by the client using the
following operation:

Stream.SetlnputOptions: PROCEDURE [sH: Stream.Handle, options: Stream.lnputOptions];

Stream.lnputOptions: TVPE = RECORD [
terminateOnEndRecord 4- FALSE, signallongBlock 4- FALSE, signalShortBlock 4- FALSE,
signalSSTChange 4- FALSE, signalEndOfStream 4- FALSE, signalAttention 4- FALSE,
signalTimeout 4- TRUE, signalEndRecord: BOOLEAN 4- FALSE];

Stream.defaultlnputOptions: Stream.lnputOptions = [];

SetlnputOptions controls exactly how GetBlock terminates and what signals it generates.
Ordinarily (i.e., with the parameter options set to defaultlnputOptions) the transmission
will not terminate until the entIre block of bytes is filled unless there is a timeout.
However, under the exceptional conditions described in §3.4, the'transmission may
terminate before the block is filled and may also result in a signal. In all cases the
procedure will return the actual number of bytes transferred, a CompletionCode
indicating the reason for termination, and the latest SubSequenceType encountered. The

Pilot Programmer's Manual 3

input operation may conveniently he restarted where it left ofT by first adding the result
bytesTransferred to block.startlndex to update the record describing the block of bytes.

In general, any status that may be returned from GetBlock may also be signalled, and the
option to do so is available through InputOptions. A catch phrase for these signals must
not attempt any other stream operations using the same Stream.Handle, for this will
corrupt the internal state information maintained for the stream.

Three circumstances which always suspend the transmission of data before the block is
filled are the detection of a change in SubSequenceType, the detection of an attention,
and the detection of the end of the stream. [n the first case, if the input option
signalSSTChange is FALSE (the default) then the procedure GetBlock terminates
immediately and returns the number of bytes transferred, with why = sstChange, and sst
set to the new value of the SubSequence Type. If the input option signalSSTChange is TRUE
then the signal

Stream.SSTChange: SIGNAL [sst: Stream.SubSequenceType, nextlndex: CARDINAL];

is generated. The parameter sst specifies the new SubSequenceType, and the parameter
nextlndex specifies the byte index within the block where the first byte of the new
subsequence will be placed. This signal may be resumed, and the effect is to continue the
data transmission as though the change in SubSequenceType had not occurred (i.e., in the
same block of bytes).

If an attention is detected in the byte stream, the GetBlock terminates immediately and
returns immediatly with the number of bytes transferred and with why = attention. If
the input option signalAttention is TRUE then the signal

Stream.Attention: SIGNAL [nextlndex: CARDINAL];

is generated. The parameter nextlndex specifies the byte index within the block where the
position within the block where the next byte, the attention byte, would be placed. This
signal may be resumed, and the effect is to continue the data transmission as though the
Attention had not occurred (i.e., in the same block of bytes).

A catch phrase for these signals must not attempt any other stream operations using the
same Stream.Handle, for this will corrupt the internal state information maintained for the
stream.

Implementation of the end-of-stream feature is strictly transducer and filter specific, and
optional. Transducer and filter implementors may implement an end-of-stream
mechanism using any protocol they desire. When putting together a pipeline from a
transducer and filters, great care needs to be taken to preserve the end-of-stream feature
through all the stream components. If the input option signalEndOfStream is FALSE (the
default) and the stream component detects that the end-of-stream has occurred then the
procedure GetBlock terminates immediately and returns the number of bytes transferred,
with why = endOfStream. [f the input option signalEndOfStream is TRUE and the stream
component detects that the end-of-stream has occurred then the signal

Stream.EndOfStream: SIGNAL [nextlndex: 'CARDINAL];

3-5

3

3-6

Streams

is generated. The parameter nextlndex specifies the byte index immediately following the
last byte of the stream gequence tilled in a client's block.

Stream component implementors may provide special procedure calls in order to actively
cause a stream to be terminated.

Semantics of the end-record feature are ~lso transducer and filter specific. Furthermore,
all transducers may not preserve the same semantics across the transmision medium. In
any case, all notion of end-record processing may be suppressed by setting
terminateOnEndRecord FALSE <the default). If the input option terminateOnEndRecord is
TRUE and signalEndRecord is FALSE (the default) and the stream component detects that the
end-record has occurred then the procedure GetBlock terminates immediately and returns
the number of bytes transferred, with why = endRecord. If the input option
signalEndRecord is TRUE and the stream component detects that the end-record has
occurred then the signal

Stream.EndRecord: SIGNAL [nextlndex: CARDINAL];

is generated. The parameter nextlndex specifies the byte index immediately following the
last byte of the stream sequence filled in a client's block.

The principal block output operation is Stream.PutBlock.

Stream.PutBlock: PROCEDURE [sH: Stream.Handle. block: Stream.BIOtk,
end Record : BOOLEAN ~ FALSE];

This operation is analogous to Stream.GetBlock. The parameter block describes the area of
virtual memory from which information is transmitted. This procedure returns only after
the data has been accepted by the stream, at which time the client may reuse block. If the
clifmt is ignoring record boundaries (the default), endRecord should be set to FALSE.
Otherwise, see the section on controlling physical record, characteristics, §3.4.

Stream operations have the right to discard empty blocks, hence a PutBlock operation
specifying a block oflength zero may be a no-op even if ei'tdRecord is TRUE.

3.2.2 Additional data transmission operations

In addition to GetBlock and PutBlock, the following operations are provided to permit the
sending and receiving of individual bytes, characters and words. All but SendNow are
in line procedures. They are supplied so that some streams can provide byte or character or
word operations in a more efficient manner than is possible with GetBlock or PutBlock.
The documentation for individual streams should be consulted for detailed performance
information.

Stream.GetByte: PROCEDURE [sH: Stream.Handle] RETURNS [byte: Stream.Byte];

Stream.GetChar: PROCEDURE [sH: Stream.Handle] RETURNS [char: CHARACTER];

Stream.GetWord: PROCEDURE [sH: Stream.Handle] RETURNS [word: Stream.Word];

Stream.Word: TYPE := Environment.Word;

Pilot Programmer's Manual 3

GetByte and GetChar operations get the next Byte or CHARACTER from the stream sequence
and return it just as a call uponStream.GetBlock specifying a Block containing one byte

• would. The GetWord operation gets the next Word from the stream sequence and returns
it just as a call upon GetBlock specifying a Block containing Environment.bytesPerWord
bytes would. [n all three cases, the effect is as if the input options to GetBlock had been
signalShortBlock, signal long Block, signalAttention, signalEndRecord and
terminateOnEndRecord = FALSE, and signalEndOfStream, signalTimeout and
signalSSTChange = TRUE. Thus, these operations may result in the signal SSTChange,
EndOfStream or Stream. TimeOut (see §3.2.4).

Note: When any of the signals are generated when processing a GetWord and nextlndex
is an odd value, the two communicating processes are responsible for the outcome.

Stream.PutByte: PROCEDURE [sH: Stream.Handle. byte: Stream. Byte];

Stream.PutChar: PROCEDURE [sH: Stream.Handle. char: CHARACTER];

Stream.PutWord: PROCEDURE [sH: Stream.Handle. word: Stream.Word];

Stream.PutString: PROCEDURE [sH: Stream.Handle. string: LONG STRING. endRecord ~ FALSE];

The PutByte and PutChar operations transmit the Byte or CHARACTER to the medium just as
a call on Stream.PutBlock specifying a Block containing one byte would. The PutWord
operation transmits the next Word to the medium just as a call on PutBlock specifying a
Block containing Environment.bytesPerWord bytes would. In the first three cases, the effect
is as. if end Record is set to FALSE in the call to PutBlock. PutString transmits the bytes
described by string to the medium.

Stream.SendNow: PROCEDURE [sH: Stream.Handle. endRecord ~ FALSE];

This operation flushes the stream sequence. It guarantees that all information previously
output (by means of PutBlock, PutByte, PutChar, PutWord, PutString, or SetSST) will
actually be transmitted to the medium (perhaps asynchronously). The default
implementation of this procedure is equivalent to a call on Stream.PutBlock specifying a
Block containing no bytes and endRecord set to TRUE (see §3.4). Client programs should
call SendNow at appropriate times to ensure that the bytes and changes in
SubSequenceType have actually been sent and are not buffered internally within the
stream, awaiting additional output operations.

Through use of the end Record parameter, SendNow may apply transducer or filter
specific semantics to the transmission of the data, such as the idea of a logical record. A
logical record may be a collection of one or more physical records. The logical record
boundaries can be detected by the receiving client by proper setting of
terminateOnEndOfRecord and perhaps signalEndRecord in the streams's InputOptions.

3.2.3 Subsequence types

The subsequence type of a stream may be changed by

Stream.SetSST: PROCEDURE [sH: Stream.Handle. sst: Stream.SubSequenceType);

3-7

3

3-8

Streams

All subsequent bytes transmitted on the :-;tream have the indicated SubSequence Type.
Even if the subsequent sequence of bytes is null (i.e., a call on SetSST is immediately
followed by another), the SubSequenceType change demanded by this call will still be
available. to the receiver of the stream sequence.

SubSequence Types are intended to be used to delineate different kinds of information
flowing over the same stream (e.g., to identify control information, indicate end-of-file,
etc.). The interpretation of a SubSequenceType value is a function of the particular
stream.

A SetSST operation specifying a SubSequenceType identical to the previous
SubSequenceType is a no-op. Otherwise, SetSST always has the side effect of completing
the current physical record, as explained in §3.4.

3.2.4 Attention flags

The following operation causes an attention flag and an associated byte of data to be
transmitted via the stream facility.

Stream.SendAttention: PROCEDURE [sH: Stream.Handle, byte: Stream.Byte];

Note that the attention flag and the data byte occupy a byte in the stream sequence. The
attention is sent as both an in-band and out-of-band signal. The out-of-band attention is
not necessarily transmitted in sequence, but may bypass bytes and changes in
SubSequenceType which were transmitted before it. byte is used by the client protocol to
transmit other information regarding this attention.

The following operation awaits the arrival of an attention flag.

Stream.WaitForAttention: PROCEDURE [sH: Stream.Handle] RETURNS [Stream.Byte];

When the out-of-band attention is received on stream sH, this procedure returns the byte
of data associated with the attention. It is the responsibility of the client program to
determine the appropriate action to take. If more than one attention flag has been sent,
these will be queued by the stream. Each return from a call on WaitForAttention
corresponds to precisely one attention sent by SendAttention.

When the in-band attention is received on stream sH, the effect depends upon the setting
of the InputOptions. If signalAttention is FALSE, the operation terminates with a
completion code of attention. The next byte in the stream is the byte passed to
SendAttention. If the input options specify signalAttention as TRUE, the signal Attention
is raised with the index pointing in the current block to the byte passed to SendAttention.

WaitForAttention is usually executed by a different process from that operating upon the
stream. It returns as soon as the attention is received, whether or not all of the bytes
preceeding it in the stream have been transferred.

Pilot Programmer's Manual 3

:1.2.5 Timeouts

Any of the operations of this section (except SendAttention and WaitForAttention) may
fail to complete within a reasonable amount of time due to external conditions. In such a
case the following signal is generated:

Stream. TimeOut: SIGNAL [nextlndex: CARDINAL);

The parameter of this signal indicates the position wi~~lin the block of bytes where the
next byte would be placed. This signal may be resumed.

If this signal is RETRved all previously received data may be lost. This is because it is likely
that a stream component is performing internal buffer~ng (transferring data from its
buffer into the client's block), and the action of RETRving the signal may not tell the
component that it must refill the client's block. Even if the component was informed of this
fact, it may have discarded data already transferred into the client's block from its
internal buffer.

A catch phrase for this signal must not attempt any other stream operations using the
same Stream.Handle, for this will corrupt the internal state information maintained for the
stream.

The timeout value for the stream may be read and altered by using the getTimeout and
setTimeout procedures in the Stream.Object (section 3.5.0.

msecs E- sH.getTimeout[sH);

sH.setTimeDut[sH, msecs];

3.2.6 Stream positioning

For those streams which may be accessed randomly, the position of a stream may be
determined with the procedure

Stream.GetPosition: PROCEDURE [sH: Stream.Handle]
RETURNS [position: Stream.Position);

Stream.Position: TVPE = LONG CARDINAL;

The value returned is the byte index of the next byte to be read from or written in the file.

The position of a stream may be set with the procedure

Stream.SetPosition: PROCEDURE [sH: Stream.Handle, position: Stream.Position);

3.3 Creating streams

Pilot provides no general operations for creating streams. The main reason for this is that
the components of a stream (pipelines, transducers, and filters) must be able to take
arbitrary parameters at the time they are created. It is not possible for Pilot to specify a
general interface for their creation without either compromising the basic type-safeness of
Mesa or constraining the flexibility and power of client-provided streams. Thus, the create

3-9

3

3-10

Streams

function is implemented on il case -b~·case basis. and clients must therefore refer to
documentation for individual stream components for the correct interface t'or this
operation. Specifications for Pilot-provided transducers and filters are included in § 3.6. In
this section, the general style is illustrated by means of hypothetical examples.

For example, if a utility package implements a transducer to a magnetic cassette reader, it
is obligated to provide a means by which other clients can create instances of that
transducer, use them, and later delete them. Suppose the name of the interface module
providing this function is CassetteStream. Then it would provide the following operation:

ClssetteStream.Create: PROCEDURE [--optional parameters--]
RETURNS [Stream.Handle, --optional oCher resul ts--J;

A client wishing to use the stream intet:,face to access this device would thus call
ClssetteStream.Create, then use the Stream.Handle returned from it as parameter to the
stream operations of this chapter. When the stream was no longer needed, it would be
deleted by calling Stream.Delete.

Similarly, a security package providing, say, an encryption facility might implement this
by means of a filter for a stream. In this case, the interface module might be called
EncryptionFilter, and it would provide the following operation:

EncryptionFilter.Create: PROCEDURE [Stream.Handle, --optional oCher parameters--]
RETURNS [Stream.Handle, --optional oCher resul ts--];

The client could easily couple an instance of this filter with the transducer above. This is
done by calling EncryptionFilter.Create, passing as-a parameter the Stream.Handle returned
from ClssetteStream.Create. Then the Stream.Handle returned from EncryptionFilter.Create

would be the one used in GetBlock, PutBlock, and the other operations of §3.2. The net
effect would be stream components which. on input, read bytes from the cassette reader,

- decrypt them, and pass them to the client and which, on output, encrypt the bytes supplied
by the client and write them on the cassette.

In general, a procedure creating a filter accepts one Stream.Handle as a parameter and
returns another as its result. Thus, several filters, each implementing a simple
transformation, may be concatenated together to implement a more interesting
transformation on the stream sequence. The parameter passed to each one is the result
returned from the adjacent one. Such a concatenation, called a pipeline, is illustrated in
Figure 3.3a.

..... ~- ~ ... h,
.....

Client Filter A Filter B Transducer

Figure 3.3a

Pilot Programmer's Manual 3

This diagram illustrates how each Stream.Handle returned from a transducer or tilter is
passed as a parameter to the next adjacent filter, and how the last one is used directly by
the client. In particular, hf is returned from the procedure which creates Transducer. It is
passed to the procedure which creates Filter B, returning h2. This is passed, in turn, to the
next filter, and so on, until hn is returned and passed to Filter A. Filter A is the last one in
the pipeline, and its Stream.Handle, h, is returned to the client. -

Figure 3.3b shows the flow of data through the pipeline and the use of the various
Stream.Handles as a result of a client call on Stream.GetBlock (calls on other data
transmission operations are analogous).

GetBlock[h, ...] GetBlock[hn, ...]

... h

Client Filter A

GetBlock[h" ...]

~- ~
Filter B

Figure 3.3b

device operation

... h,
"

Transducer

Here, the client calls Stream.GetBlock[h •...], which is transformed by the stream interface
into an appropriate call on Filter A. Filter A, in turn, calls Stream.GetBlock(hn •...], which is
passed to the next filter in the pipeline, and so on, until eventually a call is made on
Stream.GetBlock[h2, ...]. This is transformed into a call on Filter B, which then calls .
Stream.GetBlock[h1, ...], to invoke Transducer, which actually operates the device.

Note that the only difference between a transducer and a filter is that a transducer
interfaces to some device or channel, while a filter interfaces to another stream and; thus,
indirectly to another filter or transducer. .

Note also that the client can construct a pipeline "manually," by tediously assembling the
various components, instantiating each of them, and binding them together. However, a
pipeline can also be presented as an integrated package, already assembled. For example,
the two components described above may have been assembled into a pipeline called
EncryptingCassetteStream. This pipeline might then provide the following operation,
which clients can call to create an procedure an instance of this pipe line:

EncryptingCassetteStream.Create: PROCEDURE [--optional parameters--]
RETURNS [Stream.Handle, --optional other resul ts--];

The client of such a stream would merely invoke this procedure to create the stream
without having to bother about finding and putting together the individual components.

3.4 Control over physical record characteristics

Most of the time, the client will not wish to know about how the data in a stream sequence
is divided into physical records for recording or transmission. For some applications,
however, this is of vital importance. The stream facility has been designed so that the
details of the physical encoding can be ignored when desired, or completely known and
controlled when that is necessary. On output, complete control of the placement of bytes in

3-11

3

3-12

Streams

physical records C~ln be achieved for most media. On input, complete information 1S

available about how the bytes were arranged in physical records.

These facilities to control the placement of bytes on physical records are not meant to be
used as a means of transmitting information. In particular, a trans<!ucer might suppress
or generate empty physical records and will necessarily partition oversize "physical"
records into smaller ones. Any filter may rearrange (or completely obliterate) physical
record boundaries. Documentation for the individual transducer or filter and for the
individual transmission or storage medium should be consulted for full details.

The output and input cases will be treated separately. On output, bytes will be placed in
turn into the same physical record until one of the following events occurs:

1. The SendNow procedure is called. It has the side effect of causing the current record to
be sent. The next byte output will begin a new physical record. This is the main
mechanism for controlling physical record size on output.

A Send Now with end Record TRUE may apply further transducer or filter dependent
semantics, such as end of logical record.

2. A PutBlock procedure is called with an end Record parameter of TRUE (this is equi valent
to a SendNow with endRecord TRUE). After the transmission of this block of bytes, the
current physical record is ended. If, at this point, the physical record is at its
maximum size (see 5. below), an empty record will not be transferred.

3. A SetSST procedure has been called. The first byte of a new subsequence always begins
a new record and has the. new SubSequenceType. This may cause the previous record
to be sent.

4. Enough bytes have been output to fill the physically maximal record. At this point the
record will be written and a new record started. This maximum number is a function
of the medium being written, hence documentation concerning the medium must be
consulted to determine this value.

5. Some other device-dependent event, such as a timeout, occurs. In this case, a buffer
may be flushed automatically. Details are documented with individual transducers.

On input, bytes will be placed in turn into the record until one of the following events
occurs:

1. The end of the logical record is reached, and the input option terminateOnEndRecord
is TRUE.

The end of the logical record is reached at the same time that the block of bytes
described in the Block record is exhausted. In this case, neither of the signals
ShortBlock and LongBlock is generated. If the input option terminateOnEndRecord is
TRUE, then why is set to endRecord; otherwise, it is set to normal.

In any case, if the input option signalEndRecord is TRUE and the logical record has just
been exhausted, then the following signal is generated.

Stream.EndRecord: SIGNAl[nextlndex: CARDINAL];

Pilot Programmer's Manual 3

This signal indicates by nextlndex the position within the block of bytes where the
next byte will be placed. [f it is resumed, transmission continues as if it had not been
generated.

A catch phrase for this signal must not attempt any other stream operations using the
same Stream.Handle, for this will corrupt the internal state information maintained for
the stream.

2. The end of a physical record is reached, the block of bytes described in the Block record
is not exhausted, and signalLongBlock is TRUE.

IfsignalLongBlock is TRUE, the following signal is generated:

Stream.LongBlock: SIGNAL (nextlndex: CARDINAL];

This signal indicates by nextlndex the position within the block of bytes where the
next byte will be placed. If it is resumed, transmission continues as if it had not been
generated.

A catch phrase for this signal must not attempt any other stream operations using the
same Stream.Handle, for this will corrupt the internal state information maintained for
the stream.

3. The block of bytes described in the Block record is exhausted, the end of the physical
record has not been reached, and the input option signalShortBlock has the value TRUE.
At this time the input is terminated (without losing the subsequent bytes of the
physical record, which are still available for reading by subsequent GetBlock
operations), and the signal Stream.ShortBlockis generated.

Stream.ShortBlock: ERROR;

This signal may not be resumed.

The easiest approach is usually to establish a Block longer than the longest expected
physical record and specify input options signalLongBlock as FALSE, signalShortBlock as
TRUE, and terminateOnEndRecord as TRUE. At this point the transmission will cease with
the entire contents of the physical record in the block of bytes, and the number of bytes
transmitted will be returned as the result of the GetBlock procedure. In this way a signal
will be generated only under unusual circumstances.

3.5 Transducers, filters, and pipelines

The stream package is designed so that clients can implement their own stream
components (transducers, filters, and pipelines). The implementor of one of these has three
different obligations to fulfill. First, he must design an interface (i.e., Mesa DEFINIT.IONS
module) in the style described in the section about creating streams, §3.3, by which his
clients create instances of that stream component. Such an interface (together with its
accompanying implementation modules) is called a stream component manager. Second,
he must provide a functional specification describing this interface and the detailed
behavior of the stream component, including any specific signals, errors, parameters, etc.,
which it defines. Third, he must implement the actual component, if it is a filter or

3-13

3

3-14

Streams

transducer. (Pipelines are assumed to be composed of previously implemented components
which already have their own component managers and documentation.)

This section describes the standards, data types, and operations to be used in defining a
new stream component It discusses, the precise interface which each instance of each
filter or transducer must provide, and outlines a typical method for implementing a filter
or transducer manager.

3.5.1 Representing filters and transdu(~ers

At run time, a filter or transducer is represented by sixteen procedures, a set of options
and an instance data field so that clients may associate other data with a stream instance.
The procedures execute in a common context to provide the data transmission operations
of that filter or transducer. Descriptors for these procedures are stored in a record defined
by the stream package, and pointed to by a Stream.Handle.

The procedures stored in Object must implement the semantics of the corresponding
procedures (GetByte, Put, etc.) described in §3.2 on the stream sH. In particular, they must
terminate according to the specifications of those sections and must generate the
appropriate signals (SSTChange, long Block, ShortBlock. EndOfStream, TimeOut,
End Record) as required.

Stream.Handle: TYPE = LONG POINTER TO Stream.Object;

Stream. Object: TYPE = RECORD [

options: Stream.JnputOptions,
getByte: Stream .GetByteProcedure,
putByte' Stream.PutByteProcedure.
getWord: Stream GetWordProcedure,
putWord: Stream PutWordProcedure,
get: Stream.GetProcedure,
put: Stream.PutProcedure,
setSST: Stream.SetSSTProcedure,
sendAttention: Stream. SendAttentionProcedure.
waitAttention: Stream. WaitA ttentionProcedure.
delete: Stream.DeleteProcedure
getPosition: Stream.GetPositionProcedure
setPosition: Stream.SetPositionProcedure
sendNow: Stream.SendNowProcedure,
clientData: LONG POINTER,

getSST: Stream.GetSSTProcedure,
getTimeout: Stream.GetTimeoutProcedure.
setTi meout: Stream.SetTimeoutProcedure];

A client call on a Pilot stream operation is normally converted by the stream package into
a call on the appropriate procedure named in the Stream.Object pointed to by the
Stream.Handle parameter of that operation. Thus, it is the responsibility of the
implementor of each filter and transducer to satisfy exactly the specifications of the
stream package Pilot assists in this task by utilizing the Mesa type checking machinery
and by defining the uniform interface encapsulated by Stream.Object.

Pilot Programmer's Manual 3

In this section, the meanings ()f the liekls of Stream. Object are enumerated and a default
Stream.Object described.

The options field specifies the currently valid input options for the stream .

.
options: Stream.lnputOptions;

This field is set by Stream.SetlnputOptions and its current value is passed as a parameter
to the get procedure described below. Implementors of filters and transducers need not be
concerned with maintaining or inspecting this field.

The get field specifies the block input procedure of the stream.

get: Stream.GetProcedure;

Stream.GetProcedure: TYPE •
PROCEDURE [sH: Stream.Handle. block: Stream.Block,options: Stream.lnputOptions]
RETURNS [bytesTransferred: CARDINAL,why: Stream.CompletionCode,

sst: Stream.SubSequenceType];

In a filter, the body of a GetProcedure will typically contain one or more calls on GetBlock.
GetByte, GetChar, or GetWord with a Stream.Handle parameter pointing to the next
stream component in the pipeline (i.e., the parameter passed at the time this filter was
created). In a transducer, the body of a GetProcedure will typically have calls on input
operations for the specific device being supported.

The getByte field specifies the byte input procedure ofthestream.

getByte: Stream.GetByteProcedure;

Stream.GetByteProcedure: TYPE = PROCEDURE [sH: Stream.Handle]
RETURNS [byte: Stream.Byte];

The getWord procedure specifies the word input procedure of the stream.

getWord: Stream.GetWordProcedure;

Stream.GetWordProcedure: TYPE = PROCEDURE [sH: Stream.Handle]
RETURNs[word:Stream.Word];

The put field specifies the block output procedure provided by the filter or transducer.

put: Stream.PutProcedure;

Stream.PutProcedure: TYPE =
PROCEDURE [sH: Stream. handle. block: Stream.Block. endRecord: BOOLEAN];

This procedure must regard the parameter end Record = TRUE as an indication to flush any
output buffers and actually initiate the physical -transmission of information. It may
suppress output requests specifying a block of no bytes provided that there is no previous
output, change in SubSequenceType, or attention flag still waiting to be sent. This
procedure may generate the signal TimeOut if necessary.

3-15

3

3-16

Streams

[n a filter, the body of a PutProcedure will typically contain one or more calls on PutBlock,
PutByte, PutChar, PutWord, or Send Now with a Stream.Handle parameter pointing to the
next stream component in the pipeline (i.e., the parameter passed at the time this filter
was created). In a transducer, the body of a PutProcedure will typically have calls on
output operations for the specific device being supported.

The putByte field specifies the byte output procedure provided by the transducer or filter.

putByte: Stream.PutByteProcedure;

Stream.PutByteProcedure ,. PROCEDURE (sH: Stream.Handle, byte:Stream.Byte);

This procedure may generate the signal TimeOut if necessary.

The putWord field specifies the word output procedure provided by the transducer or
filter.

putWord: Stream.PutWordProcedure;

Stream.PutWordProcedure • PROCEDURE [sH: Stream.Handle, word:Stream.Word];

This procedure may generate the signal TimeOut if necessary.

The setSST field specifies the procedure to change the current SubSequenceType of the
output side of the filter or transducer.

setSST: Stream.SetSSTProcedure;

Stream.SetSSTProcedure: TYPE ,. PROCEDURE [sH: Stream.Handle,
sst: Stream;SubSequenceType);

This procedure should be a no-op if the new SubSequence Type of sH is the same as the old
one. Otherwise, it should have the effect of completing the current physical record (as if a
call on Stream.SendNow had been made immediately before).

A call on setSST may have the effect of changing the internal state of the stream
component, or in the case of a filter, it may result in a call to SetSST to the next stream
component in the pipeline, or both.

The getSST field specifies the procedure to find the current SubSequenceType of the
output side of the filter or transducer (the SST set by SetSST). The input SST can be found
by doing a get of 0 bytes.

getSST: Stream.GetSSTProcedure;

Stream.GetSSTProcedure: TYPE" PROCEDURE [sH: Stream.Handle]
RETURNS [sst: Stream.SubSequenceType);

The sendAttention and waitAttention fields specify the two procedures implementing the
sending of and waiting for attention flags in the transducer or filter.

sendAttention: Stream.SendAttentionProcedure;

Pilot Programmer's Manual

waitAttention: Stream. WaitA ttentionProcedure;

Stream.SehdAttentionProcedure: TYPE = PROCEDURE [sH: Stream.Handle,
byte: Stream.Byte];

Stream.WaitAttentionProcedure: TYPE" PROCEDURE [sH: Stream.Handle]
RETURNS [byte: Stream.Byte];

3

These two procedures will be called by Stream.SendAttention and Stream.WaitForAttention,
respectively.

The getTimeout field specifies the procedure to find the current timeout field of the filter
or transducer.

getTimeout: Stream.GetTi meoutProcedure;

Stream.GetTimeoutProcedure: TYPE. PROCEDURE [sH:Stream.Handle]
RETURNS [waitTime:LONG CARDINAL - msecs--];

The setTimeout field specifies the procedure to set the current timeout field of the filter or
transducer.

setTimeout: Stream.SetTi meoutProcedure;

Stream.SetTimeoutProcedure: TYPE .. PROCEDURE [sH:Stream.Handle,
waitTime:LONGCARDINAL - msecs--];

The delete field specifies a procedure implementing the deletion of a filter or transducer.

delete: Stream.DeleteProcedure;

Stream.DeleteProcedure: TYPE,. PROCEDURE [sH: Stream.Handle];

This procedure is called by the Stream. Delete operation.

The getPosition and setPosition fields specify procedures implementing the setting and
recovering of a stream position.

getPosition: Stream.GetPositionProcedure;

Stream.GetPositionProcedure: TYPE == PROCEDURE [sH: Stream.Handle]
RETURNS [position: Stream.Position];

setPosition: Stream.SetPositionProcedure;

Stream.SetPositionProcedure: TYPE .. PROCEDURE [sH: Stream.Handle,
position: Stream .Position];

The send Now field specifies a procedure to force data to be transmitted.

sendNow: Stream.SendNowProcedure;

3-17

3

3-18

Streams

Stream.SendNowProcedure: TYPE = PROCEDURE (sH: Stream. Handle,
endRecord: BOOLEAN +- FALSE];

This procedure is called by the Stream.SendNow operation.

The following object is provided to supply default values for a Stream.Object. It is an
exported variable. The implementor of a stream can use it to ease the burden of
initializing all of the fields in a $tream.Object although the implementor must still
initialize some of the fields.

Stream.defaultObject: READONL Y Stream.Object a [

options: Stream.defaultlnputOptions.
getByte: ... , -- requires sH. get to be defined
putByte: ... r -- requires sH.put to be defined
getWord: ... r -- requires either sH. getBl}te or sH. get to be defined
putWord: ... r -- requires either sH.putBl}te or sH.put to be defined
get: .. 'r -- requires s8. getBl}te to be defined
put: ...• -- requires s8.putBl}te to be defined
setSST. sendAttention. waitAttention. delete: ... r]

In this description, the phrase "to be defined" means that the supplied default procedure
assumes that the user has supplied the indicated procedure as opposed to using the default
procedure. Thus, the implementor of the stream must supply either getByte or get -- both
cannot be defaulted. Similarly, the implementor must supply either putByte or put -- both
cannot be defaulted. The default entries for setSST, getSST, setTimeoutr getTimeout
sendAttention. waitAttention and delete simply raise the exception
Stream.lnvalidOperation. Thus, the implementor must supply these procedures.

Stream.lnvalidOperation: ERROR;

Individual default procedures may be extracted for client use by the standard Mesa
extractor expression. For example, the default get procedure is defaultObject.get.

Caution: The effect of not providing at least one of getByte/get (putByte/put) is
unspecified by Pilot. Thus the stream implementor must be sure to provide at least one of
each of these pairs of procedures.

3.5.2 Stream component managers

Implementors of stream components may create instances of them by whatever means is
most appropriate to their requirements. A particular filter or transducer may, for
example, consist of one module, a collection of modules, a local frame used in conjunction
with the Mesa PORT facility, or some other construct. Moreover, it may be allowed to exist
on a given machine in only one or a limited number of copies which are regarded as
"serially reusable" resources (for example, a transducer to a particular device, of which
there is only one or a limited number on a machine), or it may be allowed to exist in as
many copies as appropriate (for example, the Network stream of §6.3L It is the
responsibility of the stream component manager to create (or control access to) instances
of that stream component, as appropriate. When access is granted, the component
manager must also provide a pointer to a Stream.Object containing procedure descriptors
for that component.

Pilot Programmer's Manual 3

One way of implementing a component is a::; a single module which is instantiated at run
time by the :Mesa NEW statement. Declared within this module would be the procedure::; of
the component plus a Stream.Object which would contain their procedure descriptors. The
component manager executes NEW to create a new instance of one of these, followed by
START to initialize it, pass any parameters to it, and get back a pointer to the Stream.Object.

The component manager deletes instances of stream components by calling
Runtime.UnNew or Runtime. Self Destruct.

Runtime. Self Destruct sets the internal state of the process so that the module in which the
calling procedure is declared will be un-NEW'd after the calling procedure returns to its
own caller. This operation has the effect of placing a "self-destruct" mechanism in the
module which will take effect after the calling process exits from it. Thus, it is a means of
deleting the stream component from within that component. .

The typical use of Runtime. Self Destruct will be from a procedure named in the delete entry
of the Stream.Object. The component manager will call h.delete[h] (where h is a
Stream.Handle). This procedure will perform the necessary finalization, such as flushing
buffers, closing files or connections, releasing storage and resources, etc. It will then call
Runtime.selfDestruct and finally return to the component manager. After this return, the
module representing this instance of the stream component will be automatically deleted
and space occupied by the component's global frame freed.

Caution: The client must ensure that there are no outstanding references to the
component module being deleted -- i.e., no procedure descriptors or pointers which might
be used. In addition, any process waiting for attentions (i.e., a process which has called but
not returned from WaitForAttention) must be aborted and allowed to exit from the
module. Failure to observe this caution will result in unpredictable effects. In particular,
Runtime.UnNew must be called from outside the module being deleted.

3-19

4

File Storage and Memory

A file is the basic unit of long-term information storage (see §4.3). A file consists of a
sequence of pages, the contents of which can be preserved across system restarts. Files are
stored on volumes (see §4.1, 4.2) and are identified by the containing volume and a file
identifier which is unique within that volume.

Pilot stores files on lQgical volumes, which are contained in physical volumes of storage
devices (typically disks). A physical volume is the basic unit of physical availability for
random access file storage. It represents the notion of a storage medium whose
availability is intrinsically independent of that of other instances of such media (e.g., one
physical disk pack). A logical volume is either a physical volume or a subset of a physical
volume or a collection of subsets of physical volumes. A logical volume is the unit of
storage for client files and the system data structures for manipulating them. It becomes
logically available or unavailable as a unit and contains only complete files (i.e, files
cannot span logical volumes). Volumes which have been damaged may be restored by
scavenging (see §4.4).

Client programs access data in files by mapping them into spaces in virtual memory (see
§4.5). Pilot provides client programs with facilities for associating areas of virtual
memory with portions of files, for allocating sections of virtual memory independent of
mapping, and for influencing swapping between virtual and real memory.

Pilot provides free storage management through zones and heaps (see §4.6). Zones are
segments of storage in client-designated areas of virtual memory. Heaps are available for
managing arbitrarily sized nodes; they support the Mesa language facilities for dynamic
storage allocation.

A general purpose log file facility (§4.7) allows recording of information in a client
supplied log file.

4.1 Physical volumes

PhysicalVolume: DEFINITIONS ...•

This section describes those interfaces provided by Pilot which permit clients to initialize
and manage physical volumes. Pilot brings the system physical volume online during
Pilot initialization, repairing it if necessary. Thus most clients will not need to use the

4- 1

I 4

4-2

File Storage and Memory

facilities in this section. Howevpr. CtilityPilot-based clients do not have a system
physical volume: these clients must manage physical volumes themselves. Clients which
might use the PhysicalVolume facilities include volume management utility programs,
system elements with several physical volumes, and UtilityPilot-based systems. Sections
4.1.1 through 4.1.4, 4.1.7, and 4.l.8 deal with general physical volume management,
section 4.1.5 with initializing a physical volume, and section 4.1.6 with- scavenging. See
also Chapter 8 for facilities to format physical volumes and install boot files on them.

4.1.1 Physical volume name a~,d size

The fundamental name for a physical volume is its 10.

Physicalvolume.lO: TYPE. System.PhysicaIVolumeIO;

System.PhysicaIVolumeIO: TVPE • RECORD [System.UniversaIlO);

PhysicaIVolume.nuIllO: PhysicalVolume.lO • [System.nuIIlO); -- "nul/IO"

Pilot ensures with a very high probability that each distinct physical volume is assigned a
distinct 10. No 10 is reused for any purpose by any copy of Pilot on any machine at any
time. Thus, a physical volume may be unambiguously identified by its 10, even if it is
moved fo another machine or environment, or if it is stored off-line for a long time. nulllO
is never assigned as an 10 and is used to indicate the absence of a physical volume.

The error Physicalvolume.Error[physicaIVolumeUnknown] may be raised by any of the
operations that take an 10 as an argument.

A physical volume is organized as a sequence of up to 232 pages, each containing
Environment. wordsPerPage words. Pages are numbered starting from zero.· The actual
volume size is accounted for by Pilot and does not result in the redefinition of the
maximum page number.

PhysicaIVolume.PageCount: TYPE • LONG CARDINAL;

PhysicaIVolume.firstPageCount: Physicalvolume.PageCount = 0;

Physicalvolume.JastPageCount: PhysicalVolume.PageCount = LAST(LONG CARDINAL);

PhysicaIVolume.PageNumber: TYPE • LONG CARDINAL;

Physicalvolume.firstPageNumber: PhysicalVolume.PageNumber = 0;

Physicalvolume.JastPageNumber: PhysicalVolume.PageNumber = LAST[LONG CARDINALI.- 1;

Pilot's maximum values for PageCount and PageNumber do not, for all practical purposes,
limit the size of a physical volume.

4.1.2 Physical volume errors

PhysicalVolume operations may raise the following signals:

Pilot Programmer's Manual

PhysicaIVolume.Error: ERROR [error: Phy~icaIVolume.ErrorType I;

PhysicaIVolume.ErrorType: TYPE = {badDisk. badSpotTableFull. containsOpenVolumes,
diskReadError, hardwareError, hasPilotVolume, alreadyAsserted, insufficientSpace,
invalidHandle, nameRequired, notReady, noSuchDrive, noSuchLogicalVolume,
physicalVolumeUnknown, writeProtected, wrongFormat, needsConversion};

PhysicaIVolume.NeedsScavenging: ERROR;

4

The conditions causing each error are described as the error occurs in the text. The errors
raised by each operation are indicated with the operation's description.

4.1.3 Drives and disks

A drive is an 1/0 device capable of containing a Pilot physical volume. Such devices ha ve a
Device. Type which is in the range defined by Device.PilotDisk. The storage medium on a
drive is the physical object which holds the stored information, typically a fixed disk or a
removable disk pack. It will be called a disk in the description which follows. A drive is
uniquely named by its device index. A dri ve may be in two states: if a dri ve is ready then it
contains a storage device, e.g., a disk pack, that may be accessed by Pilot; if the drive is not
ready then it does not contain an accessible storage device.

PhysicalVoIume.ErrorType: TYPE. { ... , noSuchDrive, ... };

All operations which take a device index will raise PhysicaIVolume.Error[noSuchDrive] if
provided a device index which does not denote a dri ve.

The set of drives on a machine may be enumerated with the operation

PhysicaIVolume.GetNextDrive: PROCEDURE [index: CARDINAL] RETURNS [nextlndex: CARDINAL];

PhysicaIVolume.nuIlDevicelndex: CARDINAL = LAST[CARDINAL);

GetNextDrive is a stateless enumerator. Enumeration begins and ends with the value
nullDevicelndex. GetNextDrive may raise Error[noSuchDrive] .

For every drive, Pilot maintains a monotonically increasing change count of the number of
times that the drive has changed state between ready and not ready. If a drive changes
state, the change count for that drive will increase by at least one. Thus while the change
count remains the same the client can be sure that the same disk is mounted on the drive.

The client may wait for one or more drives to change state by invoking

PhysicaIVolume.AwaitStateChange: PROCEDURE [changeCount: CARDINAL,
index: CARDINAL PhysicaIVolume.nuIlDevicelndex]
RETURNS [currentChangeCount: CARDINAL);

The AwaitStateChange operation waits until the change count of the drive equals or
exceeds changeCount, then returns the new change count. If index = nuliDevicelndex,
the operations waits until the sum of the change counts of all drives equals or exceeds
changeCount, then returns the sum AwaitStateChange may raise Error[noSuchDrive] .

-i-3

4

4-4

File Storage and Memory

A unique instance of a disk mounted ,m d. drive is represented by U PhysicalVolume.Handle
A Handle denotes both a drive Hnd the change count at the time at which the Handle was
obtained. A Handle is valid until the drive that it denote:; changes state. After that time,
the error Error[invalidHandle] is raised by any operation that takes a Handle as an
argument.

PhysicalVolume.Handle: TYPE (3);

PhysicaIVoIume.ErrorType: TYPE • { ... , invalidHandle, ... };

PhysicaIVoIume.GetHandle: PROCEDURE [index: CARDINAL) RETURNS [PhysicaIVolume.Handle];

PhysicaIVolume.JnterpretHandle: PROCEDURE [instance: PhysicaIVolume.Handle)
RETURNS {type: Device.Type, index: CARDINAL];

A Handle is obtained for a drive using GetHandle. The change count of the drive at the
time GetHandle is invoked defines the valid change count for the disk mounted on the
drive represented by the returned Handle. GetHandle may raise Error[noSuchOrive}.
InterpretHandle returns the drive denoted by a given Handle. The returned type may be
general rather than precise, i.e., a type naming a device family rather than a specific
member of the family. InterpretHandle may raise Error{invalidHandle).

Information about the ready state of a drive can be obtained with

PhysicalVolume.lsReady: PROCEDURE [instance: PhysicaIVolume.Handle)
RETURNS (ready: BOOLEAN];

IsReady may raise Error[invalidHandle).

4.1.4 Disk access, Pilot volumes, and non-Pilot volumes

The disk on a ready drive may be in one of three states: inactive, Pilot access, and non
Pilot access. An inactive disk may be accessed only in stylized ways that permit clients to
determine in which of the other two states to place the device. A disk with Pilot access
contains a Pilot physical volume and may be accessed only through the Pilot File,
PhysicalVolume, Space and Volume interfaces. Non-Pilot access indicates that the the disk may
be accessed only through special interfaces which permit direct access (that is,
unembellished with Pilot space, mapping and file structures) to the storage device.
Whenever a drive becomes ready, Pilot places its disk in the inactive state. Once a client
has obtained a Handle for a drive and ascertained that the disk is ready, the client must
inform Pilot what type of access to the disk is desired. The following operations allow
clients to determine and change the state of a drive.

To aid the client in determining how to access a disk, Pilot provides two facilities. The
first is an operation which examines the disk and determines whether or not it contains a
Pilot volume.

PhysicalVolume. GetH i nts: PROCEDURE [
instance: PhysicaIVolume.Handle,label: LONG STRING - NIL)
RETURNS [pvlO: PhysicalvolumeJO, lIolumeType: PhysicaIVolume.VolumeType];

Pilot Programmer's Manual 4

PhysicaIVolume.VolumeType: TYPE = {notPiiot. probablyNotPilot. probablyPilot. isPilot};

The returned volumeType gives Pilot's best guess as to the nature of the disk on instance
in volumeType: notPiiot indicates that the disk is definitely not a Pilot physical volume;
probablyNotPilot indicates tbat the disk mayor may not be a Pilot volume but attempting
to use the disk as a Pilot physical volume is likely to fail; probablyPilot indicates that the
disk may not actually contain a Pilot volume, but that an attempt to use it as a Pilot
physical volume is very likely to succeed; isPilot indicates that the disk almost certainly is
a Pilot physical volume. In all four cases, pvlD is the identifier that the disk appears to
have and label is the apparent label of the disk. (See PhysicalVolume.CreatePhysicalVolume
below for more information ahout physical volume labels.) It does not matter whether or
not the access state of the disk has already been asserted. GetHints does not change the
access state of the disk. GetHints may raise Error[notReady] or Error[invalidHandle] .

As a second facility to aid the client in determining how to access a disk, Pilot permits the
client read-only, direct access to the device. This allows the client to examine the disk
safely to determine if it contains a known, but non-Pilot, volume. Such access is provided
by special Pilot interfaces.

Given the result of the GetHints operation and of reading the disk, the client can declare
the access desired to the disk. Upon return from these operations, that the client has the
indicated access to the disk.

PhysicaIVolume.AssertPilotVolume: PROCEDURE [instance: Physic~IVolume.Handle]
RETURNS [PhysicaIVolume.lD);

PhysicaIVolume.ErrorType: TYPE := { •••• alreadyAsserted •... };

AssertPilotVolume asserts to Pilot that the disk contains a Pilot volume. Ifinstance is not
in the inactive state, Error[aireadyAsserted1 is raised. If Pilot's data structures are not in
order, NeedsScavenging is raised (see Section 4.1.6 on scavenging). Error[notReady] and
Error[invalidHandle) may also be raised. On return, the disk is in the Pilot-access state
and the physical volume named by the returned value may be accessed. The returned
physical volume is said to be onlirte.

PhysicaIVolume.Offline: PROCEDURE [pvID: PhysicaIVolume.lD];

PhysicaIVolume.ErrorType: TYPE :=

{ ... ,containsOpenVolumes. physicalVolumeUnknown, ... };

Offline terminates access to an online Pilot physical volume, returning the drive
containing that volume to the inactive state. All logical volumes contained on the
physical volume must be· closed. This operation may raise
Error[physicaIVolumeUnknown] or Error[containsOpenVolumes) .

Caution: In the current version of Pilot, if a disk goes not ready while in the Pilot access
state, the results are unspecified.

4-5

4

4-6

File Storage and Memory

~on-Pilot access to u disk is in'itiated and terminated with the following operations.

PhysicalVolume.AssertNotAPilotVol ume: PROCEDURE [instance: PhysicalVolume. Handle];

PhysicaIVoIume.FiAishWithNonPilotVolume: PROCEDURE [instance: PhysicaIVolume.Handle];

PhysicaIVoIume.ErrorType: TYPE. { ...• hasPilotVolume •... };

AssertNotAPilotVolume initiates direct access to a storage device. If the drive is not
currently in the inactive state, Error[alreadyAsserted] is raised. Error[invalidHandle1
may also be raised. On return, unlimited access to the device is permitted by Pilot
through special direct access facilities.

FinishWithNonPilotVolume returns a disk being accessed with non-Pilot access to the
inactive state. It raises Error[hasPilotVolume1 if instance currently is in Pilot-access
mode. It may also raise Error[invalidHandle] .

4.1.5 Physical volume creation

Pilot disks are created by first creating a physical volume and then creating logical
volumes upon that physical volume. All storage devices require formatting before their
ill"st use. (See §8.3.1 for formatting, §4.2.4 for logical volume creation.) A physical
volume is created by invoking

I .

PhysicaIVolume.CreatePhysicaIVolume: PROCEDURE [
instance: PhysicaIVolume.Handle, name: LONG STRING]
RETURNS [PhysicaIVolume.IO);

PhysicaIVolume.maxNameLength: CARDINAL = 40;

PhysicaIVolume.ErrorType: TYPE .• { ...• badOisk. diskReadError. nameRequired •... };

This creates a physical volume upon instance. If instance is in the Pilot access state, Pilot
first calls Offli.ne to place it in the inactive state. This may raise
Error[physicaiVolumeUnknown1 or Error[containsOpenVolumes). The label of the newly
created physical volume is name. The name must contain at least one character or
Error[nameRequired] is raised. If the name contains more than maxNameLength
characters, only the first maxNameLength characters will be used as the label. The newly
created volume is placed online (Le., just as if AssertPilotVolume had been called) and its
10 is returned. If the specified drive is in either the Pilot access state (i.e., online) or in the
non-Pilot access state, Error[alreadyAsserted] is raised. If Pilot cannot do the necessary
disk access required to create a physical volume on the disk, Error[badOisk] or
Error(diskReadError] will be raised. This operation may also raise Error[notReady] and
Error(inval idHandle].

4.1.6 Scavenging

Scavenging is the process of returning a' physical or logical volume to a consistent state.
This is necessary if the xolume was damaged by software errors, pages on the disk went

Pilot Programmer's Manual 4

bad. the volume is not of the current version. or the like. Section 4.4 covers scavenging
logical volumes. A physical volume can be ::;cavenged by invoking

PhysicaIVolume.Scavenge: PROCEDURE [instance: PhysicaIVolume.Handle,
repair: PhysicaIVolume.RepairType, okayToConvert: BOOLEAN]
RETURNS [status: PhysicaIVolume.ScavengerStatus);

PhysicaIVolume.RepairType: TYPE II {checkOnly, safeRepair, riskyRepair};

PhysicaIVolume.ScavengerStatus: TVPE II RECORO [
badPageList, bootFile, germ, softMicrocode, hardMicrocode:

PhysicalVolume .DamageStatus,
internalStructures: PhysicaIVolume.RepairStatus];

PhysicaIVolume.DamageStatus: TYPE = {okay, damaged, lost};

PhysicaIVolume.RepairStatus: TVPE = {okay, damaged, repaired};

PhysicaIVolume.noProblems: READONl V PhysicalVolume.ScavengerStatus = ... ;
The purpose of Scavenge is two-fold. First, it allows Pilot to place its internal physical
volume data structures in order so that client access to the physical volume may be
permitted. Second, it returns a ScavengerStatus describing any damage found for which'
the client has repair responsibility. PhysicalVolume.Scavenge is responsible for the integrity
of the physical volume only. To repair any logical volume damage, the client must call
Scavenger .Scavenge. .

If the volume is not of the current version, i.e., not compatible with the Pilot boot file
which is running, it must be made so before any access is allowed. Invoking Scavenge
with okayToConvert II TRUE will cause the volume's version to be increased to the current
version. This is the only way to cause volume conversion. Scavenging to a previous
version is not supported, nor is scavenging a volume forward more than one version.

The physical volume to- be scavenged must be omine. Error[alreadyAssertedj is raised if
the specified disk drive is online. If the volume version is incorrect and okayToConvert is
FALSE, Error[needsConversion] is raised. Error[badDisk] is raised if the damage to the
physical volume data structures is so great that the physical volume cannot be
reconstructed. Error[invalidHandle] may also be raised.

If repair is set to safeRepair or riskyRepair, the scavenger will attempt to repair the
damage that it finds on the physical volume. The safeRepair mode is limited to repairs
that are expected to be low risk. The riskyRepair mode imposes no such limits and should
be used only as a last resort. In particular, it should be used only when the hardware is
known to be functioning correctly. If repair is set to checkOnly, no repair is attempted but
a ScavengerStatus indicating any damage is returned.

The individual status fields have the following meanings:

badPageList: okay is returned if the bad page list is intact. A status of damaged is
returned if damage is found and the parameter repair was set to checkOnly. A status
of lost indicates that damage was found and repair was set to safeRepair or
riskyRepair. If badPageList = lost, the physical volume scavenger resets the bad page

4-7

4

4-8

File Storage and Memory

list to empty and mark~ all t()~ical volumes on this physical volume to be scavenged.
Bad pages must be marked bud again \.Ising a disk utility such as Othello.

bootFile, germ, softMicrocode, hardMicrocode: okay is returned if the indicated file,
and the reference to it in the physical volume's data structures, are intact. If the
status returned is damaged, the indicated file has been found to be damaged. That is,
there are unreadable pages, missing pages, or the file is otherwise not in valid boot file
fOrmat. The physical volume scavenger will mark the containing logical volume to be
scavenged. The client should either delete the boot file and reinstall it, or scavenge
that 'logical volume to discover and repair any unreadable or missing pages before
replacing its contents. If the status returned is lost, the reference to the indicated file
contained in the physical volume's data structures appears to be damaged, either
because the data structures have been damaged or the boot file has been deleted. If the
file has a unique file type and has not been deleted, the client should be able to find it
and restore it via Othelloops.SetPhysicalVolumeBootFile as the appropriate physical
volume boot, germ, or microcode file.

internalStructures: the status returned is okay if no damage is discovered in the
internal data structures of the physical volume. The status returned is damaged if
damage was found and the parameter repair was set to checkOnly, or if repair was set
to safeRepair and damage was found that can be repaired only in riskyRepair mode.
The status is repaired if repair was set to riskyRepair, or if repair was set .to safeRepair
and damage was found which could be repaired safely.

The constant nOProblems is provided ~ allow the client to determine with a single
comparison whether it has any work to do after the physical volume scavenger finishes.

Caution: In Pilot 11.0 the local time parameters may be lost any time the physical
volume scavenger repairs internal volume structures. This will be the case when
internalStructures is not reported as okay and repair is set to safeRepair or riskyRepair. It
is the client's responsibility to reset local time parameters correctly if they have been lost.

Caution: In Pilot 11.0 the only significant fields of status are badPageList and
internalStructures. The other fields are always returned as okay, and for them none of the
validity checking implied is performed.

4.1.7 Logical volume operations on physical volumes

The logical volumes on an online physical volume may be enumerated by invoking

PhysicaIVolume.GetNextLogicaIVolume: PROCEDURE [
pvlD: PhysicalVolume,lD, IvID: System.VolumeID]
RETURNS [System.VolumeID);

This operation is. a stateless enumerator. The enumeration begins and ends with
VOlume.nuIllD. GetNextLogicalVolume may raise Error[physicaIVolumeUnknown] and
Error[noSuchLogicaIVolume] . .

Pilot Programmer's Manual

The physical volume that contains a g-iven logical volume is returned by

Physicalvolume.GetContainingPhysicaIVolume: PROCEDURE [lvlD: System.VolumeID]
RETURNS [pvID: PhysicaIVolume.lD);

4

IflvlD is unknown to Pilot, Volume.Unknown is returned. Note that IvlD need not be open
to invoke this operation. However, it must be in an online physical volume.

4.1.8 Miscellaneous operations on physical volumes

The set of online physical volumes is enumerated by

PhysicaIVolume.GetNext: PROCEDURE [pvID: PhysicalVolume.lD)
RETURNS [PhysicaIVolume.lD);

This operation is a stateless enumerator. The enumeration begins and ends with
PhysicalVolume.nuIllD. If pvlD is not known to Pilot, Error[physicalVolumeUnknown) is
raised.

The attributes of an online physical volume may be ascertained by invoking

PhysicaIVolume.GetAttributes: PROCEDURE [pvlD: PhysicalVolume.lD, label: LONG STRING ~ NIL]
RETURNS [instance: PhysicalVolume.Handle, layout: Physicalvolume.Layout];

PhysicaIVolume.Layout: TYPE =
{partiaiLogicalVolume, singlelogicalVolume, muitipieLogicaiVolumes, empty};

A handle to the drive containing the physical volume is returned in instance, the label
name string is returned in label, and the nature of the logical volumes that exist upon
pvlD is returned in layout. If the volume label is longer than the string label, o~ly the
characters which will fit into the string are returned. A layout value of
singieLogicaiVolume indicates that there is one entire logical volume on pvfO;
muitipleLogicalVolumes indicates that there is more than one logical volume upon pvlD.
A value of empty indicates that no logical volumes have been created upon pvlD.
GetAttributes may raise Error[physicaiVolumeUnknown).

The physical volume name (label) may be changed by invoking

Physicalvolume.ChangeName: PROCEDURE [pvID: PhysicalVolume.lD, newName: LONG STRING];

If the length of newName exceeds Physicalvolume.maxNameLength, only the first
maxNameLength characters are used. If newName does not contain at least one
character, Error[nameRequired] is raised. ChangeName may also raise
Error[physicaiVolumeUnknown] .

A physical volume may have pages upon it that are unusable (e.g., some sector of the disk
has failed). Such pages are called bad pages, A page is marked as bad by the operation

PhysicaIVolume.MarkPageBad: PROCEDURE
[pvID:PhysicaIVolume.lD, badPage: PhysicaIVolume.PageNumber);

ol-9

4 File Storage and Memory

After a page has hf!E:'n marked had. Pilot no longer attempts to access it. If a page is to he
marked as bad, the logical volume I:untaining that page should be closed before invoking
MarkPageBad. This is not checked by Pilot. :Vloreover. after this operation returns, that
logical volume should be scavenged before being opened. Pilot will remember only a
limited number of bud pages for a given physical volume. If Pilot's table of bad pages. is
full, Error[badSpotTableFuJl1 is raised and badPage is not remembered as being bad. See
§8.3 for a description of Pilot facilities for identifying bad pages. MarkPageBad may also
raise Error[physicaIVolumeUnknown).

The set of bad pages on a physical volume may be enumerated by invoking

PhysicaIVolume.GetNextBadPage: PROCEDURE [
pvlD: PhysicaIVolume.ID, thisBadPageNumber: PhysicaIVolume.PageNumber]
RETURNS [nextBadPageNumber: PhysicaIVolume.PageNumber);

Physicalvolume.nuIlBadPage: PageNumber =LAST[PageNumber);

This operation is a stateless enumerator. Enumeration begins and ends with
nuliBadPage. GetNextBadPage may raise Error[physicaIVolumeUnknown).

4.2 Logical volumes

4-10

Volume: DEFINITIONS ... ;

In this section the term volume, where not specified as logical or physical, will refer to a
logical volume.

Before being presented to Pilot for the first time, a volume must be initialized. and it may
require scavenging or re-initialization after system crashes. Such operations are
performed using Othello (see the Mesa User's Guide), or by a Ilser-written volume
initializer (See Chapter 8).

The current version of Pilot supports a maximum of ten logical volumes on a physical
volume.

4.2.1 Volume name and size

The fundamental name for a volume is its 10:

Volume'! 0: TYPE,. System.VolumeID;

System.VolumeID: TYPE = RECORD [System.UniversaIlD);

Volume.nuIIlD: Volume.!D = [System.nuIlID);

Pilot ensures with a very high probability that each distinct volume is assigned a distinct
10. No 10 is reused for any purpose by any copy of Pilot on any machine at any time. Thus
a volume may be unambiguously identified by its 10, even if it is moved to another
machine, or if it is stored offiine for a long time. volume.nullJD is never the name of a
volume and is used to denote the absence of a volume.

Pilot Programmer's Manual 4

The maximum size or a logical volull1e is 2:l2 bytes, or 223 pages.

Volume.maxPagesPerVolume: LONG CAROINAL = 8388608; .- 223

VOlume.PageCount: TYPE = LONG CARDINAL; .- simulates [0 .. Volume.maxPagesPerVolume]

volume.firstPageCount: Volume.PageCDunt = 0;

volume.lastPageCount: VOlume.PageCount = Volume.maxPagesPerVolume;

volume.minPagesPerVolume: READONLY Volume.PageCount;

Note: Because LONG subrange types are not implemented in the current version of Mesa,
the current version of Pilot defines Volume.PageCount as a LONG CARDINAL, and defines
constants firstPageCount and lastPageCount to specify FIRsT[PageCount] and
LAsT[PageCount]. These constants should be used rather than the FIRST and LAST operators,
which cannot supply the correct value in the case of a simulated subrange. Minimum and
maximum values are similarly defined for volume.PageNumber below.

Volume.PageNumber: TYPE = LONG CARDINAL; -- simulates [0 .. Volume.maxPagesPerVolume)

Volume.firstPageNumber: Volume.PageNumber = 0;

volume.lastPageNumber: Volume.PageNumber = volume.maxPagesPerVolume. 1;

4.2.2 Logical and physica! volumes

The correspondence between logical and physical volumes is not dynamic but is
established at volume initialization time. When a logical volume exists on several
physical volumes, all of the physical volumes must be available before the logical vo~ume
is available. Logical volumes permit th~ simulation of volume sizes not present in
hardware. ·For example, several smaller disks can be combined to look like a larger disk.

Clients should contemplate combining physical volumes into logical volumes only if file
sizes are likely to exceed the size of an individual physical volume. Pilot offers no recovery
if one of the physical volumes comprising a logical volume is lost or destroyed. The
contents of the remaining physical volumes are, in general, irretrievable.

Note: There is no mechanism to create a logical volume which spans multiple physical
volumes.

There is one volume known as the system volume, intended to be used as the default
volume by Pilot and its clients. The system volume is the logical volume which contains
the boot file of the system being executed. The 10 of this volume is contained in

Volume.systemIO: READONLY Volume.JO;

Note: In Utility Pilot-based systems there is no system volume. Volume.systemlD will have
the value Volume.nuIllD.

-1:·11

4

4-12

File Storage and Memory

4.2.:1 Volume error conditions

The following errors may be raised during many Vofume operations. The description of
each operation indicates which errors it can raise.

Volume.Unknown: ERROR [volume: Volume.JD);

Unknown is raised when a volume is not known to Pilot. No part of the volume is online.
Unknown will be raised if volume.nulllD is used for any operation except those which s~art
an enumeration.

VOlume.NotOnline: ERROR [volume: Volume.JD);

NotOnline indicates that a volume is only partially online, i.e., not all of the physical
volumes comprising the volume are online.

Volume.NotOpen: ERROR [volume: volume.lD);

Operations which require the volume to be open raise NotOpen if the volume is partially
online or online but closed.

Volume.ReadOnly: ERROR [volume: Vofume.lD);

Attempting to change the contents of a volume which is open for reading but not writing,
will cause ReadOnly to be raised.

vOlume.NeedsScavenging: ERROR [volume: volume.lD);

NeedsScavenging indicates that Pilot data structures on the volume are inconsiste~t or
incorrect. This can occur as a result of a system crash, or the volume may have the format
of an incompatible version of Pilot, or the volume may not in fact be a Pilot volume.

volume.JnsufficientSpace: ERROR [
currentFreeSpace: Volume.PageCount. volume: Volume.lD);

The error InsufficientSpace is raised when there is not enough space left in the volume for
the requested operation to complete. The number of pages actually available is returned
in currentFreeSpace.

Volume. Error: ERROR [error: Volume.ErrorType);

Volume.ErrorType: TYPE • { ... };

The specific values for Error are defined below as they occur in the text.

4.2.4 Creating and erasing logical volumes

A logical volume can be created on a physical volume by invoking

Volume.Create: PROCEDURE [
pvlD: System.PhysicaIVolumeID, size: Volume.PageCount. name: LONG STRING.

Pilot Programmer's Manual

type: Volume. Type. minPVPageNumber: PhysicalVoiume.PageNumber +- 1]
RETURNS [volume: Vo/ume.JD];

PhysicalVolume.maxSubvol umesOnPhysicalVolume: READONL v CARDINAL;

Volume.maxNameLength: CARDINAL = 40;

Volume.Type: TYPE. MACHINE DEPENDENT
{normal(O), debugger(1), debuggerDebugger(2), nonPilot(3)};

Volume.ErrorType: TVPE • {nameRequired. pageCountTooSmaliForVolume,
subvolumeHasTooManyBadPages, tooManySubvolumes};

4

This creates a new logical volume on pvlD of type type and containing size pages. (See
§4.2.6, Opening and closing volumes, fora discussion of the significance of volume types.)
The volume label, which can be used to identify the logical volume, is name. The label is
not used by Pilot. Only the first Volume.maxNameLength characters of name are used.
The newly created volume will not overlap any other logical volumes upon pvlD. Logical
volumes occupy one or more contiguous, disjoint regions of physical volumes. The volume
will start at a page number at least as large as page minPVPageNumber of pvlD; it may
start later.

If this new volume will cause the number of sub volumes to exceed
maxSubvolumesOnPhysicalVolume, Error[tooManySubvolumes] will be raised. If pvlD is
not a valid physical volume, Physicalvolume.Error[physicalVolumeUnknown] is raised. If
size is not enough pages to make a volume, Error[pageCountTooSmaliForVolume] is
raised. If there is insufficient unused space on pvlD to create the logical volume,
PhysicaIVolume.Error[insufficientSpace] will be raised. If name is NIL or its length is zero,
Error[nameRequired] is raised. If there are too many bad pages on the area of the disk to
be used for the proposed logical volume, Error[subvolumeHasTooManyBadPages] to be
raised. Hardware er"rors encountered in creating the volume will cause
PhysicaIVolume.Error[hardwareError] to be raised.

A logical volume may be erased, destroying its previous contents, by invoking

Volume.Erase: PROCEDURE [volume: Volume.JD1;

Volume volume may be online or open when this operation is invoked, and Erase does not
affect this status. Erase may raise the errors Unknown, NotOnline, ReadOnly, or
PhysicaIVolume.Error[hardwareError] .

4.2.5 Volume status and enumeration

The logical volumes of an online physical volume may be enumerated by
PhysicalVolume.GetNextLogicalVolume (see §4.1.7).

A client may determine the status of a logical volume by calling

. volume.GetStatus: PROCEDURE [volume: volume.lD] RETURNS [Volume.Status];

4-13

4

4-14

File Storage and Memory

Volume.Status: TYPE = {unknown, partialiyOnline, closedAndlnconsistent,
c/osedAndConsistent, openRead, openReadWrite};

The meaning of each Status is as follows. unknown indicates that no part of volume is
contained in an online physical volume. partiallyOnLine indicates that the volume spans
multiple physical volumes and at least one of those physical volumes is offline.
c1osedAndlnconsistent means that all parts of volume are online but it needs scavenging
before it can be opened. c1osedAndConsistent means all parts of volume are online, and it
is closed and does not need scavenging. openReadWrite indicates that volume is open and
accessible for both reading and writing. openRead indicates that the volume is open only
for reading.

Clients can discover the identities of online or open logical volumes by calling

Vofume.GetNext: PROCEDURE [vo/uf"e: Volume.ID.
includeWhichVolumes: Volume.TypeSet onlyEnumerateCurrentType]
RETURNS [nextVolume: Volume.lD);-

VoIume.TypeSet: TVPE • PACKED ARRAY Volume.Type OF Volume.Boo/eanDefaultFalse;

voIume.BooleanDefaultFalse: TVPE • BOOLEAN +- FALSE;

volume.onlyEnumerateCurrentType: Volume. TypeSet = [];

GetNext is a stateless enumerator with a starting and ending value of Volume.nuIllO. [t
enumerates the logical volumes of the type(s) specified by includeWhichVolumes which
are currently online or open. GetNext may raise the error Unknown.

4.2.6 Opening and closing volumes

When a Pilot boot file is invoked, the system physicalvoiume and system logical volume are
the physical and logical volumes containing the boot file. During its initialization, Pilot
brings the system physical volume online and opens the system logical volume,
scavenging it if necessary. [fthe logical volume version is not current (compatible with the
Pilot boot file which is running), initialization scavenging will cause it to be converted to
the current version.

Note: For UtilityPilot-based systems there is no system physical or logical volume, and
no physical or logical volumes are brought online.

A client may open an online volume, making its files accessible, by calling

Volume.Open: PROCEDURE [volume: Volume.lD);

Once a volume is open, the client may create, read, write, and delete files on the volume.
Opening an already open volume h; a no-op. A volume will be opened read-only if the
volume being opened is of a higher Volume.Type than the system volume. This will be the
case if, (a) the system volume is of type normal, and volume is of type debugger or
debuggerOebugger, or (b) the system volume is of type debugger and volume is of type
debuggerD~bugg er.

Pilot Programmer's Manual 4

Note: For CtilityPilot-based ,;ystems volumes are always opened read-write.

An attempt to write on or otherwise change the state of a read-only volume will cause
ReadOnly to be raised. Other errors which may be raised by Open are Unknown,
NotOnline, and NeedsScavenging.

Caution: If a debugger opens (for read-write) any volume which its debuggee currently
has open, that debuggee should not be allowed to continue execution. Opening the volume
changes its state, and the debuggee's Pilot will have out-of-date information about the
volume. Continuing its execution in this case will have unpredictable (and undesirable)
results.

The client may close an open volume by calling

Volume.Close: PROCEDURE [volume: Volume.lO];

This operation assures that the volume is in a a physically consistent state. The data on
the volume will no longer be accessible. Closing a closed volume is a no-op. Close may
raise errors Unknown and NotOnline.

4.2.7 Volume attributes

Volumes have attributes which can be examined and some of which can be set.

Volume.GetAttributes: PROCEDURE (volume: Volume . .I0]
RETURNS [volumeSize, freePageCount: VOlume.PageCount, readOnly: BOOLEAN];

This operation may be applied to any online or open volume. The attributes volumeSize
and freePageCDunt indicate the number of pages and free pages, respectively, of the
volume. freePageCount is the maximum length file that can be created, or the maximum
by which the size of a file may be grown, at that time. Because the space reflected by
freePageCount must also be used for Pilot internal data structures, it may not be possible
to create or extend a file by precisely this much. In general, the amount of free space left
after creating or extending a file cannot be predicted exactly. readOnly is TRUE if the
volume is open for reading but not writing, i.e., if it is of a higher Volume.Type than the
system volume. GetAttributes may raise Unknown, NotOnline, and NeedsScavenging.

The ID of the volume that contains the debugger is kept in

volume.debuggerVolumeIO: READONLY Volume.lO;

If it is equal to volume.nuIIlO, there is no debugger present on a local volume. In
UtilityPilot-based systems, debuggerVolumelO"is always nulliO.

The type of an online or open volume may be ascertained with the procedure

Volume.GetType: PROCEDURE [volume: Volume.lO] RETURNS [type: Volume. Type];

GetType may raise errors Unknown, NotOnline, and NeedsScavenging.

4-15

4

4-16

File Storage and Memory

The volume label is set when i.l volume IS created. The label can be u~ed by the dicnt to
identify the logical volume, but it is not significant to Pilot. The label of an online or open
volume may be changed by the following operation.

volume.ChangeLabeIString;'PROCEDURE [volume: voIume.lD, newLabe/: LONG STRING);

Only the first volume.maxNameLength characters of newLabel are used. [f newLabel is NIL
or its length is zero, Error{nameRequired] is raised. ChangeLabelString may raise
Unknown, NotOnline, ReadOnly, and NeedsScavenging.

The label of an online or open volume may be retrieved by the following operation.

Volume.GetLabeIString: PROCEDURE [volume: VOlume.lD, 5: LONG STRING];

If the length of the volume label exceeds that of 5, the returned label will contain only as
many characters as will fit. The length will not exceed maxNameLength. GetLabelString
may raise Unknown, NotOnline, and NeedsScavenging.

4.2.8 Volume root directory

The volume root directory provides a mechanism for client file systems to retain a File.File
for the root of their file system. It provides a mapping from a File.Type into a File.File. For
any given File.Type there can be at most one root file. A File.Type of FileTypes.tUntypedFile
functions as a null value for the root directory operations. The operations in this section
allow manipulation of an open volu'me's root directory.

Volume.RootDirectoryError: ERROR [type: Volume.RootDirectoryErrorType);

Volume.RootDirectoryErrorTYpe: TYPE ==

{directoryF'ull, duplicateRootFile, invalidRootFileType, rootFileUnknown};

Root directory operations may raise the error RootDirectoryError. Individual errors are
described with the operations that raise them. All of the root directory operations may
also raise Unknown, NotOnline, and NotOpen, and NeedsScavenging.

Inserting a file into the volume root directory is accomplished by

Volume.lnsertRootFile: PROCEDURE [type: File.Type, file: File.File);

volume.maxEntrieslnRootDirectory: READONLY CARDINAL;

If the root directory already has an entry for type, RootDirectoryError[duplicateRootFile1
is raised. The root directory is of fixed size. If the insertion would result in more than
maxEntrieslnRootDirectory entries, RootDirectoryError[directoryFull] is raised. An
attempt to insert a file with type FileTypes.tUntypedFile into the root directory results in
the error RootDirectoryError[invalidRootFileType). ReadOnly may also be raised.

4.3 Files

Pilot Programmer's Manual 4

Volume.RemoveR.ootFile: PROCEDURE (
type: File.Type, volume: Volume.lO +- Volume.SystemlDl;

The entry for a given File.Type may be removed from the root directory by
RemoveRootFile. [t may raise RootOirectoryError[rootFileUnknown] and ReadOnly.

volume.LookUpRootFile: PROCEDURE [type: File.Type] RETURNS [file: File.File];

The file previously stored for a given file type may be retrieved by calling lookUpRootFile.
If there is no entry in the root directory for that type,
RootOirectoryError[rootFileUnknown] is raised.

Volume.GetNextRootFile: PROCEDURE [
lastType: File.Type, volume: Volume.lO +- Volume.SystemlO]
RETURNS [file: File.File, type: File.Type];

The set of root files in the root directory may be enumerated by calling the stateless
enumerator GetNextRootFile. The enumeration begins and ends with
FiIeTypes.tUntypedFile. It may raise RootOirectoryError[rootFileUnknown].

File: DEFINITIONS ... ;

FileTypes: DEFINITIONS ... ;

CommonSoftwareFileTypes: DEFINITIONS ... ;

A file is the basic unit of long-term information storage. A file consists of a sequence of
pages, the contents of which can be preserved across system restarts. Files are named by
specifying the containing volume, and by a file identifier which is unique within that
volume. The operations described in this section enable clients to create and destroy files,
and to examine and set their attributes.

4.3.1 File naming

A file is named by giving the identifier of the volume on which it resides and the 10 of the
file:

File.lO: TYPE [2];

File.File: TYPE = RECORD [filelO: File.lO, volumelO: System.VolumeIO];

File.nuIIlD: File.lD = ... ; -- "null ID"

File.nuIiFile: File.File = [File.nuIlID, [System.nuIllD]];

File.lDs are unique within any single volume. Since Pilot ensures with a very high
probability that each distinct volume is assigned a distinct volume identifier, the
combination of a volume identifier and a File.lD in a File.File is similarly unique. Pilot will
normally create files with File.lDs which have never appeared on the containing volume.
However, Pilot may reuse the File.lOs of deleted files under some circumstances. File.nulllO

-4-17

4

4-18

File Storage and Memory

is·never· allocated as the 10 I)f a tile. and will cause the error File.Unknown to he raised if
ul:ied for any operation except those that start an enumeration. File.nuliFile may he used to
denote the absence of a me.

All File operations require the volume containing the file to be open.

4.3.2 Addressing within files

Pilot files may hold up to 232 bytes (223 pages) and may be randomly accessed on a page
by-page basis. All addresses within a file are in terms of page numbers, representing
offsets (in pages) from the beginning of the file. The first page of a file is page number
zero.

File.PageNumber: TYPE = LONG CAROINAL; .- simulates [0 .. File.maxPagesPerFile)

File.maxPagesPerFile: LONGCAROINAL • 8388607; -- 223.1

File.firstPageNumber: File.PageNumber == 0;

File.lastPageNumber: File.PageNumber == File.maxPagesPerFile· 1;

Note: Because LONG subrange types are not implemented in the current version of Mesa,
the current version of Pilot defines.PageNumber as a LONG CARDINAL and defines constants
firstPageNumber and lastPageNumber to specify FIRsT[PageNumber] and
LAsT[PageNumber]. These constants should be used rather than the FIRST and LAST
operators, which_cannot supply the correct value in the case of a simulated subrange.
Minimum and maximum values are similarly defined below for File.PageCount.

File.PageCount: TYPE = LONG CARDINAL; -- simulates [O .. File.maxPagesPerFile)

File.firstPageCount: File.PageCount == 0;

File.lastPageCount: File.PageCount = File.maxPagesPerFile;

4.3.3 File types

In,Pilot, every file must be assigned a file type at the time it is created. A file type is of type
File.Type and is constant for the life of the file. It provides a means for Pilot, various
scavenging programs, and clients to recognize the purpose for which each file was
intended. This is especially important because files on Pilot disks do not inherently have
meaningful strings for names, making it difficult for a human user or programmer to
recognize which file is which. To make this principle work effectively, each different kind
of file should be assigned its own unique type. See Appendix B for an explanation of how
file types are assigned and managed.

File types are intended to be used by Pilot clients in distinguishing the types of objects
represented by Pilot files. Each specific application may assign its own type to its own
files, either for redundancy or for control of the processing of those files.

File types are allocated by the Manager of System Development and are defined as follows:

Pilot Programmer's Manual 4

File.Type: TYPE = RECORD [CARDINAL);

The center of this scheme is the FileTypes interface, maintained by the Pilot group. In this
file are defined all subranges of File. Type assigned to individual client and application
groups. This module is designed so that it can be recompiled whenever a new type is
assigned without invalidating any old version. Thus. within certain limits, a program
may include any version of File Types which contains the file types of interest to it without
building in an unnecessary or awkward compilation dependency.

The basic structure of FileTypes is a set of subrange and constant definitions. The following
ranges are defined. (The reader should consult the documentation of the appropriate
system to see how the specific file types have been defined):

FileTypes.MesaFileType: TYPE" CARDINALl ••• J;

FileTypes.DCSFileType: TYPE" CARDINAL[••• J;

FileTypes.TestFileType: TYPE = CARDINAL [••• J;

FileTypes.SBSOFileType: TYPE = CARDINAL [••• J;

FileTypes.CommonSoftwareFileType: TYPE = CARDINAL [••• J;

FileTypes.DocProcFileType: TYPE = CARDINAL [••• J;

FiIeTypes.FileServiceFileType: TYPE = CARDINAL [••• J;

FiIeTypes.ServicesFileType: TYPE = CARDINAL [••• J;

FileTypes.MesaDEFileType: TYPE = CARDINAL [••• J;

FileTypes.PerformanceTooIFileType: TYPE = CARDINAL [••• J;

FileTypes.DiagnosticsFileType: TYPE = CARDINAL [••• J;

FileTypes.CADFileType: TYPE = CARDINAL [••• J;

Fi~Types.CedarFileType: TYPE = CARDINAL [••• J;

FileTypes.VersatecFileType: TYPE = CARDINAL [••• J;

Mesa file types are used by Mesa source and object files. DCS file types are used by
development common software. Test file types are used by the test tools. SBSO file types
are used by OPD Small Business Systems Operation. Common Software file types are
used by product common software. File service file types are used by the file server.
Printing service file types are used by the print server. MesaDE file types are used in the
Mesa development environment. Performance tool file types are used to store binary data
typically generated by performance tools. Diagnostics file types are used by diagnostics
software: CAD file types are used by computer aided design software. Cedar file types are
used by the PARC Cedar project. Versatec file types are provided for the use of Versatec.

The type

4-19

4

4-20

File Storage and Memory

FileTypes.tUntypedFile: File.Type ,. [LAST{CARDINAL]];

may be used as a null value, denoting the absence of a type. This is not enforced by Pilot
however.

The following common software file types are defined in the range
CommonSoftwareFileType:

CommonSoftwareFileTypes.tUnassigned: File.Type := [••• J;

CommonSoftwareFileTypes.tDirectory: File.Type .. [•..];

CommonSoftwareFileTypes.tBackstopLog: File.Type .. [...];

commonSoftwareFileTypes.tCarryVolumeDirectory: File.Type .. [...];

CommonSoftwareFileTypes.tClearingHouseBackupFile: File.Type .. [... J;

CommonSoftwareFileTypes.tFileList: File.Type .. [...];

commonSoftwareFileTypes.tBackstopDebugger: File.Type .. [... J;

CommonSoftwareFileTypes.tBackstopDebuggee: File.Type ,. [... J;

These are mostly self-explanatory. tDirectory is obsolete. tFileList is the file type of the
file list used by the Floppy file system (see §5.5).

4.3.4 File error conditions

The following errors may arise during file operations:

File.Error: ERROR [type: File.ErrorType);

File.ErrorType: TYPE .. {invalidParameters, reservedType};

Most file operations raise Error. Error[invalidParameters] is raised by operations
wqen the parameters specify an illegal condition. Error[reservedType] is raised
when one of Pilot's reserved file types is used improperly.

File.Unknown: ERROR [file: File.File];

Unknown indicates that the file does not exist on the given volume. It is also raised if
File.nullFile is supplied to any operation except a stateless enumerator.

File. MissingPages: ERROR [
file: File.File, firstMissing: File.PageCount, countMissing: File.PageCount) ;

MissingPages indicates that the specified pages are missing from the file due to an
exceptional condition, usually a disk hardware error. This error is not raised by any File
operation, but is raised by other Pilot operations.

Pilot Programmer's Manual 4

Fife opcrutions may raise the errors Volume. Unknown, volume.NotOnline, Volume.NotOpen,
volume.lnsufficientSpace. and Volume.ReadOnly.

4.3.5 File creation and deletion

To create a new file on a volume, call the procedure:

File.Create: PROCEDURE[

volume: System.VolumeID, initialSize: File.PageCount, type: File.Type]
RETURNS (file: File.File]

A File.File for the new file is returned. Files are created as temporary files. The file initially
contains the number of pages specified by initialSize (filled with zeros). Pilot attempts to
allocate contiguous space on the volume, if such is available. There are significant
performance penalties associated with increasing the size of a file. Programmers should
make every attempt to create the file with the size it will eventually be. If initialSize is
zero or greater than File.maxPagesPerFile, Error(invalidParametersl is raised. If there is not
enough space on the volume to contain the file, volume.lnsufficientSpace is raised.
Volume.ReadOnly is raised if the volume is open for reading only.

The type attribute of the file is a tag provided by Pilot for the use of higher level software.
Iftype is one of a set of values reserved by Pilot, Error[reservedType] is raised.

By creating a file on an empty volume, creating a second file, and so on, a client program
can construct a set of files all of whose space is guaranteed to be contiguous.

A file is deleted by the operation

File.Delete: PROCEDUR.E [file: File.File);

The file is deleted permanently; no "undelete" operation exists. File.Unknown is raised if
there is no such file on the volume. volume.ReadOnly is raised if the volume is open for
reading only.

Caution: The file being deleted must not contain any file windows for mapped spaces (see
§4.6.2); the behavior of Pilot in such circumstances is undefined.

4.3.6 File attributes

Aside from its name and contents, a file has three other attr~butes: size, type, and
temporary/permanent status. These can be examined using the operations defined below.
All of these operations may raise File.Unknown.

The size of a file may be ascertained by calling

File.GetSize: PROCEDURE [file: File.File] RETURNS (size: File.PageCount);

The size of a file may be altered by calling

File.SetSize: PROCEDURE [file: File.File, size: File.PageCount);

4-21

4 File Storage and Memory

[1' the size is increased, Pilot attempts to allocate disk space physically ad.iacent to the end
of the tile, and it also attempts to allocate a contiguous sequence of pages, if such is
available. Any new pages of the tile are filled with zeros. Attempting to set the size to zero
or greater than File.maxPagesPerFile will cause Error(invalidParameters] to be raised.
volume.ReadOnly will result if the volume is readonly, and Volume.JnsufficientSpace will be
raised is there are not enough free pages on the volume for the new file size.

Extending a file is a fairly expensive operation. It is better for a client to determine the
ultimate amount by which a file is to be extended, and do it all at once rather than to
increase its size a page or two at a time. This both reduces the amount of disk traffic and
increases the likelihood that Pilot will be able to allocate a contiguous sequence of pages
for the extension. There are also continuing performance penalties for accessing a
fragmented file, which may result from growing the file one or more times.

Caution: For a file which is being shrunk, the pages being deleted must not be mapped
into virtual memory. The behavior of Pilot in such circumstances is undefined.

The rest of the attributes ofa file can be inspected collectively by calling

File.GetAttributes: PROCEDURE [file: File.File)
RETURNS [type: File.Type, temporary: BOOLEAN];

The temporary attribute indicates whether the file is temporary or permanent. Pilot
deletes temporary files when the volume is next booted, scavenged, or opened/for writing.
Permanent files are preserved across system restarts. A file is always created as
temporary. A file may be made permanent by calling the operation

File.MakePermanent: PROCEDURE [file: File.File];

A file should not be made permanent before the client has safely stored the File.File for that
file in some client-level directory or other permanent data structure. The scavenger (§ 4.4)
provides means for recovering a permanent file for which the File.File has been lost.

The intended sequence for making a permanent file is as follows: When a client creates a
file, it is temporary. The client then stores the File.File for that file in a safe place, doing
Space.ForceOut on the safe place to guarantee that it is written into the backing file. The
client then makes the ~le permanent using File.MakePermanent.

4.4 Sea venging

4-22

Scavenger: DEFINITIONS ... ;

The act of repairing an inconsistent or damaged Pilot logical volume is known as
scavenging. A Pilot logical volume may become damaged for any number of reasons. A
machine that is using the volume may stop abnormally due to hardware or software
failure. The drive containing the volume may fail and damage the volume, or the physical
medium containing (part 00 the volume might fail. A damaged volume may not be
accessed until it has been repaired. This is enforced at the time that Volume. Open is called.
If the volume is detected as damaged by Pilot, volume.NeedsScavenging is raised. A
volume is repaired using the Scavenger interface.

Pilot Programmer's Manual

-'-4.1 Scavenging a volume

A damaged volume is repaired by the operation

Scavenger.Scavenge: PROCEDURE [volume, logOestination; Volume.lO,
repair: Scavenger.RepairType, okayToCDnvert: BOOLEAN]
RETURNS [logFile: File.File);

Scavenger.RepairType: TYPE. MACHINE DFPENDENT (checkOnly(O),
safeRepair(1). riskyRepair(2)};

Scavenger. Error: ERROR [error: Scavenger.ErrorType];

Scavenger.ErrorType: TYPE • { ...• volumeOpen, cannotWriteLog.
needsRiskyRepair. needsConversion, ... };

4

The purpose of the Scavenge operation is two-fold. First, it allows Pilot to place its own
data structures in order so that client access to the volume may be permitted. Second, it
produces a log file (described below) describing the state of the volume. The log file is
intended to be used by client-level scavengers to reconstruct client data structures.

The volume to be scavenged is given by volume. If volume is open, the error
Error{volumeOpen] is raised. The log file is created on the volume logOestination. If
logOestination equals volume, the created log file is permanent; otherwise, the log file is
temporary. Volume logDestination must be open if it is not the same as the volume to be
scavenged. Scavenge may also raise VOlume.NotOnline and VOlume.Unknown.

