
XEROX

XDE User Guide

610EOO140
December 1986

Xerox Corporation
Information Systems Division
XDe Technical Services
475 Oakmead Parkway
Sunnyvale. California 94086

Copyright ~ 1986, Xerox Corporation. All rights reserved.
XEROX 0,801 O,and XOE are trademarks of XEROX CORPORATION.

Printed in u.s. A.

XEROX Xerox Development Environment

XDE User's Guide

XDE3.0-2001
Version 3.0
November 1984

PRELIMINARY

Office Systems Division
Xerox Corporation
3450 Hillview Avenue
Palo Alto. California 94304

Xerox Development Environment

Notice

This manual is the current release of the Xerox Development Environment (XDE) and may be revised by Xerox

without notice. No representations or warranties of any kind are made relative to this manual and use thereof,

including implied warranties of merchantability and fitness for a particular purpose or that any utilization

thereof will be free from the proprietary rights of a third party. Xerox does not assume any responsibility or

liability for any errors or inaccuracies that may be contained in the manual or have any liabilities or obligations

for any damages, including but not limited to special, indirect or consequential damages, arising out of or in

connection with the use of this manual or products or programs developed from its use. No part of this manual,

either in whole or part, may be reproduced or transmitted mechanically or electronically without the written

permission of Xerox Corporation.

Copyright c 1984 by Xerox Corporation.
All Rights Reserved.

_rIE!: fbi f.

Preface

This document is one of a series of manuals written to aid in programming and operating
the Xerox Development Environment (XDE).

Comments and suggestions on this document and its use are encouraged. The form at the
back of this document has been prepared for this purpose. Please send your comments to:

Xerox Corporation
Office Systems Division
XDE Technical Documentation, MIS 37-18
3450 Hillview Avenue
Palo Alto, California 94304

Preface

iV

Table of contents

I General tools

1.1 System overview 1-1

1.1.1 User interface 1-1

1.1.2 Development scenario 1-1

1.1.3 Hardware. 1-2

1.1.4 Software components 1-2

1.2 Definition of terms 1-3

1.3 User interface 1-5

1.3.1 Windows and subwindows 1-6

1.3.2 Text manipulation . 1-10

1.3.3 Menus. 1-12

1.3.4 Keyboard commands 1-17

1.4 The user command file 1-21

1.4.1 Format of the user command file 1-21

1.5 Documentation roadmap . 1-24

1.5.1 XDE Concepts and Principles 1-24

1.5.2 The XDE User's Guide . 1-24

1.5.3 Mesa Language Manual 1-24

1.5.4 Pilot Programmer's Manual 1-24

1.5.5 Mesa Programmer's Manual 1-25

1.5.6 Appendices 1-25

1.6 Typographical conventions 1-25

1.7 Other features, other tools 1-25

1 DMT

1.1 Files 1-1

1.2 User interface 1-1

iii

Table of contents

2 Dictionary tool

2.1 Files 2-1
2.2 User interface 2-1
2.3 Dictionary tool 2-1

2.3.1 Commands 2-2
2.3.2 File format 2-2

2.4 User.cm 2-2

3 Editor Symbiote

3.1 Files 3-1
3.2 User Interface 3-1

3.2.1 Editor menu 3-1
3.3 Search and pattern matching . 3-5

3.3.1 Search. 3-5
3.3.2 Replace 3-6
3.3.3 Character classes and closure 3-6
3.3.4 Examples 3-6
3.3.5 Editor as programmer's tool 3-7

3.4 User .cm file entries 3-9

4 Executive

4.1 Files 4-1
4.2 User interface 4-1

4.2.1 Editing functions 4-1
4.2.2 Command line expansion 4-2
4.2.3 Command line interpretation 4-3
4.2.4 Built-in commands 4-3
4.2.5 Exec Ops menu 4-10

4.3 User .cm processing 4-10

5 HeraldWindow

5.1 Files 5-1
5.2 User interface 5-1

5.2.1 Boot From: menu 5-1
5.3 User.cm processing 5-2

iv

"'

XDE User's Guide

6 Profile tool

6.1 User interface 6-1

7 Tool Driver

7.1 Files 7-1
7.2 User interface 7-1

7.2.1 Message subwindow 7-2
7.2.2 Form subwindow 7-2
7.2.3 File subwindow 7-3

7.3 Script files 7-3
7.3.1 Script file format 7-3
7.3.2 Sample script 7-6

7.4 BNF for script files 7-7
7.5 The subwindows file 7-9
7.6 Running the Tool Driver 7-9

II File-related tools

11.1 File system conventions II-I
11.2 Filenames II-I
II.3 File-related tools . II-2

8 Brownie

8.1 Files 8-1
8.2 User interface 8-1
8.3 Script file . 8-1

8.3.1 Parameters 8-2
8.3.2 Commands 8-2

8.4 Example 8-3

9 FTP

9.1 Files 9-1
9.2 User interface 9-1

9.2.1 Command line syntax 9-1
9.2.2 Command line switches 9-1
9.2.3 Commands and examples 9-3
9.2.4 Command line errors 9-6

9.3 Tutorial 9-7

, v

Table of contents

10 File Tool

10.1 Files 10·1

10.2 User interface 10·1

10.2.1 Form subwindow 10·2

10.2.2 Command subwindow 10·3

10.2.3 List Options window 10·4

10.3 User.cm 10-4

10.4 Operational notes 10·5

11 Floppy commands

11.1 Files 11·1

11.2 User interface 11·1

11.2.1 Common argument definitions 11·1

11.2.2 Commands 11·1

11.3 Partial files 11·3

11.4 Examples. 11·3
11.5 Error messages 11·4

12 Search Path Tool

12.1 User interface 12·1

12.1.1 Form subwindow 12·1

12.1.2 Directories menu 12-2

12.1.3 Search Path menu . 12-2

13 Compare

13.1 Files 13·1

13.2 User interface 13·1

13.2.1 The Compare Tool window. 13·1

13.2.2 Compare via the Executive window 13·3

14 Find

14.1 Files 14·1
14.2 User interface 14·1

14.2.1 Switches 14-1

14.2.2 Switches on file names . 14-2

14.2.3 Special characters . 1~2

14.3 Examples. 1~3

vi

XDE U serts Guide

15 File Window

15.1 Files 15-1

15.2 User interface 15-1

15.2.1 Debugger Ops menu 15-1

15.2.2 File Window menu lS-2

15.3 User.cm 15-3

16 Print

lS.l Files lS-l

lS.2 User interface lS-1

lS.2.1 Switches lS-2

16.2.2 Defaults lS-3

lS.3 Formatting lS-4

lSA User.cm entries lS-4

III System-building tools

IlL 1 Files III-I

III.2 Creating a source file . III-I

III. 3 Creating an object file III-2

1II.3.1 Compiling a program 1I1-2

1II.3.2 Binding a configuration III-3

I1L3.3 Summary III-4

IlIA Running a program in the Tajo environment III-S

IlIA. 1 Snarfing and running III-5

111.4.2 U sing Command Central III-S

IIIA.3 Summary III-6

III. 5 Making boot files . III-S

III.5.1 Packaging a system III-S

III.5.2 Package operator III-S

III.S.3 Using MakeBoot III-7

III.5A Summary 111-7

III.S Using the Debugger III-7

III.S.1 Invoking CoPilot III-7

111.6.2 Talking to the Debugger III-8

III.S.3 Debugging a client program III-8

III.S.4 Pilot symbols files . III-14

III.6.S Interpreting signals III-14

III.S.S Address and write-protect faults III-IS

III.6.7 Tracing an address fault I11-16

vii

Table of contents

Ill. 7 Program-building tools III-18

IlL 8 Program analysis tools III-18

17 Binder

17.1 Files 17-1

17.2 User interface 17-2

17.2.1 Command line . 17-2

17.2.2 Switches 17-3

17.2.3 Associating files with modules and configurations . 17-4

17.3 Examples. 17-4

17.4 Error messages 17-5

17.5 Current limitations 17-7

18 Command Central

18.1 Files 18-1

18.2 User interface 18-1

18.2.1 Message subwindow 18-2

18.2.2 Command subwindow 18-2

18.2.3 Log subwindow. 18-3

18.3 Communication between client and development volumes 18-3

18.4 User.cm 18-4

19 Compiler

19.1 Files 19-1

19.2 User interface 19-1

19.2.1 Command line . 19-2

19.2.2 Switches 19-3

19.3 Examples 19-6

19.4 Error messages 19-6

19.5 Compiler failures. 19-8

19.6 Current limitations 19-8

20 Formatter

20.1 Files 20-1

20.2 User interface 20-1

20.2.1 Command line . 20-2

20.2.2 Switches 20-2

20.3 Formatting rules . 20-3

20.3.1 Spacing 20-3

viii

XDE User's Guide

20.3.2 Structure 20-4

20.4 User.cm 20-5

20.5 Examples 20-5

20.6 Formatter failures 20-6

21 MakeBoot

21.1 Files 21-1

21.2 User interface 21-1

21.2.1 Commands. 21-2

21.2.2 Switches 21-3

21.2.3 Parameter files. 21-3

21.2.4 Examples 21-5

-"

22 MakeDLionBootFloppy Tool

22.1 Files 22-1

22.2 User interface 22-1

22.2.1 Form subwindow 22-1

22.2.2 Command subwindow 22-2

23 Packager

23.1 Files 23-2

23.2 User interface 23-2

23.3 Information about modules 23-4

23.4 Packaging description language 23-5

23.4.1 Code segments . 23-5

23.4.2 Discarded code packs 23-8

23.4.3 Frame packs 23-9

23.4.4 Merging 23-9

23.4.5 Rules governing packaging descriptions 23-10

23.4.6 Placement of multi word read-only constants 23-11

23.4.7 Example 23-11

23.5 Operation. 23-12

24 Debugger

24.1 Files 24-1

24.2 Installing and invoking CoPilot 24-1

24.2.1 Teledebugging . 24-2

24.3 User Interface 24-3

24.3.1 Talking to the Debugger 24-3

ix

Table of contents

24.3.2 Debugger commands 24-8

24.3.3 The Debugger interpreter 24-19

24.4 Signal and error messages 24-23

24.4.1 Entering the Debugger. 24-23

24.4.2 Symbol lookup . 24-25

24.4.3 Unrecognized structures 24-26

24.4.4 Command execution errors. 24-26

24.4.5 Breakpoints 24-27

24.4.6 Displaying the stack 24-29

24.4.7 Interpreter. 24-29

24.5 User.cm 24-32

24.6 CoPilot interpreter grammar . 24-33

24.7 CoPilot summary. 24-34

25 DebugHeap

25.1 Files 25-1

25.2 User.cm 25-2

25.2.1 Form subwindow 25-2

25.2.2 DebugHeap menu 25-3

25.3 Example 25-4

26 IncludeChecker

26.1 Files 26-1

26.2 User interface 26-1

26.2.1 Tool interface 26-2

26.2.2 Command line . 26-4

26.2.3 Operating switches. 26-4

26.3 Examples. 26-5

26.4 User.cm 26-7

27 Lister

27.1 Files 27-1

27.2 User interface 27-1

27.2.1 Commands useful to general Mesa users 27-2

27.2.2 Commands useful to wizards 27-3

x

XDE User's Guide

28 Performance tools

28.1 Control Transfer counter tool. 28-2

28.1.1 Files 28-2

28.1.2 User interface 28-2

28.1.3 Operation. 28-4

28.1.4 Limitations 28-5

28.1.5 Getting started. 28-6

28.1.6 Sample session. 28-6

28.2 Performance Measurement Tool 28-8

28.2.1 Files 28-9

28.2.2 Concepts 28-9

28.2.3 Definition of terms. 28-9

28.2.4 User interface 28-10

28.2.5 Operation. 28-13

28.2.6 Limitations 28-14

28.2.7 Getting started. 28-15

28.2.8 Sample session. 28-15

28.3 Spy 28-17

28.3.1 Files 28-17

28.3.2 User interface 28-17

28.3.3 Operation. 28-19

28.3.4 Getting started. 28-19

28.3.5 Error messages. 28-20

28.3.6 Limitations 28-21

28.4 Ben 28-21

28.4.1 Files 28-21

29 Statistics

29.1 Files 29-1

29.2 User interface 29-1

29.2.1 Switches 29-1

29.3 Types of statistics. 29-2

29.4 Example. 29-2

IV Mesa Services

30 Mail tools

30.1 Mail Tool. 30-1

30.1.1 Files 30-1

30.1.2 User interface 30-1

Xl

Table of contents

30.1.3 The Mail Tool via the Executive window 30-7

30.1.4 Send Tool 30-7

30.2 MailFileScavenger 30-13

30.2.1 Files 30-13

30.2.2 User interface 30-13

30.3 Maintain. 30-13

30.3.1 Files 30-14

30.3.2 User interface 30-14

31 MFileServer

31.1 Files 31-1

31.2 User interface 31-1

31.2.1 Form subwindow 31-2

31.2.2 Executive commands 31-2

31.3 User.cm entries 31-2

31.4 Operational notes 31-3

32 Network executive tools

32.1 Chat 32-1

32.1.1 Files 32-1

32.1.2 User interface 32-1

32.1.3 Special keys 32-3

32.1.4 Chat User.cm 32-4

32.2 NSTerminal . 32-4

32.2.1 Files 32-4

32.2.2 Setting up 32-4

32.2.3 User interface . 32-5

32.2.4 Opening a connection 32-9

32.2.5 NSTerminal User.cm 32-10

32.2.6 U ser.cm example 32-10

32.3 Remote Executive 32-11

32.3.1 Files 32-11

32.3.2 User interface . 32-11

32.3.3 Commands 32-11

32.3.4 Remote Executive User.cm. 32-12

32.4 TTYTajo 32-13

32.4.1 Files and installation 32-13

32.4.2 User interface . 32-13

32.4..3 Commands 32-14

xii

XDE User's Guide

32.4.4 User.cm 32-14

32.4.5 Program interface . 32-14

V TCP/IP Related Tools and Applications

33 ARPA Getting Started

33.1 Installing the ARPA network protocols in XDE 33-1

34 ArpaCacheAddress

34.1 Files 34-1

34.2 User Interface 34-1

35 ArpaChat

35.1 Files 35-1

35.2 User Interface 35-1

35.2.1 Message subwindow 35-1

35.2.2 Form subwindow 35-1

35.2.3 TTY subwindow 35-3

35.2.4 Special keys 35-3

35.2.5 ArpaChat User.cm entries. 35-3

36 ArpaRemoteExec

36.1 Files 36-1

36.2 User Interface 36-1

36.2.1 Commands 36-2

36.2.2 Remote Executive User.cm. 36-3

37 ArpaFileTool

37.1 Files 37-1 .

37.2 User Interface 37-1

37.2.1 Form subwindow 37-1

37.2.2 Command subwindow 37-2·

37.2.3 Options window 37-3

37.2.4 Options command subwindow 37-3

37.2.5 Options form sub window 37-3

37.3 User.cm entries 37-5

37.4 References 37-5

xiii

xiv

Table of contents

38 ArpaFileServer

38.1 Files

38.2 User Interface

38.2.1 Tool window interface

38.2.2 Executive interface

38.2.3 Server activity log .

38.3 User.cm Entries

39 ArpaMailTool

39.1 Files

39.2 User Interface

39.2.1 Text sub window - Table of contents

39.2.2 Form subwindow

39.2.3 Options window

39.3 ArpaSendTool

39.3.1 Form subwindow

39.3.2 Text subwindow

39.3.2.1 Subject: field

39.3.2.2 To: field

39.3.2.3 Reply-To: field .

39.3.2.4 cc: field.

39.3.2.5 bec: field

39.3.2.6 Message body.

39.3.2.7 User.cm entries

39.4 MailFileScavenger

39.4.1 Files

39.4.2 User interface .

Appendices

A Othello

A.l

A.2

A.3

Files

Running Othello

User interface

A.3.1 Accessible disk drives ..

A.3.2 Checking a pack

A.3.3 Physical volumes .

38-1

38-1

38-1

38-2

38-2

38-2

39-1

39-1

39-2

39-3

39-4

39-5

39-6

39-7

39-7

39-7

39-7

39-7

39-8

39-8

39-8

39-10

39-10

39-10

A-I

A-I

A-I

A-2

A-3

A-3

XDE User's Guide

A.3.4 Logical volumes A-4

A.3.5 Initial microcode, Pilot microcode, diagnostic microcode, germ, and boot filesA-6

A.3.6 Time A-10

A.3.7 Routing tables and echo user . A-11

A.3.B Accessing the debugger during early initialization of Pilot .

A.3.9 Exiting Othello

A.3.10 Special commands .

A-11

A-12

A-12

B Getting started/Operations guide

B.1

B.2

B.3

B.4

B.5

B.6

C

C.1

C.2

C.3

C.4

C.5

C.6

C.7

C.B

C.9

C.10

Booting

B.1.1

B.1.2

The maintenance panel

Standard booting .

Setting up volumes: initializing your system .

B.2.1 Example of initializing volumes

B.2.2 Booting volumes from other volumes

B.2.3 Boot switches .

B.2.4 Xerox Development Environment boot switches

Installing boot files

B.3.1 Initializing debuggers .

B.3.2 Setting debugger pointers

Installing the development environment

B.4.1 Tools.

B.4.2 The user command file .

Recovering from disasters

B.5.1 Dandelion boot microcode maintenance panel error codes

B.5.2 Pilot maintenance panel codes for errors

B.5.3 Pilot error messages

Ending a session .

TableCompiler

Mesa object file format

U sing the output

ModuleMaker

StringCompactor .

C.4.1 Example

File format

Options

Command line syntax and switches

Examples

Switches on the inp~t file name

Switches on auxiliary file names

B-1

B-2

B-2

B-4

B-5

B-6

B-6

B-B

B-9

B-9

B-10

B-10

B-10

B-11

B-11

B-12

B-12

B-14

B-16

C-1

C-1

C-2

C-3

C-3

C-4

C-4

C-5

C-5

C-6

C-6

xv

xvi

Table of contents

D Parser Generator System

D.1

D.2

D.3

D.4

D.5

D.6

D.7

D.8

U sing the Parser Generator .

Format the input file .

Output of the Parser Generator

D .3.1 The input record

D.3.2 The log file .

The module file

The binary file

D.5.1 Binary file format

D.5.2 The LR and flrst files.

The Preprocessor .

Operation

D.7.1 PGSoperation .

D.7.2

Example

TableCompiler operation.

'.

E Sword Debugger

E.1

E.2

E.3

E.4

E.5

Events

Styles of debugging

E.2.1 Local debugging

E.2.20utload debugging.

E.2.3 Remote debugging .

User interface

E.3.1 Sword Tool.

E.3.2 Interpreter Tool

Debugger commands .

E.4.1 Breakpoints

E.4.2

E.4.3

E.4.4

E.4.5

Display runtime state

Current context

Program control

Low-level facilities.

The Debugger interpreter.

E.5.1 Statement syntax

E.5.2 Loopholes.

E.5.3

E.5.4

E.5.5

E.5.6

E.5.7

Subscripting

Explicit qualification vs qualification in the current context

Type expressions .

Radix conversion .

Arithmetic expressions.

D-1

D-2

D-3

D-4

D-4

D-9

D-9

D-9

D-11

D-12

D-13

D-13

D-16

D-17

E-l

E-1

E-1

E-2

E-2

E-3

E-3

E-5

E-14

E-14

E-17

E-20

E-21

E-22

E-22

E-23

E-23

E-23

E-24

E-24

E-24

E-24

E.6

E.7

E.8

E.9

Index

XDE User's Guide

E.5.8 Procedure calls.

E.5.9 Sample expressions

Signal and error messages.

E.6.1 Entering the Debugger.

E.6.2 Symbol lookup .

E.6.3

E.6.4

E.6.5

E.6.6

E.6.7

User.cm

Unrecognized structures

Command execution errors.

Breakpoints

Displaying the stack

Interpreter.

Mesa Interpreter grammar

Commands summary.

llustrations

Figure 1.1: User interface

Figure 1.2: Scrollbar

Figure 1.3: Windows

Figure 1.4: Form subwindow

Figure 1.5: Menus.

Figure 1.6: Text window

Figure 1.7: Keyboard .

Figure 3.1: Editor Symbiote subwindow

Figure 3-2: Editor property sheet .

Figure 7.1: Tool Driver executive window.

Figure 10.1: File Tool window

Figure 12.1: Search Path Tool window

Figure 13.1: C~mpare Tool window

Figure 18.1: Command Central tool window

Figure 22.1: MakeDLionBootFloppy tool

Figure 24.1: CoPilot

Figure 25.1: DebugHeap tool window .

Figure 26.1: IncludeChecker tool window

Figure 28.1: Control Transfer Counter tool

Figure 28.2: PerfPackage window with node commands.

Figure 28.3: PerfPackage window with histogram commands

Figure 28.4: Spy tool window .

Figure 30.1: The MailTool

Figure 30.2: Maintain tool window (normal level)

Figure 30.3: Maintain tool window (owner level)

E-24

E-25

E-26

E-26

E-26

E-27

E-27

E-28

E-29

E-29

E-32

E-32

E-33

1-5

1-7

1-8

1-9

1-12

1-16

1-18

3-1

3-3

7-2

10-1

12-1

13-2

18-1

22-1

24-3

25-2

26-2

28-2

28-11

28-12

28-18

30-3

30-15

30-15

XVll

xviii

Table of contents

Figure 31.1: MFileServer

Figure 32.1: Chat .

Figure 32.2: NSTerminal

Figure 39.1: ArpaMailTool

Figure 39.2: ArpaMailTool Options Window and SMTP Debugger

Figure 39.3: ArpaSendTool

Figure E.l: Sword

Figure E.2: LocalWorld with Interpreter Options .

31-1

32-2

32-5

39-2

39-5

39-6

E-3

E-6

Tajo

Errata

• On a 6085 keyboard, the CASE key has the same function as KEYBOARD-l on a 8010
keyboard. It will make the selection lower case, and If shifted it will make the
selection upper case.

• PRDP'S-CR "unindents" one level. For example, you can type it instead of a CR when you
want to close a scope on the next line.

• FileWindows. Save [] from the debugger saves Empty windows to a file named
"SeratehWindows 0 saved" on your client volume. You need FileWindows. bed on
your debugger volume to use this command from the debugger.

• ·SeratehSourees.Save[] sa ves all scratch sources to a file named
"SeratehSoureesosavedo" Unlike FileWindows.Save[], this one saves your
mail send windows as well as your Empty Windows, but doesn't save FileWindows
that you were editing. You need SeratehSourees.bed on your debugger volume to
use this command from the debugger.

• A SetPos i t ionBalaneeBeam affects the way text is displayed in your windows.
When you do a FIRDor Position in a window, the position in question is displayed at
the top of the window in "top" mode (the way Tajo has always worked), in the middle in
"middle" mode, or at either the top or bottom, which ever is more convenient, in
"topBottom" mode. TopBottom mode minimizes the repainting needed when you jump
between various positions in the window. Top mode only saves repainting when
jumping backwards. Middle mode doesn't save much at all, but it always positions
things of interest in the middle of your window. Top mode is the default. A sample
User. em entry is:

[System]
SetPositionBalanceBeam: top I middlel topBottom

• A CaretShape switch selects between two different styles of carets. The default is
"triangle," which gives you the standard Tajo TextSW ~nd TTYSW carets. With
earetShape = IBeam, however, you get an I-Beam caret in TextSWs and a gray

1

Errata

2

rectangle in TTYSWs. You can set this switch from the System section of ypur
User.cm:

[System]
CaretShape: triangle I iBeam

• MenuSymbiotes can have their own font. You can specify what font you want them to
have in the FileWindow section of your User.cm. The file name should have the
. s t r ike extension on it. The file should be on your root directory, < > , so the system
can find it even before your search path is set up. You can also specify how many lines
you would like your MenuSymbiotes to be. The MenuSymbioteLines field in your
User. cm can be a real tflumber, such as 2.37. It may take a few tries to get the
MenuSymb io tes looking just the way you want them to. A sample User. cm entry is:

[FileWindow]
MenuSymbioteFont: MenuSymbolsFont.strike
MenuSymbioteLines: 1

• When you hit Dolt in a FileWindow, several default extensions are tried. These
defaults (. mesa • config • cm) can be changed by specifying a list of extensions in
the FileWindow sections of your User. cm. Any string starting with a '.' is allowed.
For Example:

[FileWindow]
Extensions: .mesa .config .cm .doc .df .log

• J.Last positions the last line of the file in the middle of your window (even if you
don't have SetPosi tionBalanceBeam = middle).

• If the No t if ier is busy and is not taking any page faults, Shift-STOP won't take you to
the debugger. In this situation, use Shift-Shift-STOP to get to the debugger. If you must
do this, you can't execute Interpret-Calls from the debugger.

• When chording the mouse buttons to bring up a menu, release the POINT (= left = red)
button as soon as you have brought up the menu. The menu stays up as long as you
hold down the ADJUST button. Address faults may occur if you release the ADJUST button
before releasing the POINT button when using menus.

• Avoid running Tajo or CoPilot with extremely full volumes. Tools can fail otherwise.

• Three boot switches have been added to set the parameters of the system zone:

'[tiny initial: 4 pages, increment: 4 pages, large node: 128
'% standard initial: 40 pages, increment: 20 pages, large node: 260
'] large initial: 100 pages, increment: 50 pages, large node: 260

The largest size specified by the switches is the one used. If no switch is specified, the
default switch I % is used. Four-page uniform swap units are used throughout.

Reminder: the I I boot switch causes all TIP tables to be re-initialized, which means
all existing. TIP files are ignored, and new ones are written as needed.

Debugger

XDE User's Guide

• NEXT and NEXT-DELETE search from the insertion point, not the selection.

• FileSystem: If some tool in CoPilot gives the message that it could not close a volume,
try to figure out why the volumeAboutToClose was cancelled. Fix the error, then
close the volume manually by using the Exec's CloseVolume command. If you still
can't close the volume, you must reboot your machine before proceeding to the client.
If you open your client volume, or any volume readable from your cliene volume, for
write, you must not proceed to your client.

• The symbols for Heaplmpl are in UnpactedBeaplmpl. bed. Once retrieved, Copilot
realizes where the symbols are unless it has already given the "No symbols for
Heaplmp·l" message. In this case, after retrieving UnpactedBeaplmpl. bcd, you
have to tell Copilot to either

ATtach Symbols global frame: x Filename: UnpackedBeaplmpl.bcd

or

tRvalidate caches [Confirm]
--undocumented, done by CONTROl-N < cr >

• If you first interpret an expression containing a multi-word constant identifier and
later try to interpret that (or another expression) containing the same multi-word
constant identifier, CoPilot displays the error message "!Literal problem.
Invalidate Caches (CONTROl-N) and try again." Thisisaworkaround.

• Don't delete. symbols files or .bcd files that CoPilot has used for symbols. If you
must delete such a file, you can improve your chances of CoPilot working by
invalidating CoPilot's caches (CONTROL-N command).

• The syntax specifying a host to CoPilot's Remote Debug command as a network
address is: "net. hos t. " (note the two periods; numbers are octal only). The command
also recognizes any of the other formats documented in the AddressTranslation
chapter of the Mesa Programmer's Manual.

• You can set conditional breaks of these forms:

l. <number> -- copilot breaks ever~ <number >th occurrance

2. <expression> <relation> <expression>

where

<relation> isoneof< <= = >= >ltand

<express ion> is one of the following:

a. constant
h. local variable
c. parameter or return result at ENTRY/EXIT

3

Errata

Executive

Tools

4

d. global variable
e. pointerToRecord.field -- note that

pointerToRecord.array[constantExpression] is legal
f. pointerToArray[constantExpression]
g. pointerToSequence[constantExpression]
h. descriptor[constantExpression]all or these values can be [1..16] or 32 bits

in length

• To go backward in the stack, use "b" or "jump -n."

• Hex numbers may be entered with an 'H or' h suffix. Relations are implemented
(=, #, >, <, > =, < =). Real numbers and their operations are implemented.

• To get concrete values of opaque types, use At tach Opaque. For example,

ATtach Opaque: Window.Object Filename: WindowlmplB

causes all Window .Objects to be printed as WindowImplB$Object. The attachment
remains in effect until a new session.

• The debugger supports multiple remote debuggers.

• A sample debugger User. cm entry is:

[Debugger]
Boot: VolumeName
cRadix: octal I decimal hex
cSigned: TRUE I FALSE
iRadix: octal
iSigned: TRUE

decimal
FALSE

hex

pRadix: octal decimal
lpRadix: octal I decimal
relRadix: octal I decimal
unspec: CARDINAL I INTEGER
elements: ArrayElementsToShow
chars: StringCharactersToShow

• The commands Floppy. - erase and Floppy. - scavenge can be called from
the executive.

• Compare does not work for files on NS file servers, and ignores more than 5,120 lines
ofa file.

• MakeDLionBootFloppyTool now has an option to let you reserve the last cylinder for
diagnostics. The user interface has changed slightly. The command formSW has
changed to contain three boo leans and a command:

XDE User's Guide

Pormat ReserveLastCyIinderPorDiagnostics InstallPiIes Start!

After selecting the desired options, select Start!

• Brownie won't transfer Non-XDE file from NS file servers. In particular, long file
names, non-standard file types (such as ViewPoint file types), and multi-segmented
files (such as ViewPoint documents) are not supported.

• The List/f and List/b commands of FTP have a syntax different from that
described in the XDE User Guide. Only one of the /f or Ib switches can be used and it
must be the last switch. After one of these switches is seen, the rest of the command
line is assumed to be a list of files. The new syntax is:

>"P List/f date-with-no-spaces < files>

>PTP List/f -date with spaces- <files>

The date can be in any valid format for dates. The If switch lists the files that have a
create date after the date given. The Ib switch lists those files with a create date
before the date given.

Example:

:> "P RamRod Dir/c AMesa List/dalf lO-Oct-84 '*

• Command Central and the Run. - and Load. - commands of the Executive now
recognize the v switch, which causes version mismatches to be ignored.

• There are new built-in Exec commands. Protect. - changes the protection status of
files and directories. Registry. - sets the default registry. Clearinghouse. - sets
the default domain and organization. You must execute the Login command after the
Clearinghouse command in order to update the Clearinghouse of the logged in user.
Type "Help. - <command>" in the Executive window for more information.

• When trying to re-execute an Executive command by selecting and stuffing a previous
command, you may accidentally select the prompt character' > '. If so, the command
that the Executive tries to run will start with the character> and will not match any
of the registered commands. However, it will match the corresponding file when the
Executive tries its autoload heuristic, causing the Executive to load another instance
ofyourbcd.

• You can specify the font to use on the command line. For example:

>Pormatter /-tikg Souvenir/f Def.mesa Impl.mesa

The 'f' switch says that this is a font. It should come after the global switches and
before any files to be formatted. Note that no size is given, just the name of the font.
The formatter picks 10 point for portrait and 8 point for landscape. There are also new
User. cm entries for the formatter:

5

Errata

Librarian

6

[Formatter]
LandscapeFont: Souvenir
PortraitFont: Classic

• The Ik (Output Packager Command) switch writes Packager commands in the output
file that make Packager source and object files consistent (default TRUE).

• Makeboot contains some new options and some old options have been removed. The
GFT entry is obsolete in the bootmesa file. The gftLength command line argument is
also obsolete.

In the bootmesa file the options:

LOADSTATEMODULES: number
LOADSTATEBCDS: number

are now available. These items set the number of empty module and bcd slots you
want in the initial LoadState. Such entries are used when, for instance, modules are
loaded or NEW'ed. This number does not include the modules and bcds in the boot file.
In the command line, the options:

lsModules: number
lsBcds: number

are now available. These items override the numbers in the parameter file given by
LOADSTATEMODULES and LOADSTATEBCDS, respectively. They have the same
meaning as LOADSTATEMODULES and LOADSTATEBCDS, respectively. Since Pilot
automatically expands the loadstate as necessary, these numbers are optional and
need not be accurate. The lu switch may be added to the MakeBoot command for
UtilityPilot-based bootfiles. This switch has no effect on program execution but
makes the bootfile smaller by eliminating unnecessary data.

With multiple bootmesa files, the last file takes precedence for all parameters except
IsModules, IsBcds, and processes, in which cases the first boot mesa file takes
precedence. Parameters on the command line override those in a bootmesa file.

Also, MakeBoot takes "\nnn" boot switches in its command line if they are enclosed in
double quotes, such as:

MakeBoot OthelloTriDLion[parm: UtilityPilot, parm:
UtilityCommunication, .switches: w\372 wJ/dhu

• The Set Backup Path command also prompts for the number of backup versions to
keep. It keeps this number of copies of the data base index and record files for recovery
purposes. Only one version is necessary; additional copies are simply precautionary.

Example:

LS!Set Backup Path
Which database?

XDE User's Guide

1 Mesa-Libjects
2 Pilot-Libjects
Enter choice number: 2
Path to back up files for this data base:
north) LibrarianBackup/
Bumber of backup versions to keep (1 •• 100): 2

(Rasp:osbu

• The Checkin Libject command allows administrators to check in libjects checked
out by someone other than themselves. It prompts for the data base name and libject
to be checked in. Example:

LS!Checkin Libject
Which database?
1 Mesa-Libjects

2 Pilot-Libjects
Enter choice number: 2
Libject name: FileTransfer.df

Checking in FileTransfer.df ••• Done.

• Strong authentication is now supported.

Internal Tools

• Filename/F (read commands from a file) for Chat doesn't work. Chat stuffs initial
commands into its window when a connection is opened if the autologin feature is
enabled. The commands stuffed can be specified in the User. cm as follows:

..

"

[Chat]
machine: quotedStringWithCarriageReturns
booter: "execpupchat /u vaxc

oxnard: "sets <main>me <main>

• The Protect. - command isn't in TTYTajo.

7

Errata

8

I

[-10

General tools

A text item is a display string that you may modify using the editing functions (see
the section in this chapter on Text manipulation). A text item is distinguished from
other form items by the": " (note the space after the colon) appended to a text form
item keyword. Several accelerators are available for text form items. Clicking Point
over the keyword selects all of the text in the form item and moves the type-in point
to the end of the text. For example, clicking Point over Password: in the Profile
Tool causes the type-in point to be positioned after the colon, ready for you to type in
your password. Generally, clicking the Adjust button over the keyword deletes the
text and sets the type-in point.

Fine point: When a passwGrd is entered. an asterisk is displayed for each character typed.

A numeric item is like a text form item, except that only strings representing
numbers may be modified. A numeric item is distinguished from other form items
by the":" (note the space after the equal sign) appended to the keyword.

A tag items is a text string used to annotate a form. A tag item labels something thst
appears either elsewhere on the screen or entirely off the screen.

Menu prompts are always available for enumerated form fields and are optional in
some textual form fields. When you chord the mouse buttons with the cursor over
the keyword for an enumerated field, a menu of allowed values for the form item is
displayed. Choosing one of the values from the menu sets the form item to that
value. Similarly, when you chord with the cursor over the keyword for a textual
field, a menu of character strings is isplayed. Choosing one of the items (strings)
from the menu will cause the menu string to be appended at the current position of
the type-in point.

Specific form items are described in later chapters with the tools to which they belong.

1.3.1.4.2 Text su bwindows

Most text display, other than in form subwindows, occurs within text subwindows. Text
subwindows may be associated with a file that contains the text. A TextOps menu is
supplied with a text subwindow. The Text Ops menu contains commands specific to text
manipulation (see next section).

1.3.2 Text manipulation

Text may be entered, edited, moved, and deleted in certain subwindows, which are
appropriately called text subwindows. Selections may also be moved between subwindows.

1.3.2.1 Selecting text

The concept of a current selection is global. There is only one current selection at any time
(not one per window): it is generally used as the argument to commands.

Fine point: Although a current selection is always video-inverted, not all video-inverted entities are considered

current selections (such as when a menu command is invoked l.

I

General tools

This chapter is an overview of the Xerox Development Environment (XDE) and its use. It
describes the types of features in the environment and how they interact. The final
sections of this chapter discuss other XDE documentation, the organization of this
manual, and its typographical conventions.

This chapter also introduces a number of helpful tools found onthe XDE system. These
tools are discussed in chapters 1 through 7.

1.1 System overview

The Xerox Development Environment provides development tools for programmers
writing tools and applications, including tools to aid in editing, compiling, binding,
running, and debugging Mesa programs.

1.1.1 User interface

A tool communicates with the user via windows, which are rectangular regions of the
display screen in which text, icons, and graphics are displayed. User input to a window is
collected using menus or form subwindows. A menu is a list of options or commands
associated with a window. Tajo, the XDE runtime environment, allows programmers to
define specific menus meaningful to a particular tool. Another way to collect user input is
through a form subwindow, which is a horizontally ruled section of a window used for
displaying commands and argument names.

In addition to window-oriented facilities, XDE provides a simple executive facility for
invoking the same tools using a less sophisticated teletype-style interface. Tools of this
type are invoked through the Executive window by typing the tool name and the
appropriate parameter syntax.

1.1.2 Development scenario

A complete development scenario includes design, implementation, testing, and release of
systems. During implementation, the programmer produces code using pre-existing
modules consistent with the design. After writing or retrieving the necessary modules,
they are separately compiled and then bound together. Once bound, the entire system,
referred to as a configuration. can be debugged. Each time an error is corrected, the

I -l

I

1-2

General tools

process of compiling and binding is repeated until the system is free of bugs. After
debugging, modules are stored on file servers, the entire system is tested, and then it is
released to the user community.

For more general information about the XDE system, see XDE: Concepts and Principles.

1.1.3 Hardware

The XDE programming environment is designed for a personal computer. It runs on a
powerful microcoded processor (the Dandelion) with a large virtual address space. The
user interface uses a high-resolution bitmap display, with a keyboard and a pointing
device called a mouse. Secondary storage is provided by a rigid disk and an optional eight
inch floppy disk. The Ethernet, a local area network, provides a high-bandwidth
connection to other personal computers and to network services, such as print and file
servers. (XDE: Concepts and Principles provides general information about networking
concepts used in Xerox products.)

1.1.4 Software components

To illustrate the interaction between the various systems, it is helpful to envision a
hierarchy with Pilot, the operating system kernel, at the lowest level. The next system up
the hierarchy is Tajo, a specialized collection of interfaces designed to facilitate the
implementation of software development tools. At the top of the hierarchy is CoPilot, the
debugger. Although Tajo and the Xerox Development Environment may seem similar
since they both support programming activities, the distinguishing factor is that the
development environment includes programs specific to the Mesa language, whereas Tajo
is language independent. .

Othello is a Mesa program that manages Pilot physical and logical disk volumes. Since it
does not provide any programming facilities, it is not considered part of the hierarchy.
Appendix A describes Othello.

1.1.4.1 Pilot

Pilot provides Mesa runtime support, including processes, monitors, and synchronization
facilities. Pilot supports a collection of cooperating user-defined processes, some of which
are the tools. Since allocation of major system resources is generally on a cooperative
rather than a competitive basis, Pilot does not contain elaborate resource allocation
functions. Instead, resources and resource management are typically planned statically
when systems are configured. In instances requiring dynamic resource control, such as the
sharing of physical memory, Pilot provides facilities that allow the applications to state
their current requirements. Consistent with the notion of clients as cooperating processes,
Pilot provides only limited protection against malicious programs, thereby shifting the
responsibility of ensuring smooth operation to Pilot clients. The Pilot operating system is
implemented entirely in the Mesa language. (Pilot is discussed briefly in Appendix Band
described in detail in the Pilot Programmer's Manual,)

XDE User's Guide I

1.1.4.2 Tajo

Tajo is a unified set of facilities supporting the implementation and execution of software
development tools. "Using" Tajo can be viewed in two ways; a user is a person who
interacts with Tajo via the mouse and keyboard; a client is a program that uses the Tajo
software interfaces. Tools are the Client programs that call upon Tajo.

1.1.4.3 CoPilot

CoPilot supports source-level debugging. It allows users to interpret Mesa statements, set
breakpoints, trace program execution, and display the runtime state. Pilot provides the
code necessary for a program to communicate with CoPilot; it resides with the user
program. CoPilot, however, resides in a different memory image (on a separate logical
volume) that is loaded when called for. This protects the client and the debugger from each
other, in addition to providing the separate address space required to implement all of
CoPilot's capabilities.

There are several ways of invoking the Debugger, some under programmer control and
others not. Those under programmer control include setting breakpoints and interrupting
a program during execution. These techniques are used when a programmer anticipates
some problems and wishes to halt execution temporarily to examine (and possibly change)
the program state before proceeding. CoPilot may also be invoked automatically when a
program generates runtime errors, such as address faults or uncaught signals. If the
Debugger is invoked because of a runtime error, you can often change the state of the
program by using the appropriate debugger commands and continue executing from the
new program state. However, some errors, such as memory overwrites, cause irreparable
damage. When this happens, you must end the debugging session and re-boot the client.

1.1.4.4 Othello

Othello is a utility for managing Pilot physical and logical volumes. It is used to initialize
physical and logical volumes, to install boot files on logical volumes, to invoke a boot file
on a particular logical volume, and to start scavenging logical volumes. In the normal
development cycle, Othello is booted from a rigid disk. However, if the disk has never been
booted or has been erased, Othello can be booted from the Ethernet or from a bootable
floppy disk. For more information about Othello, see Appendix A.

1.2 Definition of terms

Accelerator

Argument

An accelerator is an easier or faster way of doing a common operation.
Clicking Adjust in the center third of the name stripe, for example, is
an accelerator for sizing a window (rather than bringing up the
window menu and selecting "Size").

An argument to a procedure or command is a piece of data upon which
the operation is performed. For example, the argument to a MOVE

command is the video-inverted text to be moved.

I

[-4

General tools

Chord To chord keys or buttons is to push them down at the same time, as
when chording the mouse buttons.

Click To click a mouse button is to press down. on it and let it up.

Current selection The current selection is text, icons, or graphics you have chosen by
using the mouse (current tools do not implement selection of icons or
graphics). It is visually highlighted on the screen and is generally used
as the argument to a command.

Cursor The cur~or is an icon that tracks the mouse position: moving the mouse
moves the cursor. The system may change the cursor shape to provide
feedback about what it is doing.

leon An icon is a small picture on the display representing some entity.

Input Focus The input focus is the window to which keyboard commands and typed
characters are sent. The input focus contains the type-in point.

Interface An interface is a formal contract between pieces of a system that
describes the services to be provided. A provider of these services is
said to implement the interface; a consumer of them is called a client of
the interface.

Menus A menu is a list of available commands or data chosen by mouse
selection. More than one menu may be associated with a tool window
or subwindow or with the unused portion of the display

Mouse The mouse is a pointing device that allows you to direct the attention of
the machine to a particular point on the display. A mouse usually has
two buttons, Point and Adjust. (See Point, Adjust.)

Movable boundary A movable boundary is a horizontal line with a small box on its right
end that divides a window into subwindows or splits a text subwindow.
A movable boundary is used to change the relative heights of adjacent
subwindows.

Name frame

Subsystem

Subwindow

Tool

The window name frame is a rectangular region at the top of a window.
It is usually black, with the window's name and other identifying
information displayed in white.

A subsystem is a program that runs in the Xerox Development
Environment Executive window. Some subsystems and tools
accomplish the same task.

A window is often composed of one or more rectangular subwindows.
The Xerox Development Environment provides several standard
subwindow types, each providing different functions. (See Window).

A tool is a Xerox Development Environment applications program. A
tool can run in parallel with other tools, including other instances of
the same tool. Tools react to prompting and seldom carry out

XDE User's Guide I

operations when not in use. A tool usually, but not always, has an
associated window.

Type-in point The type-in point is the text location where typed characters are to be
inserted. The type-in point is indicated by a flashing caret or box.

Video-invert To video-invert a region is to cause black areas of the region to become
white and white areas to become black.

Window A window is a rectangular region of the display in which text and
graphic~ can be displayed. Most tools communicate via windows.

1.3 User interface

The user interface for tools provides the unifying framework for the development
environment. Tools portray their capabilities through windows and menus. Windows and
menus rely on XDE features such as text handling and keyboard or mouse commands.

This section describes text manipulation, keyboard commands, symbiotes, windows,
subwindows, and menus. It discusses some important menus and their commands. (The
definition of a particular window or menu is always found in the chapter on the related
tool.)

Window name frame Menus

Move
Grow
Drag
Size
Top
Bottom

~~ __________________________________ -iZoom
Deactivate

Vanilla: '------~ Command!

Password:

ReadOnly: Read Only String Cardinal = 0

boolean(trueFalse): I FALSE} IItl8111'I_
enumerated(one): {A} enumerated(all): {X,

n this subwindow is the current

The box at the end this sentence is the type-in point.

Insertion point

Figure 1.1: User interface

{-5

I

1-6

General tools

1.3.1 Windows and subwindows

A window is a rectangular region of the display screen that offers a view of a potentially
infinite plane. Most tools have one or more windows.

Each window is composed of one or more sub windows. Subwindows are regions of the
window, each with individual characteristics. Subwindows are usually arranged
vertically, with horizontal black lines dividing them. A window allows you to
communicate with the tool to which it belongs and allows a tool to create a representation
of a world owned and managed by that tool. The tool displays text and graphics, some of
which may be lying out of sight.

One tool can create multiple windows, but each window is owned by a single tool. There
may be multiple windows on the screen, and they may overlap and partially or fully
obscure other windows. There may be stacks of windows lying on top of each other, each
with its status and context intact, as if they were pieces of paper lying on a desk.

A tool window has three states: active, tiny, and inactive. An active tool window appears
ready for communication. Like a hammer or wrench, an active tool can be picked up, used,
and put down again; it remains exactly as it was left. When an active tool window is made
tiny, it is represented on the display by a small box (an iconic representation) containing
only its name. Making a tool tiny is like putting a tool in a tool belt: it will probably be
used soon, but the tool user wants to get it out of the way for a while. When a tiny tool is
returned to normal size, the contents of its window reappears. When a tool is made
inactive, any information it keeps while active or tiny is discarded. When the tool window
is subsequently activated, it appears as if it had just been created. Mal¥ng a tool inactive
is similar to cleaning off a wrenc}:l and placing it into the tool box. It will probably not be
used for a while, and the tool user wants to make room for other tools.

An exception to this general be ha vior of windows is the root window . You can think of it as
a window the size of your display screen that lies at the bottom of any stack of windows.
The root window can never be at the "top" of the stack of menus on your screen, or all the
rest would be covered! Certain menus are attached to the root window as to any other
window: the Exec Ops menu, the Inactive menu, and the Symbiote menu. (See the section
on menus below for more specific information about these menus.)

1.3.1.1 Communicating via subwindows

A tool accepts input via the keyboard and mouse buttons. Each subwindow may have
different interface characteristics, and the meaning of the keyboard keys and mouse
buttons may change when they are accepted by a different subwindow.

In general, all keystrokes are sent to the sub window that has the input focus. The
following keystrokes are exceptions: they are sent to the subwindow that contains the
cursor: MENU, FIND. J.FIRST. ABORT, and the mouse buttons (Point and Adjust). If no window
has the input focus, the screen blinks when keys are pressed. If the tool is busy when
keystrokes are sent to it, the system queues the keystrokes and delivers them to the tool as
soon as it is ready to accept input.

A subwindow keeps the input focus unless it is deactivated or the input focus is explicitly
moved to a different window. For instance, it keeps the input focus if it has been made tiny
or ifit is completely obscured by other windows. You can set the input focus by depressing

XDE User's Guide I

one of the mouse buttons in the subwindow you would like to take the input focus. If the
subwindow is unwilling to accept the input focus, the screen will blink.

If you set the input focus by pressing the Point button, the type-in point is set to the
location under the mouse button (except in TTY windows, which insist that the type-in
point always be at the end of the text). If you set the input focus by pressing the Adjust
button, the type-in point is the last location that was the type-in point in the subwindow.
Thus the Adjust button can be used to recover the type-in point in a subwindow after it has
lost the input focus. While MOVE or COpy is depressed, using the mouse buttons will not
change the input focus. If a subwindow does not want type-in itself, it may redirect it to
another subwindow.

1.3.1.2 Scrolling

Scrollbar

Translucent gray region

~ Command!

1 Password:

~ ReadOnly: Read Only String

~ boolean(trueFalse): {TRUE, FALSE}

~ enumerated(one): {A} enum

text

Cursor -+--f"ll:;:!

Dark gray region

Figure 1.2: Scrollbar

A subwindow may contain more information than can be displayed on the screen at one
time. The development environment provides scrollbars (Figure 1.2) to facilitate access to
information lying out of view. Vertical scrollbars are long thin rectangles near the left
border of subwindows. Some subwindows have horizontal scrollbars near the bottom
border of a sub window .

When the cursor is not in the scrollbar region, the scrollbar is a narrow transparent strip
bordered by a gray stripe. When the cursor is in the scrollbar region, the scrollbar looks
like a translucent gray region with a dark gray region within it (much like a
thermometer). The transparent gray region represents the entire length of the contents of
the subwindow. The dark gray region represents the text currently displayed; its size and
position correspond to the position of the displayed text in the file.

When the cursor is in the scrollbar region, it changes to a double-headed arrow and the
meaning of the mouse buttons change: they now direct the scrolling operation. The cursor
changes again when one of the buttons is depressed: Point ~crolls up and Adjust scrolls

r -: . ,

I

[-8

General tools

down. Pressing both keys together (a "chord") is used for thumbing. Thumbing is
analogous to opening a book by placing your thumb at the approximate position of the
section you want to start reading and pulling the book open at that point. Releasing the
chord while the cursor is positioned in the scrollbar invokes the scrolling operation;
releasing the chord while the cursor is outside the scrollbar aborts scrolling.

1.3.1.3 Adjusting boundaries

You can change the movable boundaries of a subwindow by pressing Point while the
cursor is positioned over the small box at the right end of the black boundary line, moving
the cursor to the desired position, and releasing Point. Subwindows adjusted this way
cannot be smaller than the height of the font being used.

Figure 1.3 illustrates a stack of three windows belonging to two tools and the Executive.
The Profile Tool is in tiny form in the upper right of the display.

Profile
Tool

: Command! Vanilla:

~ Password:

j ReadOnly: Read Only String Cardinal = 0

j boolean(trueFalse): FALSE}

Executive
window

Message
subwindow

Form
subwindow

j enumerated(one): {A} Sub window
~~--~~---;~~boundary

~--

Figure 1.3: Windows

1.3.1.4 Subwindow types

File
subwindow
Subwindow
split

The two most important subwindow types for most purposes in XDE are form sub windows
and text subwindows. They are described in the next sections.

1.3.1.4.1 Form subwindows

Form subwindows, which belong to specific tools, have two primary uses: First, they are
used to display and alter the current values of the internal state of tool-specific data.
Current values can be altered at any time in any order. Second, most form subwindows are

XDE User's Guide I

equipped with tool-specific command form items that act as accelerators for menu
commands. A form subwindow is illustrated in Figure 1.4.

Command!

Password:

ReadOnly: Read Only String

boolean(trueFalse): {TRUE, FALSE}

enumerated(one): {A} enum

text

Figure 1.4: Form sub window

Tools normally display the arguments, and a single command invokes them. When an
operation requires several arguments, they must be specified before invoking the
operation. (Specific form subwindows are described in later chapters with the tools that
own them.)

A form can have a variety of types of fields:

A command item performs the same function as a menu command. Command items
are distinguished from other items by the! appended to them. You can activate a
command item by positioning the cursor over the keyword and depressing Point.
Releasing Point over the keyword after the keyword is video-inverted invokes the
operation. Releasing Point when the cursor is no longer positioned over the keyword
cancels selecting that command.

An enumerated item is one of a lists of text items. These items may be displayed in
two ways: keyword: {a, b, c, ... } or keyword: {a}. In either cases, choosing
may be done via menu prompts lsee below). In the first form, a choice in the list may
also be chosen by positioning the cursor over it and clicking Point. The highlighted
item is the current value. In the latter form, only the currently active enumerated
list element is displayed.

A boolean item is a form item that takes on the two values TRUE or FALSE. The
feedback is a display of the keyword with the Boolean state video-inverted. The
video-inverted Boolean means TRUE.

1-9

1.1 Files

1

DMT

DMT is a tool whose purpose is to keep the phosphor on the display screen from wearing
out. It should be run whenever you leave your workstation unattended.

Retrieve DMT. bed from the Release directory.

1.2 User interface

DMT is activated when you type DMT to the Executive. DMT then puts a solid black
window on top of all of the existing windows. Embedded in this black window is a small
white moving rectangle that shows the current date, and time, Making DMT active does
not affect any other processing already in progress; it merely covers up the display screen.

IfDMT is running and you wish to resume work, you can deactivate it by pressing ABORT or
by using the Deadivate or Size commands in the Window Manager menu.

DMT fails to achieve its purpose if your display is white-on-black; when run, it will display
a solid white window covering the screen. Change it to black by pressing the COMMAND-'

keys.

1-1

1 DMT

1-2

XDE User's Guide I

You select text by clicking Point within the selection. If you click Point in the same place
several times within a brief period (within roughly a second), successive units of text are
selected: clicking once selects a character, twice selects a word, three times a line, four
times the whole body of text, and five times back to a single character. You can extend a
selection to the left or right either by holding down Adjust while moving the mouse or by
pointing to where the end point is to appear and pressing and releasing Adjust. The
selection is extended in the same units used to make the original selection: a character
selection is extended by characters, a word selection by words, and so on. A selection is
extended by characters if you start over the first or last character of the selection and move
the mouse while pressing Adjust. You can contract selections as well as expand them by
using Adjust. If you Adjust to a place within the current selection, the selection shrinks by
the units of the selection. However, if you begin the adjust action over either the first or
last character of the selection, character mode is used instead. There will always be at
least one unit left in any selection after contracting.

1.3.2.2 Entering text

Any characters typed into the window are inserted before the current type-in point. You
can set the type-in point by moving the cursor to the desired place and clicking Point. The
type-in point will be set as close as possible to the cursor's position. For example, when you
select a single character, the type-in point precedes the character if you select the left half
of the character and follows the character if you selected its right half. (Setting the
Balance Beam in the user. cm file, described below, changes the positioning of the type
in point relative to the selection.)

The type-in point can also be set by holding down the CONTROL key and clicking the Point

button over the desired location. This is useful with the STUFF command (see the section on
Keyboard functions).

1.3.2.3 Deleting text

Text may be deleted by selecting it and pressing the DELETE key. Many tools place such
deleted text into a global "trash bin." The BS (backspace) and BW (backword) keys delete
text to the left of the current type-in point. Text deleted this way is not entered into the
trash bin. The BW key deletes any white space or punctuation between the type-in point
and the closest preceding word (alphanumeric string) and then deletes the word itself.

1.3.2.4 Current selection and trash bin

The trash bin is a conceptual container of the most recently deleted selection. In a
subwindow that supports editing, the current selection may be deleted and deposited in
the trash bin, where it is held for potential retrieval and placement. This allows text to be
either moved from one position to another within a window or sent to subwindows other
than the point of origin.

Any of the following steps copies text from one place in a window to another:

• Select the text, move the type-in point with CONTROL-Point, and press the STUFF key.

1-11

I

[-12

General tools

• Select the text, press DELETE, PASTE to move a copy into the trash bin, put the selection
back where it was, move the selection to the desired location, and press PASTE.

• Set the type-in point to the desired target location, hold down COPY, select the text to be
copied, and release COpy when finished selecting text.

1.3.3 Menus

A menu is a set of options or commands associated with a window or subwindow. Most
windows have multiple menus. When the menus associated with a sub window are
displayed, the menus associated with its tool window are also displayed.

A menu contains either commands or data items. A menu command often takes the
current selection as its argument. Sometimes, as with Window Manager commands, the
semantics of the command implies its argument.

1.3.3.1 Invoking menus

In Figure 1.5, the Window Manager menu is shown on top of the TextOps and File Window
menus. This grouping of menus would probably be associated with a file window or text
subwindow. Each type of window has specific types of menus associated with it. These
menus are used to give commands to the process that owns the window.

Move
Grow
Drag
Size
Top
Bottom
Zoom
Deactivate

Figure 1.5: Menus

Menus are invoked either by chording the mouse buttons or by pressing the MENU key (in
the explanations below, the term "chording" will also stand for using the MENU key).
Available menus appear in the vicinity of the cursor whenever (and as long as) you are
chording. The position of the cursor determines which menus are available. If the cursor is
in a subwindow, the menus associated with that subwindow and the menus associated
with the tool to which the subwindow belongs are available. Some menus are available
when the cursor is in any portion of the screen not covered by any window.

1.3.3.1.1 Choosing a menu

There are usually at least two menus for a window: the Window Manager menu (explained
below), whose commands modify the window rectangle, and a menu that lists

XDE User's Guide I

the commands available for that tool. More menus are possible; subsequent menus
underlie the others.

You can choose menus from the stack by positioning the cursor over the visible portion of
the desired menu (the menu name frame) and chording again. When you chord again, the
chosen menu appears on top of the others. Alternatively, as an accelerator, you may click
Point over the title of the desired menu while continuing to hold down Adjust. The chosen
menu immediately appears on top of the stack.

1.3.3.1.2 Invoking a command

Once a menu is displayed, choosing a menu item requires you to position the cursor over
the list until it rests over the desired item, while you continue to chord. The selected menu
item is video-inverted; when you release the chord, the command is invoked. If you release
the chord when the cursor is not over a menu, the displayed menu disappears.

A quick method (called an accelerator), is to click Point over the desired menu item while
continuing to hold down the Adjust key. The command is invoked; after it is executed the
menu usually reappears.

Fine point: A menu does not reappear (1) if it is destroyed by the command invocation (such as by activating the

only file in the Inactive menu), (2) if the source from which the command was invoked is no longer visible (as

when invoking8ot tom sends a window to the bottomofa stack, where it is completely obscured from view), or

(3) if the window is tiny.

1.3.3.1.3 ConfIrming or aborting a command

Some menu commands require you to confirm or abort a command. In these cases the
cursor changes to a tiny picture of a mouse with Point highlighted; this informs you that
clicking Point will confirm the command. Clicking Adjust aborts a command.

1.3.3.2 Specific menus

There are several generally important menus: the Window Manager menu, the Inactive
menu, the TextOps menu, and the Symbiotes menu.

1.3.3.2.1 Window Manager menu and accelerators

All tool windows allow you to manipulate window size, location, and state by using
commands found in the Window Manager menu. For example, a window may be made to
cover the entire available display space, change position, become smaller, turn into its
iconic form, or disappear from the screen. The commands available in the Window
Manager menu are:

Move allows the window to be moved around the display area but does not
change its size. When you invoke this command, the cursor changes into
the shape of a corner bracket. As you move the cursor from one corner of
the display area to another, it changes shape to indicate which corner of
the window the operation will affect. When you position the cursor over
the desired location and click Point, the·· window moves to the

I -l:3

I

1-14

General tools

area that begins in that corner.

Grow allows you to pull a corner of the window in any direction, growing or
shrinking the window along its width or height. This command acquires
position information in the same way as Kove.

Drag allows you to elongate a window by pulling an edge of the window in any
direction; it also requires position information.

Size turns the window from a normal size into its tiny form, usually a small
iconic rect.angle showing an abbreviation of the window's name. If the
window is already tiny, invoking Size changes it back to its normal size.

'fop displays the window on top of all the other windows in its stack.

Bottom places the window at the bottom of all the windows in its stack.

Zoom causes the window to grow, taking up all available display space and
appearing on top of all other windows. Clicking Zoom again puts the
window back to its previous size.

Deactivate causes the tool window, and all other windows associated with a tool, to
be removed from the display and become inactive. An abbreviation of the
window's name is entered in the Inactive menu; the tool is re-activated by
choosing the window name on the Inactive menu.

Window Manager operations may also.be invoked more quickly by positioning the cursor
in the left, middle, or right regions of the window name frame (or in the top half of a tiny
window) and clicking one of the mouse buttons. The region of the window name frame in
which the cursor is positioned video-inverts to provide feedback. The name-frame
operations are:

Mouse Button

Point
Adjust

Left Region

Top/Bottom
Move

Middle Region

Zoom
Size

Right Region

Top/Bottom
Move

The operations available are as described above, with the exception of Top/Bottom.
Top/Bo t tom specifies that if the window is not on top, move it to the top. If it is already on
top, move it to the bottom. Pressing Adjust in the left or right portion of the name stripe
brings up the Move cursor. Clicking Point while Adjust is still down cycles the cursor
through the three shapes (Move, Grow, and Drag.)

These name-frame operations are also available on the upper half of a tiny window. In
some tools, menu commands are available in the lower half of the window even when it is
tiny.

XDE User's Guide I

1.3.3.2.2 Inactive menu

The Inactive menu contains a list of the tools that have been installed but are currently
inactive. The Inactive menu is available in any part of the screen not covered by a window.

1.3.3.2.3 Text Ops menu

A text subwindow generally has a Text Ops menu that provides commands for
manipulating text placement:

Find

Split

Position

J. First

J. Insert

J. Select

J. Last

Wrap

finds the next occurrence of the current selection in the subwindow. lethe
current selection is in the subwindow, the search begins at the end of the
selection; otherWise, it begins at the first character visible in the
subwindow. If the search is successful, the next occurrence of the text
becomes the new selection. The search continues into text not visible on
the screen; if the selection is found past the text displayed, the text is
scrolled to the top of the split region. If no further instances of the text are
found, the display blinks.

If the SHIFT key is down, FIND works backward from the current selection, if
any. or from the last character visible in the window.

divides a region of the subwindow into two subregions separated by a
dashed line, with a small box at the right end of the line. This line can be
moved by depressing Point over the small box, moving the cursor, and
releasing the button. The subregions can be scrolled independently from
each other. To remove the line, move it off the top or bottom ofa region.

positions the text in the subwindow so that the character specified by the
current selection, which must be a positive number, is at the top. For
example, if you select 275 and invoke Pes i tien, the 275th character in
the text is scrolled to the top of the subwindow.

positions text in a window so that the first line of text is at the top of the
window.

positions the text in the subwindow so that the type-in point is at the top.

positions the text in the subwindow so that the line containing the
leftmost character of the current selection is at the top.

positions text in a window so that the last line of text is at the top of the
window.

reverses the current state of line wraparound in all the subwindows.
When wrapping is on, a line that has not been terminated by a carriage
return by the time it reaches the right edge of a sub window is continued
onto the next line. When wrapping is off, the same line disappears off the
right edge of the subwindow.

1-15

I

[·16

General tools

1.3.3.2.4 Symbiotes and the Symbiote menu

A symbiote provides extra functionality for a tool window without requiring changes to
the code ofthe tool or to Tajo itself. Using the Symbiote menu on the root window, you can
attach a symbiote to any text window (Figure I.6). Symbiotes appear as subwindows that
you can add to an existing tool dynamically, without disturbing its current processes or
facilities. Symbiotes can be attached to any text or form window or subwindow.

In particular, the XDE provides a symbiote that adds editing capabilities to any text or
form subwindow. (See the Editor Symbiote chapter for details.)

~ Create Edit Find Load Position Reset Save Split Store Time Wrap

~ RF! Find! ~: Replace! all! ~:

Figure 1.6: Text window

The following commands are in the Symbiote menu, which is available in any part of the
screen not covered by a window.

Attach Menu

Detach Menu

Attach Edit

Detach Edit

adds a one-line menu symbiote above a host subwindow after you have
selected that target host subwindow with the cursor and pressed the
Point mouse button to confirm the choice.

removes the menu symbiote above a host subwindow after you have
selected that symbiote with the cursor and pressed the Point mouse
button to confirm the choice.

Adds a one-line editor form above a host subwindow after you have
selected that target host subwindow with the cursor and pressed the
Point mouse button to confirm the choice.

removes the editor form from above that host subwindow after you
have selected that symbiote with the cursor and pressed the Point
mouse button to confirm the choice.

XDE User's Guide I

User.em causes the system to reprocess the [FileWindow] section of the
User. em file to determine the default symbiote values.

1.3.4 Keyboard commands

The keyboard is made up of alphanumeric keys, special symbol keys, and special function
keys. The function keys are referred to in this document by the names of their XDE
functions, not their keycap names. The keycap name is also given below if it differs from
the keyboard function name. The layout of the keyboard and the mapping from their
keyboard names to their interface functions is shown in Figure 1.7 (next page).

r -I '7

MENU
SCROLL· J.LAST J.INSERT

reserved client1 client2 DEFAULTS
BAR J.FIRST J.SELECT

COMPo ! @ # S % - & * () + BW

LETE 1 2 3 4 5 6 7 8 9 0 - = BS

TAB Q W E R T Y U I 0 P
{ l

RET
eservec move expand replace define undo invert [l

A S 0 F G H J K L : H t
LOCK

stuff delete find .select rext-de ; ..
SHIFT Z X C V B N M < > ? SHIFT

AGAIN
REPLACE

DELETE

FIND COpy

PASTE MOVE

STUFF CONTROL

Left function group

doit copy paste next

SPACE

COMMAND +

C => COpy

0

E

F

K

N

Q

R

5
T

U

->

"'>

->

a>

=>

,,>

=>

=>

,,>

=>

=>

=>

DELETE

EXPAND

FIND

SCREEN INVERT

J.SELECT

NEXT·DEL

NEXT

RESERVED

REPLACE

STUFF

DEFINE

UNDO

. I

NEXT HELP

UNDO
NEXT·
DEL DOlT

DEF'N I CALL , DEBUG

ABOR
EXP'D r'DMMAND T

V ,,> PASTE Right function group

W

X

1

5

9
ABORT

COMPLETE

=>

=>

=>

"'>

=>

,,>

=>

MOVE

DOlT

J.FIRST

J.lNSERT

J.LAST

CLEAR USER ACTION BUFFER (ASYNCHRONOUS)

AGAIN

Keyboard configuration using Level IV hardware

Double inscription on function keys indicates use of Shift (i.e., SHIFT + 85 .. > BW)

client 1.2 reserved for client definition

r:Jr.:l
UtJ

Mouse buttons

XDE User's Guide I

1.3.4.1 Keyboard functions

The keyboard functions are:

ABORT

AGAIN

CALL DEBUG

COMMAND

COMPLETE

CONTROL

COpy

DEFINITION

DELETE

DOlT

EXPAND

HELP

sets an abort "flag" in the window containing the cursor. A running tool
checks periodically to see whether an abort flag has been set. If it has, the
tool aborts itself. If you press ABORT a second time before the flag in a
window is res~t (Le., turned om, a global abort flag is set and all tools
abort. The window's abort flag is reset when anything is typed into the
window except SHIFT or ABORT. The global abort flag is reset whenever the
abort flag ts reset in any window.

replaces the selection with the last text that was typed or stuffed.

(SHIFT-ABORT) calls the debugger. If both shift keys are held down when
invoking it, a panic call is made to the debugger. Panic calls should only
be made in dire emergency, since calling procedures out of the debugger
interpreter may not work.

is a shift key used with other keys to invoke various functions.

treats the token to the left of the type-in point as the beginning of a file
name and attempts to complete the name. This function is currently
implemented only by the Executive.

is a shift key used with other keys. t; sed with Point, it moves the type-in
point without changing the current selection.

clears the current selection and maintains the type-in point while the key
is held down, thus allowing a new selection to be made. When the key is
released, that new selection is stuffed into the window at the type-in
point.

(SHIFT-EXPAND) puts the current selection into the expansion field of the
Dictionary Tool. (See the Dictionary Tool chapter.)

deletes the selected text, replacing the contents of the trash bin with the
deleted text.

is a client-specific function. In a file window, it causes the window to be
loaded from the token in the window, using the token as a file name. (If
there is no such file, it tries to append each of the extensions • mesa,
• eonfig, and. em until it finds a match.)

replaces the alphanumeric token to the left of the type-in point by its
expansion, as defined by the current dictionary (see the Dictionary Tool
chapter).

invokes the subwindow Help function, if there is one.

[- t9

2.1 Files

2

Dictionary Tool

The Dictionary Tool allows- you to expand abbreviations according to a user-defined
dictionary, called the Edit Dictionary, and to add abbreviation-expansion pairs to the
dictionary .

The Dictionary Tool is built in; no additional files are needed. The default name for the
Edit Dictionary on your system is de f aul t . die t.

2.2 User interface

The Dictionary Tool implements the EXPAND and DEFINInON function keys in text and form
subwindows. (See the section on keyboard functions in the User Environment chapter for
descriptions of the EXPAND and DEFINITION keys.)

The EXPAND function treats the word to the left of the insertion point as an abbreviation
and looks it up in the dictionary, ignoring case. If an entry is found, the abbreviation is
replaced by the definition. If the definition contains fields, the field is selected. The
abbreviation may be a unique preflX of the abbreviation-expansion pair.

The DEFINmON function invokes the Dictionary Tool. If the Dictionary Tool is already
active, it deactivates it.

2.3 Dictionary Tool

The Edit Dictionary is maintained by the Dictionary Tool. It contains one or more files,
each of which is a list of abbreviation-expansion pairs. The Dictionary Tool is invoked by
the DEFINITION key or by standard window manager methods.

The.oictionary Tool interacts through a message subwindow, a form subwindow, and a log
subwindow. The message subwindow is used to post error messages. The form subwindow
is used to invoke commands and provide parameters. The log subwindow is used to record
the results of commands.

2-1

2 Dictionary Tool

The Dictionary Tool maintains its dictionary in memory in a format that allows fast
lookup of expansion strings, given the abbreviation. There is no limit to the number of
entries in this dictionary. The dictionary may be initialized by loading .diet files that
contain abbreviation-expansion pairs in human-readable and -editable form.

2.3.1 Commands

The form subwindow has the following layout:

Record! LookUp! List! Load! Store! Dictionary:
Abbreviation:
bpansion:

Record!

LookUp!

List!

Load!

Store!

enters a pair in the dictionary with abbreviation Abbreviation: and
expansion Bxpansion:. If bpansion: is empty, the current
abbreviation-expansion pair is deleted.

fills in Bxpansion: with the expansion of the abbreviation
Abbreviation: .

writes all the pairs in the dictionary to the log subwindow.

reads the pairs in the .diet file specified by Dictionary: and loads
them into the dictionary.

stores the pairs in the dictionary onto the • die t file specified by
Dictionary: .

If the dictionary is modified by recording new entries or by loading a new .diet file, the
modifications are not stored in the .diet file unless the Store! command is invoked
or the StoreOnDeaetivate User. em entry is included (see below).

2.3.2 File format

An entry in the .diet file has the following format:

abbrev: <TAB> "expansion string"<CR>.

The double quotes around the expansion string are optional if it does not contain any
embedded returns. The expansion string should not contain any double quotes.

2.4 User.em

Two entries are implemented:

[Dietionary'l'ool]

Dictionary: My.diet

2-2

Initializes the dictionary from the specified • die t file.
Defaul t. diet is used if there is no User. em entry.

XDE User's Guide

StoreOnDeactivate: TRUE

2

Automatically stores the dictionary when the tool is
deacti vated to the specified • die t file if the dictionary
has changed.

/

2-3

2 Dictionary Tool

2-4

I

[-20

General Tools

FIND

J.FIRST

J.INSERT

J.LAST

J.SElECT

MENU

MOVE

NEXT

NEXT·DEl

PASTE

REPLACE

STUFF

UNDO

1.3.4.2 Global functions

finds the current set'ection in the window containing the cursor. SHIFT-FIND

looks backward, either from the current selection, if the current selection
is in that window, or from the bottom of the window, otherwise.

positions the text in a subwindow so that its first line at the top of the
subwindow.

(SHIFT-SELECT) positions the text in the subwindow so that the type-in point
is at the top.

(SHIFT-J.FIRST) positions the text in a subwindow so that its last line is at
the top of the subwindow.

positions the text in the subwindow so that the line containing the
leftmost character ofthe current selection is at the top.

brings up the menus in the subwindow containing the cursor; it is the
same as chording the mouse buttons.

is like COPY, except that the selection is deleted after it has been stuffed
into the window containing the input focus.

advances the cursor either to the next field in a form subwindow or to the
next bracketed field in a text subwindow, setting the type-in point to that
field.

like NEXT, only it deletes the contents of the field before setting the type-in
point.

takes the contents of the trash bin and inserts it at the type-in point. It is
like STUFF, only it operates on the contents of the trash bin.

(SHIFT-DELETE) is like DelETE, but it changes the type-in point to the point
from which the text was deleted.

takes the current selection and copies it to the type-in point of the
subwindow that is currently taking type-in. If no window conains the
input focus, this action fails and the display blinks.

swaps the selection with the trash bin.

Various keys invoke functions that affect the development environment globally or affect
the tool that is in the process of performing a user-initiated action. These functions are
available regardless of where the cursor is positioned:

COMMAND-I inverts the display to white-on-black or black-on-white, whichever is
the opposite of what it currently is.

XDE User's Guide I

COMMAND-ABORT causes the development environment to forget all buffered user
actions that have not yet been processed, such as type-ahead.

These commands work only in text subwindows:

COMMAND-l

COMMAND-<

COMMAND-[

COMMAND-{

COMMAND-(

COMMAND--

COMMAND--

1.4 The user command file

sets the case of the characters in the current selection to upper case if
the SHIFT key is down, or to lower case if it is up.

brackets the selection on the left by < and on the right by >.

brackets the selection on the left by [and on the right with J.

brackets the selection on the left by {and on the right with}.

brackets the selection on the left by (and on the right with).

surrounds the selection with quotes.

surrounds the selection by the ft __ " comment delimiter.

The user command file, User. em, is a file on the current volume used to set defaults for
a user. Many subsytems and tools pick up the information from the User. em file to
initialize various options, such as font information, window placement and size, and where
to send files to be printed. Some User. em values are used at user login; others when a tool
is activated.

To create a User. em file for yourself, retrieve SampleUser. em from Does> onto your
Tajo and CoPilot volumes, edit it to contain such information as your name and domain by
replacing the fields all currently delimited by angle brackets, and rename it to be
User. em.

1.4.1 Format of the user command file

A User. em section consists of a section title in brackets, followed by a carriage return, and
the entries for that section. Each entry is on a separate line. Entries consist of Name:
followed by the value. Any line that begins with -- is ignored.(Here, as in several other
types of files, text preceded by -- is treated as comments and not processed.)

It is possible to have volume-specific entries for the values in a sectionwhen, for example,
you need different defaults in your CoPilot and Tajo volumes to determine which tools get
loaded at initialization time. This is specified by putting [Volume:SectionNameJ as a
title. The section entries in the volume-specific sections override those of the generic
sections when the volumes are booted.

Note: There are no spaces before or after the colon in a section title name, but all entries
must have a value after the colon.

I

1-22

General Tools

In the example below, [FileWindow! is the generic section title. The menu line in the
FileWindow section in the CoPilot volume has Break in the menu line, but it is not needed
in the Tajo volume.

[FileWindow]
SymbioteSetUp: Always Menu Edit

[CoPilot:FileWindow]
Menu: Break Edit Load Reset

[Tajo:FileWindow]
Menu: Edit Load Reset

The development environment processes the [System], [Librarian], and
[FileWindow] sections of the User. em at start-up time; all other sections are processed
when the corresponding tool is run. You should ensure that your User .em file, as well as
any files needed in the processing of these sections, are in your top-level directory, since
the initial search path may not be set while these sections are processed. This is most
likely to be a problem when processing the lni t ialCommand: entry.

Below are examples of [System] entries. You can edit many of these values with the
Profile tool while the system is running (see the Profile Tool chapter).

User: CSmythe

This is your user name.

Domain: Bayhill

This is the default domain section of your clearinghouse name, used in authenticating
who you are, for accessing network services like printing.

Organization: Xerox

This is the default organization section of your clearinghouse name, similar to the
default domain section.

InitialCommand: Run.- Editor.bed

This is an executive command line to be executed as part of the boot sequence. You
cannot have any carriage returns in the command line. The log file for this command
is lni tial.log. Feedback will appear in the Herald window as a result of executing
commands in this line.

Font: LaurelFont.strike

A font is built in; provide this entry only if you want to override the default.

MenuFont: Helvetica7.strike

This is the font used for menus; a default font is built in.

XDE User's Guide I

Debug: FALSE

This sets the debugging variable for the system. The default value is FALSE. Certain
bugs call the debugger if this is TRUE. Otherwise, the system ignores the error and
attempts to work around it.

Screen: White

This determines the background color of the display. The default is Whi te; Black is
the alternative.

SwapControlAndCommand: FALSE

This swaps the functions of the control and the command keys, which is especially
useful on a microswitch keyboard because the command key is awkward to use.

SearchPath: <Tajo>Temp <Tajo>

This is the intitial value of the file system search path.

BalanceBeam: Always

This sets the value of the variable that controls positioning of the type-in point
relative to a selection. It has three possible values:

Always:

Never:

NotForCharacter:

the type-in point is as close as possible to the cursor
position.

the type-in point is at the end ofthe selection.

the type-in point is after a single character selection, but it
will be as close as possible to the cursor posisiton for
multiple character selections.

FileWindow: [x: 512, y: 30, w: 512, h: 439] [x: 900, y: 778] Calendar/t

An arbitrary number of FileWindow entries is permitted in the System section. Each
specifies a file window to be created. The first set of bracketed values indicates the
position of the window when it is active. x and yare the horizontal and vertical
bitscreen coordinates of the upper-left corner of the window. wand h are the width and
height of the window in bitscreen coordinates. Any or all of these fields may be
omitted, in which case they have the following default values: [x: 0, y: 0, w: 512, h:
400). The second set of bracketed values indicates the position of window when it is
tiny. x and yare the horizontal and vertical bitscreen coordinates of the upper-left
corner of the window. Any or all of these fields may be omitted, in which case they
have the following default values: [x: 0, y: 01. The next item in the line, which is
optional, is the name of the file to be loaded into the window. [fthere is a switch on the
file name, it specifies the initial state of the window (a for active, t for tiny, and i for
inactive). You must always specify the active box and tiny box position. even if they are
defaulted, by specifying [].

I General Tools

1.5 Documentation roadmap

1-24

This section describes how the XDE documentation is structured and where to look to find
information about a particular subject. The documentation for this system, written for
system developers who are familiar with the Mesa programming language, consists oCfive
separate manuals: XDE: Concepts and Principles, the XDE User's Guide, the Mesa
Language Manual, the Pilot Programmer's Manual, and the Mesa Programmer's Manual.
This manual, the XDE User's Guide, describes the tools that make up the programming
environment. Its introductory chapters contain general information on getting started
and how to use the environment. The Mesa Language Manual is a reference manual for
the programming language. The Pilot Programmer's Manual and the Mesa Programmer's
Manual are reference manuals that describe Pilot and Mesa client interfaces. The Pilot
Programmer's Manual describes operating system facilities, while the Mesa Programmer's
Manual documents the software interfaces that implement user-interface functions.

1.5.1 XDE: Concepts and Principles

The XDE Concepts and Principles guide introduces the Xerox Development Environment.
It describes the organization of the system broadly, focusing on the metaphors and
theories the developers had in mind when they built the system. It discusses each of the
parts of the system and explains their interaction.

1.5.2 The XDE User's Guide

If the development environment is new to you, read the XDE Concepts and Facilities
manual. Along with this introductory chapter of the XDE User's Guide, it tells you how to
get started, gives information about programming in the development environment, and
describes the user interface.

Most of the remaining chapters of the XDE User's Guide (this document> describe the
tools, which are utility programs that run in the development environment. The tools are
grouped according to their function. Each one is described in a separate chapter
containing information about the user interface for the tool, examples of how to use it, an
explanation of error messages, and background information necessary to understand how
the tool operates. This XDE User's Guide is best used to develop the "hands-on" knowledge
you need for accomplishing programming tasks. It is also a reference manual for using
tools.

1.5.3 Mesa Langu-age Manual

The Mesa Language Manual is a reference manual defining the Mesa programming
language. It explains how to use the Mesa language, with examples, and describes the
grammar that defines Mesa.

1.5.4 Pilot Programmer's Manual

The Pilot Programmer's Manual is intended for designers and implementors of client
programs of Pilot. It describes the external structure and interfaces of Pilot, the operating
system, and the other packages released with it, providing sufficient information for
programmers to understand the facilities available and to write procedure calls in the

XDE User's Guide I

Mesa language to invoke them. Similar to the Mesa Programmer's Manual, the Pilot
Programmer's Manual documents procedures, parameters, results, data types, and signals
for each Pilot software interface.

1.5.5 Mesa Programmer's Manual

The Mesa Programmer's Manual describes the collection of interfaces that provide a
framework and runtime system for writing Mesa programs in the development
environment. For each interface, the Mesa Programmer's Manual lists all procedure
names, parameters, results, arguments, data types, and signals. The interfaces
documented in the 'Mesa Programmer's Manual implement and support the window
oriented user interface available for use in tool writing.

1.5.6 Appendices

Appendix A of this document describes Othello. Appendix B describes procedures for
getting started in the Xerox Development Environment.

In the Mesa Programmer's Manual, Appendix A discusses the Example Tool, a tool that
helps you learn about tools. Appendix B contains information about interfaces.

1.6 Typographical conventions

The typographical conventions in this document are as follows:

Keycap and mouse button names are MODERN 8.BOLD CAPS.

Commands are 'l'itan 10 bold; file names, menu items, and switches are Ti tan 10.

Interaction with the system is represented in Ti tan 10. When an example is given, what
you are required to type is underlined (with the exception of the special symbol for the
carriage return key). A ~indicates that you should press the carriage return key.

1.7 Other features, other tools

Some of the other useful features of the Xerox Development Environment are within
the General tools described in the rest of the chapters in this section. These tools affect
processes system-wide, so they can help you to work more efficiently in many
situations.

1-25

I General Tools

[-26

3.1 Files

3

Editor Symbiote

The XDE 3.0 Editor provides a way to edit files stored on disk as well as to create new files.
This screen-oriented editor, which includes an extensive and powerful pattern-matching
facility, can be associated with any text or file windo\v (or subwindow).

The Editor Symbiote is included in the boot files.

3.2 User interface

The editor interfaces with users as a symbiote that attaches to any text subwindow or form
subwindow. The Editor Symbiote can be invoked via the Editor menu associated with the
Root subwindow. The editor is loaded with the boot files when CoPilot is booted.

The Editor Symbiote's user interface is described below.

3.2.1 Editor menu

To use the Editor Symbiote, chord on the mouse to get the Symbiote menu from the root
window. Attach edit will attach an Editor Symbiote subwindow to a host text or form
subwindow, and Detach edit will remove it. (Note that the Editor Symbiote commands
will work on form subwindows.)

3.2.1.1 Editor Symbiote subwindow

All I SI RSI +. SRI

Figure 3.1: Editor Symbiote subwindow

RI +: --

3-1

3

3-2

Editor Symbiote

The Editor Symbiote is a form subwindow with the following items. (The behavior of the
Editor Symbiote menu items is affected by the Editor property sheet, as explained in t~e
next section.)

-: The search field--the text that will be searched for (the -: following
as I).This field may contain expressions specifying variable patterns
to be matched.

S! Searches for text matching the search field. The search starts
immediately following the current selection ifit is visible in any split of
the window; otherwise, the search starts from the first character
visible in the top split of the window.

-: The replace field-the text that will replace the selection (the -:
following Rt). This field may also contain variables denoting elements
of the search field.

R! Replaces the current selection with the text specified by the replace
field. If the current selection was set as the result of S! or as!, the
expression in the search field is available for replace-field variables. If
the selection was set some other way, the replace field may only have
literal text and may not contain any variables.

as! Does an R! followed by an SI, thus replacing the current selection and
searching for the next matching text.

SRI Does an S! followed by an R!, thus searching for the next matching
text and replacing it.

All! Repeatedly does an SR!, thus replacing all text instances that match
the search field. The repetition stops when the search fails to find a
match.

For more information about the Editor Symbiote's search and pattern-matching facilities,
see the section on Search and pattern matching.

If you press the DOlT key (MARGINS) when an Editor Symbiote has the input focus, the Editor
Symbiote subwindow grows to two lines, with All!, S! and as! on the top line and SRI
and R! on the second line, giving more space to enter text. This two-line format is also
useful for comparing search and replace strings, which may be quite simple or very
complicated. Pressing the DOlT key again returns the symbiote subwindow to its original
one-line configuration.

If the search field is empty when you invoke S!, the Editor Symbiote copies the current
. selection into the search field before starting the search.

XDE User's Guide 3

3.2.1.2 Editor property sheet

Scope: ~ rest, selection}
Interpret match as: literal}
Conte.t of match: { words}

I IgnoreCase I ICOnfiraRePlaCe

Level

GetDefault! SetDefault!

Figure 3.2: Editor property sheet

The Editor property sheet is a separate window named Editor. Its fields, which affect the
Editor Symbiote's operation, are:

Scope: {all, rest, selection} specifies the scope of the All! command.
all means the entire file, rest means "the rest of the
file"--just like the S! command (q.l1.)--and selection
means "within the current selection."

Interpret III&tch as: {pattern, literal} specifies the interpretation of
the text in search field. pattern means to interpret the
search field as a regular expression; li teral means to use
the search field as simple literal text.

Conte.t of III&tch: {anywhere, words} further limits the acceptable con
text in which a search may find a match. anywhere means
that the pattern can match within a larger word. words
only matches patterns that are surrounded by non
alphanumeric characters.

Ignore Case is a Boolean that will cause upper-flower-case differences to
be ignored during a search.

Confir. Replace is a Boolean that will cause the Editor Symbiote to request
explicit user confll'lIlation for each text replacement. A
confum cursor appears when confumation is requested; use
Point to confll'lIl, Adjust to deny.

Level: is the number of space characters by which the indenting
should be adjusted. This is used by the Res t and BaRes t
commands in the Edit Ops menu.

3-3

3

3-4

Editor Symbiote

The property sheet also has a command subwindow with these commands:

GetDefaul t,

SetDefault!

sets the editor properties to the built-in default state.

sets the default editor properties to be those currently set in
the property sheet. GetDefaul t 1 may then be used to
return the properties to that state.

3.2.1.2.1 Editor property sheet accelerator

You can associate the Editor property sheet with any key on your keyboard for faster
access to the editorts parameters. If the text subwindow TIP Interpreter sees the atom
"Editor," it will make the Editor property sheet appear (become active if it is inactive, or
normal if it is tiny). To associate the Editor property sheet with the HELP key, you would
use the following entry in the <>TIP>TextSW.TIP file:

SELECT TRIGGER FROM

HELP Down => Editor: --specifies which key to attach to

ENDCASE •..

To get the TextSW.TIP file, look on the <Hacks>lx.O>Source>Edi tor> directory. It
can b~ copied to the local file <>TIP>TextSW. TIP. After installing the file and rebooting,
pressing the HELP key causes the Editor property sheet to appear.

3.2.1.3 EditOps menu

When an Editor Symbiote is attached to a subwindow, an EditOps menu is also placed on
the window. The All, Search, SearchReplace, ReplaceSearch, and Replace menu
items invoke the same commands as the Editor Symbiote'S All!, Sf, SRI, RS! and R!
commands. Other menu commands, which only operate on text subwindows, are specific to
formatting of Mesa source code. They are:

Best

UDlIest

Hatch

shifts the lines that contain the current selection level
characters to the right, where level is specified in the
Editor property sheet.

shifts the lines that contain the current selection level
characters to the left, where level is specified by the Editor
property sheet.

identifies matching parentheses (), square brackets [],
angle brackets < >, and braces {}. If one of these grouping
characters is selected, Hatch extends the selection to the
matching character. If a character that is not one of these is
selected, Match extends the selection in both directions

XDE User's Guide 3

Count

until it contains a match. Successively using Match will
match larger scopes.

gives a count of how many occurrences of a pattern are
found in the text. The search expression and scope are
specified in the Editor property sheet. The result is given in
the message subwindow of the Editor property sheet.

3.3 Search and pattern matching

3.3.1 Search

The search operation accepts expressions in the search field. You can search for patterns
or families of strings, as well as for simple literal strings. The syntax of a search
expression is given below. First, some preliminary definitions:

<char> a single literal character. Since the characters It, %, [,], .,
*, and \ have special meaning within a search expression,
you must prefix these characters with a backslash
character. For example, * means a literal asterisk
character. Following Mesa conventions, you may also use \n
for carriage return, \t for tab, \ddd for the character whose
code is octal ddd, where d is an octal digit and ddd S 377B.
Escaping an ordinary character is harmless.

<charl>-<char2> character range. For example, A-Z means all the capital
letters.

<character class> a set of characters, defined by naming the characters to be
included. A character class specification consists of a
sequence of characters and character ranges.

A search expression is an arbitrary sequence of the following five elements. Each element
counts as one "variable" in replace expressions.

<string> matches the given literal characters of the string.

• matches any single character.

% matches the beginning of a line (for use when one is the first
element in the pattern).

[< character class>] matches any character in the character class.

[- < character class>] matches any character except those in the c~aracter class.

In addition, any of the above five constructs can be qualified by appending either of the
following closures, which are explained in the section on Character classes and closure.
When a closure is applied to a < string> , it applies only to the last character of the string.

3-5

3

3-6

Editor Symbiote

*

**

3.3.2 Replace

short closure. Matches the least possible number, including
zero, of occurrences of the previous construct.

long closure. Matches the greatest possible number,
including zero, of occurrences of the previous construct.

The replace field specifies the text that will replace the selection in a replace operation.
This field may also contain an expression with variables denoting elements of the search
field.

A replacement expression is an arbitrary sequence of the following elements.

<string> replaces with the given literal characters of the string. Since the
character @ has special meaning within a replacement expression, you
must prefIX this character with a backslash character; e.g., \@.

@& replaces with the complete text found by the search.

@n@ replaces with the text that matched the nth element of the search
expression. The first element of the search expression is "I," etc.

3.3.3 Character classes and closure

Character classes provide a way to match different characters as part of a pattern. For
instance, either [a-c) or [abc] is a proper character class declaration that will match
any of the letters a, b, or c. Usually, however, you will not want to match just a single
character in a character class, but a word or a list of them. The short closure • and the long
closure *. are used for this. * and .* match with zero or more members of the search
expression element that immediately precedes the closure. * matches the shortest possible
string of the pattern type, and • * matches the longest possible string. So an expression
like [a-c) * will match strings of arbitrary length whose component letters are a, b, and
c.

For example, given the text "Hello.bed Goodbye.bed":

H#* . bed will match "Hello.bed"

H#** .bed will match "Hello.bed Good bye. bed"

Caution: Be careful about using 1 * and I·· if you are editing a large file,. Since I
matches any character, 1* and 1** will be slow. Since 1** matches the longest run of
characters, it will be very slow.

3.3.4 Examples

1. To fmd words that start with an upper-ease letter:

Find: [A-Z][a-z)*'i'
Result: 'I', 'Hello', 'Prince' will all match, 'warthog' will not.

XDE User's Guide

2. To find a word whose

first character is either a, b, c, d, s, x,y , z
second character is either a, e, i, 0, u
third character is g, p, 4, 5, 6
and reverse the order of the letters found:

Find: [a-dsx-z][aeiou][gp4-61
Replace:@3@@2@@1@
Result: dog • > god

3. To delete the leading zeroes from numbers

Find: ro-g][O]**[O-g)
Replace: @1@@3@
Result: OOOOOOB • > OB, 00343B • > 343B

3

4. To generate exec commands from a list of files (also see the example given in the
next section):

Input: "Access.archivebcd Adobe.archivebcd Binder.archivebcd If
Find: #*
Replace: Copy < > Temp>@1@ +- @1@@n
Result:

Copy < > Temp> Access.archivebcd +- Access.archivebcd
Copy < > Temp> Adobe.archivebcd +- Adobe.archivebcd
Copy < >Temp> Binder.archivebcd +- Binder.archivebcd

3.3.5 Editor as programmer's tool

The searching and pattern matching facilities of the edito!" can be used as a macro to
generate sizeable chunks of code in a very short time, as in the following example:

Suppose you want to create a function that sends out simple error messages if there is an
error while attempting to access a file. Because Mesa has such unique type-definition
capabilities, you are likely to fmd an enumerated type such as MFile.ErrorCode lying
around, a type that enumerates the different possible file access errors. Using the
members of this type as a list of selection keys, you can trivially generate code that will
send the name of the file access error message to your terminal. What follows is a dialog
for doing just that.

First, you will want to get a list of all the error codes. Type the following command to the
Executive window:

>Show type: MFile.ErrorCode

MFile.ErrorCode: TYPE = MACHINE DEPENDENT {noSuchFile. conflictingAccess,
insufficientAccess. directoryFull, directoryNotEmpty, illegal Name,
nOSuchDirectory, noRootDirectory, nuliAccess. protectiQnFault.
directoryOnSearchPath, iIIegalSearchPath, volumeNotOpen, volumeReadOnly,
noRoomOnVolume. nOSuchVolume, crossingVolumes, fileAlreadyExists.

3-7

3

3-8

Editor Symbiote

filelsRemote. filelsDirectory. invalidHandle. courierError. addressTranslationError.
connectionSuspended. other(255)};

The list below was simply copied from the Executive window into an empty File window
(using tbe copy key) :

noSuchFile. conflictingAccess. insufficientAccess. directoryFull.
directoryNotEmpty. illegal Name. noSuchDirectory. noRootOirectory, nuliAccess.
protection Fault. directoryOnSearchPath, iIIegalSearchPath. volumeNotOpen.
volumeReadOnly. noRoomOnVolume. nOSuchVolume. crossingVolumes,
fi leAl readyExists, filelsRemote. filelsOirectory, invalidHandle. courierError.
addressTranslationError. connectionSuspended

Now attach an Editor Symbiote subwindow to the File window and make the following
entries into the find and replace fields (+-:):

Find: 1*,
Replace: @l@ -> Wri te ("@l@"L] ;\n

Running that Replace function (R!) over the list above and adding the PrintError
subroutine name and the SELECT statement yields the f"mished function below:

PrintError: PRoc(code: MFile.ErrorCode) • {
SELECT code FROM

noSuchFile • > Write('"noSuchFile"L];
conflictingAccess • > Write("conflictingAccess"L];
insufficientAccess • > Write["insufficientAccess"L);
directoryFull • > Write("directoryFull"L);
directoryNotEmpty • > Write("directoryNotEmpty"L);
iIIegalName • > Write("illegaIName"L];
nOSuchDirectory • > Write("noSuchOirectory"L);
noRootDirectory • > Write("noRootOirectory"L);
nullAccess • > Write("nuIlAccess"L];
protectionFault • > Write("protectionFault"L);
directoryOnSearchPath • > Write("directoryOnSearchPath"L);
iIIegalSearchPath • > Write["illegaISearchPath"L);
volumeNotOpen • > Write("volumeNotOpen"L);
volumeReadOnly • > Write["volumeReadOnly"L);
noRoomOnVolume • > Write("noRoomOnVolume"L);
noSuchVolume • > Write("noSuchVolume"L);
crossingVolumes • > Write("crossingVolumes"L);
fileAlreadyExists • > Write("fileAlreadyExists"L);
filelsRemote • > Write(nfilelsRemote"L);
filelsOirectory • > Write["filelsOirectorynL];
invalidHandle • > Write['"invalidHandle"L);
courierError • > Write["courierError"L);
address Translation Error • > Write{" addressTranslationError"L);
connectionSuspended • > Write{"connectionSuspended"L);

ENOCASE;
};

XDE User's Guide 3

3.4 User.em file entries

The typical Tajo tool parameters can be set for the Editor property sheet under [Editor] in
the User. em (i.e., Window Box, InitialState, TinyPlace).

[Editor]
WindowBox:
InitialState:
TinyPlace:

< put here the size of window box you prefer>
< put here the initial state you want, particularly Tiny or Active>
< put here the coordinates of the desired location of the Tiny window on
your screen>

In particular, fh the User. em entry for [FileWindow] to "Setup: Always Menu Edit" to
get the Editor Symbiotes to attach themselves by default to text windows.

[FileWindow)
Setup:Always Menu Edit

3-9

3 Editor Symbiote

3-10

4

Executive

The Executive is a tool for loading and running Mesa programs.

4.1 Files

The Executive is built into Tajo and CoPilot; no extra files are needed.

4.2 User interface

The Executive runs as a TTY window, so the standard editing functions are not available.
The insertion point is always at the end of the text and cannot be moved elsewhere in the
Executive window. In the following descriptions, word refers to a sequence of
alphanumeric characters; token refers to a sequence of non-blank characters.

4.2.1 Editing functions

The Executive interprets certain characters as editing characters on the current command
line, as follows:

IS

IW

CONTROL-X

CONTROL-C, DELETE

COMPlETE

deletes the last character.

deletes the previous word; any non-alphanumeric characters to
the right of the previous word are also deleted.

expands the command line (defined below) and prints the
expanded command line.

aborts the current command line and prompts for a new
command.

treats the last token on the command line as the beginning
character string of a file name or registered command and
attempts to complete it. If the token starts more th~ one file
name or command, the screen flashes. The Executive extends the
command line with as many unambiguous characters as it can.

4-1

4

4-2

Executive

TAB

?(question mark)

RET, ;(semicoion)

4.2.2 Command line expansion

treats the last token on the command line as the beginning
character string of a file name and list all files or registered
commands it starts. The token is deleted from the command line
and the command line is retyped.

treats the last token on the command line as the beginning
character string of a file name and lists all files or registered
commands it starts. The token is not deleted from the command
line and the command line is retyped.

terminates the command line. RET terminates the command line
and causes it to be interpreted, while the semicolon permits more
command lines to be typed before interpretation begins.

