
This document is for Xerox internal use only

Smalltalk Kernel Language fv'lanual
BY Larry Tesler

SEPTEMBER 1977

Smalltalk is a programming language that deals with objects. Every object has its own
data. Objects communicate by sending and receiving messages according to simple
protocols.

Objects are grouped into classes. The objects of a class are called its instances. Each
class specifies the protocols its instances will know as well as the methods they will use
to respond to messages they receive. -

The standard facilities of the Smalltalk system include i/o protocols for disk, display,
keyboard, mouse, and Ethernet; basic data structures such as numbers, strings, arrays,
and dictionaries; basic control structures such as loops and processes; program editing,
compiling, and debugging; text editing, illustration, music, animation, and information
storage and retrieval.

Smalltalk applications include education, personal computing, and systems research.

This interim reference manual covers the semantics and the present syntax of the
Smalltalk kernel language. lt is assumed that the reader has seen Smalltalk in operation
and has programmed computers in Algol-like languages. Familiarity with LISP, Simula,
and/or Smalltalk-72 should be helpful but is not necessary. System operation is
described in the memo, Browsing and Error Analysis, available under separate cover from
the Learning Research Group, Systems Science Laboratory.

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road I Palo Alto I California 94304

This document is for Xerox internal use only

Disclaimer

The Smalltalk kernel system is not yet ready for general release. We ask that you do not
copy and distribute either the manual or the system at this time.

An interim version of the kernel is available for limited release. Potential users of the
limited release should apply to the Learning Research Group for additional documentation
and for a copy of the system.

All interactive programming systems have an inner and an outer face. Our general strategy
for building a programming system has been to concentrate on making the foundations as
strong as possible, and then to build a communications facility that allows the user to
browse. control. and extend the foundation.

The foundation of the newest Smalltalk system includes a large virtual memory that can
support tens of thousands of Smalltalk objects, the equivalent of two million bytes of
storage. For compatability with the rest of the Alto world, the kernel supports a file
system external to the virtual memory.

Built into the limited release are the following facilities:

• a microcoded interpreter for compact code syllables that efficiently implement
inter-object message communication;

• a scheduling facility for both real-time and relative control of communication
between objects;

· graphics creation including tex~. line drawing, painting, and font editing;

• text e~iting facilities with multiple typefaces and multiple documents;

• interactive programming and debugging, with on-tine access to system source
programs in the Smalltalk language.

Also implemented. but not yet in a useful form for release are:

• an Ethernet communication system;

• a multiple-strategy information storage and retrieval kernel.

The present document-handling facilities are not completely unified. A more unified
version is currently under development. In the coming months, most of the user
communication facilities will be replaced by a simpler and more comprehensive design.

The syntax described in this manual is an interim offering. Compared with the syntax of
Sma11talk-72, it is unambiguous and therefore easy to compile into compact code syllables.
Most programmers have less difficulty with syntax errors than in previous versions.
However, there are still weaknesses that must be corrected, especially if it is to be taught to
children or adults as a first programming language. When the new syntax is released. old
programs will be translated to it mechanically.

The present compiler is also an interim offering. For most purposes, it provides
satisfactory service: users have experienced edit-compile-test-debug-edit cycles of at most a
few minutes. However. for certain purposes its performance is unsatisfactory, so it will
soon be replaced by one that is even faster and provides more helpful error indications.

Table of Contents

Introduction
I History

1. Semantics
1.1 Classes 1
1.2 An archetypal class 4
1.3 Instances 5
1.4 Messages 5
1.5 Methods 6
1.6 Subclasses 1

2. Expressions
2.1 Literals 9
2.2 Special constants 10
2.3 Variables 11
2.4 Self-ref ere!lces 11
2.5 Expressions 12

3. Messages
3.1 Message forms 13
3.2 Selectors 13
3.3 Message dictionaries 14
3.4 Computed selectors 14
3.5 Precedence 15
3.6 Remote evaluation 15

4. Statements
4.1 Blocks 17
4.2 Cascading 17
4.3 Conditionals 18
4.4 Loops 20

5. Definitions
5.1 Method definitions 23
5.2 Class definitions 25
5.3 Instance creation and initialization 26

6. Contexts
6.1 Contexts 27
6.2 Processes 27

Appendices
I. Predefined classes 29
I I. Syntax summary 47
III. Character Set 49

A Short History of Smalltalk

Influences.

The Dynabook project and its language, Smalltalk, have a heritage that stretches back into
the 1960's. The first really self-contained personal computer was the LINC of Wes Clark.
The FLEX machine of Alan Kay and Ed Cheadle was the first design of a simulation
oriented higher-level-language personal computer.

The design of the FLEX language was most strongly influenced by the class and instance
ideas of Simula I, and by SketchPad and the Burroughs 85000. In addition, FLEX used
ideas found in the FSL compiler-compiler, JOSS, ~uler, and LEAP. A subsequent design
of the FLEX system reflected additional inspiration from the IMP extensible language.
LISP, the Project Genie 940 operating ·system, and the GRAIL system.

Jn 1970-71, Alan Kay produced two unpublished language designs, Novata and Srnalttatk-
71. Novala was an attempt to find a common and simple semantics for both FLEX and the
PLANNER language. Smalltalk-71 was also a goal-oriented language, but it was _designed
for children. It sought to combine the simplicity of LOGO with the generality of pattern-

. based systems. ·

Smalltalk-71 and the pattern-based system, LISP70, were designed concurrently and had
considerable influence on each other. Eventually, it was decided that the pattern-directed
approach was too "syntactic" and required more control of programming style than most
novice programmers are able to muster.

Smal/talk-72.

The next system, Smatltalk-72, was designed by Alan Kay and implemented by Dan Ingalls.
The language was a "return to the well", to the object-oriented semantics of Simula and the
communication ideas of the FLEX machine. By this time, Simula-67 had appeared in this
country. It was a more comprehensive design than its predecessor. Although Simula-67
introduced the important new idea of subclassing, its Algol heritage enforced strong typing
of variables and a rigid calling discipline. The FLEX scheme of message-oriented
communication between processes liberated some of the Simula ideas, and added to them a
simple framework for user-extensible syntax, interactive programming, and an integrated
user interface. The extensible control structure ideas of Dave Fisher's COL language design
were a major influence on Smalltalk-72.

The communications basis· of Smalltalk-72 has endured through many subsequent designs
and through the use of the system by hundreds of children and adults. The system itself
has. been continually redesigned and rebuilt by the Learning Research Group.

The Smalltalk kernel.

By 1976, considerable systems had been built in Smalltalk. A style of programming had
. been established and how the system was used by a variety of people had been studied.

Ideas for a qualitatively different successor to Smalltalk-72 were germinating. However,
many projects had been "backburnered" because of system limitations, especially virtual
capacity and performance. In that year, we decided to begin the design and construction of

ii
INTRODUCTION

a quantitatively improved follow-on to Smalltalk-72. It was to be strong, fast, and
capacious enough lo handle the backburnered projects, as well as to support experiments
leading to a qualitative successor. This system is now known as the Smalltalk kernel.

The ideas, designs, and implementation of the kernel are due to the entire group that
worked on it. Every person made major contributions. The absence of any of them would
have been detrimental to the success of the system . .
Those who had significant influence on the design of the Smalltalk kernel were (in
alphabetical order):

Alan Horning, Adele Goldberg, Laura Gould, Chris Jeffers, Ted Kaehler, Alan Kay,
Diana Merry, Dave Robson, John Shoch, Larry Tesler, and Steve Weyer;)c;..,.~

The implementation of the kernel was due to Dan Ingalls, Ted Kaehler, Diana Merry, and
Dave Robson. Since its completion in June, it has undergone a number of improvements,
and has seen contributions from a number of PARC regular and temporary employees.

References.

Wes Clark's LINC (ca. 1963-4)

W. Clark and C. Molnar, A Description of the LINC, Computers in Biomedical
Research II, Academic Press, New York, (1965)

FLEX machine design (1967-69) Alan Kay and Ed Cheadle

Alan Kay, FLEX, A ff:::exible §){tensib/e Language, Univ. of Utah Dept of Comp. Sci.,
Tech. Rep. 4-7 (May 1968)

Alan Kay, The Reactive Engine, PhD Thesis, Univ. of Utah Dept of Comp. Sci., (SepL
1969).

Simula I (1965).

0. Dahl, K. Nygaard, S/AfULA -- an AWOL-Based Simulation Language, CACM,
(Sept. 1966)

SketchPad (1962).

I. Sutherland, Sketchpad: A Man-Machine Graphical Communication System, MIT
Linc. Lab., Tech. Rep. 296, (Jan. 1963). Excerpts in Proc. SJCC (1963)

The BSOOO (1961) Burroughs Corporation.