The level of repair attempted by the scavenger is governed by the value of repair. A value
of checkOnly causes a log file to be produced but no repair is done. In this case, it is
advisable to specify logOestination .to be a volume different from the scavengee since it
may not be possible to build a log file on a damaged volume. If repair is safeRepair, the
scavenger will attempt to repair the damage that it finds upon the volume. This is the
normal usage. If Pilot is unable to repair the volume satisfactorily in this mode,
Error[needsRiskyRepair) is returned. Certain forms of repair are performed only if repair
is equal to riskyRepair. Scavenging in riskyRepair mode should be attempted only after
the hardware has been verified to be working correctly.

Caution: In the current version of Pilot, repair equal to checkOnly is not implemented.

okayToConvert determines whether conversion of a volume of an incompatible version
will occur. A volume is of an incompatible version if its format is not compatible with the
Pilot boot file which is running. If okayToConvert is TRUE scavenging will convert a
volume from the previous version to the current one. If the volume version is incompatible
but okayToConvert is FALSE, Error[needsConversion] is raised. Scavenging to a previous
version is not supported, nor is scavenging a volume forward more than one version.
okayToConvert is set to FALSE during pilot initialization,. causing the system logical
volume to not be converted forward.

If a previous log file for this volume exists, Pilot attempts to delete it after Pilot data
structures have been repaired, but before a new log is written. This delete is comparable

4-23

4

4-24

File Storage and Memory

to a call on the OeleteLog opcra! ion j see below). [f Pilot is unable to write the log for any
reason, Error[cannotWriteLogj is rcturned and no,;icavenging is done.

Caution: In the current version of Pilot, the volume is repaired even if cannotWriteLog is
raised.

During Pilot initialization, the system logical volume is scavenged as necessary with
repair • safeRepair and okayToConvert • TRUE. The resuJting log file is placed on the
system volume.

4.4.2 Scavenger log file

A log file describes the state of a volume after the Scavenge operation has been invoked. It
contains information about the volume and the outcome of the Scavenge as well as a list of
all files on the volume and the problems, if any, with each file. A log file contains a data
structure of type LogFormat.

Scavenger. Log Format: TYPE = MACHINE DEPENDENT RECORD [
header: Scavenger .Header,
files: ARRAY [0 .. 0) OF FileEntry);

Scavenger.Header: TYPE = MACHINE DEPENDENT RECORD [
seal: CARDINAL +- Scavenger .LogSeal,
version: CARDINAL +- Scavenger.currentLogVersion,
volume: Volume.IO,
date: System.GreenwichMeanTime,
repairMode: Scavenger.RepairType,
incomplete: BOOLEAN,
repaired: BOOLEAN,
bootFilesOeleted: Sdvenger .BootFileArray,
pad: [0 .. 0) +- 0,
numberOfFiles: LONG CARDINAL];

Scavenger.LogSeal: CARDINAL. 130725B;

Scavenger.currentLogVersion: CARDINAL = 1;

Scavenger.BootFileArray: TYPE =
PACKED ARRAY Scavenger.BootFileType OF BOOLEAN;

Scavenger.BootFileType: TYPE = MACHINE DEPENDENT {
hardMicrocode(O), softMicrocode(1), germ(2), pilot(3), debugger(4), debuggee(5)};

Scavenger.noneOeleted: Scavenger.BootFileArray = ALL[FALSE);

Scavenger.FileEntry: TYPE = MACHINE DEPENDENT RECORD [
file: File.lD,
sortKey: LONG CARDINAL,
numberOfProblems: CARDINAL,
problems: ARRAY [0 .. 0) OF Scavenger.Problem];

Pilot Programmer's Manual

Scavenger .Problem: TYPE = MACHINE DEPENDENT RECORD [
trouble: SELECT entryType:scavenger.EntryType FROM

unreadable. missing = > [first: File.PageNumber, (ount: File.PageCDunt],
duplicate, orphan = > rid: Scavenger.OrphanHandle]
ENDCASE];

Scavenger.EntryType: TYPE = MACHINE DEPENDENT {
unreadable(O), missing(1), duplicate(2), orphan(3)};

Scavenger.OrphanHandle: TYPE [2];

Scavenger.tScavengerLog: READONlY File.Type;

Scavenger .tScavengerLogOtherVolume: READONL Y File. Type;

4

The log consists of a Header followed by zero or more FileEntrys. The Header describes the
scavenged volume and the outcome of scavenging. The seal field is used to verify that a
file is in fact a scavenger log; its value should be LogSeal. The version is the log file
format version; its value should be currentLogVersion. The scavenge occurred on volume
volume at time date with the value of the repair argument which was passed to the
Scavenge operation equal to repairMode. If incomplete is TRUE, the file list may not
include all files or problems due to insufficient space on the log destination volume or
overflow ofthe internal tables used when scavenging. The header is always complete. A
value of TRUE for repaired indicates that all volume structures are in order and the volume
may be accessed. If it was necessary to delete one or more boot files in order to complete
the scavenge, the elements of boot Files Deleted corresponding to the deleted boot files will
be TRUE. Boot files are deleted only in very unusual situations. The count of files on the
scavenged volume is given by numberOfFiles.

Following the hea,der are Header.numberOfFiles contiguous entries of type FileEntry. In
each entry, file identifies the file, sort Key is a sort accelerator for client scavengers, and
numberOfProblems is the number of problems associated with the file. If
numberOfProblems is not zero, problems contains one Problem entry for each problem
encountered. Note that some files will be absent from the list if.header.incomplete is TRUE.

There are four categories of problem: unreadable pages, missing pages, duplicate pages,
and orphan pages. If the data portion of a sequence of file pages is unreadable or the label
can be read correctly, but is either self-inconsistant or is inconsistant with the rest of the
file, an unreadable Problem entry is entered in the log. If a sequence of file pages is
missing, a missing Problem entry is created. If a page has an unreadable label, it cannot
be associated with any file and is reported as an orphan Problem of a FileEntry which has
file equal to File.nuIlID. Finally, if there are two or more pages claiming to be the same
page of a file, one is arbitrarily chosen as the actual file page. The rest are reported as
duplicate Problem entries. A page identified as orphan or duplicate is provided a
Scavenger.OrphanHandle in the problem entry so that the page may be accessed. The size of
a Problem entry in the log is always slzE[Problem].

The scavenger cannot detect the absence of one or more pages from the very end of a file. It
is the client's responsibility to deal with failures of this nature. If only the first page of a
file is missing, Pilot assumes that the file is permanent. Missing or unreadable pages

4-25

4

4-26

File Storage and Memory

should he accessed only via operations provided by the Scavenger interface for dealing with
such pages and not by, e.g., Space.Map

A scavenger log file built upon the volume being scavenged will be of file type
tScavengerLog. A log file written to a different vol ume will have type
tScavengerLogOtherVol u me.

A log file may also be generated by the following operation:

Scavenger.MakeFileList: PROCEDURE (volume, logDestination: Volume.lD]
RETURNS (l09File: File.File];

This procedure will generate a Log for the volume volume without the overhead of
actually scavenging the volume. If either of the specified volumes is not open,
VoIume.NotOpen is raised. VOlume.Unknown is raised if either volume is unknown. The
resulting log will be the same form as a log generated by Scavenge except that no
problems are reported. The log file is not an "official" log file, i.e., it is not affected by
Scavenge, GetLog, or DeleteLog. The returned file is a temporary file; it is the client's
responsibility to make it permanent if that is appropriate.

Caution: The client should not create or delete files from volume while MakeFileList is in
process or the log may be incomplete or incorrect.

4.4.3 Operations on log tiles

The current log file for an open volume, as produced by the most recent invocation of
Scavenger.Scavenge(volume, •..], is returned by

Scavenger.GetLog: PROCEDURE (volume: volume.lD]
RETURNS [logFile: File.File];

I£there is no log file, FlJe.nuliFile is returned. Even if the returned logFile is not File.nuliFile
the log file will not exist if it has been deleted by some means other than a
Scavenger.DeleteLog. Thus, the client must be prepared to catch the signal File.Unknown
while accessing logFile. GetLog may also raise volume.NotOperi, Volume.NotOnline, or
Volume.Unknown.

The current log file for an open volume may be deleted by

Scavenger.DeleteLog: PROCEDURE (volume: Volume.lD];

volume is the volume which was scavenged to produce the log file. The log file may be on
volume or it may be on another volume, depending on the log destination chosen for the
Scavenge. If the volume containing the log file is not open for writing, the file IS not
deleted. Subsequent GetLog operations on volume return File.nullFile until
Scavenge(volume, ... J is called again. DeleteLog does not affect log files generated by
MakeFileList. DeleteLog may also raise Volume.NotOpen, Volume.NotOnline,
Volume. Unknown, or Volume.ReadOnly.

Pilot Programmer's Manual 4

-tA.4 Investigating and repair-in!;fdamaged pages

The damage reported in the tog file may be investigated and repaired through the use of
the following operations. All of these operations require the volume to be open. All of the
operations raise File.Unknown if the specified file cannot be found, and Volume.NotOpen,
Volume.NotOnline, or VOlume.Unknown for the specified problem with the volume. Those
which change volume contents may raise Volume.ReadOnly.

An unreadable page, as described by an unreadable Problem entry. may be read by

Scavenger.ReadBadPage: PROCEDURE [
file: File.File. page: File.PageNumber. destination: Space.PageNumber)
RETURNS [readErrors: BOOLEAN);

Scavenger.ErrorType: TYPE. { ...• diskHardwareError. diskNotReady.
noSuchPage •... };

The contents of page page of file are read into virtual memory page destination which
must be mapped and writable. (An address fault or write protect fault is indicated if it is
not.) The effect is to overwrite the previous contents of destination with the contents of
the specified file page. The returned value readErrors indicates whether or not any error
was encountered while accessing the specified file page. Read errors that occur while
reading page affect only the value of read Errors and are o~herwise ignored. If the read
encountered errors, the data is not guaranteed to be reliable.If page does not exist or lies
beyond the end of file, Error[noSuchPage) is raised. If the target disk is not ready,
Error[diskNotReady) is raised. Ifthe target disk reports a drive-level failure (as opposed to
a page-level failure such as a read error), Error[diskHardwareError] is raised.

An unreadable page may be rewritten or a missing page may be replaced by

Scavenger.RewritePage: PROCEDURE [
file: File.File. page: File.PageNumber. source: Space.PageNumber]
RETURNS [writeErrors: BOOLEAN];

The current contents of page page of file are overwritten by virtual memory page source,
which must be mapped. The original disk page is reused if it is present (to replace a file
page, use ReplaceBadPage below); if the original page is missing, Pilot will allocate a new
page for that file page. The return value writeErrors indicates whether or not errors were
encountered while trying to rewrite the specified page. If writeErrors returns FALSE, the
page should be considered to be rehabilitated. Clients should first attempt to rewrite bad
file pages using RewritePage. If this fails repeatedly, the client should use
ReplaceBadPage to rewrite the file page in a different backing page.

If page is beyond the end offile, Error[noSuchPage] is raised. If no page can be allocated to
replace a missing page, volume.lnsufficientSpace is raised. If the target disk is not ready,
Error[diskNotReady] is raised. If the target disk reports a drive-level failure,
Error[diskHardwareError) is raised. An address fault will result if source is not mapped.

The following procedure also rewrites a bad page in a file, but in addition it discards the
disk page that the file currently occupies and allocates a new one:

4-27

4

4-28

File Storage and Memory

Scavenger.ReplaceBadPage: PROCEDURE [
file: File.File. page: File.PageNumber, source: Space.PageNumber]
ReTURNS [writeErrors: BOOLEAN];

ReplaceBadPage will allocate a new page for the specified file page and mark the old page
as bad in the physical volume's bad page list. The returned value writeErrors indicates
whether or not errors were encountered while replacing the file page. This operation
al~ays allocates a single new page even if writeErrors is returned as TRUE.
ReplaceBadPage is subject to the same error conditions as RewritePage.

An orphan page may be read by the operation

Scavenger.ReadOrphanPage: PROCEDURE [
volume: volume.lD, id: Scavenger.OrphanHandle, destination: Space.PageNumber)
RETURNS [file: File.File, type: File.Type, pageNumber: File.PageNumber,
readErrors: BOOLEAN);

Scavenger.ErrorType: TYPE. { ... f orphanNotFound, ... };

The contents of virtual memory page destination are overwritten by the contents of the
orphan page designated by id. The destination page must be mapped and writable or an
address fault or write protect fault will occur. This operation returns the information that
Pilot knows about id. The file to which it appe~rs to belong is given by file, the apparent
page number within that file by pageNumber, and the type of file by type. II errors were
encountered in reading the orphan page, readErrors is returned TRUE and the returned
data is not guaranteed to be accurate.

Caution: There is no validity checking to ensure that the page reIerred to by id is actually
an orphan. It is the client's responsibility to pass only a currently valid OrphanHandle.

If id does not refer to a valid page on volume, Error[orphanNotFound) is returned. If the
target disk is not ready, Error[diskNotReady) is raised. lIthe target disk reports a drive
level hardware failure, Error[diskHardwareError] is raised.

Once the client is through with an orphan page, it should be deleted by the operation

Scavenger.DeleteOrphanPage: PROCEDURE [volume: vOlume.lD, id: Scavenger.OrphanHandle);

The specified orphan page is deleted, making invalid all outstanding references to it. If
the page is usable, it will be returned to volume's free page pool. If the page is
incorrigible, it will be added to the bad page list for the physical volume containing
volume. Ifid does not refer to a valid page on volume, Error[orphanNotFound) is raised.

Caution: There is no validity checking to ensure that the page referred to by id is actually
an orphan. It is the client's responsibility to pass only currently valid OrphanHandles. In
particular, it is possible for a client to delete a random page from a random file by
supplying a random, but valid, value for id.

File Storage and Memory 4

4.5 Virtual memory management

Space: DEFINITIONS ...

SpaceUsage: DEFINITIONS ...

The Mesa Processor provides a large, linearly addressed, word-organized virtual memory
common to all PROCESSes and devices. All software, including Pilot, common software, and
applications, resides in this single, uniformly-addressable resource. Pilot both manages
and implements it using the system element's physical resources. In particular, client
programs can associate areas of virtual memory with portions of files and manage system
performance and reliability by controlling swapping between virtual and real memory.

4.5.1 Fundamental concepts of virtual memory

The Mesa Processor virtual memory is organized as a sequence of 2'Z4 pages, each
containing Environment.wordsPerPage words. Pages are numbered starting from zero.
Clients can use one fewer page than provided by the Mesa Processor because the last page
is reserved for system use. A specific implementation of the processor may provide a
smaller virtual address space, which does not require redefining the maximum page
number but is accounted for in Pilot's internal data structures. A client program can
determine the size of its virtual address space, as described in §4.5.6.1 below.

Environment.wordsPerPage: CARDINAL" 256;

Environment.PageNumber: TYPE = LONG CARDINAL; --[0 .. 224-1)

Environment.firstPageNumber: Environment.PageNumber = 0;

Environment.lastPageNumber: Environment.PageNumber = 16777214; __ 224_2

Note: Because LONG sub range types are not implemented in the current version of Mesa,
the current version of Pilot defines PageNumber as a LONG CARDINAL and defines the
constants firstPageNumber and lastPageNumber to specify FIRsT[PageNumber) and
LAsT[PageNumber). Similarly for PageCount and Page Offset below.

Environment.PageCount: TYPE .. LONG CARDINAL; --[0 .. 224-1]

Environment.firstPageCount: Envircmment.PageCount .. 0;

Environment.lastPageCount: Environment.PageCount .. lastPageNumber + 1; -- 224_1

Environment.PageOffset: TYPE" Environment.PageNumber;

Environment.firstPageOffset: Environment.PageOffset = 0;

Environment.lastPageOffset: Environment.PageOffset = lastPageNumber;

The following operation returns a LONG POINTER to the first word of a page.

Environment.LongPointerFromPage: PROCEDURE [page: Environment.PageNumber)
RETURNS [LONG POINTER] .. INLINE ... ;

4-29

4

4-30

Pilot Programmer's Manual

The following operation returns the number of the page containing pointer. If pointer is
NIL, the value returned is undefined-:no signal is raised.

Environment.PageFromLongPointer: PROCEDURE [pointer: LONG POINTER]
RETURNS [Environment.PageNumber] • INlINE, .. ;

For convenience, copies of the types wordsPerpage, PageNumber, PageCount, and
PageOffset, and the procedures LongPointerFromPage and PageFromLongPointer are
available in the Space interface.

Space.wordsPerPage: CARDINAL = Environment.wordsPerPage;

Space.PageNumber: TYPE = Environment.PageNumber;

Space.PageCount: TYPE = Environment,PageCount;

Space.PageOffset: TYPE = Environment.PageOffset;

Space.LongPointerFromPage: PROCEDURE [page: Environment.PageNumber]
RETURNS [LONG POINTER] • INLlNE ... ;

Space.PageFromLongPointer: PROCEDURE [pointer: LONG POINTER]
RETURNS [Environment.PageNumber] • INlINE .. , ;

A basic concept used to describe parts of virtual memory is the Interval.

Space.lnterval: TYPE = RECORD [pointer: LONG POINTER, count: Environment.PageCount];

spac:e,nulllnterval: Space.lnterval = [pointer: NIL, count: 0];

An Interval is a sequence of pages in the virtual address space, and is described by a
pointer to the first page and a count of the number of pages. When Pilot returns an Interval
to the client, the pointer points to the first word of the first page of the Interval. When
Intervals are passed to Pilot, the pointer may point to any word in the first page. Clients
should l?e careful not to misconstrue the pointer passed to Pilot as defining the first
address affected by an operation; Space operations always start at page boundaries.
nulllnterval may be used to denote the absence of an interval. It is returned by a few Space
operations.

Pilot implements virtual memory using the resources of real memory and files. In
particular, any part of virtual memory which contains information must be associated
with backing storage consisting of a sequence of pages from some file. This sequence of file
pages is called a window. The act of associating an area of virtual memory with a window
is known as mapping; the resulting interval is called a map unit. Any attempt by a
program to reference or store into a virtual memory location which is not contained in a
mapped interval causes an address fault. Any attempt by a program to store into a virtual
memory location which has read-only access causes a write protect fault. Both faults cause
the debugger to be called with an appropriate message.

When an interval is mapped, it is typically subdivided into modest-sized swap units to
allow more efficient management of swapping. When a PROCESS references a page not
present in real memory, Pilot reads in the page and any adjacent swapped-out pages of the
containing swap unit. Thus the size of a swap unit limits how many pages will be swapped

File Storage and Memory 4

in when one of its pages is referenced. When inactive pages are moved from real memory
to backing storage, Pilot ignores swap unit boundaries. That is, it will swap out a run of
consecutive inactive pages even if the run crosses one or more swap unit boundaries. As
described below, some attributes of mapped intervals are maintained as properties of the
individual swap units.

Note: In unusual circumstances (described below), Pilot may break a client-specified swap
unit into smaller swap units.

When an interval is mapped, its swap units are given initial access permissions.

Space.Access: TYPE II {readWrite, readOnly};

Each swap unit has its own Access status. readWrite specifies that clients are allowed to
read and write in the swap units. readOnly specifies that only reading is allowed. Any
attempt to write into a page of a swap unit which is readOnly results in a write protect
fault. Operations are also provided for changing the access of existing swap units.

When an interval is mapped, its swap units are given an initial life. This specifies whether
or not the initial contents of the backing file are useful.

Space.Life: TYPE II {alive, dead};

Ea~h swap unit has its own Life status. alive specifies that a swap unit initially contains
useful data; dead specifies that it does not. Pilot uses this information to avoid reading
pages of the interval from backing storage and writing pages containing no useful data.
When a swap unit is marked dead, the contents of each page will be unpredictable until
that page is written into by the client. Until that time, the client can make no assumption
about the contents of the pages or their consistency with the corresponding pages of the
window. Pilot insists that readOnly swap units be alive; any attempt to make a readOnly
swap unit be dead will be ignored-it will remain alive. A swap unit becomes alive when
(1) one of its pages has been written into, or (2) it is made readOnly. A page can be

. swapped out either explicitly by the client or implicitly by Pilot in managing memory. The
operation space.Kill is provided to make existing swap units dead.

Any Space operation may raise the signal:

Space.Error: ERROR [type: Space.ErrorType];

Space.ErrorType: TYPE II { ••• };

Specific values of ErrorType are defined below. In addition, some operations may raise
other signals as defined below.

If any Space operation is given an Interval whose pages are not completely contained
within the implemented virtual memory of the system element,
Space. Error[poi nterPastEndOfVi rtual Memory] is raised.

Space.ErrorType: TYPE = { ... , pointerPastEndOfVirtuaIMemory, ... };

4-31

4

4-32

Pilot Programmer's Manual

Any Space operation that transfers data to backing storage may encounter an
unrecoverable error in reading or writing the data. If so, it will raise the signal

Space.lOError: ERROR [page: Environment.PageNumber);

page is the first page of the data being transferred which is in error.

4.5.2 Mapping files to virtual memory intervals

As described above, Pilot implements virtual memory by associating intervals of memory
with backing storage consisting of a sequence of pages from some file. This sequence of file
pages is called a window. Associating an area of virtual memory with a window is known
as mapping; the resulting interval is called a map unit. Virtual memory is normally
allocated when an interval is mapped.

A Window is a contiguous group of pages in a file starting at a specified base.

Space.Window: TYPE. RECORD (
file: File.File.
base: File.PageNumber.
count: Environment.PageCount);

The window within the file starts at base, the first page relative to the beginning of the
file, and extends for count pages or to the end of the file, whichever comes first. The actual
window length is the lesser of count and the file size minus base. If count is set to
Environment.lastPageCount, the window will extend to the end of the file.

When an interval is mapped, it is typically subdivided into modest-sized swap units to
allow more efficient management of swapping. If there is no known grouping of the
references to the pages of a map unit, uniform-sized swap units should be specified; this is
the default. If there is no knowledge of the proper size for the uniform swap unit size, the
client may request a default swap unit size. If there is some known grouping of the
references to the pag~s of a map unit, the map unit may be subdivided into swap units
with specific sizes and locations. In some circumstances, Pilot may break a client-specified
swap unit into smaller swap units.

I Mapped Virtual Memo~y
"'~f---- map unit ---i~~

m

System performance can be severely degraded if a swap unit is a substantial fraction of
the size of real memory. Clients should ensure that map units are divided into swap units
of manageable size. As a general rule, a swap unit should not exceed one-tenth the size of
real memory.

File Storage and Memory 4

The operations for controlling the allocation of intervals and mapping them to windows
are Map, ScratchMap, and Unmap.

Space. Map: PROCEDURE [
window: Space.Window,
usage: Space. Usage .-space.unknownUsage,
class: Space.Class.- file,
access: space.Access .- readWrite,
life: Space. Life .-alive,
swapUnits: Space.SwapUnitOption .- space.defaultSwapUnitOption]
RETURNS [mapUnit: Space.lnterval.];

Space.Usage: TYPE :I [0 .. 2048);

Space.unknownUsage: Space. Usage = 0;

Space.Class: TYPE. MACHINE DEPENDENT-{
unknown(O), code(1), globaIFrame(2), locaIFrame(3),
zone(4), file(S), data(6), spareA(7), spareB(8), pilotResident(31)};

Space.SwapUnitOption: TYPE :I RECORD [
body: SElEcTSwapUnitType: Space.SwapUnitType FROM

unitary • > NULL,
uniform = > [size: Space.SwapUnitSize .- space.defaultSwapUnitSize],
irregular. > [

sizes: LONG DESCRIPTOR FOR ARRAY [0 .. 0) OF Space.SwapUnitSize]
ENDCASE];

Space.SwapUnitType: TYPE :I {unitary, uniform, irregular};

Space.defaultSwapUnitOption: Space.SwapUnitOption ,.
[uniform[space.defaultSwapUnitSize]];

space.SwapUnitSize: TYPE" CARDINAL;

Space.defaultSwapUnitSize: Space.SwapUnitSize = 0;

space.ErrorType: TYPE. {
... incompleteSwapUnits, invalidSwapUnitSize,'invalidWindow, noWindow, ... };

Space.l nsufficientSpace: ERROR [avai lable: Environment.PageCou nt];

Map allocates an interval of virtual memory and associates it with a window of a file. The
allocated interval is called a map unit. The window is then the backing store for the map
unit. The length of the map unit is the actual window length, which is the lesser of
window.count and the size of the file minus window.base. The allocated map unit is
returned.

Caution: Clients must not delete the backing storage for any mapped interval or close the
volume containing it. The behavior of Pilot in such circumstances is undefined.

4-33

4

4-34

Pilot Programmer's Manual

Caution:" Clients should ensure that different map units are not mapped to overlapping
windows of a file if any of them is writable. The contents of the windows and the map units
in such circumstances are unpredictable.

If window.file is File.nuIlFile, then window.volume, window.base, life, and access are
ignored and Pilot supplies anonymous backing file storage for the interval. Such a window
is called a data window (a window mapped to a file is called a file window). The length of
the allocated window and map unit is window.count. The interval is mapped with access
• readWrite and life • dead. Backing storage for data windows is allocated on the system
volume. Information in data windows is discarded when the client Unmaps the interval or,
if the system crashes .. when the system volume is next opened for writing. For UtilityPilot
based systems, data windows are backed only by resident memory.

Map may encounter various conditions which will cause errors to be raised:

Condition ERROR

Actual window length is 0 space.Error[noWindow]
Not enough contiguous free virtual memory Space.lnsufficientSpace
window.base > File.lastPageNumber space.Error[invalidWindow]
Volume can't be located Volume.Unknown
Volume partially online Volume.NotOnline
Volume online and closed Volume.NotOpen
File does not exist on the volume File.Unknown
Any ofthe pages of window do not exist File.MissingPages
Cannot supply backing file for a data window volume.lnsufficientSpace
Volume is read-only, but access. readWrite volume.ReadOnly

Note that space.lnsufficientSpace passes back the maximum amount that could have been
allocated.

The interval is mapped with the access given. Ifaccess = readOnly, life is ignored and the
interval is mapped with life. alive. If access = readWrite but window.volume is read
only, volume.ReadOnly is raised.

usage identifies the data in the map unit. The usage of map units will be available to the
debugger and performance monitoring tools. The interface SpaceUsage defines subranges
of Space. Usage for various clients and applications. Clients are encouraged to have their
own private definitions file which further subal10cates the Space.Usages assigned to them
by the SpaceUsage interface.

class indicates the class of the data in the map unit. Pilot uses this data in its swapping
decisions. Clients will normally specify only file for file windows and data for data
windows.

If swapUnits.swapUnitType = uniform, the map unit is subdivided into equal-sized swap
units of the indicated size. If size equals defaultSwapUnitSize or 0, Pilot will choose an
appropriate size. If size equals or exceeds the size of the map unit, the swap unit serves no
purpose; in this case specifying unitary swap units is more efficient.

If swapUnits.swapUnitType = irregular, the map unit is subdivided into irregular-sized
swap units of the sizes given in swapUnits.sizes. Each element of swapUnits.sizes is the
size of the corresponding swap unit. If the size of any irregular swap unit is greater than
an implementation-dependent upper limit, it will be subdivided into smaller swap units.

File Storage and Memory 4

Excess elements of swapUnits.sizes are ignored. If the window does not completely cover
the last swap unit, this swap unit will be shorter than requested. If any required element
of swapUnits.sizes is 0, space.Error[invalidSwapUnitSize] is raised. If any required element
of swapUnits.sizes is unmapped storage, an address fault will result. If the sum .of the
elements of swapUnits.sizes is less than the size of the map unit,
Space.Error[incompleteSwapUnits] is raised.

If swapUnits.swapUnitType = unitary, the map unit is not subdivided into smaller swap
units. This indicates the client's desire to have the map unit swap as a single entity.

Scratch Map is a more convenient way than Map to allocate temporary storage.

space.ScratchMap: PROCEDURE [
count: PageCount, usage: Space. Usage .-Space.unknownUsage]
RETURNS [pointer: LONG POINTER];

The operation

Space.Unmap: PROCEDURE [
pointer: LONG POINTER, returnWait: space.ReturnWait .- wait]
RETURNS [nil: LONG POINTER];

Space.ReturnWait: TYPE = {return, wait};

Space.ErrorType: TYPE = { ... r notMapped, ... };

removes the association between the map unit containing pointer and the map unit's
window. This frees the map unit's virtual memory for other uses. If returnWait = wait,
the operation does not return until the contents of the window reflect the contents of the
interval. If returnWait = return, the operation returns immediately without waiting for
any required output to complete. Pilot ensures, however, that client actions on the backing
window have the same effect as if returnWait = wait had been specified. If the interval is
mapped to a data window, the information in the window is discarded. If pointer is not
contained in a map unit, Space.Error[notMapped] is raised. If the data' in the interval
cannot be written to the window, Space.lOError is raised.

Note: For the current release returnWait = return is equivalent to returnWait = wait.

Of course, pointers into a map unit should not be retained after unmapping. To encourage
this, Unmap returns a NIL pointer. The intended usage is

myPointer.- Space.Unmap[myPointer];

References to an interval formerly occupied by the map unit can result in an address fault,
or worse, may access or overwrite other data if the virtual memory is reused.

4.5.3 Explicitly reading and writing virtual memory

Copyln and CopyOut are similar to read and write operations in a conventional file
system. However, since the interval involved must already be mapped to a backing file,
each can also be thought of as a file-to-file copy. Neither operation returns until the data
has been transferred and neither changes the mapping ofthe interval.

4-35

4

4-36

Pilot Programmer's Manual

The operation

Space.Copy'n: PROCEDURE [pointer: LONG POINTER, window: Space.Window]
RETURNS [countRead: Environment.PageCount];

space.ErrorType: TYPE. { ...• readOnly •... };

reads the contents of window into virtual memory starting at the page that contains
pointer. countRead is the amount read, which is the lesser of window.count and the size
of the file minus window.base. All virtual memory pages into which data will be read
must be mapped. The contents of window are not changed by this operation.

Note: The virtual memory modified may start before pointer f since reading starts at the
first word of the page containing pointer.

Caution: Clients should not Copyln from any part of a window currently mapped in
virtual memory with write access. The data read in such circumstances is unpredictable.

If any portion of the virtual memory involved is read-only, Space.Error[readOnly] is raised.
If any portion of the virtual memory involved is unmapped, Space.Error[notMapped] is
raised. If the data cannot be read from the window, Space.IOError is raised. In all of these
cases, the pages preceding the offending page may have been overwritten by the
corresponding portion of window. See also the list of errors raised by both Copyln and
CopyOut, below.

The operation

Space.CopyOut: PROCEDURE [pointer: LONG POINTER. window: Space.Window]
RETURNS [countWritten: Environment.PageCount];

writes the current contents of virtual memory, starting at the page that contains pointer,
out to window. countWritten is the amount written, which is the lesser of window.count
and the size of the file minus window.base. All of the virtual memory pages from which
data will be read must be mapped. The contents of virtual memory are not changed by this
operation.

Note: The virtual memory being read may start before pointer f since reading starts at a
page boundary.

Caution: Clients should not CopyOut to any part of a window which is currently mapped
in virtual memory. The contents of those map units in such circumstances is
unpredictable.

If any portion of the virtual memory involved is unmapped, Space.Error[notMapped] is
raised. If the data in the interval cannot be read from backing storage or if it can not be
written to the given window, Space.lOError is raised. In both of these cases, the pages of the
window corresponding to those preceeding the offending virtual memory page may have
been overwritten by the corresponding portion of virtual memory. If window.volume is
read-only, volume.ReadOnly is raised.

Copyln and CopyOut both raise the following exceptions: If window.base >
File.lastPageNumber. space.Error[invalidWindow] is raised. If the volume cannot be
located, Volume.Unknown is raised. VOlume.NotOnline is raised if any part of the volume is

File Storage and Memory 4

not online. If the volume is closed, Volume.NotOpen is raised. If the file does not exist on
the volume, File.Unknown is raised. If any of the required pages of window do not exist,
File.MissingPages is raised.

4.5.4 Swapping

Before a virtual memory location can be accessed, the page containing that location must
be in real memory. If it is not, Pilot must read the contents of that page from its window
into a real-memory page. If there is no available real memory page, Pilot makes room by
writing pages to their backing window(s). Since Pilot keeps track of which pages match
the contents of their window, it need not write unchanged pages.

There are two ways in Pilot to cause swapping: demand swapping, and controlled
swapping.

4.5.4.1 Demand swapping

When a PROCESS attempts to reference a virtual page not currently in real memory, it
causes a page fault. When a page fault occurs, execution of that PROCESS is suspended. Pilot
reads in the page referenced and any adjoining swapped-out pages of the containing swap
unit. This is known as demand swapping. The suspended PROCESS is blocked until the read
operation is complete. Of course, any other ready PROCESSes are allowed to proceed
concurrently with the handling of the page fault.

4.5.4.2 Controlled swapping

Pilot also swaps in response to advice given by the client indicating its intentions with
respect to particular intervals. The operations provided allow the client to advise Pilot
about:

an interval that will be referenced soon;

a recently referenced interval that will not be referenced for a while;

an interval whose current contents are not wanted anymore (Le. will be written
before being read);

This advice enables Pilot to manage memory better than with simple demand
swapping.

An operation is also provided to assure that the current contents of an interval are
accurately reflected in its backing window. This is useful for transactional systems.

The operations Activate, Deactivate, and Kill allow the client to advise Pilot so it can
manage swapping better. ForceOut allows the client to assure that the information in an
interval will survive a system crash. Each of these operations can be applied to any
interval of virtual memory, independent of map unit boundaries. The operations apply
only to mapped portions of the specified interval, ignoring unmapped regions.

Space.Activate: PROCEDURE [interval: space.lnterval];

space.Deactivate: PROCEDURE [interval: Space.lnterval];

4-37

4

4-38

Pilot Programmer's Manual

Activate indicates to Pilot that the interval is expected to be referenced in the near future
and that Pilot should begin reading it in. This operation returns without waiting for any
input to complete. Deactivate indicates to Pilot that the interval is not likely to be
referenced soon, and that Pilot should write it out and release the real memory allocated to
it. This operation also returns without waiting for any output to complete.

The following procedures allow the activation and deactivation of swap units containing
Mesa code.

Space.ActivateProc: PROCEDURE [proc: -·GENERIC·· PROCEDURE];

space.DeactivateProc: PROCEDURE [proc: --GENERIC-· PROCEDURE];

space.ErrorType: TYPE. { ..•• invalidProcedure •... };

ActivateProc causes the swap unit (code pack) containing the code for the procedure proc .
to be activated, and DeactivateProc deactivates it. If proc has arguments or results,
normal usage is ActivatePrOC[LOOPHOLE[proc, PROCEDURE]]. If proc is not a valid procedure,
space.Error[invalidProcedure] is raised.

A common technique for using ActivateProc and DeactivateProc is to package a vacuous
procedure with the code of interest. This procedure serves as a "handle" on a code pack,
decoupling the function implemented by the code pack and the explicit procedures which
compose it.

The operation

Space.KiII: PROCEDURE [i nterval: Space.l nterval];

asserts to Pilot that the current contents of the interval are of no further value. Kill is
intended to be used two ways: to avoid reading a page about to be overwritten, and to avoid
writing a page which is no longer useful.

Pilot uses this information to avoid input/output activity on the interval. When Kill is
applied to an interval, any real memory in the interval is immediately reclaimed;
furthermore, any writable swap units wholly contained in the interval are marked dead.
Pilot may supply arbitrary values for the contents of any page of a dead swap unit until
the page is next written into by the client. The client should not make any assumptions
about the contents of these pages or their consistency with the corresponding pages of the
window (see also the previous discussion of the Life attribute).

The operation .

Space.ForceOut: PROCEDURE [interval: Space.lnterval];

causes the windowCs) of the interval to agree with the current contents of virtual memory.
It does not return until all required writing is complete. Any pages of the interval in real
memory will remain there. Since Pilot keeps track of which pages match the contents of
their window, ForceOut can bypass writing unchanged pages. If the data in the interval
can not be written to the given window, space.lOError is raised. If ForceOut causes any
pages to be written to backing storage, the swap units containing those pages will be
marked alive.

File Storage and Memory 4

Any temporary disagreement between an interval and its window should be invisible
during normal operation of the system. The intended use of ForceOut is to guarantee that
the information in an interval will survive a system crash, by forcing it out to a non
volatile backing storage. .

Calls on Activate and Deactivate may be added or deleted anywhere in a program without
affecting its correctness. Calls on Kill may be deleted from, but not necessarily added to, a
program without affecting its correctness. Calls on ForceOut may be added to, but not
necessarily deleted from, a program without affecting its correctness.

4.5.5 Access control

The following operations allow portions of virtual memory to be made read-only or read
write.

Space.SetAccess: PROCEDURE [interval: Space.lnterval. access: Space.Access];

This operation makes all swap units which include any portion of interval to be readOnly
or readWrite. If the swap units were made readOnly, subsequent attempts to store into a
page of any of these swap units will cause a write protect fault. If access = readWrite but
the volume to which the interval is mapped is read-only, Volume.ReadOnly is raised.

When an interval is made readOnly, Pilot also does a Forc.eOut on the swap units and
marks them alive. While doing this, if the data in the interval cannot be written to its
window, Space.lOError is raised; in this case, the swap units preceding the offending page
may have been made readOnly and alive.

If an arbitrary interval within a map unit is given, this operation may affect less virtual
memory than that implied by the client-specified swap unit structure; this is because Pilot
may occasionally break a client-specified swap unit into smaller swap units. A client can
precisely specify which swap units are affected by having interval begin and end on the
boundaries of the client-specified swap units.

Note: The virtual memory affected may start before interval.pointer t since this
operation starts at the first page of the swap unit containing interval.pointer t . Similarly,
the virtual memory affected may extend past (interval.pointer + count *
wordsPerPage) t .

Two convenience operations are also provided.

Space.MakeReadOnly: PROCEDURE [interval: Space.lnterval] •
INLINE {space.SetAccess[interval. readOnly] };

Space.MakeWritable: PROCEDURE [interval: space.lnterval] •
INLINE {Space.SetAccess[interval. readWrite] };

4.5.6 Explicit allocation of virtual memory and special intervals

Virtual memory is normally allocated when a window is mapped. However, facilities are
also provided to allocate virtual memory explicitly, independent of the act of mapping.

4-39

4

4-40

Pilot Programmer's Manual

4.5.6.1 Special intervals of virtual memory, main data spaces, and pointers

When virtual memory is being explicitly allocated, some intervals are of special interest:

space.virtuaIMemory: READONlY space.lnterval;

virtual Memory describes the entirety of the virtual memory address space as actually
implemented on the system element on which Pilot is running. The actual size of the
virtual memory of a particular system element is given by virtuaIMemory.count.

A special kind of interval which is recognized by the Mesa processor and by Pilot is the
Main Data Space (MOS). This interval consists of256 pages (216 words) and holds the ~esa
run-time data structures needed to support the execution of a collection of PROCESSes.
Every PROCESS is associated with some MOS. The procedure

Space.MDS: PROCEDURE RETURNS [Space.Jnterval] ;

returns the interval of the MOS of the PROCESS calling it. One MOS may be shared by many
PROCESSes. A PROCESS may allocate virtual memory either inside or outside of its own MOS.
Information within the MOS can be accessed by a POINTER, which is interpreted relative to
the beginning of the MOS. Information outside of the MOS is accessed by a LONG POINTER or a
POINTER RELATIVE to a LONG BASE POINTER. Since space in the MOS is typically in short supply,
clients should normally allocate virtual memory outside the MOS. Executable code is not
contained within any MOS and is shared by all PROCESSes in all MOS's.

Note: Although the Mesa Processor allows mUltiple MOS'S, only a single MOS is
implemented by the current version of Pilot.

4.5.6.2 Explicit allocation of virtual memory

Operations are provided for the explicit allocation and deallocation of an interval of
virtual memory independent of the act of mapping.

Space.Allocate: PROC.EDURE [
count: Environment.PageCount, within: Space.Jnterval +-Space.virtuaIMemory,
base: Environment.PageOffset +- space.defaultBase]
RETURNS [interval: space.lnterval];

Space.defaultBase: Environment.PageOffset = ... ;

Space.ErrorType: TYPE. { ... , alreadyAliocated, invalidParameters •... };

This operation allocates an interval of unmapped virtual memory within an arbitrary
containing interval. If count is zero, space.Error[invalidParameters] is raised.

Managing an allocated interval is the responsibility of the client. Part or all of the interval
may used for mapping windows using space.MapAt.

The client may either specify exactly the location of the interval to be allocated or have
Pilot choose a suitable interval. To have Pilot choose a suitable starting location within
the containing interval, the client passes defaultBase. If there are not enough contiguous
unallocated pages in within, space.lnsufficientSpace is raised; this signal passes the

File Storage and Memory 4

maximum amount that could have been allocated. To specify the location of the interval
exactly, the client gives a base other than defaultBase. The interval to be allocated will
start at the specified offset base from the start of the containing interval. If the requested
interval would overlap an already allocated interval, Space.Error[alreadyAllocated] is
raised. If the end of the interval would exceed the end of the containing interval,
space.Error[invalidParameters] is raised.

Note: When Pilot chooses the location of the interval, any special properly-contained
subintervals of within (e.g., the MDS) may be skipped over. Thus Pilot may raise
Space.lnsufficientSpace when within = Space.virtualMemory even though there is still
space available in the MOS.

The operation

Space. Deallocate : PROCEDURE [interval: Space.Jnterval];

Space.ErrorType: TYPE. { ••• , notAllocated. still Mapped •... };

deallocates the interval, making it available for other uses. interval should only contain
virtual memory obtained from Space.Allocate or Space.UnmapAt. If any portion of the
interval is mapped, Space.Error[stillMapped] is raised. If any portion of the interval is
already deallocated, Space.Error[alreadyDeallocated] is raised. If interval exceeds the
limits ofimplemented virtual memory, space.Error[invalidParameters] is raised.

4.5.6.3 Mapping explicitly allocated virtual memory ~o tiles

The operations for controlling the mapping of explicitly allocated intervals are MapAt and
UnmapAt.

Space.MapAt: PROCEDURE [

at: space.lnterval.
window: space.Window.
usage: Space.Usage space.unknownUsage,
class: space.Class file.
access: space.Access readWrite.
life: space.Life alive.
swapUnits: Space.SwapUnitOption space.defaultSwapUnitOption]
RETURNS [mapUnit: Space.lnterval];

This operation maps a window of a file to virtual memory starting at at.pointer. The
interval at must have been previously obtained from Allocate or UnmapAt or be a
subinterval of one. The resulting interval is a map unit. The length of the map unit is the
actual window length. If at contains any unallocated pages, space.Error[notAllocated] is
raised. If the end of the map unit would exceed the end of at,
space.Error(invalidParameters] is raised. This operation is otherwise analagous to
space.Map (q.v.).

4-41

4

4-42

Pilot Programmer's Manual

The operation

space.UnmapAt: PROCEDURE [
pointer: LONG POINTER. returnWait: Space. ReturnWait +- wait)
RETURNS [interval: space.lnterval];

removes the association between the map unit which contains pointer and its window.
interval describes the map unit being unmapped. If the virtual memory of the map unit
was originally obtained from Allocate, the associated interval remains the property of the
client. If the virtual memory of the map unit was originally obtained from Map. the client
acquires the associated interval. The client retains this interval until it is Deallocated.
This operation is otherwise identical to Space.Unmap (q.u.). Note that a client can Unmap
an interval originally obtained from Allocate and subsequently mapped with MapAt; the
associated interval becomes the property of Pilot.

4.5.7 Map unit and swap unit attributes, utility operations

The operation

space.GetMapUnitAttributes: PROCEDURE [pointer: LONG POINTER]
RETURNS [mapUnit: space.lnterval. window: Space. Window,
usage: Space.Usage. class: space.Class, swapUnits: Space.SwapUnitOption];

returns the location and length of the map unit which contains pointer, the window to
which it is mapped, the usage 0'£ the map unit, its swapping class, and the swap unit
structure. If the map unit is mapped to a data window, the returned window will be
[[File.nuIIiD. VOlume.nuIIlD], 0, count]. window.count (which equals the returned
interval.count) reflects the actual size of the map unit. It may be less than the
window.count given to Map or MapAt if the file was not long enough to supply the
requested count. If swapUnits.swapUnitType • uniform, the returned swapUnits.size is
the actual size of the swap units; defaultSwapUnitSize is never returned. If
swapUnits.swapUnitType • irregular, the returned swapUnits.sizes is NIL;
GetSwapUnitAttributes may be used to discover the sizes of irregular swap units. If
pointer is not in any map unit, this operation returns mapUnit = space.nulllnterval and
window.count = O. Thus a pointer p points to unmapped storage if
GetMapUnitAttributes[p].mapUnit.count = O. If the map unit containing pointer was
mapped by some facility other than Space, Space.Error[invalidParameters] is raised.

The operation

space.GetSwapUnitAttributes: PROCEDURE [pointer: LONG POINTER]
RETURNS [swapUnit: space.lnterval, access: space.Access, life: space.Life];

returns the location, length, current access, and current life of the swap unit which
contains pointer. The returned count reflects the actual size of the swap unit. In the case of
uniform or irregular swap units, the size will differ from the size given to Map or MapAt if
the requested size was zero or larger than Pilot implements. Also, Pilot may occasionally
break a client-specified swap unit into smaller swap units. If pointer is not in any swap
unit, this operation returns interval = Space.nulllnterval.

File Storage and Memory 4

The following operation returns' the number of pages required to contain a specified
number of words.

Space.PagesFromWords: PROCEDURE [wordCount: LONG CARDINAL]

RETURNS [pageCount: Environment.PageCount] •••• ;

The operation

Space.Pointer: PROCEDURE [pointer: LONG POINTER] RETURNS [POINTER];

converts a LONG POINTER to an equivalent POINTER. If the argument is not in the MDS of the
calling PROCESS, Space.Error[invalidParameters] is raised.

The operation

Space.PointerFromPage: PROCEDURE [page: Environment.PageNumber] RETURNS [POINTER];

returns a POINTER which points to the first word of the argument page. If the argument is
not in the MDS of the calling PROCESS, Space.Error[invalidParameters] is raised.

4.6 Pilot memory management

Four different facilities are available for acquiring and managing storage areas. Global
frame space is considered a precious resource, but may be used for small (a few dozen
words) storage that needs to be shared by multiple procedures and processes. Local
frames, existing only as long as it's procedure instance, may be used for storage items that
are less than a few hundred words in length and are not shared among procedures and
processes. The Space machinery, described in detail in §4.5, provides contiguous groups of
pages (256 word blocks) in the virtual memory and is most suitable for obtaining large
blocks of storage. There is also a Pilot free storage package for managing arbitrarily sized
nodes within client-designated areas of virtual memory called zones.

All state information pertaining to a zone is recorded within the zone itself, and, as a
consequence, each zone can be managed independently of all others through the same
interface, Zone. The Heap facility provides further assistance in managing arbitrary sized
nodes. The following properties distinguish a heap from a zone:

1. Heaps are more automatic, occupying system-design~ted (rather than client
designated) virtual memory, and expanding automatically (rather than requiring a
client call).

2. Heaps are designed to support the Mesa language facilities for dynamic storage
allocation (UNCOUNTED ZONES, NEW, FREE).

3. Some care is taken to treat large nodes (e.g., larger than 128 words) efficiently.

4. There is no mechanism to file away a heap and recreate it later.

It is expected that most Pilot clients will want to use the heap facilities. The zone facilities
provide extra fine-grain control which may be useful for certain critical applications. Like

4-43

4

4-44

Pilot Programmer's Manual

the zone facility, the'heap performs best when the sizes of nodes are small compared to the
size of the entire heap.

4.6.1 Zones

Zone: DEFINITIONS ... ;

The Pilot zone management facility is based upon a suggestion by Don Knuth (The Art of
Computer Programming, Volume 1, p. 453, #19). Within a zone, free nodes are kept as a
linked list. One hidden word containing bookkeeping information is stored with each
allocated node, and additional bookkeeping information is kept in the header of each zone.
Allocation and release of nod~s are usually very fast. Adjacent free nodes are always able
.to be coalesced. It is also possible to add new areas of virtual memory to enlarge a zone.
These new areas, called segments, are linked together so that they may be deleted if all the
nodes in a seqment become free. In addition, an entire zone may be deleted. A zone may
be saved in a file, and later recreated in memory at a different address.

The zone facility performs best when the sizes of nodes are small compared to the sizes of
the block(s) making up the zone. A typical use for a zone is, for example, for small,
transient data structures, such as the nodes of a temporary list structure or the bodies of
(short) strings when the maximum length must be computed dynamically or the structure
must outlive the frame that creates it. Use of a zone for large (Le., multi-page) nodes
decreases flexibility in storage management and is not recommended.

The allocator in the Pilot free storage package returns 16 bit pointers relative to a LONG
BASE POINTER supplied at the time the zone is created. Note that these values are free
pointers (type RELATIVE POINTER TO UNSPECIFIED) which must be cast appropriately (usually by
assignment) before being used. Allocated nodes are not relocatable within the zone, and
there is no garbage collection or automatic deallocation.

Because of its use for managing private, internal zones of Pilot, the zone facility raises no
signals or errors. Instead, the various operations return a status from the enumerated
type:

Zone.Status: TYPE. { ... };

4.6.1.1 Zone management

A zone can be created from a block of client supplied virtual memory by calling the
procedure Create.

zone.Create: PROCEDURE [
storage: LONG POINTER, length: zone,BlockSize, zoneBase: zone.Base,
threshold: zone.BlockSize +- zone.minimumNodeSize, checking: BODLE·AN +- FALSE]
RETURNS [zH: Zone.Handle, S: Zone.Status];

zone.BlockSize: TYPE. CARDINAL;

zone.Base: TYPE. Environment.Base;

zone.minimumNodeSize: READONLY zone.BlockSize;

File Storage and Memory 4

zone.Handle: TYPE [21 ;

Zone.nuIlHandle: zone.Handle ,. ... ;

Zone. Status: TYPE,. { ••• , okay, storageOutOfRange, zoneTooSmall, ... };

A zone is created to occupy the number words of virtual memory specified by length and
beginning at the word pointed to by storage. The argument zone Base is a LONG BASE

POINTER which supplies the base address for all relative pointer calculations in this zone.
The argument threshold indicates the minimum size node that will be maintained by this
zone. All allocation requests will be rounded up to this size and no unallocated fragments
smaller than this will be left in the zone.

The argument checking indicates whether or not some internal checking of the
consistency of the zone is turned on. The checking option is useful for helping debug client
programs which are improperly using or freeing nodes in the zone. Because it causes each
node to be checked on each zone operation, checking degrades performance somewhat.

The virtual memory must be mapped and have write permission. If it does not, an address
fault or write protection fault will be generated as if the client program had attempted to
write directly into that area of virtual memory. If length is too small to support a zone
with at least one node of size threshold, a status of zoneTooSmall is returned. All
segments of a zone must lie entirely within a single 64K word address space, i.e., all of the
zone must be addressable by 16 bit relative pointers based on base. If that is not the case,
or if the zone size is not in the range [0 .. 216), a status of storageOutOfRange is returned.

Caution: In this version of Pilot, zone sizes are restricted to the range [0 .. 215).

If a zone is successfully created, the Create operation returns a status of okay and a
zone.Handle which is used to identify the zone for all other zone operations.

null Handle is never the Handle to an actual zone and is provided as a reference to the null
zone.

A client may save a zone in a file for later use. Since the implementation of a zone may
change from release to release, client code using filed zones must be prepared to cooperate
in recovering from a "wrong version" condition detected by Pilot, as explained below. A
client may request Pilot to resurrect an old zone, presumably one previously saved in a
permanent file, with the procedure:

zone.Recreate: PROCEDURE [storage: LONG POINTER, zoneBase: zone.Base]
RETURNS [zH: zone.Handle, rootNode: zone.Base RELATIVE POINTER, s: Zone.Status];

Zone.Status: TYPE,. { ••• , wrongSeal, wrongVersion};

The storage parameter to Recreate should point to a place in virtual memory which is
mapped to a file window containing the contents of a zone created (or recreated) earlier in
the same or an earlier run. While the storage and corresponding zoneBase need not
remain fixed each time a zone is recreated, the arithmetic difference between them must
be kept invariant. Note also that the relative positions of any segments added to the zone
must stay invariant.

4-45

4

4-46

Pilot Programmer's Manual

N ormaUy Recreate returns a status of okay, together with an ordinary zone handle for the
zone and the value of the root node of the zone. However it is possible that an incompatible
implementation change in Pilot has been made since the zone was created, in which case
Recreate returns a status of wrong Version, an invalid zone handle, and the correct value
of the root node of the old zone. In this case it is the client's responsibility to rebuild a new
version of the zone, perhaps by enumerating the nodes reachable from the root node via
fields defined wi!hin the client node format(s). Finally, a status of wrongSeal indicates a
client programming error: the storage passed to Pilot does not begin with a fixed "seal"
value, and probably never contained a valid zone. In this case, the returned handle and
root node are both undefined.

Zone.GetRootNode: PROCEDURE [zH: zone.Handle]
RETURNS [node: Zone. Base RElATIVE POINTER];

Zone.SetRootNode: PROCEDURE [zH: Handle, node: Zone. Base RELATIVE POINTER];

zone.nil: READONLY zone.Base RELATIVE POINTER;

To support the notion of a filed zone, Pilot allows a root node to be associated with every
zone. This value, initially set to zone.nil, is just a short relative pointer which the client
may use to point to a distinguished node within the zone, thus providing a "p(>int of
purchase" on the data structures contained within the zone. As discussed above, the
entire set of nodes in a filed zone should be enumerable from the root (unless the entire
data structure can be reconstructed from some other source).

The Mesa construct NIL does not apply to RELATIVE POINTERS such as those used to reference
nodes. For this reason, the constant zone.nil is provided for representing the nil RElATIVE

POINTER.

There is no explicit operation for destroying a zone. The client program merely recovers
the storage it had provided and ceases to use the zone.

The following procedure returns the attributes of a zone.

Zone.GetAttributes: PROCEDURE (zH: zone.Handle]
RETURNS [zoneBase: zone.Base, threshold: zone.BlockSize,
checking: BOOLEAN, storage: LONG POINTER, length: zone.BlockSize,
next: zone.SegmentHandle];

zone.SegmentHandle: TYPE [1];

Zone.nuIlSegment: READONLY zone.SegmentHandle;

The results zoneBase, threshold, storage, and length are exactly as specified when the
zone was created. The result checking indicates whether or not consistency checking is
currently enabled for this zone (see below). The result next is a handle for an additional
segment of this zone (see §4.6.1.2); Zone.nullSegment is returned if there are no additional
segp1ents in this zone. No validity check is made ofzH, the zone.Handle, prior to returning
these results.

File Storage and Memory 4

The following operation is used to enable or disable consistency checking of the zone. If
checking is TRUE, a consistency check is made that all of the nodes in the zone, and the data
structures of the zone, are well-formed.

Zone.SetChecking: PROCEDURE (zH: zone.Handle, checking: BOOLEAN]

RETURNS (s: Zone.Status];

Zone.Status: TYPE = { ... , invalidZone, invalidSegment, invalidNode, node Loop, ... };

A status of invalidZone indicates the the basic data structures of the zone identified by zH
are malformed. A status of invalidSegment indicates that although the primary block of
virtual memory in the zone is okay, one of its segments (see §4.6.1.2) is malformed. A
status of invalidNode indicates that within the zone, some node is malformed or invalid.
This could mean that the overhead word of the node has been overwritten, that a 'node' has
been freed which does not lie within the virtual memory constituting the zone, or that a
'free' node is not properly linked on the free list in the zone. A status of nodeLoop
indicates that the free list has a loop within it. Except as otherwise indicated, any of these
status results can be returned if consistency checking is enabled and the corresponding
condition is detected during the execution of any of the operations in the Zone interface.

4.6.1.2 Segment management

The virtual memory provided to the zone at the time it is created is the primary storage of
the zone. It is of fixed size and cannot be reclaimed by the client so long as the zone is of
any value. Additional blocks of storage can be added to the zone by the procedure:

Zone.AddSegment: PROCEDURE (zH: zone.Handle, storage: LONG POINTER,

length: zone.BlockSize]
RETURNS (sH: Zone.SegmentHandle, s: Zone.Status];

Zone.Status: TYPE = { ... , segmentTooSmall, ... };

This operation creates a new segment of the zone containing the number of words
indicated by length and beginning at the virtual memory word pointed to by storage. The
virtual memory of the segment must be mapped and have write permission. If it does not,
an address fault or write-protect condition will be generated as if the client had written or
referenced that part of virtual memory directly. This area of virtual memory must also be
addressable by 16 bit pointers relative to the zoneBase of the zone, and length must be in
the range [0 .. 216). If it is not, a status of storageOutOfRange is returned. If length does
not specify enough virtual memory to implement a segment and to contain at least one
node of size threshold, a status of segment Too Small is returned.

Caution: In this version of Pilot, segment sizes are restricted to the range [0 .. 215).

All segments of a zone are linked together in a list pointed to by the nextSegment
attribute of the zone. The attributes of any segment, including the next member of the list
are returned by:

Zone.GetSegmentAttributes: PROCEDURE (zH: zone.Handle,sH: Zone.SegmentHandle]
RETURNS (storage: LONG POINTER, length: zone.BlockSize, next: zone.SegmentHandle];

4-47

4

4-48

Pilot Programmer's Manual

A segment may be removed from a zone if it contains no allocated nodes. This is
accomplished by the procedure:

zone.RemoveSegment: PROCEDURE [zH: Zone.Handle. sH: Zone.SegmentHandle]
RETURNS [storage: LONG POINTER. s: Zone.Status);

Zone.Status: TYPE • { •••• nonEmptySegment •... };

A status of okay indicates that the segment was successfully removed. A status of
nonEmptySegment indicates that the segment still contains allocated nodes and that
therefore it could not be removed. A status of invalidZone or invalidSegment is returned if
the data structures of the zone are not well-formed enough to permit removal of the
segment.

4.6.1.3 Node allocation and deallocation

The operations of this section provide the facilities for allocating and deallocating nodes in
a zone.

zone.MakeNode: PROCEDURE [zH: Zone. Handle. n: zone.BlockSize,
alignment: zone.Alignment +- a1]
RETURNS [node: Zone. Base RELATIVE POINTER, s: Zone.Status);

Zone.Alignment: TYPE. {a1, a2, a4, a8. a16};

Zone.Status: TYPE. { ••• , noRoomlnZone, ... };

MakeNode allocates a node ofn words in the zone identified by zH. An optional alignment
may be specified for this node. in which case the node is aligned in virtual memory as
follows:

ifalignment is set to a1 then the node is word aligned

if alignment is set to a2 then the node is double word aligned

ifalignment is set to a4 then the node is quad word aligned

if alignment is set to a8 then the node is eight word aligned

ifalignment is set to a16 then the node is sixteen word aligned

If a node of at least n words of the desired alignment can be allocated, a 16 bit pointer
relative to the zoneBase of the zone is returned pointing to the node, along with a status of
okay. More than the requested number of words will be allocated to avoid fragmentation
of the free space remaining in the zone into pieces of size less than the threshold of the
zone. If a contiguous block of space is not available in the zone, a status of noRoomlnZone
is returned. The value zone.nil is returned by MakeNode if it is unable to allocate a node.

If B is the zoneBase of the zone and node is the relative pointer returned by MakeNode
then a Mesa LONG POINTER to the node is represented by the expression @B[node]. If B =

File Storage and Memory 4

Space.MDS[].pointer then the expression LOOPHOLE[node, POINTER) is a Mesa short pointer to
the node.

zone.FreeNode: PROCEDURE [zH: zone.Handle, p: LONG POINTER]
RETURNS [s: Zone.Status];

This operation deallocates the node pointed to by p in the zone indicated by zH. If the node
does not lie within that part of virtual memory addressable by 16 bit relative pointers
based on the zoneBase of the zone, or the node is not marked in use, a status of
invalidNode is returned. Otherwise, a status of okay is returned. More detailed checking,
including that the node actually lies within the zone (or one of its segments) is only done if
consistency checking is enabled.

Zone.SplitNode: PROCEDURE [zH: zone.Handle, p: LONG POINTER, n: zone.BlockSize]
RETURNS [s: Zone. Status];

This operation splits the node pointed to by p, retaining the first n words and freeing the
remainder. No split occurs if the remainder would be smaller than the threshold of the
zone.

zone.NodeSize: PROCEDURE [p: LONG POINTER] RETURNS [n: zone.BlockSize];

This operations returns the actual size of the node pointed to by p (this may exceed the
allocated size to avoid fragmentation). No check is made to determine the validity of the
node.

4.6.2 Heaps

Heap: DEFINITIONS ... ;

The heap facility consists of the Pilot interface Heap together with some language features
built into Mesa. The operations in Heap are primarily concerned with creating and
deleting heaps. Almost all node allocation and deallocation may be performed using Mesa
NEW and FREE constructs, which also allow initialization and pointer management. The
reader is assumed to be familiar with these Mesa features.

4.6.2.1 Heap management

There are three types of heaps: normal, uniform, and MOS. Normal heaps allow allocation
of arbitrary sized objects. Uniform heaps allow allocation of objects whose size is equal to
or less than a fixed size. The MOS heaps allow allocation. of arbitrary sized objects from
within the MOS.

Normal and uniform heaps are identified by a value of type UNCOUNTED ZONE, MOS heaps by
a value of type MDSZone. Pilot provides a standard normal heap and a standard MOS heap:

Heap.systemZone: READONLY UNCOUNTED ZONE;

Heap.systemMDSZone: READONLY MDSZone;

4-49

4

4-50

Pilot Programmer's Manual

Note that the READONL Y attribute applies not to the contents but to the reference to the
particular heap.

The system provided heaps can be used to share information between subsystems. If a
subsystem requires a lot of private storage it is often more efficient to create a private
heap than to use the system provided heaps. If objects being allocated are all the same size,
uniform heaps are more efficient since less overhead is required for each node. To create
additional heaps, call either Create to create a normal heap, CreateUniform to create a
uniform heap, or CreateMDS to create an MDS heap.

Heap.Create: PROC [
initial: Environment.PageCount.
maxSize: Environment.PageCount 4- Heap.unlimitedSize,
increment: Environment.PageCount 4- 4,
swapUnitSize: Space.SwapUnitSize 4- space.defaultSwapUnit.
threshold: Heap.NWords 4- Heap.minimumNodeSize,
largeNodeThreshold: Heap.NWords 4- Environment.wordsPerPage/2.
ownerChecking: BOOLEAN 4-FALSE.
checking: BOOLEAN 4-FALSE]
RETURNS [UNCOUNTED ZONE);

Heap.CreateUniform: PROC[
initial: Environment.PageCount.
maxSize: Environment.PageCount 4- Heap.unlimitedSize.
increment: Environment.PageCount 4- 4.
swapUnitSize: Space.SwapUnitSize 4- space.defaultSwapUnit,
objectSize: Heap.NWords,
ownerChecking: BOOLEAN 4-FALSE.
checking:" BOOLEAN 4- FALSE]
RETURNS [UNCOUNTED ZONE];

Heap.CreateMDS: PROC [
initial: Environment.PageCount.
maxSize: Environment.PageCount ~ Heap.unlimitedSize.
increment: Environment.PageCount 4- 4.
swapUnitSize: Space.SwapUnitSize 4- Space.defaultSwapUnit •

• threshold: Heap.NWords 4- Heap.minimumNodeSize.
largeNodeThreshold: Heap.NWords 4- Environment. wordsPerPage/2.
ownerChecking: BOOLEAN 4-FALSE.
checking: BOOLEAN 4-FALSE)
RETURNS [MDSZone];

Heap.NWords: TYPE II [0 .• 32766);

Heap.unlimitedSize: Environment.PageCount II ••• ;

Heap.minimumNodeSize: READONLY Heap.NWords;

Heap.Error: ERROR [type: Heap.ErrorType);

File Storag~ and Memory

Heap.ErrorType: TYPE = { .. , maxSizeExceeded, invalidParameters, invalidSize,
insufficientSpace, otherError, ... };

4

When an allocation request would exceed' the current size of a heap, the heap is
automatically expanded by increment pages. It is still a good idea to specify a reasonable
value for initial to minimize fragmentation. (The expansions to a heap are not, in general,
contiguous in virtual memory.)

If a nondefault maxSize is specified, the signal Heap.Error(maxSizeExceeded] is raised
when a heap is being created or expanded, or a large node is being allocated, and the total
number of pages allocated for the heap exceeds maxSize. The signal
Heap.Error[insufficientSpace] is raised when the underlying zone implementation returns
a status to the Heap package that is either unexpected or not understood.

If a nondefault swapUnitSize is specified, the spaces created to hold the heap and its
extensions will have uniform swap units of size swapUnitSize. If it is defaulted, no swap
units will be created.

For normal or MDS heaps, the argument threshold indicates the minimum size node that
will be maintained by this heap. All allocation requests will be rounded up to this size and
no unallocated fragments smaller than this will be left in the heap. The argument
largeNodeThreshold indicates the size of node which will not be allocated in the normal
fashion. Allocation requests of this size or larger will be handled by creating a separate
space for each, which is deleted when the node is deallocated.

For uniform heaps, the argument objectSize indicates the size node that will be
maintained by this heap. All allocation requests greater than this size will result in the
signal Heap.Error(invalidSize] being raised.

IfownerChecking is TRUE, owner checking is enabled (see the description in §4.7.2.3 below
of the operation CheckOwner). The argument checking indicates whether or not some
internal checking of the consistency of the heap is turned on.

The checking option is useful for helping debug client programs which are improperly
using or freeing nodes in the heap. However, because it checks each node on each heap
operation, it does degrade performance noticeably. .

A heap may be deleted with one of the operations, as appropriate:

Heap.Delete: PROCEDURE [z: UNCOUNTED ZONE, checkEmpty: BOOLEAN .- FALSE];

Heap.DeleteMDS: PROCEDURE [z: MDSZone, checkEmpty: BOOLEAN.- FALSE];

IfcheckEmpty is TRUE, then Heap.Error[invalidHeap] will be raised if there are still nodes in
the heap which have not been deallocated.

4.6.2.2 Node allocation and deallocation

Nodes are allocated from a heap using the Mesa NEW operator and are deallocated using
the Mesa FREE statement. For the remainder of this section, assume that z and mz have

4-51

4

4-52

Pilot Programmer's Manual

been declared as a UNCOUNTEO ZONE and an MDSZone, respectively, and have been
initialized. For example:

z: UNCOUNTED ZONE • Heap.systeinZone;

mz: MDSZone = Heap.systemMDSZone;

or

z: UNCOUNTED ZONE = Heap.Create(initial: ...];

mz: MDSZone = Heap.CreateMDS[initial: ...];

(It is also possible to initialize z and mz by assignment subsequent to their declaration.)

1fT is a type and t is an expression of type T then

Z.NEW(T +- tl

allocates a node of size at least SIZE(T], sets its contents to t, and returns a long pointer to
the node. Similarly for

mz.NEw[T +- t] .

except a short pointer is returned. If p is a LONG POINTER TO T pointing to a node previously
allocated from z then

Z.FREE[@p);

sets p to NIL and frees the node p had pointed to (in that order). Similarly, ifmp is a POINTER
TO T pointing to a node previously allocated from mz then

mz.FREE[@mp];

sets mp to NIL and frees the node mp had pointed to (in that order). In both cases of FREE, if
P is NIL then the operation is a no-op.

A special construct is provided for allocating a string body from a heap:

Z.NEw[StringBody[n)]

allocates a node large enough to hold a string body of n characters, initializes its length
field to 0 and its maxlength field ton (but leaves its text field uninitialized), and returns a
LONG STRING pointing to the node. Similarly for

mz.NEw[StringBody[n]]

except a short STRING is returned.

File Storage and Memory 4

4.6.2.3 Miscellaneous operations

It is possible to determine the initial parameters and current statistics of a heap by calling
the appropriate one of:

Heap.GetAttributes: PROC [z: UNCOUNTED ZONE]
RETURNS [

heapPages, maxSize, increment: Environment.PageCount,
swapUnitSize: Space.SwapUnitSize,
ownerChecking, checking: BOOLEAN, attributes: Heap.Attributes];

Heap.Attributes: TYPE = RECORD [
SELECT tag: Type FROM

normal. > [
largeNodePages: Environment.PageCount,
threshold, largeNodeThreshold: Heap.NWords],

uniform = > [objectSize: Heap.NWords],
ENDCASE];

Heap.GetAttributesMDS: PROC [z: MDSZone]
RETURNS [

heapPages, largeNodePages, maxSize, increment: Environment.PageCount,
swapUnitSize: Space.SwapUnitSize,
threshold, largeNodeThreshold: Heap.NWords,
ownerChecking, checking: BOOLEAN];

If a client is about to create a large number of nodes which together would cause a heap to
expand by more than increment (the parameter to Create) pages, some fragmentation may
be avoided by first calling:

Heap.Expand: PROCEDURE [z: UNCOUNTED ZONE, pages: Environment.PageCount];

Heap.ExpandMDS: PROCEDURE [z: MDSZone, pages: Environment.PageCount];

The client can return the heap to the state it had when it was created by calling:

Heap.Flush: PROCEDURE [z: UNCOUNTED ZONE];

Heap.FlushMDS: PROCEDURE [z: MDSZone];

All nodes that were allocated are freed and all extensions to the heap are freed.

If many nodes have been deallocated from a heap, for example at the end of some
intermediate phase of activity, it may be possible to release some of the virtual memory
occupied by that heap. The operations

Heap.Prune: PROCEDURE [z: UNCOUNTED ZONE];

Heap.PruneMDS: PROCEDURE [z: MDSZone];

4-53

4

4-54

Pilot Programmer's Manual

examine each of the spaces containing expansions to the heap z, releasing any containing
no nodes.

. If.a heap was created with ownerChecki ng = TRUE, then the procedures

Heap.CheckOwner: PROCEDURE {p: LONG POINTER, Z: UNCOUNTED ZONE];

Heap.CheckOwnerMDS: PROCEDURE [p: LONG POINTER, Z: MDSZone];

Heap.ErrorType: TYPE = { ... , invalidOwner, ... };

may be called to determine if a node was allocated by the same module (global frame) as
the caller of Check Owner. Ifnot, Heap.Error(invalidOwner] will be raised.

It may be determined whether or not ownerChecking = TRUE by calling

Heap.OwnerChecking: PROCEDURE [z: UNCOUNTED ZONE] RETURNS [BOOLEAN];

Heap.OwnerCheckingMDS: PROCEDURE [z: MDSZone] RETURNS [BOOLEAN];

The checking feature, described in §4.6.2.1 above, may be turned on and off by:

Heap.SetChecking: PROCEDURE [z: UNCOUNTED ZONE, checking: BOOLEAN];

Heap.SetCheckingMDS: PROCEDURE [z: MDSZone, ch-ecking: BOOLEAN);

Heap.ErrorType: TYPE = { ... , invalidHeap, invalidNode, invalidZone, ... };

There may be times when it is convenient to allocate untyped storage, say for a variable
length structure not defined as a Mesa SEQUENCE. Several procedures are provided for
these cases. Wherever possible it is preferable to use NEW and FREE instead, redefining
types in terms of SEQUENCE where necessary. The following two procedures allocate a node
of the specified size, returning a pointer to the new node:

Heap.MakeNode: PROCEDURE (

Z: UNCOUNTED ZONE +- systemZone, n: NWords] RETURNS (LONG POINTER];

Heap.MakeMDSNode: PROCEDURE (

Z: MDSZone+-systemMDSZone, n: NWords] RETURNS [POINTER];

The following two procedures deallocate the specified node. If p is NIL the operation is a no
op.

Heap.FreeNode: PROCEDURE [z: UNCOUNTED ZONE +- systemZone, p: LONG POINTER];

Heap.FreeMDSNode: PROCEDURE [z: MDSZone +- systemMDSZone, p: POINTER];

File Storage and Memory 4

4.7 Logging

Log: DEFINITIONS ... ;

LogFile: DEFINITIONS ... ;

These interfaces supply a general purpose facility for recording information in a client
supplied log file. These facilities allow' logging words, blocks of words, and strings,
turning the log on and off, limiting the entries placed in the log based on a severity level,
initializing and resetting the log file, and controlling the action taken when it fills up.
Additional facilities are provided for subsequently examining the contents of a log file.
The implementation modules for the logging facility are Loqlmpl. bed and
LoqFilelmpl. bed.

4.7.1 Writing into the log file

The procedures in the log interface are used to write into the log file, and to install the log
file, start and stop logging, and other control functions. The file used for the log is
supplied by the client, and its properties (length, type, etc.) are not changed by the logging
package; only its content is modified. This allows the client to retain control of the log file
for purposes of examining it, copying it, displaying it to field service personnel, etc.

4.7.1.1 Installing, opening, and closing the log file

Install is used to initialize a log file. It is normally called only during system generation
when a file system is being built.

log.lnstall: PROCEDURE [file: File.File, firstPageNumber: File.PageNumber..o+-1];

log.logCap: READONlY File.File;

log. Error: ERROR [reason: log.ErrorType);

log.ErrorType: TYPE = MACHINE DEPENDENT {illegal log. tooSmaIiFile •... };

Install will format the file starting at firstPageNumber. Pages preceding firstPageNumber
will not be used by the logging package. Log.Error[illegaILog) is raised if there is already a
current log file. Log.Error[tooSmaIiFile) is raised if the usable size of file is too small.
Install also automatically performs an Open (see below). The currently installed log file is
kept in the variable logCap.

Caution: In the current version of Pilot, the minimum usable size of a log file is 4 pages.
Also, the logging package will not use more than 256 pages of a log file.

Log.Open: PROCEDURE [file: File.File, firstPageNumber: File.PageNumber+-1);

Log.ErrorType: TYPE = {oo 0 • invalidFile. 0 0 0 };

Open prepares the logging package to write log entries into file, which becomes the
currently installed log file. This must be done before any entries may be written into the
log. Open is typically used after a system restart to re-establish logging on an existing log
file (one that has already been formatted as a log). This procedure does not reset the

4-55

4

4-56

Pilot Programmer's Manual

contents of the log; new entries will be added to the end. Log.Error[invalidFile] is raised if
file has not been formatted as a log file, or if logging is currently open on a different file.
Opening the current log file is a no-op.

Log.Close: PROCEDURE [];

Log.ErrorType: TYPE. { •.. , logNotOpened, ..• };

Close causes all current log entries to be forced out to the log file and the logging facility to
stop accessing it. It ceases to be the current log file. Log.Error[logNotOpened] is raised if
there is no current log file.

4.7.1.2 Writing entries in the log file

Procedures are provided for logging three data types: a single word, a block of words, or a
string.

Log.PutWord: PROCEDURE [level: Log.Level,data: UNSPECIFIED, forceOut: BOOLEAN +- FALSE];

Log.PutBlock: PROCEDURE [
level: Log.Level, pointer: LONG POINTER, size: CARDINAL. forceOut: BOOLEAN +- FALSE];

Log.PutString: PROCEDURE [
level: Log.Level, string: LONG STRING, forceOut: BOOLEAN +- FALSE];

Log.Level: TYPE. Log.State[error .. remark];

Log.State: TYPE := MACHINE DEPENDENT {off, error, warning, remark};

An entry is only written to the log if its level is less than or equal to the current state (see
§4.7.1.3). IfforceOut is true, the buffer containing the entry is forced out to the file. The
length of a log entry is restricted to a maximum of 255 words; PutBlock and PutStrihg will
truncate an entry if necessary. Log.Error[logNotOpened] is raised if there is no current log
file. Except for their order, the logging package attaches no particular semantics to the
levels; the names used are meant only to be suggestive of the ordering.

Log.SetRestart: PROCEDURE [message: UNSPECIFIED];

SetRestart allows the client to write a special entry in a log file. This "message" entry is
the only entry in a log file that may be overwritten. This entry could be used by a backstop
(see Chapter 9) to communicate to its client when and why the client last crashed. The
client could obtain this information by reading the restart entry of its backstop's log file.
Log.Error[logNotOpened] is raised if there is no current log fiie.

4.7.1.3 Controlling logging

The following procedures can be used to control what information is recorded in the log
file:

Log.SetState: PROCEDURE [state: Log.State];

File Storage and Memory 4

Log.GetState: PROCEDURE RETURNS [state: Log.State];

Log.Disable: PROCEDURE RETURNS [Log.State];

Log.Reset: PROCEDURE (];

SetState specifies what levels of log entries are to be written into the log file.
Subsequently, any call that specifies a level less than or equal to the current state will
make an entry in the log. The current state is initially set to error. Note that if the state is
off, all logging calls are ignored, since level is r;tever less than or equal to off. GetState
returns the current value of the state. Disable sets the current state to off, with the side
effect offorcing out any internal buffering to backing storage. It also returns the previous
value of the state. Reset will reset the log file to the beginning, thereby completely
emptying it; this also flushes buffers. Log.Error[logNotOpened] is raised if there is no
current log file.

Log.SetOverflow: PROCEDURE [option: Log.Overflow];

Log.Overflow: TYPE • MACHINE DEPENDENT {reset. disable. wrap};

SetOverflow allows the client to specify what is to be done when the log file becomes full.
If reset is specified, the log will start over at the beginning (this will invalidate all
previous entries). If disable is specified, logging will be turned off; Log entries will
continue to be accepted, but their contents will be discarded. If wrap is specified, the log
will behave like a ring buffer, with a new entry overwriting the oldest one. Logging is
initially set for wrap mode. Log.Error[logNotOpened] is raised if there is no current log
file.

-4.7.1.4 Properties of the current log file

The following procedures can be used to determine the properties of the current log file:

Log.GetCount: PROCEDURE RETURNS [count: CARDINAL];

Log.Getlndex: PROCEDURE RETURNS [index: Log.lndex];

Log.GetLost: PROCEDURE RETURNS [lost: CARDINAL];

Log.GetUpdate: PROCEDURE RETURNS [time: System.GreenwichMeanTime];

Log.lndex: TYPE. CARDINAL;

Log.nullindex: Index = 0;

Log.ErrorType: TYPE = { ...• logNoEntry •... };

GetCount returns the current number of entries, counting from the beginning of the log
file.Getlndex returns the current index into the log file. GetLost returns the number of
entries that h,ave been lost due to log overflow (for overflow mode of disable). GetUpdate
returns the time of the last log entry, or raises Log.Error[logNoEntry] if the log is empty.
Log.Error[logNotOpened] is raised ifthere is no current log file.

4-57

4

4-58

Pilot Programmer's Manual

4.7.2 Reading a log tile

The procedures defined in LogFile interface are used to examine a log file. They should not
be applied to the current log file. If it is necessary to read the current log file, the client
must Log.Close it first.

If the file supplied to any LogFile operation does not appear to be formatted as a log file, the
error InvalidFile is raised. If the file is the current log file, the error lIIegalEnumerate is
raised.

LogFile.lnvalidFile: ERROR;

LogFile.lllegalEnumerate: ERROR;

The following procedures can be used to determine the properties of a log file. They
parallel those of the same name in the Log interface.

LogFile.GetCount: PROCEDURE [file: File.File, firstPageNumber: File.PageNumber +-1]
RETURNS [count: CARDINAL];

LogFile.GetLost: PROCEDURE [file: File.File, firstPageNumber: File.PageNumber +-1]
RETURNS [count: CARDINAL);

The following procedure is used to enumerate the entries of a log file.

LogFile.GetNext: PROCEDURE
[file: File.File, current: Log.lndex, firstPageNumber: File.PageNumber +-1)
RETURNS [next: Log.lndex];

LogFile.lnconsistent: ERROR;

GetNext is a stateless enumerator with a starting and ending value of nulllndex. If current
appears to contain garbage, GetNext will raise Inconsistent. This situation could arise if
the system crashed before the last page of the log was written to the log file. Therefore,
this error can be used to detect the last entry before the system crashed.

LogFile.GetAttributes: PROCEDURE
[file: File.File, current: Log.lndex, firstPageNumber: File.PageNumber +-1]
RETURNS [time: System.GreenwichMeanTime, type: LogFile.Type,
level: Log.Level, size: CARDINAL];

LogFile.GetBlock: PROCEDURE [file: File.File, current: Log.lndex,
place: LONG POINTER, firstPageNumber: File.PageNumber +-1);

LogFile.GetString: PROCEDURE [file: File.File, current: Log.lndex,
place: LONG STRING, firstPageNumber: File.PageNumber +-1];

LogFile.Type: TYPE = MACHINE DEPENDENT {null (0), block (1), string (2), (63)};

·LogFile.DifferentType: ERROR;

File Storage and Memory 4

GetAttributes will return the type, level and size of an entry, as well as the time at which
it was written. Only two types of entries are returned: If type is set to block, size is the
number of words in the block. If type is set to string, size is the number of characters in
the string. A single word log entry is treated as a block of size one. Once the type and size
of an entry are determined, GetBlock or GetString can be used to copy the entry· into
storage supplied by the client. If GetBlock is called to copy a string entry or GetString is
called to copy a block entry, the error LogFile.DifferentType is raised.

LogFile.Reset: PROCEDURE [file: File.File. firstPageNumber: File.PageNumber +-1];

Reset will reset a log file to be empty. The file could then be reestablished as the current
log file using Open.

LogFile.GetRestart: PROCEDURE [file: File.File. firstPageNumber: File.PageNumber +- 1]
RETURNS [restart: LogFile.Restart];

LogFile.Restart: TYPE .. MACHINE DEPENDENT RECORD [
message{O): UNSPECIFIED, time(1): System.GreenwichMeanTime];

GetRestart allows the client to read a special entry from a log file and to obtain the time
that entry was last written. This "restart" entry is ,the only entry in a log file that may be
read without enumerating the entries. The message returned is the restart supplied to
Log.SetRestart. If SetRestart was never called for that log file, time will have the value
System.gmtEpoch and the value of message will be undefined. The "restart" entry might
be used by a client to examine his backstop's log file to determine when and why he last
crashed. For the client to interpret message, he must have independent knowledge of the
values given to message by the system that wrote it.

4-59

5

1/0 Devices

The facilities described in this section provide the lowest level standard access to
input/output devices through Pilot. Two concepts are defined: software channel and
device driver. A software channel is a Mesa interface to a device. It specifies all of the
device-specific data and control information which a client needs to operate the device. A
device driver is a set of programs which actually implement and export a software channel.
It includes all of the necessary "interrupt" routines, interfaces with microprograms,
control of hardware registers, etc., to service the device. It may be part of Pilot or it may be
supplied by another organization for a special purpose device.

Initializing a software channel binds the client to a physical resource and device driver.
Each channel represents a single device. Shared resources, such as common controllers,
are normally hidden from view so that, for example, each drive unit connected to a
common controller is treated as a distinct device. The device drivers hold the decision
making power over the allocation of these shared resources. In the case that this does not
provide the proper control, it will be necessary to construct a new device driver.

The concept of software channel is common to all devices and all channels have a common
style. However, Pilot does not provide a central, common interface to all of them. Instead,
each channel is represented by its own Mesa DEFINITIONS module. The common style is
presented in this section in the form of the specification of a hypothetical device called
Examp/eDevice. The channel interfaces for specific devices exported by Pilot are given
later in this section. In addition, client development groups may add additional channels
to Pilot for specialized or private devices.

5.1 Channel structure and initialization

To create and initialize a software channel for Examp/eDevice, the client calls

ExampleDev;ce.Create: PROCEDURE [assign: ExampleDevice.WhichDevice,
drive: CARDINAL]

RETURNS [ExampleDev;ce.ChanneIHandle];

ExampleDev;ce.WhichDevice: TYPE = {any, specified};

ExampleDevice.ChanneIHandle: TYPE = PRIVATE ••• ;

5-1

5

5-2

I/O Devices

ExampleDevice.DeviceNotAvailable: ... ;

The assign parameter indicates how to choose among multiple instances of a device.' If any
is specified, the device driver allocates any instance of that device. If specified is passed,
then the device driver selects the drive indicated by drive. If the channel cannot be
initialized for any reason, the routine signals ExampieDevice.DeviceNotAvailable.

Device drivers which support multiple instances of a device also define the operation

ExampieDevice.GetDrive: PROCEDURE [channel: ExampieDevice.ChanneIHandle]
RETURNS [drive: CARDINAL];

This operation is used to identify the specific device associated with the ChannelHandle.

Deleting a channel and releasing the associated device are accomplished by

ExampieDev;ce.Delete: PROCEDURE [channel: ExampleDevice.ChanneIHandle];

This operation calls ExampieDevice.Abort before returning. If the client wishes to complete
all pending transfers he should first call ExampleDev;ce.Suspend.

The following operations allow a client to control the data transfer activity on a specific
device.

ExampleDev;ce.Suspend: PROCEDURE [channel: ExampleDevice.Channel Ha ndle];

This operation waits for all pending transfers (Le., as a result of previously executed calls
on ExampleDevice.Get and ExampleDevice.Put) to complete before returning. Subsequent calls
on Get, Put, or any control operations are ignored. However, calls on TransferWait for
previously outstanding transfers will return normally.

ExampieDevice.Restart: PROCEDURE [channel: ExampleDev;ce.ChanneIHandle];

This operation restarts a suspended channel. A channel may become suspended (with no
pending operations) as a result of the Suspend operation or (with some operations
pending) as the result of the occurrence of a sufficiently serious error.

ExampleDev;ce.Abort: PROCEDURE [channel: ExampleDevice.ChanneIHandle];

This operation aborts all activity on the indicated channel. Any outstanding data transfer
operations will be immediately terminated with a TransferStatus = [TRUE, aborted] (see
§5.1.1.3 for TransferStatus).

5.1.1 Data transfer

The operations described below transmit information to and from a device. This data
transfer is asynchronous so that many input and output operations can be simultaneously
pending.