The Executive expands a command line using the following for these special
interpretation characters:

. (single quote)

f (UpArrow)

* (star)

#(pound sign)

@(at-sign)

quotes the following character so that the Executive does not
interpret it. The following character, but not the quote, becomes
part of the expanded command line. For example, use a single
quote to pass a semicolon in a command line to the Compiler.

quotes the following character so that the Executive will not
interpret it. Neither the UpArrow nor the following character is
part of the expanded command line. t is typically used to insert
carriage returns into long command lines to make them more
readable.

interprets the token containing the star as a pattern; replaces
this token by the list of files and registered commands that match
the pattern. The • in the pattern may match zero or more
instances of a character. A single star only matches within one
level of subdirectory, that is, it will not match the character> in
a file name. Multiple stars will cross subdirectories. Hence, the
pattern * matches all the files in the current subdirectory, while
the pattern * * matches all the files in or below the current
subdirectory.

same as • , but matches only one character.

interprets the following token as a command file. The token may
be terminated by another at-sign, by a space, a CR, or a semicolon.
The token is interpreted as the name of a file, and the token is
replaced by the contents of that file. If the token is not a file
name, the Executive tries to complete it by appending .cm. If that
fails, it appends *. em, and if that fails, it prompts you for the
contents of the file.

XDE User's Guide

\\ (backslash) or --

4

denotes the characters that follow as a comment. The comment
can be terminated by a matching pair of delimiters (\\ or --) or by
».

4.2.3 Command line interpretation

The Executive assumes that the first token in a command line is the unique prefix of one
of its registered commands. (Commands may be registered by programs.) If the first token
is the prefix of more than one command, the Executive reports that it cannot find the
subsystem and prompts for a new command, discarding all previous input.

If the first token is not the prefix of any command, the Executive assumes that there is a
program that would register that command if it were run. The Executive attempts to find
and run a likely program. First, it checks to see if the token is the name of a file. If not, it
strips any extension from the file and appends the following suffixes: .archivebcd,
• • arch i vebcd, • bcd, •• bed. If any of these patterns match exactly one file, the
Executive runs that program. After running the program, the Executive checks to see
whether the program has registered the command that should have been present to
correspond with the first token on the command line. If not, it skips the current command
line and starts processing the next command.

4.2.4 Built-in commands

The commands listed below are built into the Executive and are automatically loaded and
started when the Executive is created. Some of the built in commands take file names or
directory names for arguments.

Al ia"sCommand

ClientRun

CloseVolume

AliasCommand OldCommandName NeWCOll1lllandName

provides a mechanism for giving a particular command
more than one name. Subsequent invocations of the
command by its original name or any of its aliases will
always invoke the same procedure that was registered
with the original command. This is useful for commands
which have identical beginning letters, such as Compare
and Compiler, since the user must enter at least five
letters of either command in order for command
completion to work.

has the same semantics as the Run! command of
CommandCentral, except that its arguments come from
the command line instead of the Run: line of
CommandCentral. (Also see SetClientVolume.) For
example, the following command runs the program
Tes tl. bed on the current client volume:

ClientRun Testl.bcd

takes a list of volume names and closes each volume. The
volume to be closed should not be on the current search

4-3

4 Executive

ChangeCommandName

Clearinghouse

Copy

CreateDir

CWO

Delete

4-4

path (see the Search Path Tool chapter). The following
command closes the logical volumes named Tajo and User.

CloseVolume Tajo User

OldCommandName NeWCommandName

is used for renaming commands registered with the
Executive (not to be confused with Rename, which renames
files). After executing ChangeCommandName, the
operations previously invoked by typing
OldCommandName to the Executive can only be started by
typing NewCommandName: OldCommandName will no
longer be registered.

prompts you for your domain and organization. An
example of the use of the Clearinghouse is:

Clearinghouse
Domain: OSBU North
Organization: Xerox

expects an argument of the form

TargetFile +- filel file2

If the left arrow is omitted, the Executive asks the you to
confirm that the fll'St file is the target file. After the Copy
command, the target file will contain the concatenation of
the contents of the source files. If there is only one source
file, the target file will have the same creation date as the
source file; otherwise, it has the current time as its
creation date. As an example, the following command
copies the file MyFile. mesa and MyOtherFile. mesa into
the file Temp. mesa:

Copy Temp.mesa +- MyFile.mesa
MyOtherFile.mesa

creates a directory with the name you type.

CreateDir <CoPilot>NewDir

replaces the current working directory with the one you
type. The facility for changing the current working
directory also exists in the SearchPathTooI:

cwo <CoPilot>Temp

takes a list of file names or directories and deletes each
one. If the specified directory is not empty, or if it is on the
current search path, the Executive will abort the deletion
and print an error message. As an example, the following

XDE User's Guide

Filestat

Floppy

Load

LogIn

4

command deletes the files MyFile.mesa and
MyOtherFile.mesa:

Delete MyFile.mesa MyOtherFile.mesa

takes a list of file names or directories and prints out the
file 10, number of bytes in each file, the file type, the times
at which the file was created, last read, and last written,
and whether the file is delete-protected, read-protected or
write-protected. As an example, the following command
requests file information on file MyFile. mesa. Typical
output is listed below.

Filestat MyFile.mesa
MyFile.mesa FileIO: 0,
1250008,6018,641508,151448
1l~20 bytes
type: text
create: 5-Jan-82 15:30:25 write: 11-Jan-82
17:42:06
read: 14-Jan-82 19:41:41

If you have the file ID of a file rather than the file name,
Filestat can still be used to obtain file information.
Instead of the file name, use the file ID, preceded by the s
switch. Numbers must be separated by spaces.

Filestat /s 0, 1250008, 6018, 641508, 151448

recognizes commands that allow you to store and retrieve
files on floppy disks using the floppy disk drive in your
workstation. (For a detailed discussion of the commands,
arguments and switches recognized by Floppy, see the
chapter on floppy commands.)

Floppy command arguments.

interprets each token on the command line as a file name
and loads that program. Prints the load handle of each
program loaded. You can specify the following switch,
either locally or globally:

1: use codelinks when loading

As an example, the following command will load the
programs MyProgram. bed and MyOtherProgram. bcd

Load MyProgram.bcd MyOtherProgram.bed

prompts you for your name and password. An example of
the use of Log I n is:

4-5

4

4-6

Executive

OpenVolume

PopWD

PushWD

ProcesslnBaekground

LogIn
User: YourName Password: YourPassword

takes a list of volume names and opens each volume.

You can specify the /w switch (open the volume for read
write instead of read Only) either locally or globally.

OpenVolume Tajo User/w

opens the logical volume Taj 0 for reading and the logical
volume User for read-write.

A volume being opened should not be on the current search
path. For example, if you wanted to open your Library
volume for read/write, you would type OpenVolume
Library/w. If <Library> were on the current search
path, the feedback message would say Unexpee ted
MPile error. However, if you take all <Library>
references out of your current search path, things work as
advertised.

pops the working directory, eliminating it from the current
search path, and leaving the next directory in the search
path as the working directory.

pushes the directory named to the front of the current
search path, making it the current working directory.

causes the compiler and binder to run at background
priority when run from CommandCentral. This command
does not take parameters. The default priority is normal.

ProcessInHormalPriori ty causes the compiler and binder to run at normal priority
when run from CommandCentral. This command does not
take parameters. The default priority is normal.

Rename expects a command line in one of two forms:

TargetPile +- SoureePile

or

SoureePile TargetPile

If the target file already exists, the command will fail.
Otherwise, the source file will be renamed to the target
rue. As an example, either of the following commands will
rename the rue MyFile. mesa to be called HewPile.mesa:

Rename HewPile.mesa +- MyPile.mesa
Rename MyPile.mesa HewPile.mesa

XDE User's Guide

Run

SetClientVolume

SetErrorLevel

SetPriori ty

4

interprets each token on the command line as a file name
and runs that program. You can specify the following
switches, either locally or globally:

1 use code links when loading

d call the debugger after loading but before starting the
program

a start any tools created by the program in the active
tool state

i start any tools created by the program in the inactive
tool state

t start any tools created by the program in the tiny tool
state

As an example, the following command will run the
programs MyProqram.bcd and MyOtherProqram.bcd.
After MyProqram.bcd has been loaded, but before it has
been started, the system will break to the debugger.

Run MyProqram.bcd/d MyOtherProqram.bcd

sets the client volume that will be used by the Run!
command in CommandCentral (and by ClientRun). As an
example, the following command sets the client volume to
the logical volume named Tajo:

SetClientVolume Tajo

Outcome/switch <outcome/switch>

This command allows you to indicate whether processing
should proceed, wait or abort following an error or
warning. The outcome can be either warning or error.
Switches can be either p for proceed, w for wait or a for
abort. The default is to abort whenever a warning or error
occurs. If. you decide to wait following a particular
outcome, processing will continue only after you type any
character, except "q," which will halt rather than continue
processing. The switches can be ordered according to their
severity as follows: p < w < a. The switch chosen for errors
must be greater than or equal to that for warnings; that is,
warninq/a error/p is not a legal combination since it
violates the ordering constraint.

SetErrorLevel warninq/p error/a

level (1, 2 or 3)

4-7

4 Executive

SetSearchPath

ShowSearehPath

Snarf

4-8

sets the priority at which the Executive will run. The
priority must be specified in terms of a number: 1 is the
lowest priority and stands for background; '2 is for normar
priority; and 3 is the highest, meaning foreground priority.
Default is 2, normal priority. The priority may be
initialized by adding the appropriate a User. em entry (see
below).

SetPriority 2

sets the search path to the list of directories in the
command line'. The user can specify the following local
switch:

r readOnly search path entry.

As an example, the following command sets the search
path so it contains the directories <Tajo>Temp,
<Tajo>Oefs, and <Tajo>.

SetSearehPath <Tajo>Temp <Tajo>Oefs <Tajo>

displays the current search path in the Executive window.

expects a list consisting of volume and file name. It copies a
file from the source volume onto the current volume. The
default source volume is CoPilot. The user can specify the
following local switches:

c interpret the next argument as a command. The
permissible commands are SourceOir and DestDir.
These commands have been added so that the user
can specify the source or destination directory of a
snarf. The name of the directory is the next name on
the line.

s rename this file when copying it; the target name is
the next name on the line.

u copy the file only if the source file is newer than the
target file, o~ if the target file does not exist.

As an example, the following command copies the files
Ml'l'ile.mesa and MyOtherFile.mesa from the logical
volume Tajo, renaming MyOtherFile.mesa to
Temp. mesa. Ml'l'ile.mesa will be copied only if the source
files is newer than the target file or the target file does not
exist.

Snarf SoureeOir/e <Tajo> MyFile.mesa/u
MyOtherl'ile:mesa/s Temp.mesa

XDE User's Guide

Start

Type

Unload

Zap

4

interprets each token on the command line as the load
handle of a loaded program and sta~ts that prograxp.. You
can specify the following switches, either locally or
globally:

a start any tools created by the program in the active
tool state

i start any tools created by the program in the inactive
tool state

t start any tools created by the program in the tiny tool
state

As an example, the following command starts the program
with load handle 4063700B in the tiny state:

Start 4063700B/t

takes a list of file names and displays the contents of each
in the Executive window. As an example, the following
command types the files MyPile.mesa and
MyOtherPile.mesa:

Type MyPile.mesa MyOtherPile.mesa

Commandl ••• <Commandn>

unloads the specified command and the module or
configuration implementing it, provided it has been
previously registered with the Executive. Unload will also
unload commands that have been aliased using
AliasCommand, or renamed using ChangeCommandHame.
Since the Executive keeps track of all original command
names as well as those that have been renamed, both the
original and alias or rename may be supplied to Unload.

takes a list of file names and causes them to be deleted, or,
if they are currently in use, to be deleted when they are no
longer in use. It is usually used to permit the retrieval of
copies of programs that are already loaded, or to delete
files that have accidentally been left locked by another
program. As an example, the following command zaps the
files MyProgram. bed and MyOtherProgram. bed.

Zap MyProgram.bed MyOtherProgram.bed

The file name always disappears immediately from the file
system, so a new file of that name may be created right
away.

4-9

4 Executive

4.2.5 Exec Opsmenu

The Exec Ops menu is available outside all windows and contains the following
commands:

PileWindow creates a new Source window.

Run runs the file that is the current selection.

Load loads the file that is the current selection.

Start starts the load handle that is the current selection.

Hew Exec creates a new Executive window.

Quit does a physical volume boot.

Power Off shuts off the power.

Copilot boots your CoPilot volume.

4.3 U ser.cm processing

4-10

The Executive section of a User. em file can contain the following entries:

CompilerSwitches:

BinderSwitches:

ClientSwitches:

ClientVolume:

Priority:

UseBackground:

CodeLinks:

WindowBox:

TinyPlace:

InitialState:

the default switches to be used by the compiler.

the default switches to be used by the binder.

the default boot switches to be used by the Executive's
built-in Run command as well as the Run! command in
CommandCentral.

the volume to be used by the Executive's built in Run
command as well as the Run! command in
CommandCentral.

the priority that the Executive should run in. Choices are 1
for background priority, 2 for normal priority, or 3 for
foreground priority. The default is 2, normal priority.

if TRUE, then the compiler and binder will be run at
background priority from CommandCentral.

if TRUE, codelinks will be used by default when loading
programs.

location of the Executive's window box.

location of the Executive's tiny box.

initial state of the Executive (Active, Tiny, or Inactive).

5.1 Files

5

HeraldWindow

CoPilot and Tajo have a banner called the HeraldWindow appearing at the top of the
screen. It displays the name and version of the boot file, the date on which it was built, the
current user, the current time and date, a logical volume name, and the number of free
pages on that volume. It allows other tools to display messages in its window and has a
menu that allows you to boot any of the bootable volumes.

The HeraldWindow is built into CoPilot and Tajo.

5.2 User interface

A Boot fro.: menu is available through the HeraldWindow. It is invoked by positioning
the cursor in the window and pressing MENU.

5.2.1 Boot from: menu

Besides containing the names of the volumes on your workstation, the Boot fro.: menu
lists the following options:

Pile w ... :

Set Switches:

uses the current selection as the name of a boot file on the current
logical volume to be booted.

uses the current selection as a string of Pilot booting switches for
a subsequent booting command. The scanner recognizes the
following syntax: The characters - and - change the sense of the
immediately following switch. Each character of the selection is
the character representation of a switch. \ is an escape character.
If it is followed by a three-digit octal number, the switch is the
character with that octal representation. If \ is followed by the
characters N, n, or R, or r, the switch is the Ascii CR character. If\
is followed by B or b, the switch is the Ascii BS character. If \ is
followed by F or f, the switch is the Ascii FF character. If \ is

5-1

5 HeraldWindQW

Reset Switches

Boot Button

Set Priority Up

Reset Priori ty

followed by L or 1, the switch is the Ascii LF character. If \ is
followed by ., ", -, or -, the switch is that character.

uses default switches for a subsequent booting command.

automatically pushes the boot button.

sets the priority of the clock process to foreground, making it a
good stopwatch.

resets the priority of the clock process to normal.

There may be other volume names in the menu. Invoking any of these causes the volume
to be booted after conflrming with a mouse click.

When the HeraldWindow is made tiny, it can display the current date and time, the Pilot
logical volumes, and their free page counts. Move the cursor into the tiny HeraldWindow
and it will display the date and time. Each successive click with POINT will display the
name and free page count of a Pilot logical volume, starting with the system volume. If the
information about all the volumes has been displayed, the HeraldWindow will redisplay
the date and time. The HeraldWindow will stop displaying this information when you
move the cursor out of its window. If you wish to have the HeraldWindow continue to
display after the cursor is moved out of the window, click ADJUST. To cause the
HeraldWindow to revert to its normal state, click the right button in the window again.

The name and free page counts of volumes other than the system volume may also be
obtained when the HeraldWindow is active, by clicking the mouse over the volume name
in the right side of the window. Each successive click with POINT will display the name
and free page count of a Pilot logical volume, starting with the system volume. If the
volume is not the system volume, it will have an asterisk appended to its name. Clicking
ADJUST over the volume name will cause the HeraldWindow to continue displaying
information for that volume after the cursor has moved out of that region of the window.

5.3 User .em processing

5-2

The HeraldWindow initializes its window box, tiny position, and its initial state from
entries in the [HeraldWindow] section of the User. cm:

WindowBox: [x: 362, y: 628, w: 662, h: 150] location of tool's
window box

TinyPlace: [x: 720, y: 778] location of tool's
tiny box

InitialState: Active initial state of tool

6

Profile Tool

The Profile Tool, which is built in, allows you to edit information used by other tools
running in the development environment.

6.1 User interface

The Profile Tool interacts with you through a form subwindow, which contains the
following fields:

~ Apply!
1 Abort!

User:
Domain:
Librarian:

Password:
Organization:
Prefix:

Registry:
Debugging
Suffix:

User is a text form item for your login name. This field is normally initialized
by a value specified in the User. cm.

Password is your password.

Registry contains the mail registry to which you belong. This field is normally
initialized by a value specified in the User. cm.

Do_in contains the clearinghouse domain you wish to use. It is needed when
communicating with NS servers, such as printers and file servers. This
field is normally initialized by a value specified in the User. cm.

Organization contains the clearinghouse organization you wish to use. It is needed
when communicating with NS servers, such as printers and file servers.
This field is normally initialized by a value specified in the User. cm.

Debugging is a Boolean form item that some tools read. When a tool detects an error
situation, it may go to the debugger if Debu99 i n9 is TRUE and print out a
message to the user if FALSE. If you are not prepared to go to the

6-1

6

6-2

Protile Tool

Librarian

Prefix:

Suffix:

debugger, you should set the Boolean to FALSE. This field is normally
initialized by a value specified in the User. em.

contains the network address or name of the default Librarian service.
This field is normally initialized by a value specified in the User. em.

is used to expand libject names into fulllibject names. Prefix: is a
string of one or more tokens, each of which represents a project identity
(e.g., '1'ools> <Pilot>, etc.) This field is normally initialized by a
value specified in the User. em.

is used to expand the libject name you supply into a full libject name
(e.g., mesa, config, etc.). This field is normally initialized by a value
specified in the User. em.

The Profile Tool displays the following commands only when the values of one or more of
the data items have been edited so that the values displayed in the window are
(potentially) different from the values of the underlying system variables. When the
values are the same, these commands will not be displayed:

Apply!

Abort!

is a command form item that enters the information in the Profile Tool's
subwindow into the system, making the information available to other
tools. Note that no changes take effect until you invoke Apply!

is a command form item that resets the information in the Profile Tool's
subwindow from the system variables.

7.1 Files

7

Tool Driver

The Tool Driver extends the facilities of the Xerox Development Environment by
providing a mechanism for automatically performing repetitive, routine batch tasks. It
does this by acting as a simulated user that interprets simple command sequences. The
Tool Driver uses only the functions available through the XDE's user interface, rather
than accessing special hooks in various low levels of the Development Environment and
the attendant common collection of tools.

The power of the Tool Driver is constrained only by the power of the set of tools that are
loaded and accessible to it. However, the flexibility and sophistication of the commands
understood by the Tool Driver is low. It is not intended to meet all your non-interactive
needs, but instead tries to provide siinple catalogued procedures.

The Tool Driver has the potential to completely destroy large, permanent user data
structures such as Action Request databases. For this reason, certain tools may place
extra restrictions on the operations that they will allow while under the control oithe Tool
Driver. Any such restrictions will be discussed in the documentation for the individual
tools.

Three files are required to use the Tool Driver. The fU'St is the Tool Driver's code,
Tools >ToolDri vera. bed; the second is a list of the tools that you might want the Tool
Driver to manipulate, Tool. sws; and the last is a set of instructions for the Tool Driver (a
script for the simulated user).

If you wish to make tools available for use through the Tool Driver or are interested in
extending the Tool Driver, retrieve <Mesa>Doe>ToolDriverClient • memo.

7.2 User interface

The Tool Driver communicates via the Tool Driver Executive window. This tool allows you
to specify the name of the script files and the options to be used by the Tool Driver during
execution of the scripts. .

7-1

7

7-2

Tool Driver

Go! SingleStep Debug Script: Test.tds

Figure 7.1: Tool Driver executive window

The Tool Driver executes scripts until it either runs out of input, is aborted, or encounters
an error. A script can cause the Tool Driver to temporarily interrupt its execution and
return to the user; except for these breaks, the Development Environment's Notifier is
completely tied up by the execution of the Tool Driver.

7.2.1 Message subwindow

Messages that are a result of calls on the function pause are displayed in the message
subwindow.

7.2.2 Form subwindow

The form subwindow contains the following items:

Go! causes the Tool Driver to execute uslng the specified file as the input
script. Use ABORT to abort the execution.

SingleStep is a Boolean which, if TRUE, causes the Tool Driver to pause after it
executes each statement in the script. Oth~rwise, execution does not halt
unless either the script is finished, the user or a tool aborts, or an error
occurs.

Debug

Script:

is used for debugging the Tool Driver itself. Its value should normally be
FALSI.

iii a string item that lists names of the input,script files. It is defaulted to
Test. tds (the extension. tds for script files is an acronym for tool
Driver script). If a script is aborted, either by the user or by one of the
tools being driven, the rest of the scripts will not be executed (see the
Script files section).

XDE User's Guide 7

7.2.3 File subwindow

The file subwindow is used to log messages of more than transient interest, such as the
name of the script file currently being executed, Done or Abort, or other status messages
indicating how or why the script file finished. The root log name for this tool is TDE.log.

7.3 Script files

A script file is a text file containing a series of statements. A statement is either an
assignment to a variable, a command, a loop or exit loop, a simple conditional, or a
function call.

7.3.1 Script file format

There is no inter-statement separator, optional or otherwise. White space is not
significant, except that it delimits atoms in the script. The commenting conventions are
those used in Mesa. Occasionally it may be necessary to quote an arbitrary character in
the script by preceding the character by a ' character. The \ is treated as an end-of- file
signal, and should not appear unquoted in a script unless you want the Tool Driver to
ignore the following part of the script.

7.3.1.1 Constants and variables

Delimited strings (must be preceded and followed with double quotes >, unsigned numbers,
or one of the set of reserved words NIL, TRUE, and FALSE, are constants. Whether a constant is
semantically valid depends on the context in which it is used.

Variables reference items in form subwindows. The format of a variable reference is
Too/Name.SubwindowName. Tag; e.g., AREditTooI.CommandSW.UseQL. If Too/Name is
omitted, then the value of the reserved variable TOOL is used. If SubwindowName is also
omitted, then the value of the reserved variable SUBWINDOW is used. The tag trailer
provided by the FormSW package must not be present in .Tag.

All other available facilities are invoked by function calls.

7.3.1.2 Assignment to variables

A variable is assigned to by

Form item +- Expression

where Expression is either a constant, a variable, or a function call.

7.3.1.3 Function calls

Function calls are positional and do not allow defaulting. Provision has been made for the
Tool Driver's set of functions to be dynamically increased. A function call must always
have the form:

Ftinction[ExpressionList]

7-3

7

."

7-4

Tool Driver

where an ExpressionList is one or more Expressions, separated by commas.

These are the function calls currently allowed:

ActivateTool [Expression].

The Expression must specify the name of an entry in the Tajo Inactive Tools menu. This
entry might not match the tool's herald, its tiny name, or its name as known to the Tool
Driver for variable referencing purposes. If the name is found in the menu, then the Ttool
is activat;d, otherwise this call is a no-op.

AppendCommand[Too/Name.SubwindowName, Expression].

This calls UserInput.Stuff string with the subwindow handle and string value.

AppendString[TooIName.SubwindowName, Expression).

This calls Pu t. Tex t with the subwindow handle and string value~

CaIlDebugger[Expression).

This calls the debugger with the Expression as the message to be printed by the debugger.

FileCreated(Expression, Expression].

The first Expression is the name of the file to check on. TRUE is returned if the file exists and
was created within the number of seconds specified by the second Expression.

InvokeMCR[TooIName.SubwindowName, Constant, Constant].

The Too/Name may be omitted, in which case the default will be used. The first constant is
the name of the menu; the second is the keyword in that menu.

IsVisible(Form item].

TRUE is returned if the specified form subwindow item's invisible flag is FALSE.

LastMessage(Too/Name.SubwindowName).

This returns the last message posted in the message subwindow specified. The Too/Name
may be omitted, in which case the default will be used.

Modifyltem(Form item, Expression, Expression, Expression].

This allows you to insert, delete, or replace characters in the specified form subwindow
item. The fltSt Expression specifies the position at which to start the modification,
beginning with 0 at the left edge of the body of the item (i.e., the item's tag and tag trailer
are not accessible). The second Expression specifies the number of characters to be affected,
and the last Expression is the new characters (if any). Thus pos, length, NIL for the three
Expressions specifies a deletion beginning at pos of length characters. pos, 0, "new string"
specifies the insertion of the nine characters" new string" at pos. pos, length, exp specifies a
replacement. For convenience, all starting positions off the right edge of the item are
trimmed back to the right edge, so appending new text to the item can be achieved by

XDE User's Guide 7

using the expression (1000008, 0, newText). For further details, see the description of the
Tajo procedure FormSW.ModifyEdi table in the Mesa Programmer's Manual.

Pause (Expression, Expression] •

This allows you to intervene and interrogate while a script is being executed. It prints the
first argument in the Tool Driver exec's message subwindow and then enables the
Notifier, allowing you to interact with the development environment again. The second
argument indicates whether the Pause is simply trying to ask a question. It must be
either TRUE or FALSE. If TRUE, the Tool Driver Exec adds two new items to its command
subwindow, named Yes and Ho. If you invoke Yes, Pause returns TRUE; uyou invoke No,
Pause returns FALSE. If the second argument is FALSE, the Tool Driver exec adds a new item
to its command subwindow named Proceed, and Pause returns an undefined value when
you invoke Proceed.

5et5eledion[Expression].

This sets the current selection. There is no feedback to show what the selection has been
set to.

5etWindowBox[ToolName. Expression. Expression. Expression. Expression].

This sets the tool's window to the size specified. The order of the arguments (from the left)
is x, y, w, and h.

SubString[Expression. Expression. Expression].

This returns the value of the the subportion of the first expression that begins at the
second expression and has a length specified by the third expression.

Wait[Expression].

This causes the Tool Driver to relinquish the processor for the specified number of seconds.
During the wait, the Notifier is still disabled, but periodic notifications occur (although
perhaps not as quickly as they normally would).

WindowOnTop[TooIName].

This brings the specified tool window to the top of the window stack.

7-5

7

7-6

Tool Driver

7.3.1.4 Control structure

The Tool Driver allows for some forms of control structure. They are:

1) DO

IF BooleanExpression THEN EXITlOOP Label;

EXITlOOP Label;
ENDlOOP Label;

The Label after the EXlTlOOP specifies the label on the ENDlOOP to which you are exiting and
is optional. However, the semicolon after the Label is mandatory in both places. These are
the only places in a script rue where a semicolon appears.

2) IF BooleanExpress;on THEN Statement

3) IF BooleanExpression THEN

BEGIN

END

4) IF BooleanExpression THEN

BEGIN

END

ELSE Statement

5) IF BooleanExpress;on THEN

BEGIN

END

ELSE

BEGIN

END

The BooleanExpression has one of two forms:

Expression
or Expression Relational Expression

The Relational is one of the set { =, #}.

7.3.2 Sample script

The following sample script would produce a query list of all the AR's submitted against
the Ether subsystem of Mesa that has been marked Fixed in 6. Oz. Then, by using this
query list, it would edit each of the AR's so that their In/By field now reads 6. Om.

XDE User's Guide

TOOL +- " AdobeQuery"
SUBWINDOW +- "formSW"
Number+-""
System +- "Mesa"
Subsystem +- "Ether"
Status+- "Fixed"
In'/By +- "HAS 6.0z"
cmdsw.Query

TOOL +- "Adobe Edit"
SUBWINDOW+- "cmdSW"
UseQL+-TRuE
Next
Checkout
DO

formSW.ln'/By +- "6.0m"
Next
IF LastMessage[msgSW] • "Query List exhausted!" THEN. EXITLOOP;
Checkin'&out
IF LastMessage[msgSW] - "Can't check out AR: must do update before

further editing!" THEN
BEGIN
ARUpdateTool.CommandSW. Update
Checkout -- Remember we are here because "out" part of "in&out" failed
END

ENDLOOP;
Checkin -- don't forget to put the last guy back

7.4 BNF for script files

goal ::- statements \

statements :: .. statements statement
I statement

statement ::. assignment
I formCmd
I loop semi Suffix
I if Statement
I EXlnoop loopLabel ; semi Suffix
I fundionCaIl

assignment :: . formSWltem +- expression

formCmd :: . formSWltem

formSWltem :: . idList

idList :: . idList. id
lid

7

7-7

7 Tool Driver

expression List ::. expression List • expression
I expression

expression :: . variable
I constant

expressionTail ::= variable
I constant

variable :: . formSWltem
I functionCali

constant ::. delimStr
I num
I NIL

I TRUE
I FALSE

functionCa" :: . id [expression List]
I function Name [expression List]

functionName :: . ActivateTool
I AppendCommand
I AppendString
I Call Debugger
! FileCreated
!lnvokeMCR
!lsVisible
! LastMessage
! Modifyltem
I Pause
I SetDispState
I SetSelection
I SetWindowBox
! SubString
I Wait
I WindowOnTop

loop ::. do statements ENDLOOP loopLabel ;

do :: . DO

if Statement :: . ifExpblock
lifExp blockElse block

ifExp :: . If boolExp THEN

- block :: . statement
I BEGIN statements END

blockElse :: . BEGIN statements END ELSE

boolExp :: . expression relational expression
I expression

7-8

XDE User's Guide 7

loopLabel ::. id
1

semiSuffix :: .
relational :: ..

1#

Note: The Form/tem must be a command item in the Form subwindow.

Note: The semantic restrictions on the ExpressionList depend on the /d.

7.5 The subwindows tile

The Tool Driver will not function unless the subwindows file, Tool. sws, is present on the
local disk. The format of this file is:

[Too/Name,]
SubwindowName" ... , SubwindowNamen

[Too/Name21
SubwindowName" ... , SubwindowNamen

The opening [must be the fll"st character on the line. Everything after the closing] on that
line is simply ignored. If a tool that is not in the subwindows file attempts to publicize
subwindows (i.e., calls TooIDriver.NoteSWs), it is ignored, as are all subwindows not
present in the list of subwindows for that tool. The individual documentation for each tool
should list the tool and subwindow names that the tool publicizes. There must be no extra
subwindows declared by the user. Ifthere are, the Tool Driver will halt with an error.

7.6 Running the Tool Driver

The procedure for running the Tool Driver is as follows:

• Start the Tool Driver.

• Start other tools.

• Run the script.

Note: Tools started before starting the Tool Driver are not accessible to the Tool Driver.
Tools that are inactive are also inaccessible to the Tool Driver. However, inactive tools can
be accessed indirectly via the InvokeMCR function applied to the Executive menu.

7-9

'1 Tool Driver-

7-10

II

File-related tools

This chapter discusses the XDE tools for manipulating files. The first part explains file
naming conventions, since file names are used by many of the tools as field values. The
rest of the chapter briefly describes each tool's function.

11.1 File system conventions

Once you have written your text onto a file window or text subwindow, you will probably
want to save it as a file. This section describes the XDE local file system's structure and
naming conventions, which are used for searching for files as well as for creating new files.

Many of the tools in the development environment have parameters that are file names,
such as the File Tool and the Executive. Some tools are prepared to deal with either local
or remote file names. rhe syntax of remote file names is determined by the remote file
system. Consult the documentation for your remote file system for the definition of legal
remote file names.

11.2 File names

The local file system provides a tree-structured directory. The top-level directory, the root
of the tree, has the same name as the logical volume. All directories can contain
directories and non-directory files. A tile has a simple name (that is, its name within a
directory) and a fully qualified name (its name within the directory structure). The legal
characters that can be used in the simple name of a file are the alphabetics (a - z, A -

z), digits (0 - 9), period (.), dollar sign ($), plus (+), and minus (-).

The fully qualified name of a file, whether directory or non-directory, describes the path
from the top-level directory of the volume containing that tile to the file. The name starts
with the character <, and all subdirectories on #le path are separated by the character >.
No tile names end with the character> with the exception of the top-level directory,
which always ends with>. Some examples of fully qualified file names are:

<CoPilot>

<CoPilot >MyFile. mesa

III

II File-related tools

<CoPilot >SubDirectory >MyPile .mesa

<CoPilot>SubDirectory

Certain operations, such as the File Tool's and the Executive's list commands may print
the names of directory files followed by a > to distinguish them from non-directory files.
This is an output convention; don't confuse it with the name of the directory file.

The top-level directory of the current volume can also be specified by < >; that is, if the
name of the top-level directory is omitted in a fully qualified name, the top-level directory
of the current volume is used. Hence, the following names are equivalent to the above
examples to a user on the volume CoPilot:

<>

< >MyPile.mesa

< >SubDirectory>MyPile.mesa

< >SubDirectory

A file name can also be specified relative to the current search path. If a file name does not
start with the character <, it is a relative name. In this case, a fully qualified name is
formed by appending the relative name to each entry of the search path until a match is
found (refer to the chapter on the SearchPath Tool). If the search path contained the single
entry <CoPilot>, the relative file name MyPile.mesa would be resolved to the fully
qualified name <CoPilot>MyPile.mesa

Directories on the search path may be write-protected, in which case it is not possible to
change any of the files in the directory or add or delete files from it. If a file name is
relative to the search path and it is to be created or written into, two problems can occur:
no match could be found on the search path, or the first match might occur in a directory
that is write-protected. In either case, the file will be created in the tlrst directory that is
not write-protected in the search path . This directory acts somewhat like a working
directory. If the first directory in the search path is write-protected, anomalies may result;
for example, if you write into the file MyPile, and then subsequently try to read file
MyPile, you may not read the information that you just wrote. This could happen if the
rll'st directory in the search path is write-protected but contains a file named MyPile.
When you write into file MyPile, the system notices it is in a write-protected directory
and creates a new file MyPila in the first writeable directory. When you later read the file
MyPile, the system returns the first file named MyPile on the search path, which was the
file MyPile in the write-protected directory.

11.3 File-related tools

II-2

Brownie helps distribute software and maintain consistent copies of archive directories on
file servers.

Compare examines two pairs of source files and summarizes the differences between each.
The files can be either local or remote.

XDE User's Guide II

A File window is used to view and edit a text file.

The File Tool provides a means for you to work with the files on your local disk as well as
on remote file systems. It allows you to retrieve, delete, list, rename, and copy files. It is
like FTP except that it has a window interface instead of an Executive command.

Find searches for a pattern in a list of files and displays the lines in which the pattern
occurs.

Floppy commands allow you to store and retrieve files on floppy disks using the floppy disk
drive in your workstation.

FTP is a file transfer program that runs in the Executive. It is used for moving files to and
from a file system, which can be on a file server or on another workstation.

Print generates press format files and sends them to a printer on the network.

The SearchPath Tool is used to inspect and change the file system search path.

11-3

II File-related tools

11-4

8.1 Files

8

Brownie

Brownie aids in the problem of how to distribute software and maintain consistent copies
of master or archive directories on several file servers. It may also be helpful in moving
files among private directories during the software development process.

Retrieve Brownie. bcd from the Release directory.

8.2 User interface

Brownie is invoked by typing a command of the following form to the Executive:

>Brownie file

where file. brownie is a Brownie script file with the format described below. Brownie
will prompt for login and connect names and passwords for the hosts and directories
involved in the transfer. It will also· log messages to the Executive, informing the user of
its progress.

8.3 Script file

The script file describes the operations Brownie is to perform. It consists of a parameter
section and a command section separated by a comment line. The comment is ignored, but
the /I must appear. In the script below, the rust QualifiedPilename is the target and the
secondQualifiedPilename is the source.

[level]
start: [time]
stop: [time]
// comment
copy/switches QualifiedFilename/.-QualifiedFilename/

8-1

8

8-2

Brownie

rename/switches QualifiedFilename +- QualifiedFilename

delete/switches QualifiedFilename

8.3.1 Parameters

All parameters are optional, and if present their order is not important.

The amount of information logged is controlled by the level parameter. The choices are
verbose and terse. verbose mode will post the name of each source and destination
file as it is being copied (or deleted), along with their creation dates. terse mode will post
directory names only, and a dot for each file as it is copied. terse mode is normally
recommended for large copies, to keep the Executive. log file from getting too large.
level defaults to terse.

The star t parameter allows you to specify a start-up time. This allows lengthy transfers
that tie up a lot of network resources to be delayed until nighttime. Brownie processes the
script file before doing any transfers so that any syntax errors may be discovered
immediately. The s top parameter allows you to specify a stopping time. Brownie
periodically glances at the stop time and aborts processing if the current time becomes
larger than this value. time may be in any of the formats: BH:MM, BHMM, B:MM, or HMM.
time defaults to start immediately,for star t and when finished for stop.

8.3.2 Commands

A QualifiedFilename (QFN) of a Brownie command has the general form:

[host] < directory > filename

Where filename is optional. The Profile domain and organization are appended to host
if none are specified. If a QualifiedFilename contains spaces, it must be surrounded by
double quotes.

8.3.2.1 Copy

The copy command transfers the files described by the source QFN to the target QFN
according to the constraints of swi tches. If filename appears in both the source and the
target, the single file is transferred. If filename is omitted from the source QFN, it must
also be omitted from the target QFN, meaning copy all files from the source directory to the
target directory. If filename is not omitted from the target in this case, all files from the source will be copied

to the single target file •

... " wildcards may appear within the source QFN. (See the FileTooI section:
Wildcard/expansion characters for an explanation of wildcards.) A «." may also appear as
the only character of the fmal subdirectory, instructing Brownie to recursively search
through the specified directory. All files matching the QFNwill be copied. If a ... " appears,
the target QPN as in the previous case must be a directory. A «." may not appear in the
targetQFN. -,

XDE User's Guide 8

8.3.2.2 Copy switches

Ie Connect to target directory; prompt for credentials: Default is FALSE. (Not
implemented)

Is Connect to source directory; prompt for credentials. Default is FALSE. (Not
implemented)

The Update (/u) and Always (ta) switches have identical meaning to those ofFTP.

lu Copy the files specified by the source QFN only when the creation date of the source
file is greater than the crea.tion date of the target file and the target file exists.
Default is FALSE.

la Copy the files even if those files of the target QFNdon't exist. Default is TRUE.

8.3.2.3 Rename (Unimplemented)

The rename command renames single files or complete directories on a single file server.
Only the latest versions of files are renamed, unless the la switch is specified. If
filename is omitted from both QFNs, the entire source directory is renamed to the target
directory; otherwise, the single file is renamed. A ""',, may not appear in either QFN.

8.3.2.4 Rename switches

Ie Connect to (source) directory; prompt for credentials. Default is FALSE.

la Rename all versions of the source QFN. Default is FALSE.

lu Update (Unimplemented).

8.3.2.5 Delete

The delete command deletes one or more files on a file server. Only the oldest versions
oCfiles are deleted, unless the la switch is specified. A .,"'" may appear in a QFN. (See the
FileTool section: Wildcard/expansion characters for an explanation of wildcards.)

8.3.2.6 Delete switches

Ie Connect to directory: prompt for credentials. Default is FALSE. (Not implemented)

la Delete all versions of the source QFN. Default is FALSE.

8.4 Example

This is an example of a script file:

[terse] .
start: [20:30]
I I Start at 8: 30PII.; cOIIIIIlands follow
eopY/ua -[RatTail:OSBU North] <emerson>doe>" +-

8-3

8

8-4

Brownie

[Rasp] <emerson>doc>* >*! *
copy/u [Igor) <emerson>defs> +0- [Idun) <int>tajo>public>*.mesa
copy [Sun] <newlnt>brownie>Brownie.bcd +0-

[Igor] <emerson>brownie>Brownie. bcd
copy [Sun) <newlnt>brownie>Brownie.doc +0-

[Igor) <emerson>brownie>Brownie.doc
delete/ca [Bad] <Movies>*
delete [Mediocre] <Movies>*

To execute Brownie with the above example script, Example. brownie, type the following
command to the executive:

>Brownie Example

and log in according to the prompts for each host and directory.

9.1 Files

9

FTP

FTP is a file transfer program used for moving files to and from a file server.

The File Tool serves the same purpose as FTP. (For more information, see the File Tool
chapter.)

Transferring a file from one host to another over a network requires the active cooperation
of programs on both machines. In a typical scenario, a human user (or program acting on
the human's behalf) directs FTP (or the File Tool) to establish contact with a file server.

Retrieve FTP. bed from the Release directory.

9.2 User interface

FTP runs in the Executive.

9.2.1 Command line syntax

The two basic file transfer operations are Retrieve and Store. The Retrieve command
causes a file to move from server to user, whereas S to r e causes a file to move from user to
server.

Other commands are often used in conjunction with the basic Retrieve and Store
commands. Commands are of the form:

<Xeyword>/<SwitehList> <arC]> ••• <arC]>

Unambiguous abbreviations of command keywords (which in most cases amount to the
fll'St letter) are legal. A command is distinguished from arguments to the previous
command by having a switch on it, so every command must have at least one switch.

9.2.2 Command line switches

In the descriptions that follow, the terms local and remote are relative to the machine on
which the FTP user program is active (that is, you type commands to your local user

9-1

9

9-2

FTP

program and direct it to establish contact with a file server.) A Retr ieve command
copies a file from the remote file system to the local file system, whereas a Store
command copies a file from the local file system to the remote file system.

Local and remote also refer to file names. Files on your workstation are local, and files on a
server are remote.

Most commands take local switches. These switches have default values used if the switch
is not mentioned. The switches are listed below with their defaults and functions:

IC [Command] a null switch that tells the command line parser that this token is a
command (no default).

IS [Selective] used if the remote and local file names differ; for example, if you
retrieve a file listed under one name but want to bring it to your
workstation under a different name (FALSE).

IV [Verify) requests confIrmation from the keyboard before the file transfer takes
place. ConfU"m with Y (not CR); deny with H. S (for STOP), DELETE, or
CONTROL-t will terminate all further commands (FALSE).

IQ [Query) specifies that a password be requested interactively from the user
instead of being read from the command line (FALSE).

If FTP can unambiguously decide that a token is a command, you do not need to append
any switches to the command word. Otherwise, you must append some switch; use the Ie
switch if there are no other switches desired. This means that if a command (such as
Retrieve) takes a list of files and the list is followed by another command, that command
must have some switch appended.

Some switches affect transfers conditioned upon comparison of the creation dates of
corresponding local and remote files. The comparison is <source file>
<operator> <destination. file>. For Store, the source file is the local file; for
Retr ieve, the source file is the remote file:

II [NotEqual]

I- [Equal]

I> [Greater]

1< [Less]

IU [Update)

IA[AlI]

transfers the file if the destination file exists and the creation dates
are not equal. This must be quoted (J' I) to keep it out of the clutches
of the Executive.

transfers the file if the destination file exists and the creation dates
are equal.

transfer the file if the destination file exists and the source's creation
date is greater than the destination's.

transfers the file if the destination file exists and the source's creation
date is less than tb.e destination's.

same as I> (for backward compatibility).

modifies the action of I, ,., >, <, IU to transfer the file even if no
corresponding file exists in the destination file system.

XDE User's Guide 9

If more than one switch is present, they are ORed together, so, for example, "I>:" means
"transfer the file if the source's creation date is greater than or equal to the destination's."

The sense of a switch is inverted if it is preceded by a minus sign; the minus sign inverts
the sense of the immediately following character, not the entire operator expression.

9.2.3 Commands and examples

In the examples below, the IC switch has been included,- even though it may not be
necessary.

Open/C <BostName>

opens a connection with the host. The first token after FTP in the command line is
assumed to be a host name, so no subsequent Open command is required. The Profile
domain and organization are appended to < BostName > if none are specified.

Close/C

closes the currently open FTP connection.

Loqin/C <UserName> <password>

supplies any login parameters required by the remote server before it permits file
transfers. FTP will use the user name and password in your Profile (see the Profile Tool
chapter), if they are there. Logging into FTP will set the user name and password in your
Profile, if they have not already been set.

When you issue the Loq i n command, FTP will first display the existing user name in
your Profile. If you now type a space, FTP will prompt you for a password. If you want to
provide a different user name, you should first type that name (which will replace the
previous one) followed by a space. The command may be terminated by a carriage return
after entering the user name, to avoid entering the password. The parameters are not
immediately checked for legality, but rather are sent to the server for checking when the
next file transfer command is issued. If a command is refused by the server because the
name or password is incorrect, FTP will prompt you as if you had issued the Loq i n
command and then retry the transfer request. Typing CONTROL-C aborts both the request
for login information and the rest of the FTP command line.

Loqin/Q <UserName>

causes FTP to prompt you for the password. This form of Loq i n should be used in
command files, because including passwords in command files is bad practice.

Directory/C <DefaultDirectory>

causes <Defaul tDirectory > to be used as the default remote directory in data transfer
commands (essentially it prefixes the directory name to remote file names that do not
explicitly mention a directory). The default directory can be overridden at any time by
fully specifying a file name within a particular command ([Host) <Dir > filename). Do

9

9-4

Fl'P

not include punctuation that separates the directory name from other parts of the remote
file name; thus, type Directory Mesa, not Directory <Mesa>.

LocalDirectory/C <DefaultDirectory>

causes the default djrectory to be used as the default local directory in the transfer. For
example, if you want to retrieve files onto a local directory in your Tajo volume without
having to specify the destination name each time, you can specify a default local directory
and it will be prepended to all file names.

Retrieve/C <Remo't.eFilename> ••• <RemoteFilename>

retrieves each <RemoteFilename>, constructing a local file name from the actual
remote file name as received from the server. FTP will overwrite an existing file. If the
remote host allows "." (or some equivalent) in a file name, a single remote file name may
result in the retrieval of several files. You must quote the ,..,. to get it past the Executive's
command scanner.

RetrievelS <RemoteFilename> <LocalFilename>

retrieves <RemoteFilename> and names it <LocalFilename> in the local file
system. This version of Retrieve must have exactly two arguments. The remote file
name should not cause the server to send multiple files.

Retrieve/> <RemoteFilename> ••. <RemoteFilename>

retrieves < RemoteFilename > if its creation date is greater than that of the local file. If
the corresponding local file doesn't exist, the remote file is not retrieved. This option can
be combined with Retr ievelS to rename the file as it is transferred.

Retrieve/>A <RemoteFilename> .•. <Remo't.eFilename>

is the same as Retrieve/> except that if the corresponding local file does not exist, the
remote file is retrieved anyway.

Retrieve/V

requests corumnation from the keyboard before retrieving a file. This option is useful in
combination with the Update option (/U), because the creation date is not a foolproof
criterion for updating a file.

Store/C <LocalFilename> ••• <LocalFilename>

stores each <LocalFilename> on the remote host, constructing a remote file name from
the name body of the local file name. A local file na!De may contain ".", because. it will be
expanded by the Executive into the actual list of file names before the FTP subsystem is
invoked.

XDE User's Guide 9

StorelS <LocalFilename> <RemoteFilename>

stores <LocalFilename> on the remote host as < RemoteFilename> . The remote file
name must conform to the file name conventions of the remote host. This version of Store
must have exactly two arguments.

Store/> <LocalFilename> <LocalFilename>

stores each <LocalFilename> on the remote host if the local file's creation date is later
than the remote file's. If the corresponding remote file does not exist, the local file is not
stored. This option can be combined with StorelS to rename the file as it is transferred.

Store/>A <LocalFilename> •.• <LocalFilename>

is the same as Store/> except that if the corresponding remote file does not exist, the
local file is stored anyway.

Store/V

requests confirmation from the keyboard before storing a file. This option is useful in
combination with the Upda te option when creation date is not a foolproof criterion for
updating a file.

ListIe <RemoteFileDesignator> ••• <RemoteFilename>

lists all files in the remote file system that correspond to < RemoteFileDesignaeor> .
The remote file designator must conform to file-naming conventions on the remote host.
The following subcommands request printout of additonal information about each file.
They are specified by local switches:

It type,

11 length in bytes,

Id creation date

Iv write date,

Ir read date,

la author (creator),

f<date> - from<date>. Lists only files with write date greater than <daee>.
This must be the last entry on the command line before the file name. Example:
1ist/flO-Dec-79-11:00:04 *.mesa.

b<date> - before<date:>. Lists only files with read or write date less than
< date>. This must be the last entry on the command line before the file name.

Note: The file system keeps creation, read, and write dates with each file. FTP treats the
read and write dates as properties describing the local copy of a file; i.e., when the file was
last read and written in the local file system. FTP treats the creation date as a property of
the file contents; Le., when the file contents were originally created, not when the local

9-5

9

9-6

FTP

copy was created. Thus, when FTP makes a file on the local disk, the creation date is set to
the Creation date supplied by the remote FTP, the Write date is set to 'now' and the Read
date is set to 'never read.'

Delete/C <RemoteFilename>

deletes <RemoteFilename> from the remote file system. The syntax of the remote file
name must conform to the remote host's file system name conventions. This Delete is an
.irreversible act. It is therefore unwise to use the "." in the RemoteFilename to specify
deletion of multiple files.

Delete/V <RemoteFilename>

asks you to verify that you want to delete <RemoteFilename> from the remote file
system. If the remote file name designates multiple files (the remote host permits "." or
some equivalent in file names), FTP asks you to confirm the deletion of each file. Type y to
delete the file; N if you don't want to delete it.

Compare/C <RemoteFilename> ••• <RemoteFilename>

compares the contents of <remote filename> with the file by the same name in the
local file system. It tells you how long the files are if they are identical, or the byte position
of the IIrst mismatch if they are not.

Compare/S <RemoteFilename> <LocalFilename>

compares < RemoteFilename > with < LocalFilename >. The remote file name must
conform to the file name conventions of the remote host. This version of Compare must
have exactly two arguments.

Rename/C <OldFilename> <NewFilename>

renames <OldFilename> in the remote file system to be <NewFilename> in the. new
file system. The syntax of the two file names must conform to the remote host's file system
name conventions, and each file name must specify exactly one file.

9.2.4 Command line errors

Command line errors fall into three groups: syntax errors, file errors, and connection
errors. FTP can recover from some of these.

Syntax errors, such as unrecognized commands or the wrong number of arguments to a
command, cause FTP's command interpreter to lose its place the command file. FTP
recovers from syntax errors by ignoring text until it encounters another command (Le.,
another token with a switch).

File errors, such as trying to retrieve a file that does not exist, are relatively harmless.
FTP recovers from file errors by skipping the otTending file ..

Connection errors, such as executing a Store command when there is no open
cOI\llection, could terminate the command.

XDE User's Guide 9

\yhen FTP detects an error, it displays an error message and aborts the rest of the
command.

9.3 Tutorial

The following are examples of how to use FTP:

• To transfer files FTP.bcd and FTP.symbols from the Dandelion called Chocolate to
the Dandelion called Vanilla, you might start up the STP server on Chocolate, then
walk over to Vanilla and type:

FTP Chocolate:OSBU' BORTH Retrieve/C FTP.bcd FTP.symbols

Alternatively, you could start an FTP server on Vanilla; then issue the following
command to Chocolate:

FTP vanilla Store/C FTP.bcd FTP.symbols

The latter approach is recommended for transferring large groups of files such as
" •• bcd" (since expansion of the "." will be performed by the Executive).

• To retrieve <System>Betwork. txt from the server and store it on your disk as
Directory. bravo, and store RTP.mesa, lb.mesa, and BSPStreams.mesa on
< DRB > with their names unchanged:

FTP server Connect/C drb HyPassword Retrieve/S <System> Network. txt
Directory.docStore/C RTP.mesa Ib.mesa BSPStreams.mesa

• To retrieve the latest copy of all • bcd files from the <Mesa>Defs> directory,
overwriting copies on your disk:

FTP server Retrieve/C <Mesa>Defs>'·.bcd

(The single quote is necessary to prevent the Executive from expanding the II.")

• To update your disk with new copies of all < Me sa> files whose names are contained
in file UpdateFiles. cm, requestingconfumation before each retrieval:

FTP server Directory/C Mesa Ret/>V @UpdateFiles.cm@

• To store all files with extension .mesa from your local disk to <my directory> on
the file server (the Executive will expand " •. mesa" before invoking FTP):

FTP server dir/c <my directory>Store/C • .mesa

9-7

9 FTP

9-8

10.1 Files

10

File Tool

The File Tool provides a means for you to manipulate files on your local disk as well as on
remote file systems. It allows you to retrieve, delete, list, and copy files.

The File Tool is built in. You will fmd it in your Inactive menu, unless specified elsewhere
in your User. ca

10.2 User interface

The File Tool communicates through a form subwindow, a command subwindow, and a
List Options window. Below is an illustration of a File Tool with the List Options window
displayed:

Host: Directory:
Source:
Dest'n: Local D1r:
Connect: Password:

Retrieve! local-list! Copy!
Store! Remote-list! Close! Remote-Delete!

.
Figure 10.1: File Tool window

1n 1

10

10-2

File Tool

10.2.1 Form subwindow

The fields that can be used as arguments to a command are listed in the form subwindow:

Bost: is the name of the host to be used for remote files and operations.
The Profile domain and organization are appended to Bost if
none are specified.

Directory: is the default remote directory.

Source: is a list of files (separated by spaces or returns) for the next
command to act upon. File names may include
wildcard/expansion characters (see the Wildcard/expansion
characters section). Any files appearing in this field should
conform to the syntax of file names for the file system that is the
source of the transfer.

Dest 'n: is the file name for the destination of a transfer. It should
conform to the syntax of file names for the file system that is the
destination of the transfer.

LocalDir: means that all references to the local disk will only occur within
this directory. If the directory is not a complete path name (i.e.,
if it does not begin with <), it is assumed to have a < >
prepended.

Connect: , Password: this feature is not implemented.

'. means that in remote commands (Retrieve, RellOteList,
ReaoteDelete), * characters in Source should be treated as if
they were quoted (i.e., they should be expanded remotely
instead oflocally). The default is TRUE.

> means "only store or retrieve the file if the destination exists
and the source is newer than the destination (comparing
creation dates)." The default is FALSE.

< means "only store or retrieve the file if the destination exists
and the source is older than the destination (comparing creation
dates)." The default is FALSE.

:= means "only store or retrieve the file if the source is the same as
the destination (comparing creation dates)." The default is
FALSE. "Not equal" can be specified by turning on both < and
>.

Always conditions the above three commands (>, <, =) to also act if
the destination file does not already exist.

Verify requests conflrmation for each file transfer. The default is FALSE.

XDE User's Guide 10

10.2.1.1 Wildcard/expansion characters

The File Tool interprets some of the characters in Source as wildcard or other expansion
characters. It uses the same mechanism as the Executive in expanding these characters.
(See the Executive: Command line expansion section for a further explanation of local
wildcard/expansion characters.)

, (single quote):

@ (at-sign):

t (up-arrow):

treats the character following the single quote as if it were not a
file name expansion character. The single quote is removed
from the file list.

takes the file to be an indirect file and uses its contents as a list
offiles iff is the first character of the file name. This list of files
replaces the indirect file in the list of files. Indirect files may
nest.

removes the up-arrow character and the character following it
from the file list ..

The wildcard * matches zero or more characters in a file name. For example, * .mesa
matches all file names ending with the extension • mesa in the specified local or remote
directory. I matches any single character in a file name.

The * can also be used to expand across directory boundaries. In the remote case, a * as
the only character of the fmal subdirectory in the Directory field directs the search down
through all subdirectories. For example, Director,.: <Mesa>· and Source: *. bcd
matches all .bed files in or below <Mesa>. In the local case, ** in the Source name
achieves this. For example, LocalDir: < >'1'ools> and Source: ** .archiveBcd
finds all .archiveBcd files in or below the < >'1'ools > directory.

10.2.2 Command subwindow

The fields in the command subwindow are as follows:

Retrieve!

Store!

Local-List!

Local-Delete!

transfers the file name specified in Source from the remote file
system to the local disk. You may designate multiple files by the
use or'· only to the extent that the remote server supports it. If
Des t 'Jl is blank, the file name of the copy made on the local
disk is the source file name stripped of all host and directory
qualifiers.

transfers the file name specified in Source from the local disk
to the remote host. Development environment file name
conventions apply to the local file.

lists all files on the local disk corresponding to the name in
Source.

deletes the files specified in Source from the local disk. If for
any reason a file cannot be deleted, that file is skipped and
processing continues with the rest of the files in the list.

10 File Tool

Remote-List!

RellOte-Delete!

Copy!

Close!

List-Options!

lists all files on the remote file system corr~sponding to the
name in Source. This must conform to the file-naming
conventions on the remote host. You may designate multiple
files by the use of '. only to the extent that the remote server
supports it.

deletes the file name specified in Source from the remote file
system. You may designate multiple files by the use of'· only to
the extent that the remote server supports it.

copies the local file in the Source: field to the local file in the
Dest 'n: field. The Copy! command operates only on the local
disk. Ony single files can be specified.

closes any currently open connection, freeing any resources
needed to maintain it.

creates a List Options window if one does not already exist.

IfVer ify is TRUE, then for each file that might be transferred, the following commands are
displayed:

Confirm!

Deny!

Stop!

10.2.3 List Options window

do the operation.

don't do the operation.

don't do the operation and terminate the command. This may
take some time while the termination is negotiated with the
server.

The List Options window is created by the List-Options! command. The properties that
will be displayed, in addition to the file name, by a Local-List! or RellOte-List! are
governed by the Booleans in this window. After changing the options, invoke Apply! to
effect those changes. The Abort! command will restore the options to what they were
before the List-Options! command was invoked. Both Apply! and Abort! perform
the apporpriate actions and then destroy the List-Options window.

10.3 User.em

10-4

The User • em, in addition to the standard InitialState, TinyPlaee, and windowBox
entries, includes:

[PHeTooI)

SetOptions: A list of the Boolean options to be initialized to TRUE. Any option
not appearing will initially be FALSE. The following desired

. options must be separated by one or more spaces and may
appear in any order: QuotedStar Greater Less Equal
Always Veri fy Type Create Bytes wri te Author Read

XDE User's Guide 10

10.4 Operational notes

The actual file transfer takes place in a background process, so you are free to issue other
commands or even change the values in the parameter subwindow without affecting the
command currently executing. The command subwindow is cleared so that a second
command .cannot be invoked while one is under way. Changing a field while the File Tool
is waiting for Confir.! will not affect the name of the Dest In: file; you should abort the
transfer and re-issue the command with the desired field already set. It is important to
remember that the commands are postfix; for example, fill in the 80S t: and Sour!=e:
fields before invoking the Retr ieve! command.

10-5

10 File Tool

10-6

11.1 Files

11

Floppy commands

The Floppy commands allow you to store and retrieve files on floppy disks using your
workstation's floppy disk drive. ; Files larger than a single floppy disk may be written as
several pieces on several disks and later put back together.

The Floppy commands are built in; no additional files are needed.

11.2 User interface

The Floppy commands run in the Executive. The Executive command Floppy. - has
several subcommands, each of which takes arguments. The command line format is

Ploppy.- <command> <argwnents>.

11.2.1 Common argument definitions

Several of the commands take lists of files as arguments. The following definitions will
simplify the explanations of these commands:

<fl1eLlst; > consists of a list of file names to be operated upon, separated by spaces. If a
file name is followed by the /s switch, the next name is used as the
destination of the file transfer.

< wl1dLlst > consists of a list of file names separated by spaces. The names may contain
* and :# characters to match multiple files. Remember that * and :# must
be quoted to avoid being expanded by the Executive.

11.2.2 Commands

There are six Floppy commands. They may be abbreviated to any unique initial substring.

Delete <wl1dLlst>

11 •

11

11-2

Floppy commands

deletes the specified files from the floppy disk.

Format <name>/n <number>/f

prepares a new disk for storing data. This command must be used on new disks before any
data can be stored on them. [t may also be used to erase all the data on a disk. The name
and number arguments are optional and may be specified in either order. <name>
specifies the name to be assigned to the floppy; you may include special characters (such as
a space) in a name by enclosing it in double quotes. <number> specifies the maximum
number of files that you may store on the floppy; the default value is 64. The Format

command will ask for confirmation ifthere appears to be valid data on the floppy.

Info

gives information about the floppy. This consists of the name of the floppy, the number of
free pages, and the size of the largest contiguous group of free pages. Since files on the
floppy must be written on contiguous pages, this last number is the size of the largest file
that may be written on the floppy. One extra page is added to each file to hold system information, such

as the creation date.

Li s tl < swi tches > < wildList >

displays the names of the specified files on the floppy. [f the < wildList > is omitted, all
files on the floppy are displayed. The <switches> specify additional information to be
included for each file as follows:

Id displays the creation date of each file.

11 displays the length of each file in bytes.

I t displays the File. Type of each file as a decimal number.

Iw displays the write date of each file.

Iv (verbose) displays all of the above information.

Read <names>

copies files from the floppy to your rigid disk. <names> may be either a fileList or a
wildList.

Write <number>/t <fileList>

copies files from your rigid disk to the floppy. You can get the effect of a <wildList>
using the Executive's file name expansion. [f <:number> It is present, subsequent files
will be written on the floppy with File.Type equal to <number> (see the Pilot
Programmer's Manual for a discussion of File.Type). You cannot overwrite an existing file
on the floppy; you must delete the old copy before writing a new one.

XDE User's Guide 11

11.3 Partial files

A double-sided, double-density, eight-inch floppy can store about 2200 pages (512 bytes
each) of data. Larger files must be broken into several pieces and written on several disks
and then put back together later. To specify partial files, the Write, List, and Read
commands use an interval notation similar to that of the Mesa language and debugger.
These intervals are appended to the names of files for a Wr i te command and are shown by
the List and Read commands. The Read command automatically writes data into the
correct pages of the destination file on the rigid disk. Three forms of the interval are
allowed:

[firstPage •• lastPage] gives the inclusive range of pages.

[firstPage!count] is equivalent to [firstPage • . firs tPage+coun t-l]

[firstPage] defaults lastPage to be the end of the file.

11.4 Examples

Ploppy Format "Backup Disk"/n 100/f

Ploppy Write User.cm *.mail *.mesa

Ploppy Write BugePile[O!2000]

Ploppy Write HugePile[2000]

name of disk and number of
files specified.

write files
Bxecutive to
<fileList> .

write
pages.

the first

using
expand

2000

write the rest of the
file.

Floppy Write 4290/t Gacha/s Xerox.XCS2-0-0.Gacha

Ploppy Read Poo.mesa/s OldPoo.mesa

Ploppy List/dl I •• mesa

prepare a font for a print
server.

retrieve and rename file.

list all " • mesa"
with creation date
length.

files
and

11-3

11 Floppy commands

11.5 Error messages

11-4

Most of the error messages from the Floppy commands are self-explanatory; however, two
messages need further explanation:

unexpected Ploppy.Error[code]

means that the floppy software raised Floppy. Error. See the description of the Floppy
interface in the Pilot Programmer's Manual for the meaning of code; most of the values
are self-explanatory.

unexpected AccessPloppy.Error[code]

means that the floppy software raised AccessFloppy.Error. The AccessFloppy interface is not
documented, but the values of code are self-explanatory.

12

Search Path Tool

The Search Path Tool, which is built into CoPilot and Tajo, is used to inspect and change
the file system search path. The introduction of this section explains how to construct
legal file names. The Mesa Programmer's Manual documents the XDE file system.

~Current Search Path: <Tajo> <Othello>Archive
~Directories:

~ Pop! Push! Change Working Dir!
~Set! Create Dir! Destroy Dir!

<Othello>
~ ______________________ ~<Othello>Archive>

<Othello>defs>
<Ta~o>
<TaJo>TIP>

Figure 12.1: Search Path Tool window

12.1 User interface

The Search Path Tool consists of two subwindows: a form subwindow and a log
subwindow.

12.1.1 Form subwindow

Arguments to Search Path Tool commands are either single directories or an entire search
path. In either case, it is not necessary to qualify subdirectories fully if the corresponding
root directory is on the current search path. If subdirectory names are not fully qualified,
they will be interpreted in the context of the current search path.

12-1

12

12-2

Search Path Tool

CurrentSearchPath:

Directories:

Set!

Create!

Destroy!

Pop!

Push!

Chanqe Workinq Dir!

is the field where the current search path is displayed.

is the argument fi~ld for search path commands. Create!,
Des troy!, Pop! and Push! expect a single directory; Set!
expects a search path, which is specified by one or mQre
directories.

sets the search path to the list of directories appearing in the
Directori~s: field.

creates the directory appearing in the Directories: field.

deletes the directory appearing in the Directories: field.

pops the working directory, eliminating it from the current
search path, and leav~ng the next directory in the search
path as the working directory.

pushes the directory in the Directories: field to the front
of the current search path.

substitutes the directory in the Directories: field for the
directory in front of the current search path.

Note: Commands for manipulating the search path are also registered by the Executive
(see the chapter on the Executive).

12.1.2 Directories menu

The Directories, menu is a list of all existing directories on currently open volumes. It is
automatically maintained and reflects the creation and deletion of new directories, as well
as opening and closing of volumes. When an item is selected from this menu, its value is
pushed onto the current search path.

12.1.3 Search Path menu

The Search Path menu is a list of the directories that make up the current search path.
Selecting an item from this menu removes it from the current search path.

13.1 Files

13

Compare

Compare examines a pair of text files and summarizes the differences between them. The
files can be either local or remote.

Retrieve >Compare. bed from the Release directory.

13.2 User interface

Interaction with Compare is available via the Compare Tool window or the Executive
window.

13.2.1 The Compare tool window

The Compare Tool communicates through a message subwindow, where information and
error messages are posted; a form subwindow, where the Compare! command and options
are listed; and a file sub window, where the results of the comparison are displayed. Figure
13.1 is an illustration of the Compare Tool with the switches set to the default values.

13-1

13

13-2

Compare

~File 1: [Igor)<Elliott>User.Cm>User.cm
~File 2: User.cm
:File Size: (small} Delimiter: (CR}
: lines For Context= 1 lines for Match= ~.
: Compare!

: [IQor)<Elliott>User.cm>User.cm, User.cm
:**
:File 1: Positions 118 - 197

:Clearinghouse: "OSBU North@Xerox"
: FirstSource: [x: 512, y: 30, w: 512, h: 418]

:**************************************
~File 2: Positions 1B7 - 302

~Domain: "OSBU North"
~Organization: Xerox
~FirstSource: [x: 512, y: 30, w: 512, h: 418]

Figure 13.1: Compare Tool window

13.2.1.1 Form subwindow

The Compare! command and the fields that can be used as arguments are listed in the
form subwindow.

Compare!

PileI , Pile2:

Pile Size =

Delimiter:

compares the source files specified in the PileI and Pile2
fields and displays the difference summary in the file
subwindow.

files to be compared.

approximate size in pages of the source files to be compared.
Pile Size is an enumerated type: {small(lO pages),
medium(30 pages), larqe(50 pages)}. Medium is the
default file size.

determines whether a statement will be defined to
terminate with a carriage return (CR) or a semicolon (:). For
example, if Del imi ter is set to semicolon, then

index ~ index + 1; GOToexit; (CR)

will match

index ~index + 1; (CR)

XDE User's Guide

Lines Poe Hatch =

Lines Poe Context =

13.2.1.2 File su bwindow

13

GOTOexit; (CR)

Del imi tee' is an enumerated type: {CR, semicolon}. CR
is the default delimiter.

minimum number of lines to define a match. Default = 3.

number oftrailing lines to output for context. Default = 1.

The File subwindow displays the differences between the text files specified in the PileI
and Pile2 fields. The difference file contains the names of the two files being compared
and a list of lines in which they differ. The differing lines are reported in context and are
preceded by a character position range that encompasses the character positions of the
differing line(s) and the adjacent contextual line(s). Note that blank and empty lines are
ignored during the comparison. The file associated with this window is Compare .log.

13.2.2 Compare via the Executive window

Compare also runs in the Executive. Here, a list of text file pairs may be given. The
differences between each pair of text files are recorded in files created by Compare. The
name of each difference file is obtained by appending . d if to the name of the first file in
the pair, excluding its extension. If the two files of a pair are identical, or if one of them is
empty, no difference file is generated. If the first file of a pair is an editor back up file, the $
will be incorporated into the name of the difference file before the. d if extension.

The difference file contains the names of the two files being compared and a I ist of lines in
which they differ. The differing lines are reported in context and are preceded by a
character position range that encompasses the character positions of the differing line(s)
and the adjacent contextual line(s). Note that blank and empty lines are ignored during
the comparison.

13.2.2.1 Command line

Compare is invoked by typing a command of the following form to the Executive:

>Compare /FilePairSwi tches filel file2 .•. /FilePairSwi tches filen-l
filen

13.2.2.2 File pair switches

The optional switches are a sequence of zero or more letters preceded by a slash(/). Each
letter is interpreted as a separate switch designator and each may optionally be preceded
by - or - to invert the sense of the switch. # denotes a decimal number. The switches are:

#m minimum number oflines to define a matcn. Default = 3.

#c number of trailing lines to output for context. Default = L

13-3

13

13-4

Compare

#b approximate size in pages of the source files to be compared. Default
pages.

30

5 determines whether a statement will be defined to terminate with a carriage
return (CR) or a semicolon (:). CR (/5) is the default delimiter. For example, if
Delimiter is set to semicolon (/-s), then

index ~ index + 1; GOTO exit: (CR)

will match

index ~ index + l: (CRl

GOTO exit; (CRl

13.2.2.3 Examples

>Compare filel file2 file3 file4

Compare filel to file2 and file3 to file4 using default switches.

Compare /SmJc filel file2

Compare filel to file2 using five lines as the criterion for a match and
output three trailing lines for context.

Compare /lSb filel file2

Compare filel to file2; both files are approximately 15 pages in length.

14.1 Files

14

Find

Find is a program that looks for a pattern in a list of files and prints the position within
the file and the line in which the pattern occurs. Remote files are specified using the
standard [server] <directory> filename notation.

Retrieve Find. bed from the Release directory.

14.2 User interface

Find is invoked by typing a command of the following form to the Executive:

>Find pattern/global-switch filel/local-switch ... filen/local-switch

where each pattern is a string of characters not containing a blank, tab, or slash (/). If
any of these special characters is to appear within a pattern, the pattern must be enclosed
within double quotes. Certain other characters have special meanings within a pattern, as
described below.

Note: Because the Executive recognizes *, #, ?, TAB, CR, t, @, ; and • to have special
meaning, any of these characters within patterns or remote file names must be preceded
by a single quote (see the Executive chapter).

14.2.1 Switches

If there is more than one pattern, each but the first must be given a switch (either /c or
I-c), since filel is taken to be the first string, following the first pattern, that has none
ofthe pattern switches listed below. The pattern switches are:

c Ignore upper- and lower-case distinction when pattern matching (default FALSE).

This is the only switch that may be negated.

i Interpret the string not as a pattern, but as a set of characters to be ignored
throughout the input file(s). For example, -Ii would cause all hyphens to be

14-1

14

14-2

Find

ignored, thereby letting you 5carch for one or more words that mayor may not be
hyphenated within the files. The default is that no characters are ignored.

a Interpret the string not as a pattern, but as the name of a file in which to write the
matches. The test of the command line-up through the first file name is included at
the beginning of the output file. If the file already exists, overwrite it. The file
named must be local.

14.2.2 Switches on file names

h Use this name as a default host name for all subsequent file names, until either
the end of the command is reached or another default host is specified. If this
switch appears without a host string, no default is applied to subsequent names.

d Use this name as a default directory name for all subsequent file names, until
either the end of the command is reached or another default directory is specified.

14.2.3 Special characters

Within a pattern, the following special interpretations apply. All but the last also apply
within the text accompanying a Ii switch.

[xyz) Matches any characters x, y, and z (or X or Y or Z, if contained within a pattern
that has the Ie switch).

I Matches any single character.

Matches any "white space" character (CR, LF, TAB, SP, or FF).

-x Matches any character except x, where x can in turn be one of the special forms.
For example, - [0123456789] matches any non-digit, and -I matches anything
except a white space character.

=x Matches the character x, even if x is one of these special characters. Thus = [
matches a left bracket, and === matches a single equals sign. Also, =Q matches 'Q'
but not 'q', even if the pattern is given a Ie switch.

\n,ete. ~atchesa single character as defined for Mesa strings. Thus, \n matches a CR, \t
matches a TAB, and so forth. If the character following the \ is not one of the
recognized forms, the \ has the same effect as an =.

x* Matches any number (including zero) of repetitions of x. Again, x can be one of
these special constructs; thus, - [0123456789] * matches zero or more non-digits.
Note that only single-character patterns can be repeated; there is no way to match
"zero or more iterations of the string 'abc'."

Mesa User's Guide 14

14.3 Examples

>Find systemuser.cm [server] <doc>spiffy.cm

" Print the lines containing "system" (ignoring case distinction) and the
corresponding character positions within the local files use r . cm and within the
remote files (server] <doc> spiffy.cmand [server] <doc> crufty.cm.

>Find OPEN/-C HackOpens/o Oldhack .mesa Newhack .mesa

Determine the lines and positions within Oldhack. mesa and Newhack. mesa that
contain the pattern "OPEN" (all capitalized) and write them to the file HackOpens.

>Find": CARDINAL" DudleyDriver.mesa

Print all declarations of long and short cardinals within DudleyDr iver. mesa.

>Find Allocate I *Node Storage* .mesa [server] <defs> '* .mesa

Print the lines and character positions matching the pattern Allocate-any thing
Node from the local files matching Storage* .mesa and the remote files matching
[server] <defs> '* .mesa. Note that this pattern would in fact produce a match
against something of the form

AllocateStuff[zone: myZone, node: myNode];

or even

AllocateBins[•••];
«several lines of stuff»
FreeNode [•••]

The position and line containing the end of the match are printed. If what you really
wanted was to see calls to procedures named AllocateNode, you could use the
pattern Allocate-=['*Node.

>Find .NEW/-C • FREE/-C MakeNode/-c FreeNode/-c Garbagelmpl.mesa

Show all heap allocations and deallocations with Garbagelmpl. mesa

>Find RECORD- '; I *FooType MumbleDefs .mesa Mumblelmpl* .mesa

Show all record declarations that contain an element of type FooType. (You might
miss some ifa record declaration includes a comment containing a semicolon.)

14-3

14

14-4

Find

>Find IIi -[=[==,-]"-:c'BadGuys/o [server]<StarSource>'*.mesa

Produce a file containing all instances of non-local string literals in a set of remote
files, assuming that all string literals are preceded by a left bracket, an equals sign,
a comma, left arrow, or a colon, possibly with some intervening white space. The
pattern says to search for a quote character not preceded by any of those characters,
and ignoring white space, thereby matching only closing quotes. Thus, the result is
to find closing quotes that are not followed by 'L' or '['. (The Ic switch is used to sa ve
having ~o remember whether lower-case T is accepted by the compiler.) :'-iote that
this pattern will overlook strings in which the last non-white space character is a
left bracket, equals sign, etc. (The syntax has its limits.)

15

File window

A File window is used to view and edit a text file.

15.1 Files

The ability to create File windows is built into the Xerox Development Environment.

15.2 User interface

The File window interacts through a text subwindow. It can be opened by choosing
FileWindow in the ExecOps menu. The ExecOps menu is available from the root window,
outside all other windows. The window name frame contains useful information about the
state of the File window. For example, when the File window comes to the screen, the
window name frame says Empty Window. When a file is retrieved into the empty window,
the text in the window name frame changes to display the name of the file.

15.2.1 OebuggerOps menu

The DebuggerOps menu belongs to a File window. The DebuggerOps menu contains the
following commands. (For more information, refer to the Debugger chapter.)

Attach

Break

Clear

'fr.ace

tells the debugger to ignore the time stamp in the source file when setting
breaks.

uses the current selection to set a breakpoint. If you select PROCEDURE or PROC,
a breakpoint is set on the entry to the procedure; if you select RETURN, a
breakpoint is set on the exit of the procedure; otherwise a breakpoint is set at
the closest statement enclosing the selection.

clears the breakpoint or trace point at the specified location.

sets a tracepoint at a specified location. Confirmation is given by moving the
selection to the place at which the trace point is actually set.

15-1

15

15-2

File window

15.2.2 FileWindow menu

The FileWindow menu belongs to a File window. The commands available in the menu
depend on the state of the File window. The File window may be in one of three states:
empty, non-editable, and editable. The menu commands available for each state and a
description of each command are:

Empty: Create Destroy Load Store Time

Non-Editable: Create Destroy Edit Reset Load Store

Editable: Create Destroy Reset Load Store Time Save

Create makes a new File window at the place selected by clicking POINT. There is no
explic~t maximum number of File windows.

Destroy removes the File window in which the command was invoked. When you
invoke Destroy, a symbol of a mouse appears. Clicking POINT confirms the
command; ADJUST aborts it. Invoking Des troy will not remove a File window
when a file is being edited.

Bdi t enables editing of the currently loaded file. The Edi t command is available
only if a file has been loaded into the window. The window name frame
changes to read Editing: rilename. A scratch file, rilename$$, is
created during the editing as the edit log; this file is not automatically
deleted when the editing has been completed.

Load displays a file in the window, using the current selection as a file name. An
accelerator for loading files is provided: typing the DOlT key in an empty
window causes the file named by the contents of the window to be loaded. If a
file name extension is not provided, the system first looks for the file name
without the extension; if this is not found, it looks for rilename.Mesa,
rilename.Config, then rilename.em. The Load command fails if the file is
not found, and the display blinks. Load will not work while you are editing,
as you would lose your edits.

Reset resets the window back to a previous state; confirmation is required only if
you are editing. If you have been editing, all edits to the file are discarded
and the original file is left in the window. If the file loaded in the window is
not editable, then the File window is set back to an empty window.

Save stores the contents of the window that is being edited to its current file;
confirmation is required. A backup "$" file is created that is a copy of the
unedited version. After the Save command completes, the File window is no
longer editable. This command is available only when the file loaded in the
window is editable.

Store creates a file whose name is the current selection and stores the contents of
the window to it; confirmation is required. After the file has been stored, the
file is not editable.

XOI': User's Guide 15

Time replaces the current selection with the current date and time.

·Note: An empty File window can only contain up to 60,000 characters.

15.3 User.em

The following User. em entries are available to create initial File windows and for
symbiote initialization. Typical entries for the System and FileWindow sections are:

[System)

FileWindow: [x: 0, y: 457, w: 512, h: 321) [)

FileWindow: [x: 512, y: 60, w: 512, h: 448] [x: 300, y: 778)

FileWindow: [x: 512, y: 30, w: 512, h: 247) [x:904, y: 778) Calendar/t

[FileWindow)

Menu: Create Edit Load position Reset Save Split Store Time Wrap

SetUp: Always Menu Edit

F ileWi ndow: An arbitrary number of File window entries is permitted in the System
section. Each specifies a file window to be created. The first set of
bracketed values indicates the position of the window when it is active. x
and yare the horizontal and vertical bitscreen coordinates of the upper
left corner of the window. wand h are the width and height of the window
in bitscreen coordinates. Any or all of these fields may be omitted, in
which case they have the following default values: [x: 0, y: 0, w: 512,
h: 400). The second set of bracketed values indicates the position of the
window when it is tiny. x and yare the horizontal and vertical bitscreen
coordinates of the upper left corner of the window. Any or all of these
fields may be omitted, in which case they have the following default
values: (x: 0, y: 0). The next item in the line, which is optional, is the
name of the file to be loaded into the window. If there is a switch on the
file name, it specifies the initial state of the window (a for active, t for
tiny, and i for inactive). Note that you must always specify the active box
and tiny box position, even if they are defaulted by specifying [] .

Menu: specifies the commands that will be available in an editable menu
symbiote.

15-3

15 File window

SetUp:

15-4

specifies when symbiotes are to be applied and which are desired. The
entry can contain either the keywords Always or Initial, Edit and
Menu. The meanings of the keywords are:

Initial

Always

Edit

Menu

Add specified symbiotes to all existing File windows.

Initial plus add specified symbiotes whenever a File window
is created.

User wants an edit symbiote.

C ser wants an editable menu symbiote.

16.1 Files

16

Print

Print converts text files to Interpress masters for printing and sends the result to a
printer, such as an 8044 printer. Switches in the Print program allow you to specify how
the output will look or to produce a master file without sending it to a printer.

Retrieve Print. bed from the Release directory. You will also need Fonts. wid ths from
the Fonts directory.

16.2 User interface

Print runs in the Executive. The command line format is Print
< filenamel >/switch < filename2>/switch < filename3 > /switch . .•. The
special filename $$$ instructs Print to print the current selection rather than a file. This
is useful for printing parts of your debugger log or other small pieces of text.

Files are converted and sent to the printer; multiple files are batched and sent together to
the printer. The Interpress master is written on the file Print. seratch$. If the
transmission to the printer fails or is aborted, you may save this file and send it later to
the same or a different printer. You may specify remote files using normal remote
filename syntax ([Host] <Directory>File. ext). Both local and remote file names
may contain asterisks (*) to permit expansion to all file names that match the string
provided. An * must be preceded by a quote if you are printing remote files instead of local
ones.

If a local file specified in the command line is already an Interpress master, it will be sent
to the printer without further conversion. Remote files are not checked for being
Interpress masters, so instructing Print to print a remote Interpress master will not
produce what you want.

16-1

16

16-2

Print

16.2.1 Switches

Local switches (i.e., those appended to an input file name) affect the printing of that file
only. Global switches affect all sl,lbsequent input files.

la "prints headings on each page (default true; -a'disables).

Iz prints footings on each page (default true; - z disables!.

<host> Ih directs the output to the print server named <host> for the files that
follow. The server name is qualified by your default domain and
organization (from the ProfileToo1), if necessary.

<output> 10 creates an Interpress master in <output> (extension defaults to
• interpress) and disables transmission to th~ printer.

< font> If changes the font to < font> for the files that follow. The default fonts are
Gacha8 in portrait mode and Gacha6 in landscape mode. (See the next
section on Naming fonts.)

Ie <n > sets number of copies to be printed to <n > (default 1).

It <n > changes the tab stops to <n> spaces (default 8).

11 <n> specifies landscape orientation (long edge of paper horizontal). <n> is the
number of columns (default 2).

Ip<n> specifies portrait orientation (long edge of paper vertical). <n> is the
number of columns (default 1).

Is <n > specifies number of sides. <n> can be 0, 1, or 2; 1 and 2 request single
and double-sided printing respectively; 0 means let the printer decide how
to print the document.

Examples:

Pr in t filename -- produce a master for filename in
the defaul t mode and send it to the
default printer.

Print filename/1 print filename in landscape mode.
11 is a local switch.

Print 11 filenamel filename2 print two files in landscape mode.
11 is a global switch.

Print filenamel filename2113e3 Classie10Bl/f filename3/1
-- print filenamel in the default
mode; then three copies of filename2
in three-column landscape; then one
copy of filename3 in two-column
landscape using font ClassiclOBI.

XDE User's Guide 16

Print $$$/p -- print the current selection in
portrait mode.

16.2.1.1 Naming fonts
"-

Font names consist of three parts: family, point size, and face. Families are spelled out,
point sizes use digits, and faces are encoded. Print has no knowledge of which fonts are
available; contact your System Administrator to lind out what fonts are available on your
printers.

Examples:

Families: Classic, Modern, Gacha, Titan

Point size: 10

Face: B (bold), I (italic), B I (bold italic)

Thus Class ielOBI specifies the 10 point size of the Classic font with bold italic face.

16.2.2 Defaults

The following defaults may be overridden by switches or User. em entries:

I-column portrait

Font = Gacha8

1 copy

Headings and footings printed on each page

TAB stops set at mUltiples of 8 spaces (Note: space width is a function of the font)

Use printer's default for number of sides

Some settings that cannot be changed are:

Portrait mode margins = t inch on all sides

Landscape mode margins = t inch top, t inch others

Space between columns = t inch

Heading and footing text = file name, creation date, and page number

Page number location = at right margin when heading or footing specified.

16-3

16

16.3 Formatting
, ,

Print automatically determines line, column, and page breaks (only 8f X 11 inch paper is
supported), Long lines are broken at white space, and the continuation line is indented the
same as the original line up to a maximum of half the column width. To force a new
column, put a form feed character (CONTROL-L) in your text. Print will begin each file on a
new sheet of paper, ~ote that files formatted for single-sided printing and later printed on
both sides may not start on new sheets,

16.4 User.em entries

16-4

Print initializes several of its parameters from the [Hardcopy J section of your Use r . cm.

[Hardcopy)

Interpress: "My Pr inter" -- name of your Interpress
printer; quotes are necessary if
the name contains spaces.

PrintedBy: Deliver to $, room 123 -- This string is sent to the
printer to appear on the banner
page. The 8$8 is replaced by
your name (from the
ProfileTool)i the remainder of
the text is literal.

LandscapeFont: Gacha6

PortraitFont: Gacha8

Orientation: Portrait

Columns: 1

-- defaul t font for landscape
printing.

-- default font for portrait
printing.

or Landscape

number of col umns in your
default orientation.

Your default domain and organization from the ProfileTool will be used to qualify the
'name of your printer, if necessary.

111.1 Files

III

System-building tools

This chapter describes how a typical program might be built in the Xerox Development
Environment. It describes and illustrates common applications of the most common
functions: compiling, binding, running, and debugging a system. It also briefly discusses
the concepts of packaging a system and making bootable files. This chapter should be
viewed as a base point from which to build familiarity and expertise with programming in
the development environment. The last part of the chapter briefly describes each of the
program-building and analysis tools.

Many of the examples in this chapter are based upon two Mesa modules, Lexicon and
LexiconClient, which are roughly equivalent to those found in chapter 7 of the Mesa
Language Manual. These modules are part of a simple string management system called
Lex. They can be retrieved from the release directory along with several other files that
are needed to complete the Lex system.

LexiconDefs. mesa (. bed) -- interface source and object file
Lexicon. mesa (. bcd) -- source and object file for Lexicon
LexiconCl ient. mesa (. bcd) -- source and object file for the Client
Lex. conf ig -- binding configuration file
Lex. pack -- packaging specification file
Lex. bcd -- object file for complete system

III.2 Cr~ating a source file

Creating a source file is similar to creating a text file. The code can be typed into any file
window and saved. Conventions for how this code should be ordered and how comments
should be notated are described in the Mesa Language Manual.

Mesa source code is easier to read when appropriately formatted. Please refer to the
chapter about the Formatter for more information about how to format source code files.

Note: Remember that Mesa has both description modules and implementation modules.
Compiled descriptions and implementations must be bound together before they can be

mol

III System-building tools

executed. Later sections describe the compiling and binding processes in more detail, as do
the chapters on these individual tools.

1II.3 Creating an object file

IU-2

"-
After creating an executable object file, the first step is building a component. The next
two steps are usually compiling and binding.·Though they may have to be repeated many
times to create a large system, the way they are used is relatively invariant, fl.S is
described in the following subsections.

1II-3.1 Compiling a program

Invoking the compiler is normally done in one of two ways. The first is to enter a command
line to the Executive:

>Compiler sourcel {source2 source3 ... }~

This command causes sources listed to be compiled into separate object files.

The second way to invoke the compiler uses Command Central (refer to the chapter on
Command Central). After selecting the Co.pile: item, a type-in point appears and the
source file name(s) may be entered:

Compile: sourcel {source2 source3 ... }

To run the compiler, invoke Compile! The compiler always assumes. mesa extensions to
the file names if no extension is given.

A successful compilation results in object files named sourcename. bcd. If the Compiler
discovers a syntax error in the source, it will logically insert or delete what it thinks is
appropriate text so that it can continue compiling the program. A summary of the errors
and warnings is written in a file named sourcename.errloq, and no object file is
produced. Errors and warnings are reported in the form procedure[characier-position-in
file], with an indication of the type of error and what text has been logically inserted or
deleted. A program will run with warnings, but it is not recommended.

You may specify operational options in the form of Compiler switches. For example, the
"b" switch specifies that the compiler should generate code to do array and sub range
bounds checking. In general, switches turn on or off some runtime checking or
optimization feature. The switch set /-b-ej-np-u is commonly used to compile
programs that have already been debugged and are ready to use; the switch set /-ep is
more common for programs during development. The first set disables most runtime error
checking and enables some optimization; the second set enables all the runtime checking
code and disables some of the optimization. The switch sets given above are merely
suggestions, not rules. (For a complete list and definition of the switches, as well as their
default values, see the Compiler chapter's section on Compiler Switches.)

There are several ways to set these switches, depending on how you invoke the compiler.
If the Executive is used, switches may be specified either with each file name, globally for
all files, or both:

XU..: User's Guide III

>Compiter I-e sourcellbej source21-n-u~

.. .
The global switches are in effect appended to each of the local switch sets; if a cont1ict
arises, the local switches take precedence. In the example above, the effect is to apply the
switch set /bej to source 1 and the set /-e-n-u to source2. If Command Central is used,
the switches may be given along with each file name as above. The global switches are set
via the Options window, invoked by selecting Options!. The same precedence rules
apply. In either case, defaults for any switch may be set in the User. em file. (These
default entrie~ have lowest precedence; refer to the section on C ser.cm entries in the
Compiler chapter).

111.3.2 Binding a configuration

Though the Binder performs a number of tasks, its main tasks are matching the IMPORTS of
one program to the EXPORTS of another and binding the result. Specifically, the Binder
combines modules and possibly previously bound configurations, according to the
specifications in a configuration file to produce a new object file. This file may be loaded
into a running system or be processed by a later invocation of the Binder or Packager. The
following subsections describe a simple configuration file and show how to use the Binder.

111.3.2.1 Configuration description files

A configuration description file describes to the Binder which modules to bind and how
they are to be put together. The binding configuration shown below is merely a list of the
modules to be bound: Lexicon and LexiconClient. The names listed need not be of single
modules but can refer to previously bound configurations.

Note that the names given are module names, not file names. Unless a DIRECTORY

statement is used (described in the Binder chapter), the Binder assumes that the module
module name can be found in the file modulename. bed.

Lex: CONFIGURATION

IMPORTS Process. Storage. String, TTY
CONTROL LexiconClient =

BEGIN

Lexicon;
LexiconClient;

END.

The CONTROL statement indicates which module should be started when the reSUlting
configuration is loaded. Other modules may be explicitly started by the module specified
in the CONTROL statement or be implicitly started when anyone of its procedures is called.
For the example given above, LexiconClient is started explicitly and Lexicon is started
only when one of its procedures is called.

Because Lexicon relies on certain operating system support, it must have access to the
interfaces through which they are provided. This is accomplished by the IMPORTS

statement. It gives the Binder a list of interfaces that will be referenced by the modules
being bound. It is an error to omit a neccessary interface, and a warning results if an
imported interface is never referenced.

[[1·3

III

I1I-4

System-building tools

111.3.2.2 Using the Binder

As with the Compiler, the Binder is normally invoked using either the Executive or
Command Central. To use the Executive, type:

>Binder sourcel {source2 source3 ... }i

Each of the sources represents a distinct configuration description, and the command
creates distinct object files. To invoke ~!le Binder through Commar.J Central, simply
select Bind: and enter the source name(s):

Bind: sourcel {source2 source3 ... }

Now that the arguments are listed, the Binder may be invoked by selecting the Bind!
command. Regardless of the method used to invoke the Binder, a . conf ig file name
extension is assumed if no extension is given. Also in either case, all error messages are
written to a file named sourcename. errlog.

You may specify options to the Binder by Binder switches. In most cases the /c switch is
used to specify code copying. Often the /s switch is also specified, but there are different
policies about whether to use /s (for a complete list and definition of the switches, see the
section on Binder Switches in the Compiler chapter). If the Binder is invoked using the
Executive, the switches may be given along with each file name, globally at the beginning
of the line, or both:

>Binder /c sourcel/s source2 source3/s'

When using Command Central, the switches may also be given on the command line along
with each file, or global switches may be set via the Options window, invoked by selecting
Options!. In either case, defaults for these switches may be set in the User. em file, and
these defaults have the lowest precedence (see the section on User.cm processing in the
Executive chapter).

For more details, see the Binder chapter.

111.3.3 Summary

Summarizing the operation of the Compiler and Binder:

• Both the Compiler and the Binder can be invoked with either the Executive or
Command Central, and both recognize various switches.

• The Compiler assumes input file names have an extension of .mesa if no extension is
given, while the Binder assumes. conf ig.

• Both the Compiler and Binder produce an object file if processing was successful.
Otherwise, a file named source. er r log is created containing the errors or warnings
that were issued.

XDE User's Guide III

• Names specified in a configuration file refer to modules, not files. It is assumed that a
module name Mod exists in a file named Mod. b~~. This association can be changed
with a DIRECTORY statement.

IlIA Running a program in the Tajo environment

Once you have created an executable object file, it has to be loaded into the runtime
environment for execution to begin. This section describes how ~o get object fi les to the
runtime environment (typicallyTajo), and how to run them once they are there.

Often the object file to be run will already be resident on the Tajo volume, which is the
case for tools that have already been developed and are present as utilities. However,
while performing development tasks, programmers often work in a volume different from
Tajo (usually CoPilot) for debugging convenience. When this is the case, you must move
the object file to be run to Tajo using either the Snarf command (see the chapter on the
Executive) or Command Central.

111.4.1 Snarfing and running

To snarf a file to Tajo, first get to Tajo by booting or proceeding from CoPilot. (To proceed,
CoPilot must have been entered from Tajo using CALLDEBUG.) If you were in Othello, then
Tajo must be booted.

Once in your Tajo volume, the object file can be retrieved using Snarf in the Executi ve:

>Snarf source. bed-=

Snan does not move the file from volume to volume but makes a new copy on the Tajo
volume. At this point the program can be run by typing its name to the Executive. The
• bed extension is not necessary.

>souree il

Selecting commands from the Exec Ops menu is an alternative to use the Executive. After
typing and selecting the name of the object file, you may load, start, or run it by selecting
the appropriate menu item. Load loads but does not start an object file, Start starts a
previously loaded object file, and Run loads and then starts an object file.

111.4.2 Using Command Central

The Command Central Run! command is roughly equivalent to the one described above.
To use it, activate Command Central in the CoPilot volume and select the Run: item. A
type-in point will appear, indicating where to enter the object file name.

Run: ~

After entering the name, select Run! and Command Central does the rest: the Tajo
volume is booted, and the object file is copied and then run. Like the Executive, Command
Central does not require the . bed extension to be entered. Various switches may be

1II-5

III System-building tools

specified to modify the operation of this command. User. em entries may also be set (see
the Command ~entral chapter's User. em section).

([1.4.3 Summary

, To recap, to get an object file from a development volume (normally CoPilot) to a client
volume (Tajol and to run it, you may:

• Boot or proceed to get to Tajo, use the Snarf command in the Executive to copy the
object file, and run the object file by typing its name to the Executive.

• Use the Command Central Run! command, which boots the Tajo volume, copies the
object file, and runs it.

Once the object file has been copied to the client volume, it need not be recopied unless it is
changed. Thus future invocations can be made directly using the Executive-~no copying is
required.

IlLS Making boot files

III-6

As with any program to be executed, the operating system itself requires an object file that
can be loaded into memory and started. Such a file is called a boot file. Along with the Pilot
image, the boot file also contains one or more Pilot clients, such as Tajo and the compiler.
This file, containing the entire runtime environment plus the initialization code needed to
start it, is loaded at boot time by a boot loader called the germ. There are several steps to
creating a typical boot file. Some of these require familiar actions such as using the
Compiler and Binder, while others require less-familiar tools such as the Packager and
MakeBoot. The following subsections describe these less-familiar tools.

111.5.1 Packaging a system

The Mesa Packager can be used to improve the swapping performance of Pilot-based
programs. The Packager allows you to specify the swap units for your program's code
(code packs) and global frames (frame packs). For example, the Packager allows a code
pack to be defined that includes the code for a collection of procedures from several
different modules and a frame pack to be defined that collects the global frames of a
number of modules (for example, you might pack together procedures from different
modules that are not commonly used, such as initialization routines or catch code). This
prevents a seldom-used procedure from remaining resident just because it is in the same
module as a commonly used procedure. Similarly, commonly used procedures from many
modules can be grouped together so that they have a better chance of remaining resident.
Packaging a system requires detailed knowledge of the software in question and careful
consideration ofthe packaging specification.

lIl.S.2 Packager operation

The Packager is a post-processor that reads a single object file and a packaging description
and writes a new object file with the code rearranged as specified. Its operation resembles
that of the Binder. To work correctly, all symbol files corresponding to the input object file
must be on the disk. The Packager needs these files to identify procedures and frame packs
and to locate the code for procedures. The output file contains the reorganized code, but not

XDE User's Guide III

the symbols, of the input object file (that is, the code is copied; symbols are not). The output
file also contains information about the global frame packs for later use by MakeBoot and
the Pilot loader. Finally, the Packager can produce detailed listings and 'maps of the
placement of code and frame packs, as well as other information (see the Packager
chapter).

111.5.3 Using Make800t

As stated earlier, M:akeBoot converts an object file into a file that can be boot loaded;
namely,a boot file. To use MakeBoot, you need the base object file from which the boot file
will be built and at least one parameter file containing information about certain data
structure sizes and initial memory configurations. YlakeBoot allows you to specify
information such as the length of the Global Frame Table and the number of processes
allowed to coexist. Unlike the Packager, MakeBoot does not require any symbol files to be
present on disk (see the MakeBoot chapter).

