XDE User Guide

XEROX

610E00140
December 1986

Xerox Corporation
information Systems Division
XDE Technical Services

475 Oakmead Parkway
Sunnyvale, California 94086

Copyright © 1986, Xerox Corporation. All rights reserved.
XEROX @, 8010,and XDE are trademarks of XEROX CORPORATION.

Printed in U.S. A.

Xerox Development Environment

XDE User’s Guide

XDE3.0-2001
Version 3.0
November 1984

PRELIMINARY

Office Systems Division
Xerox Corparation

3450 Hillview Avenue

Palo Alto, California 94304

Xerox Development Environment

Notice

This manual is the current release of the Xerox Development Environment (XDE) and may be revised by Xerox
without notice. No representations or warranties of any kind are made relative to this manual and use thereof,
including implied warranties of merchantability and fitness for a particular purpose or that any utilization
thereof will be free from the proprietary rights of a third party. Xerox does not assume any responsibility or
liability for any errors or inaccuracies that may be contained in the manual or have any liabilities or obligations
for any damages, including but not limited to special, indirect or consequential damages, arising out of or in
connection with the use of this manual or products or programs developed from its use. No part of this manual,
either in whole or part, may be reproduced or transmitted mechanically or electronically without the written
permission of Xerox Corporation.

Copyright ¢ 1984 by Xerox Corporation.
All Rights Reserved.

A ——————

————

Prefaée

This document is one of a series of manuals written to aid in programming and operating
the Xerox Development Environment (XDE).

Comments and suggestions on this document and its use are encouraged. The form at the
back of this document has been prepared for this purpose. Please send your comments to :

Xerox Corporation

Office Systems Division

XDE Technical Documentation, M/S 37-18
3450 Hillview Avenue

Palo Alto, California 94304

Preface

Table of contents

General tools
I1 System overview . .
I.11 User interface .
I1.1.2 Development scenario .

L2
1.3

1.4

L5

1.6
1.7

1.1
1.2

I.1.3 Hardware . .
114 Software components
Definition of terms

User interface .
1.3.1 Windows and subwindows .
1.3.2 Text manipulation .

1.3.3 Menus . .

1.3.4 Keyboard commands

The user command file

I14.1 Format of the user command file
Documentationroadmap
151 XDE Concepts and Principles .
1.5.2 The XDE User‘s Guide .

1.5.3 Mesa Language Manual

1.5.4 Pilot Programmer‘s Manual
1.5.5 Mesa Programmer’s Manual
1.5.6 Appendices

Typographical conventions

Other features, other tools

DMT

Files
User interface

I-1
I-1
I-1
I-2
I-2
I-3
I-5
I-6
I-10
I-12
I-17
I-21
I-21
I-24
I-24
1-24
I-24
1-24
I-25
I-25
I-25
1-25

1-1
1-1

iii

Table of contents

2.1
2.2
2.3

2.4

3.1
3.2

3.3

3.4

41
4.2

4.3

5.1
5.2

5.3

iv

Dictionary tool

Files

User interface
Dictionary tool

2.3.1 Commands
2.3.2 File format
User.cm .

Editor Symbiote

Files

User Interface

3.2.1 Editor menu

Search and pattern matching .
3.3.1 Search .

3.3.2 Replace

3.3.3 Character classes and closure .

3.3.4 Examples . .
3.3.5 Editor as programmer's tool
User.cm file entries

Executive

Files
User interface .
4.2.1 Editing functions

4.2.2 Command line expansion
4.2.3 Command line interpretation .
424 Built-in commands

425 Exec Ops menu
User.cm processing

HeraldWindow

Files

User interface

5.2.1 Boot From: menu .
User.cm processing

2-1
2-1
2-2
2-2
2-2

3-1
3-1
3-1
3-5
3-5
3-6
3-6
3-6
3-7
3-9

4-1
4-1
4-1
4-2
4-3
4-3
4-10
4-10

5-1
5-1

5-2

XDE User's Guide

IT

6.1

71
7.2

7.3

7.4
7.5
7.6

Profile tool

User interface

Tool Driver

Files

User interface

7.2.1 Message subwindow
7.2.2 Form subwindow
7.2.3 File subwindow
Scriptfiles
7.3.1 Script file format
7.3.2 Sample script
BNF for script files

The subwindows file .
Running the Tool Driver .

File-related tools

II.1
I1.2
1.3

8.1
8.2
8.3

8.4

9.1
9.2

9.3

File system conventions
File names
File-related tools .

Brownie

Files

User interface

Script file .

8.3.1 Parameters
8.3.2 Commands

Example .

FTP

Files

User interface ..

9.2.1 Command line syntax .
9.2.2 Command line switches
9.2.3 Commands and examples
9.2.4 Command line errors
Tutorial

6-1

7-1
7-1

7-2
7-3

7-3
7-6

7-9
7-9

II-1
II-1
II-2

8-1
8-1
8-2
8-2
8-3

9-1
9-1
9-1
9-1
9-3
9-6
9-7

Table of contents

10

10.1
10.2

10.3
10.4

11

11.1
11.2

11.3
11.4
11.5

12

12.1

13

13.1
13.2

14

14.1
14.2

14.3

vi

File Tool

Files

User interface

10.2.1 Form subwindow

10.2.2 Command subwindow .
10.2.3 List Options window
User.cm

Operational notes

Floppy commands

Files

User interface

11.2.1 Common argument definitions
11.2.2 Commands

Partial files

Examples.

Error messages

Search Path Tool

User interface

12.1.1 Form subwindow
12.1.2 Directories menu
12.1.3 Search Path menu .

Compare

Files

User interface e

13.2.1 The Compare Tool window .

13.2.2 Compare via the Executive window

Find

Files

User interface

14.2.1 Switches .
14.2.2 Switches on file names .
14.2.3 Special characters .
Examples.

10-1
10-1
10-2
10-3
10-4
10-4
10-5

11-1
11-1
11-1
11-1
11-3
11-3
11-4

12-1
12-1
12-2
12-2

13-1
13-1
13-1
13-3

14-1
14-1
14-1
14-2
14-2
14-3

XDE User's Guide

I

15

15.1
15.2

15.3

16

16.1
16.2

16.3
16.4

File Window

Files

User interface ..
15.2.1 Debugger Ops menu
15.2.2 File Window menu
User.cm .

Print

Files

User interface

16.2.1 Switches

16.2.2 Defaults
Formatting

User.cm entries

System-building tools

1.1
II1.2
IIL.3

II1.4

1.5

I11.6

Files

Creating a source file .

Creating an object file

111.3.1
II1.3.2
111.3.3

Running a program in the Tajo environment .

Compiling a program
Binding a configuration
Summary .

I11.4.1 Snarfing and running .
Il1.4.2 Using Command Central
I11.4.3 Summary .

Making boot files . .

I11.5.1 Packaging a system

I11.5.2 Package operator

II1.5.3 Using MakeBoot

I11.5.4 Summary .

Using the Debugger

I11.6.1 Invoking CoPilot

I11.6.2 Talking to the Debugger
I11.6.3 Debugging a client program
I11.6.4 Pilot symbols files .

II1.6.5 Interpreting signals

I11.6.6 Address and write-protect faults
I11.6.7 Tracing an address fault

15-1
15-1
15-1
15-2
15-3

16-1
16-1
16-2
16-3
16-4
16-4

II-1
II-1
II1-2
II1-2
I1I-3
I11-4
I1I-5
II1-5
II1-5
II1-6
II1-6
II1-6
II1-6
II-7
II1-7
II-7
-7
I1I-8
I11-8
II1-14
I11-14
III-15
I11-16

vii

Table of contents

.7
II1.8
17

17.1
17.2

17.3
174
17.5
18

18.1
18.2

18.3
18.4
19

19.1
19.2

19.3
19.4
19.5
19.6

20

20.1
20.2

20.3

viii

Program-building tools
Program analysis toels

Binder

Files

User interface .
17.2.1 Command line .
17.2.2 Switches

17.2.3 Associating files with modules and configurations .

Examples.
Error messages

Current limitations

Command Central

Files

User interface

18.2.1 Message subwindow

18.2.2 Command subwindow .

18.2.3 Log subwindow.

Communication between client and development volumes
User.cm .

Compiler

Files

User interface .
19.2.1 Command line .
19.2.2 Switches
Examples

Error messages

Compiler failures .
Current limitations

Formatter

Files

User interface .
20.2.1 Command line .
20.2.2 Switches
Formatting rules .

20.3.1 Spacing

I1I-18
I11-18

17-1
17-2
17-2
17-3
17-4
17-4
17-5
17-7

18-1
18-1
18-2
18-2
18-3
18-3
18-4

19-1
19-1
19-2
19-3
19-6
19-6
19-8
19-8

20-1
20-1
20-2
20-2
20-3
20-3

XDE User's Guide

20.4
20.5
20.6
21

21.1
21.2

22

22.1
22.2

23

23.1
23.2
23.3
23.4

23.5

24

241
24.2

24.3

20.3.2 Structure
User.cm

Examples
Formatter failures

MakeBoot

Files

User interface .
21.2.1 Commands.
21.2.2 Switches

21.2.3 Parameter files.
21.2.4 Examples .

MakeDLionBootFloppy Tool

Files

User interface

22.2.1 Form subwindow

22.2.2 Command subwindow .

Packager

Files

User interface

Information about modules

Packaging description language .

23.4.1 Code segments .

23.4.2 Discarded code packs

23.4.3 Frame packs

23.4.4 Merging e e
23.4.5 Rules governing packaging descriptions
23.4.6 Placement of multiword read-only constants
23.4.7 Example

Operation.

Debugger

Files e
Installing and invoking CoPilot
24.2.1 Teledebugging .

User Interface .
24.3.1 Talking to the Debugger

20-4
20-5
20-5
20-6

21-1
21-1
21-2
21-3
21-3
21-5

22-1
22-1
22-1
22-2

23-2
23-2
23-4
23-5
23-5
23-8
23-9
23-9
23-10
23-11
23-11
23-12

24-1
24-1
24-2
24-3
24-3

ix

Table of contents

24.4

24.5
24.6
24.7

25

25.1
25.2

25.3

26

26.1
26.2

26.3
26.4

27

27.1
27.2

24.3.2 Debugger commands

24.3.3 The Debugger interpreter .
Signal and error messages

24.4.1 Entering the Debugger.
24.42 Symbol lookup .

24.4.3 Unrecognized structures
2444 Command execution errors.
24.4.5 Breakpoints

24.4.6 Displaying the stack

24.4.7 Interpreter.

User.cm .

CoPilot interpreter grammar .
CoPilot summary .

DebugHeap

Files

User.cm . .

25.2.1 Form subwindow
25.2.2 DebugHeap menu .
Example .

IncludeChecker

Files

User interface .
26.2.1 Tool interface .
26.2.2 Command line .
26.2.3 Operating switches.
Examples.

User.cm .

Lister

Files

User interface

27.21 Commands useful to general Mesa users
27.2.2 Commands useful to wizards

24-8
24-19
24-23
24-23
24-25
24-26
24-26
24-27
24-29
24-29
24-32
24-33
24-34

25-1
25-2
25-2
25-3
25-4

26-1
26-1
26-2
26-4
26-4
26-5
26-7

27-1
27-1
27-2
27-3

XDE User's Guide

Iv

28 Performance tools
28.1 Control Transfer counter tool .
28.1.1 Files

28.1.2 Userinterface .
28.1.3 Operation .
28.1.4 Limitations
28.1.5 Getting started.
28.1.6 Sample session.

28.2 Performance Measurement Tool .

28.2.1 Files
28.2.2 Concepts
28.2.3 Definition of terms.
28.2.4 User interface .
28.2.5 Operation .
28.2.6 Limitations
28.2.7 Getting started.
28.2.8 Sample session .
28.3 Spy ..
28.3.1 Files .
28.3.2 User interface .
28.3.3 Operation .
28.3.4 Getting started.
28.3.5 ‘Error messages.
28.3.6 Limitations
28.4 Ben .
28.4.1 Files

29 Statistics

29.1 Files

29.2 User interface
29.2.1 Switches

29.3 Types of statistics.

29.4 Example .

Mesa Services

30 Mail tools

30.1 Mail Tool .
30.1.1 Files .
30.1.2 User interface .

28-2
28-2
28-2
28-4
28-5
28-6
28-6
28-8
28-9
28-9
28-9
28-10
28-13
28-14
28-15
28-15
28-17
28-17
28-17
28-19
28-19
28-20
28-21
28-21
28-21

29-1
29-1
29-1
29-2
29-2

30-1
30-1
30-1

xi

Table of contents

3

30.1.3 The Mail Tool via the Executive window 30-7
30,14 SendTool 307
30.2 MailFileScavenger 8013
30.2.1 Files 3013
30.2.2 Userinterface 3013
30.3 Maintain 3013
3031 Files 3014
30.3.2 Userinterface 3014

31 MFileServer

31.1 Files e 8 |
31.2 Userinterface 31-1
31.21 Formsubwindow 31-2
31.2.2 Executive commands 31-2
31.3 User.cmentries 31-2
31.4 Operationalnotes 313
32 Network executive tools
32.1 Chat C e e e e e e e 32-1
32.1.1 Files 32-1
32.1.2 Userinterface 32-1
32.1.3 Specialkeys 32-3
32.1.4 ChatUser.cm L. 32-4
32.2 NSTerminal 32-4
32.2.1 Files 32-4
32.2.2 Settingup 32-4
32.2.3 Userinterface 32-5
32.24 Openingaconnection 329
32.2.5 NSTerminal Userem 3210
32.2.6 User.cmexample, 3210
32.3 Remote Executive 321
32.3.1 Files 31
32.3.2 Userinterface 3211
32.3.3 Commands - S B |
32.34 Remote Executive Userem. 3212
32.4 TTY Tajo O 7789 K
32.4.1 Files and installation 3213
32.4.2 Userinterface 3213

32.4.3 Commands Lo Lo, 32-14

XDE User's Guide

TCP/IP Related Tools and Applications

33

33.1

34
34.1
34.2
35

35.1
35.2

36

36.1
36.2

37

37.1
37.2

37.3
37.4

32.4.4 User.cm .
32.4.5 Program interface .

ARPA Getting Started

Installing the ARPA network protocols in XDE

ArpaCacheAddress

Files
User Interface

ArpaChat

Files

User Interface .

35.2.1 Message subwindow

35.2.2 Form subwindow

35.2.3 TTY subwindow

35.2.4 Special keys .o
35.2.5 ArpaChat User.cm entries .

ArpaRemoteExec

Files

* User Interface

36.2.1 Commands

36.2.2 Remote Executive User.cm.

ArpaFileTool

Files

User Interface

37.2.1 Form subwindow

37.2.2 Command subwindow .
37.2.3 Options window

37.24 Options command subwindow .

37.2.5 Options form subwindow
User.cm entries

References

32-14
32-14

33-1

34-1
34-1

35-1
35-1
35-1
35-1
35-3
35-3
35-3

36-1
36-1
36-2
36-3

37-1-
37-1
37-1
37-2
37-3
37-3
37-3
37-5
37-5

xiii

Table of contents

38 ArpaFileServer
38.1 Files
38.2 User Interface ...
38.2.1 Tool window interface .
38.2.2 Executive interface
38.2.3 Server activity log .
38.3 User.cm Entries .
39 ArpaMailTool
39.1 Files
39.2 User Interface L
39.2.1 Text subwindow - Table of contents
39.2.2 Form subwindow
39.2.3 Options window
39.3 ArpaSendTool
39.3.1 Form subwindow
39.3.2 Text subwindow
39.3.2.1 Subject: field
39.3.2.2 To:field
39.3.2.3 Reply-To: field .
39.3.24 cc:field.
39.3.2.5 bec: field
39.3.2.6 Message body. .
39.3.2.7 User.cm entries
394 MailFileScavenger
39.4.1 Files .
39.4.2 User interface .
Appendices
A Othello
Al Files .
A2 Running Othello .
A3 User interface

Xiv

A3.1 Accessible disk drives. .

A32 Checking a pack
A33 Physical volumes

38-1
38-1
38-1
38-2
38-2
38-2

39-1
39-1
39-2
39-3
39-4
39-5
39-6
39-7
39-7
39-7
39-7
39-7
39-8
39-8
39-8
39-10
39-10
39-10

A-l
A-l
A-2
A-3
A-3

XDE User's Guide

B.2

B.3

B.4

B.5

B.6

C1
C.2
C3
C4

C5
C.6
C17
(OX-]
C.9
C.10

A34 Logical volumes e . A-4
A35 Initial microcode, Pilot microcode, diagnostic microcode, germ, and boot filesA-6
A3.6 Time e A-10
A3.7 Routing tables and echo user e e A-11
A3.8 Accessing the debugger during early initialization of Pilot . A-11
A39 Exiting Othello A-12
A.3.10 Special commands . A-12
Getting started/Operations guide
Booting B-1
B.1.1 The maintenance panel B-2
B.1.2 Standard booting B-2
Setting up volumes: initializing your system . B-4
B.2.1 Example of initializing volumes B-5
B.2.2 Booting volumes from other volufmes B-6
B.2.3 Boot switches . B-6
- B.24 Xerox Development Environment boot switches B-8
Installing boot files B-9
B.3.1 Initializing debuggers . B-9
B.3.2 Setting debugger pointers . B-10
Installing the development environment . B-10
B4.1 Tools . B-10
B.4.2 The user command file . B-11
Recovering from disasters . B-11
B.5.1 Dandelion boot microcode maintenance panel error codes . B-12
B.5.2 Pilot maintenance panel codes for errors B-12
B.5.3 Pilot error messages B-14 .
Ending a session . B-16
TableCompiler
Mesa object file format C1
Using the output C1
ModuleMaker C-2
StringCompactor . C-3
C41 Example C-3
File format C-4
Options » .. C-4
Command line syntax and switches C-5
Examples o C-5
Switches on the input file name C-6
Switches on auxiliary file names . C-6

XV

Table of contents

D Parser Generator System
D.1 Using the Parser Generator ~ D-1
D.2 Formattheinputfile D-2
D.3 Output of the Parser Generator D-3
D.3.1 The inputrecord D-4
D.3.2 Thelogfile. D-4
D.4 The modulefile L. D-9
D.5 The binaryfile L. D-9
D.5.1 Binaryfileformat D-9
D.5.2 The LR and firstfiles. . -. D1
D.6 The Preprocessor D12
D.7 Operation D13
D.7.1 PGSoperation Da3
D.7.2- TableCompiler operation. D-16
D.8 Example D17

E Sword Debugger

E.1 Events 0L E-1
E.2 Stylesofdebugging E-1
E.21 Localdebugging E-1
E.2.2 QOutload debugging. E-2
E.2.3 Remotedebugging. E-2
E.3 Userinterface L. . E-3
E.3.1 SwordTool. L. E-3
E.3.2 Interpreter Tool E-5
E.4 Debuggercommands E-14
E.41 Breakpoints E-14
E.4.2 Display runtimestate E17
E4.3 Currentcontext E-20
E.4.4 Programcontrol E21
EA4.5 Low-level facilities. E-22
E.5 The Debugger interpreter. E-22
E5.1 Statementsyntax E-=23
E.5.2 Loopholes E-=23
E.5.3 Subseripting E-23
E.5.4 Explicit qualification vs qualification in the currentcontext . . . E-24
E.5.5 Type expressions E-24
E.5.6 Radix conversion E-24
E.5.7 Arithmetic expressions. E24

xvi

XDE User's Guide

E.5.8 Procedure calls.
E.5.9 Sample expressions

E.6 Signal and error messages.
E6.1 Entering the Debugger.
E.6.2 Symbol lookup .
E.6.3 Unrecognized structures
E.6.4 Command execution errors.
E.6.5 Breakpoints

E.

6.6 Displaying the stack

E.6.7 Interpreter.
E.7 User.cm
E.8 Mesa Interpreter grammar

E.9 Commands summary .

Index

Hlustrations

Figurel.1:
Figurel.2:
FigureI.3:
Figurel.4:
Figure 1.5:
Figure I.6:
FigureI.T:
Figure 3.1:
Figure 3-2:
Figure 7.1:

User interface .

Scrollbar

Windows

Form subwindow

Menus .

Text window .
Keyboard
Editor Symbiote subwindow
Editor property sheet .

Tool Driver executive window .

Figure 10.1: File Tool window

Figure 12.1 : Search Path Tool window

Figure 13.1: Compare Tool window

Figure 18.1: Command Central tool window
Figure 22.1: MakeDLionBootFloppy tool
Figure 24.1: CoPilot .
Figure 25.1: DebugHeap tool window .

Figure 26.1: IncludeChecker tool window .

Figure 28.1: Control Transfer Counter tool

Figure 28.2:
Figure 28.3:

Figure 28.4: Spy tool window
Figure 30.1: The MailTool

Figure 30.2:

Figure 30.3: Maintain tool window (owner level)

PerfPackage window with node commands.
PerfPackage window with histogram commands .

Maintain tool window (normal level) .

E-24
E-25
E-26
E-26
E-26
E-27
E-27
E-28
E-29
E-29
E-32
E-32
E-33

I-5
I-7
I-8
1-9
I-12
I-16
I-18
3-1
3-3
7-2
10-1
12-1
13-2
18-1
22-1
24-3
25-2
26-2
28-2
28-11
28-12
28-18
30-3
30-15
30-15

xvii

Table of contents

Figure 31.1: MFileServer .
Figure 32.1: Chat .
Figure 32.2: NSTerminal
Figure 39.1: ArpaMailTool .
Figure 39.2: ArpaMailTool Options Window and SMTP Debugger
Figure 39.3: ArpaSendTool

Figure E.1:Sword . .

Figure E.2: LocalWorld with Interpreter Optlons .

xviii

31-1
32-2
32-5
39-2
39-5
39-6

E-3

E-6

Errata

Tajo

On a 6085 keyboard, the cASE key has the same function as KEYBOARD-L on a 8010
keyboard. It will make the selection lower case, and if shifted it will make the
selection upper case.

PROP'S-CR "unindents” one level. For example, you can type it instead of a CR when you
want to close a scope on the next line.

FileWindows.Save[] from the debugger saves Empty windows to a file named
"ScratchWindows.saved" on your client volume. You need FileWindows.bcd on
your debugger volume to use this command from the debugger.

ScratchSources.Save[] saves all scratch sources to a file named
"ScratchSources.saved." Unlike FileWindows.Save[], this one saves your
mail send windows as well as your Empty Windows, but doesn't save FileWindows
that you were editing. You need ScratchSources.bcd on your debugger volume to
use this command from the debugger.

A setPositionBalanceBeam affects the way text is displayed in your windows.
When you do a FIND or Positionin a window, the position in question is displayed at
the top of the window in "top" mode (the way Tajo has always worked), in the middle in
"middle" mode, or at either the top or bottom, which ever is more convenient, in
"topBottom" mode. TopBottom mode minimizes the repainting needed when you jump
between various positions in the window. Top mode only saves repainting when
jumping backwards. Middle mode doesn't save much at all, but it always positions
things of interest in the middle of your window. Top mode is the default. A sample
User.cmentry is:

[System]
SetPositionBalanceBeam: top | middle| topBottom

A caretShape switch selects between two different styles of carets. The default is
"triangle,"” which gives you the standard Tajo TextSW and TTYSW carets. With
caretShape = IBeam, however, you get an I-Beam caret in TextSWs and a gray

Errata

rectangle in TTYSWs. You can set this switch from the System section of ypur
User.cm:

[System]
CaretShape: triangle | iBeam

MenuSymbiotes can have their own font. You can specify what font you want them to
have in the FileWindow section of your User.cm. The file name should have the
.strike extension onit. The file should be on your root directory, < >, so the system
can find it even before your search path is set up. You can also specify how many lines
you would like your MenuSymbiotes to be. The MenuSymbioteLines field in your
User.cm can be a real jnumber, such as 2.37. It may take a few tries to get the
MenuSymbiotes looking just the way you want them to. A sample User.cmentry is:

[FileWindow]
MenuSymbioteFont: MenuSymbolsFont.strike
MenuSymbioteLines: 1

When you hit DoIt in a FileWindow, several default extensions are tried. These
defaults (.mesa .config .cm)can be changed by specifying a list of extensions in
the FileWindow sections of your User.cm. Any string starting with a '.' is allowed.
For Example:

[FileWindow]
Extensions: .mesa .config .cm .doc .df .log

J.Last positions the last line of the file in the middle of your window (even if you
don't have SetPositionBalanceBeam = middle).

If the Notifier is busy and is not taking any page faults, Shift-STOP won't take you to
the debugger. In this situation, use Shift-Shift-STOP to get to the debugger. If you must
do this, you can’t execute Interpret-Calls from the debugger.

When chording the mouse buttons to bring up a menu, release the POINT (=left=red)
button as soon as you have brought up the menu. The menu stays up as long as you
hold down the ADJUST button. Address faults may occur if you release the ADJUST button
before releasing the POINT button when using menus.

Avoid running Tajo or CoPilot with extremely full volumes. Tools can fail otherwise.

Three boot switches have been added to set the parameters of the system zone:

'[tiny initial: 4 pages, increment: 4 pages, large node: 128
'$ standard initial: 40 pages, increment: 20 pages, large node: 260
'] large initial: 100 pages, increment: 50 pages, large node: 260

The largest size specified by the switches is the one used. If no switch is specified, the
default switch '$% is used. Four-page uniform swap units are used throughout.

Reminder: the 'I boot switch causes all TIP tables to be re-initialized, which means
all existing . TIP files are ignored, and new ones are written as needed.

XDE User's Guide

Debugger

NEXT and NEXT-DELETE search from the insertion point, not the selection.

FileSystém: If some tool in CoPilot gives the message that it could not close a volume,
try to figure out why the volumeAboutToClose was cancelled. Fix the error, then
close the volume manually by using the Exec's CloseVolume command. If you still
can’t close the volume, you must reboot your machine before proceeding to the client.
If you open your client volume, or any volume readable from your client volume, for
write, you must not proceed to your client.

The symbols for HeapImpl are in UnpackedHeapImpl.bcd. Once retrieved, Copilot
realizes where the symbols are unless it has already given the "No symbols for
HeapImp’l" message. In this case, after retrieving UnpackedBeapImpl.bcd, you
have to tell Copilot to either

ATtach Symbols global frame: x Filename: UnpackedHeapImpl.bcd
or

T Nvalidate caches [Confirm]
--undocumented, done by CONTROL-N <cr >

If you first interpret an expression containing a multi-word constant identifier and
later try to interpret that (or another expression) containing the same multi-word

constant identifier, CoPilot displays the error message "!Literal problem.
Invalidate Caches (CONTROL-N) and try again." Thisisa work around.

Don't delete .symbols files or .bed files that CoPilot has used for symbols. If you
must delete such a file, you can improve your chances of CoPilot working by
invalidating CoPilot's caches (CONTROL-N command).

The syntax specifying a host to CoPilot's Remote Debug command as a network
address is: "net .host." (note the two periods; numbers are octal only). The command

also recognizes any of the other formats documented in the AddressTranslation
chapter of the Mesa Programmer's Manual.

You can set conditional breaks of these forms:
1. <number > -- copilot breaks every <number >th occurrance
2. <expression> <relation> <expression>
where
<relation> isoneof < <= =>=> §}and
<expression> isone of the following:
a. constant

b. local variable ,
¢. parameter or return result at ENTRY/EXIT

Errata

Executive

Tools

d. global variable

e. pointerToRecord.field -- note that
pointerToRecord.array[constantExpression] is legal

f. pointerToArray[constantExpression]

pointerToSequence[constantExpression]

descriptor[constantExpression]all or these values can be [1..16] or 32 bits

in length

5

To go backward in the stack, use "b" or "jump -n.”

Hex numbers may be entered with an 'H or 'h suffix. Relations are implemented
(=, #, >, <, >=, <=). Real numbers and their operations are implemented.

To get concrete values of opaque types, use Attach Opague. For example,
ATtach Opaque: Window.Object Filename: WindowImplB

causes all Window.Objects to be printed as WindowImplB$Object. The attachment
remains in effect until a new session.

The debugger supports multiple remote debuggers.
A sample debugger User.cmentry is:

[Debugger]

Boot: VolumeName

cRadix: octal | decimal | hex
cSigned: TRUE |FALSE

iRadix: octal I decimal ' hex
iSigned: TRUE | FALSE

pRadix: octal | decimal
l1pRadix: octal | decimal
relRadix: octall decimal
unspec: CARDINAL | INTEGER
elements: ArrayElementsToShow
chars: StringCharactersToShow

The commands Floppy.~ erase and Floppy. scavenge can be called from
the executive.

Compare does not work for files on NS file servers, and ignores more than 5,120 lines
of a file.

MakeDLionBootFloppyTool now has an option to let you reserve the last cylinder for
diagnostics. The user interface has changed slightly. The command formSW has
changed to contain three booleans and a command:

XDE User's Guide

Format ReservelLastCylinderForDiagnostics 1InstallFiles Start!
After selecting the desired options, select Start!

® Brownie won't transfer Non-XDE file from NS file servers. In particular, long file
names, non-standard file types (such as ViewPoint file types), and multi-segmented
files (such as ViewPoint documents) are not supported.

® The List/f and List/b commands of FTP have a syntax different from that
described in the XDE User Guide. Only one of the /£ or /b switches can be used and it
must be the last switch. After one of these switches is seen, the rest of the command
line is assumed to be a list of files. The new syntax is:

>FTP List/f date-with-no-spaces <files>
>FTP List/f "date with spaces™ <files>

The date can be in any valid format for dates. The /£ switch lists the files that have a
create date after the date given. The /b switch lists those files with a create date
before the date given.

Example:

> FTP RamRod Dir/c AMesa List/dalf 10-Oct-84 '*
® Command Central and the Run.” and Load.~ commands of the Executive now
recognize the v switch, which causes version mismatches to be ignored.

® There are new built-in Exec commands. Protect.” changes the protection status of
files and directories. Registry.” sets the default registry. Clearinghouse. ~ sets
the default domain and organization. You must execute the Login command after the
Clearinghouse command in order to update the Clearinghouse of the logged in user.
Type "Help.~ <command>"in the Executive window for more information.

® When trying to re-execute an Executive command by selecting and stuffing a previous
command, you may accidentally select the prompt character '>'. If so, the command
that the Executive tries to run will start with the character > and will not match any
of the registered commands. However, it will match the corresponding file when the
Executive tries its autoload heuristic, causing the Executive to load another instance
of your bed.

® You can specify the font to use on the command line. For example:
>Formatter /-tikg Souvenir/f Def.mesa Impl.mesa

The 'f' switch says that this is a font. It should come after the global switches and
before any files to be formatted. Note that no size is given, just the name of the font.
The formatter picks 10 point for portrait and 8 point for landscape. There are also new
User.cmentries for the formatter:

Errata

Librarian

[Formatter]
LandscapeFont: Souvenir
PortraitFont: Classic

® The /k (Output Packager Command) switch writes Packager commands in the output

file that make Packager source and object files consistent (default TRUE).

Makeboot contains some new options and some old options have been removed. The
GFT entry is obsolete in the bootmesa file. The gftLength command line argument is
also obsolete.

In the bootmesa file the options:

LOADSTATEMODULES: number
LOADSTATEBCDS: number

are now available. These items set the number of empty module and bed slots you
want in the initial LoadState. Such entries are used when, for instance, modules are
loaded or NEW'ed. This number does not include the modules and beds in the boot file.
In the command line, the options:

l1sModules: number
1sBcds: number

are now available. These items override the numbers in the parameter file given by
LOADSTATEMODULES and LOADSTATEBCDS, respectively. They have the same
meaning as LOADSTATEMODULES and LOADSTATEBCDS, respectively. Since Pilot
automatically expands the loadstate as necessary, these numbers are optional and
need not be accurate. The /u switch may be added to the MakeBoot command for
UtilityPilot-based bootfiles. This switch has no effect on program execution but
makes the bootfile smaller by eliminating unnecessary data.

With multiple bootmesa files, the last file takes precedence for all parameters except
IsModules, lsBcds, and processes, in which cases the first bootmesa file takes
precedence. Parameters on the command line override those in a bootmesa file.

Also, MakeBoot takes "\nnn" boot switches in its command line if they are enclosed in
double quotes, such as:

MakeBoot OthelloTriDLion[parm: UtilityPilot, parm:
UtilityCommunication, switches: "\372"]/dhu

The Set Backup Pathcommand also prompts for the number of backup versions to
keep. It keeps this number of copies of the data base index and record files for recovery
purposes. Only one version is necessary; additional copies are simply precautionary.

Example:

LS!Set Backup Path
Which database?

XDE User's Guide

1 Mesa-Libjects

2 Pilot-Libjects

Enter choice number: 2

Path to back up files for this data base: (Rasp:osbu

north)LibrarianBackup/
Number of backup versions to keep (1..100): 2

® The Checkin Libject command allows administrators to check in libjects checked
out by someone other than themselves. It prompts for the data base name and libject

to be checked in. Example:

LS!Checkin Libject
Which database?
1 Mesa-Libjects
2 Pilot-Libjects
Enter choice number: 2
Libject name: FileTransfer.df
Checking in FileTransfer.df ... Done.

® Strong authentication is now supported.

Internal Tools

® Filename/F (read commands from a file) for Chat doesn't work. Chat stuffs initial
commands into its window when a connection is opened if the autologin feature is
enabled. The commands stuffed can be specified in the User .cmas follows:

[Chat]
machine: quotedStringWithCarriageReturns

booter: "execpupchat /u vaxc
"

oxnard: "sets <main>me <main>

® TheProtect.~ command isn't in TTYTajo.

Errata

General tools

A text item is a display string that you may modify using the editing functions (see
the section in this chapter on Text manipulation). A text item is distinguished from
other form items by the ": " (note the space after the colon) appended to a text form
item keyword. Several accelerators are available for text form items. Clicking Point
over the keyword selects all of the text in the form item and moves the type-in point
to the end of the text. For example, clicking Point over Password: in the Profile
Tool causes the type-in point to be positioned after the colon, ready for you to type in
your password. Generally, clicking the Adjust button over the keyword deletes the
text and sets the type-in point.

Fine point: When a password is entered, an asterisk is displayed for each character typed.

A numeric item is like a text form item, except that only strings representing
numbers may be modified. A numeric item is distinguished from other form items
by the "=" (note the space after the equal sign) appended to the keyword.

A tag items is a text string used to annotate a form. A tag item labels something thst
appears either elsewhere on the screen or entirely off the screen.

Menu prompts are always available for enumerated form fields and are optional in
some textual form fields. When you chord the mouse buttons with the cursor over
the keyword for an enumerated field, a menu of allowed values for the form item is
displayed. Choosing one of the values from the menu sets the form item to that
value. Similarly, when you chord with the cursor over the keyword for a textual
field, a menu of character strings is isplayed. Choosing one of the items (strings)
from the menu will cause the menu string to be appended at the current position of
the type-in point.

Specific form items are described in later chapters with the tools to which they belong.

1.3.1.4.2 Text subwindows

Most text display, other than in form subwindows, occurs within text subwindows. Text
subwindows may be associated with a file that contains the text. A TextOps menu is
supplied with a text subwindow. The Text Ops menu contains commands specific to text
manipulation (see next section).

1.3.2 Text manipulation

Text may be entered, edited, moved, and deleted in certain subwindows, which are
appropriately called text subwindows. Selections may also be moved between subwindows.

I.3.2.1 Selecting text

The concept of a current selection is global. There is only one current selection at any time
(not one per window): it is generally used as the argument to commands.

Fine point: Although a current selection is always video-inverted, not all video-inverted entities are considered

current selections (such as when a menu command is invoked).

[-10

General tools

This chapter is an overview of the Xerox Development Environment (XDE) and its use. [t
describes the types of features in the environment and how they interact. The final
sections of this chapter discuss other XDE documentation, the organization of this
manual, and its typographical conventions.

This chapter also introduces a number of helpful tools found on the XDE system. These
tools are discussed in chapters 1 through 7.

[.1 System overview

The Xerox Development Environment provides development tools for programmers
writing tools and applications, including tools to aid in editing, compiling, binding,
running, and debugging Mesa programs.

I.1.1 Userinterface

A tool communicates with the user via windows, which are rectangular regions of the
display screen in which text, icons, and graphics are displayed. User input to a window is
collected using menus or form subwindows. A menu is a list of options or commands
associated with a window. Tajo, the XDE runtime environment, allows programmers to
define specific menus meaningful to a particular tool. Another way to collect user input is
through a form subwindow, which is a horizontally ruled section of a window used for
displaying commands and argument names.

In addition to window-oriented facilities, XDE provides a simple executive facility for
invoking the same tools using a less sophisticated teletype-style interface. Tools of this
type are invoked through the Executive window by typing the tool name and the
appropriate parameter syntax.

I.1.2 Development scenario

A complete development scenario includes design, implementation, testing, and release of
systems. During implementation, the programmer produces code using pre-existing
modules consistent with the design. After writing or retrieving the necessary modules,
they are separately compiled and then bound together. Once bound, the entire system,
referred to as a configuration, can be debugged. Each time an error is corrected, the

-1

General tools

[-2

process of compiling and binding is repeated until the system is free of bugs. After
debugging, modules are stored on file servers, the entire system is tested, and then it is
released to the user community.

For more general information about the XDE system, see XDE: Concepts and Principles.

1.1.3 Hardware

The XDE programming environment is designed for a personal computer. It runs on a
powerful microcoded processor (the Dandelion) with a large virtual address space. The
user interface uses a high-resolution bitmap display, with a keyboard and a pointing
device called a mouse. Secondary storage is provided by a rigid disk and an optional eight-
inch floppy disk. The Ethernet, a local area network, provides a high-bandwidth
connection to other personal computers and to network services, such as print and file
servers. (XDE: Concepts and Principles provides general information about networking
concepts used in Xerox products.)

1.1.4 Software components

To illustrate the interaction between the various systems, it is helpful to envision a
hierarchy with Pilot, the operating system kernel, at the lowest level. The next system up
the hierarchy is Tajo, a specialized collection of interfaces designed to facilitate the
implementation of software development tools. At the top of the hierarchy is CoPilot, the
debugger. Although Tajo and the Xerox Development Environment may seem similar
since they both suppert programming activities, the distinguishing factor is that the
development environment includes programs specific to the Mesa language, whereas Tajo
is language independent. ‘

Othello is a Mesa program that manages Pilot physical and logical disk volumes. Since it
does not provide any programming facilities, it is not considered part of the hierarchy.
Appendix A describes Othello.

I.1.4.1 Pilot

Pilot provides Mesa runtime support, including processes, monitors, and synchronization
facilities. Pilot supports a collection of cooperating user-defined processes, some of which
are the tools. Since allocation of major system resources is generally on a cooperative
rather than a competitive basis, Pilot does not contain elaborate resource allocation
functions. Instead, resources and resource management are typically planned statically
when systems are configured. In instances requiring dynamic resource control, such as the
sharing of physical memory, Pilot provides facilities that allow the applications to state
their current requirements. Consistent with the notion of clients as cooperating processes,
Pilot provides only limited protection against malicious programs, thereby shifting the
responsibility of ensuring smooth operation to Pilot clients. The Pilot operating system is
implemented entirely in the Mesa language. (Pilot is discussed briefly in Appendix B and
described in detail in the Piiot Programmer’s Manual.)

XDE User’s Guide I

I.1.4.2 Tajo

Tajo is a unified set of facilities supporting the implementation and execution of software
development tools. "Using” Tajo can be viewed in two ways; a user is a person who
interacts with Tajo via the mouse and keyboard; a client is a program that uses the Tajo
software interfaces. Tools are the Client programs that call upon Tajo.

I.1.4.3 CoPilot

CoPilot supports source-level debugging. It allows users to interpret Mesa statements, set
breakpoints, trace program execution, and display the runtime state. Pilot provides the
code necessary for a program to communicate with CoPilot; it resides with the user
program. CoPilot, however, resides in a different memory image (on a separate logical
volume) that is loaded when called for. This protects the client and the debugger from each
other, in addition to providing the separate address space required to implement all of
CoPilot's capabilities.

There are several ways of invoking the Debugger, some under programmer control and
others not. Those under programmer control include setting breakpoints and interrupting
a program during execution. These techniques are used when a programmer anticipates
some problems and wishes to halt execution temporarily to examine (and possibly change)
the program state before proceeding. CoPilot may also be invoked automatically when a
program generates runtime errors, such as address faults or uncaught signals. If the
Debugger is invoked because of a runtime error, you can often change the state of the
program by using the appropriate debugger commands and continue executing from the
new program state. However, some errors, such as memory overwrites, cause irreparable
damage. When this happens, you must end the debugging session and re-boot the client.

I.1.4.4 Othello

Othello is a utility for managing Pilot physical and logical volumes. It is used to initialize
physical and logical volumes, to install boot files on logical volumes, to invoke a boot file
on a particular logical volume, and to start scavenging logical volumes. In the normal
development cycle, Othello is booted from a rigid disk. However, if the disk has never been
booted or has been erased, Othello can be booted from the Ethernet or from a bootable
floppy disk. For more information about Othello, see Appendix A.

[.2 Definition of terms

Accelerator An accelerator is an easier or faster way of doing a common operation.
Clicking Adjust in the center third of the name stripe, for example, is
an accelerator for sizing a window (rather than bringing up the
window menu and selecting “Size”).

Argument An argument to a procedure or command is a piece of data upon which

the operation is performed. For example, the argument to a MOVE
command is the video-inverted text to be moved.

[-3

General tools

[-4

Chord

Click

Current selection

Cursor

Icon

Input Focus

Interface

Menus

Mouse

To chord keys or buttons is to push them down at the same time, as
when chording the mouse buttons.

To click a mouse button is to press down on it and let it up.

The current selection is text, icons, or graphics you have chosen by
using the mouse (current tools do not implement selection of icons or
graphics). It is visually highlighted on the screen and is generally used
as the argument to a command.

The cursor is an icon that tracks the mouse position: moving the mouse
moves the cursor. The system may change the cursor shape to provide
feedback about what it is doing.

An icon is a small picture on the display representing some entity.

The input focus is the window to which keyboard commands and typed
characters are sent. The input focus contains the type-in point.

An interface is a formal contract between pieces of a system that
describes the services to be provided. A provider of these services is
said to implement the interface; a consumer of them is called a client of
the interface.

A menu is a list of available commands or data chosen by mouse
selection. More than one menu may be associated with a tool window
or subwindow or with the unused portion of the display

The mouse is a pointing device that allows you to direct the attention of
the machine to a particular point on the display. A mouse usually has
two buttons, Point and Adjust. (See Point, Adjust.)

Movable boundary A movable boundary is a horizontal line with a small box on its right

Name frame

Subsystem

Subwindow

Tool

end that divides a window into subwindows or splits a text subwindow.
A movable boundary is used to change the relative heights of adjacent
subwindows.

The window name frame is a rectangular region at the top of a window.
It is usually black, with the window's name and other identifying
information displayed in white.

A subsystem is a program that runs in the Xerox Development
Environment Executive window. Some subsystems and tools
accomplish the same task.

A window is often composed of one or more rectangular subwindows.
The Xerox Development Environment provides several standard
subwindow types, each providing different functions. (See Window).

A ¢tool is a Xerox Development Environment applications program. A
tool can run in parallel with other tools, including other instances of
the same tool. Tools react to prompting and seldom carry out

XDE User’s Guide I

Type-in point

Video-invert

Window

I.3 Userinterface

operations when not in use. A tool usually, but not always, has an
associated window.

The type-in point is the text location where typed characters are to be
inserted. The type-in point is indicated by a flashing caret or box.

To video-invert a region is to cause black areas of the region to become
white and white areas to become black.

A window is a rectangular region of the display in which text and
graphics can be displayed. Most tools communicate via windows.

The user interface for tools provides the unifying framework for the development
environment. Tools portray their capabilities through windows and menus. Windows and
menus rely on XDE features such as text handling and keyboard or mouse commands.

This section describes text manipulation, keyboard commands, symbiotes, windows,
subwindows, and menus. It discusses some important menus and their commands. (The
definition of a particular window or menu is always found in the chapter on the related

tool.)

: >sampletool . -
: Loading sampletool.bcd...54773658.. fEaiit:s i

Window name frame Menus

TextOps

p
Bottom
: Besstivate [D
: . eac ate
: Command! Vanilla: akd
: Password:

ReadOnly: Read Only String Cardinal
: boolean(trueFalse): { ;
:enumerated(one): {A} enumerated(all):

:, FALSE}

: |
‘The n this subwindow is the current
:selection.
. The box at the end pf this sentence is the type-in point.
I
Current seltlaction Insertion point

Figure I.1: User interface

-
Tt

General tools

1.3.1 Windows and subwindows

A window is a rectangular region of the display screen that offers a view of a potentially
infinite plane. Most tools have one or more windows.

Each window is composed of one or more subwindows. Subwindows are regions of the
window, each with individual characteristics. Subwindows are usually arranged
vertically, with horizontal black lines dividing them. A window allows you to
communicate with the tool to which it belongs and allows a tool to create a representation
of a world owned and managed by that tool. The tool displays text and graphics, some of
which may be lying out of sight.

One tool can create multiple windows, but each window is owned by a single tool. There
may be multiple windows on the screen, and they may overlap and partially or fully
obscure other windows. There may be stacks of windows lying on top of each other, each
with its status and context intact, as if they were pieces of paper lying on a desk.

A tool window has three states: active, tiny, and inactive. An active tool window appears
ready for communication. Like a hammer or wrench, an active tool can be picked up, used,
and put down again; it remains exactly as it was left. When an active tool window is made
tiny, it is represented on the display by a small box (an iconic representation) containing
only its name. Making a tool tiny is like putting a tool in a tool belt: it will probably be
used soon, but the tool user wants to get it out of the way for a while. When a tiny tool is
returned to normal size, the contents of its window reappears. When a tool is made
inactive, any information it keeps while active or tiny is discarded. When the tool window
is subsequently activated, it appears as if it had just been created. Making a tool inactive
is similar to cleaning off a wrench and placing it into the tool box. It will probably not be
used for a while, and the tool user wants to make room for other tools.

An exception to this general behavior of windows is the root window. You can think of it as
a window the size of your display screen that lies at the bottom of any stack of windows.
The root window can never be at the “top” of the stack of menus on your screen, or all the
rest would be covered! Certain menus are attached to the root window as to any other
window: the Exec Ops menu, the Inactive menu, and the Symbiote menu. (See the section
on menus below for more specific information about these menus.)