Each device may impose its own constraints on the alignment of data in memory. This is
specified by three constants declared (statically) in the interface to the software channel.

Pilot Programmer's Manual 5

ExampieDev;ce.alignment: CARDINAL :II ••• ;

ExampieDevice.granularity: CARDINAL :II ••• ;

ExampieDev;ce.truncation:'CAR-DINAL :II ••• ;

These three values must be specified and clients of devices must adhere to them. These
requirements are normally imposed by certain high-performance devices to maintain
physical memory bandwidth, satisfy physical constraints in the implementation of the
controllers, etc. In particular, the device may constrain:

each 110 buffer to be aligned on a virtual memory address which is a multiple of
alignment;

each 110 buffer in virtual memory to have a length which is an integral multiple of
granularity; and

each physical record on the device to have a length which is a multiple of truncation.

Each of these constants must be a power of two in the range [0 .. 256]. A value of zero is
interpreted to represent byte alignment, granularity, and truncation; a value of one
represents word alignment, granularity, and truncation; a value of four represents
quadword alignment, granularity, and truncation; a value of sixteen represents 16-word
alignment, granularity, and truncation; and a value of 256 represents page alignment,
granularity, and truncation.

Normally, granularity is greater than or equal to truncation. On output, the buffer must
be a multiple of granularity, but the physical record may be truncated to a multiple of
truncation. On input, the buffer must also be a multiple of granularity. If a shorter (Le.,
truncated) record is read, the remainder of the buffer may be filled with garbage.

5.1.1.1 Data transfer types

The following data structures are the most general form for describing the source or
destination of the data being transferred. Specific software channels may define si!llpler
versions of these which, for example, omit the header or trailer, startlndex, etc.

ExampieDevice.PhysicalRecordHandle: TYPE = LONG POINTER TO ExampieDev;ce.PhysicaIRecord;

ExampieDev;ce.PhysicaIRecord: TYPE = RECORD [header: ExampleDevice.BlockDesc.

body: ExampleDevice.BlockDesc. trailer: ExampleDevice.BlockDesc];

ExampleDev;ce.BlockDesc: TYPE = RECORD [blockPointer: LONG POINTER TO UNSPECIFIED,
startlndex. stoplndexPlusOne: CARDINAL];

The Physical Record specifies control information for the transfer operation in the header
and trailer. The body specifies the buffer to or from which data is transferred. Quantities
such as disk addresses and communication packet routing information are placed in the
header and trailer blocks in a device dependent way.

5-3

5

5-4

1/0 Devices

If necessary, the alignment, granularity, and truncation may be specified separately for
the header, body, and trailer.

ExsmpleDevice.C;ompletionHandle: TYPE = PRIVATE ••• ;

The Completion Handle identifies the 1/0 transaction initiated by a Get or a Put operation.
It is passed as parameter to the TransferWait operation, which does not return until that
particular I/O operation is completed. Get and Put are asynchronous and return to the
caller as soon as the request has been queued and made pending. TransferWait completes
the operation and returns the number of bytes transferred and the resulting
TransferStatus.

5.1.1.2 Data transfer proced ures

ExsmpleDevice.Get: PROCEDURE [channel: ExsmpleDevice.ChannelHandle,

rec: ExsmpleDevice.PhysicaIRecordHandle]
RETURNS [ExsmpleDevice.CompletionHandle];

This operation queues the PhysicalRecord for input transfer and returns to the client with
the input transfer pending. The CompletionHandle must be submitted to the
TransferWait operation in order to complete the transfer and before any of the input
information can be used.

Exsmp/eDevice.Put: PROCEDURE [channel: ExsmpleDev;ce.ChanneIHandle,
rec: ExsmpleDev;ce.PhysicaIRecordHandle]
RETURNS [ExsmpleDevice.CompletionHandle];

This operation queues the Physical Record for output transfer and returns to the client
with the output transfer pending. The CompletionHandle must be submitted to the
TransferWait operation in order to complete the transfer and before the output record can
be reused.

For both Get and Put, the I/O buffers described by the Physical Record must not be released,
altered, or reused until after the TransferWait operation for this transfer completes. In
particular, any control information contained, for example, in the header or trailer buffers
will be read or processed in place by the device rather than stored internally.

Exsmp/eDev;ce. TransferWait: PROCEDURE [channel: ExsmpleDev;ce.Channel Handle,
event: ExsmpleDevice.CompletionHandle]
RETURNS [byteCount: CARDINAL, status: ExsmpleDevice.TransferStatus);

This operation completes the processing of the I/O and returns the number of bytes
transferred and the status to the client. The CompJetionHandle specifies the particular
pending transfer to await. If the channel has been aborted, status = [TRUE, aborted].

5.1.1.3 Data transfer status

Transferring data can provoke a number of errors. When a serious error occurs, the
channel is suspended. In any case Pilot returns the TransferStatu5 as the result of the
TransferWait procedure. The client can then examine this status and take corrective
action. If this status indicates that the channel has been suspended, it must be restarted

Pilot Programmer's Manual 5

after corrective action is taken and before any further data transfers are possible. A
Restart allows I/O transactions to continue over the channel. .
ExampIeDev;ce.TransferStatus: TYPE = RECORD [error: BOOLEAN.

type: ExampleDev;ce. TransferErrors);

ExampleDev;ce.TransferErrDrs: TYPE" {aborted, ... };

If no errors were encountered then error is FALSE . .If errors were encountered then error is
TRUE and the particular error is identified in type.

5.1.2 Device specific commands

Most devices need a number of device specific auxiliary operations which are not specified
by the common channel style. Rewind for a magnetic tape is an example.

Some of these operations are for direct and simple communication with the device driver
and involve no physical 110, e.g.,

ExampleDev;ce.SetNumberOfRetries: PROCEDURE [channel: ExampleDev;ce.ChanneIHandle.

numberOfRetries: CARDINAL];

Others might invoke an I/O operation which is not a data transfer, e.g.,

ExampleDevice.Rewind: PROCEDURE [channel: ExampleDev;ce.ChanneIHandle];

Completion ofthis kind of operation is detected via StatusWait described below.

Yet others might initiate I/O operations which are similar to data transfers and may
choose to use the CompletionHandle and TransferWait mechanisms to detect completion,
e.g.,

ExampleDev;ce. VerifyData: PROCEDURE [channel: ExampleDev;ce.ChanneIHandle.

rec: ExampleDev;ce.PhysicaIRecordHandle]
RETURNS [ExampleDevice.CompletionHandle];

5.1.3 Device status

In addition to the status information returned for eac,h data transfer operation, Pilot
maintains global information about the device itself in the DeviceStatus record. This
contains state information about the static and long term state of the device. It is accessed
via the GetStatus and StatusWait procedures.

ExampleDevice.DeviceStatus: TYPE = RECORD [•••];

ExampleDev;ce.GetStatus: PROCEDURE [channel: ExampleDev;ce.ChanneIHandle]

RETURNS (ExampleDev;ce. DeviceStatus];

ExampleDev;ce.StatusWait: PROCEDURE [channel: ExampleDev;ce.ChanneIHandle,
stat: ExampleDev;ce.DeviceStatus]
RETURNS [ExampleDev;ce.DeviceStatus];

5-5

5 1/0 Devices

StatusWait waits until the current DeviceStatus differs from the supplied parameter stat.
The client must examine the device status to determine what action to take.

5.2 Keyset, keyboards, and mouse

5-6

Keys: DEFINITIONS ... ;

KeyStations: DEFINITIONS ... ;

LevellVKeys: DEFINITIONS ... ;

LevelVKeys: DEFINITIONS ... ;

JLevellVKeys: DEFINITIONS ... ;

The state of the keys on the keyboard is described by an array of bits. These are packed
into an array of words maintained by Pilot but readable by the client. The following
exported variable provides access to this array.

UserTerminal.keyboard: READONLY LONG POINTER TO READONL Y ARRAY OF WORD;

The mouse buttons and the keyset are considered keys and therefore occupy positions in
this array.

The interpretation of the bits of this array is not specified by Pilot, but is instead specified
by one or more separate DEFINITIONS modules associated with each particular keyboard.
This permits Pilot to support more than one kind of keyboard layout. In the curren't
version of Pilot, there are three such DEFINITIONS modules. LevellVKeys defines the bits for the
U.S. Dandelion keyboard, JLevellVKeys, the Japanese Dandelion keyboard, and LevelVKeys,
the Dove keyboard.

The Keys and KeyStations modules are obsolete and are included only for backward
compatibility.

Figures 5.2a, 5.2b, and 5.2c at the end of this section show the assignments of keys on the
keyboards to bits in the UserTerminal.keyboard array.

The table below lists the names given to each bit in the UserTerminal.keyboard array by the
LevelVKeys interface. For historical reasons, the key names are not always the same as the
names printed on the keyboards. The columns in the table have the following meaning.

Bit: the nth element in the userTerminal.keyboard bit array.

Name: the key name used to refer to this bit.

Bit Name Bit Name'

0 56 Z
1 Bullet 57 LeftShift
2 SuperSub 58 Period
3 Case 59 SemiColon

Pilot Programmer's Manual 5

4 Strikeout 60 NewPara
5 KeypadTwo 61 OpenQuote
6 KeypadThree 62 Delete
7 Single Quote 63 Next
8 KeypadAdd 64 R
9 KeypadSubtract 65 T
10 KeypadMultiply 66 G
11 Keypad Divide 67 y
12 KeypadClear 68 H
13 Point 69 Eight
14 Adjust 70 N
15 Menu 71 M
16 Five 72 Lock
17 Four 73 Space
18 Six 74 LeftBracket
19 E 75 Equal
20 Seven 76 RightShift
21 D 77 Stop
22 U 78 Move
23 V 79 Undo
24 Zero 80 Margins
25 K 81 KeypadSeven
26 Dash 82 KeypadEight
27 P 83 KeypadNine
28 Slash 84 KeypadFour
29 Font 85 KeypadFive
30 Same 86 English
31 BS 87 KeypadSix
32 Three 88 Katakana
33 Two 89 Copy
34 W 90 Find
35 Q 91 Again
36 S 92 Help
37 A 93 Expand
38 Nine 94 KeypadOne
39 I 95 DiagnosticBitTwo
40 X 96 DiagnosticBitOne
41 0 97 Center
42 L 98 KeypadZero
43 Comma 99 Bold
44 Quote 100 Italic
45 RightBracket 101 Underline
46 Open 102 Superscript
47 Special 103 Subscript
48 One 104 Smaller
49 Tab 105 KeypadPeriod
50 ParaTab 106 KeypadComma
51 F 107 LeftShiftAlt
52 Props 108 DoubleQuote
53 C 109 Defaults
54 J 110 Hiragana
55 B 111 RightShiftAlt

5-7

Dandelion US Key Assignments

91 62 49 48

90 89 50

30 78 72

46 52 57

Dandelion US Key Numbering

@ # $ % (/.
23456

&
7

*
8

(
9

)
o

W E R T Y U . I o p

z

97

33

s o F G H

xc v B

99 100 I· 101

j K L . .
N M < > ?

/

102 103 104

32 17 16 18 20 69 38 24 26

109

75 31

35 34 19 64 65 67 22 39 41 27 74 45

37 36 21 51 66 68 54 25 42 59 44 61

56 40 53 23 55 70 71 43 58 28 76

73

Fig. S.2.a - Level IV Keyboard

92
63 79

80
60

29
93 77

47

Super Larger
Center Bold Italic Case Strikeout Underline Sub Smaller

~

•

Dove US Key Assignments

, @ # $ % ¢ &
1 234 567

*
8

(
9

)
o

W E R T Y U 0 P

S D F G H J K l

x C V B N M < >

~9_7~ __ 9_9~ __ 10_0~ __ 3~11 ~ __ 4~ __ 10_1~ __ 2 __ ~1_0_4~

Margins Font

80 29

77 62 1 48 33 32 17 16 18 20 69 38 24 26 75 31

79 91 50 35 34 19 64 65 67 22 39 41 27 74 45
60

90 89 72 37 36 21 51 66 68 54 25 42 59 7 108

30 78 57 56 40 53 23 55 70 71 43 58 28 76

46 52 47 73 93

Dove US Key Numbering

Fig. S.2.b - level V Keyboard

8 9 10 11

12 81 82 83

63 84 85 87

94 5 6

98 105 106

Center

• •

Dove Total Key Assignments

!
1

Bold Italic

@ :#
2 3

Case

$
4

%
5

Super Larger
Strikeout Underline Sub Smaller

(
6

&
7

*
8

(
9

)
o

W E R T Y U 0 P

S 0 F G H J' K L

x C V B N M < >

Katakana Hiragana Space English

~9_7~~9_9~ __ 10_0~ __ 3~11 ~ __ 4~ __ 10_1~ __ 2 __ ~1_0_4~

Margins Font

80 29

77 62 1 48 33 32 17 16 18 20 69 38 24 26 75 31

79 91 50 35 34 19 64 65 67 22 39 41 27 74 45
60

90 89 72 37 36 21 51 66 68 54 25 42 59 7 108

30 78 57 107 56 40 53 23 55 70 71 43 58 28 111 76

46 52 47 88 110 73 86 93

Dove Total Key Numbering

Fig. 5.2.(- Level V Keyboard

8 9 10 11
.

12 81 82 83

63 84 85 87

94 5 6

98 105 106

Pilot Programmer's Manual 5

5.3 The user terminal

UserTerminal: DEFINITIONS ... ;

UserTerminalExtras: DEFINITIONS ... ;

UserTerminal describes the state of the user input/output devices -- the display image (as
represented by a one-bit-per-pixel bitmap), the display cursor, the keyboard, the mouse,
and the keyset -- and allows the client to manipulate them. This interface assumes the
configuration of the user terminal is as is given above. It does allow the client to deal with
variations such as the number of keys or the size and resolution of the display. This
interface deals with many of the lowest level attributes of the terminal. Within a typical
client system, only a small user interface component will call UserTerminal directly.
Definitions and operations of general interest are presented first, followed by more
specialized ones.

UserTerminalExtras provides interim support for smooth scrolling. It will become part of
UserTerminal in a future version of Pilot.

5.3.1 The display image

UserTerminal.screenWidth: READONL Y CARDINAL [0 .. 32767];

USerTerminal.screenHeight: READONLY CARDINAL [0 .. 32767];

UserTerminal.pixelsPerlnch: READONL Y CARDINAL;

The attributes of the image are defined by the above exported variables. screenWidth and
screenHeight specify the number of usable, visible picture elements in a row or column of
the screen.

The bitmap image is addressed by x-y coordinates. The coordinate origin 10, 0) is the
uppermost, leftmost pixel of the display; x increases to the right, and y increases
downward.

UserTerminal.Coordinate: TYPE = MACHINE DEPENDENT RECORD [x, y: INTEGER];

The state of the display is defined as

UserTerminal.State: TYPE == {on, off, disconnected};

where

on indicates the display is physically on and visible to the user (and a bitmap is
allocated);

off indicates the display is physically off and not visible to the user (but a bitmap is
allocated);

disconnected indicates the same as off but with no bitmap allocated.

Clients may determine the current state of the bitmap display by calling

5-11

5

5-12

I/O Devices

UserTerminal.GetState: PROCEDURE RETURNS [state: UserTerminal.State);

The bitmap display is capable of displaying black-on-white or white-on-black. Clients
may determine or alter the current state of the background by using the following
procedures. In the image, a pixel whose value is one is considered the figure; a pixel of
zero, background.

userTerminal.GetBackground: PROCEDURE
RETURNS [background: UserTerminal.Background);

UserTerminal.SetBackground: PROCEDURE [new: UserTerminal.Background)
RETURNS [old: userTerminaI.Background);

UserTerminal.Background: TYPE- = {white. black};

Clients may momentarily blink (video reverse) the display by calling

UserTerminal.BlinkDisplay: PROCEDURE;

Some displays have the capability to display a border around the outside of the active
display region. Clients can determine if the display has this capability by interrogating
the following exported variable.

hasBorder: READONLY BOOLEAN;

If the display has a border, then clients may set the pattern to be displayed in the border
by calling

UserTerminal.SetBorder: PROCEDURE [oddPairs, evenPairs: [O .. 377B));

The bit pattern for an individual scan line is defined by displaying a single byte repeatedly
along the entire scan line. The same pattern is shown on alternating pairs of lines. Thus,
evenPairs is the byte used on lines -4, -3, 0, 1,4.5. etc.: oddPairs is the byte used on lines -
2, -1, 2, 3, 6, 7, etc. Calling SetBorder when has Border is FALSE will lead to unpredictable
results.

The following function is provided for clients who need to synchronize bitmap alteration
with display refresh. Waiting for scan line zero is also a commonway for a user input
handler to wait between polls of the keyboard and mouse buttons.

UserTerminal.WaitForScanLine: PROCEDURE [scanLine: INTEGER};

The following procedure will return a BitBlt table with the bitmap fields filled in for the
current bitmap.

UserTerminal.GetBitBltTable: PROCEDURE RETURNS [bbt: BitBlt.BBTable];

The bitmap parameters are returned in bbt in such a fashion that a BitBlt using it will
copy the bitmap from itself to itself. For a complete description of a BBTabie see the
description of BitBlt in the Mesa Processor Principles of Operation. The bits-per-line in
the returned bbt may be different than screenWidth if the display implementation has
non-visible padding bits appended to each line.

Pilot Programmer's Manual 5

WaitForScanLine and GetBitBltTable will raise the following error if the display is
disconnected (deallocated),

UserTerminal.BitmaplsDisconnected: ERROR;

Clients may alter the state of the bitmap and display by calling

UserTerminal.SetState: PROCEDURE [new: UserTerminal.State]
RETURNS [old: UserTerminaI.State);

Setting the state to disconnected invalidates any BBTables previously returned by
GetBitBltTable, hut setting the state to off does not. The bitmap is zeroed (i.e., set to all
background) when the state is changed from disconnected to on. Disconnecting destroys
any information that may have been contained in the bitmap.

UserTerminal.CursorArray: TYPE = ARRAY [0 .. 16) OF WORD;

The display cursor is defined by a 16x16 bit array, whose bits are oR'ed with the bitmap.
The top row is contained in CursorArray[O); the bottom row in CursorArray(15). The most
significant bits of each entry in the array correspond to the left portion of the cursor
image: the least significant bits correspond to the right portion.

Clients can determine the current bit pattern for the cursor by calling

UserTerminal.GetCursorPattern: PROCEDURE
RETURNS (cursorPattern: UserTerminaI.CursorArray);

The cursor pattern is set by calling

UserTerminal.SetCursorPattern: PROCEDURE [cursorPattern: UserTerminaI.CUrsorArray];

The coordinates of the cursor can be found by the following exported variable.

UserTerminal.cursor: READONLY LONG POINTER TO READONLY UserTerminal.Coordinate;

The position of the cursor on the display may be altered by calling the procedure

UserTerminal.SetCursorPosition: PROCEDURE [newCursorPosition: UserTerminal.Coordi nate];

5.3.2 Smooth scrolling

The smooth scrolling interface allows a client to create a window within the display area
that can be scrolled up or down. Clients may create a scroll window by calling

UserTerminaIExtras.CreateScroIIWindow: PROCEDURE (Iocn: UserTerminal.Coordinate,
width: CARDINAL, height: CARDINAL];

UserTerminaIExtras.scrollXQuantum: READONLY CARDINAL;

UserTerminalExtras.scroll YQuantum: READONL Y CARDINAL;

UserTerminaIExtras.Error: ERROR [type: UserTerminaIExtras.ErrorType];

5·13

5

5-14

1/0 Devices

userTerminaIExtras.ErrorType: TYPE = {multipleWindows, ... , yQuantumError,
. xQuantumError};

The horizontal bit-position of the scroll window within the bitmap (loc.x) and the width of
the scroll window (width) must be multiples of scrollX9uantum. The vertical bit position
of the scroll window (Ioc.y) and the height of the scroll window (height) must be multiples
of scrollYQuantum. Thus, a value of 16 for scrollXQuantum indicates that left and right
edges are word aligned within the bitmap.

[f the constraints on 1oc, height, and width are not observed, Error[xQuantumError] or
Error[yQuantumError] will be raised. Error(multipleWindows] will be raised if a scroll
window already exits.

UserTerminaIExtras.scrollinglnhibitsCursor: READONL Y BOOLEAN;

On some processors, the presence of a smooth scrolling window inhibits display of the
cursor, in which case scrollinglnhibitsCursor is TRUE.

Clients cause the display to be scrolled up or down by calling

UserTerminaIExtras.Scroll: PROCEDURE (line: LONG POINTER TO UNSPECIFIED, lineCount: CARDINAL,
increment: INTEGER];

UserTerminaIExtras.ErrorType: TYPE = { ... , noScrollWindow, lineCountError, ... };

This procedure adds scan lines to the top or bottom of the scroll window, causing the
window to scroll up or down. line points to the first bit within the first scan line to be
moved into the scroll window. lineCount indicates how many scan lines are to be moved
into the scroll window. lineCount must be a multiple ofscrollYQuantum. The number of
lines moved into the scroll window each time controls the speed of the scrolling. As each
scan line is moved into the scroll window, increment is added to line to produce the bit
address of the next scan line. The direction of the scroll is specified by the sign of
increment. If increment is positive, lines are added to the bottom of the window, causing it
to scroll up. Ifincrement is negative, lines are added to the top of the window, causing it to
scroll down.

During scrolling, the scan lines in the scroll window portion of the bitmap may not be in
the same order in memory as they appear on the display.

If no scroll window exists, the error Error(noScroIlWindow] will be raised. If lineCount is
not a multiple of scrollYQuantum, Error(lineCountError] will be raised.

The scroll window may be deleted by calling

UserTerminalExtras. DeleteScrollWi ndow: PROCEDURE;

If scrollinglnhibitsCursor is TRUE, there may be a delay before the cursor appears again
while the scan lines in the scroll window are being sorted into their proper order.

The error Error[noScrollWindow] will be raised if no scroll window exists.

Pilot Programmer's Manual 5

5.3.3 The keyboard and keyset
.

The keyboard and keyset defined in this interface are uninterpreted. That is, up/down key
transitions are noted by the state of the bits in the following unencoded array:

UserTerminal.keyboard: READONL Y LONG POINTER TO READONL YARRA Y OF WORD;

UserTerminaIExtras2.keyboardType: READONLY KeyBoardType;

UserTerminaIExtras2.KeyBoardType: TYPE = MACHINE DEPENDANT {
learSiegler(O), leveI4(1). jLeveIS(2), leveIS(3), other(LAST[CARDINALI)};

keyboardType gives the type of the keyboard attached to the system element. learSiegler
implies that a Lear Siegler CRT is attached. level4 implies that a Level 4 keyboard is
attached; this is the keyboard usually attached to Dandelion processors. jLevelS is a Level
5 keyboard for JStar. levelS is the American version of the Level 5 keyboard.

The Extras interface is interim for this release and will be merged with its parent interface
in future releases.

5.3.4 The mouse

The coordinates of the mouse can be found by the following exported variable

UserTerminal.mOuse: READONL Y LONG POINTER TO READONL Y UserTerminal.COOrdi nate;

Clients can alter the coordinates of the current mouse position by calling

UserTerminal.SetMousePosition: PROCEDURE [newMousePosition: UserTerminal.COOrdi nate];

5.3.5 The sound generator

This procedure allows generating simple tones on processors equipped with suitable
hardware:

UserTerminal.Beep: PROCEDURE [frequency: CARDINAL +-1000,
duration: CARDINAL +- 500];

Beep sounds a tone of the given frequency (specified in hertz) for the specified duration,
specified in milliseconds. The procedure is synchronous, it does not return until the beep
has been generated. A Beep may be prematurely terminated using Process.Abort.

On the Dandelion, frequencies lower than 29 Hz are rounded up to 29 Hz. The practical
upper limit is human audibility. The granularity of the duration is one process timeout
tick (about 50 ms.). The specified frequency is actually rounded up to the next frequency
which exactly divides 1.8432 MH z.

5·15

5 1/0 Devices

5.4 Floppy disk channel

5-16

FloppyChannel: DEFINITIONS ...

The floppy disk is supported in Pilot in two modes: as a Pilot floppy file system, and as a
direct software channel. The two forms of access are mutually exclusive. This section
addresses the second form, channel access.

The FloppyChannel interface to the floppy disk proyidesthe client direct sector-level access to
the floppy disk. This interface allows the client to check and set drive- and diskette
specific characteristics. to check drive status, and to read and write sectors or groups of
sectors. Logical formatting of the disk is the responsibi lity of the client.

Each drive is accessed by a Handle

FloppyChannel.Handle: TYPE [2];

FloppyChannel.nuIlHandle: READONLY Handle;

FloppyChannel.Error: ERROR [type: FloppyChanneI.ErrorType];

FloppyChannel.ErrorType: TYPE" { ... , invalidHandle, ... };

For all of the floppy channel operations that take a Handle as an argument, the error
FloppyChannel.Error[invalidHandle] is raised if the Handle is not valid. A Handle isjnvalid if
the drive that it refers to has changed state (i.e., gone from not-ready to ready or from
ready to not-ready) since the Handle was acquired.

The following frequently used types are available for the convenience of FloppyChannel
clients.

FloppyChannel.Density: TYPE .. {single, double};

FloppyChannel.Format: TYPE.. {IBM, Troy};

FloppyChannel.HeadCount: TYPE .. [0 .. 256);

FloppyChannel.SectorCount: TYPE .. [0 .. 256);

5.4.1 Drive characteristics

The Attributes record contains the characteristics of the specific drive connected to the
floppy disk controller and of the diskette currently installed.

FloppyChannel.Attributes: TYPE = RECORD [
deviceType: Device.Type. numberOfCylinders: CARDINAL.;'umberOfHeads: HeadCount.
maxSectorsPerTrack: SectorCount. formatLength: CARDINAL. ready: BOOLEAN,
diskChange: BOOLEAN. twoSided: BOOLEAN]

deviceType indicates the type of drive connected to the controller; numberOfCylinders is
the number of cylinders available for recording on that drive: numberOfHeads is the
number of read/write heads available on that drive; maxSectorsPerTrack is the maximum

Pilot Programmer·s Manual 5

number of sectors per tra:ck of the diskette (based on context setting); formatLength is the
size of the buffer, in words, needed in order to format the diskette; ready indicates whether
the drive contains a diskette or not; diskChange indicates whether the drive has gone from
ready to not-ready (door open), or from not-ready to ready, one or more times since the last
operation was performed; and twoSided indicates whether the diskette currently installed
has data on both sides.

5.4.2 Diskette characteristics

FloppyChannel.Context: TYPE = RECORD [protect: BOOLEAN, format: Format,
density: Density, sectorLength: CARDINAL [0 .. 10241];

The values of format, density, and sector Length are determined when the diskette is
formatted. Software write-protect can be selected by the client software by setting the
protect flag. The actual write fault status is a logical OR of this variable and the physical
signal being returned from the drive. The Troy format is the Xerox 850 format. l\""ote that
track 00 on IBM format diskettes, and all tracks of Troy format diskettes will be single
density. sectorLength is the length in words of the sectors on the current track. The val ue
must come from a valid set defined as {64. 128.256. 512} for IBM format and {1022} for
Troy format.

The context must be set, via SetContext, before any drive access procedures are called.
GetContext returns the current context settings.

FloppyChannel.GetCQntext: PROCEDURE [hand·'e: FloppyChannel.Handle]
RETURNS [context: FloppyChanneI.Context];

FloppyChannel.SetContext: PROCEDURE [handle: FloppyChannel.Handle.
context: FloppyChannel.Context]
RETURNS [ok: BOOLEAN];

The client must provide the context setting which matches the actual format of the
diskette. SetContext does not cause the diskette to be reformatted.

5.4.3 Status

The Status of the drive and operation is returned by any drive access operation.

FloppyChannel.Status: TYPE = MACHINE DEPENOENT{
goodCompletion, diskChange. notReady, cylinderError.
deleted Data, recordNotFound, headerError, data Error,
data Lost, writeFault. otherError[LAST[CAROINALI};

The meanings assigned to the fields in the status record are:

goodCompletion The operation has completed normally.

diskChange The disk drive has apparently gone from a ready to a not
ready state (door open), or vice versa, one or more times
since the last operation was performed.

5-17

5

5-18

(/0 Devices

notReady

cylinderError

deleted Data

recordNotFound

headerError

dataError

data Lost

writeFault

otherError

5.4.4 Transfer operations

The drive is not ready (does not contain a diskette).

The cylinder specified by the disk address can not be
located

The record ID for the sector contained a deleted data
address mark ir:t the header.

The record defined by the disk address could not be found.

A bad checksum was encountered on the header field.

A bad checksum was encountered on the data field.

A sector has been found on the diskette that is larger than
that ofthe current context.

Logical OR of the context setting of protect, and the
physical signal being returned from the drive.

An unexpected software or hardware problem has
occurred.

Tr~nsfer procedures move the specified number of sectors to or from the diskette. Seek,
error recovery, and wait for completion or error are included.

FloppyChannel.DiskAddress: TYPE = MACHINE DEPENDENT RECORD [cylinder: CARDINAL.
head: HeadCount. sector: SectorCount];

The cylinder and head fields must reference a valid cylinder and head as defined by the
Attributes record. The value of sector must be in the range defined by
Context.sectorLength.

FloppyChannel.ReadSectors: PROCEDURE [handle: FloppyChannel.Handle.
address: FloppyChannel.DiskAddress. buffer: LONG POINTER. count: CARDINAL +-1.
incrementDataPtr: BOOLEAN +-TRUE]
RETURNS [status: FloppyChannel.Status. countDone: CARDINAL];

FloppyChannel.WriteSectors: PROCEDURE [handle: FloppyChannel.Handle.
address: FloppyChannel.DiskAddress. buffer: LONG POINTER, count: CARDINAL +-1.
incrementDataPtr: BOOLEAN f-TRUE]
RETURNS [status: FloppyChannel.Status. countDone: CARDINAL];

FloppyChannel.WriteDeletedSectors: PROCEDURE [handle: FloppyChannel.Handle.
address: DiskAddress. buffer: LONG POINTER. count: CARDINAL +-1. incrementDataPtr:
BO~LEAN +-TRUE]
RETURNS [status: FloppyChannel.Status. countDone: CARDINAL];

Pilot Programmer's Manual

FloppyChannel.ReadlD: PROCEDURE [handle: FloppyChannel.Handle.

address: FloppyChannel.DiskAddress. buffer: LONG POINTER]

RETURNS [status: FloppyChanneI.Status];

5

The count parameter in the above calls indicates the number of sectors to be transferred.
The incrementDataptr parameter determines if buffer is advanced on multiple sector
transfers. [f incrementDataptr is TRUE, succeeding sectors are read and written advancing
through the buffer. [f it is FALSE, all transfers occur using the same sector buffer. The
latt~r might be used to write the same data into a number of sectors, or to read in order to
verify sectors.

Write Sectors and WriteDeletedSectors do a read-after-write to verify that the data lS

readable.

ReadlD reads 3 words of device dependent data into the buffer. This operation is provided
primarily for diagnostics.

Multiple sector transfers which begin on track 0 of an lBM-formatted diskette and
continue on to subsequent tracks will produce an error if the format of the remainder of
the diskette is different from the track 0 format (single density, 64-word sectors).

5.4.5 Non-transfer operations

The non-transfer operations access the drive in the same manner as the transfer
operations, but no data is moved. Nop returns a status. FormatTracks formats the specified
tracks.

FloppyChannel.Nop: PROCEDURE [handle: FloppyChannel.Handle]

RETURNS [status: FloppyChannel.Status];

FloppyChannel.FormatTracks: PROCEDURE [handle: FloppyChannel.Handle.

start: FloppyChannel.DiskAddress, trackCount: CARDINAL]

RETURNS [status: FloppyChannel.Status. (ountDone: CARDINAL];

Analogous to the PhysicalVolume interface. FloppyChannel provides the following operations:

FloppyChannel.Drive: TYPE = CARDINAL;

FloppyChannel.GetNextDrive: PROCEDURE [lastDrive: FloppyChannel.Drive]

RETURNS [nextDrive: FloppyChannel.Drive];

FloppyChannel.nuIlDrive: FloppyChannel.Drive = ... ;

FloppyChannel.GetHandle: PROCEDURE [drive: FloppyChannel.Drive]

RETURNS [ha.ndle: FloppyChannel.Handle];

FloppyChannel.lnterpretHandle: PROCEDURE [handle: FloppyChannel.Handle]

RETURNS [drive: FloppYChanneI.Drive];

FloppyChannel.ErrorType: TYPE = {invalidDrive •... };

5 19

5 1/0 Devices

GetNextDrive is a stateless enumerator of the floppy drives attached to the system
element. It begins with nullDrive as an argument and terminates with null Drive as its
result. A Handle is obtained by calling GetHandle. The Drive corresponding to a Handle
may be obtained by calling InterpretHandle. invalidDrive is raised by GetHandle and
GetNextDrive if they are passed an invalid Drive.

5.5 Floppy file system

5-20

Floppy: DEFINITIONS ... ;

Floppy is the interface for the Floppy file system. F'oppy provides a read/write file system
only. Direct mapping of floppy files to Pilot spaces is not supported by Floppy. The
implementation module is named FloppyImpl. bed.

5.5.1 Accessing files on the diskette

The floppy diskette contains a collection of files. As with Pilot volumes on rigid disks, each
file is a sequence of 256-word blocks called pages. A page corresponds to a sector on the
diskette. Diskette space management and the directory of extant files is kept in a
structure called the file list. Under most circumstances, users will not need to manipulate
the contents of file lists.

Floppy.FileID: TYPE [2];

Floppy.PageNumber: TYPE = [0 .. -- max pages per diskette --);

Floppy.PageCount: TYPE = [0 .. -- max pages per diskette --];

Files are identified by values of the type FilelD These are un interpreted 32-bit quantities
assigned uniquely within a given floppy diskette. FilelDs are not unique from one diskette
to another. In particular, if a diskette is copied, the new diskette will have the same files
with the same FilelDs as the old. Although it is the intention of the implementation not to
reuse FilelDs, they are not guaranteed to he unique in time for a given diskette (i.e., it is
possible for a FilelD to be assigned to a file and later for that file to be deleted and the FilelD
to he subsequently reused).

Note: PageNumber and PageCount are actually defined as LONG CARDINAL since the
current version of Mesa does not permit subranges of LONG CARDINAL.

In order to access a floppy diskette, the client must specify a handle of type:

Floppy.VoJumeHandle: TYPE [2];

Floppy.nuIlVoJumeHandle: READONLY Floppy. VolumeHandJe;

Floppy.Error: ERROR [type: Floppy.ErrorType];

Floppy.ErrorType: TYPE = { ...• invalidVolumeHandle •... };

A VolumeHandle is assigned when the floppy is opened (using Floppy.Open). A
VolumeHandle becomes invalid if the floppy drive door is opened, or if the drive is closed

Pilot Programmer's Manual 5

and reopened, even if the diskette remains the same. Values of type VolumeHandle are
not reused within a given instantiation of Pilot (i.e., from one boot to the next).

All of the operations that take a VolumeHandle as an argument will raise
Floppy.Error[invalidVolumeHandle] if presented with an invalid VolumeHandle.

A complete specification of a floppy fi Ie is given by

Floppy.FileHandle: TYPE = RECORD [volume: Floppy.VolumeHandle, file: Floppy.FileID];

All operations in this interface are synchronous. That is, they do not return to the client
until they are complete. [f a diskette is withdrawn between operations, the Pilot floppy
file system will not require scavenging (however, the client files may not be well-formed l.

[n order to access the floppy at all, the volume must be opened.

Floppy.Open: PROCEDURE [drive: CARDINAL +- 0] RETURNS [vol: Floppy.VolumeHandle];

Floppy.ErrorType: TYPE = { ... , notReady, noSuchDrive, invalidFormat, needsScavenging,
invalidVolumeHandle ... };

The operation Open opens the floppy volume and prepares it for all subsequent operations.
The drive argument indicates which floppy drive is intended if there is more than one
present.

If there is no diskette in the drive or for some other reason the drive is not ready, then the
error Floppy.Error[notReady] is raised. If drive specifies an unknown device then
Floppy.Error[noSuchDrive] is raised. If the diskette is not formatted according to the
standard supported by Pilot floppies, Floppy.Error[invalidFormat] is raised. Finally, if Pilot
cannot properly read in the file list or if the volume otherwise appears to not be well
formed, Floppy.Error[needsScavenging] is raised. In any of these cases, the volume is not
opened.

FloppyExtrasExtras.GetDrive: PROCEDURE [volumeHandle: Floppy.VolumeHandle]
RETURNS [drive: CARDINAL];

GetDrive returns the floppy drive associated with the given VolumeHandle.
Floppy.Error[invalidHandle] may be raised.

Floppy.Close: PROCEDURE [vol: Floppy.VolumeHandle];

Floppy.ErrorType: TYPE = { ... , volumeNotOpen, ... };

If the user withdraws the diskette from the drive, or for some other reason it becomes not
ready, the next operation on the floppy will implicitly close the volume and will raise
Floppy.Error[volumeNotOpen]. Alternatively, an open volume may be closed by calling
Close. Close, whether called implicitly or explicitly, merely causes Pilot to forget about the
floppy. It does not flush buffers, write out data from its caches or tables, etc. Thus, closing
a closed volume is a no-op.

The principal operations on floppy files are to read from or write to them sequences of
pages.

5-21

5

5-22

1/0 Devices

,Floppy. Read. Write: PROCEDURE [file: Floppy.FileHandle. first: Floppy.PageNumber.
count: Floppy.PageCount, vm: LONG POINTER];

Floppy.ErrorType: TYPE = { ... , fileNotFound, endOfFile, writelnhibited,
hardwareError ... };

Floppy. Data Error: ERROR [file: Floppy.FileHandle. page: Floppy.PageNumber,
vm: LONG POINTER];

These two operations are analogous to Space.Copyln and Space.CopyOut; i.e., they cause a
sequence of pages to be copied to or from the area in virtual memory designated by vm
(this pointer must point to the beginning of a page). The sequence is selected from the
floppy file designated by file, starts with the page numbered first within that file and
continues for count pages. Both operations are synchronous; control does not return to the
client until the read or write is complete

The area to or from which data is copied must be in mapped virtual memory, page aligned,
and, if necessary, writable; otherwise, an address fault or write protect fault will result. If
an attempt is made to read or write beyond the end of the floppy file, the error
Error[endOfFile) is raised. If the file argument does not specify a known file on that floppy
diskette, Error[fileNotFound) is raised. If an attempt to write to the floppy fails because
the write enable sticker has been removed, the error Error[writelnhibited] is raised. The
error Error[hardwareError] is raised if the drive appears to be broken or has temporarily
failed in an unexpected manner.

If a read or write error occurs during transmission of the data (and the sector is not
already recorded in badSectorTable), the signal DataError is raised and data transmission
stops. This signal is raised after the data transmission occurs. The values returned with
this signal indi~ate the offending file and page number and a pointer to the buffer in
virtual memory containing the data read or wri!ten. The signal may not be resumed.
Instead, the client should decide what to do with the bad data and bad sector, then
continue its read or write operation.

Floppy.CopyFromPilotFile: PROCEDURE [pilotFile: File.File, floppyFile: Floppy.FileHandle,
firstPilotPage: File.PageNumber, firstFloppyPage: Floppy.PageNumber,
count: Floppy.PageCount Eo- Floppy.defaultPageCount);

Floppy.CopyToPilotFile: PROCEDURE [floppyFile: Floppy.FileHandle, piiotFile: File.File,
firstFloppyPage: Floppy.PageNumber, firstPilotPage: File.PageNumber,
count: Floppy.PageCount Eo- Floppy.defaultPageCount);

Floppy.defaultPageCount: Floppy.PageNumber = ... ;
Floppy.ErrorType: TYPE = { ... , incompatibleSizes, ...];

These two operations are simple extensions of Floppy.Read and Floppy.Write. They copy the
specified file pages between a floppy disk file and a Pilot file. The specified pages must
exist in both files or Floppy.Error[incompatibleSizes] will be raised. If count is specified as
defaultPageCount then the entire file is copied starting from the specified page. Any of
the errors mentioned above for the Read and Write functions may also be raised. Both
operations are synchronous.

Pilot Programmer's Manual 5

A bad sector on the floppy diskette may be replaced by an alternate sector somewhere el~e
on the diskette by calling the following operation.

Floppy.ReplaceBadSector: PROCEDURE [file: Floppy.FileHandle, page: Floppy.PageNumber]
RETURNS (readError: BOOLEAN];

This operation identifies a sector in term~ of a page within a file and causes it to be
marked bad. An alternate copy of the sector is placed somewhere else on the diskette.
Pilot will do its best to copy the information from the bad sector to the alternate one. If
data errors occur during this copy, the read Error result of this procedure is TRUE. If,
however, Pilot believes that it has made an exact copy, the result is FALSE. After this
operation completes, the client may overwrite the sector with any data via the operation
Write. Bad sectors which have been replaced are invisible to client programs except for the
performance of Pilot in accessing them (extra disk seeks are required and an access to a
sequence of pages must be broken up!.

Caution: ReplaceBadSector is not implemented in Pilot 11.0.

5.5.2 Snapshotting and replication of the floppy volume

To facilitate easy snapshotting and replicating of floppies, the following procedures have
been added

Floppy.PagesForlmage: PROCEDURE [floppyDrive: CARDINAL ~ 0] RETURNS [File.pageCount];

Floppy.Makelmage: PROCEDURE [
floppyDrive: CARDINAL~O, imageFile: File.File,
firstlmagePage: File.PageNumber];

Floppy.CreateFloppyFromlmage: PROCEDURE [
floppyDrive: CARDINAL +-0, imageFile: File.File,
firstlmagePage: File.PageNumber, reformatFloppy: BOOLEAN,
floppyDensity: Floppy.Density ~ default, floppySides: Floppy.Sides ~ default,
numberOfFiles: CARDINAL ~ 0, newLabelString: LONG STRING ~ NIL];

Floppy.GetlmageAttributes: PROCEDURE [
imageFile: File.File, firstlmagePage: File.PageNumber,
name: LONG STRING ~ NIL]
RETURNS [
maxNumberOfFiles: CARDINAL, currentNumberOfFiles: CARDINAL,
density: Floppy.Density, sides: Floppy.Sides];

Floppy.ErrorType: TYPE =
{ ... , fi leListLength TooShort, floppyl magel nva lid, floppy Space TooSmall. .. };

PagesForlmage is used to determine the number of pages needed to copy the contents of a
floppy to a file.

The client calls Makelmage to snapshot a floppy. The call specifies the destination image
file and the page of the destination file at which the image should begin.

To create a floppy from an image file, the client calls CreateFloppyFromlmage specifying
the drive to copy to, the image file to copy from, and various other parameters about the

5-23

5

5-24

(/0 Devices

floppy. The newLabelString parameter permits changing the floppy's name from that in
the image file. If reformatFloppy is TRUE, the floppy is formatted. If the numberOfFiles is
not zero, and the current number of files on the image file is greater than numberofFiles,
then Error[fileListLengthTooShort] is raised. Error[floppylmagelnvalid] is raised if the
version, seal, or any of the file id'son the image file are invalid. l£.the size of the image file
is greater than the available space on the floppy, Error[floppySpaceTooSmall] is raised.

Note: DataError may be raised by .Makelmage or .CreateFloppyFromlmage if a read or
write error occurs during transmission of the data ..

Finally, the interface provides GetlmageAttributes so that the client can get information
about the image stored in an image file.

5.5.3 Managing the floppy volume

The floppy diskette may be formatted using the following operation. The volume must not
be open.

Fioppy.Format: PROCEDURE [drive: CARDINAL, maxNumberOfFileListEntries: CARDINAL,

labelString: LONG STRING, density: Fioppy.Density +- default,
sides: Fioppy.Sides +- default];

Fioppy.maxCharacterslnLabel: CARDINAL = 40;

Fioppy.Density: TYPE = {single, double, default};

Fioppy.Sides: TYPE = {one, two, default};

Fioppy.ErrorType: TYPE = { ... , onlySingleDensity, onlyOneSide, badDisl<, ... };

Floppy.AlreadyFormatted: SIGNAL [IabelString: LONG STRING];

This operation erases the diskette, writes all information according to the standard
supported by Pilot, and creates an empty file list large enough to· hold the number of
entries specified. A label string is also written on the diskette, in the same way as label
strings are written on Pilot rigid disk volumes. If the floppy is already formatted to be a
Pilot floppy volume, the resumable signal AlreadyFormatted is raised. This gives the
client a last chance to recover from accidentally formatting an already valuable floppy.
The density and sides arguments give the client optional control over these attributes of
the diskette when necessary for information interchange. The errors
Error[onlySingleDensity] and Error[onlyOneSide] are raised if either the diskette or the
drive imposes these limitations. The defaults of these cause Pilot to choose appropriate
values for the drive and the diskette. If the disk cannot be formatted due to problems with
either the diskette or the drive, Error[badDisk] is raised. .

Fioppy.GetAttributes: PROCEDURE [volume: Floppy.VolumeHandle,
labelString: LONG STRING]

RETURNS [freeSpace, largestBlock:Floppy.PageCount, fileList, rootFile: Fioppy.FileHandle,
. density: Floppy.Dens"ity, sides: Floppy.Sides, maxFileListEntries: CARDINAL];

Floppy.ErrorType: TYPE = { ... , stringTooShort, ... };

Pilot Programmer's Manual 5

This operation gets relevant attributes about a flopp-y volume. The value of the label
string is stored in the labelString argument (except that a NIL argument causes this to be
bypassed, rather than raising an error). Other attributes are returned in the result list.
The result freeSpace indicates the total number of free pages on the diskette, while the
result largestBlock indicates the largest file that could be created without having to
compact the diskette (see below). The density and sides attributes describe the diskette,
independently of what the dri ve can support. The rootFile is a distinguished file identified
by the client (see below). The fileList attribute describes the file list maintained by Pilot on
the diskette. It is returned for completeness only; clients are strongly discouraged from
using it. The maxFileListEntries attribute describes the length of the list. It is fixed at
format time and does not change over the life of a floppy file system instance.

A file may be created on the diskette with the following operation.

Floppy.CreateFile: PROCEDURE [volume: Floppy.VolumeHandle, size:Floppy.PageCount,
fileType: File.Type)
RETURNS [file: Floppy.FileHandle];

Floppy.ErrorType: TYPE = { ... , insufficientSpace, zeroSizeFile, fileListFuil ... };

This operation creates a file of the specified size on the diskette. As with files on the Pilot
rigid disk, each file is created with a File.Type to allow the client program to distinguish
what kind of file it is. All files are allocated contiguously on the diskette. If there is no
block of free space large enough, Error[insufficientSpace] is raised. An attempt to create"a
zero-sized file fails with the error Error[zeroSizeFile]. If the file list is full, the file is not
created and Error[fileListFull] is raised. This operation, including the updating of the file
list, is synchronous and does not return to the client until the file is created and the
diskette is well-formed in the new state

Floppy.qeleteFile: PROCEDURE [file: Floppy.FileHandle);

This operation deletes the specified tile and makes the space available for other files. This
operation, including the updating of the tile list, is synchronous and does not return to the
client until the file is deleted and the diskette is well-formed in the new state.

Floppy.GetFileAttributes: PROCEDURE [file: Floppy.FileHandle]
RETURNS [size: Floppy.PageCount, type: File.Type];

This operation gets the attributes of a file.

Floppy.GetNextFile: PROCEDURE [previousFile: Floppy.FileHandle]
RETURNS [nextFile: Floppy.FileHandle]; .

Floppy.nuliFileID: Floppy.FilelD = ... ;

This operation enumerates the files on a floppy volume in the standard style of a Pilot
stateless enumerator. Files are enumerated in the order that they occur on the diskette.
The enumeration is started by supplying the nuliFilelD and the appropriate volume and it
ends with the same value. The file list is not included in this enumeration.

Floppy.SetRootFile: PROCEDURE [file: Floppy.FileHandte];

5-25

5

5-26

I/O Devices

This operation allows the client to record the FilelO of a file in the volume data structures
for later use. This might be the pointer to a client level directory or to some other data
structure. If the file does not exist, Error{fileNotFound} is raised.

Floppy.Compact: PROCEDURE [volume: Floppy.Volume);

This operation rearranges the files on the diskette so that all of the free space occurs in one
block at the end of the volume. This is necessary to recover fragmented space in those
(rare) cases where a lot of file creation and deletion occurs.

Caution: Compact is not implemented in Pilot 11.0.

Floppy.Scavenge: PROCEDURE {volume: Floppy.volume]
RETURNS [numberOfBadSectors: Floppy.PageCount];

Floppy.GetNextBadSector: PROCEDURE [volume: Floppy.VolumeHandle, oldlndex: CARDINAL]
RETURNS [newlndex: CARDINAL, file: Floppy.FileHandle, page: Floppy.PageNumber};

The operation Scavenge recovers the contents of a malformed floppy by restoring the file
list, repairing bad marker pages, and recovering other data specified by the Pilot floppy
standard. Scavenge returns the number of new bad pages it encountered in client files
while scavenging (others can be handled by Pilot automatically). The operation
GetNextBadSector allows the client to enumerate the new bad sectors, starting and
ending with an index of zero.

Caution: Scavenge and GetNextBadSector are not implemented in Pilot 11.0.

FloppyExtras.Erase: PROCEDURE [
drive: CARDINAL, maxNumberOfFileListEntries: CARDINAL,
labelString: LONG STRING +-NIL};

FloppyExtras.ExtrasErrorType: TYPE = { ... , notFormatted, ... };

The operation Erase resets all the floppy file system data structures,. writes a new clean
file list,' re-marks bad pages, and resets all file and microcode pointers. It does not erase
any data sectors (only Format will actually erase all sectors on the diskette) If a
labelString is specified, it replaces the current label; otherwise the current label remains
unchanged. The volume will be closed if it is open. If drive does not describe a drive
currently in the system, Floppy.Error[noSuchDrive} is raised. If the length of labelString
exceeds Floppy.maxCharacterslnLabel, the label will be truncated to the maximum length.
Floppy.Error[badDisk] is raised if the disk cannot be accessed Floppy.Error[notReady] is
raised if there is no diskette in the drive or the drive is n(lt ready. If the diskette is write
protected, Floppy.Error[writelnhibited] is raised. FloppyExtras.ExtrasError[notFormatted] is
raised if the diskette has invalid formatting information.

FloppyExtras.NewScavenge: PUBLIC PROCEDURE [drive: CARDINAL]
RETURNS [okay: BOOLEAN];

FloppyExtras.ExtrasErrorType: TYPE = { ... , volumeOpen, ... };

The operation NewScavenge recovers the contents of a malformed floppy by restoring the
file list, repairing bad marker pages, and recovering other data specified by the Pilot
floppy standard. The volume must not be open. The return value okay indicates whether

Pilot Programmer's Manual 5

the scavenge was successful: ifokay returns TRUE, the floppy was, or was made, consistent.
If drive does not describe a drive currently in the system, Floppy.Error[noSuchDrive) is
raised. If the diskette is write protected, Floppy.Error[writelnhibited] is raised.
FloppYE~tras.ExtrasError[volumeOpen] is raised if the floppy volume on the diskette is open.
Other Floppy. Errors which result from reading or writing the floppy may also be raised.

Note: The 12.0 floppy scavenger does not repair damage. After validating the file system
and internal data structures, it resets the "needs-scavenging" indicator if the floppy is
consistent.

Note: In a future release, FloppyEKtras and FloppyExtras.Extras will be merged into Floppy. At
that time, the names of some interface items may change.

Several special operations are necessary to support Pilot-bootable floppies:

Floppy.CreatelnitiaIMicrocodeFile: PROCEDURE [volume: Floppy.VolumeHandle,
size: Floppy.pageCount, type: File.Type,

. startingPageNumber: Floppy.PageNumber ~ 1]
RETURNS [file: Floppy.FileHandle];

Floppy.ErrorType: TYPE = { ... ,initiaIMicrocodeSpaceNotAvailable, badSectors, ... };

This operation is like CreateFile except that it creates the initial microcode file at the exact
location demanded by the hardware boot facility. In particular, the page of the file
numbered startingPageNumber will appear where the hardware expects to read the first
block from the floppy diskette at boot time. The hardware of our current machines
demands that the initial microcode file must be contiguous and contain no bad sectors.
Thus, CreatelnitialMicrocodeFile should normally be applied only to a clean, newly
formatted diskette. Ifit is not possible to create such a file, either because there already is
a file there or because some sector is bad, Floppy.Error[initiaIMicrocodeSpaceNotAvailable]
or Floppy.Error[badSectors] are raised

Floppy.nuIlBootFilePointer: Floppy.BootFilePointer = [nuIlFileID,O];

Floppy.SetBootFiles: PROCEDURE [vol: Floppy.VolumeHandle,
pilotMicrocode, diagnosticMicrocode, germ,
pilotBootFile: Floppy.BootFilePointer ~ Floppy.nuIlBootFilePointer];

Floppy.GetBootFiles: PROCEDURE [volume: Floppy.VolumeHandle]
RETURNS [initial Microcode, pilotMicrocode, diagnosticMicrocode, germ,
pilotBootFile: Floppy.BootFilePointer);

Floppy.BootFilePointer: TYPE = RECORD [Floppy.FileID, page: Floppy.pageNumber];

Floppy.ErrorType: TYPE = { ... , invalidPageNumber, ... };

The operation SetBootFiles sets the pointers to the relevant boot files in the volume data
structures. This track is read by the initial microcode at boot time in order to properly
initialize the microcode and Pilot. Both a FilelD and a page number are specified so that
leader pages may be included in floppy boot files if desired. SetBootFiles will set the
pointer in track zero for any of its arguments with a non-null FileiD. Boot file pointers with

5-27

5 1/0 Devices

nullFilefD are cleared. This operation is synchronous. If the specified file page(s) do not
exist, the error Error[invalidPageNumber] is raised.

The remaining boot files on the diskette, apart from the initial microcode boot file, are all
read by the initial microcode file. Thus, they can be located anywhere and can have bad
sectors in them, and the initial microcode can interpret the bad sector table if necessary.

The operation GetBootFiles gets the pointers to all of the boot files, including the initial
microcode boot file.

It is recommended that clients assign distinguished Pilot file types to boot files to allow
the boot file pointers to be reset, if necessary, after scavenging.

Note: Booting in the manner described here is not supported by Pilot 11.0. Clients must
use MakeDLionBootFloppy tool to create bootable floppies in Pilot 11.0.

5.6 TTY Port channel

5-28

TTVPort: DEFINITIONS ... ;

TTVPortEnvironment: DEFINITIONS ... ;

The TTY Port channel is a Product Common Software package which provides a Pilot
client with access to the TTY Port controller and the connected device. It contains
procedures for sending and receiving bytes to and from the device, and for receiving status
back. Examples of devices that use thp TTY Port include the Diablo 630 character printer
and the Lear Siegler ADM-3 display terminal. The TTVPort interface is implemented by
TTYPortChannel.bcd.

The Diablo 630 character printer is an ASCII output device containing a daisy wheel
printer of the HyType [[genre. The ~ear Siegler ADM-3 display terminal is an ASCII I/O
device ofthe "glass teletype" type.

5.6.1 Creating and deleting the TTY Port channel

TTVPort.Create: PROCEDURE [IineNumber: CARDINAL]
RETURNS [TTvPort.ChanneIHandle];

TTVPort.ChanneIHandle: PRIVATE ... ;

TTVPort.nuIlChanneIHandle: TTVPort.ChannelHandle ... ;

TTVPort.ChanneIAlreadyExists: ERROR;

TTVPort.NoTTVPortHardware: ERROR;

TTVPort.lnvalidLineNumber: ERROR;

Create creates the channel to the TTY Port. If the channel already exists, Create
generates the error TTVPort.ChanneIAlreadyExists. If no TTY Port hardware is installed,
Create ge·nerates the error TTVPort.NoTTVPortHardware. If lineNumber does not represent

Pilot Programmer's Manual 5

a line present 6n the TTY Port controller, Create generates the error
TTvPort.lnvalidLineNumber.

TTvPort.Delete: PROCEDURE [channel: TTvPort.ChanneIHandle];

Delete deletes the channel and releases the associated device. This operation has the
effect of calling Quiesce, aborting all pending activity on the channel. Any uncompleted
Gets or Puts will be terminated with status = abortedByDelete.

TTVPort.Quiesce: PROCEDURE [channel: TTvPort.ChanneIHandle];

Quiesce aborts all pending activity. All uncompleted asynchronous activities (i.e., those
initiated by Get or Put) will be terminated with status equal to aborted. Any additional
operations on the channel, other than Delete, cause the error ChannelQuiesced.

5.6.2 Data transfer

TTVPort.Put: PROCEDURE [channel: TTVPort.ChanneIHandle, data: CHARACTER]
RETURNS [status: TTVPort. TransferStatus];

Put transmits data to the TTY Port status will be set to success if the character 1S

successfully transmitted. Aborts are disabled ror this operation.

TTVport.Get: PROCEDURE [channel: TTVPort.ChanneIHandle]
RETURNS [da~a: CHARACTER. status: TTVPort TransferStatus);

TTVPort.Get waits until a byte of data is receivt'd rr·,m the TTY Port. status equals success
if a characte~ is successfully received. Aborts are disabled for this operation.

The procedure

TTVPort.SendBreak: PROCEDURE [channel: TTvPort.ChanneIHandle);

causes a break to be sent on the specified TTY channel.

5.6.3 Data transfer status

The status of an individual data transfer (Le., Get or Put) is indicated by a variable of type
TransferStatus.

TTVPort.TransferStatus: TVPE = {success, parityError, asynchFramingError, data Lost,
break Detected, aborted, abortedByDelete}.

The meanings of these status codes are:

success Normal completion.

parityError Data has not been transferred faithfully.

asynchFram.ingError Data has not been transferred faithfully (i.e .. stop bits
were missing)

5-29

5

5-30

I/O Devices

data Lost

break Detected

aborted

abortedByDelete

5.6.4 TTY Port operations

Data has been lost due to lack of any data buffers to hold
received characters.

A break has occurred on the line. This bit is latched and
can be cleared using the SetParameter operation (see
below).

TTVPort.Quiesce has been called while the transfer is
outstanding ..

TTYPort.Delete has been called while the transfer is
outstanding.

The TTY Port Channel will buffer up to 16 characters of input from its device along with
their associated transfer status To see if and how much data has been received from the
device by the TTY Port, call the procedure

TTVPort.CharsAvailable: PROCEDURE [channel: TTVPort.ChanneIHandle]
RETURNS [number: CARDINAL];

number indicates the number of input buffers containing data.

The various parameter~ associated with a TTY port are set with the procedure

TTVPort.SetParameter: PROCEDURE [channel: TTVPort.ChannelHandle,
parameter: TTVPort.Parameter];

The parameters are contained in records of the following type:

TTVPort.Parameter: TVPE·= RECORD [SELECT parameter: * FROM
breakDetectedClear = > [breakDetectedClear: BOOLEAN],
characterLength = > [characterLength: TTYPort.CharacterLengthl,
dearToSend = > [clearToSend: BOOLEAN],
dataSetReady = > [dataSetReady: BOOLEAN),
JineSpeed = > [lineSpeed: TTYPort.LineSpeed],
parity = > [parity: TTVPort.Parity],
stopBits = > [stopBits: TTVPort.StopBits1,
ENDCASE);

TTVPort.CharacterLength: TYPE = TTYPortEnvironment.CharacterLength;

.TTVPort.LineSpeed: TYPE = TTVPortEnvironment.LineSpeed;

TTYPort.Parity: TYPE = TTVPortEnvironment.Parity;

TTYPort.StopBits: TYPE = TTYPortEnvironment. StopBits;

TTVPortEnvironment.LineSpeed: TYPE = {bpsSO, bps75, bps110, bps134pS, bps150, bps300,
. bps600, bps1200, bps1800, bps2000, bps2400, bps3600,bps4800 ,bps7200,bps9600.

bps19200};

Pilot Programmer's Manual

TTVPortEnvironment.Parity: TVPE = {none, odd, even};

TTVPortEnvironment.Characterlength: TVPE = {lengthlsSbits, lengthls6bits, lengthls7bits,
lengthls8bits} ;

TTVPortEnvironment.StopBits: TVPE = {none, one, oneAndHalf, two};

breakDetectedClear is used to clear the latch bit breakDetected in TTvPort.DeviceStatus.

CharacterLength selects the character length and is defaulted to lengthls8bits.

5

The boolean clearToSend governs the state of the corresponding circuit to the TTY Port. It
is defaulted to FALSE. After the TTY Port channel is created, clearToSend should remain
TRUE at all times since the communication line is full-duplex.

The boolean dataSetReady governs the state of the corresponding circuit to the TTY Port.
It is defaulted to FALSE. dataSetReady should be set TRUE when the communication line is
to be connected, FALSE when it is to be disconnected.

TTvPort.LineSpeed selects the timer constant for the baud rate generator which provides
the clocking for transmissions to and from the TTY Port. bps1200 is the default.

TTVPort.Parity selects the parity of the transmissions none is the default.

TTVPort.StopBits is the number of stop bits. two is the default.

5.6.5 Device status

In addition to the status information returned for each data transfer operation, state
information about the TTY Port itself is kept in the DeviceStatus record. It is accessed via
the GetStatus procedure.

TTVPort.GetStatus: PROCEDURE [channel: TTVPort.ChanneIHandle)
RETURNS [stat: TTVPort.DeviceStatus);

The procedure

TTVPort.StatusWait: PROCEDURE [channel: TTVPort.ChanneIHandle, .
stat: TTYPort.DeviceStatus)
RETURNS [newstat: TTVPort. DeviceStatus];

waits until the current DeviceStatus differs from the supplied parameter stat. The client
must examine newstat to determine what action to take.

TTvPort.DeviceStatus: TVPE = RECORD [aborted, breakDetected, dataTerminalReady,
readyToGet, readyToPut, requestToSend: BOOLEAN];

The boolean aborted indicates that the TTVPort.StatusWait was aborted by either a
TTVPort.Delete or TTVPort.Quiesce.

The boolean breakDetected indicates that a "break" WilS received on the communication
line, where "break" is defined to be the absence of a "stop" bit for more than 190
milliseconds. This boolean is called a latch bll in that it is set by the channel when the

,'j·31

5 1/0 Devices

associated condition occurs, but is nol cleared by the channel when the condition clears. It
remains set to guarantee that the client has an opportunity to observe it. To clear it (in
order to detect its subsequent setting), breakDetectedClear is specified as a parameter to
the TTVPort.SetParameter procedure.

The boolean dataTerminalReady is TRUE when the associated device is powered on.

The boolean readyToGet is TRUE when the hardware input buffer (for data sent from the
device) is not empty.

The boolean readyToPut is TRUE when the hardware output buffer (for data sent to the
device) is not full.

The boolean requestToSend is held TRUE by the device (as in a 103-type modem) to enable
transmission to the device.

5.7 TTY Input/Output

5-32

TTY: DEFINITIONS ... ;

The TTY interface provides a simple character-oriented input and output facility. It
admits many implementations on character-oriented terminal devices. In this way it is a
lot like the Stream interface. This interface is Product Common Software.

Note: For most clients, the default TTY implementation will be supplied as part of this
release: TTYlearSiegler.bcd or that provided by the Mesa Development Environment.

Note: The Lear Siegler TTY implementation has the following default settings for the
TTY Port channel: 8 bit characters, 9600 baud, 2 stop bits, no parity, CTS set to ON, and
DSR set to ON.

5.7.1 Starting and stopping

TTV.Create: PROCEDURE [name: LONG STRING ~ NIL.
backingStream. ttylmpl: Stream.Handle ~ NILl

RETURNS [h: TTV.Handle];

TTv.Handle: TVPE [2];

TTv.nuIlHandle: TTv.Handle = LOOPHOLE[LAST[LONGCARDINAL];

TTV.NoDefaultlnstance: ERROR;

TTv.OutOflnstances: ERROR;

Create creates a Handle, which is returned to the caller. This handle is then passed as an
argument to the other T'l'Y input/output operations. The arguments name and
backingStream are used by the underlying TTY implementation in an implementation
dependent fashion to implement the backing file for the TTY, If ttylmpl is not NIL, it is
used as the stream implementing the TTY stream If ttylmpl is NIL, an instance of the
default TTY implementation is created. The parameter h is the TTv.Handle that will
correspond to the stream underlying this TTY channel when the call to TTY.Create

Pilot Programmer's Manual 5

completes. If there is no default TTY implementation, the error NoDefaultlnstance is
raised. If another Handle cannot be created, OutOflnstances is raised.

TTY.SetBackingSize: PROCEDURE (h: TTY.Handle, size: LONG CARDINAL];

This procedure sets an upper limit on the numher of bytes in the backing file and forces
the backing file to be used in a wraparound mode. It has no effect if the implementation
does not support a backing file.

TTY.Destroy: PROCEDURE (h: TTY. Handle, deleteBackingFile: BOOLEAN +- FALSE];

Destroy invalidates TTY.Handle. If deleteBackingFile is TRUE and the hacking file was
created by Create then the backing file is deleted.

TTY.UserAbort: PROCEDURE[h: TTY.Handle] RETURNS [yes: BOOLEAN];

TTY.ResetUserAbort: PROCEDURE[h: TTY.Handle];

TTY.SetUserAbort: PROCEDURE[h: TTY.Handle];

UserAbort returns the value of the user abort flag. TRUE indicates that that user has typed
some "abort" key. TTY.ResetUserAbort clears the user abort flag. TTY.SetUserAbort sets
the user abort flag,just as if the user had typed the "abort" key.

Note: The Lear Siegler TTY implementation allows users to abort processes by
depressing the Break key or by depressing the Control and Stop keys simultaneously.

5.7.2 Signals and errors

The signal

TTY.LineOverflow: SIGNAL [s: LONG STRING] RETURNS [ns: LONG STRING);

indicates that input has filled the string 5. The current contents of the string are passed as
a parameter. The catch phrase should return a string ns with more room

The signal

TTY.Rubout: SIGNAL;

indicates that the DEL key was typed during TTY.GetEditedString {or procedures which call
GetEditedString.

5.7.3 Output

To output a block of characters call

TTY.PutBlock: PROCEDURE[h: TTY.Handle, block: Environment.Block];

5-33

5

5-34

I/O Devices

5.7.4 Utilities

TTY.BackingStream: PROCEOURE [h: TTY Handle] RETURNS [stream: Stream.Handle];

TTv.NoBackingFile: ERROR;

If a backing stream was created by TTY.Create, this operation returns the Stream. Handle for
it. If none was created, the error TTY.NoBackingFile is raised.

TTV.CharsAvaiiable: PROCEDURE [h: TTY.Handle] RETURNS [number: CARDINAL];

CharsAvailable returns the number of input characters available (but not yet delivered to
the client).

TTY. NewLine: PROCEDURE [h: TTY Handle) RETURNS (yes: BOOLEAN);

Newline returns TRUE when at the beginning of an output line This procedure is mainly
used when formatting output.

TTv.PutBackChar: PROCEDURE [h: TTY.Handle. c: CHARACTER);

PutBackChar places c at the front of the list of characters to be input to the client.

TTV.SetEcho: PROCEDURE [h: TTv.Handle. new: TTv.EchoClass]
RETURNS [old: TTY.EchoClass];

TTY.GetEcho: PROCEDURE [h: TTY.HandleRETuRNS [old: TTY.EchoClass];

TTv.EchoClass: TYPE = {none. plain, stars};

SetEcho sets how input characters are to be echoed hack to the output. It returns the
previous state of the echoing mode If the mode is none, no characters are echoed: if it is
stars, the character "*" is echoed for each input character. The default echoing mode is
plain. Automatic echoing is done only for the procedure TTY.GetEditedString and the
procedures implemented using TTY.GetEditedString.

TTY.BlinkDisplay: PROCEDURE [h: TTY.Handle);

This procedure causes the display to be blinked if the device is capable of it.

TTV.PushAlternatelnputStream: PROCEDURE [h: TTY.Handle, stream: Stream.Handle];

TTY.PopAlternatelnputStreams: PROCEDURE [h: TTY.Handle. howMany: CARDINAL+-1];

PushAlternatelnputStream adds an alternate input stream to the Handle. Characters will
be taken from the most recently pushed alternate input stream until it is exhausted, at
which point characters will be taken from the previous input stream.
PopAlternatelnputStreams removes howMany alternate input streams from the Handle.

(
.1

Pilot Programmer's Manual 5

If howmany is greater than the number of existing alternate input streams, all existing
are removed before PopAlternatelnputStream returns.

5.7.5 'String input operations

The operation

TTY.GetChar: PROCEDURE [h: TTY.Handle] RETURNS [c: CHARACTER];

returns the next character of input when it becomes available.

TTY.CharStatus: TYPE = {ok, stop, ignore};

TTY.GetEditedString: PROCEDURE [h: TTY.Handle, s: LONG STRING,
t: PROCEDURE [c: CHARACTER] RETURNS [status: TTY.CharStatus]]
RETURNS [c: CHARACTER];

GetEditedString appends input charader! s) to the string s. The user-supplied procedure t
determines which character terminall· ... the string If t returns stop, the character c
passed to it should terminate the string If t returns ok, the character C should be
appended to the string. If t returns ignore, the character c should not be appended to the
string, but the string should not yet be terminated. ~ote that the client must initialize
s.length, typically to zero. The signal TTY LineOverflow is raised if s.maxlength is
reached. The following special characters are recognized on input, and are not appended
to 5:

DEL raises the signal TTY.Rubout

SOH,BS i A, i H (backspace) - delete the last character

ETB, DCl i W, i Q (backwordl delete the last word

CAN jX delete everything

De2 jR retype the line

SYN iV quote the next character, used to input
special characters

Echoing of characters other than the special characters and the terminating character is
determined by the echoing mode set by TTY.SetEcho (default is plain). The returned
character c is the character which terminated the string. c is not echoed nor included in
the string.

The following three string input procedures use TTY.GetEditedString to read a string.

TTY.GetString: PROCEDURE [h: TTY. Handle, s: LONG STRING,
t: PROCEDURE [c: CHARACTER] RETURNS [status: TTY.CharStatus));

5-35

5

5-36

110 Devices

TTY.GetID: PROCEDURE {h: TTY. Handle. s: LONG STRI~Gl;

TTY. GetLi ne: PROCEDURE [h: TTY. Handle. s: LONG STRING];

GetString reads a string into s. The user-supplied procedure t determines which character
terminates the string. 1ft returns stop. the character c passed to it terminates the string.
If t .returns ok, the character c will be appended to the string. If t returns ignore. the
character c will not be appended to the string, but the string will not yet be terminated.
The terminating character (the character returned by TTY.GetEditedStringl is echoed
regardless of the echoing mode.

GetlD reads a string terminated with a space or a carriage return inlo s. The terminating
character (space or carriage return) is not echoed regardless of the echoing mode.

GetLine reads a string terminated with a carriage return into s. The carriage return is not
appended to s. A carriage return is output regardless of the echoing mode.

The procedure

TTY.GetPassword: PROCEDURE [h: TTY.Handle. s: LONG STRING);

calls GetEditedString with echoing set to stars, then restores the previous echoing mode.

5.7.6 String output operations

The operation

TTY.PutChar: PROCEDURE [h: TTY.Handle.c: CHARACTER];

outputs the character c. If c is a carriage return, the next character that is output will be
in the first position of the next line. Note that control characters other than a carriage
return being output are not interpreted by PutChar, but rather translated into a two
character printable sequence (e.g., t AI. If cis Ascii.SS, a representation of the backspace
will be displayed in the window. To backspace over previously output characters, see
RemoveCharacter below.

TTY.PutCR: PROCEDURE [h: TTY.Handle];

PutCR outputs a carriage return. The next character that is output will be in the first
position of the next line.

TTY.PutSlank, PutSlanks: PROCEDURE [h: TTY Handle. n: CARDINAL Eo- 1];

PutSlank(s) outputs n spaces.

TTY.PutDate: PROCEDURE [h: TTY.Handle.gmt: Time.Packed.
format: TTY.DateFormat ~ noSeconds];

TTY.DateFormat: TYPE = Format.DateFormat;

Format.DateFormat: TYPE = {dateOnly, noSeconds, dateTime. full. maiIDate};

Pilot Programmer's Manual 5

PutDate outputs the Greenwich mean time, packed in the Time format, according to the
format specified.

The different formats have the following interpretation:
maildate: 27 Jul 8309:23:29 PDT (Wednesday)
full: 27-Jul-83 9:23.29 PDT
dateTime:
noSeconds:
dateOnly:

27-Jul-83 9: 23: 29
27-Jul·83 9:23
27-Jul-83

TTY.PutString, PutText· PROCEDURE [h: TTY.Handle. S: LONG STRING];

TTY.PutLine: PROCEDURE [h: TTY.Handle. S: LONG STRING];

TTY.PutSubString, PutlongSubString: PROCEDURE [h: TTY.Handle.
SS: String.SubString];

PutString outputs the string s. Whenever a carriage return is output, the next character
that is output will be in the first position of the next line. PutLine outputs the string S
followed by a carriage return. The other procedures output their string parameter

The procedures

TTY.RemoveCharacter, RemoveCharacters: PROCEDURE [h: TTY.Handle.
n: CARDINAL +- 1];

backspaces over the last n characters output, erasing the characters from the display. In
implementations lacking an actual hardware backspace facility, this is often simulated by
outputting the backed-over text surrounded by backslashes

5.7.7 Numeric input operations

The following six numeric input procedures use TTY.GetEditedString to read a string
terminated with a space or a carriage return. The terminating character i~ not echoed
(regardless of the echoing model. An implementation of TTY might use the numeric
conversion facilities offered by the String interface. If it did, it would raise
String.JnvalidNumber when presented with an input string that did not conform to the
syntax for a number.

TTY.GetNumber: PROCEDURE [h: TTV.Handle.default: UNSPECIFIED.
radix: CARDINAL, showDefault: BOOLEAN1
RETURNS [n: UNSPECIFIED];

TTY. GetLongNumber: PROCEDURE [h: TTY. Handle. default: LONG UNSPECIFIED. radix: CARDINAL,
showDefault: BOOLEAN]
RETURNS [n: LONG UNSPECIFIED];

These operations read in a string and convert it to base radix. If an' ESC is the first
character typed and showDefault is TRUE, a string representing the value of default
converted to base radix is displayed If radix is 10 and default is negative, a minus sign
will be prefixed, or if radix is 8, the character B will be postfixed.

5 :37

5

5-38

I/O Devices

TTY.GetOctal: PROCEOURE [h: TTY.Handle] RETURNS en: UNSPECIFIED);

TTY.GetlongOctal: PROCEDURE [f'I: TTY.Handle] RETURNS en: LONG UNSPECIFIED];

TTY.GetDecimal: PROCEDURE [h: TTY.Handle] RETURNS en: INTEGER1;

TTY.GetLongDecimal: PROCEDURE [h; TTY.Handle] RETURNS en: LONG INTEGER];

GetOctal and GetLongOctal read in a string then convert it to octal. GetDecimal and
GetLongDecimal read in a string then convert it to decimal.

5.7.8 Numeric output operations

TTY.PutNumber: PROCEDURE [h: TTY. Handle. n: UNSPECIFIED.
format: TTY.NumberFormat);

TTY.PutLongNumber: PROCEDURE [h: TTY. Handle. n: LONG UNSPECIFIED.
format: TTY.NumberFormat);

TTY.NumberFormat: TYPE = Format NumberFormat;

Format.NumberFormat: TYPE = RECORD [base: [2 .. 36] ~ 10. zerofill: BOOLEAN ~FALSE.
unsigned: BOOLEAN ~ TRUE. columns: [0 .. 255] ~ 0) ;

PutNumber and PutLongNumber convert n to a string representing its value according to
the format specified, and then output the string. NumberFormat refers to a number whose
base is base. The field is columns wide (if columns is 0, it means use as many as needed).
If zerofill is TRUE, the extra columns are filled with zeros, otherwise spaces are used. If
unsigned is TRUE, the number is treated as unsigned. Output strings representing
negative numbers hegin with a minus sign.

TTY.PutOctal: PROCEDURE [h: TTY. Handle. n: UNSPECIFIED];

TTY.PutLongOctal: PROCEDURE [h: Tty. Handle. n: LONG UNSPECIFIED);

TTY.PutDecimal: PROCEDURE [h: TTY.Handle. n: INTEGER];

TTY.PutLongDecimal: PROCEOURE [h: TTY. Handle. n: LONG INTEGER];

PutOctal and PutLongOctal convert n to a string representing the octal value (when n j,;

greater than 7, the character R is appended), and then output the string. PutDecimal and
PutLongDecimal convert n to a string representing the signed decimal value, and then
output the string.

6

. Communication

The communication package provides Pilot clients the facility to perform inter- and intra
processor communication at a relatively high level. The structure of Pilot communications
is layered. That layering follows closely the protocol levels specified in Internet
Transport Protocols, XSIS 028112, dated December, 1981 (XNS).

Only the lowest level protocol layer, level 0, is medium dependent. The only medium
supported by Pilot communications is the ethernet. Level 0 does provide the framework
that permits Pilot clients to implement other level 0 drivers. It is assumed that all level 0
drivers will provide at least the following features: immediate destination addressing,
data checking (CRe, LRC, etc), the ability to transmit any 8-bit data pattern, and a means
of detecting physical message length.

The level 1 communication layer, known as the Internet Datagram Protocol (lOP), is
medium independent. Access to this layer is via sockets. A socket is a logical input/output
resource modeled after the Pilot software channel. A socket is an address within a
machine, identified by a 16-bit number, to which NS packets (henceforth referred to as
packets) can be delivered and from which packets may be transmitted. Any number of
unique addresses may coexist in the same machine.

The socket facility enables reception and transmission of packets per the conventions of
lOP. At this level packets are delivered with only some high probability. Packets may
arrive out of order, may be duplicated, or may never arrive. The socket facility is used
internally in the implementation of higher-level communication facilities, and is not itself
available to Pilot clients.

Packets may be transmitted or received over one of the ethernet local networks connected
to the machine, or over any other communication media that is part of the NS
communication system. Packets have an advisable maximum internetwork length of 576
bytes in order to be forwardable by internetwork routers.

The full source or destination address of packets is a System.NetworkAddress. Addresses
are the concatenation of the host's network number (System.NetworkNumber), the host
number (System.HostNumber) and a socket number (System.SocketNumber). Source
addresses include an internally generated unique socket. Initial contact with remote
machines requires knowing the full address of that machine. The network and host
numbers are usually obtained from a central name to address translation facility

6-1

6 Communication

(clearinghouse) and the socket is well known. Socket numbers in the range [0 .. 2048) are
reserved for well known sockets.

Communication over the ethernet local network, or any communication network, is
different from most other devices since the network may deliver an unsolicited packet
which is destined for a socket. Such packets typically consume communication buffers,
which are a critical resource. If the arrival rate of packets is high, the client is advised to
perform a sufficient number of recei ve operations to provide adequate buffering. Incoming
packets will never be queued for a particular socket ifthat socket does not exist.

The sections on PacketExchange and NetworkStream describe interfaces to higher-level, more
!,eliable protocols. The implementations of these interfaces are clients of the socket
facility. These two interfaces supply the facilities to be used for NS communication
applications. These two implementations make use of the error protocol which is not
directly accessible to Pilot clients but is alluded to in some of the signal status codes. They
also qse the routing protocol. Client access to routing is described in the section on Router.

6.1 Well known sockets

6-2

NSConstants: DEFINITIONS •... ;

As mentioned, a portion of the socket number name space is reserved for use as well known
sockets. Network addresses containing well known sockets are used to contact remote
machines for the purpose of, or in absence of, arbitration for a unique network address.

For example. to echo to a remote machine, a client would specify the remote machine's
address including the well known socket NSconstants.echoerSocket. The echo protocol is not
a connection oriented protocol, therefore it does not require arbitration for a unique
remote address.

In the case of the sequence packet protocol, listeners are created using well known sockets
and machines contact them by sending packets to that well knowrt socket. But the
protocol's connection establishment procedures permit and encourage establishing the
connection using a unique address, not consuming the well known socket.

Note: A socket number assigned from outside the well known socket number range and
then made known to one or more agents does become well known to those agents. The
conveyance of that" information should be considered a form of arbitration, regardless of
how it is done.

The following well known sockets have been assigned for specific purposes and are defined
in the interface NSConstants. Clients should not use the listed socket number values
except for the purpose indicated by their name. Applications that require well known
sockets should pick an unassigned value and make it known so that use can be properly
registered.

unknownSocketlD: System.SocketNumber •.••

uniqueSocketlD: System.SocketNumber •...

routinglnformationSocket: System.SocketNumber •.••

Pilot Programmer's Manual

echoerSocket: System.SocketNumber = ...

errorSocket: System.SocketNumber ,. .. ,

envoySocket: System.SocketNumber ,. .. .

courierSocket: System.SocketNumber ,. .. .

x860ToFileServer: System.SocketNumber ,. ...

clearingHouseSocket: System.SocketNumber ,. ...

timeServerSocket: System.SocketNumber ,. ...

pupAddressTranslation: System.SocketNumber • ...

bootServerSocket: System.SocketNumber

ublPCSocket: System.SocketNumber • ...

ubBootServerSocket: System.SocketNumber • ...

ubBootServeeSocket: System.SocketNumber •

diagnosticsServerSocket: Syst.em.SocketNumber • ...

newClearinghouseSocket: System.SocketNumber

electronicMaiI FirstSocket: System.SocketNumber • ...

electronicMaiI LastSocket: System.SocketNumber • ...

etherBooteeFirstSocket: System.SocketNumber • ...

etherBootGermSocket: System.SocketNumber • ...

etherBooteeLastSocket: System.SocketNumber • ...

voyeurSocket: System.SocketNumber • ...

netManagementSocket: System.SocketNumber • ...

teleDebugSocket: System.SocketNumber ,. ...

galaxySocket: System.SocketNumber • ...

protocolCertificationControl: System.SocketNumber • ...

protocolCertifidltionTest: System.SocketNumber

outsideXeroxFirstSocket: System.SocketNumber

outsideXeroxLastSocket: System.SocketNumber ,. .. .

6

6-3

6 Communication

maxWeliKnownSocket: System.SocketNumber •..•

NSConstantsExtras: DEFINITIONS = •.•

authenticationlnfoSocket: System.SocketNumber •...
mailGatewaySocket: System.SocketNumber •...
netExecSocket: System.SocketNumber •...
wslnfoSocket: System.SocketNumber •...
mazeSocket: System.SocketNumber •...
pcRoutingTestSocket: System.SocketNumber •...
maxWeliKnownSocket: System.SocketNumber = .. ,

6.2 Packet exchange

6-4

PacketExchange: DEFINITIONS •... ;

PacketExchange is an interface to an implementation of the Packet Exchange Protocol -- a
level 2 Network Services Communication Protocol which is defined in Xerox Internet
Transport Protocols. In contrast to NetworkStream, the PacketExchange interface provides
access to a less reliable, connectionless protocol. The protocol is "single packet" oriented
for simplicity, yet includes retransmitting and duplicate suppression for reliability.
PacketExchange is suitable for applications where a single packet request is immediately
followed by a single packet response that is the result of an idempotent operation, or where
the communica~ing clients are capable of providing the necessary level of reliability
through the very nature of their interaction.

PacketExchange is implemented by the object file Commun i ea t ion. bed.

Packet Exchange Protocol packets may be sourced from and destined to any socket. While
there is no connection established between PacketExchange correspondents, it is helpful to
think of the entities that participate in the protocol in terms of a requestor and replier. A
replier provides a service (or is a service agent), listening for PacketExchange packets from
requestors. A requestor uses a service by sending requests to a replier. There is minimal
state maintained by each end, only enough to remember local network addresses and to
handle retransmissions and duplicates.

Note: Due to the constant timeout-retransmission mechanism being used currently,
PacketExchange is best suited for local network communication. In the future, end-to-end
delays will be used for deriving retransmission timeouts, and internetwork link
utilization should improve.

Caution: PacketExchange is best applied to idempotent operations. This is due to the
unreliable nature of the delivery of the reply and the inability to correctly process
duplicate requests within the framework of the protocol.

Pilot Programmer's Manual

6.2.1 Types and constants

packetExchange.ExchangeClientType: TYPE = MACHINE DEPENDENT {
unspecified{O), timeService(1), dearinghouseService(2), teledebug(10B),
eledronicMailFirstPEType(20B), eledrOnicMaiILastPEType(27B),
remoteDebugFirstPEType(30B), remoteDebugLastPEType(37B),
acceptanceTestRegistratiC'n(40B), performance TestData(41 B),
protocoICertification(SOB). voyeur(S 1 B). dixieDataPEType(1 01 B).
dixieAckPEType(102B), dixieBusyPEType(1 03B). dixieErrorPEType(1 04B).
outsideXeroxFirst(100000B). outsideXeroxLast(LAST[CARDINAL])};

6

The ExchangeClientType defines well known exchange types that may be used for filtering
requests or multiplexing within a service.

packetExchange.ExchangeID: TYPE. MACHINE DEPENDENT RECORD [a. b: WORD];

An exchange identifier is assigned to every request. This may be used by replying clients
to suppress duplicate requests and is used by the requesting code to identify replies. The
field will contain a value that is unique for each request using a function that has a period
at least as long as the advertised maximum packet lifetime (60 seconds). The semantics of
the ExchangelD are not sufficient to warrant the field's use as a request sequence.

PacketExchange.ExchangeHandle: TYPE [2J;

PacketExchange.nuIlExchangeHandle: READONLY PacketExchange.ExchangeHandle;

An exchange handle is the result of one of PacketExchange's create routines and used as a
parameter in other procedures. nullExchangeHandle may be used to indicate no valid
exchange handle exists.