111.5.4 Summary

Summarizing the operation of the Packager and MakeBoot:

• The Packager and MakeBoot are normally used in conjunction to create a file that can
be boot-loaded. Such a file typically contains the operating system (Pilot) and one or
more clients.

• Run as a post-processor, the Packager provides a level of fine tuning on an object file to
improve its swapping characteristics.

• MakeBoot converts an object file into a boot file according to specifications given in a
separate specifications file. Parameters include Global Frame Table length and the
number of coexisting processes.

If specification files (.pack for the Packager, and .bootmesa for MakeBoot) already exist,
which is normally the case, using these tools is fairly simple. However, it is worth
restating that both MakeBoot and the Packager are not as commonly used as either the
Binder or Compiler, and creating a good specification file for either requires careful
thought.

111.6 Using the Debugger

This section describes the Pilot-based interactive Mesa Debugger, CoPilot. CoPilot
supports source-level debugging: it allows you to set breakpoints, trace program
execution, display the runtime state, and interpret Mesa statements. CoPilot is intended
for experienced programmers familiar with Mesa. The annotated examples in this section
are both examples of form and suggestions for dealing with situations that commonly
arise while debugging. (The Debugger chapter describes CoPilot in detail).

111.6.1 Invoking CoPilot

There are several ways to invoke the Debugger. For example, in Tajo or CoPilot, pressing
CALLDEBUG interrupts your program. In the course of running your program, you may also

III-7

III

III-8

System-building tools

enter the Debugger for several other reasons. There is a different cursor icon for each
reason.

• Some currently running module generates a SIGNAL or ERROR that no procedure catches.
The U nc Sig cursor is displayed, representing Uncaugh t Signal.

• A module expliCitly requests to go to the Debugger. Pilot makes such a Call
Debugger request when handling address and write-protect faults. The cursor
displayed is Call Debug.

• The Debugger has been used to specify a point in the source program where execution
should be stopped and the Debugger entered. Such a point is called a BreakPoint and
is denoted by the cursor, Brk pt.

• To maintain a consistent map of the client's virtual memory, CoPilot must be invoked
periodically to update internal data structures. Called Processing VM Map, it is
automatic and requires no user intervention. The cursor says Map Log.

• If CoPilot is entered due to a CALLDEBUG. The cursor will be lnt -- (Inter rupt).

111.6.2 Talking to the Debugger

The user interface to the Debugger controls a command processor that invokes a collection
of procedures for managing breakpoints, examining user data symbolically, and setting
the context in which user symbols are referenced. The command processor accepts
character input and extends the input to the maximal unique string that it specifies. For
instance, an L in response to the> prompt will be extended to List, just as a P will be
extended to Proceed. Typing a question mark during command entry will result in a list
of the valid options with the command characters shown in upper case. Typing a space in
response to the> prompt invokes the CoPilot interpreter,which will be described later.
(For further information on debugger 110 conventions and the CoPilot interpreter, see
Debugger 110 Conventions in the Debugger chapter.)

111.6.3 Debugging a client program

The following sample session demonstrates CoPilot commands commonly used in
debugging a client program. The component files of Lex, the configuration in our example,
are listed at the beginning of this chapter. The sample configuration Lex consists of two
modules, Lexicon and LexiconClient. Let us assume that the configuration has been
bound, loaded, and started in Tajo, and you have interrupted the program and entered
CoPilot for the first time (by holding down CALLDEBUG after the program started). You get
the current date and time, a message indicating why you entered CoPilot (in this case,
interrupting the program), and a prompt for the first command:

6-Jan-82 14: 59
*** interrupt ***
>

111.6.3.1 Setting the con text

CoPilot allows you to specify a referencing environment, or context, in terms of Mesa
configurations and modules. To get to a context from which breakpoints may be set in one

XI)E User's Guide III

of the modules in Lex, let's first check to see which configurations have been loaded by
typing:

>~ist £,onfigurations

which responds with:

Lex
Print
CommComSoft

CourierConfig
FloppyCommands
XComSoft
MailStubConf ig
AuthStub
CHStub
NSStringConvertConfig
NSStringConfig
NSDataStreamConfig
NSSessionImpl
NSFilingRemoteConfig

NSFilingCommonConfig
NSFileTransfers
FileTransfers
RightsNotice
StartlncludedBcds
BasicHeadsDLion
Tajo

HidelntermediateExpRecs
PilotKernel

Control
MesaRuntime
Mise
Store

ResMemMgr
VMDriver
FileBasics
FileMgr
VMMgr

DiskDrivers
UserTerminalDriver

Loader
Communication

LevelO
Levell
Level2

SubTajo
Wisk

TajoBasics
ToolWindows
User Inputs
Windows

III-9

III

III-lO

System-building tools

TajoExtras
TextDisplays

TextSWs
BaseTextSWs
TTYSWs

FormSWs
TajoTools

Edi tor
Buil tlnTools

Executive
WiskSupport

DontExportPilotRun
DevComSoft

Reallmpl
Floppylmpl

MesaBasics
FileSystemex

CoPilot also allows you to see what the context was before going to the Debugger.
Checking the context at this point, you find that the current module is PilotNub in the
MesaRuntime configuration. This will always be the context after a CALLDEBUG:

>~rrent context
Module: PilotNub, G: 14544B, L: 4700B, PSB: llSB
Configuration: MesaRuntime

Weare interested in the configuration Lex, so we make it our root configuration:

>i§t Boot configuration: ill"'

and find out which modules are in this configuration:

>Qisplay £onfiguration Lex
Lexicon, G: 70410B
LexiconClient, ~: 70434B

Notice the -, indicating that Lexicon hasn't been started yet. Now we can set the module
context to be Lexicon, so that we can set some breakpoints:

>SEt ~odule context: Lexicon'"

If you know which module is of interest, you need not search through the configurations to
find it. A SEt Module context command works even if no root configuration is specified
explicitly (this assumes that the module name is unique; if it isn't, an error message
results). You could have responded to the first> prompt with a SEt Module context
command if you knew that Lexicon was the module of interest.

111.6.3.2 Setting breakpoints

If the source text for Lexicon is loaded into a window,so you can set breakpoints by
pointing at the text in two ways. First, you can display the stack and ask to see the source

XDE User's Guide III

(this loads and positions the source file for the current module into the source window of
the Debugger):

>Qisplay ~tack
Lexicon, G: 704l0B- >s Cross jumped!
--Lexicon. mesa
>g

Second, you can lo';.d the file into a source winduw by selecting the file name Lexicon
(the extension defaults to . mesal, moving into a source window Ithere is always at least
one), and selecting the Load command from the menu. Note the message warning that
Lexicon was compiled with the cross-jumping switch turned on.

To set a breakpoint on the exit of the procedure NewNode, scroll the window until this
procedure is visible; then select the word RETURN inside it. Hold down the MENU key and
choose the Break command. This sets a breakpoint on the exit of the procedure (selecting
the word PROCEDURE or PROC sets a breakpoint on the entry to the procedure).

To set a breakpoint in the end of one of the IF-THEN-ELSE statements in the procedure
InsertString, select any place in the statement ELSE nJlink +- NewNode[]; and select
Break. Where the breakpoint has been set is confirmed by the selection moving to the first
character of the statement: ELSE < >n.llink +- NewNode[];. In all cases, the breakpoint is
set to the beginning of the selected Mesa statement. You may also set entry and exit
breakpoints in the program using keyboard commands. If, for instance, you wish to set a
breakpoint on the entry to the procedure FindString, type:

>~reak Intry procedure: FindStrinq Breakpoint 13.

For any breakpoint, you may specify a condition that must be satisfied for the breakpoint
to be taken. If, for example, a breakpoint is set on the statement FOR i IN [O .• n) DO in the
LexicalCompare procedure, you may attach the condition that n be greater than 10 for the
breakpoint to be taken:

>!Itach ~ondition I: !, condition: !L>JQ.

111.6.3.3 Proceeding

It is now time to proceed and run the program, but saving some comments along with the
commands makes it easier to' remember what happened when you review a log of the
session. For instance, you might say:

>~-this breakpoint was set to find a comparison of~
>~-lexemes longer than 10 characters~

Pr oceeding is now easy, as shown by the following command:

>~roceed [confirm]"

If the lexeme "xxx xx" is subsequently added to the tree, one of the breakpoints is reached
and CoPilot is reentered.

III-II

III

III·12

System· building tools

((1.6.3.4 Examining and changing the state

The Debugger is next entered with the message:

8reak II at exit from NewNode, L: 37608, pc: 2448 (in Lexicon, G:
704108)

to indicate from where and why CoPilot was entered. At this point you might display the
stack and look at the variables:

>Qisplay ~tack
NewNode, L: 37608, PC: 2448 (in Lexicon, G: 704108) >v
n = 40431268 f
>g

or look at the several levels of the stack:

>Qisplay ~tack
NewNode, L: 37608, PC: 2448 (in Lexicon, G: 704108) >n
InsertStrin9, L: 37008, pc: 1378 (in Lexicon, G: 704108) >n
AddStrin9, L: 34208, PC: llS8 (in Lexicon, G: 704108) >n
CommandProc, L: 64108, PC: 5068 (in LexiconClient, G: 704348) >q

or ask to see what the node n (in NewNode) looks like (invoke the interpreter by typing a
space):

>!!..li
[llink:NIL, rlink:NIL, strin9:40431208 f (5,5)"xxxxx"]

It might be advantageous to set both the left link and right link of n to point to n itself and
then check the value of n by typing:

>n.llink - nj n. rlink - n; nj n t Ii

which responds with:

n = 40431268 j
[llink:40431268j, rlink:40431268j, strin9:40431208f (5,5)"xxxxx"]

If the value of the variable root in the module Lexicon is important, and the module
context has been changed to LexiconClient, you may obtain the value using the Find
command. root is a variable in the current configuration, but not the current module.

>E.ind variable: !..2.21 NIL (in Lexicon, G: 704108)

XDE User's Guide

111.6.3.5 More breakpoint commands

To review all of the' breakpoints. do the following:

>List Breaks
1 -- Break at exit from NewNode (in Lexicon, G: 10410B).
2 -- Break in InsertString (in Lexicon, G: 10410B).
Cross jumped!

ELSE <>a.llink -- NewNode[];
3 -- Break at entry to FindString (in Lexicon, G: 10410B).

III

4 -- Break in LexicalCompare (in Lexic~n, G: 10410B). Condition: n >
10
Czoss jumped!
< > FOR i IN [O •• n) 00

If the breakpoints are no longer interesting, they may all be cleared simultaneously:

>CLear ~ll !!reaks

Individual breakpoints may be cleared either using the CLear Break command or by
selecting the source code of the Ii-ne containing the breakpoint and then selecting the
Clear menu item from the Debugger menu.

111.6.3.6 Looking at the user ~creen

You may often be thrown into CoPilot without warning and without a chance to take stock
of what was being displayed. The CoPilot User screen command provides for this
situation, Entering the following command repaints the display with the contents of the
client-world screen as it was before entering CoPilot:

>y'serscreen [confirm] ill

In this mode, CoPilot accepts no commands and performs no client-world operations. After
20 seconds. the CoPilot displa~ is restored automatically. To review the user screen for
longer than 20 seconds, hold down the ABORT key, which maintains the display. Pressing
ABORT, then releasing it, returns you to CoPilot.

111.6.3.7 Setting tracepoints

Suppose the user screen indicates that it is worthwhile to breakpoint the entry to the
procedure Lex icalCompare. When you set a breakpoint on entry to a procedure, you will
often want to see the input parameters by typing:

>!race !ntry procedure: LexicalCompare Breakpoint IS.

If you Proceed and enter the lexeme yyy, the trace point will be reached. A message
indicating why CoPilot was entered, the context. and a dump of the input parameters is .
then displayed:

Trace IS at entry to LexicalCompare, L: 3160B, PC: 246B (in Lexicon,
G: 10410B)
>Qisplay §.tack

III-13

III

III-I 4

System-building tools

LexicalCompare, L: 3760B, pc: 246B (in Lexicon, G: 70410B) >P
sl = 406412B i (3,80) "yyy"
s2 >I: 4043120B i (S,S)"xxxxx"
>g

This leaves CoPilot in the Di splay S tack command. You can terminate the command by
typing q or continue to perform Display Stack functions.

111.6.4 Pilot symbols files

Symbolic access to Pilot structures is often essential in debugging Pilot client programs.
In particular, such access is useful in interpreting Pilot SIGNALS and essential if you are to
break entry or exit to a Pilot procedure.

The Pilot symbols files (found in <Pilot>Symbols» should satisfy most client
debugging needs for access to Pilot structures. To determine which Pilot . symbols file
pertains to the module in question, perform a Current context command, which
displays the current configuration (you may wish to set module context or set octal context
before this). The configuration name is prepended to the. symbols suffix to arrive at the
symbol file name. The exceptions are listed in the table:

Displayed Name

HConfig
PConfig
LevelO
Levell
Level2

111.6.5 Interpreting signals

Symbols File

VMMgr.symbols
VMMgr.symbols
Communications.symbols
Communications. symbols
Communications. symbols

If you go to CoPilot with an uncaught signal, you will often find a message of the form:

**·uncaught signal[nnnnnB] msg = ?[mmB] (in module Mumblelmpl, G:
pppppB)

This virtually useless message usually occurs because CoPilot did not have the neccessary
symbols files available to interpret the signal. To get useful information, find the file that
contains the symbols for Mumblelmpl and retrieve it. (It may also be necessary to retrieve
the object file for an interface module so that signal parameters can be interpreted
correctly.) Once the appropriate files have been fetched, type a space to invoke the CoPilot
interpreter and then a LOOPHOLE expression (the % is the loophole operator). This tells
CoPilot to interpret the number nnnnnB as a SIGNAL from the current context. CoPilot will
reply with a message similar to the one above, except it will have signal names instead of
a number, and an ASCII message. For example, assume a simple module named Test has
been loaded and started, and subsequently a world swap to CoPilot occurs:

XDE User's Guide III

13-Jan-82 15:01
*** uncaught SIGNAL [10058] mS,9 = ?[54238] (in module Traps, G:
206248)

The symbol file to be retrieved can be determined by finding the Current context:

>CUrrent context
Module: Traps, G: 206248, L: 117548, PS8: 1018
Configuration: MesaRuntime

Once the context has been established to be MesaRuntime, retrieve the file
MesaRun time. symbols and re-interpret the signal.

> 10058% (SIGNAL)~
SIGNAL DivideCheck (in module Traps, G: 206248)
DivideCheckTrap, L: 117548, PC: 15038 (in Traps, G: 206248) >Q
SDIV, L: 52408, PC: 1568 (in ProcessorHeadDLion, G: 214548) >Q
Test, L: 212148, PC: 158 (in test, G: 114148) >g
a = 0
b = 3410
>s Cross jumped!
a-O: < >b-5/a:
>g

It seems that there has been some sort of invalid division operation. To get more
information, look at the call stack as illustrated above. It shows that Tes t tried to perform
a divide-by-zero instruction, which ended in a signal being raised.

111.6.6 Address and write-protect faults

Pilot permits programs to access only those locations in virtual memory contained within
mapped spaces. Furthermore, a space in virtual memory can be designated read-only (or
equivalently, write-protected). Programs that try to write to such locations or that try to
reference unmapped spaces will enter CoPilot with the message Wr i tePro tec t Faul t or
Address Faul t, respectively. In addition, programs that attempt to reference a location
beyond the end of the processor's virtual memory will enter CoPilot with the message
Address Faul t (address past end of processor VM). These are not signals; Pilot
has detected the fault and explicitly called the Debugger.

A write-protect fault is a fatal error, so neither Pilot nor the client program can be
successfully restarted in this case. Conversely, address faults are not fatal errors, except to
the process in which they occur. Pilot and the remaining client processes are still healthy
and will continue to run if a proceed command is issued. The address-faulted process will
be effectively blocked forever, waiting for pages to get swapped into real memory (which
will never happen). As long as this process holds no vital monitor locks, everything should
be fine. [n addition, you may freely interpret procedures from CoPilot after an address
fault. Since Pilo~ will be healthy, its facilities may also be used freely. Making address
faults non-fatal allows you to clean things up after faulting but is not meant to provide a
way to continue operation for an extended period of time. There is little or no experience
with that kind of use, so its limitations and problems are largely unknown.

m-I5

III

III-I6

System-building tools

111.6.7 Tracing an address fault

When an Address Fault occurs, the Debugger is entered with the Call Dbug cursor, and
displays the message Address Faul t. No indication of which process caused the fault is
given. Suppose that Lex had been running for a while and an address fault occurred. The
first thing to do is list the set of processes and look for one that has page faulted (it will be
clearly labeled).

Address Fault

>~ist frocesses
PS8: 208, page fault, address: 25152178t I L: 213048, PC: 3608 (in
Storagelmpl, G: 324048)
PS8: 758*, ready, InitializeAwaitDebuggerRequest, L: 121448, PC:
5538 (in.PilotMub, G: 145448)
PS8: 778, ready, L: 113748, PC: 23648 (in UserlnputsA, G: 260048)
PS8: 1008, waiting CV, L: 40108, PC: 34468 (in HeraldWindows8, G:
351008)
PS8: 1018, waiting CV, L: 36508, PC: 3778 (in TTYSWs8, G: 315008)
PS8: 1028, waiting CV, L: 114108, PC: 223168 (in TextSWsD, G:
320208)
PS8: 1038, waiting CV, L: 127608, PC: 63168 (in MFilelmplA, G:
362148)
PS8: 1048, waiting CV, L: 34408, PC: 454648 (in UserlnputsC, G:
300348)
PS8: 1058, waiting CV, L: 372148, PC: 146248 (in UserTerminallmpl,
G: 200108)
PS8: 1068, waiting CV, L: 223708, PC: 53258 (in Userlnputs8, G:
267248)
PS8: 1078, waiting CV, L: 34608, PC: 27328 (in UserlnputsA, G:
260048)
PS8: 1108, waiting CV, L: 34708, PC: 26678 (in UserlnputsA, G:
260048)
PS8: 1118, waiting CV, L: 35008, PC: 26418 (in UserlnputsA, G:
260048)
PS8: 1128, waiting CV, L: 35208, PC: 26418 (in UserlnputsA, G:
260048)
PS8: 1138, waiting CV, L: 114548, PC: 3448 (in Socketlmpl, G:
233608)
PS8: 1148, waiting CV, L: 211348, PC: 13318 (in RoutingTablelmpl, G:
234048)
PS8: 1158, waiting CV, L: 371448, PC: 26418 (in UserlnputsA, G:
260048)
PS8: 1168, waiting CV, L: 373608, PC: 12328 (in EthernetDriver, G:
230608)
PS8: 1178, waiting CV, L: 372348, pc: 22718 (in EthernetDriver, G:
230608)
PS8: 1208, waiting CV, L: 40448, PC: 3258 (in EthernetDriver, G:
230608)
PS8: 1218, waiting CV, L: 212248, PC: 3068 (in Dispatcherlmpl, G:
233048)
PS8: 1228, waiting CV, WriteFaultProcess, L: 117548, PC: 651668 (in
Spacelmp18, G: 204648)
PS8: 1238, waiting CV, L: 114248, PC: 378 (in SwapperExceptionlmpl,
G: 175708)

XDE User's Guide III

PSB: 124B, waiting cv, L: 4550B, pc: 44B (in FilerExceptionImpl, G:
14104B)
PSB: 125B, waiting cv, L: 3430B, pc: 4460B (in MStoreImpl, G:
17270B)
PS8: 1268, waiting cv, L: 116448, PC: 1053B (in CachedRegionImplA,
G: 151108)
PS8: 1278, waiting cv, L: 37748, PC: 378 (in PageFau1tImpl, G:
114048)
PSB: 1308, waiting cv, L: 21320B, pc: 7446B (in FileTask Impl, G:
142008)
PSB: 131B, waiting cv, L: 21334B, pc: 14638 (in DiskChanne1Impl, G:
132208)
PSB: 132B, waiting cv, L: 11550B, pc: 20318 (in Pi1otDiskImpl, G:
133248)
PS8: 1338, waiting CV, FrameFaultProcess, L: 115308, PC: 1238 (in
FrameImpl, G: 14524B)

In this example, only one process has page faulted (20B), but if there are more than one,
the Octal Read command will indicate which is the culprit. For each_ page-faulted
process, an octal read should be performed on the associated address. CoPilot will respond
with the message! Invalid Address (nnnnn8] for the process that is to bla~e for the
address fault. The following verifies that process 20B is the culprit in the Lex example.

>Qctal !ead: 25152178, n(10): !~

2515217B/ !Invalid Address [2515000B]

Once you have laid blame for the fault on a particular process, you may examine it more
closely by setting the process context:

>SEt frocess context: 20B~

At this point you may look at the call stack using the Display Stack command, or at a
particular frame using the Di splay Frame command. The latter command is very useful
in many situations. For instance, suppose you have displayed and climbed the call stack:

>Qisp1ay ~tack
CopyString, L: 21304B, pc: 360B (in StorageImpl, G: 324048) >n
HewHode, L: 3730B, PC: 333B (in Lexicon, G: 67410B) >n
InsertString, L: 3760B, PC: 240B (in Lexicon, G: 67410B) >n
AddString, L: 3410B, pc: 223B (in Lexicon, G: 67410B) >n
CommandProc, L: 12214B, pc: 746B (in LexiconClient, G: 70020B) >g

Suppose that sometime later you wish to look at variables or interpret statements in the
context of AddString. Rather than climbing back through the stack using Display
Stack, you may directly display that frame, as illustrated below:

>Qisplay !rame: 3410B~

AddString, L: 3410B, pc: 223B (in Lexicon, G: 67410B) >y
s = 4122168j (S,80)"xxxxx"
>g

III-17

III System-building tools

Display Frame offers all of the functions available with Display Stack (includ ing
n) • Hopefully there will be enough state attainable using CoPilot to track down the cause
of the address fault. . '

111.7 Program-building tools

The Binder combines modules and previously bound configurations to produce a new
configuration. The output of the Binder is a binary configuration description (object file)
that may be loaded into a running system or later be input to the Binder.

CommandCentral is a tool that supports the compilelbindlrun program development loop.
It permits you to compile and bind programs on a development volume and run them on a
client volume.

The Compiler translates Mesa source files into corresponding object files. An object file
contains the executable code for the module, tables for use by the Binder and Loader, and
symbols for use by the Debugger.

The Formatter transforms Mesa source files into a standard format. It establishes the
horizontal and vertical spacing of the program text to reflect its logical structure.

MakeBoot transforms an object file containing Pilot and its client into a memory image
that can be run on any machine conforming to the Mesa Processor Principles of Operation.
The resulting boot file is later boot-loaded.to get it started.

The MakeDLionBootFloppyTool creates Dandelion-bootable floppies.

The Packager explicitly groups procedures together into swap units.

111.8 Program analysis tools

III-I8

The Debugger is CoPilot, the interactive Mesa debugger.

The DebugHeap Tool is used in CoPilot to debug the client, or in Tajo to do client-side
debugging. It aids debugging by showing the layout of memory.

The IncludeChecker examines a collection of local or remote source and object files for
consistency. It produces an output listing that gives a compile and bind ?rder for the files
and the dependencies among them. Inconsistencies are flagged. The IncludeChecker will
also generates compile and bind commands to correct any inconsistencies.

The Lister produces listings of information in object files, such as dates of the definitions
files used by an object file·and cross-reference listings of procedure calls within the object
file.

Performance Tools are five tools that aid in the study of the behavior of Mesa programs:
the CountPackage, PerfPackage, Spy, Ben, and Willard.

Spy can measure the amount of time spent executing in a module, certain procedures,
or even source statements within a procedure. It is especially useful for top-down

XDl<: User's Guide III

analysis of a program; thus, Spy can be used to first identify the hottest modules,
then the hottest procedures within those modules, and so forth.

The CountPackage gathers information on the flow of control between groups of
modules.

Willard produces a list of the control transfers executed during some interval of
client acti vity.

The PerfPackage allows you to c.ollect timing and frequency statistics of program
execution.

Ben produces a list of the page faults that occur during some interval of client
activity and tells what caused the fault to occur.

The Statistics tool gathers statistics about Mesa source and object files, such as number of
characters and frame size.

UI-19

III System-building tools

1II-20

17.1 Files

17

Binder

This chapter discusses the operation of the Binder, including its switches and error
messages. The Mesa Binder combines modules and previously bound configurations to
produce a new configuration. The output of the binder is a binary configuration
description (object file) that may be loaded into a running system or processed by a later
invocation of the Binder. The configuration description language C/Mesa is used to
describe desired configurations to the Binder. It is documented in the Mesa Language
Manual.

To understand the Binder options described below, it is necessary to understand
something about how configurations exist in files. The object file produced by the Binder
contains a compiled description of the configuration; it may also contain copied code or
symbols. For each module instance in the configuration, the object file specifies the
location of the code and symbols by file name (and version stamp), starting page, and
number of pages. Thus the code and symbols for a configuration may be scattered over a
large number of files. The default is for the configuration's code to be copied to the object
file, while its symbols are left in the original compiler object files. It is also possible to put
the object file, the code, and the symbols in the same file (this is the way object files are
generated by the Mesa compiler).

Copying the code or symbols for a configuration's modules is controlled by switches and
parameters on the Binder's command line. Code is usually copied into the same file
containing the object file. It is also possible to copy code into a file other than the object
file, but this is not very useful. Symbols may be copied into the object file, but they are
usually written to a separate file.

It is a good idea to package the symbols of a released subsystem into a separate file, so that
they will not take up disk space when they are not in use. This also makes it easier to keep
track of a consistent set of symbols for all of the modules. Because the Binder and Loader
deal only with interfaces, symbol tables are not required for binding or loading. Of course,
they are required for meaningful debugging.

Retrieve Binder. bed from the Release directory.

17 -1

17 Binder

17.2 User interface

17-2

The Binder runs in the Executive and in Command Central. A summary of the Binder's
commands is written on the file Binder .log The error and warning messages from
binding, say Foo.eonfig, are found on Foo.errlog-- (unless the /e switch is in effect;
see the Command line section below).

17.2.1 Command line

The Binder accepts a sequence of one or more commands, each of which usually has one of
the following forms:

inputFile/switehes

outputFile +- inputFile/switehes

[keYl: filell ••• keYm: filem] +- inputFile/switehes

In the third form the valid names for keYI are code I symbols I and bed. The string
inputFile names the file containing the text of the configuration description, and its
default extension is • config. There is a principal output file, the name of which is
determined as follows:

If you use the first command form, it is inputRoot.bed, where inputRoot is the
string obtained by deleting any extension from i npu tF i 1 e.

If you use the second form, it is outputFile, with default extension. bed.

If you use the third form and keYI is bcd, it is filel, with default extension. bed;
otherwise, it is obtained as described for the first form.

If the Binder detects any errors, the principal output file is not written, and any existing
file with the same name is deleted. You may also request that the code or symbols of the
constituent modules be copied to an output file by specifying the /c switch or by using the
third command form with keyword code. Code is copied to the principal output file unless
you use the third form and keYI is code, in which case the code is copied to a file named
filel, with default extension. code.

You may request copying of symbols by specifying the /s or by using the third command
form with keyword symbols. Symbols are copied to the file named as follows:

If you use the first command form, it is inputRoot. symbols.

If you use the second form, it is outputFile, with default extension. symbols.

If you use the third form and ken is symbols, it is filel, with default extension
• symbols; otherwise, it is obtained as described for the first form.

Unless the /e switch is in effect, any warning or error messages are written on the file
outputRoot.errlog, where outputRoot is the string obtained by deleting any

XOE User's Guide 17

extension from the name of the principal output file. If there are no errors or warnings,
any existing error log with the same name is deleted at the end of the bind.

When more than one Binder command is given on the command line, the commands are
separated by semicolons. Usually the semicolon can be omitted. It cannot be omitted,
however, if the second of the two successive commands is a global switch. For example:

>Binder /es MySystem '; Ie AnotherSystem

The semicolon can be left out between two successive identifiers (file names or switches),
or between a I and an identifier. Any required semicolon in an Executive command must
be quoted.

17.2.2 Switches

The optional switches are a sequence of zero or more letters. Each letter is interpreted as a
separate switch designator, and each may optionally be preceded by - or - to invert the
sense of the switch.

The Binder recognizes these switches:

e copy code (default)

e merge the. er r log file into the Binder .log file

p pause if there are errors, or if there are warnings and the Iw switch is specified

5 copy symbols

w also pause on warnings if Ip is specified (default)

Global switches are set by a command with an empty file name. Each of the switches listed
above can be specified as a global switch. Note that unless a command to change the global
switch settings comes first in the sequence of commands, it must be separated from the
preceding command by an explicit semicolon (see Examples section).

The Ip switch is unusual in that its meaning is slightly different, depending on whether
it is a global or local switch. As a global switch, it means report (p) or don't report (-p)
errors or warnings to the calling Executive. The Executive will typically terminate
(pause) if errors or warnings are reported. The global default is to pause. As a local switch,
it specifies pausing just after compiling the specified file if that file or any preceding file
contained errors; moreover, any remaining commands are ignored. The local default is not
to pause but to continue with the next input file.

17-3

17 Binder

17.2.3 Associating files with modules and configurations

The Binder lets you control the association between tile names and the modules or
configurations included in a configuration when you call it. This is done by specifying a
list of component identifier-file name pairs inside brackets after the input file name. Such
a list can be thought of as augmenting or replacing a DIRECTORY clause in the configuration
description. For example, the command line

>Binder MySystem[Test: UnpaekedTest)

will bind MySys tem. eonf ig using the previously bound configuration Tes t that is
stored on the tile UnpaekedTes t. bed.

A command that includes one of these optional component-file name lists will have one of
the forms:

inputFile[idl: filet. ••• idn : filen)/switehes

outputFile - inputFile[idl: filet. •.• idn : filen]/switehes

[keYl: filel,
filen]/switehes

keYm: filem] - inputFile[idl: filel, ... idn :

The module or configuration named by idl in the configuration description will be read
from the file f i lel. The extension. bed is assumed for the file names.

17.3 Examples

17-4

>Binder MySystem

Read MySystem.eonfig and write the resulting object file on MySystem.bed. Copy
all code segments to MySystem. bed. Symbol segments are not copied, but are left in
the original input files. This is the normal mode because the loader will only load
object files that have code copied into them.

>Binder MySystem/-e

Read MySys tem. eonf ig; write MySys tem. bed. Leave all code and symbol segments
as they were in the input files. This might be done if an intermediate level
configuration were being bound, and code or symbols were going to be copied later
when a higher-level configuration was bound.

>Binder MySystem/s

Read MySys tem. eonfig and write the resulting object file on MySys tem. bed. Copy
all code segmen~s into MySys tem. bcd, and copy all symbol segments into
MySystem.symbols. By packaging all of the symbols in a single file, you minimize
the risk of getting an incorrect version ·of some symbol table. This is a possible
distribution mode, if debugging will be required.

XOE User's Guide 17

>Binder MySystem[SubSystem: ExperimentalSubSystem)

. Read MySystem.config; write MySystem.bcd. Read the irrcluded subconfiguration
SubSystem from the file Exper imentalSubSys tern. bed.

>Binder MySystem +- NewSystem.config/s

Read NewSys tern. config; write MySystem. bed. Copy all code segments into
MySystem. bed and all symbol segments into MySystem. symbols. Commands with
"left-hand sides" allow renaming of the output (bcd, symbo l, and code) files.

>Binder [bed: MySystem.bcd, symbols: MySystem.bcd) +- NewSystem/c

Read NewSys tern. config; write MySys tern. bed. Copy all code and all symbol
segments into MySys tem. bed.

>Binder SubSys +-MySystem/cs

Read SubSystem.config; write SubSys.bcd. Then read MySystem.config; write
MySystem.bcd; copy code into MySystem.bcd and symbols into
MySystem.symbols.

>Binder /-c SubSystemA ';/c SubSystemB MySystem

Bind SubSystemA, SubSystemB, and MySystem, but only copy code for the last two
configurations. Note that a semicolon is required before the second global switch.

17.4 Error messages

If possible, the Binder will indicate the offending source line and configuration name with
each error. Some of the common error messages are:

Errors detected, Bcd not written

The Binder has produced no output.

Exported type clash

Only one implementation of an opaque type may appear in a configuration. This is
true even if the interface defining the opaque type is "hidden" in a nested
subconfiguration by not being exported by that subconfiguration.

Fatal Binder Error

Fatal errors are reported in a fashion similar to the Compiler; the signal and message
are given in octal, and should be included in any change request reporting a fatal
Binder error. .

file could not be opened to copy symbols

Warning: When copying symbols, the file containing the symbol segments for a module
could not be opened. The copied symbols file will still be produced, but will not

17-5

17

17-6

Binder

contain symbols for the module; thus limited debugging will still be possible using lhe
symbols file.

file is referenced in two versions: (version1) and (version2)

Warning: Two different versions of the named file are referenced by the modules
being bound. This will produce an error if you attempt to match the two versions as
import and export.

id does not match the module or configuration name in the object
file

The identifier used to name a module or configuration in a configuration description
must exactly match (including capitalization) the name used inside that module or
configuration.

id is not valid as a CONTROL

A control list item must be a module or subconfiguration in the configuration.

item from interface is unbindable (imported by module)
(item nnn) from interface is unbindable (imported by module)

Warning: An item from interrace has no implementation. If symbols for the
importer or the interface can be found, the item's name is printed. Otherwise, the
item's interface number is printed, and you can count (from 0) the interface items in
interrace or use the Lister's Inter face command to get more information.

interrace is not imported by any modules
interrace is not exported by any modules

A configuration must tell the truth about what it IMPORTS and EXPORTS; i.e., everything
imported or exported by a configuration must actually be imported or exported by a
contained module or configuration.

interrace is undeclared

An attempt is being made to import the interface (or program) interrace, but
interrace is neither imported from a higher-level configuration nor exported by any
module or configuration at the same level.

interrace1 (versionl) is required for import, but only interrace2
(version2) is available

interrace2 is available for import (or being passed as a parameter), but the importer
requires interracel. The source line shows the importer.

XOE User's Guide 17

interfacel (versionl) is be i ng expor ted, bu t interface2 (version2)
is required

The source line shows an exporter of interfacel who is trying to assign the interface
(implicitly or explicitly) to interface2. This may be a version problem (if the
interface names are the same) or an error in an assignment.

The right hand side exports more interfaces than required by the
left hand side.
The left hand side requires more interfaces than exported by the
right hand side.

An explicit list of interfaces or module instances was given as a result or argument
list, and either too few or too many were given.

17.5 Current limitations

The DIRECTORY clause in a configuration description should be used only when the name of a
module or configuration differs from the name of its file. Do not make DIRECTORY entries for
interface (DEFINITIONS) files.

The output object file can be renamed; the symbols file cannot (sihce the object file
contains the name of this file in its internal tables).

Multiple instantiations of nested configurations are not implemented. You can get around
this by binding the nested configuration in a separate step.

17-7

17 Binder

17-8

18.1 Files

18

CommandCentral

CommandCentral is a tool that supports the compilelbindllrun program development loop.
It permits you to compile and bind programs on a development volume and run them on a
client volume. Because the functions provided by CommandCentral overlap with those of
the Executive, also see the chapter on the Executive.

CommandCentral is built into Tajo, so no files need be retrieved ..

18.2 User interface

CommandCentral interacts through a message subwindow, a command subwindow, and a
log subwindow.

',' : :
.... : ::'::y'

Expand! Compile! Bind! Run! Go! Options!
Compile:
Bind:

{}
1 Apply! Compiler Switches: e . .

Binder Switches: e
Client Volume: Taja

~ Abort! Client Switches: S

Figure 18.1: Command Central tool window

18-1

18

18-2

CommandCentral

18.2.1 Message subwindow

The message subwindow is used to display error and status message!)'.

18.2.2 Command subwindow

The command subwindow contains the following fields and commands:

Expand!

Compile!

Bind!

Run!

Go!

Options!

Compile:

Bind:

Run:

expands any file names listed containing #, *, or @ in the usual way (i.e.,
matching one character, * matching zero or more, and @file@
expanded to the contents of file) ..

invokes the compiler, taking its arguments from the Compile: field.

invokes the binder, taking its arguments from the Bind: field.

takes a list of file names with switches from the Run: field, transfers the
corresponding files to the client volume, and (possibly) runs them.

Fine point: The commands Compi le! Bind! and Run! each run in a separate process.

This means that for example. invoking Compile! immediately followed by Bind! will

run the compiler and binder simultaneously. which is probably not what is intended. The

Go! command should be used to sequence through compilation. then binding. then

execution.

executes the Compile!, Bind!, and Run! commands, in that order. If a
command fails, the subsequent commands are not executed.

Fine point: The command line to a subsystem is copied when the subsystem starts. The

contents of the command lines can be changed until the corresponding system starts

running. e.g .• the Binder line can be edited while the compiler is running.

allows switches to be specified for the Comp ile !, Bind!, and Run!
commands (see the chapters on the Binder and Compiler). The client
volume may also be specified in the Options window. Each of these items
override those taken from the User. em or the default if no User. em
exists. The Boolean item UseBaekground, if set to TRUE, runs the
Compiler and Binder at background priority.

contains a list of file names and optional compiler switches. The file
names and switches are passed directly to the compiler as if they had come
from the command line of the Executive.

contains a list of the file names and optional switches that are passed as
input to the binder.

is the input field used to list the files to be run on the client volume. The
following switches are recognized by the Run! command:

a ~tart with active initialToolStateDefault rather than inactive.
Default FALSE.

e Qopy from development volume, default TRUE

e ~xecutable (i.e., load the object file), default TRUE

XI)E User's Guide 18

LOCj{}

18.2.3 Log subwindow

5 ~lart after loading, default TRUE

1 1.0ad with code links, default FALSE

d Qebug; call debugger after loading, default FALSE

The default is to copy, load, and start each file named. (The default
extension is .bed; files without extensions may not be used.) To copy but
not load a file, use I-e (i.e., don't executel. To run a file already on the
client volume, use I-c (i.e., don't copy).

allows you to explicitly load the desired . log file into the bottom
message subwindow. The .log file is selected by depressing the menu
button over the tag and selecting either campi ler or binder.

After completion of a Compile or Bind, the bottom subwindow is loaded with the
corresponding .10g file. Any time Compiler .10g or Binder .10g is changed (e.g., if you
edit one of them and save it), it will be loaded into the window. Also, if the current search
path changes to one not containing Compiler .log or Binder .10g, the log subwindow
will automatically be cleared if it contains one of the log files.

18.3 Communication between client and development volumes

When the Run! command is invoked, CommandCentral creates a file in the root directory
of the client volume that consists of a list of the file names <converted to file ids), and
switches that were on the Run line. When the client volume is booted, a check is made in
its root directory, and if CommandCentral's run file is found, the listed object files will be
executed. Once CommandCentral's run file has been read, the client volume destroys it, so
that subsequent booting of the client volume will not cause are-run of the same programs.

Since the run file created by CommandCentral is not a development environment file, it
cannot be accessed, deleted, or read from the development environment, but instead is
fully maintained by the client volume and CommandCentral. If for some reason a boot
initiated from CommandCentral were aborted or interrupted, the client volume may be in
an inconsistent state in relation to the existence of CommandCentral's run file. The next
time the client volume is booted, it mayor may not produce the desired results, depending
on whether the file actually got created. For example, if the file were created before the
interrupt, and the client volume is subsequently booted from the HeraldWindow menu, an
attempt will be made to execute the object files in the run file most recently created by
CommandCentral. This is not what one expects when booting from the HeraldWindow. If
the client volume is rebooted from CommandCentral, a check will be made to see if the file
already exists. Since it does in this example, no attempt will be made to create a new one,
so the old one will be used. If the list of files in the Run line did not change and at least one
file in the list was re-compiled, the results will be particularly confusing since the file id
recorded in the previous run file on the client volume will not match the id for the latest
object file on the development volume.

18-3

18 CommandCent."al

18.4 User.em

18-4

The User. em fields used by CommandCentral are:

[Executive]

Compiler:

Binder:

CompilerSwitehes:

BinderSwitehes:

ClientVolume:

ClientSwi tehes:

CodeLinks:

UseBaekqround:

NameOfCompiler (default extension is • bed);
default is Compi ler. bed.

NameOfBinder (default extension is • bed); default is
Binder. bed.

default global switches for compiler.

default global switches for binder.

VolumeLabelString; default is first volume of type
below CommandCentral's system volume.

Pilot switches used for booting client volume.

TRUE I FALSE for compilerlbinder loading; default TRUE.

TRUE I FALSE if TRUE, the compiler and binder run at
background priority. Otherwise, they run at normal
priority. Default FALSE.

The name of the development volume is set in the client volume User. em:

[System]

CommandVolumeHame: VolumeName

If no development volume is specified, the volume is defaulted to CoCopilo t if the client
volume is of type debugger, and to CoPi lot otherwise.

CommandCentral's window size, tiny place, and initial state can he set as for any other
tool:

(CommandCentral]

WindowBox:

TinyPlace:

InitialState:

19.1 Files

19

Compiler

The Mesa compiler translates Mesa source files into corresponding object files. An object
file contains the executable code for the module (if any), a binary configuration description
(for use by the binder or loaderl, and a symbol table (for inclusion by other programs or for
use by the debugger). By convention, an object file has a name with extension .bed.

The Mesa Language Manual describes the syntax and semantics of the Mesa source
language. This chapter describes the operation of the Compiler, including the compile
time options and messages.

Retrieve Compi ler. bed from the Release directory.

19.2 User interface

The Compiler runs in the Executive and takes commands from the command line. The
simplest form of command is a list of file names, such as

>Compiler sourcefilel sourcefile2 ••. sourcefilen

If you supply the command sourcefile with no period and no extension, the Compiler
assumes you mean sourcefile. mesa.

During compilation, the Compiler gives feedback by giving the name of the file, any non
default switches, and a dot at the beginning of each major pass (six dots in all). It also
shows code size if successful, or number of errors/warnings if not.

The Compiler reports the result of each command on the file Compiler .log with a
message having one of the following forms (each * is replaced by an appropriate number;
bracketed items appear only when relevant):

Command: /swi tches

19-1

19

19-2

Compiler

Command: file
file.mesa
[lines: *, code: *, links: *, frame: *, time: *)

Compilation was successful. The object file is file.bed. For a DEFINITIONS module, the code
and links are not meaningful and are omitted. Otherwise, "links" is the number of items
imported by the module, and "frame size" is the size of the global frame (in words),
exclusive of the links. A third line appears only if warning messages were logged. The
Compiler issues warnings for certain constructs that are technically correct but
nonsensical or likely to be unintended. Warnings do not prevent writing a valid object tile,
but you should usually investigate them.

file.mesa -- aborted, * errors [and * warnings) on file. err log

Compilation was unsuccessful. You will find the error messages (and warning messages, if
any) in the indicated file. If the errors were detected during the early phases of
compilation, no object file was written (and any existing object file with the same name
was deleted).

File error

The Compiler could not find the specified file.

Fine point: ABORT will cause the Compiler to return at the end of the current pass, ignoring any other files to

compile.

19.2.1 Command line

The Compiler allows you to control the association between modules and tile names at the
time you invoke the Compiler. The Compiler accepts a series of commands, each of which
has the form

outputFile +- .inputFile[idl: filel, .•• , idn : filen]/switches

Only inputFile is mandatory; it names the file containing the source text 'of the module
to be compiled, and its default extension is • mesa. Any warning or error messages are
written on the file outputRoot. e r clog, where outputRoot is the string obtained by
deleting any extension from outputFile, if given, otherwise from inputFile. If there
are no errors or warnings, any existing error log with the same name is deleted at the end
of the compilation.

If a list of keyword arguments appears between brackets, each item establishes a
correspondence between the name idi of an included module, as it appears in the
DIRECTORY of the source program, and a file with name filei; the default extension for
such file names is .bed. (If the name of an included module is not mentioned on the
command line, its file name is computed from information in the DIRECTORY statement).

The optional switches are a sequence of zero or more letters. Each letter is interpreted as a
separate switch designator, and each may optionally be preceded by - or - to invert its
sense.

XUE User's Guide 19

If outputFile and +- are omitted, the object code and symbol tables are written on the
file inputRoot. bcd, where in1?utRoot is inputFile with any extension deleted.
Otherwise code and symbols are written on outputFile, for which a default extension of
.bed is supplied. If the Compiler detects any errors, the output file is not written and any
existing file with the same name is deleted

The Compiler accepts a sequence of one or more commands from the Executi ve's command
line. Commands are separated by semicolons, but you may omit a semicolon between any
two successive identifiers (file names or switches), or between a I and an identifier (but not
between an identifier and a f). Note that any required semicolon in an Executive command
must be preceded by a single quote (').

You can set global switches by a command with an empty file name. In the form
fswitches, each letter designates a different switch. Unless a command to change the
global switch settings comes first in the sequence of commands, you must separate it from
the preceding command by an explicit semicolon.

19.2.1.1 Examples

>Compiler ReadOldFormat +- ReadData[DataFocmat: OldFormat]

Compile the program ReadDa ta. mesa that has the included interface DataFormat in
its DIRECTORY statement. Use the file OldFormat. bed (which contains the declaration
DataFormat: DEFINITIONS = ...) as the source of this interface. Put the object
program in the file ReadOldFocmat. bed.

>Compiler/-j SymStuff[Table: LongTable)/n SymExtca[Table:
LongTable]

Compile the files SymStuff .mesa and SymExtra.mesa, getting the definition of
Table from LongTable. bed. Produce object files SymS tuf f . bed and
SymExtra. bed. Don't cross-jump either module and generate NIL checks for
SymStuff only (switches explained below).

19.2.2 Switches

Switches allow you to modify command input. A command has the general form

file [/s]

where [1 indicates an optional part and s is a sequence of switch specifications. A switch
specification is a letter, identifying the switch, optionally preceded by a '-' or '-' to reverse
the sense of that switch. The valid switches are

b hounds checking
e .~r r log file is merged into Compiler. log
j cross-iumping optimization (default)
n j'!IL pointer checking
p Qause after compiling file if there are errors or warnings
s ~ort global variables and entry indices (default)
u yninitialized variable checking

19-3

19

19-4

Compiler

w report y!arning messages (default)
y ~arning on runtime calls

Each switch has a default setting. The command soureefile is equivalent to
soureefile/-b-ej -n-ps-uw-y if you use the standard defaults (i.e., if the Compiler
cross-jumps the code, does not pause after compiling file, sorts variables, and logs warning
messages). It does not do bounds, NIL pointer, or un initialized variable checking, and does
not warn about runtime calls.

You can change the default setting of the switches by having an entry

eompilerSwi tehes: <your defaul ts >

in the [Exeeu t i ve] section of the file Use r . em

You can also change the default setting of any switch by using a global switch. Any switch
given with no file name (Le., just a slash and switches) establishes the default setting for
that switch. Unless overridden or reset, that default applies to all subsequent commands.

Fine point: Any global switches given at other than the beginning of the command line must be preceded by a

semicolon (quoted to the Executive·). or the command parser will assume that they are local switches on the

previous file. The command parser only allows a single slash after a given file. so some cases of missing semicolon

are flagged.

Here is some information about the options:

b[ounds]

If bounds checking is specified, the Compiler inserts code to check that values are
within range for all assignments to subrange variables and all indexing operations.
Checking is also inserted for all assignments of signed values to unsigned variables
and vice versa. If the value is out of range, the signal BoundsFault is raised (see the
Pilot Programmer's Manual). The Compiler performs some bounds checking during
compilation and does so independently of the setting of the /b switch. If it can deduce
that no bounds failure is possible, the runtime check is omitted; if a bounds failure is
unavoidable, it reports the error during compilation. Compile-time bounds checking
assumes that all variables are initialized before use.

Fine point: Bounds checking in indexing operations is. suppressed if the declared index type is empty. e.g.,

[0 .. 0>.

e[rror to 109J

Errors are appended to Compiler .109 rather than onto a separate file. er r 109.

j[umped]

Cross-jumping is a peephole optimization technique that potentially shortens the
object code. The reduction in code size ranges from negligible to 20%, depending upon
coding style. If cross-jumping is specified, the correspondence of source to object is no
longer one-to-one. This affects the debugger's ability to set breakpoints and identify
code locations (see the Debugger chapter.) However, you can still set entry and exit
breaks on all procedures. This switch also enables tail recursion elimination. If the

XU..: User's Guide 19

last operation in a procedure is a call of itself, the call can often be turned into a jump
and the old frame reused.

n [ill

If NIL checking is specified, the Compiler inserts code to check for a null value prior to
any operation that de references a pointer. Note that indexing operations using an
array descriptor or a string also imply dereferencing and are checked. If the pointer
value is "1'_, the "ignal Pointer/<'ault from interface Runtime is raised. :\0 compile-lime
checks for NIL are performed.

Fine point: :'{O NIL checks are providl'd in the dereferencing of relative pointers.

Depending upon coding style, these runtime checks can increase the size of the
compiled code substantially. The first page of the address space is typically unmapped,
so most dereferences of NIL generate an Address Fault.

prause]

This switch is unusual because its meaning is slightly different, depending on whether
it is a global or local switch. As a global switch, it means to report (p) or not report (-p)

errors or warnings to the calling Executive. The Executive will typically terminate
(pause) if errors or warnings are reported. The global default is to pause. As a local
switch, it specifies pausing just after compiling the specified file if that file or any
preceding file contained errors; moreover, any remaining commands are ignored. The
local default is not to pause but to continue with the next input file.

s [ort]

Normally, the Compiler sorts certain items by frequency of use before assigning
addresses. This helps to keep the object code compact. If sorting is suppressed (- s), the
assignments of global frame offsets and entry indices depend only upon order of
declaration in the source text. This switch was added in anticipation of tools allowing
inexpensive correction and replacement of modules in a configuration. These tools are
not yet available.

u[ninitialized variables]

If the lu switch is given, the Compiler issues warning messages for uses of apparently
uninitialized variables (but not fields of records). The algorithm used to detect
suspicious usage is based upon the following assumptions:

• The entire body of a procedure is executed before the bodies of any procedures
declared within it.

• Within any procedure, the order of execution is equivalent to the order of
appearance of source text (for the purposes of variable initialization).

• The bodies of the contained procedures are executed in order of appearance.

The algorithm works fairly well for detecting certain common errors, but it is
obviously not foolproof. There is no guarantee that aLL uses of potentially uninitialized
variables are reported; conversely, properly initialized variables are sometimes

19-5

19 Compiler

flagged when the initialization depends upon the order of execution of subprocedures.
(Performance with respect to global variables is improved by putting the initialization
code for a module either in the main body or the lexically first procedure.)

w(arnings]

Report (w) or don't report (-w) certain legal but suspicious constructs that can be
detected by the Compiler. Warnings are wri.tten to the error log, but are not reported
to the calling Executive.

y[ell about runtime calls]

This switch is intended for use by programmers writing such things as bootstrap
loaders where the standard Mesa runtime machinery is unavailable. It flags
operations, such as certain division, that generate calls to system functions.

19.3 Examples

>Compiler foo

Compile foo using all the default switch settings.

>Compiler foo/-w-j

As above, but suppress warning messages and do not cross-jump.

>Compiler I-p filel file2 file3

Use this form if you want the Compiler to press on no matter what. If it is part of a
command file, the next (Executive) command will be executed whether or not there
were errors.

>Compiler filel file2/p file3

Use this form if you want the Compiler to pause before compiling file3 if either
filel or file2 does not compile successfully. If file3 depends upon the others (by
including them), this can save a lot of wasted time and effort.

>Compiler filel/p '; I-p file2 file3

Use this form if you want the Compiler to pause before compiling file2 if filel does
not compile successfully. Press on to the next Executive command even if file2 or
file3 does not compile.

19.4 Error messages

19-6

The Compiler writes error and warning messages for sourcefile. mesa on either
sourcefile.errlog or Compiler .log, depending on the setting ofttie Ie switch. Each
pass detects certain classes of errors. Error messages are logged in (approximate) source
order by each pass. Within a single pass, the Compiler does its best to complete its analysis
in spite of any errors. Detection of an error by one pass causes all following passes to be
skipped. Thus you will sometimes get a new set of error messages after correcting all those

.j,"

XDI<: User's Guide 19

reported by a previous run of the Compiler. The Compiler never writes a bindable or
loadable object tile if it detects any errors.

The Compiler also logs warning messages. These are advisory only and are intended to
draw your attention to suspicious usage. They do not abort compilation or invalidate the
object tile (but they should be checked).

Here is a trivial and nonsensical program that illustrates the form of the Compiler's error
messages.

Sample: PROGRAM =
BEGIN

i: INTEGER,

i +- j + TRUE;

END.

i: INTEGER,

t Syntax Error [46]
Text deleted is: ,
Text inserted is: :

j is undeclared, at Sample[52]:
i - j+TRUE:

TRUEhas incorrect type, at Sample[52]:
i - j+TRUE:

The first message is generated by the first pass and shows how syntactic and lexical errors
are reported. The arrow points to the first symbol that is necessarily invalid (or one
symbol before it), and the decimal number is a character index in the source file. Of course,
the Compiler cannot know what you intended, and the "real" error might have occurred
quite a bit earlier. The Compiler tries to fix these errors as best it can by local deletion and
insertion of symbols. These symbols are not written into the source file but are reported to
help you interpret subsequent messages. [f the Compiler cannot find a way to continue
parsing, or if too many of these errors accumulate, it gives up.

Fine point: In order for the arrow to line up under the syntax error, you need to be viewing the file with a fixed

pitch font.

Fine point: If you are viewing the program and its error log in separate windows, you can use the Po sit ion
command on one of the menus of the source window to locate the errors, given the character indices in the error

log.

The other error messages report semantic errors. Errors are located by displaying a line of
source text (the second line in each message) as well as the character index (a decimal
number) and the enclosing procedure or program name (the identifier preceding the
number). The text of the error message is intended to be reasonably self-explanatory.
Sometimes it refers to an identifier or expression. The Compiler reconstructs these
expressions from the parse tree; in later passes, the reconstruction often reflects
rearrangement or constant folding so it may not exactly duplicate the source code. As
subexpressions, ? indicates an undeclared identifier and ••• indicates either a cutoff

19-7

19 Compiler

because of depth of nesting or an expression form the Compiler cannot reconstruct from
the parse tree.

19.5 Compiler failures

The message reporting a Compiler failure has the following form:

FATAL COMPILER ERROR, at id[index]:
(source text)

Pass = n, signal = 5, message = m

Such a message indicates that the Compiler has noticed some internal inconsistency. The
Compiler will skip the remainder of the command line if this happens.

19.6 Current limitations

19-8

The following limits are built into the current implementation of Mesa and are enforced
by the Compiler:

The number of interface items declared in a single DEFINITIONS module' cannot exceed
128.

Neither the number of procedure bodies nor the number of signal codes defined in a
single PROGRAM module can exceed 128.

The size of the frame or record required by a procedure or program cannot exceed 4096
words.

Procedure declarations cannot be nested more than five levels deep, counting catch
phrases as procedure levels.

The Compiler allocates its internal tables dynamically and tries to adjust their relative
sizes to accommodate the program being compiled. When it is unsuccessful, it reports
failure with a message of the form:

Storage Overflow in Pass n

Usually, the best thing to do is split your program into two or more smaller modules. If the
Pass is 5, you can often get your program compiled by breaking the largest procedure into
two or more smaller ones. This is because Pass 5 generates code for the module one
procedure at a time, and needs enough table space to hold the code representation of the
largest procedure.

20.1 Files

20

Formatter

The Formatter transforms Mesa source files into a standard format. It establishes the
horizontal and vertical spacing of the program in a way that reflects its logical structure.
Since the Formatter uses the scanner and parser of the compiler to determine structure,
only syntactically correct programs may be formatted.

This chapter describes the formatting rules and the operation of the Formatter, including
the runtime options and messages.

Retrieve Formatter. bcd from the Release directory.

20.2 User interface

The Formatter runs in the Executive and accepts the same command syntax as the
Compiler. The simplest form of command is just the name of a source file to be formatted.
If you supply the command sourcef ile with no period and no extension, the Formatter
assumes you mean sourcefile.mesa.

The Formatter reports the result of each command in Format ter .log with a message
having one of the following forms (each * is replaced by an appropriate number; bracketed
items appear only when relevant):

file.mesa -- lines: *, time: *

Formatting was successful. The source file has been rewritten.

file. mesa -- aborted, * errors [and * warnings] on file. err log

Formatting was unsuccessful. The output of the Formatter is undefined if syntax
errors exist in the input file. The original file is undisturbed.

File error

The Formatter could not find the specified file.

20-1

20

20-2

Formatter

20.2.1 Command line

The Formatter takes commands of the form

[outputl -] inputl [/5]. • . [outputn -] i,nputn [/5]

where [) indicates an optional part and s is a sequence of switch specifications. Only
i,nputFile is mandatory; it names the file containing the source text of the module to be
formatted, and its default extension is .mesa. Any warning or error messages are written
on the file outputRoot.errlog,where outputRoot is the string obtained by deleting
any extension from outputFile, if given, otherwise from inputFile. [f there are no
errors or warnings, any existing error log with the same name is deleted at the end of the
formatting.

20.2.2 Switches

Switches allow you to modify command input. A switch specification is a letter,
identifying the switch, optionally preceded by a • - • or' -' to reverse its sense. The
syntax is the same as for the Compiler (chapter 14). The valid switches are:

e append errors to Formatter .log rather than onto a separate file. err log

9 don't close print file at end of input file

h generate a print file (does not force - t)

k generate a two-column landscape print file (does not force -t)

o take specified string and include it in the header of the print output of all following
files

p pause after formatting if there are errors

t overwrite input file with plain text formatted version (default)

Each switch has a default setting, The command sourcefile is equivalent to
sourcefile .,;... sourcefile/-e-g-h-i-k-p-rt-v-z if you use the standard
defaults; i.e., the Formatter only generates a plain text file to replace the original source.

You can redefine the default settings by having an entry

compilerSwi tches: <your defaul ts >

in the [Executive) section of the file User. cm. (compilerSwi tches because the
switch processing code is shared with the compiler).

You can change the default setting of any switch by using a global switch. Switches given
with no source file are global. Unless overridden or reset, that default applies to all
subsequent commands. (See the multiple program print output example below.)

XDE User's Guide 20

Some additional information about the options:

9 If a print file is being generated, it is not closed at the end of the current input file.
It is expected that another file in the command list will also be generating print
file output and a single print file will contain multiple input files. The name of the
print file will be that of the first to which print output is being generated. If the
type of print file (landscape vs. portrait or print vs. interpress) changes, the first
will be closed and another print file will be started. Be careful not to generate a
print t1Ie larger than will be accepted by your printer.

p The p (pause) switch has semantics identical to that of the Compiler's p switch.

20.3 Formatting rules

As a general rule, the Formatter changes only the white space in the program. It does not
insert or delete any printing characters. On the other hand, it may insert white space
where there previously was none.

20.3.1 Spacing

Indentation is done by a combination of tabs and spaces in plain-text mode (assuming that
a tab equals eight spaces).

The decision as to where to break lines is made independently of the output mode (print
file or plain text).

A logical unit will be placed on a single line if it fits.

A simple carriage return in the input file is treated as a space. The occurrence of
consecutive carriage returns (up to six blank lines) are preserved in the output file. Page
breaks indicated by CTRL L'S in source programs are also preserved. Since all Bravo looks
are discarded by the scanner, paragraph leading done with looks is not preserved.

For output files that contain fonts and faces, these additional rules apply:

• Comments are set in italics.

• The names of PROCEDURES, SIGNALS, ERRORS, and PORTs (but not user-defined transfer
types) are bold where they are defined.

• Reserved words and predeclared identifiers are in a smaller font than other symbols.
For portrait listings, Helvetica 10 and 8 are used; for landscape listings, Helvetica 8
and 6 are used.

In general there are no spaces before or after atoms containing only special characters.
Exceptions to this rule are as follows:

• A space or carriage return follows (but does not precede) a comma, semicolon, or colon.

• A space precedes a left square bracket when the bracket follows any of the keywords
RECORD, MACHINE CODE, PROCEDURE, RETURNS, SIGNAL, PORT, and PROGRAM.

20-3

20

20-4

• Spaces surround the left-arrow operator.

• The exclamation point (enabling) and equal-greater (chooses) operators are always
surrounded by 8p~ces. This is also true for equal signs used in initialization and for
asterisks used in place of variant record tags.

• Some arithmetic operators, depending on their precedence, are surrounded by spaces.

20.3.2 Structure

The Formatter determines the indenting structure of the program by the brackets that
surround the bodies of compounds. The brackets include n, 0, [J, BEGIN-END, DD-ENDLOOP,

and FROM-ENDCASE. An attempt is made to maximize the amount of information on a page.
For example, consider:

Record: TYPE :I RECORD [

field: Type,
field: Type];

Record: TYPE = RECORD

[
field: Type,
field: Type,
];

In both cases, the structure is clear; it is indicated by the indenting, not the placement of
the brackets. The Formatter generates the form on the left.

The body of each compound, assuming it does not fit on a single line, is indented one
nesting level. The placement of the brackets depends on the bracket and on its prefix and
its suffix. For example, a loop statement has the following possible prefixes, brackets, and
suffixes:

Prefixes
FOR, WHILE

UNTIL, (empty)

Brackets
DO

ENOLOOP

Suffixes
OPEN

ENABLE

The following paragraphs contain a number of examples. They observe the following rules
for the placement of opening and closing brackets:

The opening brackets {, [, FROM, and 00 appear on the same line as their prefixes; BEGIN

starts on a new line.

If the remainder of the statement fits on a single line (with its closing bracket), it is
placed there, indented one level. Otherwise, all closing brackets except] and} appear
on lines by themselves. If} is preceded by a semicolon, then it is also placed on a line
by itself.

XI}l<~ User's Guide 20

The statement following a THEN or ELSE is indented one level, unless it fits on the same line.
THEN is on the same line as its matching IF and ELSE is indented the same amount as IF.

IF bool THEN

BEGIN

body
ENO

ELSE

BI:.GIN

body
ENO

IF bool THEN statement
ELSE {body}

IF bool THEN {

statement;
statement}

The labels of a SELECT (and its terminating ENDCASE) are indented one level, and the
statements a second level, unless they fit on the same line with the label.

SELECT tag FROM

case = > statement;
case =>
long statement;
ENDCASE

Each compound BEGIN-END, DO-ENDLOOP, or bracket pair is indented one level. When the
rules for IF and SELECT call for indenting a statement, a BEGIN is not indented an extra level.

These rules are not exhaustive, but are intended to give the flavor of the Formatter
output.

20.4 User.em

Entries currently implemented are

[Formatter]

CharsPerLevel: n

CharsPerLine:n

20.5 Examples

>Formatter foo

Specifies the number of spaces to be used for each
indenting level. Default value is 2

Specifies the number of characters to be used for line
breaking. Default value is 82

Format faa using all the default switch settings (standard or established by a global
switch).

>Formatter foo/-tk

Formats foo into a two-column landscape print file, leaving the original source
unchanged.

20-5

20 f<'ormatter

>Formatter /-tkg ProqA ProqB ProqC ProqD

Produces a two-column landscape print ~le ProqA. interpress that contains listing
of all four programs, eac.h starting on a new page.

>Formatter /q-tk "Trinity Release"/o *Defs.mesa

Produces a two-column landscape print file that contains listing of all files * . mesa
with the heading "Tr ini ty Release".

20.6 Formatter failures

20-6

The message reporting a Formatter failure has the following form:

FATAL COMPILER ERROR, at id[index]:
(source text)
Pass = I, signal = s, message = m

Such a message indicates that the Formatter has noticed some internal inconsistency (the
above message is not a typo; the message comes from a module shared with the compilen
The Formatter will skip the remainder of the command line if this happens.

Note: The Formatter uses routines exported by Pr int. bed to produce print files. If the
proper package is not already loaded, the Formatter attempts to load it; if this fails, it
complains about the lack of available print software. The file Fonts. widths must also be
present on the local disk.

21.1 Files

21

MakeBoot

MakeBoot is a program that constructs a- boot file suitable for installation on a Pilot
logical volume. A boot file is essential.1y a "virtual execution environment": it consists of
a memory image containing a number of object files that have been loaded but not started.
The memory image built by MakeBoot is loaded into memory by a simple loader called the
germ, which transfers control to Pilot initialization code.

The simple view of MakeBoot is that it takes a collection of object files, constructs a
memory image, and writes it out as a boot file. In practice, however, MakeBoot requires
more information than just the names of the object files; this information is contained in a
text file (or files) called the parameter file. The parameter file contains two types of
information. The first type of information describes sizes of data structures such as the
length of the global frame table or the number of processes. The second type of
information describes what portions of memory must be resident or initially resident,
since they are needed before Pilot's swapping machinery has been set up.

While the loader in MakeBoot is essentially the same as the runtime loader in Pilot, there
are some differences. Modules that were bound with code links are always loaded with
code links by MakeBoot; you cannot override the link type that was given to the Binder.
This has important ramifications. If a configuration in the boot file imports an item that
will be supplied at runtime by a dynamically loaded module or configuration, that
configuration in the boot file must be bound with LINKS: FRAME (which is the default). If this
rule is violated, then a dynamically loaded module or configuration will leave dangling
pointers in the boot file; thus on a subsequent boot, attempting to (say) call a procedure in
such a module when it has not yet been loaded in the new session would cause transfer of
control into garbage, leading to unpredictable behavior.

Retrieve MakeBoot. bed from the Release directory. It requires one or more parameter
files' that specify various data structure sizes and initial memory ~onfigurations.

21.2 User interface

MakeBoot runs in the Executive

21-1

21

21-2

MakeBoot

2l.2.1 Commands

Commands are of the form:

>MakeBoot command command •.. command~

where each command specifies the creation of one boot file. The commands have the form:

outputfilename - inputfilename [arguments] /swi tches

where the outputfilename ilnd .. -" are optional, and the arguments are il list of "key:
arg" pairs separated by commas. inputfilename is a bound configuration. Output is
written to rootName. boot and rootName.loadmap, where rootName is obtained by
removing any extension from either the output file name (if one is given) or the input file
name.

The possible arguments are given below. [f no key is given for an argument, "parm" is
assumed.

par.: parameterFile

ParameterFile names a file that supplies MakeBoot with information about the initial
memory configuration and sizes of various data structures. If no extension is given,
.bootmesa is assumed. These parameter files are released with Pilot. With the exception
of the GFT and PROCESSes entries, ordinary clients will not change any entries in the
parameter file. The various parameters are described in the section below. Several
parameter files may be specified; the effect is to concatenate them.

nProeesses: number

(Optional) sets the number of processes that can exist. This guarantees that enough space
is set aside for number processes, but since the table is rounded up to a page boundary, it
may be possible to have more than the specified number. A default is normally given in
the parameter file.

gftLength: number

(Optional) sets the length of the global frame table. This determines the maximum
number of module instances that can exist. The maximum length is 1024.

Note: A module requires one entry in the table for each group of 32 procedures or signals.
Thus a module with 60 procedures requires two entries. A default is normally given in the
parameter file.

bed: file

(Optional) names an additional object file to load.

swi tches : string

(Optional) sets the default boot switches in the boot file.

XD .. : User's Guide 21

21.2.2 Switches

MakeBoot's switches are:

/9 Germ: build a germ rather than a boot file.

/h Hex: print numbers in hexadecimal in the loadmap. The default is octal.

/d Prints debugging information in the load map.

21.2.3 Parameter files

Some parameters require entries that are not numbers. The syntax for these non-numeric
entries is given here.

list

listltem

configPartList

configPart

modulelist

module

nameList

:: = listltem I list listltem

:: = module I configPart I COOEPACK [namelist]I FRAMEPACK enamelist]
IGlOBAlFRAME [configPartList]I eOOE [configPartList]I BCD[nameList]

.. -.. - configPart I configPartList , configPart

.. - All I module I configName [modulelist] .. -

.. - module I modulelist , module .. -

.. - name I name. instance .. -

.. - ALL I modulelist .. -
The specifications CODE [configPartList), configPart. and module identify unpackaged code
segments. The specification GLOBALFRAME [configPartList] identifies unpackaged global
frames. U npackaged global frames of a configuration are treated as a unit and are
swappable by ~efault. If any of these global frames are made IN or RESIDENT, all of these
frames are made to be so. The specification CODE PACK enameList) identifies packaged code,
using names of the code packs in the packaging specifications. The specification
FRAMEPAcK[nameList) identifies packaged global frames, using names of the frame packs in
the packaging specifications. (See the chapter on the Packager for more information on
packaging specifications.) The specification BCD enamelist) identifys the descriptive
portion of the input BCDs. Specifications with the keyword ALL apply to all items. For
example, GlOBAlFRAME[AlL) identifies all unpackaged global frames, CODEPACK[ALL)
identifies all code packs, and BCD[ALL) identifies the descriptive portions of all the input
BCDs. For backward compability, SPACE is a synonym for CODEPACK and FRAME is a synonym
for FRAME PACK.

21-3

21

21-4

MakeBoot

Ordinary Parameter File f~ntries:

GFT: number;

allows number entries in the global frame table.

PROCESSES: number;

allows at least number processes.

Special Parameter File Entries:

FRAMEPAGES: number;

allows at least number pages for the initial local frame heap. The frame heap will
contain more pages if the FRAMEWEIGHT entries define more space.

FRAMEWEIGHT: frameSizeindex, weight (listEnd);

makes the frame heap contain at least weight frames with index frameSizeindex. This
entry can occur for each frame size index. listEnd controls how the lists in the frame
heap chain to larger sizes; it can be either empty, INDIRECT (index], or END. If the
space available for local frames is not exhausted by the requested counts, additional
frames of all sizes will be generated in proportion to the weights gi ven.

IN: list;

specifies a list of modules, code packs, frame packs, etc., to be initially resident. This
can occur multiple times.

PDAPAGES: number;

allows number pages for the Process Data Area. The number of pages allocated is the
larger of number and that required to allow the number of processes specified.

RESIDENT: list;

specifies a list of modules, code packs, frame packs, etc., to be resident. This can occur
multiple times.

The following entries should not be changed without first consulting a member of the Pilot
group:

CDDEBASE: number;

starts allocating code at page number.

MDSBASE: number;

sets the MDS to be page number.

XDE User's Guide 21

NOTRAP: modulelist ;

specifies which modules should not be start-trapped ..

RESIDENTQESCRIPTOR: list;
"

specifies a list of modules, code packs, frame packs, etc., to have descriptors pinned in
Pilot's caches. This can occur multiple times.

STATEVECTORCOUNT: priority, count;

allocates count state vectors for that priority in the process data area. There can be
one entry for each priority level.

STATEVECTORSIZE: number;

specifies size of state vectors.

WART: module;

specifies which module initially gets control.

21.2.4 Examples

For example,

>MakeBoot TajoOLion [Pilot] ~ will make TajoOLion. boot from TajoOLion. bed
using pilot. bootmesa as the parameter file.

>MakeBoot Test - CoPilotOLion[parm: Pilot/h~ makes Test.boot from
CoPilotOLion.bed using Pilot.bootmesa as the parameter file and produces a
hexadecimal loadmap.

>MakeBoot TajoPlusCompiler - TajoOLion[parm: PilotOLion, bed:
Compiler]lil writes TajoPlusCompiler.boot, which has both TajoOLion.bed and
Compi ler. bed loaded.

21-5

21 MakeBoot

21-6

, .~.

22.1 Files

22

MakeDLionBootFloppyTool

MakeDLionBootFloppyTool runs under Tajo and creates Dandelion-bootable floppies.
Bootable floppies are double-density floppies, either single- or double-sided. Your boot file
must be a Utility Pilot client; regular Pilot needs to swap its own code, and it cannot swap
it off a floppy. Bootable floppies contain a floppy file system.

Retrieve MakeDLionBootFloppyTool. bed from the Release directory.

22.2 User interface

: Drive= a
: Initial uCode: Floppylnitial.db
: Pilot uCode: Mesa.db
: Boot File: OthelloDL ion. boot

Floppy Name:
Diagnostic uCode: MoonBoot.db
Germ File: DLion.germ

: Install Boot Files! Format Floppy! Format And Install Boot File

Figure 22.1: MakeDLionBootFloppyTool

22.2.1 Form subwindow

The tool's form subwindow has the following fields. They are presented here with the
names of the files usually used:

22-1

22

22-2

Make D Lion Bootfo'loppyTool

Drive:

Floppy Ifame:

Initial uCode:

pilot uCode:

Germ File:

Boot File:

Diagnostic uCode:

22.2.2 Command subwindow

The available commands are:

Install Boot Files!

Format Floppy!

Format and Install Boot Files!

YourDriveNumber (typically 0)

FloppyName

Floppylnitial.db or
TridentFloppylnitial.db

Mesa.dborTridentMesa.db

DLion.germorTriDLion.germ

yourBootFile.boot

Moonboo t. db (optional)

installs the files specified by the fields of the
form subwindow on an already existing floppy
file system.

creates a Pilot floppy file system.

formats the floppy and installs the files
specified by the fields of the form subwindow.

In all cases, the process is accompanied by feedback, as it takes a few minutes to write the
floppy. If you wish a disk that only has diagnostic microcode, then names for initial
microcode, pilot microcode, germ, and boot file are not required.

23

Packager

The Mesa Packager is a tool that allows you to alter the swapping characteristics of
programs. U npackaged code is swapped in the units of compilation. That is, all the code in
a particular module is either all swapped in or all swapped out together. However,
efficient use of virtual memory often requires the programmer to be mindful of swapping
behavior, lest thrashing occur. The Packager allows the programmer to explicitly group
components of modules together into swapping units. For example, a code pack can be
defined that includes the code for a several procedures from several different modules; a
frame pack can be defined that groups the global frames of a number of modules into a
single swapping unit.

In an unpackaged program, all code for a module is swapped as a unit, but some parts of a
module are typically "colder" (less frequently referenced) than others; an example is
initialization code. A program's performance would be improved if the code for colder
procedures were not swapped along with that for warmer procedures. You can split the
module to get this improvement, but then logically related procedures and data would no
longer be contained in a single source unit.

The Packager gives you fine control over the placement of procedures in code packs. You
can, for example, define a code pack that contains just the "cold" procedures from several
modules. It is your responsibility, however, to split the code and global frames into
reasonable packs, since the Packager simply does what you tell it. It attaches no
particular semantics to a pack, except that the pack is swapped as a unit. The order in
which you define code packs is significant, as is discussed below (in the ·section on
Packaging description language.)

Conceptually, the Packager loads all modules into a single space and then shuffies the
procedures around into appropriatesubspaces. The packaged code is then written onto a
single file. (If the code is more than 32K words, it must be packaged into multiple code
segments, each requiring less than 32K. Code segments are described below along with
the packaging description language.)

The Packager also supports the definition of swap units for global frames, called frame
packs. In an unpackaged program, Makeboot (or the Loader) allocates the global frames
for all of a configuration's modules in a single space. Using the Packager, you can define

. multiple frame packs, each containing the global frames for a set of modules. Makeboot (or

23-1

23

23.1 Files

Packager

the Loader) will assign these frame packs later to separate spaces that will be swapped
independel).tly.

The Packager is a post-processor that is separate from the Compiler and Binder, and no
changes to Mesa source files or configuration descriptions are needed in order to do
packaging. Its operation resembles that of the Binder.

Fine points: The code rearrangement done by the Packager should not be confused with the Binder's code

packing. which was is described in the M/!sa Language Manual. Code packing allows the code for several modules

to be packed into a single segment. and is intended to reduce the breakage caused by the allocation of an integral

number of pages to each code segment. While packing is still supported by the Binder. the same results can easily

be obtained with the Packager.

Retrieve Tools> Packager. bcd from the Release directory.

23.2 User interface

23-2

Like the Binder and Compiler, the Packager runs in the Executive and accepts a sequence
of commands on the command line. A Packager command usually has one of the forms:

>Packager outputBcdFile • packFile[inputBcdFile]/switches

>Packager packFile[inputBcdFile]/switches

(There is also an extractor-like notation for specifying the output files, which is described
at the end of this section.)

The default extension for packFile, which contains the packaging description, is .pack;
for inputBcdFile and outputBcdFile it is .bcd. The second form defaults
outputBcdFile to be the root name of packFile with extension .bcd.

The switches are a sequence of zero or more letters. Each letter is interpreted as a separate
switch designator and can be preceded by a - or - to reverse its sense. The switches
include Ic (constants shared between code packs), Ip (pause after processing the
command ifthere were any errors), 11 (list), and/m (map).

The code segment contains multiword constants referenced by the code. The compiler
keeps a literal table so that if the same constant is referenced by two different procedures
within the same module, they share a single copy of the constant. If the two procedures end
up in different code packs, this can lead to undesirable swapping characteristics. If,
however, one of the packs is very "hot," and is likely to be swapped in whenever the other
is running, then it is reasonable to have only a single copy of the constant. If the switch I c
is specified, the packager will share multiword constants between code packs; otherwise
the constants will be replicated for each pack referencing them. In actual practice, this
replication is often "free" since code packs occupy an integral number of pages.

If the switch 11 is specified, a listing is produced of the procedures that were actually
placed in each code pack, as well as the module instances placed in each frame pack. This
listing is in the form of a valid packaging description and can be used. in place of the

XDE User's Guide 23

original packaging de~cription. The li~ting is output to the file with the root name of
packFile but the extension .1 ist.

If the switch 1m is specified, the Packager produce~ a map of the code and frame packs on
the file with the root name of packFile and extension .map. For a code pack, the map
indicates for each procedure:

• its length in bytes,

• its entry vector index,

• the byte offset of its code from the beginning of the segment,

• its initial byte PC (byte offset of the code from the module's entry vector),

• its module, and

• its name (if a top-level procedure).

Procedures that are not at the top level (Le., that are nested inside another) are listed
below the procedure containing them. The map also includes for each module, the offset
and length of its entry vector, and the read-only data shared by its procedures.

In addition to the procedure bodies, the code pack also contains other information. The
entry vector (EV) is the mechanism used at runtime to find the initial PC of each
procedure in the module. If the module is bound with code links (see Appendix D of the
Mesa Language Manual) the packager will reserve space ahead of the entry vector to hold
the links (LNKS). As the entry vector must lie on a quadword boundary, the size of the
links space may not exactly correspond to the number of links reported in the compiler log.

·The pack also contains multiword constants «data» referenced by procedures in the
code pack. As a rule of thumb, a constant follows the first procedure in the pack that
references it.

For a frame pack, the map indicates for each global frame

• its length in words,

• its word offset i£loaded with code links,

• its word offset i£loaded with frame links, and

• the module name corresponding to this global frame.

The map also notes for each frame pack its length in pages as well as the number of
unused words in the last page. Global frames are aligned on quad word boundaries, so the
offset of a given frame is not exactly the offset of the previous frame plus its size.

The Packager writes a summary of the commands on the file Packager .log. Any errors
are logged on a file with the same root name as the packFile, but with the extension
.errlog.

23-3

23 Packager

An extractor-like notation can also be used on the Packager's comm.{nd line. Commands
in this format allow more contrQI over the names of the output files produced by the
Packager. One of these commands has the form:

>Packager (keyl: filel, ..• , keyn: filen] -
packFile(inputBcdFileJ/switches

Each keyi can be one of output, list, or map. The corresponding filei names,
respectively, the output object file, the code and frame pack listing file, and the map file;
the default extensions are in turn .bcd, .list, and .map. If the keyword list or map is
specified, the Packager will generate the associated output file and it is not necessary to
also specify the Ii or 1m switch.

23.3 Information about modules

23-4

Any particular module is made of the following:

• Named procedures. A module consists of zero or more named procedures.

• Mainline code. A module always contains mainline code, which is automatically
executed as part of the invocation of the first procedure called in any particular
module. Because the mainline code of a module almost always contains only
initialization code, the packaging language contains some special constructs for both
excluding it from and including it in code packs. (Because the mainline code is
implemented as an anonymous procedure, it is often called the main procedure 'of a
module.) The main procedure is named using the keyword MAIN.

• Entry vectors. The entry vector is a map to the starting location of each procedure in a
module, and is referenced in order to call any procedure within that module. The entry
vector is not referenced during a procedure's BEGINS; the entry vector of a procedure is
not referenced when a procedure calls another procedure (the entry vector of the
destination procedure is referenced, and it may be the same as the entry vector of the
calling procedure); the entry vector of a procedure is not referenced when the
procedure returns.

• Catch code. Catch code is implementation of the catching of signals either by ENABLE or
by !. Since catch code is usually executed only in exceptional situations, it is placed in
a separate unit that may be packaged separately from all procedures in a module.

• Global frames. Global frames are storage and overhead required for the execution of
any procedure or the catch code within a module. Global frames are swapped in
whenever any procedure, main, or catch code of a module is executing. They contain a
small amount of information needed by the Mesa environment in order to locate
procedures and any variables the programmer has declared having the scope of the
entire module. Depending upon coding style, global frames vary in size from a few
words to being quite large.

• Multiword read-only constants. A module contains zero or more multiword read-only
constants that are used during the execution of the procedures within the module.
These constants are shared by several procedures whenever possible (that is,
whenever they are equal).

XDE User's Guide 23

Every module has a global frame, entry vector, and mainline procedure. A module can be
. written that has no procedures; a module has no catch code if it does not use the constructs
ENABLE or!; modules often have no multiword constants.

23.4 Packaging description language

A packaging description consists of a sequence of code segment, frame pack, and merge
specifications (merging is used to combine previously defined code segments, and is
discussed later).

PackagingOesc :: = OescSeries.1 OescSeries ;

OescSeries :: = Oescltem 1 OescSeries ; Descltem 1 DescSeries . Descltem

Descltem :: = CodeSegment I.FramePack 1 Merge

23.4.1 Code segments

A code segment contains the code for a number of code packs and must be less than 32K
words in length. As noted previously, the effect of the Packager is to combine the code for a
set of modules into a single segment and then shuffie the procedures around into swap
units according to your code pack descriptions.

If the total amount of code exceeds 32K, then you must define several segments. However,
each module must be assigned to only one segment. Although the procedures of a module
can be contained in several different code packs of a segment, all such code packs must be
defined in the same segment. It is not possible to split a module across segments.

CodeSegment :: = identifier: SEGMENT = SegmentBody

SegmentBody ::. {CodePackSeries} 1 BEGIN CodePackSeries END

CodePackSeries :: = CodePack 1 CodePackSeries ; CodePack 1 CodePackSeries;

If you use the Ie switch, you should define the code packs in order from the "hottest"
(containing the most frequently referenced procedures) to the "coldest," with the hottest
code packs defined first. This order determines the placement of multiword read-only
constants that are shared by several procedures and are thus not strictly a part of any
procedure. In any case, the entry vector for a module must precede any procedures from
that module (the EV is an array of unsigned byte offsets of the beginnings of the
procedures).

CodePack

CodePackBody

Excepting

:: = identifier: CODE PACK = CodePackBody I
ComponentDesc 1 DiscardCodePack _. defined later

:: = {Excepting ComponentSeries} 1
BEGIN Excepting ComponentSeries END

:: = -- defined later

23-5

23

23-6

Packager

ComponentSeries :: = ComponentOesc I
ComponentSeries ; ComponentOesc
ComponentSeries ;

Each ComponentOesc describes a collection of procedures that are to be included in the
code pack. Conceptually, this is just a list of the procedures names, qualified when
necessary by the names of containing configurations and modules. However, since long
lists of procedure names can be awkward, the packaging language contains several
constructs for abbreviating the description. Specifically, you describe each code pack as a
list of components (configurations, subconfigurations, or modules), optionally listing the
items from the component that are to be included in or excluded from the pack.

ComponentOesc

Component

ItemList

Item

PackList

:: = Component I
Component [ItemList]
Component EXCEPT [Item List]

. Component EXCEPT PackList I
Component [ItemList) EXCEPT Pack List I
Component EXCEPT PackList , [ItemList] I
MainOF I .. defined later
CatchOF I •• defined later
EntryOF •• defined later

:: • identifier I Component. identifier

:: = Item IltemList , Item

:: = identifier I MAIN I ENTRY VECTOR I CATCH COOE

:: = identifier I PackList , identifier

Each ComponentDesc describes procedures from the configuration or module named by
Component. In order to uniquely specify a configuration or module, you can qualify its
name by the names of enclosing configurations (and you only have to give the qualifying
names necessary to uniquely specify it).

Because code is being rearranged, Component must refer to a module or configuration
prototype, not to an instance. As described in the Mesa Language Manual, configurations
can include both instances of modules and configurations, and their prototypes (the object
files) from which such instances are made. Since different instances of the same prototype
in a configuration share the same code, the Packager requires that a Component in a code
pack name a prototype. However, because each module instance has its own global frame,
a Component in a frame pack may name an instance.

Some forms of ComponentDesc include a list of items, either preceding or following the
EXCEPT keyword. These must be directly contained in the module or configuration named
by its Component. If Component refers to a module, then each item must name one of the
module's procedures; if it names a configuration, the items must be modules or
subconfigurations that the configuration directly contains. Most of the different forms of
ComponentOesc apply to both modules and configurations. The six different forms are
interpreted as follows:

XDl<: User's Guide 23

Component

All procedures in the module or configuration are included in the code pack, except
possibly main procedures, catch code, or entry vectors (see below).

Component [ltemlist]

Only the named items of the component are included. If the component is a module, the
items must be procedures contained within it (at the outermost level, not nested
procedures; nested procedures are included along with the enclosing procedures). If the
component is a configuration, the items must be directly contained subconfigurations or
modules.

Component EXCEPT [ltemList]

All of the component is included except for the listed items. The items bear the same
relationship to the component as in the form above.

Component EXCEPT Packlist

The included procedures are those contained in the component that are not included in
any of the code packs in the Pack List. The PackList may name only code packs contained in
the current segment. This applies to the next two forms as well.

Component [ltemList] EXCEPT Packlist

Component must name a configuration. The items must be modules or configurations that
it directly contains; their procedures that are not contained in any of the code packs in the
PackList are included.

Component EXCEPT Pack List, [ltemList]

If Component names a module, the included procedures are those not named in the
ItemList and not included in any of the code packs in the Pack List. If Component names a
configuration, the included procedures are those not <:ontained in any item and not
included in any ofthe code packs in the PackList.

The first three forms of a component description are called explicit. The last three are
implicit, since they define some of a code pack's procedures implicitly in terms of other
code packs. Implicit ComponentDescs are convenient because they let you abbreviate the
specification of procedures. However, you may abbreviate the specification of a
component's procedures only once.

Fine point: The restriction on implicit component descriptions may be stated more precisely as follows: in each

code pack ora PackList in an EXCEPT clause. any ComponentDesc with a Component that contains or is

contained in the Component of the implicit ComponentDesc must be explicit.

There is one more option for defining a CodePack. You may' use an unnamed
ComponentDesc when the code pack contains procedures from only a single module or
configuration. In this case, the code pack takes its name from that module or
configuration. Although the syntax allows it, the MainOF, CatchOF, and EntryOF forms of
component descriptions cannot be used to specify an unnamed code pack.

23-7

23

23-8

Packager

23.4.1.1 Placement of entry vectors, main procedures, catch code

Often the entry vectors. main code. and catch code of modules are treated quite differently
from the procedures in the modules. The Packager has special syntax to allow the
programmer to place these items more easily.

The Excepting clause may appear optionally in a CodePack header:

Excepting :: '" empty I EXCEPT [ExceptingSeries] ;

ExceptingSeries :: '" Exceptingltem I Exceptingltem. ExceptingSeries;

Exceptingltem :: '" MAIN I ENTRY VECTOR I CATCH COOE;

This Excepting clause lets you exclude from a code pack any mainline code and/or entry
vectors and/or catch code contained in the modules of the pack. Since main procedures are
executed just once when a module is started, they are often placed in the coldest code pack.
Entry vectors are usually included in the hottest code pack. They might be placed together
in a separate code pack, or they might be mixed in with code from a logically disjoint pack
when the programmer knows that this pack will be the only caller into a particular
module. Catch code placement must be carefully weighed by the programmer so that
fielding expected signals does not induce unwanted swapping behavior.

You can use the last variants of ComponentDesc to include the main procedures, catch
code, or entry vectors that were excluded in other code packs of a segment.

MainOF :: '" MAIN OF Packlist

CatchOF :: '" CATCH CODE OF Packlist

EntryOF :: '" ENTRY VECTOR OF PackList

The main procedures (or catch code or entry vectors) of all of the modules contained in the
code packs of the PackList are included in the current code pack. The PackList must name
code packs in the current segment. Each code pack in the list will normally have an
Excepting clause specified in its header.

23.4.2 Discarded code packs

Discarded code packs allow you to throwaway the code for procedures that are not needed.
The procedures included in one of these code packs are marked as being unbound, and
their code is not copied to the output file.

A discarded code pack is declared much like an ordinary code pack, except for the
additional keyword DISCARD preceding the usual keywords CODE PACK.

DiscardCodePack :: '" identifier: DISCARD CODE PACK ,. CodePackBody

XUI': User's Guide 23

23.4.3 It'rame packs

A frame pack contains the global frames for a collection of modules. Because global frames
have no finer structure (the storage for each procedure's variables is already allocated
separately in local frames), you cannot split a global frame into more than o~, swap unit.

FramePack

FramePackBody

:: II identifier: FRAME PACK II FramePackBody I
FrameMerge _. defined later

:: = {ComponentSeries} I BEGIN ComponentSeries END

Only the following two ComponentDesc variants are allowed in frame pack descriptions.
The second form is valid only if the Component names a configuration:

ComponentDesc :: II Component I Component [ItemList]

Unlike code packs, a Component for a frame pack may name a module or configuration
instance. If Component refers to a module, that module's frame is included in the swap
unit (and only the first form may be used). If it names a configuration, the frame for each
module in the configuration is included (in the first form), or the frames of the modules
named in ItemList are included (in the second form).

Fine point: Future versions of the Packager may support EXCEPT clauses for frame packs.

23.4.4 Merging

A Merge construct lets you combine existing or previously merged code segments as well
as two or more existing or previously merged frame packs. Each code pack of the merged
segment consists of the procedures from one or more code packs from the original
segments. The original segments (and their code packs) are superseded by the merging.

Merging is useful in the packaging of very large programs that are themselves comprised
of large programs with separate packaging descriptions. Merging allows related code
packs from different segments to be swapped as a unit and reduces the breakage in code
packs and code segments. For exa'mple, it may make sense to merge the resident or the
initialization code packs of several segments, even though the segments are not otherwise
logically related.

Merge

SegList

.. -.. -
:: =

identifier: SEGMENT MERGES SegList = SegmentBody

identifier I SegList • identifier

As before, the segment contains a series of named or unnamed code pack descriptions.
However, the specification of these code packs is in terms of previously defined code packs,
not in terms of modules and configurations. (Although the syntax allows it, a
CodePackBody in a merged segment can not contain an ExceptMain clause.)

Code Pack :: = identifier: CODE PACK = CodePackBody I ComponentDesc

23-9

23

23-10

Packager

In a merged segment, a ComponentOesc must name a code pack of a previously defined
segment. The name can be qualified by the containing segment when it would otherwise
be ambiguous.

ComponentOesc ::.. Component

The named CodePack variant can be used to combine two or more existing code packs,
while the unnamed ComponentOesc variant is used to copy an existing code pack into the
new code segment

As in unmerged code segments, the order in which you specify the code packs of the merge
is important. They should be declared in order from "hottest" to "coldest."

Merged code segments, like unmerged code segments, may not be longer than 32K words
in length. Thus, it may not be possible to combine the resident parts of all segments of a
large system into a single swap unit.

Previously merged or existing frame packs may also be merged into a single swap unit:

FrameMerge ::.. identifier: FRAME PACK MERGES FramePackList ;

FramePackList ::.. FramePack I FramePack. FramePackList

23.4.5 Rules governing packaging descriptions

For a packaging description to make sense, the following rules must be observed:

• You have to account for every procedure (including main), catch code, entry vector,
and global frame. Each procedure must be placed in some code pack. Likewise, each
global frame must be placed in some frame pack.

• A procedure can be placed in only one code pack. Likewise, a global frame can be
placed in only one frame pack.

• The entry vector as well as all procedures and catch code of a module must appear in a
single code segment (since the module's entry vector is required to reference the
procedures and entry vector.)

• The entry vector of a module must be placed before any of its other code, including the
catch code.

• The code pack identifiers within a code 'segment must be distinct, but code packs in
different segments may have the same name. All frame pack identifiers must be
distinct.

• A component of a code pack cannot name a module or configuration instance.
However, a componen t of a frame pack may name an instance.

Fine point: [f a module has been table-compiled, its code can be included in a code pack, but only as a unit.

XDE User's Guide 23

23.4.6 Placement of multiword read-only constants

The Packager replicates multiword constants that are referenced in multiple code packs
unless the Ie switch is specified on the command line. [f Ie is given, the order in which
code packs arc specified is used to make the assignments of multiword read-only constants
within a module. The Packager stores a multiword constant in the first code pack that
contains a procedure using it. Specifying the "hot" code packs first will thus help to ensure
that the additional data needed by a procedure is already in memory.

Fine point: Previous versiuns of the (lackager did not replicate constants; they behaved as if the Ie switch were

always present.

23.4.7 Example

This section presents a simple packaging description. For further examples you might
want to look at the packaging description for something real.

The packaging description for Lex distributes its procedures into three code packs
(LexicaIStringManagement, ColiectAndDispatchCommands, and InitAndSeldomUsed),
depending upon logical function and frequency of use. [t also places the global frames for
Lex's two modules into separate frame packs, UtilityFrames and DriverFrames.

Lex: SEGMENT.
BEGIN
LexicalStringManagement: CODE PACK =

BEGIN
Lexicon EXCEPT CollectAndDispatchCommands, [MAIN, CATCH CODE];
LexiconClient [ENTRY VECTOR];
END;

CollectAndDispatchCommands: CODE PACK :I

BEGIN
Lexicon[PrintLexicon] ;
LexiconClient EXCEPT [ENTRY VECTOR, CATCH CODE];
END;

InitAndSeldomUsed: CODE PACK =
BEGIN
LexiconClient [CATCH CODE];
Lexicon[MAIN, CATCH CODE];
END;

END;

-- Frame packs

UtilityFrames: FRAME PACK = {Lexicon};

DriverFrame: FRAME PACK :I {LexiconClient}.

LexiconClient is placed in CollectAndDispatchCommands, a less frequently used code
pack, while its entry vector and the procedures that it calls frequently (most of Lexicon's
procedures) are placed in LexicalStringManagement, the most frequently used code pack.

23-11

23 Packager

The remaining code (mainline code and catch code), which is seldom called, is placed in
InitAndSeldom used, a code pack that is seldom used.

The global frame of lexicon, which contains the hottest procedures, is placed in the frame
pack UtilityFrames. The remaining global frame (for lexiconClient) is placed in
DriverFrames.

23.5 Operation

23-12

The Packager is run as a post-processor that reads a single object file and a packaging
description, and writes a new output object file with a different name. Its operation
resembles that of the Binder, except that all symbols for the input object file must be on
the disk. The Packager needs these to identify procedures and frame packs, and to locate
the code for procedures. The output object file contains the reorganized code of the input
object file, but not symbols (Le., code is copied, symbols are not I. The output object file also
contains information about the global frame packs for later use by Makeboot and the Pilot
Loader.

A packaged object file can be loaded and executed, or bound with other object files using
the Binder. However, a packaged object file cannot be further repackaged, since this would
require that symbol tables be modified, which would, in turn, cause considerable
operational problems. It is possible to combine separate packaging descriptions in a single
run with code segment merging, in the sense that code packs from the original
descriptions can be merged together into new, larger code packs without modifying the
original descriptions.

Although the Packager does not read multiple packaging descriptions, the syntax is
designed to allow easy merging of separate descriptions using the Executive's Copy
command. For example, if BiqApplication were made up of descriptions for
FirstPiece and SecondPiece, plus a MerqePieces that specified how to merge the two
segments, then the following command would combine the three separate descriptions:

>Copy Biq.pack +- First.pack Second. pack MergePieces.pack

Because the Packager must access the code of every procedure and the symbol table of
every module of the system it is packaging, and must also copy the code for each procedure
to the output file in random order (in the worst case), it is not very fast. It is roughly an
order of magnitude slower than the Binder.

24.1 Files

24

Debugger

This chapter describes the Pilot-based interactive Mesa debugger, CoPilot. CoPilot
supports source-level debugging; it allows users to set breakpoints, trace program
execution, display the runtime state, and interpret Mesa statements. CoPilot is intended
for use by experienced programmers familiar with Mesa,

The runtime and debugging facilities differ in their relationship to the user program. Pilot
provides the code necessary for your program to communicate with CoPilot; it resides with
the user program. CoPilot, however, resides in a different core image (in addition to a
separate logical volume of type debugge-r) that is loaded by the germ when called for;
CoPilot operates with a complete world-swap. This protects the client and the debugger
from each other as well as provides the address space required to implement all of
CoPilot's capabilities.

To run the debugger, use Othello to fetch CoPilotDLion. boot onto a logical volume
(type debugger is recommended) as the boot file for that volume.