R. S. Barton, A New Approach to the Functional Design of a Digital Computer, Proc.
Western Joint Comp. Conf., (May 1961)

W. Lonergan, P. King, Design of the B5000 System, Datamation, (May 1961)

Burroughs Corporation, Burroughs B5500 Information Processing System Ref ere nee
Manual, (1964)

FSL compiler-compiler (1964).

Jerome Feldman, A Formal Semantics for Computer Languages and Its Application in
a Compiler-Compiler, Carngie PhD Thesis, (1964). Excerpts in CACM (Jan. 1966)

SMALLTALK KERNEL LANGUAGE MANUAL
iii

JOSS (1962-3) The RAND Corporation.

Cliff Shaw, Joss: A Designer's View of an Experimental On-line Computing System,
AFJPS Conf. Proc., XXXVI, 1 (Fall, 1964). '

Euler (1965)

N. Wirth: H. Weber. Euler -- A Generalization of ALGOL, and its Formal Defi11ition:
Part I, Part I I, CACM, (Jan., Feb. 1966)

LEAP (1966) MIT Lincoln Laboratory.

Jerome Feldman. Aspects ·of Associative Processing. Tech. Note 1965-13, MIT Li~c.
Labs, (April 1965)·

J. Feldman, P. Rovner, The LEAP language and Data Structure, Tech. Note DS-5436,
MIT Linc. Labs., (Oct 1967)

IMP Extensible Language (1965-7).

E. T. Irons. Experience With an Extensible language, CACM, (Jan. 1970)

LISP (1959) MIT.

John McCarthy, Recursive Functions of Symbolic Expressions and Their Computation
By Machine, CACM, (April 1960)

John McCarthy, The LISP 1.5_ Programmer's Manual, MIT Press, (Feb. 1965)

Project Genie 940 Operating System (ca. 1965-6) Univ. of Cal. (Berkeley)
Lampson, Lichtenburger, Pirtle, Deutsch, Barnes.

B. W Lampson, W. W. Lichtenhurger. and M. W. Pirtle. A User Machine in a Time
Sharing System, Proc. IEEE, (Dec 1966)

GRAIL (ca. 1966-68) The RAND Corporation.·

T. Ellis. J. Heafner, W. Sibley, The GRAIL Project.~ An Experiment in Man-Machine
Communications, RAND, RM-5999-ARPA, (Sept. 1969)

PLANNER (ca. 1968).

C. Hewitt., PLANNER·-- A Language For Proving Theorems in Robots, Proc. IJCAI,
(Sept. 1969) .

G. Sussman, T. Winograd, E. Charniak, Micro-Planner Reference Manual, MIT AI
Memo 203, (July 1970)

LOGO (ca. 1967) MIT and Bolt Beranek and Newman, Inc .

. Feurzig, W., et. at., Programming languages as a Conceptual Framework for Teaching
Mathematics, Final Report on BBN Logo Project, (June 1971)

LISP70 (1971) Smith, Enea, Tesler. Stanford A.I. Project.

L. Tesler, H. Enea, D. Smith., The LISP-70 Pattern Matcher, Proc. IJCAl, (Sept. 1973)

iv
INTRODUCTION

SIM ULA-67 (1967)

· 0. Dahl, B. Myhrhaug, K. Nygaard, S/MULA--Common Base Language, Norwegian
Computing Center, Oslo, Norway (1970)

CDL (1969)

David Fjsher, Control Structures for Programming Languages, PhD Thesis, Carnegie
Mellon University, (May 1970)

The Dynabook and Smalltalk-72 (1971-2).

Alan Kay, A Personal Computer For Children of All Ages, Proc. ACM Nat'l Conf.,
(Aug. 1972)

Alan Kay, A Dynamic Medium for Creative Thought, Proc. NCTE, (Nov. 1972)

Alan Kay, Adele Goldberg (Ed.), Personal Dynamic Media, Learning Research Group,
Xerox Palo Alto Research Center, (Mar. 1975)

Alan Kay, Personal Computing, Conf. on 20 Yrs. Comp. Sci., Univ. of Pisa, Pisa, Italy,
(June 1975)

A. Goldberg, A. Kay, The Smalltalk-72 Instructional Manual, Learning Research
Group, Xerox Palo Alto Research Center, (June 1976)

A. Kay, A. Gol~berg, Personal Dynamic Media, IEEE Computer, (March 1977)

Alan Kay, Microelectronics and the Personal Computer, Scientific American, {Sept.
1977)

Chapter I: Semantics

The Smalltalk programming language deals with objects. An object has both methods
(procedures) and state (data). Objects can communicate with each other by sending and
receiving mes$ages according to definable protocols. An object is an independent activity
that maintains its own state and communicates on its own terms with other objects.
Therefore, it has the properties of a complete computing machine.

The notion of objects pervades Smalltalk. An array is an object A number is an object.
The operator's screen is an object, and so is each window displayed thereon. If the operator
is creating a document. the document is an object. as are its component parts such as.
paragraphs and illustrations. If the operator is composing music, the score. each of its
voices. and each of their notes are objects. as are the instruments and their timbres.

I.I Classes.

A single Smalltalk environment contains tens of thousands of objects. The computer
representations of all these objects requires several hundred thousand words of storage. To
make it practical for the programmer and the system to deal with such a large space of
objects, objects that share certain common properties are grouped into families. As in the
language Simula, a family of objects is called a class. The objects of a class are called its
instances.

By convention, the name of a class begins with a capital letter both in programs and when
it is used as a proper noun, but not when it is used as a common noun. Thus, it would be
proper to assert that "the integer 35 is an instance of class Integer". There are other
spelling conventions in the system, but unfortunately, they are not presently followed in a
consistent manner.

Over fifty classes are predefined in the standard Smalltalk system. Among the classes you
should know about are:

Integer

The instances of class Integer are whole numbers between -32768 and +32767
that also can be treated as 16-bit values or (if small) as character codes.

Float

The instances of class Float are exponent/mantissa representations of numbers.
The ·precision is about 9 decimal places, and the exponent range is ±16000.

Longlnteger

The instances of class Longlnteger are whole numbers of any reasonable
precision.

Point

A point is an x-y pair of numbers. It often (but not necessarily) represents a
location on the display screen. Arithmetic can be performed on two points; a
new point is returned whose x and y are the result of the specified arithmetic
performed on the x and y of the original points.

2
CHAPTER 1: SEMANTICS

Rectangle

A rectangle is a pair of points that often (but not necessarily) represent a
rectangle on the display screen whose upper left corner ,(called the "origin")
and lower right corner (called the "corner") are the two points, Arithmetic can
be performed on two rectangles; a new rectangle is retprned whose origin and

. corner are the result of the specified arithmetic performed on the origin and
corner of the original rectangles. If the rectangle corresponds to an area of the
display screen. then the rectangle can operate on that image in various ways.

String

A string is a sequence of zero or more eight-bit bytes. i.e .• integers between O
and 255 that can be used to represent text characters.

Substring

A substring is a reference to a list (a "map") of positions in some ("mapped")
array (often, but not necessarily, a string).

Interval

An interval is an arithmetic progression defined by a start-number. a step- ·
_number, and a stop-number, e.g., 1 to: 5 by: 2 represents the progression 1, 3, 5.

Paragraph

A paragraph is an array of characters each of which is assigned a typeface.
The paragraph as a whole has a specified alignment: flush left, flush right.
centered, or justified. Characters can be inserted or deleted from the
paragraph. Typefaces can be changed for any sequence of characters. The
alignment can be changed. The paragraph can be converted to and from Bravo
representation.

Vector

A vector is a one-dimensional array of references to objects, some of which
may themselves be vectors. ·

Stream

File

A stream is a reference to some position in some array, such as a string or a
vector. It can quickly advance or retreat through the array, getting. putting, or
skipping the elements passed.

This class and the next are included to provide con-ipatability with the rest of
the Alto world. A file is an object that accesses an Alto disk file on one disk
or the other. Access is normally sequential, but random and multi-page access
are provided as well.

Directory

A directory is an object that accesses an Alto disk file directory (e.g., 'sysdir'
on dpO).

SMALLTALK KERNEL LANGUAGE MANUAL
3

User View

There is currently a single instance of class UserView, accessed through the
global variable, user. That instance can interact with the user's terminal in
various ways.

Turtle

A turtle is a drawing pen filled with black, white, or complementing ink, with
a penpoint from 1 to 8 dots thick that can draw on the display screen. It
"crawls" around the screen under the direction of messages sent to it. (It is
sometimes said that Smalltalk is "like LOGO"; actually, the main similarity
between the two educational languages is the availability of turtle graphics. In
Smalltalk, there may be of course many independent instances of class Turtle
in existence at a time.)