PacketExchange.RequestHandle: TYPE = LONG POINTER TO READONLY
PacketExchange.RequestO~ject;

PacketExchange.RequestObject: TYPE = RECORD [
nBytes: CARDINAL.
requestType: packetExchange.ExchangeClientType,
requestorsExchangelD: PacketExchange.ExchangelD,
requestorsAddress: System.NetworkAddressJ;

A request handle is the result of a PacketExchange.WaitForRequest and is used as an
argument in PacketExchange.SendReply. Through the request handle the client can get at
some information about the request that is not included in the client data block. The fields
addressed by the request handle may not be modified. A request handle must be discarded
after the call to PacketExchange.SendReply.

PacketExchange.WaitTime: TYPE = LONG CARDINAL;

PacketExchange.defaultWaitTime: PacketExchange.WaitTime = 60000;

PacketExchange.defaultRetransmissionlnterval: PacketExchange.WaitTime = 30000;

6-5

6

6-6

Communication

PacketExchange,WaitTime is a time used in all references having to do with setting wait
times in either the requestor or replier. The time specified is always in milliseconds 'and
will be converted to an internal representation before being':1sed. If the conversion leads to
overflow, an infinite wait time will be used. Due to the possibility of overflow, clients
should be cautious attempting to time intervals greater than approximately 40 minutes. A
wait time of zero will be interpreted as an immediate timeout, i.e., one that times out
without waiting if and only if the response is not already buffered in the local machine.

The defaultWaitTime equal to one minute is taken from the NS Internet Transport
specification's value for maximum packet lifetime. The defaultRetransmission.nterval is
used to insure that requests will be transmitted at least two times before abandoning the
effort.

PacketExchange.maxBlockLength: READONL Y CARDINAL;

The maximum length of the block (Environment. Block) that can be transmitted via
PacketExchange is based on the maximum internet packet size, a value that is stated in the
NS Internet Transport specification. Attempting to send requests or replies longer than
packetExchange.maxBlockLength will cause an error to be raised.

6.2.2 Signals and errors

packetExchange.Error: ERROR [why: PacketExchange.ErrorReason];

PacketExchange.ErrorReason: TYPE =.{
blockTooBig, blockTooSmall. noDestinationSocket, noRouteToDestination.
noReceiverAtDestination, insufficientResourcesAtDestination, rejectedByReceiver,
hardwareProblem, aborted, timeout};

packetExchange.Error may be raised by most of the request/reply procedures. The definitions
of Error Reason are as follows:

blockTooBig

blockTooSmal1

noDesti nation Socket

noRoute ToDestination

nOReceiverAtDestination

The block the client attempted to transmit was too
big. The size of the block must be in the range
[O .. PacketExchange.maxBlockLength).

The block specified by the client to receive a request
or reply was smaller than the amount of data
transmitted.

This error code is obsolete and unimplemented.

When attempting to transmit a request, it was found
that the internet was partitioned in such a manner
that the target network is not reachable, or the
network field of the remote address is invalid. The
remote host has not been contacted.

A request was sent to a machine that does not
currently have a replier listening on that socket.

Pilot Programmer's Manual 6

Communication with the remote machine has been
achieved.

insufficientResourcesAtDestination An error packet was received in response to a
PacketExchange request. The indication is that
either an intermediate internet router or the target
machine does not currently have the resources to
service the request.

rejectedByReceiver The request was rejected by the replier for some
undetermined reason. Communication with the
remote machine has been achieved.

hardwareProblem An undefined error packet was received in response
to a request.

aborted This error code is obsolete and unimplemented.

timeout This error code is used for internal processing and
should not be observed by PacketExchange clients.

packetExchange. Timeout: SIGNAL;

The time interval set in one of the create routines (PacketExchange.CreateRequestor or
CreateReplier) or PacketExchange.SetWaitTimes has expired and the operation has not
completed. This signal may be RESUME'd in order to wait another timeout interval.

6.2.3 Procedures

PacketExchange.CreateRequestor: PROCEDURE [
waitTime: packetExchange.WaitTime +- packetExchange.defaultWaitTime,
retransmissionlnterval: PacketExchange.WaitTime +
PacketExchange.defaultRetransmissionlnterval]
RETURNS [packetExchange.ExchangeHandle};

CreateRequestor creates a socket on a unique local address. The requestor's wait time and
retransmission interval may be specified using the parameters waitTime and
retransmissionlnterval. The successful return from Create Requestor results in the client
possessing a valid exchange handle that may then be used as an argument in a
PacketExchange.SendRequest or Delete. CreateRequestor generates no transmissions to any
host and will raise no signals.

packetExchange.CreateReplier: PROCEDURE [
local: System.NetworkAddress, requestCount: CARDINAL +- 1,
waitTi me: PacketExchange. WaitTi me +- PacketExchange.defaultWaitTi me,
retransmissionlnterval: PacketExchange.WaitTime +
PacketExchange.defaultRetransmissionlnterval]
RETURNS [PacketExchange.ExchangeHandle];

CreateReplier creates a PacketExchange replier at the well known address, local. Since it
is expected that repliers are supplying a service to many clients, clients of CreateRepl ier
may request more buffering via requestCount. requestCount represents the number of

6-7

6

6-8

Communication

requests that may be queued to the replier at any given time. This permits the replier
process time to service a request and still not miss new requests that arrive while that
processing is in progress.

PacketExchange.Delete: PROCEDURE [h: PacketExchange.Exchangel:landle);

When a requestor or a replier is no longer needed, it must be deleted. Once deleted, the
exchange handle is no longer valid.

Caution: If a client process is waiting inside the packet exchange implementation (either
at WaitForRequest or SendRequest) and the requestor or replier is deleted, that process
(or processes) will be aborted and the ABORTED signal will be permitted to propogate to the
caller. This action is taken despite the popular notion that deleting an instance of a
facility with client processes still active inside that facility is a client error.

PacketExchange.RejectRequest: PROCEDURE [
h: packetExchange.ExchangeHandle, rH: PacketExchange.RequestHandle];

If a replier client does not wish to respond to a request, the request may be rejected by
calling PacketExchange.RejectRequest. This permits the implementation to delete the small
state object represented by rH, the request handle.

packetExchange.SendReply: PROCEDURE [
h: PacketExchange.ExchangeHandle,
rH: PacketExchange.RequestHandle, replyBlk: Environment.Block,
replyType: PacketExchange.ExchangeClientType of- unspecified];

To respond to a request, the client calls packetExchange.SendReply, specifying the exchange
handle (h) used when he called packetExchange.WaitForRequest and- the request handle (rH)
returned by that procedure. replyBlk describes the data that is to be sent in response. That
block cannot be la~ger that PacketExchange.maxBlockLength. The reply packet will have an
exchange identifier set to the value specified in replyType. This procedure may signal
PacketExchange. Error.

PacketExchange.SendRequest: PROCEDURE [
h: PacketExchange.ExchangeHandle, remote: System.NetworkAddress,
requestBlk. replyBlk: Environment.Block,
requestType: PacketExchange.ExchangeClientType of- unspecified1
RETURNS [nBytes: CARDINAL, replyType: PacketExchange.ExchangeClientType);

A client that possesses a valid exchange handle (h) may send a request to a remote
machine that implements a service in the form of a replier. The request must include an
Environment.Block that represents the request (requestBlk) and d~scribes no more than
PacketExchange.maxBlockLength bytes. The client must also specify an area for the reply to
be stored, replyBlk. requestBlk and replyBlk may describe the same area, and either or
both may be Environment.nullBlock if the protocol being implemented permits it. The value
of requestType will be copied into the exchange packet and may be used for filtering at the
replier.

SendRequest will return only after a valid response has been received. When it returns,
replyBlk will contain nBytes of client data, and the reply received will be of type
replyType. This procedure may signal PacketExchange.Error or PacketExchange.Timeout. The

Pilot Programmer's Manual 6

latter may be RESUME'd causing the request .to reenter the timeout interval. It is important
to note the difference between REsuME'ng and RETRY'ng. REsuME'ng will not assign a new
exchange identifier permitting the replier to suppress any retransmissions as duplicates if
appropriate. RETRy'ng will cause a new identifier to be assigned and the replier will not be
able to detect it as a duplicate.

Note: SendRequest may be aborted via Process.Abort. The ABORTED signal will not be
caught by Send Request.

PacketExchange.SetWaitTimes: PROCEDURE [
h: PacketExchange.ExchangeHandle, waitTime, retransmissionlnterval:
PacketExchange. WaitTi me];

SetWaitTimes permits an exchange client to adjust the timeout values associated with a
exchange handle. waitTime affects both PacketExchange.WaitForRequest and SendRequest
while retransmissionlnterval affects only the latter. Refer to §6.2.1 for additional details
about wait times. This procedure raises no signals.

PacketExchange. WaitForRequest: PROCEDURE [
h: packetExchange.ExchangeHandle, requestBlk: Environment.Block,
requiredRequestType: PacketExchange.ExchangeClientType +- unspecified]
RETURNS [rH: PacketExchange.RequestHandle];

A client that has created a replier via PacketExchange.CreateReplier is expected then to wait
for a request to arrive. That is done by calling WaitForRequest. It requires a
packetExchange.ExchangeHandle, and an Environment.Block (requestBlk) in which to receive
the data of the request. The field requiredRequestType may be set to a unique
PacketExchange.ExchangeClientType or allowed to default to unspecified indicating that the
exchange client type of the request is not a significant part of the protocol. If
requiredRequestType is not unspecified then only requests of type requiredRequestType
will be accepted.

PacketExchange.WaitForRequest will return only when a suitable request has arrived. When
it does, the data structure pointed to by rH will contain additional information about the
request. That information may be used by the client to determine if the request is a
duplicate or to be ignored for any reason. Once the procedure returns with rH, rH must be
accounted for in one of two manners. It must either be the object of a
PacketExchange.SendRepfy (the norm), or it must be dispensed with via
PacketExchange.RejectRequest.

This procedure may signal packetExchange.Error and Timeout. The latter signal may be
RESUME'd. It would be quite usual to specify an infinite timeout on a replier, thus
eliminating the need to service the packetExchange.Timeout signal.

Note: WaitForRequest may be aborted via Process.Abort. The ABORTED signal will not be
caught by WaitForRequest.

6.3 Network streams

NetworkStream: DEFINITIONS ... ;

6-9

6

6-10

Communication

A Network stream is the prin.cipal means by which clients of Pilot communicate between
machines. NetworkStream provides access to the implementation of the Sequenced Packet
PrQtocol -- a level 2 Internet Transport Protocol which is defined in Xerox Internet
Transport Protocols. It provides sequenced, duplicate-suppressed, error-free, flow
controlled communication over arbitrarily interconnected communication networks.

The Network stream package is implemented by Communication. bed.

As previously mentioned, NetworkStream is implemented by a sequenced packet transducer
which utilizes sockets to communicate with machines on a communication network. All
data transmission via a Network stream is invoked by means of Stream operations. Here,
the most common model of communication using Network streams will be described.
Subsequent sections provide a description of the actual NetworkStream primitives.

A Network stream provides reliable communication between any two network addresses
(System.NetworkAddresses). The stream (connection) can be set up between the two
communicators in many ways -- the most typical case involves a supplier of a service at
one end, and a client of the service at the other. Creation of such a stream is inherently
asymmetric.

At one end is a server -- that is, a process or subsystem offering some service. When a
server is operational, one of its processes listens for connection requests on its network
address (which has previously been made known to potential clients through some binding
mechanism) and creates a new Network stream for each separate request it receives. The
handle for the new stream is typically passed to a subsidiary process or subsystem (called
an agent) which ~ves its full attention to performing the service for that particular client.

At the other end is the client of the service. This process or subsystem requests service by
actively creating a Network stream, specifying the network address of the server as a
parameter. The effect is to create a connection between the client and its server agent.
These two then communicate by means of the new Network stream set up between them
for the duration of the service.

It is not necessary that the client and server be on different machines. If they are on the
same machine, Pilot will optimize the transmission of data between them and will avoid
the use of physical network resources. Thus, a client does not need to know where a server
is located. This scheme permits configuration flexibility -- permitting services that reside
on one machine to be split across a number of machines connected together by a network,
or vice versa.

The manner in which a client finds out the network address of a server, or the manner in
which a server makes its network address known to potential clients is outside the scope of
Pilot. •

6.3.1 Types and constants

NetworkStream.WaitTime: TYPE = LONG CARDINAL;

WaitTime is used in reference to establishing intervals for timeouts. The value associated
with the type is always in milliseconds. .

Pilot Programmer's Manual 6

Note: If a wait time interval is' asigned a value of zero, subsequent operations will timeout
immediately if data is not present when a data request is made.

Caution: The wait time is converted to an internal format to be used by the
implementation. If that conversion results in an overflow, subsequent timed operations
will never timeout. Clients should use caution when attempting to set timeouts of more
than approximately 40 minutes.

NetworkStream.defaultWaitTime: WaitTime • 60000;

The default wait time of SO seconds is a value taken from the maximum internet packet
lifetime.

NetworkStream.infiniteWaitTime: READONlYNetworkStream.WaitTime;

The infinite wait time is equivalent to asserting that the operation will never time out, or
there is no interest in processing timeouts. It is assumed that any process that uses this
value will also be capable of aborting the affected process at some time.

NetworkStream.ClassOfService: TYPE = {bulk. transactional};

The class of service parameter permits the client to convey some hint as to the use of the
transport being created. If a client hints the transport is bulk, the assertion is that it will
be used for a high performance application, such as file transfer or the like. If the client
hints transactional it is assumed that the transport will be used for alternating traffic, an
example of which is remote procedure calls as implemented by Courier.

NetworkStream.uniqueNetworkAddr: READONlY System.NetworkAddress;

The value uniqueNetworkAddr may be used as a local address specification to indicate to
the' underlying code that any legal locally generated network address is applicable. This is
equivalent to the client calling NetworkStream.ASsignNetworkAddress and using the result
as the parameter value.

NetworkStream.Connectionl 0: TYPE[1];

NetworkStream.uniqueConnID: READONLY NetworkStream.ConnectionID;

NetworkStream.unknownConnID: READONl Y NetworkStream.Connectionl 0;

A connection identifier is a IS-bit value that is unique within a particular machine. It may
not be unique across system restarts. It is used in conjunction with the network address to
fully define a Sequence Packet Protocol connection. The value
NetworkStream.uniqueCoi"lnlD may be used by clients of NetworkStream.CreateTransducer to
indicate that they want the implementation to generate a unique ConnectionlD. This is
equivalent to the client calling NetworkStream.GetUniqueConnectionlD directly and using
the result for the same parameter. NetworkStream.unknownConnlD may be assigned to the
remoteConnlD parameter in a NetworkStream.CreateTransducer call. It indicates that the
connection identifier will be supplied by the remote machine.

NetworkStream.ListenerHandle: TYPE [2];

6-11

6

6-12

Communication

The ListenerHaridle is the result of a NetworkStream.CreateListener and is required as a
parameter on all other listener operations.

6.3.2 Crea!lng Network streams

Clients are provided access to a Network stream via the Stream.Handle and the
Stream.Object that it references. Network streams are variants of generic Pilot streams.
For the general definition of Pilot streams, see Chapter 3.

Network streams are usually created in one of two ways depending on whether the stream
is supporting a client that is consuming a service or providing a service. The consumer will
use NetworkStream.Create while the server uses the listener mechanism. Both processes are
clients of Network Stream. Create Transducer. CreateTransducer may also be called directly by
clients, provided they are familiar with the options it permits.

NetworkStream.CreateTransducer: PROCEDURE [
local, remote: System.NetworkAddress.
connectOata: Environment. Block Eo- Environment.null Block,
10calConnl0. remoteConnlO: NetworkStream.ConnectionIO.
activelyEstablish: BOOLEAN,
timeout: NetworkStream.WaitTime E- NetworkStream.defaultWaitTi me,
classOfService: NetworkStream.ClassOfService Eo- bulk]
RETURNS [Stream. Handle];

NetworkStream.CreateTransducer will not return to the caller with the Stream.Handle until
the connection is fully established. When established, the stream is ready to perform
stream operations with the cooperating partner of the connection as specified in remote.
The value local is usually specified as NetworkStream.uniqueNetworkAddr. This value is
recognized by the create process and will cause a unique address to be generated. That
address is generated by calling NetworkSteam.AssignNetworkAddress. (The client is
welcome to call the routine directly and use its results for the value of local.) It is not
recommended that local consume a well known socket. The remote address must be fully
specified, including the socket. The socket field of remote may be a well known socket. If
so, the connection actually established will not consume that socket, but generate a
unique network address in its place.

10caiConniD is usually defaulted to NetworkStream.uniqueConnIO. Alternatively, the client
may use the results ofNetworkStream.GetUniqueConnectionlO for the value of 10calConnl0.
Usually, the value of remoteConnlO is set to NetworkStream.unknownConnIO. This asserts
that the value of the remote's connection identifier will be generated be the remote
machine and its value conveyed during the connection rendezvous.

The boolean activelyEstablish is used to establish the solicitor/listener relationship
normally required to arbitrate a connection. If activelyEstablish is TRUE, the create process
will transmit connection requests to the remote. If it is FALSE, it will merely listen for the
connection requests. In some cases, both parties know the entire set of connection
parameters, including the connection identifiers. This implies some previous binding
arbitration has occurred. It is possible, under those conditions, to create transducers on
both the local and remote machines that are fully established, without transmitting any
information at all.

Pilot Programmer's Manual 6

When creating a transducer, timeout is used for two different purposes. If
activelyEstablish is TRUE, it will be used as the time allowed for the remote to respond to the
connection establishment requests. It will also be used as the value of timeout for stream
get operations, Le., the interval permitted to expire during data input operations before
the stream implementation signals Stream.TimeOut.

The classOfService parameter affords the client the opportunity to hint the type of
application the stream is to support. Both parties of the connection should select the same
class. transactional will be assumed ifthere is disagreement.

The Stream.Handle returned is a variant of a generic Pilot byte stream handle. The
positioning operations, getPosition and setPosition, are unimplemented and will result in
Stream.lnvalidOperation.

CreateTransducer may generate the error NetworkStream.ConnectionFailed. A process
blocked in Create Transducer may also be aborted (Process.Abort). Create Transducer will
not catch the ABORTED signal.

6.3.2.1 Creating client streams

NetworkStream.Create: PROCEDURE [
remote: System.NetworkAddress,
connectData: Environment.Block +- Environment.null Block,
timeout: NetworkStream.WaitTime +-NetworkStream.defaultWaitTime,
classOfService: NetworkStream.ClassOfService +- bulk]
RETURNS [Stream.Handle];

Create is the most common method that a client stream client uses to solicit the creation of
a transport to a server client. This procedure is a client of NetworkStream.CreateTransducer.
Create assigned a value of NetworkStream.uniqueNetworkAddress to local,
NetworkStream.uniqueConnectionlD to 10caiConniD and asserts activelyEstablish to be TRUE
causing the process to transmit the needed request packets to solicit the connection.

6.3.2.2 Creating server streams

NetworkStream.CreateListener: PROCEDURE [addr: System.Ne.tworkAddress]
RETURNS [NetworkStream.ListenerHandle];

Creating a listener creates the state object (represented by the ListenerHandle). The state
object includes a socket at addr. CreateListener does not cause any data to be transmitted.
It does provide the necessary buffering and queuing to receive data. A listener will exist as
such until it is deleted via NetworkStream.DeleteListener. CreateListener generates no
signals.

NetworkStream.Listen: PROCEDURE [
listenerH: NetworkStream.ListenerHandle.
connectData: Environment.Block +- Environment.nuliBlock,
listenTimeout: NetworkStream.WaitTime +-NetworkStream.infiniteWaitTime]
RETuRNs[remote:system.NetworkAddress, bytes: CARDINAL];

6-13

6

6-14

Communication

Once a listener is created, the client must provide the process to actually listen. This is
done by calling NetworkStream.Listen. When an acceptable connection request packet
arrives at the address specified in CreateListener, Listen will return with the network
address of the requestor (remote) and the number of bytes received (bytes) in the
rendezvous. The client then has the opportunity to reject or honor the connection request.
A connection request is rejected either by calling NetworkStream.Listen again or by deleting
the listener. Both will cause an error packet to be transmitted to the requestor.

If no suitable packet arrives at the socket in listenTimeout milliseconds, listen will raise
the signal NetworkStream.ListenTimeout. This signal may be resumed. The default value of
infiniteWaitTime implies that the listener should never timeout, which is an acceptable
(and normal) practice.

NetworkStream.ApproveConnection: PROCEDURE [
listenerH: NetworkStream.ListenerHandle.
streamTimeout: NetworkStream.WaitTime "'-NetworkStream.infiniteWaitTime.
classOfService: NetworkStream.ClassOfService ...- bulk]
RETURNS [sH: Stream.Handle];

When NetworkStream.Listen returns and the client wishes to honor the connection request,
he calls NetworkStream.ApproveConnection. ApproveConnection is a client of
NetworkStream.CreateTransducer. The local address and connection identifier are defaulted
to NetworkStream.uniqueNetworkAddr and NetworkSteam.uniqueConnlD respectively. The
values for remote address and connection identifier are taken from the appropriate fields
of the packet requesting the connection. The client is given the opportunity to provide a
hint about the expected application of the stream by assigning an appropriate value to
classOfService. This hint should agree with the hint provided by the remote requestor.

In spite of the evidence that a communication path exists between the local machine and
the remote requestor, this procedure may still signal NetworkStream.ConnectionFailed.

NetworkStream.DeleteListener: PROCEDURE [listenerH: NetworkStream.ListenerHandle];

Should the client desire to no longer listen at the socket specified in CreateListener, the
listener should be deleted. It is advised that this be done at a time when no process is
actively listening. The Listen process is abortable (Process.Abort). The procedure
DeleteListener may signal NetworkStream.L1stenError if listenerH does not represent a valid
ListenerHandle.

Caution: If DeleteListener notices a process blocked in Listen, it will abort that process
and the signal ABORTED will be propogated to the Listen client. This action is taken despite
the popular notion that deleting an instance of a facility with active processes inside that
facility is a client error.

6.3.3 Signals and errors

NetworkStream .ConnectionSuspended: ERROR [why: NetworkStream.SuspendReason];
NetworkStream.SuspendReason: TYPE. {

notSuspended. transmissionTimeout. noRouteToDestination.
remoteServiceDisappeared};

Pilot Programmer's Manual 6

Clients of Pilot streams that are implemented by Network streams are responsible for
catching not only all Stream signals, but also a Network streams unique signal. That
signal is ConnectionSuspended, a name the implies the stream has been established but
now is failing. The signal carries with it a reason for the suspension, and the table
following describes the reasons.

notSuspended

transmission Timeout

noRouteToDestination

remoteServiceDisappeared

The connection is not suspended. This state should never
be observed by a client. It is included to simplify internal
processing.

A connection that was previously communicating has not
seen a response from the remote machine for an extended
period of time. The internal processing of SPP retransmits
packets at computed intervals until they are acknowleged.
If a packet is retransmitted more than 30 times without
acknowlegement, the connection is abandoned. The
interval between retransmissions is computed based upon
previous response rates and is initially (before statistics
can be gathered) based on the number of internet routers
that the packet must pass through to reach the remote
machine. In the absence of retransmissions and in
conjunction with them, idle line probes are also
transmitted at computed intervals to the remote host. The
number of probes that will be transmitted without
acknowlegement is fixed, and the interval between probe
transmissions is computed based simply on the number of
internet routers that the packet must pass through to
reach the remote machine.

A previously functional connection has <iiscovered that the
internet has become partitioned in some manner that the
remote host is no longer accessable, either because it must
pass through too may internet routers or a path has totally
disappeared.

A previously functional connection has been notified that
the remote address no longer exists. In other words, the
socket on which the connection was based has been
deleted.

NetworkStream.ConnectionFailed: SIGNAL [why: NetworkStream.FailureReaso.n];
NetworkStream.FailureReason: TYPE. {

timeout, noRouteToDestination, noServiceAtDestination, remoteReject,
tooManyConnections, noAnswerOrBusy, nOTranslationForDesti nation, ci rcuitl n Use,
circuitNotReady, noDialingHardware, dialerHardwareProblem};

NetworkStream.ConnectionFailed is applicable only to clients who are attempting to
establish a SPP connection. This includes clients of NetWorkStream.CreateTransducer,
Create and ApproveConnection. The implication is that the connection never was
established; it does not always conclude that the remote machine was n()t contacted.

6-15

6

6-16

Communication

timeout

noRouteToDesti nation

noServiceAtDestination

remoteReject

tooManyConnections

noAnswerOrBusy

The time stated in the parameter timeout of
NetworkStream.CreateTransducer has expired and- the
packets requesting connection establishment have not
been acknowleged. This and only this value of why may be
resumed.

Attempts to find a route to the remote network failed.
Either the network is temporarily partitioned in such a
manner that the network is unreachable or the network
number in the remote address is invalid. In any case, the
remote host has not been contacted.

There is no listener at the address specified in the remote
address. The machine did respond indicating that the
internet and the machine are both responsive.

The process implementing the service at the remote
address rejected the request for connection (see §6.3.2.2).
Since the remote host sent the reject, it is obvious that the
internet and the remote host are both responsive.

The number of simultaneous connections permitted on the
local machine would have been exceeded by creating a new
stream. In cases where adivelyEstablish is TRUE (e.g.,
NetworkStream.Create), no communication with a remote
machine has been attempted.

This error is applicable only to circuit oriented
connections. When the phone was dialed, it was either not
answered or was busy. The remote machine has not been
contacted.

nOTranslationForDestination This error is applicable only to circuit oriented
connections. There is no phone number currently
registered for access to the network specified. The remote
machine has not been accessed.

circuitlnUse

ci rcuitNotReady

noDialingHardware

This error is applicable only to circuit oriented
connections. The circuit that must be used to access the
remote machine is currently in use. The remote machine
has not been contacted.

This error is applicable only to circuit oriented
connections. The circuit that must be used to access the
remote machine was not ready. Possibly the modems need
to be made ready or the phone needs to be manually dialed.
The remote machine has not been contacted.

An attempt to access a remote network that would require
a circuit oriented device, but the proper hardware does not

Pilot Programmer's Manual

dialerHardwareProblem

6

exist to make such a connection. The remote machine has
not been contacted.

An attempt to access a remote network that would require
a circuit oriented devi~e, but the hardware needed to make
such a connection appears to be inoperable. The remote
machine has not been contacted.

NetworkStream. ListenError: ERROR [reason: NetworkStream .ListenErrorReason];

NetworkStream.ListenErrorReason: TYPE = {
iIIegalAddress. illegal Handle, iliegalState, blockTooShort};

NetworkStream.ListenError is applicable only to clients of the listening procedures. The
definition of the error reason is as follows:

iIIegalAddress

illegal Handle

illegal State

blockTooShort

The local address specified in NetworkStream.CreateListener
is illegal. This is due to the fact that addr already exists on
the local machine or the socket field of addr has a value of
zero.

The handle specified in one of the listener procedures is not
valid. Either the handle has been deleted
(NetworkStream.DeleteListener) or was never created.

The state of the listener handle specified to one of the
listener procedures (NetworkStream.ApproveConnection or
Listen) was in an illegal state for that operation. In the
case of NetworkStream.ApproveConnection, the state
indicated that no request for connection had been received.
In the case of NetworkStream.Listen, a process was already
found to be listening, implying that two or processes are
sharing the listener handle.

The Environment.Block provided to collect the connection
data in NetworkStream.Listen was not large enough to hold
the data supplied by the requestor of the connection. (Note:
The ability to pass rendezvous information is not currently
implemented. Consequently, this status should never be
observed,)

NetworkStream.ListenTimeout: SIGNAL;

NetworkStream.ListenTimeout will be raised if no acceptable packet arrives at the listener
within the specified time interval. That interval is client specified in
NetworkStream.CreateListener as listenTimeout. This signal may be RESUME'd, causing the
interval to be reentered. It is a common practice to use NetworkStream.infiniteWaitTime as a
value for listenTimeout when creating listeners to eliminate the need to process the
ListenTimeout signal.

6.3.4 Utilities

6-17

6

6-18

Communication

The following utility functions are avaible to NetworkStream clients. In general they
provide functionality unique to Network streams.

6.3.4.1 Assigning unique address components -

NetworkStream.AssignNetworkAddress: PROCEDURE RETURNS [System.NetworkAddress);

AssignNetworkAddress returns to the caller a network address that is unique for the
current system restart. It is constructed from the local machine's network number for the
default communication device, the local machine's processor identification number, and a
unique socket number that is not a well known. The result is applicable to any argument
that might use a unique local address.

NetworkStream.GetUniqueConnectionfO: PROCEDURE
RETURNS [iO: NetworkStream.ConnectionID);

GetUniqueConnectionlD will return to the caller a connection identifier that is unique
within the current system load. It may be used any place a
NetworkStream.uniqueConnectionlD would be applicable (NetworkStream.CreateTransducer).

6.3.4.2 Discovering addresses of established streams

NetworkStream.FindAddresses: PROCEDURE [sH: Stream.Handle]
RETURNS [local, remote: System.NetworkAddress];

A client may find the local and remote network addresses of an existing stream by calling
Fi ndAddresses.

6.3.4.3 Controlling timeouts

NetworkStream.SetWaitTime: PROCEDURE [sH: Stream. Handle, time: NetworkStream.WaitTime];

This procedure may be used to adjust the stream timeout of an established network
stream.

Note: Since the generic Pilot stream also provides the same capability, it is suggested that
use of this procedure be phased out in preference to the standard operation. This operation
will be removed in the next release of Pilot.

6.3.4.4 Closing streams

An implementation of a close protocol is provided by Network streams. This method of
terminating dialog on a stream is suggested in the NS Internet Protocol Specification.
Use of these routines (or any like them) is considered optional.

NetworkStream.CloseStatus: TYPE = {good, noReply, incomplete};

NetworkStream.c1oseSST: Stream.SubSequenceType = 254;

NetworkStream.c1oseReplySST: Stream.SubSequenceType = 255;

Pilot Programmer's Manual 6

NetworkStream.Close: PROCEDURE [si-!: Stream.Handle]
RETURNS [NetworkStream.CloseStatus]; •

NetworkStream.CloseReply: PROCEDURE (sH: Stream.Handle]
RETURNS [NetworkStream.CloseStatus];

To initiate a close sequence, a client may call NetworkStream.Close. That procedure will
transmit an empty packet with a Stream.SubSequenceType of NetworkStream.closeSST. The
side effect of this is that all buffered data will be transmitted before the empty packet.
After the closeSST has been transmitted, the procedure will attempt to receive a
NetworkStream.closeReplySST. All data not of subsequence type closeReplySST will be
ignored. When a NetworkStream.closeReplySST is received, the procedure will transmit
NetworkStream.closeReplySST and return, without waiting. NetworkStream.Close raises no
signals.

If a client protocol uses the close procedure and receives a NetworkStream.closeSST. it should
respond by calling NetworkStream.CloseReply. This procedure will transmit a
NetworkStream.closeReplySST, the side effect of which will be to force transmission of all
currently buffered data. After sending the closeReplySST, the procedure will attempt to
receive a packet with subsequence type of closeReplySST. NetworkStream.CloseReply raises
no signals.

The NetworkStream.CloseStatus has the following definitions:

good

noReply

incomplete

The close protocol terminated cleanly. All data the was buffered by the
stream implementation prior to initiating the close was transmitted
and acknowleged at least to the level of the Network stream client.

There was no response to the NetworkStream.closeSST. All data buffered
in the local stream implementation has been transmitted, but may not
have been acknowleged.

The local machine transmitted a NetworkStream.closeReplySST in.
response to a NetworkStream.closeSST and received no response. All data
buffered in the local stream implementation has been transmitted and
acknowleged. The closeReplySST is expected, but not required.

6.3.5 Attributes of Network streams

Network 'streams are byte streams built on top of the Sequenced Packet Protocol. Due to
the distributed nature of the streams clients may find some behavior unique. This section
will attempt to point out 'the unique areas of these streams with the intent of assisting in
design and debugging applications using Network streams.

All output operations (putByte, putWord, put, setSST, sendAttention, sendNow) buffer
the data internally, transmitting those buffers only when they are either full or the
semantics of an operation indicate they must be transmitted. When the buffers are
actually transmitted it is possible that the client process will be blocked indefinitely if the
remote partner in the connection is not consuming data. This is known as the waiting for
allocation stale. All output operations may signal NetworkStream.ConnectionSuspended.

6-19

6

6-20

Communication

All input operations (getByte, getWord, get) may signal any of the defined Stream errors,
except Stream.EndOfStream. The end of stream concept is not implemented by Network
streams. All input operations may also signal NetworkStream.ConnectionSuspended.
Physical packet boundaries will not be visable to the byte stream client, but they may be
inferred through the input operation status or signals. Any operation that signals or
returns a completion status other than normal is at a packet boundary. On a normal
return the stream mayor may not be at a packet boundary.

Any Network stream operation may be aborted (Process.Abort). The ABORTED signal will be
permitted to propogate to the stream client.

6.3.5.1 Elements of Network stream objects

Elements of a Network Stream.Object are:.

inputOptions

getByte

putByte

getWord

putWord

get

The defaultlnputOptions defined by the Stream interface are almost
always inappropriate for Network streams. In particular,
terminateOnEndRecord should be TRUE. This is due to the fact that
Network streams do not implement the end of stream concept, but do
have the concept of a message or logical record. If
terminateOnEndRecord is FALSE, input operations will not terminate at
the end of the logical record and the return status end Record will never
be observed. If a get is not permitted to terminate with an e'hdRecord
status, it will invariably find itself waiting to complete a transfer when
it should be responding to the information it has in hand.

GetByte returns the byte of data from the byte stream. It asserts the
input options as [FALSE. FALSE. FALSE, TRUE, TRUE. TRUE. TRUE, FALSE], making
the signals Stream.SSTChange, Stream.Attention or Stream.TimeOut
possible.

PutByte appends one byte of client data to the byte stream. Should that
addition cause the internal buffer to be filled, it will be transmitted over
the established connection.

GetWord returns the word of data from the byte stream. It asserts the
input options as [FALSE. FALSE. FALSE. TRUE. TRUE. TRUE. TRUE. FALSE], making
the signals Stream.SSTChange, Stream.Attention or Stream.TimeOut
possible. GetWord operations that signal SSTChange or Attention are
ambiguous if the signal is raised after processing half (or one byte) of
the request. Such ambiguity is a client error. The sender and receiver
should use the same type of alignment characteristics.

PutWord appends one word of client data to the byte stream. Should
that addition cause the internal buffer to be filled, it will be transmitted
over the established connection.

Get retrieves the number of bytes specified in block (Environment. Block).

If the number of bytes requested is actually transferred, the status
returned by get will always be normal unless the' inputOptions have
been set to terminateOnEndOfRecord and the end of the logical record
is detected. Conversely, a completion code of anything other than

Pilot Programmer's Manual 6

put

setSST

normal or endRecord implies that the transfer operation was not
satisfied. The input options are settable by the client, so the various
stream signals are possible depending on the options.

If signalLongBlock or signalShortBlock is TRUE, packet boundary
semantics will be applied to the byte stream and the client will be
notified by the appropriate signalStream.LongBlock or Stream.ShortBlock.
These two input options should be used only by clients that wish to
directly control buffering, and those clients would be well advised to use
something other than Network streams in their application,

Put appends the specified block (Environment. Block) to the byte stream.
That addition may cause any (bounded) number of internal buffers to be
transmitted. The parameter end Record may be set to TRUE causing the
any currently buffered data to be transmitted and define the end of a
logical record. A put specifying no bytes and with endRecord set to TRUE
is equivalent to a sendNow with end Record set to TRUE. The end Record
status is preserved by the Network stream and detectable by the
receiving client.

SetSST will cause a buffer to be transmitted with the current sst if and
only if the new sst is of a different value. If there was no data buffered,
an empty buffer will be transmitted carrying only the changed sst state.
And lastly. the new sst will be recorded and declared to be the current
sst. When a stream is created, it is assigned a default sst of value O.

sendAttention SendAttention causes an attention byte to be appended to the byte
stream. The Network stream implementation also performs some
heroics in its attempts to deliver attentions. This amounts to expediting
the delivery, circumventing, if necessary, SPP allocation window
constraints. SendAttention assumes the receiver is taking equally
heroic action. Due to the additional overhead in such operations, it is
advised that attentions be used judiciously.

waitAttention WaitAttention allows the client process to wait for an out-of-band
attention notification. If a sending client is transmitting attentions, it is
the responsibility of the receiving client to process both the in-band and
out-of-band attentions. Failure to do so is a client error and will cause
the stream to fail. Only a small number of out-of-band attentions will be
maintained (less than 10). When that number is reached, the connection
will no longer be able to receive data.

delete Delete causes the current processes and buffering used by the stream
implementation to be destroyed. No attempt to clean up the stream is
made. The remote partner of the connection is not notified that the local
has been deleted. It is a client responsibility to insure that the
application data has been satisfactorily delivered before deleting the
connection.

getPosition GetPosition is not implemented by Network streams.

6-21

6

6-22

Communication

setPosition

send Now

clientData

getSST

6.3.5.2 Input options

SetPosition is not implemented by Network streams.

SendNow forces transmission of a buffer. That buffer may contain
internally buffered data, or it may be an empty buffer. SendNow with
end Record set to TRUE defines the end of a logical record. The logical
record boundary status is preserved by Network streams during
transmission and detectable by receiving clients.

This field is not used by Network streams.

GetSST will return to the caller the current outp'ut SST, Le., the SST
that can be set by the client via setSST. This procedure raises no signals.

terminateOnEndRecord If terminateOnEndRecord is FALSE, the stream implementation
will ignore logical record boundaries in incoming packets, and
continue to process incoming packets until the get request is
satisfied. If it is TRUE, it will assume an exceptional condition at
the end of a packet that carries a logical record boundary status,
terminate the transfer, and return with an end Record
complet~on code.

signalEndOfStream Network streams do not implement this concept.

6.3.5.3 Completion codes

These codes are returned from the get procedure.

normal

end Record

sstChange

endOfStream

attention

A normal return is one that satisfies the transfer request, Le., the
number of bytes requested.

An endRecord status indicates that in an attempt to satisfy the input
request, a buffer that carries a end of logical record status was
consumed and that the input options indicated that the request should
terminateOnEndRecord. The input request may not be complete.

This status indicates that the data stream type of the data stream has
changed and that the next byte of data in the byte stream will be of type
sst. The get procedure's transfer is not complete.

The endOfStream concept is not implemented by Network streams.

This status indicates that the next byte of the byte stream is an in-band
attention byte. The in-band attention marks the point in the byte stream
where the attention was transmitted, even though the out of band
notification may have arrived at a different time. The get procedure's
transfer is not complete.

Pilot Programmer's Manual 6

6.4 Routing

Router: DEFINITIONS ..• ;

All routers transmit packets to an immediate host that is, or is closer to, the final
destination host. Internetwork routers are responsible for keeping other internetwork
routers and simple routers informed of as much of the topology as they require, and for the
actual forwarding of packets from one net to another. They always know the topology of
the entire internet. Simple routers are mostly ignorant of the network topology, and learn
only enough about it to send packets sourced in the local machine toward their destination
via the optimal route. Each instance of Pilot has a simple router to help direct packets to
their proper destination. Router offers operations for using Pilot as a simple router, and for
discovering information about the topology of the internetwork.

Distances between networks are measured in the number of internetwork routers a packet
must be routed through from source to destination. The unit of measurement used is a
hop. The delay to a network is the number of hops from the source host to the destination
host. The local network is always considered to be zero hops away; a network available
through a single internetwork router is one hop away.

The simple routers keep a routing table by which packet forwarding decisions are made.
A routing table entry contains a destination network number, the internetwork router
address to which packets bound for the destination network should be forwarded, and the
delay to the network in hops. The routing table contains entries only for those destination
networks that have been accessed (i.e., had traffic transmitted to them) within the last
ninety seconds. The table entries are created when a client tries to send a packet to a
network unknown to Pilot, causing a routing table cache fault. The fault causes at least
one routing request to be made of a local internetwork router. The local routing table for a
simple router grows only when routing table faults occur. Thus, it is not a complete
picture ofthe networks that are reachable.

The routing table for simple router is maintained by aging entries to which no traffic has
been generated, and discarding the old entries.

Router is implemented by the configuration Commun i ca t ion. bed.

6.4.1 Types and constants

Router.endEnumeration: READONLY System.NetworkNumber;

Returned by the EnumerateRoutingTable stateless enumerator, endEnumeration
indicates the end of the list of entries in the current routing table has been reached.

Router.infinity: CARDINAL :=I 16;

infinity is the number of hops that defines an unreachable network. Any network that is
infinity or more hops away from the local net is unreachable.

Router.PhysicaIMedium: TYPE = {ethernet, ethernetOne, phone net, clusternet};

PhysicalMedium defines the various types of networks on the device chain.

6-23

6

6-24

Communication

ethernet

ethernetOne

phonenet

c1usternet

ethernet is a 10 M-bit ethernet, as defined by The Ethernet, Version
1.0, September 30, 1980.

Also referred to as the experimental ethernet, ethernetOne is a 3 M-bit
ethernet.

Based on the create procedure in RS232C, phonenet is a phone line
network.

c1usternet is a clusternet network, a group of one or more RS232C
ports that is used for remote workstations.

Router.RoutersFunction: TYPE. {vanilla Routing, interNetworkRouting};

The type of routing function the current router has is defined by RoutersFunction.

vanilla Routing

interNetworkRouting

The function for all simple routers is vanillaRouting. These
routers are capable only of requesting routing information,
receiving the responses from the internetwork routers and
maintaining a table.

The function for internetwork routers is
interNetworkRouting. These are the routing information
suppliers that know about the network topology. They respond
to routing requests and periodically send out gratuitous
routing information updates.

Pilot directly supports only vaniliaRouting.

Router.startEnumeration: READONL Y system.NetworkNumber;

Used with the EnumerateRoutingTable stateless enumerator, startEnumeration is passed
to start the enumeration of the entries in the current routing table.

6.4.2 Signals and errors

Router.NetworkNonExistent: ERROR;

Raised by GetNetworklD and SetNetworklD, this error indicates the device specified in
the call does not exist.

Router.NoTableEntryForNet: ERROR;

Raised only by GetDelayToNet, this error indicates the network specified by the client
could not be found in the routing table and the information could not be obtained from an
internetwork router.

6.4.3 Procedures

Router. AssignAddress: PROCEDURE RETURNS [System.NetworkAddress];

This procedure returns a network address with the primary network number (i.e., the first
device on the device chain), the local machine's ID and a unique socket number. It is

Pilot Programmer's Manual 6

typically used by clients who need to generate a unique address. Note: this address is not
unique across system restarts.

Router.AssignDestinationRelativeAddress: PROCEDURE [System.NetworkNumber]
RETURNS [System.NetworkAddress];

Clients who wish to obtain their address with a unique socket number and who know what
destination network they will be communicating with should call
AssignDestinationRelativeAddress. The network number passed is the destination
network number. Instead of setting the network field of the returned value to the primary
network number, the procedure will set it to the number of the local network on the best
known route to the destination net. The host field will be set to the processor ID of the
local machine and socket field to a unique socket number.

Router.EnumerateRouti ngTable: PROCEDURE[
previous: System.NetworkNumber, delay: CARDINAL]
RETURNS [net: System.NetworkNumber);

A stateless enumerator, EnumerateRoutingTable is used to dump that portion of the
current local routing table which represents routes within a certain delay of the local
network.

delay

previous

The number of hops to the remote network the client is interested in is
specified by delay.

previous is the network number obtained from the last call. . If this is the
first call to the procedure, previous should be set to startEnumeration.

EnumerateRoutingTable will return the net and delay of the first net following previous
that has a delay equal to delay. Pilot's simple router holds only entries for those routes
recently accessed (i.e.; have had traffic transmitted to them within the last 90 seconds) or
those that have been obtained by an explicit routing information request via
FiIIRoutingTable or GetDelayToNet. In general, a machine can be connected to more than
one local network by having more than one ethernet controller. In this case, the machine
also has more than one network address. To determine the 'list of local networks,
EnumerateRoutingTable can be used with max Delay set to O. The networks are
enumerated in ascending order of network number.

Router.FiIlRoutingTable: PROCEDURE [maxDelay: CARDINAL +-Router.infinity);

FillRoutingTable solicits information on all networks within the specified number of hops
from the local net.

maxDelay maxDelay is the maximum delay in hops of the networks that the client
wishes to collect information about. The default value is infinity, filling the
table with information about every known reachable network.

Routing information requests are broadcast on the local network. All subsequent
responses from the internetwork routers, whether associated with the request or
gratutious, will cause information about networks maxDelay or less away to be saved in
the local routing table. That information will be continuously updated if and when new
information is received.

6-25

6

6-26

Communication

FiIIRoutingTable followed by EnumerateRoutingTable can be used to determine the
networks within the desired number of hops from the local net. The filling will continue
until all clients who have called FiliRoutingTable call it again with a maxDelay of zero,
indicating they are no longer interested in saving incoming entries. There must be a call
with a maxDelay of zero for every call with a non-zero delay in order to properly maintain
the table. If multiple clients have called this procedure, the greatest maxDelay specified
will be used in determining which entries to save in the table.

Router.FindDestinationRelativeNetID: PROCEDURE[System.NetworkNumber]
RETURNS [System.NetworkNumber];

When passed the number of a destination net, FindDestinationRelativeNetlD will return
the number of the local network on the best known route to the destination network. It is
useful for setting an unknown source network number when the destination network is
known.

Router.FindMyHostID: PROCEDURE RETURNS [System.HostNumber];

This procedure returns the processor ID of the local machine.

Router.GetDelayToNet: PROCEDURE (net: System.NetworkNumber] RETURNS [delay: CARDINAL];

Clients who wish to fj.nd the current delay to a specific net may call GetDelayToNet.

net The number of the network that the client is interested in is specified by net.

delay The number of hops from the local net to net is specified by delay.

If the net is not found in the current routing table, Pilot requests routing information from
local internetwork routers. If net is unknown to the local machine and cannot be obtained
from the internetwork router, Router.NoTableEntryForNet is raised.

GetDelayToN~t is useful for determining timeouts and retransmission intervals for
clients, restrict broadcasts, or for determining the network topology close to the system
element. It might also be useful in choosing between -two servers offering the same service, .
based upon the delay to each element.

Router.GetNetworkID: PROCEDURE[physicaIOrder: CARDINAL. medium: PhysicalMedium]
RETURNS [System.NetworkNumber];

The network number of any network directly attached to the local machine can be
discovered by calling GetNetworklD.

physical Order

medium

The is the index of the network driver on the device chain is the
physicalOrder. (the primary network always has a physical order of
1)

The type of network involved is medium.

This procedure will raise the error NetworkNonExistent if there is no such device.

Router.GetRouterFunction: PROCEDURE RETURNS [RoutersFunction];

Pilot Programmer's Manual 6

Clients wishing to discover the function of the current router registered with Pilot may
call GetRouterFunction. The function of the router supplied by Pilot is always
vanillaRouting, the simple routing information requestor. Special facilities may be used
to install an internetwork router on a machine.

Router.SetNetworkID: PROCEDURE[
physicalOrder: CARDINAL, medium: PhysicalMedium.
newNetlD: System.NetworkNumber]
RETURNS [oldNetlD: System.NetworkNumber];

Special clients can change their network number without rebooting by calling
SetNetworkl D.

physicalOrder

medium

newNetlD

oldNetlD

The order of the network on the device chain is the physicalOrder.

medium is the type of network.

The new network number assigned to the specified device is
newNetiD.

The network number previously associated with the device is
oldNetiD.

A call to this procedure may raise the error Router.NetworkNonExistent if there is no
such device.

Caution: This procedure should only be used by sophisticated clients who are
knowledgable about the network and network numbers (i.e., Internetwork router
implementations) .

6.5 RS232C communication facilities

Pilot supports channel-level access to multiple full-duplex RS232C ports providing all of
the standard' channel procedures listed in §5.1, as well as several specific to RS232C'
communication. This allows the client access to the equipment connected to the RS232C
port.

In addition to a channel interface (§6.5.3), Pilot provides facilities to start and stop the
RS232C channel code (§6.5.4), and to dial telephone numbers via RS366 dialing hardware
associated with RS232C ports (§6.5.5). The RS232C facilities are implemented by the
configuration RS232CIO. bed.

6.5.1 Correspondents

RS232CCorrespondents: DEFINITIONS ... ;

This interface defines the possible correspondents of the RS232C channel. Each
correspondent is used to set certain line parameters. The interface also defines the
different outcome possibilities of the auto recognition facility of the RS232C channel.

6.5.1.1 Types and constants

6-27

6

6-28

Communication

RS232C.AutoRecognitionOutcome: TYPE = RS232CEnvironment.AutoRecognitionOutcome;

RS232CCorrespondents.failure: RS232CEnvironment.AutoRecognitionOutcome = ...
RS232CCorrespondents.asciiByteSync: RS232CEnvironment.AutoRecognitionOutcome = ...

RS232CCorrespondents.ebcdicByteSync: RS232CEnvironment.AutoRecognitionOutcome = ...
RS232CCorrespondents.bitSync: RS232CEnvironment.AutoRecognitionOutcome = ...
RS232CCorrespondents.nsProtocol: RS232CEnvironment.AutoRecognitionOutcome = ..
RS232CCorrespondents.illegal: RS232CEnvironment.AutoRecognitionOutcome •...

RS232CCorrespondents.xeroxBOO: RS232CEnvironment.Correspondent = ...

RS232CCorrespondents.xerox850: RS232CEnvironment.Correspondent = ...

RS232CCorrespondents.system6: RS232CEnvironment.Correspondent ••..

RS232CCorrespondents.cmcll: RS232CEnvironment.Correspondent • . •.

RS232CCorrespondents.ttyHost: RS232CEnvironment.Correspondent = ...
RS232CCorrespondents.nsSystemElement: RS232CEnvironment.Correspondent = ...

RS232CCorrespondents.ibm3270Host: RS232CEnvironment.Correspondent = ...

RS232CCorrespondents.ibm2770Host: RS232CEnvironment.Correspondent •...

RS232CCorrespondents.ibm6670Host: RS232CEnvironmetit.Correspondent = ...
RS232CCorrespondents.ibm6670: RS232CEnvironment.Correspondent •...

RS232CCorrespondents.xeroxB60: RS232CEnvironment.Correspondent • . ..

RS232CCorrespondents.nsSystemElementBSC: RS232CEnvironment.Correspondent •.

RS232CCorrespondents.siemens9750: RS232CEnvironment.Correspondent = ...

The correspondent implies information about the data formatting which the channel must
perform, and should be set prior to data transfers.

Note: xerox800 is not currently supported.

6.5.1.2 Procedures

RS232CCorrespondent.AutoRecognitionWait: PROCEDURE [channel: RS232c.ChanneIHandle]
RETURNS [outcome: RS232C.AutoRecognitionOutcome);

If the line type in the parameter object (see §6.5.3.1) is set to autoRecognition, the client is
asking the RS232C channel to attempt to determine as much as possible about the

Pilot Programmer's Manual 6

correspondent at the other end of the communication line. The client should await the
results of this auto-recognition attempt via a call to AutoRecognitionWait.

Additional channel parameters, as appropriate to the outcome, may then be set by calls on
SetParameter. The value illegal is returned if lineType has not been set to
autoRecognition.

Note: Thea~to recognition facility is not currently supported. A call to
AutoRecognitionWait will always result in a outcome of illegal.

6.5.2 Environment

This interface defines the environment of the RS232C channel. This includes all the
parameters of the line.

6.5.2.1 Types and constants

RS232CEnvironment.AutoRecognitionOutcome: TYPE = RECORD [[0 .. 15));

AutoRecognitionOutcome defines the range of possible results of the call to
RS232CCorrespondents.AutoRecognitionWait. See §6.5.1 for the specific outcomes.

RS232CEnvironment.CharLength: TYPE. [s •• s];

This type defines th~ possible number of bits in a character. It pertains only to the data
bits, and does not include start, stop or parity bits.

RS232CEnvironment.CommParamHandle: TYPE = POINTER TO RS232c.CommParamObject;

RS232CEnvironment.CommParamObject: TYPE = RECORD [
duplex: RS232c.Duplexity.
lineType: RS232c.lineType.
IineSpeed: RS232c.LineSpeed.
accessDetail: SELECT netAccess: RS232C.NetAccess FROM

directConn • > NULL.
dialConn = > [

dialMode: RS232c.DiaIMode.
dialerNumber: CARDINAL.
retryCount: RS232C.RetryCount].
ENDCASE);

When an RS232C channel is created, it is necessary to specify a number of channel
parameters. These parameters are supplied by means of CommParamObject. Additional
characteristics of the channel are generally specified by calls to RS232C.SetParameter
subsequent to the call to Create.

duplex

lineType

A half duplex line or a full duplex line is specified by duplex.

The lineType specifies the line type parameter necessary for creating
the channel. It serves to define some general characteristics of the
channel. Its choice is generally dictated by the equipment connected to

6-29

6

6-30

Communication

IineSpeed

accessDetail

the RS232C port. For more detail on the effect of the lineType
parameter, see section §6.5.3.4 on data transfer.

lineS peed is the line speed and its choice is dictated by the modem.

The accessDetail is the variant of the record that describes whether the
network is the DDD network or a direct line network. For the dialing
network, it determines how the phone is to be dialed and how many
times the dial is to be attempted.

RS232CEnvironment.Duplexity: TYPE III {full, half};

Duplexity defines the line as being full duplex or half duplex.

RS232CEnvironment.CompletionHandle: TYPE (2];

The CompletionHandle identifies an action initiated by a RS232C.Get or RS232C.Put. Each
Completion Handle must eventually be passed to a RS232C. TransferWait or
RS232c.TransmitNow operation, which does not return until that particular activity is
completed or aborted.

RS232CEnvironment.Correspondent: TYPE III RECORD [[0 .. 255]];

This type defines the range of correspondents. For specific correspondents, see §6.5.1.

RS232CEnvironment.DiaIMode: TYPE III {manual, auto};

DialMode defines how the phone is to be dialed.

RS232CEnvironment.FlowControl: TYPE III MACHINE DEPENDENT RECORD [
type(O): {none, xOnXOff},
xOn(1), xOff(2): UNSPECIFIED];

FlowControl specifies the flow control possibilities.

Note: Flow control on the channel is currently not implemented.

RS232CEnvironment.LineSpeed: TYPE III {

bpsSO,bps7S,bps110,bps134pS,bps150,bps300,bps600,bps12OO,bps2400,
bps3600,bps4800,bps7200,bps9600,bps19200,bps28800,bps38400,bps48000,
bps56000,bpsS7600};

The LineSpeed defines the speed ofthe line. The choice is dictated by the modem.

RS232CEnvironment.LineType: TYPE III {

bitSynchronous, byteSynchronous, asynchronous, autoRecognition};

The LineType defines whether the line is bitSynchronous, byteSynchronous or
asynchronous. A special line type of autoRecognition means the RS232C chaimel will
attempt to determine as much as possible about the correspondent at the other end of the
communication line. (For more detail on the effect of the line type, see the discussion
following Physical Record.)

Pilot Programmer's Manual 6

RS232C.NetAccess: TYPE = {directConn. diaIConn};

The NetAccess specifies the options for the connection types. It is used in the
CommParamObject.

RS232c.nuIiLineNumber: CARDINAL. LAST [CARDINAL];

Used with the Pilot stateless enumerator RS232C.GetNextLine, nuliLineNumber defines the
starting and ending values of the enumeration.

RS232CEnvironment.Parity: TYPE. {none. odd. even. one. zero};

This type defines the parity to be used.

RS232CEnvironment.PhysicaIRecordHandle: TYPE = POINTER TO PhysicalRecord;

RS232CEnvironment.PhysicaIRecord: TYPE = RECORD [header, body. trailer: Environment.Block];

The unit of information transferred across the RS232C Channel is the PhysicalRecord.
The Physical Record defines a frame of data consisting of an integral number of 8-bit bytes
in the code set expected by the equipment connected to the RS232C port. The client may
handle a frame as contiguous data, or may treat it as having up to three sections (header,
body, trailer) which the channel will gather/scatter appropriately.

As it travels between the client's buffers and the communication line, certain elements of
the frame are generated or stripped by the channel. Hence, the format of a frame at the
interface between Pilot and the client is slightly different from the frame format as shown
in the corresponding protocol documentation (e.g., BSC or HOLC). The 8-bit bytes are
serialized across the the communication line with the following transformations according
to' the· LineType (see §6.5.1.2), as well as the setting of various parameters (see
SetParameter, §6.5.3.3):

bitSynchronous (HOLC, SOLC, AOCCP): Flag patterns (01111110), and
synchronization information are generated (on 6utput) and stripped (on input) by the
channel for all frames. Checksum information is generated (output) and checked (on
input), but not stripped, so the client's input buffer must provide two extra bytes. Zero
insertion and removal following "11111" patterns is performed for all frames. On
input, end-of-frame is defined by the recognition of a second flag pattern. On output,
end-of-frame is defined by the Put procedure call.

byteSynchronous Synchronization information is generated (on output) and stripped
(on input) by the channel. Checksum information is generated (on output) and
checked (on input) but not stripped, so the client's input buffer must provide two extra
bytes. On input, end-of-frame is determined by the client supplied parameter,
correspondent (see §6.5.1.5). The channel generates or checks the checksum as
implied by the value of this parameter. On output, end-of-frame is defined by the Put
procedure call. In addition, a parity bit is (optionally) generated (on output) and
checked/stripped (on input) by the channel for each byte.

asynchronous (except when correspondent = ttyHost): Checksum characters are
generated (on output) and checked (on input) but not stripped by the channel, so the
client's input buffer must provide two extra bytes. On input, end-of-frame is
determined by the client supplied parameter, correspondent (see §6.5.1.5). The

6-31

6

6-32

Communication

channel generates or checks the checksum as implied by the value of this parameter.
On output, end-of-frame is defined by the Put procedure call. In addition, parity and
start/stop bits are generated (on output) and checked/stripped (on input) by the
channel for each byte.

asynchronous (when correspondent = ttyHost): No checksum operations are
performed. On input, end-of-frame is determined by a client supplied parameter:
frameTimeout (see §6.5.1.5). On output, end-of-frame is defined by the Put procedure
call, but has no other meaning. In addition, parity and start/stop bits are generated
(on output) and checked/stripped (on input) by the channel for each byte.

RS232CEnvironment.ReserveType: TYPE = {preemptNever, preemptAlways.
preemptlnactive};

RS232CEnvironment.RetryCount: TYPE = {0 .• 7];

RS232CEnvironment.StopBits: TYPE = [1..2];

RS232CEnvironment.SyncCount: TYPE = [0 .. 7];

RS232CEnvironment.SyncChar: TYPE. Environment.Byte;

The following types have been added to support the multiport board and new
encoding. They are the types of the new fields in the RS232C.Parameter.

RS232CEnvironment.ClockSource: TYPE = {internal, external};

RS232CEnvironment.EncodeData: TYPE = {nrz. nrzi, fmO, fm1};

RS232CEnvironment.ldleState: TYPE = {mark, flag};

6.5.3 RS232C channel

RS232C: DEFINITIONS ..• ;

The RS232C channel provides the Pilot client with the lowest level access to the RS232C
controller and its connected equipment. It assumes that the client has some familiarity
with EIA Standard RS-232-C.

6.5.3.1 Types and constants

RS232C.ChanneIHandle: TYPE [2];

The result of a successful RS232C.Create is a ChannelHandle, which is used for all
subsequent channel operations. The handle becomes invalid after executing a
RS232c.Delete, and subsequent use ofit will have undefined results.

RS232c.CharLength: TYPE := RS232CEnvironment.Cha rLength;

RS232C.CommParamHandle: TYPE = RS232CEnvironment.CommParamHandle;

Pilot Programmer's Manual 6

RS232c.CommParamObject: TYPE = RS232CEnvironment.CommParamObject;

RS232c.CompletionHandle: TYPE = RS232CEnvironment.CompletionHandle;

RS232c.Correspondent: TYPE ,. RS232CEnvironment.Correspondent;

RS232C.DeviceStatus: TYPE = RECORD(statusAborted, data Lost, breakDetected,
clearToSend. dataSetReady. carrierDetect, ringHeard, ringlndicator.
deviceError: BOOLEAN];

The DeviceStatus defines the status of the RS232C device. It is accessed via
RS232C.GetStatus and RS232c.StatusWait.

statusAborted

breakDetected

This status will normally be FALSE on calls to RS232c.GetStatus.
However, a call to RS232c.StatusWait may return because the
channel was suspended, causing statusAborted to be set to TRUE.

break Detected is applicable only for line Type = asynchronous,
and indicates that a break was received on the communication
line.

clearToSend, dataSetReady. carrierDetect

deviceError

These statuses correspond to states of circuits from the Data
Communications Equipment (DCE) as described in EIA Standard
RS-232-C. Normally, dataSetReady indicates that the data set
(modem) is operational and connected to the communication line.
clearToSend indicates that the data set is prepared to send data.
On a full-duplex communication line, dataSetReady and
clearToSend are normally always TRUE following connection
establishment, and need to be monitored only as exception
conditions. On a half-duplex line, the normal scenario for use of
these booleans is as follows: the client sets requestToSend, waits
(via RS232c.StatusWait) until clearToSend is set, and then sends
data (via RS232C.Put). When the client expects to receive data, he
must clear requestToSend, so that the data set will allow the
communication line to operate in the receive direction.

This status is set TRUE if a non-recoverable "shouldn't happen"
hardware or software error has occurred.

RS232C.DiaIMode: TYPE = {manual. auto};

The DialMode specifies the options for dialing used in the dialConn net access, used in the
CommParamObject.

RS232c.Duplexity: RS232CEnvironment.Duplexity;

RS232C.FlowControl: TYPE,. MACHINE DEPENDENT RECORD [type(O): {none, xOnXOff},
xOn(1), xOff(2): UNSPECIFIED];

6-33

6

6-34

Communication

FlowControl defines the type of flow control the channel should perform. Currently, flow
control is not implemented . .
RS232C.LatchBitClearMask: TYPE = RS232C.DeviceStatus;

Bits ringHeard, datalost, and breakDetected are called latch bits in that they are set by
the channel when the associated condition occurs, but are not cleared by the channel when
the condition clears. They remain set to guarantee the client an opportunity to observe
them. To clear th~m, a mask of type LatchBitClearMask must be defined, with the
booleans corresponding to the proper latch bits turned on.

RS232c.LineSpeed: TYPE. RS232CEnvironment.LineSpeed;

RS232c.LineType: TYPE. RS232CEnvironment,LineType;

RS232C.NetAccess: TYPE = RS232CEnvironment.NetAccess;

RS232C.nuIILineNumber: RS232CEnvironment.nuIILineNumber;

RS232c.Parity: TYPE. RS232CEnvironment.Parity;

RS232c.OperationClass: TYPE. {input. output. other, all};

The OperationClass specifies the different classes of operations which may be aborted by
RS232c.Suspend. input consists of the Get operation ,only, output is Put and Send Break,
other is GetStatu$ and StatusWait. If the client wishes to abort all the operations, he may
use the all option.

RS232C.Parameter: TYPE = RECORD [SELECT type: RS232c.ParameterType FROM
charLength • > [charLength: RS232c.CharLength].
clockSource = > [clockSource: RS232C.ClockSource].
correspondent. > [correspondent: RS232c.Correspondent].
dataTerminalReady • > [dataTerminalReady: BOOLEAN],
echoing = > [echoing: BOOLEAN]. ,
encodeData • > [encodeData: RS232c.EncodeData].
flowControl • > [flowControl: RS232C.FlowControl),
frameTimeout • > [frameTimeout: CARDINAL].
idleState =- > [idleState: RS232c.ldleState].
latchBitClear =- > [latchBitClearMask: RS232c.LatchBitClearMaskl.
lineSpeed • > [IineSpeed: RS232c.LineSpeed].
maxAsyncTimeout • > [maxAsyncTimeout: CARDINAL],
parity. > [parity: RS232c.Parity].
requestToSend • > [requestToSend: BOOLEAN].
stopBits • > [stopBits: RS232C.StopBits].
syncChar • > [syncChar: RS232c.SyncChar].
syncCount • > [syncCount:- RS232C.SyncCount].
ENDCASE];

RS232c.ParameterType: TYPE=- {charLength. correspondent. dataTerminalReady. echoing.
flowControl. frameTimeout.latchBitClear.lineSpeed. parity. requestToSend. stopBits.
syncChar, syncCount};

Pilot Programmer's Manual 6

The RS232c.Parameter contains the following additional channel parameters:

charLength

clockSource

correspondent

dataTermi nal Ready

echoing

encodeData

flowControl

frame Ti meout

idleState

The number of data bits in a character is specified by
charLength. The number of bits, right justified, are removed
from and stored into the 8-bit bytes described by
RS232c.PhysicaIRecord. Remaining bits are ignored on Put
operations, and set to zero on Get operations.

The source of the clock (from internal baud rate generator
or from the external source)--default for asynchronous is
internal, default for bit synchronous and byte
synchronous is external. .

correspondent is the type of correspondent the client is
communicating with, which is used to set certain channel
characteristics. See §6.5.1.1 for the legal
RS232CCorrespondents.

This parameter corresponds to the state of the DTR circuit to
the Data Communications Equipment (DCE). It should be set
by the client as described in ElA Standard RS-232-C.
Normally, dataTerminalReady is set to FALSE when the client
wishes to disconnect the communication line.

echoing specifies whether echoing of input characters should
be done by the RS232C channel. If echoing is TRUE, all input
characters received will be echoed by the RS232C channel. If
it is FALSE, the client using the RS232C channel is responsible
for echoing input characters.

A parameter that may be used with SDLC. The default
for any line type is nrz.

flowControl specifies whether the channel should perform
flow control. Iftype is xOnXOff, the RS232C channel will stop
output when it receives an xOff character and resume output
when it receives an xOn character. Note: flowControl is
currently not implemented.

The intra-frame timeout in milliseconds is specified by
frameTimeout. On input, for all settings of parameter
correspondent other than ttyHost, if the last byte of a frame
does not arrive within frameTimeout milliseconds of the first
byte, the frame will complete abnormally with status equal to
frameTimeout. If the correspondent is set to ttyHost, then
once the first byte of the frame arrives, if the next byte does not
arrive within frameTimeout milliseconds, the frame will

. complete normally. Setting frameTimeout to zero is
equivalent to setting an infinite frame timeout.

The state of the line when it is idle; i.e., whether to
transmit flags or mark. The default for bit synchronous is

6-35

6

6-36

Communication

latchBitClear

IineSpeed

maxAsyncTimeout

parity

requestToSend

stopBits

syncChar

syncCount

flag; default for byte synchronous and asynchronous is
mark.

The mask used for clearing the latch bits of the
RS232c.DeviceStatus is defined by latchBitClear. Only the latch
bits which are set in this mask will be cleared.

The speed of the line is defined by lineSpeed. Its choice is
dictated by the modem.

Used in conjunction with frameTimeout for multiport
asynchronous frame timing--default is O' (infinite timeout).

parity specifies the type of parity to be used.

requestToSend corresponds to the state of the RTS circuit to
the Data Communications Equipment (DeE). It should be set
by the client as described in EIA Standard RS-232-C. For full
duplex communication lines, it should remain TRue at all times.
For half-duplex lines, it is used to control line turnaround.
(See §6.5.3.1 for details).

specifies the number of stop bits to use on the channel when
lineType is asynchronous.

specifies the synchronization character which the channel will
transmit at the beginning of each frame when lineType is
byteSynchronous. On input, synchronization characters
preceding frames are discarded.

is the number of synchronization characters which the channel
will transmit at the beginning of each frame when lineType is
byteSynchronous. On input, synchronization characters
preceding frames are discarded.

Not all parameters nor all syntactically legal parameter values are valid for all LineTypes.
The following chart shows the valid values (as well as the default values) following calls to
Create or SetLineType.

Valid and Default Parameter Settings

asynchronous bvteSvnchronous bitSynchronous

charLength any! (8) 7,8 3 (8) any (8)

correspondent xerox800, ttyHost xerox8S0,system6, nsSystemElement

(xerox800) cmell (system6) (nsSystemElement
siemens97S0

dataTermi naiReady4 any (FALse) any (FALse) any (FALSe)

Pilot Programmer's Manual 6

echoing invalid2 invalid invalid

flowControl invalid invalid invalid

frameTimeout any (infinite) any (infinite) any (infinite)

lineSpeed any (bps1200) any (bps1200) any (bps1200)

parity any (none) any (none) any (none)

requestToSend4 any (FALSE) any (FALSE) any (FALSE)

stopBits any (1) invalid invalid

syncChar invalid any (62B) invalid

syncCount invalid any (2) invalid

1. "any" means any syntactically-accepted value is valid.

2. "invalid" means either the parameter is ignored, error RS232C.UnimplementedFeature or error
RS232C.lnvalidParameter will be generated. See §6.S.3.2 for more information on these errors.
3. charLength = 8 with parity = none is valid, and charLength = 7 with parity#none is valid. All other

combinations are invalid.
4. Default values are set following calls to RS232C.Create. Values are unchanged following calls to
RS232C.SetLine Type.

RS232C.StopBits: TYPE. RS232CEl'lvironment.StopBits;

RS232C.PhysicaIRecordHandle: TYPE = RS232CEnvironment.PhysicaIRecordHandle;

RS232C.PhysicaIRecord: TYPE = RS232CEnvironment.PhysicaIRecord;

RS232C.ReserveType: TYPE = {preemptNever, preemptAlways, preemptlnactive};

The ReserveType is used to establish priority among clients contending for a line during a
call to RS232C.Create. preemptNever is used by clients who wish to never attempt to gain
ownership of a line already being used. preemptAlways is used to always attempt to gain
ownership of such a line, and clients using preemptlnactive will attempt to gain
ownership only if the current channel is not active.

RS232C.TransferStatus: TYPE • {success, data Lost, deviceError, frameTimeout,
checksumError, parityError, asynchFramingError, invalidChar, invalidFrame, aborted,
disaster};

TransferStatus describes the status of an individual data transfer (Le., Get or Put). It is
returned to the client as the result ofthe TransferWait or TransmitNow procedure.

success success is the status returned normally, when the data transfer has
successfully completed.

6-37

6

6-38

Communication

dataLost

device Error

frameTimeout

This status will occur when a PhysicalRecord for a Get operation is not
large enough to accommodate the arriving frame. The channel will
discard all overflow data bytes until end-of-frame is detected.

This status indicates the transfer should be considered successful, but
a non-recoverable "shouldn't happen" hardware or software error has
occured .. Note that such status changes will cause the completion of
any pending RS232c.StatusWait call (see §6.5.3.5). The data Lost latch
bit will be set in the DeviceStatus record if data arrives when no
Physical Record has been allocated via a Get operation, and deviceError
will be returned as the TransferStatus on all data transfer operations
until the dataLost latch bit is cleared.

frameTimeout is set if the last byte of a frame does not arrive within
the timeout specified in the frameTimeout parameter in
RS232c.Parameter.

checksumError, parityError, asynchFramingError

These states all imply that the data has not been transferred faithfully
(Le., stop bits are missing).

invalidChar, invaiidFrame, disaster

aborted

6.5.3.2 Signals and errors

These states are not implemented.

aborted will occur ifRS232c.Suspend is called while the data transfer
is outstanding.

RS232c.ChannelinUse: ERROR;

lethe channel is active and reservation (pre-emption) fails, this error is generated.

RS232c.ChanneISuspended: ERROR;

After doing a RS232c.Suspend on a certain class of operations, a call to any operation in
that class will result in the ChannelSuspended error being raised.

RS232c./nvalidLineNumber: ERROR;

InvalidLineNumber is generated when the lineN umber supplied to the Create procedure is
invalid.

RS232c.lnvalidParameter: ERROR;

Generated by RS232c.Create or RS232c.SetParameter, this error indicates the client specified
an invalid channel parameter.

RS232c.SendBreakJllegal: ERROR;

Pilot Programmer's Manual 6

This error is raised when a client attempts to call the Send Break procedure on a channel
with a line type of byteSynchronous.

RS232C.NoRS232CHardwa re: ERROR;

This error indicates the Create procedure has been called with no RS232C hardware
installed.

RS232C.UnimplementedFeature: ERROR;

UnimplementedFeature.may be raised by a call to SetParameter, SetLineType, or Create.

6.5.3.3 Procedures for creating and deleting channels

RS232C.Create: PROCEDURE [IineNumber: CARDINAL,
commParams: RS232C.CommParamHandle. preemptMe: RS232C.ReserveType)
RETURNS [channel: RS232c.ChanneIHandle);

Each RS232C channel is a non-shareable resource that supports one full-duplex
communication path. A channel is potentially contended for by Communication software
and by Pilot clients accessing foreign devices. The RS232C channel resolves contention
for and supports pre-emptive allocation. Clients call the Create procedure to reserve a
channel. The channel handle returned is then used in all subsequent operations. If this
procedure is called when no RS232C hardware IS installed, the error
RS232C.NoRS232CHardware will be raised.

lineNumber

preemptOthers, preemptMe

The lineNumber specifies the RS232C line to use,
which may be obtained using the GetNextLine
procedure. If IineNumber does not represent a line
present on the RS232C controller, the error
RS232C.lnvalidLineNumber will be raised.

These parameters serve to establish priority among
contending clients. The state of a channel will be
either inactive (available or waiting for a connection)
or active. If a channel is available then a Create will
always succeed. Otherwise, the success of the Create
depends on the relative priorities of the current
"owner" of the channel and the client trying to reserve
it. If the channel is active and reservation (pre
emption) fails, the etror RS232c.ChannellnUse is
generated. The following matrix defines the result of a
Create given the values of the owner's preemptMe and
the reserver's preemptOthers.

Owner's preemptMe
Never

Never Fail

If Inactive Always

Fail Fail
Reserver's
preempt
Others

If Inactive Fail Pre-empt* Pre-empt

Always Fail Pre-empt Pre-empt

6-39

6

6-40

Communication

* Pre-empt if inacti ve

commParams

A new reservation that is waiting for a connection has
a grace period starting when Create is called and
ending after a certain time interval, during which it is
not considered to be ~active. During this time it is not
pre-emptable by a client specifying a preemptOthers
equal to preempttnactive. This is necessary to prevent
thrashing of contending listening clients who specify
preemptMe equal to preemptlnactive.

Caution: The grace period after a Create referred to
above is not implemented in this version of Pilot.

It is the responsibility of the client who called
RS232c.Create to release the channel when the channel
is pre-empted, or it is no longer required. Pre-emption
is detected by noticing that all RS232C calls return a
status of aborted. The pre-emption algorithm assumes
that the channel owner will notice this, and cooperate
by releasing the channel by doing a RS232C. Delete.

(ommParams specifies the basic channel
characteristics.

RS232C.SetParameter: PROCEDURE [channel: RS232c.ChanneIHandle.
parameter: RS232c.Parameter);

Additional channel parameters may be set by calling SetParameter.

RS232C.Delete: PROCEDURE [channel: RS232c.ChanneIHandle);

This operation has the effect of calling RS232c.Suspend, aborting all pending activity on the
channel. Any incomplete asynchronous activities (Le., those initiated via Get or Put) will
be terminated immediately with status = aborted. Note that it is the client's
responsibility to call TransferWait or TransmitNow for each of these asynchronous
activities in order for the call to Delete to complete. In general, this means that the Delete
and the TransferWaits must be issued from separate processes. If the client wishes to
terminate all pending activities normally, he should complete a call to RS232C.TransferWait
or RS232C.TransmitNow for each pending activity before calling Delete. Upon return from
the call to Delete, the Channel Handle is invalid, and further calls using this handle will
have undefined results. One convenient way to idle-down the channel is to set flags for all
processes which have access to the Channel Handle, call RS232c.Suspend[all), and then JOIN
these processes prior to calling Delete. The assumption is that 'any process receiving an
aborted status on an RS232C operation will check the flags and terminate.

6.5.3.4 Data transfer procedures

The operations described below transmit information to and from the equipment
connected to the RS232C port.

Pilot Programmer's Manual 6

RS232C.Get: PROCEDURE [channel: RS232c.ChanneIHandle.
rec: RS232C.PhysicaIRecordHandle] RETURNS [RS232c.CompletionHandle);

The Get operation queues the Physical Record for input transfer and returns to the client
with the input transfer pending. The handle obtained via the RS232C.Create procedure is
specified by channel. rec is the input buffer for the incoming data frame.

RS232C.Put: PROCEOURE [channel: RS232c.ChanneIHandle.
rec: RS232c.PhysicalRecordHandle] RETURNS [RS232c.CompletionHandle);

The Put operation queues the PhysicalRecord for output transfer and returns to the client
with the output transfer pending. Both Get and Put are asynchronous, in the sense that
they return to the caller as soon as the request has been queued, but complete at a later
time. For each direction (Le., input and output), pending activities are processed and
completed in the order in which they are issued. The returned CompletionHandle
identifies an activity initiated by a Get or Put operation. Each Completion Handle must
eventually be passed as a parameter to the TransferWait or TransmitNow operation,
which does not return until that particular activity is completed or aborted.

channel The handle obtained via the RS232c.Create procedure is specified by
channel.

rec rec is the output buffer for the frame of data to be sent.

The 1/0 buffers described by the Physical Record must not be released, altered, or re·used
until after the TransferWait or TransmitNow operation for the associated transfer
completes.

RS232C.TransferWait: PROCEDURE [channel: RS232c.ChanneIHandle.
event: RS232c.CompletionHandle) .
RETURNS [byteCount: CARDINAL. status: RS232C.TransferStatus);

Forking a process to perform a TransferWait allows the client program to proceed with
parallel processing.

channel

event

channel is the handle obtained via the RS232C.Create procedure.

event is the completion handle that identifies the activity upon which
to wait. (i.e., the handle returned from the Get or Put data transfer
operation.)

byteCount The number of data bytes transferred upon completion of the call is specified
by byteCount.

status The status of the completed call is specified by status. See §6.5.3.1 for
the different status values that may be returned.

TransferWait awaits completion of the activity initiated by Get or Put and returns to the
client the number of bytes transferred and the status. For Puts, the return from this
procedure indicates that the client's buffers are available for reuse, but does not guarantee
that the associated data has been transmitted on the communication line.

6-41

6

6-42

Communication

RS232C.TransmitNow: PROCEDURE [channel: RS232c.ChanneIHandle,
event: RS232c.CompletionHandle]
RETURNS [byteCount: CARDINAL, status: RS232C.TransferStatus];

Instead of Transfer Wait, TransmitNow may be used to force Put operations to complete.
Return from this procedure guarantees that the data has been transmitted on the
communication line.

RS232c.Suspend: PROCEDURE [channel: RS232c.ChanneIHandle,
class: RS232c.OperationClass];

This procedure aborts all pending activity of the specified OperationClass and causes
subsequent calls to generate the error RS232c.ChannelSuspended until a call to Restart is
issued.

Suspend does not return until the abort of all \ pending activities of the specified
OperationClass is complete. In the case of asynchronous operations it is the client's
responsibility to call TransferWait or TransmitNow for each of these operations in order
for the call to Suspend to complete. In general, this means that the Suspend and the
TransferWait must be issued in separate processes. Since Delete and SetLineType have
the effect of a call to Suspend, this is also true of calls to them.

RS232C.Restart: PROCEDURE [channel: RS232c.ChanneIHandle,
class: OperationClass];

This operation clears the effect of a call to Suspend. A suspend may occur as a result of an
explicit Suspend operation or as a result of the occurrence ofa sufficiently serious error.

6.5.3.5 Utility procedures

RS232C.GetNextLine: PROCEDURE [IineNumber: CARDINAL]
RETURNS [nextLine: CARDINAL];

RS232C line numbers may be obtained by the GetNextLine procedure, a Pilot stateless
enumerator with starting and ending values of null lineN umber.

RS232c.GetStatus: PROCEDURE [channel: RS232c.ChanneIHandle]
RETURNS [stat: RS232C.DeviceStatus];

In addition to the status information returned for each data transfer operation, Pilot
maintains global information about the device itself. It is accessed via the GetStatus and
StatusWait procedures. GetStatus returns the current status of the device.

RS232C.StatusWait: PROCEDURE [channel: RS232c.ChanneIHandle,
stat: RS232c.DeviceStatus] RETURNS [newstat: RS232c.DeviceStatus];

StatusWait waits until the current DeviceStatus differs significantly from the supplied
parameter stat. Changes in status to statusAborted, d~taLost, breakDetected,
clearToSend, dataSetReady, carrierDetect and ringHeard are defined to be significant. A
change to ringlndicator is not. The client must ,examine the device status to determine
what action to take.

Pilot Programmer's Manual

RS232c.SetLineType: PROCEDURE [channel: RS232c.ChanneIHandle,
lineType: RS232c.LineType);

6

SetLineType is used to change the LineType subsequent to creating the channel. Note that
the process of deleting a channel and then creating it again has the effect of setting
dataTerminalReady to FALSE, thereby hanging up a switched telephone line connected to
the modem. A call to SetLineType does not have this effect.

The SetLineType operation has the effect of a call to RS232c.Suspend. If the client wishes to
complete all pending activities normally, he should first call RS232C.TransferWait for each
pending activity, prior to calling SetLineType. Parameter information (as supplied via
prior calls to SetParameter) is reset to default values (see chart below), and should be
resupplied.

RS232C.SendBreak: PROCEDURE [channel: RS232c.ChanneIHandle);

SendBreak transmits a break on the communication line, where break is defined to be the
absence of a "stop" bit for more than 190 milliseconds if line Type equals asynchronous, or
an abort (between 7 and 14 "1" bits) if lineType equals bitSynchronous. SendBreak is
illegal for IineType equal to byteSynchronous, and will result in the error
RS232c.SendBreaklllegal. Note that sending a break while data transfer operations are
outstanding has unpredictable results.

6.5.4 Procedures for starting and stopping the channel

RS232CControl: DEFINITIONS ... ;

The RS232CControi interface allows the client to start and stop the RS232C channel code.
When the configuration RS232CIO is started, the channel code is started.

RS232CControl.StOP: PROCEDURE [suspendActiveChannels: BOOLEAN];

Stop stops the RS232C channel code. No new channel creations are allowed and any
attempt to create a channel results in the error RS232c.NoCommunicationHardware. In
addition, ifsuspendActiveChannels is TRUE, all channels are suspended.

RS232CControl.Start: PROCEDURE;

Start allows channel creation after a Stop call.

RS232C.NoCommunicationHardware: ERROR;

This error is raised when a client attempt to create a channel after RS232C.StOP has been
called.

6.5.5 Auto-dialing

Dialup: DEFINITIONS ... ;

The Dialup interface allows the client to specify a telephone number for the auto-dialing
hardware to dial. Upon successful completion of the dialing operation, data transfers
across the associated RS232C channel will be directed to the equipment answering the

6-43

6

6-44

Communication

telephone call. (Note that the hardware association between modems and dialers is
configured by the user, and is assumed to be known to the client of the Dialup and RS232C
interfaces.) To cause a telephone number to be dialed, the client call~

Dialup.Dial: PROCEDURE [dialerNumber: CARDINAL, number: LONG POINTER TO Number,
retries: RS232c.RetryCount,dialerType: Dialup.DialerType} RETURNS [Dialup. Outcome];

Dialup.Number: TYPE = RECORD [number: PACKED SEQUENCE n: CARDINAL OF Environment.Byte];

Dialup.RetryCount: TYPE. [0 .. 7);

Dialup.Outcome: TYPE. {success, failure, aborted, formatError, transmission Error,
dataLineOccupied, dialerNotPresent, dialingTimeout, transferTimeout};

Dialup.DialerType: TYPE = {RS366, Ventel, smartmodem, other};

dialerNumber specifies a logical dialer number corresponding to a physical dialer attached
to a port either on the local processor or the Xerox 8721873 Communication Server.
Dialing operations will also require some form of logical identifier to distinguish among
multiple modems serviced by the same dialer.

number is a sequence of bit patterns representing the digits to be dialed. With the
exception on the pause, the dialup implementation attaches no semantics to any of the bit
patterns it receives - they are simply passed to the dialer hardware. It is the responsibility
of the client to know what bit patterns represent special characters such as EON and SEP
for his particular hardware. The Modem then has the responsibility for detecting Answer
Tone. In the absence of the EON digit, transfer is made automatically upon detection and
processing of Answer Tone.

retries indicates how many times the Dialup routine will retry the dialing operation
following failure outcomes (see below).

The values of Outcome are to be interpreted as follows:

success

failure

aborted

The dialing operation was successful. For dialers capable of
detecting answer tone, this means that the call was answered by
a compatible modem and control was successfully transferred by
the dialer to the associated local modem. For dialers not so
equipped (Le., when EON is used to control transfer to the
modem), this means that all the digits in the number were
dialed, and control was successfully transferred to the modem.
Note that success refers to the dialing operation, and should not
be taken to mean that the associated modem is ready to transfer
data. This should be determined by examining dataSetReady
and clearToSend in the RS232c.DeviceStatus.

The dialing operation resulted in no answer, a busy signal, or
the telephone was answered by something other than a
compatible modem (e.g., a human being).

The dialing operation was aborted (via Dialup.AbortCall).

Pilot Programmer's Manual 6

formatError

transmissionError

dataLineOc(upied

dialerNotPresent

dialingTimeout

transferTimeout

The parameter number was formatted incorrectly.

The transfer of the dialing information to the dialing hardware
did not succeed. This should not happen in normal operation,
and indicates a hardware problem which should be investigated.