24.2 Installing and invoking CoPilot

CoPilot must be installed before a client program can use its facilities. Once fetched,
booting the volume installs CoPilot and makes it ready to accept calls ~rom clients_ This
operation saves the debugger's core image. Unlike normal boot files, CoPilot can be re
entered many times even though it is booted only once. It must be re-installed whenever
you begin using a new germ or change the quantity or configuration of memory on the
system. To re-install CoPilot, simply re-boot the volume with Othello or the Herald
window. See the Othello appendix for further details. While the debugger is installing
itself, it examines the (optional) User. cm for a [Debugger) section.

When CoPilot is installed for the first time, it creates files to hold the client's core-image
(Debuggee.outload) and its own core-image (Debugger. outload). If the memory
configuration is changed, CoPilot must be re-installed (re-booted) and the messages
Recreating Debuggee. outload and Recreating Debugger. outload are
displayed. CoPilot prevents any attempt to modify or delete these files; Tajo may be used
for this purpose.

24-1

24

24-2

Ilebugger

CoPilot users may have a debugger installed that can be used to catch and diagnose
CoPilot failures. This debugger is just another instance of CoPilot installed on a logical
volume of type debuggerDebugger (this debugger has come to be called CoCoPilotl.
CoCoPilot must be installed before CoPilot is installed. If CoCoPilot is re-installed,
CoPilot must also be re-installed. [t is recommended that C~ilot be put in the Boot line
of the User. em on the CoCoPilot volume.

Fine point: During the later stages of initialization. Pilut searches for an installed debugger to use. It looks on all

'!olumes of a type one higher than ,ne one on which the boot file resides. For example. if the boot file is on a

volume of type normal, Pilot looks on volumes of type debugger. Occasionally. it is desirable to use an

installed debugger other than the one that Pilot would normally choose. In these cases, use Othello's Set
Debugger Pointers command. which also allows you to ha ve a client and a debugger on volumes of the same

type. However, if any other systems are rooted on volumes of the same type as an installed debugger, it is

necessary to always boot them (and good practice to boot the debugger itself) with the open-system-volume-only

"'Ib" boot switch. Otherwise. running one of the other boot files will delete the temporary files from underneath

the installed debugger. leading to a Disk Label Check when the debugger is next used. Ifany volume is booted

with the "5" switch. Pilot will enter the teledebugger (MP code 915) rather than look for a debugger.

There are several ways of invoking the debugger. In the Xerox Development Environment
for example, CALLDEBUG (SHIFT-ABORT) simply interrupts your program. In the course of
running your program, you may enter the debugger for several other reasons. Your
program may generate an uncaught signal, execute a breakpointltracepoint that has been
placed in your program, require map logging, or make an explicit call to the debugger.
CoPilot has different cursors that it displays for each reason it was entered; they are Unc
Sig (for Uncaught Signal), Call Dbug (for explicit calls, including Address Faul t
and WriteProtectFault), Brk Pt (for BreakPoint), Ine (for Interrupt). and Map
Log(forProcessing VM Map).

The first time CoPilot is invoked for a client marks the start of a new seSSlOn. The
debugger takes several special additional actions for a new session, as opposed to when it
is simply re-entered. First, it resets the Debug. log to be empty and displays the date and
time. Next, CoPilot forgets everything it knew about the previous client. Last, CoPilot sets
the user password to be empty if the current user name is not the same as the user name in
the User. cm.

24.2.1 Teledebugging

It is possible to debug clients over the Ethernet. See the following section on low-level
facilities for details.

XDE User's Guide

24.3 User interface

:>
:>List Processes
:PSB: 20B*, ready, L: 1
:PSB: 172B, waiting CV
~PSB: 173B, walting CV

24

(in PilotNub, G: 151548
(in Socketlmpl, G: 227648)

8 {in RoutingTablelmpl, G:

.:::.: hex}

~ Apply! POINTER:)iilsii!,,· decimal} LONG POINTER de~imal}
: Abort! RELATIVE: (octal., qR~iJJn UNSPECIFIED: (~.11Ulg, INTEGER
: Array elements = 65535 .W.'·~_"YN x·~~ String length ;;""·6'55"35""'"

Figure 24.1: CoPilot

When initialized, CoPilot creates two windows: the Debug .log window, which becomes a
record of the debugging session, and a Herald window that displays CoPilot's version
number and date, and various messages from the debugger. These windows may be
manipulated by the window manager that comes with your debugger. CoPilot runs in the
standard user environment (Tajo).

The user interface to the debugger is controlled by a command processor that invokes a
collection of procedures for managing breaJtpoints, examining user data symbolically, and
setting the context in which user symbols are looked up. Data in your program is
examined by the debugger's interpreter. The interpreter also allows you to change values
of variables in the middle of program execution. See the next section for a complete
description of the interpreter.

24.3.1 Talking to the debugger

The debugger accepts commands either from the Debug. log window or from selected
menu items in a File window. The input conventions of the debugger's command processor
are summarized in the next section. The command processor prompt character is > <the
character is repeated once for each nesting level of the debugger). The standard input
editing characters (BS to delete a character and BW to delete a word) are allowed. Whenever
a valid command is recognized, the debugger prompts for the parameters associated with
that command (if any are required). Pressing DELETE terminates the command; ? gives a list
of valid commands. When a command requires a [confirm] (RETURN), the debugger enters
wait-for-DELETE mode if an invalid character is typed.

When receiving commands, the debugger ·extends each input character to the maximal
unique string that it specifies. Whenever an invalid character is typed, a ? is displayed
and you are returned to command level. Pressing? at any point during command selection
prompts you with the collection of valid characters (in upper case) and their associated
maximal strings (in lower case) and returns you to command level. Whenever a valid

24-3

24

24·4

Debugger

command is recognized, you are prompted for parameters. Pressing DELETE at any point
during command selection or parameter collection returns you to the command processor;
pressing ABORT at any point during command execution aborts the command.

Current Context

Interpreting symbols (including displaying variables, setting breakpoints, and calling
procedures) occurs in the current context; it consists of the current frame and its
corresponding module, configuration, and process. The symbol lookup algorithm used by
the debugger is to search the runtime stack of procedure frames in Last-ln-First-Out
order. First the local frame of the current procedure is examined, next its associated global
frame. The search continues by following the return link to the next local frame. This
continues until either the symbol is found or the root of the process is encountered.

When you first enter the debugger, the context is set to the frame of whatever process is
currently running. Certain commands make it simple to enumerate contexts (List
Processes, List Configurations), to change between contexts (SEt Root
configuration, SEt Module context), to display the current context (CUrrent
context), and to examine the current dynamic state (Display Stack).

Looking up Symbols

Whenever the debugger needs symbols to display some information, it searches for the
original compiler-output object file before looking for symbols where they were last copied
by the Binder. Types used, but not declared, within a module are looked up using the same
algorithm as in the Compiler. If the interface module containing the original declaration
is unavailable, the debugger uses whatever information has been copied into the symbol
table of the module using that type.

Leaving the Debugger

In the debugger, you may execute any number of commands to examine (and change) the
state of your program. When you are finished, you may decide either to continue execution
of your program (Proceed), terminate execution of your program (Qui t), or end the
debugging session completely and boot the physical volume (Kill). The next subsection
contains further details on these commands. It is also possible to boot other logical
volumes with the Herald window.

24.3.1.1 Input conventions

String Input

Identifiers are sequences of characters beginning with an upper- or lower-case letter and
terminating with a space (SPACE) or a carriage return (RETURN); identifiers must be typed
with correct capitalization. The debugger echoes a delimiting character of its own choice to
minimize loss of information from the display.

Numeric Input

A numeric parameter is a sequence of characters terminated by SPACE or RETURN. If the
parameter is not a numeric constant, it is processed by CoPilot's interpreter; any
expression that 'evaluates to a number is legal (the target type must be (LONG) INTEGER.

XDE User's Guide 24

CARDINAL, or UNSPECIFIED). The default radix is octal for addresses (and input to octal
commands) and decimal for everything else (unless otherwise specified with the CoPilot
Opt ions window). The 0 or d suffix forces decimal interpretation; B or b forces octal.
Numbers with a leading zero are considered LONG.

"
Default Values

The debugger saves the last values used as parameters to all of the commands; these
values may be recalled by the COMPL"::TE key. The following parameters have default values
that may be used or inspected by pressing COMPLETE: octal read addrp.'is, octal write address,
ascii read address, root configuration, configuration,module, procedure, condition,
expression, process, address, and frame. After the default parameter is displayed by the
debugger, the standard input editing characters may be used to modify it. Striking the
COMPLETE key to the command processor uses the last command as the default command
(i.e., you receive the prompt for the parameters, if any", for the previously executed
command).

24.3.1.2 Output conventions

A "?" in any variable display uniformly means that the value is out of range. An ellipsis
(" . • tt) indicates that there are additional fields present in a record that cannot be
displayed due to lack of symbol table information. This can happen either in OVERLAID
records or because a DEFINITIONS file is not present on the disk. In display stack mode,
variables declared in nested blocks are shown indented according to their nesting level.

The Copilot Options window allows you to change the default format the debugger
uses in displaying values of variables. This window is created by selecting the Opt ions
item in the Copilot menu and operates as a normal Options window (i.e., invoke Apply!
to effect the changes made, Abort! to restore them to the previous options).

The CARDINAL, INTEGER, POINTER, LONG POINTER, and RELATIVE (POINTER) items are used to set the
default output radix for that type. For CARDINAL and INTEGER, the default representation is
signed or unsigned, depending on whether the boolean item signed is turned on or off.
The UNSPECIFIED item is used to set the default type for displaying UNSPECIFIED variables.
Array elements sets the number of ARRAY elements displayed to be the given value and
String length sets the number of STRING characters displayed to the given value.

CoPilot uses these default values along with the types of variables to decide on an
appropriate output format. Listed below are the built-in types that the debugger
distinguishes and the convention used to display instances of each type.

ARRAY

displayselementsofanarray;e.g.,a=(3)[[x: 0, y:O], [x: 1, y: 1], [x: 3,
y: 3]] . The parenthesized value to the right of the tt=" is the length of the array. Pressing
ABORT will abort the display of long arrays. The default is to display the entire array; the
Array elements item of the Options window may be used to change this.

ARRAY DESCRIPTOR

displays the descriptor followed by the contents of the array; e.g., a =
DESCRIPTOR[146013BI,3] (3)[[x: 0, y:O], [x: 1, y: 1], [x: 3, y:3]].Fora

24-5

24

24-6

Debugger

RelATIVE ARRAY DESCRIPTOR. the word RelATIVE is displayed first. Pressing ABORT will abort the
display of long array descriptors. The Array elements item in the Opt ions window also
controls this.

BOOLEAN

displays TRUE or FALSE. Since BOOLEAN is an enumerated type = {FALSE, TRUE}, values outside
this range are indicated by a? (probably an uninitialized variable).

CARDINAL

displays an octal number terminated by a "B" as the default. This may also be altered with
the Opt ions window. Cardinals may be displ~yed as decimal, octal, or hex; signed or
unsigned.

CHARACTER

displays a printing character (e) as 'e. A control character (x) other than BLANK, RUBOUT,

NUL, TAB, LF, FF, CR, or ESC is displayed as f X. Values greater than 1778 are displayed in
octal.

CONDITION

displays a record containing an UNSPECIFIED and t imeou t; a CARDINAL.

ENUMERATED

displays the identifier constant used in the enumerated type declaration. For example, an
instance c of the type ChannelState: TYPE • {disconnected, busy, available} is displayed
ase=busy.

EXPORTED TYPES

displays the name of the type followed by an octal display of the contents if the length of
the type is known. For example, an instance of the type Handle: TYPE [2] is displayed as
Handle (2) 112348.

INTEGER

always displays a decimal number. Uniformly, numeric output is decimal unless
terminated by "B" (octal). Integer output may be changed with the Options window.

LONG

displays numbers following the same conventions as short numbers; Le., LONG CARDINAL

and LONG UNSPECIFIED are displayed in octal, LONG INTEGER in decimal.

MDSZone

displays a POINTER; an UNCOUNTED ZONE displays as a LONG POINTER.

XDE User's Guide 24

MONITORLOCK

displays a record containing an UNSPECIFIED.

POINTER

displays an octal number, terminated with an" t If; e.g., p=1073628 i. RELATIVE POINTERS are
decimal and are terminated with" i R"; e.g., r=123 i R. These defaults may be changed for
LONG POINTERS, RELATIVE POINTERS, and POINTERS to either octal or decimal with the O~t ions
window.

PORT

displaystwooctalnumbers;e.g.,p = PORT [0, 1725208].

PROCEDURE, SIGNAL, ERROR

displays the name of the procedure (with its local frame) and the name of the program
module in which it resides (with its global frame); e.g., GetMyChar, L: 1650648 (in
ColleetParams, G: 1665148).

PROCESS

displays a PROCESS (pointer to a ProcessStateBlock); e.g., p = PROCESS [1118].

REAL

displays a floating-point number; e.g., -1.45.

RECORD

displays a bracketed list of each field name and its value. For example, an instance V of the
record Vector: RECORD [x,y: INTEGER] is displayed as y= [x: 9, y: -1]. Pressing ABORT

only aborts display of the current field.

SEQUENCE

displays as an array. For example, an instance s of the record Sequence: RECORD [length:
Unsignedlnt. text: PACKED SEQUENCE maxLength: Unsignedlnt OF CHARACTER] is displayed as
s=[length: 3, text: ('3)['a, 'b, 'c)].

STRING

displays the name of the string, followed by its current length, its maximum length, and
the string body; e.g., s = (3,10) " f 00". If the string is NIL, s =N I L is displayed. Pressing
ABORT will abort the display of long strings. The default is to display the entire string; the
String length item in the Options window can change this.

UNSPECIFIED

defaults to being displayed as if they were CARDINALS; this may be changed with the
Options window.

24-7

24 Uebugger

Listed below are the conventions used to display context information throughout the
debugger:

ProcedureName, L: nnnnnB, pc: nnnB (in ModuleName, G: nnnnnB)

A local context is displayed as the procedure name with its local frame, followed by the
module name and its global frame.

ModuleN~me, G: nnnnnB --global frame

A global context is displayed as the module name and its global frame. If the global
frame is followed by * (as nnnnnB*) it is a copy created by the NEW construct. If the
global frame has not yet started, it will be followed by a -.

In response to an expression followed by a 7, the interpeter will show:

Octal = Hexadecimal = Unsigned Decimal = Signed Decimal
Byte"Byte = Octal Byte"Octal Byte = CHAR"CHAR =

Nibble:Nibble"Nibble:Nibble

If any of the values are 0 or out of range, they will not be shown. For LONG values the
interpreter will show:

Octal = Hexadecimal = Decimal = OctalWord OctalWord =
Byte"Byte Byte"Byte

For example, in response to 61141B? the debugger displays

61141B = 6261X = 25185 = 98,,97 = 1428,,141B = 'b,,'a = 6:2,,6:1

and for 1234567B? itshows

1234567B = 53977X = 342391 = 34567B 5 = 57,,119 0,,5

24.3.2 Debugger commands

.24-8

CoPilot provides facilities for managing breakpoints, examining user data symbolically,
setting the context in which the user symbols are looked up, and directing program
control.

The command tree structure for CoPilot appears at the end of this chapter. Capitalized
letters are typed by the user (in either upper or lower case); Commands are extended with
lower-case strings by the command processor. Each command (and its parameters) is
described below.

24.3.2.1 Breakpoints

The break and trace commands apply to modules that are known within the current
context. All breakpoints and tracepoints may be conditional (nsee ATtach Condi tion,
below). An optional command string can also be attached to each breakpointitracepoint; it
will be executed when the breakpoint/tracepoint is taken (see ATtach Keystrokes,
below). A tracepoint is a breakpoint that automatically 'invokes the Display Stack

XDl<~ User's Guide 24

command processor, displaying the lirst procedure on the call stack and its parameters
(trace entry), variables (trace), or results (trace exit) as appropriate.

You may set breakpoints at the following locations in your program: entry (to a
procedure), exit (from a procedure), and at the closest statement boundary preceding a
specific text location within a procedure or module body. The debugger can set entry
breakpoints on any procedure called from within a module. However, the fact that extra
symbols are required to display the parameters or the breakpoint will not be discovered
until needed. Breaks on a specific text lvcation can be set only with the Break command
of the Debug Ops (or Symbiote) menu. Note that breakpoints are set in all instances of a
module. When the source line of the breakpoint is displayed, the indicator < > appears to
the left of the source where the breakpoint has actually been set (e.g .. IF foo THEN < >
some statement;). Before the debugger permits any breakpoints to be set using a
FileWindow, the creation date in the source file is checked against the corresponding date
recorded by the compiler in the bcd.

Fine point: Since there is only one exit from a procedure. the debugger shows the beginning of the procedure for

exit breaks instead of indicating a potentially incorrect RETURN statement. Local variables may be invisible if

this RETURN has a PC that is not in the block with their declarations: use source breaks on the RETURN

statements instead of an exit break.

When a break or trace is encountered during execution, a (possibly nested) instance of the
debugger is created and control transfers to the command processor, from which you may
access any of the facilities described in this document. The debugger types the name of the
procedure containing the breakpoint and the address and PC of the currently acti ve frame.
If the breakpoint has a condition associated with it, the break is taken only if the condition
is satisfied. The multiple proceed counter is reset after being satisfied; e.g., a condition of 5
will actually break on the fifth, tenth, fifteenth, ... times the breakpoint is reached. To
continue execution of your client program, use the Proceed command; to stop execution of
your program, use the Qu it command.

Fine point: Occasionally a breakpoint will be taken a second time. This is the result of a page fault that occurred
as execution orthe the client was resumed. It does not indicate that anything is amiss. so simply proceed.

If you compile a module with the cross-jumping switch turned on (the default), be warned
that when setting source breakpoints, the actual breakpoint may not end up where you
expect (e.g., you may break in the code of an ELSE clause when you really want the THEN

clause if they share some common code). The message Cross jumped! will appear before
the source of a cross-jumped module is displayed. Entry and exit breakpoints are not
affected by cross jumping.

The warning Eval stack not empty! will be printed if the debugger is entered via
either an interrupt or breakpoint with variables still on the evaluation stack; this
indicates that the current value of some variables may not be in main memory, where the
interpreter normally looks. Exceptions to this are entry and exit breaks; the debugger has
enough information to decode the argument records that are on the stack in this case (if
the appropriate symbol tables are available).

At tach (in Debug Ops menu of File window)

tells the debugger to ignore the time stamp in the source file when setting breaks. See
ATtach Symbols in the sub-subsection on Low-level facilities.

24-9

24

24-10

Debugger

ATtach Condition [number, condition]

changes a normal breakpoint into a conditional one. Arguments are a breakpoint number
and a condition, which is evaluated in the context of the breakpoint. The breakpoint
number is displayed when the break/trace point is set, and may also be obtained using the
List Breaks command.

The three valid formats of a Cond i t ion are: uariable relation variable, variable relation
number, and nUl .• ber. Conditions include rehtions in the set {<, >, ", It, <", > =}. A
number (multiple proceeds) means "execute the break number times hefore invoking the
debugger." The variables are interpreted expressions that are looked up in the context of
the breakpoint. A variable may not be an expression that is more than one word long,
dereferences a pointer (beware of the implicit dereference in record qualification), or
indexes an array.

ATtach Keystrokes [number, command]

adds an arbitrary command string to breakpointsltracepoints; the characters from this
string are executed by the debugger when the breakpointltracepoint is taken. Arguments
are a breakpoint number and a command string terminated with a RETURN. A RETURN can be
embedded in the command string by quoting it with CTRL-V.

Break (in Debug Ops menu of File window)

uses the current selection to set a breakpoint. If you select PROCEDURE or PROC, a breakpoint
is set on the entry to the procedure; if you select RETURN, a breakpoint is set on the exit of
the procedure; otherwise, a breakpoint is set at the closest statement enclosing the
selection. Note: If the module was compiled with cross jumping, breaks may be set in
unpredictable places. Confirmation is given by moving the selection to the place at which
the breakpoint is actually set.

For the following code fragments, a breakpoint set on anyError will invoke the debugger
after the catch frame is entered. If a breakpoint is set on MFile.Error, the debugger is
invoked for all signals and errors (including things like DivideCheck) before any decision
is made to catch the signal.

BEGIN ENABLE MFile.Error = > {anyError +- TRUE; CONTINUE};

! MFile.Error = > {anyError +- TRUE; CONTINUE};

Ifthere are multiple instances of a module, the current context must match the source file.
In any event, the breakpoint number or any error messages are displayed in the Herald
window.

Break All Entries [module/frame]

sets a break on the entry point to each procedure in module or frame (cf. Break Entry);
nested procedures and catch code are ignored.

Break All Xits [module/frame]

sets a break on the exit point of each procedure in module or frame (cf. Break Xi t).

XI}I<~ User's Guide 24

Break Entry [proc]

inserts a breakpoint at the first instruction in the procedure proc. Sote: You can place a

breakpoint on the entry to the mainline code. For a module to do this. Break En try I nwdule nam!!l.

Break Xit [proc]

inserts a breakpoint at the last instruction of the procedure body for proc. This catches all
. RETURN statements in the procedure. :-.Iote: You can place a breakpuint I)n the exit from the mainline

code. Fora mndule todu this. Break Xi t Imodulenamel.

CLear All Breaks

removes all breakpoints/tracepoints.

CLear All Entries [module/frame]

removes all entry breakpoints/tracepoints in module or frame.

CLear All Xits [module/frame]

removes all exit breakpoints/tracepoints in module or frame.

CLear All Traces

removes all breakpoints/tracepoints; it is equivalent to CLear All Breaks.

CLear (in Debug Ops menu of File window)

clears the breakpoint or tracepoint at the location specified as above.

CLear Break [number]

removes a breakpoint by number. Pressing RETURN in place of a number clears the current
breakpoint; i.e., the one that got you into CoPilot.

CLear Condition [number]

changes a conditional breakpoint into a normal one. Pressing RETURN in place of a number
behaves as in CLear Break.

CLear Keystrokes [number]

clears any command string associated with the breakpoint. Pressing RETURN in place of a
number behaves as in CLear Break.

CLear Entry Break [proc]

conver/?e of Break Entry.

24-11

24

24-12

Debugger

CLear Entry Trace [proc]

converse of Trace Entry; it is equivalent to CLear Entry Break.

CLear Xit Break [proc]

converse of Break xi t.

CLear Xit Trace [proc]

converse of Trace xi t; it is equi valent to CLear Xi t Break.

Display Break [number)

displays a breakpoint by number. Its type (entry, exit, source), and the procedure and/or
module name i~ which it is found are displayed; for source breakpoints, the source text is
also displayed; any attached conditions or keystrokes are also shown. Pressing RETURN in
place ofa number behaves as in CLear .Break.

List Breaks [confirm]

lists all breakpoints, displaying the same information as Di splay Break.

Trace (in Debug Ops menu of FileWindow)

sets a tracepoint at a location specified, as in Break above. Confirmation is given by
moving the selection to the place at which the tracepoint is actually set.

Trace All Entries [module/frame]

sets a trace on the entry point to each procedure in module or frame (cf. Trace Entry).

Trace All Xits (module/frame]

sets a trace on the exit point of each procedure in module or frame (cf. Trace xi t).

Trace Entry [proc]

sets a trace on the entry of the procedure proc. When an entry tracepoint is encountered,
display stack mode is entered and the parameters are displayed (cf. Break Entry).

Trace Xit [proc]

sets a trace on the exit of the procedure proc. When an exit tracepoint is encountered,
display stack mode is entered and the return values are displayed (cf. Break Xi t).

2'4.3.2.2 Disp~ay runtime state

The scope of variable lookup is limited to the current context (unless otherwise specified
below to be the current configuration). What this means is the following: if the current
context is a local frame, the debugger examines the local frame of each procedure in the
call stack (and its associated global frame) following return links until the root of the
process is encountered. If the current context is a module (global) context, just the global

XDE User's Guide 24

frame is searched. Global frames are searched in the order: declarations, imports,
directory. If the variable you wish to examine is not within the current context, use the
commands that change contexts.

CoPilot displays a global frame followed by a * if the frame is a copy created by the NEW
contruct; it is followed by a - if it is not started.

AScii Read [address, n]

displays n (decimal) characters as a string starting at address (octa\).

AScii Display [address, count]

interprets address as POINTER TO PACKED ARRAY OF CHARACTER and displays count characters.

Display Configuration

displays the name of the current configuration followed by the module name,
corresponding global frame address, and instance name (if one exists) of each module in
the current configuration.

Display Frame [address]

displays the contents of a frame, where address is its octal address (useful if you have
several instances of the same module or examining a specific local frame); display stack
subcommand mode is entered.

Display GlobalFrameTable

displays the module name and corresponding global frame address, pc, codebase, and gfi of
all entries in the global frame table. If a frame has been unNEwed, it will be followed by
the word "deleted."

Display Module [module]

displays the contents of a global frame, where module is the name of a program in the
current configuration.

Display Process [process]

displays interesting things about process. This command shows you the process, the
frame associated with process, and the state of the process. A process can be:

ready (ready to run and has a state vector)

wai ting SV (ready to run but needs a state vector)

wai ting ML (waiting on a monitor)

wa it i ng CV (waiting on a condition variable)

frame fault, fsi: nn (needs a frame whose size index is nn)

24-13

24

24-14

Debugger

page faul t, addres s: nnnnnB (waiting for page whose address is nnnnnB; this
is an address fault if location nnnnnB isn't mapped)

wr i te faul t, address: nnnnnB (waiting to write into location nnnnnB, which
is write-protected) "

faul ted (unknown fault has occurred)

A * mark., the current process. A process can be on one and only one queue (associated
with a condition, monitor, ReadyList, etc.). Then you are prompted with> and you enter
process subcommand mode. A response ofH displays the next process: S displays the source
text and loads and positions the source file in the Source window: t.just displays the source
text; R displays the root frame of the process; P displays the priority of the process; space
(SPACE) enters the interpreter;-- delimits a comment; and Q or DELETE terminates the
display and returns you to the command processor. Note: Either a variable of type PROCESS

(returned as the result of a FORK) or an octal PROCESS is acceptable as input to this command
(process is an interpreted expression).

Display Queue lid]

displays all the processes waiting on the queue associated with id. If id is simply an octal
number, you are asked whether it is a condition variable (e.g, Condi tion? [Y or H) l.
For each process, you enter process subcommand mode. The semantics of the
subcommands remain the same as in Display Process, with the exception of H, which
in this case follows the link in the process. This command accepts either a condition
variable, a monitor lock, a monitored record, a monitored program, or an octal pointer.

Display ReadyList

displays all the processes waiting on the queue associated with the ReadyList; i.e., the list
of processes ready to run. For each process, you enter process subcommand mode; the
semantics of the subcommands are the same as in Display Queue.

Display Stack

displays the procedure call stack of the current process. At each frame, the corresponding
procedure name and frame address are displayed. You are prompted with >. A response
of:

v displays all the frame's variables.

G displays the global variables of the module containing the current frame.

P displays the input parameters.

R displays the return values (anon) appears before those that are not named in the
parameter lists.

H moves to the next frame.

J, n(10) jumps down the stackn (decimal) levels (ifn is greater than the number of
levels it can advance, the debugger tells you how far it was able to go).

XDE User's Guide 24

S displays the source text and loads and positions the source file in a source window.
lit also sets the context for setting breakroints in that window.)

L just displays the source text.

SPACE enters the interpreter.

delimits a comment.

Q or DELETE terminates the display and returns you to the command processor.

When the current context is a global frame, the Display Stack subcommands G,

J, and N are disabled. When the debugger cannqt find the symbol table for a frame on
the call stack, only the J, N, Q, _. and SPACE subcommands are allowed. For a complete
descri ption of the output format, see the section on lJ nrecognized structures.

Find variable lid]

displays the contents and module location of the variable named id, searching through
only the GlobalFrames of all the modules in the current configuration.

Statistics (in CoPilot menu of Debug .log window)

writes statistics about CoPilot's internal caches into the debug window. It is not normally
used by clients.

24.3.2.3 Current context

The current context is used to determine the domain for symbol lookup. There are
commands to display the current context, to display all the configurations and processes,
to restore the starting context, and to change contexts.

Every time the debugger is entered, the current context is automatically set to (1) the
process that caused the debugger to be called; (2) some significant frame in the calling
process, not necessarily the innermost frame (top of the call stack) of the process (for
example, an uncaught signal sets the frame in which the signal was raised); and (3) the
module and configuration of the local frame set in (2).

CUrrent context

displays the name and corresponding global frame address (and instance name if one
exists) of the current module, the name of the current configuration, and the PROCESS for
the current process.

List Configurations

lists the name of each configuration that is loaded, beginning with the last configuration
loaded. If you wish to see more information about a particular configuration, use the
Display Configuration command.

24-15

24

24-16

Debugger

List Processes

lists all processes by PROCESS and frame. If you wish to ·see more information about a
particular process, use the Display Process command.

ReSet context

restores the context that this instance ofthe debugger set upon entry (see the introduction
to this section). Note: The local frame set by this command is not necessarily the same as ~:latset by the Se t
Process Context command.

SEt Configuration [config]

sets the current configuration to be config, where config is nested within the root
configuration that is current. This command is useful for "jumping" further into the
nested block structure of a configuration.

SEt Module context [module/frame]

changes the context to the program module whose name is module (within the current
configuration). If there is more than one instance of module, the debugger lists the frame
address of each instance and does not change the context. Using a frame address has the
same effect as SEt Octal context.

SEt Octal context [address]

changes the current context to the frame whose address is address. This is useful when
there are several instances of the same module or in setting the current context to a
specific local frame.

SEt Process context [process]

sets the current process context to be process and sets the corresponding frame context to
be the innermost frame associated with that process. Upon entering the debugger, the
process context is set to the currently running process. Note that either a variable of type
PROCESS (returned as the result of a FORK) or an octal PROCESS is acceptable as input to this
command. Note: (fthe process is the same as that in which the debugger was entered, the local frame set by

this command is not necessarily the same as that frame initially set by the debugger, the one that would be set by

the Reset Context command.

SEt Root configuration [config]

sets the current configuration to be config, where config is at the outermost level (of its
configuration). This command is sufficient for simple configurations of only one level. It is
also useful in getting you to the outermost level of nested configurations, from which you
may move "in" using SEt Configuration.

24.3.2.4 Program control

Certain commands allow you to determine the flow of control between the debugger and
your program.

XDI<~ User's Guide 24

Kill session [confirm]

. 'ends your debugging session, swaps back to the client world, and executes
TemporaryBooting.BootButton.

Proceed [confirm]

continues execution of the program (i.e., proceeds from a breakpoint, resumes from an
uncaught signal).

Quit [confirm)

raises the signal ABORTED in the process that entered the debugger. If the process was
already processing an uncaught ABORTED signal (perhaps from a previous Qu it command),
this command passes the signal UNWIND to each frame of the process and then simulates a
RETURN with no results by the root frame of the process, causing the process to be deleted. If
this process is supposed to return any results, the parent process will get a stack error
when it attempts to JOIN the process.

STart [address] [Confirm]

starts execution of the module whose frame is address. If the module has already been
started, a RESTART will be done. Unlike the START statement in the Mesa language, no
parameters may be passed.

Userscreen [confirm)

swaps to the user world for a look at the screen. Control is returned to CoPilot
automatically after 20 seconds or by typing the ABORT key earlier; it does not return until
the ABORT key is let up.

24.3.2.5 Low-level facilities

Additional commands allow you to examine (and modify) what is going on in the
underlying system.

Fine point: When a space is first mapped as a data space, Pilot arranges things so that an attempt to read it by

CoPilot before it is swapped in will show data left in backing store from a previous mapping. rather than the

expected zeros.

ATtach Symbols [globalframe, filename]

attaches the globalframe to filename. ATtach Symbols is useful for allowing you to
bring in additional symbols for debugging purposes when you do not have the correct
object file. The default extension for filename is . bed.

Warning: This command overrides version checking of symbol tables and should qe used
with caution; it may cause CoPilot to display in.correct values.

Note: Only compiler output object files for program modules can be attached; neither
interfaces nor symbols files may be attached.

24-17

24

24-18

Debugger

Display Eval-stack

displays the contents of the Mesa evaluation stack (in octaD, which is useful for low-level
debugging or for displaying the (un-named) return values of a procedure that has been
broken at its exit point. This command is most useful at octal breakpoints because the eval
stack is empty between most statements.

Octal Clear break [globalframe, bytepc)

is the converse of Octal Set break (these octal commands are low-level debugging aids
for system maintainers who must diagnose the higher-level debugging aids and system).

Octal Read [address, n]

displays the n (decimal) locations starting at address. An address in the first 65K is
interpreted as an absolute (virtual) address if and only if it has a leading zero; it is treated
as MDS-relative otherwise.

Octal Set break [globalframe, bytepc]

sets a breakpoint at the byte offset bytepc in the code segment of the frame
globalframe.

Octal Write [address, rhs]

stores rhs (octal) into the location address; the default for rhs is the current contents of
address. address is treated the same as in Octal Read.

ReMote debuggee [host] [confirm]

converts CoPilot into a teledebugger. host is the name or net address of the client. (A net
address has the form netNumberlhostNumber# where both numbers are octal, no "8"
appended.) An empty host means to quit teledebugging. Pressing ABORT while waiting for
the client will also abort teledebugging. Ending teledebugging in either of these ways
causes CoPilot to start a new session without a client; the message Invalid Swap
Reason: Context Invalid will be displayed in the new log, and the existing log is
reset. CoPilot reverts to a local debugger for its next session.

After communications have been established, CoPilot starts a new session, losing all
information about the previous debuggee. Immediately after receiving the ReMote
Debugee command and whenever CoPilot is waiting for the remote machine (e.g, for a
breakpoint), it displays: wai ting for client •••• This is followed by the message
Client responds when communications are re-established. Teledebugging may be
terminated by the ABORT key; this is the only way to abort teledebugging while the
Wai ting for client... message is displayed. At other times, teledebugging may be
aborted by issuing the ReMote. Debugee command with no host. If CoPilot is booted with
the W switch, it immediately begins teledebugging, instead of completing the normal
installation process. After communications have been established, the Debugger moves maplog and other

information into its own memory and flushes it from the client; thus that client may not be subsequently be

debugged by any other debugger until it is re-booted.

Ifa Domain and Organization have been specified in your user profile (either through
Domain and Organization items in your [Sys tem] User. cm section, or with the Profile

XDl<: User's Guide 24

Tool) they will be used to qualify any unqualified or partially qualified host names.
Otherwise you will have to supply fully qualified host names for any remote clients you
wish to debug.

For example, if the [System) sectionofyouruser.cmcontained

Domain: OSBU North
Organization: Xerox

you could specify the ReMote debuggee Th i sbe: OSBU
debuggee Thisbe.

Nor th: Xerox as Re:VIote

Worry on [confirm)

conditions breakpoints such that no local frames will be allocated when a breakpoint is
taken. This is typically only of interest when debugging the operating system itself. As a
side-effect, all conditional breakpoints will be temporarily made unconditional. After
taking a worry mode breakpoint, all of the debugger commands are allowed, with the
exception of STar t, Qui t, and calling procedures with the interpreter. :"Iote: the Perf tools

set worry mode breakpoints.

Warning: In the current version of Pilot, Worry should be turned on only when all
breakpoints are in code that does not generate page faults.

Worry off [confirm)

turns off worry mode (this is the default state upon starting the debugger).

-- [conunent)

inserts a comment into the debugger's log file. Input is ignored after the dashes until
RETURN is typed.

24.3.3 The Debugger interpreter

CoPilot contains an interpreter that handles a subset of the Mesa language; it is useful for
common operations such as assignments, dereferencing, procedure calls, indexing, field
access, addressing, displaying variables and TYPES, and simple type conversion. It is a
powerful extension to the debugger command language, as it allows you to more closely
specify variables while debugging, thus giving you more complete information with fewer
keystrokes.

Only a specific subset of the Mesa language is acceptable to the interpreter (see the end of
this chapter for details on the grammar). Several specialized notations (abbreviations)
have been introduced in the interpreter grammar; these are valid only for debugging
purpeses and are not part of the Mesa language. The interpreter operates much like the
Compiler: strict target typing is performed on assignments and procedure calls.

24.3.3.1 Statement syntax

Typing SPACE to the command processor enables interpreter mode; the limited command
processors of Display Stack and Display Process also permit a space. At this point

24-19

24

24-20

Debugger

the debugger is ready to interpret any expression that is valid in the (debugger) grammar.
The? interpreter command may be invoked by' either the? item in the CoPilot menu, or
the CLlENT1 key at any time.

Multiple statements are separated by semicolons; the last statement on a line should be
followed by RETURN. If the statement is a simple expression (not an assignment>, the result
is displayed after evaluation.

For example, to perform an assignment and print the result in one command, you would
type:

foo +- exp; foo

24.3.3.2 Loopholes

A more concise LOOPHOLE notation has been introduced to make it easy to display arbitrary
data in any format. The character % may be used instead of LOOPHOLE [exp, type] I with
the expression on the left of the %, and the type on the right. However, % is not a valid
Le f tS ide; all type expressions involving % must be enclosed in parentheses.

The following expressions are equi valent to the interpreter:

foo % (short red Foo) and LOOPHOLE [foo, short red Foo)
(p % (LONGPOINTERTO Object» f and LOOPHOLE [p, LONGPOINTERTO Object) f

The first pair will loophole the type of the variable foo to be a short red Foo and display
its value. The second pair will loophole p to be a LONG POINTER TO Object and dereference it.
foo % is a shorthand notation for foo % UNSPECIFIED.

A number may be loopholed into PROCEDURE, SIGNAL, or an ERROR. If it is valid, the debugger
will display the procedure (or signal's) name, module and global frame. If a signal/error is
the same as the uncaught signal that trapped to the debugger, CoPilot also displays the
parameters.

24.3.3.3 Subscripting

There are two types of interval notation acceptable to the interpreter; the closed, open, and
half -pen interval notation accepted by the Compiler and a shorthand version that uses !.

The notation [a • . b) means start at index a and end at index b. The notation [a
b) means start at index a and end at index (a+b-l) .

The following expressions all display the contents of MDS-relative memory locations
11048 through 11078:

MEMORY[l104 •• 1107]
MEMORY{1104 •• 1108)
MEMORY(1103
MEMORY(1103
MEMORY [1104

1107]
• 1108)
4]

XU..: User's Guide 24

Note that the interval notation is only valid for display purposes and therefore is not
allowed as a LeftS.ide or inside other expressions.

24.3.3.4 Explicit qualification vs qualification in the current context

To improve the performance of the interpreter, the $ notation has been introduced to
distinguish between qualification in the current context and explicit qualification. The
character $ indicates that the ntlme on the left is a module name or frame in which to look
up the identifier or TYPE on the right. (f a module cannot be found, it uses the name as a file
(usually a definitions file).

For example, FSP$TheHeap means look in the module FSP to find the value of the variable
TheHeap. (n dealing with variant records, be sure to specify the variant part of the record
before the record name itself (e.g., foo % (short red FooDefs$Foo) , not foo %

(FooDefs$short red Foo».

24.3.3.5 Type expressions

The notation @type may be used as shorthand to construct a POINTER TO type. This notation
is used for constructing types in LOOPHOLES (ie., @foo will give you the type POINTER TO
fool. There is no special shorthand to construct LONG POINTER TO type; however, LONG
@type is legal.

24.3.3.6 Radix conversion

The notation expression? prints the value of the expression in several formats, including
octal, decimal, and hex. Radix conversion between octal and decimal can be forced using
the loophole construct; for example, exp% (CARD INAL) will force octal output and
exp% (INTEGER) will force decimal. Output radix may also be controlled by the CoPi 10 t
Options window discussed in the Ouput conventions sub-subsection previously
mentioned.

24.3.3.7 Arithmetic expressions

Target typing is applied to arithmetic expressions. In complex expressions, atoms that
change the target type must occur first. For example:

(POINTER + offset) i -- correct
(offset + POINTER) i -- error message
LONG(400B] * 4008 -- 200000B
400B * LONG(400B] -- overflow

24.3.3.8 Proced ure calls

It is often useful to call procedures from a breakpoint or after getting an uncaught signal;
this is generally done in the interpreter with the same syntax as in Mesa. CoPilot is able to
invoke any procedure that is imported into the current module context; complications
arise when you wish to call a procedure that is not imported. However, the $ notation may
be used to solve most of them.

24-21

24

24-22

Debugger

CoPilot can only call procedures in modules for which it has complete symbols: this can be
somewhat confusing since the debugger "knows" a little about the procedures imported
into a module it has symbols for. To determine whether CoPilot has symbols for a
procedure and where it is implemented (a more useful feature). simply type the procedure
name to the interpreter. For example. typing either Process. SetPr ior i ty or
SetPriority to the interpreter (while inside a module that imports it) will cause the
debugger to display the following

SetPriority = PROCEDURE (54618) (in module Processes, G. 116448)

when symbols for Processes are not available. Reinterpreting SetPriority after retrieving
the object tile for Processes gives the following result:

SetPriority = PROCEDURE SetPriority (in module Processes, G:
116448) •

The notation Process. SetPriori ty means the same to the interpreter as to the Mesa
compiler; Se tPr io r i ty is a procedure imported through the Process interface.

Since SetPriori ty is imported in this example, you could, for example, call it
(nicknamed interpret call for historical'reasons) by typing SetPriori ty [1], To call
Process.Abort, which is not imported, the notation Processes$Abort [processld] or
nnnnn8$Abort (processId] (nnnnn8 is the global frame of Processes) works. If you
are lacking a variable of type PROCESS, Processes$Abor t [208%] works; it loopholes the
process ID number 208 into an UNSPECIFIED. (The trailing % notation is a very easy method
for constructing pointers; e.g., 1234568% is easier to type in a procedure call than
LOOPHOLE (1234568, POINTER].)

24.3.3.9 Sa~ple expressions

Here are some sample expressions that combine several of the rules into useful
combinations:

If you were interested in seeing which procedure is associated with the third keyword of
the menu belonging to a particular window called myWindow, you would type:

> myWindow.menu.array(3] .proc

which might produce the following output:

CreateWindow (PROCEDURE in WEWindows, G: 1201348).

The basic arithmetic operations are provided by the interpreter (with the same precedence
rules as followed by the Mesa compiler).

> 3+4 MOD 2 ; (3+4) MOD 2

would produce the following output:

3
1.

XDE User's Guide 24

A typical sequence of expressions one might use to initialize a record containing a pointer
to an array of Foos and display some of them would be:

> rec. array - FSP$AllocateHeapNod'e [n*SIZE [FooDefs$Foo)I :
> InitArray[rec.array]: rec.array[first. .last].

The following command would display ree in octal:

>Octal Read: @rec, n: SIZE [Rec)

To find out what type a HeapImpl Handle pointed to:

> HeapImpl$Handle
Hand 1 e: PRIVA TE TYPE = LONG POINTER TO Da t a:
> HeapImpl$Data
Data: PRIVATETYPE = RECORD

or to find out what parameters a SchemaDefs. PvPr int took:

> SchemaDefs.PvPrint
Pvprint: PUBLIC TYPE = PROCEDURE [lschema: Lschema, posn: Posnarea,
oispfh: OISPFH)

24.4 Signal and error messages

The following messages are generated by the debugger, Wherever possible, there is also an
explanation of what might ha ve caused the problem and what you can do about it.

24.4.1 Entering the Debugger

The following messages are feedback from CoPilot informing you why the debugger was
entered,

*** Processing VM Map **~

Pilot maintains a log of virtual page to file page mappings so that CoPilot can read and
write the client's virtual memory without regard to whether the data is currently in
real memory. In order to keep mapping operations simple, Pilot logs changes serially,
When the log fills up, CoPilot is invoked to empty it. CoPilot will issue the
Process ing VM Map message and return to the client after a few seconds without
requiring or allowing any user intervention.

*** Interrupt ***

Appears at the top of the Debug .10g window after you have entered the debugger via
interrupt mode (SHIFT-ABORT (CALLDEBUG) has been held down).

*** uncaught SIGNAL SoS (in MayDay)

The user program has raised a SIGNAL (ERROR) which no one dynamically nested above
the SIGNAL invocation was prepared to catch. The debugger prints the name of the
SIGNAL, lists its parameters (if any), creates a new instance of the debugger, and gives

24-23

24

24-24

Oebugger

control to the command processor. At this point Y6U may, for example, display the
stack to see who raised the uncaught SIGNAL.

If the semantics of the situation permit, you may proceed execution at the point of the
SIGNAL'S invocation by issuing a Proceed command. Programs often allow themselves
to be aborted by CoPilot's Qui t command; it simply raises the aborted ERROR on the
client side. If no client catches this error, you end up in the dynamically enclosing
instance of the debugger. If the SIGNAL actually was an ERROR and you elect to Proceed,
you get a ResumeEr ror.

~ote: If CoPilot does not have access to the required symbol tables, the information is printed in octal. For

standard Mesa software, listings which decode these numbers are available.

The remaining error messages in this section are not fatal, but you should be suspicious of
the state of the client.world when they are given.

Copilot inloaded twice! Click to boot.

CoPilot was not exited cleanly in the previous session. The most common ways to leave
CoPilot cleanly are with the Boo t f rom menu in the Herald window, or the Qu it or
Kill commands. Pressing any mouse button will re-install CoPilot; any debugging of
the new client is impossible.

breakpoint not found!

You have swapped to the debugger when the breakpoint information (frame, pc, etc.)
cannot be found (check the code for your program).

Eval stack not empty!

The warning is printed if the debugger is entered via either an interrupt or breakpoint
with variables still on the evaluation stack; this indicates that the current value of
some variables may not be in main memory, where the interpreter normally looks.
Exceptions to this are entry and exit breaks; the debugger has enough information to
decode the argument records that are on the stack in this case (if the appropriate
symbol tables are available).

*** Invalid Swap Reason - Context Invalid ***

CoPilot has been entered with a damaged (core-clobber) or mlssmg client
(teledebugging ended). No debugging is possible in this state; attempts to do so receive
warning messages. However, other cascade features continue to work normally.

Eval-stack is wrong

The evaluation stack had an incorrect number of arguments on it at the time a
Runtime.CaliDebugger was made. In this event, CoPilot works normally, but any
attempt to return to the client will probably cause a stack error.

XDE User's Guide 24

··.Invalid Load State···

CoPilot has been entered without the client's load state available. The load state is
used by the debugger to translate octal information (e.g., module names) into English
~or the user; without the load state only octal debugging features are available.

24.4.2 Symbol lookup

xxx is compiled for an incompatible version of Mesa!

A wrong version of the Compiler was used; e.g., this is an old Mesa object file.

xxx cannot be acquired with read access!

The file named xxx exists, but cannot be read.

xxx is read protected!

The file xxx has been left read-protected by the File Tool or some other subsystem.
Refetching the file will remove the error.

xxx not found!

The variable or file named xxx cannot be found.

!File: xxx

The file named xxx cannot be found.

nnnnnB not started!

The global frame nnnnnB has not yet been started. Any variables looked up will be
uninitialized.

xxx not bound!

The imported variable xxx is not exported by anyone.

!xxx: --compressed symbols--

The symbol file is compressed.

xxx has incorrect version!

The symbol file has an incorrect version stamp.

!Tree for xxx not in symbol table

A multi word constant in your code wasn't copied into the symbol table. Look in the
source file to find the value.

24-25

24

24-26

Debugger

xxx is missing some pages [base, pages+extra)

The bcd or symbols file xxx is not as long as CoPilot expected it to be. base is the
page that CoPilot believes the symbols start on. pages is the length of the symbol
table and extra is the length of the fine-grain table. 'Try refetching xxx to solve this
problem.

Use Interface. importedVariable, not Interface$importedVariable

The debugger cannot find imported variables from an interface file (the "$" notation).
The "." notation will tell it to use the interface record (if found) available in the
current context.

24.4.3 Unrecognized structures

!Can't find links from frame: nnnnnB
!Invalid global frame
xxx not a frame!
xxx has a NULLreturnlink!
xxx has a clobbered accesslink!
xxx is a clobbered frame!
xxx is an invalid PROCESS!
xxx is an invalid global frame!
xxx is an invalid image file!
xxx is not a valid frame!

The structure in question appears to be clobbered (invalid in some way).

24.4.4 Command execution errors

.0. aborted

Execution ofthe current command has been aborted (ABORT has been typed).

Can' tuse <module> of <time> instead of version created <time>

This message is printed if the creation date in the source, object, or symbols file on
your disk is different than the corresponding date recorded by the Compiler or Binder.

!Resetting symbol table

This warning is displayed before the debugger's scratch symbol table overflows. The
debugger's performance decreases somewhat until the symbol table is refilled.

!Number

An invalid number has been typed.

xxx is a definitions file!

You have tried to set a break in a definitions file.

XDE User's Guide 24

xxx not a REAL!

xxx is not a valid representation of a real number.

xxx not implemented! '-..

Feature xxx is not implemented.

!Invalid Address [nnnnS]

During the execution of a command, CoPilot attempted to read or write location
nnnnS, which was not mapped. 110 pages and pages belonging to the germ appear unmapped to

CoPilot.

!Write protected [nnnnS]

During the execution of a command, CoPilot attempted to write location nnnnS, which
was write-protected.

unknown file problem! Your directory probably needs scavenging.

Something is wrong with your directory.

!Command not allowed

Execution of the current command is not allowed, since the state of the user core
image appears to be invalid.

!MDS exhausted [n]

The debugger has run out of memory.

24.4.5 Breakpoints

When using the menu break commands, each of the following errors will cause the screen
to flash after posting a message in the Herald window.

Multiple instances; Use Display Stack, Source to load window.

You have tried to set a break when multiple instances of the module exist; explicitly
setting the context for the source window will permit the break to be set.

Can't dereference or access array to test condition!

You have specified a condition that requires dereferencing or an array indexing to
test; the runtime is unable to evaluate conditions that complex.

too many conditional breaks!

You have tried to set more conditional breaks than the system allows.

24-27

24

24-28

Debugger

invalid relation!

You have specified an illegal relation expression for a condition.

user break block not found!

You have tried to free a conditional breakpoint when the conditional breakpoint
information cannot be found (probably a core clobber).

variable is larger than a word!

You have tried to set a condition that uses a multi word value.

rhs on stack not allowed!

You have tried to set a condition where the right side of the relational expression is on
the stack. Only the left side can be on the eval stack: This can only happen on entry
and exit breakpoints.

Can't check condition not in MDS!

You tried to use a long address as part of a condition.

conditions not checked in Worry mode!

You have attached a condition while in worry mode. This is a warning only.

no exchangable code found!

The debugger has tried several consecutive instuctions and has not found an opcode on
which a breakpoint is allowed. The code has probably been clobbered.

no breaks have been set!

You did a LIs t Break s when there weren't any.

symboltable missing!

The debugger is trying to manipulate a breakpoint for which there is no symbol table
and it is not prepared to handle the situation.

not allowed in INLINE!

You have tried to set a breakpoint in an INLINE procedure.

already set!

You haye already set a breakpoint there.

does not return!

An attempt was made to set an exit breakpoint on a procedure in which the return
statement is not in the correct location (check the code for your program). This occurs

XDE User's Guide 24

??

most often in procedures that end with ERROR or a loop that does not terminate; a code
clobber is also possible.

Patch table full

" The maximum number of breakpoints (50) allowed by Pilot has been reached.

Unknown error.

24.4.6 Displaying the stack

No previous frame!

The end of the call stack has been reached.

No symbol table for nnnnnnB

The symbol table file corresponding to the frame nnnnnnB is missing; any attempt to
symbolically reference variables in this module will fail. (In general, this message is a
warning.)

Cross jumped!

The bcd was compiled with the cross-jumping switch turned on. The source line
displayed may not be what you expect.

Pc not in any procedure!

The debugger was unable to find a procedure or mainline code that matched the
current pc. This is probably due to a clobber.

24.4.7 Interpreter

x is an invalid character

The character x typed to the interpreter is illegal.

Syntax error at [n]

There was a syntax error at location n in the expression given the interpreter.

Parse error at [n]

There was a error at location n parsing the expression given the interpreter.

24-29

24

24-30

Debugger

The following errors may have the offending identifier preceding the message:

can't call a SIGNAL!
can't call an ERROR!
can't call an INlINE!

Y QU tried to call a SIGNAL, ERROR, or INLINE PROCEDURE.

can't lengthen!

The interpreter needed to lengthen apart of an expression while trying to evaluate it.

can't make a constructor!

Use field by field assignments. You gave the interpreter an expression using [] that
looks like a constructor.

double word array index!

The index for an array must be a single word.

has an invalid address!

The expression to the right of the @ is not word-aligned.

is an invalid number!

This is probably a type mismatch.

is an invalid pointer!

This is probably a type mismatch.

invalid subrange!

This is probably a type mismatch.

pointer fault!

You tried to dereference NIL.

xxx is a constant array. Look at source code for value.

An operation on a constant array is too complicated to perform. The operation can be
done by hand, however, by looking at the constant value in the source.

xxx is not an array!

You have tried to use xxx as an array.

is not a valid control link!

The procedure or signal in your expression has an illegal value.

XDE User's Guide 24

is not a relative pointer!

In the expression base [rel], rel wasn't a RELATIVE POINTER.

is not a type!

The identifier used in a type expression was not a type.

is not a unique field selector!

The field selector occurs more than once in the computed or overlaid variant.

is not a valid field selector!

The identifier given for a field selector is not in the record. You may lack the symbols
for the record declaration on your disk.

overflow!

Overflow occurred while doing arithmetic. Perhaps you need a LONG in the expression.

relations not implemented!

a = b is not allowed.

size mismatch!

You tried to assign or loophole two things of different sizes. Loopholing pointers is a
useful trick for records of different sizes.

too many arguments for stack!

You can only call procedures that take 11 or fewer words of arguments.

has incorrect type!

Type mismatch.

unknown variant!

The interpreter found a garbage tag field.

Won't dump that much memory!

You tried to print more than 64K with the MEMORY construct.

not permitted in worry mode!

You can't call procedures in worry mode.

is the wrong base!

In the expression base [rel] , the type of base is not what rel expects.

24 Debugger

has the wrong number of arguments!

The arguments to a procedure call are wrong.

used incorrectly with []!

You probably tried to use [] as a type constuctor.

illegal ind~xing operation

You tried to index something that wasn't an array or sequence.

xxx$ is ambiguous; use frame $!

There is either more than one instance of xxx instantiated, or the code for xxx is
packed with another module.

BUG: !HotAnArray

This is a bug in CoPilot. It means that the interpreter didn't recognize an error
condition. You should submit an AR if this happens and you have a repeatable test
case.

BUG: !HotHere

This is the same as BUG: ! HotAnArray, but a different internal error.

24.5 User.em

24-32

The User. cm is used by CoPilot only during installation.

[Debugger]

Boot: volume

DebugLog:

Example:

[Debugger]
Boot: Tajo/%2

Tells CoPilot what volume to boot (and with what
switches) when the installation process is finished;
CoPilot does a physical volume boot if this line is
absent.

Description ofthe box for the Debug. log window.

DebugLog: [x: 0, y: 0, w: 512, h: 412]

[System]
User: Smith
Registry: PA
Domain: OSBU North

XDE User's Guide 24

Organization: Xerox
FileWindow: [x: 512, y: 0, w: 512, h: 512]

24.6 CoPilot interpreter grammar

StatementList :: = Statement I StatementList; I StatementList; Statement

Statement

LeftSide

Qualifier

Interval

Bounds

Expression

Sum

AddOp

Product

MultOp

Factor

Primary

Literal

BuiltinCall

PrefixOp

ExpressionList

:: = LeftSide Interval I LeftSide +- Expression I
MEMORY Interval I Expression I Expression?

:: = identifier I (Expression) I LeftSide Qualifier I
identifier $ identifier I number $ identifier I
MEMORY [Expression] I LOOPHOLE [Expression] I
LOOPHOLE [Expression, TypeExpression]

:: = .identifier I [ExpressionList]

:: = [Bounds] I [Bounds) I (Bounds] I (Bounds) I
[Expression! Expression]

:: = Expression .. Expression

::= Sum

:: = Product I Sum AddOp Product

:: = + 1-

:: = Factor I Product MultOp Factor

:: = * III MOD

:: = Primary I Primary

:: = Literal I LeftSide I @ LeftSide I BuiltinCall I
Primary % I Primary % (TypeExpression)

:: = number I character I string

:: = NIL I NIL [TypeExpression] I PrefixOp [ExpressionList] I
TypeOp [TypeExpression]

:: = ASS I SASE I LENGTH I LONG I MAX I MIN

:: = empty I Expression I ExpressionList, Expression

24-~~

24 Debugger

TypeOp

TypeExpression

Typeldentifier

TypeConstrudor

:: ,. SIZE

:: ,. identifier I Typeldentifier I TypeConstructor

:: ,. BOOLEAN I INTEGER I CARDINAL I WORD I REAL I CHARACTER I
STRING I UNSPECIFIED I PROC I PROCEDURE I SIGNAL I ERROR I
identifier identifier I identifier Typeldentifier I
identifier. identifi:; I identifier $ identifier

:: ,. LONG TypeExpression I @ TypeExpression I
POINTER TO TypeExpression

24.7 CoPilot summary

24-34

AScii
Read [address, count]
Qisplay [address, count]

ATtach
~ondi tion [number, condition]
~eystrokes [number, commandl
~mbols [globalframe, filenamel

!reak
All

~ntries [module/frame]
! its [module! frame]

~ntry [procedure]
! it [procedure]

~lear

All
!reaks
~ntries [module!frame]
!races
! its [module! frame]

!reak [number]
~ondition [number]
~ntry

!reak [procedure]
!race [procedure]

~eystrokes [number]

!it
@,reak [procedure]
!race [procedure]

CUrrent context

Qisplay
@,reak [number]

~on£i9uration

~yal-stack

frame [address] (gj,l.n,p,Q,r,s,v)

XDE User's Guide

§,lobalFrameTable
Module [module]
~rocess [process] (I,n,D,Q,r,s)

Queue [identifier] (I,n,D,Q,r,s)

Qisplay
ReadyList (l.n,D,Q,r,s)
~tack (g.j,l.n,D,Q,r,s,v)

find variable [identifier]

.!5,ill session [confirm]

List
!reaks [confirm]
~onfigurations

~rocesses

Qctal
pear break [global(rame, ~]
Read [address, number]
~etbreak [globalframe,bytepc]
VVrite [address, value]

~roceed [confirm]

Quit [confirm]

Re~etcontext [confirm]

ReMote debuggee [host) [confirm]

SEt
~onfiguration [config]
Module context [module/frame]
Octal context [address]
~rocesscontext [process]
Root configuration [conrig]

STart [address] [confirm]

!race
All
~ntries [module/frame]
!its [module/frame]
~ntry [procedure]
~tack

!it [procedure]

Yserscreen [confirm]

VVorry
off [confirm]
on [conf i rm]

24

24-35

24 Debugger

24-36

25.1 Files

25

DebugHeap

The DebugHeap Tool allows you to interrogate and analyze Pilot node storage usage and
find storage leaks. It understands the structure of Pilot heaps and zones. See the Pilot
Programmer's Manual for a complete definition of heaps and zones.

Heaps are used to allocate small objects. They can be thought of as retail storage
allocators, while the space machinery can be thought of as a wholesale storage allocator.
Heaps allocate nodes from segments, which are multi-page blocks of memory allocated
from the space machinery. Heaps can allocate either variable-length objects or fixed
length objects. Heaps that allocate variable-length objects use zones to keep track of
allocation within a segment but allocate rather large objects directly from the space
machinery.

Pilot heaps optionally allow owner checking. When owner checking is enabled, an extra
word is allocated with each node; this word contains the global frame address of the
module that requested the allocation. Other heaps may allocate additional information for
debugging purposes. DebugHeaps allow you to specify how many such additional "client
words" were allocated with each object and use them to filter which nodes are displayed.

Retrieve DebugHeap. bed from Release directory.

25-1

25 DebugHeap

25.2 User interface

25-2

The DebugHeap tool interacts through a form subwindow, a file subwindow, and a menu:

{system} address= 51014168
{inOrOut}

~ cl ientWords= 18 clientValue:

:*** Debugging systemlone, address: 51
:ShowNodes Used: 3592 Free: 841
: 3(9)~ 4l2}l 5(17}~'6(25}~ 7(17}l 8(ShowNodes
: 12~S6t 13~ It 14~~~t 15,/~f 169 If ShowSegments
~ ~~ i)}'3~(f)!'4f(f)!'4~(~)!'5~(~)!' ~~~~~gb~~~~ts
: 30 (1~. Octal Contents
: NodesOfSlZe 12: . ClientWords
: 5101525, 51016J04, 5565217, 5566400 Nodes+Totals
:5501600 Totals
:5101606/ (-31871,20) STR!NG.lengt~ su FreeNodes
: 5565221/ (15,15) "Set Prlor,ty Opl Set Heap GFH
: SaveState
: ClearState

Figure 25.1: DebugHeap tool window

25.2.1 Form subwindow

The fields in the DebugHeap Tool form subwindow are as follows:

zone:

address=

swapped:

validateHodes

is an enumerated item that specifies whether to look at one of the
Pilot built-in heaps or a private heap or zone. The zone options are
as follows:

systemMDS processes the built-in MDS heap.

system processes the built-in heap.

zone processes a private zone specified by address.

heap processes a private heap specified by address.

heapMDS processes a private MDS heap specified by address.

is a long number used to specify the address of the heap or zone of
interest.

is an enumerated item. that specifies whether to restrict DebugHeap
to examining nodes that are swapped in, swapped out, or either.

is a Boolean telling DebugHeap to check that values supplied as
node addresses are really nodes. This Boolean is also used by the
string printing routines to check for invalid or suspicious strings.

XDE User's Guide 25

delta' s is a Boolean used to indicate processing of the heap or zone relative
to the saved state (see the SaveS tate and ClearS tate menu
commands below).

clientWords=

clientValue:

mask

25.2.2 DebugHeap menu

indicates the number of words in each node that are being used f<N:
debugging purposes (e.g., one word is used for normal Pilot owner
checking).

is a string form item used to specify a filtering value for processing
nodes. If the heap has Pilot owner checking, specifying a global
frame will cause DebugHeap to display only those nodes that were
allocated by the module. Multiple values can be supplied, separated
by commas and/or spaces, and a range may be specified by two
values separated by" .. ".

is a number (usually specified in octal) . .If clientWords=l and any
client values are specifed in the clientValue field, the value of
mask (if any) is bit-anded with the client words in each node before
comparing with the specified client values.

The DebugHeap menu is attached to the DebugHeap Tool window. The commands are
listed below:

Showllodes

ShowSegments

lIodesOfSize

AsciiContents

OctalContents

tabulates and displays the current state of the selected heap or zone.
The number of free and used words in the entire heap or zone are
displayed, as are the size and number of all used nodes.

displays all segments that make up the selected heap or zone, and
notes their sizes.

displays the address of nodes of the specified size within the selected
heap or zone. The current selection is used to indicate the size. The
heap manager's overhead (currently one word) is included in the
size.

displays the contents of the specified node as an Ascii string. The
current selection is used to indicate the the node address. The
Boolean val ida tellodes indicates whether to check that the
address is really a node and to perform a check of valid strings.
Multiple nodes may be printed by selecting multiple node addresses
separated by spaces and/or commas. (e.g., the output of
lIodesOfSize is valid input to this command).

displays the contents of the specified node as n octal words. The
current selection is used to indicate the the node address. The
Boolean val ida tellodes indicates whether to check that the
address is really a node. Multiple nodes may be printed by selecting
multiple node addresses separated by spaces and/or commas. (e.g.,
the output ofliodesOfSize is valid input to this command).

25-3

25 DebugHeap

ClientWords

Rodes&Totals

Totals

FreeRodes

SetBeap GFB

SaveS tate

ClearS tate

displays the contents of the client-words' portion of the specifed node
in octal. The current selection is used to indicate the the node
address.

displays the node address, length, and module for each node in use
in the current heap or zone. If the clientValue field is empty, free
nodes are also displayed; otherwise only nodes whose client words
match clientValue are displayed. The totals by module are
displayed following the display of all nodes. This command only
works if clientWords=l.

acts like Rodes&Totals, but displays only the totals by module.

displays the address and size of each free node in the current heap or
zone.

manually sets the global frame for the built-in Pilot heaps.
DebugHeap always attempts to find this value automatically. This
command allows you to override the default.

processes the current zone and saves the size and addresses of all
allocated nodes. Setting the Boolean del ta 's tells DebugHeap to
display only the differences between the saved state and the current
zone.

takes all of the state saved as a result of the last SaveState and
discards it.

25.3 Example

25-4

To find a suspected leak:

1. Boot the client with the heapOwnerChecking switch (see pilotSwitches interface
in theXDE User's Guide for the current value).

2. Get the client to a stable state (e.g., deactivate all tools in Tajo); then go to the
debugger.

3. Run DebugBeap in the SimpleExec.

4. Set the zone: and possibly the address: fields so that you are investigating the
particular zone of interest. You will either be interested in the system zone or a
private heap. To examine a private heap, for example, select the heap parameter in
the zone: field and put the value of your UNCOUNTED ZONE variable in the address:
field. .

5. Do a SaveState and proceed to the client.

6. Repeat the suspicious action that might have resulted in a space leak; then try to get
the client back to the state that you had originally (e.g., deactivate tools in Tajo).

XDE User's Guide 25

7. Interrupt to the debugger and turn Deltas on. While Deltas is on, most commands
show the difference between the new state and the saved state.

If you invo.ke Totals, anything that shows up is suspicious (see Totals). Totals will
tell you what the modules were that allocated the suspicious nodes.

8. Now that you have a list of modules that are suspect, put the global frame handles of
the modules in the clientValue: field.

9. Invoke lIodeSIiTotals. Investigate each node or a list of nodes using the
OctalContents or AsciiContents commands. The size of the node is also a good
hint as to what was allocated. Subtract one (two, if you booted with the
heapOwnerCheckinCJ switch) from the size of the node and try to figure out where in
the module you allocated such a node.

Repeat the above steps for every heap and zone where you suspect a leak.

25-5

25 DebugHeap

25-6

26.1 Files

26

IncludeChecker

The IncludeChecker is a program that examines a collection of local or remote text and
object files for consistency and produces an output listing that gives a compile, bind, and
package order for the files in the collection. For each object file, a list of all the object files
that it includes and a list of the object files that include it is also produced. Any
inconsistencies (described below) are flagged in this listing by an asterisk. As an option,
the IncludeChecker will also generate a compile, bind, and package command in Line. em
that is its best guess as to the way to make the files consistent.

The IncludeChecker determines that an inconsistency exists among the input files if
either: .

1. An object file includes another object file with a version that is different from any
version of the included file that was found. This might happen, for example, if the
included file had been recompiled.

2. A text file is newer than the corresponding object file. This could happen if the text
had been edited, or if the text had been retrieved from a remote file server. The
IncludeChecker compares the creation date of the text file against the creation date
recorded in the corresponding object file.

When determining consistency, the IncludeChecker tries to deal gracefully with files
found in multiple locations and versions. It attempts to match these files with the
corresponding object and text files (possibly on other directories). It also tries to match
included files against versions ofthose files that it has found.

Retrieve IneludeCheeker. bed from the Release directory.

26.2 User interface

The IncludeChecker runs either as a tool or in the Executive. It lists file names in the
compilation order, and the consistent compilation command, by inclusion depth, with the
deepest files included first. Within that constraint, definitions modules are printed before

2f1-1

26

26-2

IncludeChecker

program modules. In general, then, the lowest-level definition modules appear first, while
the highest-level program modules appear last.

~ Listing:
~ Check!

1 Apply!

IneludeCheeker. list Commands: Line.em Options!
Host: Dir: Comm
Files:

source w/o Bcd OK Tables to Disk
Miltiple Output Files Limit File Length

Abort!

Figure 26.1: IncludeChecker tool window

The Includes list indicates the host and directory for both text and object files. It also
notes, when multiple copies of a file are found, the different versions and their locations. If
an object file was derived from a version of the text that was never found, there will be one
entry for the object file and one entry for each version of the text that was found (since in
general, these can be in different locations). Obtaining this list (with the Ii
OperatingSwitch, which is the default) is strongly recommended because it can explain,
for example, why the Inc1udeChecker wanted to recompile some file. This means that the
Is OperatingSwitch should not be used.

Note: It is also a good idea to inspect Line.em before executing it, since the
IncludeChecker's idea of what should be recompiled and rebound may not be the same as
yours. Because the compiler does not give enough information to completely construct the
packaging command, the packaging command is incomplete and must be edited by hand.

26.2.1 Toolinterface

The IncludeChecker communicates through a message subwindow, a form subwindow,
and a file subwindow. The fields in the form subwindow are as follows:

Check! starts the IncludeChecker.

Bost: is the name of the host to be used for remote files.

Dir: is the default remote directory.

Piles: are the files to be checked by the IncludeChecker.

XDE User's Guide 26

Listing: is the name of the outputfile the IncludeChecker generates that
shows the dependencies of the files. The outputfile requires a
substantial amount of disk space. The default extension is
• list.

Commands:

Options!

Command:

Pause

List

Order

is the file where the IncludeChecker writes the rebuild commands.
The default extension is .cm.

brings up a separate Options window.

causes a command file to be written to the file named by the
Commands: field.

causes a /p to be appended to the compile command in rebuild
command.

prints the includes and included-by relationships in the Listing:
file. Default = TRUE.

prints compilation order in the Listing: file. Default = TRUE.

The following switches are in the Options! window:

Indirect Local
Includes

causes analysis of both directly and indirectly included files. Thus
only the top-level bcd need be specified in the Piles: item.
Default = TRUE.

Source v/o Bcd Olt If there is a text file without the corresponding bcd, no error will be
raised. Default = FALSE.

'I'ables '1'0 Disk

Verbose Output

Multiple Output
Piles

causes the IncludeChecker's internal data structure to be written
to outputfile.data. This option is intended for future use. It is
not needed by standard users of Mesa 11.0. Default = FALSE.

gives complete file list. Default = TRUE.

writes output to outputfile.includes and outputfile.
includedBy. Default = FALSE.

Limit Pile Length limits file lengths to 100,000 bytes. Successive file names are
outputfile .list2, outputfile.list3, etc. Default = FALSE.

Apply! invokes options.

Abort! resets to previous options.

26

26-4

IncludeChecker

26.2.2 Command line

The syntax for the command line is:

CommandLine :: = IneludeCheeker [<OperationParameters > 1
[<FileList> 1

<OperationParameters> :: = <OutputFile >1<OperatingSwi tehes >
[<CommandList > 1

<OperatingSwitehes> ::=a I eli 111m Inlo Ip Is Iv Ix
(See the section on Operating switches)

<CommandList> ::= {<Command>le <Name>}+

<Command> :: = open I dir I commandFile

<FileList> :: = <FileNamel FileName2 ... >}+

The <Operationparameters> and <FileList> components of the CommandLine
are optional. In <CommandList >, the Ie switch indicates to the Inc1udeChecker that the
token before the Ie is a command (e.g., open, dir, eommandFile),nota FileName.

The OutputFile is the name of the file written. If no extension is given, .list is
assumed. If no OutputFile is given at all, IncludeChecker .list is assumed.
< F i 1 eLi s t > is the list of file names specifying the text and . bed files to be checked. It is
not necessary to give an extension, since the Inc1udeChecker will look for any • mesa,
• bcd, • eonf ig or • pack file with the specified name. (Consequently, don't specify both
Foo. bed and Foo. mesa on the command line, since Foo would be checked twice.)

In general, a FileName can be fully qualified by giving a host and directory; e.g.,
[server] <Int>Pilot>Publie>Heap.mesa. It is possible to intermix remote and
local files on the command line since the host name ME is interpreted to mean the machine
running the IncludeChecker, so that [ME] Space. bcd refers to a file on the local disk. The
initial setting for the global host name is ME and the global directory name is empty.

26.2.3 Operating switches

Each operating switch can be preceded by a - or - to reverse its meaning. The switches
are:

a Check all directly and indirectly included files on the local disk (the default).

e "Consistency command": write a compile and bind command in Line. cm (-c is the
default). In addition, list as comments any object files and text files not found that
are needed for the compilation or binding.

i Print both the includes and include'd-by relationships in the output file (the
default).

1 Limit output file size to 100,000 bytes per output file. Successive file names are
outputfile.list2, outputflle.list3,ek.

XDE User's Guide 26

mUse multiple output files (-m is default). The compilation order is written on
source.outputfile. The includes and included-by relations are written onto

. outputfile. includes and outputfile. inc1udedBy, respectively.

n Don't list text files for compilation or rebinding that have no object file on the disk
(-n is the default).

o Print a compilation order in the output file (the default); -0 suppresses this
listing.

p Place a /p after every change of inclusion depth (see below) in the consistency
command (-p is the default). This will cause the Compiler or Binder to stop if
errors are found while processing the files of that depth.

s Same as /c - i -0. This is used when only a consistent compilation command is
needed. This switch is not recommended, since the includes/included-by list
(produced by Ii) is very helpful in determining why the IncludeChecker asked that
particular files be recompiled or rebound (-s is the default).

v Verbose listing. This switch will produce feedback about all files checked even if
errors are detected. I-v will produce feedback only on files that generate errors. (v
is the default.)

x Just activate the tool and don't run in the Executive.

26.3 Examples

To check files on the local disk,just list them, e.g.:

>Inc1udeChecker Lex.list/cio LexiconDefs Lexicon LexiconC1ient

inspects the text and object files for the modules LexiconDefs, Lexicon, and
LexieonClient for consistency. It also checks that these files are consistent with their
included object files. Lex.1 i s t is the output file.

If you have a list of the text files for a program in a file, say, ListOfFiles. em, you can
check these files with a command line of:

>Ine1udeCheeker MyStuff.1ist/cio @ListOfFiles.cm@

MyStuff .list is the output file. Note: The Executive replaces @File@ with the
contents of File (see the Executive chapter).

To check all files on the current search path, use the following command line:

>Ine1udeCh~eker A11Fi1es.1ist/c

processes all .bcd, .mesa, .config, and .pack files on the current search path.
AllFiles .list is the output file.

Remote files are checked by using a command line syntax much like that for FTP (see the
FTP chapter). The open and dir commands specify a remote host and directory. The /c

26-5

26

26-6

IncludeChecker

switch associated with open and d i r indicate to the IncludeChecker that the previous
token is a command. The Ie operating switch associated with the output file,
MyProqram.list, instructs the IncludeChecker to write a compile and bind command
in Line. em (see the Operating switches section).

>IneludeCheeker MyProqram.list/e open/e server dir/e
WorkinqDir>MyProqram @Souree.MyProqram@

To check all files on the remote directory [server] <WholeDir>, use the following
command line:

>IneludeCheeker WholeDir.list/e open/e server dir/e WholeDir

To run the IncludeChecker on a local directory named Temp and create a rebuild
command:

>IneludeCheeker AIIOfTemp.list/e dir/e Temp

Note that giving the IncludeChecker an explicit local directory to check is somewhat
faster than setting the search path to that local directory and using the command line:

>IneludeCheeker AIIOfTemp.list/e *.mesa

Specifying an explicit local directory avoids the Executive expansion of *.mesa, the
parsing of a potentially very long command line, and the lookups for each Fi leName F
(F. mesa, F. bed IF. eonf iq, F. pack). Instead, the entire directory is enumerated;
no unnecessary probes are done to determine iffiles exist.

To bring up the tool only, type either of the following commands to the Executive:

> Ine1udeCheeker/x

>Run IneludeCheeker.bed

The output file by default is written on Ine1udeCheeker.1 ist and the command file is
Line.em. To direct the output file to MyFile.list and the command file to
MyCommand • em in the first example, type:

>Ine1udeCheeker MyFile/c dir/c Temp eommandFile/c MyCommand

XDE User's Guide 26

26.4 User.em

The following is a list of the User. cm fields used by the IncludeChecker:

[IncludeChecker)

CommandNameFromRoot:

DefaultSwitehes

Boolean item that, if TRUE, will cause the IncludeChecker to
use < root> .cm instead of Line. cm as the name of the
compile, bind, and package command produced by
running the IncludeChecker with Ie. < root> is the output
file name minus any extension.

Operating switches to be used by the IncludeChecker. (See
the Operating switches section.)

26-7

26 IncludeChecker

26-8

27.1 Files

27

Lister

The Lister produces various listings of information in object files, such as dates of the
definitions files used by an object file and a cross-reference listing of procedure calls
within the object file.

Retrieve Lister. bcd from the Release directory.

27.2 User interface

The Lister runs in the Executive. Commands look like procedure calls with constant
(string, numeric, character, boolean) arguments. Arguments are type-checked by the
command interpreter. To run the Lister, type to the Executive:

>Lister <commandl[arc:Jl, ar92, ••• J> <switches> <command2[ar91,
.•• J> <switches>

You actually type the square brackets, as in a Mesa procedure call. For parameters of
string type, quote marks are optional; the scanner will take any characters up to the next
comma or right bracket if the first character is not a quote. The optional local switches are
a sequence of zero or more letters preceded by a slash (I). Each letter is interpreted as a
separate switch designator, and each may optionally be preceded by - or - to invert the
sense of the switch. The switches that apply to each command are documented in the
description of the command.

Almost all of the Lister commands read one or more object files and extract information
from them. The files can be the output of either the Compiler, the Binder, or the Packager,
although some commands require one or the other specifically. In the case of a single file,
the parameter is the name of the file; if no extension is given, • bcd is assumed. Some
commands take a list of files. In this case, the parameter specifies a file (such as
object .defs) that contains a list of object files separated by blanks.

The commands are divided into two sections below: those of general use, and those used
internally by the Mesa implementors. Quote marks are shown for command parameters
that are of string type; it is usually not necessary to type them to the Lister.

27

27-2

Lister

27.2.1 Commands useful to general Mesa users

Compress ["FileList"]

F ileList is the name of a file that contains a list of compiler output object files. The USING

lists of the directory statement are generated for each module in the list; they are then
sorted to show for each interface, and for each item in the interface, which modules
reference that item. The same caveat about implicitly included symbols applies as for the
Us i ng command. The output is written to FileList. ul.

Help (], Help ["ConunandName"]

Help [] will list the set of Lister commands and the command syntax for each. This can
also be done by calling the Lister with no command, or by calling the Lister with a
command it does not recognize. Help["Conunandname"] will print the syntax for a
particular command.

Implementors ["FileList"]

FileList is the name of a file that contains a list of compiler output object files
(interfaces and program modules). This command creates a file, FileList. iml, showing
where the various interface items are implemented for each interface exported by any
program in the list. If the list also includes the object file for a particular interface, the
interface items not implemented by any program are also shown. In order to run this
command, you need not only the object files in the list, but also the object files for the
interfaces exported by the programs therein. Missing object files are reported and the
command attempts to forge on.

Inter face [" FileName"]

Given the object file for an interface (DEFINITIONS file), this command produces a list of the
interface items and numbers (on FileName. il). These numbers are the ones reported by
the Binder for unbindable items in the absence ofthe proper symbols.

Stamps ["FileName"]

FileName is a Compiler, Binder, or Packager output object file. This command generates
a file, Filename. bl, that shows the version stamps of any modules bound in the file, and
of all imports and exports of the top-level configuration in the file.

UnboundExports["FileName"]

FileName is a Compiler, Binder, or Packager output object file. This command examines
all of the exported interfaces and generates a file, FileName. xl, which lists the items in
those interfaces that are not exported by this module or configuration.

Using ["FileName"]

FileName is a Compiler output object file. This command generates a directory statement
with its included identifier lists (on FileName. ul). Since there is not enough information
in the symbol table to tell reliably which symbols were implicitly included, the USING

clauses may contain a superset of those items actually needed.

XDE User's Guide 27

UsingLis t ["FileList"]

FileList is the name of a file that contains a list of Compiler output object files. This
command creates a ". ul" file for each file named in the list.

Version ["FileName"]

FileName is a Compiler, Binder, or Packager output object file. This command shows, on
SimpleExec .log, the object, source, and creator version stamps of the file.

Xref ["FileList"]

FileList is the name of a file that contains a list of Compiler output object files. This
command creates one or more files, filenamel.xref, filename2.xref, etc. that contain
a sorted list of all public declarations in the collection of modules and interfaces. A few
dummy lines are inserted to make this file a Mesa program syntactically. You should run
it through the Formatter (see the Formatter chapter) to make it more readable. If the /p
switch is specified, the output file will also show the private declarations.

XrefFileSize[ByteCount]

This command tells the Xref command to limit the size of the output files to ByteCount.

XrefByCaller ["FileList"]

FileList is the name of a file that contains a list of Compiler output object files. This
command creates a single file, FileList.xlr, that shows for each procedure of each
module in the list, what other procedures it calls. It does this by scanning the code for the
modules. It does an imperfect job in that it cannot tell who is being called via a procedure
variable. However, if there are any procedure variables called, it makes an entry for "*" in
the list of called procedures. You can check these procedures by hand. It does not report
calls to procedures nested within the given procedure.

XrefByCallee ["FileList"]

This is similar to XRefByCaller, except that the results are shown sorted by callee, and
the output file is named FileList. xle. Thus, the entry for "*" is the set of procedures in
the list of modules that contain calls to procedure variables.

27.2.2 Commands useful to wizards

Bcd [" FileName"]

FileName is a Compiler, Binder, or Packager output object file. This command produces a
listing of the internal tables of the binary configuration description (on Filename. b 1).

BcdLinks ["FileName"]

This is the same as the Bcd command, except that the control links of imported and
exported items are included.

27-~

27

27-4

Lister

BedSegment("FileName", Base, Pages, Links]

This is the most general form of the Bcd command, which allows you to specify "the location
of the configuration description by file name, starting page number, number of pages, and
whether you want the links (specify TRUE or FALSE).

Code [" FileName"]

FileName is a Compiler output object file. This command produces a listing of the object
code (on Filename.el). If the source file is available on your disk, the source for each
statement is listed just before the object code.

Switches:

/d give all numbers in decimal.

/h give all numbers in hexadecimal.

/0 give all numbers in octal (default).

Warning: This command produces a large amount of output.

Warning: If the module is subsequently packaged, the code offsets will change (although
the sequence of operations will be the same). If you are making listings for low-level octal
debugging, be sure to make new listings of code for packaged modules using the
CodelnConfig command.

CodelnConfig ["Config", "Module"]

This command produces a listing of the object code of a module that has subsequently been
packaged. The listing reflects the new code offsets produced by the Packager. Config
should be the bcd produced by the packager, or one including it. Module is a module
within the packaged configuration. This command may also be applied to unpackaged
configurations; in this case it produces the same output as the Code command. If the
module is in a configuration that was bound with symbol copying, the symbols file must be
available on the local file system.

Switches:

/d give all numbers in decimal.

/h give all numbers in hexadecimal.

/0 give all numbers in octal (default).

OetalCode ["FileName"]

This is the same as the Code command, except that opcodes are given in octal as well as by
name.

XDE User's Guide 27

Switches:

Id give all numbers in decimal.

Ih give all numbers in hexadecimal.

10 give all numbers in octal (default).

Warning: This command produces a very large amount of output.

OctalCodeInConfig ["Config", "Module"]

This command is the combination of the CodeInConfig andOc talCode commands.

Switches:

Id give all numbers in decimal.

Ih give all numbers in hexadecimal.

10 give all numbers in octal (default).

Symbols ["FileName"]

Given a Compiler output object file, this command lists the internal symbol table (on
FileName. sl).

SymbolSegment["FileName", Base, Pages]

This is a more general form of the Symbols command, which allows complete specification
of the location of the symbols (e.g., in a • symbols file).

There are several other commands that are either self-documenting or uninteresting to all
but the most hardcore Compiler debuggers.

27-5

27 Lister

27-6

28

Performance tools

This chapter documents four tools that aid in the study of the behavior of Mesa programs:
the CountPackage, PerfPackage, Spy, and Ben.

The CountPackage is based on trapping control transfers (XFERS). An XFER is the general
control transfer mechanism in Mesa. The following are all XFERS: procedure call, return
from a procedure, traps, and process switches. The CountPackage counts the number of
control transfers (XFERS) to a module and records the time spent executing in a module. It
can also be used to gather information on the flow of control between groups of modules.

The PerfPackage allows you to identify places in your programs and then collect timing
and frequency statistics of program execution between these places.

Spy can measure the amount of time spent executing in a module, certain procedures, or
even source statements within a procedure; it can optionally charge the caller for this
time. The Spy operates by waking up periodically and sampling the Pc. Spy is probably the
simplest tool to use; it is especially useful for top-down analysis of a program (Le., the Spy
can be used to identify the hottest modules, then the hottest procedures within those
modules, and so forth). It also has less effect on the execution of the client than the
CountPackage or PerfPackage. However, the Spy is not as useful as the PerfPackage for
studying very short or infrequent actions. The PerfPackage is best for studying the precise
time spent in a module by various paths.

Ben is a package that is used to produce a list of the backing-store transfers that occur
during some interval of client activity. The output report also contains other information,
such as what caused the transfer to occur. This package is useful in determining why code
and data ts in the working set for a user action, and may be used to debug code packaging
specifications.

All four tools come in two pieces: a client part and a tool that runs in CoPilot. The client
part must always be loaded and started before any measurements can be made. For the
CountPackage and PerfPackage the client part is RuntimePerf. bed; for the Spy it is
SpyNub. bed; for Ben it is Ben. bed. The tools for the CountPackag~ and PerfPackage are
bound together in CPPer f . bed; the Spy tool is contained in Spy. bed; the data reduction
program for Ben is contained in RedueeBen. bed.

28-1

28 Performance tools

28.1 Control Transfer counter tool

28-2

The CountPackage is implemented as a set of commands that can be 'executed from
CoPilot, a routine that intercepts all XFERS and collects statistics about them, and a routine
that intercepts conditional breakpoints for turning the XFER monitoring on and off.
Existing CoPilot commands are used to specify where XFER monitoring is enabled, and
additional commands are provided for controlling the counting of XFERS and outputting the
results.

This tool is intended to provide a global view of the behavior ofa system. With it, you can
identify modules that warrant closer study with other tools such as the PerfPackage and
Spy.

28.1.1 Files

Retrieve RuntimePerf.bed onto the client volume. Retrieve RuntimePerf.symbols
and CPPer f • bed onto the debugger volume.

28.1.2 User interface

Interaction with the CountPackage is done through its window. There are three
subwindows: the message subwindow, the form subwindow, and the log subwindow. Error
messages and warnings are displayed in the message subwindow. Commands are invoked
in the form subwindow. All output is displayed in the log sub window and written on
Count. log.

~ Monitor: {. on} Zero Tables! Condition Breaks!
~Print Tables! Print Sorted! Sort by: { time}
~print Module! I Module: ISet Process! I Process: I
~Mode: {~matrix} load Matrix! Show Group!

Available commands are:

Monitor: {off. on}

28.1 Control Transfer cCounter tool

turns off/on the tool's breakpoint handler. All conditional
breakpoints will affect the state of XFER monitoring when
the monitor is on and will behave as normal conditional
breakpoints when it is off.

XDE User's Guide 28

Zero Tables! zeroes out all counts and times.

Condi tion Breaks! makes all non-conditional breakpoints conditional by
adding the condition" l' to them.

Print Tables! displays all the statistics for each module in order of
increasing global frame table index (gfi) for plain mode.
In matrix mode, it displays the statistics for each nonzero
elelnent of the matrix. The output format of times is
sec. msec: usec. This command may be aborted by
typing ABORT.

Print Sorted! displays all the statistics for each module in order of
decreasing time or decreasing number of XFERs ,depending
on the value of Sort by. This command may be aborted
by typing ABORT. This is not allowed in matrix mode.

Sort by: {count, time} when set to count, the Print Sorted command displays
table entries in order of decreasing number of XFERS;
otherwise it displays them in order of decreasing time.

Pr int Module! displays the statistics for the module specified by Module.
This is not allowed in matrix mode.

Module: specifies the module to the Print Module command. It
is either the module's global frame table index (gf i), its
global frame address (g), or its module name (if the
current configuration contains the desired module).

Set Process! specifies that only those XFERS executed by the specified
process are to be counted. The default case is to track all
processes.

Process:

Mode: {plain, matrix}

Load Matrix!

Show Group!

used by the Set Process command. It contains an octal
ProcessHandle as obtained from the CoPilot's List
Processes command. If Process is empty when Set
Process is invoked, all processes are tracked.

when set to plain (default), the Xfer Counter records
transfers between modules. When set to matrix, the
Counter records transfers from one group of modules to
another.

reads the file to collect group information treating the
current selection as a file name.

using the current selection as a group number, prints the
names of the modules belonging to that group. This
command may be aborted by typing ABORT.

28-3

28

28-4

Performance tools

28.1.3 Operation

There are two modes of operation: plain and matrix. Plain mode (the default) simply
records the time spent in a module and the number of XFERS to that module. Matrix mode is
used to gather information on the flow of control between groups of modules. Each module
is a member of one of as many as 16 groups. A 16-by-16 matrix of counts and times is
maintained by the Xfer Counter. The rows of the matrix are the groups of the source of the
XFER, the from group. The columns of the matrix are the groups of the destination of the
XFER, the to group.

In plain mode when XFER monitoring is enabled and an XFER occurs, the trap handler
calculates the time since the last XFER and adds that to the cumulative time for the current
module. It then calculates which module is the destination of the XFER and makes that the
current module, incrementing its count. In matrix mode when XFER monitoring is enabled
and a XFER occurs, the trap handler updates the appropriate element of the matrix. In both
modes, the XFER handler then completes the XFER, and the client program continues.

The state of XFER monitoring can be controlled by two methods. The first is by setting a
conditional break to be handled by the tool's breakpoint handler. The second is by calling
the procedures xferCountDefs.StartCounting and xferCountDefs.StopCounting.

When the break handler intercepts a breakpoint, it checks to see if the breakpoint is
conditional. If not, the break handler just proceeds to CoPilot. If it is, the state of XFER

monitoring is changed and program execution is resumed. A condition of 0 turns on XFER

monitoring; a condition of 1 toggles the state of XFER monitoring; a condition of 2 turns off
XFER monitoring. Any other condition has no effect.

The procedures XferCountDefs.StartCounting and XferCountDefs.StopCounting provide an
alternative method of enabling XFER monitoring. These procedures may be called from
statements in the client program, or they may be called from the debugger's interpreter. If
they are to be called from the CoPilot interpreter. you should set module context to PilotCounter and interpret

call StartCounting and StopCounting.

Since multiple processes may interact with each other, there is the concept of the tracked
process. If the tracked process is not NIL, only those XfERS that are encountered during
execution of the tracked process are counted; all others are simply resumed. If the tracked
process is NIL, then all processes are tracked.

The group information for matrix mode is entered into the Counter by reading an edited
version of the output from the debugger's Display GlobalPrameTable command.
Appending the group number to the line for a module will assign the module to that group.
If no group number is specified, the module is assigned to the group of the previous line.
Modules not assigned to any group are members of group o. For example:

BcdOperations G:400B1 group 1
PilotLoadState G: 430B 2 group 2 the Loader proper
PilotLoaderSupport G:404B
PilotLoaderCore G:444B
STLeaflmpl G: 17554B 3 - - group 3 Pilot
SpacelmplB G:17524B
SpacelmplA G:17504B
STreelmpl G:17324B

XDE User's Guide 28

ProjectionImpl G:17370B
STreeImpl G:17124B
HierarchyImpl G:17150B
VolFileMapImpl G:20060B
FileImp1 G:17020B
CachedSpaceImpl G:14644B
CachedRegionImplB G: 14400B
CachedRegionImplA G:14314B
FileCacheImpl G:13204B
ZoneImpl G:14304B
Utili tiesImpl G:14300B
HeapImpl G:20334B
Processes G: 14120B

The significant part of each line in this matrix specification is the part that begins with
"G:". This must be followed by a number, the actual global frame handle number. To
assign that module to a group, the global frame handle must be followed by a space
and the group number it is to go into. The rest of the line is ignored.

28.1.4 Limitations

Execution speed: XFER monitoring slows down the execution of a program considerably,
since extra processing is done on every XFER. As a result, interrupt processes that are
triggered by real-time events (e.g., the keyboard process) will run relatively more
frequently.

Idle loop accounting: When no process is running, the Mesa emulator runs in its idle loop
waiting for a process to become ready. This idle time is charged to the process that was last
running.

Time base: The time base is a 32 bit counter, where the basic unit of time is a System.Pulse
whose resolution varies between 1 and 1000 microseconds. The counter typically turns
over about once an hour; no individual time greater than an hour is meaningful. Total
times are 32-bit numbers and will overflow after 340 minutes.

Overhead calculation: Due to implementation restrictions and timer granularity, some of
the overhead of processing an XFER trap is incorrectly assigned to the client program
instead of the CountTool. As a result, times must be interpreted as only a relative measure
of the time spent in a module.

Counter sizes: Counts are 32-bit numbers. The maximum total count is 4,294,967,295
XFERs.

Memory requirements: The CountTool requires 16 pages of the client's resident memory.

Worry mode: The CountTool operates in worry mode; see the chapter on CoPilot for more
information about worry mode.

28-5

28

28-6

Performance tools

28.1.5 Getting started

The steps required for using the Count Tool are outlined in the following steps.

1. Retrieve Runt imePer f. bcd onto the client volume.
RuntimePerf. symbols and CPPerf. bcd onto the debugger volume.

2. Run CPPe r f in CoPilot.

Retrieve

3. Start your program with RuntimePerf included. This can be done by running
Run t imePer f in the Tajo executive.

4. Enter CoPilot and set conditional breakpoints to enable monitoring as desired.

5. Turn the break handler on by setting the Moni tor parameter to on.

6. Proceed with program execution.

7. Return to CoPilot via an interrupt or an unconditional breakpoint.

8. Display results with the Print commands.

28.1.6 Sample session

The following annotated listing of Debug .log and Count .log should give a fair idea of
the use of the count tool. It counts the XFERs executed when loading a module.

3-Feb-82 11: 57
*** interrupt ***
-- set breakpoints to count XFERS involved with loading
>SEt Root configuration: Tajo
>SEt Module context: pilotLoaderCore
>Break Entry procedure: New Breakpoint *1.
>Break Xit procedure: New Breakpoint *2.
>ATtach Condition I: 1, condition: 0
>ATtach Condition I: 2, condition: 2
-- condition 1 turns XFER counting on; condition 2 turns it off
>Llst Breaks
1 -- Break at entry to New (in PilotLoaderCore, G: 444B). Condition:
o
2 Break at exit from New (in PilotLoaderCore, G: 4448).
Condition: 2
>Proceed [Confirm]
*** interrupt ***
-- look at the XFER count results
>--Test.map file containing group information
-- set mode to matrix and load group information using Load Matrix
command
>Proceed [Confirm]
*** interrupt ***
-- look at the matrix

XDE User's Guide

From Count .log:

Xfer Counter 8.0 of 2-Feb-82 17:32
3-Feb-82 12:10

28

Track process: 1008 ignore processes not involved in loading

-- Output of Print Tables command with mode = plain
Total Xfers
Total Time

5,150
600:638

Frame Module IXfers

137508
141208
203348
143008
143048
132048
134408
143148
144008
146448
164608
165708
170208
200608
201648
171508
171248
173708
173248
173108
175048
175248
175548
12570B

444B
404B
430B

FrameImpl
Processes
HeapImpl
UtilitiesImpl
ZoneImpl
FileCacheImpl
SubVolumeImpl
CachedRegionlmplA
CachedRegionlmplB
CachedSpacelmpl
MStorelmpl
PageFau1tlmpl
Filelmpl
VolFileMaplmpl
Volumelmpl
Hierarchylmpl
STreelmpl
Projectionlmpl
STreelmp1
MapLoglmpl
SpacelmplA
Spacelmp1B
STLeafImpl
DiskChannelImpl
PilotLoaderCore
PilotLoaderSupport
PilotLoadState

%Xfers

20
45
64
39
22
28

2
172
100

87
1

20
32
39
20
95

120
73

276
5

189
34
72
16

2,483
176

52

Time

.38

.87
1.24

.75

.42

.54

.03
3.33
1.94
1. 68

.01

.38

.62

.75

.38
1.84
2.33
1.41
5.35

.09
3.66

.66
1. 39

.31
48.21

3.41
1.00

%Time

805
3:539
4: 115
9:900
5:266
2:734

633
60:754

8:259
17: 584

115
1:496
2: 331
3:482
1:323
5:698

20:433
5:266

55:861
805

11:051
2:273
6:792
1:064

168:017
10:418

127:955

-- Output of Print Sorted command with Sorted by= count
Total Xfers
Total Time

5,150
600:638

Frame Module tXfers

4448
4008

17324B
175048
4 04B
14314B

pilotLoaderCore
8cdOperations
STreelmpl
SpacelmplA
Pi10tLoaderSupport
CachedRegionlmp1A

%Xfers

2,483
868
276
189
176
172

Time

48.21
6.85
5.35
3.66
3.41
3.33

%Time

168:017
62:654
55:861
11: 051
10: 418
60:754

.13

.58

.68
1. 64

.87

.45

.10
10.11

1. 37
2.92

.01

.24

.38

.57

.22

.94
3.40

.87
9.30

.13
1. 83

.37
1.13

.17
27.97
1. 73

21.30

27.97
10.43

9.30
1. 83
1.73

10.11

28-7

28

28.2

28-8

Performance tools

17124B
14400B
17150B
14644B
17370B
17554B
20334B
4 30B
14120B
14300B
20060B
17524B
17020B
13204B
14304B
13750B
20164B
165708
12570B
173108
134408
16460B
Ignored XEers
Ignored Time

Tables zeroed
Matrix loaded

STreeImpl
CachedRegionImplB
HierarchyIinpl
CachedSpaceImpl
ProjectionImpl
STLeafImpl
HeapImpl
PilotLoadState
Processes
UtilitiesImpl
VolFileMapImpl
SpaceImplB
FileImpl
FileCacheImpl
ZoneImpl
FrameImpl
VolumeImpl
PageFaultlmpl
DiskChannelImpl
MapLoglmpl
SubVolumelmpl
MStorelmpl

973
86:829

Track process: 1008

120 2.33 20:433 3.40
100 1.94 8:259 1.37

95 1.84 5:698 .94
87 1. 68 17:584 2.92
73 1.41 5:266 .87
72 1. 39 6:792 1.13
64 1. 24 4: 115 .68
52 1. 00 127:955 21. 30
45 .87 3:539 .58
39 .75 9:900 1.64
39 .75 3:482 .57
34 .66 2:273 .37
32 .62 2: 331 .38
28 .54 2:734 .45
22 .42 5:266 .87
20 .38 805 .13
20 .38 1:323 .22
20 .38 1:496 .24
16 .31 1:064 .17

5 .09 805 .13
2 .03 633 .10
1 .01 115 .01

XFERs not in the tracked process
time spent outside tracked process

-- OUtput orPrint Tables command with mode = matrix

Total Xfers 4,919
Total Time 523:623
From -> To IXfers %XEers Time %Time

-------- ------- ------- -------
1 -> 2 854 17.36 70:482 13.46
2 -> 1 861 17.50 62:596 11.95
2 -> 2 1,759 35.75 194:121 37.07
2 -> 3 30 .60 2:244 .42

Ignored Xfers 973
Ignored Time 86:829

Performance Measurement Tool

The Performance Measurement Tool (PerfPackage) uses CoPilot's breakpoint mechanism
to collect timing and frequency statistics of program execution between breakpoints. The
client part of the PerfPackage, RuntimePerf. bcd, contains a routine that intercepts all
conditional breakpoints and collects statistics about them. Existing CoPilot commands are
used to specify what points are to be monitored, and the tool provides commands for
controlling the measurements and outputting the results.