· Textframe

A text frame allows paragraphs to be displayed on the screen, typeset to a
specified width and clipped on a specified boundary.

Dispframe

A display frame is a window on the display screen through which a teletype
style dialogue can be carried on.· There is typically a single display frame.
managed. by user (the only instance of class User View). Jt can prompt for user
input, read the input (e.g., 3+4), evaluate it, and print the last value computed
(e.g., 7). ·

Font Window

A font window is a window on the display screen in which one character at a
time out of a font (typeface) can be edited. The character is displayed blown
up so that each dot in its dot-matrix representation can be pointed at by the
user and set to black or white. Through a menu one can change the width of
the character.

BitRect

A bit rectangle is a rectangular matrix of black and white dots that can be
displayed on the screen and in which the user can paint ("edit").

Cursor

A cursor is a 16 by 16 matrix of black and white dots suitable for display as
the Alto screen cursor. It can install itself as the current screen cursor during
the execution of a given program and can remember and restore the previous
cursor when the program is done.

Menu

A menu is a short list of short one-line text entries that can be displayed in a
temporary frame on the screen so that the user can select one of the entries
and invoke an associated action.

4
CHAPTER I: SEMANTICS

Class

Each Smalltalk class is itself an instance of the class. Class. Each class
"manages" its own instances and messages, that is, it can create new ones and
can enumerate the ones that exist.

ClassOrganizer

As an aid in dealing with the large number of classes in Smalltalk and the
variety of messages which they recognize, a facility is provided for organizing
them into categories. The predefined classes are organized into the following
categories: Kernel classes; Numbers; Basic data structures; Sets and
Dictionaries; Graphical objects; Text objects; Browser and Debugger; Files and
Compiler; Primitive access. The messages of a class are, by convention.
organized into such categories as Initialization, Access to Parts, and Private.
"Private" messages are intended to be invoked only by methods of the same
class.

Context

To respond to a message, an object executes a method. To do so, it needs to
have space in which to work, needs to keep track of its progress through the
method, and needs to remember who sent the message so it can reply when it is
done. All these needs are serviced by an instance of class Context, one of
which is created almost every time any object receives a message. A context
also provides help in debugging programs and in constructing control
structures such as loops, processes, and coroutines.

1.2 An archetypal class.

For the sake of discussion in this manual, reference will often be made to class Dictionary.
You should know about it:

Dictionary

A dictionary associates with each of a set of objects (usually all of the same
class) a corresponding value. It can tell what value is associated with a given
object and can insert, delete, and change associations.

A particular instance of class Dictionary might contain the foilowing five nonsensical
associations:

objects Yalues

'six' 6

'twelve' 12
'+' 'plus'
'Fas talk' 'slow'
'Smalltalk' 'fast'

Let us examine this instance from two viewpoints, the internal viewpoint of its
-representation, and the external viewpoint of its protocol (i.e .. the messages it recognizes).
The two viewpoints are quite different. We will then examine methods, the link between
the two.

SMALLTALK KERNEL LANGUAGE MANUAL
5

1.3 Instances.

From the internal viewpoint, an instance of class Dictionary is composed of two fields
called objects and values. Both fields reference vectors whose lengths are the same power of
2. If each vector has a length of, say, 8, and the dictionary has 5 associations, then 3 of the
locations in each vector will be vacant Vacant locations are represented by a reference to
the special copstant nil.

Storage in the Smalltalk system is managed with the aid of reference counts. For any
object to thrive and occupy space in a Smalltalk environment, one or more references to it
must exist in variables of other thriving objects. If the variable named diet references a
Dictionary instance, then that instance and the two vectors it references will thrive.
However, if the dictionary ceases to be referenced by diet, then (assuming no other variable
references it) it will be deallocated, that is, it will disappear and its storage space wilt be
reclaimed for other uses. If the two vectors referenced by the dictionary are referenced
nowhere else. they will be deallocated as welt

I .4 Messages.

From the external viewpoint of another object wanting to access a dictionary, its fields. can
be reached only indirectly, by sending messages to the instance. ·For example. if diet is a
variable that rt:?ferences our sample dictionary. then one can send a look-up message to the
dictionary with the Smalltalk expression:

diet lookup~ 'twelve'

and the value returned will be 12. Note that diet, the recipient of the message, is written
first,. followed by the message itself. The details of syntax of the Smalltalk language are
presented in Chapters 2 through 5.

From the external viewpoint, it is not essential to know that a dictionary is represented by
a pair of vectors and that their length is a power of 2. If class Dictionary is redefined to
use a different representation, and if its methods are modified appropriately, then all other
methods that use dictionaries will continue to function.

It is possible that instances of several classes are able to respond to the same message. To
the extent that two'.or more classes share that ability, it is said that they implement the
same protocol. A given class may have part of its protocol in common with one class and
part . in common with another.

To send a certain message to an object. the object must be of the "right type": that is, the
object's class must be able to respond to that message. Although the notion of class is
formalized in Smalltalk, the notion of type is not. Types are not declared or even named.

In Smalltalk, as in LISP. and APL, a given variable may reference an object of any class and
of any type. Therefore, if a programming error causes an unintended object to be assigned
to a variable, the error is not detected when the program is compiled, nor even when the
assignment occurs, but somewhat later when an uncomprehended message is sent to the
object. ·

The absence of type qualification has its benefits. It permits the notation to. be more
concise. It enables old programs to operate on instances of new classes, to the extent that
those classes follow old. protocols. It facilitates the availability of a small, reliable, and
easily extended resident compiler, thereby permitting direct execution of expressions both
for debugging programs and for invoking them.

6
CHAPTER 1: SEMANTICS

J.5 Methods.

Now that we have examined an instance from both the internal (concrete) viewpoint of
instance fields and the external (abstract) vkwpoint of message protocols, we come to the
link between these two viewpoints, the method. A class only understands a message for
which a method has been specified. For example, class Dictionary employs the following
method (explained below) to respond to loohup: messages:

lookup: name I x "the value correspond.i.ng to name, if any, else false"
[x ... self find: name,,,. [ltvalues"x] ltfalse]

Smalltalk programs are easier to discuss if the special characters are pronounced as follows:

I
[

with temporary
begin
then only
sub

..

...
11"
)

comment
gets
return
end

A method begins with a message pattern. in this case, lookup: name. The colon character
(:),which is not pronounced, indicates that an argument follows, i.e., name. There is also a
temporary variable called x that is not an argument but is used within the method to assist
its execution.

The body of a method is a block of Smalltalk statements that provides a procedural
implementation of the method. The body of the method above consists of a single
conditional statement:

x +- self find: name~ [itvalues. x] 1tialse

A conditional statement has three parts, a condition followed by =>. a true alternative
enclosed in [and J, and a false alternative. In the present example, its three parts are:

x +- self .find: name

An object can send itself a message by addressing it to the pseudo-variable
self. In this statement, the message find: name is sent to the dictionary itself.
That message is a predefined one that returns the location of name within
objects, i.e., an integer subscript i such that objecfs"i=name. If there is no
such i, it returns the special constant false.

The value returned is assigned by the symbol +- to the temporary variable x.
An assignment statement has a value, which is the value assigned ..

The condition of the conditional statement is considered false if the value
of the assignment was false, and is considered true otherwise.

1tvalues"x

11"false

This statement is executed if and only if the condition was true. lt sends
the message ·x to the vector values. That message is a predefined one that
returns the xth element of the vector. The 11 symbol causes the result to be
returned as the value of the current method.

This statement is executed if and only if the condition was false. It returns
false as the value of the current method.

SMALLTALK KERNEL LANGUAGE MANUAL
7

1.6 Subclasses.

When several classes implement the same protocol (i.e., respond to the same messages), they
may or may not employ the same methods to do so. If it happens that. the same methods
are employed, it would be awkward to have to repeat their definitions in each class.
Therefore, a limited facility for sharing method definitions among classes is provided. A
class may have subclasses. Take as an example the standard Smalltalk class, HashSet:

HashSet

A hash set is a set of objects that are usually of the same class. No object
appears more than once in the set. A hash set can tell whether a given object
is present and can insert and delete objects.

Class Dictionary (discussed earlier) is actuaTly a subclass of class HashSet which associates a
value with every object. A hash set has only objects; it has no values. Therefore, there is no
lookup: name message. However, there is a find: name message that returns the location of
name in objects. Therefore, class Dictionary need not define a method for the find:
message; it inherits one from HashSet. It also inherits the field objects, so its class
definition need only mention the field values. The definitions of the two classes are:

Class new title: 'HashSet';
fields: 'objects'

Class new title: 'Dictionary';
subclassof: HashSet; .
fields: 'values'

The syntax of definitions is covered in chapter 5. However, it should be explained here
that newly defined names appear in quotes (e.g., 'values'), while previously defined names
do not (e.g., Ha.shSet in the definition of class Dictionary).