The telephone line to which the dialing hardware is connected
was off-hook. This situation indicates an operational problem
which should be investigated.

The dialer hardware did not respond. This situation indicates a
hardware problem (or a lack-of-hardwareproblem) which
should be investigated.

The dialer did not respond to a request during dialing. This
situation indicates a hardware problem which should be
investigated.

No meaningful reply was received from the dialer following
dialing the last digit. The dialer neither detected a failure (i.e.,
busy or not answer) nor successfully transferred control to the
modem. This situation indicates a hardware problem which
should be investigated.

Dialup.~bortCall: PROCEDURE [dralerNumber: CARDINAL];

If the clien t wishes to abort the dialing operation (from another process) prior to the return
fro~ Dial, he may call Abortcall, causing the call to Dial to return with an Outcome of

. failure.

Dialup.GetDialerCount: PROCEDURE RETURNS [numberOfDialers: CARDINAL];

The procedure GetDialerCount returns the total number of RS-366 (dialer) ports available.

Dialup.pause: Environment.Byte = LASr[Environment.Byte];

When passed in the parameter number, pause causes the dialer to wait 6 seconds before
dialing subsequent digits. pause is designed to be used in place of SEP on dialers that
cannot detect Dial Tone. This bit pattern does not actually get passed to the dialer
hardware.

6-45

6 Communication

6.6 Courier'

6-46

The term remote procedure calling refers to a software framework that facilitates the
design, implementation and documentation of distributed services. Remote procedure
calling casts the network protocols that underlie distributed services into a model closely
resembling the invocation of procedures in nondistributed programs. Thus a client request
for some service resembles a procedure call, and the information returned by the service
resembles the return from a procedure.

Mesa clients of Courier are provided with a set of facilities that closely parallel those
provided by Mesa running on a single machine. Just as Mesa provides powerful facilities
for modelling and controlling the interaction of programs through type-safety and signals,
Courier provides facilities for modelling and controlling the interaction of systems
distributed among an arbitrary number of machines. The principal limitation of Courier is
that it supports only a subset of the Mesa data types.

6.6.1 Definition of terms

The following terms are used throughout this section and have specific meanings in the
Courier context.

disjoint data In general, any Mesa structure that causes Courier to access data
outside the current parameter area is disjoint. Examples of disjoint
data are StringBodys and ARRAYs described by LONG DESCRIPTORS.

parameter area A segment of contiguous virtual memory that contains Mesa data
types and is being processed by a description routine. Parameter areas
are defined by a LONG POINTER and a size.

remote program A remote program usually represents a complete service, and the
remote procedures it contains represent the operations of that service.

RPC This is an acronym for remote procedure call. In this context is refers to
the actual processing of arguments and results, that function being
separate from bulk data, for instance.

server The Courier server is the Mesa Courier client that provides or exports
a service.

transport

user

6.6.2 Binding

The transport is used by Courier to carry the remote procedure call'
messages and by clients to carry bulk data. The transport is in the
form of a Pilot stream, and is usually assumed to be a Network stream.

The Courier user is the Mesa Courier client that requests, consumes or
imports a service.

Courier provides mechanisms for late binding at both the user and server machine. The
mechanisms are less rigorous than their Mesa counterpart, but they do exist.

Pilot Programmer's Manual 6

6.6.2.1 Binding to a service

Binding at the user mad~ine is controlled by the procedures Courier.Create and Delete and
the existence of a valid Courier.Handle. The handle (and thus the binding) returned by
Create remains valid on the machine it was created until it is deleted or the system is
restarted.

Courier.SystemElement: TYPE .. System.NetworkAddress;

Courier.Handle: TYPE = LONG POINTER TO READONLY Courier.Object;

Courier.Object: TYPE" RECORD [remote: Courier. System Element,
programNumber: LONG CARDINAL, versionNumber: CARDINAL,
zone: UNCOUNTED ZONE, sH: Stream.Handle,
dassOfService: NetworkStream.ClassOfService];

Courier. Create: PROCEDURE [remote: Courier.SystemElement,
programNumber: LONG CARDINAL, versionNumber: CARDINAL,
zone: UNCOUNTED ZONE, dassOfService: NetworkStream.ClassOfService]
RETURNS [Courier.Handle];

Courier.Delete: PROCEDURE [cH: Courier.Handle];

Courier.Error: ERROR [errorCode: Courier.ErrorCode];

Courier.ErrorCode: TYPE .. { ... , invalidHandle, ... };

Successful completion of the Create procedure results in the returning of a Courier.Handle.
The holder of that handle is then declared to be bound to the remote service specified. The
service in turn is specified as a concatenation of a Courier.SystemElement, a remote
program number and a desired uersion. Courier.Create also records other (interesting)
aspects of the client's access to the remote service, namely the UNCOUNTED ZONE to be used
for storing disjoint data structures, and an indication of the type of transport needed to
effectively communicate with the service.

Note: Create merely records the request for binding locally. Thus it may not do all the
checking that one would expect. The first attempt to establish a dialogue with the remote
service, hence completing the binding, is not made until the first Courier.Call (see §6.6.3).

Note: The transport used by Courier for communication with the remote machine is
(usually) under full control of Courier itself. The transport may be shared by other Courier
clients, created or deleted at Courier's discretion. Therefore the binding does not include
the transport (except when it is being used by bulk data transfer (see §6.6.5)).

The success of Create results in the caller possessing a Courier.Handle, and, indirectly, the
Courier. Object to which it points. The only information in the object not provided by the
client is a Stream.Handle, used by BulkData (see §6.6.5). The possession of the Courier.Handle
entitles the holder to make procedural requests, one at a time, of a remote service. The
handle remains valid until explicitly deleted (Courier. Delete). Once deleted, the handle is
void and may not be used in any operation (including Delete) again. Attempts to use an
invalid handle will result in the signal Courier.Error[invalidHandle] being raised.

6-47

6

6-48

Communication

Note: Delete doesn't delete the transport immediately. Courier will retain the transport
for some period of time hoping another client will be able to use it, thus eliminating the
overhead of deleting and creating the transport. Courier goes to great pains to (properly)
utilize the transport, which is perceived to be very heavy-weight relative to the needs of
most RPC operations. Delayed creates, reusing existing transports, and delayed deletes
are all attempts to optimize the transport's use. Regrettably, it also reduces the
debuggability by at least an order of magnitude.

6.6.2.2 Server binding

Courier.ExportRemoteProgram: PROCEDURE [
programNumber: LONG CARDINAL, versionRange: Courier.VersionRange,
dispatcher: Courier. Dispatcher, serviceName: LONG STRING ~NIL,
zone: UNCOUNTED ZONE, classOfService: NetworkStream.ClassOfService];

Courier.VersionRange: TYPE = RECORD [low, high: CARDINAL];

Courier.Dispatcher: TYPE = PROCEDURE [
cH: Courier.Handle, procedureNumber: CARDINAL,
arguments: Courier.Arguments, results: Courier.Results];

Courier.Arguments: TYPE = ...

Courier.Results: TYPE = ...

Courier.ErrorCode: TYPE. { ..• , duplicateProgramExport, ... };

Courier.NoSuchProcedureNumber: ERROR;

In order to make a service available on a machine, the server client must first register that
service (export) via ExportRemoteProgram. That action provides a template needed by
Courier to complete the binding process as is it needed. It registers information about the
service (program number, version range, class of transport and the UNCOUNTED ZONE) much
like Courier.Create. One difference is that the client specifies a version range when
registering the service. This permits servers to provide backwards compatibility by
allowing a single export to support any number of versions. Courier uses the information
provided by the call as information to fabricate Courier.Handles (and the Courier.Objects
behind them). Each handle thus created may be treated exactly as a handle returned by
Courier.Create, with the exception that the lifetime of the handle is defined by Courier. The
object is not created by a client and therefore should not be deleted by the client. It is
assumed void when the client returns from his dispatcher.

Courier will signal duplicate program exports (identical program number and version
range) by raising Courier.Error[duplicateProgramExport]. Be aware that duplicate exports
require an exact match. Registering a secondary export with overlapping version ranges
will succeed, but will give non-deterministic results.

The active part of the exported service is the client's dispatcher. Courier calls this
procedure from a FORKED process and in no way serializes incoming requests. The
dispatcher is client-implemented and is responsible for the final stage of binding at the
server machine. The last element in the binding process is the procedureNumber. The
client must verify that the procedure is really exported by the service, and if it is not, it

Pilot Programmer's Manual 6

should signal Courier.NoSuchProcedureNumber, thus rejecting the call. If the procedure
number is valid, the service should proceed with the argument processing and,perform the
defined service.

Courier.UnexportRemoteProgram: PROCEDURE [
programNumber: LONG CARDINAL, versionRange: Courier. VersionRange];

Courier.ErrorCode: TYPE = { ... , noSuchProgramExport, ... };

Once registered via Courier.ExportRemoteProgram, the service is expected to respond to
remote requests as the protocol for that service specifies. That responsiveness should
continue until UnexportRemoteProgram is called. At that time, the service is no longer
available and all subsequent requests will be rejected. UnexportRemoteProgram will not
affect calls currently in progress.

6.6.3 Remote procedure calling

The major purpose of Courier is to provide a simple remote procedure call facility. It
endeavors to relieve the client of many of the communications aspects of providing a
remote service, leaving a call model that can be likened to Mesa in many respects.

6.6.3.1 Client call

Courier.Call: PROCEDURE [
cH: Courier. Handle, procedureNumber: CARDINAL,
arguments, results: Courier.Parameters +- Courier.nuIlParameters,
timeoutlnSecDnds: LONG CARDINAL +-LAST(LONG CARDINAL],
requestDataStream: BOOLEAN +- FALSE.
streamCheckoutProc: PROCEDURE[cH: Courier.Handle] +- NIL]
RETURNS [sH: Stream.Handle]; .

Courier.Parameters: TYPE = RECORD [location: LONG POINTER, description: Courier. Description];

Courier.nuIiParameters: Courier.Parameters = [NIL, NIL];

Courier.Description: ;

Courier.ErrorCode: TYPE = {
transmissionMediumHardwareProblem, transmissionMediumUnavailable,
transmissionMedi umNotReady. noAnswerOrBusy, noRoute ToSystemElement,
transportTimeout. remoteSystemElementNotResponding. noCourierAtRemoteSite,
tooManyConnections. invalidMessage. nOSuchProcedureNumber. returnTimedOut,
callerAborted. unknownErrorlnRemoteProcedure. streamNotYours.
parameterlnconsistency. invalidArguments, noSuchProgramNumber.
protocol Mismatch. invalidHandle, ... };

The basis of Courier's RPC facility is .embodied in the Courier.Call. Call completes the
specification of the desired service by merging the binding information (cH), a procedure
within that generic service (procedureNumber) and the parameters (arguments) to be
supplied to the procedure. Due to the implied distributive nature of the call, the client is
requested to provide an estimate of how much time will elapse before a response is
declared lost (timeoutlnSeconds). The remaining two arguments (requestDataStream and

6-49

6

6-50

Communication

streamCheckoutProc) are relevant to bulk data transfer (see §6.6.5), as is the
Stream.Handle returned by the Call.

6.6.3.1.1 Call initial processing

Courier.ErrorCode: TYPE. { ...•
transmissionMediumHardwareProblem. transmissionMediumUnavailable.
transmissionMediumNotReady. noAnswerOrBusy. noRouteToSystemEl"ement.
transportTimeout. remoteSystemElementNotResponding. noCourierAtRemoteSite.
tooManyConnections. protocolMismatch. invalidHandle •... };

Initial contact with the remote machine will be made when the first call is made to that
machine. A transport will be created before the arguments are processed. That initial
contact will not include information about the particular service involved in the procedure
call. Thus, it establishes the ability to communicate with the remote machine but does not
verify that the desired service is actually exported.

Caution: Due to Courier's transport caching and swapping algorithms, it is almost
impossible for a Courier client to tell when such initial contact is being established.
Therefore, for the purposes of signal catching and the like, it is prudent to assume every
Courier .Call is an initial contact.

6.6.3.1.2 Argument processing

Courier.ErrorCode: TYPE. {
transportTimeout. invalidMessage. noSuchProcedureNumber.
parameterlnconsistency. invalidArguments. noSuchProgramNumber. invalidHandle •
... };

Courier.VersionMismatch: ERROR [vers'ionRange: Courier.VersionRange);

Courier.VersionRange: TYPE. RECORO [low. high: CAROINAL];

The remote machine will be made aware of the full binding information during or
immediately after processing the procedure's arguments. Should the binding fail, Courier
will raise Courier. Error with an appropriate error code (noSuchProcedureNumber or
noSuchProgramNumber) or Courier.VersionMismatch. In the case of VersionMismatch, the
user client is afforded the opportunity to select a version that is implemented by the server
and retry the operation.

Courier Call parameters are not an" exact Mesa model of procedure parameters. As
described in §6.6.6, Courier needs help to map Mesa data types to Courier data types. To
provide that help, the Courier client must provide the location of the parameter area and a
description routine to describe them in the form of a Courier.Parameters record. The
Courier equivalent for a Mesa procedure with no arguments or results is a Courier. Call that
has its arguments and results parameters assigned "(or defaulted) a value of
Courier.nuIIParameters.

Note: The description routine will not be called if either the location or the description
field of the Parameters record is NIL. .

Pilot Programmer's Manual 6

6.6:3.1.3 Waiting for results

Courier.ErrorCode: TYPE = {
transportTimeout. returnTimedOut. unknownErrorlnRemoteProcedure };

Courier.RemoteErrorSignalled: ERROR [
errorNumber: CARDINAL. arguments: Courier.Arguments];

Courier.Arguments: TYPE. PROCEDURE [
argumentsRecord: Courier.Parameters +- Courier.nuIiParameters];

Once the arguments of a Call have been successfully transmitted, Courier will not return
to the client until it either receives the results of the procedure call, receives notification
that the call has failed, or abandons the call. During the period while Courier is waiting
for the results, the transport is bound to the call. Should that transport fail, the local
machine will abandon the call and raise the signal Courier.Error[transportTimeout].
Courier watches to insure that the call returns in a client specified period of time
(timeoutlnSeconds). Should that time expire, Courier will raise the error
Courier .Error[returnTi medOut].

Caution: timeoutlnSeconds must be translated to internal units by the underlying
software. Should that conversion result in an overflow, the call will never timeout. The
default ofLAST[LONGCARDINAL] falls in this category.

Note: Timing is begun after the user client returns from the streamCheckoutProc, or if it
is NIL, immediately after completing arguments processing~ It does not include the time to
create the transport, to process arguments, to transfer bulk data (see §6.6.5) or to process
results.

The server client may raise Courier.SignalRemoteError instead of returning results. This
will translated to Courier.RemoteErrorSignalied at the user machine. The concatenation of
the binding information and the errorNumber is equivalent to a unique Mesa signal and
can be used to dispatch on proper code to process the signal's arguments, which must be
done by calling arguments with an appropriate Courier.Parameters record. Like a Mesa
signal, once RemoteErrorSignalled is raised, the client should no longer expect the Call to
return results as well.

Caution: Courier.RemoteErrorSignalled's arguments must be processed before UNwINDing.
To UNWIND would cause Courier to lose all the state being maintained for the call.

Note: Like arguments or results, a signal with no arguments is a call to arguments with a
parameter of Courier.nuIlParameters.

Notes: Courier user clients must distinguish the difference between Courier.Error and
Courier.RemoteErrorSignalled. The former is a Courier failure, while the latter is a (more
useful) conveyance of status from a remote service.

6-51

6

6-52

Communication

6.6.3.1.4 Freeing results

Courier.Free: PROCEDURE [parameters: Courier.Parameters, zone: UNCOUNTED ZONE);

Any time Courier translates Courier data types to Mesa data types, it may be necessary
for Courier to allocate storage for disjoint data structures. The storage will be allocated by
Courier on the client's behalffrom the zone specified during the binding (Courier.Create[... ,
zone: UNCOUNTEO ZONE, ...)) using the standard Heap machinery. The client is responsible for
deallocating these nodes, and to make that task easier, Courier provides the Free
procedure. Once the client has processed the results, this procedure may be called, freeing
all nodes allocated during the store (see §6.6.6) operation.

Note: It is never wrong to call Courier. Free after processing the results, even if no storage
was allocated in the store process. It is considered an optimization requiring knowledge of
the Courier and Mesa data structures involved to not do so.

6.6.3.2 Server's dispatcher

Courier.Dispatcher: TYPE = PROCEDURE [
cH: Courier.Handle. procedureNumber: CARDINAL,
arguments: Courier.Arguments, results: Courier.Results];

Courier.Results: TYPE. PROCEDURE [
resultsRecord: Courier.Parameters +- Courier.nuIiParameters,
requestDataStream: BOOLEAN +- FALSE]
RETURNS [sH: Stream.Handle);

The dispatcher is the server client's link with the RPC. mechanism. The dispatcher
procedure is registered by the service implementor via Courier.ExportRemoteProgram.
When a user places a call, Courier will search its internal lists of exports for an
appropriate export and call the registered dispatcher using a process spawned by Courier.
The client dispatcher is passed information similar to that which the user client passes to
Courier: a cH (Courier.Handle), a procedureNumber indicating the exact procedure
requested from the service, and two procedures (arguments and results) that the client
uses to link the appropriate parameter areas and description routines to the procedure's
parameters.

6.6.3.2.1 Completing the binding

Courier .NoSuchProcedureNu mber: ERROR;

The dispatcher's first responsibility is to complete the binding. The only unbound element
is the procedureNumber. The dispatcher must verify that the CARDINAL number supplied is
valid for the service, and if not, raise the signal Courier.NoSuchProcedureNumber. Once the
dispatcher verifies that the procedure does exist, it is obligated to service the remote calls
in the manner prescribed by the protocol it implements.

6.6.3.2.2 Processing the remote procedure call

The server client code first processes the arguments of a procedure by calling the supplied
arguments procedure with an appropriate Courier.Parameters record. If there are no

Pilot Programmer's Manual 6

procedure arguments, arguments mllst still be called with parameters of
Courier.nuIiParameters. If actual arguments do exist, the location field of the Parameters
record is assumed to point to an uninitialized but writable section of virtual memory. The
argument data will be translated from Courier data types to Mesa data types with help
from the description routine.

After processing the procedure's arguments, the service is expected to perform some
predefined function, a function not known to Courier, and one that may include bulk data
transfer (see §6.6.5). The byte stream is available (cH.sH) to the server client after Courier
returns from arguments. The client is assumed to be finished with the stream when it
calls results.

When the service is complete, it must call results, either with a client defined parameter
record or with Courier.nuIlParameters. The results returns a Stream.Handle. That handle
will be NIL unless requestDataStream is assigned a value of TRUE. A non-NIL handle may be
used for bulk data transfer. Client use of the stream in this case is assumed to be complete
when it returns from the dispatcher.

6.6.3.2.3 Freeing the arguments

When storing (see §6.6.6) the arguments of a procedure call, Courier may allocate nodes of
storage on behalf of its clients to store disjoint data structures. At sometime before
returning from the dispatcher, the client must free that storage. This may be done as .
described in §6.6.3.1.4.

6.6.4 Errors

There is a considerable amount of error processing being performed by Courier. Most
signals that might be raised by underlying implementations used by Courier are
translated to Courier. Error with a (hopefully) meaningful errorCode. Other errors are
implemented by Courier and may be raised by clients.

6.6.4.1 Errors raised by Courier

The following is a list of signals that Courier may raise and the client must catch. The
discussions define the conditions under which they may be raised and suggest proper
client reactions.

Courier. Error: ERROR [errorCode: Courier.ErrorCode);

Courier.ErrorCode: TYPE=- {

transmissionMediumHardwareProblem, transmissionMediumUnavailable,
transmissionMedi umNotReady, noAnswerOrBusy, noRouteToSystemElement,
transportTimeout, remoteSystemElementNotResponding, noCourierAtRemoteSite,
tooManyConnections, invalidMessage, noSuchProcedureNumber, returnTimedOut,
callerAborted, unknownErrorlnRemoteProcedure, streamNotYours,
truncatedTransfer, parameterfnconsistency, invalidArguments,
noSuchProgramNumber, protocol Mismatch, duplicateProgramExport,
noSuchProgramExport, invalidHandle, noError};

6-53

6

6-54

Communication

This is the most common Co'Urier signaL It should never be raised by and must always be
caught by the client. Unless specifically noted, the following codes may be observed by
both user and server clients.

transmissionMediumHardwareProblem This is most likely to happen during initial
attempts at establishing a connection, but could
happen at any time. It is also most likely to be
related to circuit oriented devices. At any rate, it
is highly unlikely that anything can be gained
by retrying the operation. Call your support
personnel for assistance.

transmissionMediumUnavailable Always associated with circuit oriented devices,
it indicates that the device is either currently or
permanently unavailable. One should check the
hardware to verify its configuration, and if
properly configured, retry at a later time.

transmissionMediumNotReady Always associated with circuit oriented devices,
suggests that the medium is operational, but
unable to accept data. Possible remedies are to
manually dial the phone or ready the modems.

noAnswerOrBusy This error applies to circuit oriented media only
and indicates that the local hardware was
operational, but the remote either did not
answer or was already busy. Retry at a later
time (on the order of minutes).

noRouteToSystemElement The network on which the remote machine
resides is not reachable at this time. The
internet may have been temporarily partitioned
(due to system failure) such that the network is
no longer reachable. Retry the operation at a
later time (on the order of minutes).

transportTimeout An active connection has suddenly become
unusable. It may be due to the remote machine
becoming inoperable or to an error prone
connection somewhere in the internet.

remoteSystemElementNotResponding Trying to establish a connection failed after a
reasonable amount of time and attempts. Either
the remote machine is inoperable or it does not
exist on the specified network. Check the
network topology and the state of the machine in
question. This error will be observed only by
user clients.

noCourierAtRemoteSite Observed only at the user machine, an attempt
to establish a connection with a remote machine
succeeded, but it was found that Courier was not

Pilot Programmer's Manual

tooManyConnections

invalidMessage

noSuchProcedureNumber

returnTimedOut

calierAborted

unknownErrorlnRemoteProcedure

streamNotYours

6

listening, an indication that no services are
exported by that machine.

Courier has a limit as to how may transports it
will support sim~.lltaneously. Creating the
transport for this connection would exceed that
limit. Try again at a later time (on the order of
seconds). This error will only be observed on the
user machine, but may reflect a condition on
either the user of server machine.

A message received from a remote machine was
of the wrong format. This is an error in either
Courier's or in the Courier client's protocol
implementation. Retrying the operation will
probably not be fruitful. This error will be
observed only by user clients.

The remote service does not implement the
procedure specified. This is a client protocol
violation. Retrying will not help. This error will
only be observed at the user.

A remote procedure call did not complete in the
specified amount of time. Courier has
abandoned the call. This could be due to an
overloaded server, so retrying at a later time
(minutes) may work. This error is observed only
by user machines.

This error, observed only on server machines,
indicates that the service has taken too long to
formulate its reply. The calling machine has
abandoned the call. The results cannot be
delivered. The server neuer retries operations.

Observed only at the user, an undefined error
has occurred. The server machine's integrity is
in doubt and retrying could compound the
problem.

A client of inter-call (§6.6.5.2) style bulk data
transfer has attempted to call
Courier.ReleaseDataStream when it did not have
the stream checked out. If the client had
previously used the (a) stream, the integrity of
the Courier RPC transport is in doubt. The
problem should rectify itself, but several RPCs
may fail first. This is a client implementation
error.

6-55

6 Communication

truncatedTransfer

parameterlnconsistency

invalidArguments

noSuchProgramNumber

protocol Mismatch

duplicateProgramExport

noSuchProgramExport

6-56

This error code will only be observed by
implementors of the bulk data transfer protocol.
Bulk data transfer protocol implementors are
client~ of ,the filtered byte stream provided by
Courier for that purpose. That protocol requires
that data be transmitted with a
SubSequenceType other than O. This error
implies that the stream client attempted to
consume some data of SubSequence Type ofO.

Client parameter processing error. This is
probably due to a malformed Mesa data item or
an invalid implementation of the client's
protocol (in the description routine). In such
cases is doubtful that retrying the operation will
help, and it might hurt. It is also possible (but
highly unlikely) that the transport has failed to
deliver the data correctly.

Either Courier or the client description routine
has noted a discrepancy in the format of the
arguments and raised Courier.lnvalidArguments.
Courier caught the signal and either sent a
reject (if it was raised remotely) or translated it
into a Courier. Error.

The program number that the user wishes to
bind to is not exported at the server in any
version. Retrying will not be helpful. Verify that
the correct machine is being accessed for the
service desired. This error will only be observed
on user machines.

Observed only at the user during initial
transport creations, indicates that the user and
server are running incompatible versions of the
Courier protocol. No retrying is in order. Check
the network topology and the versions of
software running at the respecti ve machines.

This error code is observed only when
attempting to export a service. It indicates that
the programNumber and version Range
parameters of Courier.ExportRemoteProgram
matched exactly with those already known by
Courier.

This error code is observed only when
attempting to unexport a remote service. It
indicates that the programNumber and
versionRange specified in the unexport request

Pilot Programmer's Manual

invalidHandle

noError

6

(Courier.UnexportRemoteProgram) did not have
an equivalent known to Courier.

An operation requiring a Courier.Handle checked
the handle and found it to be invalid. The handle
was probably already deleted, or (even worse)
never created. Don't retry the operation.

This should never be observed by any Courier
client. It is included to simplify internal
processing.

Courier. Version Mismatch : ERROR [version Range: Courier. Version Range] ;

The remote service version number is passed as part of every remote procedure call. If the
Courier server discovers that the machine does export the program, but not the particular
version, it will notify the user machine of the range of versions supported by the server.
The user then has the option to observe that range, and if it implements a compatible
version, to retry the operation with appropriate parameters.

Note: This feature is only implemented for servers of Courier version 3 or higher.

Courier.RemoteErrorSignalled: ERROR [

errorNumber: CARDINAL, arguments: Courier.Parameters ~ Courier.nuIlParameters];

RemoteErrorSignalled is Courier's equivalent to a Mesa signal. The signal is initiated in
the signaller (server) machine by the client raising the signal Courier.SignalRemoteError
(see §6.6.4.2), thus aborting the call. At the user, the abort message is used to reconstruct
the context of the signal, renaming it Courier.RemoteErrorSignalled. The argument
errorNumber of the signal permits the client to dispatch to the appropriate processing
code. The remaining context of the signal must be retrieved by calling arguments. If the
semantics of the signal indicate no arguments exist, then arguments should be called with
a defaulted value of Courier. null Parameters. The arguments of the signal must be processed
before the UNWIND is generated. .

6.6.4.2 Signals clients may raise

Courier.NoSuchProcedureNumber: ERROR;

During the client dispatcher's final phase of binding, it may find that the
procedureNumber, specified as one of the Courier. Dispatcher arguments, is invalid. It must
then raise this signal, and Courier will transfer that information to the caller and reject
the call. This signal must not be raised by the client except in the dispatcher. At the user
the information will be translated to Courier.Error[noSuchProcedureNumber].

Courier.lnvalidArguments: ERROR;

Client description routines may notice unacceptable parameters. If this is so, the client
may raise InvalidArguments. This signal will be translated by Courier to
Courier.Error[invalidArguments] at the user. Both server and user code may raise this

6-57

6

6-58

Communication

signal; the server will not translate the error locally, but it will reject the call, send the
information to the user, where Error[invalidArgumentsJ will be raised.

Courier.SignaIRemoteError: ERROR [
errorNumber: CARDINAL, arguments: Courier.Parameters 4- Courier.nuIlParameters];

SignalRemoteError is the mechanism Courier client servers use to emulate the generation
of a Mesa signal. Courier intercepts the signal and translates it into an abort message that
includes the errorNumber and any additional arguments the client may have specified. If
the semantics of the signal are that no arguments exist, arguments should be assigned (or
defaulted) a value of Courier. null Parameters.

Note: Courier will call the client's argument description routine before UNWINDing from
the catch phrase.

6.6.5 Bulk data

Courier supports applications whose communication requirements are primarily
transactional in nature. However, not all network communication is transaction oriented.
File transfer, for example, is more appropriately modelled as bulk data transfer. In order
to blend this bulk transfer requirement with the transactional nature of remote procedure
calljng, Courier provides access to an established byte stream, permitting the client to use
that byte stream for those applications that require it.

6.6.5.1 Intra·call bulk transfer

Courier.Call: PROCEDURE[... ,
streamCheckoutProc: PROCEDURE [cH: Courier.Handle], ... J ...

Courier.Object: TYPE == RECORD [... , sH: Stream.Handle, ...];

The Courier user and server client have the stream made available via the Courier. Object
that is in turn accessible through the Courier. Handle. The stream contained therein is
slightly limited when compared to a generic Pilot stream. It may be used only between
argument and result processing and it will not permit the client to set the Subsequence
Type to a value of zero, nor will it permit the client to delete the stream. Attempts to do
these will result in the error Stream.lnvalidOperation.

Note: The client is responsible for processing all signals that might be raised by a Pilot
stream.

The user client is given control after the processing of the arguments if the
streamCheckoutProc has a value other than NIL. At the server, the client has control
between the processing of the arguments and results and may use the stream at that time.
The state of the stream provided the client is a default stream (Le., timeout = 60 seconds,
sst = 0, input options = Stream.defaultlnputOptions) It is assumed the client is finished
with the bulk transfer when it returns from the streamCheckoutProc procedure (user) or
calls results (server). The state ofthe returned stream is undefined and Courier expects to
have to reset the parameters for its subsequent use.

Pilot Programmer's Manual

6.6.5.2 Inter-call bulk transfer

Courier.Call: PROCEDURE [••• , requestDataStream: BOOLEAN, .••]
RE.TURNS[sH: Stream.Handle];

Courier.Results: TYPE,. PROCEDURE [.•• , requestDataStream: BOOLEAN, .••]
RETURNS[sH: Stream.Handle];

Courier.ReleaseDataStream: PROCEDURE [cH: Courier.Handle];

Courier.ErrorCode: TYPE,. { .•. , streamNotVours, ... };

6

This version of bulk transfer provides the client with an unfiltered stream, unrestricted by
Courier in any way, either as a result of the Courier.Cali at the user or as a result of calling
results at the server. If the parameter requestDataStream is FALSE, the value returned for
sH will be NIL.· If the parameter requestDataStream is TRUE, the stream provided is a
default stream as described in §6.6.5.1. The user client is assumed finished with the
stream when he calls Courier.ReleaseDataStream. Attempting to release a stream that was
never checked out will result in the error Courier.Error[streamNotVours] being raised.
Until that time the transport cannot be used for any other purpose, including another
remote procedure call. At the server Courier assumes ownership of the stream when the
client returns from his dispatcher. The client may perform any stream operation desired
except delete and those not supported by the transport (such as positioning in the case of
Network streams).

6.6.6 Description routines

Courier description routines are used to translate Mesa data types to and from Courier
data types. Courier provides the machinery to perform this translation process via a notes
object passed by reference to each description routine.

The notes object contains the context within which the description routine is operating.

Courier.Description: TYPE = PROCEDURE [notes: Courier.Notes];

Courier .Notes: TYPE = POINTER TO Courier. NotesObject;

Courier.NotesObject: TYPE = RECORD [•••];

Courier requires client assistance to map Mesa data types into Courier data types. The
client provides that assistance in the form of a description routine. Description routine
procedures are of type Courier.Description. The notes object is passed by reference to all
client description routines. It contains context about the process being performed and a
series of procedures to perform the bulk of the work involved in mapping Mesa data types
to and from Courier data types.

6.6.6.1 Mesa data type restrictions

The Courier Protocol supports a set of data types that closely corresponds to the set of
common Mesa data types. Because the Courier Protocol is intended for a heterogeneous

6-59

6

6-60

Communication

internet, however, not all Mesa types are supported. Also, for those Mesa data types that
are supported, there are a few restrictions that arise from the need to maintain a set of
data types that are reasonably easy to support on other types of systems.

Below are suggested mappings of Courier data types to compatible Mesa data types. Since
Courier has a Mesa heritage, finding a semantically equivalent Mesa data type for every
Courier data type is a fairly simple task.

6.6.6.1.1 Fully compatible data types

The following data types have equivalent representations in Courier and Mesa.

Courier data type

CARDINAL

INTEGER

UNSPECIFIED

Corresponding Mesa data type

CARDINAL

INTEGER

UNSPECIFIED

6.6.6.1.2 Data type compatibility supported by Courier clients

The following Courier data types have a representation in Mesa, but is not a common data
type. Courier does not support the noting of these data types within the description
routine. It is the responsibility of the Courier client to use the restricted form shown
below.

Courier data type Corresponding Mesa data type

BOOLEAN

RECORD[id,: Type" ... idn: Typen]

MACHINE DEPENDENT RECORD [

zeros: [0 .. 77778], value: BOOLEAN]
MACHINE DEPENDENT

{id,(V,), ... idn(v,J, LAST[CARDINAL]}

MACHINE DEPENDENT RECORD [

id,: Type" ... idn: Typen]

6.6.6.1.3 Data type compatibility supported by Courier via notes

The following Courier data types have a representation similar to that of Mesa. The
differences are resolved at the time the description routine notes instances of them.

Courier data type

LONG CARDINAL

LONG INTEGER
STRING

ARRA Y n OF Type
CHOICE n OF {list}

SEQUENCE n OF Type

Corresponding Mesa data type

LONG CARDINAL

LONG INTEGER

LONG STRING
ARRA Y [Ooon) OF Type
MACHINE DEPENDENT RECORD [

ido: Typeo,
id,: Type"

idn: SELECT n FROM

tago • > [Typen],
tag, • > [Typen + ,],

tagm • > [Typen +mll
DESCRIPTOR FOR ARRA Y OF Type

Pilot Programmer's Manual 6

6.6.6.2 Description context

The notes object contains the context within which the description routine is operating.

Courier.NotesObject: TYPE = RECORD [type: {fetch, store, free}, ... J;

The first field of the notes object informs the client what type of operation is to be
performed. The notes object procedures are designed such that most of the operations are
performed as side-effects enabling a single description procedure to perform all three of the
following operations without caring about the specific operation type. In some cases,
however, the client needs to be aware of the current operation.

fetch

store

free

To fetch is to translate Mesa data types to Courier data types. This is
sometimes referred to as serialization or marshalling of data. This
action occurs when call parameters are processed by the user or when
return parameters are processed by the server.

To store is to translate Courier data types to Mesa data types. This is
sometimes referred to as deserialization or unmarshalling. This action
occurs when call parameters are being processed by the server or when
result parameters are being processed by the user. In such cases,
Courier will allocate nodes of storage for disjoint data structures (LONG
STRING, LONG DESCRIPTOR FOR ARRAY, DisjointData) from the current zone.
In some cases, the client may wish (or have) to allocate nodes directly,
as in the case of NoteSpace.

The Courier client is required to free the storage nodes allocated by
Courier during a store operation. It is possible and recommended that
the client do that via the Courier.Free operation. When a description
routine is being called with type offree, the client has the opportunity
to release nodes that he may have allocated unknown to Courier, such
as nodes for the NoteSpace operation.

Courier.NotesObject: TYPE = RECORD [... , zone: UNCOUNTED lONE, ... J;

The description client is also made aware of the heap that the program wishes to use to
allocate or free storage. This field is a copy of the zone registered by the client during
Courier.Create and courier.ExportRemoteProgram. The client will find that the zone field is
most useful during storing and freeing operations.

6.6.6.3 Data noting procedures

Each note routine contained in the notes object is provided to perform mapping to and from
explicit Courier and Mesa data types. Each routine has at least three properties. First, it
has a specific Mesa to Courier mapping function. Second, it contains the site of the data
being described. Third, the note procedure consumes an implicit amount of the parameter
area.

6-61

6

6-62

Communication

6.6.6.3.1 NoteSize

Courier.NotesObject: TYPE = RECORD [... , noteSize: Courier.NoteSize, ... };

Courier.NoteSize: TYPE = PROCEDURE [size: CARDINAL] RETURNS [site: LONG POINTER];

The first responsibility of a description routine is to note the size of the record being
described. This size (in words) coupled with the starting address of the record defines a
parameter area whose contents must be noted, either explicitly through one of the data
noting procedures supplied in the notes object, or implicitly by skipping over a portion of
the parameter area with other explicit notes, or by returning from the description routine.
No data noting procedures may be called before NoteSize and NoteSize may not be called
more than once per description routine.

6.6.6.3.2 NoteLongCardinal, NoteLongInteger

Courier.NotesObject: TYPE = RECORD [... ,
noteLongCardinal: Courier .noteLongCardinal,
noteLonglnteger: Courier.noteLonglnteger, ... J;

Courier.NoteLongCardinal: TYPE = PROCEDURE [
site: LONG POINTER TO LONG CARDINAL];

Courier.NoteLonglnteger: TYPE = PROCEDURE [
site: LONG POINTER TO LONG INTEGER};

All LONG CARDINAL and LONG INTEGER data types contained in the parameter area must be
explicitly noted. Two words are consumed from the parameter area with each call.

6.6.6.3.3 N oteString

Courier.NotesObject: TYPE = RECORD[... , noteString: Courier.NoteString, ...];

Courier.NoteString: TYPE = PROCEDURE [site: LONG POINTER TO LONG STRING];

All LONG STRING data types contained in the parameter area must be explicitly noted. Two
words are consumed from the parameter area with each call. Storage for the StringBody
will be allocated from the notes object zone by the store operation.

Note: The maxlength attribute of the Mesa StringBody will be lost in the fetching
operation. Consequently, stored strings will always have a maxlength equal to the length.

Caution: Strings that are NIL or have a length of zero when fetched are always stored as
strings with zero length. The client must be aware that such stored strings are READONLY.
They must not be modified in any way. They must not be freed except by the Courier.Free
operation.

Pilot Programmer's Manual

6.6.6.3.4 N oteChoice

Courier.NotesObject: TYPE = RECORD [...• noteChoice: Courier.NoteChoice •...];

Courier.NoteChoice: TYPE = PROCEDURE [
site: LONG POINTER,
size: CARDINAL,
variant: LONG DESCRIPTOR FOR ARRAY OF CARDINAL.
tag: LONG POINTER .-NIL];

6

NoteChoice provides the Courier client with a somewhat restricted use of the Mesa
variant record. In addition to the site parameter, the procedure call also specifies the
undiscriminated length of the variant record. It is that length that will be consu.med from
the parameter area by the procedure call. The client is also required to supply an array
descriptor for an array of variant record discriminated lengths. A fourth optional
parameter specifies the address of the variant record's tag field. If that field is omitted,
assigned a value of NIL, or a value equal to that of the site parameter, Courier assumes that
the variant tag is the first element of the variant record. Otherwise it assumes a record
with a static portion followed by a variant portion.

Note: The variant tag must be word aligned and 16-bits wide.

6.6.6.3.5- N oteArray Descriptor

Courier.NotesObject: TYPE = RECORD [...•
noteArrayDescriptor: Courier. NoteArrayDescri ptor •...];

Courier.NoteArrayDescriptor: TYPE = PROCEDURE [
site: LONG POINTER. elementSize. u.pperBound: CARDINAL];

This procedure notifies Courier that a Mesa LONG DESCRIPTOR exists at site. The procedure
call consumes three words ofthe parameter area. But since descriptors define disjoint data
in the form of an array, the virtual memory defined by that array is not from the original
(or current) parameter area. For that reason, another parameter area is fabricated using
the descriptor's BASE and LENGTH, the latter being multiplied by the length of each element
as passed by the client. The newly defined parameter area must be completely consumed
before any more of the previous parameter area can be processed. For store operations, the
storage for the parameter area will be allocated from the notes object zone. The last
parameter, upperBound, is the maximum LENGTH that Courier should accept within the
descriptor.

Note: Descriptors having BASE = NIL or LENGTH = 0 during the fetch will always be stored
as DESCRIPTOR[NIL, 0).

6.6.6.3.6 N oteDisjointData

Courier.NotesObject: TYPE = RECORD [...•
noteDisjointData: Courier.NOteDisjointData •...];

6-63

6

6-64

Communication

Courier.NoteDisjointData: TYPE = PROCEDURE [
site: LONG POINTER TO LONG POINTER, description: Courier.Description];

NoteDisjointData permits the client to note data that is only referenced via a LONG POINTER
in the parameter area. It is provided as a convenience to clients to eliminate local copying
of parameters or as data hiding mechani~m. NoteDisjointData consumes two words from
the parameter area. The second argument of the procedure is another description routine.
Courier will call that routine, and it will in turn call noteSize. The beginning of the
disjoint area and the size define an new parameter area. That parameter area will be
allocated from the notes object zone during store operations. Pointers are not Courier data
types. The pointer will be dereferenced and the de referenced object processed during a
fetch operation. An appropriate object will be allocated from the notes object zone and a
pointer to that object will be placed in the client parameter area during store operations.
No notion of a pointer (or its absence) will be conveyed to the storing machine by Courier.

Caution: This scheme does not lend itself to processing of linked list and other recursive
data structures that are associated via pointers. Linked lists may be processed if properly
approached. Some other bit of information must be transmitted, usually a BOOLEAN, that
indicates the last element of a list has been processed so the recursion can be broken by the
storing client.

6.6.6.3.7 N oteParameters

Courier.NotesObject: TYPE = RECORD [... ,
noteParameters: Courier.NoteParameters, ...];

Courier.NoteParameters: TYPE = PROCEDURE [
site: LONG POINTER, description: Courier.Description];

NoteParameters is much like NoteDisjointData except there is no pointer involved. The
second argument of the procedure call is again a description routine. The closely following
call to noteSize coupled with the site of the noteParameter defines a new parameter area.
That new parameter area must be totally contained within the previous parameter area.
In the former case the amount of space specified in the noteSize operation will be
consumed from the current parameter area.

6.6.6.3.8 N oteSpace

Courier.NotesObject: TYPE = RECORD [... ,noteSpace: Courier.NoteSpace, ...];

Courier.NoteSpace: TYPE = PROCEDURE [site: LONG POINTER, size: CARDINAL];

NoteSpace permits a Courier client to process a block of unspecified data. It does not
define an new parameter area, hence no data can be noted within the space defined by
NoteSpace The data is not linked to the parameter area in any way. Consequently, the
store space must be allocated by the client, unlike other disjoint data types. The procedure
call consumes no portion of the parameter area.

Caution: NoteSpace does not cause unnoted data to be processed. The space being
described is completely divorced from the current client parameter area.

Pilot Programmer's Manual 6

6.6.6.3.9 NoteDeadSpace

Courier.NotesObject: TYPE = RECORD [...•
note Dead Space : Courier. NoteDeadSpace •... J;

Courier.NoteDeadSpace: TYPE = PROCEDURE [site: LONG POINTER. size: CARDINAL];

NoteDeadSpace is used to consume a portion of the parameter area without generating
any Courier data, just the opposite of NoteSpace. The amount of parameter area to be
consumed is client specified.

Note: NoteDeadSpace does cause unnoted data to be processed. Consequently, it is the
procedure of choice used to force unnoted data to be processed (e.g.,
notes.noteDeadSpace[site. OJ will cause all unnoted data in the current parameter area to
be processed and then consume zero more words of that parameter area).

6.6.6.3.10 NoteBlock

Courier.NotesObjed: TYPE = RECORD [...•
noteBlock: Courier.NoteBlock];

Courier.NoteBlock: TYPE = PROCEDURE [block: Environment.Block];

NoteBlock provides Courier clients with a mechanism that enables them to process byte
oriented data. This procedure will process only the bytes defined by the Environment.Block,
and will consume nothing from the current parameter area. Nor will Courier allocate
storage during store operations for the disjoint area implied by the operation.

Caution: It is expected that this procedure will be used by clients as a building block for
complicated description routines. When using NoteBlock such clients are responsible for
insuring that an even number of bytes actually gets processed with each complete
operation, even if it means appending a null byte to the end of a stream of bytes. Courier
data types always begin on IS-bit (word) boundaries.

6.6.6.3.11 Unnoted

Unnoted data is a concept rather than a procedure. Parameter areas are represented
internally and conceptually as ORDERED LONG POINTERS, constructed initially by the location
parameter of a Courier.Parameters and the size parameter of a notes.noteSize procedure
call. Subsequent parameter areas may be created when describing disjoint data structures
(e.g., DisjointData, DescriptorForArray). All the data noting procedures specify a site that
is an address within the bounds of a parameter area. The current data point within the
record is known to be the last site specified plus the amount of data consumed by the last
note procedure. The portion of the parameter area between that left edge and the current
site is unnoted data and is processed as such, implying that the Courier and Mesa data
types are compatible.

6.6.7 Miscellaneous facilities

courier.SerializeParameters: PROCEDURE[
parameters: Courier.Parameters. sH: Stream.Handle];

6-65

6

6-66

Communication

Courier.DeserializeParameters: PROCEOURE[
parameters: Courier.Parameters. sH: Stream.Handle. zone: UNCOUNTED ZONE];

These two procedures provide access to the description routine facilities of Courier outside
the bounds of a remote procedure call. SerializeParameters performs a fetch operation,
converting Mesa data types defined by the parameters record to Courier data types and
putting them on the stream defined by sH. The client is responsible for all signals that may
be raised by the stream implementation. DeserializeParameters is the counterpart of
SerializeParameters. It performs a store operation, converting Courier data types gotten
from the stream sH to Mesa data types defined by the parameters record. Since this is a
store operation, Courier may have to allocate storage for disjoint data structures. If so, the
storage will be allocated from zone. As with any store operation, the client assumes
responsibility for that storage and may deallocate it via Courier.Free.

Courier.LocaISystemElement: PROCEDURE RETURNS(Courier .SystemElement];

This procedure returns a full network address of the local machine. The socket field of the
address will always be Courier's well-known socket.

Courier.EnumerateExports: PROCEDURE RETURNS[
enum: LONG DESCRIPTOR FOR Courier .Exports];

Courier.FreeEnumeration: PROCEDURE[
enum: LONG DESCRIPTOR FOR Courier. Exports];

Courier. Exports: TYPE. ARRAY CARDINAL OF Courier.Exportltem;

Courier.Exportltem: TYPE. MACHINE DEPENDENT RECORD[
programNumber: LONG CARDINAL.
versionRange: Courier.VersionRange.
serviceName: LONG STRING.
exportTime: System.GreenwichMeanTime);

EnumerateExports will make a copy of the current internal structures representing the
results of all previous Courier.ExportRemoteProgram requests. With one exception the
elements of the array returned were supplied by the ExportRemoteProgram client. The
exception, exportTime, is the time that the ExportRemoteProgram request was made. The
storage for the enumeration array is allocated from a zone internal to Courier, so the client
is obligated to free that space at some time, which he may do with
Courier.FreeEnumeration.

7

Editing and Formatting

This chapter contains those facilities, usually Common Software packages, that are
concerned primarily with formatting and editing. §7.1 describes an interface that defines
some common ASCII characters; §7.2 describes a package for converting between some
common Mesa types and strings; §7.3 discusses the standard string processing procedures;
and §7.4 describes operations for converting between strings and Pilot's internal form of
time.

7.1 ASCII character definitions

Ascii: DEFINITIONS. , , ;

The Ascii package consists only of a definitions file.

All of the control characters of the form control uppercase-letter are defined in the form:

Ascii_Controluppercase-letter: CHARACTER = 'uppercase-letter -1008;

For example,

AScii.ControIB: CHARACTER = '8 - 1008;

In addition, a few special control keys are defined as their commonly used names:

Ascii.BEL: CHARACTER = 'G -1008;

Ascii.BS: CHARACTER = 'H ·1008;

Ascii.CR: CHARACTER = 'M - 1008;

Ascii,DEL: CHARACTER = 177C;

Ascii.ESC: CHARACTER = 33C;

Ascii.FF: CHARACTER = 'l- 1008;

Ascii,LF: CHARACTER = 'J - 1008;

7-1

7 Editing and Formatting

Ascii.NUl: CHARACTER = OC;

Ascii.SP: CHARACTER = ' ;

Ascii.TAB: CHARACTER = '1- 1008;

7.2 Formatting

7-2

Format: DEFINITIONS ..• ;

The Format package provides procedures to format various types into strings. The
procedures require the client to supply a string output procedure and a piece of data to be
formatted. Where appropriate, a format specification is also required. The client may also
specify cliEmt instance data to be used by the string output procedure. The Format package
is a Product Common Software package. The implementation module is
Formatlmpl.bcd.

7.2.1 Binding

The Format package must be bound with the String and Time packages.

7.2.2 Specifying the destination of the output

The editing procedures defined in Format allow a client to pass in a procedure that will be
called once editing of the particular item has been completed This procedure will be called
with an output string and with the clientData passed to the editing procedure. This
procedure must be declared to be of type

Format.StringProc: PROCEDURE [5: LONG STRING, clientData: LONG POINTER +- NIL];

Every editing procedure in Format requires a parameter of this type and clientData to be
passed to the editing procedure. If NIL is supplied for this procedure, the output is directed
to the default output, known as a sink. The default output sink can be changed with the
prOCedure

Format.SetDefaultOutputSink: TYPE =
PROCEDURE [new: Format.StringProc, c1ientData: LONG POINTER +-NIL)
RETURNS [old: Format.StringPrDc, oldClientData: LONG POINTER);

7.2.3 String editing

Format.Char: PROCEDURE [proc: Format.StringProc, char: CHARACTER,
clientData: LONG POINTER +- NIL];

Char calls on proc with a string of length 1 containing c.

Format.LongSubStringltem: PROCEDURE [proc: Format.StringProc, 55: String.LongSubString.
clientData: LONG POINTER +- NIL];

Pilot Programmer's Manual

Format.LongString, Text: PROCEDURE [proc: Format.StringProc, S: LONG STRING,
clientOata: LONG POINTER NIL);

Format.SubString: PROCEDURE [proc: Format.StringProc, SS: String. SubString.
clientOata: LONG POINTER NIL];

LongSubStringltem repeatedly calls proc with strings filled from ss.

LongString (or Text) calls proc with string s.

7

SubString calls Format.LongSubStringltem with proc and a pointer to a
String.SubStringOescriptor whose base is ss.base, offset is ss.offset and length is
ss.length.

Format.Blank, Blanks: PROCEDURE [proc: Format.StringProc, n: CARDINAL +- 1,
clientOata: LONG POINTER .-NIL];

Format.Block: PROCEDURE [proc: Format.StringProc, block: Environment.Block.
clientOata: LONG POINTER .-NIL);

Format.CR: PROCEDURE [proc: Format.StringProc. clientOata: LONG POINTER.- NIL];

Format.Line: PROCEDURE [proc: Format.StringProc, S: LONG STRING.
clientOata: LONG POINTER .-NIL);

The procedure Blank(s) calls proc with a string containing n spaces. Block calls proc with
the contents of block. CR calls proc with a string containing a carriage return. The
procedure Line calls proc with s, then with a string containing a carriage return.

7.2.4 Editing numbers

The format into ,which numbers are to be edited is governed by a record of the form

Format.NumberFormat: TYPE = RECORD [base: [2 .. 36] +-10,
zerofill: BOOLEAN +- FALSE, unsigned: BOOLEAN +- TRUE, columns: [0 .. 255] +- 0];

Format.OctaIFormat: Format.NumberFormat = [base: 8, zerofill: FALSE,
unsigned: TRUE, columns: 0];

For;"at.OecimaIFormat: Format.NumberFormat =
[base: 10, zerofill: FALSE, unsigned: FALSE, columns: 0];

The number editing procedure described below will edit the number parameter as follows:
the number will be edited in base base in a field columns wide (zero means use as many as
needed). If zerofill is TRUE, the extra columns are filled with zeros, otherwise spaces are
used. Ifunsigned is TRUE, the number is treated as a cardinal.

Two NumberFormat records are defined for convenience. OctalFormat specifies editing the
number as a cardinal in base eight number, using as many columns as needed, no zero fill.
DecimalFormat specifies editing the number as an integer in base ten number, using as
many columns as needed, no zero fill.

7-3

7

7·4

Editing and Formatting

Format.Number: PROCEDURE [proc: Form~t.StringProc, n: UNSPECIFIED.
format: Format. Numberformat, clientData: LONG POINTER 4- NIL];

Format.LongNumber: PROCEDURE [proc: Format. StringProc, n: LONG UNSPECIFIED.
format: Format. NumberFormat. c1ientData: LONG POINTER 4-Nll];

Number and LongNumber convert n to a string of the base specified in format. [f
format. unsigned is FALSE and n is negative, the character "." is output. If the numeric
string length is less than format.columns then proc is called, perhaps multiple times, to

output the necessary number of leading zeros (if format.zerofill) or spaces, before being
called to output the numeric string. If the ~umeric string length is greater than
format.columns, then proc is called.

Format.Decimal: PROCEDURE [proc: Format.StringProc, n: INTEGER,
c1ientData: LONG POINTER4--NIL];

Format.LongDecimal: PROCEDURE [proc: Format.StringProc, n: LONG INTEGER,
c1ientOata: LONG POINTER +- NIL];

Decimal and LongDecimal convert n to signed base ten. proc is then called.

Format.Octal: PROCEDURE [proc: Format.StringProc, n: UNSPECIFIED,

clientOata: LONG POINTER +- NIL];

Format.LongOctal: PROCEDURE [proc: Format.StringProc, n: LONG UNSPECIFIED.
clientOata: LONG POINTER +-NIL];

Octal and LongOctal convert n to base eight. When n is grea~er than 7, the character B is
appended. prot is then called.

7.2.5 Editing dates

DateFormat allows the user to specify the format in which the date is to be edited by the
procedure Format. Date.

Format.DateFormat: TYPE = {dateOnly, nOSeconds, dateTime, full, maiIDate};

The different formats have the following interpretation:
maildate: 27 Jul 8309:23:29 PDT (Wednesday)
full: 27-Jul-83 9:23:29 PDT
dateTime: 27-Jul-83 9:23:29
noSeconds:

dateOnly:
27-Jul-83 9:23
27-Jul-83

The maildate format is the ANSI standard format for dates. Note the leading zero on the
time (when appropriate) and the omitted hyphens from the date. Also note that fewer time
zones have standard abbreviations (Pacific through Eastern and Greenwich).

Format.Date: PROCEDURE [proc: Format.StringProc, pt: Time.Packed,
format: Format. DateFormat .- noSeconds, zone: Time.TimeZone f- ANSI, clientData:
LONG POINTER +- NIL];

Pilot Programmer's Manual 7

Date converts pt to a string of the form "27-Jul-83 9:23:29 PDT" which is truncated based
on the specified format. proc is then called. The zone parameter indicates in which format
numeric time zones are represented (see §7.4.2 for a description of the representations!.

7.2.6 Editing network addresses

The following procedures can be used to edit network addresses into various forms. The
exact form of the editing is specified with the type

Format.NetFormat: TYPE = {octal, hex, productSoftware};

octal converts the number to octal, hex, to hex, and productSoftware converts the item to
a decimal number and then inserts a It-It every three characters, starting from the right.
An example of number in product software format is 4-294-967 -295.

Format.HostNumber: PROCEOURE [proc: Format.StringProc.
hostNumber: System.HostNumber, format: Format.NetFormat,
clientData: LONG POINTER ~NIL];

Format.NetworkAddress: PROCEDURE [proc: Format.StringProc,
networkAddress: System.NetworkAddress, format: Format.NetFormat,
clientData: LONG POINTER +- NIL];

Format.NetworkNumber: PROCEDURE [proc: Format.StringProc,
networkNumber: System.NetworkNumber, format: Format.NetFormat,
clientData: LONG POINTER +- NIL];

Format.SocketNumber: PROCEDURE [proc: Format.StringProc,
socketNumber: System.SocketNumber, format: Format.NetFormat.
clientData: LONG POINTER +-NIL);

A network address will be edited into the form network-number # host·number # socket
number where the editing of the various components will be determined by format.

7.3 Strings

String: DEFINITIONS ... ;

The String interface provides facilities for string manipulation. It is Product Common
Software. The implementation modules for String are StringslmplA.bcd and
StringslmpIB.bcd.

Note: The following procedures have been retained in the String interface for
compatibility. Their use is strongly discouraged. Please see String.mesa for details of their
definition: String Length, EmptyString, EqualString, EqualString, EquivalentString,
EquivalentStrings, CompareStrings, EqualSubStrings. EquivalentSubStrings.

7-5

7

7-6

Editing and Formatting

7.3.1 Sub-strings

.
A SubStringDescriptor describes a region within il string. The first character is
base(offset] and the last character is base[offset + length.1].

String.SubStringDescriptor: TYPE • RECORD (base: LONG STRING,
offset, length: CARDINAL);

String.SubString. LONG POINTER·TO SubStringDescriptor;

7.3.2 Overflowing string bounds

String.StringBoundsFault: SIGNAL [s: LONG STRING] RETURNS [ns: LONG STRING];

StringBoundsFault signal is raised when any of the append procedures described below
would have to increase the length of their argument string's length to be larger than its
maxlength. The catch phrase may allocate a longer string ns and return it to
StringBoundsFault. The operation will then be restarted as if ns had been the original
argument. If StringBoundsFault is resumed with the value NIL, the procedure that raised
the signal will fill in the original string with as many characters as will fit.

7.3.3 String operations

The procedure

String.WordsForString: PROCEDURE (nchars: CARDINAL) RETURNS [CARDINAL];

calculates the number of words of storage needed to hold a string of length nchars. The
value returned includes any system overhead for string' storage.

There are two case changing procedures:

String. LowerCase, UpperCase: PROCEDURE (c: CHARACTER] RETURNS [CHARACTER);

These procedures change the parameter character to lower or upper, respectively. The
procedures are no-ops if the character is not a letter.

String.AppendChar: PROCEDURE [s: LONG STRING, c: CHARACTER];

AppendChar appends the character c to the end of the string s. s.length is updated;
s.maxlength is unchanged.

String.AppendString: PROCEDURE [to, from: LONG STRING];

AppendString appends the string from to the end of the string to. to.length is updated;
to.maxlength is unchanged

String.AppendSubString: PROCEDURE [to: LONG STRING, from: String.SubString];

AppendSubString appends the substring in from to the end of the string in to. to.length is
updated; to.maxlength is unchanged.

Pilot Programmer's Manual 7

String.COpy: PROCEDURE [to. from: LONG STRING.I;

The procedure Copy sets the length of to to zero and then appends from to to.

String.DeleteSubString: PROCEDURE [5: String.SubString];

DeleteSubString deletes the substring described by 5 from the string 5.ba5e. 5.ba5e.length
is updated; 5.ba5e.maxlength is unchanged.

String. Empty: PROCEDURE [5: LONG STRING.! RETURNS [BOOLEAN);

The procedure Empty returns TRUE if 5 is NIL or if 5.1ength is 0 and FALSE otherwise.

String.Equal: PROCEDURE [51,52: LONG STRINGJ RETURNS [BOOLEANJ;

Equal returns TRUE if51 and 52 contain exactly the same characters.

String.Equivalent: PROCEDURE [51,52: LONG STRINGJ RETURNS [BOOLEANJ;

Equivalent returns TRUE if 51 and 52 contain the same characters except for case shifts.
Strings containing control characters may not be compared correctly.

String.EquaISubString: PROCEDURE [51,52: String.SubString]
RETURNS [BOOLEANJ;

EqualSubString is analogous to Equal.

String.EquivalentSubString: PROCEDURE [51,52: String.SubString] RETURNS [BOOLEAN];

EquivalentSubString is analogous to Equivalent.

String.COmpare: PROCEDURE [51.52: LONG STRING. ignoreCa5e: BOOLEAN~TRUEJ
RETURNS [INTEGER];

Compare lexically compares two strings and returns -1, 0, or 1 if the first is less than,
equal to, or greater than the second. An optional parameter may be supplied to have case
differences ignored.

String.Length: PROCEDURE [5: LONG STRING.] RETURNS [CARDINAL);

The procedure Length returns zero if 5 is NIL and 5.length otherwise.

String.StringToNumber: PROCEDURE [5: LONG STRING. radix: CARDINAL Eo- 10J
RETURNS [UNSPECIFIED];

String.lnvalidNumber: SIGNAL;

StringToNumber interprets the characters of 5 as an integer or cardinal and returns its
value. The form of a number is:

{spaces I controlCharacters} {'-} {baseNumber} {' 81' hi' 01' d} {scaleFactor}

7-7

7

7-8

Editing and Formatting

where {} indicate~ an optional part and "!" indicate~ a choice. and baspNumbu and
scaleFactor are ::;equences of digits. The value returned is ± baseNumber ..
radix**scaLeFactor. controlCharacters are characters whose Ascii code is less than 408.
The radix used depends on the contents of s and radix: if the string has a 'B or 'b, radix
will be 8; if the string has a 'D or 'd, radix will be 10; otherwise, radix will be radix. The
number scaLeFactor is always expressed in radix 10. If 5 does not have a valid form or
5.1ength == 0, String.JnvalidNumber is raised. Values of radix other than 8 or 10, the use of
the digits 8 and 9, when radix 8 is in effect, and the specification of a number whose value
falls outside ofthe range of the target type aU prod"~e undefined results.

String.StringToOecimal: PROCEDURE [5: LONG STRING] RETURNS [INTEGER];

String.StringToOctal: PROCEDURE [5: LONG STRING] RETURNS [UNSPECIFIED];

StringToOecimal is equivalent to StringToNumber[5. 10). StringToOctaI is equivalent to
StringToNumber(5,8].

String.StringToLongNumber: PROCEDURE [5: LONG STRING, radix: CARDINAL +- 10]
RETURNS [LONG UNSPECIFIED];

StringToLongNumber is analogous to StringToNumber, except that returns a LONG
UNSPECIFIED instead of an UNSPECIFIED.

String.AppendNumber: PROCEDURE [5: LONG STRING, n. radix: CARDINAL +- 10];

AppendNumber converts the value of n to text using radix and appends it to s. radix
should be in the interval [2 .. 361.

String.AppendDecimal: PROCEDURE [5: LONG STRING, n: INTEGER];

AppendDecimal converts the value of n to radix 10 text and appends it to s. A leading
minus sign will be supplied as appropriate.

String.AppendOdal: PROCEDURE [5: LONG STRING. n: UNSPECIFIED];

AppendOdal converts the value of n to radix 8 text and appends it to s. A "B" will be
appended.

String.AppendLongNumber: PROCEDURE [5: LONG STRING, n: LONG UNSPECIFIED,
radix: CARDINAL +-10];

AppendLongNumber is analogous to AppendNumber.

String.AppendLongDecimal: PROCEDURE [s: LONG STRING, n: LONG INTEGER];

AppendLongDecimal is analogous to AppendOecimal.

7.3.3.1 String operations that perform storage allocation

String.MakeString: PROCEDURE [z: UNCOUNTED ZONE, max Length : CARDINAL]
RETURNS [LONG STRING];

Pilot Programmer's Manual 7

The procedure MakeString returns a string large enough to contain max Length
characters, allocated from the lOne z.

String.MakeMDSString: PROCEDURE [z: MDSZone, maxLength: CARDINAL] RETURNS [STRING];

The procedure MakeMDSString returns a string large enough to contain maxLength
characters, allocated from the MDS zone z.

String.FreeString: PROCEDURE [z: UNCOUNTED ZONE, s: LONG STRING];

The procedure FreeString deallocates the string s to the zone z. The string must either be
NILor have been allocated from z.

String.FreeMDSString: PROCEDURE [z: MDSZone, s: STRING];

The procedure FreeMDSString deallocates the string s to the MDS zone z. The string must
either be NILor have been allocated from z.

String.AppendCharAndGrow: PROCEDURE [to: LONG POINTER TO LONG STRING, c: CHARACTER,
z: UNCOUNTED ZONE];

The AppendCharAndGrow procedure appends the chqracter c onto the string pointed to
by to. Automatic expansion of the string is provided when required, that is, a new string
will be allocated and the old will be returned to the zone z. to must point to a string
allocated from the zone Z, and the client should have no other outstanding references to

tot·

String.AppendExtensionlfNeeded: PROCEDURE [
to: LONG POINTER TO LONG STRING, extension: LONG STRING, z: UNCOUNTED ZONE]
RETURNS [BOOLEAN];

The AppendExtensionlfNeeded procedure checks the passed string pointed to by to to see
if it contains an extension (contains a period followed by at least one character). If not, it
appends extension (inserting a period if extension does not begin with a period).
Automatic expansion of the string is provided when required, that is, a new string will be
allocated and the old will be returned to the zone z. to must point to a string allocated from
the zone z, and the client should have no other outstanding references to to t .
AppendExtensionlfNeeded returns TRUE if the extension was added and FALSE if not.

String.AppendStringAndGrow: PROCEDURE [to: LONG POINTER TO LONG STRING,
from: LONG STRING, Z: UNCOUNTED ZONE, extra: CARDINAL 0];

The AppendStringAndGrow procedure appends the string from to the string pointed to by
to. Automatic expansion of the string is provided when required, that is, a new string will
be allocated and the old will be returned to the zone z .. If the string must be expanded, it
will be expanded to the new required length plus extra. to must point to a string allocated
from the zone z, and the client should have no other outstanding references to to t .

String.CopyToNewString:
PROCEDURE [s: LONG STRING, z: UNCOUNTED ZONE, longer: CARDINAL 0]
RETURNS [newS: LONG STRING};

----~.-------- --------- --------------"-

7 Editing and Formatting

The CopyToNewString procedure c()pie~ a ~tring into a new string allocated from the zone
z. The new string will be made longer characters longer than the length ofs. [fs is NIL and
longer is zero, newS will be NIL.

String.ExpandStri ng:
PROCEDURE [5: LONG POINTER TO LONG STRING. longer: CARDINAL. Z: UNCOUNTED lONE];

The ExpandString procedure expands a string by longer characters. 5 must point to a
STRING allocated from zone z ..

String.Replace:
PROCEDURE [to: LONG POINTER TO LONG STRING. from: LONG STRING. Z: UNCOUNTED lONE 1;

The Replace procedure replaces the string pointed to by to with a copy of the string from.
to will be automatically expanded or shortened as needed, that is, a new string will be
allocated and the old will be returned to the zone z. If from is NIL, to will be NIL. to must
point to NIL or to a string allocated from the zone z, and the client should have no other
outstanding references to to r .

7.4 Time

7-10

Time: DEfiNITIONS ... ;

The Time package provides functions to acquire and edit times into strings. The Time
package is Product Common Software.

The implementation modhle is Timelmpl. bcd.

7.4.1 Binding

This package uses the String package and must be bound with StringslmplA. bcd.

7.4.2 Operations

Time. TimeZoneStandard:TYPE • {Alto. ANSI};

The ANSI time zone standard labels time zones by the number of hours each zone is ahead
of GMT. The Alto standard uses the number of hours behind GMT. For example, the
eastern standard time zone is represented as + 5 in the Alto standard, and -5 in the ANSI
standard. Alto is retained for Alto-based protocol compatibility only.

The current time and date is kept is a record of the following form:

Time.Unpacked: TYPE = RECORD[
year: [0 .. 2104]. month: [0 .. 12). day: [0 .. 31].
hour: [0 .. 24). minute: [0 .. 60). second: [0 .. 60).
weekday: [0 .. 6]. d5t: BOOLEAN. zone: System.LocaITimeParametersj;

Time.Packed: TYPE = System.GreenwichMeanTime;

The fields are filled by procedures described below which operate on the time and date as
kept internally by Pilot. year = 0 corresponds to 1968. For month, January is numbered

Pilot Programmer's Manual 7

0, etc. Days of the month have their nalural assignments. Por weekday, :vTonday IS

numbered o. zone indicates time wnes. Packed is retained for Alto compatability.

Time.Current: PROCEDURE RETURNS [time: System.GreenwichMeanTime);

Time.Unpack: PROCEDURE (time: System.GreenwichMeanTime ~Time.defaultTime.
Itp:Time.LTP ~Time.useSystem)
RETURNS (unpacked: Time.Unpacked1;

Time.L TP: TYPE • RECORD (
r: SELECT t: * FROM
useSystem • > (],
useThese • > (Itp:System.LocaITimeParameters1
ENDCASE);

useSystem: useSystem Time.LTP = (useSystem(]];
useGMT: useThese Time.LTP = [useThese[[west. O. O. o. 0]]];

Time.defaultTime: System.GreenwichMeanTime = System.gmtEpoch;

Time.lnvalid: ERROR;

Current is equivalent to System.GetGreenwichMeanTime. Unpack takes the Pilot-standard·
Greenwich mean time and a target time zone and computes the values for the fields in
Unpacked. Passing defaultTime returns the current time. If Pac;k gets bad data,
Time.lnvalid is raised. If the local time parameters are not available to Pilot,
System.LocalTimeParametersUnknown is raised.

Caution: In Utility Pilot, System.SetLocalTimeParameters must be called before using
Unpack.

The operation

Time.Pack: PROCEDURE (unpacked: Time.Unpacked.useSystemLTP: BOOLEAN ~ TRUE]
RETURNS (time: System.GreenwichMeanTime);

converts an Unpacked into the Pilot-standard GreenwichMeanTime. If the local time
parameters are not available to Pilot, System.LocalTimeParametersUnknown is raised.

The operation

Time.Append: PROCEDURE (s: LONG STRING. unpacked: Time.Unpacked.
zone: BOOLEAN ~ FALSE. zoneStandard: Time.TimeZoneStandard ~ ANSI];

appends the time in human readable form to s. It adds the time zone if zone is TRUE.

The operation

Time.AppendCurrent: PROCEDURE [s: LONG STRING. zone: BOOLEAN ~ FALSE.
Itp:Time.LTP 4- Time.useSystem, zoneStandard: TimeZoneStandard ~ ANSI);

is equivalent to Time.Append[s, Time.Unpack[Time.defaultTime, Itp]. zone. zoneStandard].

7-11

7 Editing and Formatting

7.5 Memory stream

7-12

MemoryStream: DEFINITIONS ... ;

MemoryStream is a Pilot byte stream implementation that sources or sinks its bytes from
a client specified block of virtual memory. A primary application is to support clients of
Courier.SerializeParameters and DeserializeParameters.

7.1.1 Errors

IndexOutOfRange: ERROR;

Attempting to set the position of the stream, either expicitly with MemoryStream.Setlndex,
or implicitly with put operation, beyond the limits of the Environment.Block specified in the
Create will cause IndexOutOfRange to be raised.

7.1.2 Procedures

MemoryStream.Create: PROCEDURE [b: Environment.Block] RETURNS [sH: Stream.Handle];

Create defines the block of virtual memory upon which subsequent stream operations
may operate. MemoryStream makes no assertions about the content of that block of
memory.

The Environment.Block specified in Create limits the acceptable values for positioning
operations as well as the amount of data that may be put to the stream (see section 1.1).

MemoryStream.Destroy: PROCEDURE [sH: Stream.Handle];

Destroy deletes the state used to support the stream instance. It does not affect the content
or existance of the block of virtual memory specified in the Create.

Note: Destroy may also be accessed via the stream object's delete procedure.

MemoryStream.Setlndex: PROCEDURE [sH: Stream.Handle. position: Stream.Position];

Setlndex sets the position of stream for the next data operation. Attempting to set a
position beyond the limits of the block specified in the Create will cause the error
IndexOutOfRange to be raised (see section 1.1)

Note: Setlndex may also be accessed via the stream object's setPosition procedure.

MemoryStream.Getlndex: PROCEDURE [sH: Stream. Handle] RETURNS [position: Stream.Position];

Getlndex returns the current position of the stream. The usual application for this
information is again in conjunctio-n with Courier.SerializeParameters and is used to find the
length of serialized data.

Note: Getlndex may also be accessed via the stream object's getPosition procedure.

8

System Generation and Initialization

This section is a general description of the organization of Pilot and its related components
and ofthe various aspects of system initialization. It addresses the topics:

• what the components of a release of Pilot are
• the various aspects of initializing Pilot

-- these pertain to the routine operation of Pilot and client programs
in an already established environment

• the special considerations of initializing an environment on a new machine or disk
• the general areas ofinitializing a communication network
• the genera~ areas of introducing a new machine into a network

8.1 System components

There are seven kinds of software components in a release of Pilot of interest to the client
programmer:

The Pilot kernel: Pilot is released as PilotKernel. bcd, a file containing the object
code of the fundamental parts of the Pilot operating system. Pilot imports the device
faces from the heads (below) and exports most of the interfaces described in this
manual. UtilityPilot is a variant of the Pilot kernel which is released as
Util i tyPilotKernel. bed. It is intended to support small applications and utilities
which must run in real memory. (see Appendix D for more details);

The Communication package: the code allowing Pilot clients to perform inter- and
intra-processor communication.

The heads: for each processor, one or more files containing the object code of the
modules which export the device faces.

The germ: a bootstrap loader which can load a Pilot boot file into a Mesa processor and
place it into execution. There are one or more germs for each kind of processor.
Programmers normally have no direct contact with the germ.

Microcode: the code which, together with the heads, implements the Mesa processor
on a given kind of hardware. Programmers normally have no direct contact with
microcode.

8-1

8 System Generation and Initialization

The optional packages: a collection of object files containing the object code of various
packages released with and used in conjunction with Pilot.

Development tools: a collection of Pilot boot files and object files which provide support
for developing Pilot-based software. Among these are CoPilot, the debugger; Tajo, an
executive and environment for general purpose programming; and Othello, the Pilot
disk and volume utility.

The documentation accompanying a Pilot release describes in detail the file names of the
available components, the functions they· implement, and the interfaces they export.
Please refer to that documentation for details.

Caution: There may be a number of interfaces which are exported by the Pilot
components, but are not documented in this manuaL They exist for the convenience of the
implementation and for special purposes outside the scope of this document.
Unauthorized use of these interfaces is not supported and is strongly discouraged. They are
subject to change without general notice or review, and projects which use them
improperly are subject to considerable risk from one release of Pilot to the next.

8.2 Pilot initialization

8-2

The primary method of preparing a Pilot client system for operation is to bind it with
PilotKernel,bcd, the appropriate heads, and the desired optional packages into a single
obje~t file representing the whole system. This object file is then processed by a program
called MakeBoot, described in the Mesa User's Guide, to create a boot file. The boot file
may be installed on a rigid disk, floppy disk, or Ethernet server for loading in response to
some hardware operation, or it may be invoked by software using the facilities of the
TemporaryBooting interface. If the boot file is invoked by software, it is possible for the
invoking program to pass a limited form of parameters called switches for interpretation
by the booted system.

An alternative method ofinvoking a program is to boot a system and cause that to load the
object file of the desired program, using the facilities in the Runtime interface, which are
implemented by RuntimeLoader.bcd. This is especially appropriate if the same boot file
can load a lot of different programs or if the programs being loaded are under development
and constantly evolving. For example, the Mesa development environment, provides
facilities for the user to dynamically load programs.

When a boot file is invoked, the state of the processor is reset. The part of the boot file
representing initially resident code and data is copied into memory and tl}.e virtual
memory mapping'hardware is set accordingly. The configuration ofl/O devices and of .real
memory must be determined and tables established accordingly. The heads must be
initialized to reset the 110 devices. Then Pilot begins to execute. It opens the system
physical and logical volumes, creates or finds certain files for its own use, creates and
maps spaces for code and data, scavenges volumes if necessary, and performs other
necessary initialization functions. Initialization of Pilot on a new or recently erased
volume typically takes a bit longer than initialization of an established volume where the

. various files and control information already exist. '

Pilot (Le., PilotKernel,bcd) initializes disks containing Pilot volumes as follows: the
system volume is the logical volume on which the boot file resides. The physical volume
containing the system volume is automatically brought on-line and the system logical

Pilot Programmer's Manual 8

volume is opened. Clients may bring other physical volumes on-line and open the logical
volumes contained on them, and they may take existing physical volumes offline after
first closing all of the contained logical volumes. (It is not meaningful to close the system
volume. as Pilot uses this for its own operation.)

UtilityPilot, on the other hand, assumes that there is no system volume, and no volumes
are brought on-line at initialization time. This is necessary so that a client can initialize a
new disk to be a physical volume without first depending upon it. Once a disk is formatted
to be a physical volume, it may be brought on-line in the usual way. Initialization of
volumes is described in the next section.

Finally, after initialization is complete, Pilot starts the client by calling the procedure Run
from the interface PiiotClient. This is the only procedure imported by Pilot from the client
system.

It is intended to eventually provide a facility whereby the state of a running system can be
captured in a boot file for later or repeated restart. This facility will be useful for reducing
the initialization time of both Pilot and client once the operating environment is
established. The normal mode of operation will be for a boot file created by MakeBoot to
initialize the Pilot and client environment, to create files and gather information as
necessary, then to take a snapshot of this state on a second boot file. The second boot file
would be the one installed for normal booting when the system element is turned on or
restarted. There are a number of constraints in this mode of operation, not all of which are
fully understood at this time. Among them are:

The boot file created this way is valid only on the system element on which it is
created and only while the nard ware configuration remains the same. It will be
invalidated if the amount of memory changes, the processor ID (i.e., the electronic
serial number from which all Universal ID's are made) is changed as a result of
repairs, if critical devices are removed, etc.;

Files which are knowt:l or mapped at the time the boot file was created must not be
deleted subsequently;

There should be no outstanding activity on any of the devices;

There should be no outstanding connections or activity in the communication network
at the time this special boot file is created.

Thus, such a boot file is specific to the machine and circumstances in which it is created. It
is therefore called a local boot file. By contrast, a boot file created by MakeBoot may be
transported to any machine (of the right configuration) and executed there. Such files are
called universal boot files.

8.3 Volume initialization

FormatPilotDisk: DEFINITIONS .•. ;

OthelloOps: DEFINITIONS ... ;

8-3

8

8-4

System Generation and Initialization

There are several steps in initializing a disk for use as a Pilot volume:

The disk must be formatted into sectors corresponding to Pilot pages with appropriate
headers, labels, and data blocks;

The disk must be scanned. any unusable pages must be recorded, and a physical
volume must be created;

One or more logical volumes must be created on the physical volume;

Various microcode, germ, and boot files must be copied onto the logical volumes and,
pointers must be set to indicate that these files be invoked when the machine is
booted.

In the development environment, formatting is normally done by EIDisk (the disk
diagnostic): all other initialization is done by Othello, the disk utility. Product application
have their own UtilityPilot-based disk initialization utilities. Applications may also
provide facilities in their Pilot-based systems for initializing, for example, removable
volumes as part of routine operatiop.

An important part offormatting a disk is to scan the disk for unusable pages (the format
.package provides a scanning procedure) and to mark them as bad. Pilot will avoid placing
any data or control information on such bad pages for the life of the physical volume. A
page of a physical volume may be marked bad at a later time. but this will cause the
information on that page to be lost. (The facilities of the Scavenger interface (see §4.4) can
be used to recover some of the lost information.) Note that a characteristic of rigid disks is
that a disk is expected to have some unusable pages at the time of manufacture. but that
the rate of pages going bad during operation over the life of the disk is expected to' be
infinitesimal.

The Volume interface provides facilities for creating logical volumes on a physical volume.
A logical volume has a volume type indicating its intended use to contain normal Pilot
clients. the debugger, the debugger's debugger, or for non-Pilot purposes. Logical volumes
of different types are kept separate by Pilot so that a system will not affect its debugger.
Once a logical volume has been created. it may be opened and files copied onto it.

Finally, a disk may need to be prepared for booting. There are typically four kinds of files
that need to be fetched to the disk: the initial microcode, the Pilot microcode, the germ,
and the boot file. The initial microcode is microcode that typically lives in a special place
on the disk (outside any logical volume) and is invoked by the hardware booting logic of
the machine. It is the program that reads the Pilot microcode and the germ from the disk.
The Pilot microcode is the main microcode for the operation of the machine, and lives in a
file on a logical volume, along with the germ and boot file. A formatting package provides
the facility for installing the initial microcode (since its location is specific to the type of
device), and the interface OthelioOps provides facilities for installing and setting pointers to
the microcode, germ, and boot files. These pointers are necessary so that the initial
microcode can find the Pilot microcode and germ, and so that the germ can find the Pilot
boot file.

Pilot Programmer's Manual 8

This section describes those interfaces and object files distributed with Pilot that allow
clients to create their own volume initializers. OthelloOpslmpl.bed implements the
OthelloOps operations, and FormatPilotDisklmpl. bed implements the FormatPilotDisk
operations. Both packages are clients of Pilot and UtilityPilot.

8.3.1 Formatting physical volumes

Before a physical volume can be presented to the CreatePhysicalVolume operation for the
first time, it must be formatted into sectors corresponding to Pilot pages with appropriate
headers, labels and data blocks. As a side effect, formatting finds many of the bad pages
on the disk so that they can be marked as bad after a Pilot physical volume has been
created.

Pilot disk families are formatted using the following operation

FormatPiiotDiSk.RetryLimit: TYPE == [0 .. 254);

FormatPiiotDisk.noRetries: FormatPiiotDisk.RetryLimit == 0;

FormatPiiotDisk.retryLimit: FormatPiiotDisk.RetryLimit == LAST[FormatPiiotDisk.RetryLimit);

FormatPiiotDisk.Format: PROCEDURE [h: PhysicaIVolume.Handle,
firstPage: FormatPiiotDisk.DiskPageNumber, count: LONG CARDINAL,
passes: CARDINAL +-10, retries: FormatPiiotDisk. RetryLi mit +- noRetries);

FormatPiiotDisk.FormatBootMicrocodeArea: PROCEDURE [h: PhysicaIVolume.Handle.
passes: CARDINAL. retries: FormatPiiotDisk.RetryLimit);

FormatPiiotDisk.DiskPageNumber: TYPE • PhysicaIVolume.PageNumber;

FormatPiiotDisk.NotAPi lotDisk: ERROR;

FormatPiiotDisk.Formatti ngMustBeTrackAI igned: ERROR;

FormatPiiotDisk.BadPage: SIGNAL [p: FormatPiiotDisk.DiskPageNumber);

Format formats count pages of the disk h starting at page firstPage. If a problem occurs
when verifying headers, labels, or data, retries is the number of times to retry the format
operation on that page. Passes is the number of times to go over the disk for bad pages.If
any are found, BadPage will be raised. If h does not denote a Pilot disk drive,
NotAPilotDisk will be raised. If h denotes a drive of the SAI000 family or Quantum
family, the run of pages to be formatted must start at the beginning of a track and end on
the last page of a track or FormattingMustBeTrackAligned will be raised.
Physicalvolume.Error[alreadyAsserted) will be raised if the volume is online (Le., asserted to
be a Pilot volume).

FormatBootMicrocodeArea formats the area of the disk on h where microcode will reside.
If Pilot is unable to install microcode on the disk drive denoted by h.
CantlnstallUCodeOnThisDevice is raised. See the previous paragraph for description of
other parameters and errors raised.

8-5

8

8-6.

System Generation and Initialization

FormatPiiotDisk.Disklnfo: PROCEDURE [h: PhysicaIVolume.HandJe) RETURNS [
firstPiiotPage: FormatPiiotDisk.DiskPageNumber, counWages: PhysicaIVolume.PageCount,
pagesPerTrack: CARDINAL, pagesPerCylinder: CARDINAL];

Ifh dO'es nO'tdenO'te a PilO't Disk drive, the errO'r'FormatpilotDisk.NotAPilotDisk is raised.
firstPilotpage is the first page O'n the device where PilO't vO'lumes may begin. countPages is
the tO'tal number O'fpages O'n that volume.

Note: FO'r clients whO' use the FormatPiiotDisk interface to install microcode, NotAPilotDisk is
nO'w raised by any procedures that previO'usly raised
FormatPilotDisk.CantlnstaIIUCodeOnThisDevice.

8.3.2 Checking drives for bad pages

The fO'llO'wing procedure permits scanning an already-formatted disk to determine if there
are any bad pages on the disk. The client may then inform PilO't of these bad pages, via
Physicalvolume.MarkPageBad, so that Pilot will no longer reference them.

FormatPiiotDisk.Scan: PROCEDURE [h: PhysicaIVolume.Handle,
firstPage: FormatPiiotDisk.DiskPageNumber, count: LONG CARDINAL.
retries: FormatPiiotDisk.RetryLimit ~ 10);

Scan scans the indicated section O'f the disk fO'r bad pages, retries number O'f times per each
bad page, and then repO'rts them by raising the signal BadPage. The signal may be
resumed to' continue the scan. If h does nO't denO'te a Pilot disk drive, the errO'r
NotAPilotDisk will be raised. PhysicaIVolume.Error[alreadyAsserted) will be raised if the
volume is O'nline.

8.3.3 Microcode and boot rues

This sectiO'n discusses bO'O't files, which cO'ntain ready-to-run Pilot-based systems that can
be IO'aded by a germ for execution, and micrO'code files, which cO'ntain the Mesa emulator
for a given machine. Both boO't files and micrO'code files must be installed, Le., made
knO'wn to Pilot, the germ and micrO'cO'de. The FormatPiiotDisk and OthelloOps interfaces
prO'vide facilities for dealing with bO'O't files and micrO'cO'de. The TemporaryBooting interface
prO'vides the means O'factually invoking a boO't file.

Note: Installing germ and micrO'cO'de files O'n an SA800 disk is nO't directly supported by
the current versiO'n O'f PilO't. They may be installed using the utility prO' gram
MakeDLiO'nBO'O'tFIO'PpyTO'O'I (~ee Mesa User's Guide for details).

The IO'west level of micrO'cO'de is the initial micrO'cO'de, the micrO'cO'de that is read by the
hardware booting IO'gic O'fthe system element. It is installed by the O'peratiO'n

FormatPiiotDisk.lnstallBootMicrocode: PROCEDURE [h: PhysicaIVolume.Handle,
getPage: PROCEDURE RETURNS{LONG POINTER]]; .