XDE User's Guide 28

28.2.1 Files

Retrieve RuntimePer f. bed onto the client volume. Retrieve RuntimePerf. symbols
and CPPerf. bed onto the debugger volume from the Release directory.

28.2.2 Concepts

A node is defined to be a point in a program where a breakpoint can be set by CoPilot. In
fact, nodes are implemented via conditional breakpoints, so that while monitoring is
turned on, the functioning of all conditional breakpoints is different. In particular,
conditional breakpoints cause performance data to be gathered rather than a breakpoint
to be taken. The number of times a node is encountered is tallied by the Perf Package.

A leg is defined by a pair of nodes, one called the from node and the other the to node. A leg
is the code executed between these nodes. Interesting items measured about a leg include
the number of times this leg was executed and the time required to execute the leg.

Facilities are also provided for associating a histogram with any node or leg, thereby
providing more detailed distribution information about the entry than is provided by
counts, sums, and averages.

Since processor time or task time is not available, the measure of computing is simply the
elapsed time between the time the from node is executed and the time the to node is
executed.

28.2.3 Definition of terms

Node Table

NodelD

Leg Table

LegID

Histogram

A node table is a table maintained by the measurement module that
contains information about each node. A node for each conditional
breakpoint is entered into this table by the Collect nodes command
or by the measurement module when it encounters a conditional
breakpoint that is not already in the table. The node table has 20
entries.

A N odeID is the name of a node in the node table, used in commands to
identify a particular node. This is the same as the breakpoint number
assigned by CoPilot.

A leg table is a table maintained by the measurement module
containing various information about each leg. Legs are entered into
this table by the command Add Legs or by the measurement module
when it encounters a new leg and automatic insertion is enabled. The
leg table has 41 entries, one of which is reserved.

A LegID is the name of a leg in the leg table. The LegID for a
particular leg does not change during a measurement session and is
used in commands to identify a particular leg.

A histogram is an optional table that may be associated with either a
node or leg that records the distribution of a variable associated with
the node or leg by incrementing counters in a number of buckets. The
distribution may be either linear or logarithmic. In a linear

28-9

28

28-10

Performance tools

distribution, a base may be specified which will be used as the offset for
the first bucket. In a logarithmic distribution, the buckets are indexed
by the number of leading binary zero~ in the value. A scale is used to
adjust the value for an optimal fit into the number of buckets. There is
a storage pool of 256 words that is shared among all histograms to hold
buckets and histogram information.

Node Histogram A node histogram is a histogram associated .with a node. The
histogram variable of the node 1S the first variable in the conditional
expression attached to the breakpoint that defines the node. The value.
is treated as a 32-bit unsigned quantity. For a simple node histogram,
the value is adjusted by subtracting the base (if any) and dividing by
the scale factor; the resulting quotient is recorded. A logarithmic node
histogram has a maximum of 32 buckets because the value is a 32-bit
quantity.

Leg Histogram A leg histogram is a histogram associated with a leg. The histogram
variable of the leg is the 32-bit leg time in units of pulses. The value is
adjusted by shifting the value to the right by the scale. A logarithmic
leg histogram has a maximum of 32 buckets becaus~ the value is a
32-bit quantity.

28.2.4 User interface

Interaction with the PerfPackage is done through its window. There are four subwindows:
the message subwindow, the common commands subwindow, the specific commands
subwindow, and the file subwindow. The commands available in the specific commands
subwindow depend on whether you are using the PerfPackage's histogram facilities. They
are either the Mode Commands or the Histogram Commands. You may change the
commands available in this subwindow by using the Commands pop-up menu.

Common Commands

Monitor: {off, on}

Condition Breaks!

Collect Rodes!

Add LeC]!

ProlD Rode:

turns off/on performance monitoring. All conditional
breakpoints will be monitored when the monitor is on, and
will behave as normal conditional breakpoints when it is off.

makes all non-conditional breakpoints into conditional
breakpoints by adding the condition "1" to them.

enters all currently existing conditional breakpoints as nodes
in the node table.

adds the leg specified by Prom Rode and To Rode to the leg
table. If a designated leg entry is already in the leg table, the
leg is not affected.

contains the ModeID of the frOID node for the Add LeC]
command. The character "*,, may be used as a wild card
meaning "all nodes."

XDE User's Guide 28

'fo Rode: contains the Mode ID of the to node for the Add Leg
command. The character "*,, may be used as a wild card
meaning "all nodes."

Delete Leg! deletes the specified leg from the leg table.

Leg: contains the LegID used by the Delete Leg command.

Print 'fables! displays all the summary statistics gathered so far and the
complete contents of the node table and the leg table. This
command may be aborted by pressing ABORT.

Print Rodes! displays the contents of the node table. A ModeID followed by
an asterisk has a histogram associated with it. This command
may be aborted by pressing ABORT.

Print Legs! displays the contents of the leg table. A LegID followed by an
asterisk has a histogram associated with it. This command
may be aborted by pressing ABORT.

Zero 'fables! zeroes out all counts and sums from the tables (including the
total time spent measuring) but leaves all other information
in the tables unchanged. This command is useful for
preserving the measurement environment while zeroing out
the counts and sums collected so far.

Reinitialize'fables! completely reinitializes all tables and counters. The node
table, the leg table, and all histograms are cleared.

~Monitor: (on}
~Add Leg! From:
~ Print Tables!
~Zero Tables!

I CORlllOn COlllllands I
Condition Breaks! Collect Nodes!
To: Delete Leg! Leg:
Print Nodes!
Reinitialize Tables!

I Mode COlllllands I

Print Legs!

~Add: (~ Successor} Track: {none, successor,
~Set Process! Process:

Figure 28.2: PerfPackage window with mode commands

28-11

28

28-12

Performance tools

Mode Commands

~d: {none. successor} if set to none, prevents the PerfPackage from adding' legs
that are not in the table as it encounters pairs of nodes during
the execution of the client program that have not been
specified as legs already. This is the default mode for
automatically adding legs. If set to successor, the
PerfPackage adds legs that are not in the table. These legs
may be deleted if there. is qo room in the leg table when legs
are added by the Add Legs command.

Track: {none. successor. all} if set to none, the PerfPackage disables
tracking of legs. Ifset to successor, the PerfPackage tracks
only the leg defined by the last node encountered and the
current node. If set to all, the PerfPackage tracks all legs in
the table. This is the default mode for tracking legs.

Set Process! tells the PerfPackage to track only those legs that are
executed by the process specified by Process. Nodes
encountered by other processes will not be recorded. An octal
ProcessHandle as obtained from CoPilot's List Processes
command is acceptable as input to this command. The default
case is to track all processes.

Process: used by the Set Process command. It contains an octal
ProcessHandle as obtained from CoPilot's List Processes
command. If Process is empty, all processes are tracked.

~ Monitor: (on} Condition Breaks! Collect Nodes!
~ Add leg! From:
~ Print Tables!
~ Zero Tables!

To: Delete leg! leg:
Print Nodes!
Reinitialize Tables!

I Histogram Comands I

Print legs!

~Add! Delete! Print! Type: (~leg} Class: (log}
iHistogram Node: Histogram leg:

Figure 28.3: PerfPackage window with histogram commands

XDE User's Guide

Histogram Commands

Add!

Delete!

Print!

Type: {node, leg}

28

adds a histogram and associates it with either Histogram
Mode or Histogram Leg, depending on the value of Type.
The command gets its parameters from the Class, Buckets,
Scale, and Base fields.

deletes the histogram associated with .the specified node or
leg.

displays the histogram associated with the specified node or
leg. This command may be aborted by typing ABORT.

if set to node, the above histogram commands operate on the
histogram associated with the node specified by Histogram
Mode. If set to leg, the above commands operate on the
histogram associated with the leg specified by Histogram
Leg.

Class: {linear, log} used to specify the kind of distribution of the histogram to the

Histogram Mode:

Histogram Leg:

Buckets:

Scale:

Base:

28.2.5 Operation

Add command. .

contains a ModelO for specifying a node to the Add, Delete,
and Pr int commands.

contains a LeglO for specifying a leg to the Add, Delete, and
Print commands.

used to specify the number of buckets to the Add command.

used to specify the scale of the histogram to the Add
command. Note that since scaling of a leg histogram is done
by shifting instead of dividing, the scale is entered as a power
of two.

used to specify to the Add command the base of the
distribution of values for linear histograms.

When the break handler intercepts a breakpoint, it checks to see if the breakpoint is
conditional. If so, it finds the node corresponding to the breakpoint, increments its
counters, and processes its histogram if one exists. If tracking of legs is enabled, the leg
table is searched for the legs of which this node is a part. Otherwise, the breakpoint is
resumed.

In the simple case, a leg is tracked as follows: The break handler intercepts a conditional
breakpoint that is the from node of the leg from, and some time later it intercepts a
conditional breakpoint that is the to node of the leg to. At this point, the leg's time is
recorded, its count is incremented, and its histogram (if any) is processed.

28-13

28

28-14

Performance tools

This simple model of tracking a leg is complicated by recursion, signals, and multiple
processes. With recursion, from may be encountered several times before to is
encountered. With signals, a process may be unwound after it encounters from but before
it encounters to. With multiple processes, one process may encounter from and then
another immediately encounter to.

To deal with these complications, there is a leg owner. A leg owner is the process that last
encountered from. When to is encountered and the current process is its owner, then the
leg is recorded and the leg owner is cleared. If the current process is not the owner, the leg
is ignored. As a result of ignoring legs, from and to may be counted more times than the
leg between them is counted.

To deal with the complication of multiple processes, there is the concept of the tracked
process. If the tracked process is not NIL, then only those conditional breakpoints that are
encountered by the tracked process are treated as nodes. All others are simply resumed as
if they did not exist. If the tracked process is NIL, then all processes are tracked.

Normally, when a node is encountered, all legs of which it is a part are tracked.
Alternatively, only the leg defined by the last node encountered and the current node is
tracked.

28.2.6 Limitations

Time base: The time base is a 26-bit counter, where the basic unit of time is a System.Pulse
whose resolution varies between 1 and 1000 microseconds. The counter typically turns
over about once an hour; no individual time greater than an hour is meaningful. Total
times are 32-bit numbers and will overflow after 340 minutes.

Overhead calculation: Due to implementation restrictions and timer granularity, some of
the overhead of processing a breakpoint is incorrectly assigned to the client program
instead of the Perf'I'ool. As a result, leg times will be about 10 microseconds high for each
node that was enountered while processing that leg. Elapsed time is similarly affected.
This effect is particularly noticeable with short legs. Comparing relative times of different
legs may give better information about program performance.

Counter sizes: In a long measurement session, the node, leg, or histogram counters may
overflow. Node and leg counters are 22 bits, while histogram counters are 16 bits. If a node
or leg counter overflows, a "*,, follows the count when the field is listed.

Recursive procedure calls, UNWINDS, multiple processes: These interfere with the simple
start-to-end concept of a leg. With recursion and multiple processes, the start node of a leg
may be tripped several times before the end node is tripped. With unwinding, the start
node of a leg may be tripped and the end node never reached. If any of these cause a leg to
be ignored, the referenced field in the Leg Table has a "-" following it when the table is
listed.

Breakpoints taken twice: Nodes are implemented as conditional breakpoints. If for some
reason the broken instruction is' interrupted (e.g., it takes a page fault), the breakpoint is
taken again, and that node will get an extra count. This can cause node counts to be
greater than leg counts for corresponding legs, and is another cause of "-" appearing in
the Leg Table.

XDE User's Guide 28

Table sizes: The node table contains 20 entries. (Note that the PerfPackage automatically
extends the number of conditional breakpoints that can be set in the debugger from 5 to
20.) The leg table currently has 40 entries. Note that this number is small when compared
to the 20*20 possible legs. For this reason, there are a number of commands that give you
control over exactly what legs are in the table.

Memory requirements: The Perf Tool requires seven pages of the client's resident memory;
three for PerfPackage's code and four for PerITool's frames. This may affect the
performance of systems that use a lot of memory.

Worry mode: The PerfPackage operates in worry mode; see the Debugger chapter for more
information about worry mode.

28.2.7 Getting started

The steps required for using the measurement tool are outlined below.

1. Retrieve RuntimePerf. bed onto the client volume. Retrieve
RuntimePerf.symbols and CPPerf.bcd onto the debugger volume from the
Release directory.

2. Run CPPe r f in CoPilot.

3. Start your program with RuntimePerf included.

4. Enter CoPilot and set breakpoints as desired; then condition them with the
Cond i t ion Breaks command.

5. Turn measurements on by setting the Moni tor parameter to on.

6. Collect nodes and manipulate the leg table as desired.

7. Proceed with program execution.

8. Return to CoPilot via an interrupt or an unconditional breakpoint.

9. Display results with the Print commands.

28.2.8 Sample session

The following annotated listing of Debug .log and Per f . log should gi ve a fair idea of the
use of the measurement tool. It monitors the time required for the swapper to allocate real
memory pages.

10-Feb-82 12:42
*** interrupt ***
Performance Tool 8.0 of 2-Feb-82 17:32
10':Feb-82 12:46
>SEt Root configuration: Tajo
>SEt Module context: pilotLoaderCore
-- set breakpoints to time the ProcessLinks procedure inside the
Loader

28-15

28

28-16

Performance tools

>Break Entry procedure: ProcessLinks Breakpoint il.
>Break Xit procedure: ProcessLinks Breakpoint i2.
-- Condition breaks wth the Perf Tool; turn on Perf Tool
>Break Xit procedure: New Breakpoint i3 •.
>Llst Breaks
1 -- Break at entry to ProcessLinks (in PilotLoaderCore, G: 444B).
Condition: 1
2 -- Break at exit from ProcessLinks (in PilotLoaderCore, G: 444B).
ConcH tion: 1
3 -- Break at exit from New (in PilotLoaderCore, G: 444B).
>Proceed [Confirm]
Break i3 at exit from New, L: 4470B, PC: 1237B (in PilotLoaderCore,
G: 444B)

From Perf .1013:

Performance Tool 8.0 of 2-Feb-82 17:32
10-Feb-82 12:46

Collecting nodes 1 2 done
Leg from 1 to 2 added

Proceed from CoPilot to collect information
unconditional break returned control to CoPilot after loading

Total Elapsed Time of Measurements =
Elapsed Time less Perf Monitor Overhead =
Total Overhead of Perf Monitor Breaks =
Total number of Perf Breaks handled =
Average Overhead per Perf Break =
% of Total Time spent in Perf Monitor =

- - - - N 0 0 E T A B L E C 0 N

Node Global Program Number of Config
Id Frame Counter References Name

T E N T

205:517
204:366

1:151
4

287
.56

S - - -
Module
Name

- - - - - -

------ ------- ---------- ---------------- ------------------
1 444 3032 2 Tajo pilotLoaderCore

2 444 3115 2 Tajo PilotLoaderCore

28.3 Spy

XDE User's Guide 28

LEG TAB L E CON TEN T S

Leg From To • of Times Total Time Longest Time

Id Node Node Referenced sec.msec:usec sec.msec:usec

o 1 -> 2 2 53:502 27:834

Shortest Time Average Time % of
sec.msec:usec sec.msec:usec Time

25:668 26:751 26.17

Spy is a performance measurement tool for determining where a program spends its time.
The SpyNub is the client part; Spy is the tool executing in CoPilot that interprets the data
recorded by the SpyNub. The SpyNub works by waking up on every display vertical field
and incrementing a count in a bucket for the current pc. Spy's default mode is to collect
information on a module level only; i.e., it has one bucket for every module. In addition, it
can be instructed to create buckets for procedures or all the statements within a procedure.
Spy also allows control over which processes to watch. The major advantages of Spy over
the CountPackage and PertPackage are that it is easy to use and has little impact on the
client. However, because Spy samples on the vertical retrace, it is a poor choice to study
actions of short duration; the PerfPackage is recommended for that use.

28.3.1 Files

Retrieve SpyNub. bcd onto the client volume and Spy. bcd onto the debugger volume.

28.3.2 User interface

Interaction with the Spy is done through its window.

Available commands are listed below:

Spy: {on, off}

DisplayData!

Spy must be turned on to start spying. The interface
SpyClient contains the procedures StartCounting and
StopCounting if you want to do this from a program.

causes the Spy to display its tables; ABORT aborts this
display.

28-17

28

28-18

Performance tools

Spy: on}
Priority: (clientLow, clientHigh, pageFaultLow, pageFault

Ignore} processes:
Watch procedures:
Ignore procedures:

ZeroData

Priority:

Figure 28.4: Spy tool window

is a Boolean that determines, in part, whether the
buckets will be zeroed when execution of the client
proceeds. If anything is changed in the Priority,
Processes, or Procedures specifications, the
buckets will be zeroed regardless of the setting of
ZeroData. If, when you proceed, none of these
specifications has changed, the buckets will be zeroed
only if ZeroData is TRUE. Thus, if you happen to hit a
breakpoint or press CALL DEBUG to enter CoPilot while
the Spy is on, you can proceed without disturbing the
counts just by setting ZeroData to FALSE.

{clientLow, client, clientBigh,
pagePaultLow, pagePaultBigh, IOLow, All} specifies the priority of the

processes to Spy
Process.priorityBackground;
Process.priorityNormal;
Process. pri orityForeg round.

on: clientLow
client

clientBigh

is
is
is

{watch, Ignore} processes: If a list of processes is specified, ({watch, Ignore}
processes: Pl, P2, •.. ,etc.), only those
processes will be watched (ignored); all others will be
ignored (watched). If no list appears, the default is
that all processes of the indicated priority will be
watched (or ignored, but this isn't very useful).
Processes are specified in the same way you would to
CoPilot, with the additional feature that you may
write Pl..P2 to specify all processes in the inclusive
range Pl to P2. The default radix is octal.

XDE User's Guide

Watch procedures:
Ignore procedures:

28.3.3 Operation

28

Watch procedures:MI; M2: pI, p2/s; etc.;
Ignore procedures: M3: p4; M4; etc. means:
"watch all procedures in module MI, watch only
procedures pI and p2 in module M2, but watch p2 at
the individual statement level; watch all procedures
in M3 except p4, and ignore M4 entirely". /s means to
make a source level accounting. If the module being
we.~ched was compiled with the j switch, use of the /s
option in Spy may produce invalid information. Note
that it's an error to mention the same module name
more than once in these lines, and that the /s option
is useless on the Ignore line. There is an.accelerator
in the form of a pop-up menu for setting watched and
ignored procedures.

The most common way to use the Spy is to simply turn it on and perform some client
operation. After doing a DisplayData to see where the client is spending time, it is a
simple matter to use procedure level or source level Spying to track the problem down
further. If no hot spots are immediately apparent, the Spy can be instructed to ignore some
set of modules that provide a function (e.g., swapping). When an ignored module is found,
Spy will continue up the call stack until it finds a valid module that will be charged
instead. This has the effect of charging the caller of that function for the service rather
than charging the procedure or module itself. When a hot spot does appear, you know who
is using that function excessively.

Before a Proceed is done by CoPilot, Spy zeroes its tables and interprets the contents of the
fields of processes and procedures to watch. If the number of buckets needed by the
SpyNub to handle the data is greater than the amount already allocated, the Spy calls to
the client world (after printing the message Allocating extra buckets) to allocate more
before letting the Proceed finish.

The Spy looks up module names within the configuration currently set in CoPilot. If the
module is not found, the Spy enumerates the global frame table, which can be slow.
Because of this, a global frame handle may be used instead of a module name, which is
much faster.

28.3.4 Getting started

The steps required for using Spy are:

1. Retrieve Spy. bed onto the debugger volume and SpyNub. bed onto the client volume.

2. Run Spy in CoPilot.

3. Start your program with SpyNub included.

4. Enter CoPilot and turn on Spy.

28-19

28

28-20

Performance tools

5. Proceed with program execution.

6. Return to CoPilot via'an interrupt or an unconditional breakpoint.

7. Display results with the DisplayData commands.

8. Repeat steps 5-7 with modules ignored or watching procedures to find hot spots.

28.3.5 Error messages

SpyRub not found!

You forgot to load the Spy Nub.

SpyRub not started!

SpyNub is loaded, but it hasn't been started.

xxx is ambiguous!

There is more than one instance of xxx.

xxx is crossjumped!

xxx was compiled with the j switch. Beware of source level data.

Symbol table for module containing xxx is missing!

Adequate symbols for the procedure xxx are not available. You should fetch the
correct object or symbols files.

Ko symbols for XXX!

No symbols have been found for xxx.

xxx is an invalid global frame!

Invalid global frame specified in Watch or Ignore Procedures section.

xxx is not a module!

xxx is neither a module name nor a valid global frame address.

xxx is not a number!

Invalid number.

xxx begins an illegal process range!

Invalid process range.

XDE User's Guide 28

/ ••• is illegal after xxx!

Invalid use of switch.

modulename is mentioned more than once!

A module name may appear only once in the Watch or Ignore list.

28.3.6 Umitations

28.4 Ben

Sampling technique: Because Spy does ·its sampling based on the vertical retrace, no
process with a priority lower than background can be watched. In addition, processes that
do a UserTerminal.WaitForScanLine will look as if they are taking more time than they
actually do.

Counter sizes: Counts are 32-bit numbers. The maximum total count is 4,294,967,295.

Memory requirements: The SpyNub requires 12 pages of the client's resident memory:
three for its code, eight for module buckets, and one spare for extra buckets. One extra
page is allocated for about every additional 50 buckets. This may affect the performance of
systems that use a lot of memory.

Frame faults: Note that if a procedure call causes a frame fault (e.g., the procedure called
has a large local frame), the time that Pilot takes to allocate the frame is charged to the
caller, not to the called procedure.

Backing-store transfer tracing, of which page faults are a special case, is accomplished
with two programs. The data is generated by the program Ben. bcd, which runs in the
environment to be monitored. The other program, RedueeBen. bcd, is used to process the
raw data generated by Ben, and produces a human-readable text file as output. It runs in
CoPilot. These programs are described below.

28.4.1 Files

Retrieve Ben. bed onto the client volume. Retrieve Ben. symbols and RedueeBen. bed
onto the debugger volume.

28.4.1.1 Collecting the data

To collect the data, load and start Ben. bcd in the environment to be investigated.

To start tracing transfers, get to CoPilot and tell Ben to begin tracing. Proceed as follows:

>SEt Module context: Ben1mpl
> StartTracing [] -- (note the leading space)

or

28-21

28

28-22

Performance tools

> Benlmpl$StartTracing [] -- (note the leading space)

You must have Ben. symbols on your debugger volume to do this.

When the StartTracing operation completes, you will be back in CoPilot. Proceed back
to the client world.

>
>Proceed [Confirm]

Now perform the sequence of user operations that you wish to monitor. When done, get
back to CoPilot, and finish the tracing by doing

or

>SEt Module context: Benlmpl
> StopTracing [] -- (note the leading space)

> BenlmplSStartTracing [] -- (note the leading space)

logFileLength -- (printed by CoPilot)
>

Backing-store transfer data will have been recorded in a file in the root directory of the
client system volume. When StopTracing returns to CoPilot, it reports the number of
disk pages used by the trace log file.

When tracing is started, Ben creates the log file to hold the trace data. Tracing terminates
either when the log file fills up or the user instructs Ben to stop. It is possible to adjust the
maximum amount of data to be captured by setting a variable in Benlmpl. The variable
"Buffers (default value: 10) times the variable bufferPages determines the maximum size
of the log file. Adjust "Buffers if you need a larger log file. This variable must be set before
Star t Tr ac i ng is called. The requested size of the log file will be trimmed as necessary to
fit on the client volume.

28.4.1.2 Reducing the data

The data reduction program ReduceBen. bed runs in CoPilot in the Executive. The
simplest way to use it is to collect the data with Ben and then immediately analyze it.

Iftransfer data is to be analyzed at a later time, ReduceBen requires that the volume that
CoPilot is currently debugging have the same load state as when the tracing data was.·
generated. This means it must have the same boot file and loaded configs as were present
during the test, and that all loaded configs must be currently loaded in the same order that
they were during the test.

The debugger volume should have all of the symbols for the client environment that might
be referred to in the data file. Ifthey are not, ReduceBen will report the symbols needed.

XDE User's Guide 28

To analyze the transfer data, give the Executive the command:

>ReduceBen cl1.entVolume/vCi

ReduceBen will read the log file from the client volume and produce a file with the default
name Swapping .10g on the debugger volume containing the output report.

The full form of the command, with all of the default names explicitly specified, is

>ReduceBen Lsd Swappinq.10q/o Swappinq.data/i Star/vCi

Filename/o specifies the name of the output file name. Filename/i specifies the name
of the input file name. This makes sense only if you have used some utility program to
copy the log file from the client root directory into a file on the debugger volume. If an
input filename is not specified, the log file in the root directory of the specified volume is
used.

The global switch s tells ReduceBen to print the source line of the program that caused the
transfer, if the source file is available.

The global switch d sets the Debug mode. The dictionary contents are displayed in the
Executive along with the output file contents.

ReduceBen registers a help command with the Executive. Typing "Help ReduceBen" will
produce a short explanation of the command line format.

28.4.l.3 Report format

The output is a sequence of text lines, two or three per transfer. The format of the first line
is

dT: number; Page: octal-number; location

where a loca tion is either

File: file. file - type: type

or

swap-unit-type: name

or

volume root page: type

or

unknown backing store: data

The meaning of each of these fields is as follows:

28-23

28

28-24

Performance tools

dT: number is the number of microseconds that elapsed since the last backing
store transfer. This is real time, and will be slightly distorted because Ben is
running.

Page: octal-number is the virtual page number of the transferred page.

location is an attempt to determine what the transferred page represents. It may
be swapped from the disk or from some other backing store. In the former case, the
page may reprssent either a specific file or otherwise. If otherwise, the rest of the
line is reported as if the transferred page were backed by a file, thus the line File: .
If it was a specific file, the rest of the line is reported as swap-unit-type. In the case
of non-disk backingstore, the volume root page and file type may be found, or Ben
may not even be able to get that much information, thereby resulting in an
unknown.

File: file. file occurs if it could be found in Pilot's caches. The file ID is
reported as seven octal numbers. If the ID could not be found, NIL is inserted in the
line.

type: type is either file if the page is backed by a file, or da ta if it is backed by
the default backing file.

swap-unit-type can be one of four values: Pack - indicates that the page is a
packaged swap unit; Frame - the page is in a swappable frame; Module - the page is
in an unpackaged module; ? - the type of page is unknown but it points to code or
frames.

name is the name of the module, code pack, or frame, or "anonymous", if it cannot be
determined.

volume root page is the physical volume page number of the transferred page
for a non-disk backing store.

type is an octal number indicating the file type for whatever kind of non-disk
backing store the page is on.

unknoMl backing store indicates the transferred page is not backed by the disk
but by some other unknown source.

data consists of seven octal numbers giving the transfer data from Pilot's backing
store. You would need to interpret this data according to the backing store used.

The second line for each item gives information about where the program was executing
when the transfer occurred. It has the format

where

Called from module: module-name; Proc: proc-name; Type: proc
type

Called f rom module: module-name indicates the module that was executing.

XDE User's Guide 28

Proc: proc-name indicates the name of the procedure or number of the catch
phrase that was executing.

Type: proc-tlJpe is the type of procedure: normal - a normal procedure; MAIN -

mainline code in the module; nested - a procedure nested in another; catch - a
catch phrase in the module.

If the name for either a module or a procedure cannot be found, an annotation will be made
in the output and the field left blank. This usually occurs because the (correct) symbols
could not be found.

If you have specified the global switch s, a third line may appear for each item. This will
be the source line corresponding to the place in the program that caused the transfer. This
line will be output in the same format that CoPilot uses for showing source locations
within a program. If there were no symbols for the module or if the source file was not
found, this third line will not appear in the output.

The output file can become quite large. In a test case of 2000 transfers, a SOO-page output
file was generated. In Gacha 8, 10 disk pages roughly correspond to a printed page.

28.4.1.4 Error recovery

ReduceBen must sort all of the configurations by page number. To do this, it creates a data
file whose initial size is 500 pages. If the data won't fit in the file, the file is dumped, its
size is increased by 100 pages, and the sorting is attempted again. This will continue until
either there is no space left on the debugger volume or the sort completes. The sorted
information is called the dictionary. When the sorting starts, the message Building
dictionary is displayed. If the sort restarts, the message Dictionary space
exhausted at number words and Trying again is displayed. When the dictionary
is built, the message is dictionary built.

28.4.1.5 Messages

The following is the alphabetized list of the output written by ReduceBen to the Executive
window. Most of the messages describe the state of the computation; some are error
messages.

Building dictionary . • •

The swap units in the boot file are being sorted by virtual page number.

Data file and client do not match!

CoPilot has discovered a disparity between the client being debugged and the input
data file.

dictionary built

The dictionary of correspondences between virtual page number and swap unit
name has been built.

28-25

28

28-26

Performance tools

Dictionary space exhausted at number words. Trying again

The space for the dictionary was not large enough. The space is made larger and
another attempt is made. number indicates the old size of the space in pages, not
words, as the message indicates.

Empty input file

The input file contained no data. No data is writtp'1 into the output file.

End of input file

The end of the input file has been encountered.

** File has wrong version number

The input file was written by a version of Ben that is incompatible with the current
version of ReduceBen. Two lines follow that show what the two version numbers were.
ReduceBen will terminate after cleaning up.

!Input file not found in root directory

The specified input file does not exist on the designated volume.

!Input not available: filename !Output file not available: filename

ReduceBen encountered problems acquiring the specified file.

!Input file too long: file-name

The input file is too large to be processed.

Insufficient space on volume

There was no more space to construct the dictionary, or write the output file on the
volume. Program execution terminates.

No symbols for module-name

CoPilot couldn't find the symbols for the designated module.

Number of input items: number

Indicates the number of input items read.

Reading input data • • •

Indicates the program has finished initialization and is starting to read the input file.

!Volume not found: volume-name

The specified or assumed volume does not exist.

XDE User's Guide 28

28.4.1.6 Cleaning up

After you have analyzed the log data, you can delete the log file from the client volume by
doing

or

>SEt Module context: Benlmpl
> DeleteLogFile [] -- (note the leading space)

> Benlmpl$DeleteLogFile [] -- (note the leading space)
>

28-27

28 Performance tools

28-28

29.1 Files

29

Statistics

The Statistics tool gathers statistics about Mesa source and object files, such as number of
characters, frame size, etc., and writes them to a file.

Retrieve S ta tis tic s . bcd from the Too 1 s > subdirectory of the Release directory.

29.2 User interface

Statistics runs in the Executive. Its command line format is

>Statistics filenamel/switches filenamen/switches

Output from Statistics is sent to Statistics.stats by default, but can be directed to
another file with the /0 switch.

29.2.1 Switches

Statistics recognizes the following switches:

b produce bcd statistics, that is, code bytes, frame size, ngfi, nlinks, code pages, and
symbol pages (default).

c command: use filenamei not as the name of a file, but as a sequence of switches
(e.g., sIc prints a subtotal of all statistics gathered up to this point).

h print heading (default).

m produce source statistics, that is, chars and lines (default).

o direct output to roo~ame. stats, where rootname is the specified file name
(filenamei) with any extension removed.

s print subtotal.

29-1

29 Statistics

t print total

x "Management" statistics (i.e., chars, lines, code bytes, and frame sizes).

29.3 Types of statistics

Statistics generates the following information:

char s the number of characters in the source file.

1 ines the number of lines in the source file.

code bytes the number of bytes of code in the object file.

frame size the size of the global frame of the module (in words).

ngfi the number of global frame table slots needed by the module (one
slot for every 32 procedures or signals).

n1 ink s the number of items imported into the module.

code pages the number of pages of code in the object file (one page is 256
words).

symbol pages the number of pages of symbol table in the object file (one page is
256 words).

29.4 Example

The following command line will generate the output shown below:

Statistics CPSyms Actions ComData sIc CPSwap DIHot DIMath tic

Mesa Statistics Package 11.1 of3-0ct-8417:13
Statistics as of 4-0ct-84 14:18

chars lines code frame ngfi nlinks code symbol
bytes size pages pages

CPSyms 1731 62 7
Actions 1025 37 6
Com Data 1242 57 10 43 1 0 1 8

SUBTOTAL 3998 156 10 43 1 0 1 21

CPSwap 8343 236 1084 16 1 49 3 26
DIHot 24023 779 3234 11 2 81 7 51
DIMath 16339 543 2202 15 2 26 5 27

TOTAL 52703 1714 6530 85 6 156 16 125

29-2

XDE User's Guide 29

Note: Sometimes the program puts an asterisk after the number of code pages for a
module. This means that the number of code bytes is very close to a page boundary, and
the number of links is such that binding with code links will cause-the code to "spill over"
into another page.

29-3

29 Statistics

29-4

IV

Mesa Services

Mesa Services help users communicate with remote machines and other users. They
comprise the Mail tools, the MFileServer, and the Network executive tools.

IV.1 Mail tools

The mail tools include the MailTool itself, for sending and receiving mail messages: the
Mail File Scavenger, for repairing damaged mail files; and Maintain, a tool for
maintaining mail distribution lists.

IV.2 MIQleServer

The :vtFileServer allows a workstation to serve as a file server for other workstations.
CsingMFileServer, any file on a workstation can hf.' retrieved to any other machine If a
host with needed files on it is running YIFiieSerVf'r, other hosts can lise the f'i!e Tool or
FTP to retrieve whatever they need.

IV.3 Network executive tools

The Network executive tools are Chat, Remote Executive, ~STerminal. and TTYTajo.
Chat provides TTY emulation as well as interactive communication between
workstations. A user can chat with other users running Chat elsewhere on the network.
Remote Executive allows remote users to connect to a machine and type commands to it as
though they were typing commands to their local Executive. NSTerminal allows users to
connect to remote computers using RS232 ports and modems.

TTYTajo is a version of the Tajo environment that runs on a teletype-style terminal
without windows for tools.

IV 1

IV Mesa Services

IV-2

30

Mail tools

The MailTool is the NS-protocol-based mail reading and sending interface to the mail
system. The MailTool allows you to retrieve, read, send, forward, save, move, delete, and
answer mail.

If your mail file becomes damaged, you may be able to save it by running the
MailFileScavenger. The MailFileScavenger can restore the internal structure of your
mail file to a consistent state. It copies the damaged mail file into a scratch file as it
operates; therefore, you must have enough free disk pages available for this scratch file in
addition to the number of disk pages that your damaged mail file already occupies. The
:vIailFileSca venger will warn you if there is not enough room.

Maintain is the NS-based interface to the Clearinghouse database. Using Maintain, you
can inspect and modify information in the database about message system users and
distribution lists.

30.1 Mail Tool

30.1.1 Files

Retrieve Mail Tool. bed from the Release directory.

30.1.2 User interface

The MailTool has its own window consisting of a message subwindow, two text
subwindows and a form subwindow, as shown in figure 30.1. Information and error
messages are posted in the message subwindow. The table of contents for the currently
active mail file is displayed in the text subwindow directly below the message subwindow.
The form subwindow lists commands for manipulating your mail. The lower text
subwindow displays individual mail messages. The name stripe of this window indicates
whether there is new mail for the user.

30-1

30

30-2

Mail tools

30.1.2.1 Text subwindow-Table of contents

An index of all messages in this mail file, called the Table of contents (or TOC), appears in
the upper text subwindow of the MailTool window. Each entry contains header
information, which includes the message number, the date it was sent, the name of the
sender, and the subject of the message.

The user can have more than one mail file to facilitate the organization of his messages.
The current mail file is the one whose TOC is displayed and the one to which new
messages will be retrieved. Its name is displayed in the rile: field described below. When
the MailTool starts up, it reads the mail file specified by the User. em or Acti ve. nsMail
if none is specified. The user can change the current mail file by chording and selecting
from the File: field.

The currently displayed message is indicated by a » character after the date column.
Deleted messages are indicated by having a line through their entries in the TOC.
Unexamined messages are indicated by the character * in the entry. Messages that are
not entirely readable by the MailTool, such as Star documents, are left on the Mail service
so that the user may read them using another mail tool (such as Star mail). In this c~se.
the message is marked with an "a" in the TOe to show that an unreadable "attachment"
to this message is still on the server.

If a one character selection is made for the first character in a TOe line, then the next
character typed will become the "flag" character for that entry. This flag has no semantic
meaning to the MailTool, but may be used for whatever purpose the user wishes. For
instance, you might mark all those messages you need to answer with the character "A",
or you might mark those that are urgent with the character "U".

30.1.2.2 Form subwindow

By making a text selection that spans a number of lines in the Table of Contents, it is
possible to select a range of messages. Those messages are said to be the current messages.
The MailTool uses the current messages as an argument for most commands. If there is no
selection in the TOC, the current message is the displayed message.

XDE User's Guide 30

35 »Apr 9 Riggle
36 Apr 11 Manes
31 Apr 12 Collins
38 Apr 12 shapiro

Requisitions!
Debug Log for MailTool
Reminder: 12.0 Documentation due
And Good Day 2 U

:Display! Delete! Answer! Append! File: {Active. nsMail}

:Bardcopy! Undelete! Forard! Options! Sort!

:Rew Mail! Expunge! Rew Form! Move!To:

:Sender: David William Riggle:SOBU North:Xerox
:Date: 9 Apr 85 13:49:02 PST (Tuesday)
jSubject: Requisitions!
:From: Riggle
:To: Elliott
: cc: S impson

:One
o ~~_lli_.Ii,f:i;~~~~~!:~m~l~I~:~l~i~i:i:~!:t~:!*::j]ili:!i.!!~!::~1!!~!f~~11:!l~!:~lliii~t~!1:;~:!:~:~:m;:ID1l~i~~I!~~~l:lli!:!!~:~::!!]:

: Apply! Abort !::::BB.ilriii:rl '::gi •• "!].'Rff. __ :f.1
:will : MailFile:<CoPilot>Active. nsMail
:new V

Display!

Hardcopy!

Rew Mail!

--- Hardcopy Options ---

: •• i: •• Output To File
Sides: {DoubleSided} Orientation: {Portrait}

Landscape Font: Gatcha12 Portrait Font: GatchalO

Printer: Nevermore

File:

Figure 30.1: The MailTool

displays the first of the current messages if there is a selection in
the TOe; otherwise, it displays the next message. If the last
command to the MailTool was a Rew Mail!, then the next message
is the first message retrieved. If not, the next message is the first
undeleted message following the displayed message.

formats the current messages for printing and either spools them
to a printer or writes them into a local file. Print will be loaded as
needed.

retrieves new mail (if any exists) from the user's mailbox to a local
mail file. If the DisplayOnRewMail option has been set in the
User .cm, the first of the retrieved messages will automatically be
displayed upon retrieval. Messages that are not entirely readable
by the MailTool such as Star Documents, are left on the Mail
Service so that the user may read them with another mail tool

30-3

30 Mail tools

Delete!

Undelete!

Expunge!

Append!

30-4

(such as Star mail). The readable parts of the message (for
example, the header information and MailNote) are copied to the
local mail file. If the Flush Remote option is set, the message is
marked on the server so that it will no longer show up as new maiL
It is also marked in the TOC with an "a" to indicate that an
unreadable "attachment" to this message is still on the server.

marks the current messages for deletion, indicating this by
drawing a line through their entries in the TOC. Messages are not
removed from the message file immediately, but only when
expunged (see Expunge! below), after which there is no way to
restore them. If a message has an attachment, deleting has no
immediate effect on the attachment; the local part in the mail file
is marked for deletion, but the attachment remains on the server
intact. Before deleted messages are expunged, they may be
restored by the Undelete! command. Messages without
attachments are permanently deleted whenever you either
deactivate the MailTool, change the current mail file, or invoke
Expunge!. An Expunge! of a message with an attachment will
first delete the attachment from the mailbox. If this is successful,
the message will then be expunged from the mail file.
Deactivating the MailTool or changing mail files does not affect
messages with attachments: they remain in the mail file, marked
as deleted.

restores the current messages marked for deletion.

permanently removes messages marked for delete from the mail
file and destroys attachments for those messages. Any messages
with attachments that are marked for deletion will be deleted from
the user's mailbox. Once a message has been expunged, it cannot
be restored. The logged in identity of the user must be the same at
expunge time as at retrieve time. Attachments have associated with
them the name of the logged in user at retrieve time. If this
identity is different at expunge time, the MailTool will not allow
the message to be removed. For instance, if two people retrieve
mail to the same mail file, neither of them will be able to expunge
the other's messages which have attachments because their own
logged in identities do not match the identity stamped on the
other's attchments. If you get two copies of a message with an
attachment, do not delete one of the copies and expunge before you
retrieve the attachment. Expunging will delete your only copy of
the attachment.

inserts the current selection at the end of the mail file and creates
a TOC entry for it. The result looks as if the new message were
retrieved using "Hew Ma il !". This can be used to extract a
forwarded message so that it may be answered with the "Answer!"
command, or to insert a comment into the mail file at an arbitrary
location by setting the "Date:" field of the comment

XDE User's Guide

Forward!

Rew Form!

File:

Options!

Sort!

Move!

'fa:

ExpandPvtDLS:

30

appropriately, and following the "Append!" command with th
"Sort!" command.

produces a SendTool form containing a message body that is a copy
of the current message and header fields that can be filled in by
hitting the "Rext" key

produces a blank SendTool form with header fields that can be
filled in by hitting the "Rext" key.

{Active.nsMail. • •• } is an enumerated item which indicates
the . current mail file (i.e. the file where new messages will be
retrieved to and whose TOe will be displayed). You may choose a
different message file to be current by selecting from the menu
under this item. Only .nsMail files will be shown, and if there are
duplicates in the search path, only the first will be found. The
default mail file can be set from the User.cm or from the Options
window.

acti vates the Options window.

sorts the mail file by the date and time each message was sent.

moves the current messages to the mail file named in the To:
item. This feature allows you to better organize your messages for
easy reference. The extension. nsMai 1 will be assumed if there is
no period in the name.

Warning: Any selection in the TOe will be cleared if you edit the
To: field; you must fill in that field before selecting the messages
to be moved. If you are merely moving a displayed message, this
problem does not occur.

Warning: You cannot move messages with attachments from one
mail file to another unless you confirm the delete of those
attachments. Messages with attachments are intended to be read
by some other mail reading tool (such as Star mail). If you want the
message bodies after you have read them with another tool, remail
the mail notes to yourself. You will then be able to move them to
another mail file.

contains the name of the mail file that is the destination for Move!
The extension is defaulted to . nsMail. You can also fill in this
field by pressing MENU and selecting a name from the currently
existing. nsMa i 1.

(expand private distribution lists) is a Boolean that is currently
unimplemented. It will eventually enumerate the members of
private mailing lists in the message header so that the message
may be answered more easily.

30-5

30

30-6

Mail tools

30.1.2.3 Options window

The Options window contains the following items. For most
options default initial values may be specified in the MailTool
section in User. cm.

Apply! causes the fields in the Options window to take effect and closes
the Options window.

Abort! closes the Options window without making any changes.

Flush Remote is a'Boolean that allows you to retain a copy of your new mail on
your mail server. Normally, when you get your new mail, it is
completely removed from the mail server, with no copy left.
Sometimes you wish to keep a copy on the server, such as when you
are reading your mail while using someone else's workstation. To
keep a copy on the mail server, turn off the Flush Remote
Boolean. This must be done before you invoke Hew Mail! Flush
Remote defaults to TRUE.

AutoDisplay is a Boolean that, if TRUE, causes the next message to be displayed
when the current message is deleted or moved. The default is fALSE.

DisplayOnJIewMail is a Boolean that, if TRUE, causes the first retrieved message to be
displayed after a Hew Mail! command completes. The default is
FALSE.

Mail File: names the mail file you wish to work with. This file becomes the
current mail file when you invoke Apply! The extension is
defaulted to • nsMail. You can also fill in this field by pressing
MENU and choosing the name from the currently existing ma i 1

files. If you invoke Apply! when the Mail File field is blank, the
value defaults to Active. nsMail.

-- Hardcopy Options --

One Per Paqe

Output To File

is a Boolean that, if TRUE, will cause each message to start on a
separate page. The default is TRUE.

is a Boolean that, if TRUE, will cause the output from Hardcopy! to
be written to a file instead of being spooled to a printer. The default
is FALSE.

Sides: {PrinterDefault, SinqleSided, DoubleSided} is an enumerated item
that tells the printer whether to do two-sided printing or not. If the
printer does not support two-sided printing, this option is ignored.
The default is SinqleSided.

Orientation: {Portrait, Landscape} is an numerated item that specificies the
orientation of the output. Landscape output is two columns per
page; Portrai t is one. Default is Portrai t.

XDE User's Guide 30

Landscape Font: Portrai t Font: are two fields to indicate which fonts to use when
messages are printed. The default font when printing in Par trai t
orientation is Gacha6; for Portrai t, Gacha8.

Printer: is a tag specifying the name of the interpress printer where
hardcopy will be sent.

30.1.3 The MailTool via the Executive window

The MailTool. - command can change the current mail file, start a retrieval of new mail
or change the state of the M,ailTool window. The general form is:

> MailTool. - filename/switches

filename should identify an existing message file. Legal switches are:

a activate MailTool.
n retrieves new mail

inactivates MailTool (causes an expunge).
t makes MailTool tiny.

30.1.4 Send Tool

The Send Tool is used to send messages. A blank mail form is created by either invoking
Hew Form!, Answer!, or Forward! in the MailTool window or invoking Another! in an
open Send Tool window. The Send Tool has a message subwindow, a form subwindow, and
a text subwindow. SendTool. bed is also available independently from the Tools
subdirectory of the Release directory

30.1.4.1 Form subwindow

Five items are always available in the form subwindow. A sixth, Deliver!, appears
after the message has been edited.

Another!

Destroy!

Reset!

Put!

creates another instance of the Send Tool.

destroys this instance of the Send Tool. If the form has been edited
but not sent, this command requires confirmation. If there are no
instances of a SendTool on the inactive list, this command will
merely deactivate the current instance.

leaves the SendTool window open but clears it of inserted text. If
the form has been edited but not sent, this command requires
confirmation

writes the contents of the SendTool window to the file named in the
File: field.

30-7

30

30-8

Mail tools

Get! replaces the contents of the SendTool window with the contents of
the file named in the Pile: field. If the form has been edited but
not sent, this command will require confirmation.

Pile: is a string item used to hold the name of the file used in the Put!
and Get! commands.

Invalid 01: is a Boolean that allows you to send a message containing invalid
recipients. The default is FALSE.

If Heed Reply-To is an enumerated item that allows you to control what happens if
the 'message should have a Reply-To field, but does not. A
message should have a Reply-To field if it includes a public
distribution list in the To: or cc: fie Ids in order to limit those who
automatically receive answers to the message. When you press
MENU over I f Heed Reply-To, the following choices will appear:

don't send

add to form

send anyway

Deliver!

SendAs:

prevents the message from being sent and puts in the
message subwindow the line Add Pield to message
header: Reply-To: value.

adds the necessary field to the message and sends it.

allows the message to be sent, even if the Reply-to: field is
needed.

This field is defaulted to don't send unless HeedReplyTo:
value is specified in the. User. em (where value is
Don' tSend, SendAnyway, or AddToForm).

sends the mail to the recipients indicated in the To: and cc: lines
of the message. This command is available only when the body of
the message has been edited. After the delivery has taken place,
the Deliver! command is replaced by the message Delivered.
To send a message, you must be logged in.

is an enumerated item that provides three ways of sending a
message: MailNote, Text, or MailNote with an attachment. A
Mail Note is the simplest way to exchange mail between
environments. A Text message requires the user in another
environment to convert the message before reading it, and its
delivery incurs a little more overhead than the MailNote, but it
does allow for long messagess (a MailNote is currently limited to
8000 characters). A Mail~ote with an attachment includes
material not entirely readable (such as Star documents) by the
MailTool. Presently, there are no facilities provided by the
MailTool either to convert XDE files to other formats or to forward
attachments.

XDE User's Guide 30

30.1.4.2 Text subwindow

The text subwindow contains the text of the message, including a header part and a
message body part. The header part includes Subj ec t: To:, Reply-To: , and cc: fields
that are used by the message system to direct the message when it is sent.

30.1.4.3 Subject: field

The topic of your message goes in the Subject: field. The topic should express the content
of your message so that interested people will take the time to read the message, but
uninterested people can Qelete it without reading it. For example, if your message
contains ideas for improving the MailTool, the topic might be "Suggestions: improving
MailTool," not "Suggestions. "

30.1.4.4 To: field

The To: specifies who is to recieve your message. A recipient entry has three parts (name,
domain, and organization) separated by colons. [t may be the name of an individual or an
NS-based distribution list (for example, Secretaries:OSBU North:Xerox). Only those
groups and entities with mailboxes are valid recipients. A domain is simply a device for
grouping related names and most messages are sent within a single domain. The MaiiTool
allows you to omit the domain name for recipients who are in your same domain. For
example, someone in the domain for the Palo Alto area, say Someone: OSBU
Nor th: Xerox, could send a message with the following acceptable message header:

Subject: Demonstration of recipient naming
To: Personl, Person2
cc: Person3, FarAwayPersonl:OSBU South

The MailTool assumes that names lacking domains are in the sender's domain, which in
this case is OSBU Borth. Since FarAwayPersonl:OSBU South explicitly includes the
domain, OSBU South is used by the MailTool. In this case, the message will go to
Personnel:OSBU Borth: Xerox, Person2:0SBU Morth:Xerox, Person3:0SBU
Borth:Xerox and FarAwayPersonl:OSBU South:Xerox.

Public Distribution Lists:

NS-based public distribution lists are groups in the Clearinghouse consisting of mailbox
names. No special delimiter is needed to tell the MailTool you're mailing to a distribution
list rather than an individual. Using such a name as the recipient of a message causes the
message to go to all the individuals included in the group. For example, the line

To: Secretaries:OSBU North: Xerox

will cause the message to be delivered to all the Xerox secretaries in Palo Alto.

The public distribution lists for each domain are stored in the Clearinghouse. They are
typically maintained by the individuals who "own" the lists. You can have yourself added
to appropriate lists by contacting the owner (in the case of closed distribution lists) or by
using the Maintain program. While you are able to use any public distribution list from
any domain in delivering any message, you should think very carefully about your choice of

:30-9

30

30-10

Mail tools

message and list so as not to bother recipients. Check with experienced users to find out
which lists should be used for which kinds of messages.

Private Distribution Lists:

A private distribution list is a file which resides on your local work station and contains
legal (in the Clearinghouse sense of the word) recipient names separated by carriage
returns < CR >. Private distribution lists may be indicated in the To: field by suffixing
the name of the file with an asterisk (*). The basic form is:

Filename. extension *

If you fail to include the extension in the filename, the MailTool will assume a .dl
extension and look for the corresponding file. It is also possible to use files stored ,on
remote file servers as private distribution lists. The syntax for naming them is:

[host] < directory > subdirectory > .. >filename. extension *

Remotely stored private distrihution lists are appropriate if a small group of people want
to share the use ofthe list.

30.1.4.4.1 Reply-To: field

The Reply-To: field works in conjunction with the Answer! command. Answer!

initializes a message form so as to reply to the message selected in the Table of Contents. If
the message being answered contains a Reply-To: field in its header, then only those
recipients in the Reply-To: field will be included in the To: field constructed by
Answer! The Reply-To: field thus limits those who automatically receive answers to
messages. A recipient of such a message can change the recipient fields constructed by
Answer! .

30.1.4.4.2 cc: field

The cc: field identifies others who are to recieve your message. ~ames should be
separated from each other by commas. When you send your message, these people will
automatically receive it along with the person(s) specified in the To: field

30.1.4.4.3 Message body

The message body <the actual content of the message) follows the header. There must be
an empty line between the last field in the header and the message body.

30.1.4.5 SendTool via the Executive window

The SendTool. - command is used to bring up an instance oftheSendTool.

> SendTool. -recipientJswitch

XDE User's Guide 30

The name < recipient> will be placed into the To: field of the new SendTool. If the swtich
'f is supplied then the name will be treated as a file from which a form will be loaded in
place of the standard empty mail form.

30.1.4.6 User.em entries

SomeMaiIToolparameterscanbesetfromtheUser.cm. These are listed below with
sample values.

[Mail Tool]

TOCLines: 6

MailFile: Active.nsMail

DisplayOnNewMail: FA~E

FlushRemote: TRUE

MessageFont: LaurelFont.strike

TOCFont: Gacha8.strike

AutoDisplay: FALSE

NeedReplyTo: AddToForm

number of initial lines
displayed in the table of
contents (TOC)

name of initial mail file

do an automatic Display!
after mail is retrieved.

flush remote mail after
retrieval

if omitted, the built-in
Tajo font is used

if omitted, the built-in
Tajo font is used

if TRUE, next message is
displayed when current
message deleted

choose from
SendAnyway,
(section 26.4.1)

DontSend,
AddToForm

You can also specify the printing characteristics to be used by the Hardcopy! command. If
no printing entries are made in your MaiiTool User. em section, the values from the
[Hardcopy] section will be used. Refer to the Print chapter for further information about
the different entries.

OutputToFile: FALSE

OutputFile: MailTool.interpress

if TRUE, output is written to
a file instead of the
appropriate printer

name of output file to be
used when OutputToFile is
TRUE

:30-11

30

30-12

Mail tools

SeparatePages: FALSE

Sides: SingleSided

InterPress: Nevermore

LandscapeFont: Gacha6

PortraitFont: Gacha8

Orientation: Landscape

PrintedBy: $

if TRUE, each
start at the
page

message will
top of a new

controls whether the
printer should do two-sided
printing or not

name of the default
InterPress printer to use

name of the defaul t font to
use when in landscape mode

name of the default font to
use when in portrait mode

default output orientation

name to place on the banner
sheet when output is
printed. The special token
"$" indicates that the
current login name should
be used

Several SendTool parameters may also be ~et from the User. cm. These are listed below
with sample values.

[SendTool]

Font: LaurelFont.strike

NeedReplyTo: DontSend

30.1.4.7 Trouble shooting

if omitted, the built-in
Tajo font is used

choose from DontSend,
SendAnyway, AddToForm. This
is used by those instances
not brought up through the
Mail Tool

If you find that the MailTool has trouble distinguishing your password (for example, you
receive the message "Invalid password" upon invoking Hew Mail!), check to see that your
workstation has the correct time. You may need to reset your clock.

XDE User's Guide 30

30.2 MailFileSca venger

30.2.1 Files

Retrieve MailFileScavenger. bed from the Release directory.

30.2.2 User interface

MailFileScavenger runs in the Executive window. To invoke it, type
MailFileScavenger MailFile. nsMail, where MailFile. nsMail is the name of the
mail file to be scavenged (if you type a name without a period, . nsMail will be added to
the name automatically). Terminate the name with RETURN. MailFileScavenger will
proceed to copy your mail into its scratch file, printing out the number of every fifth
message as it is processed.

When anomalies are detected in your mail file, MailFileScavenger will print out a short
message such as Message 53: existing count was 231 bytes too small. This
message indicates that the formatting information present in the mail file used to
distinguish individual messages was inconsistent with what MailFileScavenger believes
to be distinct messages.

When MailFileScavenger is finished, it is a good idea to check any messages it complained
about. These messages may be missing several characters or be malformed in other ways.
You should also chf:ck neighhoring messages-some of the characters in those messages
might really be part of other messages.

After MailF'ileSca venger has finished copying and reformatting your mail into its scratch
file, it will pause and ask if it should copy that file back into the original mail file [f there
are not many error reports, type Y to confirm. MailFileScavenger will copy the scavenged
mail file back into the original mail file, delete the scratch file, and quit. You may then
invoke the scavenged mail tile in your MailTool Options window. However, if there have
been many error reports, you might want to copy the original file before allowing the
MailFileScavenger to scavenge your file. To do this, abort the command with N, copy the
file, then run MailFileScavenger on the copy.

The mail file that MailFileScavenger produces should give you a readable mailfile, i.e.,
one that the MailTool will not complain about. However. this mail file may have messages
that are fragments of messages in the original file and/or duplicate messages. If you copied
the original file before running the ~1aiIFileScavenger, you can compare the scavenged
version to the original in order to determine if any text was lost. If you edit the scavenged
mail file, you will have to run the scavenger again.

30.3 Maintain

Maintain is the NS-based administrative interface for the Clearinghouse database. Csing
Maintain, you can inspect and modify information in the data base about message system
users and distribution lists. This data base is described in this section.

30-13

30

30-14

Mail tools

30.3.1 Files

To run the Maintain program, retrieve Ma i n ta in. bed from the Release directory.

30.3.2 Userinterface

Maintain interacts through a message subwindow, a form subwindow, and a log
maintained in a file subwindow. By executing commands you can manipulate items in the
Clearinghouse database.

30.3.2.1 Message subwindow

The message subwindow is used for feedback and to show progress in the completing of the
command invoked by the user.

30.3.2.2 Form subwindow

The form subwindow contains the fields and commands used to invoke the various
functions that are available through Maintain. In general the top half of the form contains
those items used to manipulate Clearinghouse groups, and the bottom half contains items
used for changing parameters associated with a particular individual.

Level is an enumerated item that governs which commands are
available to you. The value may be normal, owner, or
administrative. The following subsections discuss what
is available at each level.

XDE User's Guide 30

30.3.2.2.1 Group commands: normal level

Level: { •• ,} owner I administrative}

Group: Mesa

Summary!
Add Self!

Matches! Members!
Remove· Self!

Aliases!

Individual: Nannette:OSBU North:Xerox

: Summary!
: Set!

Another!

Matches!
{both}

Destr

Aliases!
Password:

: Members of: Mesa:OSBU North:Xerox
: Member: Mesa i : PA: Xerox

Group:

Members!

Summary!

Aliases!

Add Self!

Remove Self!

Figure 30.2: :vlaintain tool window (normal level)

contains a list of Clearinghouse distinguished names and
patterns that is the argument to each of the commands that
acts on groups. If the domain or organization is not specified,
the defaults from the Profile are used. (See Profile tool.)

lists the members of the group in the Group: field in the file
subwindow.

shows the user-visible components (the distinguished name,
remark field and number of members) of the group in the
Group: field.

shows the distinguished name and any aliases for that
entry.

adds the currently logged in user to the group in the Group:
field.

Removes the currently logged in user from the group in the
Group: tield.

30-15

30

30-16

Mail tools

Individual:

Password:

SUJIIIIlary!

Set! Password:

contains a Clearinghouse name that is the argument to each
of the commands that acts on individuals. This field is
initialized to the currently logged in user's distinguished
name.

contains the new password for the individual in the
Individual: field.

shows in the file subwindow the user-visible components
(the distinguished name, user remark, and file service) of
the individual in the Individual: field.

sets the password of the individual in the Individual:
field to be the value in the Password: field.

30.3.2.2.2 Group commands: owner Level

Leyel:

Group:

Summary!
Add Self!

Matches! Members! Aliases!
Remoye Self!

Kame List:
Add! Remoye! Which: ru._, friends, owners}
Set! Remark:

Indiyidual: Nannette:OSBU North:Xerox

SUJIIIIlary! Matches! Aliases!
Set! {both} Password:
Set! Remark:

Another! Destr

: Members of: Mesa:OSBU North:Xerox
~ Member: Jane Smith:OSBU North:Xerox

Figure 30.3: Maintain tool window (owner leveD

All the commands available at the normal level are also available at the owner level. The
following additional group-related commands and field are available.

KameList: contains a list of Clearinghouse patterns that are to be
added to or removed from the group in Group:. Aliases in

XDE User's Guide

Which:

Add!

Remove!

Set! Remark:

30

this list are resolved to the corresponding distinguished
name.

determines whether the elements in lIameList: refer to
members, friends, or owners of the list (see 30.3.3.1 Rules for
accessing the data basel.

adds the elements in KameList: to the group specified in by
Which:. You should set the friends before setting the
owners if you will not be an owner. Once the owner's list is
set, the members', friends', and owners' lists cannot he
changed except by an owner. Also note that the friends' and
owners' lists both default to the list of domain
administrators for the group's domain.

removes the elements in the Kame List: field from the
group in the Which: field.

sets the group remark to the test m Remark: which is
typically a description of the group.

30.3.2.2.3 Group commands: administrative level

Alias:

Add!

Remove!

Details!

Create!

Delete!

contains a list of aliases to be added or removed from the
aliases of a group.

adds the aliases to the database.

removes the aliases from the database.

gives the distinguished name, the aliases, the group
remark, and the lists of members, owners. and friends

create sa group. The remark is initialized to the text in
Remark:. If Which: is members, the members for the group
is initialized to the names in Kame List: For a long list of
members, this is much faster than adding the members after
the group has been created.

deletes a group.

30.3.2.2.4 Individual commands: normal level

Individual:

Summary!

is a list of Clearinghouse distinguished names and patterns
which is the argument to each of the commands that act on
individuals. If the domain or organization is not specified,
the defaults from the Profile are used.

gives the distinguished name, user remark and file service.

30-17

30

30-18

Mail tools

Matches!

Aliases!

Set! Password:

list each individual whose name contains a match of the
pattern (which may contain wild cards) in Individual:.

gives the the distinguished name and aliases.

sets the password for the individual. The enumerated type
determines whether strong, simple, or both passwords are
set.

30.3.2.2.5 Individual commands: owner level

Set! Remark: set the remark to be the text in Remark:

30.3.2.2.6 Individual commands: administrative level

Add! Remove! Ma ilbox: not implemented.

Alias: contains a list of aliases to add or remove from the aliases of
an individual.

Add! adds aliases for an indi vidual

Remove! removes aliases for an individual

Detail! gives detailed information on individuals including the
distinguished name, the aliases, the user remark and the
file service.

Create! creates an entry in the Clearinghouse for an indi vidual. The
remark is initialized to the text in Remark:

Delete! deletes an entry in the Clearinghouse for an indi vidual.

30.3.2.2.7 Tool commands

Level

Anyentry

Checklfames

Another!

Destroy!

is an enumerated item that governs which commands are
available at any gi ven time.

is a Boolean which determines which Clearinghouse entries
are available using Maintain. If it is false, then only entries
with the primary properties userGroup and user are
available. If it is true, all Clearinghouse entries are
available.

is a Boolean which when true maps aliases to distinguished
names and expands patterns.

creates another instance of Maintain.

destroys current instance of Maintain. Maintain can also be
unloaded.

XDE User's Guide

UseBackground

30.3.2.3 File subwindow

30

is a Boolean which when true runs commands in the
background. If false, it holds the notifier and runs
commands sychronously in the foreground.

The result of executing the command is logged to the file subwindow.

30.3.3 The Clearinghouse data base

All items in the Clearinghouse data base are identified by a fully-qualified name. A
Clearinghouse name has three components, Name:Domain:Organization. For example,
Randall:OSBU North:Xerox and Secretaries:OSBU North:Xerox, are fully-qualified
names for an individual and a public distribution list, respectively.

See the Services 8.0 Programmer's Guide for a more complete discription of the
Clearinghouse.

30.3.3.1 Rules for accessing the data base

Any logged-in user of Maintain can invoke any command that read~ information out of the
data base. Changes to the data base are controlled by the owners and friends lists for a
group. The rules for controlling the data base are as follows:

Individuals can set the password and set the connect site of their own entries.

Friends of a group can add and remove their own names from the membership list of
that group.

Owners of a group can add and remove owners, friends, and members for the group.
An owner also can set the remark.

30-19

30 Mail tools

30-20

31.1 Files

31

MFileServer

The MFileServer provides the server side of communication using the X~S Filing
protocol. The X~S Filing protocol involves two parties: a llser who makes requests and a
server who honors (or rejects) them. The MFileServer allows other machines (using the
FileTool or FTPI to connect to your machine and store, delete, list, or retrieve files.

Retrieve MFi leServer. bed from the Release directory.

31.2 User interface

The MFileServer window has a form window containing variables that can be used to
control its actions:

:: __ LogActivity StoreAlloved OverWriteAllowed DeleteAlloved

Figure 31.1 :\1FileServer window

31·1

31 MFileServer

31.2.1 Form subwindow

Running is a Boolean that controls whether the server will accept
connections at all. Changing it to FALSE will disallow future
connections, but will not terminate current connections (default =
TRUE).

LogAc ti v i ty is a Boolean that controls whether MFileServer logs its activity in
its subwindow. When it is FALSE, no log is kept (default = TRUE).

StoreAllowed is a Boolean that controls whether store operations are allowed.
When it is FALSE, files may be retrieved, but may not be stored
(default = FALSE).

DeleteAllowed is a Boolean that controls whether delete operations are allowed.
When it is FALSE; files may not be deleted (default = FALSE).

Overwr i teAllowed is a Boolean that controls whether existing tiles may be modified.
When it is FALSE, new files may be stored, but old files may not be
overwritten, deleted, or renamed (default = FALSEl.

Making the tool tiny does not affect the state of the server (in particular, it does not disable
the server). Making the tool inactive aborts all its current connections and turns the
server off so that it will not accept any new connections.

31.2.2 Executive commands

The MFileServer registers the command MFileServer.- with the Executive. If the
command is invoked with no arguments, it prints out the current state of the
~H'ileServer's variables. The command can be used to change the variables of the
~FileServer by taking a series of arguments of the form variable/value. All values must be
either on or off Hence the following command line sets the value of StoreAllowed,
OverWriteAllowed, and LoqActivity.

>MFileServer StoreAllowed/on OverWriteallowed/on LoqActivity/off

31.3 User.em entries

31-2

The MFileServer initializes the variables in its form window from the [MFileServerl
section of your User. em. The window box of the tool, its tiny position, and its initial state
are also controlled by entries in this section;

Running: TRUE default value of Running

LogActi vi ty: TRUE default value of LogActi vi ty

StoreAllowed: FALSE default value of StoreAllowed

DeleteAllowed: FALSE default value of DeleteAllowed

Overwri teAllowed: FALSE default value of OverwriteAllowed

XDE User's Guide 31

WindowBox: [x: 362, y: 628, w: 662, h: 150]
location of tool's window box

TinyPlace: [x: 120, y: 778] location of tool's tiny box

Initia1State: Active initial state of tool

31.4 Operational notes

When the remote directory is specified as empty angle brackets, "<>", :vtf'ileServer uses
the search path. (The remote directory refers to the dir.ectory field of the FileTool or the
directory specified in theFTP command line.) For files not on the search path, the
directory must be explicitly stated.

Storing and retrieving files require a non-empty remote directory.

The workstation running M«'ileServer must be registered in the Clearinghouse.

31-3

31 MFileServer

31-4

32.1 Chat

32

Network executive tools

The network executive tools provide ways to communicate with other workstations and
terminals on your network. These tools are Chat, NSTerminal, Remote Executive, and
TTYTajo.

Chat lets you talk to other machines via a teletype style user interface. NSTerminal lets
you communicate with other machines using terminal emulation (VT100), XSTerminal
also allows communication with dialup facilities available on your network (CIU and ECS
facilities). The Remote Executive allows remote workstations to use the facilities of an
XDE via Chat. TTYTajo is a server which has the Remote Executive function built into
the bootfile.

Chat provides a simple TTY-emulation capability in the development environment,
similar to Telnet in the DARPA realm. It runs on a standard Tajo or CoPilot bootfile.

Chat has three modes of operation. First, with a Remote Executive on the other end, Chat
allows one-way communication with other XDE machines. The second mode allows
communications with the Interactive Terminal Service !ITS). The ITS is a network service
that allows you to read and send mail or to create and store files. Finally, Chat's Remote
System Administration mode allows monitoring and administration of servers such as the
Clearinghouse, file, and print servers.

32.1.1 Files

Retrieve Cha t. bed from the Release directory.

32.1.2 User interface

Chat registers the command "Chat. -It with the executive. The simplest form of the
command is:

>Chat. -

32-1

32

32-2

Network executive tools

This command either activates an inactive Chat if there is one, or it creates a new one if
not. The full form of the Chat command is:

>Chat.- [hostJ/[switch]

host tries to open a connection to that host (see the Connect! command below). swi tch
tells what type of host host is. The values of swi tch are:

s Remote System Administration
i ITS
e Remote Executive

After you type this command to the Executive, a Chat tool window will appear. Chat's
tool-style interface has a message subwindow, a form subwindow, and a TTY subwindow.

: Connect! Disconect! BreakKey! Another! Destroy! Options!

Apply! Abort!~~ Bost'l'ype: {exec}

Figure 32.1: Chat

32.1.2.1 Message subwindow

The message subwindow is used for one-line messages. Chat tries to make sure that the
last message in this window agrees with the present state of the Chat world.

32.1.2.2 Form subwindow

The form subwindow contains several commands:

Connect! using the current selection as a host name or address, Connec t! tries to
open a connection to that host. After a connection has been established, a
message to that effect is posted in the message subwindow so you can start
typing. As a shorthand for this, typing a host name in the file subwindow
followed by DOlT takes the last word typed as the host name and invokes
the Connect! command. Note that the Connect! command behaves

XDE User's Guide 32

slightly differently depending on the values of some of the fields described
below.

Disconnect! if there is a connection open, Disconnect! deletes the connection for the
network stream, collects and throws away the tool's various processes for
managing the data stream, and returns the tool to a quiescent state.

BreaklCey! simulates a terminal's break character.

Another! starts up another Chat window, using the same options as the current
Chat window.

Destroy! destroys the Chat window. No confirmation is required, since you can get
another tool window using the exec Cha t. - command.

Options! creates a Chat options window. The options are:

Apply!

Abort!

LogIn

BostType:

32.1.2.3 TTY subwindow

sets your chosen options and destroys the options window.

cancels any changed options and destroys the options
window.

If this Boolean is TRUE and both Profile.User and
Pro f ile. Password are non-null, Chat will try to log
you in on the remote host using these values. If the
Boolean is false, Chat will not try to log you in. The
default value is TRUE. (you can set this value in the IChatl

section of your User. em file. Or, if the LogIn Boolean in
the Options window is selected, you will be logged in
automatically.)

selects the desired host type (any, sa, exec, or its) from
the BostType: menu. Then select Apply!

Chat also has a TTY subwindow in which the dialogue with the remote system takes
place. When a connection is established, characters sent from one machine to another
appear in the TTY subwindow.

An alternate way to connect to a host (rather than using the Connect! command) is to
type the host name into this subwindow, and hit the DOlT key (the one labelled MARGINS on
the Dandelion keyboard).

32.1.3 Special keys

Chat makes use of the following special keys:

COMPLETE : sends an Ascii ESC.

DELETE: sends an Ascii DEL.

32-3

32 Network executive tools

BS:

BW:

ABORT:

32.1.4 Chat User.cm

sends an Ascii BS (CONTROL-H).

sends an Ascii ETB (CONTROL-W).

does a Stream.SendAttention on the current connection,
in an attempt to simulate the Break key found on some
terminals. Note: The RemoteExec uses Break to simulate
the ABORT key; to abort an action in a Chat connection to a
RemoteExec, you press ABORT.

Chat will read the following User. em options:

[Chat]
LogIn: TRUE FALSE
HostType: sa any exec its

32.2 NSTerminal

32-4

NSTerminal allows you to connect to any service exporting the Gateway Access Protocol
(GAP), Services that export GAP include the Communications Interface Cnit (ClU), the
External Communication Service (ECS), the network executive used for remote system
administration on all network services, the Interactive Terminal Service (ITS), and the
XDE Remote Executive.

NSTerminal provides a capability that is basically the same as VT100 terminal emulation
in Star. NSTerminal is more flexible in that it allows you to communicate with any GAP
service on the network via the same window. NSTerminal provides terminal emulation for
a number of terminal (given below in the User Interface section) including DEC's VT100.

For more information about the services mentioned above, please refer to the Services 8.0
Programmer's Guide and the OS 5.0 System Adminisration Library.

32.2.1 Files

Retrieve NSTerminal. bcd from the Release directory.

32.2.2 Setting up

Before running NSTerminal, you should be logged in. After doing some initialization, a
Chat-style window will appear. NSTerminal will create a file NSTerminal. cache the
first time it is executed. This file caches clearinghouse entries for ports on the network
that you can communicate with. Should new ports be added or changed, the
NSTermi nal. cache file should be deleted (via the FileTool or the Executive) and will be
re-created automatically the next time NSTerminal is executed.

XDE User's Guide 32

32.2.3 User interface

NSTerminal registers the command "NSTerminal. _If with the executive. To create a new
instance of the tool, type into the Executive:

>NSTerminal. -

Connect! Disconect! BreakKey! Another! Destroy! Options!

Connect!
:Apply! Abort!
'TerminalOptions!
:CharLength: {7}
:parity: {even}
XOn= 21B

:Login

DATA ONLINE LOCAL

x
X o •

LineRo= 68

mal
Refresh: {always}
StopBits: {I}
Duplexity: {full}
XOff= 2138
Authenticate

Ll L2 L3

o o o

PhoneRumber: 85826050000
Bost: 1200Bps Venteller
Terminal: {vt100}
LineSpeed: {bps1200}
PlowControl: {XOnXOff}
DataPile:

L4

o
Figure 32.2: ~S Terminal

The NSTerminal window has three subwindows, a message subwindow, a form
subwindow, and a terminal emulation subwindow.

The message subwindow is used for various one lined messages.

The form subwindow contains the following commands:

Connect! takes the current selection as a host name or address and attempts to open
a connection to that host. This command has the same sematics as the
Connect! command on the NSTerminal Options window (see Opt ions!
below). The Connect! command on this form should only be used if the
options are properly set.

32-5

32

32-6

Network executive tools

Disconnect! will close the connection if there is one open. Closing the connection will
collect and throwaway the connection's various processes for managing
the data stream, and return the tool to a quiescent state.

Breakltey! simulates a terminal's break key.

Another! creates a new NSTerminal window. The new window will use the User.cm
default values for it's option window.

Destroy!

Options!

will destroy the NSTerminal window.

creates a :"IJ"STerminal Options window. Using the Options window is the
standard way to open a connection to a host. The options that affect only
the parent NSTerminal window are:

Connect!

LineHo=

PhoneHumber:

Apply!

Abort!

Filter

Bost:

will open a connection to the host specified in the
Host: field. This command will also cause the Options
window to be destroyed.

takes a numeric value, the line number of the service
you want to talk to. Line numbers can be thought of
as virtual sockets, and on a given host, a different line
number corresponds to a different service. Some well
known line numbers include:

32001
32002
32003

Remote System Adminstration function
XDE Remote Executive function
Interactive Terminal Service (ITS)

this field is used when the service that you are
connecting to has a dial out function. The phone
numbers are entered without any punctuation, ie the
number (415) 555-5555 would be entered as
4155555555.

will set the tool's options to what is displayed in the
Options window. The Options window will then be
destroyed.

will reset the tool's options to it's state before the
Options window was opened. The Options window
will then be destroyed.

will cause NSTerminal to mask out the high bit of
every byte before printing the character. This
function is useful if the remote host uses seven bit
characters with some parity, and your receiving
communications unit uses an eight bit no parity
option.

is the host name or network address of the service you
wish to open a connection to.

XDE User's Guide 32

'l'erminalOptions! will create an Options window which will allow you
to change the terminal emulator subwindows
properties.

Refresh: {}

'l'erminal:{}

this enumerated allows the user to specify the way
the emulator sub window will display the incoming
characters. The user can specify (via a pop up menu)
display modes from display each character has it is
received to deferring the painting to a later time. The
refresh options are:

always
never

half

full

update screen on every character
update only if nothing else is
happening
force an update when the screen is
half invalid
force an update when the screen is
all invalid

The recommend options is always, although when
using the never options, NSTerminal can handle data
tranfer rates of 9600 baud continuous. The never
mode can be used to tranfer files to the your
workstation since all characters received are stored
in NSTerminal. log.

this item has a pop up menu with the various
terminals that can be emulated. The enumerated
items represent the following terminals:

addrinfo General Terminal
adm3 Lear Siegler Adm3
adm3a Lear Siegler Adm3A
cdc456 Control Data 456
dm1520 Data Median 1520, 1521
gt100 General Terminal100A
hlOOO Hazeltine 1000
h1420 Hazeltine 1420
h1500 Hazeltine 1500
h1510 Hazeltine 1510
h1520 Hazeltine 1520
h2000 Hazeltine 2000
isc8001 Interactive Systems
so roc So roc 120
teletec Teletec Datascreen
trs80 Radio Shack
vc303 Volker-Craig 303
vt100 DEC VT100
vt50 DEC VT50
vt50h DEC VT50H
vt52 DEC VT52

32·7

32

32-8

Network executive tools

x820
other

Xerox 820
use the DataFile: terminal

The next eight items on the NSTerminal Options window are only applicable to
connections to the local port of an External Communications Service. The
Communications Interface Units have these options hard-wired and their values are
reflected when a RS232C port is selected from the RS232C Ports pop up menu of the
Options window.

CharLength:{}

StopBits: {}

LineSpeed:{}

Parity: {}

this item has a pop menu with the different character
lengths you can request your host to use.

this item has a pop menu with the number of stop bits
you can request your host to use.

this item has a pop menu with the baud rates you can
request your host to use.

this item has a pop menu with the parity options you
can request your host to use.

Duplexity: {} this item has a pop menu with the duplexity options
you can request your host to use.

PlowControl: {} this item has a pop menu with the flow control
options you can requ£,,,t VOUI' host to use.

XOn= is the character used to initiate the flow control.

XOff= is the character used to terminate the flow control.

DataPile: is a user provided terminal that :-.rSTerminal will
emulate when the other option is chosen in tht'
Terminal: {} field. This file contains a finite state
automata that represents the character sequence
necessary to invoke a terminal action. Further
explanation of this file is beyond the scope of this
document.

LogIn if this Boolean is selected, NSTerminal will
automatically log you in when you connect to a
service.

Authenticate if this Boolean is selected, NSTerminal will gather
credentials to be used in the opening of a conection.
This is only necessary when a particular service has
an access group associated with the service.

The third subwindow in the NSTerminal window is the terminal emulator subwindow.
The emulator subwindow is not a standard Tajo TextSW or TTYSW. Selections can be
made using Point and Select to define the boundaries of the selection. There is no selection
tracking as in regular text subwindows, and the selection disappears once new text is
written to the screen. Selection can be stuffed into other windows using the STUFF (labeled
OPEN on the Dandelion) button, and text from other windows can be stuffed into the

XDE User's Guide 32

emulator subwindow. There are no scrollbars on the emulator subwindow, to see the full
context of the window one must grow the window to be large enough. Hitting Adjust in
the emulator subwindow will cause the window to become the input focus if it does not
already contain a selection. A log is kept in the file NSTerminal.log.

At the bottom of the emulator subwindow are some bells and whistles. The DATA one is a
set of flippers that are inverted every time some data is sent to the emulator subwindow.
The ONLINE and LOCAL buttons tell you if you have a connection opened. The Ll, L2, L3,
and L4 buttons are settable by the host in the VT100 mode.

Special keys for the terminal emulator subwindow are:

The CNTL key is CONTROL (PROPS)

The ESC key is COMPLETE (right arrow)
The DEl key is DELETE

Cursor motion keys: Up, Down, Left, and Right are HElP, DOIT(MARGINS), NEXT,

and UNDO

If you are in the VT100 mode, there are several KeyPad and Programmable Functions
Keys available to you. With the built in Emulator. TIP file, you have the following:

The VT100 KeyPad functions are invoked by:

0-9 are 0-9 with COMMAND held down
Enter is COMMAND-RETURN

- (period) and, (comma) are. and, with COMMAND held down

The VT100 Programable Function Keys are invoked by:

PF1-PF4 are MENU (CENTER), SCROLLBAR (BOLD), JFIRST (ITALICS), and JSElECT

(UNDERLINE)

By changing the < >TIP>Emulator. TIP file and rebooting, you can assign these
function to any key or key combination. See the Mesa Programmer's Manual for more on
TIP tables.

32.2.4 Opening a connection

To open a connection to a CIU, open the options window by hitting Options!. If you bring
up a menu over the option sheet, a menu called "RS232C Ports" appears. Selecting one of
the RS232 ports causes the option sheet to change values. If you are talking to a Cle, fill
in the PhoneHumber: field; if there is no dialer on the other end, keep the PhoneHumber:
field empty. With the CIt:, the communication parameters (such as, CharLength=,
StopBits: 0, etc.) are ignored because the CIU uses the clearinghouse to get them. Hit
Connect! on the option sheet to start a connection, after which the option sheet should
disappear. If it does not disappear, you have hit the wrong Connect! button (on the
NSTerminal window).

To open a connection to the local port of an ECS, fill in the Bos t:, PhoneHumber: (if there
is a dialer connected to the local port), and all the communication parameters

32-9

32

32-10

Network executive tools

(i.e.,CharLength=. StopBits: {}, etc) and set the LineRo: field to 0 (zero). Hit
Connee t! and a connection will be opened.

To open a connection to the GAP services that Chat talks to (such as, remote system
administration, the XDE remote executive, and the interactive terminal service) fill in the
Bost: and LineRo= fields. All other parameters are ignored. The line number for remote
system adminstration is 32001, the XDE remote executive is 32002, and ITS is 32003.

32.2.5 NSTerminal User.em

NS1'erminal does extensive User. cm parsing. In addition to the standard entries,
User. cm entries include.

[NSTerminall
Authenticate: <TRUE FALSE>
Host: <string using quote if name contains spaces. For example,
"Dialer:OSBU North.Xerox" >
PhoneNumber: <string without punctuation. For example: (415)

123-4567 becomes 4151234567>
CharLength: < 5 6 7 8 >
DataFile: < name of terminal file. Used only by wizards>
Duplexity: < full half>
Fil ter: <TRUE FALSE>
FlowControl: <none xOnXOff>
LineNo: <number, 0-65535, decimal format>
LineSpeed: <bps50 bps75 bpsllO bps134pS bps150 bps300 bps600 bps1200

bps2400 bps3600 bps4800 bps7200 bps9600 bps19200 bps28800
bps38400 bps48000 bps56000 bpsS7600>

Login: <TRUE FALSE>
Par i ty: < none odd even one zero>
Refresh: <always never half full>
StopBi ts: <1 2 >
Terminal: <addrinfo adm3 adm3a cdc456 dm1520 gt100 hl000 h1420

h1500 hlSl0 h1520 h2000 isc8001 soroc teletec trs80 vc303
vt100 vtSO vt50h vtS2 x820 xvt52>

XOn: <number, OB - 177777BB, octal>
XOff: <number, OB - l77777BB, octal>

32.2.6 User.em example

Here is an example [NSTerminalj User. cm section:

[NSTerminall
PhoneNumber: 2324343
Host: "1200Bps Venteller Port B1"
LineNo: 68
Terminal: vt100
Refresh: always
FlowControl: XOnXOff

XDE User's Guide

XOn: 218
XOff: 238

32.3 Remote Executive

32

The Remote Executive is an executive service that permits users to connect to a remote
machine and issue commands as if they were typing into an Executive. The Remote
Executive supports an arbitrary number of connections from an arbitrary number of
users. The Remote Executive is typically used to access integration machines, but it may
also be run in the XDE to permit remote access to other workstations.

32.3.1 Files

Retrieve RemoteExee. bed from the Release directory.

32.3.2 User interface

The Remote Executive is accessed from Chat on your local machine. For example, to
connect to a machine named Yamamoto, running Remote Executive via Chat, you would
type:

>Chat Yamamoto/e

Once connected, you are asked to log in to the Remote Executive for authorization
purposes or to quit. You must log in with a legal user name and password. The list of
authorized users is controlled by the AccessGroups entry in the User. em for the Remote
Executive. see the Remote Executive User. em section in this chapter.

An authorization log in may not log you in to a machine. Since a machine can maintain
one logged-in name at a time, you will be logged in to the machine only if there is no other
user already logged in [f there is another user logged in, the system will print a message
telling you the name of that user.

After connecting to the Remote Executive, only three commands are available: Log In. -,
Qui t. -, and ShowAecessList. -(explained below). This initial LogIn. - command is
different from the standard Executive Log In. - command in that it will accept a fully
qualified user name. After the initial log in, the Log In. - command reverts to the
standard Executive LogIn. - command. For example:

Login
Name: Yamamoto:OS8U North:Xerox
Password: *****

After the initial log in, more commands are made available (explained in the next section).

32.3.3 Commands

In addition to all the standard Executive commands (see the Executive chapter), the
Remote Executive has the following additional commands:

32-11

32

32-12

Network executive tools

BootProlll'ile. -

BootVolume.-

CallDebugger •;

ListRemoteBosts.-

Online.-

Offline.-

Quit.-

RemoteExec.-[arg1

ShowAccessList.-

Time.-

VolumeStatus.-

32.3.4 Remote Executive User.em

allows you to boot a bootfile that is resident on the local file
system. It takes one argument, the name of the bootfile.

is the the Boot from menu of the Herald Window. It takes
the name of a logical volume (plus optional switches) as its
argument; if no argument if given, it acts like the boot
button and boots the entire physical volume.

call the debugger (equivalent to pressing SHIFT-STOP).

lists all currently connected users.

takes a physical volume or volumes as it arguments and
brings the specified volumels) on line.

brings the specified physical volume(s) offline.

causes the remote user to be disconnected.

sets the Remote Executive on or off, based on the value of
arg (which can have values "on" or ·'off"). If there is no
argument, this command tells whether Remote Executive is
onoroff.

shows the list of groups that can connect to your machine, as
given in the User. em file. (See the section below.)

gives the current time.

provides information about thp logical volumes of the
machine. It lists the following data. type (normal. debugger.
or debuggerOebugger), state of the volume (open or closed).
and the number of disk pages occupied out of the total
available. If no argument is given, it provides the
information for each of the logical volumes on the disk. If
given the name(s) of a specific logical volume as an
argument, it provides the above information for only the
specified volume(s) alone.

The Remote Executive searches the [System] section of the User.em file for the entry
AeeessGroups; this entry is a list of the names of individuals or groups permitted to use
the machine through the Remote Executive. An entry looks like:

[System]
AeeessGroups: "AnyGroup:OSBU North:Kerox" Smith Jones Johnson

If the domain and organization are left out, the defaults are used from the Profile Tool. If
there are spaces in a name, the name must be quoted. If the entry "*: * : *" is used,

XDE User's Guide 32

anyone may have acess to the Remote Executive. To allow anyone to have access to your
workstation, your User.cm entry would look like:

[System]
AccessGroups: *:*:*

Note: The access list is processed from left to right. so it is most efficient to put the most frequent users or user

groups on the left side and those users who access the machine less often on the right side.

32.4 TTYTajo

An integration machine is a workstation configured with a very large disk. The design of
the Dandelion makes it impm;sible to run both a very large disk and a large-format display
at the same time. As a result, an integration machine is connected to a glass terminal
rather than to a large-format display

You cannot run the standard XDE boot files on an integration machine, since they depend
upon the large-format display. TTYTajo is a boot file that runs on a machine (typically an
integration machine) and provides the basic facilities of the development environment. [t
supports only a TTY -~tyle interaction with the user, either through a simple terminal or
through the Remote Executive.

32.4.1 Files and installation

Retrieve TTYTajoTriDlion. boot from the Release directory if your machine has a
Trident disk, otherwise retrieve TTYTajoDLion.boot if your machine has a Shugart or
Quantum disk.

A sample User. em file is on the Release directory. Retrieve TTYTajol:ser.cm and rename
it to User. em.

The recommended boot switches (which you can set via Othello) for TTYTajo are: }]

32.4.2 Userinterface

You can communicate with TTYTajo either by typing into the simple keyboard attached to
the integration machine or by using the Remote Executive (see the Remote Executive
section). Characters typed into the keyboard are sent to the local Executive. The
Executive, the Remote Executive, and FTP are built into TTYTajo.

The Remote Executive recognizes the following character codes (defined in the interface
Asci 1. mesa) as special editing characters: Ascii.BS, AsciLControlC, Ascii.ControIW,
Ascii.ControIX, AsciLDEL, AsciLESC, and Ascii.Tab. The Remote Executive's interpretation
of these characters is described in thE' Executive chapter. You should consult this manual
for your simple terminal to Sf'e how to generate these characters from that terminal. The
abort function, provided by the STOP key for a local executive, is provided by the Break key
on most simple terminals.

.32 13

32

32-14

Network executive tools

32.4.3 Commands

In addtion to the standard Executive commands (see the Executive chapter) and Remote
Executive commands, TTYTujo has the following command:

FTP.-

32.4.4 User.cm

is built into TTYTujo. This command allows you to transfer
files between the workstation and remote file servers. The
documentation· for this command can be found in this
manual.

A sample User.em is given below. (TTYTajoUser.cm from the Release directory).

[User.em]

[System]
AccessGroups: *:*:*
Debug: No
Domain: OSBU North
InitialCommand: MFileServer:
Organization: Xerox
User: TTYTajo

[Executive]
CodeLinks: FALSE
Priority: 1
UseBackground: TRUE

[HardCopy]
Columns: 2
Interpress: Nevermore
Orientation: Landscape
PreferredFormat: Interpress

[MFileServer]
Running: TRUE
StoreAllowed: TRUE
OverWriteAllowed: TRUE
DeleteAllowed: TRUE

32.4.5 Program interface

The following interfaces are exported by TTYTajo Programs that use only these interfaces
can run in the TTYTajo environment

Common software interfaces:

Format
Real
RealFns

XDE User's Guide

String
Time
TTY

Tajo interfaces:

AddressTranslation
Atom
BlockSource
BodyDefs
BTree
CmFile
Date
DiskSource
Event
EventTypes
Exec
Expand
FileTransfer
HeraldWindow
MFile
MFileProperty
MLoader
MSegment
MStream
MVolume
PieceSource
Profile
Scratch Source
StringLookUp
StringSource
TajoMisc
TextSource
Token
Version

Pilot interfaces: all.

32

:32-15

32 Network executive tools

32-16

v

TCP/IP Related Tools and Applications

V-I

v TCP/IP Related Tools and Applications

33

ARP A Getting Started

33.1 Installing the ARPA network protocols in XDE

To install the ARPA protocols in XDE, follow these steps:

1. Retrieve the file HOSTS. TXT so you can address machines with logical names rather
than internet addresses, and to provide start up information.

This file has a list of all registered machines on your network. (If your machine is not
registered in the table, you must register it with your network's copy of the
HOSTS. TXT file).

Edit HOSTS. TXT as follows:

a. Find the line of text: MY -HOST: 0.0.0.0

b. Replace the address 0.0.0.0 with the address of your machine which is found by
looking at your entry in the table. If this is not done, or the file is not found on
your machine, the MP panel will read 982.

c. Find the line of text: MY-GATEWAY: 0.0.0.0

d. Replace 0.0.0.0 with the host number of your local gateway if it has one.

The addresses must be in the same address class as other entries for your network in
the table. The network number is set by either looking in the MY-HOST field and
extracting the network number, or by querying the local gateway specified in the field
MY-GATEWAY for the network number. If either of these methods fails, then let the
network number default to network number zero.

If your machine address is on a subnet, you must use the field SUBBET-MASK in the
HOSTS. TXT file to find the subnet masking bits. Or you can use the ArpaRouteTool.
See the documentation on the ArpaRouteTool for details.

2. Retrieve the rest of the ARPA software. The software you need is:

ArpaCo bcd: implements the Arpa transport protocols (IP, UDP, and TCP) and
address resolution protocols. The interfaces exported by this module are TcpStream,

33-1

33 ARPA Getting Started

ArpaPort, ArpaAddressTranslation, ArpaAddressCache, ArpaHostTable and
ArpaConstants.

Arpa'l'elnetConfig.bcd: provides the Telnet application level protocol which the
File Transfer Protocol (FTP) depends upon. There are currently no public exported
interfaces in this module.

Arpal'iling.bcd: provides the ARPA FTP and Trivial File Transfer Protocol
(TFTP) file transfer protocols. The interfaces exported by this module are TFTP,
ArpaFTP, ArpaFTPserver and ArpaFilingCommon.

Arpallailing. bed: provides the ARPA Simple Mail Transfer Protocol (SMTP). The
interfaces exported by this module are ArpaSMTP, ArpaSMTPServer and
ArpaMailParse.

(If you are running in the XDE environment, the file, ArpaConfig. bcd, provides the
same functions as the above four files. By using ArpaConfig.bcd all the protocols are
loaded in the right order and the Arpa protocols won't be started unless there is a
HOSTS. TXT file present on the current directory.)

Arpal'ileServer • bed: implements a window or command line interface for the
ARPA file server. See the XDE User Guide for details.

Arpal'ile'l'ool.bed: implements a window interface much like the XDE FileTooI,
which allows you to retrieve, store, list, and so on, on an ARPA file server. See the
XDE User Guide for details.

ArpaCha t. bed: implements a TTY window interface to remote hosts' telnet
processes. See the XDE User Guide for details.

ArpaRemoteEzee.bed: provides an executive to remote users who connect to the
local workstation using the Telnet protocol. See the XDE User Guide for details.

Arpallail'l'ool.bed: implements a window interface much like the NS based XDE
MailTool. It allows you to send and receive mail. See the XDE User Guide for details.

ArpaCaeheAddress.bcd: provides a Mesa executive interface to the HOSTS. TXT
information. See the XDE User Guide for details.

To load the above modules in the proper running order, use this command line:

Run.- ArpaComm Arpa'l'elnetConfig ArpaPiling ArpaMailing
ArpaPileServer ArpaPile'l'ool ArpaChat ArpaRemoteEzee Arpallail'l'ool
ArpaCaeheAddress:

OR

Run.- ArpaConfig ArpaPileServer ArpaPile'l'ool ArpaChat
ArpaRemoteEzee Arpallail'l'ool ArpaCaeheAddress:

34.1 Files

34

ArpaCacheAddress

The ArpaCacheAddress provides a user interface to the address cache and host table
parsing mechanism for the Arpanet addressing scheme.

Retrieve ArpaComm. bed and ArpaCaeheAddres s • bed from the Release directory.

34.2 User Interface

ArpaCacheAddress registers the command "ArpaCaeheAddress. -" with the XDE
executive. The following command arguments are understood:

Flush

List

Load/file

removes any current information out of the address cache.

enumerates all entries in the address cache with the entry name
followed by the address corresponding to that name.

takes the file specified in the file field and parses and loads all
relevant entries from this file into the cache.

AddEntry name/address
takes the naae. address pair and adds them to the address cache.

34-1

34 ArpaCacheAddress

34-2

35.1 Files

35

ArpaChat

ArpaChat provides simple TTY -emulation in the development environment. It runs on a
standard Tajo or CoPilot bootfile and is based upon the Telnet protocol of the TCP/IP
family of protocols.

Retrieve ArpaCha t • bed from the Release directory.

35.2 User Interface

ArpaChat registers the command "ArpaChat. _" with the executive. The simplest form of
the command is:

>ArpaChat.-

This command either activates an inactive ArpaChat if there is one, or it creates a new
one. The full form of the ArpaChat command is:

>ArpaChat.- [host)

host tries to open a connection to that host (see the Connect! command below).

After you type this command to the Executive, an ArpaChat tool window appears.
ArpaChat's tool-style interface has a message subwindow, a form subwindow, and a TTY
subwindow.