The following are additional predefined Smalltalk classes that you should know about.
Some of them are subclasses or superclasses of the ones listed earlier. A couple of them are
abstract, that is, they have messages shared by their subclasses, but they do not have any
instances of their own.

Object

Every class is ultimately a subclass of class Object Thus, every instance of
every class can inherit messages from class Object, such as the ability to create
a copy of itself and the ability to create a window through which the user can
inspect its state.

VariableLengthClass

Classes like Vector and String are unusual in that their instances have
numbered· elements instead of named fields. Such classes are themselves
instances of class VariableLengthClass, a subclass of class Class. Each variable
length class manages its own instances and messages.

Number

Class Number is an abstract superclass of classes Integer, Float, and
Longlnteger. The messages of the abstract class Number do things that don't
require knowing the number representation, e.g., it can return the larger of
itself and another number after calling upon a representation-dependent
message to compare its own magnitude with that of the other number.

8
CHAPTER l: SEMANTICS

UniqueString

Class UniqueString is a subclass of class String. A unique string is an entry in
a certain global set in which no two entries are equal to each other. It is
similar to an "atom" in the language USP.

Array

Class Array is an abstract superclass of Vector, Interval, String, Substring, and
UniqueString. Every array is an ordered set of eiements that can be accessed
by positive integer subscripts. The messages of the abstract class Array do
things that don't require knowing the array representation, e.g., it can produce
a copy of itself with an insertion, deletion, or replacement by calling upon
representation-dependent messages to calculate its length, to create a new
instance, and to access individual elements.

MessageDict

Class MessageDict is a subclass of class HashSeL Every class has a message
dictionary in which to hold the messages it can understand and the methods it
uses to respond to those messages. The objects of a message dictionary are the
names ("selectors") of the messages. With each message are associated the
source code and object code of its method.

ObjectReference

An object reference has only one field, its value field, which, like all fields,
contains a reference to an objecL An instance of class ObjectRef erence has no
other function but to hold that value, so it may be thought of as an "indirect
reference". It can have its contents examined or reassigned much as if it were
a variable, except that a message must be sent to it to make it do so.

SymbolTable

Class Symbo!Table is a subclass of class Dictionary. The values it associates
with its objects are instances of class ObjectReference. In effect, it associates a
"variable name" with a "variable".

Window

A window is a rectangular area of the display screen with which is associated a
user interface to a system facility. Each such facility is implemented as a
subclass of class Window. The messages of class Window poll user input
devices and report events to the subclass.

ParagraphEditor

A paragraph editor handles edits to a paragraph through a window. It
implements the concept of a selection encompassing any sequence of characters
within the paragraph, and operations to edit that selection, such as typing. cut.
paste, and copy. ·

Appendix I contains a complete list of the predefined classes in the current version of
Smalltalk, and discusses in English what they can do. The Smalltalk-language versions are
available both on-line (through the browsing facility) and in hard copy form.

Chapter 2: Expressions

Appendix JI presents the full syntax of the Smalltalk language in a formal notation. The
Smalltalk character set is presented in Appendix III. The present chapter and the next
three discuss. the syntax informally with the aid of examples.

2.J Literals.

A literal is a symbol whose value is a constant implied by the spelling. Literals only exist
for a few classes: Integer, Float, String. UniqueString. and Vector.

2.1.J Integer literals

Examples:
0 -940 32767 -32766 0377 0177777 0100000

Incorrect:
0940

A literal of class Integer is written as an unbroken sequence of digits; if negative. it
is preceded by a "high minus" sign: -. If the first digit is o, the rest are in octal
radix.

2.1.2 Float literals

Examples:
0.0 -6.2238 31.415927e·1

Incorrect:
0. -s. .31415927e1

A literal of class Float is a written as a decimal-radix number constant immediately
followed by a decimal point (a period) and one or more decimal digits. After it

. may be an exponent of the form e followed by a decimal-radix integer constant.

2.1.3 String literals

Examples: .. 'a' 'Hi'

Incorrect

'They said, "Yes!"'

... 'They said, 'Yes!"

....

A literal of class String is written as an arbitrary sequence of characters enclosed in
apostrophes. To include an apostrophe in the string, write two in a row.

10

2.1.4

CHAPTER 2: EXPRESSIONS

UniqueString literals

Examples:
G?+ &11' GT' , @>Help Grprinton:

Incorrect
GT-) @='12

A literal of class UniqueString is either a sequence of letters, digits, and colons not
starting with a digit, or any other single· character except a parenthesis. It is
preceded by a r:ii=' unless it is embedded in a vector literal (see below) .. The
difference between a unique string and a string is that no two instances of class
UniqueString contain the same characters. Unique strings are similar to atoms in
the language LISP.

2.1.5 ·Vector literals

Examples:
· 1$='() r.U='(O 6 -32767) @>((14 Help) 'arbitrary text')

Incorrect
(14 Help) r.U='(l 2 (3 4]

A literal of c1ass Vector is written as an arbitrary sequence of literals enclosed in ·
parentheses .. It is preceded by a@" unless it is embedded in another vector literal.

2.2 Special constants.

The following constants of class Object have reserved names:

nil The default initial value for a variable.

false Anything but false is effectively "true".

true Useful to force a "true" condition.

2.3 Variables.

Examples:

SMALLTALK KERNEL LANGUAGE MANUAL

x xl theOldVersion sm1977a

11

A variable name is a sequence of letters and digits of which the first character is a letter.
Upper and lower case letters are different, e.g., hello is not the same variable as Ilello • .
There are four kinds of variables in Smalltalk: shared variables, class variables, instance
variables. and method variables. The distinction is one of scope and lifetime;.

Shared variables reside in pools which may be shared by many classes. Both the name and
the storage for the value of the variable are shared by all those classes. Some pool variable
names are spelled with an initial capital letter, but, by convention, names of more local
variables never begin with a capital letter. A pool is an instance of class Symbo!Table;.

All classes share the global pool named Smalltalk. In that pool are found variables such as
user (the only instance of class UserView), mem (an integer array to address main
memory), Top (the top-level priority scheduler), and the names of all the predefined
classes.

Class variables are variables shared by all instances of a class. They are actually pool
. variables in a pool that can not be shared by any other class. Note: the current compiler
does not allow subclasses to share class variables.

The name of an instance variable is shared by all existing instances of one class, but each
instance maintains its own storage for the value. Instance variables are also known as
fields.

The name of a method variable is local to a method in a class. New storage for the value
of the variable is allocated each time its method is invoked and is deallocated when the
method is completed. There are two kinds of method variables: arguments to the message,
and all others; the latter are sometimes known as temporary variables.

When a variable name occurs in a method, it is first looked up among method, instance,
and class variables; if it is not found among them, it is sought in the pools shared by the
class (in the order of declaration). If it is not found anywhere, then (in the current version
of the compiler) it is inserted automatically into the special pool named Undeclared, with a
value of nil. ·

2.4 Self-references.

Some standard pseudo-variables are provided automatically to every method. They can not
be assigned values by the method. The most important one is self, the instance whose
method is being performed. For example, a dictionary can tell itself to find the location in
its objects vector of the value name by evaluating self find: name.

The default return value of a method is self. This default is generally employed by
messages performed for effect. To override the default in messages performed for value.
use the return statement (11), as in the following method of class Integer:

I arg "the largest multiple of arg · not greater than me"
[1'i(self/arg)*arg]

Other variables provided automatically are super (Section 3.3) and thisContext (Section 6.1).

12 CHAPTER 2: EXPRESSIONS

2.5 Expressions.

The constructs discussed so far in this chapter h::lve all been syntactic primaries, out of
which may be constructed larger expressions. As in other programming languages, an
expression can be ei•aluated according to certain rules. in order to yield a value. The value
of every expression is an object (or more precisely, a reference to an object). An expression
of any size can be made to serve as a syntactic primary by enclosing it in parentheses, e.g.:

(diet lookup: 'twelve')

There are three expresssion forms in the Smalltalk syntax:

a variable followed by an assignment arrow and an expression, e.g.:
x t- y + 16

just a primary. e.g.:
16

a primary followed by one or more messages, e.g.:
16 + vec length

Jn the first form, the expression after the arrow is evaluated, and the value is assigned to
the variable before the arrow. The value of the expression also becomes the value of the
assignment as a whole. Thus, a of- b of- 4 will assign 4 to both a and b. An assignment to a
variable often stands alone as a statement, in which case it is called an assignment
statement.

Jn the second form, the primary is evaluated, and its value becomes the value of the
expression.

The third form of expression sends messages to objects in order to yield a value. When an
object sends a message, it waits for a response before continuing to perform its method. If
asynchronous computation is desired, processes may be created and scheduled (see Section
6.2).