FormatPiiotDisk.MicrocodelnstaIlFailure: SIGNAL [m: FormatPiiotDisk.FaiJureType];

FormatPiiotDisk.FailureType: TYPE = {emptyFile, firstPageBad, flakeyPageFound,
microcodeTooBig, other};

Pilot Programmer's Manual 8

The microcode is installed on the disk h. This operation finds seqtrential pages of the
microcode file by repeatedly invoking getPage. The end of the microcode file is indicated
when getPage returns NIL. The pointer returned by getPage must denote a resident page.
If an error is found in the microcode file, FormatPilotDisk.MicrocodelnstaliFailure is raised
and the attempt to install the microcode has failed (any previous microcode is destroyed
unless emptyFile is the error). If FormatPilotDisk.MicrocodelnstallFailure is resumed,
getPage will be called until NIL is returned but the data will be ignored. emptyFile
indicates that the microcode file was empty, i.e., getPage returned NIL the first time that it
was called. If the first page of the microcode is bad, firstPageBad is raised. If some page of
the disk reserved for the boot microcode is found to be unusable, flakeyPageFound is
raised, indicating a problem with the disk. If an attempt is made to install too large a
microcode file, microcodeTooBig will be raised. The error other is raised if the
installation failed in some other way. If h does not denote a pilot disk drive, the error
FormatPiiotDisk.NotAPilotDi'Sk will be raised. If Pilot is unable to install microcode on the
disk drive denoted by h, FormatPilotDisk.CantlnstallUCodeOnThisDevice is raised.

There are four types of boot files; clients may have as many of each as they desire.

OthelloOps.BootFileType: TYPE = {hardMicrocode, softMicrocode, germ, pilot,
pilotSnapshot};

A softMicrocode boot file contains Pilot microcode; it is typically loaded by the initial
microcode and contains the Mesa emulation microcode. A germ boot file contains a germ,
which is a bootstrap loader used to load a Pilot boot file and start it executing. Both pilot
and pilotSnapshot boot files contain the image of a Pilot suitable for loading by a germ
into a processor for execution. A pilot boot file is produced by MakeBoot and a
pilotSnapshot boot file is produced by special" facilities. hardMicrocode boot files are not
currently used.

Before a Pilot file may be installed as a boot.file, it must be made bootable.by invoking

OthelloOps.MakeBootable: PROCEDURE [file: File.File,
type: OthelloOps.BootFileType, firstPage: File.PageNumber);

OthelloOps.lnvalidVersion: ERROR;

This operation modifies file so that it is readable by the boot loader or microcode (the
operation does not change the contents of the file, it only modifies the file labels). file must
be writable and permanent and the logical volume that contains it must be open. If file is
unknown to Pilot, either File.Unknown or Volume.Unknown will be raised. If the specified
boot file is not compatible with the version of Pilot doing the MakeBootable,
InvalidVersion will be raised. In this case, the file is still made bootable so as to permit
installation of boot files with incompatible version numbers. . MakeBootable may also
raise Volume. NotOpen and Volume.NotOnline.

Before changing the size of a file that has been made bootable, the following operation
should be invoked

OthelloOps.MakeUnbootable: PROCEDURE [file: File.File,
type: OthelloOps.BootFileType, firstPage: File.PageNumber);

8-7

8

8-8

System Generation and Initialization

The same restrictions as for MakeBootable apply. file may be deleted without invoking
MakeUnbootable first.

Associated with every logical and physical volume is a default boot file of each type. These
may be set and retrieved by invoking the operations

OthelioOps.SetPhysicaIVolumeBootFile: PROCEDURE [file: File.File.
type: OthelioOps.BootFileType. firstPage: File.PageNumber);

OthelloOps.SetVolumeBootFile: PROCEDURE [file: File.File.
type: OthelloOps.BootFileType. firstPage: File.PageNumber);

The logical volume containing file must be open. If file is unknown to Pilot, either
File.Unknown or volume.Unknown will be raised. The information set by these operations
may be retrieved by invoking

OthelioOps.GetVolumeBootFile: PROCEDURE (lvID: volume.lD,
type: OthelloOps.BootFileType)
RETURNS [file: File.File. firstPage: File.PageNumber);

OthelioOps.GetPhysicaIVolumeBootFile: PROCEDURE [pvlD: PhysicalVolume.lD.
type: OthelioOps.BootFileType)
RETURNS [file: File.File. firstPage: File.PageNumber];

Logical volume IvlD must be on-line, i.e., contained on a physical volume that is known to
Pilot. If the physical volume is only partially online, Volume.NotOnline will be raised. If
the IvlD is not open, volume.NotOpen will be raised. volume.NeedsScavenging and
volume.ReadOnly may also be raised. If IvlD is unknown to Pilot, vOlume.Unknown is
raised. If pvlD is unknown to Pilot, PhysicaIVolume.Error[physicaIVolumeUnknown] is
raised.

Pilot can be told to forget that a logical or physical volume has a default boot file of some
type by invoking

OthelioOps.VoidVolumeBootFile: PROCEDURE (lvID: volume.lD.
type: OthelioOps.BootFileType];

OthelioOps. VoidPhysicalVol umeBootFile: PROCEDURE [pvl D: PhysicalVolume.l D.
type: OthelioOps.BootFileType];

Logical volume IvlD must be open or vOlume.Unknown will be raised. Physical volume
pvlD must be on-line or Physicalvolume.Error[physicalVolumeUnknown) will be raised.

Every boot file of type pilot can have an explicit pointer to a debugger for that boot file,
i.e., a debugger that will be invoked whenever that boot file is loaded and calls a debugger.
Normally, Pilot finds a debugger on a volume of the next higher type than the volume
being booted. This is not sufficient if the debugger needs to be called very early in Pilot
initialization, or if the boot file is built on top of UtilityPilot, which never looks for a
debugger.

OthelloOps.SetDebugger: PROCEDURE [debuggeeFile: File.File.
debuggeeFirstPage: File.PageNumber. debugger: vOlume.lD.

Pilot Programmer's Manual

debuggerType: Device.Type. debuggerOrdinal: CARDINAL]
RETURNS [OthelioOps.SetDebuggerSuccess];

OthelioOps.SetDebuggerSuccess: TYPE = {success. nuliBootFile. noDebugger.
cantWriteBootFile. notlnitialBootFile. cantFindStartListHeader.
startListHeaderHasBadVersion. other};

8

The file debuggeeFile must permit writing and denote a file on a volume that is open. The
first page of the boot file within the file debuggeeFile is denoted by debuggeeFirstPage
(normally this is zero). The debugger will be found on the device denoted by
debuggerType and debuggerOrdinal. The debugger is on volume debugger of the
physical volume contained on that device. The returned value success indicates that the
pointers were set.

If nullBootFile is returned, debuggeeFile is either unknown or the volume it resides on is
unknown, not online or not open. If no installed debugger can be found on debugger,
noDebugger is returned. If Pilot is unable· to modify the boot file denoted by
debuggeeFile, cantWriteBootFile is returned. The boot file denoted by debuggeeFile must
not be a restart file since they can not have their debugger pointers set. If it is,
notlnitialBootFile is returned. A return of cantFindStartListHeader indicates that the boot
file header has probably been damaged, or that the boot file has been shortened. If the
specified boot file was created by an earlier version of either Pilot or MakeBoot, Pilot is
unable to access it and startListHeaderHasBadVersion is returned. If Pilot is unable to set
the debugger pointers for some other reason (Le., the boot file is too short, missing pages
exist, or the bootfile is of the wrong version), this operation will return other. If debugger
is unknown to Pilot, Volume.Unknown will be raised.

8.3.4 Miscellaneous operations

A Pilot physical volume consists of the pieces of one or more logical volumes. Each such
piece is known as a subvolume. The subvolumes on a physical volume can be enumerated
by invoking

OthelioOps.GetNextSubVolume: PROCEDURE [pvlD: PhysicalVolume.lD,
thisSv: OthelloOps.SubVolume]
RETURNS [nextSV: OthelloOps.SubVolume];

OthelioOps.SubVolume: TYPE = RECORD [lvID: volume.lD.
subVolumeSize: Volume.PageCount.
firstLVPageNumber: OthelioOps.LogicaIVolumePageNumber.
firstPVPageNumber: Physicalvolume.PageNumber];

OthelioOps.LogicaIVolumePageNumber: TYPE = LONG CARDINAL;

OthelioOps.nuIlSubVolume: OthelloOps.SubVolume • [Volume.nuIIlD. O. o. 0];

OthelioOps.SubVolumeUnknown: ERROR [sv: OthelioOps.SubVolume];

This operation is a stateless enumerator and begins and ends with nullSubVolume is the
argument and ends when nullSubVolume is the result. IfthisSv can not be found on pvlD,
SubVolumeUnknown is raised. A SubVolume identifies a logical volume, IvID. The
number of pages that this piece of that logical volume contains is given by subVolumeSize.

8-9

8

8-10

System Generation and Initialization

The subvolume begins at page number firstLVPageNumber within IvID, and at page
number firstPVPageNumber within pvlD. If pvlD is unknown to Pilot,
Physicalvolume.Error[physicaIVolumeUnknown] is raised.

Note: This operation is designed to deal with logical volumes that span multiple physical
volumes. Since the current version of Pilot does not provide the facility to create such
logical volumes, firstLVPageNumber is always 0, and subVolumeSize always gives the
actual size oflvlD.

Pilot reserves the right to delete some or all temporary files on a logical volume when that
volume is opened for writing. The following operation is guaranteed to delete all
temporary files on a logical volume.

OthelloOps.DeleteTempfiles: PROCEDURE [Volume.lD];

OthelloOps.VolumeNotClosed: ERROR; .

The specified volume must be closed or VolumeNotClosed will be raised. Volume.Unknown,
Volume.ReadOnly, Volume.NotOnline, Volume.NeedsScavenging may be raised by this
procedure.

The number of pages available on a storage device on a given drive holds is given by

OthelloOps.GetDriveSize: PROCEDURE [h: PhysicaIVolume.Handle]
RETURNS [nPages: LONG CARDINAL];

The following operation converts a character string denoting which switches should be
down when booting a boot file into a System.Switches.

OthelloOps.DecodeSwitches: PROCEDURE [switchString: LONG STRING]
RETURNS [switches: System.Switches];

OthelloOps. BadSwitches: ERROR;

The semantics of the switch string passed to DecodeSwitches as follows: the characters "_"
and "-" mean set the next specified switch to System.UpDown[up]; a phrase of the form
''\xxx'', exactly three in length, is interpreted as the octal value of the switch that is to be
set. Note that the order of switches is significant in that only the last (rightmost) setting
(or clearing) of a particular switch is retained. Thus, the switches "ab-a", "ab-a" and "b"
are all equivalent. Ifa character is not a valid switch name, BadSwitches is raised.

It is possible to set default switches in boot files and to associate an expiration date with a
boot file:

OthelloOps. SetGetSwitchesSuccess: TYPE • OthelloOps.SetDebuggerSuccess[success .. other];

OthelloOps.GetExpirationDateSuccess: TYPE.
OthelloOps.SetDebuggerSuccess[success .. other];

OthelloOps.SetExpirationDateSuccess: TYPE.
OthelloOps.SetDebuggerSuccess[success .. other);

Pilot Programmer's Manual

OthelloOps.GetExpirationDate: PROCEDURE [file: File.File. firstPage: File.PageNumber]
RETURNS [OthelioOps. GetExpi ration DateS.\ilccess. System. GreenwichMean Ti me];

/

OthelloOps.SetExpirationDate: PROCEDURE [file: File.File. firstPage: File.PageNumber
expirationDate: System.GreenwichMeanTime]
RETURNS [OthelloOps.SetExpirationDateSuccess];

OthelioOps.GetSwitches: PROCEDURE [file: File.File.firstPage: File.PageNumber]
RETURNS [OthelioOps. SetGetSwitchesSuccess. System. Switches];

OthelioOps.SetSwitches: PROCEDURE [file: File.File.
firstPage: File.PageNumber. switches: System.Switches]
RETURNS [OthelioOps.SetGetSwitchesSuccess];

8

The expiration date is used as a validity check on the processor clock. When a boot file is
booted, Pilot attempts to ensure that the processor clock is set correctly. If the processor
clock can not be set from the Ethernet, or is not set to a time less than or equal to the boot
file's expiration date, Pilot will refuse to boot and will hang with an appropriate
maintenance panel code. The logical volume on which the boot file resides must have been
opened in order to invoke these procedures.

Note: These comments only apply to Pilot. For UtilityPilot, the client is always
responsible for ensuring that the processor clock is set correctly.

Each boot file may also contain default boot switches. These are set and retrieved by
SetSwitches and GetSwitches. When a boot file is booted, Pilot will set the system
switches to the value passed to it by the client booting program if they are not equal to
System:defaultSwitches; otherwise, it sets them to the boot file's default switches.

To aid the client in setting the processor clock to a valid value:

OthelloOps.lsTimeValid: PROCEDURE RETURNS [valid: BOOLEAN);

OthelloOps.SetProcessorTime: PROCEDURE [time: System.GreenwichMeanTime);

OthelioOps.GetTimeFromTimeServer: PROCEDURE RETURNS [serverTime:
System.GreenwichMeanTime. serverLTPs: System.LocaITimeParameters);

OthelioOps. Ti meServerError: ERROR [error: OthelioOps. TimeServerErrorType];

OthelloOps.TimeServerErrorType: TYPE = {noCommunicationFacilities. noResponse};

The validity of the time in the processor clock can be ascertained by calling ISTimeValid.
The processor clock can be explicitly set by calling SetProcessorTime. This is required of
all UtilityPilot clients as their first action upon gaining control. The time servers on the
network can be queried for their notion of the current time by calling
GetTimeFromTimeServer which returns the time that the time servers believe it is, as well
as the local time parameters that they are using. The error TimeServerError indicates that
the attempt to access a time server failed; noCommunicationFacilities indicates the
processor is not connected to the Ethernet; noResponse indicates that there was no
response from any time server on the local network.

8-11

8 System Generati.on and Initialization

8.4 Communication initialization

8.5 Booting

8-12

Local networks are interconnected logically via machines executing an internetwork
routing function. Physically, the interconnection of networks can be via a phone line link
or via a processor with multiple ethernet boards. All Pilot processors contain a simple
routing function, which is capable of requesting routing information from internetwork
routers.

All machines running Pilot are automatically initialized to do routing. They discover
their local network numberCs) by broadcasting for routing information at initialization
time or via routing update packets that are broadcast by internetwork routers.

There is a local network, thus network number, for every ethernet board in a Pilot
processor. The network number is assigned via an administrative method that assigns
unique 32-bit numbers.

When a Pilot processor is restarted, it does not know its network number. Until it is
otherwise notified ofa new number, it uses a default number, referred to as the unknown
network number. A local network can operate correctly without an internetwork router;
all the machines on the network use the same constant, unknown network number. If all
machines on a network use the unknown network number in their network addresses,
completely general communication is possible. If the default network number is used,
there is no special communication initialization necessary to assign or discover the local
network number,

TemporaryBooting: DEFINITIONS ••• ;

Pilot supports installing boot files on logical volumes, and booting from a specified file or
logical volume. The operations providing this support are in the interface TemporaryBooting,

the name of which reflects the fact that it is expected that these facilities will evolve
somewhat before the final interface is frozen. Comments would be appreciated on this
interface to help shape the final one.

A boot file is a client-on-Pilot configuration which has been converted by MakeBoot into a
ready-to-run form. It is executed by loading it into a suitable processor with the Pilot boot
loader, which is known as the germ. The boot file commences execution by first
initializing Pilot and then invoking PiiotClient.Run. Pilot associates a boot file with each
logical, and with each physical, volume so that booting from that volume means loading
the associated boot file. It is recommended that the boot file for a physical volume be the
boot file for some logical volume on that physical volume, though this is not required.
Pilot also provides an operation for booting directly from a file, which need not be the
installed boot file of its volume.

Setting up a bootable file involves several steps. A file of the right size must be created,
and its contents must be written with the boot file as produced by MakeBoot. Once the file
is created, the operation MakeBootable must be applied to the file, modifying it in such a
way that the germ can read it. Then the file may be booted using the operation
BootFromFile. For this operation, installing the file is not necessary. If it is desired to
associate this file with a particular logical volume, the file must be installed using the

Pilot Programmer's Manual 8

operation InstallVolumeBootFile. A subsequent BootFromVolume operation applied to
that volume (e.g., by Othello, or by a client program analogous to Othello) will cause the
installed system to run. Similarly, for a physical volume, use
InstallPhysicalVolumeBootFile to install a boot file, followed by a call on
BootFromPhysicalVolume or BootButton, or by pushing the boot button.

8.5.1 Creating a boot file

A boot file is created in the normal fashion, using File.Create. The operations in
TemporaryBooting are set up in such a way that a boot file may begin with a client-provided
leader of one or more pages: in the relevant operations, a firstPage parameter specifies the
page at which the "real" boot file (as output by MakeBoot) begins.

A boot file may have any file type. The interface item TemporaryBooting.tBootFile remains
for compatibility (with a value of FileTypes.tUntypedFile). It will disappear in a later
release.

As is always the case when creating a Pilot file, it is better to specify the actual size (Le.,
the number of data pages output by MakeBoot, plus the number of leader pages to be
prefixed) when creating it, rather than doing a series of File.SetSize operations. This gives
Pilot the best opportunity to allocate the file in a small num~er of contiguous portions,
which re.duces both access times and storage overhead in Pilot's data structures. (See also
the discussion under "Updating a boot file" below.)

8.5.2 Writing the contents of a boot me

The Space operations Map, Unmap, C()pyln, and CopyOut apply to bootable files just as to
any other, allowing the contents to be written. Since a boot file is originally built by
MakeBoot, which runs in a different environment, part of the process of installing a boot
file is to copy it into the previously created Pilot boot file. This is typically accomplished
via the Ethernet, e.g., Othello's fetch command.

8.5.3 Making a boot me bootable

Once a boot file has been created and written with the appropriate contents, it must be
subjected to the operation

TemporaryBooting.MakeBootable: PROCEDURE [file: File.File.
firstPage: File.PageNumber +- 0];

The parameter firstPage specifies the first page containing the information produced by
MakeBoot, e.g., the page following the client leader pages, or zero if no leader pages are
present.

If the file doesn't contain a valid Pilot boot file starting at firstPage, the following error is
raised:

TemporaryBooting.lnvalidParameters: ERROR;

8-13

8

8-14

System Generation and Initialization

If the file being made boo table has an invalid version, the following error is raised:

TemporaryBooting.lnvalidVersion: ERROR;

The file is made bootable before this error is raised so that boot files that are incompatible
with Pilot 11.0 can be installed by Pilot 11.0.

8.5.4 Installing a boot file

To establish a file as the boot file of a particular logical volume, use the operation

TemporaryBooting.lnstallVolumeBootFile: PROCEDURE [file: File.File,
firstPage: File.PageNumber +- 0];

The file should already have been made bootable. The parameter firstPage has the same
significance as for MakeBootable. Note that InstallVolumeBootFile does not take an
explicit volume parameter because a boot file may only be installed on the volume
containing that file.

To associate a file as the boot file of a particular physical volume, use the operation

TemporaryBooting.lnstaIlPhysicaIVolumeBootFile: PROCEDURE [file: File.File,
firstPage: File.PageNumber +- 0];

8.5.5 Booting a boot tile

Four operations are provided: booting a specified boot file, booting from the file installed
on a specified logical volume, booting from the file installed on a specified physical
volume, and simulation of the boot button. A program may boot from any Pilot-formatted
volume, regardless of its type. These operations do not return. Control passes irrevocably
to the new boot file.

TemporaryBooting.BootFromFHe: PROCEDURE [file: File.File,
firstPage: File.PageNumber +- 0,
switches: System.Switches +- System.defaultSwitches];

Note: Pilot 11.0 will not successfully complete the TemporaryBooting.BootFromFile
operation if the file is temporary and firstPage is zero.

TemporaryBooting.BootFromVolume: PROCEDURE [volume: Volume.lO,
switches: System.Switches +- System.defaultSwitches];

TemporaryBooting. BootFromPhysicalVol ume: PROCEDURE [volume: Volume.l 0,
switches: System.Switches +- System.defaultSwitches];

Note that the parameter to BootFromPhysicalVolume is not a physical volume identifier,
but the identifier of any logical volume on that physical volume.

TemporaryBooting.BootButton: PROCEDURE [

switches: System.Switches +- System.defaultSwitches];

Pilot Programmer's Manual 8

The value of the defaultSwitches parameter represents all switches as being up. Errors
resulting in improper arguments to these booting operations typically result in a
maintenance panel code and a crash.

8.5.6 Updating a boot tile

From time to time it is necessary to install a new version of a boot file onto a volume.
Several approaches are possible:

1. a new file can be created, written, made bootable, and installed; then the old boot file
may be deleted.

2. an existing boot file may be overwritten with new contents; then MakeBootable must
be applied again. InstaliVolumeBootFile need not be reapplied.

The first approach has the advantage that it never leaves the volume in an inconsistent
state. It has the disadvantage of requiring extra disk space during the time the old and
new boot files exist. If the second approach is used, then before rewriting the old boot file's
contents, it must be made unbootable using the operation

TemporaryBooting.MakeUnbootable: PROCEDURE [file: File.File,
firstPage: File.PageNumberE-O];

To understand the purpose ofthis operation, a little background is helpful. MakeBootable
writes an absolute disk address (called a link) in otherwise unused words of the label of
some boot file pages. The germ uses this information rather than the ordinary Pilot
volume file map structure to read the file. If the size of the boot file changes when it is
being updated, new physical disk pages may be allocated, invalidating some of the old
links. Thus MakeUnbootable is provided to remove the old links from a boot file about to
be updated. Afterward, MakeBootable must be used to put in the correct new links.

8.5.7 Atomic saving and restoring of Pilot instances

TemporaryBooting.BootLocation: TYPE = RECORD [
body: SELECT bootLocation:* FROM
boot Button, none = > NULL,
physicalVolume = > [pvLocation: TemporaryBooting.PVLocation],
logicalVolume = > [volumeLocation: TemporaryBooting.VolumeLocation],
file = > [fileLocation: TemporaryBooting.FileLocation],
ENDCASE];

TemporaryBooting.PVLocation: TYPE [11];

TemporaryBooting.VolumeLocation: TYPE [11];

TemporaryBooting.FileLocation: TYPE [11];

A BootLocation describes a place that the state of a running Pilot may be saved in or
restored from. A bootButton BootLocation and a none BootLocation are always valid;
the other variants are only valid for limited periods of time as described below. The
conservative approach is never to store these other variants in a permanent location but to

.-
8-15

8

8-16'

System Generation and Initi~lization

recreate them just before using them (as parameters to Outloadlnload). Currently, it is
only possible to save state in a file BootLocation.

The following procedures return a BootLocation for the specified location. For each
operation, the circumstances under which the returned information becomes invalid are
noted.

TemporaryBooting.GetFileLocation: PROCEDURE (file: File.File, firstPage: File.PageNJ,.tmber ~ 0]
RETURNS [bootLocation: file TemporaryBooting.BootLocation);

The returned BootLocation is valid so long as the specified file is neither deleted nor has
any of its attributes changed (including size and permanency). Scavenging may
invalidate the returned BootLocation if the file was damaged and the client scavenger
repaired the damage. The returned BootLocation is also only valid if the specified file has
been made bootable (via TemporaryBooting.MakeBootable) and is not subsequently made
unbootable. GetFileLocation raises TemporaryBooting.lnvalidParameters if the specified file
page is beyond the end of the file. It may also raise File.MissingPages, File.Unknown,
Volume.NotOnline, Volume.NotOpen, Volume.Unknown.

TemporaryBooting.GetVolumeLocation: PROCEDURE [volume: Volume.lD)
RETURNS [bootLocation: logicalVolume TemporaryBooting.BootLocation];

The returned BootLocation refers to the boot file installed on the logical volume. It is
valid as long as the boot file on the specified volume is not deleted. The comments for the
validity of returned BootLocations in GetFileLocation also apply here.
TemporaryBooting.lnvalidParameters will be raised if the specified volume does not have a
Pilot boot file installed on it. Volume.Unknown, Volume.NeedsScavenging, and
volume.NotOnlinemay also be raised.

Temporary80oting.GetPVLocation: PROCEDURE [volume: PhysicalVolume.lD]
RETURNS [bootLocation: physicalVolume TemporaryBooting.BootLocation);

The returned BootLocation refers to the boot file installed on the physical volume. It is
valid as long as the boot file on the specified physical volume is not deleted. The comments
for the validity of returned BootLocations in GetFileLocation also apply here.
TemporaryBooting.lnvalidParameters will be raised if the specified volume does not have a
Pilot boot file installed on it. GetPVLocation may also raise
Physicalvolume.Error[physicaIVol umeU nknown].

TemporaryBooting.OutLoadlnLoad: PROCEDURE [
outloadLocation: file TemporaryBOoting.BootLocation,
i nloadLocation: TemporaryBooting.BOotLocation,
pMicrocode, pGerm: LONG POINTER ~ NIL,
countGerm: Environment.PageCount ~ 0,
switches: System.Switches ~ System.defaultSwitches];

TemporaryBooting.OutLoadlnLoad is an atomic operation; that is; nothing happens between
the outload and inload. The state of the currently running system is saved on
outloadLocation. The system represented by inloadLocation is restored to a running state.
The microcode and/or germ may be changed by passing the appropriate information in
pMicrocode, pGerm and countGerm. If pMicrocode is defaulted, the microcode is not
changed. If pGerm is defaulted, the germ is not changed. The switches are available to the

Pil()t Programmer's Manual 8

inloaded Pilot. These are typically examined only when the system being booted is not an
outload file (e.g., it was made by MakeBoot). Note that the switches may be ignored if
inloadLocation is a bootButton BootLocation. Upon return, the following sequence has
occurred: (1) Pilot has successfully performed the outload and has executed the in loaded
system: (2) at a later time a client, (possibly a different one), has inloaded the state of the
original system (the one outloaded in (1».

8-17

9

The Backstop

A backstop is a system for recording information about sick software and hardware. For
product systems, it is installed instead of a debugger, and receives control in the same way
and at the same times that a debugger would. When the backstop is invoked, it records the
error and a restart message in a backstop log file and reboots the debuggee system. The
debuggee system may then read the restart message from the backstop log and inform the
user as to what has happened. The interface Backstop supplies facilities for implementing
a backstop. The interface BackstopNub supplies facilities for reading entries from a log
file written by a backstop.

The implementation modules are Backstoplmpl. bed and BaekstopNublmpl. bed.
When these modules are used, the object files VMMapLog Impl. bcd, MemCacheNub. bcd,
and BSMemCaehe. bed must also be 'bound in. In the following description, the term
backstop core refers to the facilities provided by these interfaces. The term backstop
control refers to the software built on top of it to implement a complete backstop system.
Where the meaning is unambiguous, the term backstop may be used for either or both.

9.1 Implementing a backstop

The facilities in the Backstop interface are used to implement a backstop. The backstop
core uses the Pilot logging facilities (Log) for recording the error information and the
restart message in the backstop log file.

The implementation module Backs topNublmpl . bed exports the interface
BackstopN ub and can be used for reading backstop logs. It uses the facilities of the Log
and LogFile interfaces, so clients of BackstopNub must ensure that these interfaces are
exported to BackstopNublmpl.

The following kinds of errors are reported to a backstop:

Address faults
Write protect faults
Uncaught signals and errors
Direct calls: Runtime.CallDebugger and Runtime.lnterrupt

Operations are provided to determine the type of error and to record sufficient information
in the log to later identify the source line in the procedure and module which caused the
error. Parameters accompanying signals, errors, and direct calls are also recorded.

9-1

9

9-2

The Backstop

Additional information abo..ut the currently runnin~ processes and their call stacks can
also be recorded.

9.1.1 Initializing a backstop log file

The following procedure is used to initialize a backstop log file.

Backstop.CreateBac:kstopLog: PROCEDURE [size: CARDINAL, file:File.File.
firstPageNumber: File.PageNumber f- 0);

file will be initialized as a backstop log. firstPageNumber indicates the number of pages
over which the backstop should skip before it starts writing its data.

9.1.2 Control flow

A backstop receives control when its volume is booted or when its client tries to go to the
debugger. The backstop may be booted to create a new log file, read an existing log file, or
perform some other maintenance task. A boot switch should be used when booting a
backstop to perform the maintenance tasks so that the backstop control software can
determine why it received control Whenever the backstop is booted, control enters the
backstop when Pilot calls PilotClient.Run.

When the backstop is installed, it may raise the signals volume.lnsufficie."tSpace or
volume.RootDirectoryError in the process of creating its outload file.

A backstop must pass control to the debuggee system by calling Backstop.Proceed

Backstop.Proceed: PROCEDURE [boot: Volume.lD);

boot specifies the volume to be restarted. If boot is volume.nuIllD, the physical volume will
be booted.

Backstop.VersionMismatch: SIGNAL;

VersionMismatch indicates that the version of Pilot in the backstop is different from that
in the product system, and that the backstop may not record meaningful error
information. This could occur if a new version of a debuggee system was installed without
also installing a compatible version of the backstop. VersionMismatch will be raised by
the first Backstop procedure called that examines the client.

9.1.3 Logging errors

Procedures in this section are used to write information into the current backstop log file
about the state of the product system when an error occurs. These are the only procedures
that may be used to write entries into a backstop log file (do not use Log.PutBlock, etc.).
The backstop control software may use LogFile.Restart to communicate with the debuggee
system. It may also use LogFile.Getlost, etc., to determine the state of the current backstop
log file. These procedures may raise the signal VersionMismatch.

Backstop.LogError: PROCEDURE [];

Pilot Programmer's Manual 9

Backstop.GetError: PROCEDURE RETURNS [BackstopNub.ErrorType);

BackstopNub.ErrorType: TYPE = MACHINE DEPENDENT {
addressfault. writeprotectfault, signal, call. unused, interrupt, other, bugf;

Backstop.NotLoggi ngError: ERROR;

LogError records the type of error that caused the backstop to be invoked, along with the
information necessary to locate the error in the source code and any parameters of the
error. It also does a Log.SetRestart, recording the index of the log entry it wrote and the
current time. GetError returns the type of the current error. These operations and all
operations in this section can only be used when the backstop is invoked to process an
error. [fthey are called when not processing an error, they will raise NotLoggingError.

The following procedures can be used to enumerate all of the debuggee's active processes
and log the state of each one. The current process can also be identified.

Backstop.GetNextProcess: PROCEDURE [process: Backstop. Process]
RETURNS [next: Backstop.Process];

Backstop.GetCurrentProcess: PROCEDURE RETURNS [process: Backstop.Process];

Backstop.GetFaultedProcess: PROCEDURE RETURNS [process: Backstop.Process];

Backstop.LogProcess: PROCEDURE [process: Backstop.Process];

Backstop.nuIlProcess: READONL Y Backstop.Process;

Backstop.Process: TYPE [1];

Backstop.NotAFault: ERROR;

GetNextProcess is a stateless enumerator that begins and ends with nullProcess.
Processes are returned in order beginning with the handle of the process that caused the
error. GetCurrentProcess returns the handle of the process that caused the error.
GetFaultedProcess returns the handle of the process that took the fault when the error
type is addressfault or writeprotectfault. If GetFaultedProcess is called for some other
error type, the signal NotAFault is raised. LogProcess records information about the state
of its argument process in the current backstop log file.

Once a process is obtained, the following procedures can be used to enumerate the frames
in its call stack, starting with the most recently called procedure, and log the state of each
one.

Backstop.GetNextFrame: PROCEDURE [process: Backstop.Process. frame: Backstop. Frame]
RETURNS [next: Backstop.Frame];

Backstop.LogFrame: PROCEDURE [frame: Backstop.Frame];

Backstop.nuIiFrame: READONLY Backstop.Frame;

Backstop.Frame: TYPE [1];

9-3

9 The Backstop

Passing nullFrame t.o GetNextFrame will return a handle for the local frame of the most
recently called procedure of the process. Passing a handle so obtained will return a handle
for the local frame of the next-most-recently-called procedure, and passing the handle of
the root frame oqhe process will return null Frame. LogFrame records information about

. the state of its argument frame in the current backstop log file.

9.2 Reading backstop log tiles

9-4

Facilities provided by the BackstopNub intf':-face are used to enumerate the entries of a
backstop log file and to read the information there. This might be done either by backstop.
control or by the debuggee system. The backstop log file is implemented using the Pilot
logging facilities. Log.GetLost, etc., may be used to determine the state of the backstop log
file.

BackstopNub.GetNext: PROCEDURE [log: File.File, current: Log.lndex,

firstPageNumber: File.PageNumber +- 0)
RETURNS [next: Log.Jndex];

BackstopNub.GetSize: PROCEDURE [log: File.File, current: Log.lndex,

firstPageNumber: File.PageNumber +- 0)
RETURNS (size: CARDINAL];

BackstopNub.GetLogEntry: PROCEDURE (log: File.File. cur~ent: Log.Jndex.
place: BackstopNub.Handle, firstPageNumber: File.PageNumber +- OJ;

BackstOpNub.NotErrorEntry: ERROR;

BackstopNub.Handle: LONG POINTER TO BackstopNub.ErrorEntry;

BackstopNub.ErrorEntry: TYPE = MACHINE DEPENDENT RECORD(
globaIFrame(O): BackstopNub.GlobaIFrame.
pc(1): BackstopNub.PC.
time(2): System.GreenwickMeanTime.
options(4): SELECT error(4): BackstopNub.ErrorType FROM

signal = > (signal(5):-BackstopNub.Signal.
msg(6): BackstopNub.SignaIMsg.
stk(7): ARRAY [O .. stackSize) OF UNSPECIFIED),

call = > (msg(5): StringBodyJ.

unused = > [J.

interrupt = > Il.
addressfault = > [faultedProcess(5): BackstopNub.PSBlndex],
writeprotectfault = > [faultedProcess(S): BackstopNub.PSBlndex],
other = > (reason(5): BackstopNub.SwapReason).
bug = > (bugType(S): CARDINAL).

ENDCASE);

BackstopNub.GlobaIFrame: TYPE (1);

BackstopNub.PC: TYPE [1];

BackstopNub.PSBlndex: TYPE [1];

Pilot ProgtOammer's Manual 9

BackstopNub.Signal TYPE (2);

BackstopNUb.SignaIMsg: TYPE [1 J;

BackstopNub.SwapReason: TYPE [1);

GetNext is a stateless enumerator that begins and ends with Logonullindex. Values are
returned in the order that they were written to the file. GetSize returns the number of
words of the current entry. An entry of type ErrorEntry is copied into the storage provided
to GetLogEntry. firstPageNumber is the number of pages over which the backstop should
skip before it starts reading the data. If any of these procedures are called with an index
that does not correspond to a valid backstop log entry, they raise NotErrorEntry.

No facilities are provided for reading process or frame entries.

9-5

10

Online Diagnostics

10.1 Communication Diagnostics

CommOnlineDiagnostics: DEFINITIONS ... ;

This interface is used by clients of communications online diagnostics. It includes
procedures for gathering ethernet statistics, running echo tests and testing RS232C and
dialer facilities. AU tests may be run on any host machine exporting the communications
online diagnostics server.

CommOnlineDiagnostics.ServerOn: PROC;

Calling ServerOn causes the local machine to export the communications online
diagnostics. Any of the following diagnostics can then be run on the local machine from
any other machine.

CommOnlineDiagnostics.ServerOff: PROC;

Calling ServerOff causes the local machine to unexport the communications online
diagnostics. If a client attempts to run a diagnostic on a machine that is not exporting
communications online diagnostics, the error CommError will be raised with a reason of
noSuchDiagnostic.

CommOnlineDiagnostics.CommError: ERROR [reason: CommErrorCode];'

CommError is raised by any of the diagnostics when an error occurs in the
communications used to call the diagnostics.

CommOnlineDiagnostics.CommErrorCode: TYPE = MACHINE DEPENDENT {
transmissionMedi umProblem,
noAnswerOrBusy,
noRouteToSystem~lement,
transportTi meout,
remoteSystemElementNotRespond i ng,
noCourierAtRemoteSite,
tooManyConnections,
invalidMessage
noSuchDiagnostic,

10-1

10

10-2

Online Diagnostics

returnTimedOut,
callerAborted,
unknownErrorlnRemoteProcedu re,
streamNotYours.
truncatedTransfer,
parameterlnconsistency,
invalidArguments,
protocol Mismatch,
duplicateProgramExport,
noSuchProgramExport,
invalidHandle,
nOError};

CommErrorCode defines the type of fatal error that occurred.

transmissionMediumProblem

noAnswerOrBusy

noRouteToSystemElement

remoteSystemElementNotResponding

tooManyConnections

transmissionMediumProblem indicates
some sort of problem with the physical
device.
This error applies to circuit oriented
. media only and indicates that the
remote end did not answer or was
already busy.
noRouteToSystemElement indicates the
network on which the diagnostic is to be
run is not reachable at this time.
This error code indicates the machine
specified in the host parameter of the
diagnostic is not responding.
This error code indicates that the
maximum number of courier
connections has been reached.

nOSuchDiagnostic The remote service does not export the
diagnostic specified.

The rest of the error codes are translations of the Courier error codes that define Courier
communication errors. See the Courier section for more details.

10.1.1 Ethernet echo testing

EchoDiagHandle:TYPE • LONG POINTER TO echoDiagObject;
EchoDiagObject: TYPE;

CommOnlineDiagnostics.StartEchoUser: PROC [
targetSystemElement: System.NetworkAddress,
echoParams: EchoParams.
eventReporter: EventReporter +- NIL.

host: System.NetworkAddress +- System.nuIINetworkAddress]
[dH :EchoDiagHandle]

RETURNS

StartEchoUser starts the echo test. Multiple echo tests may be run on the same host. The
dH returned from StartEchoUser is the handle to be used to retrieve the echo test results.

Pilot Programmer's Manual 10

targetSystemElement

echoParams

eventReporter

host

targetSystemElement is the machine that is to be the echo
server.
echoParams are the client specified parameters for the test
to be run.
eventReporter is the client-supplied procedure that will be
called whenever an interesting event occurs. An interesting
event may be when an echo response is received, or when
some kind of error occurs. If the client does not wish the
kind of feedback provided by the event reporter, he should
set the eventReporter to NIL or let it default to NIl.
host is the network address of the machine that is to be used
as the echo user.

CommOnlineDiagnostics.GetEchoResults: PROC [
dH: EchoDiagHandle;
host: System.NetworkAddress,
stoplt: BOOLEAN]
RETURNS [totalsSinceStart: EchoResults,
hist: CommOnlineDiagnostics.Histogram];

After starting the echo user, the client obtains the results of the test by calling
GetEchoResults. The test is implemented with a "dead man's switch"--the client must call
GetEchoResults within the safetyTOlnMsecs that was passed in StartEchoUser for the test
to actively continue. Every echo test that was started with the StartEchoUser proc must
eventually be terminated by a call to GetEchoResults with stoplt set to TRUE, regardless of
whether the test is actually sending.

dH

stoplt

host'

totalsSinceStart
hist

dH is the handle that identifies the test to retrieve the
results from.
If the procedure is called with stoplt equal to TRUE, the test
will return the results and then stop. If the client wishes to
obtain intermediate results of an echo test, he may call
GetEchoResults with stoplt equal to FALSE, the current
counters will be returned, and the test will continue to run.
This is useful for real-time feedback at time intervals
chosen by the client.
host is the network address of the machine that is the echo
user.
totalsSinceStart are the actual results of the echo user test.
hist is a histogram of the timing between the sending of the
echo request and the receiving of the echo reply.

CommOnlineDiagnostics.EchoEvent: TYPE =

{success, late, timeout, badDataGoodCRC, sizeChange, unexpected};

U sed with EventReporter for client feedback, EchoEvent defines the type of event that has
just occurred in the echo test.

success

late

success indicates that the echo request/response exchange
was successfully completed.
late indicates the response to the echo request arrived late.

10-3

10

10-4

Online Diagnostics

timeout

badDataGoodCRC

sizeChange

unexpected

This event occurs when no response is received for the echo
request sent. The test will timeout and send the next echo
request.
badDataGoodCRC indicates the echo response was received
without a CRC error. but some data bytes of the packet do
not match the expected pattern.
If the test is varying the length the the data in the echo
request. an event of sizeChange will occur when the size
goes from the maximum back to the minimum.
unexpected indicates that unsolicited packets were received
on the echo socket before the echo test was actually started.

CommOnlineDiagnostics.EchDParams: TYPE = MACHINE DEPENDENT RECORD [
totalCount(O): CARDINAL LAST[CARDINALJ.
safetyTOlnMsecs(1): LONG CARDINAL 60000.

minPacketSizeln Bytes(3): CARDINAL 2,
maxPacketSizelnBytes(4): CARDINAL 512.
wordContents(S): W ordsInPacket - incrWords,
constant(6): CARDINAL ,25252B.
waitForResponse(7): BOOLEAN TRUE.
minMsecsBetweenPackets(8): CARDINAL 0,

checkContents(9): BOOLEAN TRUE,
showMpCode(10): BOOLEAN FALSE];

EchoParams is used by the client to define the parameters desired for the echo test.

totalCount totalCount indicates the number of echo request/response
exchanges the client wishes the test to execute. Mter
tot.alCount packets have been echoed, the test will wait in
an idle state for the client to terminate it and to retrieve the
results via GetEchoResults. Of course, the test may be
terminated at any time (Le., before totalCount packets have
been echoed) via GetEchoResults. If this numb~r is set to 0,
the test will run until stopped by GetEchoResults or by the
"dead man's" switch.

safetyTOlnMsecs safetyTOlnMsecs is the timeout used in the test's "dead
man's switch." After starting the echo test. GetEchoResults
must be called within this time. to either reset the timeout
and continue echoing or to stop the test and collect the
results. If GetEchoResults is not called within this time. the
test will enter an idle state. It must still be terminated via
GetEchoResults.

minPacketSizelnBytes minPacketSizelnBytes is used to specify the minimum
number of data bytes to send in the echo request.

maxPacketSizelnBytes maxPacketSizelnBytes is used to specify the maximum
number of data bytes to send in the echo request. If the
specified size is larger then the maximum data bytes
allowed in an echo packet. it will be truncated to the
maximum allowed. If maxPacketSizelnBytes is equal to
minPacketSizelnBytes. the test will send constant length

Pilot Programmer's Manual 10

echo packets, otherwise the size will range from the
minimum specified to the maximum.

wordContents This parameter specifies what the data words in the packet
will contain.

constant The data word constant is set using the constant parameter.
This parameter is used by the test only if the wordContents
parameter is aliConstant.

waitForResponse If waitForResponse is TRUE, the test will not send an echo
request until the reply to the previous request is received or
a timeout occurs.

minMsecsBetweenPackets The client can set the approximate interval between
echo requests by specifying minMsecsBetweenPackets.

checkContents Client may have the test verify each word in the echo
response packet by specifying checkContents.

showMpCode This parameter is currently unimplemented.

CommOnlineDiagnostics.EchoResults: TYPE = MACHINE DEPENDENT RECORD [
totalAttempts, successes,timeouts, late, unexpected: LONG CARDINAL,
avgDelaylnMsecs: LONG CARDINAL,
okButDribble, badAlignmentButOkCrc, packetTooLong, overrun, idlelnput,
tooManyCollisions, lateCollisions, underrun, stuckOutput: LONG CARDINAL];

Returned by the GetEchoResults procedure, EchoResults is the results of the ethernet echo
test. It includes statistics obtained from the ethernet during the test.

totalAttempts

successes

timeouts

late

totalAttempts is the total number of echo packets that the
echo user attempted to send, regardless of the number of
valid responses received.
successes ~s the total number of successful echo
request/response exchanges.
timeouts is the number of times the test sent an echo
request, and did not receive the :esponse before timing out
and sending the next request.
late is the number of echo responses that arrived at the echo
user late.

unexpected unexpected is the number of unexpected packets that were
received on the echo socket.

avgDetaylnMsecs The avgDelaylnMsecs is the average time between
successful echo request/response exchanges.

okButDribble, badAlignmentButOkCrc, packetTooLong, overrun, idlelnput,
tooManyCollisions, lateCollisions, underrun, stuckOutput

These ethernet statistics are the number of packets found
with the specified problem. Note: These statistics are only
valid for echo tests using ethernets, and should be ignored
for other mediums.

commOnlineDiagnostics.EtherDiagError: ERROR [reason: EtherErrorReason];

10-5

10

10-6

Online Diagnostics

Raised by the ethernet diagnostics, EtherDiagError indicates an error has occurred which
prohibits the test from starting or continuing. The reason parameter indicates what type
of fatal error has occurred.

CommOnlineDiagnostics.EtherErrorReason: TYPE = MACHINE DEPENDENT {
echoUserNotThere,
noMoreNets,
invalidHandle};

EtherErrorReason defines the fatal errors that can occur in the ethernet echo test,
retrieving echo counters and the gathering of ethernet statistics.

echoUserNotThere

noMoreNets

invalidHandle

If GetEchoResults is called when there is no echo test
running on the host machine, an error will be raised with a
reason of echoUserNotThere.
Raised by GetEthernetStats, noMoreNets indicates that
there is no existing net with the physical Order specified.
Raised by GetEchoResults, invalidHandle indicates the
client attempted to retrieve results with an already active
handle.

CommOnlineDiagnostics.EventReporter: TYPE = PROCEDURE [event: EchoEvent];

Clients who wish to be notified at every echo event can implement a EventReporter
procedure. This procedure is passed to StartEchoUser, and is called whenever an
interesting event occurs, usually at the successful or unsuccessful completion of a echo
request/response exchange.

CommOnlineDiagnostics.H istogram: TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF Deta i I;
Detail: TYPE = REcoRD[msec. count: CARDINAL];

A Histogram is used for the data of the histogram that the echo test builds. Each element
of the histogram is a Detail.

msec

count

msec is chosen by the echo test. msec for the current
element of the histogram and msec for the previous element
specifies an interval in which echo packets complete a round
trip.
The count is the number of packets that were sent and
returned in the interval defined by the value of msec and
the value of msec for the previous element of the histogram.

CommOnlineDiagnostics.WordslnPacket: TYPE = MACHINE DEPENDENT {
aIlOs(O), aIl1s(1), incrWords(2), aIlConstant(3), dontCare(4)};

The data content of the echo request is defined by WordslnPacket.

aliOs
all1s
incrWords

aliOs means the words in the packet will contain zeros.
all1s means the words in the packet will contain ones.
incrWords means each word of the packet will be
incremented, starting with the first word equal to one.

Pilot Programmer's Manual 10

allConstant aliConstant means the words in the packet will be a client
specified constant.

dontCare dontCare means the client does not care what the data
content of the packet is.

10.1.2 Gathering Ethernet statistics

CommOnlineDiagnostics.EtherStatslnfo: TYPE = ARRAY Statslndices OF LONG CARDINAL;

EtherStatslnfo is the statistics collected for the ethernet since the last system restart.

CommOnlineDiagnostics.Statslndices: TYPE = {echoServerPkts, EchoServerBytes,
packetsRecv, wordsRecv, packetsMissed, badRecvStatus, okButOribble, badCrc,
badAlignmentButOkCrc, crcAndBadAlignment, packetTooLong, overrun, idlelnput,
packetsSent, wordsSent, badSendStatus, tooManyCollisions, lateCoilisions,
underrun, stuckOutput, collO, coli 1 , coll2, coll3, coll4, coliS, coll6, coll7, coll8, coll9,
co1l10, co1l11, co1l12, co1l13, co1l14, co1l15, spare};

Each item in the Statslndices represents the specified ethernet statistic.

echoServerPkts The number of packets that the machine has echoed is
indicated by echoServerPkts.

EchoServerBytes The number of bytes that the machine has echoed is
indicated by EchoServerBytes.

packetsRecv packetsRecv indicates the total number of packets that have
been successfully received, including echo packets.

wordsRecv wordsRecv indicates the total number of words that have
been successfully received, including words in echo packets.

packetsMissed packetsMissed is the number of packets that have been
dropped for lack of buffering.

bad RecvStatus badRecvStatus is indicates the total number of packets that
were not successfully received.

okButDribble okButDribble indicates the number of packets that were
successfully received, but had extra bits at the end.

badCrc badCrc indicates the "number of packets that were received
with bad CRCs.

badAlignmentButOkCrc badAlignmentButOkCrc indicates the number of packets
that were received with correct CRCs, but did not end on byte
boundries.

crcAndBadAlignment crcAndBadAlignment indicates the number of packets that
were received with bad CRCs and did not end on byte
boundries.

packetTooLong packetTooLong indicates the number of packets received
that were long than the maximum internet size of 576 bytes.

overrun overrun occurs when the microcode cannot take bits out of
the input silo fast enough to keep up with the bits coming in
of the wire.

idlelnput idlelnput indicates the number of times the machine did not
receive input from the ethernet for at least 40 seconds.

packetsSent packets Sent indicates the total number of packets that have
been successfully sent, including echo packets.

10-7

10

10-8

Online Diagnostics

wordsSent

badSendStatus

tooManyCollisions

lateCollisions

wordsSent is the total number of words sent, including
those in echo packets.
badSendStatus indicates the total number of packets that
were not successfully sent.
tooManyCollisions indicates the number of packets that
were never sent after sixteen attempts failed because of
collisions.
lateCollisions indicates the number of packets which have
had collisions occur in the later part of the packet (after bit
512).

underrun underrun occurs when the microcode cannot put bits into
the output silo fast enough to maintain the 10Mbit rate.

stuckOutput stuckOutput indicates thes number oftiem the machine was
unable to send a packet in 2.5 seconds.

collO, coli 1 , coll2, coll3, coll4, coll5. coll6, coll7, coll8, coll9, co1l10, co1l11, co1l12,
coIl13,coIl14,coIl15 Each of these items indicates the number of packets that

were sent after the specified number of collisions.

CommOnlineDiagnostics.GetEthernetStats: PROC [
physicalOrder: CARDINAL +-1,

host: System.NetworkAddress +- System.null NetworkAddress]
RETURNS [info: CommOnlineDiagnostics.EtherStatslnfo,
time: System.GreenwichMeanTime);

Calling GetEthernetStats obtains the ethernet statistics since the last system restart from.
the machine.

physicalOrder

host
stats
time

physicalOrder is the number of the device on the device
chain. The primary network has a physical order of one.
host is the machine from which to obtain the statistics.
The current ethernet statistics are returned in stats.
time is the time the snapshot of the stats was taken. The
client may make multiple calls to GetEthernetStats and use
the times returned to calculate the number of echoed
packets in a certain time interval.

CommOnlineDiagnostics.GetEchoCounters: PROC [
host: System.NetworkAddress +- System.null NetworkAddress)
RETURNS [packets, bytes: LONG CARDINAL, time: System.GreenwichMeanTime);

To obtain the number of packets which the echo server on the specified machine has
echoed since the last system restart, clients may call GetEchoCounters. The additional
parameter host in the RemoteCommDiags procedure is the network address of the
machine from which to collect the echo counters.

host

packets
bytes
time

host is the network address of the machine from which to
collect the echo count~rs.
packets is the number of echoed packets.
bytes is the total number of bytes the server has echoed.
time is the time the statistics were collected. The client may
make multiple calls to GetEchoCounters and use the times

Pilot Programme.r's Manual 10

10.1.3 RS232C testing

returned to calculate the number of echoed packets within a
certain time interval.

RS232C testing consists of running a loopback test that exercises and verifies the data
transmission/reception features of the RS232C channel. As the client is required to set
some of the channel characteristics, he should be familiar with the EIA RS232C standard.

CommOnlineDiagnostics.StartRS232CTest: PROC [
rs232cParams: RS232CParams,
setDiagnosticLine: SetDiagnosticLine +-NIL,
writeMsg: WriteMsg +-NIL.
modemChange: ModemChange +- NIL,
host: System.NetworkAddressSystem.nuIINetworkAddressJ;

The test is run by calling StartRS232CTest and requires that a loopback plug be installed
on the RS232C cable. The parameters specified by the client in the StartRS232CTest test
are concerned with defining the transmission medium usage and the session
characteristics.

Multiple RS232C tests may be run on the same machine, but only one per port. Calling
StartRS232CTest on an already active port will result in the error RS232CDiagError with
the code channellnUse.

setDiagnosticLine

writeMsg

modemChange

host

setDiagnosticLine is used only by CIU diagnostic
implementors for resetting the port for running the
loopback test. Other clients should set it to NIL.
writeMsg is a client-supplied procedure for realtime
feedback, called after a frame has been sent and received
through the loopback. Clients who are not interested in this
kind of feedback should set this parameter to NIL.
modemChange is a client-supplied procedure for realtime
feedback, called whenever any of the ModemSignals
changes state. Clients who are not interested in this state
change should set this parameter to NIL.
host is the network address of the machine on which to run
the diagnostic.

CommOnlineDiagnostics.GetRS232CResults: PROC [
stoplt: BOOLEAN,
host: System.NetworkAddress +-System.nuIlNetworkAddress]
RETURNS [counters: CountType];

Mter starting the loopback test, the client obtains the results of the test by calling
GetRS232CResults. The test is implemented with a "dead mans switch" - the client must
call GetRS232CResuits with safetyTOlnMsecs that was passed to the StartRS232CTest
procedure in order for the test to continue. Clients must eventually terminate the
loopback test by calling GetRS232CResuits with stoplt equal to true.

stoplt If the procedure is called with stoplt equal to TRUE, the test
will return the results and then terminate. If the client

10-9

10

10-10

Online Diagnostics

host

counters

wishes to obtain intermediate results of an echo test, he may
call GetRS232CResuits with stoplt equal to FALSE, the
current .counters will be returned, and the loopback test will
continue to run.
host is the network address of the machine on which to run
the loopback test.
counters is the current results of the loopback test.

CommOnlineOiagnostics.RS232CDiagError: ERROR [reason: RS232CErrorReason];

The error RS232CDiagError is raised whenever a fatal error occurs during the test. The
client should do the necessary clean up and end the test process.

RS232CErrorReason: TYPE = {aborted. noHardware. nOSuchLine. channellnUse.
unimplementedFeature. invalidParameter, invalidHandle};

The reason in the RS232CDiagError is defined by RS232CErrorReason.

aborted aborted indicates the channel has been aborted.
noHardware This error reason will occur if there is no RS232C hardware

present or if the RS232C channel code has not been started.
nOSuchLine noSuchLine indicates a bad RS232C line number has been

specified by the client.
channellnUse If some other process is already using the RS232C port when

the client attempts t~ start the RS232C test, the error will
be raised with a reason of channellnUse.

unimplemented Feature This error reason is used internally and should never be
observed by the client.

invalidParameter If an invalid parameter is passed to the RS232C test, the
error will be raised with a reason of invalid Parameter.

invalidHandle This error indicates that the client called GetRS232CResuits
with a handle that had previously been deleted.

CommOnlineDiagnostics.CountType: TYPE = MACHINE DEPENDENT RECORD [send Ok. bytesSent.
recOk.bytesRec. deviceError. dataLost. xmitErrors. badSeq. missing. sendErrors.
recErrors: LONG CARDINAL);

CountType contains the counters used in the RS232CLoopback test. At the end of the test
these counters are the results. The client may also check these counters during the test by
calling GetRS232CResuits with stoplt equal to FALSE.

sendOk

bytesSent

recOk
bytesRec
deviceError

data Lost

sendOk is a counter that reflects the number of successfully
sent frames.
bytesSent is the current number of bytes that have been
sent.
recOk reflects the number of successfully received frames.
bytesRec is the current number of bytes that have been sent.
deviceError indicates the number of times data was received
when no receive operation was outstanding.
data Lost indicates the number of times that a incoming
frame was too large to fit in the input buffer.

Pilot Programmer's Manual 10

xmitErrors

bad Seq

missing

send Errors

recErrors

xmitErrors indicates the number of frames that have been
received with some sort of transmission error (e.g.,
checksum error, parity error, etc).
badSeq indicates the number of times the receiver detected
a frame with an unrecognizable sequence number.
Generally this means that a frame has been lost or garbled
during transmission.
missing indicates the number of times the receiver has
detected a missing frame from looking at the sequence
numbers.
sendErrors indicates the total number of frames that have
not been successfully sent.
recErrors indicates the total number offrames that have not
been successfullyreceived.

CommOnlineDiagnostics.LengthRange: TYPE = RECORD [low, high: [O .. maxData)];

The range of data length (in bytes) in the frames is defined by LengthRange.

CommOn line Diagnostics. max Data: CARDINAL = 1000;

maxData is the maximum number of bytes of data in a frame.

CommOnlineDiagnostics.ModemChange: TYPE = PROC [
modemSignal: ModemSignal: state: BOOLEAN];

ModemChange is a procedure type that is used by the client when he wishes to be notified
when a change occurs in the state of the signals defined in ModemSignals.

modemSignal
state

modemSignal is the signal of interest.
state is the state of the signal.

CommOnlineDiagnostics.ModemSignal: TYPE = {dataSetReady, clearToSend,
carrierDetect, ringlndicator, ringHeard};

ModemSignal contain the state of the corresponding circuits described in EIA Standard
RS232C. They are passed to the client through the procedure modemChange.

CommOnlineDiagnostics.PatternType: TYPE = {zero, ones, oneZeroes, constant, bytelncr};

The PatternType defines the contents of the data in the frames being sent.

zero
ones
constant

byte I ncr

zero indicates the contents will be all zeros.
ones indicates the contents will be all ones.
constant indicates the test will use a client-supplied
constant in each byte of data.
bytelncr indicates the test will increment each byte of data
in the frame, starting with a value of one.

CommOnlineDiagnostics.RS232CParams: TYPE = MACHINE DEPENDENT RECORD [
testCount(O): CARDINAL LAST[LONG CARDINAL],
safetyTOlnMsecs(1): LONG CARDINAL 6000,

10-11

10

10-12

Online Diagnostics

lineSpeed(3): RS232C.LineSpeed,
correspondent(4): RS232c.Correspondent,
IineType(5): RS232c.LineType,
lineNumber(6): CAROINAL,
parity(7): RS232C.Parity,
charLength(8): RS232c.CharLength,
pattern(9): Pattern Type,
constant(10): CARDINAL 0,

dataLengths(11): LengthRange
clockSource(13): RS232C.clockSource,
waitForDSR(14):BOOLEAN ~ TRUE];

The parameters passed to the RS232C test are defined by the RS232CParams.

testCount

safetyTOlnMsecs

lineSpeed

correspondent

lineType
lineNumber

parity
charLength

pattern
constant

clockSource

data Lengths

testCount specifies the number offrames to send/receive. If
this number is set to 0, the test will run actively loopback
until stopped by the GetRS232CResuits or by the "dead
man's" switch.
safetyTolnMsecs is the timeout used in the test's
"deadman's switch." After starting the RS232C test by
calling StartRS232CTest, GetRS232CResuits must be called
within this time, to either reset the timeout and continue
echoing or stop the test and collect the results.
The lineSpeed is the speed of the line and should agree with
the setting of the modem.
correspondent specifies a type of system the test is to
"correspond" with. The line type determines what the
correspondent should be. For a line type of asynchronous,
ttyHost should be used. For bit synchronous,
nsSystemElement should be used, and for byte synchronous,
system6.
lineType is the type of line the channel will use.
lineNumber is the number of the RS232C line and should
normally be set to O. Other values apply only to processors
with multiple RS232C lines.
parity is the parity to use during the test.
The character data length, (excluding parity, stop and start
bits), is specified by charLength and should agree with the
setting on the modem.
The contents for each byte of data is specified by pattern.
If the client has specified a pattern of constant, the constant
parameter is used to specify what the data constant should
be.
clockSource determines whether the clock will be provided
by the DTE (internal) or by the modem (external).
data Lengths specifies the range of data lengths to send in
the frames. If the low and high are equal, the test will send
constant length data. If they are not equal, the test will first
send the frame of the right length, decrementing the length
with each subsequent send.

Pilot Programmer's Manual 10

waitForDSR There are some modems in the field that do not raise DSR.
This parameter enables users of such modems to tell the test
to start even if DSR has not come up.

CommOnlineDiagnosticS.RS232CTestMessage: TYPE = {looped,sendError ,recError};

The RS232CTestMessage is passed to the client-supplied procedure that is called every
time a frame is sent/received. The message indicates the status of the transfer.

sendError sendError indicates there has been some sort of
transmission error.

recError If errors occurred when the frame was received, the message
will indicate recError.

CommOnlineDiagnostics.SetDiagnosticLine: TYPE = PROC [IineNumber: CARDINAL]
RETURNS [lineSet: BOOLEAN];

SetDiagnosticLine is a type used by the CIU implementors to reset the port when
diagnostics are started. lineNumber is the line to set; lineSet indicates whether the reset
was successful.

CommOnlineDiagnostics.WriteMsg: TYPE = PROC [msg: RS232CTestMessage];

WriteMsg is a procedure type that is used by the client when he wishes real-time feedback
during the RS232C test. The msg parameter indicates the type of event that just occurred.

10.1.4 Dialer testing

This test is used to verify correct operation of the RS366 hardware and an external auto
dialer. The RS366 cable must be connected to the auto-dialer.

CommOnlineDiagnostics.DialupTest: PROC [
rs232ClineNumber: CARDINAL,
phoneNumber: LONG POINTER TO Dialup.Number,dialerType:dialup.DialerType,
host: System.N etworkAddress ~ System.nulIN etworkAddress]
RETURNS [outcome: DialupOutcome];

DialupTest is called to test the dialer. The test will retry the dial a maximum of three~
times before returning to the client. The additional parameter host in the
RemoteCommDiags procedure specifies the network address of the machine on which to
run the test.

rs232ClineNumber

phoneNumber

rs232ClineNumber specifies the line number to be. used and
should be set to o. Other values apply only to processors
with multiple RS232C lines.
phoneNumber is the number to be used to call the foreign
device. Note: The dialup implementation attaches no
semantics to any of the bit patterns specified in
phoneNumber, simply passing them to the dial hardware.
Clients and/or their users must determine what the special
characters (such as EON and SEP) are for their particular
hardware and pass those characters to the dialup test.

10-13

10 Online Diagnostics

dialerType
outcome

dialerType is the type of dialing equipment being used.
outcome is the result of the dialup test.

CommOnlineDiagnostics.DialupOutcome: TYPE = {

success, failure, aborted, formatError, transmissionError, dataLineOccupied,
dialerNotPresent, dialingTimeout, transferTimeout, otherError, noHardware,
noSuchLine, channellnUse, unimplementedFeature, invalidParamater};

DialupOutcome defines the result of the DialupTest.

success success indicates the dialing operation was successful. This
means all the digits in the number were dialed, and control
was successfully transferred to the modem.

failure If the dialing operation resulted in no answer, a busy signal,
or the telephone was answered by something other that a
compatible modem, the outcome will be failure.

aborted aborted is currently not implemented.
formatError formatError indicates the parameter phoneNumber was

formatted incorrectly.
transmission Error transmission Error indicates the transfer of the dialing

information to the dialing hardware did not succed. This
outcome indicates a hardware problem.

dataLineOccupied dataLineOccupied indicates the telephone line to which the
dialing hardware is connected is off-hook.

dialerNotPresent This outcome indicates the lack of working dialer hardware.
dialingTimeout An outcome of dialingTimeout indicates a hardware

problem - the dialer did not respond to a request during
dialing.

transferTimeout transferTimeut indicates that no meaningful reply was
received from the dialer following dialing the last digit ..
This outcome indicates a hardware problem.

otherError otherError means an unknown, unexpected error occurred.
noHardware, noSuchLine, channellnUse, unimplementedFeature, invalidParamater

These errors are used internally and should never be
observed by the client.

10.2 Bitmap Display, Keyboard, and Mouse Diagnostics

10-14

OnlineDiagnostics: DEFINITIONS ... ;

This interface is used by clients of the bitmap Display, Keyboard, and Mouse Online
Diagnostics. It includes procedures for running the bitmap Display Diagnostics, the
Keyboard Diagnostics and the Mouse Diagnostics.

OnlineDiagnostics.Background: TYPE = {white, black};

Defines the background on the bitmap Display.

OnlineDiagnostics.CursorArray: TYPE = ARRAY (0 .. 16] QF WORD;

Defines the size and bit pattern of the cursor for display on the bitmap Display.

Pilot Programmer's Manual 10

OnlineDiagnostics.Coordinate: TYPE = MACHINE DEPENDENT RECORD [x, y: INTEGER];

The bitmap Display is addressed by x-y coordinates. The coordinate origin (0, 0) is the
uppermost, leftmost pixel of the display; x increases to the right and y increases
downward.

OnlineDiagnostics.KeyboardType: TYPE = {american, european, japanese};

Defines the type of keyboard being used.

OnlineDiagnostics.KeyboardAndMouse Test: PROCEDURE [
keyboardType: OnlineDiagnostics.KeyboardType,
S"'creenHeight: CARDINAL [0 .. 32767],
screenWidth: CARDINAL [0 •. 32767],
SetBackground: PROC [background: OnlineDiagnostics.BackgroundI,
SetBorder: PROC [oddPairs, evenPairs: [O .. 377B]],
GetMousePosition: PROC RETURNS [OnlineDiagnostics.CoordinateI,
SetMousePosition: PROC [newMousePosition: OnlineDiagnostics.CoordinateI,
SetCursorPattern: PROC [cursorArray: OnlineDiagnostics.CursorArrayI,
SetCursorPosition: PROC [newCursorPosition: OnlineDiagnostics.Coordi nate],
keyboard: LONG POINTER,
Beep: PROC [duration: CARDINALI.
ClearDisplay: PROC.
BlackenScreen: PROC [x, y, width, height: CARDINAL].
InvertScreen: PROC [x, y, width, height: CARDINALI.
WaitForKeyTransition: PRocI;

The KeyboardAndMouseTest procedure is used to run keyboard and mouse diagnostics
using a bitmap display.

screenHeight

screenWidth

defines the number of horizontal lines on the bitmap
Display. Equivalent to userTerminal.SCreenHeight .

Defines the number of horizontal dots across the bitmap
Display. Equivalent to UserTerminal.ScreenWidth .

SetBackground [background: ... I Lets the bitmap Display background to either
white or black. Equivalent to UserTerminal.SetBackground.

SetBorder If the display has a border, then clients may set the pattern
to be displayed in the border by calling this procedure.
Equivalent to UserTerminal. SetBorder.

GetMousePosition[] gets the x and y values of the mouse position.

SetMousePosition modifies the x and y values of the mouse position.
Equivalent to UserTerminal.SetMousePosition.

SetCursorPattern sets up the bit pattern of the cursor for display on the
bitmap Display. Equivalent to
UserTerminal. SetCursorPattern.

10-15

10

10-16

Online Diagnostics

SetCursorPosition

keyboard

Beep

ClearDisplay

BlackenScreen

InvertScreen

sets the position of the cursor on the bitmap Display.
Equivalent to UserTerminal. SetCursorPosition.

Equivalent to UserTerminal.keyboard.

emits a tone from the speaker for the given duration of
time. Duration is in milliseconds. Equivalent to
UserTerminal. Beep.

turns the entire screen white

turns the screen black for the given width and height
starting at the xly coordinates.

inverts the screen for the given width and height starting
at the xly coordinates.

WaitForKeyTransition waits for an entry from the keyboard before returning (not
presently used in Star).

OnlineDiagnostics.NextAction: TYPE = {nextPattern, invertPattern, quit}; defines the next
action to be taken. Used with the bitmap Display alignment pattern.

OnlineDiagnostics.LFDisplayTest:PRoCEDURE [
screen Height: CARDINAL [0 .. 32767],
screenWidth: CARDINAL [0 .. 32767],
SetBackground: PROC [background: OnlineDiagnostics.Background],
SetBorder: PROC [oddPairs, evenPairs: [0 .. 377B]],
GetNextAction: PROC RETURNS [OnlineDiagnostics.NextAction],
ClearDisplay: PROC,
BlackenScreen: PROC [x, y, width, height: CARDINAL],
FiIIScreenWithObject: PROC [p: LONG POINTER TO ARRAY [0 .. 16) OF WORD));

The LFDisplayTest procedure displays test patterns on the display. It can be used as a
bitmap Display alignment tool.

screenHeight

screen Width

SetBackground

SetBorder

GetNextAction

defines the number of horizontal lines on the bitmap
Display. Equivalent tOUserTerminal.screenHeight.

defines the number of horizontal dots across the bitmap
Display. Equivalent to UserTerminal.screenWidth .

sets the bitmap Display background to either white or
black. Equivalent to userTerminal.SetBackground.

if the display has a border, then clients may set the pattern
to be displayed in the border by calling this procedure.
Equivalent to UserTerminal.SetBorder.

gets the next action through keyboard input from the user.
See OnlineDiagnostics.NextAction aoove.

Pilot Programmer's Manual 10

ClearDisplay erases the entire display to white.

BlackenScreen turns the screen black for the given width and height
starting at the xly coordinates.

FiliScreenWithObject fills the entire screen with the bit pattern in the 16 word
array.

10.3 Lear Siegler Diagnostics

OnlineDiagnostics: DEFINITIONS ... ;

This interface is used by clients of the Lear Siegler Online Diagnostics. It includes
procedures for running the Lear Siegler Diagnostic.

OnlineDiagnostics.LSMessage: TYPE • {kTermAdj, kTypeCharFill, kCTLC, kFiliScreen,
kTypeXHair, kEndAdj, kTermTest, kTestKey, kCTLStop. kLineFeed, kReturnKey, kLetter,
kAndCTL, kEscape, kSpBar, kAndShift. kShColon, kShSemiColon, kTypeComma.
kHyphen, kTypePeriod, kVirgule. kNumeral, kKey, kLearColon. kSemiColon, kShComma,
kShHyphen. kShPeriod, kShVirgule. kAtSign, kLeftBracket. kBackSlash. kRightBracket,
kCaret, kBreak, kShAt, kShLeftBracket, kShBackSlash. kShRightBracket, kShCaret,
kShBreak. kUnknown};

Defines the message displayed on the screen when the given character is entered from the
keyboard.

OnlineDiagnostics.LSAdjust: PROCEDURE [
cancel Signal : SIGNAL. .
GetMesaChar: PROC RETURNS [CHARACTER].
PutCR: PROC,
PutMessage: PROC [message: OnlineDiagnostics.LSMessage, char: CHARACTER +- OC],
PutMesaChar: PROC [char: CHARACTER]];

The LSAdjust procedure allows the user to adjust the Lear Siegler Display.

cancel Signal

GetMesaChar

PutCR

PutMessage

PutMesaChar

is raised when the user enters a 'Control C' on the
keyboard. Equivalent to NSCommand.Cancel.

gets the character entered on the keyboard by the user.
Equivalent to.NSCommand.GetMesaChar.

-
outputs a carriage return to the Lear Siegler Display.
Equivalent to NSCommand.PutCR[TRUE].

displays the given message on the Lear Siegler Display.
Equivalent to.NSCommand.PutLine. Note: The default for
char is used for the Lear Siegler diagnostic.

outputs a character to the Lear Siegler Display.
Equi valent to.NSCommand. PutMesaChar.

10-17

10 Online Diagnostics

OnlineDiagnostics.LSTest: PROCEDURE [
cancelSignal: SIGNAL,
GetMesaChar: PROC RETURNS [CHARACTER],
PutMessage: PROC [message: OnlineDiagnostics. LSMessage, char: CHARACTER +- OC]);

The LSTest procedure allows the user to test the Lear Siegler Display or equivalent.

cancel Signal

GetMesaChar

PutMessage

is raised when the user enters a 'Control C' on the
keyboard. Equivalent to NSCommand.Cancel.

gets the character entered on the keyboard by the user.
Equivalent to.NSCommand. GetMesaChar.

displays the given message on the Lear Siegler Display.
Equivalent to.NSCommand.PutLine. Note: For the diagnostic
the default for char is taken.

10.4 Floppy Diagnostics

10-18

OnlineDiagnostics: DEFINITIONS ... ;

This interface is used by clients of the Floppy Online Diagnostics. It includes procedures
for running the Floppy Diagnostic.

OnlineDiagnostics.FloppyMessage: TYPE. {

cFirst, cCallCSC, cCloseWn, cEnsureReady, cExit, clnsDiffCleanDisk, clnsertCleanDisk,
clnsertDiagDisk, clnsertWrit~able, cNBNotReady, cOtherDiskErr, cRemoveCleanDisk,
cRemoveDiskette, cLast,

hFirst, hBusy, hExpec1, hExpec2m, hCRC1. hCRC2, hCRCerr, hDelSector, hDiskChng,
hErrDetc, hGoodComp, hHead, hHeadAddr, hlllglStat, hlncrtLngth, hObser1, hObser2,
hReadHead, hReadSector, hReadStat, hReady, hRecal, hRecalErr, hSector, hSectorAddr,
hSectorCntErr, hSectorLgth. hSeekErr, hTimeExc, hTrack, hTrackO, hTrackAddr,
hTwoSide, hWriteDelSector, hWritePro, hWriteSector, hLast,

iFirst, iBadContext, iBadLabel, iBadSector, iBadTrackO, iCheckPanel, iCIERec, iCleanDone,
iCleanProgress, iErrDet, iErrNoCRCErr, iExerWarning, iFormDone, iFormProgress,
iFormWarning, iHardErr, iHeadDataErr, ilnsertDiagDisk, ilnsertFormDisk, iOneSided,
iRunStdTest, iSoftErr, iTnx, iTwoSided, iUnitNotReady, iVerDataErr, iLast,

tFirst, tltyteCnt, tCIERH, tCIERS, tCIEVer, tCIEWDS, tCIEWS, tHeadDataErr, tHeadDisp,
tHeadErrDisp, tSectorDisp, tStatDisp, tSummErrLog, tVerDataErr, tLast,

yFirst, yDispSects, yDispExpObsData, yDoorJustOpened, yDoorOpenNow,
yDoorOpenShut, ylsltDiagDisk, ylsltWrProt, yStiliContinue, yStillSure, yLast};

Define the message keys used by the Floppy Diagnostic.

OnlineDiagnostics.FloppyReturn: TYPE = {
deviceNotReady, notDiagDiskette, floppyFailure,noErrorFound};

Pilot Programmer's Manual. 10

Defines the type of returns from some of the Floppy Diagnostics tests.
deviceNotReady is returned when the floppy drive is not ready and therefore cannot
be tested.
notDiagDiskette is returned when the floppy diskette is not a Diagnostics Diskette
and therefore cannot be tested because it cannot be written on.
floppyFailure is returned when a floppy hardware error is detected.
noErrorFound is returned when the test runs successfully.

OnlineDiagnostics.Field: TYPE = RECORD [
field Name: OnlineDiagnostics.FloppyMessage, fieldValue: UNSPECIFIED];

Used for Floppy Diagnostics status display.

OnlineDiagnostics.FieldDataType: TYPE = {
boolean, cardinal, character, hexadecimal, hexbyte, integer, octal, string};

Defines the various types of data displayed by the Floppy Diagnostics.

OnlineDiagnostics.FloppyWhatToDoNext: TYPE = {
continueToNextError, loopOnThisError, displayStuff, exit};

Defines the operator options for running Floppy· Diagnostics command files.

OnlineDiagnostics.SingleDouble: TYPE = {single, double};

Defines the number of sides and data density of a floppy diskette.

OnlineDiagnostics.SectorLength: TYPE = {one28, two56, five12, one024};

Defines the number of bytes in a sector of a floppy diskette. Used in Floppy Diagnostics
command files.

OnlineDiagnostics.ErrorHandling: TYPE = {
noChecking, stopOnError, loopOnError, continueOnError};

Defines the operator options for the handling of floppy errors in the Floppy Diagnostics
command files.

Onlineoiagnostics.DisplayFieldsProc: PROCEDURE [
fields: DESCRIPTOR FOR ARRAY OF Field,
title: OnllneDiagnostics.FloppyMessage +-tFirst,
fieldType: OnlineDiagnostics.FieldDataType,
numberOfColumns: CARDINAL +- 3];

DisplayFieldsProc displays Floppy Diagnostics status.
fields defines the names of the status bits and their boolean values.
title defines the title of the display.
fieldType defines the type of data being displayed.
numberOfColumns defines the number of columns in which to display the data.

OnlineDiagnostics.DisplaYTableProc: PROCEDURE [
headers: DESCRIPTOR FOR ARRAY OF OnlineDiagnostics.FloppyMessage,
rowNames: DESCRIPTOR FOR ARRAY OF OnlineDiagnostics.FloppyMessage,

10-19

10

10-20

Online Diagnos~cs

values: DESCRIPTOR FOR ARRAY OF DESCRIPTOR FOR ARRAY OF UNSPECIFIED,
title: OnlineDiagnostics.FloppyMessage+- tFirst,
fieldType: OnlineDiagnostics.FieldDataType);

DisplayTableProc displays an error/summary log.
headers defines the name of each column in the error/summary log.
rowNames defines the name of each entry in the error/summary log.
title defines the title ofthe error/summary log.
fieldType defines the type of data being displayed.

OnlineDiagnostics.DisplayNumberedTableProc: PROCEDURE [
values: LONG DESCRIPTOR FOR ARRAY OF UNSPECIFIED,
rowNameHeader: OnlineDiagnostics.FloppyMessage+- tFirst,
title: OnlineDiagnostics.FloppyMessage+- tFirst,
numOfColumns: CARDINAL,
startNum: INTEGER,
fieldType: OnlineDiagnostics.FieldDataType];

DisplayNumberedTableProc displays a table of numbers plus the number of entries
displayed.

values defines the actual numbers to be displayed.
rowNameHeader defines the name of the entries displayed (Example: "Byte Count").
title defines the title ofthe table.
numOfColumns defines the number of columns displayed.
startNum defines the first ofthe number of entries displayed.
fieldType defines the type of numbers being displayed. .

OnlineDiagnostics.PutMessageProc:PROCEDURE [msg: OnlineDiagnostics.FloppyMessage];

PutMessageProc displays the given message to the operator.

OnlineDiagnostics.GetConfirmationProC:PROCEDURE [
msg: OnlineDiagnostics. FloppyMessage];

GetConfirmationProc displays the given message to the operator and requests
confirmation.

OnlineDiagnostics.YesOrNo: TYPE = {yes, no};

OnlineDiagnostics.GetYesOrNoProc: PROCEDURE [
msg: OnlineDiagnostics.FloppyMessage] RETURNS [Online Diagnostics. YesOrNo];

GetYesOrNoProc displays a message to the operator and requests a yes or no response.

OnlineDiagnostics.GetFloppyChoiceProc: PROCEDURE
RETURNS [OnlineDiagnostics.FloppyWhatToDoNext);

GetFloppyChoiceProc gets an answer from the operator on how to proceed after an error
has occured in the command file.

OnlineDiagnostics.FI oppyExerciser: PROCE DURE [
displayFields: OnlineDiagnostics.DisplayFieldsProc,
displayTable: OnlineDiagnostics.DisplayTableProc,

Pilot Programmer's Manual

displayNumberedTable: OnlineDiagnostics.DisplayNumberedTableProc,
put Message : OnlineDiagnostics.PutMessageProc,
getConfi rmation: OnlineDiagnostics.GetConfi rmationProc,
getYesOrNo: OnlineDiagnostics.GetYesOrNoProc,
getFloppyChoice: OnlineDiagnostics.GetFloppyChoiceProc];

10

FloppyExerciser thoroughly exercises the floppy disk hardware. See arguments described
above.

OnlineDiagnostics.FloppyStanda rdTest: PROCEDURE [
displayFields: OnlineDiagnostics.DisplayFieldsProc,
displayTable: OnlineDiagnostics.DisplayTableProc,
displayNumberedTable: OnlineDiagnostics.DisplayNumberedTableProc,
putMessage: OnlineDiagnostics.PutMessageProc,
getConfirmation: OnlineDiagnostics.GetConfirmationProc,
getYesOrNo: OnlineOiagnostics.GetYesOrNoProc,
getFloppyChoice: OnlineDiagnostics.GetFloppyChoiceProc]

RETURNS [floppyReturn: OnlineDiagnostics.FloppyReturn];

FloppyStandardTest runs a nondestructive floppy disk diagnostic. See arguments
described above.

OnlineDiagnostics.FloppyCleanReadWriteHeads:PROCEDURE [
displayFields: OnlineDiagnostics.DisplayFieldsProc,
displayTable: OnlineDiagnostics.DisplayTableProc,
displayNumberedTable: OnlineDia,gnostics.DisplayNumberedTableProc,
putMessage: OnlineDiagnostics.PutMessageProc,
getConfirmation: OnlineDiagnostics.GetConfirmationProc,
getYesOrNo: OnlineDiagnostics.GetYesOrNoProc,
getFloppyChoice: OnlineDiagnostics.GetFloppyChoiceProc]

RETURNS [floppyReturn: OnlineDiagnostics.FloppyReturn];

FloppyCleanReadWriteHeads cleans the read/write heads of the floppy disk drive. See
arguments described above.

OnlineDiagnostics.FloppyFormatDiskette: PROCEDURE [
displayFields: OnlineDiagnostics.DisplayFieldsProc,
displayTable: OnlineDiagnostics.DisplayTableProc.
displayNumberedTable: OnlineDiagnostics.DisplayNumberedTableProc.
putMessage: OnlineDiagnostics.PutMessageProc.
getConfirmati,on: OnlineDiagnostics.GetConfirmationProc,
getYesOrNo: OnlineDiagnostics.GetYesOrNoProc.
getFloppyChoice: OnlineDiagnostics.GetFloppyChoiceProc];

FloppyFormatDiskette formats a diskette using the IBM format. See arguments
described above.

OnlineDiagnostics.FloppyCommandFileTest:PRoCEDURE [
density: OnlineDiagnostics.Sing leDouble,
sides: OnlineDiagnostics.Si ngleDouble.
sectorsPerTrack: CARDINAL [8 .. 26],
sectorLength: OnlineDiagnostics.SectorLength.

10-21

10

10-22

Online Diagnostics

errorHandling: OnlineDiagnostics.ErrorHandling,
cmdFile: LONG STRING,

displayFields: OnlineDiagnostics.DisplayFieldsProc,
dispJayTable.: OnlineDiagnostics.DisplayTableProc,
displayNumberedTable: OnlineDiagnostics.DisplayNumberedTableProc,
putMessage: OnlineDiagnostics.PutMessageProc,
getConfirmation: OnlineDiagnostics.GetConfirmationProc,
getYesOrNo: OnlineDiagnostics.GetYesOrNoProc.
getFloppyChoice: OnlineDiagnostics. GetFloppyChoiceProc];

FloppyCommandFileTest executes an operator-generated floppy command file.
sectorsPerTrack indicates the number of sectors per track that are to be used. cmdFile are
the Floppy commands that are to be executed. For the remaining arguments, see the
descriptions above.

OnlineDiagnostics.FloppyDisplayErrorLog:PROCEDURE [
displayFields: OnlineDiagnostics.DisplayFi eldsProc,
displayTable: OnlineDiagnostics.DisplayTableProc,
displayNumberedTable: OnlineDiagnostics.DisplayNumberedTableProc,
putMessage: OnlineDiagnostics.PutMessageProc,
getConfirmation: OnlineDiagnostics.GetConfirmationProc,
getYesOrNo: OnlineDiagnostics.GetYesOrNoProc,
getFloppyChoice: OnlineDiagnostics.GetFloppyChoiceProc];

FloppyDisplayErrorLog displays a summary/error log of the prior executed tests. See
arguments described above.

11

TCP/IP Interfaces

11.1 ARPARouter

ArpaRouter is the interface for common, public types and procedures of the lower level
Arpa Internet transport and internet facilities.

11.1.1 Types and constants

Port: Type[1];

Port is a TCP or UDP port as defined in the TCP and UDP protocol specifications, RFC 793
and RFC 768. It is used for intra machine multiplexing, and is a paramater in many of the
procedures in the interfaces to the Arpa protocol implementations. A Port can either have
a well. known value (a value defined in ArpaConstants), or a unique value that is known to
both sides of a connection or session only for the duration of that connection or session.

InternetAddress: TYPE(2];

InternetAddress is an Arpa Internet address of any address class as defined in the IP
protocol specification, RFC 791. InternetAddress is used by the low level communications
as source and destination addresses for other hosts in the Internet. This type is a
parameter in many of the procedures in the interfaces to the Arpa protocol
implementations.

unknownlnternetAddress: READONLY InternetAddress;

UnknownlnternetAddress can be used for initializing an InternetAddress and indicating
an address that has not been set to a valid address. It is not a null address indicating the
local machine or network. Such an address may not have 0 bits in the address class fields
and should be obtained by other means.

11.1.2 Procedures

GetAddress: PROC RETURNS [lnternetAddress];

11-1

11

11.1.3

TCP/IP Interfaces

GetAddress returns the InternetAddress of the local machine. If the Internet address is
not known, unknownlnternetAddress is returned.

References

RFC768 User Datagram Protocol, Postel, August, 1980.

RFC791 InterMtProtocol, Postel, September, 1981.

RFC793 Transmission Control Protocol, Postel, September, 1981.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI· NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11.2 TcpStream

11-2

TcpStream is the client interface to the implementation of TCP in the Arpa family of
protocols. TCP provides a sequenced, error-free stream across interconnected
communication networks with duplicate suppression and flow control. It is assumed that
the client is familiar with the TCP protocol specification, RFC 793.

11.2.1 Types and constants

WaitTime: Type = LONG CARDINAL;

WaitTime is used for establishing intervals for timeouts. It is always in milliseconds.

defaultWaitTime: WaitTime • 60000;

The default wait time of 60 seconds is taken from the maximum TCP packet lifetime.

infiniteWaitTime: READONLYWaitTime;

infiniteWaitTime is used to have an operation never time out, or to declare there is no
interest in processing timeouts. Any client using infiniteWaitTime should be prepared to
cancel the affected process at some time.

uniquePort: READONLY ArpaRouter.Port;

uniquePort is a unique port number that may be used in creating TCP streams when the
client does not need a well known port number of the local end.