35.2.1 Message subwindow

The message subwindow is used for one-line messages about the current state of the
Telnet connection.

35.2.2 Form subwindow

The form subwindow contains several commands:

35-1

35

35-2

ArpaChat

Connect! using the current selection as a host name or address, Connect! opens
a connection to that host. After a connection is established, a message is
posted in the message subwindow so you can start typing. A faster way is
to tyPe a host name in the file subwindow followed by pressing DOlT. It
takes the last word typed as the host name and invokes the Connect!
command. The Connect! command behaves slightly differently
depending on the values of some of the fields described below.

Disconnect! ifthere is a connection open, Disconnect! deletes the connection for the
network stream, collects and throws away the tool's various processes for
managing the data stream, and returns the tool to a quiescent state.

Breaklte}, ! simulates a terminal's break character.

Another! starts up another ArpaChat window, using the same options as the
current ArpaChat window.

Des troy! destroys the ArpaChat window. No confirmation is required.

Options! creates an ArpaChat options window. The options are:

Interrupt!

Abort I

Appl}'!

Abort!

LogIn

sets your chosen options and destroys the options window.

cancels any changed options and destroys the options
window.

If this Boolean is TRUE and both Prof ile. User and
Profile.Password are non-null, ArpaChat logs you in on
the remote host using these values. If the Boolean is FALSE,

ArpaChat won't log you in. The default value is TRUE. (You
can set this value in the [ArpaChat] section of your
User. cm file. Or, if the LogIn Boolean in the Options
window is selected, you are logged in automatically.)

sends the Telnet Interrupt character to the connected host.

sends the Telnet Abort character to the connected host.

AreYou'fhere! sends the Telnet Are YouTh ere character to the connected host. A
responce is returned by the connected host.

BraseChar!

BraseLine!

GoAbead!

Bcho

sends the Telnet erase character character to the connected host.

sends the Telnet erase line character to the connected host.

sends the Telnet go ahead character to the connected host.

when this boolean is set to TRUE, the connected host echos characters to
the use rather than the local terminal emulator.

XDE User's Guide 35

LocalBchoOn when set to TRUE, the local keystrokes are echoed to the user. If set to
FALSE, the user's keystrokes are not echoed. The default is TRUE. When
remote echoing is ena,ble, this boolean is not available.

Port'll'pe

Port

35.2.3 TTY subwindow

gives the type of port that ArpaChat connects to. The defualt is Telnet
and the other options are FTP, SMTP and other. If the other option is
selected, the port connected to is taken from the Por t field of the tool.

gives the decimal value of the port to connect to. The default is decimal
23, the Telnet port.

ArpaChat also has a TTY subwindow in which the dialogue with the remote system takes
place. When a connection is established, characters sent from one machine to another
appear in the TTY subwindow.

An alternate way to connect to a host (rather than using the Connect! command) is to
type the host name into this subwindow, and hit the DOlT key (the one labeled MARGINS on
the 8010 keyboard).

35.2.4 Special keys

ArpaChat makes use of the following special keys:

COMPLETE: sends an Ascii ESC.

DELETE: sends an Ascii DEL.

BS: sends an Ascii BS (CONTROL-H).

BW: sends an Ascii ETB (CONTROL-W).

ABORT: does a Telnet abort on the current connection.

35.2.5 ArpaChat User.em entries

ArpaChat reads the following User. cm options:

[ArpaChatJ
Login: TRUEIFALSE

35-3

35 ArpaChat

35-4

36.1 Files

36

ArpaRemoteExec

The Remote Executive is an executive service that permits users to connect to a remote
machine and issue commands as if they were typing into an Executive. The Remote
Executive supports an arbitrary number of connections from an arbitrary number of
users. The Remote Executive is typically used to access integration machines, but it may
also be run in XDE to permit remote access to other workstations.

Retrieve ArpaRemoteZzee. bed from the Release directory.

36.2 User Interface

The Remote Executive is accessed from ArpaChat on your local machine. For example, to
connect to a machine named Inferno, running Remote Executive "through ArpaChat, you
would type:

>ArpaChat Inferno

Once connected, you are asked to log in to the Remote Executive for authorization
purposes or to quit. You must log in with a legal user name and password: The list of
authorized users is controlled by the AccessGroups entry in the User. em for the Remote
Executive; see the Remote Executive User. em section in this chapter.

An authorization log-in may not log you in to a machine. Since a machine can maintain
one logged-in name at a time, you will be logged in to the machine only if there is no other
user already logged in. If there is another user logged in, the system prints a message
telling you the name of that user.

After connecting to the Remote Executive, only three commands are available: LogIn.-,
Quit.-, and ShovAeeessList.- (explained below). This initial LogIn.- command is
different from the standard Executive LogIn. - command in that it accepts a fully
qualified user name. After the initial log in, the LogIn. - command reverts to the standard
Executive LogIn. - command. Forexample:

36-1

36

36-2

ArpaRemoteExec

Login
Bame: Joe:Accouting:UCB
Password: *****

After the initial log in, more commands are made available (explained in the next section).

36.2.1 Commands

In addition to all the standard Executive commands (see the Executive chapter), the
Remote Executive has the following additional commands:

BOO t!'rolllP ile .-

BootVoluae.-

CallDebugger.-

allows you to boot a bootfile that is resident on the local file
system. It takes one argument, the name of the bootfile.

is the Boot from menu of the Herald Window. It takes the name of
a logical volume (plus optional switches) as its argument; if no
argument if given, it acts like the boot button and boots the entire
physical volume.

calls the debugger (equivalent to pressing SHIFT-STOP).

ListRemoteBosts. - lists all currently connected users.

Online.-

Offline.-

Quit.-

takes a physical volume or volumes as it arguments and brings the
specified volume(s) on line.

brings the specified physical volume(s) offline.

disconnects the remote user.

RemoteBzec.- [arg] sets the Remote Executive on or off, based on the value of arg
(which can have values "on" or "off"). If there is no argument, this
command tells whether Remote Executive is on or off .

ShowAccessList. - shows the list of groups that can connect to your machine, as given
in the USer .cm file. (See the section below.)

'l'ime.-

VolwaeStatus.-

gives the current time.

provides information about the logical volumes of the machine. It
lists the following data: type (normal, debugger, or
debuggerOebugger), state of the volume (open or closed), and the
number of disk pages occupied out of the total available. If no
argument is given, it provides the information for each of the
logical volumes on the disk. If given the name(s) of a specific
logical volume as an argument, it provides the above information
for only the specified volume(s) alone.

XDE User's Guide 36

36.2.2 Remote Executive User.cm

The Remote Executive searches the [System] section of the User. em file for the entry
AccessGroups; this entry is a list of the names of individuals or groups permitted to use
the machine through the Remote Executive. An entry looks like:

[System]
AeeessGroups: -AnyGroup:Aeeounting:UCB- Smith Jones Johnson

If the domain and organization are left out, the defaults are used from the Profile Tool. If
there are spaces in a name, the name must be quoted. If the entry "*: *: *" is used, anyone
may have acess to the Remote Executive. To allow anyone to have access to your
workstation, your User.cm entry would look like:

[System]
AeeessGroups: *:*:*

Note: The access list is processed from left to right, so it is most efficient to put the most
frequent users or user groups on the left side and those users who access the machine less
often on the right side.

36-3

36 ArpaRemoteExec

36-4

37.1 Files

37

ArpaFileTool

The ArpaFileTool provides a user interface to the Arpanet based file transfer mechanisms
commonly called FTP (File Transfer Protocol) and TFTP (Trivial File Transfer Protocol).

Retrieve ArpaCollm.bcd, Arpa'lelnetConfig.bcd, ArpaPiling.bcd and
ArpaPile'lool. bcd from the Release directory.

37.2 User Interface

The ArpaFileToolcommunicates through a form subwindow, a command subwindow, a
log subwindow and an options window.

37.2.1 Form subwindow

The fields used as arguments to a command are listed in the form subwindow:

Bost:

Directory:

Source:

Destin:

LocalDir:

• ame:

is the name of the host to be used for remote files and operations.

is the remote directory relative to the default directory.

is a list of files for the next command to act upon. File names may include
wildcard/expansion characters. Any files appearing in this field should
conform to the syntax offile names for the file system that is the source of
the transfer

is the file name for the destination of a transfer. It should conform to the
syntax of the file system that is the destination of the transfer.

means that all references to the local disk will only occur within this
directory. If the directory is not a complete path name (if it does not
begin with <), it is assumed to have a < > prefixed.

is the name of the user on the remote machine .

37-1

37

37-2

ArpaFileTool

Password:

Accollnt:

Protocol:

is the password of the user on the remote machine. This is echoed with
asterisks.

is the account number of the user on the remote machine.

is an enumerated type giving the filing protocol to be used with the
remote machine. The protocols supported are:

TFTP uses the Trivial File Transfer Protocol.

FTP uses the File Transfer Protocol.

37.2.2 Command subwindow

The following commands are available for either the FTP or TFTP protocols:

Retrieve!

Store!

Options!

transfers the file name or names specifed in SOllrce from the
remote file system to the local disk. If Des t • n is blank, the file
name of the copy made on the local disk is the source file name
stripped of all host and directory qualifiers.

transfers the file name specifed in SOllrce from the local disk to
the remote host. Development environment file name conventions
apply to the local file.

creates an Options window if one does not already exist.

The following commands are only available to the FTP protocol:

Remote-List!

Remote-Delete!

Close!

Rename!

Relnitializel

Abort!

lists all files on the remote file system corresponding to the name
or names in SOllrce. These names must conform to the file
naming conventions on the remote host. You may designate
multiple files by the use of '. only to the extent that the remote
server supports it.

deletes the file name or names specified in SOllrce from the
remote file system. You may designate multiple files by the use of
'. only to the extent that the remote server supports it.

closes any currently open connection, freeing any resources needed
to maintain it.

renames the file name specified in SOllrce to the file name
specifed in Des t 'n on the remote file system.

allows the user to start the current session over again without
breaking the connection to the remote host.

stops the current filing transaction. This can also be done by using
the STOP key over the ArpaFileTool window.

XDE User's Guide 37

37.2.3 Options window

The Options window is created by the Options! command. The options window uses two
subwindows, a command sub window and a form subwindow.

37.2.4 Options command subwindow

The following are the commands of the options command subwindow:

Apply!

Abort!

Reset!

applies the currently set options and closes the window.

closes the options window without applying the set options,
maintaining the initial options settings.

resets the options to their initial values.

37.2.5 Options form subwindow

The options form subwindow sets options that effect the command in the ArpaFileTool
command subwindow. These options are dependent upon the protocol selected in the
ArpaFileTooI form subwindow. The following are the options for the FTP protocol:

PileDelimi ter:

PileType

is the character preflXed to the directory file name boundery if it
does not currently have this separator.

defines the way a file is stored. The following are the acceptable
types:

Ascii

Image

Other

for plain text.

for binary files.

for files that have some byte representation other
than what can be accommodated by Image.

When the Asc i i type is selected, an additional field appears:

PilePormat is an enumerated type formating schema that is used in the stored
or retrieved file. The following are the format types that are
acceptable:

Bon Print a file which contains no specific formating
information.

Telnet

ASA

a file which contains vertical format controls (such as
<CR>, <LF>, <NL>, <VT>, <FF».

a file which has ASA (FORTRAN) formating. (See
RFC740 or Communications of the ACM Vol. 7, No.
1O,p. 606, October 1964).

37-3

37

37-4

ArpaFileTool

When the file type Other is chosen, the following field appears:

ByteSize is the logical byte size of the file being transferred.

PileStructure gives the structure of the file to be transferred. The following is
the list of value's:

Pile is the XDE file structure.

Transllissionllocie is an enumerated type giving the method of transfer. The
following is a list of possible transfer options:

Stream is a stream of data bytes.

ListOutput gives the amount of information desired as a result of the Remote
List command. The following options are available:

Debug

CheckDate

verbose gives as much information about the file as possible.

terse gives just the file name.

allows debugging information to be printed during filing
operations when set to TRUE.

checks for creation time information. The file server must support
the following format to the response of the remote list command in
verbose mode:

<file information> created: <date in RFC822
format < file information> <CRLF>.

When the protocol is set to TFTP, in addition to the fields PileDelilli ter and Debug
described above, the following fields are also provided:

PileType is the type of file to be transfered. The following is a list of the
available file types:

RetAscii eight bit Ascii code.

Octet eight bit binary data.

Mail netascii characters to be sent to a user rather than a
file.

Retransmission Timeout (per-packet. in seconds)
gives the time interval between TFTP data packets.

Total retransmission interval (in-seconds)
gives the total timeout interval for a TFTP connection attempt.

Both the above values should be experimented with when the defaults do not work.

XDE User's Guide 37

37.3 User.cm entries

The standard User .cm entries Ini tialState, 'l'inyPlace and WindowBolil are
supported.

37.4 References

RFC740 NETRJS Protocol- Appendix C, Braden, November, 1977.

RFC822 Standard for the Format of ARPA - Internet Text Messages, Crocker, August,
1982.

An RFC can be copied from the < RFC > directory at SRI's machine:

SRI - NIC.ARPA

using FTP with username, ANONYMOUS, and password, GUEST.

37-5

37 ArpaFileTool

37-6

38.1 Files

38

ArpaFileServer

The ArpaFileServer provides a means of turning a workstation or integration machine
into a FTP (File Transfer Protocol) and TFTP (Trivial File Transfer Protocol) file server.

Retrieve ArpaComm. bcd, ArpaTelnetConfig. bcd, ArpaFil ing. bed and
ArpaFileServer. bed from the Release directory.

38.2 User Interface

The ArpaFileServer can be run as an Executive based tool or as a window based tool
according to your User. em entries. Running the ~rpaFileServer on a machine that does
not support a large format display will cause it to register commands with the executive.

38.2.1 Tool window interface

If the window mode is used, the ArpaFileTool communicates through a file subwindow and
a command subwindow

The fields in the command sub window are:

Start Enables FTP and TFTP listeners and enables current settings.
The tool starts with the RetrieveAllowed option set when it is
loaded unless otherwise set in the User. em entry.

LogAetivi ty Enables the activity and debug logs for TFTPandFTP.

StoreAlloved Enables file storing.

RetrieveAlloved Enables file retrieval.

DeleteAlloved Allows file deletion.

OverWr i teAl loved Allows the overwriting of a file.

38-1

38 ArpaFileServer

38.2.2 Executive interface

When run as an Executive tool, the following command is registered with the Executive:

Arpal"i1eServer. - command command •••

The following is a list of commands:

1 used to log server activity

s allows you to store files

d allows you to delete files

r allows you to retrieve files

o allows you to overwrite files on storing

s ta te displays the current setting of all the above.

A '- in front of any of a command disables it.

For example, Arpal"ileServer. - -1 s d r, stops logging but allows storing, retrieving
and deleting offiles.

38.2.3 Server activity log

Three kinds of messages are printed in the ArpaFileserver activity log. Messages ofTFTP
and FTP connections are printed with the originating host ID and for TFTP the file name
of the transaction. Messages sent be the FTP session are displayed with the symbols
"> > >" appended to them and messages received by the FTP server are displayed as they
are received. Messages are printed only if the log server activity boolean is set to true. If
the window version of the tool is used, then messages are printed in the tool window,
otherwise they are printed in the default log window, either the herald or the Executive
window.

38.3 User.em Entries

38-2

The User.cm, in addition to the standard Initia1State, 'l'inyP1ace and Windo.aoz
entries, includes:

[Arpal"ileServer)

window:

LogActivity:

TRUEIFALSE This boolean determines if the tool is initialized as a
window interface or an Executive command line interface. The
default is TRUE in an XDE window environment and FALSE in an
XDE nonwindow environment, such as an integration machine.

TRUEIFALSE This boolean determines if the tool displays a log of
connection activity. If the tool is in a window mode, the log is

XDE User's Guide 38

displayed in 'the FileSW, otherwise log messages are displayed in
the default subwindow, either the herald or the screen.

DeleteAlloved: TRUE!FALSE This boolean enables deletion of files by any connected
user if set to TRUE.

StoreAlloved: TRUE!FALSE This boolean enables storing of files by any connected
user if set to TRUE.

Retr ieveAlloved: TRUE!FALSE This boolean enables retrieving of files by any connected
user if set to TRUE.

38-3

38 ArpaFileServer

38-4

39.1 Files

39

ArpaMailTool

The ArpaMailTool is a SMTP (Simple Mail Transport Protocol)-based mail reading and
sending tool. The ArpaMailTool allows you to retrieve, read, send, forward, save, move,
delete, and answer mail. In order to receive mail at your local host, you must include your
name in the valid recipient list (See "WillAcceptMailFor" entry under User. em in 1.1.4.6)
of the User. ca.

If your mail file becomes damaged, you may be able to save it by running
MailPileScavenger. MailPileScavenger restore sthe internal structure of your mail
file to a consistent state. It copies the damaged mail file into a scratch file as it operates, so
you must have enough free disk pages available for this scratch file in addition to the
number of disk pages that your damaged mail file already occupies.
MailPileScavenger warns you if there is not enough room.

Retrieve ArpaMailTool. bed from the Arpa Release directory.

39.2 User Interface

The ArpaMailTool has its own window consisting of a message subwindow, two text
subwindows and a form subwindow, as shown in Figure 1. Information and error
messages are posted in the .message subwindow. The table of contents for the currently
active mail file is displayed in the text subwindow directly below the message subwindow.
The form subwindo.w lists commands for manipulating your mail. The lower text
subwindow displays individual mail messages. The name stripe of this window indicates
when the last mail was received for this host.

39-1

39

39-2

ArpaMaiITool

Nel'l mall)o::ted: 15-Jul-86 9:::::3:0;3

1 * Jul 15 David
2 * Jul 15 Jul ie
3 »Jul 15 Robert

lDisplay! Delete!
l Hardalpy! ltIdel ete!
l ExfuIge! New Forw!

Anner!
Forward!
Move!

documentation changes
ma il looping
meeting at 6:00

Sort! File: {Foo.mail}
~ions!
To: Meeting.mail

~ Date: 15 Jul 86 09:23:04 POT (Tuesday)
Return-path: <Robert@Xebra)
Received: From Xebra(1D.OD.49D.238D) by Xebra(1D.OD.49D.238D) With Tep ;15-Jul-86
9:23:04
SUbject: meeting at 6:00
From: Robert
To: Nannette

There will be a System Software meeting Thursday, July 17 in the far conference
room. The meeting is expected to last 1 hour and an agenda follows.

Figure 39.1: ArpaMailTool

39.2.1 Text subwindow - Table of contents

An index of all messages in this mail file, called the Table of contents (0 r TOC), appears
in the upper text subwindow of the ArpaMailTooI window. Each entry contains header
information, which includes the message number, the date it was sent, the name of the
sender, and the subject of the message.

You can have more than one mail file to store and organize your messages in. The current
mail file is the one whose TOe is displayed and the one to which new messages are
retrieved. Its name is displayed in the File: field described below. When the
ArpaMailTool starts up, it reads the mail file specified by the User. ca or Ac t i ve • rna il
if none is specified. You can change the current mail file by chording and selecting from
the File: field.

The currently displayed message is marked by a ,. character after the date column.
Deleted messages have a line through their entries in the TOe. Unexamined messages
are marked with an asterisk (*).

If a one character selection is made for the first character in a TOe line, then the next
character typed becomes the "flag" character for that entry. This flag has no semantic
meaning to the ArpaMailTool, but may be used for whatever purpose you want. For
instance, you might mark all those messages you need to answer with the character "A," or
you might mark those that are urgent with the character "u."

XDE User's Guide 39

39.2.2 Form subwindow

By making a text selection that spans a number of lines in the Table of Contents, it is
possible to select a range of messages. Those messages are said to be the current messages.
The ArpaMailTool uses the current messages as an argument for most commands. If there
is no selection in the TOC, the current message is the displayed message.

Display I

Bardcopy!

Delete!

Undelete!

BlIII:punge!

Porvard!

Bev Porml

Pile:

Options!

Sortl

Kovel

displays the first of the current messages if there is a selection in the
TOC; otherwise, it displays the next message. The next message is the
first undeleted message following the displayed message.

formats the current messages for printing and either spools them to a
printer or writes them into a local file. Print is loaded as needed. Note:
An NS-based printer is required to hardcopy mail messages.

marks the current messages for deletion by drawing a line through their
entries in the TOC. Messages are not removed from the message file
immediately, but only when expunged (see BlIII:punge! below), after which
there is no way to restore them. Before deleted messages are expunged,
they may be restored by the Undelete! command.

restores the current messages marked for deletion.

permanently removes messages marked for deletion from the mail file.

produces a form containing a message body that is a copy of the current
message and header fields that can be filled in by hitting the NEXT key.

produces a blank form with header fields that can be filled in by hitting
the NEXT key.

{Active.mail, ••• } is an enumerated item which indicates the
current mail file (the file where new messages are stored and whose TOC
is displayed). You may choose a different message file as the current file
by selecting from the menu under this item. Only • ma i 1 files are shown,
and if there are duplicates in the search path, only the first is found. The
default mail file can be set from the User. cm or from the Options
window.

activates the Options window.

sorts the messages in a mail file by the date and time each was sent.

moves the current messages to the mail file named in the To: item. This
feature allows you to organize your messages for easy reference. The
extension • ma i 1 is assumed if there is no period in the name.

Note: Any selection in the TOC is cleared if you edit the To: field. You must fill in that
field before selecting the messages to be moved. If you are merely moving a displayed
message, this problem does not occur.

39-3

39

39-4

ArpaMailTool

'1'0:

39.2.3 Options window

contains the name of the mail file that is the destination for JIove! The
extension is defaulted to .mail. You can also fill in this field by pressing
MENU and selecting a name from the currently existing. rna i 1.

The Options window contains the following items. For most options default initial values
can be specified in the ArpaMailTooI section in User. cm.

Apply!

Abort!

Debug!

ArpaRame:

causes the fields in the Options window to take effect and closes the
Options window.

closes the Options window without making any changes.

activates a window used primarily for debugging the SMTP protocol. The
protocol exchange is visible through this window. (See Figure 2.)

specifies the user name used by the ArpaSendTool in determining return
fields.

AutoDisplay is a Boolean that, if TRUE, causes the next message to be displayed when
the current message is deleted or moved. The default is FALSE.

Mail File: names the mail file you wish to work with. This file becomes the current
mail file when you invoke Apply! The extension defaults to . ma i l.
You can also fill in this field by pressing MENU and choosing the name
from the currently existing mail files. If you invoke Apply! when the
Ma i 1 File field is blank, the value defaults to Ac t i ve • rna i 1.

- - Hardcopy Options --

OnePerPage is a Boolean that, if TRUE, causes each message to start on a separate page.
The default is TRUE.

Output'1'oFile is a Boolean that, if TRUE, causes the output from Bardcopy! to be
written to a file instead of being spooled to a printer. The default is FALSE.

Sides: {PrinterDefault, SingleSided, DoubleSided} tells the printer whether
to do two-sided printing or not. If the printer does not support two-sided
printing, this option is ignored. The default is SingleSided.

Orientation: {Portrait, Landscape} specifies the orientation of the output.
Landscape output is two columns per page. Portrait is one column per
page. The default is Portrait.

Landscape Font: Portrait Font: are two fields to indicate which fonts to use
when messages are printed. The default font when printing in Portrai t
orientation is Gacha6; for Portrai t, Gacha8.

Printer: specifies the name of the interpress printer where the hardcopy is sent.

XDE User's Guide

[Apply!

iLBmm
Abort!
lkilFile:
<Tajo>Mail>Foo.mail

DetJug!
ArpaNue: Susan

--- Hardalpy ~ims ---
jSides: {SingleSided}
jLandscape Font: Souvenir8
jPrinter: Nevermore
iFile: MailMessages.ip

SMTP-Debuq

Received connection from
10.00.490.2380
HELO Xebra
I

Orientation: {Portrait}
Portrait Font: Souvenir8

250 Requested mail action okay, completed

• MAIL FROM:<Robert@Xebra>
I
250 Requested mail action okay, completed
I
RCPT TO:<Nannette>
I
250 Requested mail action okay, completed
I
DATA

• 354 Start mail input; end with <CRLF>.<CRLF>
I
250 Requested mail action okay, completed
I
QUIT
I

Figure 39.2: ArpaMailTooI Options Window and SMTP Debugger

39.3 ArpaSendTool

39

The ArpaSendTooI is used to send messages. A blank mail form is created by either
invoking Bew Form!, Answer!, or Forward! in the ArpaMailTooI window or invoking
Another! in an open ArpaSendTool window. The ArpaSendTool has a message
subwindow, a form subwindow, and a text subwindow.

39-5

39

39-6

ArpaMailTool

Ar J,j,SendTool

-Mother! Destroy! Reset! Send!
File: demo,msg Put! Get!

Dr:IEin: Xebra

! Subject: meet ing at 6: 00
! From: Robert i To: Susan@Venus

1 There will be a System Software meeting Thursday, July 17 in the far conference I'"'' Tho ... t;", is '''"'ted to ,." 1 hocr ond.n '011 ... ,

! AGENDA:
! =======
i 1: Agenda additions/changes (5 min,)
,
! 2: Introductions (5 min,)

i 3: Status reports from team leaders (15 min,)

14: Project plan reports from area managers (15 min,)

Figure 39.3: ArpaSendTool

39.3.1 Form subwindow

These items are always available in the form subwindow:

Another!

Destroy!

Reset!

Put!

Getl

File:

Domain:

Send I

creates another instance of the tool.

destroys this instance of the tool,

leaves the tool window open but clears it of text.

writes the contents of the tool window to the file named in the File:
field,

replaces the contents of the tool window with the contents of the file
named in the File: field. If the form has been edited but not sent, this
command requires confirmation,

is used to hold the name of the file used in the Put I and Get!
commands.

contains the name of the local host, If any recipient names in the '1'0:,

ee:, or bee: fields lack host fields, this value is automatically appended
before delivery. (See below.)

sends the mail totherecipientsindicatedinthe.l.o:.ee : , and bee: lines
of the message. A list of invalid recipients is posted to the- message
subwindow.

XDE User's Guide 39

39.3.2 Text subwindow

The text subwindow contains the text of the message, including a header part and a
message body part. The header part includes Subj ec t: To:, bcc:, Reply-To:, and cc :
fields that are used to send the message.

39.3.2.1 SUbject: field

The topic of your message goes in the Subject: field. The topic should express the content
of your message so that interested people take the time to read the message, but
uninterested people can delete it without reading it. For example, if your message
contains ideas for improving the ArpaMailTool, the topic might be "Suggestions:
improving ArpaMailTool ," not "Suggestions. "

39.3.2.2 To: field

The To: specifies who is to receive your message. A recipient is specified by a name@host
entry. The ArpaMailTool allows you to omit the host name for recipients who are at your
same host. For example, Somebody@LocaIHost, can send the following

Subject: Meeting at 2:00 Wednesday
To: Personl, Person2
cc: Person3, Person4@AnotherHost

The ArpaMailTool assumes that names lacking host fields are at the sender's host, which
in this case is LocalBost. Since Person4@AnotherBost includes the host,
AnotherBost is used by the ArpaMaiITool. In this case, the message goes to
Personl@LocalBost, Person2@LocalBost, Person3@LocalBost and
Person4@AnotherBost.

Distribution Lists:

Distribution lists are currently not implemented.

39.3.2.3 Reply·To: field

The Reply-To: field works with the Answer! command. Answer! initializes a message
form to reply to the message selected in the Table of Contents. If the message being
answered contains a Reply-To: field in its header, then only those recipients in the
Reply-To: field are included in the To: field constructed by Answer!. The Reply-To:
field limits those who automatically receive answers to messages. A recipient of such a
message can change the recipient fields constructed by Answer I.

39.3.2.4 cc: field

The cc: (carbon copy) field identifies others who are to recieve your message. Names
should be separated by commas. When you send your message, these people automatically
receive it along with the person or persons specified in the To: field.

39

39-8

ArpaMailTool

39.3.2.5 bee: field

The bee: (blind carbon copy) field identifies others who are to recieve your message, but
whose names do not appear in the recipient list of the header.

39.3.2.6 Message body

The message body (the actual content of the message) follows the header. There must be
an empty line between the last field in the header and the message body.

39.3.2.7 User.em entries

Some ArpaMailTool parameters can be set from the User • em. These are listed below with
sample values.

[ArpaMailTool]

ArpaName: Bill

TOCLines: 6

MailFile: Active.mail

MessageFont: Snail6.strike

TOCFont: Gaeha8.strike

AutoDisplay: FALSE

WillAeeeptMailFor: ["John" "Mary" "Bill"]

name of the user

number of ini tial
displayed in the
of contents (TOC)

lines
table

name of initial mail
file

if omitted, the built-in
Tajo font is used

if omitted, the built-in
Tajo font is used

if TRUE, next message is
displayed when current
message deleted

list of valid recipients
for mail delivered to
this local host

XDE User's Guide

NewForm:
"Subject: «»

From: Bill
To: ",.
Reply-To: Bill@Clover

"Message»

-- Bill"

39

the quoted text is used
by BewForml to customize
the send window

You can also specify the printing characteristics used by the Hardcopy! command. If no
printing entries are made in your ArpaMailTool User. ca section, the values from the
[Hardcopy) section are used. Refer to the Print chapter for further information about the
different entries. •

OutputToFile: FALSE

OutputFile: MailMessages .interpress

OnePerPage: FALSE

Sides: SingleSided

InterPress: Nevermore

LandscapeFont: Gacha6

PortraitFont: Gacha8

Orientation: Landscape

PrintedBy: $

if TRUE, output is written to
a file instead of a printer

name of output file used
when OUtputToFile is TRUE

if TRUE, each message starts
at the top of a new page

controls whether the
printer does two-sided
printing or not

name of the default
InterPress printer to use

name of the default font to
use when in landscape mode

name of the default font to
use when in portrai t mode

default output orientation

name to place on the banner
sheet when output is
printed. A dollar sign ($)
means the current login
name is used

39-9

39 ArpaMailTool

39.4 MailFileScavenger

39.4.1 Files

Retrieve HailPileScavenger. bed from the Mesa Release directory.

39.4.2 User interface

39-10

MailFileScavenger runs in the Executive window. To invoke it, type
HailPileScavenger HailPile.mail, where HailPile.mail is the name of the mail
file to be scavenged. Terminate the name with RETURN. MailFileScavenger copies your
mail into its scratch file, printing out the number of every rUth message as it is processed.

When anomalies are detected in your mail file, MailFileScavenger prints out a short
message such as lIessage 5: existing count vas 21 bytes too small. This
message means that the formatting information in the mail file used to distinguish
individual messages was inconsistent with what MailFileScavenger believes to be distinct
messages.

When MailFileScavenger is finished, it is a good idea to check any messages it complained
about. These messages may be missing several characters or be malformed in other ways.
You should also check neighboring messages-some of the characters in those messages
might really be part of other messages.

After MailFileScavenger has fmished copying and reformatting your mail into its scratch
file, it pauses and asks if it should copy that file back into the original mail file. If there
are not many error reports, type y to confirm. MailFileScavenger copies the scavenged
mail file back into the original mail file, deletes the scratch file, and quits. You may then
invoke the scavenged mail file in your ArpaMailTooI Options window. However, if there
have been many error reports, you might want to copy the original file before allowing the
MailFileScavenger to scavenge your file. To do this, cancel the command with N, copy the
file, then run MailFileScavenger on the copy.

The mail file that MailFileScavenger produces should give you a readable mailfile.
However, this mail file may have messages that are fragments of messages in the original
file and/or duplicate messages. If you copied the original file before running the
MailFileScavenger, you can compare the scavenged version to the original in order to
determine ifany text was lost. If you edit the scavenged mail file, you must run scavenger
again.

A.I Files

A

Othello

Othello is a utility for managing Pilot volumes. A volume is an array of disk pages. A
logical volume includes some overhead for keeping track of the array (such as the logical
volume root page). A physical volume is the structure corresponding to a disk pack, and
also includes some overhead.information (such as the bad page table). Othello is used to
initialize physical and logical volumes, to install boot files on logical volumes, to invoke a
boot file on a particular logical volume, and to initiate scavenging of logical volumes.
Othello handles all types of disks known to Pilot.

Retrieve OthelloDLion.boot (for a Dandelion) or OthelloTriDLion.boot (for a
Trident disk) from the Release directory.

A.2 Running Othello

Othello is booted from the disk in the normal development cycle. However, at certain
times (such as at the beginning of the world, or whenever the disk is erased) Othello is
booted from the Ethernet or a bootable floppy disk (on Dandelions).

To boot Othello from the Ethernet on a Dandelion, perform an AltBoot 3 (standard
Etherboot), AltBoot 4 (diagnostic Etherboot), or AltBoot 6 (alternate Etherboot).

A.3 User interface

When Othello is ready to accept commands, it announces itself with the version and date,
lists the processor ID in hexadecimal, octal, and NS standard formats, and reports the size
of physical memory on the machine:

Othello 11.1 of 30-Dec-84 at 15:11:04
Processor = OAA000116H = 252000005668 = 2-852-121-094
Memory Size = 168K bytes
>Online
Drive Name: RDO

A-I

A

A-2

Othello

After announcing itself, Othello waits for commands. Commands are entered on the
command line. Othello displays the default when prompting (if a default is both
reasonable and known). RETURN or SPACE will accept the default; BS or BW will allow editing
of the default; any other character will erase the default and begin a new string.

Generally, DELETE will abort the current command and a question mark will list available
options. A RETURN ends any command, and a space will end most commands. There are also
a Help command and the usual command completion facilities.

Othello can also be run from a command file, invoked by

> !l[reguiredFileServer] < OptionalDirectory >CommandFileName. ext~

or by

>!li
Command file: [FileServer] < OptionalDirectory > CommandFi1 eName . ext~

This command causes the text of the remote file to be taken (almost) as if it were input
typed to Othello. Command files can be up to 4096 bytes long and not nest (although they
may chain). Command files terminate when an end of file is reached, or when Othello
detects an error due to either a nonexistent command, an impossible-to-perform command,
or an exceptional condition (such as volume needs scavenging or remote file unknown).
During command files confirmation is surpressed; thus, command files should not contain
any answers to "Are you sure?".

Although Othello is itself a Pilot client, it is prepared to run without relying on the
existence of any volumes. As a result, it cannot write a typescript file.

Othello commands are presented below according to logical category.

Fine point: If an uncaught signal occurs (indicating an unexpected error), Othello displays the signal and

message in octal. CONTROL·P will abort the current command. Consult OthelloDLion.signals for the

meanings of unexpected signals. Depending on the problem, Othello may not be able to proceed after the error.

A.3.I Accessible disk drives

The List Drives command displays the names of all the drives accessible by Othello.

> List Drives~
RdO, •••

The drive names can be any of the following Ut stands for a single digit):

RDI Shugart 1000 or 4000, Trident 80,300, or 315, or Quantum 2040 or 2080

If a drive does not appear in the list, a hardware problem is likely. If the drive name
UnknownType# appears in the list, Pilot is internally inconsistent (or the hardware or
firmware is lying about device types).

XDE User's Guide A

A.3.2 Checking a pack

If you believe there are problems with your disk (which contains valuable data), you can
use the Check Dr ive command to cause Othello to read every page on the disk, including
the initial microcode area (see below).

>Check Drivei
Drive Name: drive(W
Are you sure? [y or n]: Xes
Bad pages found:
1010005540

Check Drive takes about a minute on a healthy Quantum 2040 and can be aborted with
the STOP key.

The following errors may occur:

Drive not found!
Too many bad spots.
Othello can't check this device.
Can't access disk.

These errors are indicative of a bad pack. Attempting to format the pack again may correct
the problem. If it does not, get a new pack.

A.3.3 Physical volumes

The physical volume on a drive must be brought on-line, making it known to Pilot, using
the Online command before it can be used by Othello. The commands List Drives,
Create Physical Volume, and Check Drive do not require that the pack be on-line.
Format requires the drive be off-line.

>Onlinei
Drive Name: drivei

Once the volume is on-line, you may refer to it using its physical volume name (assuming
it is unique). If the pack on the drive was just formatted, its name will be "Empty."

The operations on physical volumes are listed below. When a physical volume is specified,
either a drive name, a physical volume name, or a combination of the two separated by a
colon is acceptable. Ifthere are two on-line volumes with the same name, the drive name
must appear (perhal>s by itself).

>List Physical Volumes i

RdO: Trini ty, •••

>Describe Physical Volumes i

Physical Volume Trinity on drive RdO (Shugart 4000) contains:
Volume Othello (type = debuggerDebugger) is 800 pages long

starting at physical address 1
Volume pilot (type = normal) is 15081 pages long

starting at physical address 801
Volume CoPilot (type = debugger) is 15081 pages long

A-3

A

A-4

Othello

starting at physical address 15882

List Sad Pages is available to handle bad pages. It uses (decimal) page numbers, not
disk addresses, to identify bad spots. These are the same numbers that CoPilot prints
when unrecoverable disk errors occur.

>List Sad Pages6i
Physical Volume Name: drive:volume6i

10 4400 5000 •••

Use the Describe Physical Volumes command to determine which logical volume
contains the bad page.

When the processing of a pack is complete, the volume may be taken off-line (unless the
last operation was a Soot) with the command:

>Offline6i
Physical Volume Name: drive:volume6i

The following messages may appear when using the above commands:

Not Found
No physical volumes found
No known bad Spots
Sad Number!
SpecialVolume.Error[notPilotPhysicalVolume)
Ambiguous: please specify Device:PhysicalName
Type ControlP to muddle on ••••••••

The Not Found indicates that the last parameter (volume or drive name) could not be
located. The No physical volumes found error probably indicates the correct drive
was not on-line.

A.3.4 Logical volumes

Othello will configure a physical volume into a number oflogical volumes. You specify the
name, size, and type of each. You cannot add a logical volume to a physical volume.
without reconfiguring. The entire pack and the physical and logical volumes on it must be
rebuilt together. This is acco'mplished with the Create Physical Volume command.
An example appears below.

>Create Phys ieal Volume6i
Drive Name: Rd06i

Shall I try to find an old Sad Page Table?: Xes
New physical volume name: Trinity6i
Number of logical volumes: [1 •. 10]: !6i
Logical volume 0

Name: Othello6i
Pages: [50 •. 45144]: 8006i
Type: debuggerDebugger6i

Logical volume 1
Name :Pilot6i
Pages: [50 .. 44394]: 150816i

XDE User's Guide

Type: normal lii
Logical volume 2

Name: CoPilotlii
Pages: [50 •• 29363]: 150811ii

Type: debuggerlii
Logical volume 3

Name: CoCoPilotlii
Pages: [50 •• 14332]: 150831ii

Type: debugqerDebuqqer lii
Are you sure? [y or n]: Xes

A

The Create Physical Volume command destroys all old information on the disk. If
Othello discovers that the pack contains the remnants of a non-empty Pilot volume, it will
ask for double confirmation before proceeding, since the Crea te operation will destroy the
contents of the pack. In addition to the logical volumes, a physical volume name must be
specified. The whole process takes about three minutes for a complete Quantum 2040
pack.

Up to ten logical volumes can be put on a single physical volume. One of the primary uses
of logical volumes is to separate the debugger's working storage from the client's. Logical
volumes therefore have the following types:

normal a normal, client volume
a separate volume for CoPilot
a volume for CoPilot's debugger

debugger
debugger Debugger
nonPilot a "foreign" volume (which cannot contain Pilot files)

Once created, the following operations can be performed on logical volumes. In specifying
a logical volume, the drive name is optional if the volume name is unique among the packs
currently on-line.

>List Logical Volumeslii
RdO:Pilot, RdO:Copilot,

An individual logical volume can be erased with the Erase command. All of its pages
(except the bad spots) are marked free. Erasing a 15,OOO-page volume on a Quantum 2040
takes about 30 seconds.

>Eraselii
Logical Volume Name: drive: volumelii

Are you sure? [y or n1: Xes
Erase •.•• complete

The Pilot internal scavenger can be invoked on an individual logical volume using the
Scavenge command. This rebuilds the Pilot data structures on the volume and marks all
known bad pages busy. Scavenging a volume may take a long time. The Scavenge
command summarizes information in the scavenge log and displays any problems.

>scavengelii
Logical Volume Name: drive:volumelii

Are you sure? [y or nJ: Xes
Scavenging .•.• complete
volume repaired, log file complete

A-5

A

A-6

Othello

5 files on volumd
No problems found

Fine point: The scavenger does not support repair of malformed files or client· level data structures.

The Physical Volume Scavenge command invokes the Physical Volume Scavenger,
which reapirs This Scavenger puts the physical volume so it can be brought on-line. This
scavenger has two modes of operation: check and repair.

>Physical Volume Scavenge~
Drive Name: drive~
Repair? !es
Are you sure? [y or n]: !es
Scavenging •.• Complete
No problems detected

The temporary files on a logical volume can be deleted using:

>Delete Temporary Files~
Logical Volume Name: drive:volume~

The following messages may appear when using the above commands:

Not Found
Drive not Found!
This name is already in use; please choose another
Illegal Type
Bad Number!
Volume's size decreased (because of bad pages) to nnn.
No logical volumes found
Ambiguous; please specify Device:LogicalName

A.3.5 Initial microcode, Pilot microcode, diagnostic microcode, germ, and boot files

Othello can be used to load various types of files from the network onto physical and
logical volumes. The types of files of interest are: initial microcode, Pilot microcode and
diagnostic microcode, germ, and boot.

Initial microcode resides at a fixed location on the disk (outside of any logical volumes).
Pilot microcode files contain microcode to run the Mesa emulator and the devices in a
hardware configuration. Diagnostic microcode, which need not be present, is used to detect
faults within the machine. The germ is a small program that loads (and snapshots) Pilot
core im~ges when booting and when swapping to and from the debugger. Boot files are
Pilot-plus-client programs produced by MakeBoo t.

Pilot microcode, germ, and boot files can be installed on any Pilot-type logical volume.
Although users can store germ and microcode files on each logical volume, only one file of
each type, the one associated with the physical volume, can be loaded by the initial Pilot
microcode.

Each physical volume contains a pointer to one of each of the following types of files: Pilot
microcode, diagnostic microcode, germ, and boot. While each of these may come from a
different logical volume in that physical volume, it is customary for all of the physical
volume pointers to point to files on the same logical volume. A pointer is normally set to

XDE User's Guide A

the file of a given type most recently installed on the physical volume (see the different
Fetch commands below to find out which have this option). The pointers may also be set
with the Set Physical Volume Boot command. The microcode and germ files used
are those read at the time of the last boot-button boot. If changed, microcode and germ files
become effective only after the next boot-button boot is performed.

Because the files are retrieved from the network, the following commands (similar to
commands in FTP or File Tool) are available. Standard communications-type messages
will also appear. .

>Loqini

User: useri
Password: passwordi

>Clear i nqhousei
Domain: domaini
Org: orqanizationi

>Openi
Open connection to serveri

>Floppy Openi
Open connection to floppy dis~

>Directoryi
Directory: directoryw

>List Remote Files i

Pattern: patterni

>Closei
closed

The Clearinghouse command sets the default domain and organization of both the
logged-in user and the server to be connected to. It can be overridden in the Login and
Open commands by specifying these values explicitly: user:domain:orqanization
or server: domain: orqanization.

The Floppy Open command informs Othello that any subsequent remote file commands
should be directed to the floppy disk drive. This closes any existing connection to a file
server.

The Close command terminates any existing floppy or server connection. This command
is automatically invoked by the Boot, Power Off, Open, Floppy Open, and Quit
commands.

Fetch Boot File, pilot Microcode Fetch, Germ Fetch, Initial Microcode
Fetch, and Diagnostic Microcode Fetch all display the file's remote name (including
creation date and version). In addition, if a "*" is detected in either the directory name or
the file name, each matching remote file is displayed for you and a confirmation is
required. If you confirm, that file is retrieved and the command terminates. If you do not
confirm, you will be prompted with the next matching remote file.

A-7

A

. A-8

Othello

The Ini tial Microcode Fetch command retrieves an initial microcode and installs it
on a Shugart 4000 or 1000, Quantum, or Trident. It also formats the initial microcode
area. The microcode will be used in the next boot~button boot.

>Initial Microcode Fetch~
Drive Name: drive~
Are you sure? [y or nJ: res
File name: name~
Formatting •.• Fetching ... lnstalling ... done

Fetching initial microcode takes about five seconds from a local server. The cursor
displays FTP and twiddles while files are being transferred. In addition to FTP's messages,
the following may also appear when using this command:

Not found!
Please open a connection first
Othello can't install microcode on that device.
Note page ddd is bad. (non-fatal)
Ini t ial microcode page bad. (fatal)
Microcode too long. (fatal)
Flakey microcode page. (fatal; can't re-read a page just written)

There is no recovery from errors marked fatal. To proceed, the situation must be
corrected.

The Fe tch command will retrieve a boot file (in fact, it can only be used to retrieve Pilot
boot files) onto a logical volume and make it the boot file for the logical volume. The logical
volume can then be booted using the Boot command described below.
CoPilotDLion.boot (for a Dandelion) should always be made the boot file for the
debugger and debuggerDebugger volumes. Any Pilot boot file can be made the boot file for
normal volumes.

>Fetch Boot File"
Logical Volume Name: drive:volume~
Boot file name: name~
Fetching •.• lnstalling ••. done

A common way to update boot files is using a command file such as:

OSBU North
Xerox
Open FileServer
Directory BootFiles
Fetch Othello
Othello>Public>OthelloDLion.boot
Set Boot Othello
8}
Fetch Tajo
Tajo>Public>TajoDLion.boot
Set Boot Tajo
8}
Fetch CoPilot
CoPilot>Public>CoPilotDLion.boot

XDE User's Guide

Set Boot CoPilot
8}
Set Physical'Othello
Close

A

The time required to fetch a boot file depends on its size. Whenever possible, Othello
installs new boot files on top of old boot files, saving space but resulting in the old file
being lost. If the fetch fails, the old file is thus very likely to be invalid. In addition to FTP's
messages, the following may appear when using the Petch command:

Not found!
Please open a connection first

Once fetched, a boot file can be invoked using the Boot command.

>Boot<i!
Logical Volume Name: drive: volume<i!
Switches: switches<i!

The Set Boot File Default Swi tches command permits setting the default boot
switches in a volume boot file. OthelJo will then supply the boot file default switches as the
initial value of the switches when it prompts you for the Swi tches: part of the Boot
command. You may then replace or edit those switches. Boot switches that cannot be
entered from the keyboard may be specified in the form \nnn, where nnn is the octal code
for the switch. Switches. specified by octal numbers must be exactly three digits.

>Set Boot File Default Switches<i!
Logical Volume Name: drive:volume<i!
Switches: switches<i!
Are you sure? [y or nJ: Xes

Pilot microcode, germ, and boot files on a logical volume may be deleted by

>Delete Boot Files<i!
Logical Volume Name: drive:volume<i!

The Delete Boot Files command is sometimes needed if Fetch is either interrupted
while retrieving or used to get a file that is not a microcode, germ, or boot file.

The pilot Microcode Fetch, Diagnostic Mic~ocode Fetch, and Germ Fetch
commands are similar to the Fetch command. However, as there is usually just one Pilot
microcode file and one germ file for an entire physical volume, the question "Shall I also ... "
is asked:

>pilot Microcode Fetch<i!
Logical Volume Name: drive:volume<i!
pilot Microcode file name: name<i!
Fetching ••• lnstalling ••• done
Shall I also use this for the Physical Volume?: Xes

>Diagnostic Microcode Fetch<i!
Logical Volume Name: drive:volume<i!
Pilot Microcode file name: name<i!

A-9

A

A-IO

Othello

Fetching •.• lnstalling •.. done
Shall I also use this for the Physical Volume?: Xes

>Germ Fetch~
Logical Volume Name: drive:volume~
Germ file name: name~
Fetching •.• lnstalling .•• done
Shall I also use this for the Physical Volume?: Xes

Fetching microcode and germ files is fairly fast since the associated files are small. The
error messages are the same as for Fetch. The system will not begin using the retrieved
pilot microcode, diagnostic microcode, or germ until the next boot-button boot. An
installed debugger is invalidated when you change germs, so that when you begin using a
germ different from the one in use when any debuggers we-re installed, you must reinstall
all debuggers.

The Set Physical Volume Boot Files command designates the microcode, germ,
and boot files to be associated with a physical volume. These files are the ones used by a
boot-button boot.

>Set Physical Volume Boot Filesi

Logical Volume Name: drive:volume~
Set physical volume boot file from this logical volume: Xes
Set physical volume diagnostic microcode file from this logical
volume: Xes
Set physical volume microcode file from this logical volume: Xes
Set physical volume germ file from this logical volume: Xes
Are you sure? [y or n): Xes

The questions are asked only for files that exist on the logical volume. If none of the files
exist, Logical volume has null boot files is printed and the command aborts.
The files are not actually set until you answer" Are you sure."

Fine point: When a boot file is re-fetched, the space is re-used. Thus, updating a logical volume boot file also
updates the physical volume boot file if they are the same. If this is not desired, you should redo the Se t
Physical Volume Boot Files.

A.3.6 Time

While initializing, Othello tries to get the current time from an NS time service. If Othello
fails to obtain the current time, it demands that you input time and time zone information
before it allows any other commands.

The Time command displays the current date and time:

>Time~

Current time Tuesday 29-Dec-8l 11:45;26 PST

The Set Hardware Clock Upper Limi t command is used when a Pilot Client (Le.,
CoPilot, Tajo, Services, or Workstation, as opposed to a UtilityPilot Client such as Othello
or Prometheus) is booted, and time is not available from the network. Pilot will not believe
a time provided by the system element clock that is greater than the expiration date stored

XDE User's Guide A

in the boot file. It will, however, believe a time from an NS time service that is greater
than the expiration date stored in the boot file.

A.3.7 Routing tables and echo user

Othello has two commands for inquiring about the local Ethernet:

>Echo User6)
Echo to: echoServerfi
[My.net.address]=> [Gateway.net.address]=> [Server.net.a ddress]

echoServer should be of the form net. addr. socket. Othello runs the test until you
press any character, at which point it prints statistics and accepts further commands. As
the test runs, "!" I "I" I and "?" are printed: "!" indicates a successful echo, "?" indicates
timeout waiting for the echo, and "I" indicates reception of an unexpected packet. Often
the sequence "?#" indicates a packet late in being returned.

The command

>Routing Tables lii

causes Othello to display the current routing tables.

A.3.S Accessing the debugger during early initializatiQn of Pilot

During later stages of initialization, Pilot searches for an installed debugger. It looks on
all volumes of a type one higher than the one on which the boot file resides. Thus if the
boot file is on a volume of type normal, Pilot looks on volumes of type debugger; if the boot
file is on a volume of type debugger, Pilot looks on volumes of type debuggerDebugger.
Occasionally you may want Pilot either to get to a debugger early during its initialization
or to use an installed debugger other than its normal choice. In these cases, use the Set
Debugger Pointers command to set up the information Pilot needs. It will also accept an
empty string for debugger, meaning to clear any debugger pointers that may have been
set. You must also use this command to allow Utility Pilot clients (such as Othello itself)
to use a debugger on the local disk.

>Set Debugger Pointerslii

for debuggee Logical Volume: drive:volumelii

for debugger Logical Volume: drive:volumelii

Are you sure? [y or n]: Xes
Done •..

This command takes the information needed for Pilot to find the debugger and writes it
into the debuggee boot file.

When this command has been given, the debuggee boot file will continue to use the
specified debugger until the debuggee boot file is erased or overwritten or the information
is cleared.

The pointers written remain valid until you next erase the debugger volume or fetch other
than a CoPilot boot file onto the debugger volume.

A-ll

A

A-12

Othello

If these pointers have not been set up or are invalid, an early debugger call stops with an
error code in the maintenance panel.

Fine point: This command allows you to have a client and a debugger on volumes of the same type. However, if
any other systems are rooted on volumes of the same type as an installed debugger, it is necessary to always boot

them (and good practice to boot the debugger itself) with the open-system-volume-only "%" boot switch.

Otherwise, running one of the other boot files will delete the temporary files from underneath the installed
debugger, leading to a Disk Label Check when the debugger is next used.

A.3.9 Exiting Othello

There are three ways to finish an Othello session. To exit normally, use

>Quiti
Are you sure? [y or n): yes

which will cause Othello to clean up after itself, and then (programmatically) press the
boot button for you. The system will begin using the initial microcode, pilot microcode,
germ, and physical volume boot file currently installed on the volume.

If you really want to stop the machine, use the command

>Power Offi

Are you sure? [y or n): yes

On some machines, this will actually turn the power off. On others, it will merely display a
code in the maintenance panel and blank the display.

Finally, exit from Othello can be made by booting another program.

A.3.l0 Special commands

Some special commands and options are available only to wizards. The Wizard Mode
command enables these additional commands.

B

Getting started/Operations guide

This appendix describes how to start your new machine and how to use it.

The first thing to do is boot your Dandelion; that is, start it so that you can use it.

We assume here that the machine delivered to you already has a disk set up with a
development environment and that the boot button will take you to Othello, the Pilot disk
utility. (For more information about Othello, see Appendix A.) It is quite likely that you
are in Othello now: that is, at the top of your screen there is a message of the form

Othello 10.0 of 20-Dec-82 12:13:14 PST
Processor = X'AA000176' = 25200000566B = 2-852-127-094
Memory Size = 512K Bytes
>Online ROO

You may already be in another logical volume, such as CoPilot, Tajo, or Star. The herald
window (the long narrow window across the top of your screen) will tell you this. Or you
may be staring at a blank display; if so, read the next section to learn how to boot your
machine.

B.1 Booting

A complete software system is bound into a runnable package called a boot file. The
process of invoking a boot file is called booting. Boot files may be stored on a rigid disk
attached to the processor, on a floppy disk, or on an Ethernet boot server. Boot files may be
invoked by the machine's boot button; by Othello, Tajo, CoPilot; or by another software
system. Booting procedures vary somewhat on different Mesa process()rs.

Normally, the rigid disk is set up so that the boot button directly invokes Othello. Until
the disk is initialized, the only ways that Othello may be invoked are by booting it from
the Ethernet or a floppy disk on the Dandelion.

One important side-effect of a boot-button boot is that Mesa microcode and the Pilot boot
loader are loaded into the machine from the source of boot data (rigid disk, floppy disk,
Ethernet). This is the only time that they are loaded; thus, the ones loaded by the boot
button will remain in use until the next boot-button boot. Software may initiate a boot
button boot; a Qui t command to Othello does this.

B-1

B

B-2

Getting started/Operations guide

B.1.1 The maintenance panel

On the front of every Mesa processor (behind the flap under the floppy drive) is a three- or
four-digit numerical display called the maintenance panel, or MP. It is used to display
status and error codes, particularly when the system is unable to give a more helpful error
report. Nextto the numerical display, you will find two buttons, marked 8 RESET and ALT B.

These two buttons are more commonly known as the boot buttons. They are referred to
several times below.

Fine point: MP codes are displayed by the microcode and microcode diagnostics during booting; by Pilot's boot

loader when it is running; and by Pilot during its initialization. The MP codes displayed by Pilot and its boot

loader are the same on all Mesa processors. MP codes occurring normally during Pilot operation are described in

the next section; codes displayed by Pilot to indicate unusual conditions and errors are listed elsewhere in this

chapter. MP codes displayed by microcode and microcode diagnostics are specific to the processor being used and

are described in other documents.

B.l.2 Standard booting

We will discuss now how to boot your machine from your disk or the Ethernet so that you
are brought to Othello.

B.l.2.1 Disk booting

If an Othello has been installed on your machine, you can boot directly from your own
hard disk.

To boot your machine, just press the left boot button on the maintenance panel. This
causes diagnostics to run for about a minute and then boots the rigid disk. If you boot your
machine often and want to skip the diagnostics, you can do an Alt-Boot-I, known as a One
Boot. This is done by pressing both buttons, then releasing the left button. The lights will
cycle from 1 to 10 until you let go of the right button; these numbers are the boot options.
To boot from the hard disk without diagnostics, release the right button when 0001 is
displayed by the maintenance panel lights. You may find the timing a bit tricky at first. If
you haven't gotten it right, you can try again immediately.

The boot options are:

0000 SA4000, SAlOOO, or Trident drive 0 diagnostic boot (normal
boot)
0001
0002
0003
0004
0005
0006
0007
0008
0009

SA4000, SAlOOO, or Trident drive 0 non-diagnostic boot
Floppy non-diagnostic boot
Ethernet non-diagnostic boot of Othello
Ethernet diagnostic boot of Othello
Floppy diagnostic boot
Reserved for Ethernet boot of experimental microcode/software
Trident drive 1 diagnostic boot
Trident drive 2 diagnostic boot
Trident drive 3 diagnostic boot

0010 Floppy head cleaning function

Getting started/Operations guide B

The screen will flash as your Dandelion boots. Watch the maintenance panel numbers.
They should run through a sequence of diagnostic numbers like 910,920, 930, 990. You
may not see all, of these, but if the machine hangs with some other number in the lights,
your boot has probably not been successful (see below), Shortly after the 990 appears,
Othello should announce itself and prompt for input:

Othello 11.1 of 20-Dec-84 12:13:14 PST
Processor = OAA000176H = 252000005668 = 2-852-127-094
Memory Size = 768K 8ytes
>Online RDO

If booting is not successful, chances are either that your machine doesn't have an Othello
on it or that it has hardware problems.

B.1.2.2 Ethernet booting

To boot Othello from the Ethernet (without running diagnostics), proceed as described
above, only this time perform an Alt-Boot-3: wait until 0003 is displayed in the
maintenance panel lights before you release the right button. (An Alt-Boot-4 will perform
a diagnostic Ethernet boot.)

B.1.2.2.1 Time setting requirements

If a Dandelion is not connected to an Ethernet with an operational NS time service on it,
Othello will require that you set the date, time, and local time zone parameters before
proceeding. You should be careful to give accurate information, because other users and
programs depend on it.

8.1.2.3 Floppy booting

To boot from a floppy, insert an Othello-bootable floppy disk in the floppy drive (label side
up) until it locks in, close the drive panel, and perform a "5" or a "2" alternate booUf you
are unable to boot Othello either from the Ethernet or from a floppy, consult your local
system administrator.

Note: It is important to remove floppy disks from the drive when not in use to lengthen
the life of both the disk and the drive.

To clean the floppy disk drive, dothe following: Insert a floppy cleaning diskette in the
drive and do a "10" alternate boot. When the MP displays 0076, press the ALT B button.
0077 will be displayed for about 15 seconds while the drive is being cleaned; then 0076
will be displayed once again. Remove the cleaning diskette from the drive.

B.l.2 .4 Maintenance panel codes during initialization

When a boot file is invoked, Pilot displays a sequence of maintenance panel codes to
indicate progress during its initialization:

900 boot loader entered
910 boot loader action running (such as inLoad, outLoad)
920 boot loader driver running (such as disk, Ethernet)
930 pilot Control and MesaRuntime components being initialized

B-3

B Getting started/Operations guide

940 Pilot Store component being initialized
941 waiting for disk drive to become ready
950 logical volume being scavenged (If a logical-volume being booted or

opened is in an inconsistent state, Pilot will display 950 while it scavenges
(verifies the contents of the physical volume. The amount of time required depends
on the size, occupancy, and fragmentation of the logical volume.)

960 temporary files from previous run being deleted
910 client and other non-boot-loaded code being mapped
915 transaction crash recovery
980 Pilot Communication component being initialized
990 PilotClient.Run called

B.1.2.5 Maintenance panel codes during XDE initialization

The Xerox Development Environment may also display maintenance panel codes.

9950 Mesa file system being verified. (If a logical volume being booted or opened is in
an inconsistent state, the Mesa file system will display 9950 while it scavenges;
that is, verifies the contents of the logical volume. As with scavenging the
physical volume, the amount of time required depends on the size, occupancy, and
fragmentation of the logical volume.)

B.1.2.6 Booting other volumes from Othello

Once Othello has been started, you can boot any of the other logical volumes from inside it.
To boot another volume such as Tajo or Star from within Othello, you need to give the boot
command followed by the name of the logical volume you want. For example, to boot your
Tajo volume, you would say:

>Booti
Logical Volume Name: Tajoi
Sw itches: i --a carriage return gets the default switches for the volume

B.2 Setting up volumes: initializing your system

B-4

From Othello you can examine the structure of your disk to see the logical volumes it
contains. Briefly, a volume is an array of disk pages. A logical volume includes some
overhead for keeping track of the array. A disk or disk pack is called a physical volume.
Each physical volume is divided into one or more logical volumes. Different logical
volumes may be used to contain different systems, such as Star, Tajo, CoPilot, and Othello.
The logical volume is conventionally given the name of the system it contains. Separate
logical volumes may also be used to segregate the data of a system into useful subsets; for
example, Star typically stores all user data on a separate volume named User.

Each logical volume has a volume type. This type is used to keep the working storage of
the debugger separate from the system that it is debugging. Logical volumes have the
following types:

Othello Keyword

normal
debugger

Example

Star, Tajo
CoPilot

Volume type

a normal client volume
the debugger for normal volumes

Getting started/Operations guide

debugger Debugger
nonPiiot

CoCo Pilot

B.2.1 Example of initializing volumes

B

debugger of a debugger volume
volume does not contain Pilot files

The chart below gives examples of configuring an SA4000 or SA1000 disk starting from
scratch. It assumes that there is nothing of value on the disk and that the entire disk is to
be used for Pilot-based systems.

These alternatives each will create a number of logical volumes on the single physical
volume. Each of these logical volumes will hold the files for semi-independent Pilot
worlds. There is considerable room for individual taste, depending on your needs and
which systems you wish to be able to run.

Generally, it is best to allocate as much space as possible for the volume where you plan to
do most of your work or store most of your files.

Programmer, Quantum 2040 disk (64,000 pages after formatting):

alternative 1 2 3 4 minimum type
Othello 1400 1400 1400 1400 1200 normal
Tajo 25,600 18300 4000 normal
CoPilot 1100 18300 33600 30600 7500 debugger
CoCo Pilot 9000 9000 12000 12000 9000 debugger Debugger
Star 8000 8000 8000 11000 8000 normal
User 9000 9000 9000 9000 9000* normal

*allows approximately 4000 free pages after installation of data files.

Programmer, SA4000 disk (45,000 pages):

alternative 1 2 3 4 minimum type
Othello 1200 1200 1200 1200 1200 normal
Tajo 5000 4000 normal
CoPilot 17600 13800 29300 18500 7500* debugger
CoCoPilot 9000 9000 9000 debugger Debugger
Star 8000 8000 8000 8000 8000 normal
User 9000 9000 9000 18600 9000 normal

*7500 is minimum for 768K memory. Add 1000 pages for each additional 256K bytes.

Non-programmer, SAIOOO disk (16,000 pages):

alternative 1 2 3 4 minimum type
Othello 1400 1400 1200 1200 1200 normal
Tajo 14600 6400 4000 normal
CoPilot 7800 7500 debugger
Star 14600 7000 6700 normal
User 8500 8500 normal

Note: The minimum of 1200 pages for the Othello volume includes boot file, microcode,
and germ storage. If you store microcode in another volume, decrease the minimum by 80

B-5

B

B-6

Getting started/Operations guide

pages. Storing the germ elsewhere reduces the minimum by an additional 40 pages. If you
wish to store diagnostic microcode on Othello, add at least 160 pages to the minimum
figure.

At present there is no way to alter the distribution of space among the logical volumes
without recreating the entire physical volume (and destroying its contents!). Therefore,
the initial distribution of space should be considered carefully. It is critical to make each
volume at least the specified minimum size because some systems can fail in ungraceful
ways if the volume is l"ull.

B.2.2. Booting volumes from other volumes

If you are in either CoPilot or Tajo, you can boot another volume by moving the mouse
until the cursor is in the Herald window and holding down both mouse buttons to get the
Boot Prom: menu. (If you have a three-button mouse, holding down the middle button
performs this function.) While you hold down the buttons, move your mouse until the
name of the volume you want to boot is highlighted, and then release the buttons. You will
see your cursor transformed into the image of a mouse. This is the system's way of asking
you to confirm or abort the boot request. To confirm, click the left mouse button. Clicking
the right mouse button causes the boot request not to be executed.

B.2.3 Boot switches

Boot switches control the initialization of the Xerox Development Environment. The
switches are passed to Pilot by the agent that invoked the boot file (such as Othello). The
agent invoking a boot file normally has a mechanism for the user to specify switches. A
default set of switches may also be written into a boot file, and the invoking agent may
choose to use them. If the invoking agent is the boot button, the default switches are
always used.

Fine point: Boot switches are eight-bit characters. Various ranges of the switches are allocated for Pilot, for the

Xerox Development Environment, and for other product systems like Star. The current assignments for Pilot and

the XDE are given below. .

The most common boot switches are:

% Open only the system logical volume.

Normally Pilot opens all logical volumes on the system physical volume that have the
same volume type as the volume being booted. This switch causes Pilot to open only the
volume being booted.

* Bring all physical volumes on-line automatically.

During normal initialization, Pilot automatically brings on-line only the physical volume
that contains the system being booted; other physical volumes then may be brought on
line by client software. This switch causes Pilot to bring on-line all attached physical
volumes.

2 Go to debugger just before calling PilotClient.Run ("Key Stop 2").

Getting started/Operations guide B

This can be used to place breakpoints just before client code begins executing.

5 Go to the Ethernet for a debugger.

This switch instructs Pilot to go to the Ethernet when it needs a debugger. This supersedes
the presence of an installed debugger on the attached disk and/or debugger pointers that
may have been set in the boot file. If Pilot needs to map log (see below), it will use an
Ethernet debugger to do so.

6 Turn owner checking on for Heap.systemZone and Heap.systemMDSZone.

7 Disable map logging.

For the debugger (CoPilot or CoCo Pilot) to access the Pilot virtual memory, it must be
aware of the current mappings between virtual memory and backing storage. It does this
by consulting the virtual memory map log normally produced by Pilot. Map logging is
disabled by this switch, thus increasing performance, but seriously limiting the ability of
the debugger to diagnose problems.

8 Create a keyboard interrupt key watcher.

This switch instructs Pilot to call the debugger when the LOCK and both SHIFT keys are held
down and the STOP key is pressed. The debugger will report "Pilot Emergency Interrupt."
Since the Pilot process doing the job runs at the highest priority, this feature is useful for
debugging Pilot itself and user input handlers. You should not attempt to Interpret Call
from the debugger back into the debugee because of the high priority level involved.

NOTE: The key top name STOP is for the American Level IV keyboard; consult the keyboard
mapping documentation for the equivalent key on other keyboards. Since the keys used
are on the standard keyboard, a system with only a character terminal attached cannot
access this feature.

9 Simulate a 256K Dandelion memory size.

This switch is useful for doing performance testing of product software on large-memory
machines and for saving in load and outload file space.

{ Use a small data space backing storage cache.
I Use a medium data space backing storage cache.
} Use a large data space backing storage cache.

Pilot allocates a cache of file space to be used for backing storage for data spaces. (The file
space is allocated on the system volume.) Poor performance may result if this cache is too
small for an application's needs. These switches allow you to specify the size of this cache.
If no switches are given, Pilot will use an amount based on the size of the system volume.
In the current version of Pilot, the actual number of pages used are: small-- 750; medium--
1400; large-- 2000; default-- 1I16th of the pages of the logical volume, with a minimum of
250 and,a maximum of 1000.

Many Pilot boot switches are normally of interest only to the Pilot implementors
themselves:

B-7

B

B-8

Getting started/Operations guide

$ Go to debugger early in Transaction initialization.

, Hang with a maintenance panel code in lieu of going to the debugger.

o Go to debugger as soon as possible ("Key Stop Oil).

To use the 0 switch, you must have Set Debugger Pointers in the boot file or be using an
Ethernet debugger.

1 Go to debugger as soon as all code is map-logged (" Key Stop 1 ").

The debugger usually will not be able to set breakpoints in code until it has been map
logged. Also, note that from the time that the boot button is pushed on a Dandelion up to
shortly after key stop 1 in the system being invoked by the boot button, only an Ethernet
debugger may be used; if you try to use a local debugger, you will get an MP code of 902
(see MP code list).

Go to the debugger early in File manager initialization.

Go to the debugger early in VM manager initialization.

< Act as ifthere is no Ethernet 1 attached to the system element.

= Do not initialize the Communication package at system start-up.

> Act as if there is no Ethernet attached to the system element.

\375\ Disable map logging.

Full map logging is the default case when Pilot is booted, if there is a debugger present.
Full map logging includes occasionally going to the debugger to clean up the log. If there is
no debugger present, map logging proceeds until the log file fills up and then logging is
disabled. This situation may be forced by setting key switch 375. Key switch 7 will cause
Pilot to stop map logging when PilotClient.Run is called; this switch overrides the 375 switch.

\376\ Delete Pilot boot loader ("germ") and reclaim the memory it occupies.

If this switch is used, the debugger will be inaccessable. Also, the system will be unable to
perform software-initiated boots oflogical volumes. The only booting action available will
be a boot-button boot (which may be initiated by software).

B.2.4 Xerox Development Environment boot switches

The Xerox Development Environment boot switches are listed below. Unless otherwise
stated, they apply both to Tajo and CoPilot. The switches must be upper-case letters, as
shown

• Do not process User. em during initialization.

S Reserved for the CommandCentral tool.

T Reserved for the CommandCentral tool.

Getting started/Operations guide B

v Force a scavenge of the XDE file system. The file system scavenger produces a log
file that describes the problems found and the recovery action taken. The file is
named MSeavenger .10g on the root directory of the system volume. .

If the development environment knows that its file system may be inconsistent, it
automatically verifies the contents ("scavenges") the contents of its file system during
initialization. This switch can be used in exceptional circumstances to force it to scavenge
even though it believes that the file system is consistent.

W Install CoPilot and remain executing there.

Normally, CoPilot ends installation by booting the physical volume. If CoPilot is booted
with the W switch, it will install itself and then wait for commands. This is useful if you
wish to teledebug immediately or use some development environment tool in the CoPilot
volume.

B.3 Installing boot files

Each of the logical volumes on your disk can have a boot file installed on it. The boot file is
the program that receives control when the volume is booted.

Often you will want to update your boot files. For example; when a new version of a system
is released, you may want to convert to that new version. To do so, you will need to know
how to fetch and install boot files. Appendix A contains full instructions and examples for
installing boot files with Othello.

B.3.1 Initializing debuggers

If you will be programming in XDE, you should initialize your debugger volumes by
booting them. Booting a debugger volume is unlike booting other volumes; it causes the
debugger to be installed, but will return you to Othello immediately afterwards (unless
the User. em on the debugger volumes say to boot another volume). Boot the debugger
volumes one by one.1t is best to boot CoCoPilot before booting CoPilot.

>Onlinelil
Drive Name: RDOIil
>Bootlil
Logical Volume Name: CoCoPilot lil
Switehes: 1il

The maintenance panel numbers will sequence through 910,920,930,940,950,960,970,
975,980,990, although you may not see all ofthem go by. You will then see CoCoPilot
initializing itself (creating windows, outload files, herald, etc.). When it has finished, it
will boot your physical boot volume, which is Othello, setting you up to repeat the
procedure for your CoPilot volume.

If you boot your debugger volumes by hand using Othello (as described above), remember
to boot CoCoPilot before booting CoPilot. Each debugger (and debugger Debugger) volume
is designed to boot its client volume after it has finished initializing itself. Thus,
CoCoPiiotwill always attempt to boot CoPilot, and CoPilot will always try to boot Othello.
Because most programmers will want to work in the CoPilot volume, the following entries

8-9

B Getting started/Operations guide

in the User. cm file will set things up to initialize all debuggers quickly each time you
. boot, but to remain execurting in CoPliot:

[CoCoPilot: Debugger]
Boot: CoPilot/W
InitialState: Active

[CoPilot: Debugger]
Boo t: Othello/2
InitialState: Tiny

--this "/W" switch boots CoPilot and
remains executing there

--called "Key Stop 2"; initializes
Othello but breaks before
presenting user interface,
to return to CoPilot interface.

If no boot switch is given in the User. cm file, Othello will boot and run. For more
information about debuggers and boot switches, see the section about the Debugger.

B.3.2 Setting debugger pointers

Programmers often find it convenient to do their development work in CoPilot. To access
CoPilot for this purpose, after installing the debugger, you will wantto set up your Othello
volume so that you can enter CoPilot (and your development environment) immediately.
To do this, you must set the debugger pointers for your Othello volume:

>OnlineQ
Drive Name: RDOQ
>Set Debugger Pointers i

for debuggee Logical Volume: Othellofl

for debugger Logical Volume: CoPilotQ
Are you sure? [y or no]: lesQ
Done •••

The debugger pointers will not be effective until Othello is booted, so boot Othello now.
You are now ready to go to work; if you are using Tajo, just boot it as before. To invoke
CoPilot, simultaneously depress the SHIFT and STOP keys (henceforth to be called CALL·

DEBUG).

B.4 Installing the development environment

8-10

The Xerox Development Environment provides the tools for manipulating files, building
and developing programs, and handling text and other objects.

The rest of this section assumes that you have some knowledge of the XDE world,
including the edit and file tools. If you are unfamiliar with the user interface to tools, you
should refer to the General Tools introduction.

B.4.1 Tools

You will want to install the tools that compose the development environment in either or
both of your CoPilot and Tajo volumes. To do so, you will need to retrieve a number of files
from the file server where they reside. The File Tool is designed to do this.

Getting started/Operations guide B

When you boot your Tajo or CoPilot volume, a copy of the File Tool (along with other tools)
is automatically loaded for you by the boot file. Run your File Tool from the Executive and
use it to retrieve any other tools or files you may need.

A common way to load recent versions of frequently used tools is using a command file.
For example:

FTP FileServer
Direetory/e <Tools>
Retrieve/ua

Binder>Publie>Binder.bed
Brownie>Publie>Brownie.bed
Compare>Publie>Compare.bed
Complier>Public>Compiler.bed
DebugHeap>Publie>DebugHeap.bed
FileSystem>Private>RFileServer.bed
Find>Publie>Find.bed
Formatter>Publie>Formatter.bed
FTP>Publie>FTP.bed
IneludeCheeker>Publie>IneludeCheeker.bed
Lister>Publie>Lister.bed
Other>Friends>Install.bed
Paekager>Publie>Packager,bed
Print>Publie>Print.bed
ReleaseTools>Publie>Statisties.bed
Spy>Publie>Spy.bed

B.4.2 The user command file

The user command file, User. em, contains default information for many of the Xerox
Development Environment services. These defaults are used by the system, some at
booting time and some during normal running of the system.

To create one for yourself, use the File Tool to retrieve SampleUser. em from Doc> onto
your Tajo and CoPilot volumes. Edit it by replacing the fields all currently delimited by
angle brackets, and rename it to be User. em. Further information on the User. em can be
found in the General Tools introduction.

B.5 Recovering from disasters

When you are running and your system is healthy, you will see either a 990 (if Othello,
Tajo, or CoPilot is booted) or an 8000 (Star) code in the maintenance panel lights. These
are normal. Sometimes you will encounter a situation that may appear to be abnormal:
you may be stuck at an unfamiliar maintenance panel code; your system may be frozen
(for example, your mouse has stopped tracking or the system has quit listening to your
keystrokes and mouse actions); or you may find that the volume you had been working in
has gone away and you have unintentionally landed in the debugger (CoPilot or
CoCopilot).

B-11

B

B-12

Getting started/Operations guide

In the first two cases, the first reasonable thing to do is to reboot. If the situation recurs
when you try to return to what you were doing, contact your local support person.

If you have suddenly landed in the debugger (the Herald window at the top of the screen
will tell you that you are in CoPilot or CoCoPilot), it is often useful to consult with
someone to find out what went wrong with the software to bring you there and perhaps
submit an Action Request (AR) if the fault is determined to be that of the system. To
recover from the situation, you should then reboot the volume you had been using by
means of the CoPilot BootMenu command.

Sometimes after the system has crashed or you have terminated abnormally, the next
time you reboot the volume may take a few extra minutes. This is because the system
needs to verify the contents of the volume (scavenge the disk) before proceeding. When
this occurs, there will be a 950 in the maintenance panel lights. This is a normal
occurrence. If you are sitting in 950, be patient; your system will reboot. The 950 means
that Pilot is scavenging the disk to make sure its data structures are correct. Tajo and
CoPilot will show 9950 in the maintenance panel while they scavenge the development
file system to make sure all its data structures are correct. This may take a while if you
have a large number of files on the disk.

B.5.1 Dandelion boot microcode maintenance panel error codes

Following is a list of the most common maintenance panel codes displayed by the
Dandelion boot microcode. A full listing of Dandelion MP codes is available in the system
administrator's manual for OS 5.0. In general ,MP codes reporting fatal errors blink; codes
reporting status or progress through a sequence of actions are steady. Each panel code is
followed by an indication of what action you might take to remedy the situation:

149 This code normally is displayed for only a few seconds. On machines equipped with
an SA4000 disk drive, 149 will be displayed for about 90 seconds after turning on
the power. Persistent 149's should be reported to your hardware support group.

151 This can occur when booting after turning power on. Try rebooting. If that fails,
report it as a hardware error.

206 The diagnostic microcode cannot be loaded. Refetch (using Othello's "Diagnostic
Microcode Fetch" command) and be sure to answer "Yes" to the question about
using it for the physical volume.

208 The germ cannot be loaded. Refetch (using Othello's "Germ Fetch" command) and
be sure to answer "Yes" to the question about using it for the physical volume.

323 Diagnostic microcode will wait displaying 323 if the internal clock has not been set
(for example,just after turning power on). Depress the ALT B button and hold it until
the MP advances to 324.

B.5.2 Pilot maintenance panel codes for errors

Pilot and its boot loader display maintenance panel codes when it is not possible to get to
CoPilot to report an error (typically during booting). These codes are the same on all Mesa

Getting started/Operations guide B

processors. Codes displayed by Pilot during normal operation are described in the system
administrator's manual for OS 5.0.

901 boot loader out of frames (Pilot bug)

902 unexpected trap or kernel function call (Pilot bug or hardware fault)

903 attempt to start an already started module (Pilot bug)

904 page or write protect fault (Pi~tbug)

905 boot loader not compatible with initial microcode

906 boot loader not compatible with pilot in boot file

909 boot loader SIGNAL or ERROR (Pilot bug)

911 boot loader not compatible with physical volume

912 boot loader not compatible wi th MakeBoot used to produce boot
file

913 no physical boot file installed

914 boot file contains invalid data

915 Ethernet debuggee server in control (see the chapter on the debugger for
instructions on teledebugging and the ReMote debuggee command. Either (1) the
"5" boot switch has been used, (2) CoPilot was not correctly installed, or (3) it is too
early in initialization to find local debugger. (Use Othello's Set Debugger
Pointers command and try again.)

916 boot file won't fit in real memory

919 boot loader has transferred control back to Pilot, who has hung

921 hard error on device being booted (physical or logical volume never
initialized; hardware error. If booting, refetch the boot file and retry the operation;
if going to/from CoPilot, reinstall CoPilot).

922 operation on boot device not completed in expected time (see your
network administrator or try again).

923 broken link in chained boot file (if booting, try re-installing the boot file;
if interrupting to CoPilot from Othello, use the Set Debugger Pointers
command to correct the pointers from Othello to CoPilot; if going to/from CoPilot,
reinstall CoPilot).

924 Ethernet boot server not responding (see your network administrator)

925 unexpected packet sequence number or size
administrator) .

(see your network

B-13

B

B-14

Getting started/Operations guide

926 Ethernet debuggee server trying to find a Pup / EthernetOne 8
bit address

931 pilot not compatible with MakeBoot used to produce boot file

932 trap before trap handler initialized (verify that you have consistent
versions of microcode, germ, and bootfiles).

933 pilot not compatible with boot loader (refetch boot file).

934 boot file's StartList contains bad data

935 need Ethernet debuggee server but boot loader used does not
have that capabil i ty (install smarter boot loader and try again)

936 wai ting for microcode debugger ("&" or \376\ boot switch used)

937 trying to get the time from ei ther hardware clock or Ethernet
(If code persists for more than a few seconds, see your Time Server administrator)

938 running clean up procedures (e.g., before going to debugger).

939 System.PowerOff called but no power control relay

948 system physical volume needs scavenging (use Othello's Physical
Volume Scavenge command).

965 insufficient file space for data space backing storage (specify
smaller size with boot switch).

981 trying to find a Pup/Ethernet-l 8 bit address (you are trying to
initiate PUP communications, but there is no PUP name server on your network or
your workstation is not registered with it, since PUP is an obsolete Xerox internal
protocol.)

B.5.3 Pilot error messages

For some serious errors, Pilot goes to the debugger to report errors. Some of the error
messages are listed below:

Address Fault
Address Faul t ,(address past end of processor VM)

An address in virtual memory has been referenced that is neither mapped (such as
Space. Map), nor implemented by the processor hardware. See the Debugger chapter or the
introduction to System Building Tools for debugging procedures.

WriteProtect Fault

An attempt was made to store into an address in virtual memory that is currently read
only.

Getting started/Operations guide B

Mapped off file - Helper

A file has been deleted or shortened when there was a space mapped to "it, which is neither
permitted nor explicitly checked for by Pilot.

Disk Label Check

The identity of a disk page does not match what Pilot thinks it should be. Pilot attempted
to read or write a page on the rlisk and found that the label on that page described a file
and page number other than the one Pilot thought it was accessing. One possible cause of
a label check is that a page has been marked bad on a logical volume without
subsequently running the client scavenger on that volume. Another common cause of a
label check is that a volume containing an installed debugger has been opened for writing
by a program running on a client volume. This open causes temporary files on the
debugger's volume to be deleted. When the debugger is next invoked, these files--which it
had been using--will have disappeared from under it, resulting in a label check. The most
common root cause of this situation is having any system installed on a volume of the
same type as an installed debugger and not always booting that system with the n%" boot
switch.

Out of VM for resident memory

Pilot has a pool of virtual memory that is used to contain resident data. This message
indicates that that pool has been exhausted. Items that are allocated in this pool are: (a)
dynamically created local frames, (b) global frames of dynamically loaded configurations
that consist of a single module, and (c) Pilot internal data. One possible cause of this error
is a procedure recursively calling itself forever, thus requiring an infinite supply of local
frames. Another possible cause is the simultaneous use of several procedures that require
large local frames; these can exhaust the pool fairly quickly. It is also possible for the Pilot
virtual memory system to malfunction, generating this message.

Volume vanished between Descriptor and PageGroup (Helper)

A volume has been put off-line when there was a space mapped to it, which Pilot neither
permits nor explicitly checks for.

Unrecoverable disk error on page pageNumber

A disk page could not be read. The standard thing for you to do is to run the Pilot and
client scavengers for that volume. However, it is sometimes possible to fix up these pages
by rewriting them so that they can be read. This may result in the loss of data.

The tool PageScavengerTool. bcd is available for doing this. It allows you to fill in a list
of page numbers (usually it should be a page reported by Pilot in its call to CoPilot). If the
ReWrite switch is left on, then the tool is permitted to rewrite the page. Otherwise, the
tool will not permit the page to be written with potentially incorrect data. The tool writes
the result of the scavenge, including an indication of what action you should now take.

The indicated action is self-explanatory, except that the action pvScavenge is to be
interpreted as: run the physical volume scavenger. Ifit reports no problems, then run the
logical volume scavenger on the volume containing the offending page.

B-15

B Getting started/Operations guide

Unrecoverable disk error: labelError

A disk page could not be read because of hardware errors. Contact your local support
group.

B.6 Ending a Session

B-16

When you are done using a software system, you can either put that system in some "idle
mode," boot some other system, or turn the power off. For the Xerox Development
Environment, a tool called DMT is normally activated when the system is idle for long
periods. Star has a similar facility that is automatically invoked when you log off. A void
turning power off.

To boot some other system (or turn power om, you should use the facilities provided by the
system you are using so that it gets a chance to put itself in a consistent and inactive state.
To boot some other Pilot logical volume from Tajo or CoPilot, you can use the Boot from
menu commands available in the window running across the top of the screen.

If you push the boot button while CoPilot is running, you must re-install it. Even if
CoPilot is sick, you may still be able to use its Boot menu command to immediately re
install it. If you push the boot button while CoCoPilot is running, you must re-install first
CoCoPilot and then CoPilot.

c

TableCompiler

The TableCompiler is a utility for creating files in the format of Mesa object files (whose
filename usually ends in ".bcd"). This allows you to bind information other than programs
into a Mesa configuration (fonts or microcode files, for example). The TableCompiler was
produced by providing a single user interface to two programs: the ModuleNlaker and the
StringCompactor. The ModuleMaker takes a file with arbitrary contents, such as a font,
and prefixes it with the proper header. The StringCompactor reads stylized Mesa
programs consisting of arrays of string constants, squeezes the characters together into an
array of characters, and produces auxi liary arrays of offsets and lengths.

C.I Mesa object file format

In order to understand the operation of the TableCompiler, it is necessary to have some
understanding of the format of Mesa object files.

Mesa object tiles all begin with a data structure
called a binary configuration description (whence
the default tile extenxion ·'.bcd"). It contains the
information need by the binder to resolve external
references (imports and exports) and to find the
code and symbols for any modules contained in the
object file. The compiler creates a file that contains
a configuration description for the degenerate
configuration (a single module), and which also
contains both the code and symbols for that
module. Further binding and packaging usually
places only the code in the same tile with the
configuration description, leaving the symbols in
their original tile, or copying them to a ".symbols"
file.

C.2 Using the output

r---

~

4

configuration description

code
(module tab Ie above

shows start and length of
code for each module in

the file)

symbols
(optional, not used by
binder or loader, but

needed for debugging)

The output of the TableCompiler is an object file whose configuration description names a
single module whose "code" is the table compiled information. The EXPORTS portion of the
description says that a single PROGRAM is exported, either to SELF, or to a named interface.

C-I

c TableCompiler

The client program imports this PROGRAM and calls a runtime procedure that returns the
address of the data. For example:

Let TableData.bcd be a table compiled module that exports SELF:

DIRECTORY
Runtime,
TableData;

Foa: PROGRAM IMPORTS Runtime, TableData =
BEGIN
base: LONG POINTER = Runtime.GetTableBase[TableData];
... -- base now points to the data part of the table compiled information

Similarly, let TableData.bcd export TableData to the interface TableDefs:

DIRECTORY
Runtime,
TableDefs USING [TableData1;

Faa: PROGRAM IMPORTS Runtime, TableDefs =
BEGIN
base: LONG POINTER = Runtime.GetTableBase[TableDefs. TableData];
... -- base now points to the data part of the table compiled information

The second example, exporting to an interface, allows new data to be table compiled
without having to recompile Foo. On the other hand, if the data changes slowly, using the
first method means one less interface to keep track of.

C.3 ModuleMaker

C-2

The input to the ModuleMaker is a file with arbitrary contents. The only restriction is that
it be less than 64K bytes long, as the length of the file must be contained in the body table
ofthe configuration description.

Suppose TableData. data is a file to be table compiled. The executive command line

>TableCompiler.- TableData.data/m

will create the file TableDa ta. bcd, which is a PROGRAM exporting only itself.

The executive command line

>TableCompiler.- TableData.data/m TableDefs/i

will create the file TableData. bcd, which is a PROGRAM exporting TableData to the
interface TableDefs.

The name of the PROGRAM exported will be the same as the name of the input file. The
extension on the input file name (data in the example) is stripped off, and the root of the
file name is used as the module name. N.B. the name given on the command line must be
properly capitalized. See section 4 for further operational details.

XDE User's Guide c

C.4 StringCompactor

The input to the StringCompactor is a stylized Mesa program. It is most easily understood
by looking first at an example.

CA.! Example

Consider the Mesa program ErrorTab, where most of the ErrrorMessage entries are
omitted for the purpose of this example

DIRECTORY
Log USING [ErrorCode),
Tree USING [NodeName);

ErrorTab: PROGRAM =
BEGIN
FnName: ARRAY Tree.NodeName(assignx .. uparrow] OF STRING = [

"MIN", "MAX", "LONG", .. ABS", "ALL", "SIZE", "FIRST", "LAST",
"DESCRIPTOR", "LENGTH", "BASE", "LOOPHOLE", "NIL "1;

ErrorMessage: ARRAY Log.ErrorCode OF STRING = [
"FATAL COMPILER ERROR", -- compilerError
"unimplemented construct", -- unimplemented
"unspecified error", -- other
... -- and many more (all possible compiler error messages)
"will use unsigned comparison"]; -- unsignedCompare

END.

The executive command line

>TableCompiler.- ErrorTab.mesa/-a

will create the file ErrorTab. bcd, which is a PROGRAM exporting only itself, and will also
produce the file ErrorTabFormat, containing the following text that can be inserted into a
program or interface.

CSRptr: TYPE = LONG BASE POINTER TO CompStrRecord;

CompStrDesc: TYPE = RECORD [offset, length: CARDINAL];
CompStrRecord: TYPE = RECORD [

stringOffset: CSRptr RELATIVE POINTER TO StringBody,
FnName: ARRAY Tree.NodeName(assignx .. uparrow] OF CompStrDesc,
ErrorMessage: ARRAY Log.ErrorCode OF CompStrDesc];

Suppose now that you want to print the error message associated with some value, say
code, of the enumerated type Log.ErrorCode. The program fragment below shows how to
obtain a String.SubStringDescriptor for the message.

et: CSRptr = Runtime.GetTableBase{ ErrorTab];

ss: String.SubStringDescriptor ~ [
base: et(et.stringOffset],

offset: et.ErrorMessage{code].offset,
length: et.ErrorMessage{code] .Iength];

C-3

c TableCompiler

You can now pass @ss to any output routine that takes a String. SubString.

C.5 File format

The output of the StringCompactor has a
"bed" header that describes a single module.
The "code" for this module is in the format
illustrated here.

• The first word is a self-relative pointer to
the String Body whe~e all of the string
characters have been placed.

• Next comes one or more arrays of offset,
length pairs (CompStrDesc) that a client
program can use to generate a SubString
that describes the literal.

• Finally, the tile contains a StringBody,
whose text contains the characters from
the entire collection of literals.

The format tile output by the TableCompiler
contains a declaration (CompStrRecord) that
describes the beginning of the data. The
standard mode of operation is to copy the
contents of this tile into either the program
using the strings or into a definitions tile, if
several programs are using them. Since the
format changes only when the length of the
arrays change, you usually ignore the format
tile when you have simply edited one or more
of the string literals. In the case of the
example, things are defined in terms of named
constants to the extent that the format almost
never changes.

stringOffset:

FnName: offset
-- ---iength-----

offset -- ---length -----

ErrorMessage: offset
--- --length -----

offset --- --length -----

___ r{3 _______ 1 __ _

N • M -------"';-------
---~--- .. ---~---.

. ---------------
o n

C.6 Options

C-4

Like the ModuleMaker, the StringCompactor can export its PROGRAM either as SELF or to a
named interface. See section 4 for details.

The StringCompactor has another, little used mode where it doesn't actually "compact"
the strings. In this mode, the output tile (data portion) consists of one or more arrays of
relative pointers to StringBody, followed by the StringBodys. The output in this format
can be used to obtain a tile of string literals where the client program can produce a (LONG)

STRING (Le., (LONG) POINTER TO StringBodyJ for each of the literals, instead of having to deal
with SubStrings. The disadvantage of this format is that there is an extra word of
overhead (maxlength) associated with each literal.

The input tiles to the StringCompactor are valid ~esa programs, and can in fact be
compiled (unless they overflow the compiler's string literal tableL In fact, it is a good idea

XDE User's Guide c
to compile them occasionally-the StringCompactor doesn't actually check the number of
literals against the declared length of the arrays.

C.7 Command line syntax and switches

The TableCompiler runs in the executive window; when loaded, it registers a command
TableCompiler. -. It reads a series of identifiers with optional switches.

A single command to the TableCompiler consists of an input file name, with optional
switches, possibly followed by auxiliary file names with mandatory switches. The end of
the command is denoted either by the end of the line, or by the presence of a /g switch on
the last file name of the command.

If the file extension of the input file is ". mesa" (or omitted), the StringCompactor will be
run; otherwise the ModuleMaker will be run. This decision can be over"ridden by switches
on the input file name (m,s, or tl.

The name of the program exported by the output file is the root name of the input file
(exactly as capitalized on the command line). It will be exported to SELF unless there is an
interface file specified (with a / i switch) in the command. If you export to an interface, the
input file must be named the same as the PROGRAM declaration in the interface.

The TableCompiler used to generate object files for the Alto world as well. The only
observable difference between /a and I-a in this version is whether then declarations in
the format file output of the StringCompactor are LONG or not. The next version of the
TableCompiler will have this feature removed.

C.8 Examples

To run the StringCompactor on Foo. mesa, to make Foo " bed exporting SELF:

>TableCompiler.- Foa/-a

To run the ModuleMaker on Foo.binary, to make Foo. bed exporting Foa to FooDefs:

>TableCompiler.- Foa/-a FoaDefs/i

To run the ModuleMaker on Foo.binary, to make Foa. bed exporting SELF:

>TableCompiler.- Foo.binary/m

To run the ModuleMaker on Foo.binary, to make Foo. bed exporting Foo to FooDefs:

>TableCompiler.- Foo.binary/m FooDefs/i

To run the StringCompactor on Foo.mesa, to make Foa. bed exporting SELF, and then run
MakeModule on Baz.binary, exporting SELF to Baz. bed:

>TableCompiler.- Foo/-ag Baz.binary/m

C·5

C TableCompiler

C.9 Switches on the input file name

Switches are optional on the input file name-the program looks at the input file name
extension and chooses <It ifthe extension is ".mesa", 1m otherwise).

switch default

a TRUE

C TRUE

9

m

s

t

meaning

Alto output-affects the declarations in the format file. This
switch should go away, and should be specified as FALSE if you
are planning to use the format file output.

Compact strings-puts the StringCompactor into compacting
mode; you should probably use the It switch instead.

Go-there are not auxiliary file names in this command.

Run the ModuleMake regardless of the decision based on file
extension.

Run the StringCompactor (in non-compacting mode) regardless
of the decision based on file extension.

Run the StringCompactor (in compacting mode) regardless of
the decision based on file extension.

C.lO Switches on auxiliary file names

C-6

Every auxiliary file name must have at least one switch. The last file name in the
command also has a 19 switch (unless it is the last thing on the command line). For the
purposes of discussion, let root be the root of the input file name.

switch

f

9

i

meaning

Format file-tells the StringCompactor where to write the format
declarations. The default is rootFormat.

Go-there are not auxiliary file names in this command.

[nterface-export to this interface. It must contain a declaration root:
PROGRAM.

o Output file-you can change the name of the output file, but bear in mind
that the PROGRAM it exports will still be named root.

D

Parser Generator System

The parser generator system (PGS) is a tool that translates a LALR(l) grammar into a
parse table. More specifically, it analyzes a context-free grammar specified in Backus
Naur form as input to see whether it is LALR(l), and if so, outputs compacted binary
tables that can be used in conjunction with the Mesa parser. It also produces ancillary
tables that simplify writing lexical routines to recognize the terminal symbols of the
grammar. Since one of the main uses of the PGS is in building the Mesa compiler, there is
a preprocessor that aids this (see section 0.6).

The LALR(1) parsing algorithm has good space and time performance, handles a larger
subset of the context-free grammars than other methods in common use, and allows a good
syntax error repair capability to be added. Since the LALR(1) condition can be less than
int'uitively obvious, however, checking that the condition holds requires substantial
computation; if the grammar is not, a fair knowledge of the underlying theory may be
needed to change the grammar to make it meet the condition.

The most accessible description of LALR(1) parsing is the tutorial article "LR Parsing" by
Aho and Johnson in Computing Surveys, 6 (1974) 74. The most comprehensive account
readily available is in The Theory of Parsing, Translating and Compiling Volume 1,
Prentice-Hall (1972), by Aho and Ullman. The algorithms used in the PGS are from
Anderson, Eve, and Horning, "Efficient LR(1) Parsers," Acta Informatica 2 (1973) 12, so
the terminology here follows this paper, referred to below as AEH.

D.I Using the Parser Generator

After PGS. bcd has been retrieved, issuing the command pgs in the Executive invokes it.
The PGS prompts for an input file name. The input file name implicitly defines the names
of the various output files. The main part of the input file name is extended by • echo,
.log, .binary and .module to form the names of the primary output files. However,
input files with extension .mesa or .Mesa are an exception, as discussed in section 0.5.
Sections 0.3 and D.4.discuss the PGS 's input and output. Installing the system and
assembling it from its components are described in section 0.7. An example input file and
the resulting. module, . echo and .log files, are given in section D.S.

D·1

D Parser Generator System

D.2 Format of the input file

0-2

The input file is treated as a sequence of tokens, where a token is defined to be a sequence
of characters none of which are in the range [OC .. I]. Tokens are delimited by sequences of
characters in this range. In addition to the tokens ::., 1,1,C, and the integers that have
special roles, there are a number of tokens starting with the character pair II that control
thePGS.

The input consists of five subsequences: directives, terminals, nonterminals, aliases, and
productions, which must appear in that order.

1. The principal directives and their functions are:

IIINPUT - causes the input to be echoed to the .echo file.