The syntax of messages is discussed in the next chapter.

Chapter 3: l\tlessages

3 . ./ ,\.! essage for ms.

There are three principal forms of message in the Smalltalk syntax: unary, binary, and
keyword. Each form has a variation called an assignment form. The variety of forms are
represented by the following examples.

An expression sending a no-argument "unary" message next to a. stream input is:

input next

An expression sending a one-argument ''binary" message +2 to an integer j is:

j+2

An expression sending a one-argument binary message ·:c to a vector values · is:

va~ues·x

An expression sending a one-argument "keyword" message lookup:'six' to a dictionary diet is:

diet lookup: 'six'

An expression sending a two-argument keyword message insert: 'six' with: 6 to diet. is:

diet insert: 'six' with: 6

An expression sending a one-argument "unary assignment" message next ~ char to input is: .

. input next +- char

An expression sending a. two-argument "binary assignment" message ·x ~ value to values is:

values·x· +-value·

An expression sending a two-argument "keyword assignment" message instfield: 4 ~value to
an arbitrary object obj is:

obj instfield: 4 +- value

Messages with more than two arguments are formed by using additional keywords. Each
keyword ends with a colon. Note that a unary message has no colon. A binary message is
introduced by a single non-alphanumeric character chosen from a limited set that includes
the characters:

+-*/f\•()~~:#0:

3.2 Selectors.

Every message has a name that is an instance of class UniqueString. The name is called a
selector. It is derived by stripping out the arguments and all delimiters (spaces, tabs,
carriage returns, and comments) from the message.

Examples:
next + • lookup: insert:with: next+- • +- instfield:+-

14 CHAPTER 3: MESSAGES

Keyword selectors can not be written consecutively, or else they would concatenate into a
selector with a longer name. Thus, (a min: b) max: c and a min: (b max: c) are quite
different from a min: b max: c. The first two expressions would invoke the keyword
selectors min: and max:, while the latter would invoke the sing~e keyword·selector min:max:.

3.3 Mes sage dictionaries . .
When a message is passed to an object, Smalltalk selects a method to execute as follows. It
looks in the message dictionary of the object's class for the message selector. If the
selector is found there, the corresponding method is executed. Otherwise, the superclass of
that class is determined, and its message dictionary is probed. This process is repeated as
many times as necessary, up to and including class Object, the superclass of all classes.· If
no superclass has a definition for the selector, then the program stops execution and the
user is notified that the message was "not understood".

A message to self is not exceptional; it simply starts the message dictionary search at the
class of self. The self-reference super means the same as self except that it starts the search
at the superclass of the class in which the sending method is defined. For example, class
Window responds to the message show by painting the interior of its screen image white
and the outline black, and by displaying a title above the top edge. Class PanedWindow is
a· subclass of class Window that responds to the message show by calling super show and
then sending a message to each pane telling it to outline its image. Thus, if the variable p
contains a reference to a PanedWindow, p show will execute PanedWinclow's show method,
which in turn will execute Window's show method. But if w contains a reference to an
ordinary Window, w show will only execute Window's show method.

3.4 Computed selectors.

Occasionally, the message to pass to an object must be computed during execution. For
example, it may be desired to evaluate a+b, a-b, a*b, or alb depending on whether the value
of a certain variable op is(}?+,(}?-, GP*, or (ff>/. To force the value of op to be treated as
a selector, use the form:

a perform: op with: b

For messages of more than one argument, append additional with: phrases. For messages of
no arguments, omit the with: phrase. For example, it may be desired to evaluate file
creationDate, file writeDate, file length, or file extension depending on whether the value of
sortKey is (i?crea.tionDate, GrwriteDate, ([;=>length, or (}?extension. To force the value of
sortKey to be treated as a selector, use the form: ·

file perform: sortKey

If the value of op in the first example is not a one-argument selector, or if the value of
sortKey in the second example is not a zero-argument selector, then Smalltalk will report an
error to the user.

SMALLTALK KERNEL LANGUAGE MANUAL 15

3.5 Precedence.

There are three levels of precedence in the Smalltalk expression syntax: unary selectors bind
tightest; binary selectors come next; keyword selectors are weakest. Exception: the t- in an
assignment message has the weakest right precedence. In case of equal precedence, grouping
cf unary and binary selectors is left to right Example:

u length - v length * w length max: x length + q vec length

is evaluated as if it had been parenthesized as follows:

(((u length) - (v length))* (w length)) max: ((x length)+ ((q vec) length))

Although precedence rules are well-defined, it is advisable to make no assumptions about
the order of evaluation of primaries in an expression. It is unlikely that you can guess the
behavior of:

p"(i+-i+l) +- q•(i+-i+l) max: r"(i+-i+t).

If i was initially zero, does q·1. q·2, or q'3 get evaluated? It may vary from
implementation to implementation. However, one can be certain that the recipient and all
arguments are fully evaluated before the recipient's method begins execution, except in the
remote evaluation case described below.

3.6 Remote evaluation.

When an open colon (g) is employed instead of a closed colon (:) after a keyword. the
argument that follows is not evaluated before the message is passed. The recipient may
evaluate such an argument after receipt, by passing that argument the message evaL The
evaluation may be done more than once if desired, or not at all; it will always take place in
the context of the sender (cf. Algol call-by-name). For example, the expression:

user timeg [diet lookup: 'twelve']

tells the Smalltalk user interface to return the time {in 39 millisecond units) that it takes to
evaluate the expression in brackets. The method employed to respond to time8 is:

time8 expr I t "the time in 39ms units to evaluate expr"
[t .. mem·2ao. expr eval. 1tmem·2so-t]

The first statement in the block assigns to the temporary variable t the current value of the
real-time clock in Alto memory location 280. The second statement evaluates the
expression in question; this act is called remote evaluation. The third statement returns the
difference between the new clock reading and the old.

There is a special case of remotely evaluated arguments in which the argument is a variable.
In that case, it is supposed to be possible for the recipient to assign a value to that variable.
However, this remote assignment facility is not supported by the current compiler except in
the for statement (see Section 4.4).

16 CHAPTER 3: MESSAGES

Chapter 4: Statements

4.1 Blocks.

Evaluation in Smalltalk is sequenced by use of statements and blocks. Any expression can
serve as a statement; in addition, the language has a number of other statement forms. A
block is a sequence of statements separated by periods and enclosed in a pair of square
brackets.

A block may serve as a syntactic primary. Its value is determined as follows. If its last
statement is not followed by a period, then that statement's value becomes the value of the
block. Example:

[v +- - diet lookup: 'twelve'. w +- diet lookup: 'six'. v+w)

in which v gets 12, w gets 6, and the value of the block is the value of v,~w. or 18.

If a block ends with a period, nil. becomes its value. Example:

[v +- diet lookup: 'twelve'. w +- diet lookup: 'six'.)

in which the statements are executed for effect, and the value of the whole block is just nil.

If the last thing executed in a block is a return statement introduced by a 1l' symbol, then
the method in which it is embedded terminates and returns the value of the expression that
follows the 'It. Example: ·

[v +- diet lookup: 'twelve'. w .- diet lookup: 'six'. 1iv+w]

in which 18 is returned from the surrounding method, even if other blocks intervene.

The value returned by a method that does not execute a return statement is always self,
regardless of the last statement in the outermost block. Section 5.1 discusses methods in
more detail.

4.2 Cascading.

A number of messages may be sent to the same recipient in sequence without naming the
recipient each time. Separate the messages by semicolons. The last object that was sent a
message before the first semicolon will be sent all the messages. Example:

self pen go: dist+lO; turn: -90; penup; go: 20; pendn

According to the rules of precedence, the last message sent before the first semicolon was
go: dist+lO. The object to which it was sent was the value of self pen. Therefore, that same
object is sent the messages tum: 90, penup, go: 20, and pendn, in that order. Each message is
sent before the arguments of the next message are evaluated.

18 CllAPTER 4: STATEMENTS

The value of a cascade statement is the response from its last message. Thus, it is possible
(but not very readable) with a single mention of diet to both insert an entry into that
dictionary and look up an entry in it:

Acceptable:

v +- [diet insert: 'twelve' with: 12; lookup: 6]

Incorrect

v +- diet insert: 'twelve' with: 12; lookup: 6

To the latter form, the compiler will complain "improper cascading."

4.3 Conditionals.

The value of an expression or of a cascade may be treated as a true-or-false condition to
choose between two alternative paths of execution. The condition is followed by a=> ("then
only") symbol and two alternatives. If the condition is false then the second alternative is
executed. Otherwise, the first alternative is executed. The entire construct, including the
condition and both alternatives, is called a conditional. Example:

x<y=> [3) 4

in which the condition is x<y, the first (true) alternative is [3], and the second (false)
alternative is 4.