Suspended: ERROR [why: SuspendReason);
Suspend Reason : TYPE • {

notSuspended. transmissionTimeout. noRouteToDestination.
remoteServiceDisappeared. reset};

Suspended is raised if an already established connection is suspended for any reason. The
only operation a client can (and must) do after receiving this error is Delete. It is also the

Pilot Programmer's Manual 11

client's responsibility to cause an UNWIND so that TCP's state can be properly cleaned up
before calling Delete.

notSuspended is used for internal processing and should never be seen by the client.

transmissionTimeout indicates that the remote end has not acknowledged data sent to it
in a long time. The local end concluded that the remote has disappeared.

noRou~eToDestination indicates the the route from the local socket to the remote socket
has disappeared and another could not be found to use.

remoteServiceDisappeared is currently unused.

reset indicates that a TCP reset message was received from the other end.

Failed: SIGNAL [why: FailureReason];
FailureReason: TYPE. {

timeout.
noRouteToDestination,
noServiceAtDestination,
emote Reject,
tooManyConnections,
precedenceMismatch,
securityMismatch,
option Mismatch,
noAnswerOrBusy,
noTranslationForDestination,
circuitlnUse,
circuitNotReady,
noDialingHardware,
dialerHardwareProblem};

Failed is the error that is raised when the connection could not be established. Since the
connection was never established, the client should not attempt to Close or Destroy it after
this error.

timeout indicates that the connection could not be established within the amount of time
the client specified in the timeout parameter to the Make procedure.

noRouteToDestination indicates there is .no route from the local socket to the target
socket.

remoteReject indicates that the connection had to be reset for one of two different
reasons. Either a TCP reset packet was received from the remote, or a syn packet was
received that acknowledged data was never sent. Though such a packet is probably a
"stray," the integrity of the connection was jepordized, and it was reset. The client may
want to try the operation again, in hopes the condition was transient.

tooManyConnections indicates that the local machine cannot create the requested
connection astoo many already exist.

11-3

11

11-4

TCP/IP Interfaces

precedenceMismatch indicates that a connection attempt was made to the local machine
with a precedence lower then that specified in the Listen or Make procedure.

securityMismatch indicates that a connection attempt was made to the local machine with
a security level lower then that specified in the Listen or Make procedure.

noAnswerOr Busy: noTranslationForDestination, circuitIn User, circuitN otReady,
noDialingHardware, and dialerHardwareProblem refer to problems on circuit
oriented networks and are not implemented.

Closed: ERROR;

Closed indicates the client tried to issue a put or a close after already closing the
connection.

ListenTimeout: SIGNAL;

ListenTimeout is raised by the Listen procedure if a connection request does not arrive
within the interval specified by listen Timeout in the Listen procedure. The client may
either decide to stop listening, or resume the signal to continue listening.

CompletionCode: TYPE = {normal, timeout, pushed, closing, endUrgent};

Returned from the get procedure, CompletionCode indicates the status of that get. Any
status besides normal may have returned less data than requested by the client. The
client should look at the byteCount return code from the get in these cases to determine
the amount of data actually returned.

normal indicates that the get completed normally, returning to the client after retrieving
the amount of data requested.

timeout indicates that the TCP waited the amount of time specified in the Make or
subsequent setWaitTime, and the requested amount of data did not arrive.

pushed indicates that the remote end pushed the data, causing it to be transmitted
immediately from the remote, and causing the local get to return at the point in the
stream when it noticed the pushed data.

closing implies a push, and indicates the remote end has no more data to send and issued a
close, causing the local get to return upon receipt of the close.

endUrgent indicates the client (who was previously notified of an urgent via
waitForUrgent) has reached the last byte of the data marked urgent.

Precedence: TYPE. MACHINE OEPENOENT{

routine(O), priority, immediate, flash, flashOverride, criticEcp,
internetControl, networkControl(7)}; .

Precedence is used to set the IP precedence option of the connection. The precedence
values are defined in RFC 793.

Pilot Programmer's Manual

Security: TYPE • LONG POINTER TO SecurityObj;
SecurityObj: TYPE • RECORD [
level, compartment, handling: CARDINAL, tee: ArpaRouter.TCC};

11

Security is used to set the IP security of the connection. Values for security are defined in
RFC793.

11.2.2 Procedures

Listen: PROC [
localPort: ArpaRouter.Port,
listenTimeout: WaitTime +- infiniteWaitTime,
receiveTimeout: WaitTime +- defaultWa itTi me,
precedence: Precedence +- routine,
security: Security +- NIL,
options: Environment.Block +- [NIL, 0, 011
RETURNS[tsH: Handle};

The client must tell a passive TCP the port on which to listen and provide the process to do
so. This is done with Listen.

10caiPort is the port on which to listen for a connection request.

options are the TCP options. It is the responsibility of the client to put the options into the
options block in the proper format for TCP to use. If options are not to be used, this
parameter should be a null block.

precedence is the service precedence desired in the network.

security is the required security for a connection. When TCP (through Listen) receives a
connection request, it checks the precedence and the security and determines if it is
allowed to honor the request.

If the connection is honored, Listen creates the stream and returns it to the client in tsH.
The client regains control only when Listen returns with a valid stream, or when
listenTimeout is exceeded, raising the signal ListenTimeout.

Make: PROC[
local, remote: ArpaRouter.lnternetAddress,
local Port, remotePort: ArpaRouter.Port, establishConnection: BOOLEAN,
timeout: WaitTime, precedence: Precedence,
security: Security, options: Environment.Block]
RETURNS [tsH: Handle};

Make is the procedure used to solicit a TCP connection.

local is the address of the local machine. Clients can set it to
ArpaRouter.unknownlnternetAddress, and the TCP implementation fills in the correct
address.

11-5

11

11-6

TCP/IP Interfaces

remote is the address of the machine to connect. It can be any machine in the Internet,
including the local machine.

local Port is the port on the local machine to use for the connection. It is commonly set to
uniquePort.

remotePort is the port on the remote machine to connect. This value may be a well known
port number for some well known service in the Internet (see ArpaConstants), or a port
known privately between apair of machines.

establishConnection determines whether or not the connection is to be active or passive.
Ifit is TRUE, the local end will actively solicit the connection. If it is FALSE, the local end will
passively listen for a connection request. Note that the Listen procedure is the usual
method of creating a passive listener.

timeout is the amount of time to wait for a connection to happen. If the timeout is
exceeded, the Failed error is raised.

precedence is the service precedence desired in the network.

security is the required security on this connection. If the remote machine considered the
specified precedence and security to be unacceptable, it rejects the connection attempt, and
the error Failed is raised.

options are the TCP options to be used. It is the responsibility of the client to put the
options into the options block in the proper format for TCP. If options are not to be used,
this parameter should be a null block.

If the connection is successfully established (the error Failed is not raised), the return
value tsH identifies a connection that is ready and willing to be used by the client.
Operations on this stream are executed through the procedures in the object pointed to by
tsH.

Handle: TYPE. LONG POINTER TO Object;
Object: TYPE • RECORD [
destroy: PRoc[tsH: Handle],
put: PRoc[block: Environment.Block, push: BOOLEAN],
get: PROC [block: Environment.Block]
RETURNS [byteCount: CARDINAL, completionCode: CompletionCode],
waitForUrgent: PROC [block: Environment.Block],
sendUrgent: PROC [block: Environment.Block],
close: PROC [tsH: Handle],
setWaitTime: PROC [WaitTime],
findAddresses: PROC RETURNS [
10calAddr, remoteAddr: ArpaRouter.lnternetAddress,
10calPort, remotePort: ArpaRouter.Port]];

A Handle uniquely identifies a connection. Operations on this connection are executed by
calls to the procedure fields in the Object.

destroy deletes the TCP stream. Except under error conditions, clients should call the
close proc before deleting the stream in order to close gracefully and insure proper

Pilot Programmer's Manual 11

delivery/reception of the last piece of data. A call to destroy on a non-suspended stream
without executing the closing protocol causes a TCP reset message to be sent to the remote
end. destroy flushes all input and output queues and destroys all stream state
information. After calling destroy, the stream handle is invalid and cannot be used again.

put queues for transmission the block of client output data specified by block. If the client
wishes to specify that the data be flushed out to the network instead of being buffered in
the local TCP, push should be set to true. Indicating push not only prevents buffering at
the iocal end, but also causes outstanding gets at the remote end to return immediately
upon receiving the pushed data. Use push only when really needed, as it impacts the
efficiency of the connection. Setting urgent marks the last byte of the block as the end of
urgent data.

get retrieves the specified amount of data from the stream and puts it in block. If the data
is not pendiIlg, get waits the amount of time specified in the Make call (or subsequent
setWaitTimes) for the data to arrive from the remote. byteCount is the actual number of
bytes transferred, as the client may not get the amount of data requested if the wait time
is exceeded, if the data was pushed by the remote, or if the remote closed. The
completionCode indicates the status of the completed get call.

waitForUrgent watches for a packet to arrive with the urgent bit set. This procedure
returns as soon as TCP receives a packet with the urgent bit set. It is then the client's
responsibility to issue gets to flush the stream to the end of the urgent data. Typically,Oa
client has a separate process that is waiting in waitForUrgent and it notifies the data
receiver when it receives notification of pending urgent data. As with all operations that
block, waitForUrgent can be cancelled.

dose is the operation used to start gracefully closing down the stream when the client has
no more data to send. Outstanding puts are transmitted until complete, as flow control
permits. After calling this procedure, the client should issue gets to receive outstanding
data until a get returns with the completion code of closed, indicating the remote end has
also issued a dose. It is the client's responsibility to continue the "graceful" close
handshake by retrieving the close outcome from the remote with get. If the client destroys
the stream immediately after issuing a dose, without waiting for the close from the other
end, the data will not be reliably transferred.

setWaitTime sets the current timeout value for the stream. The timout is the amount of
time in milliseconds that a get waits for the requested data before returning to the client.

findAddresses returns the sockets that identify the connection.

11.2.3 Restrictions

The options parameter in the Make procedure is currently ignored. Since only the
maximum segment size option exists, and it is set by TCP during the connection
handshake.

Precedence and security are ignored, both in incoming segments and as parameters passed
by the client. The precedence currently used by all connections is routine. The security is
unclassified.

11-7

11 TCP/IP Interfaces

11.2.4 References

RFC793 Transmission Control Protocol, Postel, September, 1981.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI· NIC.ARPA

usingFTP with username, ANONYMOUS, and password, GUEST.

11.3 ArpaAddressTranslation

11-8

The ArpaAddressTranslation interface translates strings into the internal represention of
internet addresses and translates the internal represention of internet addresses into
human readable strings.

11.3.1 Errors

Error: ERROR [errorRecord: ErrorRecord];

ErrorRecord: TYPE = RECORD [
SELECT errorType: ErrorType FROM

scanError • > [position: CARDINAL],
bad Syntax • > [field: Field],
nameLookupProblem • > [rc: ReturnCode],
ENDCASE];

Field: TYPE. {octet1, octet2, octet3, octet4, ambiguous};

ErrorType: TYPE. {scanError, bad Syntax, nameLookupProblem};

scanError
The string passed is not in the proper format and cannot be parsed. The position field gives
the location of the parse error.

badSyntax
The address resulting from the string passed is invalid. The field field gives the field in
which the error occured.

nameLookupProblem
The name could not be found. The rc field gives the reason the name could not be found.

ReturnCode: TYPE. {cantAcquireHstTxt, noSuchName};

cantAcquireHstTxt The host table file (HOSTS. TXT) cannot be acquired.

nOSuchName The name cannot be found in table.

Pilot Programmer's Manual

11.3.2 Procedures

StringTolnternetAddress: PROCEDURE [
s: LONG STRING]
RETURNS [addr: ArpaRouter.lnternetAddress];

11

This procedure parses the string passed and returns the corresponding internet address. If
the string passed is a numeric string, the conversion is done directly. If it is
alphanumeric, the string is looked up in the host table, HOSTS.TXT, and the address in
the host table is returned. This procedure can raise the error Error.

• The following bases are understood: octal, decimal and hexadecimal.

• All fields are flrst assumed to be decimal. The assumption holds as long as the
characters are in the range [0 .. 9] and the last character of a field is not 'b or 'B or 'h or
'H.

• If the character 'b or 'B is the last character of a fleld and the field only contains
characters in the range [0 .. 7], then the field is assumed to be octal.

• If a character in the range [A .. FJ is encountered, the field is assumed to be
hexadecimal.

• If any character is encountered in any field that is outside of the above specification,
the whole string is treated as a name and is compared to host table entries in
HOSTS.TXT.

InternetAddressToString: PROCEDURE [
addr: ArpaRouter.lnternetAddress. 5: LONG STRING. radix: CARDINAL .-10];

This procdure takes an ArpaRouter.lnternetAddress and converts it to the standard
host number representation (four eight bit numbers seperated by decimals points) If the
radix is 8 then the character B is appended to each number. If the radix is 10 the character
D is appended to each number. If the radix field is set to 0 all numbers are in base ten
without the D appended. The string passed must be large enough to accomodate the
result, otherwise String errors may be raised.

11.3.2.1 Host table

The host table is assumed to be in the file HOSTS.TXT and to have the syntax specified by
RFC952 except for the following three special entries. MY-HOST is used to give the local
machines host address, MY -GATEWAY is used to specify the local machines gateway, and
SUBNET-MASK gives subnet masking bits if the machine is on a subnet. These entries
have the following syntax:

entry:= <keyword> ":" <address>
keyword: = MY-HOST I MY -GATEWAY I SUBNET-MASK
address: = octet"." octet". It octet"." octet
octet: = < 0 to 255 decimal>

11-9

11 TCP/IP Interfaces

11.3.3 References

RFC952 DoD Internet Host Table Specification, Harrrenstien, October, 1985.

An RFC can be copied from the < RFC > directory at SRI's machine:

. SRI - NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11.4 ArpaAddressCache

11-10

The interface ArpaAddressCache provides Pilot clients with direct access to the the local
cache ofInternet addresses. Calls to this interface may result in the loading of this cached
information if the information does not currently exist in the cache. Currently, cache
information is kept in the file HOSTS. TXT. See RFC952 for a description of this file.

11.4.1 Procedures

AddEntry: PROC[
name: LONG STRING, addr: ArpaRouter.lnternetAddress];

This procedure adds an entry into the cache table. The name string should contain the
name of the host to be added and the addr field should contain the Internet address of the
host. The name string should be in the format specifed by RFC952.

Enumerate: PROC[
proc: PROC[

name: LONG STRING,
addr: ArpaRouter.lnternetAddress));

The Enumerate procedure calls the call back procedure proc for the name and addr of
every entry in the cache.

Flush: PROC;

The Flush procedure flushes all entries from the cache .
.

Lookup: PROC[name: LONG STRING]
RETURNS [
addr: ArpaRouter.lnternetAddress, hit: BOOLEAN];

The LookUp procedure finds the specifed name in the cache table. If the cache has not
been loaded, it will be loaded. If the entry is not found, the hit field is set to FALSE. If the
entry is found, it is returned in the field addr. This procedure may raise the error
ArpaAddressTranslation.Error when the file HOSTS. TXT cannot be found on the local file
system.

LookupAddr: PROCEDURE [
~ddr: ArpaRouter .lnternetAddress]
RETURNS [name: LONG STRING];

Pilot Programmer's Manual 11

The LookupAddr procedure rmds the specifed addr in the cache table and returns the
corresponding name for that addr. If the cache has not been loaded the cache, it is loaded.
If the entry is not found the name field is set to NIL. This procedure may raise the error
ArpaAddressTranslation.Error when the file HOSTS.TXT cannot be found on the local file
system.

11.4.2 References

RFC952 DOD Internet Host Table Specification, Harrenstien, October, 1985.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI· NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11.5 ArpaHostTable

The ArpaHostTable interface provides Pilot clients with an interface to a parser that
parses files in the format specified by RFC952.

11.5.1 Procedures

ParseHostsFile: PROCEDURE [
fileName: LONG STRING] RETURNS [success: BOOLEAN];

The procedure ParseHostsFile parses files in the format specified by RFC952. The field
fileName is a string of the filename of the file to be parsed. The field success returns TRUE
if the file parse returned successfully. Currently only the HOST fields of the file being
parsed are understood. These entries are cached using the ArpaAddressCache interface
and can be accessed using the ArpaAddressTranslation interface.

GetArpalnitlnfo: PROCEDURE RETURNS [
hostAddr, gateWayAddr, subnetMask: ArpaRouter.lnternetAddress];

To accomodate a need to acquire the Internet address of the local processor, the address of
the nearest gateway, and the subnet masking information, three unique entries must be
included in the default hosts file (HOSTS.TXT). These entries are MY-GATEWAY, MY
HOST, and SUBNET-MASK. MY·HOST is used to give the local machine's host address, MY·
GATEWAY is used to give the local machine's initial gateway, and SUBNET·MASK is used
to get the subnet bits for address comparisions if the machine is on a subnet. These
entries have the following syntax:

entry:= <keyword> ":" <address>
keyword:= MY-HOST I MY-GATEWAYISUBNET-MASK
address: = octet"." octet"." octet"." octet
octet: = < 0 to 255 decimal>

These entries must be of the same address class. These values are returned by this
procedure in the fields hostAddr, gateWayAddr, and subnetMask.

11-11

11 TCP/IP Interfaces

11.5.2 References

RFC952 DOD Internet Host Table Specification, Harrenstien, October, 1985.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI· NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11.6 ArpaTelnetStream

11-12

The ArpaTelnetStream interface provides Pilot clients with an interface to the Telnet
Protocol defined by RFC854 and Telnet options defined by RFCs 855 to 861. Telnet is a
virtual terminal protocol to be used with the TCP/IP protocols.

11.6.1 Types and constants

Handle: TYPE • LONG POINTER TO Object;

Object: TYPE = RECORD [
options: Options,
getByte: PROCEDURE IsH: Handle]

RETURNS [byte: Environment.Byte, code: ReturnRecord],
putByte: PROCEDURE [

sH: Handle, byte: Environment.Byte, push: BOOLEAN],
get: PROCEDURE IsH: Handle, block: Environment.Block]

RETURNS[bytesTransferred: CARDINAL, code: ReturnRecord],
put: PROCEDURE [

sH: Handle, block: Environment.Block, push: BOOLEAN],
push: PROCEDURE IsH: Handle],
delete: PROCEDURE IsH: Handle],
clientData: UserDataEntry,
getTimeout: PROCEDURE IsH: Handle]

RETURNS [timeOut: TcpStream.WaitTime],
setTimeout: PROCEDURE [

sH: Handle, timeOut: TcpStream.WaitTime],
setlnputOptions: PROCEDURE IsH: Handle, options: Options],
flushDataLine: PROCEDURE IsH: Handle));

A telnet Handle is modeled after the pilot stream handle interface and the procedures it
contains are similar to the pilot stream interface.

The options record contains settings of a variety of user parameters.

The getByte procedure returns the next byte of data in the data stream. If there is no data
pending, it waits for an infinite amount of time if no time out was set or the amount of
time specified in the setTimeout procedure. getByte also returns the reason that the
procedure is returning in the field code. In most cases this is set to normal, but if some
event occurs that forces the procedure to return, this is noted in the code field.

Pilot Programmer's Manual 11

The putByte procedure places one byte of data on the out going Telnet connection. Setting
the push flag to TRU E has the same effect as the send Now procedure on a pilot stream: the
data is flushed from the sending side to the receiving side. If the push flag is TRUE, the
TCP data buffers are flushed. This is an expensive operation and should be done only
when necessary.

The get and put procedures are similar to the getbyte and put Byte procedures except they
operate on blocks rather than bytes. The same comments on the push boolean apply for
put as did for putByte.

The push procedure causes all buffered data to be sent to the telnet partner. This is the
same operation that is done when put or pupByte procedures are called with the push
boolean set to TRUE.

The clientData field is a pointer to data needed by the internal implementation.

The getTimeout procedure returns the timeout that is set on the telnet connection.

The setTimeout procedure is used to set the amount of time the telnet connection waits on
a get operation before returning with a timeout reason or before raising the timeout
signal. If this procedure is called with a value of 0, then the timeout in effect is infinite.
The length of time the get process can wait is limited to about 16 minutes.

The procedure setlnputOptions is used to set various options described below.

The flushDataLine procedure flushes the incoming data stream of all pending data.

UserDataEntry: TYPE(2];

Opaque type used by telnet internal implementation.

Options: TYPE. RECORD (
signalTimeOut: BOOLEAN +- TRUE.
signalOnGoAhead: BOOLEAN +- FALSE.
signalOnEraseLine: BOOLEAN +- FALSE.
signalOnEraseChar: BOOLEAN +- FALSE.
signalOnAbort: BOOLEAN +- FALSE.
signalOnlnterrupt: BOOLEAN +- FALSE.
signalOnBreak: BOOLEAN +- FALSE.
signalOnShortBlock: BOOLEAN +- FALSE.
will Echo: BOOLEAN +- TRUE.
wiliBinary: BOOLEAN +- TRUE.
wiliStatus: BOOLEAN +- TRUE];

Options decide the way in which the Telnet connection operates and how the client is
notified about connection events. The options that decide how the user is notified about
telnet events are signalTimeOut, signalOnGoAhead, signalOnEraseLine,
signalOnEraseChar, signalOnAbort, signalOnlnterrupt, signalOnBreak and
signalOnShortBlock. The options which govern the way a telnet connection responds to
option requests from a connection partner are will Echo, wiliBinary and wiliStatus. The
signal options, when true, cause the client to be signaled rather than notified in the return
arguments of the get call of an event that has taken place. These events are described

11-13

11

11-14

TCP/IP Interfaces

below. The other options govern the telnet options exported to Telnet users. will Echo
allows the telnet partner to request remote echo rather than always having to do local
echo. willBinary allows the telnet partner to request a binary transmission path .rather
than using the NVT (Network Virtual Terminal) character code standard. willStatus
allows the telnet partner to request its partners status information.

ReturnCode: TYPE • {normal, timeOut, goAhead, eraseLine, eraseChar, abort, interrupt,
break, shortBlock, echo, binary, endOfRecord, terminalType, status};

ReturnRecord: TYPE • RECORD [
returnCode: ReturnCode +- normal,
argument: SELECT OVERLAID ReturnCode FROM

timeOut. > [index: CARDINAL +-0]
binary, echo. > [on: BOOLEAN +- FALSE],
terminalType • > [string: LONG STRING],
status. > [hostStatus: HostStatusRecord],

ENDCASE];

The ReturnRecord is returned by all get operations dealing with data. The following is a
description of each return code.

normal - The procedure is returning because it has exhausted the space provided for the
results of the get operation.

timeOut - The get procedure has taken longer than the specified time set with the
setTimeout procedure. In the variant part of the return record the index points at the last
byte of data received.

goAhead - When the goAhead code is returned, the telnet partner indicates that all the
. data has been sent and it is now waiting for data.

eraseLine - The remote side of the telnet connection has sent an erase line code. The user
should treat this as if an eraseLi ne character were typed to the local stream.

eraseChar - The remote side of the telnet connection has sent an erase character code. the
user should treat this as if an eraseChar character were typed to the local stream.

abort - The remote side of the telnet connection indicated that all the queued output
should be suspended but that the currently running process should continue.

interrupt - The remote side of the telnet connection indicated that the current process
should be cancelled.

break - Same as pressing the Break key (128 decimal) .

shortBlock - Not used.

echo - The remote side of the telnet connection has requested echoing from the server side.

binary -The remote side of the telnet connection indicated that data transmitted should be
treated as binary data without regard for the NVT character set.

Pilot Programmer's Manual 11

endOfRecord - Not used.

terminalType - The return record contains the terminal type requested. The terminal type
is an Ascii string and should conform to RFC 940 - Assigned Numbers.

status - This is the return of an earlier status request. The status information is contained
in the return record.

HostStatusRecord:TYPE. RECORD [
optionsPossible:

PACKED ARRAY OptionsEnnum OF BOOLEAN ALL[TRUE],
options Record :

PACKED ARRAY OptionsEnI;um OF BOOLEAN ALL[FALSE],
optionsVerified:

PACKED ARRAY OptionsEnnum OF BOOLEAN ALL[FALSE],
Terminal: LONG STRING];

The HostStatusRecord is returned when the user requests the status of the Telnet
connection. The fields should be interpreted as follows: the optionsPossible field are
those options which the telnet connection partner may export, the options Record are
those options which are enabled at the connection partner site, and the optionsVerified
field is the list of those options which the connection partner supports. The above fields
can be indexed using the OptionsEnnum enumeration which lists all the options
supported by this implementation of Telnet. The Terminal is an Ascii string specifying the
terminal type which the connection is supporting. This field may be NIL if no terminal
type is set.

OptionsEnnum: TYPE • {Binary, Echo, SupGA, Status, TimeMark, TerminalType, EOR,
ExtendedOptionsList};

The OptionsEnnum is an ennumeration of all the supported telnet options.

Binary ~ Indicates binary transmission of data characters, not using NVT.

Echo - If the echo field is TRU E, the site supports or is doing echo rather than the local site
echoing typed characters.

SupGA - Indicates the suppression of GoAhead ,characters.

Status - Indicates the transmission of status information.

TimeMark - Indicates Telnet Timing Mark option.

TerminalType - Indicates the support of other terminal types other that the standard NVT
(Network Virtual Terminal)

EOR - Indicates support of the end-of-record option.

ExtendedOptionsList - This option is not supported.

11-15

11

11-16

TCP/IP Interfaces

11.6.2 Signals

Error: SIGNAL [reason: TelnetErrorReason];

TelnetErrorReason: TYPE. {doesntBinary. doesntEcho. doesntStatus, doesntTermType,
timeOut};

The SIGNAL Error is raised either when the client trys to enable an option that is not
supported by the Telnet connection or when the timeout interval set by the client is
reached on a get operation.

11.6.3 Procedures

Create: PROCEDURE [
input: TcpStream.Handle,
options: Options.
addLFToCR: BOOLEAN +- TRUE]
RETURNS [telnetStream: Handle];

Create sets up a stream-like connection to a remote host. The parameters needed are a
TcpStream.Handle to the connection which provide the data in the field input, the set of
options which describe how the telnet stream appears to the user, as well as the telnet
connection partner, and the the boolean addLFToCR, which defaults to TRUE if not
supplied. This boolean should be set FALSE when the client wishes to provide lines ending
only in a Ascii carriage return. The Telnet implementation adds the additional Ascii line
feed (LF) to make the line a valid Telnet line. This procedure returns a Handle which
contains the procedures which are the telnet stream.

GetByte: PROCEDURE [sH: Handle]
RETURNS [byte: Environment.Byte. code: ReturnRecord);

The Get Byte procedure returns the next byte of data in the data stream. If there is no data
pending, it waits the amount of time set in the SetTimeout procedure, or an infinite
amount of time if no time out was set. GetByte also returns the reason that the procedure
is returning. In most cases, this will he set to normal, but if some event occurs that forces
the procedure to return, this is noted in the code field.

PutByte: PROCEDURE [
sH: Handle, byte: Environment.Byte. push: BOOLEAN] •
INLINE {sH.putByte[sH. byte. push]};

The PutByte procedure places one byte of data on the out-going Telnet connection. Setting
the push flag to TRU E has the same effect as the send Now procedure on a pilot stream and
the data is flushed from the sending side to the receiving side. The push flag generates a
TCP Push flag. This is an expensive operation and should he done only when neccesary.

GetBlock: PROCEDURE [sH: Handle. block: Environment.Block]
RETURNS [bytesTransferred: CARDINAL. code: ReturnRecord);

Pilot Programmer's Manual

PutBlock: PROCEDURE [
sH: Handle, block: Environment.Block, push: BOOLEAN] •
INLINE {sH.put[sH, block, push]};

11

The GetBlock and PutBlock procedures are similar to the GetByte and PutByte procedures
except they operate on blocks rather than bytes. The same comments on the push boolean
apply for PutBlock as did for PutByte.

Push: PROCEDURE [sH: Ha'ndle] • INLINE {sH.push[sH]};

The Push procedure will cause all buffered data to be sent to the telnet partner. This is the
same operation that is done when PutBlock or PutByte is called with the push boolean set
to TRUE.

GetTimeout: PROCEDURE [sH: Handle]
RETURNS [timeOut: TcpStream.WaitTime] •
I NLiNE {RETU RN[sH .getTi meout[sH]]};

The GetTimeout procedure returns the timeout that is set on the telnet connection.

SetTimeout: PROCEDURE [
sH: Handle, timeOut: TcpStream.WaitTime] =
INLINE {sH.setTimeout[sH, timeOut]};

The SetTimeout procedure is used to set the amount of time the telnet connection waits on
a get operation before returning with a timeout reason or raising the timeout signal. If
this procedure is called with a value of 0, then the timeout in effect is infinite. The length
of time the get process can wait is limited to about 16 minutes.

SetlnputOptions: PROCEDURE [sH: Handle, options: Options] •
INLINE {sH.setlnputOptions[sH, options]};

The procedure SetlnputOptions is used to set various options described above.

Delete: PROCEDURE [sH: Handle] • INLINE {sH.delete[sH]};

Delete is called before closing the Telnet connection to free up local storage and destroy
the Handle passed in by the Create procedure.

FlushDataLine: PROCEDURE [sH: Handle] •
INLINE {sH.flushDataLine[sH]};

The FlushDataLine procedure flushes the incoming data stream of all pending data.

GA: PROCEDURE [sH: Handle);

The GA procedure sends the go ahead signal on the telnet connection.

AbortOutput: PROCEDURE [sH: Handle];

This procedure cancels the output of a remote process if the connected system supports
output abort, otherwise the process continues to completion.

11-17

11

11-18

TCP/IP Interfaces

InterruptProcess: PROCEDURE [sH: Handle];

This procedure interrupts a remote process if the connected system can interrupt the
process.

AreYouThere: PROCEDURE [sH: Handle];

This procedure forces the remote host to send some visible signal (character or string) that
the connection is still active. The character or string is seen on the get operation.

EraseLine: PROCEDURE [sH: Handle];

This procedure erases the last line typed (to the last CRLF).

EraseChar: PROCEDURE [sH: Handle];

EraseChar is used instead of BS SP to do an erase of the last character. On many systems
the character BS does the correct operation.

The following procedures all may raise the Error signal if that option is not supported by
the remote site.

Echo: PROCEDURE [sH: Handle, on: BOOLEAN];

Echo causes the remote connection to echo characters rather than having the local
connection echo characters. Described by RFC 857.

Binary: PROCEDURE [sH: Handle, on: BOOLEAN];

Binary causes the connection to stop interpreting characters as NVT characters. This is
described by RFC 856.

Break: PROCEDURE [sH: Handle];

This procedure sends the Telnet break character to the remote host.

Status: PROCEDURE [sH: Handle]
RETURNS [status: LONG POINTER TO HostStatusRecord];

Status causes the remote site to send connection status information if this option is
supported. This is described by RFC 859.

SetTerminalType: PROCEDURE [
sH: Handle, terminalType: LONG STRING]
RETURNS [success: BOOLEAN];

Sends the terminal type requested to the remote site if the terminal type option is
supported. See RFC 943 Assigned Numbers under the Terminal Types heading for a list of
valid terminal type strings. This procedure uses telnet subnegotiation to negotiate the
terminal type with the remote host. The default is NVT.

Pilot Programmer's Manual 11

11.6.4 References

RFC854 TELNET Protocol Specification, Postel, May, 1983.

RFC855 TELNET Option Specification, Postel, May, 1983.

RFC856 TELNET Binary Transmission, Postel, May, 1983.

RFC857 TELNET Echo Option, Postel, May, 1983.

RFC858 TELNET Suppress Go Ahead Option, Postel, May, 1983.

RFC859 TELNET StatUs Option, Postel, May, 1983.

RFC860 TELNET Timing MarkOption, Postel, May, 1983.

RFC861 TELNET Extended Options - List, Postel, May, 1983.

RFC960 Assigned Numbers, Reynolds, December, 1985.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI - NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11. 7 TelnetListener

The TelnetListener interface provides Pilot clients with an interface to the Telnet Protocol
defined by RFC854. The TelnetListener interface is used by clients needing to listen on a
specified port for a telnet connection. Telnet is a virtual terminal protocol used with the
TCP/IP protocols.

11.7.1 Types and constants

ConnectProc: TYPE • PROCEDURE [
sH: ArpaTelnetStream.Handle.
underlyingStream: TcpStream.Handle.
remoteAddr: ArpaRouter.lnternetAddress];

The procedure type ConnectProc is called by the telnet interface when a connection is
received on the port specified in the Listen procedure.

ConnectlD: TYPE [2];

This 10 is returned by the Listen procedure and is used to destroy a Telnet listening
connection.

11-19

11 TCP/IP Interfaces

11.7.2 Procedures

Listen: PROCEDURE [
connect: ConnectProc,
portNumber: ArpaRouter.Port,
suppressLF: BOOLEAN ~ FALSE]
RETURNS [connectionID: ConnectID];

The Listen procedure is called by the client to establish a telnet listening connection on the
port specified in the field portNumber. The procedure called when a connection is received
is passed in the field connect. If line feeds are to be suppressed every time a carriage
return is seen (CRLF -+ CR), the suppressLF boolean should be set to TRUE. This procedure
returns the value connectionlD to be used in destroying the telnet listener.

StopListening: PROCEDURE [connectionlD: ConnectID];

This procedure destroys a listening connection started with the procedure Listen.
StopListening is called with the connectionlD returned by Listen.

11.7.3 References

RFC854 TELNET Protocol Specification, Postel, May, 1983.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI· NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11.8 ArpaFilingCommon

The ArpaFilingCommon interface provides types to be used by clients using the TFTP or
ArpaFTP interfaces. It defines a set of common types so that these types can be used with
both the TFTP and ArpaFTP interfaces.

11.8.1 Types and constants

11-20

StatusCode: TYPE. {
ok, notRetrieving, notStoring, fileNotFound, accessViolation, mediumFull, fileExists,
invalid FileName, undefined, eof};

The StatusCode type is used to return information about the state of the local filing
operation in a standard manner.

ok

notRetrieving

The filing action completed successfully.

The filing action did not complete because file retrieval is
not allowed by the local filing system.

Pilot Programmer's Manual 11

notStoring The filing action did not complete because file storing is not
allowed by the local filing system.

fileNotFound The file action did not complete because the specified file
was not found in the current context.

accessViolation The user did not have sufficient access rights to access the
file or the file is in use by another user.

mediumFull The file storing action did not complete because the local
filing medium is full or the user has exhausted the allocated
space.

fileExists The file being accessed exists but could not be overwritten.

invalidFileName The specified file name is not valid in the current context.

undefined A file error that doesn't fit into the above catagories.

eof The logical end of the file was reached successfully and
there is no more data to retrieve.

PutProc: TYPE '. PROCEDURE [
fileStream: Stream.Handle,
block: Environment.Block,
eot: BOOLEAN ~ FALSE]
RETURNS [statusCode: StatusCode);

The PutProc type is used as the call back procedure to a file storing operation, The field
fileStream contains a stream to the currently active local file and is passed to the caller
using some other protocol specific operation. The field block contains the data to be stored.
The field eot is set true when the file transfer has ended. The field statusCode is returned
with a code.

GetProc: TYPE • PROCEDURE [
fileStream: Stream.Handle, block: Environment.Block)
RETURNS [statusCode: StatusCode,
bytesTransferred: CARDINAL);

The GetProc type is used as the call back procedure to a file retrieval operation. The field
fileStream contains a stream to the currently active local file and is passed to the caller
using some other protocol specific operation. The field block receives the data to be sent.
The field statusCode is returned with a code and the number of bytes transmitted is in the
field bytesTransferred.

CloseProc: TYPE • PROCEDURE [
fileStream: Stream.Handle,
deleteFile: BOOLEAN ~ FALSE,
fileName: LONG STRING ~NIL);

The type CloseProc is used a call back procedure in ei~her a file retrieval or file storing
operation. It is called when the operation has completed. The field fileStream contains a
stream to the specifed local file that was passed to the caller by some protocol specific

11-21

11

11.9 TFTP

TCP/IP Interfaces

operation. The deleteFile field, when TRUE and the file operation is storing, indicates
that the file operation did not complete and that the file stored may be incomplete and
should be deleted. The field fileName contains the name of the file when the field
deleteFile is TRUE and may provide a hint as to which file should be deleted.

PrintProc: TYPE • PROCEDURE
[stringToPrint: LONG STRING];

The type PrintProc is used by the caller to notify the client of debugging information.

Trivial File Transfer Protocol (TFTP) is a simple file transfer protocol which is a client of
the User Datagram Protocol (UDP). It can be used to tranfer files between hosts
implementing the arpa protocols. See RFC783 for a full description of this protocol.

11.9.1 Types and constants

11-22

TFTPModes: TYPE. {netascii, octet, mail};

TFTPModes is used to indicate the type offile being transferred.

netascii

octet

mail

This is Ascii as defined in USA Standard Code for Information
Interchange with modifications specified in RFC764. It is eight-bit ascii.

Raw eight-bit bytes.

Netascii characters sent to a user rather than a file.

FileStreamProc: TYPE • PROCEDURE [
fileName: LONG STRING,fileType: TFTPModes]
RETURNS [
statusCode: ArpaFilingCommon.StatusCode,
fileStream: Stream.Handle, put: ArpaFilingCommon.PutProc,
get: ArpaFilingCommon.GetProc,
closeProc: ArpaFiI i ngCommon.CloseProc];

The FileStreamProc procedure is used by the server side of an TFTP connection to solicit
"information from the TFTP server client. The put and get callback procedures are used to
store o~ retrieve file data from the client's file system. The close procedure is called when
the file transfer is completed. For the store case, the get procedure need not be provided
and for the retrieve case, the put procedure need not be provided. When the
FileStreamProc is called, file type information is derived from the fileType field and the
file name from the fileName field. Client filing errors are returned using the statusCode
field.

GetStreamProc: TYPE • PROCEDURE [fileName: LONG STRING]
RETURNS [stream: Stream.Handle, fileError: BOOLEAN];

This is used by Retrieve for file stream creation.

Pilot Programmer's Manual 11

11.9.2 Errors and signals

TFTPError: ERROR [reason: TFTPErrorReason, errorMsg: LONG STRING];

TFTPErrorReason: TYPE • {aborted, undefined, fileNotFound, accessViolation,
mediumFull, iliegalOp, unknownTID, fileExists, noSuchUser, timeOut, hostError,
locaIFileError};

aborted The current session is cancelled.

undefined Not defined, error message may help.

fileNotFound File was not found at the remote location.

accessViolation The remote file cannot be accessed.

mediumFull The remote sites disk is full or allocation exceeded.

iIIegalOp Received an illegal TFTP responce.

unknownTID Not used.

fileExists File exists and cannot be overwritten.

nOSuchUser Not used.

timeOut The TFTP session has timed out becuase the remote site has
not responded.

hostError Remote error.

localFileError Error in acquiring the file for transmission.

The errorMsg is passed by the protocol and contains an English error message. The
errorMsg is allocated from the zone passed into the interface by the client and should be
freed by the client.

11.9.3 Procedures

Send: PROCEDURE [
toHost: ArpaRouter.l nternetAddress,
fileName: LONG STRING,
fileStream: Stream.Handle,
dataProc: ArpaFilingCommon.GetProc,
zone: UNCOUNTED ZONE,
rexmt: CARDINAL +- 5,
timeOut: CARDINAL +- 25];

Send is used to store a file to a TFTP server. The toHost field has the address of the
destination file. The fileName field has the name of the file on the remote server and
should be in the file naming structure of the remote machine. fileStream is a stream to the
local file to be stored. The callback procedure provided in dataProc is used to retrieve the

11-23

11 TCP/IP Interfaces

file from the local file system. This procedure may raise TFTPError { ... aborted,
undefined, accessViolation, medium Full, iIIegalOp, fileExists, timeOut...}. Any error
message strings returned by the signal TFTPError are allocated from zone and should be
freed by the client. The rexmt field gives the timeout between TFTP data packets and
TFTP acknowledgements. The field timeOut gives the total timeout period for the TFTP
connection.

Retrieve: PROCEDURE [
fromHost: ArpaRouter.lnternetAddress,
fileName, localName: LONG STRING,
fileType: TFTPModes,
fileStreamProc: GetStreamProc,
zone: UNCOUNTED ZONE,
rexmt: CARDINAL ... 5,
timeOut: CARDINAL ... 25];

The Retrieve procedure is used to retrieve a file from a TFTP server. The from Host field
has the address of the source of the file being retrieved. The fileName field has the name
of the file on the remote server and should be in the file naming structure of the remote
machine. The fileStreamProc is called when a connection is established to acquire the
local filing stream handle. If a local filing error is encountered when trying to acquire the
local file, the fileStreamProc should return a NIL stream handle and a value of TRUE in
the fileError field. Retrieve may raise TFTPError { ... Aborted, Undefined, FileNotFound,
AccessViolation, lIIegalOp, TimeOut ... }. Any error message strings returned by the signal
TFTPErrorare allocated from zone and should be freed by the client. The rexmt field gives
the timeout between TFTPdatapacketsand TFTP acknowledgements. The field timeOut
give the total timeout period for the TFTP connection.

Register: PROCEDURE [
storeFile: FileStreamProc,
retrieveFile: FileStreamProc,
print: PrintProc,
zone: UNCOUNTED ZONE,
rexmt: CARDINAL E- 5,
timeOut: CARDINAL ... 25];

Register is used for server side filing implementation. The procedures registered are
called in the following instances. StoreFile is called when a request to write is received by
the server. RetrieveFile is called when a request to read is received by the server. The
print procedure is used for debug and status messages. The rexmt field gives the timeout
between TFTP data packets and TFTP acknowledgements. The field timeOut gives the
total timeout period for the TFTP connection. Only one client should register procedures.
Other clients who register procedures overwrite the previous procedures.

UnRegister: PROCEDURE;

This procedure is called to suspend TFTP server operations.

11.9.4 References

RFC764 Telnet Protocol, Postel, June, 1980.

11-24

Pilot Programmer's Manual 11

RFC783 The TFTP Protocol (Revision 2), SolUns, June, 1981.

An RFC can be copied from the < RFC > directory at SRI's machine:

-NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11.10 ArpaFTP

The ArpaFTP interface provides Pilot clients with an interface to the File Transfer
Protocol (FTP) defined by RFC959. FTP is a file transfer protocol used in with the TCP/IP
protocols.

11.10.1 Types and constants

Handle: TYPE. LONG POINTER TO FTPObject;

FTPObject: TYPE;

FileTypeEnum: TYPE. {ascii. EBCDIC. image. other};

The FileTypeEnum defines the file types understood by FTP.

ascii

EBCDIC

image

other

This is the default file type, intended for transferring text files.
Ascii is defined in the Telnet specification to be the lower half of an
eight-bit code set (the most significant bit is zero).

This type is not supported

This type is used for the transfer of binary or compressed data.

This type is used to accomodate other data representations and is
supported for eight-bit bytes.

FileFormatEnum: TYPE. {nonPrint, telnet,asa};

The FileFormatEnum defines the set offormat control options that can be used with the file
types Ascii and EBCDIC.

nonPrint

tel net

asa

This is the default formatting option and indicates there is no formatting
in the file.

This indicates that the file contains vertical format controls (such as
>CR>, <LF>, <NL>, <VT>, <FF».

This indicates that the file contain asa (FORTRAN) vertical control
characters. (See RFC 740 or Communications of the ACM, Vol. 7, No. 10,
p. 606, October 1964).

FileStructureEnum: TYPE. {file, record, page};

11-25

11

11-26

TCP/IP Interfaces

The FileStructureEnum defines the set offile structures that are know to FTP.

file This is the defaulted file structure.

record This is not supported.

page This is not supported.

TransmissionModeEnum: TYPE.
{stream, block, compressed};

The TransmissionModeEnum defines the set of data transmission types known to FTP.

stream

block

compressed

This is the default transmission mode. The data is transmitted as a
stream of bytes.

This is not supported.

This is not supported.

Options: TYPE. RECORD [
fileType: FileTypeEnum ~ ascii,
fileFormat: FileFormatEnum ~ nonPrint,
fileByteSize: CARDINAL ~8,
fileStructure: FileStructureEnum +- file,
transmissionMode: TransmissionModeEnum +- stream.
modeChanged: BOOLEAN ~ FALSE,
fileTypeChanged: BOOLEAN +- FALSE,
fileStructureChanged: BOOLEAN ~ FALSE,
optionsChanged: BOOLEAN ~ FALSE);

The options record is used to set various options allowed by the FTP protocol. Not all
options are available on all hosts. When options are changed the optionschanged field for
the appropriate option should be set to TRUE (for example, when transmission Mode is
changed the modeChanged boolean should be set to TRUE) and the optionsChanged
BOOLEAN should be set to TRUE. The fileByteSize is the size of the data bytes of a file.
Only a byte size of eight is supported.

defaultOptions: Options. [ascii, nonPrint, 8, file, stream);

The defaultOptions can be used to set the options field in Store and Retrieve.

ListStyle: TYPE. {verbose, terse};

The ListStyle type is used with the List procedure to indicate whether verbose (all
information that can be displayed about the file) or terse (only the file name) is wanted.

OutputListProc: TYPE. PROCEDURE [output: Environment.Block);

The OutputListProc is used with the List command to provide a call back procedure for the
listing return information.

Pilot Programmer's Manual 11

11.10.2 Errors and Signals

FTPError: ERROR [
reason: FTPErrorReason, errorNumber: CARDINAL, errorstring: LONG STRING];

The error FTPError is raised for all error conditions that arise on the local or remote
machine. The error reasons are described below. The errorNumber field is reserved for
error conditions that are reported by the remote FTP site. Error numbers follow the error
number definitions as outlined by RFC 959. The errorstring is also reserved for remote
errors and is the human readable text message that accompanies the FTP errorNumber.
The string errorstring is allocated from a private zone and is deallocated on unwinding
this error.

FTPErrorReason: TYPE • {accessViolation, accountNeeded, badCommandSequence,
fileExists, fileNotFound, hostError, iliegalOp, invalidFileName, invalidOption,
localFileError, mediumFull, noSuchUser, remoteFileError, serverCommandError,
serviceUnavailable, timeOut, userNotLoggedln, undefined, unimplemented};

accessViolation

accountNeeded

badCommandSequence

fileExists

fileNotFound

hostError

iIIegalOp

invalidFileName

invalidOption

localFileError

mediumFull

noSuchUser

remoteFileError

serverCommandError

User does not have the access right for this operation.

The user must supply an account number to complete the
operation.

The protocol commands were received in the wrong order by
the remote site. '

The remote file already exists and could not be overwritten
or deleted.

The operation indicated could not complete because the file
was not found.

Not used.

Some illegal operation was attempted.

The file name specified was invalid.

The options specified were invalid in this context.

Some local filing error was encountered.

The remote filing medium is full or the current operation
exceeds the user's space allocation.

The user name could not be found on the remote host.

Some remote file error was encountered.

The FTP command sent to the remote site could not be
understood by the remote site.

11-27

11

11-28

TCP/IP Interfaces

serviceUnavailable

timeOut

userNotLoggedln

undefined

unimplemented

11.10.3 Procedures

Create: PROCEDURE [

The file service is not available at this time.

The operation timed out. The remote host may no longer be
responding.

The user is not be logged in.

An undefined error was raised by the remite site.

The indicated action is not implemented by the remote host.

destinationHost: ArpaRouter.lnternetAddress, options: Options)
RETURNS [connectionHandle: Handle];

Create is used by clients to open an FTP session. The destinationHost is the address of the
FTP server that is used in the FTP session. The options field is to be filled in according to
how the connection operates. The connection Handle returned must be used in all
subsequent FTP calls for this session.

Store: PROCEDURE [
remoteFileName: LONG STRING,
fileStream: Stream.Handle,
getProc: ArpaFilingCommon.GetProc,
options: Options,
connectionHandle: Handle];

The Store procedure is used to store a file to an FTP server. The remoteFileName field
should have the name of the file on the remote server, and should be in the file name
structure of the remote machine. fileStream is a stream to the file to be stored. The
procedure provided in getProc is used to retrieve the file from the local file system. The
options field should have the options to be used for this file transfer and should follow the
conventions stated in the description of the Options record. This procedure may raise the
error Error.

Retrieve: PROCEDURE [
remoteFileName: LONG STRING,
fileStream: Stream.Handle,
putProc: ArpaFilingCommon.PutProc,
options: Options,
connectionHandle: Handle];

The Retrieve procedure is used to retrieve a file from an FTPserver. The remoteFileName
field should have the name of the file on the remote server, the file name should be in the
file naming structure of the remote machine. The fileStream field is a stream to the file to
be stored on the local file system. The procedure provided in putProc is used to retrieve the
file from the local file system. The options field has the options to be used for this file
transfer and should follow the conventions stated in the description of the Options record.
This procedure may raise the error Error.

Pilot Programmer's Manual

Login: PROCEDURE [
userName, userPassword, userAccount: LONG STRING,
connectionHandle: Handle]
RETURNS [success: BOOLEAN];

11

The Login procedure sends the given login information to the FTP server. The userName,
userPassword and userAccount fields should be strings to the users name, password and
account information on the remote host and should follow the conventions of the remote
host. Not all values need be specified if not needed on the remote host. The procedure
returns TRUE if the user has logged in successfully and FALSE if not. This procedure may
raise the error Error.

Quit: PROCEDURE [connectionHandle: Handle]
RETURNS [success: BOOLEAN];

The Quit procedure disconnects the user's curr~nt filing session from the remote FTP
server. The FTP connectionHandle is no longer valid after this operation. This procedure
may raise the error Error.

List: PROCEDURE [
filePathName: LONG STRING,
outputProc: OutputListProc,
outputStyle: ListStyle +- terse,
connectionHandle: Handle];

The List procedure can be used to request that the FTP server send a list of the current
filing context to the user. The filePathName field specifies a system specific file path
name. If the outputStyle is verbose, all current information on the file or file group
specifed by the field filePathName is returned using the procedure outputProc. If the
outputStyle is terse, only the file name of each of the files specified by the filePathName is
returned. In either case the file information should be separated by a CRLF or Null
character. The outputProc sends the reccived information to the client process. This
procedure may raise the error Error.

Delete: PROCEDURE [
filePathName: LONG STRING,
connectionHandle: Handle];

The Delete procedure deletes the file defined by the filePathName on the remote FTP
server. This procedure may raise the error Error.

Rename: PROCEDURE [
from, to: LONG STRING, connectionHandle: Handle];

The Rename procedure renames the remote file defined in the from field to the remote file
name defined in the to field. This procedure may raise the error Error.

Relnit: PROCEDURE [connection Handle: Handle];

The procedure Relnit reinitializes the current FTP connection specifed by the argument
connectionHandle. All previous connection states are lost. This procedure is used to

11-29

11 TCP/IP Interfaces

change the FTP user without dropping the FTP connection. This procedure may raise the
error Error.

Abort: PROCEDURE [connection Handle: Handle];

The procedure Abort cancels any outstanding FTP command on the connection specued by
connectionHandle. Any outstanding data transfers terminate. This procedure may raise
the error Error.

11.10.4 References

RFC959 File Transfer Protocol, Postel, October, 1985.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI· NIC.ARP A

using FTP with username, ANONYMOUS, and password, GUEST.

11.11 ArpaFTPServer

11-30

The ArpaFTPServer interface provides Pilot clients with an interface to the server side of
the File Transfer Protocol (FTP) defined by RFC959. FTP is a file transfer protocol which
is a client of the TCPIIP protocols (RFC793 and RFC792).

11.11.1 Types and constants

Options: TYPE. RECORD [
fileType: FileTypeEnum ~ascii,
fileFormat: FileFormatEnum ~ nonPrint.
fileByteSize: CARDINAL ~ 8,
fileStructure: FileStructureEnum ~file];

The Options type defines the record passed to the client to indicate the method a file is
retrieved or stored. The fileByteSize is the logical byte size of the file transferred. All files
are transferred as eight-bit files regardless of their logical byte size.

FileTypeEnum: TYPE. {ascii, EBCDIC, image, other};

The FileTypeEnum deimes the set of file types that can be understood by FTP.

ascii

EBCDIC

image

other

This is the default file type and is intended for transferring text files.
Ascii is defined in the Telnet specification to be the lower half of an eitht
bit code set (the most significant bit is zero).

This type is not supported.

This type is used for the transfer of hi nary or compressed data.

This type is used to accommodate other data representations and is
supported for eight-hit bytes.

Pilot Programmer's Manual 11

FileFormatEnum: TYPE • {nonPrint, tel net, asa};

The FileFormatEnum defines the set offormat control options that can be used with the file
types Ascii and EBCDIC.

nonPrint This is the default formatting option and indicates there is no formatting
in the file.

tel net This indicates the file contains vertical format controls (such as < CR > ,
<LF>, <NL>, <VT>, <FF».

asa This indicates the file contains asa (FORTRAN) vertical control
characters. (See RFC 740 and Communications of the ACM, Vol. 7, No.
10, p. 606, October 1964).

FileStructureEnum: TYPE. {file, record, page};

The FileStructureEnum defines the set offile structures known to FTP.

file This is the defaulted file structure.

record This is not supported.

page This is not supported.

LoginlnfoNeeded: TYPE • {
name, nameAndPassword, nameAndPasswordAndAcct};

The type LoginlnfoNeeded describes the types of login information required by the
authentication mechanism on the FTP server.

name Only the user's name is required to use the FTP server.

nameAndPassword The user's name and password are required to use the FTP
server.

nameAndPasswordAndAcct the user must specify name, password and account
information to use the FTP server.

ListStyle: TYPE. {verbose, terse};

The ListStyie type is used with the List procedure to indicate whether verbose (all
information that can be displayed about the file) or terse (only the file name) is wanted.

FileStreamProc: TYPE • PROCEDURE [
fileName: LONG STRING, options: Options,
conversationHandle: LONG POINTER]
RETURNS [
statusCode: ArpaFilingCommon.StatusCode,
fileStream: Stream.Handle,
put: ArpaFilingCommon.PutProc,

11-31

11

11-32

TCP/IP Interfaces

get: ArpaFilingCommon.GetProc,
closeProc: ArpaFilingCommon.CloseProc];

The FileStreamProc type is used by the FTP server when either the store or retrieve
operations are initiated by the FTP user. The fileName field contains the name of the
requested file. The options field contains the retrieval options. The conversationHandle
field contains client information that was passed to the server at user logon time. The
server client procedure returns whether or not the operation was successful by returning
the correct statusCode. If the operation was successful, the server client returns a stream
to the requested file in the field fileStream. The returned stream is used with the get or
put procedure. The server client need not provide the get procedure when used with the
store operation but must provide the put procedure. The server client need not provide the
put procedrue when used with the retrieve operation but must provide the get procedure.
The closeProc is called when the file transfer is completed. When the closeProc is called,
no other file operation is performed on the file describe by fileStream.

LogonProc: TYPE. PROCEDURE [
userName,
userPassword,
userAccount: LONG STRING ~ NIL]
RETURNS [success: BOOLEAN, conversationHandle: LONG POINTER];

The procedure LogonProc is called by the FTP server when the' login information is
received as defined by the parameters of the Register command. The client returns TRUE
if the information identifies an authenticated user. The field conversationHandle may
contain client information that is passed with subsequent calls, such as authentication
information. The server rejects all filing calls made before the user is authenticated.

QuitProc: TYPE • PROCEDURE [
conversationHandle: LONG POINTER];

QuitProc is called at the end of a FTP session. The client may free any session information
at this time. The field conversation Handle contains client information for the current
session that was passed to the server at user logon time and should be invalidated by this
call.

ReinitializeProc: TYPE • PROCEDURE [
conversationHandle: LONG POINTER];

When the ReinitializeProc is called by the FTP server, the client should consider the
current session to be open but should set its state back to its initial values. This procedure
is called when the remote user wishes to destroy the session but maintain the
communication line as active. The field conversation Handle contains client information
for the current session that was passed to the server at user logon time and should be
invalidated by this call.

RenameProc: TYPE • PROCEDURE [
from, to: LONG STRING,
conversationHandle: LONG POINTER]
RETURNS [statusCode: ArpaFilingCommon.StatusCode];

Pilot Programmer's Manual 11

RenameProc is called by the FTP server when it receives a request to rename a file. The
from field contains the current name of the file and the to field contains the new name of
the file. The field conversationHandle contains client information that was passed to the
server at user logon time. The client returns a code in statusCode.

AbortProc: TYPE • PROCEDURE [
conversationHandle: LONG POINTER];

AbortProc is called by the FTP server when an abort is received from the FTP user. When
AbortProc is called, the client should suspend and terminate all active processes for the
specified session. The field conversationHandle contains client information that was
passed to the server at user logon time.

DeleteProc: TYPE. PROCEDURE [
filePathName: LONG STRING,
conversationHandle: LONG POINTER]
RETURNS [statusCode: ArpaFilingCommon.StatusCode];

DeleteProc is called by the FTP server when it receives a request to delete a file. The field
filePathName contains the name of the file to be deleted. The field conversationHandle
contains client information that was passed to the server at user logon time. The client
returns the termination status in the field statusCode.

ListProc: TYPE • PROCEDURE [
filePathName: LONG STRING,
outputProc: OutputListStringProc,
outputStyle: ListStyle +- terse,
conversationHandle: LONG POINTER];

ListProc is called by the FTP server when it receives a request to list the contents of the
files specified by the field filePathName. This field may contain wildcard and expansion
symbols native to the local file system. The type and amount of information returned is
specified by the field outputStyle. When the value of this field is terse, the client returns
the name of the files specified by the filePathName field. When the value of the field
outputStyle is verbose, the client returns a complete list of information about the file or
files specified by the filePathName field. The procedure specified by outputProc is used to
return this information to the caller. Individual file information is separated by the Ascii
character string CR and LF. The field conversationHandle contains client information
that was passed to the server at user logon time.

OutputListStringProc: TYPE. PROCEDURE [output: LONG STRING];

This procedure type is used with ListProc to send list data to the remote site.

FTPProcList: TYPE • RECORD [
logon: LogonProc,
quit: QuitProc,
store: FileStreamProc,
retrieve: FileStreamProc,
reinitialize: ReinitializeProc,
rename: RenameProc,
abort: AbortProc,

11-33

11 TCP/IP Interfaces

delete: DeleteProc,
list: ListProc,
print: ArpaFilingCommon.PrintProc];

This type is used with the Register procedure to give the server a list of service commands
to call when it receives services requests from a remote user. These procedures are
described above.

11.11.2 Procedures

Register: PROCEDURE [
ftpProcList: FTPProcList. I09onlnfo: LoginlnfoNeeded);

This procedure initializes an FTP server process. Only one call to this procedure is valid
without calling UnRegister. Mutiple calls to this procedure without calling UnRegister
may produce undefined results. Procedures passed in the field ftpProcList are used to
satisfy service requests from remote users. The field logonlnfo contains the value for the
amount ofinformation needed to authenticate remote users.

UnRegister: PROCEDURE;

This procedure is used to terminate and unregister the FTP server process initiated by a
call to the procedure Register. This procedure is currently not implemented.

11.11.3 References

RFC740 NETRJS Proctocol- Appendix C, Braden, November, 1977.

RFC792 Internet Control Message Protocol, Postel, September, 1981.

RFC793 Transmission Control Protocol, Postel, September, 1981.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI· NIC.ARPA

using FTP with usemame, ANONYMOUS, and password, GUEST.

11.12 ArpaSMTP

The ArpaSMTP interface provides Pilot clients with an interface to the client side of the
Simple Mail Transfer Protocol (SMTP) defined by RFC821.

11.12.1 Types and constants

Handle: TYPE. LONG POINTER TO SMTPObject;

SMTPObject: TYPE;

A Handle is a pointer to an SMTPObject representing a connection to a remote SMTP host.

11-34

Pilot Programmer's Manual 11

Recipients: TYPE. LONG POINTER TO RecipientsSequence;

RecipientsSequence: TYPE. RECORD [
recipients: SEQUENCE length: CARDINAL OF LONG STRING];

The type RecipientsSequence is a sequence of the recipient that a particular message is
addressed to.

InvalidRecipientList: TYPE. RECORD [
invalidRecipients: SEQUENCE length: CARDINAL OF InvalidRecipientRecord];

The type InvalidRecipientList is a sequence of all recipients that a post operation could not
post to.

InvalidRecipientRecord: TYPE. RECORD [
recipientName: LONG STRING +-NIL,
errorReason: SMTPErrorReason,
errorNumber: CARDINAL];

For each invalid recipient of a Post operation an InvalidRecipientRecord is returned, The
field recipientName is a pointer to the name string that was passed into the Post
procedure. The errorReason field is the translated error condition as received from the
remote host. The field errorNumber contains the error number reason of the remote reject.
This number conforms to the error numbering scheme outlined in RFC821.

11.12.2 Signals

SMTPError: SIGNAL [
reason: SMTPErrorReason,
errorNumber: CARDINAL,
errorstring: LONG STRING];

The error SMTPError is raised for all error conditions that arise on the local or remote
machine. The error reasons are described below. The errorNumber field is reservered for
error conditions that are reported by the remote SMTP site. Error numbers follow the
error number dermitions as outlined by RFC 821. The errorstring is also reserved for
remote errors and is the human readable text message that accompanies the SMTP
errorNumber. The string errorstring is allocated from a private zone and is deallocated on
unwinding this error;

SMTPErrorReason: TYPE. {addressTranslationError,
insufficientSpaceOnRemote, invalidName, mailboxUnavailable, remoteError,
remoteStorageAllocExceeded, serverCommandError, serviceUnavailable, tcpError,
tcpTimeOut, transactionFailed, userNotLocal};

addressTranslationError

insufficientSpaceOnRemote

invalidName

the remote host name passed is invalid

the remote site has insufficient space to process the
mailing request

the specified recipient name is invalid

11-35

11 TCP/IP Interfaces

mailboxUnavaiiable

remoteError

remoteStorageAllocExceeded

serverCommandError

serviceU navailable

tcpError

tcpTimeOut

transactionFai led

userNotLocal

the specified recipients mailbox is not available

some remote error

remote mail storage allocation exceeded

error in the processing of the SMTP command

the service must shut 'down

some TCP error on connection establishment

TCP timeout on connection establishment, the
remote server may no longer be responding

mail transaction failed

user is not local to this remote machine; the
accompanying error string may have an alternate
path to the user

11.12.3 Procedures

11-36

Open: PROCEDURE [remoteHost.locaIHostName: LONG STRING] RETURNS [Handle];

Open opens a SMTP connection with the host specified in remoteHost. This procedure can
raise the SIGNAL SMTPError. The field localHostName contains the name that the local
host is advertised to the remote server. This name is the common name of the sending
machine. This procedure returns a connection handle to be used in all subsequent SMTP
operations.

Post: PROCEDURE [
smtpHandle: Handle. returnPath: LONG STRING.
recipients: Recipients. message: Stream.Handle]
RETURNS [success: BOOLEAN.
badRecipientList: LONG POINTER TO InvalidRecipientList];

Post sends a message to the host specified by thesmtpHandle field. The field returnPath
contains the common address of the sender of the message (Le.
·<userName>@<locaIHostName>). The recipients field contains a sequence of users
believed to reside on the host specified by the smtpHandle field to whom the message is
addressed to. This procedure returns a boolean specifying success or failure in posting the
message to the specified recipients. If it was not successful, the field badRecipientList
contains a pointer to a sequence of invalid recipients. Free this field by using the
procedure FreelnvalidRecipients.

Verify: PROCEDURE [smtpHandle: Handle.
user. fullyQualUserName. mailBox: LONG STRING];

Pilot Programmer's Manual 11

The procedure Verify is used to confirm that the s-tring user identifies a known user on the
host specified by the field smtpHandle. If the the argument user is a user on the remote
host, the full name of the user (if known) and the fully specified mailbox are returned.

Expand: PROCEDURE [smtpHandle: Handle,
distributionList, expandedList: LONG STRING];

The procedure Expand asks the host specified by the field smtpHandle to confirm that the
argument distributionList identifies a mailing list, and if so to return the membership of
that list. The full name of the users (if known) and the fully specified mailboxes are
returned.

Close: PROCEDURE [smtpHandle: Handle];

Close ends the existing SMTP connection identified by smtpHandle. The connection
identified by smtpHandle is invalid after successful completion of this operation and
should not be used for subsequent operations.

FreelnvalidRecipients: PROCEDURE [smtpHandle: Handle,
invalidRecipients: LONG POINTER TO InvalidRecipientList];

The procedure FreelnvalidRecipients frees invalid recipients returned by the procedure
Post. The field smtpHandle is a handle to the SMTP connection and the field
invalidRecipients is a pointer to the sequence returned by Post.

ll.l2.4 References

RFC821 Simple Mail Transfer Protocol, Postel, August, 1982.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI - NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11.13 ArpaSMTPServer

The ArpaSMTPServer interface provides Pilot clients with an interface to the Simple Mail
Transfer Protocol (SMTP) defined by RFC821. SMTP is a mail transfer protocol to be used
with the TCP/IP protocols.

ll.l3.l Types and constants

PostProc: TYPE • PROCEDURE [
message: Stream.Handle,
recipientName, returnPath: LONG STRING];

The procedure PostProc is used by the SMTP server when a message is received for the
user specified by the field recipientName. The message can be received by reading from
the stream provided in the field message until the signal Stream.EndOfStream is raised.
The returnPath contains the return mail path to the sender of the message.

11-37

11 TCP/IP Interfaces

ExpandProc: TYPE. PROCEDURE [
dl: LONG STRING,
dataProc: PROCEDURE [user, mBox: LONG STRING));

The procedure ExpandProc is used by the SMTP server when a request for distribution list
expansion is made on the server. The client process returns the distribution list contents
identified in the field dl by calling the dataProc with each user's name in the field user and
mailbox information in the field mBox.

VerifyProc: TYPE = PROCEDURE [user: LONG STRING]
RETURNS [fullyQualifiedUser, mailBox: LONG STRING];

The procedure VerifyProc is used by the SMTP server when a request for user name
verification is made on the server. The client process returns the users fully qualified
name, if known, in the field fullyQualifiedUser and the user's mailbox identifier in the
field mailBox.

ValidateProc: TYPE • PROCEDURE [user: LONG STRING)
RETURNS [accept: BOOLEAN];

The procedure ValidateProc is used by the SMTP server when a request to deposit mail for
a particular user is made on the server. If the client process is recieving mail for the
indicated user, it I returns TRUE in the field accept.

PrintProc: TYPE • PROCEDURE [
stringToPrint: LONG STRING];

The procedure PrintProc is used by the SMTP server to give the client process debugging
and state information of its actions. The field stringToPrint contains information about
the current SMTP connections.

SMTPProcList: TYPE • RECORD [
post: PostProc,
expand: ExpandProc,
verify: VerifyProc,
validateUser: ValidateProc,
print: PrintProc);

The SMTPProcList is used to pass the SMTP server a list of procedure that the SMTP server
uses to communicate with client processes.

11.13.2 Procedures

11-38

Register: PROCEDURE [
smtpProcs: SMTPProcList, serverName: LONG STRING);

Register starts an SMTP server session. Only one session is started no matter how many
calls are made to Register. The fields smtpProcs contains a list of procedure that the
SMTP server uses to communicate with the client process. The serveName field contains
the commonly known name of the server.

Pilot Programmer's Manual 11

UnRegister: PROCEDURE;

Unregister stops the SMTP server from recieving any additional connections and releases
all resources used by the SMTP server.

11.12.3 References

RFC821 Simple Mail Transfer Protocol, Postel, August, 1982.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI· NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11.14 ArpaMailParse

The ArpaMailParse parses the headers of messages formatted according to RFC822.
Syntactic entities from RFC822, such as atom, are indicated by italics in this chapter.

Essentially, to parse a message call Initialize loop calling GetFieldName, call either
GetFieldList or NameList (depending on the semantics of the field name returned by
GetFieldName), and call Finalize. NameList is the main procedure to deal with lists of
recipients in the many syntactic forms defined by RFC822. Most of the remaining
procedures in the interface support special cases of these forms and are used infrequently.

ArpaMailParse is implemented by the program ArpaMailParserlmpl. bed.

11.14.1 Types

ArpaMailParse.BracketType: TYPE • RECORD [
group:BOOLEAN +-FALSE,
routeAddr: BOOLEAN +-FALSE);

BracketType, passed to a ProcessProc as part of its Namelnfo argument, describes the
context of a name in a name list.

group is TRUE lithe name appears in the context "phrase: ... ;"; Le., phrase is the name of a
group. This phrase is not treated as part of any recipient name.

routeAdd is TRUE if the name appears in the context "phrase < ... >"; Le., phrase is the
initial part of a route-addr describing a recipient.

ArpaMailParse.Handle: TYPE = LONG POINTER TO Object
ArpaMailParse.Object: TYPE;

A Handle is a pointer to an Object, representating an instance of a parse.

ArpaMailParse.Namelnfo: TYPE • RECORD [
nesting: ArpaMailParse.BracketType,
type: ArpaMailParse.NameType);

11-39

11 TCP/IP Interfaces

Namelnfo, used exclusively with the NameList procedure, provides the client-supplied
process procedure with information about its parameters. nesting describes the context of
this name in the name list being parsed. If nesting.group or nesting.routeAddr is TRUE,
then procedure GetGroupPhrase or GetRouteAddrPhrase may be called from the process
procedure to obtain the phrase for that nesting property.

ArpaMailParse.NameType: TYPE. {normal. file};

NameType. passed to a ProcessProc as part of its Namelnfo argument, describes how the
local name is interpreted.

normal The name is a single recipient (neither a file name nor a public
distribution list).

file The name occurs as the tag portion of an empty group list and should be
treated as the name of a file containing a list of recipient names.

ArpaMailParse.ProcessProc: PROCEDURE [
h: ArpaMailParse.Handle.
local. registry. domain: LONG STRING.
info: Namelnfo];

For each recipient encountered, NameList calls the client's ProcessProc, passing it the
simple name, registry, and Arpanet host. If domain is absent, a string of length zero (not
NIL) is passed. Each is guaranteed to contain room for ArpaMailparse.minLength characters.
local is always non-empty. The string parameters are free from leading, trailing, and
excess internal white space. info provides additional information about the name being
supplied (see the description of Namelnfo for above). domain (but not local) may be
changed in limited ways by a ProcessProc. It is permissible to either change the length to 0
or (if the length is 0) append a value to alter the qualification of the name if it is to be
passed to the write agrument of NameList. h is provided so the client may call
GetGroupPhrase or GetRouteAddrPhrase. registry is not used.

ArpaMailParse.WriteProc; PROCEDURE [string: LONG STRING];

Each time the client's ProcessProc returns TRUE, NameList outputs the complete name
(with possibility altered qualification), by calling the WriteProc with fragments of the
recipient name. NameList keeps the original format of the name as much as possible,
including bracketing, comments, and the location of white space. Successive white space
characters (outside of quoted strings) is replaced by a single space. NameList assumes
responsibility for outputting appropriate separators (commas) and brackets, based on the
values returned by successive invocations of process.

11.14.2 Constants and data objects

11-40

ArpaMailParse.endOflnput: CARDINAL = ••• ;

endOflnput should be returned by the client's next procedure (see Initialize) when the end
ofthe input is reached.

ArpaMailParse.endOfList: CARDINAL = ... ;

Pilot Programmer's Manual 11

endOfList may be used as a delimiter terminating a list of names. It has no other effect.

ArpaMailParse.minLength: CARDINAL = 40;

The registry and domain STRINGS passed to the client's ProcessProc will be at least this
long.

11.14.3 Signals and errors

ArpaMailParse.Error: ERROR [code: ArpaMailParse.ErrorCode, position: CARDINAL];

Error is raised when the parse of the mail message fails. code describes the reason for the
failure. position is the number of characters parsed when the error was detected.

ArpaMailParse.ErrorCode: TYPE. {
iIIegalCharader, unclosed Bracket, bracketNesting, implementationBug,
phraseExpeded, domainExpeded, atomExpeded, commaOrColon Expected.
at Expected, spacelnLocalName, mailBOX Expected, missingSemiColon, nestedGroup,
endOflnput, commaExpected, fieldsAreAtoms, colon Expected, lessThanExpected,
greaterThanExpeded, noFromField};

The error conditions that cause a failure are largely self-explanatory. noFromField is not
raised by ArpaMailParse, but is provided for clients who cannot succeed if the message is
either unparseable or contains no "From:" field.

11.14.4 Procedures

ArpaMailParse.Finalize: PROCEDURE [h: ArpaMailParse.Handle];

FinalizeParse finalizes the parse. This procedure must be called when the client has
finished parsing, after either normal completion or an error has occurred. Finalize modifies
h, so it should not be reused. Note: Finalize may not be called from within the process
procedure invoked by NameList or from within the catch phrase of Error.

ArpaMailParse.GetFieldBody: PROCEDURE [
h: ArpaMailParse.Handle, string: LONG STRING, suppressWhiteSpace: BOOLEAN Eo- FALSE];

GetFieldBody reads the remainder of the current field body using next (see Initialize) and
puts the characters consumed into string. If the field body is too long, overflow characters
are discarded. If the field body terminates before a CR is seen, Error[endOflnput] is raised.
Upon return, string has no initial or terminal white space (blanks and tabs) and, if
suppressWhiteSpace is TRUE, each internal run of white space is replaced by a single
blank. RFC822 line-folding conventions are also observed.

ArpaMailParse.GetFieldName: PROCEDURE [h: ArpaMailParse.Handle. field:LONG STRING]
RETURNS [found: BOOLEAN];

GetFieldName presumes that next (see Initialize) is positioned to read the first character of
a field name and it returns the field name, without the terminating colon, in field. It
leaves next ready to return the first character following the colon (or, if the end of the
message header has been reached, the character (if any) after the two CRS that normally
terminate the header). If the field name is too long, overflow characters are discarded.

11-41

11 TCP/IP Interfaces

Upon return, found is FALSE if no field names remain in the header. If the header field ends
prematurely or illegal header characters are encountered, Error[fieldsAreAtoms] is
raised. Error[colonExpected] is raised if there are embedded spaces in the field name.

ArpaMailParse.GetGroupPhrase: PROCEDURE [h: ArpaMailParse.Handle, phrase: LONG STRING];

GetGroupPhrase can only reasonably be called from inside the process procedure passed
to NameList. The phrase that introduces the current group is appended to phrase. If the
phrase is too long, overflow characters are discarded. Upon return, phrase has no initial or
terminal white space (blanks and tabs, and each internal run of white space is replaced by
a single blank. If GetGroupPhrase is called at an inappropriate time (for example, when
Namelnfo.nesting.group • FALSE), no changes are made to phrase.

ArpaMailparse.GetRouteAddrPhrase: PROCEDURE (h: ArpaMailParse.Hjlndle, name: LONG STRING];

GetRouteAddrPhrase can only reasonably be called from inside the process procedure
passed to NameList. The phrase that describes the current recipient is appended to name.
If the phrase is too long, overflow characters are discarded. Upon return, name has no
initial or terminal white space (blanks and tabs), and each internal run of white space has
been replaced by a single blank. If GetRouteAddrPhrase is called at an inappropriate time
(e.g., when Namelnfo.nesting.routeAddr • FALSE), no changes will be made to name.

ArpaMailparse.lnitialize: PROCEDURE [next: PROCEDURE RETURNS [CHARACTER],
RETURNS [ArpaMailParse.Handle];

Initialize creates an instance of the header parser and returns a Handle to be passed to
other procedures of this interface. Subsequent invocations of GetFieldName,
GetFieldBody, and NameList obtain their input using next.

ArpaMailParse.NameList: PROCEDURE [
h:ArpaMailParse.Handle, process: ArpaMailParse.ProcessProc, write: ArpaMailParse.WriteProc
+-NIL];

The NameList procedure expects to read characters using next (see Initialize) for a
structured field body consisting of a list of recipient names. For each name encountered, it
calls process. If process returns TRUE and write is not NIL, NameList outputs the complete
name, with potentially altered qualification, by calling write. If any syntax errors are
detected during parsing, Error is raised. It is legitimate for the process procedure to raise a
signal that causes NameList to be unwound.

ArpaMailParse.StringForErrorCode: PROCEDURE [code: ArpaMailParse.ErrorCode, s: LONG STRING];

StringForErrorCode appends a user-sensible error message onto the string s. If the error
message is too long, overflow characters are discarded.

11.14.5 References

RFC822 Standard for the Format of ARPA - Internet Text Messages, Crocker, August, 1982

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI - NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

11-42

A

Performance Criteria

This appendix contains quantitative information about the observed performance of Pilot
and information about how client programs are expected to behave. Where machine
dependencies are a factor, it is assumed that the machine is a Dandelion. Some effort has
been expended in describing the source of and confidence in the figures presented. These
figures are presented to convey the flavor of the system rather than as hard performance
guarantees. In general, crisp and quantitative performance requirements for Pilot are not
available for comparison with the figures presented here.

A.I Physical memory requirements of Pilot

The resident part of Pilot, the part that is ineligible for swapping, is 113 pages (28,928
words). It is allocated as follows: code - 51, data - 36, the Mesa runtime data structures - 19,
and global frames - 7. As far as memory usage is concerned, this is the only machine
dependent part of Pilot.

Most Pilot functions will require additional code and data to be swapped in. The memory
requirements for Pilot functions are given in terms of working sets. A working set for a
function is defined to be those virtual pages (code and data) which, if they are all in
memory, provide a local minimum of page faults to service the function.

Because there is a significant overlap of code and data between one Pilot function and
another, it is not possible to simply add up the sizes of all the working sets one anticipates
using to get the total amount of memory required for a task_

Working set sizes are given in pages. They do not include the resident.

Pilot Function

Comm unication

Working
Set Size

Idle 15
First Connection 13
Subsequent Connections 2 - 17

Notes

Does not include Idle
Does not include first'connection

A-l

A Performance Criteria

Pilot (o'unction

File
Create
Delete
SetSize

Floppy Channel
Heap

MakeNode
FreeNode

Signals
Space

Allocate
Deallocate
MapAt
UnmapAt

Streams

Working
Set Size

26
25
28
8

4
4
7

9
14
21
6
1

A.2 Execution speed and client program profile

A-2

This section enumerates some typical characteristics which Pilot expects or will support in
its clients. These estimates are intended to assist the client programmer in designing his
use of Pilot facilities. They provide guidelines about which facilities are expensive and
thus to be used sparingly and which facilities are inexpensive and can be exercised
heavily. None of these estimates are binding on either Pilot or client programs. Pilot 11.0
may deviate from these figures.

These estimates apply to the cumulative load imposed by all clients operating on a single
system element. A particular client program or system which does not exercise any of the
resources very heavily may share the system element with other client programs,
provided that the sum of their requirements remains within the estimates set out below.

A.2.1 Memory management

The following figures indicate the dynamic cost of virtual memory in terms of disk
accesses, CPU time, and real time for a particular disk unit.

Facility

disk accesses to create
or delete a space

number of disk accesses to
handle a page fault

cpu time to handle a page fault

Minimum

o

o

4-5 msec

real time to handle a page fault 1.2 5-7 msec

Typical Maximum

2

1 >2

6-8 msec

45-55 msec >0.1 sec

l"'Paging from the local Shugart 4008 disk. Real time per disk access = 1 -200 milliseconds.

Pilot Programmer's Manual A

2~t) guarantt'~ a~ til thi' nlilXll1tlll1l tunt' t.1) SI'f'\'ICe a pa~e f;nalt \\'illl~\'pr' hf' ~ivl'n. In lhp I'asp that tht)

disk is 'lccllpl('d with ,'I'at I.lllil' fll·' sslllJ.(. paL;e fault halldlillJ.(llllwS "I' sl'v al , .. com.!:; "I' lllon,' ,'(1n

occur. The maximum tlmp stated is the max time exclusive of such situatIOns.

A.2.2 File management

The following figures indicate the typical characteristics of the Pilot file system. In this
table, the term "active file" means a file which has been referenced recently so that its
location and description are still present in the Pilot's caches.

Facility

total dri ves
(i.e., active physical volumes)

total existing files per volume

rate of file creation and
deletion (long term average)

size of files (in pages)

number of volume pages
allocated as a unit

number of file pages
accessed in a sequence 1

Typical

1

4

8

1 Limited by the amount of real memory for the access sequence.

A.2.3 Communication via the Ethernet

Maximum

16

lIdisk page

8 * 106

8't; 106

8 * 106

The following figures indicate the expected performance of communication between
system elements connected to the same Ethernet.

Facility

memory-to-memory transfer
through the Stream interface

A.2.4 Processes

Maximum

7.5 * 105 bits/sec

The following table provides data about the expected processing time on the Dandelion of
each of the process structuring facilities.

Facility Minimum Typical Maximum

Monitor entry or exit 3J.lsec. < 4 J.lsec. 5 J.lsec.

Process switch time 25 J.lsec. 30 J.lsec. 40 J.lsec.

Fork or .Join2 0.7 msec. 1 msec, 1.5 msec.

A-3

A

A-4

Performance Criteria

Facility Ylinimum Typical Ylaximum

Wait 1,2 10/lsec. <60/lsec. 100 f1.sec.

Notify! 10 /lsec. 15/lsec. 20/lsec.

1 Exc:1usive of process switl'hing time.

2The wide range on this facility reflects a current lack of data about its operating time rather than a

dynamic variation in the tinal product.

B

Managing and Assigning File Types

In Pilot, every file must be assigned a type code at the time it is created. This code is of
type File.Type and is constant for the life of the file. It provides a means for Pilot, various
scavenging programs, and clients to recognize the purpose for which each file was
intended. This is especially important because files on Pilot disks do not inherently have
meaningful strings for names, making it difficult for a human user or programmer to
recognize which file is which. To make this principle work effectively, each different kind
of file should be assigned its own unique type. This appendix describes how the type codes
are assigned.

The center of this scheme is the FileTypes interface, maintained by the Pilot group. In this
file are defined all subranges of File.Type assigned to individual client and application
groups. This module is designed so that it can be recompiled whenever a new type is
assigned without invalidating' any old version. Thus, within certain limits, a program
may include any version of FileTypes which contains the type codes of interest to it without
building in an unnecessary or awkward compilation dependency.

The basic structure of File Types is a set of subrange and constant definitions of the following
form:

PilotFileType: TYPE = CARDINAL [0 .• 256);

MesaFileType: TYPE = CARDINAL [256 .. 512);

DCSFileType: TYPE = CARDINAL [512 .. 768);

• • . -- Subranges assigned to other clients and subsystems

The subranges are designed to allow individual client organizations to administer their
own file type assignment for their own purposes. Each group should maintain a module of
the same form as FileTypes and include FileTypes in its DIRECTORY clause. Such a module would
be used to assign types within the subrange allocated to that group while still providing a
measure of protection against conflicting assignment by independent groups. The
structure of this module should be similar to that of File Types in order that the assignment
ofa new type code does not trigger a universal recompilation of the subsystem.

B-1

B

8-2

Managing and Assigning File Types

For example, the Ylesa Development Environment group is assigned the subrange of file
types [9280 .. 9344) to allocate as the) see lit. This allocation is managed by the module
MesaDEFileTypes, of the following form:

DIRECTORY

File: USING [Type],
FileTypes: USING [MesaOEFileType);
MesaOEFileTypes: DEFINITIONS II

BEGIN
MesaOEFileType: TYPE II FiIeTypes.MesaOEFileType;
-- MesaDE File Types
tUnassigned: File.Type II (MesaOEFileType[FIRST(MesaOEFileType)));
tRootOirectory: File.Type II [tUnassigned + 1];
tOirectory: File.Type II [tRootDirectory + 1];

• -- Other rile eypes ror use by Mesa
END.

This module can be recompiled independently of the module FiteTypes, for example each
time a new type code is added by the Mesa Development Environment group. All of mesa
environment would derive the type codes for its files from this module.

In a similar manner, types within the sub range PiiotFileType, for file types used by Pilot
itself, are found in a private Pilot definitions module.

It is possible for two different program modules or configurations which include two
different versions of FileTypes. bed (or any of its derivatives, such as
MesaDEFileTypes. bed) to be bound together without error or conflict. This situation
can arise, for example,because one configuration was compiled prior to the assignment of
a new file type while the other was compiled afterwards. A problem occurs, however, if a
module includes (either directly or indirectly) two different files defining file types. In this
case, the compiler will refuse to compile the module unless the sa.me version is used in
both cases. For example, if a program includes both FileTypes and MesaDEFileTypes, and if
FileTypes. mesa was updated after MesaDEFileTypes. bed was created, then the Mesa
compiler would generate an error message about FileTypes being used in differing versions.
This error would also be generated if the program included File Types indirectly, say, by
including another definitions module which itself had included a different version of
File Types.

This problem should not, however, occur in a well-structured system design. For example,
a file of type tWidget is perceived as such only by the module or modules which actually
implement widget objects. All other modules use only a well-defined interface and deal in
widgets, not widget implementations; Le., the underlying file and its type are hidden.
Since a single module will not be involved in the implementation of abstractions from two
widely separated parts of the NS world, it need not see two different modules both defining
separate ranges of type codes for files.

Therefore, the following style rules are recommended:

a. FileTypes. bed and its derivatives should be included only in program modules, not
in definitions modules.

Pilot Programmer's Manual B

b. Only one module defining the type codes for' tiles should be included in any program
(e.g., do not include both FileTypes and MesaDEFileTypesl.

c. The Pilot group will keep FileTypes.mesa and FileTypes.bcd up-to-date in
conspicuous places. on the release directory between releases of Pilot.

d. All programs, including Pilot, Common Software, and applications, should use type
codes only symbolically from modules in which they are assigned. No program should
fabricate a value of type File.Type from a numeric constant.