1.3.1.1 Communicating via subwindows

A tool accepts input via the keyboard and mouse buttons. Each subwindow may have
different interface characteristics, and the meaning of the keyboard keys and mouse
buttons may change when they are accepted by a different subwindow.

In general, all keystrokes are sent to the subwindow that has the input focus. The
following keystrokes are exceptions: they are sent to the subwindow that contains the
cursor: MENU, FIND, J.FIRST, ABORT, and the mouse buttons (Point and Adjust). If no window
has the input focus, the screen blinks when keys are pressed. If the tool is busy when
keystrokes are sent to it, the system queues the keystrokes and delivers them to the tool as
soon as it is ready to accept input.

A subwindow keeps the input focus unless it is deactivated or the input focus is explicitly
moved to a different window. For instance, it keeps the input focus if it has been made tiny
or if it is completely obscured by other windows. You can set the input focus by depressing

XDE User’s Guide I

one of the mouse buttons in the subwindow you would like to take the input focus. If the
subwindow is unwilling to accept the input focus, the screen will blink.

If you set the input focus by pressing the Point button, the type-in point is set to the
location under the mouse button (except in TTY windows, which insist that the type-in
point always be at the end of the text). If you set the input focus by pressing the Adjust
button, the type-in point is the last location that was the type-in point in the subwindow.
Thus the Adjust button can be used to recover the type-in point in a subwindow after it has
lost the input focus. While MOVE or COPY is depressed, using the mouse buttons will not
change the input focus. If a subwindow does not want type-in itself, it may redirect it to
another subwindow.

I.3.1.2 Scrolling

§Command!

gPassword:

. ReadOnly: Read Only String
Scrollbar — | :boolean(trueFalse): {TRUE, FALSE}

. enumerated(one): {A} enum
: O
Translucent gray region text
Cursor
Dark gray region

Figure I.2: Scrollbar

A subwindow may contain more information than can be displayed on the screen at one
time. The development environment provides scrollbars (Figure 1.2) to facilitate access to
information lying out of view. Vertical scrollbars are long thin rectangles near the left
border of subwindows. Some subwindows have horizontal scrollbars near the bottom
border of a subwindow.

When the cursor is not in the scrollbar region, the scrollbar is a narrow transparent strip
bordered by a gray stripe. When the cursor is in the scrollbar region, the scrollbar looks
like a translucent gray region with a dark gray region within it (much like a
thermometer). The transparent gray region represents the entire length of the contents of
the subwindow. The dark gray region represents the text currently displayed; its size and
position correspond to the position of the displayed text in the file.

When the cursor is in the scrollbar region, it changes to a double-headed arrow and the
meaning of the mouse buttons change: they now direct the scrolling operation. The cursor
changes again when one of the buttons is depressed: Point scrolls up and Adjust scrolls

General tools

[-8

down. Pressing both keys together (a "chord") is used for thumbing. Thumbing is
analogous to opening a book by placing your thumb at the approximate position of the
section you want to start reading and pulling the book open at that point. Releasing the
chord while the cursor is positioned in the serollbar invokes the scrolling operation;
releasing the chord while the cursor is outside the scrollbar aborts scrolling.

[.3.1.3 Adjusting boundaries

You can change the movable boundaries of a subwindow by pressing Point while the
cursor is positioned over the small box at the right end of the black boundary line, moving
the cursor to the desired position, and releasing Point. Subwindows adjusted this way
cannot be smaller than the height of the font being used.

Figure 1.3 illustrates a stack of three windows belonging to two tools and the Executive.
The Profile Tool is in tiny form in the upper right of the display.

Window name frame Profile Tiny window
..... Tool e

| Executive
window

: >sampletool

Message
subwindow

Command! Vanilla: Form
: Password: subwindow
ReadOnly: Read Only String Cardinal

S
5

x Subwindow
= T boundary

subwindow

b e tH— Subwindow
: split

Figure [.3: Windows

1.3.1.4 Subwindow types

The two most important subwindow types for most purposes in XDE are form subwindows
and text subwindows. They are described in the next sections.

1.3.1.4.1 Form subwindows

Form subwindows, which belong to specific tools, have two primary uses: First, they are
used to display and alter the current values of the internal state of tool-specific data.
Current values can be altered at any time in any order. Second, most form subwindows are

XDE User’s Guide I

equipped with tool-specific command form items that act as accelerators for menu
commands. A form subwindow is illustrated in Figure [.4.

?Command!
§Password:
:ReadOnly: Read Only String
. boolean(trueFalse): {TRUE, FALSE}

. enumerated(one): {A} enum
=

Figure [.4: Form subwindow

Tools normally display the arguments, and a single command invokes them. When an
operation requires several arguments, they must be specified before invoking the
operation. (Specific form subwindows are described in later chapters with the tools that
own them.)

A form can have a variety of types of fields:

A command item performs the same function as a menu command. Command items
are distinguished from other items by the ! appended to them. You can activate a
command item by positioning the cursor over the keyword and depressing Point.
Releasing Point over the keyword after the keyword is video-inverted invokes the
operation. Releasing Point when the cursor is no longer positioned over the keyword
cancels selecting that command.

An enumerated item is one of a lists of text items. These items may be displayed in
two ways: keyword: {a, b, c,...} orkeyword: {a}. In either cases, choosing
may be done via menu prompts (see below). In the first form, a choice in the list may
also be chosen by positioning the cursor over it and clicking Point. The highlighted
item is the current value. In the latter form, only the currently active enumerated-
list element is displayed.

A boolean item is a form item that takes on the two values TRUE or FALSE. The
feedback is a display of the keyword with the Boolean state video-inverted. The
video-inverted Boolean means TRUE.

[-9

DMT

DMT is a tool whose purpose is to keep the phosphor on the display screen from wearing
out. It should be run whenever you leave your workstation unattended.

1.1 Files

Retrieve DMT.bcd from the Release directory.

1.2 User interface

DMT is activated when you type DMT to the Executive. DMT then puts a solid black
window on top of all of the existing windows. Embedded in this black window is a small
white moving rectangle that shows the current date. and time. Making DMT active does
not affect any other processing already in progress; it merely covers up the display screen.

If DMT is running and you wish to resume work, you can deactivate it by pressing ABORT or
by using the Deactivate or Size commands in the Window Manager menu.

DMT fails to achieve its purpose if your display is white-on-black; when run, it will display
a solid white window covering the screen. Change it to black by pressing the cOMMAND-i
keys.

1-1

DMT

XDE User’s Guide I

You select text by clicking Point within the selection. If you click Point in the same place
several times within a brief period (within roughly a second), successive units of text are
selected: clicking once selects a character, twice selects a word, three times a line, four
times the whole body of text, and five times back to a single character. You can extend a
selection to the left or right either by holding down Adjust while moving the mouse or by
pointing to where the end point is to appear and pressing and releasing Adjust. The
selection is extended in the same units used to make the original selection: a character
selection is extended by characters, a word selection by words, and so on. A selection is
extended by characters if you start over the first or last character of the selection and move
the mouse while pressing Adjust. You can contract selections as well as expand them by
using Adjust. If you Adjust to a place within the current selection, the selection shrinks by
the units of the selection. However, if you begin the adjust action over either the first or
last character of the selection, character mode is used instead. There will always be at
least one unit left in any selection after contracting.

1.3.2.2 Entering text

Any characters typed into the window are inserted before the current type-in point. You
can set the type-in point by moving the cursor to the desired place and clicking Point. The
type-in point will be set as close as possible to the cursor’s position. For example, when you
select a single character, the type-in point precedes the character if you select the left half
of the character and follows the character if you selected its right half. (Setting the
Balance Beaminthe user.cm file, described below, changes the positioning of the type-
in point relative to the selection.)

The type-in point can also be set by holding down the cONTROL key and clicking the Point
button over the desired location. This is useful with the STUFF command (see the section on
Keyboard functions).

1.3.2.3 Deleting text

Text may be deleted by selecting it and pressing the DELETE key. Many tools place such
deleted text into a global "trash bin." The 8BS (backspace) and 8w (backword) keys delete
text to the left of the current type-in point. Text deleted this way is not entered into the
trash bin. The 8w key deletes any white space or punctuation between the type-in point
and the closest preceding word (alphanumeric string) and then deletes the word itself.

1.3.2.4 Current selection and trash bin

The trash bin is a conceptual container of the most recently deleted selection. In a
subwindow that supports editing, the current selection may be deleted and deposited in
the trash bin, where it is held for potential retrieval and placement. This allows text to be
either moved from one position to another within a window or sent to subwindows other
than the point of origin.

Any of the following steps copies text from one place in a window to another:

® Select the text, move the type-in point with CONTROL-Point, and press the STUFF key.

I General tools

o Select the text, press DELETE, PASTE to move a copy into the trash bin, put the selection
back where it was, move the selection to the desired location, and press PASTE.

® Set the type-in point to the desired target location, hold down copy, select the text to be
copied, and release COPY when finished selecting text.

1.3.3 Menus

A menu is a set of options or commands associated with a window or subwindow. Most
windows have multiple menus. When the menus associated with a subwindow are
displayed, the menus associated with its tool window are also displayed.

A menu contains either commands or data items. A menu command often takes the
current selection as its argument. Sometimes, as with Window Manager commands, the
semantics of the command implies its argument.

1.3.3.1 Invoking menus

In Figure 1.5, the Window Manager menu is shown on top of the TextOps and File Window
menus. This grouping of menus would probably be associated with a file window or text
subwindow. Each type of window has specific types of menus associated with it. These
menus are used to give commands to the process that owns the window.

TextOps

File Window

Move
Grow
Drag
Size
Top
Bottom -
Zoom
Deactivate

Figure I.5: Menus

Menus are invoked either by chording the mouse buttons or by pressing the MeNU key (in
the explanations below, the term "chording” will also stand for using the Menu key).
Available menus appear in the vicinity of the cursor whenever (and as long as) you are
chording. The position of the cursor determines which menus are available. If the cursor is
in a subwindow, the menus associated with that subwindow and the menus associated
with the tool to which the subwindow belongs are available. Some menus are available
when the cursor is in any portion of the screen not covered by any window.

1.3.3.1.1 Choosing a menu

There are usually at least two menus for a window: the Window Manager menu (explained
below), whose commands modify the window rectangle, and a menu that lists

{-12

XDE User’s Guide I

the commands available for that tool. More menus are possible; subsequent menus
underlie the others.

You can choose menus from the stack by positioning the cursor over the visible portion of
the desired menu (the menu name frame) and chording again. When you chord again, the
chosen menu appears on top of the others. Alternatively, as an accelerator, you may click
Point over the title of the desired menu while continuing to hold down Adjust. The chosen
menu immediately appears on top of the stack.

1.3.3.1.2 Invoking a command

Once a menu is displayed, choosing a menu item requires you to position the cursor over
the list until it rests over the desired item, while you continue to chord. The selected menu
item is video-inverted; when you release the chord, the command is invoked. If you release
the chord when the cursor is not over a menu, the displayed menu disappears.

A quick method (called an accelerator), is to click Point over the desired menu item while
continuing to hold down the Adjust key. The command is invoked; after it is executed the
menu usually reappears.

Fine point: A menu does not reappear (1) if it is destroyed by the command invocation (such as by activating the
only file in the Inactive menu), (2) if the source from which the command was invoked is no longer visible (as
when invoking Bo t tom sends a window to the bottom of a stack, where it is completely obscured from view), or
(3) if the window is tiny.

1.3.3.1.3 Confirming or aborting a command

Some menu commands require you to confirm or abort a command. In these cases the
cursor changes to a tiny picture of a mouse with Point highlighted; this informs you that
clicking Point will confirm the command. Clicking Adjust aborts a command.

1.3.3.2 Specific menus

There are several generally important menus: the Window Manager menu, the Inactive
menu, the TextOps menu, and the Symbiotes menu.

1.3.3.2.1 Window Manager menu and accelerators

All tool windows allow you to manipulate window size, location, and state by using
commands found in the Window Manager menu. For example, a window may be made to
cover the entire available display space, change position, become smaller, turn into its
iconic form, or disappear from the screen. The commands available in the Window
Manager menu are:

Move allows the window to be moved around the display area but does not
' change its size. When you invoke this command, the cursor changes into

the shape of a corner bracket. As you move the cursor from one corner of

the display area to another, it changes shape to indicate which corner of

the window the operation will affect. When you position the cursor over

the desired location and click Point, the window moves to the

General tools

[-14

area that begins in that corner.

Grow allows you to pull a corner of the window in any direction, growing or
shrinking the window along its width or height. This command acquires
position information in the same way as Move.

Drag allows you to elongate a window by pulling an edge of the window in any
direction; it also requires position information.

Size turns the window from a normal size into its tiny form, usually a small
iconic rectangle showing an abbreviation of the window's name. If the
window is already tiny, invoking Size changes it back to its normal size.

Top displays the window on top of all the other windows in its stack.
Bottom places the window at the bottom of all the windows in its stack.
Zoom causes the window to grow, taking up all available display space and

appearing on top of all other windows. Clicking Zoom again puts the
window back to its previous size.

Deactivate causes the tool window, and all other windows associated with a tool, to
be removed from the display and become inactive. An abbreviation of the
window's name is entered in the Inactive menu; the tool is re-activated by
choosing the window name on the Inactive menu.

Window Manager operations may also.be invoked more quickly by positioning the cursor
in the left, middle, or right regions of the window name frame (or in the top half of a tiny
window) and clicking one of the mouse buttons. The region of the window name frame in
which the cursor is positioned video-inverts to provide feedback. The name-frame
operations are:

Mouse Button Left Region Middle Region Right Region
Point Top/Bottom Zoom Top/Bottom
Adjust Move Size Move

The operations available are as described above, with the exception of Top/Bottom.
Top/Bottom specifies that if the window is not on top, move it to the top. If it is already on
top, move it to the bottom. Pressing Adjust in the left or right portion of the name stripe
brings up the Move cursor. Clicking Point while Adjust is still down cycles the cursor
through the three shapes (Move, Grow, and Drag.)

These name-frame operations are also available on the upper half of a tiny window. In
some tools, menu commands are available in the lower half of the window even when it is
tiny.

XDE User’s Guide I

[.3.3.2.2 Inactive menu

The Inactive menu contains a list of the tools that have been installed but are currently
inactive. The Inactive menu is available in any part of the screen not covered by a window.

1.3.3.2.3 Text Ops menu

A text subwindow generally has a Text Ops menu that provides commands for
manipulating text placement:

Find

Split

Position

J. First

J. Insert

J. Select

J. Last

Wrap

finds the next occurrence of the current selection in the subwindow. If the
current selection is in the subwindow, the search begins at the end of the
selection; otherwise, it begins at the first character visible in the
subwindow. If the search is successful, the next occurrence of the text
becomes the new selection. The search continues into text not visible on
the screen; if the selection is found past the text displayed, the text is
scrolled to the top of the split region. If no further instances of the text are
found, the display blinks.

If the SHIFT key is down, FIND works backward from the current selection, if
any, or from the last character visible in the window.

divides a region of the subwindow into two subregions separated by a
dashed line, with a small box at the right end of the line. This line can be
moved by depressing Point over the small box, moving the cursor, and
releasing the button. The subregions can be scrolled independently from
each other. To remove the line, move it off the top or bottom of a region.

positions the text in the subwindow so that the character specified by the
current selection, which must be a positive number, is at the top. For
example, if you select 275 and invoke Position, the 275th character in
the text is scrolled to the top of the subwindow.

positions text in a window so that the first line of text is at the top of the
window.

positions the text in the subwindow so that the type-in point is at the top.

positions the text in the subwindow so that the line containing the
leftmost character of the current selection is at the top.

positions text in a window so that the last line of text is at the top of the
window.

reverses the current state of line wraparound in all the subwindows.
When wrapping is on, a line that has not been terminated by a carriage
return by the time it reaches the right edge of a subwindow is continued
onto the next line. When wrapping is off, the same line disappears off the
right edge of the subwindow.

General tools

[-16

1.3.3.2.4 Symbiotes and the Symbiote menu

A symbiote provides extra functionality for a tool window without requiring changes to
the code of the tool or to Tajo itself. Using the Symbiote menu on the root window, you can
attach a symbiote to any text window (Figure 1.6). Symbiotes appear as subwindows that
you can add to an existing tool dynamically, without disturbing its current processes or
facilities. Symbiotes can be attached to any text or form window or subwindow.

In particular, the XDE provides a symbiote that adds editing capabilities to any text or
form subwindow. (See the Editor Symbiote chapter for details.)

: Create Edit Find Load Position Reset Save Split Store Time Wrap

:RF! Find! «: Replace! all! «:

Figure 1.6: Text window

The following commands are in the Symbiote menu, which is available in any part of the
screen not covered by a window.

Attach Menu adds a one-line menu symbiote above a host subwindow after you have
selected that target host subwindow with the cursor and pressed the
Point mouse button to confirm the choice.

Detach Menu removes the menu symbiote above a host subwindow after you have
selected that symbiote with the cursor and pressed the Point mouse
button to confirm the choice.

Attach Edit Adds a one-line editor form above a host subwindow after you have
selected that target host subwindow with the cursor and pressed the
Point mouse button to confirm the choice.

Detach Edit removes the editor form from above that host subwindow after you
have selected that symbiote with the cursor and pressed the Point
mouse button to confirm the choice.

XDE User’s Guide I

User.cm causes the system to reprocess the [FileWindow] section of the
User.cm file to determine the default symbiote values.

[.3.4 Keyboard commands

The keyboard is made up of alphanumeric keys, special symbol keys, and special function
keys. The function keys are referred to in this document by the names of their XDE
functions, not their keycap names. The keycap name is also given below if it differs from
the keyboard function name. The layout of the keyboard and the mapping from their
keyboard names to their interface functions is shown in Figure 1.7 (next page).

MENU

SCROLL-
BAR

JLAST
J.FIRST

J.INSERT

J.SELECT dlient2

reserved clientt1

DEFAULTS

coOmP-
LETE

%

BW
BS

TAB

Q

reserved

w E
move lexpand

R
replace

T

define

U |
invert [

RET

LOCK

A

S D
stuff

delete

F
find

G K L : "

next-ded

SHIFT

X
doit

c
copy

\'
paste

<

SHIFT

AGAIN

REPLACE
DELETE

FIND

cory

PASTE

MOVE

STUFF

CONTROL

Left function group

ABORT
COMPLETE

COMMAND +

=>

=>

=>

>

=>

=>

"
v

[
v

[
v

"
v

"
v

"
v

=>

WU axg<CHWIOZARS-"TmOAN
] [l
vV v

"
v

copPy

DELETE
EXPAND

FIND

SCREEN INVERT
J.SELECT
NEXT-DEL

NEXT

NEXT-
DEL

HELP

UNDO
DOIT

NEXT
RESERVED
REPLACE
STUFF
DEFINE

DEF'N

EXP'D

o
N\

ABOR

EOMMANDI T

UNDO

PASTE

MOVE

DOIT

J.FIRST

J.INSERT

J.LAST

CLEAR USER ACTION BUFFER (ASYNCHRONOUS)
AGAIN

Keyboard configuration using Level IV hardware
Double inscription on function keys indicates use of Shift (i.e., SHIFT + BS = > BW)

client 1,

2 reserved for client definition

Right function group

Point
just

Mouse buttons

XDE User’s Guide I

[.3.4.1 Keyboard functions

The keyboard functions are:

ABORT

AGAIN

CALL DEBUG

COMMAND

COMPLETE

CONTROL

corPY

DEFINITION

DELETE

DOIT

EXPAND

HELP

sets an abort "flag” in the window containing the cursor. A running tool
checks periodically to see whether an abort flag has been set. If it has, the
tool aborts itself. If you press ABORT a second time before the flag in a
window is reset (i.e., turned off), a global abort flag is set and all tools
abort. The window's abort flag is reset when anything is typed into the
window except SHIFT or ABORT. The global abort flag is reset whenever the
abort flag is reset in any window.

replaces the selection with the last text that was typed or stuffed.

(SHIFT-ABORT) calls the debugger. If both shift keys are held down when
invoking it, a panic call is made to the debugger. Panic calls should only
be made in dire emergency, since calling procedures out of the debugger
interpreter may not work.

is a shift key used with other keys to invoke various functions.

treats the token to the left of the type-in point as the beginning of a file
name and attempts to complete the name. This function is currently
implemented only by the Executive.

is a shift key used with other keys. Used with Point, it moves the type-in
point without changing the current selection.

clears the current selection and maintains the type-in point while the key
is held down, thus allowing a new selection to be made. When the key is
released, that new selection is stuffed into the window at the type-in
point.

(SHIFT-EXPAND) puts the current selection into the expansion field of the
Dictionary Tool. (See the Dictionary Tool chapter.)

deletes the selected text, replacing the contents of the trash bin with the
deleted text.

is a client-specific function. In a file window, it causes the window to be
loaded from the token in the window, using the token as a file name. (If
there is no such file, it tries to append each of the extensions .mesa,
.config, and .cmuntil it finds a match.)

replaces the alphanumeric token to the left of the type-in point by its
expansion, as defined by the current dictionary (see the Dictionary Tool
chapter).

invokes the subwindow Help function, if there is one.

[-19

Dictionary Tool

2.1 Files

The Dictionary Tool allows you to expand abbreviations according to a user-defined
dictionary, called the Edit Dictionary, and to add abbreviation-expansion pairs to the
dictionary.

The Dictionary Tool is built in; no additional files are needed. The default name for the
Edit Dictionary on your system isdefault.dict.

2.2 Userinterface

The Dictionary Tool implements the EXPAND and DEFINITION function keys in text and form
subwindows. (See the section on keyboard functions in the User Environment chapter for
descriptions of the EXPAND and DEFINITION keys.)

The expPAND function treats the word to the left of the insertion point as an abbreviation
and looks it up in the dictionary, ignoring case. If an entry is found, the abbreviation is
replaced by the definition. If the definition contains fields, the field is selected. The
abbreviation may be a unique prefix of the abbreviation-expansion pair.

The DEFINITION function invokes the Dictionary Tool. If the Dictionary Tool is already
active, it deactivates it.

2.3 Dictionary Tool

The Edit Dictionary is maintained by the Dictionary Tool. It contains one or more files,
each of which is a list of abbreviation-expansion pairs. The Dictionary Tool is invoked by
the DEFINITION key or by standard window manager methods.

The.Dictionary Tool interacts through a message subwindow, a form subwindow, and a log
subwindow. The message subwindow is used to post error messages. The form subwindow
is used to invoke commands and provide parameters. The log subwindow is used to record
the results of commands.

2-1

2 Dictionary Tool

The Dictionary Tool maintains its dictionary in memory in a format that allows fast
lookup of expansion strings, given the abbreviation. There is no limit to the number of
entries in this dictionary. The dictionary may be initialized by loading .dict files that
contain abbreviation-expansion pairs in human-readable and -editable form.

2.3.1 Commands
The form subwindow has the following layout:

Record! LookUp! List! Load! Store! Dictionary:
Abbreviation:
Expansion:

Record! enters a pair in the dictionary with abbreviation Abbreviation: and
expansion Expansion:. If Expansion: is empty, the current
abbreviation-expansion pair is deleted.

LookUp! fills in Expansion: with the expansion of the abbreviation
Abbreviation:.

List! writes all the pairs in the dictionary to the log subwindow.

Load! reads the pairs in the .dict file specified by Dictionary: and loads
them into the dictionary.

Store! stores the pairs in the dictionary onto the .dict file specified by
Dictionary:.

If the dictionary is modified by recording new entries or by loading a new .dict file, the
modifications are not stored in the .dict £ile unless the Store! command is invoked
or the StoreOnDeactivate User.cm entry isincluded (see below).

2.3.2 File format
Anentry in the .dict file has the following format:
abbrev: <TAB> "expansion string®™ <CR>.

The double quotes around the expansion string are optional if it does not contain any
embedded returns. The expansion string should not contain any double quotes.

2.4 User.cm
Two entries are implemented:
[DictionaryTool]

Dictionary: My.dict Initializes the dictionary from the specified .dict file.
Default.dict is used if there isno User.cmentry.

2-2

XDE User’s Guide 2

StoreOnDeactivate: TRUE Automatically stores the dictionary when the tool is
deactivated to the specified .dict file if the dictionary
has changed.

2-3

2 Dictionary Tool

2-4

General Tools

FIND

J.FIRST

JNSERT

J.LAST

J.SELECT

MENU

MOVE

NEXT

NEXT-DEL

PASTE

REPLACE

STUFF

UNDO

I.3.4.2 Global functions

finds the current selection in the window containing the cursor. SHIFT-FIND
looks backward, either from the current selection, if the current selection
is in that window, or from the bottom of the window, otherwise.

positions the text in a subwindow so that its first line at the top of the
subwindow.

(SHIFT-SELECT) positions the text in the subwindow so that the type-in point
is at the top.

(SHIFT-).FIRST) positions the text in a subwindow so that its last line is at
the top of the subwindow.

positions the text in the subwindow so that the line containing the
leftmost character of the current selection is at the top.

brings up the menus in the subwindow containing the cursor; it is the
same as chording the mouse buttons.

is like cory, except that the selection is deleted after it has been stuffed
into the window containing the input focus.

advances the cursor either to the next field in a form subwindow or to the
next bracketed field in a text subwindow, setting the type-in point to that
field.

like NEXT, only it deletes the contents of the field before setting the type-in
point. i

takes the contents of the trash bin and inserts it at the type-in point. It is
like STUFF, only it operates on the contents of the trash bin.

(SHIFT-DELETE) is like DELETE, but it changes the type-in point to the point
from which the text was deleted.

takes the current selection and copies it to the type-in point of the
subwindow that is currently taking type-in. If no window conains the

input focus, this action fails and the display blinks.

swaps the selection with the trash bin.

Various keys invoke functions that affect the development environment globally or affect
the tool that is in the process of performing a user-initiated action. These functions are
available regardless of where the cursor is positioned:

COMMAND-{

inverts the display to white-on-black or black-on-white, whichever is
the opposite of what it currently is.

XDE User’s Guide I

COMMAND-ABORT causes the development environment to forget all buffered user
actions that have not yet been processed, such as type-ahead.

These commands work only in text subwindows:

COMMAND-L sets the case of the characters in the current selection to upper case if
the sHIFT key is down, or to lower case if it is up.

COMMAND-< brackets the selection on the left by < and on the right by >.
COMMAND-{ brackets the selection on the left by [and on the right with |.
COMMAND-{ brackets the selection on the left by { and on the right with }.
COMMAND - brackets the selection on the left by (and on the right with).
COMMAND - surrounds the selection with quotes.

COMMAND -- surrounds the selection by the *--” comment delimiter.

I.4 The user command file

The user command file, User.cm, is a file on the current volume used to set defaults for
a user. Many subsytems and tools pick up the information from the User.cm file to
initialize various options, such as font information, window placement and size, and where
to send files to be printed. Some User.cm values are used at user login; others when a tool
is activated.

To create a User.cm file for yourself, retrieve SampleUser.cm from Docs> onto your
Tajo and CoPilot volumes, edit it to contain such information as your name and domain by
replacing the fields all currently delimited by angle brackets, and rename it to be
User.cm.

[.4.1 Format of the user command file

A User.cmsection consists of a section title in brackets, followed by a carriage return, and
the entries for that section. Each entry is on a separate line. Entries consist of Name:
followed by the value. Any line that begins with == is ignhored.(Here, as in several other
types of files, text preceded by == is treated as comments and not processed.)

It is possible to have volume-specific entries for the values in a sectionwhen, for example,
you need different defaults in your CoPilot and Tajo volumes to determine which tools get
loaded at initialization time. This is specified by putting [Volume:SectionName] as a
title. The section entries in the volume-specific sections override those of the generic
sections when the volumes are booted.

Note: There are no spaces before or after the colon in a section title name, but all entries
must have a value after the colon.

——
f

[

-

General Tools

[-22

In the example below, [FileWindow] is the generic section title. The menu line in the
FileWindow section in the CoPilot volume has Break in the menu line, but it is not needed
in the Tajo volume.

[FileWindow]
SymbioteSetUp: Always Menu Edit

[CoPilot:FileWindow]
Menu: Break Edit Load Reset

[Tajo:FileWindow] .

Menu: Edit Load Reset

The development environment processes the [System], [Librarian], and
[FileWindow] sections of the User.cm at start-up time; all other sections are processed
when the corresponding tool is run. You should ensure that your User.cm file, as well as
any files needed in the processing of these sections, are in your top-level directory, since
the initial search path may not be set while these sections are processed. This is most
likely to be a problem when processing the InitialCommand: entry.

Below are examples of [System] entries. You can edit many of these values with the
Profile tool while the system is running (see the Profile Tool chapter).

User: CSmythe
This is your user name.
Domain: Bayhill

This is the default domain section of your clearinghouse name, used in authenticating
who you are, for accessing network services like printing.

Organization: Xerox

This is the default organization section of your clearinghouse name, similar to the
default domain section.

InitialCommand: Run.~ Editor.bcd
This is an executive command line to be executed as part of the boot sequence. You
cannot have any carriage returns in the command line. The log file for this command
is Initial.log. Feedback will appear in the Herald window as a result of executing
commands in this line.

Font: LaurelFont.strike
A font is built in; provide this entry only if you want to override the default.

MenuFont: Helvetica7.strike

This is the font used for menus; a default font is built in.

XDE User’s Guide I

Debug: FALSE

This sets the debugging variable for the system. The default value is FALSE. Certain
bugs call the debugger if this is TRUE. Otherwise, the system ignores the error and
attempts to work around it.

Screen: White

This determines the background color of the display. The default is White; Black is
the alternative.

SwapControlAndCommand: FALSE

This swaps the functions of the control and the command keys, which is especially
useful on a microswitch keyboard because the command key is awkward to use.

SearchPath: <Tajo>Temp <Tajo>
This is the intitial value of the file system search path.
BalanceBeam: Always

This sets the value of the variable that controls positioning of the type-in point
relative to a selection. It has three possible values:

Always: the type-in point is as close as possible to the cursor
position.

Never: the type-in point is at the end of the selection.

NotForCharacter: the type-in point is after a single character selection, but it

will be as close as possible to the cursor posisiton for
multiple character selections.

FileWindow: [x: 512, y:30, w:512, h: 439] [x:900, y: 778] Calendar/t

An arbitrary number of FileWindow entries is permitted in the System section. Each
specifies a file window to be created. The first set of bracketed values indicates the
position of the window when it is active. x and y are the horizontal and vertical
bitscreen coordinates of the upper-left corner of the window. w and h are the width and
height of the window in bitscreen coordinates. Any or all of these fields may be
omitted, in which case they have the following default values: [x: 0, y: 0, w: 512, h:
400]. The second set of bracketed values indicates the position of window when it is
tiny. x and y are the horizontal and vertical bitscreen coordinates of the upper-left
corner of the window. Any or all of these fields may be omitted, in which case they
have the following default values: [x: 0, y: 0]. The next item in the line, which is
optional, is the name of the file to be loaded into the window. If there is a switch on the
file name, it specifies the initial state of the window (a for active, t for tiny, and i for
inactive). You must always specify the active box and tiny box position, even if they are
defaulted, by specifying (1.

[0
<

I

General Tools

.6 Documentation roadmap

[-24

This section describes how the XDE documentation is structured and where to look to find
information about a particular subject. The documentation for this system, written for
system developers who are familiar with the Mesa programming language, consists of five
separate manuals: XDE: Concepts and Principles, the XDE User's Guide, the Mesa
Language Manual, the Pilot Programmer’s Manual, and the Mesa Programmer's Manual.
This manual, the XDE User’s Guide, describes the tools that make up the programming
environment. Its introductory chapters contain general information on getting started
and how to use the environment. The Mesa Language Manual is a reference manual for
the programming language. The Pilot Programmer’s Manual and the Mesa Programmer's
Manual are reference manuals that describe Pilot and Mesa client interfaces. The Pilot
Programmer's Manual describes operating system facilities, while the Mesa Programmer's
Manual documents the software interfaces that implement user-interface functions.

I.5.1 XDE: Concepts and Principles

The XDE Concepts and Principles guide introduces the Xerox Development Environment.
It describes the organization of the system broadly, focusing on the metaphors and
theories the developers had in mind when they built the system. It discusses each of the
parts of the system and explains their interaction.

1.5.2 The XDE User's Guide

If the development environment is new to you, read the XDE Concepts and Facilities
manual. Along with this introductory chapter of the XDE User's Guide, it tells you how to
get started, gives information about progran{ming in the development environment, and
describes the user interface.

Most of the remaining chapters of the XDE User’s Guide (this document) describe the
tools, which are utility programs that run in the development environment. The tools are
grouped according to their function. Each one is described in a separate chapter
containing information about the user interface for the tool, examples of how to use it, an
explanation of error messages, and background information necessary to understand how
the tool operates. This XDE User's Guide is best used to develop the "hands-on" knowledge
you need for accomplishing programming tasks. It is also a reference manual for using
tools.

[.5.3 Mesa Language Manual

The Mesa Language Manual is a reference manual defining the Mesa programming
language. It explains how to use the Mesa language, with examples, and describes the
grammar that defines Mesa.

1.5.4 Pilot Programmer's Manual

The Pilot Programmer's Manual is intended for designers and implementors of client
programs of Pilot. It describes the external structure and interfaces of Pilot, the operating
system, and the other packages released with it, providing sufficient information for
programmers to understand the facilities available and to write procedure calls in the

XDE User’s Guide I

Mesa language to invoke them. Similar to the Mesa Programmer’s Manual, the Pilot
Programmer’s Manual documents procedures, parameters, results, data types, and signals
for each Pilot software interface.

L.5.5 Mesa Programmer's Manual

The Mesa Programmer’s Manual describes the collection of interfaces that provide a
framework and runtime system for writing Mesa programs in the development
environment. For each interface, the Mesa Programmer's Manual lists all procedure
names, parameters, results, arguments, data types, and signals. The interfaces
documented in the Mesa Programmer’s Manual implement and support the window-
oriented user interface available for use in tool writing.

I.5.6 Appendices

Appendix A of this document describes Othello. Appendix B describes procedures for
getting started in the Xerox Development Environment.

In the Mesa Programmer’s Manual, Appendix A discusses the Example Tool, a tool that
helps you learn about tools. Appendix B contains information about interfaces.

[.6 Typographical conventions
The typographical conventions in this document are as follows:
Keycap and mouse button names are MODERN 8 BOLD CAPS.
Commands are Titan 10 bold; file names, menu items, and switches are Titan 10.

Interaction with the system is represented in Titan 10. When an example is given, what
you are required to type is underlined (with the exception of the special symbol for the
carriage return key). A ¢indicates that you should press the carriage return key.

I.7 Other features, other tools

Some of the other useful features of the Xerox Development Environment are within
the General tools described in the rest of the chapters in this section. These tools affect
processes system-wide, so they can help you to work more efficiently in many
situations.

[-25

General Tools

Editor Symbiote

3.1

The XDE 3.0 Editor provides a way to edit files stored on disk as well as to create new files.
This screen-oriented editor, which includes an extensive and powerful pattern-matching
facility, can be associated with any text or file window (or subwindow).

Files

The Editor Symbiote is included in the boot files.

User interface
The editor interfaces with users as a symbiote that attaches to any text subwindow or form
subwindow. The Editor Symbiote can be invoked via the Editor menu associated with the

Root subwindow. The editor is loaded with the boot files when CoPilot is booted.

The Editor Symbiote's user interface is described below.

3.2.1 Editor menu

To use the Editor Symbiote, chord on the mouse to get the Symbiote menu from the root
window. Attach edit will attach an Editor Symbiote subwindow to a host text or form
subwindow, and Detach edit will remove it. (Note that the Editor Symbiote commands
will work on form subwindows.)

3.2.1.1 Editor Symbiote subwindow

Allt¢ St RS! «: SR! R! «:

Figure 3.1: Editor Symbiote subwindow

Editor Symbiote

The Editor Symbiote is a form subwindow with the following items. (The behavior of the
Editor Symbiote menu items is affected by the Editor property sheet, as explained in the
next section.)

-2 The search field--the text that will be searched for (the «: following
RS!).This field may contain expressions specifying variable patterns
to be matched.

S! Searches for text matching the search field. The search starts
immediately following the current selection if it is visible in any split of
the window; otherwise, the search starts from the first character
visible in the top split of the window.

-3 The replace field-the text that will replace the selection (the «:
following R!). This field may also contain variables denoting elements
of the search field.

R! Replaces the current selection with the text specified by the replace

field. If the current selection was set as the result of S! or RS!, the
expression in the search field is available for replace-field variables. If
the selection was set some other way, the replace field may only have
literal text and may not contain any variables.

RS! Does an R! followed by an 8!, thus replacing the current selection and
searching for the next matching text.

SR! Does an S! followed by an R!, thus searching for the next matching
text and replacing it.

All! Repeatedly does an SR!, thus replacing all text instances that match
the search field. The repetition stops when the search fails to find a
match.

For more information about the Editor Symbiote’s search and pattern-matching facilities,
see the section on Search and pattern matching.

If you press the DOIT key (MARGINS) when an Editor Symbiote has the input focus, the Editor
Symbiote subwindow grows to two lines, with A11!, S! and RS! on the top line and SR!
and R! on the second line, giving more space to enter text. This two-line format is also
useful for comparing search and replace strings, which may be quite simple or very
complicated. Pressing the DOIT key again returns the symbiote subwindow to its original
one-line configuration.

If the search field is empty when you invoke S!, the Editor Symbiote copies the current

_ selection into the search field before starting the search.

XDE User’s Guide

3.2.1.2 Editor property sheet

u
- literal}
Context of match: { words}
IgnoreCase ConfirmReplace
Level
1=)

GetDefault! SetDefault!

Figure 3.2: Editor property sheet

The Editor property sheet is a separate window named Editor. Its fields, which affect the
Editor Symbiote’s operation, are:

Scope: {all, rest, selection} specifies the scope of the A11! command.

all means the entire file, rest means “the rest of the
file”--just like the S! command (q.v.)--and selection
means “within the current selection.”

Interpret match as: {pattern, literal} specifies the interpretation of

Context of match:

Ignore Case

Confirm Replace

Level:

the text in search field. pattern means to interpret the
search field as a regular expression; literal means to use
the search field as simple literal text.

{anywhere, words} further limits the acceptable con-
text in which a search may find a match. anywhere means
that the pattern can match within a larger word. words
only matches patterns that are surrounded by non-
alphanumeric characters.

is a Boolean that will cause upper-/ lower-case differences to
be ignored during a search.

is a Boolean that will cause the Editor Symbiote to request
explicit user confirmation for each text replacement. A
confirm cursor appears when confirmation is requested; use
Point to confirm, Adjust to deny.

is the number of space characters by which the indenting
should be adjusted. This is used by the Nest and UnNest
commands in the Edit Ops menu.

Editor Symbiote

3-4

The property sheet also has a command subwindow with these commands:
GetDefault! sets the editor properties to the built-in default state.
SetDefault! sets the default editor properties to be those currently set in

the property sheet. GetDefault! may then be used to
return the properties to that state.

3.2.1.2.1 Editor property sheet accelerator

You can associate the Editor property sheet with any key on your keyboard for faster
access to the editor's parameters. If the text subwindow TIP Interpreter sees the atom
"Editor," it will make the Editor property sheet appear (become active if it is inactive, or
normal if it is tiny). To associate the Editor property sheet with the HELP key, you would
use the following entry in the <>TIP>TextSW.TIP file:

SELECT TRIGGER FROM

HELP Down => Editor; - --specifies which key to attach to

ENDCASE. ..

To get the TextSW. TIP file, look on the <Hacks>1x.0>Source>Editor> directory. It
can be copied to the local file <>TIP>TextSW.TIP. After installing the file and rebooting,
pressing the HELP key causes the Editor property sheet to appear.

3.2.1.3 EditOps menu

When an Editor Symbiote is attached to a subwindow, an EditOps menu is also placed on
the window. The A11, Search, SearchReplace, ReplaceSearch, and Replace menu
items invoke the same commands as the Editor Symbiote's All¢, S!, SR!, RS! and R!
commands. Other menu commands, which only operate on text subwindows, are specific to
formatting of Mesa source code. They are:

Nest shifts the lines that contain the current selection level
characters to the right, where level is specified in the
Editor property sheet.

UnNest shifts the lines that contain the current selection level
characters to the left, where level is specified by the Editor
property sheet.

Match identifies matching parentheses (), square brackets [],
angle brackets < >, and braces { }. If one of these grouping
characters is selected, Match extends the selection to the
matching character. If a character that is not one of these is
selected, Match extends the selection in both directions

XDE User’s Guide v 3

until it contains a match. Successively using Match will
match larger scopes.

Count gives a count of how many occurrences of a pattern are
found in the text. The search expression and scope are
specified in the Editor property sheet. The result is given in
the message subwindow of the Editor property sheet.

3.3 Search and pattern matching

3.3.1 Search

The search operation accepts expressions in the search field. You can search for patterns
or families of strings, as well as for simple literal strings. The syntax of a search
expression is given below. First, some preliminary definitions:

<char> a single literal character. Since the characters %, %, [, 1, ~,
* and \ have special meaning within a search expression,
you must prefix these characters with a backslash
character. For example, * means a literal asterisk
character. Following Mesa conventions, you may also use \n
for carriage return, \t for tab, \ddd for the character whose
code is octal ddd, where 4 is an octal digit and ddd < 377B.
Escaping an ordinary character is harmless.

<charl>-<char2> character range. For example, A-Z means all the capital
letters.

<character class> a set of characters, defined by naming the characters to be
included. A character class specification consists of a
sequence of characters and character ranges.

A search expression is an arbitrary sequence of the following five elements. Each element
counts as one “variable” in replace expressions.

<string> matches the given literal characters of the string.
matches any single character.
3 matches the beginning of a line (for use when one is the first

element in the pattern).
[<character class>] matches any character in the character class.

[~ <character class>] matches any character except those in the character class.

In addition, any of the above five constructs can be qualified by appending either of the
following closures, which are explained in the section on Character classes and closure.
When a closure is applied to a <string>, it applies only to the last character of the string.

3-5

Editor Symbiote

* short closure, Matches the least possible number, including
zero, of occurrences of the previous construct.

b long closure. Matches the greatest possible number,
including zero, of occurrences of the previous construct.

3.3.2 Replace

The replace field specifies the text that will replace the selection in a replace operation.

This field may also contain an expression with variables denoting elements of the search
field.

A replacement expression is an arbitrary sequence of the following elements.

<string> replaces with the given literal characters of the string. Since the
character @ has special meaning within a replacement expression, you
must prefix this character with a backslash character; e.g., \@.

e replaces with the complete text found by the search.

én@ replaces with the text that matched the nth element of the search
expression. The first element of the search expression is “1,” etc.

3.3.3 Character classes and closure

Character classes provide a way to match different characters as part of a pattern. For
instance, either [a-c] or [abc] is a proper character class declaration that will match
any of the letters a, b, or c. Usually, however, you will not want to match just a single
character in a character class, but a word or a list of them. The short closure * and the long
closure ** are used for this. * and ** match with zero or more members of the search
expression element that immediately precedes the closure. * matches the shortest possible
string of the pattern type, and ** matches the longest possible string. So an expression
like [a-c]* will match strings of arbitrary length whose component letters are a, b, and
c.

For example, given the text "Hello.bcd Goodbye.bcd":
H#*.bcd will match "Hello.bcd”
H#**.bcd will match "Hello.bcd Goodbye.bed”
Caution: Be careful about using #* and #** if you are editing a large file,. Since #

matches any character, $* and #** will be slow. Since $** matches the longest run of
characters, it will be very slow.

3.3.4 Examples
1. To find words that start with an upper-case letter:

Find: [A-Z][a-2]**
Result: 'I', 'Hello', 'Prince’ will all match, 'warthog' will not.

XDE User’s Guide) 3

2. To find a word whose

first character is either a, b, ¢, d, s, x,y,z
second character is either a, e, 1,0, u
third characteris g, p, 4,5, 6

and reverse the order of the letters found:

Find: [a-dsx-z][aeiou][gp4-6]
Replace: @3@@2@Q@1@
Result: dog = > god

3. To delete the leading zeroes from numbers

Find: [~0-9][0]**[0-9]
Replace: @1@@3@
Result: 0000008 = > 08, 00343B = > 343B

4, To generate exec commands from a list of files (also see the example given in the
next section):

Input: "Access.archivebcd Adobe.archivebced Binder.archivebed *

Find: #*

Replace: Copy < >Temp>@1@ « @1@@n

Result:
Copy < >Temp>Access.archivebed « Access.archivebcd
Copy < >Temp>Adobe.archivebcd « Adobe.archivebcd
Copy < >Temp >Binder.archivebcd « Binder.archivebcd

3.3.5 Editor as programmer's tool

The searching and pattern matching facilities of the editor can be used as a macro to
generate sizeable chunks of code in a very short time, as in the following example:

Suppose you want to create a function that sends out simple error messages if there is an
error while attempting to access a file. Because Mesa has such unique type-definition
capabilities, you are likely to find an enumerated type such as MFile.ErrorCode lying
around, a type that enumerates the different possible file access errors. Using the
members of this type as a list of selection keys, you can trivially generate code that will
send the name of the file access error message to your terminal. What follows is a dialog
for doing just that.