IICHAIN - causes an optimization to be performed that speeds up parsing by
eliminating all references to productions marked as chain productions

IILlSTS - causes the LALR(1) tables to be compacted and output to the. binary and
• module files

IIPRINTLALR - causes a readable form of the LALR(1) tables to be output to the .log
file. (A table for a grammar of about 300 productions contains roughtly 400,000
characters. Generating this readable form noticeably slows the PGS.)

2. IITABLE1 introduces tokens representing the terminal symbols of the grammar. The
last token denotes a unique sentence endmarker used only to delimit sentences
supplied to the resulting parser; this token should not appear in any production.
(The scanner invoked by the parser using the tables generated by the PGS is
required to map the end-of-input signal onto this token.)

3. IITABLE2 similarly introduces the nonterminal symbols of the grammar. The
nonterminal symbol appearing first after IITABLE2 is taken to be the goal symbol of
the grammar. The way that the Mesa parsing algorithm terminates entails a weak
constraint that neither should the goal symbol appear in the right part of any
production nor should any ofits productions be designated chain productions.

4. The optional alias sequence, if included, is introduced by IITABLE3. The terminal
symbols of a grammar do not necessarily have the form of identifiers, but lexical or
error recovery routines may need to reference them. The alias sequence consists of
pairs of tokens, the first of which is a terminal symbol (that is, it appears in the
sequence following IITABLE1), and the second is an alias in the form of an identifier
by which it can be referenced. Appropriate constant definitions are constructed for
these identifiers and included in the. module file.

5. Finally, the productions are listed in Backus-Naur notation following IITABLE4. The
tokens ::= and I play their usual role; there is no symbol terminating or separating
productions. Likewise a production deriving the empty string is specified by the
absence of any token after :: = or I and the succeeding I. end of input, or token
followed by:: = sequence.

Immediately preceeding the I's or to the left of a token followed by :: = there will usually
be an integer, the rule number, which may itself be preceded by the token C (upper case

XDE User's Guide D

only). The rule number associates the production with a semantic routine (an arm of a
SELECT statement) to be invoked by the parsing algorithm whenever a string derived from
the associated production is recognized. Some productions, of the form nonterminal :: =
nonterminal, have no semantic significance and serve merely to assert which members of
one syntactic class are also members of some larger class. Chains of such productions
appear in expression grammars (such as, expr :: II term, term :: .. factor, factor :: =
primary) and can significantly reduce the speed of parsing. The appearance of the token C
is an assertion that the following production is of the specified form and has no semantic
processing associated; this allows the PGS to eliminate all references to it with an increase
in speed of parsing.

The input phase of the PGS uses the Mesa parsing routine and parsing tables of its own
construction so there is clearly a grammar specifying the form of the input. The
description given above was preferred as an introduction to the input format since it
covers only the essentials. The PGS will, on request, echo its input interspersed with other
information in a formatted form. As there was a requirement that this output should also
be acceptable as input, the grammar allows a rather wider class of input forms but
information other than that described is simply discarded during re-input. The grammar
appears in the appendix.

It should be clear that the terminal symbols of the PGS grammar cannot be used as tokens
in a client grammar; a syntax error would result. This is not likely to be a problem to most
clients insofar as the symbols starting with II are concerned (that is why this curious
system was adopted) but there are also:: = , I, 7, C and GOAL some of which may well appear
in a client grammar. Finally of course the PGS grammar contains all of them. The
standard solution is used; if I, 7, or C are required as tokens in a client grammar they must
be specified as 1, '7 and 'C. Multi-character symbols such as :: = must be specified as
":: .. ". The only special treatment that these quoted symbols receive at the hands of the
PGS is in building the tables for use by the scanner; any two character token beginning
with a single quote has the quote removed; similarly any token of three or more symbols
where the first and last are double quotes has these bracketing quotes stripped.

Occasionally, it is convenient to be able to flag certain productions in the input text. The
PGS will ignore 7 when looking for C or a rule number; the 7 should precede C when a rule
number is also present.

D.3 Output of the Parser Generator

Four output files are normally constructed: a record of the input, a log, a binary output file
containing the parser and lexical tables, and a module file that contains definitions of
aliased terminal symbols and some ranges defining the sizes of the various arrays
constituting the binary file. The module file is a Mesa module named ParseTable. It must
be compiled and bound with the Mesa parser, a suitably modified version of the Mesa
scanner, and the definitions module that describes the invariant parts of the binary parse
tables.

Examples of these latter modules exist in the PGS. The files pqsptabdefs. mesa,
pqsscan.mesa, pqsparse.mesa and pqsl.mesa contain respectively ParseTable, the
scanner and semantic processing routines for the PGS, the Mesa parser and, finally,
definitions of the invariant part of the binary tables. For operational reasons, the low
level routines interfacing with 1/0, storage management, etc. have been removed from
pqsparse.mesa and pqsscan.mesa to the control module of the PGS in the file

D-3

D

D-4

Parser Generator System

pgscon. mesa. Nonetheless these modules should provide a model for anyone needing it.
In particular, the code for loading and unloading the binary tables and invoking the
parser can be found in the main line code of the module PGSco n.

0.3.1 The input record file

This file is produced if the directives in the input stream contain !IINPUT. The name of the
file is obtained by appending .echo to the main part of the input file name.

The record of the input differs from the true input in that the directives may be displayed
in a different order and the. terminal and nonterminal symbols are displayed one to a line
each preceded by an integer. (The integers are allocated sequentially starting at one for
the first terminal symbol. Each production is displayed starting on a new line; each is
preceded by two integers, the second being the rule number from the input. If a C was
specified on the input it appears between the two integers. the first integer is simply a
unique label for the production. The first production is labelled one and again the PGS
simply labels the productions with ascending integers. These labels are used in some of
the diagnostic messages output by the PGS. A production with the implicit label zero is
constructed and output before the others, it has the form,

GOAL:: = goal eof

where goal stands for the goal symbol and eof for the end of sentence marker. A check
during input ensures that these symbols occur to the right of :: == in no other production.

0.3.2 The Log tile

This file contains error messages and various items of supplementary information output
during the generation of the parsing tables. If error or warning messages are logged then,
immediately prior to the end of execution, the message, "Errors or warnings Jogged" is
displayed followed by the usual invitation to type any character to terminate processing.

0.3.2.1 Error messages

Most error messages occur during input of the grammar. Those messages prefixed by the
word ERROR cause the program to terminate after completing input and checking for
further errors. WARNING messages allow processing to continue. Each message is
accompanied by a fragment of input text with a pointer to the current input token.

The warning messages are:

1. Overlength symbol (increase TOKENSIZE1) truncated to -

2. Not a chain production-

3. Unused(U) or undefined(O) symbols (refer to TABlE1 and 2)

These messages illustrate some general points; messages ending with a dash are followed
by further information. For message 1, it is the truncated form of the token, for message 2

XDE User's Guide D

it is the integer label appended to the offending production in the echoed input. After
message 2, processing continues as though no chain indication had been specified.

Messages such as the first that indicate that an internal field size is too small also specify
the compile time constant (in pgscondefs .mesa) that controls the field size. Currently
tokensize constrains tokens to 14 characters.

The third message oc.curs at the end of input if there are symbols in the TABLE1 and 2
sequences that do not appear in any production (unused symbols) or if a symbol in the
TABLE2 sequence does not appear to the left of:: = in the productions (undefined symbols).
This message is followed by a list of integers that designate symbols in TABLE1 and 2
using the numeric labels appended in the echoed input. Each integer is tagged with U
and/or 0 to indicate whether the corresponding symbol is unused or undefined or both.

The ERROR messages are:

4. Nonterminal with too many rules (increase AL TERNATELlM?) -

Only 31 productions are allowed for any nonterminal; if this is not enough it
would be better to introduce a new nonterminal and split them into two
groups rather than increase the limit of 31.

5. Multiple definitions of symbol-

This message occurs either because the same symbol appears more than once
in TABLE1 and 2 or because the same symbol occurs to the left of :: = more
than once. The offending symbol is printed after the message.

6. Symbol not defined -

This message also appears in two contexts, either a symbol appears in a
production that does not appear in TABLE1 or 2 or alternatively message 3
was issued with undefined symbols. in the first case the message is followed
by the symbol in question, in the second by "see previous message".

7. Terminal precedes:: = -

The terminal symbol follows the message.

8. Too many rhs symbols in production (increase RHSLlM?) -

Fifteen symbols in the right part of a production is unlikely to be exceeded: if
it is, change the grammar, increasing rhslim would involve consequential
changes in the binary table formats.

9. Internal field will overflow - increase PSSLIM

This one is unlikely, it would involve a grammar with 1024 symbols or
productions. An increase up to 2047 would be possible without changing the
binary table formats.

D-5

D

0-6

Parser Generator System

10. Aliased symbol not a terminal symbol-

The symbol follows the message.

11. Aliases must not be terminal symbols -

The symbol follows the message.

12. Goal symbols used in rhs

The goal symbol or end of sentence marker appear in a production right part.
(See the paragraphs numbered 1 and 2 in section 0.3).

13. Number greater than MAXRULE

Currently the PGS allows for 255 rule numbers. A relatively minor
reformatting of the binary tables would permit it to be increased to
LAST(CARDINAL).

D.3.2.2 Output during table construction

~
During 'the construction of the parsing tables there is a reasonably remote chance that
error message 9 will occur and terminate any further processing, though in this case it
implies that more than 1023 parsing states are necessary for the grammar. Much more
likely are messages indicating that the grammar is not LALR(1).

In the. event of conflicting parsing actions arising for some terminal symbol in a parsing
state, all data appertaining to that state is listed. The first heading line specifies,

1. an integer naming the state,

2. a symbol of the grammar (recognition of this symbol causes this state to be
entered),

3. a set ofpj pairs defining the state (see AEH), each pair being followed by I.

Below the heading in a four column format is the list of symbols of the grammar that may
be encountered in this state. Each symbol is preceded by an encoding of its associated
parsing action:

1. unsigned integers denote scan (or shift) entries to the state named by the
integer,

2. integers preceded by an asterisk signify reduce operations using the
production with the integer as its label,

3. an integer preceded by a minus sign also indicates a production number but
implies that the symbol associated with this action must be stacked before
the reduce operation; a so-called scanreduce operation. (These marking
conventions differ from those used in AEH though they use the same
symbols.)

XDE User's Guide D

During construction of the tables scan entries are computed before reduce entries, so when
conflicting actions arise they are reduce actions that either conflict with an existing scan
entry or with a previously computed reduce entry. (It is an inherent property of
scanreduce entries that they cannot conflict with another entry.) Conflicts are indicated
by lines of the form,

Reduce with n conflicts with **********

where n is a production number. Each such line is followed by a list of items of the form,
symbol action I, where action is either SCAN if a scan action for this (terminal) symbol has
already been constructed or is an integer naming the production for that a reduce action
has already been constructed.

If the directive IIPRINTLALR is specified, the output just described occurs for every state
whether or not it contains conflicts. The heading, LALR(I) Tables, precedes such output.
This output is rarely worth having, it is occasionally of value in tracking down a conflict.
Its primary function was in debugging the PGS.

The PGS discards conflicting entries after printing them and it will not form either the
binary tables or the module output if there are reduce-reduce conflicts. In the case of
reduce-scan conflicts the decision to process scan entries first implies that the scan entry
takes precedence. This is occasionally useful. For example it solves the dangling else
problem in the preferred way. However, the scan-reduce conflict message is a warning and
as such triggers the displayed message directing attention to the .log file.

After generating the tables a heading, LALR(1) Statistics, is output and a few counts are
printe~. Only the first three may be of any general interest, they indicate the number of
parsing states and the total number of actions in the tables for both terminal and
nonterminal symbols.

D.3.2.3 Output during table compaction

Table compaction and output of the binary tables only occur if the directive IILlSTS is
specified in that case the output described here appears on the .log file.

The earlier stages of the PGS are written in a general way, data structures will expand to
accomodate very large grammars; at the cost of recompiling the system and changing
compile time constants, the limits on field sizes mentioned previously can be increased. At
this stage the objective is to pack information economically into 16-bit words and it is here
that the size of fields is an absolute constraint. Final checks are made that could
conceivably produce one or more of the self explanatory messages:

FAIL - more than 255 terminal symbols

FAIL - more than 254 nonterminal symbols

FAIL - more than 2047 states or productions

FAIL - more than 15 symbols in a production right part

0-7

D

0-8

Parser Generator System

These are rather unlikely, the tightest constraint is likely to be the limit of 255 on rule
numbers. If any of these checks fail, processing terminates.

Assuming no error messages, the only unsolicited output here is a heading, Parse Table
Data, and one table. A hash-accessed look-up table, for the terminal symbols of the
grammar, is created for use by the scanner. As hash functions are notoriously unreliable,
the following is printed so that a visual check can be done to avoid problems. The
subheading,

Scanner hashtable probe counts (terminal symbol, probe count, hashcode)

followed by a four column layout of triples that, as the heading indicates ,show for each
symbol the number of probes needed to locate it in the hash table and its hashcode. The
technique used is Algorithm C, page 514, Volume 3 of Knuth's The Art of Computer
Programming, Addison-Wesley (1973). If there are n terminal symbols, they are hashed
into a table of using MIN[m,251] buckets; m is always an odd integer, either 3*nl2 or
3*nl2 + 1. The hash function uses the ASCII values of the first and last character of the
symbol and is

«127*first character + last character) MOD buckets) + 1.

The performance of this hash function deteriorates as the number of terminal symbols
approaches 255.

If both the directives I/PRINTLALR and I/USTS are specified. a record of the table compaction

transformations is produced. This record is typically of interest only for maintaining a system. and

f~miliarity with the compaction techniques described in AEH is assumed in its description.

First, a set of default actions for the nonterminal symbols of the grammar are determined. and a table

headed Nonterminal Default Actions is printed. Each nonterminal symbol appears preceded by its

associated default action encoded in the form already described: unsigned integers represent scan

entries, and negative integers represent scan-reduce actions. (Reduce actions never take place on

nonterminl1-1 symbols.)

After removing all occurrences of these defaulted entries from the LALRU) tables, the PGS determines

those states that have identical symbol-action pairs, first. over the set of terminal symbols and then,

independently. over the set of nonterminal symbols. All states reference one copy of the list of symbol

action pairs stored in the binary tables. The table Table Overlays has three columns headed row, ttab and

ntab; if a row of this table contains (integer) entries a, band c respectively, then it implies that the

terminal entries of state a are the same as those of state b, while the nonterminal entries of state a are the

same as those of state c. It is exceptional for both the terminal and nonterminal entries of a state to match

those of other states so usually one of the entries b or c is blank. If neither the terminal nor nonterminal

entries of a state match those of another state, then it does not appear in this table.

The final transformation is to renumber the states so that all of those states containing (nondefaultedl

actions on nonterminal symbols are labelled by integers contiguous to eachother and to 1. This is

acheived by swapping the highest numbered state with nonterminal actions with the lowest numbered

state without nonterminal actions until no more swaps are possible. The table headed. Renumbered

States, simply records this with entries of the form. a swapped with b.

XDE User's Guide D

D.4 The module file

The module file is most readily described with an example. Consider the module file
generated by the PGS for its own grammar.

ParseTable: DEFINITIONS .. {
Symbol: TYPE .. [0 .. 255];
TSymbol: TYPE = SymboI[0 .. 19];
NTSymbol: TYPE .. SymboI[0 .• 13];

•• token indices for the scanner and parser
tokenlD: TSymbof = 1;
tokenNUM: TSymbol = 2;
tokenQUERY: TSymbol = 3;
tokenTAB3: TSymbol .. 9;
tokenTAB4: TSymbol .. 10;
initialSymbol: TSymbol :I 3;

defaultMarker: TSymbol = TSymboI.FIRST;
end Marker: TSymbol = TSymbol.lAsT;

Hashlndex: TYPE =- [0 •• 29];
Vlndex: TYPE =- [0 •. 106];

State: TYPE .. [0 .. 26];
NTState: TYPE = State[O .. 6];
TIndex: TYPE" [0 .. 64];
NTlndex: TYPE :I [0 .. 3];
Production: TYPE .. [0 .. 37J;
};

The module defines aliases in the aliases segment of the input. For example, the token
ITABLE3, that is a terminal symbol ofthe PGS grammar was given the alias tokenTAB3. It
is the ninth token in the sequence of terminal symbols in the input file and so internally is
encoded within both the PGS and the binary tables as 9.

The ranges Hashlndex, TSymbol, NTSymbol, State, NTState, Tlndex, NTlndex, Production
and Vlndex prescribe the dimensions of arrays in the binary tables.

D.5 The binary file

D.5.! Binary file format

The format of the binary file is captured by a set of Mesa definitions that, since they are of
interest to both scanner and parser, can conveniently be specified in the definitions
module that constitutes the scanner-parser interface. These definitions are reproduced
below:

ActionTag: TYPE = MACHINE DEPENDENT RECORD [
reduce(O: 0 .. 0): Baal, •• TRUE if reduce entry
pLengt~(O: 1 .. 4): (0 .. 15]]; •• number of symbols in production rhs

D-9

D

D-IO

Parser Generator System

ActionEntry: TYPE = MACHINE DEPENDENT RECDRO [
tag(O: 0 .• 4): ActionTag. •• [FAlSE.O] it" a shift entry
transition(O: 5 •• 15): [0 .. 2047)]; •• production number / next state

Productionlnfo: TYPE = MACHINE DEPENDENT RECORD [
rule(O: 0 .. 7): [0 .. 256), •• reduction rule
Ihs(O: 8 .. 15): NTSymbol); •• production Ihs symbol

VocabHashEntry: TYPE = MACHINE DEPENDENT RECORD [
symbol(O: 0 .. 7): TSymbol, •• symbol index
Iink(O: 8 .. 15): Has~lndex]; ··Iink to next entry

ScanTable: TYPE = ARRAY CHAR['\040 . .'\177) OF TSymbol;
HashTable: TYPE = ARRAY Hashlndex OF VocabHashEntry;
IndexTable: TYPE = ARRAY TSymbol OF CARDINAL;
Vocabulary: TYPE = MACHINE DEPENDENT RECORD [•• a string body

length(O), maxlength(1): CARDINAL,
text(2): PACKED ARRAY Vlndex OF CHAR];

ProdData: TYPE = ARRAY Production OF Productionlnfo;
NStarts: TYPE = ARRAY NTState OF NTlndex;
NLengths: TYPE = ARRAY NTState OF CARDINAL;
NSymbols: TYPE = ARRAY NTlndex OF NTSymbol;
NActions: TYPE = ARRAY NTlndex OF ActionEntry;
NTDefaults: TYPE = ARRAY NTSymbol OF ActionEntry;
TStarts: TYPE = ARRAY State OF T1ndex;
TLengths: TYPE = ARRAY State OF CARDINAL;
TSymbols: TYPE = ARRAY T1ndex OF TSymbol;
TActions: TYPE = ARRAY Tlndex OF ActionEntry;

initialState: State = 1;
finalState: State • 0;

Table: TYPE = MACHINE DEPENDENT RECORD [
scanTable: RECORD [

scanTab: TableRef RELATIVE POINTER TO ScanTable,
hashTab: TableRef RELATIVE POINTER TO HashTable,
vocablndex: TableRef RELATIVE POINTER TO IndexTable,
vocabBody: TableRef RELATIVE POINTER TO Vocabulary
],

parseTable: RECORD [
prodData: TableRef RELATIVE POINTER TO ProdData,
nStart: TableRef RELATIVE POINTER TO NStarts,
nLength: TableRef RELATIVE POINTER TO NLengths,
nSymbol: TableRef RELATIVE POINTER TO NSymbols,
nAction: TableRef RELATIVE POINTER TO NActions.
ntDefaults: TableRef RELATIVE POINTER TO NTDefaults.
tStart: TableRef RELATIVE POINTER TO TStarts.
tLength: TableRef RELATIVE POINTER TO TLengths,
tSymbol: TableRef RELA TlVE POINTER TO TSymbols.
tAction: TableRef RELATIVE POINTER TO TAdions
]

XDE User's Guide D

];

TableRef: TYPE = LONG BASE POINTER TO Table;

The purpose and content of the arrays in parseTable are explained in AEH; only the
definitions relevant to the scanner are discussed here. Terminal symbols of the grammar
represented by a single ASCII character are treated separately from those requiring a
string of characters. In scanTable there is an array scan Tab, that can be indexed by
characters not in the range [OC . .']; any single character symbol used to extract an element
of this array will extract a non zero integer only if it represents a terminal symbol and the
integer is its numeric encoding.

The string vocabBody contains the character strings representing all other valid
terminals stored head to tail. Element i-I of vocablndex indexes the first character of the
string in vocabBody that represents the terminal symbol with the encoding i. The hash
value of a string that purports to be a terminal symbol can be computed using the hash
function given in section 0.3.2.3 (identifying buckets there with LAsT[Hashlndex]). The
hash value can be used to select an element from the array hashTab; the elements of
hashTab are records, one field of that is used to select an entry of vocablndex (to find the
substring in vocabBody to compare with the given string), the other field is an index to
another element in hashTab to be tried when the string comparison fails; hashTab(O] is
void, a zero index terminates the search indicating that the given string does not represent
a terminal.

D.S.l The LR and first files

As part of the debugging facilities built into the PGS, two other output files can be created.

The first step in building the LALR(l) tables is to construct LR(O) tables. (This is done
using the SLR(l) algorithm in section 0.3.1 of the AEH paper by omitting the
computation of the sets specified in relation (5bU The LR(O) tables may be output to a file
with the extension .lr by specifying the directive IIPRINTLR in the input. The form of the
output is similar to that used in the LALR(1) tables, except that, of course, the terminal
symbols triggering reduce actions are not known.

Reduce with p

follows the state heading if the production with label p has reduce actions in the state.

The next stage is to compute lookahead symbols for all these incompletely determined
reduce actions according to the LALR(l) rules. This is done using Anderson's
bewilderingly succinctly stated algorithm on pages 21 and 22 in AER. It is convenient, as
a preliminary to this, to compute, for each nonterminal symbol, the set of terminal
symbols that can appear as the first symbol in a string derived from the nonterminal. This
transitive closure calculation provides the initial data for computing Anderson's exact
right contexts, which is in turn, a transitive closure calculation.

If the directive IIFIRST appears among the input directives in addition to either of the
directives IIPRINTLALR or I\LlSTS, a file with extension name .first is created that contains a
list of all nonterminal symbols each being followed by an (offset) list of the terminals that
can start a string derived from it.

0-11

D Parser Generator System

D.G The Preprocessor

0-12

The preprocessor is invoked if the input file name has the extension. mesa. Each arm of
the SELECT statement implementing the semantic processing routines in the Mesa compiler
has comments displaying those productions associated with this arm. The test preceding
the. > symbol in the arm is the rule number for these productions. As Mesa evolves,
changes are made to the grammar, productions associated with one arm must be moved to
another, new productions and new arms are introduced, and periodically the rules must be
renumbered in a systematic fashion to find things (there being being over 200 arms). The
bookkeeping necessary to ensure that the story told by the SELECT statement is consistent
with that told to the PGS i,n the input file is tiresome and error prone. Most of the data
needed by the PGS is present in the SELECT statement and by adding the rest only one copy
of the grammar need be maintained and the reassignment of rule numbers can be
mechanised.

The preprocessor expects a Mesa program module as input and it scans for the sequence

digits = > .•

after that it expects to find data relevent to it. On encountering a carriage return, it checks
whether the next printing characters open a Mesa comment or not; if they do then more
data is expected otherwise the end of the data associated with a particular select arm is
presumed and a search is instituted for the next.

Supposing the input file name given was semroutine.mesa, then during the scan the
preprocessor copies the input file to semroutine. mesaS and makes a modified copy in a
scratch fil~. The change is a trivial one; as the sequences,

digits = > ..

are encountered, the next non-negative integer (starting with 0) is substituted before the
• > symbol. At the end of the input scan, the scratch file is written back to
semroutine.mesa.

Clearly the rather crude procedure used to locate the grammatical information in the
program text places constraints on the program module containing it. In particular it
precludes comments in a fairly natural place in any other SELECT statements that may
appear in the module that also use integer tests. On the other hand anything approaching
parsing the text is out since it merely replaces one updating problem with another.

Since the PGS constructs tables using the new rule numbers just assigned, arms of the
select statement can be reordered to group logically related arms together without making
the search for an arm with a given rule number tedious.

In the comments associated with arms SELECT (other than the first encountered), the
preprocessor expects to find only productions. Here each production is specified in full, its
left part token followed by either :: = or (to designate a chain production) :: = C followed by
the right part tokens.

Comments preceding the first production contain the additional information needed. This
information in order of occurrence is,

XDE User's Guide D

1. Optionally, and in either order, the tokens MOOULE: or BINARY: may appear
each followed only by a token naming the file to contain the corresponding
output.

2. N ext must appear GOAL: followed by the token naming the nonterminal that
is the goal symbol ofthe grammar.

3. Optionally there may appear TERMINALS: followed by the tokens representing
the terminals. The end of sentence marker should not be included, eof is
supplied.

4. Optionally there may appear ALIASES: followed by the alias sequence as
described in section 0.3.

5. Finally PRODUCTIONS: must appear before the first production.

When the preprocessor is selected. the output file names are formed by appending the
various extensions to pgs rather than the main part of the input file name thus pgs.module
and pgs.binary are the default names if the MODULE: and BINARY: options are not used in the
input.

Nonterminal symbols are deduced from the tokens to the left of :: = tokens. If the
TERMINALS: sequence appears only these symbols are taken to be terminals. In its absence
any token in a production that is not a nonterminal according to the previous definition is
a terminal. Omitting this sequence means that typing errors define terminal symbols!

From a file of this form (see the example at the end of the appendix), the preprocessor
constructs'a scratch file in the format specified in section 0.3, with the directives IIINPUT,
IICHAIN and IIUSTS, which it passes to the input phase ofthe PGS.

The preprocessor only generates one error message, "Directives incorrect or out of
sequence". No further processing occurs in this situation so the message is displayed,
followed by the request to type a character to terminate execution.

When inserting new arms in the SELECT statement there is no need (so far as the
preprocessor is concerned) to use an integer distinct from those on other arms but it is
probably not a good idea. The preprocessor will recognize? as an alternative to a digit
sequence.

D.7 Operation

D.7.1 PGS operation

PGS command line parsing has been revised to handle module identifiers and file names,
in the currently approved way and to allow easier parameterization with respect to long or
short pointers. The basic idea was to make PGS more like the compiler and binder in these
areas (to avoid the current file name hassles and to make PGS more usable by the system
modelled.

D-13

D

D-14

Parser Generator System

0.7.1.1 Processing modes

Input: Mesa vs. grammar. PGS can extract the information needed to build parsing tables
from comments embedded within standard Mesa source files. Although the above
documents this input mode almost as an afterthought, it has become the standard one. The
conventional name for the input file in this mode is <name>. pgs. The grammar mode has
been retained for its occasional utility in experimenting with grammars. See the
Appendix.

Output: BCD vs. binary. The usual output mode is BCD; this facilitates packaging the
parsing tables with the code that uses them (in a BCD, boot or image file). The binary
mode has been retained primarily for situations in that the parsing tables are to be used
by non-Mesa programs.

0.7.1.2 Mesa programs as PGS source files

The list of keywords that optionally precede the first production has been revised and
expanded as follows:

TABLE:

TYPE:

EXPORTS:

GOAL:

TERMINALS:

ALIASES:

PRODUCTIONS:

The first three must precede all the others but may occur in any order; the next section
explains their significance. The last four must appear in the specified order; all but the
last may be omitted.

Output Identification

In the source text, the old keywords dealing with file and module names are replaced by

TABLE: tableld TYPE: typeld EXPORTS: interfaceld -- or EXPORTS: SELF

This is supposed to remind you of

programld: <ProgramType> EXPORTS interfaceld

(sorry about the different treatment of colons, etc.). The names tableld, typeld and
interfaceld are module identifiers (capitalization counts) and get put into BCDs and
symbol tables.

Examples

The following examples are taken from the current system. The compiler and binder
specify the same type name because they use the same parsing module, in which that
interface is a (compile-time) parameter. On the other hand, they export different
interfaces because loading of the corresponding tables is handled differently (see below).

TABLE: BCDParseData TYPE: ParseTable EXPORTS: SELF -- binder

XDE User's Guide

TABLE: MesaTabTYPE: ParseTable EXPORTS: CBinary
TABLE: PGSParseData TYPE: PGSParseTable EXPORTS: SELF

D.7.1.3 Invoking PGS

File Naming

compiler
PGS

D

When you invoke PGS, you can arbitrarily associate files and module identifiers using the
same command-line conventions that the compiler and binder use. The most general form
is:

[defs: defsFile. bed: bedFile, grammar: grammarFile] ~
soureeFile[interfaeeld: interiaeeFile]/switehes

that puts

the source for the interface typeId on defsFile .mesa,
the BCD for the tableld (or binary, if you say "binary:") on bcdFile.bed (or
• binary),
a summaryofthe grammar on grammar File. grammar (only if input was a Mesa

source file)

and finds the BCD for interfaceId on interfaeeFile. bed. Capitalization is ignored. By
default

defsFile: type Id • mesa
bcdFile: tableld. mesa
grammarFile: tableld. grammar (inhibit with I-g)

error messages: tableld. pgslog

(There are further defaults for the cases in which the input is just a grammar file or you
omit keyword items for the module identifiers in the source).

Command line examples

The following commands build parsers for the Compiler, Binder, and PGS:

PGS [grammar: Mesa] ~ Pass1T.pgs

needsCBinary.bed
producesPasslT.mesa,MesaTab.bed,ParseTable.mesa
exports MesaTab as a PROGRAM in the interface CB inary
puts grammar summary inMesa.grammar

PGS [defs: BedParseTable, grammar: CMesa] ~ BcdTreeBuild.pgs

produces BedTreeBuild.mesa, BedParseData. bed,
BedParseTable.mesa

exports BcdParseData directly (no interface)
puts grammar summary in CMesa.grammar

0-15

D

0-16

Parser Generator System

PGS [defs: PGSParseTable, grammar: PGS] +- PGSScan.pgs

producesPGSScan.mesa,PGSParseData.bed,PGSParseTable.mesa
exports PGSParseData directly (no interface)
puts grammar summary in PGS . grammar

0.7.2 TableCompiler operation

TableCompiler command line parsing has been similarly revised to resemble that of the
compiler and binder.

0.7.2.1 Processing modes

TableCompiler is a program to convert assorted inputs to Mesa. bed files that can be
bound into configurations and managed as code segments. If the source file name has
extension .mesa, it extracts string literals from string array declarations and gives the
skeleton of a DEFINITIONS file describing the resulting structure; otherwise, it just wraps a
bed header around a collection of bits.

0.7.2.2 InvokingTableCompiler

File Naming

When you invoke TableCompiler, you can specify an arbitrary association between files
and module identifiers using the same command-line conventions that the compiler and
binder do. The most general form is:

[bcd: bcdFile, format: formatFile] +-
sourceFile[i nterface: i nterfaceFi le]/switches

that puts

the BCD output on bedFile. bed,
the record format on formatFile. format (only if input was a Mesa source file)

and finds the interface BCD on inter faeeFile. bed. Capitalization is ignored here. By
default

bcdFile: souree. bed
formatFile: source. format
grammarFile: tableld.grammar (inhibitwith I-g)
error messages: TableCompi ler . log

where source is the root of the sourceFile name. Note that the new use of keywords is not
compatible with previous use.

Command line example

The following command builds components of the compiler:

TableCompiler ErrorTab[interface: CBinary] DebugTab[interface: CBinary]

XDE User's Guide

D,S Example

needsCBinary,bcd
producesErrorTab,format,ErrorTab,bcd,DebugTab,format,

DebugTab.bcd
exports ErrorTab and DebugTab as PROGRAMS in the interface CBinary

An Input File

IIINPUT IICHAIN IIUSTS IIPRINTLALR
ITABLE1
id + () * IFTHEN OR ELSE: = EOF

ITABLE2
gsaietpbl
ITABLE)
+ tokenPLUS
ITABLE4
1 g:: = s
Cs:: = a
C Ii
2a:: = id: = e
) i :: • IF b THEN a I
Ce:: = t
4 Ie + t
Ct::. p
5 It* p
6p::= (e)
7 lid
8b:: = bORid
9 lid
10 I:: =
11 I ELSE s

The Resulting Module File

ParseTable: DEFINITIONS =
BEGIN -- types for data structures used by the Mesa parser and scanner

Symbol: TYPE = [0 .. 255];

-- token indices for the scanner and parser

tokenPlUS: TSymbol = 2;

Hashlndex: TYPE = [0 .. 17];
Vlndex: TYPE = [0 .. 22];

TSymbol: TYPE = Symbol [0 .. 11];
NTSymbol: TYPE = Symbol [0 .. 10];
State: TYPE = [0 .. 17];
NTState: TYPE = State [0 .. 5];
Tlndex: TYPE = [0 .. 23];

D

0·17

D

0-18

Parser Generator System

NTindex: TYPE == [0 .. 9);
Production: TYPE == [0 .. 15];
END.

The Resulting Echo File

IIINPUT IICHAIN IILlSTS IIPRINTLALR

ITABLE1
1 id
2 +
3 (
4)
5 ."

6 IF
7 THEN

8 OR

9 ELSE

10 : =-
11 EOF

ITABLE2
12 9
13s
14 a
15 i
16 e
17t
18 P
19 b
20 I

ITABLE3

+

ITABLE4

1

2C
C

4

tokenPLUS

GOAL :: = 9 EOF

1 :: = s

2 s :: = a
3 Ii

2 a :: == id: = e

XDE User's Guide D

5 3 :: = IF b THEN a I

6C 6 e :: = t
7 4 Ie + t

8C 8 t :: = p
9 5 It*' p

10 6 :: = (e)
11 7 lid

12 8 b :: =bORid
13 9 lid

14 10 " -.. -
15 11 I ELSE 5

The Resulting Log File

LALR(1) Tables

1 001

2id 31F Og ·1 s

·1 a ·1 i

id 4 11 4:=

31F 5 1/ ·13 id 5b

4'-, - 421

·11 id 6(7e 8t

8p

5b 5 2/ 12 1/
9THEN 100R

6(10 1/

·11 id 6(11 e 12t

12p

7e 4 31 7 11

13 + *'4 ELSE *4EOF

8e 4 31 7 11 9 11

D-19

D Parser Generator System

13+ 14 * *4 ELSE *4EOf

9THEN 5 31
2id 15a

100R 12 21
·12 id

11 e 1 11 10 21
13+ ·10)

12e 1 11 9 11 10 21
13 + ·10) 14 *

13+ 121

·11 id 6(16t 16 p

14 * 9 21
·11 id 6(·9 P

15a 541
11 ELSE *14 EOf ·51

16t 1 31 9 11

*1 + *1) 14 * *1 ELSE

*1EOf

11 ELSE 15 11

2id 31F ·155 -15 a

-15 i

LALR(l) Statistics
States = 17
Terminal entries = 37
Nonterminal entries = 19
First OR operation count = 5
Total OR operation count = 33
Maximum number of contexts = 9

Parse Table Data

Nonterminal Default Actions

09 -1 5 15 a ·1 i

1e 8t 8p 5b

0-20

XDE User's Guide D

·51

Entries removed = 0

Table Overlays
row ttab ntab
6 4
13 4
14 4
17 1

Scanner hashtable probe counts (terminal symbol, probecount, hashcode)

id 1 6 IF 1 9 THEN 1 3 OR 1 1

ELSE 10 :- 1 16

Renumbered States
2 swapped with 17
3 swapped with 14
4 swapped with 13
5 swapped with 6

The PGS Grammar

IICHAIN IILlSTS IIINPUT

ITABLE1
1 symbol
2 num
3 '7
4 'I
5 ":: . "
6 'e
7 "ITABLE1"
8 "ITABLE2"
9 "ITABLE3"

10 "ITABLE4"
11 "IIINPUT"
12 "IICHAIN"
13 "IILlSTS"
14 "IIPRINTLR"
15 "IIPRINTLALR"
16 "IIFIRST"
17 "IIIOS"
18 "GOAL"
19 eof

ITABLE2
20 grammar
21 head
22 ruleset

0-21

D

D-22

Parser Generator System

23 directives
24 terminals
25 nonterminals
26 aliases
27 directive
28 discard
29 rulegroup
30 prefix
31 goalrule

ITABLE3
symbol tokenlO
num tokenNUM
'1 tokenQUERY
"ITABLE3" tokenTAB3
"ITABLE4" tokenTAB4
'1 InitialSymbol

GOAL :: .. grammar eof

1 o grammar

2 head

3 1
"ITABLE4"

4 2 directives
5 28

6 3 directive
7 4
8 5·
9 6

10 7
11 8
12 9

13 10 terminals
14 11

15 11 nonterminals
16 12

17 13 aliases
18 14

19 15 discard
20 28
21 28

:: .. '1 head ruleset

:: .. directives terminals nonterminals "ITABLE4"

I directives terminals nonterminals aliases

:: ..
/ directives directive

:: .. "/IINPUT"
/ "/ICHAIN"
/ "I/LlSTS"
/ "I/PRINTLR"
/ "I/PRINTLALR"
/ "I/FIRST"
/ "//IOS"

:: .. "/TABLE1"
/ terminals discard symbol

:: os nonterminals discard symbol
I "//T ABLE2"

:: = "ITABLE3"
I aliases symbol symbol

:: =
Inum
I '1

XDE User's Guide D

22 16 rulegroup :: == symbol":: =="
23 17 I prefix symbol":: =="
24 18 I rulegroup symbol":: == "
25 19 I rulegroup prefix symbol":: == "
26 20 I rulegroup 'I
27 21 I rulegroup prefix 'I
28 22 , rulegroup symbol

29 23 prefix :: == num
30 24 Inumnum

31 24 1'1num
32 25 I discard 'c

33 26 I discard 'Cnum
34 27 1'1

5C 28 ruleset :: == rulegroup
36 28 I goal rule rulegroup

37 28 goalrule :: == "GOAL" ":: =" symbol symbol

An Input File For the Preprocessor

Program text has been stripped from within and around the SELECT statement
implementing the semantic routines of the PGS to expose the grammatical information.

SELECT prodDa tar q[qj]. transition J. rule FROM

o == > --MODULE: pgsptabdefsnew.mesa BINARY: pgsnew.binary
-- GOAL: grammar
--TERMINALS: symbol num '1 "":: ==" 'c "ITABLE1" "'TABLE2" "'TABLE3"
-- "ITABLE4" ""INPUT" "!lCHAI N" "!lUSTS" "IIPRINTLR"
-- "IIPRINTLALR" "!lFIRST" "lIlos" "GOAL"
-- ALIASES: symbol tokenlo num tokenNUM '1 tDkenQUERY
-- "'TABLE3" tokenTAB3 "'TABLE4" tokenTAB4 '11nitiaiSymboi
-- PRODUCTIONS:
-- grammar

BEGIN
END;

1 == > -- head
-- head

BEGIN
END;

:: == '1 head ruleset

:: == directives terminals nonterminals "'TABLE4"
:: == directives terminals nonterminals aliases "'TABLE4"

2 == > -- directives :: ==
BEGIN
END;

0-23

D

0-24

Parser Generator System

3 • > .• directive
BEGIN

END;

:: = "IlINPUT"

4 == > .• directive :: == "IICHAIN"
flags(chain] Eo-TRUE;

5 == > .. directive :: = "Il LISTS "
flags[lists] Eo- TRUE;

6 == > .• directive :: == "IlPRINTLR"
flags[printlr] Eo- TRUE;

7 = > .. directive :: == "lIpRINTLALR"
flags[printlalr] Eo- TRUE;

8 = > .• directive :: == "IlFIRST"
flags[first] Eo-TRUE;

9 ,. > ··directive :: == "III OS"
flags[ids] Eo- TRUE;

10 == > ··terminals :: == "!TABLE1"
BEGIN

END;

11 • > .. terminals :: == terminals discard symbol
•• nonterminals :: == nonterminals discard symbol

BEGIN

END;

12 == > .. nonterminals :: == "!TABLE2"
BEGIN

END;

13 = > .. aliases
BEGIN

END;

14 == > .• aliases
BEGIN

END;

:: = "!TABLE3"

:: == aliases symbol symbol

15 = > -- discard :: =
I[top] Eo-lnputLoc[]; .- keep the parser error recovery happy

16 == > .• rulegroup :: == symbol":: == II

BEGIN

END;

17 == > .- rulegroup :: == prefix symbol":: ="
Ihssymbol[v(top + 1]];

XDE User's Guide D

18 == > .• rulegroup :: == rulegroup symbol ":: ="
BEGIN
END;

19 == > .• rulegroup :: == rulegroup prefix symbol ":: == II

Ihssymbol[v[top + 2]];

20 • > .. rulegroup :: == rulegroup'l
BEGIN
END;

21 == > .. rulegroup :: '. 'rulegroup prefix 'I
prodheader{FALsE] ;

22 • > .• rulegroup :: • rulegroup symbol
BEGIN
END;

23 = > .• prefix :: = num
setrulechain[v[top], FALSE];

24 = > .. prefix ::. num num
•• prefix :: = '? num

setrulechain[v[top + 1], FALSE];

25 • > - prefix :: • discard 'C
setrulechain[prix. TRUE];

26 == > .. prefix :: • discard 'c num
setrulechain[v[top + 2], TRUE];

27 • > .. prefix :: == '?
setrulechain[prix. FALSE];

28 = > .. directives
•• discard
•• discard
•• ruleset
•• ruleset
•• goalrule

NULL;
ENDCASE = > ERROR;

:: = directives directive
::. num
::. '?
:: • C rulegroup
:: == goal rule rulegroup
:: == "GOAL" ":: ==" symbol symbol

0-25

E

Sword Debugger

This chapter describes the Pilot-based multilingual debugger, Sword. Sword supports
source-level debugging; it allows users to set breakpoints, monitor program execution,
display the runtime state, and interpret Mesa statements. The debugger is intended for
use by experienced programmers familiar with Mesa; the debugger may be used for Mesa,
C and FORTRAN programs. To use the debugger, run Sword. bcd.

E.1 Events

The debugger is multi-instance, and each instance is called an Interpreter. An Interpreter
can be created whenever one of the following abnormal events occurs:
1. An uncaught signal is raised.
2. An address fault occurs.
3. A write protect fault occurs.
4. A breakpoint is hit.
5. A client program invokes the debugger through an interface, such as Runtime.
6. The user invokes the debugger by typing SHIFT·STOP.

E.2 Styles of debugging

There are three styles of debugging: local debugging, outload debugging, and remote
debugging. In local debugging, the debugger shares the same address space as the client,
and is located on the same logical volume. In outload debugging, the debugger resides in a
different address space than the client; and on a different logical volume. In remote
debugging, the debugger and the client are different hosts on the network.

E.2.1 Local debugging

Most applications are debugged locally. However, local debugging is not feasible when the
debugger depends on the application being debugged. For instance, it is not possible to
local debug the operating system or the window package because the debugger depends on
them. In such cases, outload debugging or remote debugging is used. An event cannot be
debugged locally if:
1. The user specifies in the Options window that the event should not be handled locally.
2. Procedure calls are disallowed (usually by the operating system).
3. The event is not an uncaught signal, fault, breakpoint, or client program call.

E-!

E

E-2

Sword Debugger

4. The local debugger determines that it does not have resources to handle the event.
5. The user types SHIFT-STOP (in other words, SHIFT-STOP always bypasses the local debugger).

A sample local debugging session is described in section E.3.2.2.

E.2.2 Outload debugging

In outload debugging, a world-swap transfers control between the client and the
debugger. This mechanism protects the client and the debugger from each other. A world
swap may take from 30 seconds to a few minutes, and the time is proportional to the
amount of real memory in the machine.

When the client volume is booted, the debugger creates files to hold the client's core-image
(Debuggee.outload) and its own core-image (Debugger. outload). The outload files
are large, since they must hold copies of real memory. When the client needs to call the
debugger, the operating system on the booted volume searches for an installed outload
debugger to use, looking on all volumes of type one higher than the one on which the boot
file resides. The three volume types are normal, debugger, and debuggerDebugger. For
example, if the boot file is on a volume of type normal, Pilot searches volumes of type
debugger. Occasionally, it is desirable to use an installed debugger other than the one
that Pilot would normally choose. In these cases, use the Set Debugger Pointers command
in Othello or the Installer, which allows you to have a client and a debugger on volumes of
the same type. Sword is usually run on a volume of type debugger. However, Sword will
not run on a CoPilot bootfile; it must be run on a Tajo bootfile.

A sample outload debugging session is described in section E.3.2.3.

E.2.3 Remote debugging

It is possible to debug clients over the Ethernet with a remote machine. A client must use
a remote debugger if there is not an outload debugger available, or the client volume was
booted with the "5" switch (which causes the client to always wait for a remote debugger).
While waiting for a remote debugger, the client displays MP code 915, and while
communicating with a remote debugger, the client displays MP code 917.

To remote debug, set the client item in an Interpreter to "remote" and give the name of the
host (see the section below on the Interpreter form subwindow). A host can be the name of
a machine that is registered in the clearinghouse, a net address of the form
netNumbertbostNumbert, or a processor number of the form
netNumber.processorNumber. If a Domain and Organization have been specified
in the user profile, they will be used to qualify any partially qualified host names.
Otherwise you will have to supply fully qualified host names for any remote clients you
wish to debug. Before communications have been established, and whenever the debugger
is waiting for the remote machine, it displays: "Wai ting for client ••• ". This is
followed by the message "el ien t responds" when communications are re-established.
To stop remote debugging, set the client item to "closeRem". Pressing the ABORT key while
waiting for the client will also abort remote debugging.

A sample remote debugging session is described in section E.3.2.4.

XDE User's Guide E

E.3 User interface

Sword runs two tools, the Sword tool and the Interpreter tool. The Sword tool is used to
freeze and thaw processes, and examine the load state. The Sword Tool is useful for
debugging programs in infinite loops, or examining transient states of programs that are
normally executing. The Interpreter tool is used to debug crashes, control program flow,
and examine the runtime state of programs. There is only one Sword tool, but any number
ofInterpreters.

~ World: {None, _,
: Freeze: {All, Ready,

Thaw: {All}

Outload, Remote} Client:
Process, Context} Context: Test

PsbIndex= 0
List: {Loadstate, Context} Destroy!

Frozen Processes I
{]

PSB 130B frame= 7140B state= unknown priority=l : {Adjust, Thaw, Debug} J_
'\.J

Preparing to LocalDebug ••• done

Freeze processes inside Test
Additional frozen processes:
130B

Context: Text
Test:gfh'l10654B
End of Context

E.3.1 Sword Tool

Figure E.1: Sword

The Sword tool has a form subwindow for commands and a file subwindow for output. No
commands will work until a client has been specified with the World item. For outload or
remote clients, the user should enter the name of the client in the "Client" field, then bug
"Outload" or "Remote" in the "World" item. For local debugging, the user can just bug
"Local" in the "World" item. At the bottom right corner of the form subwindow is the
"Destroy" command, which destroys the tool.

Loadstate facilities

At the bottom left of the form subwindow are "List LoadState" and "List Context". "List
LoadState" enumerates the currently loaded configurations in the client. If you type the
name of a configuration in the "Context" string item, then click "List Context", Sword
enumerates the modules in that configuration.

Process facilities

E-3

E

E-4

Sword Debugger

The process facilities are based on the concept of freezing a Mesa process at a particular
frame on its callstack. When a process is frozen, the process continues execution normally,
but when it returns to the frozen point on its callstack, the process stops executing until it
is thawed. If the freeze point is the current frame, the process stops executing
immediately. Section E.3.1.1 contains an example of freezing.

The Sword tool allows you to freeze and thaw a process, and to look at the frozen frames of
a process (even while the frames of the process hotter than the freezing point are still
executing). There is no way to look at a process (or part of a process) that isn't frozen.
There are four "Freeze" buttons. "All" freezes all processes at their current frame. "Ready"
freezes all ready processes (processes that aren't suspended for a monitor lock, condition
variable wait or fault) at their current frame. "Process" freezes the process whose number
(PSB index) is given in octal in the "PsbIndex" string item. Finally, "Context" freezes all
processes associated with a particular configuration or module, freezing them at the
boundary of the context. More precisely, "Context" enumerates all processes, and
determines every process that has on its callstack a frame within the specified module or
configuration; each such process is frozen at the point where control would return to
within the module or configuration; any process currently executing (or waiting or
faulted) within the module or configuration stops executing immediately. If you resume
the client while some processes are frozen, they really are frozen when the client resumes.
This can be important when debugging parallel computations, but it can be dangerous. In
particular, beware of resuming the client while critical system processes are frozen! You
cannot freeze the ready processes of the local world. You should use the freeze context
command as much as possible, so that you don't freeze anything unexpectedly.

Examining frozen processes

For each process that is frozen the Sword tool displays a description of the process's current
state and three buttons: "Adjust", "Thaw", and "Debug". The state says things like.
"ready" or "waitingCV" or "pageFault", followed by the name of the frame at which the
process is frozen and the priority of the process. There is no way to look at non-frozen
frames of the process. The state is wrapped in parentheses if the process's current frame is
not frozen (that is, if the process is still executing. This can happen when you freeze a
context.). If you click the "Debug" button, an Interpreter tool is created for that process, so
you can look at the frozen parts of the callstack in more detail. If you click the "Thaw"
button, the process is unfrozen and continues execution. If you click the "Adjust" button,
the entire callstack of the process is refrozen (you might want to refreeze a process after
thawing it). You can't thaw or adjust a process while it has an Interpreter; proceed or abort
the Interpreter first (as described below).

XDE User's Guide E

E.3.1.1 Example: Freezing a Process

Say we are running the following program and we wish to stop it and examine its state. It
doesn't matter whether we have run this program first or Sword first. This program is a
small example of an infinite loop.

Foo: PROGRAM = {
var: CARDINAL - 0;
DO Process.Pause[Process.SecondsToTicks[I]];

var -var + 1;
ENDLOOP;}.

1. In the Sword tool, bug "Local" in the "World" item.
2. In the "Context" item, type "Foo".
3. In the "List" item, bug "Context". Sword prints the global frame handle for Foo.
4. In the "Freeze" item, bug "Context". Sword freezes the process running Foo and creates

an entry in the Frozen Processes subwindow.
5. In the Frozen Processes entry, bug "Debug". An Interpreter is created (see section

24.3.2). List the value of the variable "var".
6. Type "Proceed" in the Interpreter.
7. In the Frozen Processes entry, bug "Thaw". The process continues running .

. 8. In the Frozen Processes entry, bug "Adjust". The process is frozen again.
9. In the Frozen Processes entry, bug "Debug". In the Interpreter, see that the value of the

variable has changed.
10. Type "Quit" in the Interpreter.
11. In the Frozen Processes entry, bug "Thaw". The process is aborted.

E.3.2 Interpreter Tool

Sword registers the Executive command "Interpreter", which may be used to create an
Interpreter tool. Interpreters are created automatically to handle certain local events. The
four booleans fault, uncaught, break, and calldebug in the Options window control
whether an event causes a world swap or is handled locally. If a boolean is TRUE and the
corresponding event occurs, it is handled locally (that is, an Interpreter is created) instead
of world-swapping. If a boolean is FALSE then the event causes a world-swap. When an
event occurs, an existing Interpreter is used if possible. An existing Interpreter can be
used if it is dormant (has no client), as indicated in the namestripe of the Interpreter.
Dormant Interpreters are destroyed with the destroy! command. An Interpreter contains a
form subwindow and a file subwindow.

Sessions

An Interpreter that is not dormant represents a debugging session. Debugging sessions
are closed by making the Interpreter dormant. Debugging sessions are opened either from
the Executive or from the client item in the Interpreter, described below. Sample
debugging sessions are in sections E.3.2.2, E.3.2.3, and E.3.2.4.

E-5

E Sword Debugger

go: {proceed, abort, kill, screen, start} Client: {local} destroy!
read: {} write:{} processes configs attach: {source, symbols}
source! findModule! rep?! showType! type&bits! opti.ons!
break: {set, clear, clearall, list, attachCond, attachKey} watch: {off}

I~---D

E-6

***Address fault, PSD: 1428, at NIL, in Proc, L: 600508+,· PC: 228 (in Crash,
G: 1245408+) ***
>Display Stack
Proc, L: 600508+, PC: 228 (in Crash, G: 1245408+) >s Cross jumped!

<>a + b+; [129]
>v
a = 1524008
b = NIL
c = 5
>

~ CARDINAL: {III ,decimal hex} signed INTEGER: {octal ,_,hex} _
~Apply! POINTER: (II1II, decimal, hex} LONG POINTER: (II1II, decimal, hex}
lAbort! RELATIVE: (octal, liliiii, hex} UNSPECIFIED: (II1II, decimal,hex}
~ Array elements = 100
~ filter:
~ ____ processes configs

Figure E.2: LocalWorld with Interpreter Options

E.3.2.1 Interpreter form subwindow

The form subwindow has items for the interpreter commands used most often. Commands
available in the form subwindow are described in this section; commands available in the
file subwindow are described in later sections.

client

This enumerated item is used to open and close debugging sessions. If the Interpreter is
dormant, selecting "Local" will create a local debugging session. Selecting "outload" or
"remote" will create an outloador remote session. You will be prompted for the name of
the remote host or outload file. To end an outload or local debugging session, change this
enumerated to "dormant". To end a remote debugging session, change this enumerated to
"closeRemote" .

The debugger has a programmatic interface called "DebugUsefuIDefs", which makes
available some debugger functions. For instance, an application can read and write the
memory of a remote host through DebugU sefulDefs, if there is a remote debugging session
with that host. Because Sword can be debugging many clients at once, the
DebugUsefulDefs interface needs to know which client it should use for its functions. The

XDE User's Guide E

user tells DebugUsefulDefs which client to use by selecting "setDUD" in client item.
DebugUsefulDefs will use the client from that session until the user does another
"setDUD". After the user ends the session, DebugUsefulDefs will return undefined results
from its functions.

processes

Turning the processes boolean on creates the process subwindow in the Interpreter. The
sub window contains processes, callstacks, and local variables. You can zoom or close a
particular line by selecting the cross (x) at the head of the line (the state is toggled).
Zooming displays more detail; for instance, zooming a stack frame line displays the local
variables of the stack frame. Closing the line erases the local variables. The window is
automatically initialized to the process context of the crash. It takes about 10 seconds from
the time of the crash until the processes subwindow is displayed.

contigs

Turning the configs boolean on creates a configs subwindow in the Interpreter. The
sub window contains configurations, modules, and global variables. You can zoom or close
a particular line by selecting the cross (X) at the head of the line (the state is toggled).
Zooming displays more detail; for instance, zooming a configuration line displays the
nested configurati<?ns and modules. Zooming a module line displays the global variables of
the module. Closing the line erases the global variables. The window is automatically
initialized to the module context of the crash.

source

If the current selection is on a local frame line in the process subwindow, then source!
loads a file window with the source for that local frame. If the current selection is on a
global frame line in the config subwindow, then source! loads a file window with the source
for that global frame.

tindModule

If the current selection is on a stack frame line in the process subwindow, then
findModule! marks (with a black box) the configuration in the config subwindow that
contains the module to which the stack frame points. If the current selection is on a
module line in the config subwindow, then findModule! marks the processes in the process
subwindow that contain stack frames which point to the module.

rep?

The value of the selected number is printed in several formats, including octal, decimal,
and hexadecimal.

showType

The type of the selected expression is printed. The syntax of the expression must be either
File.Type or File$Type, where File is the name of an interface or program. If just a
filename is selected, then all of the types in that file are printed.

E-7

E

E-S

Sword Debugger

type&bits

The type and bit layout of the selected expression is printed. This is particularly useful for
finding the positions of fields within records. The syntax of the expression must be either
File. Type or File$Type, where File is the name of an interface or program.

watch

This command will stop execution of a program whenever the contents of a particular
address changes. When this enumerated is set on, you are prompted for an address to
watch. Afterwards, if the contents of the address changes, the debugger will be called with
a swap reason of "TraceTrap". The enumerated should then be set off, to stop watching.

E.3.2.2 Example: A Local Debugging Session

1. Run Sword.
2. Type "Interpreter" in the Executive. An Interpreter tool is created, and its namestripe is

"LocaIW or ld (Debug.log)".
3. Bug "Proceed" in the "go" item of the Interpreter form subwindow. The namestripe

changes to "Dormant (Debug.1og}".
4. Select "Local" in the "client" item of the Interpreter The namestripe changes to

"LocalWorld (Debug.1og)".
5. Bug "Proceed". The namestripe changes to "Dormant (Debug.1og)".
6. Bug "destroy". The Interpreter is destroyed.

E.3.2.3 Example: Two Outload Debugging Sessions

This example assumes that you are running Sword on a volume of type debugger, and that
you have two volumes of type normal. Let us call the two volumes "NormaIOne" and
"NormaITwo". Let us assume you have enough room on your debugger volume for three
outload files: "Debugger .outload", "N ormaIOne.outload", and "N ormaITwo.outload".

1. In the [Debugger] section of your User.cm put
N ormalOne: N ormalOne.outload
NormalTwo: NormalTwo.outload

This tells Sword the names of outload files to use for particular volumes.
2. Run Sword.
3. Boot NormalOne from the HeraldWindow.
4. SHIFT-STOP. You will world-swap to the debugger volume.
5. Type "Interpreter NormaIOne.outloadlo". An Interpreter tool is created, and its

namestripe is "Outload: NormaIOne.outload, volume: NormalOne (Debug.log)". In the
file subwindow is the swap reason, "Interrupt".

6. Bug "Proceed" in the "go" item of the Interpreter form subwindow. The namestripe
changes to "Dormant (Debug.log}", and you world-swap to NormalOne.

7. SHIFT-STOP. You will world-swap to the debugger volume. In the file subwindow of the
Interpreter is the swap reason, "Interrupt".

S. Boot NormalTwo from the HeraldWindow.
9. SHIFT-STOP. You will world-swap to the debugger volume.
10. Type "Interpreter NormaITwo.outloadlo". Another Interpreter tool is created, and its

XDE User's Guide E

namestripe is "Outload: NormalTwo.outload, volume: NormalTwo (Debug.logl)". In
the file subwindow is the swap reason, "Interrupt".

From this point, you can bug proceed in either of the Interpreters, and you will swap to the
respective volume. To end the session in either Interpreter, select "dormant" in the client
item of the form subwindow.

E.3.2.4 Example: A Remote Debugging Session

This example assumes that "Host" is the network name of a machine which is in 915,
waiting to be remote debugged.

1. Login. Run Sword.
2. Type "Interpreter Hostlr" in the Executive. Status messages are printed in the

Executive as the debugger tries to open a connection to Host. If the connection is
made, an Interpreter tool is created, and its namestripe is "Remote: Host (Debug.log)".
The MP code of Host changes from 915 to 917. In the HeraldWindow, a pair of boxes
appear, and they twiddle once for each page of data that is fetched from Host.

3. Bug "Proceed" in the "go" item of the Interpreter form subwindow. The namestripe
changes to "Dormant (Debug.log)". The Host is now running and its MP code is 990.

4. Select "closeRemote" in the "client" item of the Interpreter. The twiddling boxes
disappear, indicating that the connection to Host is closed.

E.3.2.5 Interpreter file subwindow

The file subwindow is recorded in a log file, which is named in the tool's namestripe. The
file subwindow is a command processor, and the prompt character is >. The standard
input editing characters (BS to delete a character and BW to delete a word) are allowed.
Whenever a valid command is recognized, the Interpreter prompts for the parameters
associated with that command (if any are required). Pressing DELETE terminates the
command; 1 gives a list of valid commands. Pressing ABORT at any point during command
execution aborts the command. When receiving commands, the debugger extends each
input character to the maximal unique string that it specifies. Whenever an invalid
character is typed, a ? is displayed and you are returned to command level. Typing ? at
any point during command selection prompts you with the collection of valid characters
(in upper case) and their associated maximal strings (in lower case) and returns you to
command level.

Current Context

Interpreting symbols (including displaying variables, setting breakpoints, and calling
procedures) occurs in the current context; it consists of the current stack frame and its
corresponding module, configuration, and process. The symbol lookup algorithm used by
the debugger is to search the runtime stack of procedure frames in Last-In-First-Out
order. First the local frame of the current procedure is examined, next its associated global
frame. The search continues by following the return link to the next local frame. This
continues until either the symbol is found or the root of the process is encountered.

When you first enter the debugger, the context is set to the frame of whatever process is
currently running. Certain commands make it simple to enumerate contexts (L i s t
Processes, List Configurations), to change between contexts (SEt Root

E-9

E

E-IO

Sword Debugger

configuration, SEt Module context), to display the current context (CUrrent
context), and to examine the current dynamic state (Display Stack).

Looking up Symbols

Whenever the debugger needs symbols to display information, it first searches for symbols
where they were last copied by the Binder, then for the original compiler-output object
file. Types used, but not declared, within a module are looked up using the same algorithm
as in the Compiler. If the interface module containing the original declaration is
unavailable, the debugger uses whatever information has been copied into the symbol
table of the module using that type.

Leaving the Debugger

In the debugger, you may execute any number of commands to examine (and change) the
state of your program. When you are fmished, you may decide either to continue execution
of your program (Proceed), terminate execution of your program (Qui t), or end the
debugging session completely and boot the physical volume (Kill).

E.3.2.6 Input conventions

String Input

Identifiers are sequences of characters beginning with an upper- or lower-case letter and
terminating with a space (SPACE) or a carriage return (RETURN); identifiers must be typed
with correct capitalization.

Numeric Input

A numeric parameter is a sequence of characters terminated by SPACE or RETURN. If the
parameter is not a numeric constant, it is processed by the interpreter; any expression that
evaluates to a number is legal. The default radix is octal for addresses (and input to octal
commands) and decimal for everything else, unless otherwise specified with the Opt ions
window. The D or d suffix forces decimal interpretation; B or b forces octal; H or h forces
hexadecimal. Numeric constants with a leading zero are considered LONG.

Default Values

The debugger saves the last used command parameters for each command; these values
may be recalled by the COMPLETE key (aka -). The following parameters have default
values that may be recalled with COMPLETE: octal read address, octal write address, ascii
read address, root configuration, configuration, module, procedure, condition, expression,
process, address, and frame. After the default parameter is displayed by the debugger, the
standard input editing characters may be used to modify it. Striking the COMPLETE key to
the command processor uses the last command as the default command.

E.3.2.7 Output conventions

A "?" in any variable display uniformly means that the value is out of range. An ellipsis
(" ••• ") indicates that there are additional fields present in a record that cannot be
displayed due to lack of symbol table information. This can happen either in OVERLAID

XDE User's Guide E

records or because a DEFINITIONS file is not present on the disk. In display stack mode,
variables declared in nested blocks are shown indented according to their nesting level.

The Options window allows you to change the default format the debugger uses in
displaying values of variables. This window is created by selecting the Options item in
the form subwindow, then bugging Apply! to keep the changes made, or Abort! to
restore the previous options.

The CARDINAL, INTEGER, POINTER, LONG POINTER, and RELATIVE (POINTER) items are used to set the
default output radix for that type. For CARDINAL and INTEGER, the default representation is
signed or unsigned, depending on whether the boolean item signed is turned on or off.
The UNSPECIFIED item is used to set the default type for displaying UNSPECIFIED variables.
Array elements sets the number of ARRAY elements displayed to be the given value and
String length sets the number of STRING characters displayed to the given value.

The debugger uses these default values along with the types of variables to decide on an
appropriate output format. Listed below are the built-in types that the debugger
distinguishes and the convention used to display instances of each type.

ARRAY

displays elements of an array; e.g., a = (3) [[x: 0, y: 0], [x: 1, y: 1], [x: 3,

y: 3]] . The parenthesized value to the right of the "=" is the length of the array. Pressing
ABORT will abort the display of long arrays. The default is to display the entire array; the
Array elements item of the Options window may be used to change this.

ARRA Y DESCRIPTOR

displays the descriptor followed by the contents of the array; e.g., a =
DESCRIPTOR[146013Bt,3] (3)[[x: 0, y:O], [x: 1, y: 1], [x: 3, y:3]].Fora
RELATIVE ARRAY DESCRIPTOR, the word RELATIVE is displayed first. Pressing ABORT will abort the
display oflong array descriptors. The Array elements item in the Options window also
controls this.

BOOLEAN

displays TRUE or FALSE. Since BOOLEAN is an enumerated type = {FALSE, TRUE}, values outside
this range are indicated by a ? (probably an uninitialized variable).

CARDINAL

displays an octal number terminated by a "B" as the default. This may also be altered with
the Options window. Cardinals may be displayed as decimal, octal, or hex; signed or
unsigned.

CHARACTER

displays a printing character (c) as 'c. A control character (x) other than BLANK, RUBOUT,

NUL, TAB, LF, FF, CR, or ESC is displayed as t X. Values greater than 1778 are displayed in
octal.

E-ll

E

E-12

Sword Debugger

CONDITION

displays a record containing an UNSPECIFIED and t imeou t, a CARDINAL.

ENUMERATED

displays the identifier constant used in the enumerated type declaration. For example, an
instance c of the type ChannelState: TYPE • {disconnected, busy, available} might be
displayed as c=busy. Values outside the range of the enumerated type are preceded by a
question mark.

EXPORTED TYPES

displays the name of the type followed by an octal display of the contents if the length of
the type is known. For example, an instance of the type Handle: TYPE [1] is displayed as
Hand1e{l) 12348.

INTEGER

always displays a decimal number. Uniformly, numeric output is decimal unless
terminated by "B" (octal). Integer output may be changed with the Opt ions window.

LONG

displays numbers following the same conventions as short numbers; i.e., LONG CARDINAL

and LONG UNSPECIFIED are displayed in octal, LONG INTEGER in decimal.

MONITORLOCK

displays a record containing an UNSPECIFIED.

POINTER

displays an octal number, terminated with an "t"; for instance p=1073628 t. RELATIVE

POINTERS are decimal and are terminated with" t R"; for instance r=123 t R. These
defaults may be changed for LONG POINTERS, RELATIVE POINTERS, and POINTERS to either octal or
decimal with the Opt ions window.

PORT

displays two octal numbers; for instance p = PORT [0, 1725208].

PROCEDURE, SIGNAL, ERROR

displays the name of the procedure (with its local frame) and the name of the program
module in which it resides (with its global fr~me); for instance GetMyChar, L: 1650648
(in CollectParams, G: 1665148).

PROCESS

displays a PROCESS (pointer to a ProcessStateBlock); for instance p = PROCESS [1118] .

XDE User's Guide E

REAL

displays a floating-point number; for instance -1 • 45.

RECORD

displays a bracketed list of each field name and its value. For example, an instance v of the
record Vector: RECORD [x,V: INTEGER] is displayed as v= [x: 9, y: -1].

SEQUENCE

displays as an array. For example, an instance s of the record Sequence: RECORD [length:
Unsignedlnt, text: PACKED SEQUENCE maxLength: Unsignedlnt OF CHARACTER] is displayed as
s=[length:3, text:(3)['a, 'b, 'c)).

STRING

displays the name of the string, followed by its current length, its maximum length, and
the string body; for instance s = (3 , 10) " f 00". If the string is NIL, s =H I L is displayed.
Pressing ABORT will abort the display of long strings. The default is to display the entire
string; the Str ing length item in the Options window can change this.

UNSPECIFIED

defaults to being displayed as if they were CARDINALS; this may be changed with the
Options window.

ZONE

An UNCOUNTED ZONE displays as a LONG POINTER. An MDSZone displays as a POINTER.

Listed below are the conventions used to display context information throughout the
debugger:

A local context is displayed as the procedure name with its local frame, followed by the
module name and its global frame:

ProcedureHame, L: nnnnB, pc.: nnnB (in ModuleHame, G: nnnnnB)

A global context is displayed as the module name and its global frame: If the global
frame has not been started, it is followed by a -. If the global frame is followed by * (as
nnnnnB *) it is a copy created by the NEW construct. .

ModuleHame, G: nnnnnB

In response to an expression followed by a 1, the interpeter will show:

Octal = Hexadecimal = Unsigned Decimal = Signed Decimal =
Byte"Byte = Octal Byte"Octal Byte = CHAR"CHAR =
Hibble:Hibble"Nibble:Hibble

E-13

E Sword Debugger

If any of the values are 0 or out of range, they will not be shown. For LONG values the
interpreter will show:

Octal = Hexadecimal = Decimal = OctalWord OctalWord =
Byte"Byte Byte"Byte

For example, in response to 61141B? the debugger displays

61141B = 6261H = 25185 = 98,,97 = 142B,,141B = 'b,,'a = 6:2,,6:1

and for 1234567B? it shows

1234567B = 53977H = 342391 = 34567B 5 = 57,,119 0,,5

E.4 Debugger commands

E-14

The command tree structure for the Interpreter appears at the end of this chapter.
Capitalized letters are typed by the user (in either upper or lower case); commands are
extended with lower-case strings by the command processor. Each command (and its
parameters) is described below.

E.4.1 Breakpoints

All breakpoints may be conditional (see ATtach Condi Hon, below). An optional
command string which is executed when the breakpoint is taken can be attached to each
breakpoint (see ATtach Keystrokes, below).

Breakpoints may be set at the following locations in a program: entry (to a procedure), exit
(from a procedure), and at the closest statement boundary preceding a specific text
location within a procedure or module body. Breaks on a specific text location can be set
only with the Set Break command in the form subwindow. Note that breakpoints are
set in all instances of a module. When the source line of the breakpoint is displayed, the
indicator < > appears to the left of the source where the breakpoint has actually been set
(for instance IF foo THEN < > some statement;). Before the debugger permits any
breakpoints to be set from a File Window, the creation date of the source file is checked
against the corresponding date recorded by the compiler in the bcd.

Fine point: Since there is.only one exit from a procedure. the debugger shows the beginning of the procedure for
exit breaks instead of indicating a potentially incorrect RETURN statement. Local variables may be invisible if
this RETURN has a PC that is not in the block with their declarations; use source breaks on the RETURN
statements instead of an exit break.

If you compile a module with the cross-jumping switch turned on (the default), be warned
that when setting source breakpoints, the actual breakpoint may not end up where you
expect (for instance you may break in the code of an ELSE clause when you really want the
THEN clause if they share some common code). The message Cross jumpedl will appear
before the source of a cross-jumped module is displayed. Entry and exit breakpoints are
not affected by cross jumping.

A t tach Source (in form subwindow)

XDE User's Guide E

tells the debugger to ignore the time stamp in the source file where the current selection is
when setting breaks.

ATtach Condi tion [number, condition]

changes a normal breakpoint into a conditional one. Arguments are a breakpoint number
and a condition, which is evaluated in the context of the breakpoint. The breakpoint
number is displayed when the breakltracepoint is set, and may also be obtained using the
List Breaks command. The two valid formats ofa Condi tion are: exp relation exp, and
number. A relations is in the set {<, >, =, #, < =, > =}. A number means "execute the break
number times before invoking the debugger." The exp are interpreted expressions that are
looked up in the context of the breakpoint. The exp may only evaluate to a value that is 32
bits long, 16 bits long, or less than 16 bits long. The expression can involve at most once
dereference when the expression is evaluated at run time.

ATtach Keystrokes [number, command]

adds an arbitrary command string to breakpoints/tracepoints; the characters from this
string are executed by the debugger when the breakpointltracepoint is taken. Arguments
are a breakpoint number and a command string terminated with a RETURN. A RETURN can be
embedded in the command string with \no

Set Break (in form subwindow)

uses the current selection to set a breakpoint. If you select PROCEDURE or PROC, a breakpoint
is set on the entry to the procedure; if you select RETURN, a breakpoint is set on the exit of
the procedure; otherwise, a breakpoint is set at the closest statement to the beginning of
the selection. Note: If the module was compiled with cross jumping, breaks may be set in
unpredictable plaees. The debugger gives confirmation by moving the selection to the
place at which the breakpoint is actually set.

For the following code fragments, a breakpoint set on anyError will invoke the debugger
after the catch frame is entered. If a breakpoint is set on MFile.Error, the debugger is
invoked for all signals and errors before any decision is made to catch the signal.

BEGIN ENABLE MFile.Error • > {anyError TRUE; CONTINUE};

! MFile.Error • > {anyError TRUE; CONTINUE};

Break All Entries [module/frame]

sets a break on the entry point to each procedure in module or frame, not including
nested procedures and catch code.

Break All Xits [module/frame]

sets a break on the exit point of each procedure in module or frame.

Break Entry [proc]

inserts a breakpoint at the first instruction in the procedure proc. Note: You can place a

breakpoint on the entry to the mainline code, by doing Break En try [module namel.

E-15

E

E-16

Sword Debugger

Break Xit [proc]

inserts a breakpoint at the last instruction of the procedure body for proc. The breakpoint
catches all RETURN statements in the procedure. Note: You can place a breakpoint on the exit from the

mainline code. by doing Break Xi t [module namel.

CLear All Breaks

removes all breakpointsltracepoints.

CLear All Entries [module/frame]

removes all entry breakpointsltracepoints in module or frame.

CLear All Xits [module/frame]

removes all exit breakpoints/tracepoints in module or frame.

CLear All Traces

removes all tracepoints.

CLear Break (in form subwindow)

clears the breakpoint or tracepoint at the location specified as above.

CLear Break [number]

removes a breakpoint by number. Pressing RETURN in place of a number clears the current
breakpoint, the one that put you into the debugger.

CLear Condition [number]

changes a conditional breakpoint into an unconditional one. Pressing RETURN in place of a
number clears the current breakpoint.

CLear Keystrokes [number]

clears any command string associated with the breakpoint. Pressing RETURN in place of a
number clears the current breakpoint.

CLear Entry Break [proc]

converse of Break Entry.

CLear Entry Trace [proc]

converse of Trace Entry.

CLear Xit Break [procl

converse of Break xi t.

XDE User's Guide E

CLear Xit Trace [proc]

converse of Trace Xi t.

Display Break [number]

displays a breakpoint by number. Its type (entry, exit, source), and the procedure and/or
module name in which it is found are displayed; for source breakpoints, the source text is
also displayed; any attached conditions or keystrokes are also shown. Pressing RETURN in
place of a number displays the current breakpoint.

List Breaks [confirm]

lists all breakpoints, displaying the same information as Di splay Break.

Trace All Entries [module/frame]

sets a trace on the entry point to each procedure in module or frame.

Trace All Xits [module/frame]

sets a trace on the exit point of each procedure in module or frame.

Trace Entry (proc)

sets a trace on the entry of the procedure proc. When an entry tracepoint is encountered,
display stack mode is entered and the parameters are displayed.

Trace Xit [proc]

sets a trace on the exit of the procedure proc. When an exit tracepoint is encountered,
display stack mode is entered and the return values are displayed.

E.4.2 Display run time state

The scope of variable lookup is limited to the current context (unless otherwise specified
below to be the current configuration). This means that if the current context is a local
frame, the debugger examines. the local frame of each procedure in the call stack (and its
associated global frame) following return links until the root of the call stack is reached. If
the current context is a module (global) context, just the global frame is searched. Global
frames are searched in the order: declarations, imports, directory. If the variable you wish
to examine is not within the current context, change contexts.

AScii Read [address, n]

displays n (decimal) characters as text starting at address (octal).

Display Configuration

displays the name of the current configuration followed by the module name,
corresponding global frame address, and instance name (if one exists) of each module in
the current configuration.

E-17

E

E-18

Sword Debugger

Display Frame [address]

displays the contents of a frame, where address is its octal address (useful if you have
several instances of the same module or examining a specific local frame). Display stack
mode is entered.

Display GlobalFrameTable

displays the module name and corresponding global frame address, pc, codebase, and gfi of
all entries in the global frame table.

Display Module [module]

displays the contents of a global frame, where module is the name of a program in the
current configuration.

Display Process [process]

displays the frame and the state of process, which may be a variable of type PROCESS

(returned as the result of a FORK) or an octal PROCESS. The state of process can be:

ready (ready to run and has a state vector)

wai ting SV (ready to run but needs a state vector)

wa it i ng ML (waiting on a monitor)

wai ting CV (waiting on a condition variable)

frame faul t, fs i: nn (needs a frame whose size index is nn)

page fault, address: nnnnnB (waiting for page whose address is nnnnnB; this
is an address fault if location nnnnnB isn't mapped)

wr i te fault, address: nnnnnB (waiting to write into location nnnnnB, which
is write-protected)

faul ted (unknown fault has occurred)

A * marks the current process. A process can be on one and only one queue (associated
with a condition, monitor, ReadyList, etc.). After the process is displayed, you enter
process subcommand mode. A response ofH displays the next process; S displays the source
text and loads and positions the source file in a window; L just displays the source text; R

displays the root frame of the process; P displays the priority of the process; space (SPACE)

enters the interpreter;-- starts a comment; and Q or DELETE terminates the display and
returns you to the command processor.

Display Queue [id]

displays all the processes waiting on the queue associated with id. If id is simply an octal
number, you are asked whether it is a condition variable Condi tion? [Y or H]. For
each process, you enter process subcommand mode. The commands are the same as in
Display Process, with the exception of H, which in this case follows the link in the

XDE User's Guide E

process. This command accepts either a condition variable, a monitor lock, a monitored
record, a monitored program, or an octal pointer.

Display ReadyList

displays all the processes waiting on the queue associated with the ReadyList, the list of
processes ready to run. For each process, you enter process subcommand mode; the
commands are the same as in Display Queue.

Display Stack

displays the procedure call stack of the current process. At each frame, the corresponding
procedure name and frame address are displayed. The commands are:

v displays all the frame's variables.

G displays the global variables of the module containing the current frame.

P displays the input parameters.

R displays the return values. (anon) appears as the name of unnamed return
values.

N moves to the next frame on the call stack.

J, n(10)
jumps down the stack n levels (if n is greater than the number of levels it can
advance, the debugger tells you how far it was able to go).

S displays the source text and loads and positions the source file in a window.

L displays the source text.

SPACE enters the interpreter.

starts a comment which ends with a RETURN.

Q or DELETE

terminates display stack mode and returns you to the command processor.

When the current context is a global frame, the Display S.tack subcommands G,
J, and N are disabled. When the debugger cannot find the symbol table for a frame on
the call stack, only the J, N, Q, •• and SPACE subcommands are allowed.

Find variable lid]

displays the contents and module location of the variable named id, searching through the
GlobalFrames of all the modules in the current configuration.

E-19

E

E-20

Sword Debugger

Find module lid]

displays the processes and local frames which are in the module id, searching through all
of the processes. The information is printed out in a form that can be copied directly to the
Interpreter. For instance:

Find Module: Foolmpl
SEP130B
DSJ10

If the characters are copied directly into the Interpreter, context will be set to process
130B, at the tenth frame on the the call stack.

E.4.3 Current context

The current context is used to determine the domain for symbol lookup. There are
commands to display the current context, to display all the configurations and processes,
to restore the starting context, and to change contexts.

Every time the debugger is entered, the current context is automatically set to (1) the
process that caused the debugger to be called; (2) some significant frame in the calling
process, not necessarily top of the call stack of the process (for example, for an uncaught
signal, the significant frame is the one in which the signal was raised); and (3) the module
and configuration of the local frame set in (2).

CUrrent context

displays the name and corresponding global frame address (and instance name if one
exists) of the current module, the name of the current configuration, and the PROCESS for
the current process.

List Configurations

lists the name of each configuration that is loaded, beginning with the last configuration
loaded. If you wish to see more information about a particular configuration, use the
Display Configuration command.

List Processes

lists all processes as in the Display Process command.

ReSet context

restores the context that this instance of the debugger set upon entry (see the introduction
to this section).

SEt Configuration [canrig]

sets the current configuration to be canrig, where conrig is nested within the root
configuration that is current. This command is useful for "jumping" further into the
nested block structure of a configuration.

XDE User's Guide E

SEt Module context [module/frame]

changes the context to the program module whose name is module (within the current
configuration). If there is more than one instance of module, the debugger lists the frame
address of each instance and does not change the context. Using a frame address has the
same effect as SEt Octal context.

SEt Octal context [address]

changes the current context to the frame at address. This is useful when there are
several instances of the same module or in setting the current context to a specific local
frame.

SEt Process context [process]

sets the current process context to be process and sets the correspondlng frame context to
be the top frame on the call stack of that process. Upon entering the debugger, the
process context is set to the currently running process. The process may be either a
variable of type PROCESS (returned as the result of a FORK) or an octal PROCESS.

SEt Root configurati~n [config]

sets the current configuration to be config, where config is at the outermost level (of its
configuration). This command is sufficient for simple configurations of only one level. It is
also useful in getting you to the outermost level of nested configurations, from which you
may move "in" to more deeply nested configurations using SEt Conf igura t ion.

E.4.4 Program control

Kill session [confirm]

ends the debugging session, and executes TemporaryBooting.BootButton in the client.

Proceed [confirm]

continues execution of the program.

Qui t [confirm]

raises the signal ABORTED in the process that entered the debugger. If the process was
already processing an uncaught ABORTED signal (perhaps from a previous Qu it command),
this command passes the signal UNWIND to each frame of the process and then simulates a
RETURN with no results by the root frame of the process, causing the process to be deleted. If
this process is supposed to return any results, a stack error will result.

STart [address] [Confirm]

starts execution of the module whose frame is address. If the module has already been
started, a RESTART will be done. Unlike the START statement in the Mesa language, no
parameters may be passed.

E-21

E

E-22

Sword Debugger

U~erscreen [confirm]

swaps to the user world for a look at the screen. Control is returned to the debugger
automatically after 20 seconds or by typing the ABORT key earlier; it does not return until
the ABORT key is let up.

E.4.5 Low-level facilities

ATtach Symbols [globalrrame, rl1ename]

attaches the globalrrame to rllename. ATtach Symbols is useful for allowing you to
bring in additional symbols for debugging purposes when you do not have the correct
object file. The default extension for rl1ename is • bed. Neither interfaces nor. symbols
files can be attached.

Warning: This command overrides version checking of symbol tables and should be used
with caution; it may cause the debugger to display incorrect values.

Display Eval-stack

displays the contents of the Mesa evaluation stack (in octa!), which is useful for low-level
debugging or for displaying the (un-named) return values of a procedure that has been
broken at its exit point. This command is most useful at octal breakpoints because the eval
stack is empty between most source level statements.

Octal Clear break [globalrrame, bytepc]

is the converse of Octal Set break.

Octal Read [address, n]

displays the n (decimal) locations starting at address. An address in the flrst 64K is
interpreted as an absolute virtual address if it has a leading zero; it is treated as MDS
relative otherwise.

Octal Set break [globalrrame, bytepc]

sets a breakpoint at the byte offset bytepc in the code segment of the frame
globalrrame.

Octal Write [address, rbs]

stores rbs (octal) into the location address.

-- [comment]

starts a comment which ends with a RETURN.

XDE User's Guide E

E.5 The Debugger interpreter

The Mesa interpreter handles a subset of the Mesa language; it is useful for common
operations such as assignments, dereferencing, procedure calls, indexing, field access of
records, addressing, displaying variables and TYPES, and simple type conversion.

Only a specific subset of the Mesa language is acceptable to the interpreter (see the end of
this chapter for grammar details). Several specialized notations (abbreviations) have been
introduced in the interpreter grammar; these are valid only for debugging purposes and
are not part of the Mesa language. The interpreter operates much like the Compiler in
that strict type checking is performed on assignments and procedure calls.

E.5.1 Statement syntax

Typing SPACE to the command processor enables interpreter mode; the limited command
processors of Display Stack and Display Process also permit interpreting.
Multiple statements are separated by semicolons. If the statement is a simple expression
(not an assignment), the result is displayed after evaluation.

E.5.2 Loopholes

A more concise LOOPHOLE notation has been introduced to make it easy to display arbitrary
data in any format. The character % may be used instead of LOOPHOLE [exp, type] I with
the expression on the left of the %, and the type on the right. However, % is not a valid
LeftSide; all type expressions involving % must be enclosed in parentheses.

The following expressions are equivalent to the interpreter:

foo % (short red Foo) and LOOPHOLE [foo, short red Foo]

(p % (LONG POINTER TO Object}) t and LOOPHOLE [p, LONG POINTER TO Object] t

The first pair of expressions loopholes the type of the variable faa to be a short red Faa
and displays its value. The second pair loopholes p to be a LONG POINTER TO Object and
dereferences it. foo % is a shorthand notation for foo % UNSPECIFIED.

A number may be loopholed into PROCEDURE, SIGNAL, or an ERROR. If it is valid, the debugger
will display the procedure (or signal) name, module and global frame.

E.5.3 Subscripting

There are two types of interval notation acceptable to the interpreter; the closed, open, and
half-open interval notation accepted by the Compiler and a shorthand version that uses !.

The notation [a • .' b] means start at index a and end at index b. The notation [a
b] means start at index a and end at index (a+b-l).

The following expressions all display the contents of MDS-relative memory locations
11048 through 11078:

MEMORY[l104 •• 1107]
MEMORY[1104 •• 1108)

E-23

E

E-24

Sword Debugger

MEMORY(1103 •. 1107}
MEMORY(1103 •. 1108)
MEMORY [1104 4]

Note that the interval notation is only valid for display purposes and therefore is not
allowed as a LeftSide or inside other expressions.

E.5.4 Explicit qualification vs qualification in the current context

The $ notation has been introduced to distinguish between qualification in the current
context and explicit qualification. The character $ indicates that the name on the left is a
module name or frame in which to look up the identifier or TYPE on the right. If a module
cannot be found, it uses the name as a file (usually a definitions file).

For example, FSP$TheHeap means look in the module FSP to find the value of the variable
TheHeap. In dealing with variant records, be sure to specify the variant part of the record
before the record name itself (e.g., roo % <_short red FooDers$Foo), not roo %

(FooDers$short red Foo».

E.5.5 Type expressions

The notation @type may be used as shorthand to construct a POINTER TO type. This notation
is used for constructing types in LOOPHOLES (ie., @roo will give you the type POINTER TO
roo). There is no special shorthand to construct LONG POINTER TO type; however, LONG
@type is legal.

E.5.6 Radix con version

The notation expression7 prints the value of the expression in several formats, including
octal, decimal, and hex. Output radix may be controlled through the Opt ions window.

E.5.7 Arithmetic expressions

Target typing is applied to some arithmetic expressions. In complex expressions, atoms
that change the target type should occur first. For example:

(POINTER + offset) t -- correct
(offset + POINTER) t -- error message

E.5.8 Procedure calls

It is often useful to call procedures; this is generally done in the interpreter with the same
syntax as in Mesa. The interpreter is able to invoke any procedure that is imported into
the current module context; the $ notation may be used to call procedures that are not
imported.

The interpreter can only call procedures in modules for which it has complete symbols;
this can be somewhat confusing since the interpreter "knows" a little about the procedures
imported into a module it has symbols for. To determine whether the interpreter has
symbols for a procedure and where it is implemented (a more useful feature), simply type

XDE User's Guide E

the procedure name to the interpreter. For example, typing either
Process. SetPrior i ty or SetPr ior i ty to the interpreter (while inside a module that
imports it) will cause the debugger to display something like:

SetPriority = PROCEDURE [5461B] (in module Processes, G:1l644B)

when symbols for Processes are not available. Reinterpreting SetPriority after retrieving
the object file for Processes gives the following result:

SetPriority = PROCEDURESetPriority (in module Processes, G:11644B)

The notation Process. SetPriori ty means the same to the interpreter as to the Mesa
compiler; SetPriori ty is a procedure imported through the Process interface.

Since SetPr ior i ty is imported in this example, you could, for example, call it
(nicknamed interpret call for historical reasons) by typing Se tpriori ty [1]. To call
Process.Abort, which is not imported, the notation Processes$Abort [processId] or
nnnnnB$Abort[processId] (where nnnnnB is the global frame of Processes) works.
If you are lacking a variable of type PROCESS, Processes$Abort[20B%] works; it
loopholes the process 10 number 20B into an UNSPECIFIED. (The trailing % notation is a
very easy method for constructing pointers; e.g., 123456B% is easier to type in a
procedure call than LOOPHOLE [12345 6B, POINTER].)

E.5.9 Sample expressions

Here are some sample expressions that combine several of the rules into useful
combinations:

If you were interested in seeing which procedure is associated with the third keyword of
the menu belonging to a particular window called myWindow, you would type:

> myWindow.menu.array[3] .proc

which might produce the following output:

CreateWindow (PROCEDURE in WEWindows, G: 120134B).

The basic arithmetic operations are provided by the interpreter (with the same precedence
rules as followed by the Mesa compiler).

> 3+4 MOD 2

would give the answer 3. A typical sequence of expressions one might use to initialize a
record containing a pointer to an array of Foos and display some of them would be:

> rec.array +- FSP$AllocateHeapNode[n*SIZE[FooOefs$Foo]]i
> InitArray[rec.arraY]i rec.array[first •• last]

The following command would display ree in octal:

>Octal Read: @rec, n: SIZE [Rec]

E-25

E Sword Debugger

To find out what type a HeapImpl. Handle pointed to:

> HeapImpl$Handle
Handle: PRIVATETYPE = LONGPOINTERTO Data

E.6 Signal and error messages

E-26

The following messages are generated by the debugger.

E.G.1 Entering the Debugger

The following messages from the debugger tell why the debugger was entered. If the
situation permits, you may proceed execution of the program with a Proceed command.
Proceeding from an ERROR causes a ResumeError. Programs often allow themselves to be
aborted by the debugger's Qu it command; it raises the ERROR ABORTED in the client process.
Ifno client catches this error, the debugger will be called again.

*** Interrupt ***

An interrupt occurred, meaning SHIFT·STOP (aka CALLDEBUG) was typed.

*** uncaught SIGNAL SOS (in MayDay) ***

The program has raised a SIGNAL or ERROR which no one dynamically nested above the
SIGNAL invocation was prepared to catch. At this point you might display the stack to
see who raised the uncaught SIGNAL.

*** Address Fault at xxx (in MayDay) ***

The program has tried to access an unmapped address.

Eval stack not empty I

This warning is printed if the debugger is entered with values still on the evaluation
stack; this indicates that the current value of some variables may not be in main
memory, where the interpreter normally looks, and so incorrect values may be given.
Exceptions to this are entry and exit breaks; the debugger has enough information to
decode the argument records that are on the stack in this case.

*** Invalid Load State ***

The debugger has been entered without the client's load state available, probably
because a client program smashed the load state. The load state is used by the
debugger to translate numbers, such as global frames, into English for the user;
without the load state only octal debugging features are available.

E.G.2 Symbol lookup

xxx cannot be acquired with read access!

The file named xxx exists, but cannot be read.

XDE User's Guide E

xxx not found!

The variable or file named xxx cannot be found.

!File: xxx

The file named xxx cannot be found.

nnnnnB not started!

The global frame nnnnnB has not yet been started. Any variables in the frame are
uninitialized.

xxx not bound!

The imported variable xxx is not exported by anyone.

xxx has incorrect version!

The symbol file has an incorrect version stamp.

!Tree for xxx not in symbol table

A multiword constant in your code wasn't copied into the symbol table. Look in the
source file to fmd the value.

Use Interface. importedVariable, not Interface$importedVariable

The debugger cannot fmd imported variables from an interface file (the "$" notation).
The "." notation will tell it to use the interface record (if found) available in the
current context.

E.6.3 Unrecognized structures

!Can't find links from frame: nnnnnB
!Invalid global frame
xxx not a frame!
xxx has a NULLreturnlink!
xxx has a clobbered accesslink!
xxx is a clobbered frame!
xxx is an invalid PROCESS!
xxx is an invalid global frame!
xxx is an invalid image file!
xxx is not a valid frame!

The structure in question appears to be clobbered (invalid in some way).

E.6.4 Command execution errors

Can't use <module> of <time> instead of <time>

E-27

E

E-28

Sword Debugger
•

This message is printed if the creation date in the source, object, or symbols file on
your disk is different than the corresponding date recorded by the Compiler or Binder.
The requested version of the file should be retrieved.

!Number

An invalid number has been typed.

xxx is a definitions file!

You have tried to set a break in a definitions file.

xxx not a REAL!

xxx is not a valid representation of a real number.

!Invalid Address [nnnnB]

During the execution of a command, the debugger attempted to read or write location
nnnnB, which was not mapped. YO pages and pages belonging to the germ appear unmapped to the

debugger.

!Write protected [nnnnB]

During the execution of a command, the debugger attempted to write location nnnnB,
which was write-protected.

E.6.5 Breakpoints

Multiple instances; Use Display Stack, Source to load window.

You have tried to set a break when multiple instances of the module exist; explicitly
setting the context for the source window will permit the break to be set.

too many conditional breaks!

You have tried to set more conditional breaks than the system allows.

invalid r~lation!

You have specified an illegal relation expression for a condition.

symbol table missingl

The debugger is trying to manipulate a breakpoint for which there is no symbol table
and it is not prepared to handle the situation.

not allowed in INLINEI

You have tried to set a breakpoint in an INLINE procedure.

XDE User's Guide E

already set!

You have already set a breakpoint there.

Patch table full

The maximum number of breakpoints (50) allowed by Pilot has been reached.

E.6.6 Displaying the stack

No previous frame!

The end of the call stack has been reached.

No symbol table for nnnnnnB

The symbol table file corresponding to the frame nnnnnnB is missing; any attempt to
symbolically reference variables in this module will fail.

Cross jumped!

The bcd was compiled with the cross-ju~ping switch turned on. The source line
displayed may not be what you expect.

Pc not in any procedure!

The debugger was unable to find a procedure or mainline code that matched the
current pc. This is probably due to a clobber.

E.6.7 Interpreter

x is an invalid character

The character x typed to the interpreter is illegal.

Syntax error at [n]

There was a syntax error at location n in the expression given the interpreter.

Parse error at [n]

There was an error at location n parsing the expression given the interpreter.

can't call an INLlNE!

You tried to call a INLINE PROCEDURE.

can't lengthen!

The interpreter needed to lengthen a part of an expression while trying to evaluate it.

can't make a constructor I

E-29

E

E-30

Sword Debugger

Use field assignments. You gave the interpreter an expression using [] that looks like
a constructor.

double word array index!

The index for an array must be a single word.

bas an invalid address I

The expression to the right of the @ is not word-aligned.

is an invalid number I

This is probably a type mismatch.

is an invalid pointerl

This is probably a type mismatch.

invalid subrange!

This is probably a type mismatch.

pointer fault!

You tried to dereference NIL.

xxx is a constant array. Look at source code for value.

An operation on a constant array is too complicated to perform. The operation can be
done by hand, however, by looking at the constant value in the source.

xxx is not an arrayl

You have tried to use xxx as an array.

is not a valid control linkl

The procedure or signal in your expression has an illegal value.

is not a relative pointer!

In the expression base [rel], rel wasn't a RELATIVE POINTER.

is not a type I

The identifier used in a type expression was not a type.

is not a unique field selector I

The field selector occurs more than once in the computed or overlaid variant.

is not a valid field selector!

XDE User's Guide E

The identifier given for a field selector is not in the record. You may lack the symbols
for the record declaration on your disk.

overflow!

Overflow occurred while doing arithmetic. Perhaps you need a LONG in the expression.

size mismatch!

You tried to assign or loophole two things of different sizes. Loopholing pointers is a
useful trick for records of different sizes.

has incorrect type!

Type mismatch.

unknown variantl

The interpreter found a garbage tag field.

is the wrong base!

In the expression base [reI I, the type of base is not what reI expects.

has the wrong number of arguments!

The arguments to a procedure call are wrong.

used incorrectly with [I!

You probably tried to use [] as a type constructor.

illegal indexing operation

You tried to index something that wasn't an array or sequence.

xxx$ is ambiguous; use frame $1

There is either more than one instance of xxx instantiated, or the code for xxx is
packed with another. module.

E-31

E Sword Debugger

E.7 User.em

The User.cm entries are read when Sword is loaded.