If all clients of Pilot observe these rules and the style of using Mesa definitions modules of
the form of FileTypes. the job of administering the assignment of type codes for Pilot files can
be kept manageable. In return, the Pilot group can react immediately to requests for a
new type code or subrange of type codes. If this style is not observed, the administration of
global constants such as these will become a complicated, time-consuming task with a
corresponding difficulty in reacting quickly to requests.

8·:3

c

Pilot's Interrupt Key Watcher

This appendix describes the operation of the interrupt key watcher that can be enabled by
users or clients at boot time, via boot switch 8.

If one goes to the debugger and then does an interpret call, the interpret call is executed in
the process that went to the debugger, and consequently runs at that process's priority. If
this is a priority at which the taking offaults is restricted, the interpret call may fault and
block trying to allocate state vectors.

If Pilot is booted with the 8 boot switch, pressing LOCK-LeftSHIFT-RightSHIFT-STOP will cause
Pilot to call the debugger with the message "Pilot Emergency Interrupt". This is done at a
priority level that precludes doing any interpret calls from the debugger.

C-l

D

UtilityPilot

Systems that are based on PilotKerneJ.bcd require that a disk be present on the machine.
The boot file containing the system must be installed on the disk, from which it is loaded
into the processor memory when the system is booted. The disk contains the system
physical and logical volumes for the system (i.e., those on which the boot file is located).

Systems that are based on UtilityPilotKerneJ.bcd do not require that a disk be present on
the machine. The boot file containing the system may be loaded from any source, e.g.,
ethernet, floppy disk. Utility Pilot provides the same facilities as regular Pilot, with the
following exceptions:

• There are no system physical and logical volumes.

• No volumes are brought online as part of Pilot initialization.

• The entire system and its working data must fit into the real memory of the
processor. (Backing storage provided by Space.ScratchMap and the system heaps
come from real memory)

• Clients must validate/set local time parameters before calling any pilot facility that
needs them.

• Map logging is disabled.

• Run-time loading is not supported.

UtilityPilot is commonly used to build special utility systems, such as, disk initializers
and diagnostics.

D-1

E

Multi-national Considerations

The hardware and software described in this manual support serial communication via
the RS-232-C controller in accordance with EIA standard RS-232-C. No support is
provided for CCITT Recommendations V.24 and V.27, the equivalent prevailing standard
in most of Europe.

E-l

F

References

F.l Mandatory references

The following documents should be studied before or in conjunction with this document:

• Courier: The Remote Procedure Call Protocol, XSIS 038112

• Mesa Language Manuai··610E00170

• XDE User's Guide··610E00140

• Mesa Programmer's Manuai··610E00150

In addition, the release documentation accompanying each release of Pilot should be
consulted before writing programs that use Pilot.

F.2 Informational references

The following documents provide useful additional information:

• The Ethernet, A Local Area Network, Data Link Layer, and Physical Layer
Specifications, Version 1.0. [September 30, 1980]

• Xerox Internet Transport Protocols. [February 1982]

F-1

F References

F-2

a1,4-48
a16,4-48
a2,4-48
a4,4-48
a8,4-48

Index

Abort, 2-18, 2-21, 5-16
abort

canceling, 2-22
key, 5-33

AbortCall, 6-44
ABORTED, 2-22
aborted, 5-29, 5-30,10-9
abortedByDelete, 5-29, 5-30
AbortPending, 2-22
Access, 4-31
access permissions, 4-31
Activate, 4-37, 4-38, 4-39
ActivateProc, 4-38
Add Dependency, 2-32
address fault, 2-28, 2-36, 4-30, 4-35,

4-45, 5-23, 9-1
addressfault, 9-3
AddSegment, 4-47
AdjustGreenwichMeanTime, 2-13
agent procedure, 2-30,2-31
AgentProcedure, 2-31
alarm clock, 2-15
Alignment, 4-48
alignment, 4-48, 5-3
alignment

byte, 5-3
page, 5-3, 5-23
word, 2-35, 4-48, 5-3

alive, 4-31
Allocate, 2-35, 4-40, 4-41
allocation

of objects, 2-34
AliocationPool, 2-34,2-35

AllocFree, 2-34
AllocPoolDesc, 2-35
alreadyAllocated, 4-40,4-41
alreadyAsserted, 4-3, 4-5, 4-6, 4-7,

8-7
alreadyDeallocated, 4-41
AlreadyFormatted,5-25
AlreadyFreed, 2-35,2-36
Alto, 7-10
Alto

ADL keyboard, 5-6
Microswitch keyboard, 5-6
time standard, 2-13

american, 10-14
ANSI,7-10
anyEthernet, 2-4
anyPilotDisk, 2-4, 2-5
Append,7-11
AppendChar, 7-6
AppendCharAndGrow, 7-9
AppendCurrent, 7-11
AppendDecimal, 7-8
AppendExtensionlfNeeded, 7-9
AppendLongDecimal,7-8
AppendLongNumber, 7-8
AppendNumber, 7-8
AppendOctal, 7-8
AppendString,7-6
AppendStringAndGrow, 7-9
AppendSubString, 7-6
Applications, 1-2
ApproveConnection, 6-14,6-17
Arguments, 6-48, 6-51
arguments, 6-50, 6-51; 6-52, 6-53
ARRAY, 6-46
Ascii

DEFINITIONS, 7-1
asciiByteSync, 6-28
AssertNotAPilotVolume, 4-6

I-I

I

1-2

Index

AssertPilotVolume, 4-5, 4-6
AssignAddress, 6-24
AssignDestinationRelativeAddress

6-25
AssignLocalAddress, 2-11
AssignNetworkAddress, 6-11,

6-12,6-18
asynchFramingError, 5-29, 5-30
asynchronous, 6-31, 6-32
asynchronous operation

defi~ition of, 1-8
atomic'

restoring, 8-16
saving, 8-16

Attention, 3-5, 3-8, 6-20
attention, 3-4
attention, 6-20, 6-21
attention flag, 3-2, 3-8
Attributes, 4-53, 5-17
AutoRecognitionOutcome, 6-28
AutoRecognitionWait, 6-28
AwaitStateChange, 4-3
Background,5-13,10-14
backing file, 1·5, 2.17, 5-33
backing storage, 4-30, 4-32
backing stream, 5-34
BackingStream, 5-34
Backstop

DEFINITIONS, 9-1
backstop, 1-10,2-28,9-1

control, 9-1
core, 9-1

" implementing, 9-1
" initializing log file, 9-2

log file, 9-1, 9-2
"logging errors, 9-2
reading log file, 9-1, 9-4

Backstoplmpl. bcd, 9-1
BackstopNub, 9-4

DEFINITIONS, 9-1
BackstopN ublmpl. bcd, 9·1
bad pages, 4-9, 4-10, 4-27, 8-5, 8-6
bad sector, 5-23
badCode, 2-24, 2-25
badDisk, 4-3, 4-6, 4-7,5-25
BadPage, 8-5, 8-7
badPageList, 4-7, 4-8
badSedors, 5-27
badSpotTableFull, 4-3, 4-10
BadSwitches, 8-11
Base, 2·3, 4-44
BASE POINTER, 4-44
basic machine, 1-2

facilities, 1-3
BBTable, 5-13, 5-14
Beep, 5-16, 10-15

BEL, 7-1
Billing and Accounting Functions,
1-3
binding, 6-46
BitAddress, 2-3
BlTANO,2-9
BitBlt, 2-3, 2-6, 5-13

table, 5-13
BitmaplsDisconnected, 5-14
BlTNOT,2·9
BitOp,2·8
BlTOR,2-9
BITROTA TE, 2-9
BlTSHIFT,2-9
bitsPerByte,2-1
bitsPerCharacter, 2-1
bitsPerWord,2-1
bitSync, 6-28
bitSynchronous,6-31
BlTXOR,2-9
black, 5-13,10-14
BlackenScreen, 10-15,10-16
Blank, 7-3
Blanks, 7-3
BlinkDisplay, 5-13, 5-34
Block, 2·2,3-3,3-4,3-12,3-13,6-6

6-9,6-17,6-20,6-21,6-65,7-3
" block, 4-58
blockPointer, 2-2
BlockSize,4-44
boolean,10-18
BooleanDefaultFalse, 4-14
boot button, 8-13, 8-15
boot file, 2-20, 2-26, 4-8, 4-14, 5-28,

8-2,8-4,8-7,8-8,8-9, 8-13, 8~14
booting, 8-15
creation, 8-13
default, 8-8
installation, 8-7, 8-14, 8-15
leader, 8-13, 8-14
local, 8-3
making, 8-14
universal,8-3
updating, 8-15
writing, 8-14

boot loader, 2-17, 8-8
boot switch, 2-16, C-1

default, 8-11
assignments, 2-16

bootable floppies, 5-27
BootButton, 8-13, 8-15
BootDevice,2-16
bootFile, 4-7,4-8
BootFileArray, 4-24
BootFileType, 4-24, 8-7
BootFromFile, 8-13,8-15

Pilot Programmer's Manual

BootFromPhysicalVolume, 8-13.
8-15

BootFromVolume, 8-13, 8-15
booting

Pilot's state after, 2-16
preparation, 8-4

booting agent, 2-16
BootLocation, 8-16
bootServerSocket, 2- 11
BoundsFault, 2-27
break,5-32
breakDeteded, 5-29, 5-30, 5-31
broadcastHostNumber, 2-10
BS, 5-36, 7-1
8SMemCache.bcd,9-1
bug, 9-3
bulk data transfer, 6-47, 6-50, 6-53,

6-55,6-58
Byte, 2-1,3-2
byte alignment, 5-3
Byte Bit

DEFINITIONS, 2-6
bytesPerPage, 2-2
bytesPerWord, 2-1
byteSyrichronous, 6-31
CADFileType, 4-19
Call, 6-49, 6-59
call,9-3
Call Debugger, 2-28,9-1
CancelAborts, 2-22
cancelSignal, 10-16, 10-17
cannotWriteLog, 4-23
cantFindStartListHeader, 8-9
CantlnstallUCodeOnThisDevice,

8-58-7
cantWriteBootFile, 8-9
cardinal·,l0-18
catch phrase, 2-22, 3-5
Caution, 1-9
cCallCSC, 10-17
CCITT Recommendations, E-!
cCloseWn, 10-17
cdc9730, 2-5
CedarFileType, 4-19
cEnsure Ready , 10-17
Century Data Systems, 2-5
cExit, 10-17
cFirst, 10-17
change count, 4-3, 4-4
ChangeLabelString, 4-16
ChangeName, 4-9 .
channel, 1-7,6-1
ChannelAI readyExists, 5-28
Channel Handle, 5-28
ChannellnUse, 6-37
channellnUse, 10-9

ChanneIQuiesced.5-29
ChannelSuspended, 6-:38
Char, 7-2
charader, 1 0-18
character terminal, 5-28, 5-32
CharaderLength, 5-30, 5-31
CharLength, 6-29,6-32,6-34
CharsAvaiiable, 5-30, 5-34
charsPerPage, 2-2
charsPerWord,2-1
CharStatus, 5-35
checkOnly, 4-7, 4-8, 4-23
CheckOwner, 4-51,4-54
CheckOwnerMDS, 4-54
Checksum, 2-6
dnsDiffCleanDisk, 10-17
dnsertCleanDisk, 10-17
dnsertDiagDisk, 10-17
dnsertWriteable, 10-17
Class, 4-33
OassOfService, 6-11, 6-47, 6-48
dast, 10-17
ClearDisplay, 10-15, 10-16
clearinghouse, 2-11
clearingHouseSocket, 2-11
client, 6-10
client program profile, A-2
client programs, I-I
clients, 2-33
Oientslmpls, 2-33
clock ticks

conversion of, 2-19

I

Oose, 4-15, 4-56,4-58,5-22,6-18,
6-19

close protocol, 6-18
closedAndConsistent, 4-14
closedAndlnconsistent, 4-14
OoseReply, 6-19
closeReplySST, 6-18,6-19
closeSST, 6-18, 6-19
CloseStatus,6-18,6-19
cmcll,6-28
cNBNotReady, 10-17
code links, 2-24, 2-26
CommError, 10-1
Common Software, 1-2,5-28,5-32,

7-1,7-2,7-5,7-10,8-3
CommonSoftwareEventlndex,2-31
CommonSoftwareFileType,

4-19,4-20
CommonSoftwareFile Types

DEFINITIONS, 4-17
CommParamHandle, 6-29, 6-32
CommParamObject, 6-29,6-32
communication

errors,6-14

1-3

I

1-4

Index

initialization, 8-12
link, 1·7
performance, A-3
system, 1-6

Communication package, 2-17, 8-1
Communication. bed, 6-4, 6-9, 6-23
communication Error, 10-1
Compact, 5-26, 5-27
Compare, 7-7
Compiler option, 2-27
CompletionCode, 3-4
CompletionHandle, 6-30, 6-32
complex services, 1-4
condition variable, 1-4, 1-10,2-19,

2-22
timeout, 2-20

ConfigError, 2-24, 2-25
ConfigErrorType, 2-24
configuration, 2-24, 2-26
connection, 6-10
ConnectionFailed, 6-13, 6-14, 6-15
ConnectionID,6-11
connection less protocol, 6-4
ConnectionSuspended, 6-14, 6-19
containsOpenVolumes, 4-3, 4-5, 4-6
Context, 5-17, 5-19
continueOnError, 1O~19
continueToNextError, 1 0-18
Control, 7-1
control characters, 7-1
control codes, 3-2
Control Data Corporation. 2-5
control link

null,2-27
Control Fault, 2-27
ControILink,2-23
Coordinate, 5-12, 10-14
CoPilot, 8-2
COPY, 2-7
Copy, 7-7
CopyFromPiiotFile, 5-23
Copyln, 4-35, 4-36, 5-23, 8-14
CopyOut, 4-35, 4-36; 5-23,8-14
CopyToNewString, 7-9
CopyToPilotFile, 5-23
Correspondent, 6-30, 6-32, 6-34
cOtherDiskErr, 10-17
CountType, 10-10
Courier data t¥pes, 6-59
courierSocket, 2-11
CR, 7-1,7-3
Create, 3-10, 4-12, 4-21, 4-44, 4-45,

4-50, 4-52, 4-53, 5-28, 5-32, 5-33,
6-11,6-13,6-15,6-38,6-47,6-61,
7-12,8-13

CreateBackstopLog, 9-2

CreateFile, 5-26,5-27
CreateFloppyFromlmage, 5-24
CreateListener, 6-11, 6-13, 6-17
CreateMDS, 4-50, 4-52
CreatePhysicalVolume, 4-5,4-6, 8-5
CreateReplier, 6-7, 6..-9
CreateRequestor, 6-7
CreateScrollWindow, 5-14
CreateSubsystem, 2-32
Create"'ransducer, 6-11. 6-12, 6-13,

6-14,6-15,6-18
CreateUniform, 4-50
cRemoveCleanDisk, 10-17
cRemoveOiskette, 10-17
Current, 7-11
current date, 7-10
current time, 7-10
currentLogVersion, 4-24
cursor, 5-14
CursorArray, 5-14, 10-14
CyclicSubsystem, 2-32
Dakuon, 5-9
damaged, 4-7, 4-8
DamageStatus, 4-7
Dandelion, 2-17. 5-16, A-I, A-3
dangling reference, 1-9,2-18,2-24,

2-2.4,2-25, 3-3
data blocks, 8-5
data space, 2-17
data window, 4-34, 4-35
DataError, 5-22, 5-23,5-25
dataLost, 5-29, 5-30 .
dataTerminalReady, 6-34
Date, 7-4,7-5
date, 2-12
DateFormat, 5-36, 7-4
dateOnly, 5-37, 7-4
dateTime, 5-37, 7-4
Daylight Saving Time, 2-13
DBITAND, 2-9
DBITNOT,2-9
DBitOp, 2-9
DBITOR, 2-9
DBITSHIFT,2-9
DBITXOR, 2-9
DCSFileType, 4-19,8-1
Deactivate, 4-37, 4-38, 4-39 .
DeactivateProc, 4-38
dead,4-31
Deallocate, 4-41
debuggeDebugger, 4-14
debugger, 4-13,4-14,8-10
debugger, 2-17,2-28,8-4,8-9,9-1,

Col
debugger. 8-4
remote, 2-17

Pilot Programmer's Manual

debuggerDebugger, ../.-13
debuggerVolumelD, ../.-15
Decimal,7-4
DecimalFormat, 7-3
DecodeSwitches, 8-11
default, 5-25
default stream, 6-58
default volume, 4-11
defaultBase, 4-40,4-41
defaultlnputOptions, 3-4, 6-20, 6-58
defaultObjed,3-18
defaultPageCount, 5-23
defaultRetransmissionlnterval,6-5
defaultSwapUnitOption, 4-33
defaultSwitches, 2-16, 8-12
defaultTime, 7-11
defaultWaitTime, 6-5, 6-10
DEL,7-1
DEL,5-33
Delete, 3-3, 3-10, 4-21, 4-51, 5-29,

5-30,5-32,6-7,6-40,6-47
delete, 3-17
DeleteFile, 5-26
DeleteListener, 6-13, 6-14, 6-17
DeleteLog, 4-24, 4-26
DeleteMDS, 4-51
DeleteOrphanPage.4-28
DeleteProcedure, 3-17
DeleteScrollWi ndow, 5-15
DeleteSubString, 7-7
DeleteSubsystem, 2-32
DeleteTempFiles, 8-10
Density,5-25
dependency relationship, 2-32
DependsOn, 2-31, 2-33
Description, 6-49, 6-59
description, 6-53
description routine, 6-59, 6-64, 6-66
DescriptorForArray, 6-65
deserialization, 6-61
DeserializeParameters, 6-66,7-12
Destroy, 5-33, 7-12
Detach, 2-18, 2-21, 2-29
Detail,10-6
Development Common Software, 1-9
development tools, 8-2
Device

DEFINITIONS, 2-4
device driver, 1-7,5-1
device faces, 8-1
device interfaces

model of, 1-10
device numbers, 2-4
device types, 2-4
deviceNotReady, 1 0- 18
DeviceStatus, 5-31, 6-32

DeviceTypes

DEFINITIONS,2--l

Diablo 630 charaster printer, 5-28
diagnostics, 10-1
DiagnosticsFileType, 4-19
diagnosticsServerSocket, 2-11
Dial,6-43
Dialer testing, 10-12
DialMode, 6-30, 6-33
DialupOutcome, 10-13
DialupTest, 10-13
DifferentType, 4-58, 4-59
directoryFull,4-16
Disable, 4-57
disable, 4-57
DisableAborts, 2-22
DisableTimeout, 2-20
disconnected, 5-12
disjoint data, 6-46
disjoint data, 6-52, 6-53, 6-65
disjoint data types, 6-64
DisjointData, 6-61,6-65
disk diagnostic, 8-4
disk drive, 4-3, 4-4

change state, 4-3
direct access, 4-4
inactive state, 4-5, 4-6
non-Pilot access, 4-4, 4-5
Pilot access, 4-4
read-only, 4-5
ready, 4-3, 4-4
state, 4-4

disk formatting, 8-4
DiskAddress, 5-19
diskette, 5-17

bad pages, 5-27
compaction, 5-25
free pages, 5-25, 5-27
IBM format, 5-17, 5-20
label,5-25
malformed, 5-27
Troy format, 5-17
write enable sticker, 5-23
Xerox 850 format, 5-17

diskette hardware error
read or write, 5-23

diskHardwareError, 4-27, 4-28
diskNotReady, 4-27, 4-28
DiskPageNumber, 8-5,8-6
diskReadError, 4-3, 4-6
Dispatch, 6-48
dispatch, 6-48
Dispatcher, 6-52, 6-57
dispatcher, 6-52
display, 5-12

blink,5-13

I

[-5

I

1-6

Index

border, 5-13
cursor, 5-12,5-14
cursor coordinates, 5-14
cursor pattern, 5-14
image, 5-12

DisplayFieldsProc, 10-19
DisplayNumberedTableProc, 10-19
displayStuff,10·18
DisplayTableProc, 10-19
DivideCheck, 2·8, 2-28
DIVMOD,2·8
DocProcFileType, 4-19
double, 10· 18, 5·17, 5-25
down, 2-16
Drive, 5-20
Duplexity, 6-29,6-33
duplicate, 4-25
duplicate page, 4·25
duplicate suppression, 6-4, 6-9
duplicateRootFile, 4·16
east, 2-13
ebcdicByteSync, 6-28
echo testing, 10-2
EchoClass, 5-34
echoerSocket, 2·11
EchoEvent, 10-3
echoing, 6-35
EchoParams, 10-3, 10-4
EchoResults, 10-4
echoUserNotThere, 10-5
EIA Standard RS-232-C, E-l
EIDisk,8-4
electronicMailFirstSocket, 2-11
electronicMailLastSocket, 2-11
Empty, 7·7
empty, 4-9
emptyFile, 8-7
EnableAborts, 2-22
end of time, 2-12
end-of·stream

implementation, 3-5
endEnumeration, 6-23
endOfFile, 5-22, 5-23
EndOfStream, 3-5, 3-7, 6-19
endOfStream, 3-4
EndRecord, 3-6,3-12,3-14
endRecord, 3-4, 3-6, 3-7, 3-12
EntryType, 4-25
EnumerateExports, 6-66
Enu~erateRoutingTable, 6-25
EnumerationAborted, 2·34
Environment

DEFINITIONS, 2·1
envoySocket, 2·11
Equal,7-7
EqualSubString, 7-7

Equivalent, 7-7
EquivalentSubString, 7-7
Eras!!,4.13
Error, 2·25, 2-35, 4-2, 4·3, 4-8, 4-9,

4-10,4·12,4-20,4·23,4-31,4-35,
4-36, 4-41, 4-42, 4-50, 4-55, 5·14,
5-17,5-21,6-6,6·8,6·9,6-47,
6-53,8-5, 8-7, 8-9, 8~ 10

error, 4-56
error

protocol, 6-2
uncaught, 9-1

error-free, 6-9
Error[alreadyAssertedl,8-5
ErrorCode, 6-47,6-48,6-49,6-50,

6-51,6-53,6-59
ErrorEntry, 9-4, 9-5
ErrorHandling, 10-19
ErrorReason, 6·6
errorSocket, 2-11
ErrorType, 2·35, 4-3, 4-4, 4-5, 4-6,

4-12,4-13,4-20,4-23,4-27,4-28,
4-31,4-33,4-38,4-40,4-41,4-50,
4-51,4-54,4-55,4-56,4-57,5-14,
5-15,5-17,5-20,5-21,5-22,5-23,
5-24, 5-25, 5-26, 5-27, 5-28, 9-3

ESC, 7-1
ESC,5-37 .
etherBooteeFirstSocket, 2-11
etherBooteeLastSocket, 2-11
etherBootGermSocket, 2-11
EtherDiagError, 10-5
EtherErrorReason, 10-5
Ethernet, 2-4
ethernet, 2-4
ethernet, 1-7,6-1,2-17,2-29,8-2,

8-11,8-14
performance, A-3
statistics, 10-6

Ethernet 1, 2-17
ethernetOne, 2-4
EtherStatslnfo, 10-6
european, 10-14
even, 5-31
Event, 2-31
eventData, 2-31, 2-33
Eventlndex, 2·31
EventReporter, 10-5
ExchangeClientType, 6-4, 6-9
ExchangeHandle, 6-5, 6-9
ExchangeID,6-5
exit,10-18
Expand, 4-53
ExpandAllocation, 2-35
ExpandMDS, 4-53
ExpandString, 7-10

Pilot Programmer's Manual

expiration date, 8-11
exportedTypeClash, 2·24, 2·25
Exportltem, 6-66
ExportRemoteProgram, 6-48, 6-52,

6-56,6-61,6-66
Exports, 6-66
face, 1-1,8-1
failure, 6-28
FailureReason, 6-15
FailureType,8-7
fetch, 6-61
fetch,6-66
FF,7-1
Field,10-18

. FieldDataType,10-18
File, 4-17
file, 1-5,4-1,4-17

absence of pages at end, 4-25
access, 1-5
addressing, 4-18
attributes, 4-21
create, 4-21
creation performance, 4-21
delete, 4-21
extension, 4-22
id,1-6
identifier, 4-17
list, 5-21, 5-25,5-26
location of, 1-2
management, 1-10

performance, A-3
_ manager, 2-17.
maximum ~ize, 4-18
name, 4-17
permanent read-only, 4-21
temporary, 4-22, 4-26
type, 5-28
type code, 4-18

allocation, 4-18
windows, 4-21,4-34

File

DEFINITIONS, 4-17
FileCount, 5-21
FileEntry, 4-24, 4-25
FileHandle, 5-22
FilelD, 5-21, 5-28
fileListFull,5-26
fileListLengthTooShort, 5-24
FileLocation, 8-16
fileNotFound, 5-22, 5-23, 5-26
FileServiceFileType, 4-19
FileTypes, B-1, B-2
FileTypes,4-19

DEFINITIONS, 4-17
FileTypes.bcd, B-2, B-3
FileTypes. mesa, B-3

FiliRoutingTable, 6-25
FiliScreenWithObject, 10-16
filter, 1-7, 3-1,3-2, 3-5, 3-9, 3-11,

3-13,3-14,3-18

I

FindAddresses, 6-18
FindDestinationRelativeNetID,6-26
FindMyHostID,6-26
FinishWithNonPilotVolume, 4-6
first64K, 2-3
firstPageBad,8-7
firstPageCount, 2-2,4-2,4-11,4-18,

4-29
firstPageNumber, 2-2,4-2,4-11,

4-18,4-29
firstPageOffset, 2-3, 4-29
FirstSA 1000PageForPilot, 8-6
Fi rstt300PageForPi lot, 8-6
Firstt80PageForPilot, 8-6
five12,10-18
flakeyPageFound, 8-7
Floppy

DEFINITIONS, 5-21
floppy

enumeration of bad sectors, 5-27
enumberation of files, 5-26
Pilot supported standard, 5-22
snapshotting and replication, 5-24

floppy disk, 5-16, 8-2
drive characteristics, 5-17
multiple sector transfers, 5-19

Floppy file system, 4-20, 5-21
F/oppyChannel

DEFINITIONS, 5-16
FloppyCleanReadWriteHeads,

10-20, 10-21
FloppyCommandFileTest, 10-21
FloppyDisplayErrorLog, 10-21
FloppyExerciser, 10-20
floppyFailure,10-18
FloppyFormatDiskette, 10-21
floppylmagelnvalid, 5-24
FloppyImpl.bcd,5-21
FloppyMessage, 10-17
FloppyReturn, 1 0-18
floppySpaceTooSmall, 5-24
FloppyStandardTest, 10-20
FloppyWhatToDoNext,10-18
flow-controlled,6-9
FlowControl, 6-30, 6-33
flowControl,6-35
Flush,4-53
FlushMDS, 4-53
ForceOut, 4-22, 4-37, 4-38, 4-39
FORK, 2-18, 2-20
Format, 5-25,8-5
Format

I-7

I

1-8

Index

DEFINITIONS, 7-2
Format package, 7-2
FormatBootMicrocodeArea,8-5
Formatlmpl.bcd, 7-2
FormatPilotDisk, 8-5, 8-7

OEFINITIONS, 8:3
FormatPilotDisklmpl.bcd,8-5
formatted, 8-5
FormattingMustBeTrackAligned,

8-5
Frame, 9-3
frame links, 2-25, 2-26
frameTimeout, 6-35
FREE, 4-43, 4-49, 4-51, 4-52, 4-54
Free, 2-35, 6-52
free, 6-61
free storage package, 4-43
FreeEnumeration, 6-66
FreeMDSNode, 4-54
FreeMDSString. 7-9
FreeNode, 4-49, 4-54
FreeString, 7-9
full, 5-37,7-4
full-duplex, 5-31
garbage collection, 4-44
GenericProgram,2-23
germ, 4-7, 4-8, 8-7,8-8
germ, 8-1, 8-4, 8-7, 8-8, 8-13, 8-16
Get, 5-29, 6-40
GetAttributes, 4-9, 4-15,4-22,4-46,

4-53,4-58, 4-59, 5:'25
GetAttributesMDS, 4-53
GetBackground, 5-13
GetBcdTime, 2-26
GetBitBltTable, 5-13, 5-14
GetBlock, 3-4, 3-5, 3-6, 3-7, 3-10,

3-11,3-13,4-58,4-59
GetBootFilePointer,5-27
GetBootFiles, 5-27
GetBuildTime, 2-26
GetByte, 3-6, 3-7
GetByteProcedure, 3-15
GetCaller, 2-26
GetChar, 3-6, 3-7, 5-35
GetClockPulses,2-14
GetConfirmationProc,10-20
GetContainingPhysicalVolume, 4-9
GetContext, 5-17
GetCount, 4-57, 4-58
GetCurrent,2-21
GetCurrentProcess,9-3
GetCursorPattern, 5-14
GetDecimal,5-38
GetDelayToNet, 6-26
GetDeviceAttributes, 5-17
GetDialerCount, 6-45

GetOriveSize, 8-1 1
GetEcho, 5-34
GetEchoCounters, 10-8
GetEchoResults, 10-2
GetEditedString, 5-33, 5-35, 5-36,

5-37
GetError, 9-3
GetEthernetStats, 10-7
GetExpirationOate, 8-11
GetExpirationOat~Success, 8-11
GetFaultedProcess, 9-3
GetFileAttributes, 5-26
GetFileLocation, 8- 16
GetFloppyChoiceProc, 10-20
GetGreenwich mean time, 7-11
GetGreenwichMeanTime,2-12
GetHandle, 4-4, 5-20
GetHints, 4-4, 4-5
GetID,5-36
GetlmageAttributes, 5-24, 5-25
Getlndex, 4-57, 7-12
GetLabelString, 4-16
GetLine, 5-36
GetLocalTimeParameters, 2-14
GetLog, 4-26
GetLogEntry, 9-4, 9-5
GetLongDecimal, 5-38
GetLongNumber, 5-37
GetLongOctal, 5-38
GetLost, 4-57, 4-58, 9-2, 9-4
GetMapUnitAttri butes , 4-42
GetMesaChar, 10-16, 10-17
GetMousePosition,10-15
GetNetworkID,6-26
GetNext, 4-9, 4-14, 4-58, 9-4, 9-5
GetNextAction, 10-16
GetNextBadPage, 4-10
GetNextBadSector,5-27
GetNextDrive, 4-3, 5-20
GetNextFile, 5-26
GetNextFrame, 9-3
GetNextLine, 6-42
GetNextLogicalVolume, 4-8
GetNextProcess, 9-3
GetNextRootFile,4-17
GetNextSubVolume, 8-10
GetNumber, 5-37
GetOctal, 5-38
GetPassword,5-36
GetPhysicaIVolumeBootFile,8-9
GetPosition,3-9
GetPositionProcedure,3-17
GetPriority, 2-21
GetProcedure, 3-15
GetPVLocation, 8-17
GetRestart, 4-59

Pilot Programmer's Manual

GetRootNode.4-46
GetRouterFunction. 6-26
GetRS232CRe~ults, 10-9
GetSegmentAttributes.4-47
GetSize, 4-21, 9-4, 9-5
GetSSTProcedure, 3-16
GetState, 4-57, 5-13
GetStatus, 4-13, 5-31, 6-42
GetString. 4-58, 4-59, 5-36
C:~tSwapUnitAttributes, 4-42
GetSwitches, 8-11, 8-12
GetTableBase, 2-26
GetTimeFromTimeServer, 8-12
getTimeout, 3-17
GetTimeoutProcedure, 3-17
GetType, 4-15

. GetUniqueConnectionlD, 6-11, 6-12,
6-18

GetUniversaIlD.2-10
GetU pdate , 4-57
GetVolumeBootFile, 8-8
GetVol umeLocation , 8-16
GetWord, 3-6, 3-7
GetWordProcedure, 3-15
GetYesOrNoProc, 10-20
global frame, 1-6,2-19

validation, 2-23
global frame space, 4-43
GlobalFrame, 2-23, 9-4
gmtEpoch, 2-12, 4-59
granularity,5-3
Greenwich mean time, 2-12

comparison, 2-12
GreenwichMeanTime, 2-12, 7-11
Handakuon, 5-9
Handle, 3-1. 3-3, 3-5. 3-9, 3-10, 3-11,

3-13,3-14,3-19,4-4,4-44,4-46,
5-16,5-20,5-32,5-33,5-34,5-35,
6-11,6-12,6-13,6-47,6-48,9-4

handle, 1-9
hardMicrocode, 4-7, 4-8, 8-7, 8-8
hardware devices

control of, 1-10
hardwareError, 4-3,4-13,5-22,5-23
hasBorder, 5-13
hasPilotVolume, 4-3, 4-6
hBusy, 10-17
hCRC1,10-17
hCRC2, 10-17
hCRCerr, 10-17
hDelSector, 10-17
hDiskChng.10-17
head, 1-2, 8-1,8-2
Header, 4-24, 4-25
headers, 8-5
Heap

DEFINITIONS,4-..\.9

heap, -1,-1, ..\.-..\.3
MDS, 4-49
normal,4-49
performance impact, 4-51
uniform, 4-49

hErrDetc, 10-18
hex, 7-5
hexadecimal,10-18
hex byte ,10-18
hExpec1, 10-17
hExpec2m, 10-17
hFirst, 10-17
hGoodComp, 10-18
hHead,10-18
hHeadAddr, 10-18
HighByte, 2-7
HighHalf, 2-7
hlllglStat, 10-18
hlncrtLngth, 10-18
Histogram, 10-6
hLast, 10-18
hObser1, 10-18
hObser2, 10-18
hop, 6-23
HostNumber, 2-10,6-1,7-5
hReadHead, 10-18
hReadSector, 10-18
hReadStat, 10-18
hReady, 10-18
hRecal, 10-18
hRecalErr, 10-18
hSector, 10-18
hSectorAddr, 10-18
hSectorCntErr, 10-18
hSectorLgth, 10-18
hSeekErr, 10-18
hTimeExc, 10-18
hTrack, 10-18
hTrackO, 10-18, 10-18
hTwoSide, 10-18
hWriteDelSector, 10-18
hWritePro, 10-18
hWriteSector, 10-18
iBadContext, 10-18
iBadLabel,10-18
iBadSector, 10-18
iBadTrackO,10-18
IBM, 5-17
ibm2770Host, 6-28
ibm3270Host, 6-28
ibm6670, 6-28
ibm6670Host, 6-28
iCheckPanel,10-18
iCIERec, 10-18
iCleanDone,1O-18

I

1-9

I

1-10

Index

iCleanProgress, 10- 18
10,4-2,4-10, 4-11, 4-17

• idle line probes, 6-15
iErrOet, 10-18
iErrNoCRCErr, 10-18
iExerWarning, 10-18
iFirst, 10-18
iFormDone, 10-18
iFormProgress, 10-18
iFormWarning, 10-18
ignore, 5-35
iHardErr, 10-18
iHeadDataErr, 10-18
ilnsertDiagDisk, 10-18
ilnsertFormDisk, 10-18
iLast,10-18
lIIegalEnumerate, 4-58
illegal Log, 4-55
immediate timeout, 6-5
implementation module

Backstoplmpl.bed, 9-1
BackstopN ublmpl. bcd, 9-1
BSMemCache.bed, 9-1
Communication, 6-23
Communication. bed, 6-4, 6-9
Floppylmpl.bed,5-21
Formatlmpl.bed, 7-2
FormatPilotDisklmpl.bcd,8-5
Loader.bcd,2-24
LogFileImpl.bcd,4-55
LogImpl. bcd, 4-55
MemCacheNub.bcd,9-1
OthelloOpslmpl.bcd,8-5
PilotKernel.bcd, 1-2,8-1,8-2
RS232CIO.bcd,6-27
RuntimeLoader.bcd,8-2
StringslmpIA.bed, 7-5
StringsImplB.bed,7-5
SupervisorImpl.bed,2-30
Timelmpl.bcd,7-10
TTYPortChannel.bcd,5-28
UtilityPilotKernel.bcd, 1-2,8-1,
8-3

VMMapLoglmpl.bcd,9-1
implementors, 2-33
imports

unbound,2-26
in-band

attention, 6-22
signal,3-8

incompatibleSizes, 5-23
incompleteSwapUnits, 4-33, 4-35
Inconsistent, 4-58
Index, 4-57
IndexOutOfRange, 7-12
infinite wait time, 6-5

infiniteWaitTime, 6-11, 6-14, 6-17
infinity, 6-23
initial microcode, 5-27,8-4
InitializeCondition, 2-19,2-20
InitializeMonitor, 2-19
InitializePool, 2-36
initial MicrocodeS pace NotA vail able ,

5-27
Inline

DEfiNITIONS, 2-6
inload, 8-17
input streams

alternate, 5-35
InputOptions, 3-4, 3-8, 3-14
InsertRootFile, 4-16
Install, 4-55
InstallBootMicrocode, 8-7
InstallPhysicalVolumeBootFile,

8-13,8-15
InstallVolumeBootFile, 8-13,8-14,

8-15
instance data, 2-32
instanceData, 2-32
InsufficiehtSpace, 4-12,4-21,4-33,

4-34,4-40,4-41,9-2
insufficientSpace, 2-35,4-3,4-13,

4-51,5-26
integer ,1 0-18
inter-processor communication, 6-1
interesting event, 2-30
interface

volume, 8-4
internal buffering, 3-3, 3-9
internalStructures, 4-7, 4-8
Internet Datagram Protocol, 6-1
Internet Transport Protocols, 6-1
Internetwork routers, 6-23
internetwork topology, 6-23
internetworking.8-12
InterpretHandle, 4-4,5-20
Interrupt, 2-28, 9-1
interrupt, 9-3
interrupt key, 2-17, 2-28, C-1
Interval, 2-35, 4-30
interval, 1-5, 1-6,4-32,4-33
interval timing, 2-14
intra-processor communication, 6-1
Invalid,7-11
InvalidArguments, 6-56, 6-57
invalidConfig, 2-24,2-25
invalidDrive, 5-20
InvalidFile, 4-58
invalidFile, 4-55, 4-56
invalid Format, 5-22
InvalidFrame, 2-23
InvalidGlobalFrame, 2-23, 2-26

Pilot Programmer's Manual

invalidHandle, 4-3. -t-4, -t-;;, 4-6, -t-7.
5-17

invalidHeap, 4-51,4-54
InvalidLineNumber, 5-29, 6-38
invalidNode, 4-47,4-49,4-54
InvalidNumber, 5-37, 7-7
InvalidOperation, 3-18, 6-13, 6-58
invalidOwner, 4-54
invalidPageNumber, 5-28
InvalidParameter, 6-38
invalidParameter, 10-9
InvalidParameters, 8-14, 8-16, 8-17
invalidParameters, 2-35, 4-20, 4-21,

4-40,4-41,4-42,4-51
invalidProcedure, 4-38
InvalidProcess, 2-18
invalidRootFileType, 4-16
invalidSegment, 4-47, 4-48
invalidSize,4-51
InvalidSubsystem, 2-32, 2-33
invalidSwapUnitSize, 4-33, 4-35
InvalidVersion, 8-8, 8-14
invalidVolumeHandle, 5-21, 5-22
invalidWindow, 4-33, 4-34, 4-36
invalidZone, 4-47, 4-48,4-54
invertPattern, 10-15
InvertScreen, 10-15
IOError, 4-32, 4-35, 4-38, 4-39
IOError, 4-36
iOneSided, 10-18
irregular, 4-33
iRunStdTest, 10-18
IsBound, 2-26
iSoftErr,10-18
isolated page zero, 4-25
isPilot, 4-5
IsReady, 4-4
ISTimeValid,8-12
isUtilityPilot,2-16
italics

as metasymbols, 1-9
ItemCount, 2-35
Itemlndex,2-35
iTnx,10-18
iTwoSided,10-18
iUnitNotReadY,10-18
iVerDataErr,10-18
January 1 1968,2-12
japanese, 10-14
Japanese keyboard, 5-6
JlevellVKeys

DEFINITIONS, 5-6
job control facilities, 1-3
JOIN, 2-18
kAndCTL, 10-16
kAndShift, 10-16

kAtSign, 10-16
kBackSlash, 10-16
kBreak, 10-16
kCaret, 10-16
kCTLC, 10-16
kCTLStop, 10-16
kEndAdj,lO-16
kEscape,10-16
keyboard, 5-6, 5-16, 10-15
keyboard,5-l2,5-13,5-16
KeyboardAndMouseTest, 10-14
KeyboardType, 10-14
keyboardType, 10-14
Keyname, 5-6
Keys

DEFINITIONS, 5-6
keyset, 5-12, 5-16
KeyStations

DEFINITIONS, 5-6
kFiliScreen,10-16
kHyphen, 10-16
Kill, 4-37, 4-38, 4-39
kKey, 10-16
kLearColon, 10-16
kLeftBracket,10-16
kLetter, 10-16
kLineFeed, 10-16
kNumeral, 10-16
kReturnKey, 10-16
kRightBracket, 10-16
kSemiColon, 10-16
kShAt, 10-16
kShBackSlash,10-16
kShBreak, 10-16
kShCaret, 10-16
kShColon, 10-16
kShComma, 10-16
kShHyphen, 10-16
kShLeftBracket, 10-16
kShPeriod,10-16
kShRightBracket, 10-16
kShSemiColon, 10-16
kShVirgule, 10-16
kSpBar, 10-16
kTermAdj, 10-16
kTermTest, 10-16
kTestKey,1O-16
kTypeCharFiII, 10-16
kTypeComma,10-16
kTypeHair,10-16
kTypePeriod, 10-16
kUnknown, 10-16
kVirgule, 10-16
labels, 8-5

I

lastPageCount, 2-2,4-2, 4-11, 4~18,
4-29

1-11

I

I-12

Index

lastPageNumber. 2-2, 4-2, 4- t t,
+18,4-29

lastPageOffset, 2-3,4-29
latch bit, 5-31,5-32
latchBitClear, 6-35
LatchBitClearMask, 6-33
Layout, 4-9
LDIVMOD, 2-8
Lear Siegler ADM-3 display, 5-28
length,7-7
lengthls5bits, 5-31
lengthls6bits, 5-31
lengthls7bits, 5-31
lengthls8bits, 5-31
LengthRange, 10-10
Level,4-56
level 0, 6-1
level 1,6-1
level 2, 6-2, 6-4, 6-9
LevellVKeys

DEFINITIONS, 5-6
LF,7-1
LFDispiayTest, 10-15
Life, 4-31
lifetime, 6-10
Line, 7-3
IineCountError, 5-15
LineOverflow, 5-33, 5-35
LineSpeed, 5-30, 5-31, 6-30, 6-34
IineSpeed,6-35
LineType, 6-30, 6-34
LinkageFault, 2-27
Listen, 6-13, 6-14, 6-17
listen, 6-10
listener, 6-11
ListenerHandle, 6-13
ListenerHandle, 6-11
ListenError, 6-14, 6-17
ListenErrorReason, 6-17
ListenTimeout, 6-13, 6-17
LoadConfig, 2-24
loader

bootstrap, 8-1
Loader.bcd, 2-24
loading an object file, 8-2
loadstate, 2-17
local frame, 1-6,2-19,2-27

validation, 2-23
local frame space, 4-43
local network number, 8-12

default, 8-13
local networks, 8-12
local time parameters, 2-13
localHostNumber, 2-11
LocalSystemElement, 6-66
LocalTimeParameters, 2-13

LocalTimeParametersUnknown,
2-14,7-11

log, 4-26
Log, 9-1
Log

DEANITIONS, 4-55
log entries

enumeration of, 4-58
log file, 4-23,4-24,4-27,4-55

baekstop, 9-1, 9-2
current, 4-55,4-57,4-58,4-59
enumeration of, 9-5
initializing, 4-55
minimum size, 4-55
opening, 4-56
properties. 4-57
reading, 4-58
resetting, 4-59
restart entry, 4-56, 4-59
writing entries, 4-56

logBitsPerByte, 2-1
logBitsPerChar, 2-1
logBitsPerWord,2-1
logBytesPerPage, 2-2
logBytesPerWord, 2-2
log(ap, 4-55
logCharsPerPage, 2-2
logCharsPerWord,2-2
LogError, 9-2
LogFile, 4-58
LogFile, 9-1
LogFile

DEFINITIONS, 4-55
LogFilelmpl.bcd,4-55
LogFormat, 4-24
LogFrame, 9-3,9-4
logging

controlling, 4-56
logical operations, 2-8
logicalrecord,6-21
logical volume, 2-30, 4-8, 4-22, 8-4

attributes, 4-15
close, 4-14
consistant state, 4-6
create, 4-12
enumeration of, 4-8, 4-10, 4-14
erase, 4-12
errors, 4-12
10,4-10
label,4-16
maximum number, 4-10
maximum size, 4-11
name, 4-10
open, 4-14
opening, 8-3
root directory, 4-16

Pilot Programmer's Manual

spanning physical volumes, 4-11
status, 4-13

LogicalVolumePageNumber, 8-10
LogImpl.bcd,4-55
logNoEntry, 4-57
logNotOpened, 4-56, 4-57
LogProcess, 9-3
LogSeal, 4-24, 4-25
logWordsPerPage, 2-2
Long, 2-3
LONG CAROINAL, 6-62
LONG DESCRIPTOR, 6-46, 6-63
LONG DESCRIPTOR FOR ARRAY, 6-61
LONGINTEGER,6-62
LONG POINTER, 6-46, 6-64
LONG STRING, 6-62
LongBlock, 3-13, 6-21
LongCOPY, 2-7
LongCOPYReverse, 2-7
LongDecimal,7-4
LongDiv,2-8
LongDivMod, 2-8
LongMult, 2-8
LongNumber, 2-3,2-7,7-4
LongOctal,7-4
LongPointerFromPage, 2-3, 4-30

- LongString, 7-3
LongSubString,7-2
LongSubStringlteni, 7-2, 7-3
LookUpRootFile,4-17
loopOnError, 10-19
loopOnThisError,10-18
lost, 4-7, 4-8
LowByte, 2-7
LowerCase~ 7-6
LowHalf, 2-7
LSAdjust,10-16
LSMessage, 10-16
LSTest,10-17
LTP,7-11
machine, 1-2
machine-independent en vironment,

1-2
mailDate, 5-37, 7-4
Main Data Space, 4-40
main data space, 1-6
maintenance panel, 2-16, 2-17, 8-12
MakeBoot, 2-20, 2-26, 8-2, 8-3, 8-10,

8-13,8-14
MakeBootable, 8-8, 8-13, 8-14,,8-15,

8-16
MakeDLionBootFloppy, 5-28
MakeDLionBootFloppyTool,8-7
MakeFileList, 4-26
Makelmage, 5-24
MakeMDSNode, 4-54

MakeMDSString, 7-9
MakeNode, 4-48, 4-54
MakePermanent, 4-22
MakeReadOnly, 4-39
MakeString, 7-8
MakeUnbootable, 8-8, 8-16
MakeWritable, 4-39
Map, 4-26,4-32,4-35,8-14
map logging, 2-17

I

map unit, 1 -5, 1-5,4-30, 4-33, 4-34,
4-35

MapAt, 4-40,4-41
mapped spaces, 4-21
mapping, 1-5,4-30,4-32
MarkPageBad, 4-9, 4-10, 8-6
marshalling, 6-'61
master mode, 1-3
maxBlocklength, 6-5,6-6,6-8
max CARDINAL, 2-3
maxCharacterslnLabel, 5-25
maxData, 10-10
maxEntrieslnRootOirectory, 4-16
maximum internet packet, 6-10
maximum internet packet size, 6-6
maximum internetwork length, 6-1
maximum packet lifetime, 6-5
maxINTEGER, 2-3
maXLONGCARDINAL, 2-3
maxLONGINTEGER, 2-3
maxNameLength, 4-6,4-9, 4-13
maxPageslnMOS, 2-2
maxPageslnVM,2-2
maxPagesPerFile, 4-18, 4-22
maxPagesPerVolume, 4-11
maxSizeExceeded, 4-51
maxSubvolumesOnPhysicalVol ume,

4-13
maxWeliKnownSocket, 2-12
MOS, 4-40,4-49
MDS, 1-6
MDS zone, 2-19
MDSZone, 4-49,4-52
MemCacheNub,bcd,9-1
memory management

performance, A-2
MemoryStream

DEFINITIONS, 7-12
Mesa development environment, 8-2
Mesa emulation

microcode, 8-8
Mesa Language Manual, 2-18
Mesa Processor Principles of

Operation, 1-2,2-1,2-6,5-13
Mesa to Courier mapping, 6-59,6-61
Mesa type-checking, 1-3
Mesa User's Guide, 4-10, 8-2, 8-7

1-13

I

1-14

Index

Mesa variant record, 6-63
MesaOEFileType. 4-19
MesaOEFileTypes, B-2
MesaEventlndex, 2-31
MesaFileType, 4-19, B-1
metasymbols, 1-9
microcode, 1.2,8-1,8-8

initial, 8-7
microcode files, 8-7

installing, 8-7
MicrocodelnstaliFailure, 8-7
microcodeTooBig, 8·7
Microseconds, 2-15
MicrosecondsToPulses, 2-15
Milliseconds, 2-19
minimumNodeSize, 4-44, 4-50
minINTEGER, 2-3
minPagesPerVolume, 4-11
missing, 4-25, 4-27
missing page, 4-25
missingCode, 2-24,2-25
MissingPages, 4-20, 4-34, 4-37, 8-16
ModemChange. 10-~0
ModemSignal,10-1O
monitor, 1-4, 1·10,2-18,2-22,2-30
monitor lock, 2-19

uninitialized, 2-19
mou~e, 5-16
mouse,5-12,S-13,5-16

coordinates,S-16
move, 2-6
MsecToTicks, 2-19
multiple physical volumes, 8-10
multipleLogicalVolumes, 4-9
multipleWindows, S-15
nameRequired, 4-3, 4-6, 4-9, 4-13,

4-16
NARROW, 2-27
NarrowFault, 2-27
needsConversion, 4-3, 4-7, 4-23
needsRiskyRepair, 4-23
NeedsScavenging, 4-3, 4-5, 4-12,

4-lS, 4-16, 4-22, 8-9, 8-11, 8-17
needsScavenging, 5-22
NetAccess, 6-31,6-34
NetFormat, 7-5
network address, 1-10, 2-10, 6-66

editing, 7-5
when connected to many
networks, 2-11

Network stream, 1-7, 3-18
NetworkAddr, 6-11
NetworkAddress, 2-10, 6-1, 6-13,

6-47,7-S
NetworkAddresses, 6-9
NetworkNonExistent, 6-24

NetworkNumber, 2-10, 6-1. 7-5
NetworkStream, 1-7, 6-2

OEFINITIONS, 6-9
NEW, 2-19, 2-29,3-19,4-43.4-49,

4-51,4-52,4-S4
newClearinghouseSocket, 2-11
NewConfig, 2-24, 2·25
Newline, S-34
NextAction, 10-15
nextPattern, 10-15
nil, 4-46, 4-48
no, 10-20
noAnswerOrBusy, 10-1
NOBackingFile, S-34
noChecking, 10-19
noCommunicationFacilities,8-12
NoCommunicationHardware, 6-43
node

minimum size, 4-45, 4-S1
noOebugger, 8-9
NoDefaultinstance, 5-32
nodeLoop, 4-47
NodeSize,4-49
nOErrorFound,10-18
noHardware, 10-9
noMoreNets, 10-5
none, 5-31, S-34
noneOeleted, 4-24
nonEmptySegment, 4-48
nonPilot, 4-13
Nop, 5-20
noProblems, 4-7, 4-8
noResponse,8-12 .
noRetries,8-S
normal,3-4,4-13
noRoomlnZone, 4-48
noRouteToSystemElement, 10-1
NoRS232CHardware, 6-38
noScrollWindow, 5-15
noSeconds, 5-37, 7-4
noSuchOiagnostic, 10-1
noSuchOrive, 4-3,4-4, 5-22
noSuchLine, 10-9
nOSuchLogicalVolume, 4-3,4-8
noSuchPage, 4-27
NoSuchProcedureNumber,

6-48, 6-52, 6-57
NOSuchSubsystem, 2-32
NoTableEntryForNet, 6-24
NotAFault, 9-3
notAllocated,4-41
NotAPiiotOisk, 8-5, 8-7
notation, 1-8
notOiagOiskette, 1 0-18
~ote, 1-9
NoteArrayOescriptor, 6-63

Pilot Programmer's Manual

NoteBlock, 6-65
NoteChoice, 6-63
NoteDeadSpace,6-65
NoteDisjointData, 6-63
NoteLongCardinal, 6-62
NoteLonglnteger,6-62
NoteParameters, 6-64
NotErrorEntry, 9-4, 9-5
Notes, 6-59
notes object. . 6-59
NoteSize, 6-62
NotesObject, 6-59, 6-61, 6-62, 6-63,

6-64,6-65
NoteSpace, 6-61, 6-64
NoteString,6-62
NOTIFY, 2-15, 2-19, 2-22
NotifyAJlSubsystems, 2-33
NotifyDirectSubsystems, 2-34
NotifyRelatedSubsystems, 2-33
notlnitialBootFile, 8-9
NotLoggingError, 9-3
notMapped, 4-35, 4-36
NotOnJine, 4-12, 4-13, 4-15, 4-16,

4-21,4-26,4-34,4-36,8-9,8-11,
8-16,8-17

NotOpen, 4-12, 4-16, 4-21, 4-26,
4-34,4-37, 8-8, 8-9, 8-16

notPilot, 4-5
notReady, 4-3, 4-5, 5-22
NoITYPortHardware, 5-29
noWindow, 2-25,4-33,4-34
NS Communication System, 1-3
NSConstants, 2-11

DEFINITIONS, 2-9, 6-2
nsProtocol, 6-28
nsSystemElement, 6-28
nsSystemElementBSC, 6-28
NUL,7-2
null, 2-5, 4-58
nullAgentProcedure, 2-31
nuJlBadPage, 4-10
nullBlock, 2-2, 6-8
nullBootFile, 8-9
nullBootFilePointer, 5-27
nuJlChannelHandle, 5-28
nullDevicelndex, 4-3
nullDrive, 5-20
null Event, 2-31
nuJlExchangeHandle, 6-5
null File, 4-17, 4-26
nullFilelD, 5-26, 5-28
null Frame, 9-3, 9-4
nuJlHandle, 4-45, 5-32
nullHostNumber, 2-10
nuIlID,2-10, 4-2, 4-9, 4-10, 4-11,

4-12,4-17

nulllndex, -l-57. 9-5
Aulllnterval, -l-30
nullLineNumber, 6-31, 6-34
nuIlNetworkAddress,2-10
nullNetworkNumber, 2-10
nuJlParameters, 6-49, 6-50, 6-51,

6-53, 6-57, 6-58
nullProcess, 9-3
nuUProgram, 2-23
nullSegment, 4-46
nullSocketNumber, 2-10
nullSubsystem, 2-32
nuJlSubVolume,8-10
nullType, 2-4
nullVolumeHandle, 5-21
Number, 6-43, 7-3
NumberFormat, 5-38, 7-3, 7-4
NWords, 4-50
ObjAlloc

DEFINITIONS, 2-34
Object, 3-9, 3-14, 3-18, 3-19,6-11,

6-47
object allocation, 2-34
object file, 8-2, 8-2
Objects, 6-48
Octal, 7-4
octal,10-l8,7-5 .
Octal Format, 7-3
odd,5-31
off, 4-56,5-12
Offline, 4-5
ok,5-35
okay, 4-7, 4-7, 4-8, 4-45, 4-49
on, 5-12
on-line, 8-3
one, 5-25, 5-31
one024,10-18
one28,10-18
oneAndHalf, 5-31
online, 4-5, 8-5
Online Diagnostics

DEFINITIONS, 10-14, 10-16, 10-17
onlyEnumerateCurrentType, 4-14
onlyOneSide, 5-25
onlySingleDensity, 5-25
Open, 4-14, 4-22, 4-55,4-59,5-22
openRead,4-14
openReadWrite, 4-14
OperationClass, 6-34
optional packages, 8-2
orphan, 4-25
orphan page, 4-25, 4-28
Orphan Handle, 4-25, 4-28
orphanNotFound,4-28
Othello, 2-16, 4-10, 8-2, 8-4,8-13
OthelloOps, 8-4,8-7

I

I-IS

I

1-16

Ind~x

DEFINITIONS, 8-3
OthelloOpslmpl.bcd, 8-5
other, 8-7,8-9,9-3
otherError, 4-51, 10-9
out-of-band

attention, 6-21
signal,3-8

Outcome, 6-43
outload, 8-17
outload file, 9-2
OutLoadlnLoad, 8-17
OutOflnstances, 5-32
outsideXeroxFirstSocket, 2-12
outsideXeroxLastSocket, 2-12
Overflow, 2-15, 4-57
OverLapOption, 2-6
owner checking, 2-17, 4-51
OwnerChecking, 4-54
OwnerCheckingMDS, 4-54
Pack,7-11
packager, 1-6
Packed,7-10
packet, 6-1, 6-1
Packet Exchange Protocol, 6-4
packet exchange protocol, 6-2

. PacketExchange, 1-7,6-2
DEFINITIONS, 6-4

packets, 1-6
page alignment, 5-3
page fault service time, A-2
page number, 4-18
PageCount, 2-2,4-2,4-11,4-18,4-29
pageCountTooSmallForVolume,

4-13
PageFromLongPointer, 2-4, 4-30
PageNumber, 2-2, 4-2,4-11,4-18,

4-29, 4-30, 5-21
PageOffset, 2-3,4-29,4-30
PagesForlmage, 5-24
PagesFromWords, 4-43
Parameter, 5-30, 6-34
parameter area, 6-46, 6-61, 6-62,

6-64,6-65
Parameters, 6:49, 6-52
ParameterType, 6-34
Parity, 5-30, 6-31, 6-34, 6-35
parityError, 5-29, 5-30
partialLogicalVolume, 4-9
partiallyOnLine,4-14
PatternType, 10-11
Pause, 2-15,2-22
PC, 9-4
PerformanceToolFileType, 4-19
permanent, 4-23,4-25
permissions, 4-31
physical record, 6-20

physical volume, 2-13, 2-30, 4-5, 8-2,
8-4

consistant state, 4-6
creation, 4-6
enumeration of, 4-9
errors, 4-2
formatting, 8-5
identifier, 8-15
name, 4-2, 4-9
size, 4-2

PhysicalMedium, 6-23
PhysicalRecord, 6-31,6-36
PhysicalRecordHandle, 6-31, 6-36
PhysicalVolume, 8-5

DEFINlnDNS, 4-1
PhysicalVolumelD, 2-10, 4-2
physicalVolumeUnknown, 4-2, 4-3,

4-5,4-6,4-9,4-10,4-13.,8-9,8-10
physicalVolumeUnknown, 4-8
pilot, 8-7, 8-8
Pilot, 8-4, 8-5

boot loader, 8-13
disk utility, 8-2, 8-4
execution speed, A-2
initialization, 8-1,8-2,8-9
microcode, 8-4
performance requirements, A-I
physical memory requirements,
A-I
program, 8-1
released version of, 1-1
restart, 8-3
swapping, 1-5,4-30,4-31
switches, 8-2, 8-11, 8-15
System Components, 8-1

Pilot Emergency Interrupt, C-1
PilotClient, 8-3

DEFINITIONS, 2-28
PilotDisk, 2-4, 4-3
PiiotFileType, B-1, B-2
PilotKernel.bcd, 1-2, 1-9,8-1,8-2,

D-l
pilotSnapshot, 8-7, 8-8
pipeline, 1-7,3-1,3-2,3-5,3-9,3-10,

3-11,3-13
pixelsPerlnch,5-12
plain, 5-34
Pointer, 4-43
PointerFault, 2-28
PointerFromPage, 4-43
pointerPastEndOfVirtual Memory,

4-31
PopAlternatelnputStreams, 5-34
PORT, 3-18
port, 2-27
PortFault, 2-27

Pilot Programmer's Manual

Position, 3-9
power olT, 2-30
power on

automatic, 2-30
PowerOff, 2-15
pre-emptive allocation, 6-38
primary storage, 4-47
priorities

ranking of, 2-21
Priority, 2-21
priorityBackground, 2-21
priorityForeground, 2-21
priorityNormal,2-21
probablyNotPilot, 4-5
probablyPilot, 4-5
Problem, 4-24
procedures

activation and deactivation, 4-38
Proceed,9-2
PROCESS, 2-18
Process, 9-3
Process

DEFINITIONS, 2-18
process, 1-4,1-6,1-10,2-18

abort, 2-21
active, enumeration of, 9-3
awakening, 2-30
dead, 2-18
detached,2-21
fork, 2-20, 2-21
lightweight, 1-4
live, 2-18
maximum number, 2-20
performance, A-3
priority, 2-21, C-l
suspend, 2-22
synchronization, 2-23
validation, 2-18

processor

10,8-3
setting of clock, 8-12
yielding control, 2-22

Product Common Software, 1-9,
5-28,5-32,7-2,7-5,7-10

product system, 9-1
productSoftware, 7-5
PROGRAM, 2-25
program

logical correctness of, 2-23
protection, 1-3
protocDICertificationControl, 2-12
protocol Certification Test, 2-12
Prune, 4-53
PruneMDS, 4-53
PSBlndex, 9-4

pse.udo-~e~;a declarations, 1-8
pulse definition, 2-14
Pulses, 2-14
PulsesToMicroseconds, 2-15
pupAddressTranslation, 2-11
PushAlternatelnputStream, 5-34
Put, 5-29, 6-40
PutBackChar, 5-34
PutBlank,5-36
PutBlanks,5-3fl

I

PutBlock, 3-6, 3-7, 3-10, 3-12,4-56,
5-34,9-2

PutByte, 3-7
PutByteProcedure, 3-16
PutChar, 3-7, 5-36
PutCR, 5-36, 10-16
PutDate, 5-36
PutDecimal, 5-38
PutLine, 5-37
PutLongDecimal,5-38
PutLongNumber, 5-38
PutLongOctal, 5~38
PutLongSubString, 5-37
PutMesaChar, 10-17
PutMessage, 10-17
PutMessageProc, 10-19
PutNumber, 5-38
PutOctal, 5-38
PutProcedure, 3-15
PutString, 3-7,4-56,5-37
PutSubString, 5-37
PutText, 5-37
PutWord, 3-7, 4-56
PutWordProcedure, 3-16
PVLocation, 8-16
q2000, 2-5
q2010,2-5
q2020, 2-5
q2030,2-5
q2040,2-5
q2080,2-5
quad-word alignment, 5-3
Quantum, 2-5
Quiesce, 5-29, 5-30, 5-32
quiescent state, 2-30
quit, 10-15
Read, 5-22, 5-23
ReadBadPage, 4-27
ReadID,5-20
ReadOnly, 2-25, 4-12, 4-13, 4-15,

4-16,4-21,4-26,4-34,4-36,4-39,
8-9,8-11

readOnly, 4-31,4-36
ReadOrphanPage, 4-28
ReadSectors, 5-19
readWrite, 4-31

1-17

I

1-18

Index

Recalibrate.5-20
recording information, 4-55
Recreate, 4-45
references

informational, F-1
mandatory, F-l

RejectRequest, 6-8, 6-9
ReleaseDataStream, 6-59
remark, 4-56
remote procedure calling, 6-46
remote program, 6-46
RemoteErrorSignalled, 6-51, 6-57
remoteSystemElementNot

Responding, 10-1
removable medium, 1-6
RemoveCharacter, 5-37
RemoveCharacters,5-37
RemoveRootFile, 4-17
RemoveSegment, 4-48
RemoveSubsystem, 2-32
repair, 4-23
repaired, 4-7
RepairStatus,4-7
RepairType, 4-7, 4-23
Replace, 7-10
ReplaceBadPage, 4-27
ReplaceBadSector, 5-23, 5-24
replier. 6-4, 6-5
RequestHandle, 6-5
RequestObject, 6-5
requestor,6-4,6-5
requestToSend, 6-35
reservedType, 4-20, 4-21
ReserveType, 6-32, 6-37
Reset, 4-57, 4-59
reset, 4-57
ResetAutomaticPowerOn, 2-16.
ResetUserAbort, 5-33
resource

allocation, 1-3
new, acquisition of, 2-30
shared, acquisition and release,

2-29
RESTART, 2-27
Restart, 4-59, 6-41, 9-2
restart

file, 2-29
message, 9-1
system, 2-11

Results, 6-48, 6-52, 6-59
results, 6-50, 6-51, 6-52
retransmission, 6-4,6-15
retransmissionlnterval,6-7
RETRY, 3-4, 3-9
RetryCount, 6-32, 6~43
RetryLimit, 8-5

retrylimit.8-5
return, 4-35
ReturnWait, 4-35
RewritePage, 4-27
ripple, 2-6
riskyRepair, 4-7,4-8,4-23
root page, 2-13
RootDirectoryError, 4-16, 9-2
RootDirectoryErrorType, 4-16
rootfileUnknown, 4-16,4-17
router, 1-6,8-12
RoutersFunction, 6-24
routing delay, 6-23
routing protocol, 6-2
routing table, 6-23
routing table cache fault, 6-23
routinglnformationSocket, 2-11
RPC,6-46
R5232C

DEFINITIONS, 6-32
RS232CCorrespondents

DEFINITIONS, 6-27
RS232CDiagError, 10-9
RS232CErrorReason, 10-9
RS232CIO.bcd, 6-27
RS232CLoopback, 10-8
RS232CParams, 10-11
RS232CTestMessage, 10-12
Rubout, 5-33, 5-35
Run, 2-17,2-29,8-3, 8-13, 9-2
RunConfig, 2-24, 2-25
Runtime, 8-2

DEFINITIONS, 2-23
RuntimeLoader.bcd,8-2
sa1000, 2-4
SA1000lastPageOfMicrocode.8-6
SA1000pagesPerTrack, 8-6
SA1 OOOstartOfMicrocode , 8-6
sa1004,2-4
SA 1004pagesPerCylinder, 8-6
5a4000, 2-4
SA4000lastPageOfMicrocode, 8-6
SA4000startOfMicrocode, 8-6
sa4008,2-4
SA4008pagesPerCyi i nder, 8-6
sa800, 2-5
SA800, 8-7
safeRepair, 4-7, 4-8,4-23
SBSOFileType, 4-19
Scan, 8-6
scan line zero, 5-13
Scavenge, 4-7, 4-23, 4-25, 4-26, 5-27
scavenge, 4-1, 4-23, 8-2, B-1

physical volume, 4-6, 4-7
Scavenger, 8-4

DEFINITIONS, 4-22

Pilot Programmer's Manual

ScavengerStatus,. 4-7
Scratch Map, 4-33, 4-35
screenHeight, 5-12,10-15,10-16
screenWidth, 5-12, 5-13,10-15,

10-16
Scroll,5-15
scroll window, 5-14, 5-15
scrollinglnhibitsCursor, 5-15
scrollXQuantum, 5-14
scrollYQuantum, 5-14
SDDivMod, 2-7, 2-8
Seconds, 2-20
SecondsSinceEpoch,2-12
SecondsToTicks, 2-20
SectorLength, 10-18
sectors, 8-5
segment, 4-44

attributes, 4-47
SegmentHandle, 4-46
segmentTooSmall, 4-47
Self Destruct, 2-24,3-19
SendAttention, 3-8
SendAttentionProcedure, 3-17
SendBreak, 5-29, 6-42
SendBreaklliegal,6-38
SendNow, 3-6, 3-7, 3-12, 3-18
SendNowProcedure, 3-17, 3-18
SendReply, 6-5, 6-8, 6-9
SendRequ~st, 6-7, 6-8
SEQUENCE,4-54
sequence, 6-5
sequence packet protocol, 6-2
sequenced, 6-9
sequenced packet protocol, 6-9, 6-19
sequential

access, 3-1
data, 1-7

serialization, 6-61
SerializeParameters, 6-65, 7-12
server, 6-10, 6-46
ServerOff, 10-1
ServerOn, 10-1
ServicesFileType, 4-19
SetAccess, 4-39
SetAutomaticPowerOn, 2-16
SetBackground, 5-13, 10-15, 10-16
SetBackingSize, 5-33
SetBootFiles, 5-27, 5-28
SetBorder, 5-13, 10-15, 10-16
SetChecking, 4-47, 4-54
SetCheckingMDS, 4-54
SetContext, 5-18
SetCursorPattern, 5-14, 10-15
SetCursorPosition, 5-14, 10-15
SetDebugger,8-9
SetDebuggerSuccess, 8-9

SetDefaultOutputSink,7-2
SetDiagnosticLine, 10-12
SetEcho, 5-34, 5-35

. SetExpirationDate, 8-11
SetExpirationDateSuccess, 8-11
SetGetSwitchesSuccess, 8-11
Setlndex,7-12
SetlnputOptions, 3-4,3-15
SetLineType, 6-42
SetLocalTimeParameters, 2-14
SetLocalTimeParameters, 7-11
SetMousePosition, 5-16, 10-15
SetNetworkID,6-27
SetOverflow, 4-57

I

SetParameter, 5-30,5-32,6-39
SetPhysicalVolumeBootFile, 4-8, 8-8
SetPosition, 3-9
setPosition, 3- 17
SetPositionProcedure, 3-17
SetPriority. 2-21,2-29
SetProcessorTime, 8-12
SetRestart, 4-56, 4-59, 9-3
SetRootFile, 5-26
SetRootNode, 4-46

• SetSize, 4-21, 8-14
SetSST, 3-7, 3~7, 3-12
SetSSTProcedure, 3-16
SetState,4-56,5-14
SetSwitches, 8-11,8-12
SetTimeout, 2-15, 2-20
setTimeout, 3-17 .
SetTimeoutProcedure, 3-17
SetUserAbort, 5-33
SetVolumeBootFile, 8-8
SetWaitTime, 6-18
SetWaitTimes, 6-7, 6-8
. shift operations, 2-9
ShortBlock, 3-13, 6-21
Shugart Associates, 2-5
Sides, 5-25
siemens9750,6-28
Signal, 9-4, 9-5
signal,9-3
signal

in-band, 3-8
out-of-band, 3-8
uncaught, 9-1

signalAttention, 3-4,3-7,3-8
signalEndOfStream, 3-4, 3-5,3-7,

3-14
signalEndRecord, 3-4, 3-6, 3-7, 3-12
signalLongBlock, 3-4, 3-7,3-13,3-14
SignalMsg, 9-4, 9-5
SignaIRemoteError,6-58
signalShortBlock, 3-4, 3-7, 3-13, 3-14
signalSSTChange, 3-4, 3-5, 3~7, 3-14

1-19

I

1-20

Index

signalTimeOut. 3-14
signalTimeout. 3-4, 3-7
simple routers, 6-23
single, 1 0-18, 5·17, 5-25
SingfeDouble,10-18
singleLogicalVofume, 4-9
sink,7-2
sixteen-word alignment, 5-3
smooth scrolling, 5-12, 5-14
socket,2-11,6-1,6-15
SocketkNumber,6-1
SocketNumber, 2-10, 7-5
sockets, 6-9

well-known, 2-11
softMicrocode, 4-7, 4-8,8-7,8-8
software channe 1, 5-1, 5-16

example of, 5-1
sound generator, 5-16 .
SP,7-2
space, 4-1

alive, 4-38
dead, 4-38

Space
DEFINInONS, 4-29

space machinery
storage, 4-43

SpaceUsage
DEFINInONS, 4-29

SplitNode, 4-49
SSTChange, 3-5, 3-7, 6-20
sstChange,3-4
Star, 2-31
Star System Keyboard Requirement
Specification, 5·6
stars, 5-34
START,2-19,2-27,2-29,3-19
Start, 6-43
StartEchoUser, 10-2
startEnumeration, 6-24
StartFauft, 2-27
startlndex, 2-2, 2-6, 3-4, 3-5
StartlndexGreaterThanStopl ndexPI
usOne, 2-6
startListHeaderHasBadVersion,

8-9,8-10
State, 4-56, 5~12
stateless enumerator of

active processes, 9-3
definition of, 1-8
floppy bad sectors, 5-27
floppy files, 5-26
log entries, 4-58
log files, 9-5
logical volumes, 4-8, 4-10
physical volumes, 4-9
subvolumes, 8-10

Statslndices. 10-6
Status, 4-13,4-44,4-45,4-47.4-48,

5.18
StatusWait, 5-31, 6-42
stillMapped,4-41
STOP, 2·27
Stop, 6-43
stop, 5-35
Stoplits, 5-30, 5-31, 6·32, 6-36
stopBits, 6-35
stoplndexPlusOne, 2-2, 2-6, 3-4
stopOnError, 10-19
storage allocation

using heaps, 4-1
using zones, 4-1

storageOutOfRange, 4-45,4-47
store, 6-61
store, 6-66
Stream, 6-9

DEFINITIONS, 3-1
stream, 1-7, 1-10

component manager,
3-13,3-18

creation, 3-3, 3-9, 6-11, 6-13, 6-14
delete instances of, 3-19
example of creating, 3-10
full duplex, 3-3
half duplex, 3-3
implementation, 7-12
physical records, 3-2, 3-3, 3-11,

3-12
physical records, maximum, 3-12
positioning, 3-9
SubSequence Type, 6-56
timeouts, 3-9, 3-12, 6-18

STRING, 6-61
string,10-18,4-58
String

DEFINITIONS, 7-5
string body

allocating from a heap, 4-52
String package, 7-2, 7-5, 7-10
StringBody, 6-46, 6-62
StringBoundsFault, 7-6
StringProc, 7-2
StringslmplA.bcd, 7-5,7-10
StringslmpIB.bcd,7-5
StringToDecimal, 7-8
StringToLongNumber, 7-8
StringToNumber, 7-7
StringToOctaf,7-8
stringTooShort, 5-25
style rules, B-2
subscript out of range, 2-27
subsequence type, 3-2
subsequences, 3-2

Pilot Programmer's Manual

SubSequenceType, 3-2. 3-4, 3-5. :3-7.
3-7,3-12,6-19,6-56

SubString, 7-3, 7-6
SubStringDescriptor, 7-3,7-6
SubsystemHandle, 2-32
subsystems, 2-29

clients-first order, 2-29
implementors-first order, 2-29

SubVolume, 8-10
subvolume, 8-10

enumeration of, 8-10
subvolumeHasTooManyBadPages,

4-13
SubVolumeUnknown, 8-10
success, 5-29, 5-30,8-9
Supervisor

DEFINITIONS, 2-29
Supervisor error conditions

recoverable, 2-34
SupervisorEventlndex, 2-31

DEFINITIONS, 2-29
SupervisorImpl.bcd,2-30
suppress duplicate, 6-5
Suspend, 6-40
SuspendReason, 6-14
swap unit; 1-5, 1-6,4-30,4-31,4-32

access, 4-39 -
boundary, 4-31
life, 4-31
size, 4-32, 4-34,4-35

swapping
advice, 4-37
controlled, 4-37
demand, 4-37

SwapReason, 9-4, 9-5
SwapUnitOption, 4-33
SwapUnitType, 4-33
Switches, 2-16, 8-11
switches, 2-16
switches

boot, 2-16
SyncChar, 6-32
syncChar, 6-35
SyncCount, 6-32
syncCount, 6-35
synchronous, 5-22
synchronous operation, 1-5

dermition of, 1-8
of physical devices, 1-5

synchronous procedures
stream,3:'3

System

DEFINITIONS, 2-9
system

logical volume, 4-14
physical volume, 4-14

power. 2-15. 2-16
restart, 2-1 1
volume, 4-11, 8-2, 8-3
zones, 2-17

system6,6-28
systemBootDevice, 2-16
SystemElement, 6-47
systemlD, 4-11
systemMDSZone, 4-49, 4-52
systemZone, 4-49,4-52
t300,2-5
t300IastPageOfMicrocode, 8-6
t300pagesPerCylinder, 8-6
t300pagesPerTrack,8-6
t300startOfMicrocode, 8-6
taO,2-5
tSOlastPageOfMicrocode, 8-6
tSOpagesPerCyl i nder, 8-6
tSOpagesPerTrack, 8-6
tSOstartOfMicrocode, 8-6
TAB,7-2
Table Compiler, 2-26
Tajo, 2-31, 8-2
tBackstopDebuggee, 4-20
tBackstopDebugger, 4-20
tBackstopLog, 4-20
tBootFile,8-13
tByteCnt,10-18
tCarryVolumeDirectory, 4- 20
tCIERH,10-18
tCIERS,1O-18
tCIEVer,10-18
tCIEWDS,10-18
tCIEWS,10-l8
tClearingHouseBackupFile, 4-20
tDirectory, 4-20
teleDebugSocket, 2-12
temporary, 4-22, 4-23
temporary file, 8-10
TemporaryBooting, 8-2, 8-7, 8-13

DEFINITIONS, 8-13
terminateOnEndRecord, 3-4, 3-6,

3-7,3-12,6-20
TestFileType,4-19
TextBlt, 2-6
tFileList, 4-20
tFirst,10-18
tHeadDataErr ,10-18
tHeadDisp,10-l8
tHeadErrDisp,1O-18
Ticks, 2-19, 2-20
ticks, 2-19
TicksToMsec,2-l9
Time

DEFINITIONS, 7-10
time of day , 2-J2

I

1-21

I

1-22

Index

Time package, 7-2, 7-\ 0
time zone parameters, 2-13, 2·14
Timelmpl.bcd,7-10
TimeOut, 3-7, 3-9, 6-12, 6-20
Timeout, 6-7, 6-8, 6-9
timeout, 3-4
timeout, 6-49,6-58
timeout interval, 2-20
timeout resolution, 2-15
TimeServerError, 8-12
TimeServerErrorType, 8-12
timeServerSocket, 2-11
TimeZoneStandard,7-10
tLast, 10-18
tooManyConnedions, 10-1
tooManyEchoUsers, 10-5
TooManyProcesses, 2-20
tooManySubvolumes, 4-13
tooSmaliFile, 4-55
transducer, 1-7,3-1,3-2,3-5,3-9,

3-11,3-13,3-14,3-18,6-9
TransferStatus, 5-29, 6-37
TransferWait, 6-40
transmissionMediumProblem, 10-1
TransmitNow, 6-40
tr~nsport, 6-46
Trident disk, 8-6
Troy, 5-17
truncation, 5-3
tScavengerLog,4-25
tScavengerLogOtherVolume, 4-25
tSectorDisp,10-18
tStatDisp,10-18
tSummErrLog,10-18
TTY

DEFINITIONS, 5-32
TTY Port controller, 5-28
ttyHost, 6-28
TTYPort

DEFINITIONS, 5-28
TTYPortChannel.bcd,5-28
TTYPortEnvironment

DEfiNITIONS, 5-28
tUnassigned, 4-20
tUntypedFile, 4-16,4-17,4-20,8-13
tVerDataErr,10-18
two, 5-25,5-31
two56,10-18
Type, 2-4, 4-3, 4-13, 4-15, 4-18,4-58,

5-26, B-1, B-2, B-3
type code, B-1
TypeSet, 4-14
ubBootServeeSocket, 2-11
ubBootServerSocket, 2-11
ublPCSocket, 2-11
UDDivMod, 2-7, 2-8

UnboundProcedure, 2-27
UNCOUNTED lONE, 4-43, 4-49, 4-52,

6-47
uncounted zone, 2-19, 4-49
undelete, 4-21
UnexportRemoteProgram,

6-49,6-57
uniform, 4-33
uniform swap units, 4-51
UnimplementedFeC'l~ure, 6-38
unimplemented Feature , 10-9
unique address, 6-2
unique network address, 6-18
uniqueConnectionlD, 6-13, 6-18
uniqueConnlD, 6-11, 6-12,6-14
uniqueNetworkAddr, 6-12,6-14
uniqueSocketlD, 2-11
unitary, 4-33
universalidentUUer, 1-10,2-9,8-3

instantaneous rate of creating,
2-10

Universall 0, 2-10, 4-10
Unknown, 4-9, 4-12, 4-13, 4-14, 4-15,

4-16,4-18,4-20,4-21,4-26,4-34,
4-36,4-37,8-8,8-9,8-10,8-11,
8-16,8-17

unknown, 2-24, 2-25, 4-14
unknown network number, 8-13
unknownConnID,6-11
unknownSocketID,2-11
unknownUsage, 4-33
unlimitedSize, 4-50
Unmap, 4-33,4-35,8-14
UnmapAt, 4-41, 4-42
unmapped storage, 4-42
unmarshalling,6-61
UnNew, 2-24,2-24,3-19
UnNewConfig,2-25
unnoted, 6-64, 6-65
Unpack, 7-11
Unpacked, 7-10,7-11
unreadable, 4-25, 4-27
unreadable page, 4-25, 4:-27
unrecoverable error, 4-32
unusable pages, 8-4
unused,9-3
UNWIND, 2-34
up, 2-16
UpDown, 2-16
UpDown[up],8-11
UpperCase, 7-6
Usage, 4-33
useGMT,7-11
user, 6-46
UserAbort, 5-33
UserTerminal

Pilot Programmer's Manual

DEFINITIONS, 5-12
UserTerminalExtras

DEFINITIONS, 5-12
useSystem, 7-11
utility Pilot, 1-2, 1-5,2-14,2-16,4-2,

4-15,8-1,8-3,8-4,8-5,8-9,8-12,
0-1

compared to Pilot, 0-1
UtilityPilotKernel.bcd, 1-2,8-1,0-1
VaJidateFrame, 2-23
ValidateGJobalFrame, 2-23
ValidateProcess, 2-18
VersatecFileType, 4-19
Version Mismatch, 2-24, 2-25, 6-50,

6-57,9-2
VersionRange, 6-48, 6-50
virtual address

LONG NIL, 2-28
NIL,2-28

virtual memory, 1-5, 1-10
organization, 4-29
page, highest numbered, 2-2
size, 1-5

virtualMemory, 4-40
VM man~ger, 2-17
VMMapLogImpl.bcd,9-1
VoidPhysicalVol umeBootFi Ie, 8-9
VoidVolumeBootFile, 8-9
Volume

DEFINITIONS, 4-10
volume, 1-5, 1-6,4-1,4-17

initialization, 4-11, 8-3
local,1-6
logical, 4-1
physical, 4-1
type, 8-4, 8-9

Volume, 8-4
VolumeHandJe, 5-21
VolumelD, 2-10, 4-10
VolumeLocation, 8-16
VolumeNotClosed, 8-10, 8-11
volumeNotOpen, 5-22
volumeOpen, 4-23
VoJumeType, 4-4
WAIT, 2-15,2-19,2-20,2-22
wait, 4-35
WaitAttentionProcedure, 3-17
WaitForAttention, 3-8, 3-19
WaitForKeyTransition, 10-15
WaitForRequest, 6-5,6-8
WaitForScanLine, 5-13
WaitTime, 6-5, 6-10
waitTime, 6-7
warning, 4-56
well known exchange types, 6-4
well-known socket, 6-2, 6-66

west,2·13
WestEast, 2-13
white, 5-13,10-14
Window, 4-32
window, 4-30, 4-32, 4-33

I

actual window length, 4-32, 4-33
data window, 4-34, 4-35
file window, 4-34
length, 4-34
overlapping, 4-34

Word, 2-1,3-6
word alignment, 2-35, 5-3
WordsForString, 7-6
WordslnPacket, 10-6
wordsPerPage, 2-2, 4-29, 4-30
working set, A-I
wrap, 4-57
Write, 5-22, 5-23, 5-24
write-protect fault, 4-30, 5-23
WriteOeletedSectors, 5-19
writelnhibited, 5-22, 5-23
WriteMsg, 10-12
writeProtected,4-3
WriteProtectFault, 4-45, 9-1
writeprotectfault, 9-3
WriteSectors, 5-19
wrong Format, 4-3
wrongSeal,4-45
wrongVersion, 4-45
x860ToFileServer, 2-11
Xerox Internet Transport Protocols,

1-6
xerox800, 6-28
xerox850, 6-28
xerox860, 6-28
xQuantumError, 5-15
yOispExpObsOata,10-18
yOispSects, 1 0-18
yOoor JustOpened, 1 0- 18
yOoorOpenNow,10-18
yOoorOpenShut, 10-18
yes, 10-20
YesOrNo; 10-20
yFirst,10-18
Yield,2-22
ylsltOiagOisk,10-18
ylsltWrProt,10-18
yLast,10-18
yQuantumError, 5-15
yStillContinue,10-18
yStiIlSure,10-18
ZeroOivisor, 2-7,2-28
zeroSizeFile, 5-26
Zone

DEFINITIONS, 4-44
zone, 4-1, 4-43

[-23

I

1-24

Index

tiled, 4-45. 4-46
recreating, 4-44
root node, 4-46
sizes. 4-44
wrong version, 4-45

zoneTooSmall, 4~45

	0001
	0002
	0002a
	0002b
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01_Introduction
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01_Environment
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	03-01_Streams
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-01_File_Storage_and_Memory
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	05-01_IO_Devices
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	06-01_Communication
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	07-01_Editing_and_Formatting
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	08-01_System_Generation_and_Initialization
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	09-01_The_Backstop
	09-02
	09-03
	09-04
	09-05
	09-06
	10-01_Online_Diagnostics
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	11-01_TCP-IP_Interfaces
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	A-01_Performance_Criteria
	A-02
	A-03
	A-04
	B-01_Managing_and_Assigning_File_Types
	B-02
	B-03
	B-04
	C-01_Pilots_Interrupt_Key_Watcher
	C-02
	D-01_UtilityPilot
	D-02
	E-01_Multi-national_Considerations
	E-02
	F-01_References
	F-02
	I-01_Index
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	I-20
	I-21
	I-22
	I-23
	I-24