First, you will want to get a list of all the error codes. Type the following command to the
Executive window:

>Show type: MFile.ErrorCode

MFile.ErrorCode: TYPE = MACHINE DEPENDENT {noSuchFile, conflictingAccess,
insufficientAccess, directoryFull, directoryNotEmpty, illegaiName,
noSuchDirectory, noRootDirectory, nullAccess, protectianFault,
directoryOnSearchPath, illegalSearchPath, volumeNotOpen, volumeReadOnly,
noRoomOnVolume, noSuchVolume, crossingVolumes, fileAlreadyExists,

3-7

Editor Symbiote

filelsRemote, filelsDirectory, invalidHandle, courierError, addressTranslationError,
connectionSuspended, other(255)};

The list below was simply copied from the Executive window into an empty File window
(using the copy key) :

noSuchFile, conflictingAccess, insufficientAccess, directoryFull,
directoryNotEmpty, illegalName, noSuchDirectory, noRootDirectory, nuilAccess,
protectionFault, directoryOnSearchPath, illegalSearchPath, volumeNotOpen,
volumeReadOnly, noRoomOnVolume, noSuchVolume, crossingVolumes,
fileAlreadyExists, filelsRemote, filelsDirectory, invalidHandle, courierError,
addressTranslationError, connectionSuspended

Now attach an Editor Symbiote subwindow to the File window and make the following
entries into the find and replace fields («:):

Find: #*,
Replace: @1@ => Write["@1l@"L];\n

Running that Replace function (R!) over the list above and adding the PrintError
subroutine name and the SELECT statement yields the finished function below:

PrintError: PrOC[code: MFile.ErrorCode] = {
SELECT code FROM
noSuchFile = > erte["noSuchFlle"L]
conflictingAccess = > Write["conflictingAccess“L];
insufficientAccess = > Write["insufficientAccess"L];
directoryFull = > Write["directoryFull"L];
directoryNotEmpty = > Write["directoryNotEmpty"L];
illegalName = > Write["illegalName"L];
noSuchDirectory = > Write["noSuchDirectory”L];
noRootDirectory = > Write["noRootDirectory“L];
nullAccess = > Write["nullAccess"L];
protectionFault = > Write["protectionFault"L];
directoryOnSearchPath = > Write["directoryOnSearchPath"L];
illegalSearchPath = > Write["illegalSearchPath"L];
volumeNotOpen = > Write["volumeNotOpen“L];
volumeReadOnly = > Write{"volumeReadOniy"L];
noRoomOnVolume = > Write["noRoomOnVolume"L];
noSuchVolume = > Write["noSuchVolume"L];
crossingVolumes = > Write["crossingVolumes”L];
fileAlreadyExists = > Write["fileAlreadyExists"L];
filelsRemote = > Write["filelsRemote"L];
filelsDirectory = > Write["filelsDirectory”L];
invalidHandle = > Write["invalidHandle"L];
courierError = > Write["courierError"L];
addressTranslationError = > Wnte["addressTransIatlonError"l.]
connectionSuspended = > Write["connectionSuspended”L];
ENDCASE;

L

XDE User’s Guide ’ 3

3.4 User.cmfile entries

The typical Tajo tool parameters can be set for the Editor property sheet under [Editor] in
the User.cm (i.e., WindowBox, InitialState, TinyPlace).

[Editor]

WindowBox: <put here the size of window box you prefer >

InitialState: < put here the initial state you want, particularly Tiny or Active>
TinyPlace: < put here the coordinates of the desired location of the Tiny window on

your screen>

In particular, fix the User.cm entry for [FileWindow] to "Setup: Always Menu Edit" to
get the Editor Symbiotes to attach themselves by default to text windows.

[FileWwindow]
Setup:Always Menu Edit

3-9

3 Editor Symbiote

3-10

Executive

The Executive is a tool for loading and running Mesa programs.

4.1 Files

The Executive is built into Tajo and CoPilot; no extra files are needed.

4.2 Userinterface

The Executive runs as a TTY window, so the standard editing functions are not available.
The insertion point is always at the end of the text and cannot be moved elsewhere in the
Executive window. In the following descriptions, word refers to a sequence of
alphanumeric characters; token refers to a sequence of non-blank characters.

4.2.1 Editing functions

The Executive interprets certain characters as editing characters on the current command

line, as follows:
8s

BW

CONTROL-X

CONTROL-C, DELETE

COMPLETE

deletes the last character.

deletes the previous word; any non-alphanumeric characters to
the right of the previous word are also deleted.

expands the command line (defined below) and prints the
expanded command line.

aborts the current command line and prompts for a new
command.

treats the last token on the command line as the beginning
character string of a file name or registered command and
attempts to complete it. If the token starts more than one file
name or command, the screen flashes. The Executive extends the
command line with as many unambiguous characters as it can.

4-1

4 Executive

TAB treats the last token on the command line as the beginning
character string of a file name and list all files or registered
commands it starts. The foken is deleted from the command line
and the command line is retyped.

2(question mark) treats the last token on the command line as the beginning
character string of a file name and lists all files or registered
commands it starts. The token is not deleted from the command
line and the command line is retyped.

RET, ;(semicolon) terminates the command line. RET terminates the command line
' and causes it to be interpreted, while the semicolon permits more
command lines to be typed before interpretation begins.

4.2.2 Command line expansion

The Executive expands a command line using the following for these special
interpretation characters:

* (single quote) quotes the following character so that the Executive does not
interpret it. The following character, but not the quote, becomes
part of the expanded command line. For example, use a single
quote to pass a semicolon in a command line to the Compiler.

1 (UpArrow) quotes the following character so that the Executive will not
interpret it. Neither the UpArrow nor the following character is
part of the expanded command line. 1 is typically used to insert
carriage returns into long command lines to make them more
readable.

* (star) interprets the token containing the star as a pattern; replaces
this token by the list of files and registered commands that match
the pattern. The * in the pattern may match zero or more
instances of a character. A single star only matches within one
level of subdirectory, that is, it will not match the character > in
a file name. Multiple stars will cross subdirectories. Hence, the
pattern * matches all the files in the current subdirectory, while
the pattern ** matches all the files in or below the current

subdirectory.
#(pound sign) same as *, but matches only one character.
@ (at-sign) interprets the following token as a command file. The token may

be terminated by another at-sign, by a space, a CR, or a semicolon.
The token is interpreted as the name of a file, and the token is
replaced by the contents of that file. If the token is not a file
name, the Executive tries to complete it by appending .cm. If that
fails, it appends *.cm, and if that fails, it prompts you for the
contents of the file.

4-2

XDE User’s Guide 4

\\ (backslash) or -- denotes the characters that follow as a comment. The comment
can be terminated by a matching pair of delimiters (\\ or --) or by
> >,

4.2.3 Command line interpretation

The Executive assumes that the first token in a command line is the unique prefix of one
of its registered commands. (Commands may be registered by programs.) If the first token
is the prefix of more than one command, the Executive reports that it cannot find the
subsystem and prompts for a new command, discarding all previous input.

If the first token is not the prefix of any command, the Executive assumes that there is a
program that would register that command if it were run. The Executive attempts to find
and run a likely program. First, it checks to see if the token is the name of a file. If not, it
strips any extension from the file and appends the following suffixes: .archivebcd,
* archivebced, .becd, *.bed. If any of these patterns match exactly one file, the
Executive runs that program. After running the program, the Executive checks to see
whether the program has registered the command that should have been present to
correspond with the first token on the command line. If not, it skips the current command
line and starts processing the next command.

4.2.4 Built-in commands

The commands listed below are built into the Executive and are automatically loaded and
started when the Executive is created. Some of the built in commands take file names or
directory names for arguments.

AliasCommand AliasCommand OldCommandName NewCommandName

provides a mechanism for giving a particular command
more than one name. Subsequent invocations of the
command by its original name or any of its aliases will
always invoke the same procedure that was registered
with the original command. This is useful for commands
which have identical beginning letters, such as Compare
and Compiler, since the user must enter at least five
letters of either command in order for command
completion to work.

ClientRun has the same semantics as the Run! command of
CommandCentral, except that its arguments come from
the command line instead of the Run: line of
CommandCentral. (Also see SetClientVolume.) For
example, the following command runs the program
Testl.bcd on the current client volume:

ClientRun Testl.bcd

CloseVolume takes a list of volume names and closes each volume. The
volume to be closed should not be on the current search

4-3

4 Executive

ChangeCommandName

Clearinghouse

Copy

CreateDir

CWD

Delete

4-4

path (see the Search Path Tool chapter). The following
command closes the logical volumes named Tajo and User.

CloseVolume Tajo User
OldCommandName NewCommandName

is used for renaming commands registered with the
Executive (not to be confused with Rename, which renames
files). After executing ChangeCommandName, the
operations previously invoked by typing
OldCommandName to the Executive can only be started by
typing NewCommandName; OldCommandName will no
longer be registered.

prompts you for your domain and organization. An
example of the use of the Clearinghouse is:

Clearinghouse
Domain: OSBU North
Organization: Xerox

expects an argument of the form
TargetFile « filel file2 ...

If the left arrow is omitted, the Executive asks the you to
confirm that the first file is the target file. After the Copy
command, the target file will contain the concatenation of
the contents of the source files. If there is only one source
file, the target file will have the same creation date as the
source file; otherwise, it has the current time as its
creation date. As an example, the following command
copies the file MyFile.mesa and MyOtherFile.mesa into
the file Temp.mesa:

Copy Temp.mesa <« MyFile.mesa
MyOtherFile.mesa

creates a directory with the name you type.
CreateDir <CoPilot>NewDir

replaces the current working directory with the one you
type. The facility for changing the current working
directory also exists in the SearchPathTool:

CWD <CoPilot>Temp

takes a list of file names or directories and deletes each
one. If the specified directory is not empty, or if it is on the
current search path, the Executive will abort the deletion
and print an error message. As an example, the following

XDE User’s Guide

4

Filestat

Floppy

Load

LogIn

command deletes the files MyFile.mesa and
MyOtherFile.mesa:

Delete MyFile.mesa MyOtherFile.mesa

takes a list of file names or directories and prints out the
file ID, number of bytes in each file, the file type, the times
at which the file was created, last read, and last written,
and whether the file is delete-protected, read-protected or
write-protected. As an example, the following command
requests file information on file MyFile.mesa. Typical
output is listed below.

Filestat MyFile.mesa

MyFile.mesa FileID: O,
125000B,601B,64150B,15144B

11520 bytes

type: text

create: 5~Jan-82 15:30:25 write: 11-Jan-82
17:42:06

read: l1l4-Jan-82 19:41:41

If you have the file ID of a file rather than the file name,
Filestat can still be used to obtain file information.
Instead of the file name, use the file ID, preceded by the s
switch. Numbers must be separated by spaces.

Filestat /s 0, 125000B, 601B, 64150B, 15144B

recognizes commands that allow you to store and retrieve
files on floppy disks using the floppy disk drive in your
workstation. (For a detailed discussion of the commands,

arguments and switches recognized by Floppy, see the
chapter on floppy commands.)

Floppy command arguments.

interprets each token on the command line as a file name
and loads that program. Prints the load handle of each
program loaded. You can specify the following switch,
either locally or globally:

1l: use codelinks when loading

As an example, the following command will load the
programs MyProgram.bcd and MyOtherProgram.bcd

Load MyProgram.bcd MyOtherProgram.bcd

prompts you for your name and password. An example of
the use of LogInis:

4-5

Executive

4-6

OpenVolume

PopWD

PushWD

ProcessInBackground

ProcessInNormalPriority

Rename

LogIn
User: YourName Password: YourPassword

takes a list of volume names and opens each volume.

You can specify the /w switch (open the volume for read-
write instead of readOnly) either locally or globally.

OpenVolume Tajo User/w

opens the logical volume Tajo for reading and the logical
volume User for read-write.

A volume being opened should not be on the current search
path. For example, if you wanted to open your Library
volume for read/write, you would type OpenvVolume
Library/w. If <Library> were on the current search
path, the feedback message would say Unexpected
MFile error. However, if you take all <Library>
references out of your current search path, things work as
advertised.

pops the working directory, eliminating it from the current
search path, and leaving the next directory in the search
path as the working directory.

pushes the directory named to the front of the current
search path, making it the current working directory.

causes the compiler and binder to run at background
priority when run from CommandCentral. This command
does not take parameters. The default priority is normal.
causes the compiler and binder to run at normal priority
when run from CommandCentral. This command does not
take parameters. The default priority is normal.

expects a command line in one of two forms:

TargetFile < SourceFile

or

SourceFile TargetFile

If the target file already exists, the command will fail.
Otherwise, the source file will be renamed to the target
file. As an example, either of the following commands will
rename the file MyFile.mesa to be called NewFile.mesa:

Rename NewFile.mesa <« MyFile.mesa
Rename MyFile.mesa NewFile.mesa

XDE User’s Guide

4

Run

SetClientVolume

SetErrorLevel

SetPriority

interprets each token on the command line as a file name
and runs that program. You can specify the following
switches, either locally or globally:

1 usecodelinks when loading

d call the debugger after loading but before starting the
program :

a start any tools created by the program in the active
tool state

i start any tools created by the program in the inactive
tool state

t start any tools created by the program in the tiny tool
state

As an example, the following command will run the
programs MyProgram.bcd and MyOtherProgram.bcd.
After MyProgram.bcd has been loaded, but before it has
been started, the system will break to the debugger.

Run MyProgram.bcd/d MyOtherProgram.bcd

sets the client volume that will be used by the Run!
command in CommandCentral (and by ClientRun). As an
example, the following command sets the client volume to
the logical volume named Tajo:

SetClientVolume Tajo
Outcome/switch <outcome/switch>

This command allows you to indicate whether processing
should proceed, wait or abort following an error or
warning. The outcome can be either warning or error.
Switches can be either p for proceed, w for wait or a for
abort. The default is to abort whenever a warning or error
occurs. If you decide to wait following a particular
outcome, processing will continue only after you type any
character, except “q,” which will halt rather than continue
processing. The switches can be ordered according to their
severity as follows: p < w < a. The switch chosen for errors
must be greater than or equal to that for warnings; that is,
warning/a error/p is not a legal combination since it
violates the ordering constraint.

SetErrorLevel warning/p error/a

level (1, 2 or 3)

4-7

Executive

SetSearchPath

ShowSearchPath

Snarf

sets the priority at which the Executive will run. The
priority must be specified in terms of a number: 1 is the
lowest priority and stands for background; 2 is for normal
priority; and 3 is the highest, meaning foreground priority.
Default is 2, normal priority. The priority may be
initialized by adding the appropriate a User.cm entry (see
below).

SetPriority 2

sets the search path to the list of directories in the
command line. The user can specify the following local
switch:

r readOnly search path entry.

As an example, the following command sets the search
path so it contains the directories <Tajo>Temp,
<Tajo>Defs,and <Tajo>.

SetSearchPath <Tajo>Temp <Tajo>Defs <Tajo>
displays the current search path in the Executive window.

expects a list consisting of volume and file name. It copies a
file from the source volume onto the current volume. The
default source volume is CoPilot. The user can specify the
following local switches:

¢ interpret the next argument as a command. The
permissible commands are SourceDir and DestDir.
These commands have been added so that the user
can specify the source or destination directory of a
snarf. The name of the directory is the next name on
the line.

s rename this file when copying it; the target name is
the next name on the line.

u copy the file only if the source file is newer than the
target file, or if the target file does not exist.

As an example, the following command copies the files
MyFile.mesa and MyOtherFile.mesa from the logical
volume Tajo, renaming MyOtherFile.mesa to
Temp.mesa. MyFile.mesa will be copied only if the source
files is newer than the target file or the target file does not
exist.

Snarf SourceDir/c <Tajo> MyFile.mesa/u
MyOtherFile.mesa/s Temp.mesa

XDE User’s Guide

4

Start

Type

Unload

2ap

interprets each token on the command line as the load
handle of a loaded program and starts that program. You
can specify the following switches, either locally or
globally:

a start any tools created by the program in the active
tool state

i start any tools created by the program in the inactive
tool state

t start any tools created by the program in the tiny tool
state

As an example, the following command starts the program
with load handle 4063700B in the tiny state:

Start 4063700B/t

takes a list of file names and displays the contents of each
in the Executive window. As an example, the following
command types the files MyFile.mesa and
MyOtherFile.mesa:

Type MyFile.mesa MyOtherFile.mesa
Commandi ...<Commandp>

unloads the specified command and the module or
configuration implementing it, provided it has been
previously registered with the Executive. Unload will also
unload commands that have been aliased using
AliasCommand, or renamed using ChangeCommandName.
Since the Executive keeps track of all original command
names as well as those that have been renamed, both the
original and alias or rename may be supplied to Unload.

takes a list of file names and causes them to be deleted, or,
if they are currently in use, to be deleted when they are no
longer in use. It is usually used to permit the retrieval of
copies of programs that are already loaded, or to delete
files that have accidentally been left locked by another
program. As an example, the following command zaps the
files MyProgram.bcd and MyOtherProgram.bcd.

Zap MyProgram.bcd MyOtherProgram.bcd
The file name always disappears immediately from the file

system, so a new file of that name may be created right
away.

4-9

Executive

4.2.5 Exec Ops menu

The Exec Ops menu is available outside all windows and contains the following

commands:
FileWindow
Run

Load

Start

New Exec
Quit

Power Off

CoPilot

4.3 User.cm processing

creates a new Source window.

runs the file that is the current selection.

loads the file that is the current selection.

starts the load handle that is the current selection.
creates a new Executive window.

does a physical volume boot.

shuts off the power.

boots your CoPilot volume.

The Executive section of a User.cm file can contain the following entries:

CompilerSwitches:
BinderSwitches:

ClientSwitches:

ClientVolume:

Priority:

UseBackground:

CodeLinks:

WindowBox:
TinyPlace:

InitialState:

4-10

the default switches to be used by the compiler.

the default switches to be used by the binder.

the default boot switches to be used by the Executive's
built-in Run command as well as the Run! command in
CommandCentral.

the volume to be used by the Executive’s built in Run
command as well as the Run! command in
CommandCentral.

the priority that the Executive should run in. Choices are 1
for background priority, 2 for normal priority, or 3 for

foreground priority. The default is 2, normal priority.

if TRUE, then the compiler and binder will be run at
background priority from CommandCentral. '

if TRUE, codelinks will be used by default when loading
programs. '

location of the Executive’s window box.
location of the Executive’s tiny box.

initial state of the Executive (Active, Tiny, or Inactive).

HeraldWindow

CoPilot and Tajo have a banner called the HeraldWindow appearing at the top of the
screen. It displays the name and version of the boot file, the date on which it was built, the
current user, the current time and date, a logical volume name, and the number of free
pages on that volume. It allows other tools to display messages in its window and has a
menu that allows you to boot any of the bootable volumes.

5.1 Files

The HeraldWindow is built into CoPilot and Tajo.

5'.2 User interface

A Boot from: menu is available through the HeraldWindow. It is invoked by positioning
the cursor in the window and pressing MENU.

5.2.1 Boot from: menu

Besides containing the names of the volumes on your workstation, the Boot from: menu
lists the following options:

File Name:

Set Switches:

uses the current selection as the name of a boot file on the current
logical volume to be booted.

uses the current selection as a string of Pilot booting switches for
a subsequent booting command. The scanner recognizes the
following syntax: The characters ~ and - change the sense of the
immediately following switch. Each character of the selection is
the character representation of a switch. \ is an escape character.
If it is followed by a three-digit octal number, the switch is the
character with that octal representation. If \ is followed by the
characters N, n, or R, or r, the switch is the Ascii CR character. If\
is followed by B or b, the switch is the Ascii BS character. If\is
followed by F or f, the switch is the Ascii FF character. If \ is

5-1

5 Herald Window
followed by L or 1, the switch is the Ascii LF character. If\ is
followed by ', "', ~, or -, the switch is that character.
Reset Switches uses default switches for a subsequent booting command.
Boot Button automatically pushes the boot button.

Set Priority Up sets the priority of the clock process to foreground, making it a
good stopwatch.

Reset Priority resets the priority of the clock process to normal.

There may be other volume names in the menu. Invoking any of these causes the volume
to be booted after confirming with a mouse click.

When the HeraldWindow is made tiny, it can display the current date and time, the Pilot
logical volumes, and their free page counts. Move the cursor into the tiny HeraldWindow
and it will display the date and time. Each successive click with pOINT will display the
name and free page count of a Pilot logical volume, starting with the system volume. If the
information about all the volumes has been displayed, the HeraldWindow will redisplay
the date and time. The HeraldWindow will stop displaying this information when you
move the cursor out of its window. If you wish to have the HeraldWindow continue to
display after the cursor is moved out of the window, click AbjusT. To cause the
HeraldWindow to revert to its normal state, click the right button in the window again.

The name and free page counts of volumes other than the system volume may also be
obtained when the HeraldWindow is active, by clicking the mouse over the volume name
in the right side of the window. Each successive click with POINT will display the name
and free page count of a Pilot logical volume, starting with the system volume. If the
volume is not the system volume, it will have an asterisk appended to its name. Clicking
ADJUST over the volume name will cause the HeraldWindow to continue displaying
information for that volume after the cursor has moved out of that region of the window.

5.3 User.cm processing

The HeraldWindow initializes its window box, tiny position, and its initial state from
entries in the [HeraldwWindow] section of the User.cm:

location of tool's
window box

WindowBox: [x: 362, y: 628, w: 662, h: 150]

TinyPlace: [x: 720, y: 778] -~ location of tool's
tiny box
InitialState: Active -~ initial state of tool

°

Profile Tool

The Profile Tool, which is built in, allows you to edit information used by other tools
running in the development environment.

6.1 Userinterface

The Profile Tool interacts with you through a form subwindow, which contains the

following fields:

Organization: Debugging
Librarian: Prefix: Suffixs

User

Password

Registry

Organization

Debugging

is a text form item for your login name. This field is normally initialized
by a value specified in the User.cm.

is your password.

contains the mail registry to which you belong. This field is normally
initialized by a value specified in the User.cm.

contains the clearinghouse domain you wish to use. It is needed when
communicating with NS servers, such as printers and file servers. This
field is normally initialized by a value specified in the User . cm.

contains the clearinghouse organization you wish to use. It is needed
when communicating with NS servers, such as printers and file servers.
This field is normally initialized by a value specified in the User.cm.

is a Boolean form item that some tools read. When a tool detects an error
situation, it may go to the debugger if Debugging is TRUE and print out a
message to the user if FALSE. If you are not prepared to go to the

6-1

Profile Tool

6-2

Librarian

Prefix:

Suffix:

debugger, you should set the Boolean to faLstE. This field is normally
initialized by a value specified in the User .cm.

contains the network address or name of the default Librarian service.
This field is normally initialized by a value specified in the User .cm.

is used to expand libject names into full libject names. Prefix: is a
string of one or more tokens, each of which represents a project identity
(e.g., Tools> <Pilot>, etc.) This field is normally initialized by a
value specified in the User.cm.

is used to expand the libject name you supply into a full libject name
(e.g., mesa, config, etc.). This field is normally initialized by a value
specified in the User.cm.

The Profile Tool displays the following commands only when the values of one or more of
the data items have been edited so that the values displayed in the window are
(potentially) different from the values of the underlying system variables. When the
values are the same, these commands will not be displayed:

Apply!

Abort!

is a command form item that enters the information in the Profile Tool's
subwindow into the system, making the information available to other
tools. Note that no changes take effect until you invoke Apply!

is a command form item that resets the information in the Profile Tool’s
subwindow from the system variables.

Tool Driver

7.1 Files

The Tool Driver extends the facilities of the Xerox Development Environment by
providing a mechanism for automatically performing repetitive, routine batch tasks. It
does this by acting as a simulated user that interprets simple command sequences. The
Tool Driver uses only the functions available through the XDE's user interface, rather
than accessing special hooks in various low levels of the Development Environment and
the attendant common collection of tools. '

The power of the Tool Driver is constrained only by the power of the set of tools that are
loaded and accessible to it. However, the flexibility and sophistication of the commands
understood by the Tool Driver is low. It is not intended to meet all your non-interactive
needs, but instead tries to provide simple catalogued procedures.

The Tool Driver has the potential to completely destroy large, permanent user data
structures such as Action Request databases. For this reason, certain tools may place
extra restrictions on the operations that they will allow while under the control of the Tool
Driver. Any such restrictions will be discussed in the documentation for the individual
tools.

Three files are required to use the Tool Driver. The first is the Tool Driver's code,
Tools>ToolDrivers.bcd; the second is a list of the tools that you might want the Tool
Driver to manipulate, Tool. sws; and the last is a set of instructions for the Tool Driver (a
script for the simulated user).

If you wish to make tools available for use through the Tool Driver or are interested in
extending the Tool Driver, retrieve <Mesa>Doc>ToolDriverClient.memo.

7.2 Userinterface

The Tool Driver communicates via the Tool Driver Executive window. This tool allows you
to specify the name of the script files and the options to be used by the Tool Driver during
execution of the scripts. '

Tool Driver

7-2

Go! SingleStep Debug Script: Test.tds

Figure 7.1: Tool Driver executive window

The Tool Driver executes scripts until it either runs out of input, is aborted, or encounters
an error. A script can cause the Tool Driver to temporarily interrupt its execution and
return to the user; except for these breaks, the Development Environment's Notifier is
completely tied up by the execution of the Tool Driver.

7.2.1 Message subwindow

Messages that are a result of calls on the function pause are displayed in the message

subwindow.

7.2.2 Form subwindow

The form subwindow contains the following items:

Go!

SingleStep

Debug

Script:

causes the Tool Driver to execute using the specified file as the input
script. Use ABORT to abort the execution.

is a Boolean which, if TRUE, causes the Tool Driver to pause after it
executes each statement in the script. Otherwise, execution does not halt
unless either the script is finished, the user or a tool aborts, or an error
occurs.

is used for debugging the Tool Driver itself. Its value should normally be
FALSE.

i5 a string item that lists names of the input, script files. It is defaulted to
Test.tds (the extension .tds for script files is an acronym for tool
Driver script). If a script is aborted, either by the user or by one of the
tools being driven, the rest of the scripts will not be executed (see the
Script files section).

XDE User’s Guide « 7

7.2.3 File subwindow

The file subwindow is used to log messages of more than transient interest, such as the
name of the script file currently being executed, Done or Abort, or other status messages
indicating how or why the script file finished. The root log name for this tool is TDE.log.

7.3 Script files

. A script file is a text file containing a series of statements. A statement is either an
assignment to a variable, a command, a loop or exit loop, a simple conditional, or a
function call.

7.3.1 Script file format

There is no inter-statement separator, optional or otherwise. White space is not
significant, except that it delimits atoms in the script. The commenting conventions are
those used in Mesa. Occasionally it may be necessary to quote an arbitrary character in
the script by preceding the character by a ' character. The \ is treated as an end-of- file
signal, and should not appear unquoted in a script unless you want the Tool Driver to
ignore the following part of the script.

7.3.1.1 Constants and variables
Delimited strings (must be preceded and followed with double quotes), unsigned numbers,
or one of the set of reserved words NiL, TRUE, and FALSE, are constants. Whether a constant is

semantically valid depends on the context in which it is used.

Variables reference items in form subwindows. The format of a variable reference is
ToolName.SubwindowName.Tag; e.g., AREditTool.CommandSW.UseQL. If Too/Name is
omitted, then the value of the reserved variable TooL is used. If SubwindowName is also
omitted, then the value of the reserved variable suswiNDOw is used. The tag trailer
provided by the FormSW package must not be present in Tag.

All other available facilities are invoked by function calls.

7.3.1.2 Assignment to variables
A variable is assigned to by
Form item « Expression

where Expression is either a constant, a variable, or a function call.

7.3.1.3 Function calls

Function calls are positional and do not allow defaulting. Provision has been made for the
Tool Driver's set of functions to be dynamically increased. A function call must always
have the form:

Function[ExpressionList]

7-3

Tool Driver

T-4

where an ExpressionList is one or more Expressions, separated by commas.

These are the function calls currently allowed:

ActivateTool[Expression].

The Expression must specify the name of an entry in the Tajo Inactive Tools menu. This
entry might not match the tool's herald, its tiny name, or its name as known to the Tool
Driver for variable referencing purposes. If the name is found in the menu, then the Ttool
is activat;d, otherwise this call is a no-op. :
AppendCommand([Too/Name.SubwindowName, Expression].

This calls UserInput.Stuff string with the subwindow handle and string value.
AppendString[Too/Name.SubwindowName, Expression].

This calls Put . Text with the subwindow handle and string value.
CallDebugger[Expression].

This calls the debugger with the Expression as the message to be printed by the debugger.

FileCreated[Expression, Expression].

The first Expression is the name of the file to check on. TRUE is returned if the file exists and
was created within the number of seconds specified by the second Expression.

InvokeMCR[ToolName.SubwindowName, Constant, Constant)].

The Too/Name may be omitted, in which case the default will be used. The first constant is

the name of the menu; the second is the keyword in that menu.

IsVisible[Form item].
TRUE is returned if the specified form subwindow item's invisible flag is FALSE.
LastMessage[Too/Name.SubwindowName].

This returns the last message posted in the message subwindow specified. The Too/Name
may be omitted, in which case the default will be used.

Modifyltem[Form item, Expression, Expression, Expression)].

This allows you to insert, delete, or replace characters in the specified form subwindow
item. The first Expression specifies the position at which to start the modification,
beginning with 0 at the left edge of the body of the item (i.e., the item's tag and tag trailer
are not accessible). The second Expression specifies the number of characters to be affected,
and the last Expression is the new characters (if any). Thus pos, length, NiL for the three
Expressions specifies a deletion beginning at pos of length characters. pos, 0, "new string”
specifies the insertion of the nine characters "new string" at pos. pos, length, exp specifies a
replacement. For convenience, all starting positions off the right edge of the item are
trimmed back to the right edge, so appending new text to the item can be achieved by

XDE User’s Guide 4 7

using the expression (1000008, 0, newText). For further details, see the description of the
Tajo procedure FormSW.ModifyEditable in the Mesa Programmer’s Manual.

Pause [Expression, Expression] .

This allows you to intervene and interrogate while a script is being executed. It prints the
first argument in the Tool Driver exec's message subwindow and then enables the
Notifier, allowing you to interact with the development environment again. The second
argument indicates whether the Pause is simply trying to ask a question. It must be
either TRUE or FALSE. If TRUE, the Tool Driver Exec adds two new items to its command
subwindow, named Yes and No. If you invoke Yes, Pause returns TRUE; if you invoke No,
Pause returns FALSE. [f the second argument is FALSE, the Tool Driver exec adds a new item
to its command subwindow named Proceed, and Pause returns an undefined value when
you invoke Proceed.

SetSelection[Expression].

This sets the current selection. There is no feedback to show what the selection has been
set to.

SetWindowBox[Too/Name, Expression, Expression, Expression, Expression].

This sets the tool's window to the size specified. The order of the arguments (from the left)
isx,y,w,andh.

SubString[Expression, Expression, Expression].

This returns the value of the the subportion of the first expression that begins at the
second expression and has a length specified by the third expression.

Wait{Expression].

This causes the Tool Driver to relinquish the processor for the specified number of seconds.
During the wait, the Notifier is still disabled, but periodic notifications occur (although
perhaps not as quickly as they normally would).

WindowOnTop[ToolNamel.

This brings the specified tool window to the top of the window stack.

-5

7 Tool Driver

7.3.1.4 Control structure
The Tool Driver allows for some forms of control struéture. They are:
1) oo
I.;BooleanExpression THEN EXITLOOP Label;

EXITLOOP Label;
ENDLOOP Label,

The Label after the EXITLOOP specifies the label on the ENDLOOP to which you are exiting and
is optional. However, the semicolon after the Labe/ is mandatory in both places. These are
the only places in a script file where a semicolon appears.

2) IF BooleanExpression THEN Statement

3) if BooleanExpression THEN
BEGIN

END
4) IF BooleanExpression THEN
BEGIN
END
ELSE Statement

5) IF BooleanExpression THEN
BEGIN

END
ELSE
BEGIN
END
The BooleanExpression has one of two forms:

Expression
or Expression Relational Expression

The Relational is one of the set {=, #}.

7.3.2 Sample script

"The following sample script would produce a query list of all the AR's submitted against
the Ether subsystem of Mesa that has been marked Fixed in 6.0z. Then, by using this
query list, it would edit each of the AR's so that their In/By field now reads 6.0m.

7-6

XDE User’s Guide ‘ 7

TOOL « “"AdobeQuery"”
SUBWINDOW ¢ “formSwW"
Number « "

System « "Mesa”
Subsystem « “Ether"
Status « “Fixed"

In'/By ¢« "HAS 6.02"
cmdsw.Query

TOOL « “"AdobeEdit"
SUBWINDOW & "cmdSW"
UseQL « TRUE

Next

Checkout

DO

formSW.In'/By « “6.0m"
Next
If LastMessage[msgSW] = “Query List exhausted!™ THEN EXITLOOP;
Checkin'&out
IF LastMessage[msgSW] = “Can’t check out AR: must do update before
further editing!"” THEN
BEGIN
ARUpdateTool.CommandSW.Update
Checkout -- Remember we are here because "out" part of "in&out" failed
END
ENDLOOP;
Checkin -- don't forget to put the last guy back

7.4 BNF for script files

goal := statements\
statements := statements statement
| statement
statement := assignment
| formCmd
| loop semiSuffix
| ifstatement
| exitLoop loopLabel ; semiSuffix
| functioncall
assignment := formSWitem « expression
formCmd = formSWitem
formSWitem ta idList
idList := idList.id
| id

7-7

Tool Driver

expressionList

expression

expressionTail

variable

constant

functionCall

functionName

loop
do

ifStatement

ifExp

block

blockElse

‘ boolExp

expressionlist , expression
| expression

variable
| constant

variable
| constant

formSWitem
| functionCall

delimStr
| num
| N
| TRUE
| FALSE

id [expressionList]
| functionName [expressionList |

ActivateTool
AppendCommand
AppendString
CalliDebugger
FileCreated
InvokeMCR
IsVisible
LastMessage
Modifyitem
Pause
SetDispState
SetSelection
SetWindowBox
SubString

Wait
WindowOnTop

do statements eNDLOOP loOpLabel ;
DO

ifExp block
|ifExp blockElse block

IF boOIExp THEN

statement
| BEGIN statements END

BEGIN statements END ELSE

expression relational expression
| expression

XDE User’s Guide 7

loopLabel ta id
I
semiSuffix =
relational ta o=
| #

Note: The Formitem must be a command item in the Form subwindow.

Note: The semantic restrictions on the ExpressionList depend on the /d.

7.5 The subwindows file

The Tool Driver will not function unless the subwindows file, Tool. sws, is present on the
local disk. The format of this file is:

" [ToolNamey]
SubwindowName;, ..., SubwindowName,,

[ToolName;]
SubwindowNamey, ..., SubwindowName,,

The opening [must be the first character on the line. Everything after the closing] on that
line is simply ignored. If a tool that is not in the subwindows file attempts to publicize
subwindows (i.e., calls ToolDriver.NoteSWs), it is ignored, as are all subwindows not
present in the list of subwindows for that tool. The individual documentation for each tool
should list the tool and subwindow names that the tool publicizes. There must be no extra
subwindows declared by the user. If there are, the Tool Driver will halt with an error.

7.6 Running the Tool Driver
The procedure for running the Tool Driver is as follows:
® Start the Tool Driver.
® Start other tools.
® Run the script.
Note: Tools started before starting the Tool Driver are not accessible to the Tool Driver.

Tools that are inactive are also inaccessible to the Tool Driver. However, inactive tools can
be accessed indirectly via the InvokeMCR function applied to the Executive menu.

7 Tool Driver-

7-10

I1

File-related tools

This chapter discusses the XDE tools for manipulating files. The first part explains file
naming conventions, since file names are used by many of the tools as field values. The
rest of the chapter briefly describes each tool’s function.

I1.1 File system conventions

Once you have written your text onto a file window or text subwindow, you will probably
want to save it as a file. This section describes the XDE local file system’s structure and
naming conventions, which are used for searching for files as well as for creating new files.

Many of the tools in the development environment have parameters that are file names,
such as the File Tool and the Executive. Some tools are prepared to deal with either local
or remote file names. The syntax of remote file names is determined by the remote file
system. Consult the documentation for your remote file system for the definition of legal
remote file names.

I11.2 File names

The local file system provides a tree-structured directory. The top-level directory, the root
of the tree, has the same name as the logical volume. All directories can contain
directories and non-directory files. A file has a simple name (that is, its name within a
directory) and a fully qualified name (its name within the directory structure). The legal
characters that can be used in the simple name of a file are the alphabetics(a - z, A -
z), digits (0 - 9), period (.), dollar sign ($), plus (+), and minus (-).

The fully qualified name of a file, whether directory or non-directory, describes the path
from the top-level directory of the volume containing that file to the file. The name starts
with the character <, and all subdirectories on the path are separated by the character >.
No file names end with the character > with the exception of the top-level directory,
which always ends with >. Some examples of fully qualified file names are:

<CoPilot>

<CoPilot >MyFile.mesa

1

II

File-related tools

<CoPilot>SubDirectory>MyFile.mesa
<CoPilot>SubDirectory

Certain operations, such as the File Tool's and the Executive's list commands may print
the names of directory files followed by a > to distinguish them from non-directory files.
This is an output convention; don't confuse it with the name of the directory file.

The top-level directory of the current volume can also be specified by < >; that is, if the
name of the top-level directory is omitted in a fully qualified name, the top-level directory
of the current volume is used. Hence, the following names are equivalent to the above
examples to a user on the volume CoPilot: .

<>

<>MyFile.mesa
<>SubDirectory>MyFile.mesa
<>SubDirectory

A file name can also be specified relative to the current search path. If a file name does not
start with the character <, it is a relative name. In this case, a fully qualified name is
formed by appending the relative name to each entry of the search path until a match is
found (refer to the chapter on the SearchPath Tool). If the search path contained the single
entry <CoPilot >, the relative file name MyFile.mesa would be resolved to the fully
qualified name <CoPilot>MyFile.mesa

Directories on the search path may be write-protected, in which case it is not possible to
change any of the files in the directory or add or delete files from it. If a file name is
relative to the search path and it is to be created or written into, two problems can occur:
no match could be found on the search path, or the first match might occur in a directory
that is write-protected. In either case, the file will be created in the first directory that is
not write-protected in the search path . This directory acts somewhat like a working
directory. If the first directory in the search path is write-protected, anomalies may result;
for example, if you write into the file MyFile, and then subsequently try to read file
MyFile, you may not read the information that you just wrote. This could happen if the
first directory in the search path is write-protected but contains a file named MyFile.
When you write into file MyFile, the system notices it is in a write-protected directory
and creates a new file MyFile in the first writeable directory. When you later read the file
MyFile, the system returns the first file named MyFile on the search path, which was the
file MyFile in the write-protected directory.

I1.3 File-related tools

-2

Brownie helps distribute software and maintain consistent copies of archive directories on
file servers.

Compare examines two pairs of source files and summarizes the differences between each.
The files can be either local or remote.

XDE User’s Guide II

A File window 1is used to view and edit a text file.

The File Tool provides a means for you to work with the files on your local disk as well as
on remote file systems. It allows you to retrieve, delete, list, rename, and copy files. It is
like FTP except that it has a window interface instead of an Executive command.

Find searches for a pattern in a list of files and displays the lines in which the pattern
occurs. :

Floppy commands allow you to store and retrieve files on floppy disks using the floppy disk
drive in your workstation.

FTP is a file transfer program that runs in the Executive. It is used for moving files to and
from a file system, which can be on a file server or on another workstation.

Print generates press format files and sends them to a printer on the network.

The SearchPath Tool is used to inspect and change the file system search path.

I1-3

II File-related tools

II-4

Brownie

8.1 Files

Brownie aids in the problem of how to distribute software and maintain consistent copies
of master or archive directories on several file servers. It may also be helpful in moving
files among private directories during the software development process.

Retrieve Brownie.bcd from the Release directory.

8.2 Userinterface

Brownie is invoked by typing a command of the following form to the Executive:
>Brownie file

where file.brownie is a Brownie script file with the format described below. Brownie
will prompt for login and connect names and passwords for the hosts and directories
involved in the transfer. It will also'log messages to the Executive, informing the user of
its progress.

8.3 Scriptfile

The script file describes the operations Brownie is to perform. It consists of a parameter
section and a command section separated by a comment line. The comment is ignored, but
the // must appear. In the script below, the first QualifiedFilenameis the target and the
second QualifiedFilename is the source.

[levell]

start: [time]

stop: [time]

// comment

copy/switches QualifiedFilename/«-QualifiedFilename/

81

Brownie

rename/switches QualifiedFilename « QualifiedFilename

delete/switches QualifiedFilename

8.3.1 Parameters
All parameters are optional, and if present their order is not important.

The amount of information logged is controlled by the level parameter. The choices are
verbose and terse. verbose mode will post the name of each source and destination
file as it is being copied (or deleted), along with their creation dates. terse mode will post
directory names only, and a dot for each file as it is copied. terse mode is normally
recommended for large copies, to keep the Executive.log file from getting too large.
level defaultsto terse.

The start parameter allows you to specify a start-up time. This allows lengthy transfers
that tie up a lot of network resources to be delayed until nighttime. Brownie processes the
script file before doing any transfers so that any syntax errors may be discovered
immediately. The stop parameter allows you to specify a stopping time. Brownie
periodically glances at the stop time and aborts processing if the current time becomes
larger than this value. time may be in any of the formats: HH:MM, HHMM, H:MM, or HMM.
timedefaultsto start immediatelyfor start and when finished for stop.

8.3.2 Commands
A QualifiedFilename (QFN) of a Brownie command has the general form:
[host]<directory>filename

Where filename is optional. The Profile domain and organization are appended to host
if none are specified. [faQualifiedFilename contains spaces, it must be surrounded by
double quotes.

8.3.2.1 Copy

The copy command transfers the files described by the source QFN to the target QFN
according to the constraints of switches. If £ilename appears in both the source and the
target, the single file is transferred. If £ilename is omitted from the source QFN, it must
also be omitted from the target OFN, meaning copy all files from the source directory to the
target directory. If filename is not omitted from the target in this case, all files from the source will be copied
to the single target file. .
“*” wildcards may appear within the source QFN. (See the FileTool section:
Wildcard/expansion characters for an explanation of wildcards.) A “*” may also appear as
the only character of the final subdirectory, instructing Brownie to recursively search
through the specified directory. All files matching the QFN will be copied. If a “*” appears,
the target QFN as in the previous case must be a directory. A “*” may not appear in the
target QFN. h :

XDE User’s Guide 8

8.3.2.2 Copy switches

/c Connect to target directory; prompt for credentials: Default is rFALseE. (Not
implemented)

/s Connect to source directory; prompt for credentials. Default is fFALSE. (Not
implemented)

The Update (/u) and Always (/a) switches have identical meaning to those of FTP.

/u Copy the files specified by the source QFNonly when the creation date of the source
file is greater than the creation date of the target file and the target file exists.
Default is FALSE.

/a Copy the files even if those files of the target QFNdon’t exist. Default is TRUE.

8.3.2.3 Rename (Unimplemented)
The rename command renames single files or complete directories on a single file server.
Only the latest versions of files are renamed, unless the /a switch is specified. If

filename is omitted from both QFNs, the entire source directory is renamed to the target
directory; otherwise, the single file is renamed. A “*” may not appear in either QFN.

8.3.2.4 Rename switches
/c Connect to (source) directory; prompt for credentials. Default isFALSE.
/a Rename all versions of the source QFN. Default is FALSE.

/u Update (Unimplemented).

8.3.2.5 Delete
The delete command deletes one or more files on a file server. Only the oldest versions

of files are deleted, unless the /a switch is specified. A “*” may appear in a QFN. (See the
FileTool section: Wildcard/expansion characters for an explanation of wildcards.)

8.3.2.6 Delete switches
/c Connect to directory: prompt for credentials. Default is FALSE. (Not implemented)

/a Delete all versions of the source QFN. Default is FALSE.

8.4 Example

This is an example of a script file:

[terse] -

start: [20:30]

// Start at 8:30FPM; commands follow

copy/ua "[RatTail:0SBU North] <emerson>doc>" ¢

8-3

Brownie

8-4

[Rasp] <emerson>doc>*>**)
copy/u [Igor] <emerson>defs> ¢« [Idun]<int>tajo>public>*.mesa
copy [Sun] <newInt>brownie>Brownie.bcd &
[Igor] <emerson>brownie>Brownie.bcd
copy [Sun] <newInt>brownie>Brownie.doc ¢
[Igor] <emerson>brownie>Brownie.doc
delete/ca [Bad] <Movies>*
delete [Mediocre] <Movies>*

To execute Brownie with the above example script, Example.brownie, type the following
command to the executive:

>Brownie Example

and log in according to the prompts for each host and directory.

FTP

FTP is a file transfer program used for moving files to and from a file server.

The File Tool serves the same purpose as FTP. (For more information, see the File Tool
chapter.)

Transferring a file from one host to another over a network requires the active cooperation

of programs on both machines. In a typical scenario, a human user (or program acting on
the human's behalf) directs FTP (or the File Tool) to establish contact with a file server .

9.1 Files

Retrieve FTP. becd from the Release directory.

9.2 Userinterface
FTP runs in the Executive.
9.2.1 Command line syntax
The two basic file transfer operations are Retrieve and Store. The Retrieve command
causes a file to move from server to user, whereas Store causes a file to move from user to

server.

Other commands are often used in conjunction with the basic Retrieve and Store
commands. Commands are of the form:

<Keyword>/<SwitchList> <arg> ... <arg>
Unambiguous abbreviations of command keywords (which in most cases amount to the

first letter) are legal. A command is distinguished from arguments to the previous
command by having a switch on it, so every command must have at least one switch.

9.2.2 Command line switches

In the descriptions that follow, the terms local and remote are relative to the machine on
which the FTP user program is active (that is, you type commands to your local user

9-1

FTP

9-2

program and direct it to establish contact with a file server.) A Retrieve command
copies a file from the remote file system to the local file system, whereas a Store
command copies a file from the local file system to the remote file system.

Local and remote also refer to file names. Files on your workstation are local, and fileson a
server are remote.

Most commands take local switches. These switches have default values used if the switch
is not mentioned. The switches are listed below with their defaults and functions:

/C [Command] a null switch that tells the command line parser that this token is a
command (no default).

/S [Selective] used if the remote and local file names differ; for example, if you
retrieve a file listed under one name but want to bring it to your
workstation under a different name (FALSE).

/V [Verify] requests confirmation from the keyboard before the file transfer takes
place. Confirm with ¥ (not CR); deny with N. S (for STOP), DELETE, or
CONTROL-C will terminate all further commands (FALSE).

/Q [Query] specifies that a password be requested interactiveiy from the user
instead of being read from the command line (FALSE).

If FTP can unambiguously decide that a token is a command, you do not need to append
any switches to the command word. Otherwise, you must append some switch; use the /C
switch if there are no other switches desired. This means that if a command (such as
Retrieve) takes a list of files and the list is followed by another command, that command
must have some switch appended. '

Some switches affect transfers conditioned upon comparison of the creation dates of
corresponding local and remote files. The comparison is <source file>
<operator> <destination file>. For Store, the source file is the local file; for
Retrieve, the source file is the remote file:

/% [NotEqual] transfers the file if the destination file exists and the creation dates
are not equal. This must be quoted (/' %) to keep it out of the clutches

of the Executive.