[Debugger]
uncaugh t : TRUE I FALSE -- handle uncaught signals locally, default true
faul t: TRUE I FALSE -- handle faults locally, default true
break: TRUE I FALSE -- handle breakpoints locally, default true
calldebug: TRUE I FALSE -- handle calldebugs locally, default true
processes: TRUE I FALSE -- create a process subwindow in the Interpreter tool
co n fig s: TRUE I FALSE -- create a config subwindow in the Interpreter tool
menu: TRUE I FALSE -- create a menu in the root window for creating Interpreters
cRad i x: oc tal I dec imal I hex -- radix for cardinals
cSigned: TRUE I FALSE --printcardinalsassigned
iRadix: octal I decimal I hex --radixforintegers
is igned: TRUE I FALSE -- print integers as signed
pRadix: octal I decimal I hex --radix for pointers
processRadix: octal I decimal I hex --radixforprocesses
relRadix: octal I decimal I hex --radixforrelativepointers
unspec: octal I decimal I hex -- how to print UNSPECIFIED
elements: number -- number of array elements to display
char s: number -- number of characters of a string to display
volumel: outloadFilel -- booting the volume will use the outloadFile
volume2: outloadFile2 -- the default outloadFile is "Debuggee.outload"

[Sword]
cardinalRadix: octal I decimal I hex --radixforcardinalsinSwordtool
processRadix: octal I decimal I hex --radixforprocessesinSwordtool

E.8 Mesa Interpreter grammar

StatementList

Statement

LeftSide

Qualifier

Interval

Bounds

E-32

:: • Statement I StatementList; I StatementList; Statement

:: • LeftSide Interval I LeftSide +- Expression I
MEMORY Interval I Expression I Expression 7

:: • identifier I (Expression) I LeftSide Qualifier I
identifier $ identifier I number $ identifier I
MEMORY [Expression] I LOOPHOLE [Expression] I
LOOPHOLE [Expression, TypeExpression]

:: • .identifier I [ExpressionList]

:: • [Bounds] I [Bounds) I (Bounds] I (Bounds) I
[Expression! Expression]

:: • Expression .• Expression

XDE User's Guide

Expression

Sum

AddOp

Product

MultOp

Factor

Primary

Literal

BuiltinCall

PrefixOp

ExpressionList

TypeOp

TypeExpression

Typeldentifier

TypeConstructor

E.9 Commands summary

AScii

::. Sum

:: • Product I Sum AddOp Product

::. + I·

:: = Factor I Product MultOp Factor

::. * 111 MOD

:: = Primary I Primary

:: • Literal I LeftSide I @ LeftSide I BuiltinCali1
Primary % I Primary % (TypeExpression)

:: •. number I character I string

:: • NIL I NIL [TypeExpression] I PrefixOp [ExpressionList] I
TypeOp [TypeExpression]

:: = ABS I BASE I LENGTH I LONG I MAX I MIN

:: • empty I Expression I ExpressionList, Expression

::. SIZE

:: • identifier I Typeldentifier I TypeConstructor

:: • BOOLEAN I INTEGER I CARDINAL I WORD I REAL I CHARACTER I
STRING I UNSPECIFIED I PROC I PROCEDURE I SIGNAL I ERROR I
identifier identifier I identifier Typeldentifier I
identifier. identifier I identifier $ identifier

:: • LONG TypeExpression I @ TypeExpression I
POINTER TO TypeExpression

Read [address. count]
Qisplay [address, count]

ATtach
~ondition [number,condition]
Keystrokes [number. command]
iYmbols [globalframe. filename]

E

E-33

E

E-34

Sword Debugger

!reak
All

~n tr ies [module/frame)
~i ts [module/frame]

Entry [procedure]
!i t [procedure]

~Lear

All
!reaks
Entries [module/frame]
Iraces
!i ts [module/frame]

!reak [number]
~ondition [number]
Entry

!reak [procedure]
Irace [procedure]

~eystrokes [number]
!it
!reak [procedure]
Irace [procedure]

CUrrent context

Qisplay
!reak [number]
~onfi9uration

Eval-stack
frame [address] (gj,l.n.p.g,r,s,v)
§lobalFrameTable
Module [module]
frocess [process] (l,n,p,q,r,s>
Queue [identifier] (l,n,p.q,r,s>

Qisplay
ReadyList (l,n,p,q,r,s)
~tack (gj,l,n,p,q,r,s,v)

lind variable [identifier]

~ill session [confirm]

LIst
!reaks [confirm]
~onfi9urations

frocesses

Qctal
~lear break [globalframe, bytepc]
Read [address, number]
~etbreak [globalframe,bytepc]
VVrite [address, value]

froceed [confirm]

Qui t [confirm]

XDE User's Guide

Be~etcontext [confirm]

SEt
~onfiguration [config]
Module context [module/frame]
Octal context [address]
erocesscontext [process]
Boot configuration (config]

STart [address] [confirm]

Irace
All
Entries [module/frame]
!its [module/frame]
Entry [procedure]
~tack

! it [procedure]

E

E-35

E Sword Debugger

E-36

DF Software Reference Manual

Outline

o. Introduction
1 Files
2. An overview of DF files and their use
3. User.cm
4. BringOver
5. Smodel
6. VerifyDF
7. DFDelete
8. DFSubstitute
9. DFDisk
10. DFTool
11. IncludeChecker and DF files
12. Dealing with Problems

Introduction
This document is based on Eric Schmidt's DF Files Reference Manual. It describes how to
use the Klamath versions of the DF software. A companion document, DF Release Tools
Reference Manual, describes the programs that are used by people who are responsible for
doing software releases.

Why should one use the DF software?

The DF software helps the user keep track of files that you work on. These files may be
program source and object files, or simple text files. Since it has the ability to describe the
version and the location of files, the user needs to worry less about knowing were the files
are located and knowing which versions of the files to use. A single DF file may describe
all the required files in your program, thus you could simply use the name of the DF file to
bring over all the files needed to work on a program from a remote file server to your local
disk. After you modify and recompile some files, the DF program will store back only
the files that were changed. This frees the user from remembering which files were
changed. DF files may explicitly import and export files, in a manner similar to Mesa

2

DF Software Reference Manual

programs or C/Mesa configurations. This allows careful sharing of programs between
implementors. Having a software system described by a DF file allows one to use tools for
managing files, verifying program consistency, and allowing programs be a part of a major
software release. The DF software frees the user from bothering with the time consuming,
yet important details of tracking program versions and locations. This manual introduces
the user to the software and will also serve as a reference manual.

What are the DF programs?

The DF (Describe Files) programs comprise a general package for file management with
explicit version control. These programs manipulate DF files, which are essentially lists of
file names, fully qualified with remote location and create date. Each DF file typically
corresponds to one software component.

InciudeChecker
helps to rebuild

the packages
Smodel
the files
that you
have
changed

Personal Remote
~

Work file
Station server

--......

BringOver
only the
files that Verify the OF

OF tool you need. file's
handles other components.

tasks

What DF ro rams do. p 9

Of the DF programs, these four are the most heavily used:

BringOver retrieves the files listed in a DF file from their remote file servers,
possibly overwriting different versions already on the local disk. It

1 Files

DF Software Reference Manual

SModel

VerifyDF

DFTool

insures that all files for a component, and the correct versions of those
files, are on the local disk.

stores changed versions of files back on remote file servers and
produces a new DF file containing references to the newest versions.
Normally, the new DF file is also stored remotely for use by clients of
the component.

checks that a DF file is complete and consistent. That is, that all files
needed to build the top-level object files of a component are listed in
the DF file and are consistent in the Mesa compiler and binder sense.

provides a window interface to the other DF programs.

The Klamath IncludeChecker can also check DF files and generate command files to
rebuild their packages. These capabilities, which are not described in the Mesa User's
Guide, are discussed in section 11.

The DF files system was initially used by people running Mesa on shared Dorados, (a high
performance personal computer) who wanted to guarantee they had the correct version of
files they needed and as an easy way to save changed versions of file without unnecessary
copying. It is now being used to partially automate the Klamath and Cedar release
processes within Xerox.

The DF programs are on the Klamath archive directory:
< APilot > 11.0> DFFiles > Public>

and

The IncludeChecker is on the Klamath system test directory:
< AlphaMesa > 11.0>.

If you are not in Xerox SDD, please refer to the release directories specific to your
organization. If you using an earlier Mesa release such as Sierra (Mesa 10.0), please refer
to an earlier version ofthis document.

2 An overview ofDF files and their use

The DF file for a software component usually has three parts:

• A list of files exported by the component. These are interface or implementation files
that are needed by clients; for example, Spaee. bed and Compiler. bed. DF file
Exports (and Imports, described below) are analogous to Mesa module Exports (and
Imports). A DF file normally exports itself; this self-reference causes SModel to store
the DF file on a remote server whenever it changes.

• The component's implementation: the list of files that comprise the component but are
ofinterest only to implementors (e.g., implementation modules).

3

4

DF Software Reference Manual

• The imported files needed to build the component (e.g., Environment. bed and
String. bed for many programs). These are usually public interfaces exported by
another component.

2.1 An example DF file

Probably the easiest way to understand DF files is to consider an example. The following
is a DF file for the Compare utility.

--Compare.df Last edited by Joe on 8-Feb-83 13:36:58

Exports [Igor] < Emerson> DF > ReleaseAs [Idun] <APilot>DF >

Compare.df 22-Feb-8313:59:40PST

Exports [Igor] <Emerson >Compare>Publie> ReleaseAs [ldun]<APilot>Compare >Public>

+ Compare.bed! 18 22-Feb-8313:53:16PST

Compare.symbols!7 22-Feb-8313:53:18PST

Directory [lgor]<Emerson >Compare > Private > ReleaseAs [ldun]<APilot>Compare>Private>

Compare.em!2 16-Nov-8210: 16:29PST

Compare.eonfig!4 16-Nov-8210:21 :06PST

Com pareControLbed! 13 22-Feb-83 13: 50:09 PST

Com pa reControLm esa!9

CompareDefs.bed!6

Com pareDefs.mesa!4

ComparelmpLbed!13

ComparelmpLmesa! 10

CompareWindow.bed!3

CompareWindow.mesa!2

22-Feb-83 13 :49: 53 PST

16-Nov-8311 :48:21 PST

16-Nov-8310:16:47PST

18-Feb-8314:55:08PST

18-Feb-8314:55:00PST

23-Dee-83 13: 52: 41 PST

23-Dee-8313:51 :53 PST

Imports [lgor]<Emerson>DF>ComSoftPublic.df Of #

Using [Aseii.bed, Format.bed, Heap.bed, String.bed, Time.bed]

Imports [lgor]<Emerson>DF>MesaPublic.df Of #

Using [Environment.bed, Inline.bed]

Imports [Igor] <Emerson >DF > FileSystemPublic.df Of #

Using [MSegment.bed, MStream.bed]

Imports [Igor] < Emerson >DF > PilotPublie.df Of #

Using [Proeess.bed, Runtime.bed, Stream.bed, System.bed, UserTerminaLbedl

Imports [lgor]<Emerson>DF>TajoPublic.df Of #

Using [Exee.bed, FileName.bed, FileTransfer.bed, FormSW.bed, Put.bed,

TooLbed, ToolWindow.bed, Userlnput.bed, Version.bed, Window.bed]

The files exported by the Compare package (including the DF file itselD are marked with
the keyword Exports, other files that are part of Compare are marked with Directory, and
imported files have the keyword Imports. The ReleaseAs clauses are used to tell a program

DF Software Reference Manual

Importers of
Compare.df:

A.df

B.df

I edf

AD

r'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'--'

I Compare.df

Exports

Compare.bed and others.

Directory

Compare.em

Compare.config

and others

Imports

various components exported by other

DF's that
Compare.df
imports files
from:

I ComSoftPublic.df

I MesaPublic.df

DF files. '--___________ --' ~p---I Other OF files.

L._._._._._._._._._._._._._._._._._._._.~

called the ReleaseTool where to store the files during a release. Only the files that are part
of the component (i.e. not Imports) have ReleaseAs clauses.

Imported files, such as Exec. bed and MFile. bcd, are retrieved when the DF files is
brought over. However, since the DF file does not "own" them, they will not be stored by
SModel. The Imports clauses in this DF file have explicit Using lists. If no Using list is
given, all exported files in the Import DF file are assumed. Having a Using list is
generally a good idea, since it documents which files are needed and speeds up
Bring-Over. Note that imported files are gotten indirectly, by pointing to another DF file
(the one for the component that exports those files). An importer doesn't need to know

5

6

DF Software Reference Manual

anything about where the imported files are stored, or even their versions, since all that
information is in the imported DF file.

A file is specified by a full path name (remote host and directory), an optional file server
version number, and an optional creation date. The create date is used to uniquely
determine the correct version of the file, while the version number is used as a hint to
reduce the time needed to locate that correct version. If the create date is omitted, the
highest remote version is assumed. In most cases, however, the create date has been filled
in by the DF program.

An Extremely Important note: If you are storing your files on NS servers, please be
sure to use the fully qualified names. For example, use:
[Tundra:OSBU North:Xeroxl instead of
[Tundra:].
This is particularly important for files that are imported by other DF's, since the users
may be dispersed across NS domains.

There are two special "create dates": .. >" and" #". If the newer remote version of the file
should always be brought over, ">" is used. The "#" specifies any remote version of the
file that has a different create date than the version on the local disk. These two "create
dates" support the loose binding of imports. If one imports FileSystemPublic.df of ">",
Compare.df will always retrieve the MSegment.bcd and MStream.bcd described by the
FileSystemPublic.df most recently Smodel'ed by its implementor. In general, files that are
part of a component (Le. Exports and Directory files) have explicit create dates.

We recommend the use ofthe "#" type of create dates for imports because it allows one to
bringover old DF's for maintainance updates. If the" >" create date are used, you may
accidentally use newer versions of imports which happen to be on your local disk.
Furthermore, the "#" create will also bringover the correct version of files under normal
development. One typically imports files from a release directory which has an
unambigious reference to a file, thus you would want the released version of the imported
files, regardless of whether or not it is newer than the one on the local disk. The user
should still consider the development practices in use and use the "right" mode. For
example, you may not have an official release directory to import from, or perhaps you
have some reason to avoid the use of older files.

The + in front of Compare.bcd indicates to the program VerifyDF that it is a top-level
object file. A top level file may be of two types. First, it may be a .bcd or a .boot file. If so,
VerifyDF will insure that all files needed to build Compare.bcd are listed in the DF file
and are of the correct version. Otherwise it may be a file that is not a part of a component,
such as documentation files. This prevents the program from doing unnecessary analysis.

Fine point:

some DF files also have files marked with "*". The * is ignored by all DF programs except for the

ReleaseTool; it indicates files that must be copied onto [somehostl < archive Directory > or

[anotherhostl < systemTestDirectory > after a release.

Blank lines in a DF file are ignored, and lines are treated as comments if they begin with
"--" or "II".

DF Software Reference Manual

2.2 A typical development scenario using DF files

DF files have little inherent structure or semantics. There is no requirement, for example,
that the files they describe be consistent in the Mesa compiler sense (this allows DF files
to be used to back up arbitrary files on personal workstations). However, DF files can
provide considerable assistance for development if they are used in a stylized manner.

To illustrate the use of DF programs in program development, assume that you had to fix a
problem with Compare. The steps you would take normally include the following:

1. BringOver Compare.df. This insures that all files needed to build Compare, including
imported files, are on the local disk in the correct version. BringOver will check to
insure that you are using the most recent version ofCompare.df.

2. Modify and test Compare. Since a DF file isjust a text file with a fairly simple format,
it can be edited whenever it is necessary, for example, to add new a module. Also, to
assist in rebuilding its component, Compare.df, like many DF files, points to a
command file (Compare.cm) that can be used to build the component from scratch; text
can be selected from this command file and stuffed into the executive. It is also
possible to run the IndudeChecker on a DF file to generate a command file for its
reconstruction.

3. SModel Compare.df. This stores back changed files and updates Compare.df to reflect
the new versions. In general, you do not have to think about what files have changed,
you can just SModel the component.

4. VerifyDF Compare.df. This verifies that Compare is complete and consistent. At this
point, you can let users know about the new version of Compare.

2.3 Releases and the use of file server directories

In using the DF software, three directories are of special importance. These are the
working,integration, and archive directories.

Each group of software developers has a separate working directory that holds the latest
versions of their software. For example, this directory is [Rasp:OSBU
N orth:Xerox] < Emerson> for the Mesa group. The Directory and Exports clauses in the
group's DF files point to the working directory, and that directory is the source and target
of most BringOver and SModel runs. Experience has shown that it is useful to set aside a
subdirectory of the working directory, e.g. [Rasp:OSBU North:Xeroxl<Emerson>DF>,
as the location for the group's "working" DF files. This simplifies finding DF files and
allows BringOver (when the Defaul tDFLoe: entry of the User. em is set) to insure that
only the most recent versions of DF files are used.

The integration directory is shared by development groups. A component is stored onto
the integration directory when it has been tested and verified (using VerifyDF), and its
developers believe that it is ready for use by other groups. Components are stored onto the
integration directory by using SModel's prerelease mode. The integration directory is used
to communicate software between groups. A development group should only obtain
(Import) software from another group that has been stored onto the integration directory;

7

8

DF Software Reference Manual

optional

BringOver
component

SModel
component

VerifyDF
component

Typical evelopment cycle.

it should never use software or DF files from the private working directory of another
group. The integration directory for the Mesa group and all of System Software, for
example, is [ldun] < Int >. The integration directory also serves as a staging area for a
release.

A release is a set of compatible software components that have been saved in a safe
location. The ReleaseTool verifies that a set ofDFfiles is globally consistent and complete,
copies the files to the release directory, and generates new DF files that describe the
release. The new DF files are fully bound: all Imports (and Includes, which are discussed
in section 2.7) are specified with explicit create dates (there are no > or #'s). Only the

DF Software Reference Manual

ReleaseTool stores files onto the release directory. The release directory is named by
ReleaseAs clauses in each DF file. For example, the release directory for Klamath is
[ldun] < APilot >. Other directories may follow as required by the user organization as
shown in the diagram below.

Fine points:

It is possible to override the release location with the ReleaseTool.

The new DF files generated by the ReleaseTool also have CameFrom clauses in place of the original

ReleaseAs clauses. A Came From clause for a file documents the location on the prerelease directory from

which the file was copied. For example, the ReleaseTool will change

Exports [ldun]<lnt>Compiler>Publie> ReleaseAs [ldun]<APilot>Compiler>Publie>

Compiler.bed!27 29-Feb-8311: 16:37 PST

to be

Exports [ldun]<APilot>Compiler>Publie> CameFrom [ldun]<lnt>Compiler>Publie>

Compiler.bed!1 29-Feb-8311 :16:37PST

2.4 Creating a new DF file from scratch

The easiest way to generate a DF file for a component is to do the following:

1. Get all of the component's files onto the local disk. Make sure that the local versions
are the same as those on the remote file server (to keep from confusing yourself or the
DF software).

2. Compose a skeleton DF file for the package that lists its files under the appropriate
Directory and Exports lines. It is not necessary to fill in create dates since this will be
done by SModel in step 3. Make sure that the remote locations and ReleaseAs
locations are correct. Add any Imports that you can think of.

3. Run SModel on the skeleton DF file with the In (don't store files remotely) switch. This
will rewrite the DF file with the create dates filled in (and will not store any files).

4. Use VerifyDF to check the DF file. It will report any missing files, or files that have
the wrong versions. Correct the DF file as necessary and repeat this step. The Find
utility is often useful for locating the DF file that describes a needed import. The Find
utility may be used to search over a number of DF files for the one that contains the
files that you need. For example:
> find System.bcd [Host] < Directory> DF > *.df
will search over the DF files in the specified directory for the one that contains
System.bcd. Ignore the DF files that Imports System. bcd, and look for the one that
Exports it. The Exporting DF file would contain the create date, while the Importers
would include System. bed in the Using list.

fine point: If you are importing a file that is a part of a software release managed by DF software, you may

be able to use a utility called DFetch. This program is still not part ofthe general release. This program will

query a database using a file name as a key and will return the name of the DF file that contains it.

9

10

DF Software Reference Manual

via

Smodel I···· ···

Smodel in
prerelease

mode

Local disk

Working directory

Integration directory

ReleaseTool I
Archive directory

Brownie I .. .
System Test directory

Brownie I .. .
... ,.

Release directory

via

· .. ··· ····1 BringOver

irectories.

BringOver in
prerelease

mode

5. When VerifyDF no longer complains, run SModel to store the DF file itself and the
files it describes remotely. Since you are running Smodel for the first time, use the Iv
switch to make the program verify that your files exist in the destination and store it
there as necessary.

2.5 DF files and libjects

If more than one person is responsible for a software component, it is important to prevent
simultaneous modification of both the individual files of the component and its DF file.
This is because the DF file points to specific versions of the component's files. To deal with

DF Software Reference Manual

this problem, each DF file should have a program librarian libject. There are libjects for
each Klamath DF file maintained by the Mesa group.

When a component is to be worked on, its DF file is first checked out, typically using the
"Access" program. After the component has been changed and tested, it is SModel'ed,
which will check in the libject for each changed file, including the DF file itself. If another
person attempts to work on the package at the same time, he will be unable to since the
libject is already checked out. Typically, one checks out a libject for only the DF file.

If this methodology appears to be too restrictive for some large component, there are two
possibilities: 1) break up the component into smaller pieces, each with its own DF file and
libject, or 2) adopt a more complicated checkout and checkin scheme. The Mesa group's
experience has shown that it is much simpler and less error prone to break up the DF file.
If the component shouldn't be broken up, and it is necessary for more than one person to be
modifying (different portions of) it at the same time, the following methodology can be
followed by each maintainer:

1. BringOver the component's DF file. Do not check out the DF file at this time. Do check
out libjects for component files that you will be changing.

2. After modifying and testing the component, but just before SModeling it, check out the
DF file. Successfully checking out the DF file means that you currently have the right
to change the description of the "truth" on the shared remote directory (Le. the DF
file).

3. Now BringOver the DF file and its components again. This will use the most recent
DF file, which might be newer than the one you originally brought over (if other
people were modifying the component simultaneously). BringOver might retrieve
newer versions offiles that others changed. Ifso, rebuild and retest your version of the
component. You do not have to run BringOver again since you "hold the lock" on
storing new versions ofthe component's files.

4. SModel the DF file to store your changed files and the new DF file, and to release your
"lock" on SModeling the DF file.

2.6 Use of IFSs and NS file servers

The DF software is able to retrieve and store files on both NS file servers and the PUP
based IFSs. To use a product file server, simply give its fully qualified clearinghouse
name. For example,

Imports [Rasp:OSBU North:Xeroxl<WComm >DF>RS232CPublic.df Of >

Using [RS232CIO.bcdl

2.7 Included DF files

Although a component is usually described by a single DF file, there are a few particularly
large or complicated components that are more easily described by a set of DF files. An
example is the Pilot kernel, which has so many files that it is convenient to have separate
DF files for each major subconfiguration and for the public-, friends-, and private-level
interfaces. Such a collection of DF files must have a "root" DF file that (directly or
indirectly) includes the others. This is done with the Includes construct, which resembles

11

DF Software Reference Manual

the Imports clause described above. For example, a fragment of the root DF file for the
Pilot kernel, Pilot.df, is:

--Pilot.df Last edited by Jimmy on 3-Jan-83 21 :25: 59

Exports [lgor]<Emerson >DF>

Pilot.df

-- Pilot kernel defs

ReleaseAs [Idun] <APiiot > DF >

3-Jan-83 21 :27:32 PST

Includes [ldun]<P>DF>PilotFriends.df Of > ReleaseAs [ldun]<APilot>DF>

Includes [Idun] < P > DF > PilotPrivate.df Of > ReleaseAs [Idun] <APilot > DF >

Includes [Idun] < P > DF > PilotPublic.df Of > ReleaseAs [Idun] <APilot > DF >

-- Pilot kernel subconfigurations

Includes [ldun]<P>DF>Control.df Of > ReleaseAs [ldun]<APilot>DF>

Includes [ldun]<P>DF>FileMgr.df Of > ReleaseAs [ldun]<APilot>DF>

Includes [ldun]<P>DF>Filer.df Of > ReleaseAs [ldun]<APilot>DF>

Includes [ldun]<P>DF>Swapper.df Of > ReleaseAs [ldun]<APilot>DF>

Includes is treated as macro substitution: the effect is to replace the Includes clause with
the entire contents of the included DF file. Whenever one of the DF programs such as
BringOver is run on the root DF file, it is applied recursively to the included DF files

Note: There is a significant difference between Includes and Imports. The Imports clause
is used when files are needed, but they are "owned" by another DF file. Although imported
files are retrieved by BringOver, the DF programs do not otherwise recur on imported DF
files. SModel, for example, will recursively store included DF files but not imported DF
files.

2.8 ReadOnly files

If your component depends upon some files in a remote directory, but those files are not
"owned" (described by) a DF file, you can't just Import them. However, you can document
your component's dependence on those files, and have BringOver retrieve them when your
DF file is brought over, by listing the files in your DF file and marking their directory
ReadOnly. One needs this when you are importing components from implementors who
are not using DF files. This practice should be discontinued once the implementors use
DF files.

Here is an example,

ReadOnly Directory [Iris] <Smith> BTree>

BTree.bcd

BTree.mesa

BTreelmpl.bcd

BTreelmpl.mesa

12-Jan-8310:17:22PST

9-Jan-83 21 :27:32 PST

17-Jan-8315:56:19PST

10-Jan-8311 :25:49PST

(The keyword Directory after ReadOnly is optional). Readonly files are never stored by
SModel. Since they are not owned by your DF file, they do not have a ReleaseAs clause to
indicate where they are to be stored on a release.

3 User.em

12

DF Software Reference Manual

The DF software User. em section is called [DFToo!]. The following is a list of the
User. em fields used by the DF programs:

WorkingDFLoe:

IntegrationLoe:

CheekLibrarian:

LoealDFDir:

the remote working directory, e.g.
[Rasp:OSBU North:Xeroxl<Emerson>DF> ,
that holds your group's "working" DF files. It is used by
BringOver when you retrieve a component. If the
component's DF file is not local, BringOver will retrieve it
from the Wo r k i ngDFLoe: If the DF file is on the local disk,
BringOver will check that it is at least as new as the version
on the Work ingDFLoe:. By default, the Work ingDFLoe: is
empty, and BringOver does no checking.

your group's prerelease location, e.g. [ldun] < lnt >. By
default, this entry is empty, and BringOver and SModel
prerelease mode cannot be used.

if TRUE, SModel will check, before storing each file, if it has
a libject. Ifit doesn't, SModel simply stores the file. If it does
have a libject, there are three possibilities: 1) If the file
wasn't checked out, SModel won't store it. 2) If it was
checked out, but not by you, SModel won't store it. 3) If it
was checked out by you, SModel checks it back in and stores
the file. Also, if CheekLibrarian: is TRUE, SModel's
prerelease mode will warn you if any of the files that you are
submitting to a release (storing onto the prerelease
directory) have libjects checked out. The default value for
CheekLibrarian: is FALSE.

the directory on your local disk, e.g. < > DF >, to which
BringOver and VerifyDF will retrieve new DF files. Setting
this entry helps to prevent DF files from being scattered all
over your disk. The local DF directory should always be on
your search path, since the DF software always looks files
up (anywhere) on the search path. The default for
LoealDFDir: is empty, and DF files are retrieved to the
directory on the front ofthe search path.

fine point: The OF programs check that the LocalDFDir and LocalDir (see OFTooll are on the search path and a

warning is given if they are not. For example, if they are not given in the search path, the wrong OF file may be

used for a BringOver.

4 BringOver

BringOver runs in the Executive and takes commands from the command line. In the
simplest case, to retrieve a DF file and its components, just type

> BringOver [Host] < Directory> DF > DFfile

13

14

DF Software Reference Manual

BringOver works as follows: It reads the DF file one line at a time. It takes the remote file
name listed in that line, strips off the directory information and looks to see if it is on the
local disk. One of three things can happen:

• If the file is not on the local disk, BringOver will offer to retrieve it.

• If the file is on the local disk, BringOver looks at the version on the local disk. If the
create date listed in the DF file differs from the create date of the local file, BringOver
will try to retrieve the remote version. If this would retrieve an older version of the file
over a newer version, BringOver will first ask for confirmation. This helps to support a
"newer is usually better" file management methodology.

• Ifthe create date is omitted from the DF file, BringOver will always try to retrieve the
file. Again, if this would retrieve an older version of the file over a newer version,
BringOver first asks for confirmation.

If you omit the file server version number (e.g. "!3"), BringOver will enumerate all the
versions of that particular file looking for one with the correct create time. If there are no
versions of the file you list in the DF file on the remote host in the directory you specify,
BringOver will give you a warning message. If there are files with the same name and
none of the create dates available match that listed in the DF file, BringOver will give you
a warning and offer to retrieve the latest version.

After running BringOver you can be sure the files listed in the DF file are on your local
disk, and that their create dates agree with the create dates listed in the DF file, or
BringOver will have printed out error messages.

Normally BringOver will list each file to be retrieved and will ask for confirmation. (You
may reply "y" or CR to confirm, "n" to skip retrieval of this file, "q" to stop BringOver
altogether, and "a" to retrieve this file and subsequent files as if"y" were typed each time.)
The fa switch can be given on BringOver's command line to suppress (most) requests for
confirmation:

> BringOver fa [Host] < Directory> DF > DFfile

If you use the fa switch or reply "a", and an older version of a file would be retrieved over a
newer one, BringOver will always stop and ask for explicit confirmation.

BringOver can read a local DF file as easily as a remote one:

> BringOver Compare.df

You will use a local copy of the DF file when you have done previous BringOver's and
Smodel's. Ifso, you will have a local copy of the DF file that is identical to the remote one.
That is because Smodel will modify the DF file and store it remotely, leaving a copy on
your local disk.

As files are brought over, a property (called the RemoteName property) is added to their
leader page recording of the retrieved file so that the Mesa Development Environment
knows where the file came from. (FTP and the FileTool also set this property.) These
remote locations can be printed out by the DFDisk program (described below in Section 9).

DF Software Reference Manual

If the create date entry is a > rather than a normal date, BringOver will retrieve the file
only if the version on the remote server is newer than the version on the local disk. If the
file is not on the local disk, it will be retrieved. As an example,

BTree.mesa >

will retrieve BTree.mesa from the remote server only if there is a newer version on the
server or no local copies exist.

Similarly, if the create date entry is a #, BringOver will retrieve the file only if the
highest version on the remote server is different than the version on the local disk. If the
file is not on the local disk, it will be retrieved. For example,

BTree.mesa #

An Includes clause, e.g.

Include [host] <path >Component.df Of <date>

will cause BringOver to invoke itself on Component.df at the point it encounters the
Include statement. If the included file itself has an Include statement, BringOver will
again invoke itself on the inner DF file, and so on, in a recursive fashion. Furthermore, the
DF file itselfis retrieved using the usual BringOver rules before the recursive call.

An Imports statement

1m ports [host] < path> Package.df Of < date>

will cause BringOver to 1) retrieve Package.df to the local disk if necessary and 2)
examine all exported files in Package.df and retrieve them if necessary. Of course
Package.dfmay have Include or Imports statements, so this is a recursive algorithm.

Appending a Using clause to the Imports statement, analogous to the Mesa language
construct, gives the user explicit control over the files to be retrieved. The Using list may
be used to obtain files that are under both Exports and Directory headings; That is, files
can be obtained with the Using clause whether they are exported or not. Although use of
the Using clause is not required, it is strongly recommended.

Imports [host) < path >Package.df Of <date>

Using [list of files, separated by commas)

Examples of Imports:

Imports [Igor] < Emerson >DF> TajoFriends.df Of >

Imports [Idun) <APilot> DF>CoPilot.df Of 24-Feb-83 11: 14:26 PDT

Using [CPSwapDefs.Bcd, CPSwap2.Bcd)

The files referred to by an Imports statement may themselves be exported by preceding
the keyword Imports by Exports. This is useful when users of your package need to have
files from some other package in order to, for example, compile their system.

15

16

DF Software Reference Manual

4.1 BringOver modes

There are three special modes in which you can run BringOver.

4.1.1 BringOver only specified files mode

The switch /0 will instruct BringOver to retrieve only the files listed on the command line
after the /0. The DF file to be used is given last. This mode is often used when you are not
working on a package, but you simply need some files that are described by its DF file. For
example,

> BringOver 10 MFile.bcd MStream.bcd MSegment.bcd FileSystemPublic.df

will examine and potentially retrieve only MFile.bed, MStream.bed and
MSegmen t . bed in FileSystemPublic.df.

4.1.2 BringOver "verify files exist" mode

The switch Iv will cause BringOver to run in verify files exist mode, where it will check
that the files listed in the DF file actually exist on the remote servers or the local disk. No
files are retrieved in this mode. BringOver will inform the user if newer versions were
found, and if so will write a new DF file listing the newer versions. Also, if any files were
listed in the DF file without their file server version numbers (e.g. !5), BringOver will
write a new DF file with those version numbers filled in. This mode is often used to "flesh
out" a skeleton DF file with the correct create dates and file server version numbers. If the
file is listed correctly and a local copy exists, BringOver will add the RemoteN arne
property to its leader page. Note for large D F files the verify option takes a few minutes.

4.1.3 BringOver prerelease mode

BringOver's prerelease mode is useful for fixing an old version of a package that was
submitted to a release. This mode is entered with the Iz switch. It brings over the DF file
for the package that is on the remote integration directory (named by the
IntegrationLoe: entry in User.cm). Since this might overwrite newer versions on the
local disk, BringOver asks for confirmation before doing any retrievals.

4.2 BringOver's command line

In general, the command line for BringOver has the form

> BringOver [I<global switches> 1 DFfile1[/< local switches> L DFfilen[l<local switches> 1

The optional global switches control the retrieval of the following DF files. You can also
set global switches by giving an empty DF file name.

BringOver's "only file" mode (10) has a slightly different format: the files to be retrieved
are listed after the global switch /0, and the DF file to be used is named last.

BringOver also recognizes commands, localDir/c, locaIDFDir/c, WorkingDFloc/c, and
IntegrationLoc/c that specify subdirectories for file retrieval and storage.

DF Software Reference Manual

The command loealDir/e gives the directory for looking up and retrieving files. For
example, the command line

>BringOver localDir/c < >MyPackage> MyPackage.df

will retrieve MyPackage's files to the directory < > MyPackage > on the system volume.

The command loealDFDir/c names the directory to which DF files themselves (not their
contained files) should be retrieved. It overrides any LocalDFDir: entry in User.cm. If
both loealDFDir/e and localDir/e are specified, the local DF directory is used for DF files; all
other files use the localDir/c directory. For those rare occasions when you don't want a
package's DF files to go to the User.cm-specified local DF directory (e.g. if you're fixing an
old version of a package, perhaps one submitted to a release), you can use the localDFDir/c
command to force the DF files to go to another directory. For example:

>BringOver localDirfc <>Old> localDFDirfc <>Old> [ldun]<lnt>Stuff.df

The command WorkingDFLoc Ie and IntegrationLoc/c overrides any WorkingDFLoc: and
IntegrationLoc: entry in U ser.cm. For example:

>BringOver WorkingDFLoc/c [ldun] < P > IntegratlonLoc/c [ldun]<lnt> MyStuff.dffz

It helps developers that have more than one working directory; e.g. those doing both
microcode and Pilot development.

4.2.1 BringOver switches

A switch specification is a letter identifying the switch, optionally preceded by a '-' or '-' to
reverse the sense of that switch.

fine point: If you are using TTYTajo, please use the '.' rather than the '-'.

The valid switches are:

a ~lways retrieve without confirmation (unless an existing local file is newer)
b get just "Qcd" (derived) files: .bcd, .symbols, .boot, .signals, .press files
f force retrieval of all files, disregarding any newer local files.
o get Qnly specified files: e.g. BringOver 10 Exec.bcd Put.bcd Tajo.df
p get just :Qublic (exported) files
r get just readonly files: Imported (and ReadOnly) files
s get just "§.ource" files (inverse of /b)

u only !!pdate existing local files (never get new files)
v yerify files exist in the right place and version, and fill in DF dates
w get just "yy:ritable" (Exports or Directory) files (inverse of Ir)
x rename ".bcd" to ".archiveBcd" ifan archive Bcd already exists
z prerelease mode
< suppress confirmation request if an older remote version is retrieved

The default setting for all switches is off. You can also change the default setting of any
switch by using a global switch. Any switch given with no file name (i.e., just a slash and

17

DF Software Reference Manual

switches) establishes the default setting for that switch. Unless overridden or reset, that
default applies to all subsequent commands.

4.3 BringOver limitations

Each DF file read by BringOver must contain no more then 450 files. This applies to each
Imported and Included DF file as well.

5 SModel

18

SModel (the name stands for "Simple Modeller") is used to store back new versions of files
you've changed since the last time you ran BringOver on a DF file. For example, if you are
working on the Compare program and you've already run BringOver on Compare.df, then

>SModel Compare.df

does the following: The files listed in Compare.df are checked on the local disk. If any have
different create dates SModel will offer to store them on the remote servers specified in
Compare.df. SModel then produces a new Compare.df file with the new create dates and
remote file system version numbers (e.g. !4). The old DF file is saved by copying it to a "$"
file, e.g. Compare.df$. Files listed under an "Imports" or a "Readonly" clause will be
ignored.

If a file on the local disk is listed without any create date in the DF file, SModel will fill in
the create date from the version on the local disk and then offer to store the file remotely.
If the file listed in the DF file is followed by a > or #, it is ignored and will not be
transferred.

If the DF file contains a reference to itself (e.g. Compare.df lists Compare.d£), SModel will
also store a new version of the DF file on the remote server. Since SModel has to write out
a new DF file before it can store the DF file, SModel cannot put the file server version
number (e.g. !5) on the DF file self-reference. However, BringOver will always get the
correct version of the DF file since it will use the create date of the DF file instead.

Before storing a file, SModel first checks to see if that file is already on the remote
directory (as the highest version); if so, it won't actually store the file. Also, if storing a file
would write a version with a create date that is older than that of the current highest
version, SModel will always ask for confirmation. This helps to support the "newer is
usually better" methodology.

If the CheckLibrarian: entry in the User.cm is TRUE, then before storing a file, SModel
will check if the file has a program librarian libject. If so, SModel won't store the file if it
wasn't checked out, or if it wasn't checked out by you. (The old create date is left in the DF
file, so that in most cases, you can simply check out the file [without retrieving the source]
and rerun SModel.) One must be careful when doing this since someone else may have
checked out the DF file and Smodel'ed already.

SModel invokes itself recursively on Included DF files. It does not invoke itself on
Imported or ReadOnly DF files. If the Includes or Imports statement is not followed by an
"Of <date>" clause, SModel will insert such a clause in the new DF file with <date>
replaced by the create date of the file on the local disk.

5.1 SModel modes

DF Software Reference Manual

There are three special modes in which you can run SModel.

5.1.1 SModel"verify files are remote" mode

New DF software users are often confused about the relationship ofthe entries in a DF file
to the local and remote directories, and what SModel will do in certain cases. The easiest
way to understand it is that SModel assumes 1) that the DF file was an accurate
description of the remote directory at some point in the past, and 2) files with different
create dates that it finds on the local disk are the "truth" and should be transferred. This
is one of the most important things to know. If you are having trouble with your
DF files, always remember that the DF file describes the state of a remote
directory. However, assumption 1) allows SModel to assume that files with the same
create date in the DF file and on the local disk also exist on the remote server. For this
reason, and because remote enumerations are relatively slow, SModel does not check the
remote server to see if in fact the files described by a DF file are actually there (unless it
has already decided to store a file). So, SModel may not detect that certain files listed in a
DF file are not present on a remote server, unless you use a special switch described below.

A common mistake is to assume that if you run SModel on a DF file successfully, and then
simply change a Directory in the DF file, then all the files will be copied (again) to the new
directory. This is wrong! After SModel has been run the first time, the create dates in the
DF file are the same as those on the local disk. Since SModeljust checks the create dates in
the DF file against the local files, the second SModel invocation will not detect that any
files need be transferred even though the Directory was changed.

To resolve these problems, SModel has a verify files are remote mode which is entered with
the Iv switch. In this mode, SModel not only applies the algorithm described above to store
files, but if it decides a file doesn't need to be stored, it will look on the remote file server
and check that in fact the file does not need to be stored. If the file is not on the remote
directory, or the version listed in the DF file is not on the remote directory, then SModel
will offer to store the file. In this way SModel/v will try to force the remote directory to
agree with the DF file.

For example, the following will insure that all files listed in Compare.df are actually on
the remote servers:

>SModel Compare.dflv

5.1.2 SModel "don't store files" mode

The In switch has SModel do everything it normally does, except for storing files. The DF
file is rewritten if there are different versions of files on the local disk, but those files, and
the DF file itself, are not stored. This mode is useful for "fleshing out" a DF file with the
versions of files that are on the local disk. This is a dangerous thing to do. The DF file
itself simply describes the version and locations of the files listed. If you use the
"don't store files" mode, the Df file will be changed to include the create dates of
the files on your local disk. Subsequent uses of the DF file will look for those files
on the remote server, but they will not exist. Make sure you Smodel again using
the "verify files are remote" mode to actually store the files remotely.

5.1.3 SModel prerelease mode

19

20

DF Software Reference Manual

In this mode, SModel stores a component on your prerelease directory (which is named by
the IntegrationLoc: entry in User.cm). The actual remote directory for each file is
gotten by concatenating the Integ rat i onLoc: directory with the ReleaseAs subdirectory
for the file (Although this sounds strange, that is the correct location. The Exports or
Directory subdirectory, for example, might point off to a temporary or personal directory.)

For example: the Integration directory of: [ldunl < Int > and the ReleaseAs directory of
[ldun] < APilot > MyProg> Public will yield: [ldun] < Int > MyProg> Public.

SModel recurs on Included DF files and stores them out as well. Imports clauses are
changed to point to the prerelease directory and SModel checks that the imported DF files
already exist there. If the User.cm entry CheckLibrarian: is TRUE, SModel also checks to
see if each file has a libject that is checked out; if so, it gives a warning.

5.2 SModel's command line

The SModel command line has the form

>SModel [I<global switches> 1 DFfile,[I<local switches> 1 ... DFfilen[l<local switches> 1

Global switches are optional and control the store of subsequent DF files. You can also set
global switches by giving an empty DF file name.

The subcommands WorkingDFLoc/c and IntegrationLoc/c work identically to the same
commands in BringOver.

Secondary connect credentials can be given on the command line; e.g.

>SModel Conn/c Dir Passwd MyComponent.df/z

5.2.1 SModel switches

A switch specification is a letter, optionally preceded by a ,_, or ,_, to reverse the sense of
that switch. The switches recognized by SModel are:

a store §,lways: without confirmation
f flip CameFrom clause to be ReleaseAs (default)
1 check with program librarian (default) It overrides User.cm
n do Qat store files remotely
r ignore J!eadOnly or Imports designation and store files if different versions
t process only lop (outermost) DF file, not Included DF files
v yerify that files are really on the remote server and store if necessary
z prerelease mode

The default setting for the If and II switches is on; all other switches are off You can
change the default setting of any switch by using a global switch. Any switch given with
no file name (i.e., just a slash and switches) establishes the default setting for that switch.
Unless overridden, that default applies to following commands.

Fine point: When the If (flip CameFrom) switch is on, SModel will convert a CameFrom
clause back to a ReleaseAs clause. This makes it easier to use a DF file that was generated

DF Software Reference Manual

by the ReleaseTool as a starting point for a new "working" DF file after a release. This
switch generally has only a minor effect on the use ofDF files.

5.2 SModellimitations

Each DF file processed by SModel must contain no more then 450 files. This applies to
each Included DF file as well. This number may change. Contact the implementors if there
is a question.

6 VerifyDF

VerifyDF attempts to answer the question: Does this DF file have entries for all the files I
need to rebuild my program, and are these files consistent? VerifyDF scans a DF file
looking for "end result" bcd and boot files. These are the files marked with a "+" before
their names (a DF file can have more than one "end result"). VerifyDF will analyze each
of these files to determine what files were needed to build it and will compare the needed
files against entries in the DF file. If a needed file is not in the DF file, VerifyDF will give
an error message. Also, VerifyDF will give an error message if a needed file is listed in a
different version.

After checking the "end result" files, VerifyDF recursively analyzes the files they need.
This process continues until all files in the closure of dependencies, except for imported
(and missing) files, have been analyzed.

For example, to verify Compare.df, type

> VerifyDF Compare.df

Any files that are missing from the DF file are listed with the create dates and remote
location (gotten from the RemoteN ame leader page property) of files on the local disk. This
can help, for example, to identify DF files from which some of those files should be
imported. Verify DF also prints out files listed in the DF file that appear to be unnecessary.
These might include such files as command files and signals listings, but they might also
include imports that are no longer necessary. If those files are actually necessary, such as
the command files, you can suppress these warnings by marking these files with a ' +'. for
example:

Directory [MyHost] < MyDir > Private ReleaseAs [RelesaseHost] < RelDir > Private>

+ Source.MyStuff! 1 14-Dec-60 16:23:27 PDT

+ ReBuildMyStuff.cm! 1 14-Dec-60 16: 25: 53 PDT

VerifyDF also checks for certain common mistakes, such as files on a directory that are
released onto a directory with a different > Public, > Friends, or > Private suffix. For
example,

Directory [Igor] < Emerson >Compare > Public ReleaseAs [Idun] <Apilot>Compare > Private

is probably a mistake, since Public is not the same as Private.

21

OF Software Reference Manual

VerifyDF will look on remote file servers for the correct versions of files if they are not
local. So, the files described by a DF file do not have to be on the local disk for VerifyDF to
do its job. However, since this remote checking must currently be done with a pseudo page
level access protocol, it can be relatively slow. The DF file itself also does not have to be on
the local disk. For example, the following can be used to check a remote version of
Compare.df:

> VerifyDF [Igor] < Emerson >DF >Compare.df

When processing a OF file, VerifyOF may have to retrieve imported or included OF files
from a remote server. Unless the It (fetch to temporary files) switch is off, these OF files
will be retrieved to temporary files. This avoids cluttering your disk with OF files you may
not want.

6.1 VerifyOF's command line

The VerifyOF command line has the form

> VerifyDF [/<global switches>] DFfile,[I< local switches>] ... DFfilen[l< local switches>]

Global switches are optional and control the verification of subsequent OF files. You can
also set global switches by giving an empty OF file name.

6.1.1 VerifyOF switches

A switch specification is a letter, optionally preceded by a '-' or '-' to reverse the sense of
that switch. The valid switches are:

f print "flattened" OF file (all Imports and Includes structure removed)
n check that all files seem gecessary (default) You would probably want this
when using the If switch
t retrieve DF files to ~emporary files (default)

The default setting for the In and It switches is on, while the If switch is off You can
change the default setting of any switch by using a global switch. Any switch given with
no file name (i.e., just a slash and switches) establishes the default setting for that switch.
Unless overridden, that default applies to following commands.

6.2 VerifyOF limitations

The total number of files that VerifyOF can check, including those from imported and
included OF files, is 1000.

7 DFDelete

22

When you have finished working on a DF file and have SModel'ed its files out to their
remote locations, you can free up space on your local disk by running OFOelete on the DF
file. This program scans a OF file (and the ones it Includes), and generates a command in
Line.cm that can be used to delete the files described by the DF file. Deleting these files is
safe because you can be certain, after running VerifyDF and SModel on a OF file, that all
needed files have been stored remotely.

DF Software Reference Manual

DFDelete will not add to the delete command any file on the local disk that has a create
date different than that listed for it in the DF file.

7.1 DFDelete's command line

The DFDelete command line has the form

> DFDelete [«global switches> I DFfile,[I< local switches> I ... DFfilen[!< local switches> I

As usual, global switches are optional and control the deletion of following DF files. You
can also set global switches by giving an empty DF file name.

7.1.1 DFDelete switches

DFDelete has only one switch which can be preceded by a '-' or '-' to reverse its sense:

r also delete Imported and ReadOnly files

7.2 DFDelete limitations

Each DF file processed by DFDelete must contain no more then 450 files. This applies to
each Included DF file as well.

8 DFSubstitute

Although a DF file is just a text file that can be edited by the user, it is still awkward to
make simple repetitive changes to large numbers of DF files. The program DFSubstitute
can be used to simplify this task. It can:

• change hosts or directories,

• move an Imported file (e.g. Heap.bcd) from one DF file (PilotPublic.dO to another
(ComSoftPublic.df), and

• insert or delete Imported files.

DFSubstitute makes changes to a set of DF files according to commands in a substitution
script file. The commands are executed in order from first to last for each line in a DF file.
This means that later commands can take advantage of the substitutions made by
previous commands. Included DF files are processed in the usual bottom-up recursive
fashion. The rewritten DF files are not stored remotely by DFSubstitute; you must use
SModel to do that.

The four DFSubstitute commands are:

• Rename [RHS] <IOC1> To <IOC2>

Rename changes the remote location on the left hand side (Directory, Imports, Includes, or
ReadOnly) of matching DF file lines If RHS is specified, matching right hand sides
(ReleaseAs or CameFrom) are changed. Each < loc > can be a host (e.g. [Igor)), a directory

23

24

DF Software Reference Manual

(e.g. < Emerson > Tajo>), a file name (e.g. MFile. bed), or a combination of all three. For
example, to rename [Igor 1 to [Idunl in all left hand sides, use the following:

Rename [Igor] To [Idun]

To change all r.h.s. references to [Igorl<Ramona> to be [Idunl<Int> , use

Rename RHS [lgor]<Ramona > To [ldunl<lnt>

It is also possible to change just a subdirectory, e.g.

Rename (WF>Publie To Other>Publie

To change the location of just one file, use a command like the following:

Rename [Igor] < Emerson> Tajo > Private> NSFileTransfersA.bed

To [Igor] < Emerson> NSFileTransfer > Friends> NSFileTransfersA.bcd

• Move Import < name> From < DF filel > To < DF file2 >

This moves an import from the Using list of one DF file to another. If no Using list files
remain the first Imports line is entirely deleted. For example,

Move Import Heap.bed From Pilot.df To ComSoftPublie.df

• Delete Import <name> From <DF file>

This just removes the specified import from the Using list of an imported DF file. If no
U sing list files remain the entire Imports line is deleted. For example, to remove all
importations ofSpace.bcd from PilotPublic.df, use

Delete Import Spaee.bed From PilotPublic.df

• Insert Import < name> From < DF file>

This simply adds an import to the DF file's Using list, e.g.

Insert Import Environment.bed From MesaPublie.df

8.1 DFSubstitute's command line

The DFSubstitute command line has the form

> DFSubstitute SeriptFile DFfile, '" DFfilen

The first file is a substitution script (default extension ".script") that specifies the changes
to be made to the following DF files. DFSubstitute has no switches.

DF Software Reference Manual

8.2 DFSubstitute limitations

Each DF file processed by DFSubstitute must contain no more then 600 files. This applies
to each Included DF file as well.

Important!
If there are spaces embedded in a token, please quote them. For example:

Rename "[Walter:Very Nice:Music]<Carlos>" To "[Wendy:Very Nice:Music]<Carlos>"

9 DFDisk

DFDisk produces a file "Disk.df" that describes the current search path. With the
exception of "$" files and a few kinds of log files, it lists all files on the search path with the
create date and remote location found on the local disk. The remote location is taken from
the RemoteName property in each file's leader page. DFDisk is most useful when you are
trying to find the remote location for files, or when you are trying to save all your files
before reformatting the volume. It can also tell you about new files that should be recorded
in a DF file, since the RemoteN arne property for these files will not have been set and they
will be listed under the remote "location" [Unknownl<Unknown>.

9.1 DFDisk's command line

DFDisk has no switches, and its command line is simply

>DFDisk

9.2 DFDisk limitations

The maximum number offiles that DFDisk can process is 1000.

10 DFTool

The DFTool provides a window interface to the other DF programs. It supports BringOver,
SModel, VerifyDF, DFDelete, DFDisk, DFSubstitute, as well as program librarian
CheckOut and Query. Since the different commands share several DF implementation
modules, fewer resources are used by this tool than by the separate DF programs. The
price you pay for this is that only one command can be run at a time as opposed to having
multiple Executive windows the run the DF programs from. There is currently no
command line interface to the different commands.

The DFTool communicates through four subwindows: a message, form, command, and
TTY subwindow. The TTY subwindow is used to log the progress of each command, and for
interaction with the user (e.g. for passwords and for file transfer confirmations). There is
also an Options window which is used to set infrequently modified parameters.

fine point: A picture of the tool will be supplied here eventually.

25

26

DF Software Reference Manual

10.1 Form subwindow

The fields that can be used as arguments to a command are listed in the form subwindow.
The first row has a five Booleans that correspond to the most widely used DF program
command line switches. The next four rows are string items that provide parameters for
the DF commands.

Booleans:

Confirm

GetOnly Exports

Verify FilesExist

Don tStoreRemotely

means ask for confirmation before retrieving or storing a file. It
has the same effect as I-a on the BringOver and SModel
command lines. The default is TRUE.

means retrieve only files marked as exports when bringing over
a DF file. This is the same as the BringOver /p switch. The
default is FALSE.

means check that files exist in the right place and version. It is
the same as the BringOver Iv switch. The default is FALSE.

means never store files remotely. This is equivalent to SModel's
In switch. The default is FALSE.

VerifyRemoteOnStore when doing an SModel!, means verify that files are really on
the remote server and store if necessary. This is the same as the
SModel/v switch. The default is FALSE.

Fill-ins:

DF Files:

Files:

LocalDir:

Checkout Reason:

are the names of the DF files to be used for any commands. If a
DF file's name contains spaces (e.g. a fully qualified DF file
name on an NS server), the name must be enclosed in double
quotes (").

is a list of files (separated by spaces) for the next command to act
upon. These might be, for example, the specific files that
Br ingOver ! should retrieve from a DF file (BringOver only
files mode).

means that Br ingOver ! should do all retrievals to this
directory. This is equivalent to BringOver's localDir/c
command. If the directory is not a complete path name, i.e. it
does not begin with <, it is assumed to have a < > prepended.

is given to the program librarian when files are checked out.

10.2 DFTool command subwindow

The fields in the command subwindow are the following:

DF Software Reference Manual

CheckOut!

Query!

BringOver!

SHodel!

VerifyDP!

DPDelete!

DPDisk!

DPSubstitute!

Options!

10.3 DFTool Options window

checks out the libjects for the DF files listed in the DP Piles:
line and the files listed in the Piles: line. The CheckOut
Reason: is passed to the program librarian.

displays information regarding the libjects for the DF files listed
in the DP Piles: line and the files listed in the Piles: line.

invokes the BringOver algorithm on the DF files listed in the DP
Piles: entry. If any files are also listed in the Piles: line,
BringOver will enter only files mode and retrieve just those
files.

stores back the DF files and its components within of the DF
files listed in the DP Piles: entry.

verifies the completeness and consistency of each DF file named
in the DP Piles: entry.

invokes the DFDelete algorithm on each DF file listed in the DP
Piles: line.

generates a file "Disk.df' that describes all the files on the
current search path.

modifies DF files listed in the DP pi les: entry according to the
substitution script file named in the Piles: entry ..

creates an options window for the DFTool if one does not already
exist.

The Options window is created by the Options! command. It contains a string item and
Booleans that govern the DFTool's operation, but which are typically changed only
infrequently. The string item, LocalDPDir:, is initialized from the User. em

LoealDFDi r: entry. The Booleans correspond directly to the command line switches for
each DF program. After changing the options, invoke Apply! to invoke those changes.
The Abort command will restore the options to what they were before the Options!
command was invoked. Both Apply! and Abort! perform the appropriate actions and
then destroy the Options window.

10.4 DFTool User.cm fields

The DFTool uses the same [DFTool] section in the U ser.cm as the other DF programs.
Besides the fields described above in Section 3, the standard InitialState:,
TinyPlaee:, and WindowBox: entries can be set.

11 The IncludeChecker and DF files

If you are a DF software user (Le. if you have a [DFTool] section in your User.cm), the
released Klamath IncludeChecker can process a DF file as well as a lists of files. The

27

DF Software Reference Manual

IncludeChecker has a df/c command that is used to specify the DF file to check. For
example,

> InciudeChecker MyPackage.listlcio df/c MyPackage.df

will analyze the files described by MyPackage.df and generate an includes and includedBy
listing in MyPackage.list and a rebuild command in Line.cm.

Each file listed in the DF file is looked up on the local disk. If there, that version is
analyzed regardless of its create date. If the file is not local, the remote version is checked
(the remote path is gotten from the DF file). Because the IncludeChecker believes that the
local versions of files are the "truth" (the assumption is that the DF file was brought over
and some changes were made to its files), it can be used to verify a component that has not
yet been SModel'ed.

Note: VerifyDF operates differently: Verify DF checks the particular snapshot of a package
described by a DF file. Local versions of files with different create dates are ignored and
the remote versions are used instead. This means, in general, that a DF file has to be
SModel'ed before VerifyDF can be run on it.

The IncludeChecker also has a Ir (examine DF imports) command line switch that may be
specified when DF files are processed. When set, the IncludeChecker will also analyze
imported files. If you believe that no imported file has changed since you brought over the
DF file, you can use I-r to reduce the IncludeChecker's running time. The initial default for
the Ir switch is on. In general, you should not use I-r.

If you have a [DFTool] section in your User.cm, some additional parameters and an
additional command appear in the IncludeChecker window. The DF File: entry names
the DF file to be processed when the Check DF! command is invoked. The Boolean
Examine DF Imports appears in the IncludeChecker Options window and has the same
effect as the Ir command line switch; it is initially TRUE.

12 Dealing with Problems

28

DF Software Reference Manual

As much as we try to avoid them, problems still crop up. Here are some common problems
and ways you could deal with them.

Network problems

Problem: You did a BringOver, modified files, and do a Smodel. Unfortunately, you lost
a connection in the middle of a Smodel, so only some of the files were stored.

Solution: When the network is up, do a Smodel with the "verify files exists" mode to make
sure all the files are stored back.

You forgot to to check out the Libject.

Problem: Shame on you. Smodel probably gave you a warning. Using the "don't check
librarian" switch is probably dangerous since someone else may have checked out the DF.
and has worked on the program.

Solution: You should try to check out the libject. There are two cases:

If you are denied access, go talk to the person who checked out the libject and try to
coordinate the modifications. If you changes do not overlap, you are lucky.

If are you given access to the libject, you may still be in trouble since someone else may
have done a checkout and a checkin during the period you were working on the
component. Find out the checkin date of the libject and see if that occured during your
after you did a BringOver.

The Librarian is down.

Problem: Smodel fails since the libject cannot be checked in.

Solution: You are safe since no one else can modify the files you have checked out.
Frequently, you will only do a checkout of the DF file itself. In that case, the files listed in
the DF file may have been stored back already, leaving only the DF file "un-stored".
However, the DF file is already modified with the new create dates, including that of the
DF file itself. Thus a subsequent Smodel (done when the librarian is up) will use the local
DF file and will believe that all the required files are remotely stored. When the librarian
is up, do a Smodel with the "verify files exists" mode to store the DF file back.

The programs tell me that it can't parse dates in my DF

Problem: Your time zone requires you to specify time relative to GMT. Some parts of the
world require you to specify the time in the format of hh:mm:ss + N GMT. The released
parser is not able to parse that correctly. This is a limitation in the Klamath version.

Solution: Please wait for the announcement of the newer, better, and more worldly DF
software. The new parser should be able to handle various time formats.

I want to move the files pointed to by a DF from one location to
another.

29

30

DF Software Reference Manual

Problem: You want to change the "Directory" statements and move the files to their new
destinations ..

Solution: do a BringOver, run a DFSubstitute, and do a Smodel.

How do I stop the DF Tool?

Problem: You made filled in the wrong parameters, or perhaps the made some other
mistakes, and you want to stop the operations.

Solution: Press the STOP key, and keep on trying until it stops.

#,4-2
',4-2,10-2
--,4-3
;,4-2
1,4-2

Index

@, 4-2, 10-3, A-2
\\,4-3
abbreviation-expansion pair, 2-1
accelerator

menu, 1-13
accessing Pilot symbols files, III-14
Address Fault, 24-2
address faults, III-15
Administrative Level

Normal Level, 30-17
AliasCommand, 4-3, 4-9
ALL,21-3
ALTB, B-3
archive. bed, 4-3
Arpa Getting Started, 33-1
Arpa network protocols, 33-1

HOSTS.TXT,33-1
MY-HOST:, 33-1
MY-GATEWAY:, 33-1
SUBNET-MASK,33-1

ArpaCacheAddress, 34-1
ArpaChat,35-1
ArpaFileServer, 38-1
ArpaFileTool,37-1
ArpaMailTool,39-1

ArpaSendTool, 39-5, 39-6
MailFileScavenger,39-10

ArpaRemoteExec, 36-1
AsciLBS,32-13
Ascii.ControIC,32-13
Asci LControlW, 32-13
Ascii.ControIX,32-13
AsciLDEL,32-13
AsciLESC, 32-13
Ascii.Tab,32-13

asterisk, 4-2, 10-3
at sign, 4-2, 10-3
Attach, 15-1
automated tool execution, 7-1
BRESET, B-2
background priority, 4-6, 4-10
backslash, 4-3
Balance Beam, 1-11
BCD, 21-3
Ben, 28-1, 28-21

cleaning up, 28-27
collecting data, 28-21
error recovery, 28-25
messages, 28-25
reducing data, 28-22
report format, 28-23

binary configuration description,
17-1,19-1, C-1

Binder, 4-6,17-1,23-2,23-12,27-1,
III-3
command line, 17-2
error messages, 17-5
examples, 17-3
limi ta tions, 17-7
switches, 4-10,17-3

binder error log, IIl-4
boolean item, 1-9
Boot, 5-1, A-7
Boot Button, 5-2
boot buttons, B-2
boot file, 21-1
Boot from: menu, 5-1

Boot Button, 5-2
File Name, 5-1
Reset Priority, 5-2
Reset Switches, 5-2
Set Priority Up, 5-2
Set Switches, 5-1

boot options, B-2
boot switches

1

2

Index

Pilot, B-6
bootable floppy, 22-1
Booting other volumes from CoPilot,

B-6
Booting other volumes from Othello,

B-4
bootmesa, 21-2
bounds checking, 19-4
Break,15-1
breakpoint, 24-2,24-S
breakpomt commands, IIl-13
breakpoints, 15-1

conditional, 2S-2, 2S-S
Brownie, 8-1

command line, 8-1
commands, 8-2
example, 8-3
parameters, 8-2
script file, 8-1

B5,4-1
BW,4-1
ClMesa, 17-1
CALLDEBUG, 24-2,111-7
CATCH CODE, 23-8
catch code, 23-4, 23-8
ChangeCommandName, 4-4, 4-9
changing user information, 6-1
character class, 3-5
character patterns

finding, 14-1
Chat

form subwindow, 32-2
special keys, 32-3
TTY subwindow, 32-2
user interface, 32-1

Chat User.cm, 32-4
Check Drive, A-3
chording, 1-12
Clear, 15-1
Clearinghouse, 4-4
Clearinghouse, 30-1
client, 1-3
ClientRun, 4-3, 4-7
Close,A-7
CloseVolume,4-3
closure. 3-6
CoCoPilot, 24-2
CODE,21-3
code links, 19-2,21-1,23-3
CodePack, 21-3, 23-5, 23-7, 23-8, 23-11
code pack, 23-1, 23-2, 23-3. 23-5, 23-10
code packing, 23-2
code segment, 23-1, 23-2, 23-5, 23-10
c9d.elinks, 4-5, 4-7, 4-10
command files

passwords in, 9-3

command item, 1-9
command line .

expansion, 4-2
interpretation, 4-3

CommandCentral, 4-3, 4-6, 4-7,18-1
command subwindow, 18-1
User. em, 18-2

comment, 4-3
Compare, 13-1

command line, 13-3
examples, 13-4
file pair switches, 13-3
form subwindow, 13-2
via a window interface, 13-1
via the Executive window, 13-3

Compiler, 4-6, 19-1,20-1,23-2,27-1
command line, 19-2
error messages, 19-6
examples, 19-3, 19-6
failures, 19-5
limitations, 19-8
switches, 4-10, 19-3

compiler error log, 1II-2
compiler switch defaults, IIl-2
Compiler switches, III-2 .
Compiling, III-2
COMPLETE,4-1
concatenation, 4-4
configuration, 1-1
configuration description file, 111-3
configuration description language,

17-1
context, I1I-S
CONTROL statement, 111-3
control transfer, 28-1, 28-2
CONTROL-C, 4-1
CONTROL-P, A-2
CONTROL-X, 4-1
converting object files to boot files,

IIl-6
CoPilot, 1-3
CoPilot, 24-1
CoPilotDLion. boot, 24-1
Copy

Executive command, 4-4
CountPackage, 28-1, 28-1

getting started, 28-6
limitations, 28-5
operation, 28-4
sample session, 28-6
user interface, 28-2

Create, 15-2
Create Physical Volume, A-3
CreateDir, 4-4
Creating a source file, III-1
creation date, 9-4, 9-5

XDE User's Guide

cross jumping, 24-10
cross reference, 27-1, 27-3

by callee, 27-3
by caller, 27-3

cross-jumping, 19·4
current selection, 1·10
CWD,4-4
Dandelion, B-1, 1-2
Debug Ops menu, 15-1~ 24-9

Attach, 15-1,24-9
Break, 15-1, 24-10
Clear, 15-1,24-11
Trace, 15-1,24-12

Debug.log, 24-2, 24-3, 24-32
Debuggee.outload,24·1
Debugger, 11-3,15-1

(also see Sword Debugger)
debugger

breakpoint, 24-8
breakpoint commands, 24-9
commands, 24·8
commands summary, 24-34
CoPilot, 24-1
core image, 24-1
cross jumping, 24-10
current context, 24-4,24-15
Debug Ops menu, 24-9
error messages, 24·23
input conventions, 24-4
installation, 24-32
interpreter, 24·19
interpreter grammar, 24-33
kill debugger session, 24-17
loaded configurations, 24-15
logical volume, 24-1
low level facilities, octal break, 24-18
low level facilities, octal read, 24-18
low level facilities, octal write, 24-18
low-level facilities, 24-17
Mesa data types, 24-5
new session, 24·2
options window, 24-5
output conventions, 24-5
procedure calls, 24-21
proceed from debugger, 24-17
process display, 24-12, 24-16
quit from debugger, 24-17
remote debug, 24-18
runtime state, 24-12
stack display, 24-12
symbols, 24-4
teledebug, 24-18
tracepoint, 24-8
user interface, 111-8
User.cm, 24-32
U serscreen, 24-17

worry mode breakpoints, 24-19
Debugger Pointer, 24-2, E-2
Debugger.outload, 24·1, E·2
debugger Debugger, 24-2, A-5, A-11
debugging

Profile Tool option, 6-1
storage leaks, 25-1

DebugHeap, 25·1
client words, 25-1, 25-3
example, 25-4
heap OwnerChecking switch, 25-4,

25-4
node storage usage, 25-1
nodes, examining, 25-2
private heaps, 25-2
storage leaks, 25-1
system heaps, 25-2
zone, 25-2

DEFINITION, 2-1, 27-2
Definition of terms, 1-3
DELETE,4-1
Delete

Executive command, 4-4
Delete Boot File, A-9
Delete Temporary Files, A-6
Describe Physical Volumes, A-3, A-4
description modules, III-I
DestDir, 4-8
Destroy, 15-2
diagnostic boot, B-2
diagnostic microcode, A-6
Diagnostic Microcode Fetch, A-9
dictionary, 2-1
Dictionary Tool, 2-1

commands, 2-2
Dictionary Tool, 2-1
EXPAND,2-1
file format, 2-2
User.cm, 2-2

DIRECTORY, 17-7
Directory

Othello command, A-8
directory statement, IH-3
DISCARD CODE PACK, 23-8
disk

label check, A-12
Shugart SAI000, A-2
Trident 300, A-2
Trident 80, A-2

Disk booting, B-2
Disk Label Check, 24-2
display screen

inverting, 1-1
preservation, 1-1

DMT.bcd, 1-1

3

4

Index·

domain, 6-1
setting, 6-1

Edit, 15-2
Edit Dictionary, 2·1
Edit Ops menu, 3-3
editable window, 15-2
editing characters, 4-1
EditOps menu, 3-4
Editor prQperty sheet, 3-3
Editor property sheet accelerator, 3-4
Editor Symbiote, 1-16
editor symbiote

use, 3-1
empty window, 15-2
ENABLE, 23-4
Ending a session, B-16
ENTRY VECTOR, 23-8
entry vector, 23-3, 23-4
enumerated item, 1-9
Erase, A-5
error recovery, B-11
errors, 1-3
escaped character, 3·5
Ethernet, A·11
Ethernet, 1·2
Ethernet booting, B-3
Examining and changing the state, 111-12
example volume configurations, B-5
EXCEPT ,23-6, 23-9
Exec Ops menu, 4-10

CoPilot, 4-10
File Window, 4-10
Load,4-10
New Exec, 4-10
Power Off, 4-10
Quit, 4-10
Run, 4-10
Start, 4-10

ExecOps menu
File Window. 15-1

Executive, 4·1, 9-4, 20-2
built-in commands, 4-3
command line expansion, 4-2
command line interpretation, 4-3
editing functions, 4-1
Exec Ops menu, 4-10
loading programs. 4-5, 4-7
pattern matching, 4-2
running programs, 4-7, 4-9
User. em, 4-10

EXPAND,2-1
expansion, 4-2
EXPORTS, 17-6
extension

.brownie,8-1

.list,23-3

.map,23-3

.pack,23-2

.scratch$,16·1

.tds, 7-2
External, 32-4
Fetch, A-7, A-9
Fetch Boot File, A-7
file

ArpaFileServer, 38-1
ArpaFileTooI,37-1
code, 17-1
comparing, 9-6
copy, 4-4, 4-8
copying local, 10-4
creation date, 9-2, 9-4, 9-5
dates, 4-5
deleting local, 10-3
deleting remote, 9-6
10,4-5
listing local, 10-3
listing remote, 9-5
local,9-2
name completion, 4-1
object, 17-1, 19-1,27-1
object, version stamp, 27-2, 27-3
options for listing local, 10-4
partial,11-3
protection, 4-5
read date, 9-5
remote, 9-2
renaming, 9-6
retrieving, 4-9, 9-1, 9-4,10-3
size, 4-5
storing, 9-1, 9-4,10-3
symbols, 17-1
text, 15-1
times, 4-5
transfer, 10-2
write date, 9-5

File Name, 5-1
File Tool, 9-1,10-1

command subwindow, 10-3
form subwindow, 10-2
operational notes, 10-5
options window, 10-4
User. em, 10-4

file transfer, 9-1,10-2
ArpaFileServer, 38-1
ArpaFileTool,37-1

File window, 4-10,15·1
Create, 15-2
Debug Ops menu, 15-1
Destroy, 15-2
Edit, 15-2
editable, 15-2
empty, 15-2

XDE User's Guide

Exec Ops menu, 15-1
Load, 15-2
menu, 15-2
non-editable, 15-2
Reset, 15-2
Save, 15-2
Store, 15-2
Time, 15-3
User.cm,15-3

file-related tools, II-2
filename

fully-qualified, II-I
simple, II-I

Filestat, 4-5
FileTool, 31-1, 31-3
Find, 14·1

command line, 14-1
examples, 14-3
switches, 14-1

floppy, 11-1
bootable, 22·1
disk drive, 11-1

Floppy
Executive command, 4-5

Floppy booting, B-3
Floppy commands, 11·1

command line, 11-1
error messages, 11-4
examples, 11-3
partial files, 11-3
switches, 11-2

font
face, 16-3
family, 16-3
names, 16-3
point size, 16-3

form subwindow commands, 1·8
form subwindows, 1-1
Formatter, 20·1

command line, 20-1
examples, 20-5
failures, 20-6
rules, 20-3
switches, 20-2
User.cm, 20-2, 20-5

FRAME, 21-3
FRAME PACK, 21-3, 23-9, 23-11
frame pack, 23-1, 23-3, 23-11
FRAME PACK MERGES, 23-10
frequency statistics, 28-1,28-8
FTP (File Transfer Protocol), 9-1, 31-1,

31-3
ArpaMailServer, 38-1
ArpaFileTooI,37-1
command abbreviation, 9-1
command line, 9-1

examples, 9-7
switches, 9-1

FTPprotocol, 9-1
functions

global, 1-20
keyboard, 1-19

General Tools, 1·1
germ, 21-1, A-6, 111·6
Germ Fetch, A-9, A-10
GLOBAL FRAME, 21-3
global frame, 21-3, 23-1, 23-3, 23·4

debugger display, 24-12, E-17
packaged, 21-3
unpackaged,21-3

global replace, 3-2
heap debugging, 25-1
HeraldWindow,5·1

Boot from: menu commands, 5-1
User.cm,5-2

IMPORTS, 17-6
IMPORTS statement, 111-3
improving swapping performance,

III-6
Inactive menu, 1-15
IncludeChecker, 26·1

command line, 26-4
examples, 26-5
form subwindow, 26-2
option window, 26-3
switches, 26-4
User.cm,26-7

initial microcode, A-6
initialization code, 23-1, 23-4
initializing debugger volumes, B-9
input focus, 1-6
Installing boot files, B-9
Installing the development

environment, B-10
integration machine, 32-13
Interactive Terminal Service, 32-1
internal scavenger, A-5
Interpress, 16-1
Interpreter Tool, E·5

file subwindow, E-9
form subwindow, E-6, E-14
sessions, E-5, E-8

Interpreter form subwindow commands,
E·6
client, E-6
processes, E-7
configs, E-7
source, E-7
findModule, E-7
rep?, E-7
showType, E-7
type&bits, E-8

5

6

Index

watch, E-8
Interpreting signals, III-14
Interrupt, 24-2
invoking the Binder, III-3
invoking the compiler, III-2
invoking the debugger, III-7
kill .

debugger session, 24-17, E-21
Lexicon, III-l
LexiconClient, III-I
libject

setting prefix, 6-2
setting Suff'lX, 6-2

Librarian, 6-2
setting, 6-2

links, 23-3
List Bad Pages, A-4
List Drives, A-2, A-3
List Logical Volumes, A-5
List Physical Volumes, A-3
List Remote Files, A-7
Lister, 27·1

command line, 27-1
switches, 27-4, 27-5

ListRemoteHosts, 32-12
Load, 4-5, 4-10, 15-2
load handle, 4-5, 4-9
Loader, 23-1
loader

MakeBoot, 21-1
loading programs, 4-5, 4-7
loadmap, 21-2, 21-3
local file, 9-2
local file system, II-I
local frame

debugger display, 24-12, E-17
logical volume, A·1

debugger, 24-1, A-5, E-1
debugger Debugger, 24-2, A-5, E-2
foreign, A-5
normal,A-5
Othello commands, A-4
types,A-5

logical volumes, B-4
Login, 4-5, A-7
login name, 6-1

setting, 6-1
login password, 6-1

setting, 6-1
logout, 1-1
mail

answering, 30-1
ArpaMailTooI,39-1
changing mail files, 30-4
deleting, 30-1
forwarding, 30-1

moving, 30-1
reading, 30-1
retrieving, 30-1
saving, 30-1
sending, 30-1

mail registry, 6-1
setting, 6-1

MailFileScavenger, 30·1
MailTooI,30·1

Abort!, 30-6
Active.nsMail, 30-2
Append!, 30-4
Apply!, 30-6
AutoDisplay, 30-6
attachments, 30-2
current mail file, 30-2
current messages, 30-2
Delete!, 30-4
Display!, 30-3
DisplayOnNewMail, 30-3, 30-6
ExpandPvtDLs:, 30-5
Expunge!, 30-4
File:, 30-5
Flush Remote, 30-4
Forward!, 30-5
Hardcopy!, 30-3
Landscape Font:, 30-7
Mail File:, 30-6
Move!,30-5
New Form!, 30-5
New Mail!, 30-3
One Per Page, 30-6
Options!, 30-5
Orientation:, 30-6
Output To File, 30-6
Portrait Font:, 30-7
Printer:, 30-7
Sides:, 30-6
Sort!,30-5
table of contents, 30-2
To:, 30-5
Undelete!, 30-4
User.cm, 30-2, 30-11
via the Executive, 30-7

MAIN, 23-4, 23-8
mainline code, 23-4
Maintain, 30-1

Add!,30-18
Add! Remove! Mailbox:, 30-18
Add: Self!, 30-15
Alias:, 30-17, 30-18
Aliases!, 30-15, 30-18
Another!' 30-18
Anyentry, 30-18
Argument:, 30-16
CheckNames, 30-18

XDE User's Guide

Create!, 30-17, 30-18
Delete!, 30-17, 30-18
Destroy!, 30-18
Details!, 30-17, 30-18
friends of a group, 30-19
Group:, 30-15
Individual:, 30-16, 3017
Level,30-18
Matches!, 30-18
Members!, 30-15
NameList:,30-17
Normal Level, 30-15
Owner Level, 30-16
owners of a group, 30-19
Password:, 30-16
Remove!, 30-17,30-18
Remove: Selfl, 30-15
Set! Password, 30-1S, 30-18
Set! Remark:, 30-17, 30-18
Summary!, 30-15, 30-1S, 30-17
UseBackground,30-19
Which:, 30-17

maintenance panel; B-2
maintenance panel error codes, B-12
maintenance panel initialization

codes,B-3
MakeBoot, 21-1, 1II-6
Makeboot, 23-1
MakeBoot

commands, 21-2
examples, 21-5
loader, 21-1
parameter files, 21-1, 21-2, 21-3,

21-4
switches, 21-3

MakeDLionBootFloppyTool,22-1
command subwindow, 22-2
form subwindow, 22-1

Making boot files, I11-6
Map Log, 24-2
menu

Boot from:, 5-1
current search path directories, 12-2
Debug Ops, 15-1
Exec Ops, 4-10, 15-1
existing search path directories, 12-2
File Window, 15-2

MENU key, 1-12
menu prompts, 1-10
menus, 1-1
MFileServer,31-1

executive commands, 31-2
form subwindow, 31-2
User.cm, 31-2

microcode
diagnostic,J\-6

initial, J\-S
Pilot, J\-6

ModuleMaker, C-1
modulename.bcd, I11-3
modules, 23-2, 23-4
mouse, 1-2
moving files, 10-2
MP codes, E-2
multilingual debugger, E-1
multi word read-only constants, 23-4
name

login, 6-1
setting, S-l
user, S-l

name frame, 1-14
name frame operations, 1-14
naming conventions, II-I
New Exec, 4-10
nil checking, 19-5
non-diagnostic boot, B-2
non-editable window, 15-2
NS,30-1
NSTerminal

terminal types, 32-7
NSTerminal user.cm, 32-10
numeric item, 1-10
object file, 19-1, 27-1, C-1, I11-2

version stamp, 27-2, 27-3
Offline, J\-4
Online, J\-3
Open,J\-7
OpenVolume,4-S
organization, S-l

setting, 6-1
Othello, 1-3
Othello, A-I

accessible disk drives, J\-2
booting, J\-1
checking a pack, J\-3
command file, J\-2
command line, J\-2
commands, J\-2
diagnostic microcode, J\-6
exiting, J\-12
fetch commands, J\-7
initial microcode, J\-S
logical volume, J\-4
physical volume, J\-3
Pilot microcode, J\-6
routing tables, J\-11
time, J\-10

Packager, 23-1, 27-1, IlI-6
command line, 23-2
example, 23-11
information about modules, 23-4
operation, 23-12

7

8

Index

packaging description language,
23-5

switches, 23-2
packaging, 28-1
page fault

tracing, 28-21
password, 4-5,6-1,30-18

setting, 6-1
Performance Measurement Tool, 28-1,

28-2
concepts, 28-9
getting started, 28-15
limitations, 28-14
operation, 28-13
sample session, 28-15
terms, 28-9
user interface, 28-10

performance monitoring, 28-10, 28-17
Performance Tools, 28·1

Ben, 28-1, 28-21
CountPackage, 28-1
Measurement Tool, 28-1, 28-8
PerfPackage, 28-1, 28-8, 28-12
Spy, 28-1, 28-17

PerfPackage,28-1,28·8
concepts, 28-9
getting started, 28-15
limitations, 28-14
operation, 28-13
sample session, 28-15
terms, 28-9
user interface, 28-10

physical volume, A·1
Physical Volume Scavenge, A-6
Physical Volume Scavenger, A-6
Pilot, 1·2
Pilot

internal scavenger, A-5
microcode, A-6

Pilot error messages, B-14
Pilot file backing cache, B-7
Pilot Microcode Fetch, A-9
PopWD,4-6
pound sign, 4-2
Power Off, 4-10, A-7, A-12
Print, 16·1

command line, 16-1
defaults, 16-3
examples, 16-2
font names, 16-3
formatting, 16-4
switches, 16-2
User.cm, 16-4

private heap
debugging, 25-2

proceed

from debugger, 24-17, E-21
process

debugger display, 24-12, E-17
ProcesslnBackground,4-6
ProcesslnNormaIPriority,4-6
Profile Tool, 6·1, 9-3

form subwindow, 6-1
PushWD,4-6
Quantum 2040

2080,A-2
question mark, 4-2
Quit, 4-10, A-7, A-12
quit

from debugger, 24-17, E-21
read date, 9-5
recompile, 26-1
referencing environment, HI-8
registered commands, 4-3
registry, 6-1

setting, 6-1
remote connection, 9-3
remote debuggee, 24-18
Remote Executive

additional commands, 32-11, 32-14
character codes, 32-13

Remote executive
user interface, 32-11

Remote Executive User.cm, 32-12
remote filename conventions, H-l
Remote System Administration, 32-1
RemoteExec, 32-12
Rename,4-6
repetitive tool execution, 7-1
replace field, 3-2
replacement expression, 3-6
Reset, 15-2
Reset Priority, 5-2
Reset Switches, 5-2
RET,4-2
root window, 1·6
RS 232C, 32-8, 32-9
Run, 4-7, 4-10
run!

Command Central command, IH-5
Running a program, IU-5
running programs, 4-7, 4-9, -10
sample session, HI-8
Save, 15-2
Scavenge, A-5
scavenger, A-6
script file

Tool Driver, 7-1, 7-3
scrollbars, 1-7
search and pattern matching-facilities,

3-2
search context, 3-3

XDE User's Guide

search expression, 3-5
search field, 3-2
search path,. 4-6, 4-8,12-1
Search Path Tool, 12-1

commands, 12-1
current directories menu, 12-2
existing directories menu, 12-2
form subwindow, 12-1

searching
character patterns, 14-1

SEGMENT MERGES, 23-9
semicolon, 4-2
SendTool, 30-5, 30-7

Answer!, 30-7
cc:, 30-8
Deliver!,30-7
Destroy!,30-7
Get!,30-8
If Need Reply-To, 30-8
Invalid OK, 30-8
MailNote, 30-8
MailNote with attachment, 30-8
New Form!, 30-7
private distribution lists, 30-10
public distribution lists, 30-9
Put!,30-7
recipients, 30-9
Reply-To:, 30-10
Reset!,30-7
SendAs:, 30-8
SendTool via the Executive, 30-10
Subject. 30-9
Text, 30-8
User.cm, 30-12

session
ending, 1-1

Set Boot File Default Switches, A-9
Set Debugger Pointers, A-ll
Set Hardware Clock Upper Limit, A-I0
Set Physical Volume Boot Files, A-I0
Set Priority Up, 5-2
Set Switches, 5-1
SetClientVolume, 4-7
SetErrorLevel,4-7
SetPriority, 4-7
SetSearchPath, 4-8
setting breakpoints. III-I0
Setting debugger pointers, B-I0
setting user information, 6-1
ShowAccessList, 32-12
ShowSearchPath,4-8
single quote, 4-2, 10-3
SMTP (Simple Mail Transport Protocol)

ArpaMailTool, 39-1
ArpaSendTooI, 39-5, 39-6
MailFilScavenger, 39-10

Snarl, 4-8
snarf

Executive command, 111-5
Snarf command, 111-5
SourceDir, 4-8
sourcename.bcd, 111-2
sourcename.errlog, 111-2
SPACE,21-3
Spy, 28·1, 28·17

error messages, 28-20
getting started, 28-19
limitations, 28-21
operation, 28-19
user interface, 28-17

stack
debugger display, 24-14, E-19

Start, 4-9, 4-10
Statistics, 29-1

command line, 29-1
example, 29-2

statistics
frequency, 28-1, 28-8

Statistics
switches, 29-1

statistics
timing, 28-1, 28-8

Statistics
types, 29-2

storage
debugging leaks, 25-1

Store, 15-2
StringCompactor, C-l
subwindow boundaries, 1-8
swap units, 23-1
swapping, 23-1
Sword Debugger, E-l

breakpoint commands, E-14
breakpoints, E-14
client, E-l
commands, E·14
commands summary, E-33
core image, E-2
cross jumping, E-14
current context, E-9, E-17, E-20
Debuggee.outload, E-2
error messages, E·26
events, E-l
freeze, E-4
input conventions, E-IO
interpreter, E-22
Interpreter, E-l, E-2, E-3
interpreter grammar, E-32
Interpreter Tool, E-5
kill debugger session, E-21
local debugging, E-l, E-8
log file, E-9

9

10

Index

logical volume, E-1
low-level facilities, E-22
low-level facilities, octal read, E-22
low-level facilities, octal write, E-22
low-level facilities, octal set break, E-22
Mesa,E-1
outload debugging, E-2, E-8
output conventions, E-10
procedure calls, E-24
proceed from debugger, E-21
quit from debugger, E-21
remote debugging, E-2, E-9
runtime state, E-17
stack display, E-17, E-19
styles of debugging, E-1
Sword Tool, E-3, E-4
symbols, E-10
thaw,E-4
user interface, E-3
user.cm, E-32
userscreen, E-22

Sword Tool, E-3
Frozen process, E-4
Loadstate facilities, E-3
Process facilities, E-3

symbiote, 1-16
Symbiote menu, 1-16
symbol table, 17-1, 19-1,27-2
system heap

debugging, 25-2
System Overview, 1-1
TAB,4-2
table-compiled,23-10
TableCompiler, C-1

command line, C-2, C-5
Examples, C-5
Switches, C-6

tag item, 1-10
tail recursion, 19-4
Tajo, 1-2, E-2
TCP/IP Related Tools and Applications,

V-I
Arpa Getting Started, 33-1
ArpaCacheAddress, 34-1
ArpaChat, 35-1
ArpaFileServer, 38-1
ArpaFileTool,37-1
ArpaMailTooI,39-1
ArpaRemoteExec,36-1

TDE.log, 7-3
teledebug, 24-2, 24-18
Telnet Protocol, 35-1
text item, 1-10
Text Ops menu, 1-15
text subwindow commands, 1-21
text subwindows, 1-10

TFTP(Trivial File Transfer Protocol)
ArpaFileTooI, 37-1
ArpaMailServer, 38-1

thrashing, 23-1
thumbing, 1-8
Time, 15-3, A-10
timing statistics, 28-1, 28-8
token, 4-1
Tool Driver, 7·1

BNF for script files, 7-7
example script, 7-6
file requirements, 7-1
form subwindow, 7-2
operation, 7-9
script file, 7-1, 7-3
subwindows file, 7-9

tool execution
automated, 7-1

Tool.sws,7-1
tools, B-10, 1-3
Trace, 15-1
tracepoint, 15-1
tracepoints, III-13
trash bin, 1-11
Trident 315, A-2
TTY-emulation capability, 32-1
TTYTajo,32-13

interfaces exported, 32-14
program interface, 32-14
user interface, 32-13

Type
Executive command, 4-9

Uncaught Signal, 24-2
uninitialized variable checking, 19-5
Unload,4-9
upArrow, 4-2,10-3
user, 1-2
user command file, 1-21
user information, 6-1
user name, 6-1, 9-3

setting, 6-1
user password, 9-3

in command files, 9-3
user profile, 6-1, 9-3
User.cm

AccessGroups entry, 32-12
ArpaChat, 35-3
ArpaFileServer,38-2
ArpaFileTool, 37-5
ArpaMailTool, 39-8
ArpaRemoteExec, 36-3
CommandCentral, 18-2
debugger, 24-2, 24-32, E-32
Dictionary Tool, 2-2
Executive, 4-10
File Tool, 10-4

XDE User's Guide

File Window, 15-3
Formatter, 20-2, 20-5
Hardcopy, 16-4
HeraldWindow,5-2
IncludeChecker, 26-7
MFileServer, 31-2
Print, 16-4
user profile, 6-1

User.cm entry, 3-9
U serscreen, 24-17, E-22
userscreen command, III-13
USING,27-2
Utility Pilot client, 22-1
version stamp, 27-2, 27-3
Virtual Terminal

ArpaChat,35-1
ArpaRemoteExec, 36-1

volume, A·1
logical, A·1, A-4
physical, A-I

window
editable, 15-2
empty, 15-1, 15-2
non-editable, 15-2

Window Manager menu, 1-12
windows, 1-1
windowstates, 1-6
word,4·1
working directory, 4-4, 4-6,12-2
world-swap, 24-1, E-2, E-5
write date, 9-5
Write Protect Fault, 24-2
write-protectfauIt, III-15
write-protected directories, II-2
XDE boot switches, B-8
XFER, 28-1, 28-2
XNS FiIingprotocol, 31-1
Zap, 4-9
zone

debugging, 25-1, 25-2

11

Index

12

OFFICE SYSTEMS DIVISION

Reader's Feedback
Xerox's Technical Publications Departments' want to provide documents that meet
the needs of all our product user~. Your comments help us correct and improve our
pUblications. Please take a few minutes to respond. If you have comments on the
product this document describes, contact your Xerox representative.

1. Did you find any errors in this publication? What were they? On which pages?

2. Were there any areas that were hard to understand because of descriptions or
wording? What were they? Where?

3. Did this publication give you all the information you needed? If not, what was
missing?

4. Was this manual at the right level for your needs? If not, what other types of
publications do you need?

5. What one thing could we do to improve this manual for you?

NAME _____________________________________ DATE ________ __

TITLE _________________ COMPANY ______________________ _

ADDRESS __ __

CITY _________________ STATE ___________________ ZIP ______ _

XDE3.0-2001

	0_00001
	0_00002
	0_0001
	0_0002
	0_0002a
	0_0002b
	0_0003_TOC
	0_0004
	0_0005
	0_0006
	0_0007
	0_0008
	0_0009
	0_0010
	0_0011
	0_0012
	0_0013
	0_0014
	0_0015
	0_0016
	0_0017
	0_0018
	0_0019_Eratta
	0_0020
	0_0021
	0_0022
	0_0023
	0_0024
	0_0025
	0_0026
	1_00
	1_001_General_Tools
	1_002
	1_003
	1_004
	1_005
	1_006
	1_007
	1_008
	1_009
	1_01-01_DMT
	1_01-02
	1_011
	1_012
	1_013
	1_014
	1_015
	1_016
	1_017
	1_018
	1_019
	1_02-01_Dictionary_Tool
	1_02-02
	1_02-03
	1_02-04
	1_020
	1_021
	1_022
	1_023
	1_024
	1_025
	1_026
	1_03-01_Editor_Symbiote
	1_03-02
	1_03-03
	1_03-04
	1_03-05
	1_03-06
	1_03-07
	1_03-08
	1_03-09
	1_03-10
	1_04-01_Executive
	1_04-02
	1_04-03
	1_04-04
	1_04-05
	1_04-06
	1_04-07
	1_04-08
	1_04-09
	1_04-10
	1_05-01_HeraldWindow
	1_05-02
	1_06-01_Profile_Tool
	1_06-02
	1_07-01_Tool_Driver
	1_07-02
	1_07-03
	1_07-04
	1_07-05
	1_07-06
	1_07-07
	1_07-08
	1_07-09
	1_07-10
	2_001_File-Related_Tools
	2_002
	2_003
	2_004
	2_08-01_Brownie
	2_08-02
	2_08-03
	2_08-04
	2_09-01_FTP
	2_09-02
	2_09-03
	2_09-04
	2_09-05
	2_09-06
	2_09-07
	2_09-08
	2_10-01_File_Tool
	2_10-02
	2_10-03
	2_10-04
	2_10-05
	2_10-06
	2_11-01_Floppy_Commands
	2_11-02
	2_11-03
	2_11-04
	2_12-01_Search_Path_Tool
	2_12-02
	2_13-01_Compare
	2_13-02
	2_13-03
	2_13-04
	2_14-01_Find
	2_14-02
	2_14-03
	2_14-04
	2_15-01_File_Window
	2_15-02
	2_15-03
	2_15-04
	2_16-01_Print
	2_16-02
	2_16-03
	2_16-04
	3_001_System_Building_Tools
	3_002
	3_003
	3_004
	3_005
	3_006
	3_007
	3_008
	3_009
	3_010
	3_011
	3_012
	3_013
	3_014
	3_015
	3_016
	3_017
	3_018
	3_019
	3_020
	3_17-01_Binder
	3_17-02
	3_17-03
	3_17-04
	3_17-05
	3_17-06
	3_17-07
	3_17-08
	3_18-01_Command_Central
	3_18-02
	3_18-03
	3_18-04
	3_19-01_Compiler
	3_19-02
	3_19-03
	3_19-04
	3_19-05
	3_19-06
	3_19-07
	3_19-08
	3_20-01_Formatter
	3_20-02
	3_20-03
	3_20-04
	3_20-05
	3_20-06
	3_21-01_Makeboot
	3_21-02
	3_21-03
	3_21-04
	3_21-05
	3_21-06
	3_22-01_Make_DLion_Boot_Floppy_Tool
	3_22-02
	3_23-01_Packager
	3_23-02
	3_23-03
	3_23-04
	3_23-05
	3_23-06
	3_23-07
	3_23-08
	3_23-09
	3_23-10
	3_23-11
	3_23-12
	3_24-01_Debugger
	3_24-02
	3_24-03
	3_24-04
	3_24-05
	3_24-06
	3_24-07
	3_24-08
	3_24-09
	3_24-10
	3_24-11
	3_24-12
	3_24-13
	3_24-14
	3_24-15
	3_24-16
	3_24-17
	3_24-18
	3_24-19
	3_24-20
	3_24-21
	3_24-22
	3_24-23
	3_24-24
	3_24-25
	3_24-26
	3_24-27
	3_24-28
	3_24-29
	3_24-30
	3_24-31
	3_24-32
	3_24-33
	3_24-34
	3_24-35
	3_24-36
	3_25-01_DebugHeap
	3_25-02
	3_25-03
	3_25-04
	3_25-05
	3_25-06
	3_26-01_IncludeChecker
	3_26-02
	3_26-03
	3_26-04
	3_26-05
	3_26-06
	3_26-07
	3_26-08
	3_27-01_Lister
	3_27-02
	3_27-03
	3_27-04
	3_27-05
	3_27-06
	3_28-01_Performance_Tools
	3_28-02
	3_28-03
	3_28-04
	3_28-05
	3_28-06
	3_28-07
	3_28-08
	3_28-09
	3_28-10
	3_28-11
	3_28-12
	3_28-13
	3_28-14
	3_28-15
	3_28-16
	3_28-17
	3_28-18
	3_28-19
	3_28-20
	3_28-21
	3_28-22
	3_28-23
	3_28-24
	3_28-25
	3_28-26
	3_28-27
	3_28-28
	3_29-01_Statistics
	3_29-02
	3_29-03
	3_29-04
	4_001_Mesa_Services
	4_002
	4_30-01_Mail_Tools
	4_30-02
	4_30-03
	4_30-04
	4_30-05
	4_30-06
	4_30-07
	4_30-08
	4_30-09
	4_30-10
	4_30-11
	4_30-12
	4_30-13
	4_30-14
	4_30-15
	4_30-16
	4_30-17
	4_30-18
	4_30-19
	4_30-20
	4_31-01_MFileServer
	4_31-02
	4_31-03
	4_31-04
	4_32-01_Network_Executive_Tools
	4_32-02
	4_32-03
	4_32-04
	4_32-05
	4_32-06
	4_32-07
	4_32-08
	4_32-09
	4_32-10
	4_32-11
	4_32-12
	4_32-13
	4_32-14
	4_32-15
	4_32-16
	5_001_TCP-IP_Related_Tools_and_Applications
	5_002
	5_33-01_ARPA_Getting_Started
	5_33-02
	5_34-01_ArpaCacheAdr
	5_34-02
	5_35-01_ArpaChat
	5_35-02
	5_35-03
	5_35-04
	5_36-01_ArpaRemoteExec
	5_36-02
	5_36-03
	5_36-04
	5_37-01_ArpaFileTool
	5_37-02
	5_37-03
	5_37-04
	5_37-05
	5_37-06
	5_38-01_ArpaFileServer
	5_38-02
	5_38-03
	5_38-04
	5_39-01_ArpaMailTool
	5_39-02
	5_39-03
	5_39-04
	5_39-05
	5_39-06
	5_39-07
	5_39-08
	5_39-09
	5_39-10
	A-001_Othello
	A-002
	A-003
	A-004
	A-005
	A-006
	A-007
	A-008
	A-009
	A-010
	A-011
	A-012
	B-001_Getting_Started_Operations_Guide
	B-002
	B-003
	B-004
	B-005
	B-006
	B-007
	B-008
	B-009
	B-010
	B-011
	B-012
	B-013
	B-014
	B-015
	B-016
	C-001_Table_Compiler
	C-002
	C-003
	C-004
	C-005
	C-006
	D-001_Parser_Generator_System
	D-002
	D-003
	D-004
	D-005
	D-006
	D-007
	D-008
	D-009
	D-010
	D-011
	D-012
	D-013
	D-014
	D-015
	D-016
	D-017
	D-018
	D-019
	D-020
	D-021
	D-022
	D-023
	D-024
	D-025
	E-001_Sword_Debugger
	E-002
	E-003
	E-004
	E-005
	E-006
	E-007
	E-008
	E-009
	E-010
	E-011
	E-012
	E-013
	E-014
	E-015
	E-016
	E-017
	E-018
	E-019
	E-020
	E-021
	E-022
	E-023
	E-024
	E-025
	E-026
	E-027
	E-028
	E-029
	E-030
	E-031
	E-032
	E-033
	E-034
	E-035
	E-036
	F-001_DF_Software_Reference
	F-002
	F-003
	F-004
	F-005
	F-006
	F-007
	F-008
	F-009
	F-010
	F-011
	F-012
	F-013
	F-014
	F-015
	F-016
	F-017
	F-018
	F-019
	F-020
	F-021
	F-022
	F-023
	F-024
	F-025
	F-026
	F-027
	F-028
	F-029
	F-030
	I-001
	I-002
	I-003
	I-004
	I-005
	I-006
	I-007
	I-008
	I-009
	I-010
	I-011
	I-012
	replyA