Syntactically, the first alternative of a conditional is a bracketed block, and the second
alternative is (careful!) everything following that up to the end of the block in which the
conditional appears. [t follows that a conditional must always be the last statement in a
block. The value of the executed alternative becomes the value of that block. Example:

z <- [x +-diet lookup: 'six'. x<y=> [3] sink next+- x. 4]

which first looks up 'six' in diet, assigning the result to the variable x, and which then
compares that result with y. If x is less than y, it executes the first alternative, a block with
a single statement that simply evaluates 3. Otherwise, it executes the second alternative,
consisting of two statements, the first of which is sink next ~ x and the second of which
simply evaluates 4. The value assigned to z is either 3 or 4.

An alternative is often itself a conditional, for example:

highest +- [x>y=> [x>z=> [x] z] y>z=> [y] z]

which assigns to highest the largest value among x, y, and z. Both alternatives of the
condition x>y are themselves conditionals. Jn Algol-60, the statement would have been
written:

highest r if x>y then (if x>z then x else z) else if y>z then y else z

SMALLTALK KERNEL LANGUAGE MANUAL 19

The first alternative of a conditional may be an empty pair of square brackets. The second
alternative may be omitted altogether. The value of the missing alternative in either case is
nil. Example:

[user keyset=4=:- [] user kbd=015=;. [text scrollby: 2]]

in which nothing happens if the value of user keyset is 4; otherwise, a scroll message is sent
to text if the value of user kbd is 015; and otherwise nothing happens at all. In Algol-60,
the statement would have been written: ·

if keyset(user)=4 then ~egin end else if kbd(user)=015 then scrollby(text, 2)

A condition may include conjunctions, disjunctions, and negations, all of which are simply
messages recognized by class Object There are two forms of conjunction: ··

p and: q
p andg q

The condition is true iff both p and q are true (not false). However, in the first form, both
p and q are evaluated, while in t~e second form, q is not evaluated when p is false.

There are two forms of disjunction:

p or: q
p or8 q

The condition is true iff either p or q is true (not false). However, in the first form, both p
and q are evaluated, while in the second form, q is not evaluated unless p is false.

There are two forms of negation, both of which employ the binary message, same as,
symbolized :::=:

p ::= false
false= p

The condition is true iff p is false.

The second alternative of a conditional may begin with a cascade .. · In that case, the
recipient of the messages in the cascade is that object which was last sent a message in the
condition. Thus, in:

ans <- [x+2(v length=;. [1]; (50=;. (2]; <90=;. [3] 4]

which could be written vertically as:

ans<- [x+2 (v length=;. [1];
(50o;> [2];
6'.90=;. (3]

4]

the recipient of all three messages, <v length, <so, and ~90, is the value of x+2; the first
condition is whether the recipient is <v length; if that is true, ans becomes 1; otherwise, the
second condition is whether the recipient is <50; if that is true, ans becomes 2; the third
condition is whether the recipient is ~90; if that is true, ans becomes 3; otherwise, ans
becomes 4. · This construct provides a kind of "case statement".

20 Cl!APTER 4: STATEMENTS

The Smalltalk conditional often causes trouble for beginners with experience in other
languages. A common error is to omit the brackets around the block whose value it
supplies.

4.4 Loops.

Loop statements and other control statements may be written as messages without explicit
recipients. fmplicitly, they are sent to an object called thisCcmtext (see Section 6.1). The
current compiler supports only the control statements described in this section. all of which
are loop statements.

The currently supported loop statements each take a remotely evaluated argument (see
Section 3.6) after the keyword dog. The current compiler requires that the argument of dog
be a block. ·

A loop statement always has the value nil, which is generally of no interest. There are
three major kinds: until statements. while statements, and for statements.

The until statement repeats a block of statements until a condition is true (not false). The
test of the condition is made before each performance of the block:

untilg user keyset""2 dog [text scrollBy: 1]

The while statement repeats a block of statements until a condition is false. The test is
made before each performance of the block:

while8 user keyset=2 dog [text scrollBy: 1]

Both of the above statements tell text to scroll one line at a time as tong as the value of
user keyset is 2.

The for statement repeats a block of statements once for each of an ordered set of values.
During each repetition, the next value from that set is assigned to an iteration variable.
The iteration variable is a remotely assigned argument after the keyword for8. This is the
only use of remotely evaluated variables supported by the current compiler.

There are two forms of for statement. They obtain the set of values for the iteration
variable in different ways. One form assigns to the iteration variable the successive
integers between 1 and a stop-value. Example:

for8 i to: 10 do8 [a·i +- b"i * 2]

in which the first ten elements of the array a are assigned double the values of the
corresponding elements of b. The other form assigns to the iteration variable the successive
elements of an array or stream. Example: ·.

for8 prime from: GP(2 3 5 7 11) do8 [x\prime=O=:> [i'i"prime]]

in which each of the first five prime numbers are tested as divisors of x (the \ mes.sage
means "modulo"), and the first divisor which works (if any) is returned from the
surrounding method without further testing.

SMALLTALK KERNEL LANGUAGE tvlANUAL. 21

The argument of from: need not actually be an array or stream, as long as it behaves like
one in the following way. It must be able to respond to the message asStream by returning
an object that responds to the message next. Instances of class Stream, class File. class
HashSet, every subclass of class Array, and several other predefined classes are able to do
so.

To generate a progression of numbers other than "I to n in steps of l". use the second form
of for statement, making the array be an instance of class Interval. Example:

forg i from: (100 to: 10 by: -5) do8 [myFile next+- a·i].

in which the elements numbered 100, 95, 90, ... , 10 in the array a are written on myFile.

Caution: the second form off or statement will stop supplying values either when the array
or stream is exhausted, or when an element is encountered in the array or stream that has
the value false, whichever comes first. Therefore, in:

for8 num from: inStream do8 [num<lOO::> [outStream next+- num)).

num<WO is evaluated a number of times, with num assigned each successive item from
inStream, until the end of the stream is encountered or the first occurrence of false,
whichever comes first

22 CHAPTER 4: STATEMENTS

Chapter 5: Definitions

5.1 Method Definitions.

In the following method definition of class Dictionary (see Section 1.5):

lookup: narrie I x "the value corresponding to name, if any, else false"
[x +-self find: name::> [uvalues"x] 'li'fal.se]

the parts of the definition are known as:

The pattern
lookup: name

The temporary variables

x

The prologue
"the value corresponding to name, if any, else false"

The body
[x +- self find: name,,_ ['flvalues·x] ll'false]

Defining a method makes or updates an entry in the message dictionary of the class,
associating the compiled program with the selector derived from the pattern. A pattern
looks exactly like a message except that instead of arguments, there are the names of
variables to which arguments shall be assigned when a message is received. Jf a particular
argument variable is neither a class variable nor an instance variable of the recipient, then
it is automatically declared to be a method variable.

Additional method variables may be declared using the I construct. If there are several such
variables, they are separated from each other by delimiters (spaces, carriage returns, tabs,
and comments):

avgOfNext3 Ix y z "the average of my next three items"
[x +- self next. y +- self next. z +- self next. 1l'(x+y+z)/3)

Every method except the most trivial should be accompanied by a prologue, i.e .• a comment
that explains ttie role of the method. The ideal prologue does not discuss either the
algorithm or the representation used, only what the method does from the viewpoint of the
sender.

There are several special forms of method recognized by the current compiler. If the
method has no arguments and does nothing except to return either self or an instance
variable, faster object code is compiled. The program block may be omitted altogether if
the method does nothing after the pattern but return self. Such a method is useful to
implement (non-automatic) coercions. For example, several classes respond to asStream by
creating and returning a Stream, but classes Stream and File simply return self.

24 CHAf•TER 5: DEFINITIONS

The body of a predefined method sometimes is followed by a primitive clause. An example
in class Integer is:

+ arg "the integer sum of me and arg"
[ltself+arg aslnteger] primitive: 6

Smalltalk attempts to execute the method as the 6th standard machine language or
microcode subroutine in its repertoire. If the primitive fails (as when the argument of+ is
not an integer), then the regular method body is executed instead. In the example above,
the body tells the argument to return an integer equivalent of itself; then it tries again.

As a consequence of the above definition in class Integer, it is the case that s + 2.3
evaluates to 7, since 2.3 asinteger is 2. However, 2.3 + 5 evaluates to 7.3, because class Float
defines:

+ arg "the sum of me a.nd arg''
['tlself+arg asFloat] primitive: 67

and 5 asFloat is 5.0.

It is possible to define such messages so they are more symmetric. For ex.ample, one could
change the above definition in class Integer to:

+ arg "the sum of me and arg"
[1!'arg+self] primitive: 6

whereupon s + 2.3 would invoke 2.3 + 5 and thus evaluate to 7.3.