/=[Equal] transfers the file if the destination file exists and the creation dates
are equal.

/> [Greater] transfer the file if the destination file exists and the source's creation

date is greater than the destination's.

/< [Less] transfers the file if the destination file exists and the source's creation
date is less than the destination's.

/U [Update] same as /> (for backward compatibility).

/A [All] modifies the action of #, =, >, <, /U to transfer the file even if no
corresponding file exists in the destination file system.

XDE User’s Guide 9

If more than one switch is present, they are ORed together, so, for example, "/>=" means
“transfer the file if the source's creation date is greater than or equal to the destination's.”

The sense of a switch is inverted if it is preceded by a minus sign; the minus sign inverts
the sense of the immediately following character, not the entire operator expression.

9.2.3 Commands and examples

In the examples below, the /C switch has been included, even though it may not be
necessary.

Open/C <HostName>

opens a connection with the host. The first token after FTP in the command line is
assumed to be a host name, so no subsequent Open command is required. The Profile
domain and organization are appended to <HostName > if none are specified.

Close/C
closes the currently open FTP connection.
Login/C <UserName> < password>

supplies any login parameters required by the remote server before it permits file
transfers. FTP will use the user name and password in your Profile (see the Profile Tool
chapter), if they are there. Logging into FTP will set the user name and password in your
Profile, if they have not already been set.

When you issue the Login command, FTP will first display the existing user name in
your Profile. If you now type a space, FTP will prompt you for a password. If you want to
provide a different user name, you should first type that name (which will replace the
previous one) followed by a space. The command may be terminated by a carriage return
after entering the user name, to avoid entering the password. The parameters are not
immediately checked for legality, but rather are sent to the server for checking when the
next file transfer command is issued. If a command is refused by the server because the
name or password is incorrect, FTP will prompt you as if you had issued the Login
command and then retry the transfer request. Typing CONTROL-C aborts both the request
for login information and the rest of the FTP command line.

Login/Q <UserName>

causes FTP to prompt you for the password. This form of Login should be used in
command files, because including passwords in command files is bad practice.

Directory/C <DefaultDirectory>

causes <DefaultDirectory> to be used as the default remote directory in data transfer
commands (essentially it prefixes the directory name to remote file names that do not
explicitly mention a directory). The default directory can be overridden at any time by
fully specifying a file name within a particular command ([Host]<Dir>filename). Do

FTP

9-4

not include punctuation that separates the directory name from other parts of the remote
file name; thus, type Directory Mesa, not Directory <Mesa>.

LocalDirectory/C <DefaultDirectory>

causes the default directory to be used as the default local directory in the transfer. For
example, if you want to retrieve files onto a local directory in your Tajo volume without
having to specify the destination name each time, you can specify a default local directory
and it will be prepended to all file names.

Retrieve/C <RemoteFilename> ... <RemoteFilename>

retrieves each <RemoteFilename>, constructing a local file name from the actual
remote file name as received from the server. FTP will overwrite an existing file. If the
remote host allows "*" (or some equivalent) in a file name, a single remote file name may
result in the retrieval of several files. You must quote the "*" to get it past the Executive's
command scanner.

Retrieve/S <RemoteFilename> <LocalFilename>

retrieves <RemoteFilename> and names it <LocalFilename> in the local file
system. This version of Retrieve must have exactly two arguments. The remote file
name should not cause the server to send multiple files.

Retrieve/> <RemoteFilename> ... <RemoteFilename>

retrieves <RemoteFilename > if its creation date is greater than that of the local file. If
the corresponding local file doesn't exist, the remote file is not retrieved. This option can
be combined with Retrieve/S to rename the file as it is transferred.

Retrieve/>A <RemoteFilename> ... <RemoteFilename>

is the same as Retrieve/> except that if the corresponding local file does not exist, the
remote file is retrieved anyway. :

Retrieve/V

requests confirmation from the keyboard before retrieving a file. This option is useful in
combination with the Update option (/U), because the creation date is not a foolproof
criterion for updating a file.

Store/C <LocalFilename> ... <LocalFilename>

stores each <LocalFilename> on the remote host, constructing a remote file name from
the name body of the local file name. A local file name may contain "*", because it will be
expanded by the Executive into the actual list of file names before the FTP subsystem is
invoked.

XDE User’s Guide 9

Store/S <LocalFilename> <RemoteFilename>

stores <LocalFilename> on the remote host as <RemoteFilename>. The remote file
name must conform to the file name conventions of the remote host. This version of Store
must have exactly two arguments.

Store/> <LocalFilename> ... <LocalFilename>

stores each <LocalFilename> on the remote host if the local file's creation date is later
than the remote file's. If the corresponding remote file does not exist, the local file is not
stored. This option can be combined with Store/S to rename the file as it is transferred.

Store/>A <LocalFilename> ... <LocalFilename>

is the same as Store/> except that if the corresponding remote file does not exist, the
local file is stored anyway.

Store/V

requests confirmation from the keyboard before storing a file. This option is useful in
combination with the Update option when creation date is not a foolproof criterion for
updating a file.

List/C <RemoteFileDesignator> ... <RemoteFilename>

lists all files in the remote file system that correspond to <RemoteFileDesignator>.
The remote file designator must conform to file-naming conventions on the remote host.
The following subcommands request printout of additonal information about each file.
They are specified by local switches:

/t type,

/1 length in bytes,

/d creation date

/w writedate,

/T read date,

/a author (creator),

f<date> - from<date>. Lists only files with write date greater than <date>.
This must be the last entry on the command line before the file name. Example:

list/£10-Dec-79-11:00:04 *.mesa.

b<date> - before<date>. Lists only files with read or write date less than
<date>. This must be the last entry on the command line before the file name.

Note: The file system keeps creation, read, and write dates with each file. FTP treats the
read and write dates as properties describing the local copy of a file; i.e., when the file was
last read and written in the local file system. FTP treats the creation date as a property of
the file contents; i.e., when the file contents were originally created, not when the local

9-5

FTP

9-6

.irreversible act. It is therefore unwise to use the

copy was created. Thus, when FTP makes a file on the local disk, the creation date is set to
the Creation date supplied by the remote FTP, the Write date is set to 'now' and the Read
date is set to 'never read.’

Delete/C <RemoteFilename>

deletes <RemoteFilename> from the remote file system. The syntax of the remote file
name must conform to the remote host's file system name conventions. This Delete is an
"*" in the RemoteFilename to specify
deletion of multiple files.

Delete/V <RemoteFilename>

asks you to verify that you want to delete <RemoteFilename> from the remote file
system. If the remote file name designates multiple files (the remote host permits "*" or
some equivalent in file names), FTP asks you to confirm the deletion of each file. Type ¥ to
delete the file; N if you don't want to delete it.

Compare/C <RemoteFilename>...<RemoteFilename>

compares the contents of <remote filename> with the file by the same name in the
local file system. It tells you how long the files are if they are identical, or the byte position
of the first mismatch if they are not.

Compare/S <RemoteFilename> <LocalFilename>

compares <RemoteFilename> with <LocalFilename>. The remote file name must
conform to the file name conventions of the remote host. This version of Compare must
have exactly two arguments.

Rename/C <OldFilename> < NewFilename>

renames <OldFilename> in the remote file system to be <NewFilename> in the new
file system. The syntax of the two file names must conform to the remote host's file system
name conventions, and each file name must specify exactly one file.

9.2.4 Command line errors

Command line errors fall into three groups: syntax errors, file errors, and connection
errors. FTP can recover from some of these.

Syntax errors, such as unrecognized commands or the wrong number of arguments to a
command, cause FTP's command interpreter to lose its place the command file. FTP
recovers from syntax errors by ignoring text until it encounters another command (i.e.,
another token with a switch). -

File errors, such as trying to retrieve a file that does not exist, are relatively harmless.
FTP recovers from file errors by skipping the offending file.

Connection errors, such as executing a Store command when there is no open
connection, could terminate the command.

XDE User’s Guide 9 ,

When FTP detects an error, it displays an error message and aborts the rest of the
command.

9.3 Tutorial

The following are examples of how to use FTP:

To transfer files FTP.bcd and FTP.symbols from the Dandelion called Chocolate to
the Dandelion called Vanilla, you might start up the STP server on Chocolate, then
walk over to Vanilla and type:

FTP Chocolate:0SBU' NORTH Retrieve/C FTP.bcd FTP.symbols

Alternatively, you could start an FTP server on Vanilla; then issue the following
command to Chocolate:

FTP Vanilla Store/C FTP.bcd FTP.symbols

The latter approach is recommended for transferring large groups of files such as
"* bcd” (since expansion of the "*" will be performed by the Executive).

To retrieve <System>Network.txt from the server and store it on your disk as
Directory.bravo, and store RTP.mesa, lb.mesa, and BSPStreams.mesa on
<DRB> with their names unchanged:

FTP server Connect/C drb MyPassword Retrieve/S <System> Network.txt
Directory.docStore/C RTP.mesa lb.mesa BSPStreams.mesa

To retrieve the latest copy of all .bcd files from the <Mesa>Defs> directory,
overwriting copies on your disk:

FTP server Retrieve/C <Mesa>Defs>'*, bcd
(The single quote is necessary to prevent the Executive from expanding the "*")

To update your disk with new copies of all <Mesa> files whose names are contained
infile UpdateFiles.cm, requesting confirmation before each retrieval:

FTP server Directory/C Mesa Ret/>V @UpdateFiles.cm@

To store all files with extension .mesa from your local disk to <my directory> on
the file server (the Executive will expand "*.mesa" before invoking FTP):

FTP server dir/c <my directory>Store/C *.mesa

9-7

9-8

10

File Tool

The File Tool provides a means for you to manipulate files on your local disk as well as on
remote file systems. It allows you to retrieve, delete, list, and copy files.

10.1 Files

The File Tool is built in. You will find it in your Inactive menu, unless specified elsewhere
in your User.cm.

10.2 User interface

The File Tool communicates through a form subwindow, a command subwindow, and a
List Options window. Below is an illustration of a File Tool with the List Options window
displayed:

Host: Directory: N
i Source:

‘Dest'n: Local Dir:

Connect: Password:

§Retr1‘eve! Local-List! Copy! Local-Delete! List-Options!
: Store! Remote-List! Close! Remote-Delete!

|

Figure 10.1: File Tool window

1in 1

10

File Tool

10.2.1 Form subwindow

The fields that can be used as arguments to a command are listed in the form subwindow:

Host:

Directory:

Source:

Dest‘'n:

LocalDir:

Connect:, Password:

‘w

Always

Verify

10-2

is the name of the host to be used for remote files and operations.
The Profile domain and organization are appended to Host if
none are specified.

is the default remote directory.

is a list of files (separated by spaces or returns) for the next
command to act upon. File names may include
wildcard/expansion characters (see the Wildcard/expansion
characters section). Any files appearing in this field should
conform to the syntax of file names for the file system that is the
source of the transfer.

is the file name for the destination of a transfer. It should
conform to the syntax of file names for the file system that is the
destination of the transfer.

means that all references to the local disk will only occur within
this directory. If the directory is not a complete path name (i.e.,
if it does not begin with <), it is assumed to have a <>
prepended.

this feature is not implemented.

means that in remote commands (Retrieve, RemoteList,
RemoteDelete), * characters in Source should be treated as if
they were quoted (i.e., they should be expanded remotely
instead of locally). The default is TRUE.

means “only store or retrieve the file if the destination exists
and the source is newer than the destination (comparing
creation dates).” The default is FALSE.

means “only store or retrieve the file if the destination exists
and the source is older than the destination (comparing creation
dates).” The default is FALSE.

means “only store or retrieve the file if the source is the same as
the destination (comparing creation dates).” The default is
FALSE. "Not equal” can be specified by turning on both < and
>.

conditions the above three commands (>, <, =) to also act if
the destination file does not already exist.

requests confirmation for each file transfer. The default is FALSE.

XDE User’s Guide n 10

10.2.1.1 Wildcard/expansion characters

The File Tool interprets some of the characters in Source as wildcard or other expansion
characters. It uses the same mechanism as the Executive in expanding these characters.
(See the Executive: Command line expansion section for a further explanation of local
wildcard/expansion characters.)

' (single quote): treats the character following the single quote as if it were not a
file name expansion character. The single quote is removed
from the file list.

@ (at-sign): takes the file to be an indirect file and uses its contents as a list

of files if @ is the first character of the file name. This list of files
replaces the indirect file in the list of files. Indirect files may
nest.

t (up-arrow): removes the up-arrow character and the character following it
from the file list.

The wildcard * matches zero or more characters in a file name. For example, *.mesa
matches all file names ending with the extension .mesa in the specified local or remote
directory. # matches any single character in a file name.

The * can also be used to expand across directory boundaries. In the remote case, a * as
the only character of the final subdirectory in the Directory field directs the search down
through all subdirectories. For example, Directory: <Mesa>* and Source: *.bcd
matches all .bed files in or below <Mesa>. In the local case, ** in the Source name
achieves this. For example, LocalDir: <>Tools> and Source: **.archiveBcd
finds all .archiveBcd files in or below the < >Tools > directory.

10.2.2 Command subwindow
The fields in the command subwindow are as follows:

Retrieve! transfers the file name specified in Source from the remote file
system to the local disk. You may designate multiple files by the
use of ** only to the extent that the remote server supports it. If
Dest 'n is blank, the file name of the copy made on the local
disk is the source file name stripped of all host and directory
qualifiers.

Store! transfers the file name specified in Source from the local disk
to the remote host. Development environment file name
conventions apply to the local file.

Local-List! lists all files on the local disk corresponding to the name in
Source.
Local-Delete! deletes the files specified in Source from the local disk. If for

any reason a file cannot be deleted, that file is skipped and
processing continues with the rest of the files in the list.

1N.°

10

File Tool

Remote-List! lists all files on the remote file system corresponding to the
name in Source. This must conform to the file-naming
conventions on the remote host. You may designate multiple
files by the use of '* only to the extent that the remote server
supports it.

Remote-Delete! deletes the file name specified in Source from the remote file
system. You may designate multiple files by the use of '* only to
the extent that the remote server supports it.

Copy! copies the local file in the Source: field to the local file in the
Dest 'n: field. The Copy! command operates only on the local
disk. Ony single files can be specified.

Close! closes any currently open connection, freeing any resources
needed to maintain it.

List-Options! creates a List Options window if one does not already exist.

If verify is TRUE, then for each file that might be transferred, the following commands are
displayed:

Confirm! do the operation.

Deny! don't do the operation.

Stop! don't do the operation and terminate the command. This may
take some time while the termination is negotiated with the
server.

10.2.3 List Options window

The List Options window is created by the List-Options! command. The properties that
will be displayed, in addition to the file name, by a Local-List! or Remote-List! are
governed by the Booleans in this window. After changing the options, invoke Apply! to
effect those changes. The Abort! command will restore the options to what they were
before the List-Options! command was invoked. Both Apply! and Abort! perform
the apporpriate actions and then destroy the List-Options window.

10.3 User.cm

10-4

The User.cm, in addition to the standard InitialState, TinyPlace, and WindowBox
entries, includes: .

[FileTool]

SetOptions: A list of the Boolean options to be initialized to TRUE. Any option
not appearing will initially be FALSE. The following desired
-options must be separated by one or more spaces and may
appear in any order: QuotedStar Greater Less Equal
Always Verify TypeCreate Bytes Write Author Read

XDE User’s Guide 1 0

10.4 Operational notes

The actual file transfer takes place in a background process, so you are free to issue other
commands or even change the values in the parameter subwindow without affecting the
command currently executing. The command subwindow is cleared so that a second
command cannot be invoked while one is under way. Changing a field while the File Tool
is waiting for Confirm! will not affect the name of the Dest 'n: file; you should abort the
transfer and re-issue the command with the desired field already set. It is important to
remember that the commands are postfix; for example, fill in the Host: and Source:
fields before invoking the Retrieve! command.

10-5

10 File Tool

10-6

11

Floppy commands

The Floppy commands allow you to store and retrieve files on floppy disks using your
workstation’s floppy disk drive. . Files larger than a single floppy disk may be written as
several pieces on several disks and later put back together.

11.1 Files

The Floppy commands are built in; no additional files are needed.

11.2 User interface

The Floppy commands run in the Executive. The Executive command Floppy.~ has
several subcommands, each of which takes arguments. The command line format is

Floppy.~ <command> <arguments>.

11.2.1 Common argument definitions

Several of the commands take lists of files as arguments. The following definitions will
simplify the explanations of these commands:

<fileList> consists of a list of file names to be operated upon, separated by spaces. If a
file name is followed by the /s switch, the next name is used as the
_destination of the file transfer.

<wildList> consists of a list of file names separated by spaces. The names may contain
* and # characters to match multiple files. Remember that * and # must
be quoted to avoid being expanded by the Executive.

11.2.2 Commands

There are six Floppy commands. They may be abbreviated to any unique initial substring.

Delete <wildList>

11

Floppy commands

11-2

deletes the specified files from the floppy disk.
Format <npame>/n <number>/f

prepares a new disk for storing data. This command must be used on new disks before any
data can be stored on them. It may also be used to erase all the data on a disk. The name
and number arguments are optional and may be specified in either order. <name>
specifies the name to be assigned to the floppy; you may include special characters (such as
a space) in a name by enclosing it in double quotes. <number > specifies the maximum
number of files that you may store on the floppy; the default value is 64. The Format
command will ask for confirmation if there appears to be valid data on the floppy.

Info

gives information about the floppy. This consists of the name of the floppy, the number of
free pages, and the size of the largest contiguous group of free pages. Since files on the
floppy must be written on contiguous pages, this last number is the size of the largest file

that may be written on the floppy. One extra page is added to each file to hold system information, such
as the creation date.

List/<switches> <wildList>

displays the names of the specified files on the floppy. If the <wildList> is omitted, all
files on the floppy are displayed. The <switches> specify additional information to be
included for each file as follows:

/d displays thé creation date of each file.

/1 displays the length of each file in bytes.

/ t displayé the File.Type of each file as a decimal number.

/v displays the write date of each file.‘

/v (verbose) displays all of the above information.

Read <names>

copies files from the floppy to your rigid disk. <names> may be either a fileList or a
wildList.

. Write <number>/t <fileList>

copies files from your rigid disk to the floppy. You can get the effect of a <wildList>
using the Executive’s file name expansion. If <number> /t is present, subsequent files
will be written on the floppy with File.Type equal to <number> (see the Pilot
Programmer’s Manual for a discussion of File.Type). You cannot overwrite an existing file
on the floppy; you must delete the old copy before writing a new one.

XDE User’s Guide . 1 1

11.3 Partial files

A double-sided, double-density, eight-inch floppy can store about 2200 pages (512 bytes
each) of data. Larger files must be broken into several pieces and written on several disks
and then put back together later. To specify partial files, the Write, List, and Read
commands use an interval notation similar to that of the Mesa language and debugger.
These intervals are appended to the names of files for a Wri te command and are shown by
the List and Read commands. The Read command automatically writes data into the
correct pages of the destination file on the rigid disk. Three forms of the interval are
allowed:

[firstPage..lastPage] gives the inclusive range of pages.
[firstPage!count] is equivalent to [firstPage. .firstPage+count-1]

[firstPage] defaults lastPage to be the end of the file.

11.4 Examples

name of disk and number of
files specified.

Floppy Format "Backup Disk"/n 100/f

Floppy Write User.cm *.mail *.mesa -~ write files using
Executive to expand
<fileList>.

Floppy Write HugeFile[0!2000] -- write the first 2000
pages.

Floppy Write HugeFile[2000] -- write the rest of the
file.

Floppy Write 4290/t Gacha/s Xerox.XC82-0-0.Gacha
-- prepare a font for a print
server.

Floppy Read Foo.mesa/s OldFoo.mesa -- retrieve and rename file.

Floppy List/dl '*.mesa -~ list all “".mesa" files
with creation date and
length.

11-3

11

Floppy commands

11.5 Error messages

11-4

Most of the error messages from the Floppy commands are self-explanatory; however, two
messages need further explanation:

unexpected Floppy.Error[code]

means that the floppy software raised Floppy.Error. See the description of the Floppy
interface in the Pilot Programmer’s Manual for the meaning of code; most of the values
are self-explanatory.

unexpected AccessFloppy.Error[code]

means that the floppy software raised AccessFloppy.Error. The AccessFloppy interface is not
documented, but the values of code are self-explanatory.

12

Search Path Tool

The Search Path Tool, which is built into CoPilot and Tajo, is used to inspect and change
the file system search path. The introduction of this section explains how to construct
legal file names. The Mesa Programmer’s Manual documents the XDE file system.

éCurrent Search Path: <Tajo> <Othello>Archive
. Directories:

'Pop! Push! Change Working Dir!
:Set! Create Dir! Destroy Dir!

| Window Mgr

| Text Ops
VSearch Path

R

<0thello>

<0thello>Archive>
<0thello>defs> =
<TaJQ> -
<TaJo>TIP>

Figure 12.1: Search Path Tool window

12.1 User interface

The Search Path Tool consists of two subwindows: a form subwindow and a log
subwindow.

12.1.1 Form subwindow

Arguments to Search Path Tool commands are either single directories or an entire search
path. In either case, it is not necessary to qualify subdirectories fully if the corresponding
root directory is on the current search path. If subdirectory names are not fully qualified,
they will be interpreted in the context of the current search path.

12-1

12

Search Path Tool

CurrentSearchPath:

Directories:

Set!

Create!

Destroy!

Pop!

Push!

Change Working Dir!

is the field where the current search path is displayed.

is the argument field for search path commands. Create!,
Destroy!, Pop! and Push! expect a single directory; Set!
expects a search path, which is specified by one or more
directories.

sets the search path to the list of directories appearing in the
Directories: field.

creates the directory appearing in the Directories: field.
deletes the directory appearing in the Directories: field.
pops the working directory, eliminating it from the current
search path, and leaving the next directory in the search

path as the working directory. .

pushes the directory in the Directories: field to the front
of the current search path.

substitutes the directory in the Directories: field for the
directory in front of the current search path.

Note: Commands for manipulating the search path are also registered by the Executive
(see the chapter on the Executive).

12.1.2 Directories menu

The Directories menu is a list of all existing directories on currently open volumes. It is
automatically maintained and reflects the creation and deletion of new directories, as well
as opening and closing of volumes. When an item is selected from this menu, its value is
pushed onto the current search path.

12.1.3 Search Path menu

The Search Path menu is a list of the directories that make up the current search path.
Selecting an item from this menu removes it from the current search path.

12-2

13

Compare

Compare examines a pair of text files and summarizes the differences between them. The
files can be either local or remote .

13.1 Files
Retrieve >Compare.bcd from the Release directory.
13.2 Userinterface

Interaction with Compare is available via the Compare Tool window or the Executive
window.

13.2.1 The Compare tool window

The Compare Tool communicates through a message subwindow, where information and
error messages are posted; a form subwindow, where the Compare! command and options
are listed; and a file subwindow, where the results of the comparison are displayed. Figure
13.1is an illustration of the Compare Tool with the switches set to the default values.

13-1

13

Compare

13-2

- O
'File 1: [Igor]<E1liott>User.Cm>User.cm
EFile 2: User.cm
‘File Size: {small} Delimiter: (CR)}
éLines For Context= 1 Lines for Match= 3
ECompare!
]

§[Igor]<E11iott>User.cm>User.cm, User.cm
> % % 7 Fe e e Fe de T e Fe sk s e de Fe T e de e I e e e e e e e ek s v e T sk e de e e vk ke s de ke e e S e vk g e % ke ke ke

§F11e 1: Positions 118 - 197

%C]earinghouse: "0SBU North@Xerox"
:FirstSource: [x: 512, y: 30, w: 512, h: 418]

é**************************************

:File 2: Positions 187 - 302

‘Domain: "0SBU North"
:Organization: Xerox
:FirstSource: [x: 512, y: 30, w: 512, h: 418]

Figure 13.1: Compare Tool window

13.2.1.1 Form subwindow

The Compare! command and the fields that can be used as arguments are listed in the
form subwindow.

Compare! compares the source files specified in the Pilel and File2
fields and displays the difference summary in the file
subwindow. ’

Filel , File2: files to be compared.

File Size = approximate size in pages of the source files to be compared.

File Size is an enumerated type: {small(10 pages),
medium(30 pages), large(50 pages)}. Medium is the
default file size.

Delimiter: determines whether a statement will be defined to
terminate with a carriage return (CR) or a semicolon (;). For
example, if Delimiter is set tosemicolon, then
index ¢« index + 1; GOTOexit; (CR)

will match

index ¢ index + 1; (CR)

XDE User's Guide 13

GOTOexit; (CR)

Delimiter’ is an enumerated type: {CR, semicolon}. CR
is the default delimiter.

Lines Por Match = minimum number of lines to define a match. Default = 3.

Lines For Context = number of trailing lines to output for context. Default = 1.

13.2.1.2 Filesubwindow

The File subwindow displays the differences between the text files specified in the Filel
and FPile2 fields. The difference file contains the names of the two files being compared
and a list of lines in which they differ. The differing lines are reported in context and are
preceded by a character position range that encompasses the character positions of the
differing line(s) and the adjacent contextual line(s). Note that blank and empty lines are
ignored during the comparison. The file associated with this window is Compare.log.

13.2.2 Compare via the Executive window

Compare also runs in the Executive. Here, a list of text file pairs may be given. The
differences between each pair of text files are recorded in files created by Compare. The
name of each difference file is obtained by appending .dif to the name of the first file in
the pair, excluding its extension. If the two files of a pair are identical, or if one of them is
empty, no difference file is generated. If the first file of a pair is an editor back up file, the $
will be incorporated into the name of the difference file before the .dif extension.

The difference file contains the names of the two files being compared and a list of lines in
which they differ. The differing lines are reported in context and are preceded by a
character position range that encompasses the character positions of the differing line(s)
and the adjacent contextual line(s). Note that blank and empty lines are ignored during
the comparison.

13.2.2.1 Command line
Compare is invoked by typing a command of the following form to the Executive:

>Compare /FilePairSwitches filejy filej.../FilePairSwitches filep_3
fiIEn

13.2.2.2 File pair switches
The optional switches are a sequence of zero or more letters preceded by a slash(/). Each
letter is interpreted as a separate switch designator and each may optionally be preceded
by - or ~ to invert the sense of the switch. # denotes a decimal number. The switches are:

#m minimdm number of lines to define a match. Default = 3.

#c number of trailing lines to output for context. Default = 1.

13-3

].3 Compare
#b approximate size in pages of the source files to be compared. Default = 30
pages.
s determines whether a statement will be defined to terminate with a carriage

return (CR) or a semicolon (;). CR (/s) is the default delimiter. For example, if
Delimiter issettosemicolon(/~s),then

index ¢« index + 1; GOTO exit; (CR)
will match
index ¢ index + 1; (CR)

GOTO exit; (CR)

13.2.2.3 Examples
>Compare filey filey file3 fileg
Compare filej to filegpand file3 to fileg using default switches.
Compare /5m3c filey file2

Compare filej to filep using five lines as the criterion for a match and
output three trailing lines for context.

Compare /15b file; filej

Compare file] to fileg;both files are approximately 15 pages in length.

13-4

14

Find

Find is a program that looks for a pattern in a list of files and prints the position within
the file and the line in which the pattern occurs. Remote files are specified using the
standard [server] <directory> filename notation.

14.1 Files

Retrieve Find.bcd from the Release directory.

14.2 User interface
Find is invoked by typing a command of the following form to the Executive:
>Find pattern/global-switch filej/local-switch...filep/local-switch

where each pattern is a string of characters not containing a blank, tab, or slash (/). If
any of these special characters is to appear within a pattern, the pattern must be enclosed
within double quotes. Certain other characters have special meanings within a pattern, as
described below.

Note: Because the Executive recognizes *, #, ?, TAB, (R, T, @, ; and ’ to have speciél
meaning, any of these characters within patterns or remote file names must be preceded
by a single quote (see the Executive chapter).

14.2.1 Switches

If there is more than one pattern, each but the first must be given a switch (either /c or
/~c), since file] is taken to be the first string, following the first pattern, that has none
of the pattern switches listed below. The pattern switches are:

c Ignore upper- and lower-case distinction when pattern matching (default FALSE).
This is the only switch that may be negated.

i Interpret the string not as a pattern, but as a set of characters to be ignored
throughout the input file(s). For example, -/i1i would cause all hyphens to be

14-1

14

Find

ignored, thereby letting you search for one or more words that may or may not be
hyphenated within the files. The default is that no characters are ignored.

Interpret the string not as a pattern, but as the name of a file in which to write the
matches. The test of the command line-up through the first file name is included at
the beginning of the output file. If the file already exists, overwrite it. The file
named must be local.

14.2.2 Switches on file names

h

Use this name as a default host name for all subsequent file names, until either
the end of the command is reached or another default host is specified. If this
switch appears without a host string, no default is applied to subsequent names.

Use this name as a default directory name for all subsequent file names, until
either the end of the command is reached or another default directory is specified.

14.2.3 Special characters

Within a pattern, the following special interpretations apply. All but the last also apply
within the text accompanying a /i switch.

[xyz]

\n,etc.

14-2

Matches any characters x, y, and z (or X or Y or 2, if contained within a pattern
that has the /c switch).

Matches any single character.
Matches any "white space” character (CR, LF, TAB, SP, or FF).

Matches any character except x, where x can in turn be one of the special forms.
For example, ~[0123456789] matches any non-digit, and ~| matches anything
except a white space character.

Matches the character x, even if x is one of these special characters. Thus =[
matches a left bracket, and == matches a single equals sign. Also, =Q matches ‘'Q’
but not ‘q’, even if the pattern is given a /c switch.

Matches a single character as defined for Mesa strings. Thus, \n matches a CR, \t
matches a TAB, and so forth. If the character following the \ is not one of the
recognized forms, the \ has the same effect as an =.

Matches any number (including zero) of repetitions of x. Again, x can be one of

these special constructs; thus, ~[0123456789] * matches zero or more non-digits.

Note that only single-character patterns can be repeated; there is no way to match
“zero or more iterations of the string ‘abe’.”

Mesa User’s Guide 14

14.3 Examples
>Find systemuser.cm [server] <doc>spiffy.cm
N Print the lines containing “system” (ignoring case distinction) and the
corresponding character positions within the local files user.cm and within the
remote files [server] <doc> spiffy.cmand [server] <doc> crufty.cm.

>Find OPEN/~c HackOpens/o Oldhack.mesa Newhack.mesa

Determine the lines and positions within Oldhack.mesa and Newhack.mesa that
contain the pattern "opeN" (all capitalized) and write them to the file HackOpens.

>Find ": CARDINAL" DudleyDriver.mesa
Print all declarations of long and shor.t cardinals within DudleyDriver.mesa.
>Find Allocate'*Node Storage*.mesa [server] <defs>'*_ mesa
Print the lines and character positions matching the pattern Allocate-anything-
Node from the local files matching Storage*.mesa and the remote files matching

[server] <defs> '*.mesa. Note that this pattern would in fact produce a match
against something of the form

AllocateStuff[zone: myZone, node: myNode];
or even
AllocateBins[...];
< <several lines of stuff>>
FreeNode[...]
The position and line containing the end of the match are printed. If what you really
wanted was to see calls to procedures named AllocateNode, you could use the
pattern Allocate~=["'#*Node.
>Find .NEW/~c .FREE/~c MakeNode/~c FreeNode/~c GarbagelImpl.mesa
Show all heap allocations and deallocations with GarbageImpl.mesa

>Find RECORD~'; '*FooType MumbleDefs.mesa MumbleImpl*.mesa

Show all record declarations that contain an element of type FooType. (You might
miss some if a record declaration includes a comment containing a semicolon.)

14-3

14

Find

14-4

>Find |/i ~[=[==,«]"~:c BadGuys/o [server] <StarSource>'*.mesa

Produce a file containing all instances of non-local string literals in a set of remote
files, assuming that all string literals are preceded by a left bracket, an equals sign,
a comma, left arrow, or a colon, possibly with some intervening white space. The
pattern says to search for a quote character not preceded by any of those characters,
and ignoring white space, thereby matching only closing quotes. Thus, the result is
to find closing quotes that are not followed by ‘I’ or 'I". (The /c switch is used to save
having (0o remember whether lower-case ‘I’ is accepted by the compiler.) Note that
this pattern will overlook strings in which the last non-white space character is a
left bracket, equals sign, etc. (The syntax has its limits.)

15

File window

A File window is used to view and edit a text file.

15.1 Files

The ability to create File windows is built into the Xerox Development Environment.

15.2 User interface

The File window interacts through a text subwindow. It can be opened by choosing
FileWindow in the ExecOps menu. The ExecOps menu is available from the root window,
outside all other windows. The window name frame contains useful information about the
state of the File window. For example, when the File window comes to the screen, the
window name frame says Empty Window. When a file is retrieved into the empty window,
the text in the window name frame changes to display the name of the file.

15.2.1 DebuggerOps menu

The DebuggerOps menu belongs to a File window. The DebuggerOps menu contains the
following commands. (For more information, refer to the Debugger chapter.)

Attach tells the debugger to ignore the time stamp in the source file when setting
breaks.
Break uses the current selection to set a breakpoint. If you select PROCEDURE or PROC,

a breakpoint is set on the entry to the procedure; if you select RETURN, a
breakpoint is set on the exit of the procedure; otherwise a breakpoint is set at
the closest statement enclosing the selection.

Clear clears the breakpoint or tracepoint at the specified location.

Trace sets a tracepoint at a specified location. Confirmation is given by moving the
selection to the place at which the tracepoint is actually set.

15-1

15 File window

15.2.2 FileWindow menu

The FileWindow menu belongs to a File window. The commands available in the menu
depend on the state of the File window. The File window may be in one of three states:
empty, non-editable, and editable. The menu commands available for each state and a
description of each command are:

Empty: Create Destroy Load Store Time

Non-Editable: Create Destroy Edit Reset Load Store

Editable: Create Destroy Reset Load Store Time Save

Create makes a new File window at the place selected by clicking POINT. There is nb

explicit maximum number of File windows.

Destroy removes the File window in which the command was invoked. When you
invoke Destroy, a symbol of a mouse appears. Clicking POINT confirms the
command; ADJUST aborts it. Invoking Destroy will not remove a File window
when a file is being edited.

Edit enables editing of the currently loaded file. The Edit command is available
only if a file has been loaded into the window. The window name frame
changes to read Editing: filename. A scratch file, filenamess, is
created during the editing as the edit log; this file is not automatically
deleted when the editing has been completed.

Load displays a file in the window, using the current selection as a file name. An
accelerator for loading files is provided: typing the poIT key in an empty
window causes the file named by the contents of the window to be loaded. If a
file name extension is not provided, the system first looks for the file name
without the extension; if this is not found, it looks for filename Mesa,
filename.Configqg, then filename.cm. The Load command fails if the file is
not found, and the display blinks. Load will not work while you are editing,
as you would lose your edits.

Reset resets the window back to a previous state; confirmation is required only if
you are editing. If you have been editing, all edits to the file are discarded
and the original file is left in the window. If the file loaded in the window is
not editable, then the File window is set back to an empty window.

Save stores the contents of the window that is being edited to its current file;
confirmation is required. A backup "$" file is created that is a copy of the
unedited version. After the Save command completes, the File window is no
longer editable. This command is available only when the file loaded in the
window is editable.

Store creates a file whose name is the current selection and stores the contents of
the window to it; confirmation is required. After the file has been stored, the
file is not editable.

15-2

XDE User’s Guide 15

Time replaces the current selection with the current date and time.

‘Note: An émpty File window can only contain up to 60,000 characters.

15.3 User.cm

The following User.cm entries are available to create initial File windows and for
symbiote initialization. Typical entries for the System and FileWindow sections are:

[System]

FileWindow:
FileWindow:
FileWindow:

[FileWindow]

[x:0, y:457, w:512, h: 321] []
[x: 512, y:60, w:512, h: 448] [x: 300, y: 778}

[x: 512, y:30, w:512, h: 247] ([x:904, y: 778] Calendar/t

Menu: Create Edit Load Position Reset Save Split Store Time Wrap

SetUp: Always Menu Edit

FileWindow:

Menu:

An arbitrary number of File window entries is permitted in the System
section. Each specifies a file window to be created. The first set of
bracketed values indicates the position of the window when it is active. x
and y are the horizontal and vertical bitscreen coordinates of the upper
left corner of the window. w and h are the width and height of the window
in bitscreen coordinates. Any or all of these fields may be omitted, in
which case they have the following default values: [x: 0, y: 0, w: 512,
h: 400]. The second set of bracketed values indicates the position of the
window when it is tiny. x and y are the horizontal and vertical bitscreen
coordinates of the upper left corner of the window. Any or all of these
fields may be omitted, in which case they have the following default
values: [x: 0, y: 0]. The next item in the line, which is optional, is the
name of the file to be loaded into the window. If there is a switch on the
file name, it specifies the initial state of the window (a for active, t for
tiny, and i for inactive). Note that you must always specify the active box
and tiny box position, even if they are defaulted by specifying [].

specifies the commands that will be available in an editable menu
symbiote.

15

File window

15-4

SetUp:

specifies when symbiotes are to be applied and which are desired. The
entry can contain either the keywords Always or Initial, Edit and
Menu. The meanings of the keywords are:

Initial Add specified symbiotes to all existing File windows.

Always [nitial plus add specified symbiotes whenever a File window
is created.

Edit User wants an edit symbiote.

Menu User wants an editable menu symbiote.

16

Print

16.1 Files

Print converts text files to Interpress masters for printing and sends the result to a
printer, such as an 8044 printer. Switches in the Print program allow you to specify how
the output will look or to produce a master file without sending it to a printer.

Retrieve Print.bcd from the Release directory. You will also need Fonts.widths from
the Fonts directory.

16.2 Userinterface

Print runs in the Executivee The command line format is Print
<filenamel>/switch <filename2>/switch <filename3>/switch.... The
special filename $$$ instructs Print to print the current selection rather than a file. This
is useful for printing parts of your debugger log or other small pieces of text.

Files are converted and sent to the printer; multiple files are batched and sent together to
the printer. The Interpress master is written on the file Print.scratch$. If the
transmission to the printer fails or is aborted, you may save this file and send it later to
the same or a different printer. You may specify remote files using normal remote
filename syntax ([Host] <Directory>File.ext). Both local and remote file names
may contain asterisks (*) to permit expansion to all file names that match the string
provided. An * must be preceded by a quote if you are printing remote files instead of local
ones.

If a local file specified in the command line is already an Interpress master, it will be sent
to the printer without further conversion. Remote files are not checked for being
Interpress masters, so instructing Print to print a remote Interpress master will not
produce what you want.

16-1

16

Print

16-2

16.2.1 Switches

Local switches (i.e., those appended to an input file name) affect the printing of that file
only. Global switches affect all subsequent input files.

/a
/z

<host>/h

\prints headings on each page (default true; -aHisables).
prints footings on each page (default true; -z disables).
directs the output to the print server named <host> for the files that

follow. The server name is qualified by your default domain and
organization (from the ProfileTool), if necessary.

<output> /o creates an Interpress master in <output> (extension defaults to

.interpress) and disables transmission to the printer.

/f changesthe fontto for the files that follow. The default fonts are
Gacha8 in portrait mode and Gacha6 in landscape mode. (See the next
section on Naming fonts.)

/c<n> sets number of copies to be printed to <n> (default 1).

/t<n> changes the tab stops to <n> spaces (default 8).

/l<n> specifies landscape orientation (long edge of paper horizontal). <n> is the
number of columns (default 2).

/p<n> specifies portrait orientation (long edge of paper vertical). <n> is the
number of columns (default 1).

/s<n> specifies number of sides. <n> canbe 0, 1, or 2; 1 and 2 request single-
and double-sided printing respectively; 0 means let the printer decide how
to print the document.

Examples:

Print filename -- produce a master for filename in
the default mode and send it to the
default printer. ‘

Print filename/l -- print filename in landscape mode.
/1 is a local switch.

Print /1 filenamel filename2 -- print two files in landscape mode.

/1 is a global switch.

Print filenamel filename2/13c3 ClassiclOBI/f filename3/l

-- print filenamel in the default
mode; then three copies of filename?2
in three-column landscape; then one
copy of filename3 in two-column
landscape using font ClassiclOBI.

XDE User's Guide | 16

Print $$$/p -- print the <current selection in
portrait mode.

16.2.1.1 Naming fonts
~
Font names consist of three parts: family, point size, and face. Families are spelled out,
point sizes use digits, and faces are encoded. Print has no knowledge of which fonts are
available; contact your System Administrator to find out what fonts are available on your

printers.

Examples:

Families: Classic, Modern, Gacha, Titan
Point size: 10

Face: B (bold), I (italic), BI (bold italic)

Thus Classicl0BI specifies the 10 point size of the Classic font with bold italic face.

16.2.2 Defaults

The following defaults may be overridden by switches or User . cm entries:
1-column portrait
Font = Gacha8
1 copy
Headings and footings printed on each page
TAB stops set at multiples of 8 spaces (Note: space width is a function of the font)
Use printer's default for number of sides

Some settings that cannot be changed are:
Portrait mode margins = 2 inch on all sides
Landscape mode margins = % inch top, % inch others
Space between columns = % inch
Heading and footing text = file name, creation date , and page number

Page number location = at right margin when heading or footing specified.

16-3

16

Print

16.3 Formatting

Print automatically determines line, column, and page breaks (only 8% X 11 inch paper is
supported). Long lines are broken at white space, and the continuation line is indented the
same as the original line up to a maximum of half the column width. To force a new
column, put a form feed character (CONTROL-L) in your text. Print will begin each file on a
new sheet of paper. Note that files formatted for single-sided printing and later printed on

both sides may not start on new sheets.

16.4 User.cm entries

16-4

Print initializes several of its parameters from the [Hardcopy] section of your User.cm.

[Hardcopy]

Interpress: "My Printer"

PrintedBy: Deliver to $, room 123

LandscapeFont: Gachaé

PortraitFont: Gacha8

Orientation: Portrait

Columns: 1

-- name of your Interpress
printer; quotes are necessary if
the name contains spaces.

-- This string is sent to the
printer to appear on the banner
page. The "§" 1is replaced by
your name (from the
ProfileTool); the remainder of
the text is literal.

-- default font for landscape
printing.

-~ default font for portrait
printing.

-- or Landscape

-- number of columns in your
default orientation.

Your default domain and organization from the ProfileTool will be used to qualify the

name of your printer, if necessary.

II1

System-building tools

II1.1 Files

This chapter describes how a typical program might be built in the Xerox Development
Environment. It describes and illustrates common applications of the most common
functions: compiling, binding, running, and debugging a system. It also briefly discusses
the concepts of packaging a system and making bootable files. This chapter should be
viewed as a base point from which to build familiarity and expertise with programming in
the development environment. The last part of the chapter briefly describes each of the
program-building and analysis tools.

Many of the examples in this chapter are based upon two Mesa modules, Lexicon and
LexiconClient, which are roughly equivalent to those found in chapter 7 of the Mesa
Language Manual. These modules are part of a simple string management system called
Lex. They can be retrieved from the release directory along with several other files that
are needed to complete the Lex system.

LexiconDefs.mesa (.bcd) --interface source and object file
Lexicon.mesa (.bcd) --source and object file for Lexicon
LexiconClient.mesa (.bcd) --sourceand object file for the Client
Lex.config -- binding configuration file

Lex.pack --packaging specification file

Lex.bcd --object file for complete system

II1.2 Creating a source file

Creating a source file is similar to creating a text file. The code can be typed into any file
window and saved. Conventions for how this code should be ordered and how comments
should be notated are described in the Mesa Language Manual.

Mesa source code is easier to read when appropriately formatted. Please refer to the
chapter about the Formatter for more information about how to format source code files.

Note: Remember that Mesa has both description modules and implementation modules.
Compiled descriptions and implementations must be bound together before they can be

[11-1

III System-building tools

executed. Later sections describe the compiling and binding processes in more detail, as do
the chapters on these individual tools.

II1.3 Creating an object file ,
\

After creating an executable object file, the first step is building a component. The next
two steps are usually compiling and binding. Though they may have to be repeated many
times to create a large system, the way they are used is relatively invariant, as is
described in the following subsections.

I11.3.1 Compiling a program

Invoking the compiler is normally done in one of two ways. The first is to enter a command
line to the Executive:

>Compiler sourcel {source2 source3...}'

This command causes sources listed to be compiled into separate object files.

The second way to invoke the compiler uses Command Central (refer to the chapter on
Command Central). After selecting the Compile: item, a type-in point appears and the
source file name(s) may be entered:

Compile: sourcel {source2 source3...}

To run the compiler, invoke Compile! The compiler always assumes .mesa extensions to
the file names if no extension is given.

A successful compilation results in object files named sourcename.bcd. If the Compiler
discovers a syntax error in the source, it will logically insert or delete what it thinks is
appropriate text so that it can continue compiling the program. A summary of the errors
and warnings is written in a file named sourcename.errlog, and no object file is
produced. Errors and warnings are reported in the form procedure(character-position-in-
file], with an indication of the type of error and what text has been logically inserted or
deleted. A program will run with warnings, but it is not recommended.

You may specify operational options in the form of Compiler switches. For example, the
"b" switch specifies that the compiler should generate code to do array and subrange
bounds checking. In general, switches turn on or off some runtime checking or
optimization feature. The switch set /-b-ej-np-u is commonly used to compile
programs that have already been debugged and are ready to use; the switch set /-ep is
more common for programs during development. The first set disables most runtime error
checking and enables some optimization; the second set enables all the runtime checking
code and disables some of the optimization. The switch sets given above are merely
suggestions, not rules. (For a complete list and definition of the switches, as well as their
default values, see the Compiler chapter’s section on Compiler Switches.)

There are several ways to set these switches, depending on how you invoke the compiler.
If the Executive is used, switches may be specified either with each file name, globally for
all files, or both:

[11-2

XDE User’s Guide I11

>Compiler /-e sourcel/bej source2/-n-u*

The global switches are in effect appended to each of the local switch sets; if a conflict
arises, the local switches take precedence. In the example above, the effect is to apply the
switch set /bej to sourcel and the set /-e-n-u to source2. [f Command Central is used,
the switches may be given along with each file name as above. The global switches are set
via the Options window, invoked by selecting Options!. The same precedence rules
apply. In either case, defaults for any switch may be set in the User.cm file. (These
default entries have lowest precedence; refer to the section on User.cm entries in the
Compiler chapter).

II1.3.2 Binding a configuration

Though the Binder performs a number of tasks, its main tasks are matching the IMPORTS of
one program to the EXPORTS of another and binding the result. Specifically, the Binder
combines modules and possibly previously bound configurations, according to the
specifications in a configuration file to produce a new object file. This file may be loaded
into a running system or be processed by a later invocation of the Binder or Packager. The
following subsections describe a simple configuration file and show how to use the Binder.

I11.3.2.1 Configuration description files

A configuration description file describes to the Binder which modules to bind and how
they are to be put together. The binding configuration shown below is merely a list of the
modules to be bound: Lexicon and LexiconClient. The names listed need not be of single
modules but can refer to previously bound configurations.

Note that the names given are module names, not file names. Unless a DIRECTORY
statement is used (described in the Binder chapter), the Binder assumes that the module
modulename can be found in the file modulename. bcd.

Lex: CONFIGURATION

IMPORTS Process, Storage, String, TTY
CONTROL LexiconClient =

BEGIN
Lexicon;
LexiconClient;

END.

The CONTROL statement indicates which module should be started when the resulting
configuration is loaded. Other modules may be explicitly started by the module specified
in the CONTROL statement or be implicitly started when any one of its procedures is called.
For the example given above, LexiconClient is started explicitly and Lexicon is started
only when one of its procedures is called.

Because Lexicon relies on certain operating system support, it must have access to the
interfaces through which they are provided. This is accomplished by the iMPORTS
statement. [t gives the Binder a list of interfaces that will be referenced by the modules
being bound. It is an error to omit a neccessary interface, and a warning results if an
imported interface is never referenced.

[11-3

ITI

System-building tools

I-4

111.3.2.2 Using the Binder

As with the Compiler, the Binder is normally invoked using either the Executive or
Command Central. To use the Executive, type:

. ~
>Binder sourcel {source2 sourcel...}€

Each of the sources represents a distinct configuration description, and the command
creates distinct object files. To invoke *the Binder through Commar.d Central, simply
select Bind: and enter the source name(s):

Bind: sourcel {source2 source3...}

Now that the arguments are listed, the Binder may be invoked by selecting the Bind!
command. Regardless of the method used to invoke the Binder, a .config file name
extension is assumed if no extension is given. Also in either case, all error messages are
written to a file named sourcename.errlog. '

You may specify options to the Binder by Binder switches. In most cases the /c switch is
used to specify code copying. Often the /s switch is also specified, but there are different
policies about whether to use /s (for a complete list and definition of the switches, see the
section on Binder Switches in the Compiler chapter). If the Binder is invoked using the
Executive, the switches may be given along with each file name, globally at the beginning
of the line, or both:

>Binder /c sourcel/s source2 source3/s"

When using Command Central, the switches may also be given on'the command line along
with each file, or global switches may be set via the Options window, invoked by selecting
Options!. In either case, defaults for these switches may be set in the User.cm file, and
these defaults have the lowest precedence (see the section on User.cm processing in the
Executive chapter).

For more details, see the Binder chapter.

I11.3.3 Summary

Summarizing the operation of the Compiler and Binder:

® Both the Compiler and the Binder can be invoked with either the Executive or
Command Central, and both recognize various switches.

® The Compiler assumes input file names have an extension of .mesa if no extension is
given, while the Binder assumes .config.

® Both the Compiler and Binder produce an object file if processing was successful.
Otherwise, a file named source.errlog is created containing the errors or warnings
that were issued.

XDE User’s Guide III

o Names specified in a configuration file refer to modules, not files. It is assumed that a
module name Mod exists in a file named Mod.bcd. This association can be changed
with a DIRECTORY statement.

II1.4 Running a program in the Tajo environment

Once you have created an executable object file, it has to be loaded into the runtime
environment for execution to begin. This section describes how ‘o get object files to the
runtime environment (typicallyTajo), and how to run them once they are there.

Often the object file to be run will already be resident on the Tajo volume, which is the
case for tools that have already been developed and are present as utilities. However,
while performing development tasks, programmers often work in a volume different from
Tajo (usually CoPilot) for debugging convenience. When this is the case, you must move
the object file to be run to Tajo using either the Snarf command (see the chapter on the
Executive) or Command Central.

II1.4.1 Snarfing and running
To snarf a file to Tajo, first get to Tajo by booting or proceeding from CoPilot. (To proceed,
CoPilot must have been entered from Tajo using CALLDEBUG.) If you were in Othello, then
Tajo must be booted.

Once in your Tajo volume, the object file can be retrieved using Snarf in the Executive:

>Snarf source.bcd®

Snarf does not move the file from volume to volume but makes a new copy on the Tajo
volume. At this point the program can be run by typing its name to the Executive. The
.becd extension is not necessary.

>source®

Selecting commands from the Exec Ops menu is an alternative to use the Executive. After
typing and selecting the name of the object file, you may load, start, or run it by selecting
the appropriate menu item. Load loads but does not start an object file, Start starts a
previously loaded object file, and Run loads and then starts an object file.

II1.4.2 Using Command Central

The Command Central Run! command is roughly equivalent to the one described above.
To use it, activate Command Central in the CoPilot volume and select the Run: item. A
type-in point will appear, indicating where to enter the object file name.

Run: Lex

After entering the name, select Run! and Command Central does the rest: the Tajo
volume is booted, and the object file is copied and then run. Like the Executive, Command
Central does not require the .bcd extension to be entered. Various switches may be

[11-5 .

III System-building tools

specified to modify the operation of this command. User.cm entries may also be set (see
the Command Central chapter’s User.cm section).

[I[.4.3 Summary

. To recap, to get an object file from a development volume (normally CoPilot) to a client
volume (Tajo) and to run it, you may: '

® Boot or proceed to get to Tajo, use the Snarf command in the Executive to copy the
object file, and run the object file by typing its name to the Executive.

® Use the Command Central Run! command, which boots the Tajo volume, copies the
object file, and runs it.

Once the object file has been copied to the client volume, it need not be recopied unless it is
changed. Thus future invocations can be made directly using the Executive--no copying is
required.

II1.5 Making boot files

As with any program to be executed, the operating system itself requires an object file that
can be loaded into memory and started. Such a file is called a boot file. Along with the Pilot
image, the boot file also contains one or more Pilot clients, such as Tajo and the compiler.
This file, containing the entire runtime environment plus the initialization code needed to
start it, is loaded at boot time by a boot loader called the germ. There are several steps to
creating a typical boot file. Some of these require familiar actions such as using the
Compiler and Binder, while others require less-familiar tools such as the Packager and
MakeBoot. The following subsections describe these less-familiar tools.

I11.5.1 Packaging a system

The Mesa Packager can be used to improve the swapping performance of Pilot-based
programs. The Packager allows you to specify the swap units for your program's code
(code packs) and global frames (frame packs). For example, the Packager allows a code
pack to be defined that includes the code for a collection of procedures from several
different modules and a frame pack to be defined that collects the global frames of a
number of modules (for example, you might pack together procedures from different
modules that are not commonly used, such as initialization routines or catch code). This
prevents a seldom-used procedure from remaining resident just because it is in the same
module as a commonly used procedure. Similarly, commonly used procedures from many
modules can be grouped together so that they have a better chance of remaining resident.
Packaging a system requires detailed knowledge of the software in question and careful
consideration of the packaging specification.

I11.5.2 Packager operation

The Packager is a post-processor that reads a single object file and a packaging description
and writes a new object file with the code rearranged as specified. Its operation resembles
that of the Binder. To work correctly, all symbol files corresponding to the input object file
must be on the disk. The Packager needs these files to identify procedures and frame packs
and to locate the code for procedures. The output file contains the reorganized code, but not

I11-6

XDE User's Guide 111

the symbols, of the input object file (that is, the code is copied; symbols are not). The output
file also contains information about the global frame packs for later use by MakeBoot and
the Pilot loader. Finally, the Packager can produce detailed listings and ‘maps of the
placement of code and frame packs, as well as other information (see the Packager
chapter).

I11.5.3 Using MakeBoot

As stated earlier, MakeBoot converts an object file into a file that can be boot loaded;
namely, a boot file. To use MakeBoot, you need the base object file from which the boot file
will be built and at least one parameter file containing information about certain data
structure sizes and initial memory configurations. MakeBoot allows you to specify
information such as the length of the Global Frame Table and the number of processes
allowed to coexist. Unlike the Packager, MakeBoot does not require any symbol files to be
present on disk (see the MakeBoot chapter).

I11.5.4 Summary
Summarizing the operation of the Packager and MakeBoot:

® The Packager and MakeBoot are normally used in conjunction to create a file that can
be boot-loaded. Such a file typically contains the operating system (Pilot) and one or
more clients.

® Run as a post-processor, the Packager provides a level of fine tuning on an object file to
improve its swapping characteristics.

® MakeBoot converts an object file into a boot file according to specifications given in a
separate specifications file. Parameters include Global Frame Table length and the
number of coexisting processes.

If specification files (.pack for the Packager, and .bootmesa for MakeBoot) already exist,
which is normally the case, using these tools is fairly simple. However, it is worth
restating that both MakeBoot and the Packager are not as commonly used as either the
Binder or Compiler, and creating a good specification file for either requires careful
thought.

I11.6 Using the Debugger

This section describes the Pilot-based interactive Mesa Debugger, CoPilot. CoPilot
supports source-level debugging: it allows you to set breakpoints, trace program
execution, display the runtime state, and interpret Mesa statements. CoPilot is intended
for experienced programmers familiar with Mesa. The annotated examples in this section
are both examples of form and suggestions for dealing with situations that commonly
arise while debugging. (The Debugger chapter describes CoPilot in detail).

I11.6.1 Invoking CoPilot

There are several ways to invoke the Debugger. For example, in Tajo or CoPilot, pressing
CALLDEBUG interrupts your program. In the course of running your program, you may also

[1-7

ITI

System-building tools

[11-8

enter the Debugger for several other reasons. There is a different cursor icon for each
reason.

® Some currently running module generates a SIGNAL or ERROR that no procedure catches.
The Unc Sig cursor is displayed, representing Uncaught Signal.

® A module explicitly requests to go to the Debugger. Pilot makes such a Call
Debugger request when handling address and write-protect faults. The cursor
displayed is Call Debug.

® The Debugger has been used to specify a point in the source program where execution
should be stopped and the Debugger entered. Such a point is called a BreakPoint and
is denoted by the cursor, Brk pt.

® To maintain a consistent map of the client's virtual memory, CoPilot must be invoked
periodically to update internal data structures. Called Processing VM Map, it is
automatic and requires no user intervention. The cursor says Map Log.

e IfCoPilot is entered due to a CALLDEBUG. The cursor will be Int - (Inter rupt).

I11.6.2 Talking to the Debugger

The user interface to the Debugger controls a command processor that invokes a collection
of procedures for managing breakpoints, examining user data symbolically, and setting
the context in which user symbols are referenced. The command processor accepts
character input and extends the input to the maximal unique string that it specifies. For
instance, an L in response to the > prompt will be extended to List, just as a P will be
extended to Proceed. Typing a question mark during command entry will result in a list
of the valid options with the command characters shown in upper case. Typing a space in
response to the > prompt invokes the CoPilot interpreter,which will be described later.
(For further information on debugger I/O conventions and the CoPilot interpreter, see
Debugger /0 Conventions in the Debugger chapter.)

I11.6.3 Debugging a client program

The following sample session demonstrates CoPilot commands commonly used in
debugging a client program. The component files of Lex, the configuration in our example,
are listed at the beginning of this chapter. The sample configuration Lex consists of two
modules, Lexicon and LexiconClient. Let us assume that the configuration has been
bound, loaded, and started in Tajo, and you have interrupted the program and entered
CoPilot for the first time (by holding down CALLDEBUG after the program started). You get
the current date and time, a message indicating why you entered CoPilot (in this case,
interrupting the program), and a prompt for the first command:

6-Jan-82 14:59
kx* jnterrupt ***
>

I11.6.3.1 Setting the context

CoPilot allows you to specify a referencing environment, or context, in terms of Mesa
configurations and modules. To get to a context from which breakpoints may be set in one

XDE User’s Guide III

of the modules in Lex, let's first check to see which configurations have been loaded by
typing:

>List Configurations
which responds with:

Lex
Print
CommComSoft
CourierConfig
FloppyCommands
XComSoft
MailStubConfig
AuthStub
CHStub
NSStringConvertConfig
NSStringConfig
NSDataStreamConfig
NSSessionImpl
NSFilingRemoteConfig
NSFilingCommonConfig
NSFileTransfers
FileTransfers
RightsNotice
StartIncludedBcds
BasicHeadsDLion
Tajo
HideIntermediateExpRecs
PilotKernel
Control
MesaRuntime
Misc
Store
ResMemMgr
VMDriver
FileBasics
FileMgr
VMMgr
DiskDrivers
UserTerminalDriver
Loader
Communication
Level0
Levell
Level2
SubTajo
Wisk
TajoBasics
ToolWindows
UserInputs
Windows

[11-9

III System-building tools

TajoExtras
TextDisplays
TextSWs
BaseTextSWs
TTYSWs
FormSWs
TajoTools
Editor
BuiltInTools
Executive
WiskSupport
DontExportPilotRun
DevComSoft
ReallImpl
FloppyImpl
MesaBasics
FileSystemex

CoPilot also allows you to see what the context was before going to the Debugger.
Checking the context at this point, you find that the current module is PilotNub in the
MesaRuntime configuration. This will always be the context after a caLLDEBUG:

>ClUrrent context
Module: PilotNub, G: 14544B, L: 4700B, PSB: 115B
Configuration: MesaRuntime

We are interested in the configuration Lex, so we make it our root configuration:
>SEt Root configuration: Lex¢

and find out which modules are in this configuration:

>Display gonfigurationvLex

Lexicon, G: 70410B~

LexiconClient, G: 70434B

Notice the ~, indicating that Lexicon hasn't been started yet. Now we can set the module
context to be Lexicon, so that we can set some breakpoints:

>SEt Module context: Lexiconr

If you know which module is of interest, you need not search through the configurations to
find it. A SEt Module context command works even if no root configuration is specified
explicitly (this assumes that the module name is unique; if it isn't, an error message
results). You could have responded to the first > prompt with a SEt Module context
command if you knew that Lexicon was the module of interest.

I11.6.3.2 Setting breakpoints

If the source text for Lexicon is loaded into a window,so you can set breakpoints by
pointing at the text in two ways. First, you can display the stack and ask to see the source

[I1I-10

XDE User’s Guide III

(this loads and positions the source file for the current module into the source window of
the Debugger): ‘

>Display Stack
Lexicon, G: 70410B~ >s Cross jumped!
--Lexicon.mesa

>g

Second, you can lo=d the file into a source window by selecting the file name Lexicon
ithe extension defaults to .mesa), moving into a source window (there is always at least
one), and selecting the Load command from the menu. Note the message warning that
Lexicon was compiled with the cross-jumping switch turned on.

To set a breakpoint on the exit of the procedure NewNode, scroll the window until this
procedure is visible; then select the word ReTURN inside it. Hold down the menu key and
choose the Break command. This sets a breakpoint on the exit of the procedure (selecting
the word PROCEDURE or PROC sets a breakpoint on the entry to the procedure).

To set a breakpoint in the end of one of the IF-THEN-ELSE statements in the procedure
InsertString, select any place in the statement ELse n.llink « NewNode[]; and select
Break. Where the breakpoint has been set is confirmed by the selection moving to the first
character of the statement: eLSe < >n.llink « NewNode[];. In all cases, the breakpoint is
set to the beginning of the selected Mesa statement. You may also set entry and exit
breakpoints in the program using keyboard commands. If, for instance, you wish to set a
breakpoint on the entry to the procedure FindString, type:

>Break Entry procedure: FindString Breakpoint #3.
For any breakpoint, you may specify a condition that must be satisfied for the breakpoint
to be taken. If, for example, a breakpoint is set on the statement FOR i IN [0..n) DO in the

LexicalCompare procedure, you may attach the condition that n be greater than 10 for the
breakpoint to be taken:

>ATtach Condition #: 4, condition: n_>_10.

[11.6.3.3 Proceeding

[t is now time to proceed and run the program, but saving some comments along with the
commands makes it easier to-remember what happened when you review a log of the
session. For instance, you might say:

>--this breakpoint was set to find a comparison of¢
>--lexemes longer than 10 characters¢

Proceeding is now easy, as shown by the following command:
>Proceed [confirm]¢

If the lexeme "xxxxx" is subsequently added to the tree, one of the breakpoints is reached
and CoPilot is reentered.

[I-11

IT1

System-building tools

[11-12

[11.6.3.4 Examining and changing the state

The Debugger is next entered with the message:

Break #1 at exit from NewNode, L: 3760B, PC: 244B (in Lexicon, G:
70410B)

to indicate from where and why CoPilot was entered. At this point you might display the
stack and look at the variables:

>Display Stack
NewNode, L: 3760B, PC: 244B (in Lexicon, G: 70410B) >v
n = 4043126B 1

>q
or look at the several levels of the stack:

>Display Stack

NewNode, L: 3760B, PC: 244B (in Lexicon, G: 70410B) >n
InsertString, L: 3700B, PC: 137B (in Lexicon, G: 70410B) >n
AddString, L: 3420B, PC: 115B (in Lexicon, G: 70410B) >n
CommandProc, L: 6410B, PC: 506B (in LexiconClient, G: 70434B) >g

or ask to see what the node n (in NewNode) looks like (invoke the interpreter by typing a
space):

>nf¢

[1link:NIL, rlink:NIL, string:4043120B 71 (5,5)"xxxxx"]

It might be advantageous to set both the left link and right link of n to point to n itself and
then check the value of n by typing:

>n.llink < n; n.rlink < n; n; nte

which responds with:

n = 404312687
[11ink:4043126B 1, rlink:4043126B71, string:4043120B 7 (5,5)"xxxxx"]

If the value of the variable root in the module Lexicon is important, and the module
context has been changed to LexiconClient, you may obtain the value using the Find
command. root is a variable in the current configuration, but not the current module.

>Find variable: root Nit (in Lexicon, G: 70410B)

XDE User’s Guide III

I11.6.3.5 More breakpoint commands
To review all of the'breakpoints, do the following:

>List Breaks
1 -- Break at exit from NewNode (in Lexicon, G: 70410B).
2 ~-- Break in InsertString (in Lexicon, G: 70410B).
Cross jumped!

ELSE <>ua.llink 'NewNode[];

3 -- Break at entry to FindString (in Lexicon, G: 70410B).
4 -- Break in LexicalCompare (in Lexicon, G: 70410B). Condition: n >
10

Cross jumped!
<>FOR i IN [0..n) DO

If the breakpoints are no longer interesting, they may all be cleared simultaneously:
>CLear All Breaks

Individual breakpoints may be cleared either using the CLear Break command or by
selecting the source code of the line containing the breakpoint and then selecting the
Clear menu item from the Debugger menu.

I11.6.3.6 Looking at the user screen

You may often be thrown into CoPilot without warning and without a chance to take stock
of what was being displayed. The CoPilot Userscreen command provides for this
situation. Entering the following command repaints the display with the contents of the
client-world screen as it was before entering CoPilot:

>Userscreen [confirm]¢

In this mode, CoPilot accepts no commands and performs no client-world operations . After
20 seconds, the CoPilot display is restored automatically. To review the user screen for
longer than 20 seconds, hold down the ABORT key, which maintains the display. Pressing
ABORT, then releasing it, returns you to CoPilot.

I11.6.3.7 Setting tracepoints

Suppose the user screen indicates that it is worthwhile to breakpoint the entry to the
procedure LexicalCompare. When you set a breakpoint on entry to a procedure, you will
often want to see the input parameters by typing:

>Trace Entry procedure: LexicalCompare Breakpoint §5.

If you Proceed and enter the lexeme yyy, the tracepoint will be reached. A message
indicating why CoPilot was entered, the context, and a dump of the input parameters is
then displayed:

Trace §5 at entry to LexicalCompare, L: 3760B, PC: 246B (in Lexicon,
G: 70410B)
>Display Stack

[1I-13

ITI

System-building tools

[1I-14

LexicalCompare, L: 3760B, PC: 246B (in Lexicon, G: 70410B) >P

sl = 40641281 (3,80)"yyy"
s2 = 4043120B 1 (5,5) "xxxxx"
>q

This leaves CoPilot in the Display Stack command. You can terminate the command by
typing q or continue to perform Display Stack functions. ‘

I11.6.4 Pilot symbols files

Symbolic access to Pilot structures is often essential in debugging Pilot client programs.
In particular, such access is useful in interpreting Pilot SIGNALs and essential if you are to
break entry or exit to a Pilot procedure.

The Pilot symbols files (found in <Pilot>Symbols>) should satisfy most client
debugging needs for access to Pilot structures. To determine which Pilot .symbols file
pertains to the module in question, perform a Current context command, which
displays the current configuration (you may wish to set module context or set octal context
before this). The configuration name is prepended to the .symbols suffix to arrive at the
symbol file name. The exceptions are listed in the table:

Displayed Name Symbols File

HConfig VMMgr.symbols
PConfig VMMgr.symbols
Level0 Communications.symbols
Levell Communications.symbols
Level2 Communications.symbols

II1.6.5 Interpreting signals

If you go to CoPilot with an uncaught signal, you will often find a message of the form:

***yncaught signal[nnnnnB] msqg = ?[mmB] (in module MumbleImpl, G:
pppppB)

This virtually useless message usually occurs because CoPilot did not have the neccessary
symbols files available to interpret the signal. To get useful information, find the file that
contains the symbols for MumbleImpl and retrieve it. (It may also be necessary to retrieve
the object file for an interface module so that signal parameters can be interpreted
correctly.) Once the appropriate files have been fetched, type a space to invoke the CoPilot
interpreter and then a LOOPHOLE expression (the % is the loophole operator). This tells
CoPilot to interpret the number nnnnnB as a SIGNAL from the current context. CoPilot will
reply with a message similar to the one above, except it will have signal names instead of
a number, and an ASCII message. For example, assume a simple module named Test has
been loaded and started, and subsequently a world swap to CoPilot occurs:

XDE User’s Guide III

13-Jan-82 15:01
*** uyncaught SIGNAL [1005B] msg = ?{5423B] (in module Traps, G:
20624B)

The symbol file to be retrieved can be determined by finding the Current context:

>CUrrent context
Module: Traps, G: 20624B, L: 11754B, PSB: 101B
Configuration: MesaRuntime

Once the context has been established to be MesaRuntime, retrieve the file
MesaRuntime.symbols and re-interpret the signal.

>1005B3 (SIGNAL)®

SIGNAL DivideCheck (in module Traps, G: 20624B)
DivideCheckTrap, L: 11754B, PC: 1503B (in Traps, G: 20624B) >n
SDIV, L: 5240B, PC: 156B (in ProcessorHeadDLion, G: 21454B) >n
Test, L: 21214B, PC: 15B (in test, G: 11414B) >g

a =20

b = 3410

>s Cross jumped!

ae0; <>be5/a;

>q

It seems that there has been some sort of invalid division operation. To get more
information, look at the call stack as illustrated above. It shows that Test tried to perform
a divide-by-zero instruction, which ended in a signal being raised.

I11.6.6 Address and write-protect faults

Pilot permits programs to access only those locations in virtual memory contained within
mapped spaces. Furthermore, a space in virtual memory can be designated read-only (or
equivalently, write-protected). Programs that try to write to such locations or that try to
reference unmapped spaces will enter CoPilot with the message WriteProtect Faultor
Address Fault, respectively. In addition, programs that attempt to reference a location
beyond the end of the processor's virtual memory will enter CoPilot with the message
Address Fault (address past end of processor VM).These are not signals; Pilot
has detected the fault and explicitly called the Debugger.

A write-protect fault is a fatal error, so neither Pilot nor the client program can be
successfully restarted in this case. Conversely, address faults are not fatal errors, except to
the process in which they occur. Pilot and the remaining client processes are still healthy
and will continue to run if a proceed command is issued. The address-faulted process will
be effectively blocked forever, waiting for pages to get swapped into real memory (which
will never happen). As long as this process holds no vital monitor locks, everything should
be fine. In addition, you may freely interpret procedures from CoPilot after an address
fault. Since Pilot will be healthy, its facilities may also be used freely. Making address-
faults non-fatal allows you to clean things up after faulting but is not meant to provide a
way to continue operation for an extended period of time. There is little or no experience
with that kind of use, so its limitations and problems are largely unknown.

[1I-15

ITI

System-building tools

I11-16

I11.6.7 Tracing an address fault

When an Address Fault occurs, the Debugger is entered with the Call Dbug cursor, and
displays the message Address Fault. No indication of which process caused the fault is
given. Suppose that Lex had been running for a while and an address fault occurred. The
first thing to do is list the set of processes and look for one that has page faulted (it will be
clearly labeled).

Address Fault

>List Processes

PSB: 20B, page fault, address: 2515217B%1, L: 21304B, PC: 360B (in
StoragelImpl, G: 32404B)

PSB: 75B*, ready, InitializeAwaitDebuggerRequest, L: 12144B, PC:
553B (in PilotNub, G: 14544B)

PSB: 77B, ready, L: 11374B, PC: 2364B (in UserInputsA, G: 26004B)
PSB: 100B, waiting CV, L: 4010B, PC: 3446B (in HeraldWindowsB, G:
351008B)

PSB: 101B, waiting CV, L: 3650B, PC: 377B (in TTYSWsB, G: 31500B)
PSB: 102B, waiting CV, L: 11410B, PC: 22316B (in TextSWsD, G:

32020B)
PSB: 103B, waiting CV, L: 12760B, PC: 6316B (in MFileImplA, G:
36214B)
PSB: 104B, waiting CV, L: 3440B, PC: 45464B (in UserInputsC, G:
30034B)

PSB: 105B, waiting CV, L: 37214B, PC: 14624B (in UserTerminallImpl,
G: 20010B)
PSB: 106B, waiting CV, L: 22370B, PC: 5325B (in UserInputsB, G:

26724B)

PSB: 107B, waiting CV, L: 3460B, PC: 2732B (in UserInputsa, G:
26004B)

PSB: 110B, waiting CV, L: 3470B, PC: 2667B (in UserInputsA, G:
26004B)

PSB: 111B, waiting CV, L: 3500B, PC: 2641B (in UserInputsA, G:
26004B)

PSB: 112B, waiting CV, L: 3520B, PC: 2641B (in UserInputsd, G:
26004B)

PSB: 113B, waiting CV, L: 11454B, PC: 344B (in SocketImpl, G:
23360B)

PSB: 114B, waiting CV, L: 21134B, PC: 1331B (in RoutingTableImpl, G:
23404B)

PSB: 115B, waiting CV, L: 37144B, PC: 2641B (in UserInputsA, G:
26004B)

PSB: 116B, waiting CV, L: 37360B, PC: 1232B (in EthernetDriver, G:
23060B)

PSB: 117B, waiting CV, L: 37234B, PC: 2271B (in EthernetDriver, G:
230608B)

PSB: 120B, waiting CV, L: 4044B, PC: 325B (in EthernetDriver, G:
23060B) :

PSB: 121B, waiting CV, L: 21224B, PC: 306B (in DispatcherImpl, G:
23304B)

PSB: 122B, waiting CV, WriteFaultProcess, L: 11754B, PC: 65166B (in
SpaceImplB, G: 20464B)

PSB: 123B, waiting CV, L: 11424B, PC: 37B (in SwapperExceptionImpl,
G: 17570B)

XDE User’s Guide 111

PSB: 124B, waiting CV, L: 4550B, PC: 44B (in FilerExceptionImpl, G:
14104B)

PSB: 125B, waiting CV, L: 3430B, PC: 4460B (in MSﬁoreImpl, G:
172708B) ' ,
PSB: 126B, waiting CV, L: 11644B, PC: 1053B (in CachedRegionImplA,
G: 15110B)

PSB: 127B, waiting CV, L: 3774B, PC: 37B (in PageFaultImpl, G:
17404B)

PSB: 130B, waiting CV, L: 21320B, PC: 7446B (in FileTaskImpl, G:
14200B) .

PSB: 131B, waiting CV, L: 21334B, PC: 1463B (in DiskChannellImpl, G:
13220B)

PSB: 132B, waiting CV, L: 11550B, PC: 2031B (in PilotDiskImpl, G:
133248B))

PSB: 133B, waiting CV, FrameFaultProcess, L: 11530B, PC: 123B (in
FrameImpl, G: 14524B)

In this example, only one process has page faulted (20B), but if there are more than one,
the Octal Read command will indicate which is the culprit. For each page-faulted
process, an octal read should be performed on the associated address. CoPilot will respond
with the message ! Invalid Address [nnnnnB] for the process that is to blame for the
address fault. The following verifies that process 20B is the culprit in the Lex example.

>Qctal Read: 2515217B, n(10): 1¢
2515217B/ !Invalid Address [2515000B]

Once you have laid blame for the fault on a particular process, you may examine it more
closely by setting the process context:

>SEt Process context: 20B¢

At this point you may look at the call stack using the Display Stack command, or at a
particular frame using the Display Frame command. The latter command is very useful
in many situations. For instance, suppose you have displayed and climbed the call stack:

>Display Stack

CopyString, L: 21304B, PC: 360B (in StorageImpl, G: 32404B) >n
NewNode, L: 3730B, PC: 333B (in Lexicon, G: 67410B) >n
InsertString, L: 3760B, PC: 240B (in Lexicon, G: 67410B) >n
AddString, L: 3410B, PC: 223B (in Lexicon, G: 67410B) >n
CommandProc, L: 12214B, PC: 746B (in LexiconClient, G: 70020B) >gq

Suppose that sometime later you wish to look at variables or interpret statements in the
context of AddString. Rather than climbing back through the stack using Display
Stack, you may directly display that frame, as illustrated below:

>Display Frame: 3410B¢
AddString, L: 3410B, PC: 223B (in Lexicon, G: 67410B) >v
s = 412216B 1 (5,80) "xxxxx"

>q

[I-17

II1

System-building tools

Display Frame offers all of the functions available with Display Stack (including
n) . Hopefully there will be enough state attainable using CoPilot to track down the cause
of the address fault.

[[1.7 Program-building tools

The Binder combines modules and previously bound configurations to produce a new
configuration. The output of the Binder is a binary configuration description (object file)
that may be loaded into a running system or later be input to the Binder.

CommandCentral is a tool that supports the compile/bind/run program development loop.
[t permits you to compile and bind programs on a development volume and run them on a
client volume.

The Compiler translates Mesa source files into corresponding object files. An object file
contains the executable code for the module, tables for use by the Binder and Loader, and

symbols for use by the Debugger.

The Formatter transforms Mesa source files into a standard format. It establishes the
horizontal and vertical spacing of the program text to reflect its logical structure.

MakeBoot transforms an object file containing Pilot and its client into a memory image
that can be run on any machine conforming to the Mesa Processor Principles of Operation.
The resulting boot file is later boot-loaded to get it started.

The MakeDLionBootFloppyTool creates Dandelion-bootable floppies.

The Packager explicitly groups procedures together into swap units.

ITI1.8 Program analysis tools

[11-18

The Debugger is CoPilot, the interactive Mesa debugger.

The DebugHeap Tool is used in CoPilot to debug the client, or in Tajo to do client-side
debugging. It aids debugging by showing the layout of memory.

The IncludeChecker examines a collection of local or remote source and object files for
consistency. It produces an output listing that gives a compile and bind order for the files
and the dependencies among them. Inconsistencies are flagged. The IncludeChecker will
also generates compile and bind commands to correct any inconsistencies.

The Lister produces listings of information in object files, such as dates of the definitions
files used by an object file-and cross-reference listings of procedure calls within the object
file.

Performance Tools are five tools that aid in the study of the behavior of Mesa programs
the CountPackage, PerfPackage, Spy, Ben, and Willard.

Spy can measure the amount of time spent executing in a module, certain procedures,
or even source statements within a procedure. It is especially useful for top-down

XDE User’s Guide I11

analysis of a program; thus, Spy can be used to first identify the hottest modules,
then the hottest procedures within those modules, and so forth.

The CountPackage gathers information on the flow of control between groups of
modules. “

Willard produces a list of the control transfers executed during some interval of
client activity.

The PerfPackage allows you to collect timing and frequency statistics of program
execution.

Ben produces a list of the page faults that occur during some interval of client
activity and tells what caused the fault to occur.

The Statistics tool gathers statistics about Mesa source and object files, such as number of
characters and frame size.

[11-19

III System-building tools

[11-20

17

Binder

17.1 Files

This chapter discusses the operation of the Binder, including its switches and error
messages. The Mesa Binder combines modules and previously bound configurations to
produce a new configuration. The output of the binder is a binary configuration
description (object file) that may be loaded into a running system or processed by a later
invocation of the Binder. The configuration description language C/Mesa is used to
describe desired configurations to the Binder. It is documented in the Mesa Language
Manual.

To understand the Binder options described below, it is necessary to understand
something about how configurations exist in files. The object file produced by the Binder
contains a compiled description of the configuration; it may also contain copied code or
symbols. For each module instance in the configuration, the object file specifies the
location of the code and symbols by file name (and version stamp), starting page, and
number of pages. Thus the code and symbols for a configuration may be scattered over a
large number of files. The default is for the configuration’s code to be copied to the object
file, while its symbols are left in the original compiler object files. It is also possible to put
the object file, the code, and the symbols in the same file (this is the way object files are
generated by the Mesa compiler).

Copying the code or symbols for a configuration’s modules is controlled by switches and
parameters on the Binder's command line. Code is usually copied into the same file
containing the object file. It is also possible to copy code into a file other than the object
file, but this is not very useful. Symbols may be copied into the object file, but they are
usually written to a separate file.

It is a good idea to package the symbols of a released subsystem into a separate file, so that
they will not take up disk space when they are not in use. This also makes it easier to keep
track of a consistent set of symbols for all of the modules. Because the Binder and Loader
deal only with interfaces, symbol tables are not required for binding or loading. Of course,
they are required for meaningful debugging.

Retrieve Binder.bcd from the Release directory.

17

Binder

17.2 User interface

17-2

The Binder runs in the Executive and in Command Central. A summary of the Binder's
commands is written on the file Binder.log The error and warning messages from
binding, say Foo.config, are found on Foo.errlog- (unless the /e switch is in effect;
see the Command line section below).

17.2.1 Command line

The Binder accepts a sequence of one or more commands, each of which usually has one of
the following forms:

inputFile/switches

outputFile « inputFile/switches

[key1: filej, ... keyp: filep] « inputFile/switches
In the third form the valid names for key; are code, symbols, and bcd. The string
inputFile names the file containing the text of the configuration description, and its
default extension is .config. There is a principal output file, the name of which is

determined as follows:

If you use the first command form, it is inputRoot.bcd, where inputRoot is the
string obtained by deleting any extension from inputFile.

If you use the second form, it is outputFile, with default extension . bcd.

If you use the third form and key] is bed, it is £ile], with default extension .bcd:
otherwise, it is obtained as described for the first form.

If the Binder detects any errors, the principal output file is not written, and any existing
file with the same name is deleted. You may also request that the code or symbols of the
constituent modules be copied to an output file by specifying the /c switch or by using the
third command form with keyword code. Code is copied to the principal output file unless
you use the third form and keyj is code, in which case the code is copied to a file named
filej, with default extension . code.

You may request copying of symbols by specifying the /s or by using the third command
form with keyword symbols. Symbols are copied to the file named as follows:

If you use the first command form, it is inputRoot.symbols.
If you use the second form, it is outputFile, with default extension .symbols.

If you use the third form and keyj is symbols, it is file), with default extension
.symbols;otherwise, it is obtained as described for the first form.

Unless the /e switch is in effect, any warning or error messages are written on the file
outputRoot.errlog, where outputRoot is the string obtained by deleting any

XDE User’s Guide 17

extension from the name of the principal output file. If there are no errors or warnings,
any existing error log with the same name is deleted at the end of the bind.

When more than one Binder command is given on the command line, the commands are

separated by semicolons. Usually the semicolon can be omitted. [t cannot be omitted,

however, if the second of the two successive commands is a global switch. For example:
>Binder /csMySystem'; /c AnotherSystem

The semicolon can be left out between two successive identifiers (file names or switches),

or between a | and an identifier. Any required semicolon in an Executive command must
be quoted.

17.2.2 Switches
The optional switches are a sequence of zero or more letters. Each letter is interpreted as a
separate switch designator, and each may optionally be preceded by - or ~ to invert the

sense of the switch.

The Binder recognizes these switches:

c copy code (default)

e merge the .errlog file into the Binder. log file

p pause if there are errors, or if there are warnings and the /w switch is specified
s copy symbols

w also pause on warnings if /p is specified (default)

Global switches are set by a command with an empty file name. Each of the switches listed
above can be specified as a global switch. Note that unless a command to change the global
switch settings comes first in the sequence of commands, it must be separated from the
preceding command by an explicit semicolon (see Examples section).

The /p switch is unusual in that its meaning is slightly different, depending on whether
it is a global or local switch. As a global switch, it means report (p) or don't report (-p)
errors or warnings to the calling Executive. The Executive will typically terminate
(pause) if errors or warnings are reported. The global default is to pause. As a local switch,
it specifies pausing just after compiling the specified file if that file or any preceding file
contained errors; moreover, any remaining commands are ignored. The local default is not
to pause but to continue with the next input file.

17

Binder

17.2.3 Associating files with modules and configurations

""The Binder lets you control the association between file names and the modules or

configurations included in a configuration when you call it. This is done by specifying a
list of component identifier-file name pairs inside brackets after the input file name. Such
a list can be thought of as augmenting or replacing a DIRECTORY clause in the configuration
description. For example, the command line

>Binder MySystem[Test: UnpackedTest]

will bind MySystem.config using the previously bound configuration Test that is
stored on the file UnpackedTest . bcd.

A command that includes one of these optional component-file name lists will have one of
the forms:

inputFile[idy: filej, ... idp: filep]/switches
outputFile « inputFile[idy: filej, ... idp: filep]/switches

[keyy: filej, ... keym: filem] <« inputFile[id;: filey, ... idp:
filen]/switches

The module or configuration named by idj in the configuration description will be read
from the file f£ile. The extension . bcd is assumed for the file names.

17.3 Examples

17-4

>Binder MySystem

Read MySystem.config and write the resulting object file on MySystem.bcd. Copy
all code segments to MySystem.bcd. Symbol segments are not copied, but are left in
the original input files. This is the normal mode because the loader will only load
object files that have code copied into them.

>Binder MySystem/-c

Read MySystem.config; write MySystem.bcd. Leave all code and symbol segments
as they were in the input files. This might be done if an intermediate level
configuration were being bound, and code or symbols were going to be copied later
when a higher-level configuration was bound.

>Binder MySystem/s

Read MySystem.config and write the resulting object file on MySystem.bcd. Copy
all code segments into MySystem.bcd, and copy all symbol segments into
MySystem.symbols. By packaging all of the symbols in a single file, you minimize
the risk of getting an incorrect version.of some symbol table. This is a possible
distribution mode, if debugging will be required.

XDE User’s Guide 17

>Binder MySystem[SubSystem: ExperimentalSubSystem]

" Read MySystem.config; write MySystem.bcd. Read the included subconfiguration
SubSystem from the file ExperimentalSubSystem.bcd. '

>Binder MySystem « NewSystem.config/s
Read NewSystem.config, write MySystem.bcd. Copy all code segments into
MySystem.bcd and all symbol segments into MySystem.symbols. Commands with
"left-hand sides" allow renaming of the output (bed, symbol, and code) files.

>Binder [bcd: MySystem.bcd, symbols: MySystem.bcd] « NewSystem/c

Read NewSystem.config; write MySystem.bcd. Copy all code and all symbol
segments into MySystem. bcd.

>Binder SubSys <« MySystem/cs
Read SubSystem.config; write SubSys.bcd. Then read MySystem.config; write
MySystem.bcd; copy code into MySystem.bcd and symbols into
MySystem.symbols.

>Binder /-c SubSystemA'; /c SubSystemB MySystem

Bind SubSystemA, SubSystemB, and MySystem, but only copy code for the last two
configurations. Note that a semicolon is required before the second global switch.

17.4 Error messages

If possible, the Binder will indicate the offending source line and configuration name with
each error. Some of the common error messages are:

Errors detected, Bcd not written
The Binder has produced no output.

Exported type clash
Only one implementation of an opaque type may appear in a configuration. This is
true even if the interface defining the opaque type is “hidden” in a nested
subconfiguration by not being exported by that subconfiguration.

Fatal Binder Error
Fatal errors are reported in a fashion similar to the Compiler; the signal and message
are given in octal, and should be included in any change request reporting a fatal
Binder error.

file could not be opened to copy symbols

Warning: When copying symbols, the file containing the symbol segments for a module
could not be opened. The copied symbols file will still be produced, but will not

17-5

17

Binder

17-6

contain symbols for the module; thus limited debugging will still be possible using the
symbols file.

file is referenced in two versions: (version]) and (versiony)

Warning: Two different versions of the named file are referenced by the modules
being bound. This will produce an error if you attempt to match the two versions as
import and export.

id does not match the module or configuration name in the object
file

The identifier used to name a module or configuration in a configuration description
must exactly match (including capitalization) the name used inside that module or
configuration.

id is not valid as a CONTROL
A control list item must be a module or subconfiguration in the configuration.

item from interface is unbindable (imported by module)
(item nnn) from interface is unbindable (imported by module)

Warning: An item from interface has no implementation. If symbols for the
importer or the interface can be found, the item's name is printed. Otherwise, the
item's interface number is printed, and you can count (from 0) the interface items in
interface or use the Lister's Inter face command to get more information.

interface is not imported by any modules
interface is not exported by any modules

A configuration must tell the truth about what it IMPORTS and EXPORTS; i.e., everything
imported or exported by a configuration must actually be imported or exported by a
contained module or configuration.

interface is undeclared
An attempt is being made to import the interface (or program) interface, but
interface is neither imported from a higher-level configuration nor exported by any

module or configuration at the same level.

interface] (version]) is required for import, but only interface)
(version?) is available

interface) is available for import (or being passed as a parameter), but the importer
requires interface]. The source line shows the importer.

XDE User’s Guide 17

interface] (version]) is being exported, but interface) (version))
is required

The source line shows an exporter of interface] who is trying to assign the interface
(implicitly or explicitly) to interfacey. This may be a version problem (if the
interface names are the same) or an error in an assignment.

The right hand side exports more interfaces than required by the
left hand side.
The left hand side requires more interfaces than exported by the
right hand side.

An explicit list of interfaces or module instances was given as a result or argument
list, and either too few or too many were given.

17.5 Current limitations

The DIRECTORY clause in a configuration description should be used only when the name of a
module or configuration differs from the name of its file. Do not make DIRECTORY entries for
interface (DEFINITIONS) files.

The output object file can be renamed; the symbols file cannot (since the object file
contains the name of this file in its internal tables).

Multiple instantiations of nested configurations are not implemented. You can get around
this by binding the nested configuration in a separate step.

17-7

17 Binder

17-8

18

CommandCentral

CommandCentral is a tool that supports the compile/bind//run program development loop.
[t permits you to compile and bind programs on a development volume and run them on a

" client volume. Because the functions provided by CommandCentral overlap with those of
the Executive, also see the chapter on the Executive.

18.1 Files

CommandCentral is built into Tajo, so no files need be retrieved..

18.2 User interface

CommandCentral interacts through a message subwindow, a command subwindow, and a
log subwindow.

:Expand! Compile! Bind! Run! Go! Options!
%Compi1e:
:Bind:

Window Mgr

Compiler Switches: e
Binder Switches: e
Client Volume: Tajo
Client Switches: S

og: {}

Compiler
Binder

Figure 18.1: Command Central tool window

18-1

18

CommandCentral

18-2

18.2.1 Message subwindow

The message subwindow is used to display error and status messages.

18.2.2 Command subwindow

The command subwindow contains the following fields and commands:

Expand!

Compile!

Bind!

Run!

Options!

Compile:

Bind:

Run:

expands any file names listed containing #, *, or @ in the usual way (i.e,
matching one character, * matching zero or more, and @file@
expanded to the contentsof file).

invokes the compiler, taking its arguments from the Compile: field.
invokes the binder, taking its arguments from the Bind: field.

takes a list of file names with switches from the Run: field, transfers the
corresponding files to the client volume, and (possibly) runs them.

Fine point: The commands Compile! Bind! and Run! each run in a separate process.
This means that for example, invoking Compile! immediately followed by Bind ! will
run the compiler and binder simultaneously, which is probably not what is intended. The
Go! command should be used to sequence through compilation, then binding, then
execution.

executes the Compile!, Bind!, and Run! commands, in that order. If a
command fails, the subsequent commands are not executed.

Fine point: The command line to a subsystem is copied when the subsystem starts. The
contents of the command lines can be changed until the corresponding system starts

running, e.g., the Binder line can be edited while the compiler is running.

allows switches to be specified for the Compile!, Bind!, and Run!
commands (see the chapters on the Binder and Compiler). The client
volume may also be specified in the Options window. Each of these items
override those taken from the User.cm or the default if no User.cm
exists. The Boolean item UseBackground, if set to TRUE, runs the
Compiler and Binder at background priority.

contains a list of file names and optional compiler switches. The file
names and switches are passed directly to the compiler as if they had come
from the command line of the Executive.

contains a list of the file names and optional switches that are passed as
input to the binder.

is the input field used to list the files to be run on the client volume. The
following switches are recognized by the Run! command:

a Start with active initialToolStateDefault rather than inactive.
Default FALSE.

c Copy from development volume, default TRUE

e Executable (i.e., load the object file), default TRUE

XDE User’s Guide 18

s Start after loading, default TRUE
1 Load with code links, default FaLSE
d Debug; call debugger after loading, default FALSE

The default is to copy, load, and start each file named. (The default
extension is .bcd; files without extensions may not be used.) To copy but
not load a file, use /-e (i.e., don't execute). To run a file already on the
client volume, use /-c (i.e., don't copy).

Log{} allows you to explicitly load the desired .log file into the bottom
message subwindow. The .log file is selected by depressing the menu
button over the tag and selecting either compiler or binder.