There are several dozen primitive operations in the system that deal with arithmetic, input
output, streaming, interrupts, and so forth. New primitives can be added only by
arrangement with the Smalltalk implementers.

Innumerable examples of method definitions may be found in the Smalltalk predefined
classes, which are available both in hard copy form and on-line through the Smalltalk user
interface. ·

SMALLTALK KERNEL LANGUAGE MANUAL

5.2 Class Definitions.

An example of a cJass definition is:

Class new title: 'BitRectEditor';
subclassof: Window;
fields: 'tools picture dirty';
\ieclare: 'actionPic actionButs picframe toolpic windowmenu tools'

25

in which BitRectEditor is the name of the class, Window is its superclass. tools, pictur~. and
dirty are its instance variables, and action.Pie, actionButs, and so forth are its c1ass variables.
Note the string quotes around each argument except the superclass. The messages must be
in the order shown, but the subclassof: and declare: messages are optional. The default
superclass is Object. ·

Once a class has been defined, it may be redefined only with caution. If its fields ..
(counting those of its .superclass) have changed, then in the current Smalltalk, all old
instances will be obsolete, i.e., they will fail to respond to messages. Furthermore, all the
methods defined for the class may become undefined until they are each updated and
recompiled, When class redefinition is attempted, the user is warned of any such
impending trauma and giyen a chance to withdraw the redefinition.

If a class is to share pool variables with other classes, an additional clause (preceded by a
semicolon) should be added to the class definition for each such pool. Example;

sharing: Transcendentals

where Transcendentals is the pool. A pool is simply a symbol table that associates variable
names (of class UniqueString) with variables (of class ObjectReference).

To initialize class or pool variables, define- a message with the special name. classinit. For
example, class BitRectEditor has a message called classlnit. that assigns values to its class
variables .. The statement BitRectEditor classlnit will automatically invoke that message and
thus initialize actionPic, actionButs, etc.

Classes like String and Vector that have numbered elements instead of named fields belong
to a subclass of class Class called VariablelengthClass. To create such a class for the first
time requires a slightly different form of definition than the usual (although redefining is
done in the usual way): _

VariableLengthCiass new title: 'String';
subclassof: Array;
bytesize: 8

where 8 is the size in bits of each element. If the bytesize: clause is omitted, the elements
are references to Smalltalk objects (as in class Vector); if it is included, then the elements
are restricted to be integers (as ~n class String). Currently, the only supported byte sizes are
8 and 16.

A large number of sample class definitions may be found among the Smalltalk langua~e
versions of the predefined classes.

26 CHAPTER 5: DEFINITIONS

5.3 Instance creation and initialization.

A new object is created by passing its class the unary message new. The class allocates
storage for the new object, initializes the object's instance variables to the constant nil, and
returns the new object. Usually, the new object is then passed additional messages to
initialize it fully. For example, a dictionary may be created by the statement;

diet '- Dictionary new init: 16

Instances of variable-length classes are created differently, using the keyword message new:
length. The elements of vector-like objects are initialized to nil and those of string-like
objects are initialized to all one-bits. An example is in class Dictionary's method for init:,
as follows:

init: size
(values .. Vector new: size. super init: size]

This method initializes the values field of the new instance itself, and calls upon it
superclass (HashSet) to initialize the objects field.

If an instance can be initialized hy the unary message init or by the unary message default,
then the word new may be omitted when it is created and initialized. · For example. to
create an output Stream of characters, simply use:

out .. Stream default

This is exactly equivalent to Stream new default. The reason that classinit, init, and default
are special is that class Class responds to the message default as follows (and similarly to
classlnit and init):

default "a new instance of me, initiaiized by my default method"
[Itself new default]

No facilities are provided in Smalltalk for explicit deallocation. An object is destroyed
automatically when no reference to it exists. Thus, the programmer is generally freed from
concern with deallocation. However, if an instance points at itself, or if it is part of a ring,
then Smalltalk will never realize that it can be deallocated~ Therefore, if a data structure
includes cycles or back pointers, then when it is no longer needed, be sure to remove cyclic
pointers by changing them to nil.

Chapter 6: Contexts

This chapter is written for experienced systems programmers.

6.1 Contexts. ·

An instance of class Context is created for every execution of a method body. A context is
not created when the method is executed as a primitive or when it does nothing but return
either self or an instance variable.

The fields of a context are:

sender

receiver

me lass

method

tempfra?le

pc

stackptr

the context from which the message was sent;

the object to which the message was sent (i.e .• self);

the class in whose message dictionary the method was found;

the object code (a string interpreted by microcode);

a vector to hold method variables and a stack;

the zero-origin subscript in method of the next instruction byte to
be . executed;

the zero-origin subscript in tempframe of the top of the stack.

It is possible to send a message to a context. The remote evaluation message, eval, invokes a
method of class Context, because a remotely evaluated argument is simply a context that
shares the tempfrarne of the sender.

To send a message to the context currently executing. address it to thisContext. Note that
when a message is sent to a context. another context is created in which to execute the
method; the receiver of that context is the original context.

During debugging of a program, it is useful to be able to examine the variables of a method
in progress, as well as the variables of its sender, its sender's sender, and so on down the
"stack". The debugging facilities of the Smalltalk user interface send messages to contexts
in order to display the stack to the user.

Although most programs never mention class Context or its instances explicitly, it is indeed
a very important class.

6.2 Processes.

It is possible to make a method return to other than the sender of the message by changing
the sender field of thisContext before returning. It is also. possible to assign the value of
thisContext to another variable. From these crude facilities can be derived a way to suspend
execution of a context and then to resume it later. From that capability can be built
control structures involving processes, coroutines, and so forth. For examples, see the
predefined class PriorityScheduler.

28 .CflAPTER 6: CONTEXTS

Class

Appendix I: Predefined classes

Kernel classes

Each Smalltalk class is itself an instance of the class. Class. An instance of class
Class (i.e., a class) can:

be told its fields. i.e., the representation . to use for its instances;

create a new instance of itself;

create a copy of an old instance=

be told a new method of responding to a message;

be told to forget a method;

produce a standard printed representation of an instance;

produce a standard printed representation of its methods.

VariableLengthClass

Classes like Vector and String are unusual in that their instances have numbered
elements instead of named fields. · Such classes are ~hemselves instances of class
VariableleogthClass, a subclass . of class Class. An instance of class
VariableLengthClass (e.g .• class Vector or class Str.ing) can:

.. create a new instance of itself with a specified number of elements;

do anything defined by its superclass. Class.

ClassOrganizer

As an aid in dealing with the large number of classes in Smalltalk and the variety
of messages which they recognize, a facility is provided for organizing them into
categories. A class organizer also contains a comment describing the class and the
roles of its fields. It can:

classify a name under a specified category heading;

return a vector of all the names under a specified heading;

look up a name and return its category;

produce a printable editable representation of the categorization;

redefine the organization by reading back its edited representation.

30
APPENDIX I: PREDEFINED CLASSES

Context

Object

To respond to a message, an object executes a method. To do so, it needs to have
space in which to work, needs to keep track of its progress throvgh the method, and
needs to remember who sent the message so it can reply when it is done. All these
needs are serviced by an instance of class Context, one of which is created for every
execution of a method_ body. It also provides help in debugging programs, for it
can:·

determine the context that sent it the message;

single step through the method;

report the current values of variables employed by the method.

Processes, coroutines. and other control structure$ can be constructed by
manipulating instances of class Context.

Every class is ultimately a subclass of class Object. Thus, every instance of every
Class can inherit messages from class Object. Every object in the system can do all
the following things, unless its own c1ass has overridden class· Object's methods:

determine whether a given value i.s the same as itself;

tell what class it is in;

produce a printed representation of itself;

produce a copy of itself;

create a window through which the user can inspect its state.

User View

There is only one instance of class UserView, accessed through the global variable,
user. That instance can:

give control of the user interface to one window at a time;

read the keyboard, mouse, and keyset;

converse with the user through a simple dialog window;

access on-line system documentation;

report errors, warning, and breakpoints to the user;

measure the time it takes to execute a program;

change the proportions of the usable display area;

exit the Smalltalk system and overlay a different system.

31
SMALLTALK KERNEL LANGUAGE MANUAL

Numbers

Number

Integer

Class Number is a superclass of Integer, Float, and Longlnteger. An instance of any
of those classes can:

determine the larger or smaller of itself and another number;

tell its sign (-1. o. or +l):

create an instance of class Point, with itself as x and either itself or another
number as y;

create an instance of class Interval from itself to some other number.