18.2.3 Log subwindow

After completion of a Compile or Bind, the bottom subwindow is loaded with the
corresponding . log file. Any time Compiler.logor Binder.log is changed (e.g., if you
edit one of them and save it), it will be loaded into the window. Also, if the current search
path changes to one not containing Compiler.loqg or Binder.logq, the log subwindow
will automatically be cleared if it contains one of the log files.

18.3 Communication between client and development volumes

When the Run! command is invoked, CommandCentral creates a file in the root directory
of the client volume that consists of a list of the file names (converted to file ids), and
switches that were on the Run line. When the client volume is booted, a check is made in
its root directory, and if CommandCentral’s run file is found, the listed object files will be
executed. Once CommandCentral’s run file has been read, the client volume destroys it, so
that subsequent booting of the client volume will not cause a re-run of the same programs.

Since the run file created by CommandCentral is not a development environment file, it
cannot be accessed, deleted, or read from the development environment, but instead is
fully maintained by the client volume and CommandCentral. If for some reason a boot
initiated from CommandCentral were aborted or interrupted, the client volume may be in
an inconsistent state in relation to the existence of CommandCentral’s run file. The next
time the client volume is booted, it may or may not produce the desired results, depending
on whether the file actually got created.For example, if the file were created before the
interrupt, and the client volume is subsequently booted from the HeraldWindow menu, an
attempt will be made to execute the object files in the run file most recently created by
CommandCentral. This is not what one expects when booting from the HeraldWindow. If
the client volume is rebooted from CommandCentral, a check will be made to see if the file
already exists. Since it does in this example, no attempt will be made to create a new one,
so the old one will be used. If the list of files in the Run line did not change and at least one
file in the list was re-compiled, the results will be particularly confusing since the file id
recorded in the previous run file on the client volume will not match the id for the latest
object file on the development volume.

18-3

18

CommandCentral

18.4 User.cm

18-4

The User .cmfields used by CommandCentral are:

[Executive]

Compiler:

Binder:

CompilerSwitches:

BinderSwitches:

ClientVolume:

ClientSwitches:
CodeLinks:

UseBackground:

NameOfCompiler (default extension is .bcd);
default is Compiler.bcd.

NameOfBinder (default extension is . bcd); default is
Binder.bcd.

default global switches for compiler.
default global switches for binder.

VolumeLabelString; default is first volume of type
below CommandCentral's system volume.

Pilot switches used for booting client volume.
TRUE | FALSE for compiler/binder loading; default TRUE.
TRUE | FALSE if TRUE, the compiler and binder run at

background priority. Otherwise, they run at normal
priority. Default FALSE.

The name of the development volume is set in the client volume User.cm:

[System]

CommandVolumeName:

VolumeName

If no development volume is specified, the volume is defaulted to CoCoPilot if the client
volume is of type debugger, and to CoPilot otherwise.

CommandCentral’s window size, tiny place, and initial state can be set as for any other

tool:
[CommandCentrall
WindowBox:
TinyPlace:

InitialState:

19

Compiler

19.1 Files

The Mesa compiler translates Mesa source files into corresponding object files. An object
file contains the executable code for the module (if any), a binary configuration description
(for use by the binder or loader), and a symbol table (for inclusion by other programs or for
use by the debugger). By convention, an object file has a name with extension .bcd.

The Mesa Language Manual describes the syntax and semantics of the Mesa source

language. This chapter describes the operation of the Compiler, including the compile-
time options and messages.

Retrieve Compiler.bcd from the Release directory.

19.2 User interface

The Compiler runs in the Executive and takes commands from the command line. The
simplest form of command is a list of file names, such as

>Compiler sourcefile] sourcefilel ... sourcefilep

If you supply the command sourcefile with no period and no extension, the Compiler
assumes you mean sourcefile.mesa.

During compilation, the Compiler gives feedback by giving the name of the file, any non-
default switches, and a dot at the beginning of each major pass (six dots in all). It also
shows code size if successful, or number of errors/warnings if not.

The Compiler reports the result of each command on the file Compiler.log with a
message having one of the following forms (each * is replaced by an appropriate number;

bracketed items appear only when relevant):

Command: /switches

19-1

19

Compiler

19-2

Command: file
file.mesa
[lines: *, code: *, links: *, frame: *, time: *]

Compilation was successful. The object file is £ile.bcd. For a DEFINITIONS module, the code
and links are not meaningful and are omitted. Otherwise, "links" is the number of items
imported by the module, and "frame size" is the size of the global frame (in words),
exclusive of the links. A third line appears only if warning messages were logged. The
Compiler issues warnings for certain constructs that are technically correct but
nonsensical or likely to be unintended. Warnings do not prevent writing a valid object file,
but you should usually investigate them.

file.mesa -- aborted, * errors [and * warnings] on file.errlog
Compilation was unsuccessful. You will find the error messages (and warning messages, if
any) in the indicated file. If the errors were detected during the early phases of
compilation, no object file was written (and any existing object file with the same name
was deleted).

File error

The Compiler could not find the specified file.

Fine point: ABORT will cause the Compiler to return at the end of the current pass, ignoring any other files to

compile.

19.2.1 Command line

The Compiler allows you to control the association between modules and file names at the
time you invoke the Compiler. The Compiler accepts a series of commands, each of which
has the form

outputFile <« inputFilelidy: filej, ..., idp: filepl]/switches

Only inputFile is mandatory; it names the file containing the source text of the module
to be compiled, and its default extension is .mesa. Any warning or error messages are
written on the file outputRoot.errlog, where outputRoot is the string obtained by
deleting any extension from outputFile, if given, otherwise from inputFile. If there
are no errors or warnings, any existing error log with the same name is deleted at the end
of the compilation.

If a list of keyword arguments appears between brackets, each item establishes a
correspondence between the name idj of an included module, as it appears in the
DIRECTORY of the source program, and a file with name filej; the default extension for
such file names is .bcd. (If the name of an included module is not mentioned on the
command line, its file name is computed from information in the DIRECTORY statement).

The optional switches are a sequence of zero or more letters. Each letter is interpreted as a
separate switch designator, and each may optionally be preceded by - or ~ to invert its
sense.

XDE User’s Guide 19

19.2.1.1

If outputFile and « are omitted, the object code and symbol tables are written on the
file inputRoot.bcd, where inputRoot is inputFile with any extension deleted.
Otherwise code and symbols are written on outputFile, for which a default extension of
.bed is supplied. If the Compiler detects any errors, the output file is not written and any
existing file with the same name is deleted

The Compiler accepts a sequence of one or more commands from the Executive's command
line. Commands are separated by semicolons, but you may omit a semicolon between any
two successive identifless (file names or switches), or between a | and an identifier (but not
between an identifier and a /). Note that any required semicolon in an Executive command
must be preceded by a single quote ().

You can set global switches by a command with an empty file name. In the form
/switches, each letter designates a different switch. Unless a command to change the
global switch settings comes first in the sequence of commands, you must separate it from
the preceding command by an explicit semicolon.

Examples
>Compiler ReadOldFormat < ReadData[DataFormat: OldFormat]

Compile the program ReadData.mesa that has the included interface DataFormat in
its DIRECTORY statement. Use the file 0O1dFormat.bed (which contains the declaration
DataFormat: DEFINITIONS = . . .) as the source of this interface. Put the object
program in the file ReadOldFormat . bcd. ‘

>Compiler/~j SymStuff[Table: LongTable]/n SymExtra[Table:
LongTable]

Compile the files SymStuff.mesa and SymExtra.mesa, getting the definition of
Table from LongTable.bcd. Produce object files SymStuff.bcd and
SymExtra.bcd. Don't cross-jump either module and generate NiL checks for
SymStuf f only (switches explained below).

19.2.2 Switches

Switches allow you to modify command input. A command has the general form
file[/s]

where [] indicates an optional part and s is a sequence of switch specifications. A switch
specification is a letter, identifying the switch, optionally preceded by a '-' or '~' to reverse
the sense of that switch. The valid switches are

bounds checking

.errlog file is merged into Compiler.log
cross-jumping optimization (default)

NiL pointer checking

pause after compiling file if there are errors or warnings
sort global variables and entry indices (default)
uninitialized variable checking

e 0o D w0 o

19-3

19 Compiler
w report warning messages (default)
y warning on runtime calls

19-4

Each switch has a default setting. The command sourcefile is equivalent to
sourcefile/~b~ej~n~ps~uw~y if you use the standard defaults (i.e., if the Compiler
cross-jumps the code, does not pause after compiling file, sorts variables, and logs warning
messages). It does not do bounds, NiL pointer, or uninitialized variable checking, and does
not warn about runtime calls.

You can change the default setting of the switches by having an entry
compilerSwitches: <your defaults>
in the [Executive] section of the file User.cm

You can also change the default setting of any switch by using a global switch. Any switch
given with no file name (i.e., just a slash and switches) establishes the default setting for
that switch. Unless overridden or reset, that default applies to all subsequent commands.

Fine point: Any global switches given at other than the beginning of the command line must be preceded by a
semicolon (quoted to the Executive), or the command parser will assume that they are local switches on the
previous file. The command parser only allows a single slash after a given file, so some cases of missing semicolon
are flagged.

Here is some information about the options:
b[ounds]

If bounds checking is specified, the Compiler inserts code to check that values are
within range for all assignments to subrange variables and all indexing operations.
Checking is also inserted for all assignments of signed values to unsigned variables
and vice versa. If the value is out of range, the signal BoundsFault is raised (see the
Pilot Programmer's Manual). The Compiler performs some bounds checking during
compilation and does so independently of the setting of the /b switch. If it can deduce
that no bounds failure is possible, the runtime check is omitted; if a bounds failure is
unavoidable, it reports the error during compilation. Compile-time bounds checking
assumes that all variables are initialized before use.

Fine point: Bounds checking in indexing operations is suppressed if the declared index type is empty, e.g.,
[0..0).

e[rror to log]
Errors are appended to Compiler. log rather than onto a separate file.errlog.
j [umped]

Cross-jumping is a peephole optimization technique that potentially shortens the
object code. The reduction in code size ranges from negligible to 20%, depending upon
coding style. If cross-jumping is specified, the correspondence of source to object is no
longer one-to-one. This affects the debugger’s ability to set breakpoints and identify
code locations (see the Debugger chapter.) However, you can still set entry and exit
breaks on all procedures. This switch also enables tail recursion elimination. If the

XDE User’s Guide 19

last operation in a procedure is a call of itself, the call can often be turned into a jump
and the old frame reused.

n[il]

If niL checking is specified, the Compiler inserts code to check for a null value prior to
any operation that dereferences a pointer. Note that indexing operations using an
array descriptor or a string also imply dereferencing and are checked. If the pointer
value is NI, the signal PointerFault from interface Runtime is raised. No compile-time
checks for NiL are performed.

Fine point: No NIL checks are provided in the dereferencing of relative pointers.

Depending upon coding style, these runtime checks can increase the size of the
compiled code substantially. The first page of the address space is typically unmapped,
so most dereferences of NIL generate an Address Fault.

plause]

This switch is unusual because its meaning is slightly different, depending on whether
it is a global or local switch. As a global switch, it means to report (p) or not report (-p)
errors or warnings to the calling Executive. The Executive will typically terminate
(pause) if errors or warnings are reported. The global default is to pause. As a local
switch, it specifies pausing just after compiling the specified file if that file or any
preceding file contained errors; moreover, any remaining commands are ignored. The
local default is not to pause but to continue with the next input file.

sfort]

Normally, the Compiler sorts certain items by frequency of use before assigning
addresses. This helps to keep the object code compact. If sorting is suppressed (-s), the
assignments of global frame offsets and entry indices depend only upon order of
declaration in the source text. This switch was added in anticipation of tools allowing
inexpensive correction and replacement of modules in a configuration. These tools are
not yet available.

u[ninitialized variables]
If the /u switch is given, the Compiler issues warning messages for uses of apparently
uninitialized variables (but not fields of records). The algorithm used to detect

suspicious usage is based upon the following assumptions:

® The entire body of a procedure is executed before the bodies of any procedures
declared within it.

o Within any procedure, the order of execution is equivalent to the order of
appearance of source text (for the purposes of variable initialization).

® The bodies of the contained procedures are executed in order of appearance.
The algorithm works fairly well for detecting certain common errors, but it is

obviously not foolproof. There is no guarantee that all uses of potentially uninitialized
variables are reported, conversely, properly initialized variables are sometimes

19-5

19 Compiler

flagged when the initialization depends upon the order of execution of subprocedures.
(Performance with respect to global variables is improved by putting the initialization
code for a module either in the main body or the lexically first procedure.)

wlarnings]
Report (w) or don't report (-w) certain legal but suspicious constructs that can be
detected by the Compiler. Warnings are written to the error log, but are not reported
to the calling Executive.

y[ell about runtime calls]

This switch is intended for use by programmers writing such things as bootstrap
loaders where the standard Mesa runtime machinery is unavailable. It flags
operations, such as certain division, that generate calls to system functions.

19.3 Examples
>Compiler foo
Compile foo using all the default switch settings.'
>Compiler foo/-w-j
As above, but suppress warning meésages and do not cross-jump.
>Compiler /-p filel file2 file3

Use this form if you want the Compiler to press on no matter what. If it is part of a
command file, the next (Executive) command will be executed whether or not there
were errors.

>Compiler filel file2/p file3

Use this form if you want the Compiler to pause befere compiling file3 if either
filel or file2 does not compile successfully. If £ile3 depends upon the others (by
including them), this can save a lot of wasted time and effort.

>Compiler filel/p '; /-p file2 file3

Use this form if you want the Compiler to pause before compiling file2 if filel does
not compile successfully. Press on to the next Executive command even if £ile2 or
file3 does not compile.

19.4 Error messages

The Compiler writes error and warning messages for sourcefile.mesa on either
sourcefile.errlog or Compiler.log, depending on the setting of the /e switch. Each
pass detects certain classes of errors. Error messages are logged in (approximate) source
order by each pass. Within a single pass, the Compiler does its best to complete its analysis
in spite of any errors. Detection of an error by one pass causes all following passes to be
skipped. Thus you will sometimes get a new set of error messages after correcting all those

19-6

XDE User’s Guide 19

reported by a previous run of the Compiler. The Compiler never writes a bindable or
loadable object file if it detects any errors.

The Compiler also logs warning messages. These are advisory only and are intended to
draw your attention to suspicious usage. They do not abort compilation or invalidate the
object file (but they should be checked).

Here is a trivial and nonsensical program that illustrates the form of the Compiler's error
messages.

Sample: PROGRAM =
BEGIN

it INTEGER,

i € + TRUE;

END.

i: INTEGER,

1t Syntax Error [46]
Text deleted is:,
Text inserted is: ;

j is undeclared, at Sample(52]:
i « Jj+TRUE;

TRUE has incorrect type, at Sample(52]:
i « j+TRUE;

The first message is generated by the first pass and shows how syntactic and lexical errors
are reported. The arrow points to the first symbol that is necessarily invalid (or one
symbol before it), and the decimal number is a character index in the source file. Of course,
the Compiler cannot know what you intended, and the "real” error might have occurred
quite a bit earlier. The Compiler tries to fix these errors as best it can by local deletion and
insertion of symbols. These symbols are not written into the source file but are reported to
help you interpret subsequent messages. If the Compiler cannot find a way to continue
parsing, or if too many of these errors accumulate, it gives up.

Fine point: In order for the arrow to line up under the syntax error, you need to be viewing the file with a fixed-
pitch font.

Fine point: [f you are viewing the program and its error log in separate windows, you can use the Position
command on one of the menus of the source window to locate the errors, given the character indices in the error
log.

The other error messages report semantic errors. Errors are located by displaying a line of
source text (the second line in each message) as well as the character index (a decimal
number) and the enclosing procedure or program name (the identifier preceding the
number). The text of the error message is intended to be reasonably self-explanatory.
Sometimes it refers to an identifier or expression. The Compiler reconstructs these
expressions from the parse tree; in later passes, the reconstruction often reflects
rearrangement or constant folding so it may not exactly duplicate the source code. As
subexpressions, ? indicates an undeclared identifier and ... indicates either a cutoff

19 Compiler

because of depth of nesting or an expression form the Compiler cannot reconstruct from
the parse tree.

19.5 Compiler failures
The message reporting a Compiler failure has the following form:

FATAL COMPILER ERROR, at id[index]:
(source text)
Pass = n, signal = s, message = m

Such a message indicates that the Compiler has noticed some internal inconsistency. The
Compiler will skip the remainder of the command line if this happens. :

19.6 Current limitations

The following limits are built into the current implementation of Mesa and are enforced
by the Compiler:

The number of interface items declared in a single DEFINITIONS module cannot exceed
128.

Neither the number of procedure bodies nor the number of signal codes defined in a
single PROGRAM module can exceed 128.

The size of the frame or record required by a procedure or program cannot exceed 4096
words.

Procedure declarations cannot be nested more than five levels deep, counting catch
phrases as procedure levels.

The Compiler allocates its internal tables dynamically and tries to adjust their relative
sizes to accommodate the program being compiled. When it is unsuccessful, it reports
failure with a message of the form:

Storage Overflow in Pass n

Usually, the best thing to do is split your program into two or more smaller modules. If the
Pass is 5, you can often get your program compiled by breaking the largest procedure into
two or more smaller ones. This is because Pass 5 generates code for the module one
procedure at a time, and needs enough table space to hold the code representation of the
largest procedure.

19-8

20

Formatter

20.1 Files

The Formatter transforms Mesa source files into a standard format. It establishes the
horizontal and vertical spacing of the program in a way that reflects its logical structure.
Since the Formatter uses the scanner and parser of the compiler to determine structure,
only syntactically correct programs may be formatted.

This chapter describes the formatting rules and the operation of the Formatter, including
the runtime options and messages.

Retrieve Formatter.bcd from the Release directory.

20.2 User interface

The Formatter runs in the Executive and accepts the same command syntax as the
Compiler. The simplest form of command is just the name of a source file to be formatted.
If you supply the command sourcefile with no period and no extension, the Formatter
assumes you mean sourcefile.mesa.

The Formatter reports the result of each command in Formatter.log with a message
having one of the following forms (each * is replaced by an appropriate number; bracketed
items appear only when relevant):

file.mesa -- lines: *, time: *

Formatting was successful. The source file has been rewritten.

file.mesa -- aborted, * errors [and * warnings] on file.errlog

Formatting was unsuccessful. The output of the Formatter is undefined if syntax
errors exist in the input file. The original file is undisturbed.)

File error

The Formatter could not find the speciﬁed file.

20-1

20

Formatter

20-2

20.2.1 Command line

,‘ The Formatter takes commands of the form

[output] «)] input][/s] . . . [outputp «] inputp(/s]

where [] indicates an optional part and s is a sequence of switch specifications. Only
inputFile is mandatory; it names the file containing the source text of the module to be
formatted, and its default extension is .mesa. Any warning or error messages are written
on the file outputRoot.errlog, where outputRoot is the string obtained by deleting
any extension from outputFile, if given, otherwise from inputFile. If there are no
errors or warnings, any existing error log with the same name is deleted at the end of the
formatting.

20.2.2 Switches

Switches allow you to modify command input. A switch specification is a letter,
identifying the switch, optionally preceded by a '-' or '~"' to reverse its sense. The
syntax is the same as for the Compiler (chapter 14). The valid switches are:

e append errors to Formatter . log rather than onto a separate file.errlog

g don't close print file at end of input file

h generate a print file (does not force ~t)

k generate a two-column landscape print file (does not force ~t)

0 take specified string and include it in the header of the print output of all following
files

p pause after formatting if there are errors

t overwrite input file with plain text formatted version (default)

Each switch has a default setting, The command sourcefile is equivalent to
sourcefile <« sourcefile/~e~g~h~i~k~p~rt~v~z if you use the standard
defaults; i.e., the Formatter only generates a plain text file to replace the original source.

You can redefine the default settings by having an entry
compilerSwitches: <your defaults>

in the [Executive] section of the file User.cm. (compilerSwitches because the
switch processing code is shared with the compiler).

You can change the default setting of any switch by using a global switch. Switches given
with no source file are global. Unless overridden or reset, that default applies to all
subsequent commands. (See the multiple program print output example below.)

XDE User’s Guide 20

Some additional information about the options:

g If a print file is being generated, it is not closed at the end of the current input file.
[t is expected that another file in the command list will also be generating print
file output and a single print file will contain multiple input files. The name of the
print file will be that of the first to which print output is being generated. If the
type of print file (landscape vs. portrait or print vs. interpress) changes, the first
will be closed and another print file will be started. Be careful not to generate a
print file larger than will be accepted by your printer.

p The p (pause) switch has semantics identical to that of the Compiler's p switch.

20.3 Formatting rules

As a general rule, the Formatter changes only the white space in the program. It does not
insert or delete any printing characters. On the other hand, it may insert white space
where there previously was none.

20.3.1 Spacing

Indentation is done by a combination of tabs and spaces in plain-text mode (assuming that
a tab equals eight spaces).

The decision as to where to break lines is made independently of the output mode (print
file or plain text).

A logical unit will be placed on a single line if it fits.

A simple carriage return in the input file is treated as a space. The occurrence of
consecutive carriage returns (up to six blank lines) are preserved in the output file. Page
breaks indicated by CTRL L's in source programs are also preserved. Since all Bravo looks
are discarded by the scanner, paragraph leading done with looks is not preserved.

For output files that contain fonts and faces, these additional rules apply:
® Comments are set in italics.

® The names of PROCEDURES, SIGNALS, ERRORS, and PORTs (but not user-defined transfer
types) are bold where they are defined.

® Reserved words and predeclared identifiers are in a smaller font than other symbols.
For portrait listings, Helvetica 10 and 8 are used; for landscape listings, Helvetica 8
and 6 are used.

In general there are no spaces before or after atoms containing only special characters.
Exceptions to this rule are as follows:

® A space or carriage return follows (but does not precede) a comma, semicolon, or colon.

® A space precedes a left square bracket when the bracket follows any of the keywords
RECORD, MACHINE CODE, PROCEDURE, RETURNS, SIGNAL, PORT, and PROGRAM.

20-3

20

Formatter

20-4

® Spaces surround the left-arrow operator.
® The exclamation point (enabling) and equal-greater (chooses) operators are always
surrounded by spaces. This is also true for equal signs used in initialization and for

asterisks used in place of variant record tags.

® Some arithmetic operators, depending on their precedence, are surrounded by spaces.

20.3.2 Structure

The Formatter determines the indenting structure of the program by the brackets that
surround the bodies of compounds. The brackets include (3}, (), [, BEGIN-END, DO-ENDLOOP,
and FROM-ENDCASE. An attempt is made to maximize the amount of information on a page:
For example, consider:

Record: TYPE = RECORD [Record: TYPE = RECORD
field: Type, (
field: Type]; field: Type,
field: Type,

I

In both cases, the structure is clear; it is indicated by the indenting, not the placement of
the brackets. The Formatter generates the form on the left.

The body of each compound, assuming it does not fit on a single line, is indented one
nesting level. The placement of the brackets depends on the bracket and on its prefix and
its suffix. For example, a loop statement has the following possible prefixes, brackets, and
suffixes:

Prefixes Brackets Suffixes
FOR, WHILE DO OPEN
UNTIL, (empty) ENDLOOP ENABLE

The following paragraphs contain a number of examples. They observe the following rules
for the placement of opening and closing brackets:

The opening brackets {, [, FROM, and DO appear on the same line as their prefixes; BEGIN
starts on a new line.

If the remainder of the statement fits on a single line (with its closing bracket), it is
placed there, indented one level. Otherwise, all closing brackets except] and } appear
on lines by themselves. If } is preceded by a semicolon, then it is also placed on a line
by itself.

XDE User’s Guide 20

The statement following a THEN or ELSE is indented one level, unless it fits on the same line.
THEN is on the same line as its matching IF and ELSE is indented the same amount as IF.

iIF bool THEN - . IF bool THEN statement
BEGIN eLse (body}
body
END
ELSE IF bool THEN {
BLGIN statement;
body statement}
END

The labels of a SELECT (and its terminating ENDCASE) are indented one level, and the
statements a second level, unless they fit on the same line with the label.

SELECT tag FROM
case = > statement;
case = >
long statement;
ENDCASE

Each compound BEGIN-END, DO-ENDLOOP, or bracket pair is indented one level. When the
rules for IF and SeLECT call for indenting a statement, a BEGIN is not indented an extra level.

These rules are not exhaustive, but are intended to give the flavor of the Formatter
output.

20.4 User.cm

Entries currently implemented are

[Formatter]

CharsPerLevel:n Specifies the number of spaces to be used for each
indenting level. Default value is 2

CharsPerLine:n Specifies the number of characters to be used for line

breaking. Default value is 82

20.5 Examples
>Formatter foo

Format foo using all the default switch settings (standard or established by a global
switch).

>Formatter foo/-tk

Formats foo into a two-column landscape print file, leaving the original source
unchanged.

20-5

20 Formatter

>Formatter /-tkg ProgA ProgB ProgC ProgD

Produces a two-column landscape print file ProgA. interpress that contains listing
of all four programs, each starting on a new page.

>Formatter /g~tk "Trinity Release"/o *Defs.mesa

Produces a two-column landscape print file that contains listing of all files * .mesa
with the heading "Trinity Release".

20.6 Formatter failures
The message reporting a Formatter failure has the following form:

FATAL COMPILER ERROR, at id[index]:
(source text)
Pass = 1,signal = s, message = m

Such a message indicates that the Formatter has noticed some internal inconsistency (the
above message is not a typo; the message comes from a module shared with the compiler).
The Formatter will skip the remainder of the command line if this happens.

Note: The Formatter uses routines exported by Print.bcd to produce print files. If the
proper package is not already loaded, the Formatter attempts to load it; if this fails, it
complains about the lack of available print software. The file Fonts.widths must also be
present on the local disk.

20-6

21

MakeBoot

21.1 Files

MakeBoot is a program that constructs a boot file suitable for installation on a Pilot
logical volume. A boot file is essentially a “virtual execution environment”: it consists of
a memory image containing a number of object files that have been loaded but not started.
The memory image built by MakeBoot is loaded into memory by a simple loader called the
germ, which transfers control to Pilot initialization code.

The simple view of MakeBoot is that it takes a collection of object files, constructs a
memory image, and writes it out as a boot file. In practice, however, MakeBoot requires
more information than just the names of the object files; this information is contained in a
text file (or files) called the parameter file. The parameter file contains two types of
information. The first type of information describes sizes of data structures such as the
length of the global frame table or the number of processes. The second type of
information describes what portions of memory must be resident or initially resident,
since they are needed before Pilot’s swapping machinery has been set up.

While the loader in MakeBoot is essentially the same as the runtime loader in Pilot, there
are some differences. Modules that were bound with code links are always loaded with
code links by MakeBoot; you cannot override the link type that was given to the Binder.
This has important ramifications. If a configuration in the boot file imports an item that
will be supplied at runtime by a dynamically loaded module or configuration, that
configuration in the boot file must be bound with LINKS: FRAME (which is the default). If this
rule is violated, then a dynamically loaded module or configuration will leave dangling
pointers in the boot file; thus on a subsequent boot, attempting to (say) call a procedure in
such a module when it has not yet been loaded in the new session would cause transfer of
control into garbage, leading to unpredictable behavior.

Retrieve MakeBoot .bcd from the Release directory. It requires one or more parameter
files'that specify various data structure sizes and initial memory configurations.

21.2 User interface

MakeBoot runs in the Executive.

21

MakeBoot

21-2

21.2.1 Commands

Commands are of the form:

. >MakeBoot command command ... command&

where each command specifies the creation of one boot file. The commands have the form:
outputfilename « inputfilename[arguments)/switches

where the outputfilename and “«"” are optional, and the arguments are a list of "key:
arg" pairs separated by commas. inputfilename is a bound configuration. Qutput is
written to rootName.boot and rootName.loadmap, where rootName is obtained by
removing any extension from either the output file name (if one is given) or the input file
name.

The possible arguments are given below. If no key is given for an argument, "parm" is
assumed. '

parm: parameterFile

ParameterFile names a file that supplies MakeBoot with information about the initial
memory configuration and sizes of various data structures. If no extension is given,
.bootmesa is assumed. These parameter files are released with Pilot. With the exception
of the GFT and PROCESSes entries, ordinary clients will not change any entries in the
parameter file. The various parameters are described in the section below. Several
parameter files may be specified; the effect is to concatenate them.

nProcesses: number

(Optional) sets the number of processes that can exist. This guarantees that enough space
is set aside for number processes, but since the table is rounded up to a page boundary, it
may be possible to have more than the specified number. A default is normally given in
the parameter file.

gftLength: number

(Optional) sets the length of the global frame table. This determines the maximum
number of module instances that can exist. The maximum length is 1024.

Note: A module requires one entry in the table for each group of 32 procedures or signals.
Thus a module with 60 procedures requires two entries. A default is normally given in the
parameter file.
becd: file
(Optional) names an additional object file to load.

switches: string

(Optional) sets the default boot switches in the boot file.

XDE User’s Guide 21

21.2.2 Switches
MakeBoot's switches are:
/9 Germ: build a germ rather than a boot file.
/h Hex: print numbers in hexadecimal in the loadmap. The default is octal.

/d Prints debugging information in the loadmap.

21.2.3 Parameter files

Some parameters require entries that are not numbers. The syntax for these non-numeric
entries is given here.
list == listitem|list listitem

listitem 2= module | configPart | cobepack [namelist] | FRAMEPACK [namelList]
|cLoBALFRAME [configPartList] | cope [configPartList] | Bco[namelList]

configPartList ::= configPart|configPartList, configPart

configPart :2= ALL|module | configName [moduleList |
moduleList 2= module | modulelList, module

module 2= name|name.instance

namelList 2= ALL|moduleList

The specifications cope [configPartList], configPart, and module identify unpackaged code
segments. The specification GLOBALFRAME [configPartList] identifies unpackaged global
frames. Unpackaged global frames of a configuration are treated as a unit and are
swappable by default. If any of these global frames are made IN or RESIDENT, all of these
frames are made to be so. The specification coperack [namelList] identifies packaged code,
using names of the code packs in the packaging specifications. The specification
FRAMEPACK[namelist] identifies packaged global frames, using names of the frame packs in
the packaging specifications. (See the chapter on the Packager for more information on
packaging specifications.) The specification BcD [namelist] identifys the descriptive
portion of the input BCDs. Specifications with the keyword ALL apply to all items. For
example, GLOBALFRAME[ALL] identifies all unpackaged global frames, CODEPACK[ALL]
identifies all code packs, and 8cp{ALL] identifies the descriptive portions of all the input
BCDs. For backward compability, SPACE is a synonym for CODEPACK and FRAME is a synonym
for FRAMEPACK.

21-3

2 1 MakeBoot

Ordinary Parameter File Entries:
GFT: number
allows number entries in the global frame table.
PROCESSES: number
allows at least number processes.
Special Parameter File Entries:
FRAMEPAGES: number ;

allows at least number pages for the initial local frame heap. The frame heap will
contain more pages if the FRAMEWEIGHT entries define more space.

FRAMEWEIGHT: frameSizelndex, weight (listEnd);

makes the frame heap contain at least weight frames with index frameSize/ndex. This
entry can occur for each frame size index. listEnd controls how the lists in the frame
heap chain to larger sizes; it can be either empty, INDIRECT [index], or END. If the

space available for local frames is not exhausted by the requested counts, additional
frames of all sizes will be generated in proportion to the weights given.

IN: list

specifies a list of modules, code packs, frame packs, etc., to be initially resident. This
can occur multiple times.

PDAPAGES: number ;

allows number pages for the Process Data Area. The number of pages allocated is the
larger of number and that required to allow the number of processes specified.

RESIDENT: list ;

specifies a list of modules, code packs, frame packs, etc., to be resident. This can occur
multiple times.

The following entries should not be changed without first consulting a member of the Pilot
group:

CODEBASE: number ;
starts allocating code at page number.
MDSBASE: number ;

sets the MDS to be page number.

21-4

XDE User's Guide 21

NOTRAP: modulelist ;
specifies which modules should not be start-trapped.
RESIDENTDESCRIPTOR: [ist ;

specifies a list of modules, code packs, frame packs, etc., to have descriptors pinned in
Pilot’s caches. This can occur multiple times.

STATEVECTORCOUNT: priority, count ;

allocates count state vectors for that priority in the process data area. There can be
one entry for each priority level.

STATEVECTORSIZE: number
specifies size of state vectors.
WART: module ;

specifies which module initially gets control.

21.2.4 Examples
For example,

>MakeBoot TajoDLion[Pilot]€ will make TajoDLion.boot from TajoDLion.bcd
using Pilot.bootmesa as the parameter file.

>MakeBoot Test <« CoPilotDLion{parm: Pilot/h€ makes Test.boot from
CoPilotDLion.bcd using Pilot.bootmesa as the parameter file and produces a
hexadecimal loadmap.

>MakeBoot TajoPlusCompiler < TajoDLion{parm: PilotDLion, bcd:
Compiler]€ writes TajoPlusCompiler.boot, which has both TajoDLion.bcd and
Compiler.bcd loaded.

21-5

21

MakeBoot

21-6

22

MakeDLionBootFloppyTool

MakeDLionBootFloppyTool runs under Tajo and creates Dandelion-bootable floppies.
Bootable floppies are double-density floppies, either single- or double-sided. Your boot file
must be a Utility Pilot client; regular Pilot needs to swap its own code, and it cannot swap
it off a floppy. Bootable floppies contain a floppy file system.

22.1 Files

Retrieve MakeDLionBootFloppyTool.bcd from the Release directory.

22.2 User interface

§Dr1’ve= 0 Floppy Name: -
. Initial uCode: FloppyInitial.db Diagnostic uCode: MoonBoot.db
' Pilot uCode: Mesa.db Germ File: DLion.germ
‘Boot File: OthelloDLion.boot '
O

§In5t311 Boot Files! Format Floppy! Format And Install Boot File
- 0

Figure 22.1: MakeDLionBootFloppyTool

22.2.1 Form subwindow

The tool’s form subwindow has the following fields. They are presented here with the
names of the files usually used:

22-1

22

MakeDLionBootFloppyTool

22-2

Drive:
Floppy Name:

Initial uCode:

Pilot uCode:
Germ File:
Boot File:

Diagnostic uCode:

22.2.2 Command subwindow

The available commands are:

Install Boot Files!

Pormat Floppy!

Format and Install Boot Files!

YourDriveNumber (typically 0)
FloppyName

FloppylInitial.db or
TridentFloppyInitial.db

Mesa.dbor TridentMesa.db
DLion.germor TriDLion.germ
yourBootFile boot

Moonboot.db (optional)

installs the files specified by the fields of the
form subwindow on an already existing floppy
file system.

creates a Pilot floppy file system.

formats the floppy and installs the files
specified by the fields of the form subwindow.

In all cases, the process is accompanied by feedback, as it takes a few minutes to write the
floppy. If you wish a disk that only has diagnostic microcode, then names for initial
microcode, pilot microcode, germ, and boot file are not required.

23

Packager

The Mesa Packager is a tool that allows you to alter the swapping characteristics of
programs. Unpackaged code is swapped in the units of compilation. That is, all the code in
a particular module is either all swapped in or all swapped out together. However,
efficient use of virtual memory often requires the programmer to be mindful of swapping
behavior, lest thrashing occur. The Packager allows the programmer to explicitly group
components of modules together into swapping units. For example, a code pack can be
defined that includes the code for a several procedures from several different modules; a
frame pack can be defined that groups the global frames of a number of modules into a
single swapping unit. '

In an unpackaged program, all code for a module is swapped as a unit, but some parts of a
module are typically "colder” (less frequently referenced) than others; an example is
initialization code. A program's performance would be improved if the code for colder
procedures were not swapped along with that for warmer procedures. You can split the
module to get this improvement, but then logically related procedures and data would no
longer be contained in a single source unit.

The Packager gives you fine control over the placement of procedures in code packs. You
can, for example, define a code pack that contains just the "cold" procedures from several
modules. It is your responsibility, however, to split the code and global frames into
reasonable packs, since the Packager simply does what you tell it. It attaches no
particular semantics to a pack, except that the pack is swapped as a unit. The order in
which you define code packs is significant, as is discussed below (in the .section on
Packaging description language.)

Conceptually, the Packager loads all modules into a single space and then shuffles the
procedures around into appropriate subspaces. The packaged code is then written onto a
single file. (If the code is more than 32K words, it must be packaged into multiple code
segments, each requiring less than 32K. Code segments are described below along with
the packaging description language.)

The Packager also supports the definition of swap units for global frames, called frame
packs. In an unpackaged program, Makeboot (or the Loader) allocates the global frames
for all of a configuration's modules in a single space. Using the Packager, you can define
- multiple frame packs, each containing the global frames for a set of modules. Makeboot (or

23-1

23

Packager

23.1 Files

the Loader) will assign these frame packs later to separate spaces that will be swapped
independently.

The Packager is a post-processor that is separate from the Compiler and Binder, and no
changes to Mesa source files or configuration descriptions are needed in order to do
packaging. [ts operation resembles that of the Binder.

Fine points: The code rearrangement done by the Packager should not be confused with the Binder's code
packing, which was is described in the Mesa Language Manual. Code packing allows the code for several modules
to be packed into a single segment, and is intended to reduce the breakage caused by the allocation of an integral
number of pages to each code segment. While packing is still supported by the Binder, the same results can easily
be obtained with the Packager.

Retrieve Tools > Packager.bcd from the Release directory.

23.2 User interface

23-2

Like the Binder and Compiler, the Packager runs in the Executive and accepts a sequence
of commands on the command line. A Packager command usually has one of the forms:

>Packager outputBcdFile s packFilelinputBcdFilel/switches

>Packager packFile[inputBcdFile)]/switches

(There is also an extractor-like notation for specifying the output files, which is described
at the end of this section.)

The default extension for packFile, which contains the packaging description, is .pack;
for inputBcdFile and outputBcdFile it is .bcd. The second form defaults
outputBcdFile to be the root name of packFile with extension .bcd.

The switches are a sequence of zero or more letters. Each letter is interpreted as a separate
switch designator and can be preceded by a - or ~ to reverse its sense. The switches
include /c (constants shared between code packs), /p (pause after processing the
command if there were any errors), /1 (list), and/m (map).

The code segment contains multiword constants referenced by the code. The compiler
keeps a literal table so that if the same constant is referenced by two different procedures
within the same module, they share a single copy of the constant. If the two procedures end
up in different code packs, this can lead to undesirable swapping characteristics. If,
however, one of the packs is very “hot,” and is likely to be swapped in whenever the other
is running, then it is reasonable to have only a single copy of the constant. If the switch /c
is specified, the packager will share multiword constants between code packs; otherwise
the constants will be replicated for each pack referencing them. In actual practice, this
replication is often “free” since code packs occupy an integral number of pages.

If the switch /1 is specified, a listing is produced of the procedures that were actually
placed in each code pack, as well as the module instances placed in each frame pack. This
listing is in the form of a valid packaging description and can be used in place of the

XDE User’s Guide 23

original packaging description. The listing is output to the file with the root name of
packFilebut the extension .list.

If the switch /m is specified, the Packager produces a map of the code and frame packs on
the file with the root name of packFile and extension .map. For a code pack, the map
indicates for each procedure:

its length in bytes,

® itsentry vector index,

® the byte offset of its code from the beginning of the segment,

® its initial byte PC (byte offset of the code from the module’s entry vector),
® its module, and

® its name (if a top-level procedure).

Procedures that are not at the top level (i.e., that are nested inside another) are listed
below the procedure containing them. The map also includes for each module, the offset
and length of its entry vector, and the read-only data shared by its procedures.

In addition to the procedure bodies, the code pack also contains other information. The
entry vector (EV) is the mechanism used at runtime to find the initial PC of each
procedure in the module. If the module is bound with code links (see Appendix D of the
Mesa Language Manual) the packager will reserve space ahead of the entry vector to hold
the links (LNKS). As the entry vector must lie on a quadword boundary, the size of the
links space may not exactly correspond to the number of links reported in the compiler log.
"The pack also contains multiword constants (<data>) referenced by procedures in the
code pack. As a rule of thumb, a constant follows the first procedure in the pack that
references it.

For a frame pack, the map indicates for each global frame

® itslength in words,
® its word offset if loaded with code links,
® its word offset if loaded with frame links, and

® the module name corresponding to this global frame.

The map also notes for each frame pack its length in pages as well as the number of
unused words in the last page. Global frames are aligned on quadword boundaries, so the
offset of a given frame is not exactly the offset of the previous frame plus its size.

The Packager writes a summary of the commands on the file Packager.log. Any errors
are logged on a file with the same root name as the packFile, but with the extension
.errlogq.

23-3

23

Packager

An extractor-like notation can also be used on the Packager's command line. Commands
in this format allow more control over the names of the output files produced by the
Packager. One of these commands has the form:

>Packager [keyl: filel, ..., keyn: filen] <
packFile(inputBcdFile) /switches

Each keyi can be one of output, list, or map. The corresponding filei names,
respectively, the output object file, the code and framc pack listing file, and the map file;
the default extensions are in turn .bed, .1ist, and .map. [f the keyword list or map is
specified, the Packager will generate the associated output file and it is not necessary to
also specify the /1 or /mswitch.

23.3 Information about modules

23-4

Any particular module is made of the following:
® Named procedures. A module consists of zero or more named procedures.

® Mainline code. A module always contains mainline code, which is automatically
" executed as part of the invocation of the first procedure called in any particular
module. Because the mainline code of a module almost always contains only
initialization code, the packaging language contains some special constructs for both
excluding it from and including it in code packs. (Because the mainline code is
implemented as an anonymous procedure, it is often called the main procedure of a
module.) The main procedure is named using the keyword maIN.

® Entry vectors. The entry vector is a map to the starting location of each procedure in a
module, and is referenced in order to call any procedure within that module. The entry
vector is not referenced during a procedure’s BEGINs; the entry vector of a procedure is
not referenced when a procedure calls another procedure (the entry vector of the
destination procedure is referenced, and it may be the same as the entry vector of the
calling procedure); the entry vector of a procedure is not referenced when the
procedure returns.

@ Catch code. Catch code is implementation of the catching of signals either by ENABLE or
by !. Since catch code is usually executed only in exceptional situations, it is placed in
a separate unit that may be packaged separately from all procedures in a module.

® Global frames. Global frames are storage and overhead required for the execution of
any procedure or the catch code within a module. Global frames are swapped in
whenever any procedure, main, or catch code of a module is executing. They contain a
small amount of information needed by the Mesa environment in order to locate
procedures and any variables the programmer has declared having the scope of the
entire module. Depending upon coding style, global frames vary in size from a few
words to being quite large.

® Multiword read-only constants. A module contains zero or more multiword read-only
constants that are used during the execution of the procedures within the module.
These constants are shared by several procedures whenever possible (that is,
whenever they are equal).

XDE User’s Guide 23

Every module has a global frame, entry vector, and mainline procedure. A module can be
.written that has no procedures; a module has no catch code if it does not use the constructs
ENABLE or !; modules often have no multiword constants.

23.4 Packaging description language

A packaging description consists of a sequence of code segment, frame pack, and merge
specifications (merging is used to combine previously defined code segments, and is
discussed later).

PackagingDesc DescSeries .| DescSeries ;

DescSeries

Descitem | DescSeries ; Descitem | DescSeries . Descltem

Descitem

CodeSegment | FramePack | Merge

23.4.1 Code segments

A code segment contains the code for a number of code packs and must be less than 32K
words in length. As noted previously, the effect of the Packager is to combine the code for a
set of modules into a single segment and then shuffle the procedures around into swap
units according to your code pack descriptions.

If the total amount of code exceeds 32K, then you must define several segments. However,
each module must be assigned to only one segment. Although the procedures of a module
can be contained in several different code packs of a segment, all such code packs must be
defined in the same segment. It is not possible to split a module across segments.

CodeSegment 1= identifier : SEGMENT = SegmentBody
SegmentBody ::= {CodePackSeries } | BeGiN CodePackSeries END
CodePackSeries ::= CodePack | CodePackSeries ; CodePack | CodePackSeries ;

If you use the /c switch, you should define the code packs in order from the "hottest"
(containing the most frequently referenced procedures) to the "coldest,"” with the hottest
code packs defined first. This order determines the placement of multiword read-only
constants that are shared by several procedures and are thus not strictly a part of any
procedure. In any case, the entry vector for a module must precede any procedures from
that module (the EV is an array of unsigned byte offsets of the beginnings of the

procedures).
CodePack = identifier : cone PaAck = CodePackBody |
ComponentDesc | DiscardCodePack -- defined later
CodePackBody = { Excepting ComponentSeries } |
BEGIN Excepting ComponentSeries END
Excepting S I -- defined later

23-5

23

Packager

23-6

ComponentSeries ::= ComponentDesc |
ComponentSeries ; ComponentDesc |
ComponentSeries ;

Each ComponentDesc describes a collection of procedures that are to be included in the
code pack. Conceptually, this is just a list of the procedures names, qualified when
necessary by the names of containing configurations and modules. However, since long
lists of procedure names can be awkward, the packaging language contains several
constructs for abbreviating the description. Specifically, you describe each code pack as a
list of components (configurations, subconfigurations, or modules), optionally listing the
items from the component that are to be included in or excluded from the pack.

ComponentDesc Component |

Component [ItemList] |

Component exceeT [ItemList] |
Component except PackList |
Component [ItemList] ExCePT PackList |
Component excepT PackList , [ItemList] |
MainOF | -- defined later

CatchOF | -- defined later

EntryOF -- defined later

Component ::= identifier | Component . identifier

ItemList Item | ItemList, Item

Item ‘ ;2= identifier | MAIN | ENTRY VECTOR | CATCH CODE

PackList

identifier | PackList, identifier

Each ComponentDesc describes procedures from the configuration or module named by
Component. In order to uniquely specify a configuration or module, you can qualify its
name by the names of enclosing configurations (and you only have to give the qualifying
names necessary to uniquely specify it).

Because code is being rearranged, Component must refer to a module or configuration
prototype, not to an instance. As described in the Mesa Language Manual, configurations
can include both instances of modules and configurations, and their prototypes (the object
files) from which such instances are made. Since different instances of the same prototype
in a configuration share the same code, the Packager requires that a Component in a code
pack name a prototype. However, because each module instance has its own global frame,
a Component in a frame pack may name an instance.

Some forms of ComponentDesc include a list of items, either preceding or following the
exCePT keyword. These must be directly contained in the module or configuration named
by its Component. If Component refers to a module, then each item must name one of the
module's procedures; if it names a configuration, the items must be modules or
subconfigurations that the configuration directly contains. Most of the different forms of
ComponentDesc apply to both modules and configurations. The six different forms are
interpreted as follows:

XDE User’s Guide 23

Component

All procedures in the module or configuration are included in the code pack, except
possibly main procedures, catch code, or entry vectors (see below).

Component [ItemList]

Only the named items of the component are included. If the component is a module, the
items must be procedures contained within it (at the outermost level, not nested
procedures; nested procedures are included along with the enclosing procedures). If the
component is a configuration, the items must be directly contained subconfigurations or
modules.

Component ExCePT [ItemList]

All of the component is included except for the listed items. The items bear the same
relationship to the component as in the form above. '

Component excerT PackList

The included procedures are those contained in the component that are not included in
any of the code packs in the PackList. The PackList may name only code packs contained in
the current segment. This applies to the next two forms as well.

Component [ItemList] excepT PackList

Component must name a configuration. The items must be modules or configurations that
it directly contains; their procedures that are not contained in any of the code packs in the
PackList are included.

Component exCerT PackList, [ItemList]

If Component names a module, the included procedures are those not named in the
ItemList and not included in any of the code packs in the PackList. If Component names a
configuration, the included procedures are those not contained in any item and not
included in any of the code packs in the PackList.

The first three forms of a component description are called explicit. The last three are
implicit, since they define some of a code pack's procedures implicitly in terms of other
code packs. Implicit ComponentDescs are convenient because they let you abbreviate the
specification of procedures. However, you may abbreviate the specification of a
component's procedures only once.

Fine point: The restriction on implicit component descriptions may be stated more precisely as follows: in each
code pack of a PackList in an EXCEPT clause, any ComponentDesc with a Component that contains or is
contained in the COmponent of the implicit ComponentDesc must be explicit.

There is one more option for defining a CodePack. You may' use an unnamed
ComponentDesc when the code pack contains procedures from only a single module or
configuration. In this case, the code pack takes its name from that module or
configuration. Although the syntax allows it, the MainOF, CatchOF, and EntryOF forms of
component descriptions cannot be used to specify an unnamed code pack.

23

Packager

23-8

23.4.1.1 Placement of entry vectors, main procedures, catch code

Often the entry vectors, main code, and catch code of modules are treated quite differently
from the procedures in the modules. The Packager has special syntax to allow the
programmer to place these items more easily.

The Excepting clause may appear optionally in a CodePack header:

Excepting empty | EXCEPT [ExceptingSeries] ;
ExceptingSeries :: = Exceptingltem | Exceptingltem, ExceptingSeries;

Exceptingltem MAIN | ENTRY VECTOR | CATCH CODE;

This Excepting clause lets you exclude from a code pack any mainline code and/or entry
vectors and/or catch code contained in the modules of the pack. Since main procedures are
executed just once when a module is started, they are often placed in the coldest code pack.
Entry vectors are usually included in the hottest code pack. They might be placed together
in a separate code pack, or they might be mixed in with code from a logically disjoint pack
when the programmer knows that this pack will be the only caller into a particular
module. Catch code placement must be carefully weighed by the programmer so that
fielding expected signals does not induce unwanted swapping behavior.

You can use the last variants of ComponentDesc to include the main procedures, catch
code, or entry vectors that were excluded in other code packs of a segment.

MainOF ::= MAIN OF PackList
CatchOF :1= CATCH CODE OF PackList
EntryOFf 11 = ENTRY VECTOR OF PackList

The main procedures (or catch code or entry vectors) of all of the modules contained in the
code packs of the PackList are included in the current code pack. The PackList must name
code packs in the current segment. Each code pack in the list will normally have an
Excepting clause specified in its header.

23.4.2 Discarded code packs

Discarded code packs allow you to throw away the code for procedures that are not needed.
The procedures included in one of these code packs are marked as being unbound, and
their code is not copied to the output file.

A discarded code pack is declared much like an ordinary code pack, except for the
additional keyword DISCARD preceding the usual keywords CODE PACK.

DiscardCodePack ::= identifier : DISCARD CODE PACK = CodePackBody

XDE User’s Guide 23

23.4.3 Frame packs

A frame pack contains the global frames for a collection of modules. Because global frames
have no finer structure (the storage for each procedure's variables is already allocated
separately in local frames), you cannot split a global frame into more than one swap unit.

FramePack :: = identifier : FRAME PACK = FramePackBody |
FrameMerge -- defined later

FramePackBody ::= {ComponentSeries }|BeGiIN ComponentSeries END

Only the following two ComponentDesc variants are allowed in frame pack descriptions.
The second form is valid only if the Component names a configuration:

ComponentDesc ::= Component|Component [ItemList]

Unlike code packs, a Component for a frame pack may name a module or configuration
instance. [f Component refers to a module, that module's frame is included in the swap
unit (and only the first form may be used). If it names a configuration, the frame for each
module in the configuration is included (in the first form), or the frames of the modules
named in [temList are included (in the second form).

Fine point: Future versions of the Packager may support EXCEPT clauses for frame packs.

23.4.4 Merging

A Merge construct lets you combine existing or previously merged code segments as well
as two or more existing or previously merged frame packs. Each code pack of the merged
segment consists of the procedures from one or more code packs from the original
segments. The original segments (and their code packs) are superseded by the merging.

Merging is useful in the packaging of very large programs that are themselves comprised
of large programs with separate packaging descriptions. Merging allows related code
packs from different segments to be swapped as a unit and reduces the breakage in code
packs and code segments. For example, it may make sense to merge the resident or the
initialization code packs of several segments, even though the segments are not otherwise

logically related.
Merge ::= identifier : SEGMENT MERGES SegList = SegmentBody
SegList :: = identifier | SegList, identifier

As before, the segment contains a series of named or unnamed code pack descriptions.
However, the specification of these code packs is in terms of previously defined code packs,
not in terms of modules and configurations. (Although the syntax allows it, a
CodePackBody in a merged segment can not contain an ExceptMain clause.)

CodePack ::= identifier : coDE PACK = CodePackBody | ComponentDesc

23-9

23

Packager

23-10

[n a merged segment, a ComponentDesc must name a code pack of a previously defined
segment. The name can be qualified by the containing segment when it would otherwise
be ambiguous.

ComponentDesc ::= Component
The named CodePack variant can be used to combine two or more existing code packs,
while the unnamed ComponentDesc variant is used to copy an existing code pack into the

new code segment

As in unmerged code segments, the order in which you specify the code packs of the merge
is important. They should be declared in order from "hottest" to "coldest."

Merged code segments, like unmerged code segments, may not be longer than 32K words
in length. Thus, it may not be possible to combine the resident parts of all segments of a
large system into a single swap unit.

Previously merged or existing frame packs may also be merged into a single swap unit:

FrameMerge 1t = identifier : FRAME PACK MERGES FramePackList ;

FramePackList :: = FramePack | FramePack, FramePackList

23.4.5 Rules governing packaging descriptions

For a packaging description to make sense, the following rules must be observed:

® You have to account for every procedure (including main), catch code, entry vector,
and global frame. Each procedure must be placed in some code pack. Likewise, each
global frame must be placed in some frame pack.

® A procedure can be placed in only one code pack. Likewise, a global frame can be
placed in only one frame pack.

® The entry vector as well as all procedures and catch code of a module must appear in a
single code segment (since the module's entry vector is required to reference the
procedures and entry vector.)

® The entry vector of a module must be placed before any of its other code, including the
catch code.

® The code pack identifiers within a code segment must be distinct, but code packs in
different segments may have the same name. All frame pack identifiers must be

distinct.

® A component of a code pack cannot name a module or configuration instance.
However, a component of a frame pack may name an instance.

Fine point: [f a module has been table-compiled, its code can be included in a code pack, but only as a unit.

XDE User’s Guide 23

23.4.6 Placement of multiword read-only constants

The Packager replicates multiword constants that are referenced in multiple code packs
unless the /c switch is specified on the command line. If /¢ is given, the order in which
code packs are specified is used to make the assignments of multiword read-only constants
within a module. The Packager stores a multiword constant in the first code pack that
contains a procedure using it. Specifying the "hot" code packs first will thus help to ensure
that the additional data needed by a procedure is already in memory.

Fine point: Previous versions of the packager did not replicate constants; they behaved as it the /¢ switch were

always present.

23.4.7 Example

This section presents a simple packaging description. For further examples you might
want to look at the packaging description for something real.

The packaging description for Lex distributes its procedures into three code packs
(LexicalStringManagement, CollectAndDispatchCommands, and InitAndSeldomUsed),
depending upon logical function and frequency of use. It also places the global frames for
Lex's two modules into separate frame packs, UtilityFrames and DriverFrames.

Lex: SEGMENT =

BEGIN

LexicalStringManagement: CODE PACK =
BEGIN
Lexicon excerT CollectAndDispatchCommands, [MAIN, CATCH CODE];
LexiconClient [ENTRY VECTOR];
END; :

CollectAndDispatchCommands: CODE PACK =
BEGIN
Lexicon[PrintLexicon];
LexiconClient XCEPT [ENTRY VECTOR, CATCH CODE];
END;

InitAndSeldomUsed: CODE PACK =
BEGIN
LexiconClient [CATCH CODE];
Lexicon[MAIN, CATCH CODE];
END;

END;

-- Frame packs

UtilityFrames: FRAME PaCK = {Lexicon};

DriverFrame: FRAME PACK = {LexiconClient}.

LexiconClient is placed in CollectAndDispatchCommands, a less frequently used code

pack, while its entry vector and the procedures that it calls frequently (most of Lexicon's
procedures) are placed in LexicalStringManagement, the most frequently used code pack.

23-11

23

Packager

The remaining code (mainline code and catch code), which is seldom called, is placed in
InitAndSeldom used, a code pack that is seldom used.

The global frame of Lexicon, which contains the hottest procedures, is placed in the frame
pack UtilityFrames. The remaining global frame (for LexiconClient) is placed in
DriverFrames.

23.5 Operation

23-12

The Packager is run as a post-processor that reads a single object file and a packaging
description, and writes a new output object file with a different name. Its operation
resembles that of the Binder, except that all symbols for the input object file must be on
the disk. The Packager needs these to identify procedures and frame packs, and to locate
the code for procedures. The output object file contains the reorganized code of the input
object file, but not symbols (i.e., code is copied, symbols are not). The output object file also
contains information about the global frame packs for later use by Makeboot and the Pilot
Loader.

A packaged object file can be loaded and executed, or bound with other object files using
the Binder. However, a packaged object file cannot be further repackaged, since this would
require that symbol tables be modified, which would, in turn, cause considerable
operational problems. It is possible to combine separate packaging descriptions in a single
run with code segment merging, in the sense that code packs from the original
descriptions can be merged together into new, larger code packs without modifying the
original descriptions.

Although the Packager does not read multiple packaging descriptions, the syntax is
designed to allow easy merging of separate descriptions using the Executive's Copy
command. For example, if BigApplication were made up of descriptions for
FirstPiece and SecondPiece, plus a MergePieces that specified how to merge the two
segments, then the following command would combine the three separate descriptions:

>Copy Big.pack « First.pack Second.pack MergePieces.pack

Because the Packager must access the code of every procedure and the symbol table of
every module of the system it is packaging, and must also copy the code for each procedure
to the output file in random order (in the worst case), it is not very fast. It is roughly an
order of magnitude slower than the Binder.

24

Debugger

24.1 Files

This chapter describes the Pilot-based interactive Mesa debugger, CoPilot. CoPilot
supports source-level debugging; it allows users to set breakpoints, trace program
execution, display the runtime state, and interpret Mesa statements. CoPilot is intended
for use by experienced programmers familiar with Mesa.

The runtime and debugging facilities differ in their relationship to the user program. Pilot
provides the code necessary for your program to communicate with CoPilot; it resides with
the user program. CoPilot, however, resides in a different core image (in addition to a
separate logical volume of type debugger) that is loaded by the germ when called for;
CoPilot operates with a complete world-swap. This protects the client and the debugger
from each other as well as provides the address space required to implement all of
CoPilot's capabilities.

To run the debugger, use Othello to fetch CoPilotDLion.boot onto a logical volume
(type debugger is recommended) as the boot file for that volume.

24.2 Installing and invoking CoPilot

CoPilot must be installed before a client program can use its facilities. Once fetched,
booting the volume installs CoPilot and makes it ready to accept calls from clients. This
operation saves the debugger's core image. Unlike normal boot files, CoPilot can be re-
entered many times even though it is booted only once. It must be re-installed whenever
you begin using a new germ or change the quantity or configuration of memory on the
system. To re-install CoPilot, simply re-boot the volume with Othello or the Herald
window. See the Othello appendix for further details. While the debugger is installing
itself, it examines the (optional) User .cmfor a [Debugger]section .

When CoPilot is installed for the first time, it creates files to hold the client's core-image
(Debuggee.outload) and its own core-image (Debugger.outload). If the memory
configuration is changed, CoPilot must be re-installed (re-booted) and the messages
Recreating Debuggee.outload and Recreating Debugger.outload are
displayed. CoPilot prevents any attempt to modify or delete these files; Tajo may be used
for this purpose.

24-1

24

Debugger

24-2

CoPilot users may have a debugger installed that can be used to catch and diagnose
CoPilot failures. This debugger is just another instance of CoPilot installed on a logical
volume of type debuggerDebugger (this debugger has come to be called CoCoPilot).
CoCoPilot must be installed before CoPilot is installed. If CoCoPilot is re-installed,
CoPilot must also be re-installed. [t is recommended that CoPilot be put in the Boot line
of the User.cmon the CoCoPilot volume.

Fine point: During the later stages of initialization, Pilot searches for an installed debugger to use. [t looks on all
volumes of a type one higher than cne one on which the boot file resides. For example, if the boot file is on a
volume of type nOrmal, Pilot looks on volumes of type debugger. Occasionally, it is desirable to use an
installed debugger other than the one that Pilot would normally choose. In these cases, use Othello's Set
Debugger Pointers command, which also allows you to have a client and a debugger on volumes of the same
type. However, if any other systems are rooted on volumes of the same type as an installed debugger, it is
necessary to always boot them tand good practice to boot the debugger itself) with the open-system-volume-only
"%" boot switch. Otherwise, running one of the other boot files will delete the temporary files from underneath
the installed debugger, leading to a Disk Label Check when the debugger is next used. Ifany volume is booted
with the "5" switch, Pilot will enter the teledebugger (MP code 915) rather than look for a debugger.

There are several ways of invoking the debugger. In the Xerox Development Environment
for example, CALLDEBUG (SHIFT-ABORT) simply interrupts your program. In the course of
running your program, you may enter the debugger for several other reasons. Your
program may generate an uncaught signal, execute a breakpoint/tracepoint that has been
placed in your program, require map logging, or make an explicit call to the debugger.
CoPilot has different cursors that it displays for each reason it was entered; they are Unc
Sig (for Uncaught Signal), Call Dbug (for explicit calls, including Address Fault
and WriteProtectFault), Brk Pt (for BreakPoint), Int (for Interrupt), and Map
Log (for Processing VM Map). '

The first time CoPilot is invoked for a client marks the start of a new session. The
debugger takes several special additional actions for a new session, as opposed to when it
is simply re-entered. First, it resets the Debug. 1og to be empty and displays the date and
time. Next, CoPilot forgets everything it knew about the previous client. Last, CoPilot sets
the user password to be empty if the current user name is not the same as the user name in
the User.cm.

24.2.1 Teledebugging

It is possible to debug clients over the Ethernet. See the following section on low-level
facilities for details.

XDE User’s Guide 24

24.3 User interface

“ §z Window
:>List Processes | Text Ops
‘PSB: 20B*, ready, L: 1}
:PSB: 172B, waiting CV |-
:PSB: 1738, waiting CV |Options

e Typeln

Statistics

decimaT Rex] signed INTEGER: (octal
‘Apply! POINTER: " decimal} LONG POINTER '
' Abort! RELATIVE: {octal, ¢ UNSPECIFIED: {
_Array elements = 65535 String length = 65535

B (in PilotNub, G: 151548
4B (in SocketImpl, G: 22764B)
668 (in RoutingTablelImpl, G:

' CARDINAL:

, decimal}
INTEGER

Figure 24.1: CoPilot

When initialized, CoPilot creates two windows: the Debug.log window, which becomes a
record of the debugging session, and a Herald window that displays CoPilot's version
number and date, and various messages from the debugger. These windows may be
manipulated by the window manager that comes with your debugger. CoPilot runs in the
standard user environment (Tajo).

The user interface to the debugger is controlled by a command processor that invokes a
collection of procedures for managing breakpoints, examining user data symbolically, and
setting the context in which user symbols are looked up. Data in your program is
examined by the debugger's interpreter. The interpreter also allows you to change values
of variables in the middle of program execution. See the next section for a complete
description of the interpreter.

24.3.1 Talking to the debugger

The debugger accepts commands either from the Debug.log window or from selected
menu items in a File window. The input conventions of the debugger's command processor
are summarized in the next section. The command processor prompt character is > (the
character is repeated once for each nesting level of the debugger). The standard input
editing characters (BS to delete a character and 8w to delete a word) are allowed. Whenever
a valid command is recognized, the debugger prompts for the parameters associated with
that command (if any are required). Pressing DELETE terminates the command; ? gives a list
of valid commands. When a command requires a [confirm] (RETURN), the debugger enters
wait-for-DELETE mode if an invalid character is typed.

When receiving commands, the debugger extends each input character to the maximal
unique string that it specifies. Whenever an invalid character is typed, a ? is displayed
and you are returned to command level. Pressing ? at any point during command selection
prompts you with the collection of valid characters (in upper case) and their associated
maximal strings (in lower case) and returns you to command level. Whenever a valid

24-3

24

Debugger

24.3.1.1

24-4

command is recognized, you are prompted for parameters. Pressing DELETE at any point
during command selection or parameter collection returns you to the command processor;
pressing ABORT at any point during command execution aborts the command.

Current Context

Interpreting symbols (including displaying variables, setting breakpoints, and calling
procedures) occurs in the current context, it consists of the current frame and its
corresponding module, configuration, and process. The symboi lookup algorithm used by
the debugger is to search the runtime stack of procedure frames in Las¢-In-First-Out
order. First the local frame of the current procedure is examined, next its associated global
frame. The search continues by following the return link to the next local frame. This
continues until either the symbol is found or the root of the process is encountered.

When you first enter the debugger, the context is set to the frame of whatever process is
currently running. Certain commands make it simple to enumerate contexts (List
Processes, List Configurations), to change between contexts (SEt Root
confiquration, SEt Module context), to display the current context (CUrrent
context), and to examine the current dynamic state (Display Stack).

Looking up Symbols

Whenever the debugger needs symbols to display some information, it searches for the
original compiler-output object file before looking for symbols where they were last copied
by the Binder. Types used, but not declared, within a module are looked up using the same
algorithm as in the Compiler. If the interface module containing the original declaration
is unavailable, the debugger uses whatever information has been copied into the symbol
table of the module using that type.

Leaving the Debugger

In the debugger, you may execute any number of commands to examine (and change) the
state of your program. When you are finished, you may decide either to continue execution
of your program (Proceed), terminate execution of your program (Quit), or end the
debugging session completely and boot the physical volume (Kill). The next subsection
contains further details on these commands. It is also possible to boot other logical
volumes with the Herald window.

Input conventions
String Input

Identifiers are sequences of characters beginning with an upper- or lower-case letter and
terminating with a space (SPACE) or a carriage return (RETURN); identifiers must be typed
with correct capitalization. The debugger echoes a delimiting character of its own choice to
minimize loss of information from the display.

Numeric Input
A numeric parameter is a sequence of characters terminated by SPACE or RETURN. If the

parameter is not a numeric constant, it is processed by CoPilot's interpreter; any
expression that ‘evaluates to a number is legal (the target type must be (LONG) INTEGER,

XDE User's Guide 24

CARDINAL, or UNSPECIFIED). The default radix is octal for addresses (and input to octal
commands) and decimal for everything else (unless otherwise specified with the CoPilot
Options window). The D or d suffix forces decimal interpretation; B or b forces octal.
Numbers with a leading zero are considered LONG.

~
Default Values

The debugger saves the last values used as parameters to all of the commands: these
values may be recalled by the compL=TE key. The following parameters have default values
that may be used or inspected by pressing COMPLETE: octal read address, octal write address,
ascii read address, root configuration, configuration, module, procedure, condition,
expression, process, address, and frame. After the default parameter is displayed by the
debugger, the standard input editing characters may be used to modify it. Striking the
COMPLETE key to the command processor uses the last command as the default command
(i.e., you receive the prompt for the parameters, if any, for the previously executed
command).

24.3.1.2 Qutput conventions

A "?" in any variable display uniformly means that the value is out of range. An ellipsis
(". . .") indicates that there are additional fields present in a record that cannot be
displayed due to lack of symbol table information. This can happen either in OVERLAID
records or because a DEFINITIONs file is not present on the disk. In display stack mode,
variables declared in nested blocks are shown indented according to their nesting level.

The CoPilot Options window allows you to change the default format the debugger
uses in displaying values of variables. This window is created by selecting the Options
item in the CoPilot menu and operates as a normal Options window (i.e., invoke Apply!
to effect the changes made, Abort! to restore them to the previous options).

The CARDINAL, INTEGER, POINTER, LONG POINTER, and RELATIVE (POINTER) items are used to set the
default output radix for that type. For CARDINAL and INTEGER, the default representation is
signed or unsigned, depending on whether the boolean item signed is turned on or off.
The UNSPECIFIED item is used to set the default type for displaying UNSPEeCIFIED variables.
Array elements sets the number of ARRAY elements displayed to be the given value and
String length sets the number of STRING characters displayed to the given value.

CoPilot uses these default values along with the types of variables to decide on an
appropriate output format. Listed below are the built-in types that the debugger
distinguishes and the convention used to display instances of each type.

ARRAY

displays elements of an array;e.g.,a=(3)[[x: 0, y:0], [x: 1, y: 11, [x: 3,
y:311. The parenthesized value to the right of the "=" is the length of the array. Pressing
ABORT will abort the display of long arrays. The default is to display the entire array; the
Array elements item of the Options window may be used to change this.

ARRAY DESCRIPTOR

displays the descriptor followed by the contents of the array, eg, a =
DESCRIPTOR[146013B#,3](3)[[x: 0, y:0], [x: 1, y: 11, [x: 3, y:3]]. Fora

24-5

24

Debugger

24-6

RELATIVE ARRAY DESCRIPTOR, the word RELATIVE is displayed first. Pressing ABORT will abort the
display of long array descriptors. The Array elements item in the Options window also
controls this.

BOOLEAN

displays TRUE or FALSE. Since BOOLEAN is an enumerated type = {FALSE, TRUE}, values outside
this range are indicated by a ? (probably an uninitialized variable).

CARDINAL

displays an octal number terminated by a "B" as the default. This may also be altered with
the options window. Cardinals may be displayed as decimal, octal, or hex; signed or
unsigned.

CHARACTER

displays a printing character (c) as 'c. A control character (X) other than BLANK, RUBOUT,
NUL, TAB, LF, FF, CR, or ESC is displayed as tX. Values greater than 177B are displayed in
octal.

CONDITION

displays a record containing an UNSPECIFIED and t imeout; a CARDINAL.

ENUMERATED

displays the identifier constant used in the enumerated type declaration. For example, an
instance ¢ of the type ChannelState: Tyre = {disconnected, busy, available} is displayed
as c=busy.

EXPORTED TYPES

displays the name of the type followed by an octal display of the contents if the length of
the type is known. For example, an instance of the type Handle: Type [2] is displayed as

- Handle (2)11234B.

INTEGER

always displays a decimal number. Uniformly, numeric output is decimal unless
terminated by "B" (octal). Integer output may be changed with the Options window.

LONG

displays numbers following the same conventions as short numbers; i.e., LONG CARDINAL
and LONG UNSPECIFIED are displayed in octal, LONG INTEGER in decimal.

MDSZone

displays a POINTER; an UNCOUNTED ZONE displays as a LONG POINTER.

XDE User’s Guide 24

MONITORLOCK

displays a record containing an UNSPECIFIED.

POINTER “

displays an octal number, terminated withan " 1", e.g., p=107362B 7. RELATIVE POINTERs are
decimal and are terminated with "t R"; e.g., r=123 tR. These defaults may be changed for
LONG POINTERS, RELATIVE POINTERS, and POINTERS to either octal or decimal with the Ortions
window.

PORT

displays two octal numbers;e.g.,p = PORT [0, 172520B].

PROCEDURE, SIGNAL, ERROR

displays the name of the procedure (with its local frame) and the name of the program
module in which it resides (with its global frame); e.g., GetMyChar, L: 165064B (in
CollectParams, G: 166514B).

PROCESS

displays a PROCESS (pointer to a ProcessStateBlock); e.g.,p = PROCESS [111B].

REAL

displays a floating-point number; e.g., -1.45.

RECORD

displays a bracketed list of each field name and its value. For example, an instance v of the
record Vector: RECORD [x,y: INTEGER] is displayed as v=[x: 9, y: -1]. Pressing ABORT
only aborts display of the current field.

SEQUENCE

displays as an array. For example, an instance s of the record Sequence: RECORD [length:
Unsignedint, text: PACKED SEQUENCE maxLength: Unsignedint OF CHARACTER] is displayed as
s=[length: 3, text: (3)['a, 'b, 'c]].

STRING

displays the name of the string, followed by its current length, its maximum length, and
the string body; e.g., s=(3,10)"foo". If the string is NIL, s=NIL is displayed. Pressing
ABORT will abort the display of long strings. The default is to display the entire string; the
String lengthiteminthe Options window can change this.

UNSPECIFIED

defaults to being displayed as if they were CARDINALS; this may be changed with the
Options window.

24-7

24

Debugger

Listed below are the conventions used to display context information throughout the
debugger:

- ProcedureName, L: nnnnnB, PC: nnnB (in ModuleName, G: nnnnnB)

A local context is displayed as the procedure name with its local frame, followed by the
module name and its global frame.

ModuleName, G: nnnnnB --global frame

A global context is displayed as the module name and its global frame. [f the global
frame is followed by * (as nnnnnB*) it is a copy created by the NEw construct. [f the
global frame has not yet started, it will be followed by a ~.

[n response to an expression followed by a ?, the interpeter will show:

Octal = Hexadecimal = Unsigned Decimal = Signed Decimal =

Byte, ,Byte = Octal Byte,,Octal Byte = CHAR,,CHAR =

Nibble:Nibble, ,Nibble:Nibble

If any of the values are 0 or out of range, they will not be shown. For LONG values the
interpreter will show:

Octal = Hexadecimal = Decimal = OctalWord OctalWord =
Byte,,Byte Byte, ,Byte

For example, in response to 61141B? the debugger displays
61141B = 6261X = 25185 = 98,,97 = 142B,,141B = 'b,,'a = 6:2,,6:1
and for 1234567B? it shows

1234567B = 53977X = 342391 = 34567B 5 = 57,,119 0,,5

24.3.2 Debugger commands

24-8

CoPilot provides facilities for managing breakpoints, examining user data symbolically,
setting the context in which the user symbols are looked up, and directing program
control.

The command tree structure for CoPilot appears at the end of this chapter. Capitalized
letters are typed by the user (in either upper or lower case); Commands are extended with
lower-case strings by the command processor. Each command (and its parameters) is
described below.

24.3.2.1 Breakpoints

The break and trace commands apply to modules that are known within the current
context. All breakpoints and tracepoints may be conditional (nsee ATtach Condition,
below). An optional command string can also be attached to each breakpoint/tracepoint; it
will be executed when the breakpoint/tracepoint is taken (see ATtach Keystrokes,
below). A tracepoint is a breakpoint that automatically 'invokes the Display Stack

XDE User's Guide 24

command processor, displaying the first procedure on the call stack and its parameters
(trace entry), variables (trace), or results (trace exit) as appropriate.

You may set breakpoints at the following locations in your program: entry (to a
procedure), exit (from a procedure), and at the closest statement boundary preceding a
specific text location within a procedure or module body. The debugger can set entry
breakpoints on any procedure called from within a module. However, the fact that extra
symbols are required to display the parameters or the breakpoint will not be discovered
until needed. Breaks on a specific text lucation can be set only with the Break command
of the Debug Ops (or Symbiote) menu. Note that breakpoints are set in all instances of a
module. When the source line of the breakpoint is displayed, the indicator < > appears to
the left of the source where the breakpoint has actually been set (e.g., IF foo THEN <>
some statement;). Before the debugger permits any breakpoints to be set using a
FileWindow, the creation date in the source file is checked against the corresponding date
recorded by the compiler in the bed.

Fine point: Since there is only one exit from a procedure, the debugger shows the beginning of the procedure for
exit breaks instead of indicating a potentially incorrect RETURN statement. Local variables may be invisible if
this RETURN has a PC that is not in the block with their declarations; use source breaks on the RETURN
statements instead of an exit break.

When a break or trace is encountered during execution, a (possibly nested) instance of the
debugger is created and control transfers to the command processor, from which you may
access any of the facilities described in this document. The debugger types the name of the
procedure containing the breakpoint and the address and pc of the currently active frame.
If the breakpoint has a condition associated with it, the break is taken only if the condition
is satisfied. The multiple proceed counter is reset after being satisfied; e.g., a condition of 5
will actually break on the fifth, tenth, fifteenth, ... times the breakpoint is reached. To
continue execution of your client program, use the Proceed command; to stop execution of
your program, use the Quit command.

Fine point: Occasionally a breakpoint will be taken a second time. This is the result of a page fault that occurred
as execution of the the client was resumed. It does not indicate that anything is amiss, so simply proceed.

If you compile a module with the cross-jumping switch turned on (the default), be warned
that when setting source breakpoints, the actual breakpoint may not end up where you
expect (e.g., you may break in the code of an ELSE clause when you really want the THEN
clause if they share some common code). The message Cross jumped! will appear before
the source of a cross-jumped module is displayed. Entry and exit breakpoints are not
affected by cross jumping.

The warning Eval stack not empty! will be printed if the debugger is entered via
either an interrupt or breakpoint with variables still on the evaluation stack; this
indicates that the current value of some variables may not be in main memory, where the
interpreter normally looks. Exceptions to this are entry and exit breaks; the debugger has
enough information to decode the argument records that are on the stack in this case (if
the appropriate symbol tables are available).

Attach (in Debug Ops menu of File window)

tells the debugger to ignore the time stamp in the source file when setting breaks. See
ATtach Symbols inthe sub-subsection on Low-level facilities .

24-9

24

Debugger

24-10

ATtach Condition [number, condition]

changes a normal breakpoint into a conditional one. Arguments are a breakpoint number
and a condition, which is evaluated in the context of the breakpoint. The breakpoint
number is displayed when the break/tracepoint is set, and may also be obtained using the
List Breaks command.

The three valid formats of a Condition are: variable relation variable, variable relation
number, and nutr.ber. Conditions include relations in the set {<, >, =, #, <=, >=}. A
number (multiple proceeds) means “execute the break number times before invoking the
debugger.” The variables are interpreted expressions that are looked up in the context of
the breakpoint. A variable may not be an expression that is more than one word long,
dereferences a pointer (beware of the implicit dereference in record qualification), or
indexes an array.

ATtach Keystrokes [number, command]

adds an arbitrary command string to breakpoints/tracepoints; the characters from this
string are executed by the debugger when the breakpoint/tracepoint is taken. Arguments
are a breakpoint number and a command string terminated with a RETURN. A RETURN can be
embedded in the command string by quoting it with CTRL-v.

Break (in Debug Ops menu of File window)

uses the current selection to set a breakpoint. If you select PROCEDURE or PROC, a breakpoint
is set on the entry to the procedure; if you select RETURN, a breakpoint is set on the exit of
the procedure; otherwise, a breakpoint is set at the closest statement enclosing the
selection. Note: If the module was compiled with cross jumping, breaks may be set in
unpredictable places. Confirmation is given by moving the selection to the place at which
the breakpoint is actually set.

For the following code fragments, a breakpoint set on anyError will invoke the debugger
after the catch frame is entered. If a breakpoint is set on MFile.Error, the debugger is
invoked for all signals and errors (including things like DivideCheck) before any decision
is made to catch the signal.

BEGIN ENABLE MFile.Error = > {anyError < TRUE; CONTINUE};
I MFile.Error = > {anyError « TRUE; CONTINUE};

If there are multiple instances of a module, the current context must match the source file.
In any event, the breakpoint number or any error messages are displayed in the Herald
window,

Break All Entries [module/frame]

sets a break on the entry point to each procedure in module or frame (cf. Break Entry);
nested procedures and catch code are ignored.

Break All Xits [module/frame])

sets a break on the exit point of each procedure inmodule or frame (cf. Break Xit).

XDE User’s Guide 24

Break Entry [proc]

inserts a breakpoint at the first instruction in the procedure proc. Note: You can place a
breakpoint on the entry to the mainline code. For a module to do this, Break Entry|module name|.

Break Xit [proc] >
inserts a breakpoint at the last instruction of the procedure body for px"ocA This catches all
" RETURN statements in the procedure. Note: You can place a breakpoint on the exit from the mainline
code. Fora module todo this, Break Xit(module namel.

CLear All Breaks

removes all breakpoints/tracepoints.

CLear All Entries [module/frame)

removes all entry breakpoints/tracepoints in module or frame.

CLear All Xits [module/frame]

removes all exit breakpoints/tracepoints in module or frame.

CLear All Traces

removes all breakpoints/tracepoints; it is equivalent to CLear All Breaks.

CLear (in Debug Ops menu of File window)

clears the breakpoint or tracepoint at the location specified as above.

CLear Break [number]

removes a breakpoint by number. Pressing RETURN in place of a number clears the current
breakpoint; i.e., the one that got you into CoPilot.

CLear Condition {[number]

changes a conditional breakpoint into a normal one. Pressing RETURN in place of a number
behaves as in CLear Break.

CLear Keystrokes [number]

clears any command string associated with the breakpoint. Pressing RETURN in place of a
number behaves as in CLear Break.

CLear Entry Break [proc]

converse of Break Entry.

24-11

24

Debugger

24-12

CLear Entry Trace [proc]

converse of Trace Entry;itisequivalenttoCLear Entry Break.

CLear Xit Break [proc] |

converse of Break Xit.

CLear Xit Trace ([proc]

converse of Trace Xit;itisequivalenttoCLear Xit Break.

Display Break [number]

displays a breakpoint by number. [ts type (entry, exit, source), and the procedure and/or
module name in which it is found are displayed; for source breakpoints, the source text is
also displayed; any attached conditions or keystrokes are also shown. Pressing RETURN in
place of a number behaves asin CLear Break.

List Breaks [confirm]

lists all breakpoints, displaying the same information as Display Break.

Trace (in Debug Ops menu of FileWindow)

sets a tracepoint at a location specified, as in Break above. Confirmation is given by
moving the selection to the place at which the tracepoint is actually set.

Trace All Entries [module/frame]

sets a trace on the entry point to each procedure inmodule or frame (cf. Trace Entry).
Trace All Xits [module/frame]

sets a trace on the exit point of each procedure in module or frame (cf. Trace Xit).
Trace Entry [proc]

sets a trace on the entry of the procedure proc. When an entry tracepoint is encountered,
display stack mode is entered and the parameters are displayed (cf. Break Entry).

Trace Xit [proc]

sets a trace on the exit of the procedure proc. When an exit tracepoint is encountered,
display stack mode is entered and the return values are displayed (cf. Break Xit).

24.3.2.2 Display runtime state

The scope of variable lookup is limited to the current context (unless otherwise specified
below to be the current configuration). What this means is the following: if the current
context is a local frame, the debugger examines the local frame of each procedure in the
call stack (and its associated global frame) following return links until the root of the
process is encountered. If the current context is a module (global) context, just the global

XDE User’s Guide 24

frame is searched. Global frames are searched in the order: declarations, imports,
directory. If the variable you wish to examine is not within the current context, use the
commands that change contexts.

CoPilot displays a global frame followed by a * if the frame is a copy created by the NEW
contruct; it is followed by a ~ if it is not started.

AScii Read [(address, n]

displays n (decimal) characters as a string starting at address (octal).

AScii Display [address, count]

interprets address as POINTER TO PACKED ARRAY OF CHARACTER and displays count characters.
Display Configuration

displays the name of the current configuration followed by the module name,
corresponding global frame address, and instance name (if one exists) of each module in
the current configuration.

Display Frame [address]

displays the contents of a frame, where address is its octal address (useful if you have
several instances of the same module or examining a specific local frame); display stack
subcommand mode is entered.

Display GlobalFrameTable

displays the module name and corresponding global frame address, pc, codebase, and gfi of
all entries in the global frame table. If a frame has been unNewed, it will be followed by
the word "deleted."

Display Module [module]

displays the contents of a global frame, where module is the name of a program in the
current configuration.

Display Process [process]

displays interesting things about process. This command shows you the process, the
frame associated with process, and the state of the process. A process can be:

ready (ready torun and has a state vector)
waiting SV (ready to run but needs a state vector)
waiting ML (waiting on a monitor)

waiting CV(waitingon a condition variable)

frame fault, fsi: nn (needsa frame whose size index is nn)

24-13

24

Debugger

24-14

page fault, address: nnnnnB (waiting for page whose address is nnnnnB; this
is an address fault if location nnnnnB isn't mapped)

write fault, address: nnnnnB (waiting to write into location nnnnnB, which
is write-protected) “

faulted (unknown fault hasoccurred)

A * marks the current process. A process can be on one and only one queue (associated
with a condition, monitor, ReadyList, etc.). Then you are prompted with > and you enter
process subcommand mode. A response of N displays the next process: S displays the source
text and loads and positions the source file in the Source window: L just displays the source
text; R displays the root frame of the process; P displays the priority of the process; space
(SPACE) enters the interpreter;-- delimits a comment; and Q or DELETE terminates the
display and returns you to the command processor. Note: Either a variable of type PROCESS
(returned as the result of a FORK) or an octal PROCESS is acceptable as input to this command
(process is an interpreted expression). B

Display Queue [id]

displays all the processes waiting on the queue associated with id. If id is simply an octal
number, you are asked whether it is a condition variable (e.g, Condition? (Y or N]).
For each process, you enter process subcommand mode. The semantics of the
subcommands remain the same as in Display Process, with the exception of N, which

in this case follows the link in the process. This command accepts either a condition
variable, a monitor lock, a monitored record, a monitored program, or an octal pointer.

Display ReadyList

displays all the processes waiting on the queue associated with the Readylist; i.e., the list
of processes ready to run. For each process, you enter process subcommand mode; the
semantics of the subcommands are the same as in Display Queue. '

Display Stack

displays the procedure call stack of the current process. At each frame, the corresponding
procedure name and frame address are displayed. You are prompted with >. A response
of:

VvV displays all the frame’s variables.
G displays the global variables of the module containing the current frame.
P displays the input parameters.

R displays the return values (anon) appears before those that are not named in the
parameter lists.

N moves to the next frame.

J, n(10)jumps down the stack n (decimal) levels (if n is greater than the number of
levels it can advance, the debugger tells you how far it was able to go).

XDE User’s Guide 24

S displays the source text and loads and positions the source file in a source window.
(It also sets the context for setting breakpoints in that window.)

L justdisplays the source text.

SPACE enters the interpreter.

-- delimits a comment.

Q or DELETE terminates the display and returns you to the command processor.

When the current context is a global frame, the Display Stack subcommands G,
J, and N are disabled. When the debugger cannot find the symbol table for a frame on
the call stack, only the J, N, Q, -- and SPACE subcommands are allowed. For a complete
description of the output format, see the section on Unrecognized structures.

Find variable [id]

displays the contents and module location of the variable named id, searching through
only the GlobalFrames of all the modules in the current configuration.

Statistics (inCoPilot menu of Debug.log window)

writes statistics about CoPilot's internal caches into the debug window. It is not normally
used by clients.

24.3.2.3 Current context

The current context is used to determine the domain for symbol lookup. There are
commands to display the current context, to display all the configurations and processes,
to restore the starting context, and to change contexts.

Every time the debugger is entered, the current context is automatically set to (1) the
process that caused the debugger to be called; (2) some significant frame in the calling
process, not necessarily the innermost frame (top of the call stack) of the process (for
example, an uncaught signal sets the frame in which the signal was raised); and (3) the
module and configuration of the local frame set in (2).

CUrrent context

displays the name and corresponding global frame address (and instance name if one
exists) of the current module, the name of the current configuration, and the PROCESS for
the current process.

List Configurations

lists the name of each configuration that is loaded, beginning with the last configuration

loaded. If you wish to see more information about a particular configuration, use the
Display Configurationcommand.

24-15

24

Debugger

24.3.2.4

24-16

List Processes

lists all processes by PROCESS and frame. If you wish to see more information about a
particular process, use the Display Process command.

ReSet context

restores the context that this instance of the debugger set upon entry (see the introduction
to this section). Note: The local frame set by this command is not necessarily the same as <hatset by the Se t
Process Context command.

SEt Configuration ([config]

sets the current configuration to be config, where config is nested within the root
configuration that is current. This command is useful for "jumping" further into the
nested block structure of a configuration.

SEt Module context [module/frame]

changes the context to the program module whose name is module (within the current
configuration). If there is more than one instance of module, the debugger lists the frame
address of each instance and does not change the context. Using a frame address has the
same effect as SEt Octal context.

SEt Octal context [address])

changes the current context to the frame whose address is address. This is useful when
there are several instances of the same module or in setting the current context to a
specific local frame.

SEt Process context ([process]

sets the current process context to be process and sets the corresponding frame context to
be the innermost frame associated with that process. Upon entering the debugger, the
process context is set to the currently running process. Note that either a variable of type
PROCESS (returned as the result of a FORK) or an octal PROCESS is acceptable as input to this
command. Note: If the process is the same as that in which the debugger was entered, the local frame set by
this command is not necessarily the same as that frame initially set by the debugger, the one that would be set by
the Reset Context command.

SEt Root configuration [config]
sets the current configuration to be config, where config is at the outermost level (of its
configuration). This command is sufficient for simple configurations of only one level. It is

also useful in getting you to the outermost level of nested configurations, from which you
may move "in" using SEt Configuration.

Program control

Certain commands allow you to determine the flow of control between the debugger and
your program.

XDE User’s Guide 24

Kill session [confirm]

“‘ends your debugging session, swaps back to the client world, and executes
TemporaryBooting.BootButton.

Proceed [confirm]

continues execution of the program (i.e., proceeds from a breakpoint, resumes from an
uncaught signal).

Quit [confirm]

raises the signal ABORTED in the process that entered the debugger. If the process was
already processing an uncaught ABORTED signal (perhaps from a previous Quit command),
this command passes the signal UNWIND to each frame of the process and then simulates a
RETURN with no results by the root frame of the process, causing the process to be deleted. If
this process is supposed to return any results, the parent process will get a stack error
when it attempts to JOIN the process.

STart [address] [Confirm]

starts execution of the module whose frame is address. If the module has already been
started, a RESTART will be done. Unlike the START statement in the Mesa language, no
parameters may be passed.

Userscreen [confirm]

swaps to the user world for a look at the screen. Control is returned to CoPilot
automatically after 20 seconds or by typing the ABORT key earlier; it does not return until
the ABORT key is let up.

24.3.2.5 Low-level facilities

Additional commands allow you to examine (and modify) what is going on in the
underlying system.

Fine point: When a space is first mapped as a data space, Pilot arranges things so that an attempt to read it by
CoPilot before it is swapped in will show data left in backing store from a previous mapping, rather than the

expected zeros.

ATtach Symbols [globalframe, filename]

attaches the globalframe to filename. ATtach Symbols is useful for allowing you to
bring in additional symbols for debugging purposes when you do not have the correct
object file. The default extension for filename is .bcd.

Warning: This command overrides version checking of symbol tables and should be used
with caution; it may cause CoPilot to display incorrect values.

Note: Only compiler output object files for program modules can be attached; neither
interfaces nor symbols files may be attached.

24-17

24

Debugger

24-18

Display Eval-stack

displays the contents of the Mesa evaluation stack (in octal), which is useful for low-level
debugging or for displaying the (un-named) return values of a procedure that has been
broken at its exit point. This command is most useful at octal breakpoints because the eval
stack is empty between most statements.

Octal Clear break ([globalframe, bytepc]

is the converse of Octal Set break (these octal commands are low-level debugging aids
for system maintainers who must diagnose the higher-level debugging aids and system).

Octal Read [address, n]

displays the n (decimal) locations starting at address. An address in the first 65K is
interpreted as an absolute (virtual) address if and only if it has a leading zero; it is treated
as MDS-relative otherwise.

Octal Set break [globalframe, bytepc]

sets a breakpoint at the byte offset bytepc in the code segment of the frame
globalframe.

Octal Write [address, rhs]

stores rhs (octal) into the location address; the default for rhs is the current contents of
address. address is treated the same asin Octal Read.

ReMote debuggee [host] [confirm]

converts CoPilot into a teledebugger. host is the name or net address of the client. (A net

" address has the form netNumber$hostNumber4 where both numbers are octal, no "B"

appended.) An empty host means to quit teledebugging. Pressing ABORT while waiting for
the client will also abort teledebugging. Ending teledebugging in either of these ways
causes CoPilot to start a new session without a client; the méssage Invalid Swap
Reason: Context Invalid will be displayed in the new log, and the existing log is
reset. CoPilot reverts to a local debugger for its next session.

After communications have been established, CoPilot starts a new session, losing all
information about the previous debuggee. Immediately after receiving the ReMote
Debugee command and whenever CoPilot is waiting for the remote machine (e.g, for a
breakpoint), it displays: Waiting for client.... This is followed by the message
Client responds when communications are re-established. Teledebugging may be
terminated by the ABORT key; this is the only way to abort teledebugging while the
Waiting for client... message is displayed. At other times, teledebugging may be
aborted by issuing the ReMote Debugee command with no host. If CoPilot is booted with
the W switch, it immediately begins teledebugging, instead of completing the normal
installation process. After communications have been established, the Debugger moves maplog and other
information into its own memory and flushes it from the client; thus that client may not be subsequently be
debugged by any other debugger until it is re-booted.

IfaDomain and Organization have been specified in your user profile (either through
Domain and Organization items in your [System] User.cm section, or with the Profile

XDE User’s Guide 24

Tool) they will be used to qualify any unqualified or partially qualified host names.
Otherwise you will have to supply fully qualified host names for any remote clients you
wish to debug.

For example, if the [System] sectionof your User.cmcontained

Domain: OSBU North
Organization: Xerox

you could specify the ReMote debuggee Thisbe:0SBU North:Xerox as ReMote
debuggee Thisbe.

Worry on [confirm]

conditions breakpoints such that no local frames will be allocated when a breakpoint is
taken. This is typically only of interest when debugging the operating system itself. As a
side-effect, all conditional breakpoints will be temporarily made unconditional. After
taking a worry mode breakpoint, all of the debugger commands are allowed, with the
exception of STart, Quit, and calling procedures with the interpreter. Note: the Perf tools
set worry mode breakpoints.

Warning: In the current version of Pilot, Worry should be turned on only when all
breakpoints are in code that does not generate page faults.

Worry off [confirm]
turns off worry mode (this is the default state upon starting the debugger).
-- [comment]

inserts a comment into the debugger's log file. Input is ignored after the dashes until
RETURN is typed.

24.3.3 The Debugger interpreter

CoPilot contains an interpreter that handles a subset of the Mesa language; it is useful for
common operations such as assignments, dereferencing, procedure calls, indexing, field
access, addressing, displaying variables and TYPEs, and simple type conversion. It is a
powerful extension to the debugger command language, as it allows you to more closely
specify variables while debugging, thus giving you more complete information with fewer
keystrokes.

Only a specific subset of the Mesa language is acceptable to the interpreter (see the end of
this chapter for details on the grammar). Several specialized notations (abbreviations)
have been introduced in the interpreter grammar; these are valid only for debugging
purpeses and are not part of the Mesa language. The interpreter operates much like the
Compiler: strict target typing is performed on assignments and procedure calls.

24.3.3.1 Statement syntax

Typing SPACE to the command processor enables interpreter mode; the limited command
processors of Display Stack and Display Process also permit a space. At this point

24-19

24

Debugger

24-20

the debugger is ready to interpret any expression that is valid in the (debugger) grammar.
The ? interpreter command may be invoked by either the ? item in the CoPilot menu, or
the CLIENT1 key at any time.

Multiple statements are separated by semicolons; the last statement on a line should be
followed by ReTURN. If the statement is a simple expression (not an assignment), the result

is displayed after evaluation.

For example, to perform an assignment and print the result in one command, you would
type:

foo « exp; foo

24.3.3.2 Loopholes

A more concise LOOPHOLE notation has been introduced to make it easy to display arbitrary
data in any format. The character $ may be used instead of LOOPHOLE [exp, type], with
the expression on the left of the %, and the type on the right. However, % is nota valid
LeftSide; all type expressions involving % must be enclosed in parentheses.

The following expressions are equivalent to the interpreter:

foo % (short red Foo) andLOOPHOLE[foo, short red Foo]
(P % (LONGPOINTERTO Object)) T and LOOPHOLE[pD, LONGPOINTERTO Object] |

The first pair will loophole the type of the variable foo to be a short red Foo and display
its value. The second pair will loophole p to be a LONG POINTER TO Object and dereference it.
foo % isashorthand notation for foo % UNSPECIFIED.

A number may be loopholed into PROCEDURE, SIGNAL, or an ERROR. If it is valid, the debugger
will display the procedure (or signal's) name, module and global frame. If a signal/error is
the same as the uncaught signal that trapped to the debugger, CoPilot also displays the
parameters.

24.3.3.3 Subscripting

There are two types of interval notation acceptable to the interpreter; the closed, open, and
half -pen interval notation accepted by the Compiler and a shorthand version that uses !.
The notation [a . . b] means start at index a and end at index b. The notation [a !
b] means start at index a and end at index (a+b-1).

The following expressions all display the contents of MDS-relative memory locations
1104B through 11078B:

MEMORY (1104 . . 1107]
MEMORY {1104 . . 1108)
MEMORY (1103 . . 1107]
MEMORY (1103 . . 1108)
MEMORY[1104 ! 4]

XDE User’s Guide 24

24.3.3.4

Note that the interval notation is only valid for display purposes and therefore is not
allowed as a LeftSide or inside other expressions.

Explicit qualification vs qualification in the current context

AN

To improve the performance of the interpreter, the $ notation has been introduced to
distinguish between qualification in the current context and explicit qualification. The
character $ indicates that the name on the left is a module name or frame in which to look
up the identifier or TYPe on the right. If a module cannot be found, it uses the name as a file
(usually a definitions file).

For example, FSP$TheHeap means look in the module 5P to find the value of the variable
TheHeap. In dealing with variant records, be sure to specify the variant part of the record
before the record name itself (e.g.,, foo % (short red FooDefs$Foo), not foo %
(FooDefs$short red Foo)).

24.3.3.5 Type expressions

24.3.3.6

24.3.3.7

24.3.3.8

The notation @t ype may be used as shorthand to construct a POINTER TO type. This notation
is used for constructing types in LOOPHOLEs (ie., @foo will give you the type POINTER TO
foo). There is no special shorthand to construct LONG POINTER TO type; however, LONG
@type islegal.

Radix conversion

The notation expression? prints the value of the expression in several formats, including
octal, decimal, and hex. Radix conversion between octal and decimal can be forced using
the loophole construct; for example, exp%(CARDINAL) will force octal output and
exp3 (INTEGER) will force decimal. Output radix may also be controlled by the CoPilot
Options window discussed in the Ouput conventions sub-subsection previously
mentioned.

Arithmetic expressions

Target typing is applied to arithmetic expressions. In complex expressions, atoms that
change the target type must occur first. For example:

(POINTER + offset) T -- correct
(offset + POINTER) 1 -- error message
LONG(4008] * 4008 -- 200000B
4008 * LONG{400B] -- overflow

Procedure calls

It is often useful to call procedures from a breakpoint or after getting an uncaught signal;
this is generally done in the interpreter with the same syntax as in Mesa. CoPilot is able to
invoke any procedure that is imported into the current module context; complications
arise when you wish to call a procedure that is not imported. However, the $ notation may
be used to solve most of them.

24-21

24

Debugger

24-22

CoPilot can only call procedures in modules for which it has complete symbols: this can be
somewhat confusing since the debugger "knows" a little about the procedures imported
into a module it has symbols for. To determine whether CoPilot has syvmbols for a
procedure and where it is implemented (a more useful feature), simply type the procedure
name to the interpreter. For example, typing either Process.SetPriority or
SetPriority to the interpreter (while inside a module that imports it) will cause the
debugger to display the following

SetPriority = PROCEDURE [5461B] (in module Processes, G. 11644B)

when symbols for Processes are not available. Reinterpreting SetPriority after retrieving
the object file for Processes gives the following result:

SetPriority = PROCEDURE SetPriority (in module Processes, G:
11644B).

The notation Process.SetPriority means the same to the interpreter as to the Mesa
compiler; SetPriority is a procedure imported through the Process interface.

Since SetPriority is imported in this example, you could, for example, call it
(nicknamed interpret call for historical reasons) by typing SetPriority([1l]. To call
Process.Abort, which is not imported, the notation Processes$Abort[processId] or
nnnnnB$Abort [processId] (nnnnnB is the global frame of Processes) works. If you
are lacking a variable of type PROCESS, Processes$Abort [20B%] works; it loopholes the
process ID number 20B into an UNSPECIFIED. (The trailing % notation is a very easy method
for constructing pointers; e.g., 123456B% is easier to type in a procedure call than
LOOPHOLE [123456B, POINTER] .)

24.3.3.9 Sample expressions

Here are some sample expressions that combine several of the rules into useful
combinations:

If you were interested in seeing which procedure is associated with the third keyword of
the menu belonging to a particular window called myWindow, you would type:

> myWindow.menu.array[3].proc
which might produce the following output:
CreateWindow (PROCEDURE in WEWindows, G: 120134B).

The basic arithmetic operations are provided by the interpreter (with the same precedence
rules as followed by the Mesa compiler).

> 3+4 MOD 2 ; (3+4) MOD 2
would produce the following output:

3
1.

XDE User’s Guide 24

A typical sequence of expressions one might use to initialize a record containing a pointer
to an array of Foos and display some of them would be:

> rec.array < FSP$AllocateHeapNod‘e[n*SIZE[FooDeESSFoo]];
> InitArray(rec.array]; rec.array[first..last].

The following command would display rec in octal:
>0ctal Read: @rec, n: SiZe[Rec]
To find out what type a HeapImpl Handle pointed to:

> HeaplImpl$Handle

Handle: PRIVATETYPE = LONGPOINTERTO Data;
> HeapImpl$Data

Data: PRIVATETYPE = RECORD

or to find out what parameters a SchemaDefs.PvPrint took:

> SchemaDefs.PvPrint
Pvprint: PUBLICTYPE = PROCEDURE[lschema: Lschema, posn: Posnarea,
oispfh: OISPFH]

24.4 Signal and error messages

The following messages are generated by the debugger. Wherever possible, there is also an
explanation of what might have caused the problem and what you can do about it.

24.4.1 Entering the Debugger

The following messages are feedback from CoPilot informing you why the debugger was
entered.

%* pProcessing VM Map *

Pilot maintains a log of virtual page to file page mappings so that CoPilot can read and
write the client's virtual memory without regard to whether the data is currently in
real memory. In order to keep mapping operations simple, Pilot logs changes serially.
When the log fills up, CoPilot is invoked to empty it. CoPilot will issue the
Processing VM Map message and return to the client after a few seconds without
requiring or allowing any user intervention.

*** Interrupt ***

Appears at the top of the Debug. log window after you have entered the debugger via
interrupt mode (SHIFT-ABORT (CALLDEBUG) has been héld down).

*** yncaught SIGNAL SoS (in MayDay)

The user program has raised a SIGNAL (ERROR) which no one dynamically nested above
the SIGNAL invocation was prepared to catch. The debugger prints the name of the
SIGNAL, lists its parameters (if any), creates a new instance of the debugger, and gives

24-23

24

Debugger

24-24

control to the command processor. At this point you may, for example, display the
stack to see who raised the uncaught SiGNAL.

If the semantics of the situation permit, you may proceed execution at the point of the
SIGNAL's invocation by issuing a Proceed command. Programs often allow themselves
to be aborted by CoPilot's Quit command; it simply raises the aborted eRROR on the
client side. If no client catches this error, you end up in the dynamically enclosing
instance of the debugger. If the SIGNAL actually was an ERROR and you elect to Proceed,
you get a ResumeError.

Note: [CoPilot does not have access to the required symbol tables, the information is printed in octal. For

standard Mesa software, listings which decode these numbers are available.

The remaining error messages in this section are not fatal, but you should be suspicious of
the state of the client world when they are given.

CoPilot inloaded twice! Click to boot.

CoPilot was not exited cleanly in the previous session. The most common ways to leave
CoPilot cleanly are with the Boot from menu in the Herald window, or the Quit or
Kill commands. Pressing any mouse button will re-install CoPilot; any debugging of
the new client is impossible.

breakpoint not found!

You have swapped to the debugger when the breakpoint information (frame, pe, etc.)
cannot be found (check the code for your program).

Eval stack not empty!

The warning is printed if the debugger is entered via either an interrupt or breakpoint
with variables still on the evaluation stack; this indicates that the current value of
some variables may not be in main memory, where the interpreter normally looks.
Exceptions to this are entry and exit breaks; the debugger has enough information to
decode the argument records that are on the stack in this case (if the appropriate
symbol tables are available).

*** Invalid Swap Reason - Context Invalid ***
CoPilot has been entered with a damaged (core-clobber) or missing -client
(teledebugging ended). No debugging is possible in this state; attempts to do so receive
warning messages. However, other cascade features continue to work normally.
Eval-stack is wrong
The evaluation stack had an incorrect number of arguments on it at the time a

Runtime.CallDebugger was made. In this event, CoPilot works normally, but any
attempt to return to the client will probably cause a stack error.

XDE User’s Guide 24

***Invalid Load Statexxx*
CoPilot has been entered without the client's load state available. The load state is

used by the debugger to translate octal information (e.g., module names) into English
Jor the user; without the load state only octal debugging features are available.

~ 24.4.2 Symbol lookup
xxx is compiled for an incompatible version of Mesa!
A wrong version of the Compiler was used; e.g., this is an old Mesa object file.
Xxx cannot be acquired with read access!
The file named xxx exists, but cannot be read.
xxx is read protected!

The file xxx has been left read-protected by the File Tool or some other subsystem.
Refetching the file will remove the error.

xxx not found!

The variable or file named xxx cannot be found.
'File: xxx

The file named xxx cannot be found.

nnnnnB not started!

The global frame nnnnnB has not yet been started. Any variables looked up will be
uninitialized.

xxXx not bound!

The imported variable xxx is not exported by anyone.
!xxx: --compressed symbols--

The symbol file is compressed.
xxx has incorrect version!

The symbol file has an incorrect version stamp.
!Tree for xxx not in symbol table

A multiword constant in your code wasn't copied into the symbol table. Look in the
source file to find the value.

24-25

24 Debugger

Xxx is missing some pages [base, pages+extral]

The bcd or symbols file xxx is not as long as CoPilot expected it to be. base is the
page that CoPilot believes the symbols start on. pages is the length of the symbol
table and extra is the length of the fine-grain table. Try refetching xxx to solve this
problem.

Use Interface.importedVariable, not Interface$importedvVariable

The debugger cannot find imported variables from an interface file (the "$" notation).
The "." notation will tell it to use the interface record (if found) available in the
current context.

24.4.3 Unrecognized structures
iCan't find links from frame: nnnnnB
!Invalid global frame
xxx not a frame!
xxx has a NULLreturnlink!
xxx has a clobbered accesslink!
xxx is a clobbered frame!
XXX is an invalid PROCESS !
XXX is an invalid global frame!
Xxxx is an invalid image file!
®¥XxX is not a valid frame!

The structure in question appears to be clobbered (invalid in some way).

24.4.4 Command execution errors
... aborted
Execution of the current command has been aborted (ABORT has been typed).
Can't use <module> of <time> instead of version created <time>

This message is printed if the creation date in the source, object, or symbols file on
your disk is different than the corresponding date recorded by the Compiler or Binder.

!Resetting symbol table

This warning is displayed before the debugger's scratch symbol table overflows. The
debugger's performance decreases somewhat until the symbol table is refilled.

{Number
An invalid number has been typed.
XXX 1s a definitions file!

You have tried to set a break in a definitions file.

24-26

XDE User’s Guide 24

xxx not a REAL!
xxx is not a valid representation of a real number.

xxx not implemented!
Feature xxx is not implemented.

tInvalid Address [nnnnB]
During the execution of a command, CoPilot attempted to read or write location
nnnnB, which was not mapped. I/0 pages and pages belonging to the germ appear unmapped to
CoPilot.

'Write protected [nnnnB]

During the execution of a command, CoPilot attempted to write location nnnnB, which
was write-protected.

! unknown file problem! Your directory probably needs scavenging.
Something is wrong with your directory.
!Command not allowed

Execution of the current command is not allowed, since the state of the user core
image appears to be invalid.

IMDS exhausted [n]

The debugger has run out of memory.

24.4.5 Breakpoints

When using the menu break commands, each of the following errors will cause the screen
to flash after posting a message in the Herald window.

Multiple instances; Use Display Stack, Source to load window.

You have tried to set a break when multiple instances of the module exist; explicitly
setting the context for the source window will permit the break to be set.

Can't dereference or access array to test condition!

You have specified a condition that requires dereferencing or an array indexing to
test; the runtime is unable to evaluate conditions that complex.

too many conditional breaks!

You have tried to set more conditional breaks than the system allows.

24-27

24

Debugger

24-28

invalid relation!
You have specified an illegal relation expression for a condition.
user break block not found! N

You have tried to free a conditional breakpoint when the conditional breakpoint
information cannot be found (probably a core clobber).

variable is larger than a word!
You have tried to set a condition that uses a multiword value.

rhs on stack not allowed!
You have tried to set a condition where the right side of the relational expression is on
the stack. Only the left side can be on the eval stack. This can only happen on entry
and exit breakpoints.

Can't check condition not in MDS!
You tried to use a long address as part of a condition.

conditions not checked in Worry mode!
You have attached a condition while in worry mode. This is a warning only.

no exchangable code found!

The debugger has tried several consecutive instuctions and has not found an opcode on
which a breakpoint is allowed. The code has probably been clobbered.

no breaks have been set!
YoudidaLIst Breaks when there weren't any.
symboltable missing!

The debugger is trying to manipulate a breakpoint for which there is no symboltable
and it is not prepared to handle the situation.

no; allowed in INLINE!

You have tried to set a breakpoint in an INLINE procedure.
already set!

You have already set a breakpoint there.
does not return!

An attempt was made to set an exit breakpoint on a procedure in which the return
statement is not in the correct location (check the code for your program). This occurs

XDE User’s Guide 24

most often in procedures that end with ERROR or a loop that does not terminate; a code
clobber is also possible.

! Patch table full
~
The maximum number of breakpoints (50) allowed by Pilot has been reached.
2?

Unknown error.

24.4.6 Displaying the stack
No previous frame!
The end of the call stack has been reached.
No symbol table for nnnnnnB

The symbol table file corresponding to the frame nnnnnnB is missing; any attempt to
symbolically reference variables in this module will fail. (In general, this message is a
warning.)

Cross jumped!

The bed was compiled with the cross-jumping switch turned on. The source line
displayed may not be what you expect.

Pc not in any procedure!

The debugger was unable to find a procedure or mainline code that matched the
current pe. This is probably due to a clobber.

24.4.7 Interpreter
! x is an invalid character
The character x typed to the interpreter is illegal.
! Syntax error at [n]
There was a syntax error at location n in the expression given the interpreter.
! Parse error at [n]

There was a error at location n parsing the expression given the interpreter.

24-29

24

Debugger

24-30

The following errors may have the offending identifier preceding the message:

can't call a SIGNAL!
can't call an ERROR!

can't call an INLINE!

You tried to call a SIGNAL, ERROR, or INLINE PROCEDURE.
can't lengthen!

The interpreter needed to lengthen a part of an expression while trying to evaluate it.
can't make a constructor!

Use field by field assignments. You gave the interpreter an expression using [] that
looks like a constructor.

double word array index!
The index for an array must be a single word.
has an invalid address!
The expression to the right of the @ is not word-aligned.
is an invalid number!
This is probably a type mismatch.
is an invalid pointer!
This is probably a type mismatch.
invalid subrange!
This is probably a type mismatch.
pointer fault!
You tried to dereference NIL.
XXX is a constant array. Look at source code for value.

An operation on a constant array is too complicated to perform. The operation can be
done by hand, however, by looking at the constant value in the source.

Xxx is not an array!
You have tried to use xxx as an array.
is not a valid control link!

The procedure or signal in your expression has an illegal value.

XDE User’s Guide 24

is not a relative pointer!
In the expression base[rel], rel wasn't a RELATIVE POINTER.
is not a type!
The identifier used in a type expression was not a type.
is not a unique field selector!
The field selector occurs more than once in the computed or overlaid variant.
is not a valid field selector!

The identifier given for a field selector is not in the record. You may lack the symbols
for the record declaration on your disk.

overflow!

Overflow occurred while doing arithmetic. Perhaps you need a LONG in the expression.
relations not implemented!

a = bisnotallowed.
size mismatch!

You tried to assign or loophole two things of different sizes. Loopholing pointers is a
useful trick for records of different sizes.

too many arguments for stack!

You can only call procedures that take 11 or fewer words of arguments.
has incorrect type!

Type mismatch.
unknown variant!

The interpreter found a garbage tag field.
an't dump that much memory!

You tried to print more than 64K with the MEMORY construct.
not permitted in worfy mode!

You c-:an't call procedures in worry mode.
is the wrong base!

In the expression base[rel], the type of base is not what rel expects.

24-31

24

Debugger

has the wrong number of arquments!
The arguments to a procedure call are wrong.
used incorrectly with []!
You probably tried to use [] asa type constuctor.
illegal ind<xing opération
You tried to index something that wasn't an array or sequence.
xxx$ 1is ambiguous; use frame §$!

There is either more than one instance of xxx instantiated, or the code for xxx is
packed with another module.

BUG: !NotAnArray

This is a bug in CoPilot. It means that the interpreter didn't recognize an error
condition. You should submit an AR if this happens and you have a repeatable test
case.

BUG: !NotHere

This is the same as BUG: !NotAnArray, but a different internal error.

24.5 User.cm

24-32

The User .cmis used by CoPilot only during installation.

[Debugger]

Boot: volume Tells CoPilot what volume to boot (and with what
switches) when the installation process is finished;
CoPilot does a physical volume boot if this line is
absent.

DebugLog: Description of the box for the Debug . log window.

Example:
[Debugger]

Boot: Tajo/%2
DebugLog: [x: 0, y: 0, w: 512, h: 412]

[System]

User: Smith
Registry: PA
Domain: OSBU North

XDE User’s Guide 24

Organization: Xerox
FileWindow: [x: 512, y: 0, w: 512, h: 512]

24.6 CoPilotinterpreter grammar
StatementList ;1= Statement|StatementList; | StatementList; Statement

Statement

LeftSide Interval | LeftSide « Expression |
MEMORY Interval | Expression | Expression ?

LeftSide = _identifier | (Expression)| LeftSide Qualifier |
identifier $ identifier | number $ identifier |
MEMORY [Expression] | LOOPHOLE [Expression] |
LoOPHOLE [Expression , TypeExpression]

Qualifier ;1= .identifier|[ExpressionList]

Interval ::= [Bounds] |[Bounds) |(Bounds] |(Bounds) |
[Expression ! Expression]

Bounds = Expression .. Expression

Expression = Sum

Sum = Product|Sum AddOp Product

AddOp = + I -

Product = Factor|Product MultOp Factor

MultOp = *|/|moD

Factor = Primary|Primary

Primary = Literal | LeftSide | @ LeftSide | BuiltinCall |
Primary % | Primary % (TypeExpression)

Literal ::= number|character|string

BuiltinCall = NiL|NiL[TypeExpression] | PrefixOp [ExpressionList] |
TypeOp [TypeExpression]

PrefixOp ::= ABS|BASE|LENGTH|LONG | MAX | MIN

ExpressionlList empty | Expression | ExpressionList, Expression

24-33

24 : Debugger

TypeOp

TypeExpression

Typeldentifier =

TypeConstructor

24.7 CoPilot summary

AScii
Read [address, count]
Display [address, count]

ATtach

SIZE
identifier | Typeldentifier | TypeConstructor

BOOLEAN | INTEGER | CARDINAL | WORD | REAL | CHARACTER |
STRING | UNSPECIFIED | PROC | PROCEDURE | SIGNAL | ERROR |
identifier identifier | identifier Typeldentifier |
identifier . identifi=r | identifier $ identifier

LONG TypeExpression | @ TypeExpression |
POINTER TO TypeExpression

24-34

Condition [number, condition]
Keystrokes [number, command]
Symbols [globalframe, filename]

Break
All
Entries [module/frame]
Xits [module/frame]
Entry [procedure]
Xit [procedure]

Clear
All
Breaks :
Entries [module/frame]
Traces

Xits [module/frame]

Break [number]
Condition [number]
Entry
Break [procedure]
Trace [procedure]
Keystrokes [number]
Xit
Break [procedure]
Trace [procedure]

CUrrent context

Display
Break [number]
Confiquration
Eval-stack
Frame [address] (gj,l.n.p.q.rs.v)

XDE User’s Guide 24

GlobalFrameTable
Module [module]

Process [process] (l,n,p,q,r;s)
Queue [identifier] (l,n,p.q,r,s)

\
Display

ReadyList (Ln,pg,r.s)
Stack (gj.linpg.rsv)

Find variable [identifier]
Kill session [confirm]

List
Breaks [confirm]
Configurations
Processes

Octal
Clear break [globalframe, bytepc]
Read [address, number]
Set break {globalframe, bytepc]
Write [address,_value]

Proceed [confirm]

Quit [confirm]

ReSet context [confirm]

ReMote debuggee [host] [confirm]

SEt
Configuration [confiq]
Module context [module/frame]
Octal context [address]
Process context [process]
Root configuration [config]

STart [address] [confirm]

Trace
All
Entries [module/frame]

Xits [module/frame]

Entry [procedure]
Stack

Xit [procedure]

Userscreen [confirm]

Worry
off [confirm]
on [confirm]

24-35

24

Debugger

24-36

25

DebugHeap

25.1 Files

The DebugHeap Tool allows you to interrogate and analyze Pilot node storage usage and
find storage leaks. It understands the structure of Pilot heaps and zones. See the Pilot
Programmer’s Manual for a complete definition of heaps and zones.

Heaps are used to allocate small objects. They can be thought of as retail storage
allocators, while the space machinery can be thought of as a wholesale storage allocator.
Heaps allocate nodes from segments, which are multi-page blocks of memory allocated
from the space machinery. Heaps can allocate either variable-length objects or fixed-
length objects. Heaps that allocate variable-length objects use zones to keep track of
allocation within a segment but allocate rather large objects directly from the space -
machinery.

Pilot heaps optionally allow owner checking. When owner checking is enabled, an extra
word is allocated with each node; this word contains the global frame address of the
module that requested the allocation. Other heaps may allocate additional information for
debugging purposes. DebugHeaps allow you to specify how many such additional “client
words” were allocated with each object and use them to filter which nodes are displayed.

Retrieve DebugHeap.bcd from Release directory.

25-1

25 ' DebugHeap

25.2 User interface

The DebugHeap tool interacts through a form subwindow, a file subwindow, and a menu:

 zone: {system} add 51014168
. swapped: {inOrOut} ! Delta's
i clientWords= 1B clientValue: Window Mgr [sk= 1

1 5501600
15101606/
5565221/

o Debugging systemZone addreSS' 51¢ | Text Ops
§Shgzg§des{Use d: (Sh &.d : 3

i s 1s§ 111 [Shoutoces]| 2):
Sl B |
éNodes f21ze 12: OctalContents

5101525, 51016j04, 5565217, 5566400|odacsTorals | | P44s

-31871,20) STRING Ten th su
15,15) "Sgt Priority Up" gg%enggSSGFH o

ClientWords
Totals

SaveState =
ClearState

25.2.1 Form subwindow

Figure 25.1: DebugHeap tool window

The fields in the DebugHeap Tool form subwindow are as follows:

zone:

address=

swapped:

validateNodes

25-2

is an enumerated item that specifies whether to look at one of the
Pilot built-in heaps or a private heap or zone. The zone options are
as follows:

systemMDS processes the built-in MDS heap.

system processes the built-in heap.

zone processes a private zone specified by address.

heap processes a private heap specified by address.
heapMDS procevsses a private MDS heap specified by address.

is a long number used to specify the address of the heap or zone of
interest.

is an enumerated item that specifies whether to restrict DebugHeap
to examining nodes that are swapped in, swapped out, or either.

is a Boolean telling DebugHeap to check that values supplied as
node addresses are really nodes. This Boolean is also used by the
string printing routines to check for invalid or suspicious strings.

XDE User’s Guide

25

delta's

clientWords=

clientvValue:

mask

25.2.2 DebugHeap menu

is a Boolean used to indicate processing of the heap or zone relative
to the saved state (see the SaveState and ClearState menu
commands below).

indicates the number of words in each node that are being used for
debugging purposes (e.g., one word is used for normal Pilot owner
checking). :

is a string form item used to specify a filtering value for processing
nodes. If the heap has Pilot owner checking, specifying a global
frame will cause DebugHeap to display only those nodes that were
allocated by the module. Multiple values can be supplied, separated
by commas and/or spaces, and a range may be specified by two

" "

values separated by "..

is a number (usually specified in octal). If clientWords=1 and any
client values are specifed in the clientValue field, the value of
mask (if any) is bit-anded with the client words in each node before
comparing with the specified client values.

The DebugHeap menu is attached to the DebugHeap Tool window. The commands are

listed below:

ShowNodes

ShowSegments

NodesOfSize

AsciiContents

OctalContents

tabulates and displays the current state of the selected heap or zone.
The number of free and used words in the entire heap or zone are
displayed, as are the size and number of all used nodes.

displays all segments that make up the selected heap or zone, and
notes their sizes.

displays the address of nodes of the specified size within the selected
heap or zone. The current selection is used to indicate the size. The
heap manager's overhead (currently one word) is included in the
size.

displays the contents of the specified node as an Ascii string. The
current selection is used to indicate the the node address. The
Boolean validateNodes indicates whether to check that the
address is really a node and to perform a check of valid strings.
Multiple nodes may be printed by selecting multiple node addresses
separated by spaces and/for commas. (e.g., the output of
NodesOfSize is valid input to this command).

displays the contents of the specified node as n octal words. The
current selection is used to indicate the the node address. The
Boolean validateNodes indicates whether to check that the
address is really a node. Multiple nodes may be printed by selecting
multiple node addresses separated by spaces and/or commas. (e.g.,
the output of NodesOfSize is valid input to this command).

25-3

25

DebugHeap

25.3 Example

25-4

ClientWords displays the contents of the client-words’ portion of the specifed node

in octal. The current selection is used to indicate the the node
address.

Nodes&Totals displays the node address, length, and module for each node in use

in the current heap or zone. If the clientValue field is empty, free
nodes are also displayed; otherwise only nodes whose client words
match clientvalue are displayed. The totals by module are
displayed following the display of all nodes. This command only
works if clientWords=1.

Totals acts like Nodes&Totals, but displays only the totals by module.

FreeNodes displays the address and size of each free node in the current heap or

zone.

SetHeap GFH manually sets the global frame for the built-in Pilot heaps.

DebugHeap always attempts to find this value automatically. This
command allows you to override the default.

SaveState processes the current zone and saves the size and addresses of all

allocated nodes. Setting the Boolean delta's tells DebugHeap to
display only the differences between the saved state and the current
zone.

ClearState takes all of the state saved as a result of the last SaveState and

discards it.

To find a suspected leak:

1.

Boot the client with the heapOwnerChecking switch (see PilotSwitches interface
in the XDE User’s Guide for the current value).

Get the client to a stable state (e.g., deactivate all tools in Tajo); then go to the
debugger.

Run DebugHeap in the SimpleExec.

Set the zone: and possibly the address: fields so that you are investigating the
particular zone of interest. You will either be interested in the system zone or a
private heap. To examine a private heap, for example, select the heap parameter in
the zone: field and put the value of your UNCOUNTED ZONE variable in the address:
field. "

Do a SaveState and proceed to the client.

Repeat the suspicious action that might have resulted in a space leak; then try to get
the client back to the state that you had originally (e.g., deactivate tools in Tajo).

XDE User’s Guide 25

7. Interrupt to the debugger and turn Deltas on. While Deltas is on, most commands
show the difference between the new state and the saved state.

If you invoke Totals, anything that shows up is suspicious (see Totals). Totals will
tell you what the modules were that allocated the suspicious nodes.

8. Now that you have a list of modules that are suspect, put the global frame handles of
the modules in the clientvalue: field.

9. Invoke NodessaTotals. Investigate each node or a list of nodes using the
OctalContents or AsciiContents commands. The size of the node is also a good
hint as to what was allocated. Subtract one (two, if you booted with the
heapOwnerChecking switch) from the size of the node and try to figure out where in
the module you allocated such a node.

Repeat the above steps for every heap and zone where you suspect a leak.

25-5

25 DebugHeap

25-6

26

IncludeChecker

26.1 Files

The IncludeChecker is a program that examines a collection of local or remote text and
object files for consistency and produces an output listing that gives a compile, bind, and
package order for the files in the collection. For each object file, a list of all the object files
that it includes and a list of the object files that include it is also produced. Any
inconsistencies (described below) are flagged in this listing by an asterisk. As an option,
the IncludeChecker will also generate a compile, bind, and package command in Line.cm
that is its best guess as to the way to make the files consistent.

The IncludeChecker determines that an inconsistency exists among the input files if
either: '

1. An object file includes another object file with a version that is different from any
version of the included file that was found. This might happen, for example, if the
included file had been recompiled.

2. A text file is newer than the corresponding object file. This could happen if the text
had been edited, or if the text had been retrieved from a remote file server. The
IncludeChecker compares the creation date of the text file against the creation date
recorded in the corresponding object file.

When determining consistency, the IncludeChecker tries to deal gracefully with files
found in multiple locations and versions. It attempts to match these files with the
corresponding object and text files (possibly on other directories). It also tries to match
included files against versions of those files that it has found.

Retrieve IncludeChecker . bcd from the Release directory.

26.2 User interface

The IncludeChecker runs either as a tool or in the Executive. It lists file names in the
compilation order, and the consistent compilation command, by inclusion depth, with the
deepest files included first. Within that constraint, definitions modules are printed before

26-1

26

IncludeChecker

26.2.1

26-2

program modules. In general, then, the lowest-level definition modules appear first, while
the highest-level program modules appear last.

.|

gListing: IncludeChecker.list Commands: Line.cm Options!
: Check! Host: Dir: Comm
: Files:

source w/o Bcd OK Tables to Disk

Miltiple Output Files Limit File Length

Abort!

Figure 26.1: IncludeChecker tool window

The Includes list indicates the host and directory for both text and object files. It also
notes, when multiple copies of a file are found, the different versions and their locations. If
an object file was derived from a version of the text that was never found, there will be one
entry for the object file and one entry for each version of the text that was found (since in
general, these can be in different locations). Obtaining this list (with the /i
OperatingSwitch, which is the default) is strongly recommended because it can explain,
for example, why the IncludeChecker wanted to recompile some file. This means that the
/s OperatingSwitch should not be used.

Note: It is also a good idea to inspect Line.cm before executing it, since the
IncludeChecker's idea of what should be recompiled and rebound may not be the same as
yours. Because the compiler does not give enough information to completely construct the
packaging command, the packaging command is incomplete and must be edited by hand.

Tool interface

The IncludeChecker communicates through a message subwindow, a form subwindow,
and a file subwindow. The fields in the form subwindow are as follows:

Check! starts the IncludeChecker.

Host: ' isthe name of the host to be used for remote files.
Dir: is the default remote direétory.

Files: are the files to be checked by the IncludeChecker.

XDE User’s Guide

26

Listing:

Commands:

Options!

Command:

Pause

List

Order

is the name of the outputfile the IncludeChecker generates that
shows the dependencies of the files. The outputfile requires a
substantial amount of disk space.The default extension is
.list.

is the file where the IncludeChecker writes the rebuild commands.
The default extension is .cm.

brings up a separate Options window.

causes a command file to be written to the file named by the
Commands: field.

causes a /p to be appended to the compile command in rebuild
command.

prints the includes and included-by relationships in the Listing:
file. Default = TRUE.

prints compilation order in the Listing: file. Default = TRUE.

The following switches are in the Options! window:

Indirect Local
Includes

Source w/o0 Bcd OK

Tables To Disk

Verbose Output

Multiple Output
Files

Limit File Length

Apply!

Abort!

causes analysis of both directly and indirectly included files. Thus
only the top-level bed need be specified in the Files: item.
Default = TRUE.

If there is a text file without the corresponding bed, no error will be
raised. Default = FALSE.

causes the IncludeChecker’s internal data structure to be written
to outputfile.data. This option is intended for future use. It is
not needed by standard users of Mesa 11.0. Default = FALSE.

gives complete file list. Default = TRUE.

writes output to outputfile.includes and outputfile.
includedBy. Default = FALSE.

limits file lengths to 100,000 bytes. Successive file names are
outputfile.list2, outputfile.list3,etc. Default = FALSE.

invokes options.

resets to previous options.

2R8-3

26

IncludeChecker

26-4

26.2.2 Command line

The syntax for the command line is:

CommandLine ::= IncludeChecker [<OperationParameters>]
[<FileList>]

<OperationParameters> : = <OutputFile>/<OperatingSwitches>
[<CommandList>]

<OperatingSwitches> cs=a|c|i|l|m|njo|p|s |v |x

(See the section on Operating switches)

<CommandList> = {<Command >/c <Name>}+
<Command > = open |dir | commandFile
<FileList> ::= <FileName] FileNameg9 >}+

The <OperationParameters> and <FileList> components of the CommandLine
are optional. In <CommandList >, the /c switch indicates to the IncludeChecker that the
token before the /c is a command (e.g., open, dir, commandFile), nota FileName.

The OutputFile is the name of the file written. If no extension is given, .list is
assumed. If no OutputFile is given at all, IncludeChecker.list is assumed.
<FileList> is the list of file names specifying the text and . bcd files to be checked. It is
not necessary to give an extension, since the IncludeChecker will look for any .mesa,
.bed, .config or .pack file with the specified name. (Consequently, don't specify both
Foo.bcd and Foo.mesa on the command line, since Foo would be checked twice.)

In general, a FileName can be fully qualified by giving a host and directory; e.g.,
[server] <Int>Pilot>Public>Heap.mesa. [t is possible to intermix remote and
local files on the command line since the host name ME is interpreted to mean the machine
running the IncludeChecker, so that [ME] Space.bcd refers to a file on the local disk. The
initial setting for the global host name is ME and the global directory name is empty.

26.2.3 Operating switches

Each operating switch can be preceded by a - or ~ to reverse its meaning. The switches
are:

a Check all directly and indirectly included files on the local disk (the default).

c "Consistency command": write a compile and bind command in Line.cm (-c is the
default). In addition, list as comments any object files and text files not found that
are needed for the compilation or binding.

i Print both the includes and included-by relationships in the output file (the
default).
1 Limit output file size to 100,000 bytes per output file. Successive file names are

outputfile.list2, outputfile.list3, etec.

XDE User’s Guide 26

m Use multiple output files (-m is default). The compilation order is written on
source.outputfile. The includes and included-by relations are written onto
“outputfile.includes and outputfile.includedBy, respectively.

n Don't list text files for compilation or rebinding that have no object file on the disk
(-n is the default).

o Print a compilation order in the output file (the default); -o suppresses this
listing.
p Place a /p after every change of inclusion depth (see below) in the consistency

command (-p is the default). This will cause the Compiler or Binder to stop if
errors are found while processing the files of that depth.

s Same as /c-i-o. This is used when only a consistent compilation command is
needed. This switch is not recommended, since the includes/included-by list
(produced by /i) is very helpful in determining why the IncludeChecker asked that
particular files be recompiled or rebound (-s is the default).

v Verbose listing. This switch will produce feedback about all files checked even if
errors are detected. /~v will produce feedback only on files that generate errors. (v
is the default.)

X Just activate the tool and don’t run in the Executive.

26.3 Examples
To check files on the local disk, just list them, e.g.:
>IncludeChecker Lex.list/cio LexiconDefs Lexicon LexiconClient

inspects the text and object files for the modules LexiconDefs, Lexicon, and
LexiconClient for consistency. It also checks that these files are consistent with their
included object files. Lex.list isthe output file.

If you have a list of the text files for a program in a file, say, ListOfFiles.cm, you can
check these files with a command line of :

>IncludeChecker MyStuff.list/cio @ListOfFiles.cm@

MyStuff.list is the output file. Note: The Executive replaces @File@ with the
contents of File (see the Executive chapter).

To check all files on the current search path, use the following command line:
>IncludeChecker AllFiles.list/c

processes all .bcd, .mesa, .config, and .pack files on the current search path.
AllFiles.list istheoutput file.

Remote files are checked by using a command line syntax much like that for FTP (see the
FTP chapter). The open and dir commands specify a remote host and directory. The /c

26-5

26

IncludeChecker

26-6

switch associated with open and dir indicate to the IncludeChecker that the previous

- token is a command. The /c operating switch associated with the output file,

MyProgram.list, instructs the IncludeChecker to write a compile and bind command
in Line.cm (see the Operating switches section).

>IncludeChecker MyProgram.list/c open/c server dir/c
WorkingDir >MyProgram @Source.MyProgram@

To check all files on the remote directory [server] <WholeDir>, use the following
command line:

>IncludeChecker WholeDir.list/c open/c server dir/c WholeDir

To run the IncludeChecker on a local directory named Temp and create a rebuild
command:

>IncludeChecker AllOfTemp.list/c dir/c Temp

Note that giving the IncludeChecker an explicit local directory to check is somewhat
faster than setting the search path to that local directory and using the command line:

>IncludeChecker AllOfTemp.list/c *.mesa
Specifying an explicit local directory avoids the Executive expansion of *mesa, the
parsing of a potentially very long command line, and the lookups for each FileName F
(F.mesa, F.bcd, F.config, F.pack). Instead, the entire directory is enumerated,
no unnecessary probes are done to determine if files exist.
To bring up the tool only, type either of the following commands to the Executive:
>IncludeChecker/x
>Run IncludeChecker.bcd
The output file by default is written on IncludeChecker.list and the command file is
Line.cm. To direct the output file to MyFile.list and the command file to

MyCommand .cmin the first example, type:

>1IncludeChecker MyFile/c dir/c Temp commandFile/c MyCommand

XDE User’s Guide 26

26.4 User.cm

The following is a list of the User.cm fields used by the IncludeChecker:

[IncludeChecker]

CommandNameFromRoot: Boolean item that, if TRUE, will cause the IncludeChecker to
use <root>.cm instead of Line.cm as the name of the
compile, bind, and package command produced by
running the IncludeChecker with /c. <root> is the output
file name minus any extension.

DefaultSwitches Operating switches to be used by the IncludeChecker. (See

the Operating switches section.)

26-7

26

IncludeChecker

26-8

27

Lister

27.1 Files

The Lister produces various listings of information in object files, such as dates of the
definitions files used by an object file and a cross-reference listing of procedure calls
within the object file.

Retrieve Lister.bcd from the Release directory.

27.2 User interface

The Lister runs in the Executive. Commands look like procedure calls with constant
(string, numeric, character, boolean) arguments. Arguments are type-checked by the
command interpreter. To run the Lister, type to the Executive:

>Lister <commandj [arg), arg2, ...]> <switches> <commandz[argj,
.e.]1> <switches>

You actually type the square brackets, as in a Mesa procedure call. For parameters of
string type, quote marks are optional; the scanner will take any characters up to the next
comma or right bracket if the first character is not a quote. The optional local switches are
a sequence of zero or more letters preceded by a slash (/). Each letter is interpreted as a
separate switch designator, and each may optionally be preceded by - or ~ to invert the
sense of the switch. The switches that apply to each command are documented in the
description of the command.

Almost all of the Lister commands read one or more object files and extract information
from them. The files can be the output of either the Compiler, the Binder, or the Packager,
although some commands require one or the other specifically. In the case of a single file,
the parameter is the name of the file; if no extension is given, .bcd is assumed. Some
commands take a list of files. In this case, the parameter specifies a file (such as
object.defs) that contains a list of object files separated by blanks.

The commands are divided into two sections below: those of general use, and those used
internally by the Mesa implementors. Quote marks are shown for command parameters
that are of string type; it is usually not necessary to type them to the Lister.

271

27

Lister

27-2

27.2.1 Commands useful to general Mesa users

Compress|["FileList"]

FileList is the name of a file that contains a list of compiler output object files. The usiNG
lists of the directory statement are generated for each module in the list; they are then
sorted to show for each interface, and for each item in the interface, which modules
reference that item. The same caveat about implicitly included symbols applies as for the
Using command. The output is written to FileList.ul.

Help[], Help["CommandName"]

Help[] will list the set of Lister commands and the command syntax for each. This can
also be done by calling the Lister with no command, or by calling the Lister with a
command it does not recognize. Help["Commandname"] will print the syntax for a
particular command.

Implementors["FileList"]

FileList is the name of a file that contains a list of compiler output object files
(interfaces and program modules). This command creates a file, FileList. iml, showing
where the various interface items are implemented for each interface exported by any
program in the list. If the list also includes the object file for a particular interface, the
interface items not implemented by any program are also shown. In order to run this
command, you need not only the object files in the list, but also the object files for the
interfaces exported by the programs therein. Missing object files are reported and the
command attempts to forge on.

Interface["FileName")

Given the object file for an interface (DEFINITIONS file), this command produces a list of the
interface items and numbers (on FileName. il). These numbers are the ones reported by
the Binder for unbindable items in the absence of the proper symbols.

Stamps ["FileName"]

FileName is a Compiler, Binder, or Packager output object file. This command generates
a file, Filename.bl, that shows the version stamps of any modules bound in the file, and
of all imports and exports of the top-level configuration in the file.

UnboundExports["FileName"]

FileName is a Compiler, Binder, or Packager output object file. This command examines
all of the exported interfaces and generates a file, FileName. x1, which lists the items in
those interfaces that are not exported by this module or configuration.

Using["FileName"]

FileName is a Compiler output object file. This command generates a directory statement
with its included identifier lists (on FileName.ul). Since there is not enough information
in the symbol table to tell reliably which symbols were implicitly included, the usiNG
clauses may contain a superset of those items actually needed.

XDE User’s Guide 27

UsingList["FileList"]

FileList is the name of a file that contains a list of Compiler output object files. This
command creates a ".ul" file for each file named in the list.

Version["FileName"]

FileName is a Compiler, Binder, or Packager output object file. This command shows, on
SimpleExec. log, the object, source, and creator version stamps of the file.

Xref["FileList"]

FileList is the name of a file that contains a list of Compiler output object files. This
command creates one or more files, filenamel.xref, filename2. xref, etc. that contain
a sorted list of all public declarations in the collection of modules and interfaces. A few
dummy lines are inserted to make this file a Mesa program syntactically. You should run
it through the Formatter (see the Formatter chapter) to make it more readable. If the /p
switch is specified, the output file will also show the private declarations.

XrefFileSize[ByteCount]
This command tells the Xre f command to limit the size of the output files to ByteCount.
XrefByCaller ["FileList"]

FileList is the name of a file that contains a list of Compiler output object files. This
command creates a single file, FileList.x1lr, that shows for each procedure of each
module in the list, what other procedures it calls. It does this by scanning the code for the
modules. It does an imperfect job in that it cannot tell who is being called via a procedure
variable. However, if there are any procedure variables called, it makes an entry for "*" in
the list of called procedures. You can check these procedures by hand. It does not report
calls to procedures nested within the given procedure.

XrefByCallee["FileList"]
This is similar to XRefByCaller, except that the results are shown sorted by callee, and

the output file is named FileList.xle. Thus, the entry for "*" is the set of procedures in
the list of modules that contain calls to procedure variables.

27.2.2 Commands useful to wizards
Bcd["FileName"]

FileName is a Compiler, Binder, or Packager output object file. T<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>