An instance of cl;:iss Integer is a whole number in the range -32768 to +32767. It
can:

compare its magnitude with another whole number;

do arithmetic on itself and another whole number;

do 16-bit logical operations and shifts;

return a Float or Longlnteger instance of its own magnitude;

print itself in decimal. octal, or binary radix;

treat itself as a character code and convert between upper and lower case. tell
whether it is a letter or a digit, and so for th;

do anything defined by its superclass, Number.

32

Float

APPENDIX I: PREDEFINED CLASSES

An instance of class Float is an exponent/mantissa representation of a rational
number. Its precision is about 9 decimal places, and its exponent range is ± 16000.
1t can: ·

compare its magnitude with another Float or Integer instance;

do arithmetic on itself and another Float or Integer instance;

return its integer part or its fractional part;

return itself "as an Integer", if rn the range -32768 to +32767;

compute its own sine, cosine, or square root;

treat itself as an angle in degrees and return that angle in radians;

print itself using decimal notation in the form ±99999.9999, or if more
places are required, using scientific notation, e.g., 6.23e24;

do anything defined by its superclass, Number.

Longlnteger

Date

Time

An instance of class Longlnteger is a whole number of any reasonable magnitude.
It ·can:

compare its magnitude with another Longlnteger or Integer instance;

do arithmetic on · itself and another Longlnteger or Integer instance
{exception: division is not implemented as yet);

print itself;

do anything defined by its superclass, Number.

A instance of class Date represents a specified day of a specified year. It can:

compute a date a specified number of .days earlier or later;

produce a printed representation of itself in various formats;

read back that printed representation.

An instance of class Time represents a specified second of an unspecified day. It
can:

produce a printed representation of itself in various formats.

Array

Vector

Interval

33
SMALLTALK KERNEL LANGUAGE MANUAL

Basic data structures

Class Array is a superclass of Vector, Interval, String, Substring, and UniqueString.
An instance of any of those classes can:

take an array of subscripts and either return an array of, or reassign, the
specified elements;

tell how many elements it contains (its "length");

compare itself element by element with another array;

return the concatenation of itself and another array;

copy itself exactly, with an insertion, with a deletion, with a replacement.. or
with unoccupied room on its end;

return or reassign its last element;

assign the· same value to all its elements:

interchange two ·of its elements;

find the first element equal to or unequal to a given value;

sort itself, or return a permutation that would sort itself;

treat itself as a priority list and promote an element to the front;

return itself in reverse order;

return a Stream that can scan its successive elements.

A vector is an array of references to objects. It can:

return or reassign its nth element;

do anything defined by its superclass, Array.

An interval is an arithmetic progression defined by a start-number, a step-number,
and a stop-number. It can:

return its nth element;

do anything defined by its superclass, Array, that does not alter its state.

34

String

APPENDIX J: PREDEFINED CLASSES

A string is a sequence of zero or more eight-bit bytes, i.e., integers between 0 and
255. The bytes are often treated as ascii characters. It -can:

return or reassign its nth byte;

return or reassign its nth two-byte "word";

compare itself with another string, ignoring case discrepancies;

return an upper case copy of itself;

return a long integer whose digits are its characters;

return a tokenized parse of itself;

return a hash of itself;

treat itself as an Alto file name matcher (with * and # characters) and match
itself against a string treated as a file name;

replace an occurrences in itself of a specified character sequence by another
specified character sequence; ·

• · look itself up in the global set of unique strings and return the unique
(possibly new) instance of class UniqueString that equals itself;

do anything defined by its superclass, Array.

Substring

A substring is a reference to a list (a "map") of positions in some ("mapped") array
(often, but not necessarily, a string). It can:

take a subscript, subscript the map to determine a position in the mapped
array, then return or reassign that position in the mapped array;

do anything to the mapped array that is defined by its superclass, Array,
except that interchanging and sorting only affect the map, not the mapped array;

do anything defined by its superclass, Array.

UniqueString

Class UniqueString is a subclass of class String. A unique string is an entry in a
certain global set ("USTable") in which no two entries are equal to each other. It
can:

help a string to. perform its lookup in USTable;

return a hash different from a string hash, and faster;

do anything defined by its superclass, String.

Stream

35
. SMALLTALK KERNEL LANGUAGE MANUAL

A stream is a reference to some position in some array. It can:

advance or retreat through the array. getting, putting, or skipping the
elements passed;

copy the array to a larger array if it passes the end while putting;

treat itself as a character output stream and append a character, a standard
delimiter, a string, or the printed representation of an arbitrary object;

treat itself as a file buff er and tell the file when buff er reloading is required.·

36
APPENDIX I: PREDEFINED CLASSES

Sets and Dictionaries

HashSet

A hash set is a set of objects none of which appears more than once in the set. All
the objects usually belong to a single class. The present implementation allows
mixed classes only if every one of the classes can respond false to =arg where arg is
an object in any of the other classes; future implementations will lift this
restriction. A hash set can:

Dictionary

tell whether a given object is present;

insert or delete an object

Class Dictionary is a subclass of class HashSet. A dictionary associates a value with
each object in it. It can:

MessageDict

tell what value is associated with a given object;

insert, delete, and change associations;

do anything defined by its superclass, HashSct.

Class MessageDict is a subclass of class HashSet. Every class has a message
dictionary in which to hold the messages it can understand and the methods it uses
to respond to those messages. The objects of a message dictionary are the names
("selectors") of the messages. With each message are associated the source code and
object code of its method. A message dictionary can:

look up a selector and return the corresponding source code or object code;

associate a new method with a selector;

do anything defined by its superclass, HashSeL

SMALLTALK KERNEL LANGUAGE MANUAL
37

ObjectRef erence

An object reference contains only one fieid, the value field. It is useful as an
indirect reference to an object. An instance of class Object Reference can have its
contents examined or reassigned much as if it were a variable, except that a message
must be sent to it to make it do so. An object reference can:

,!Ilake itself ref er to a given object;

return (a reference. to) the object it references.

SymbolTable

Class SymbolTable is a subclass of class Dictionary. The values it associates with its
objects are instances of class ObjectReference. f n effect. it associates a "variable
name" with a "variable". In fact. a pool is implemented as a symbol table. and a
pool variable as an object reference. However. method and instance variables are
not implemented as instances of class ObjectRef erence. A symbol table can:

declare a pool variable by inserting an association between the variabte•s
name and a new object reference that will be the variable itself;

find the va'riable of a specified name and read or write. its value;

Clo anything defined by its superclass. Dictionary.

38

Point

APPENDIX I: PREDEFINED CLASSES

Graphical objects

A point is an x-y pair of numbers. It often (but not necessarily) represents a
location on. the display screen. A point can:

be compared with another point;

compute a new point by adding, subtracting, mu1tiplying, or dividing its
coordinates either by a number or by the corresponding coordinates of another
point;

compute a new point near itself but on a specified grid.

Rectangle

A rectangle is a pair of points that often (but not necessarily) represent a rectangle
on the display screen whose upper left corner ("origin") and lower right corner
("corner") are the two points. A rectangle can:

compute a new rectangle by adding, subtracting, multiplying, or dividing its
coordinates either by a number or by the corresponding coordinates of a point or
of another rectangle;

operate on the bitmap image displayed in the corresponding area of the
display screen in any of . the following ways:

fill the area with any tone that can be built from tiles all of which
are the same 4x4 dot. matrix specified by a 16-bit integer;

copy it to another area of the same size on the screen or in a hidden
buffer (a string); ·

copy a hidden buff er of the same size into it;

in another area of the same size on the screen "brush" a dot pattern
which has a black dot in those places in which both this rectangle and a
specified tone have a black dot;

do any of the above operations in one of four modes: storing
(opaque), oring (transparent), xoring (complement), or erasing;

be told to change its coordinates;

compute the intersection of itself with another rectangle, or the
nonintersection, or the union.

Turtle

Menu

Cursor

BitRect

SMALLTALK KERNEL LANGUAGE MANUAL
39

A turtle is a drawing pen filled with black, white, or complementing ink, with a
penpoint from 1 to 8 dots thick, at a particular location on the screen and facing at
a given angle from the vertical. It can:

crawl in a straight line to another specified screen location, drawing or not as
it .goes;

print a string in any font starting at its current position on the screen and
along the line it is facing;

change its angle, ink, or penpoint width.

A menu is a column of brief one-line text entries that can be displayed in a
temporary frame on the screen: It allows the user to:

display the menu on the screen under the cursor;

select one or none· of the entries· with the cursor;

let up the mouse button to remove the menu display, to restore the screen
image that was there before, and to invoke. the action selected (if any).

A cursor is a 16 by 16 matrix of black and white dots suitable for display as the
Alto screen cursor. It can:

install itself as the current screen cursor during t.he execution of a given
program;

remember the previous cursor;

restore the previous cursor when the given program is done.

A bit rectangle is a rectangular matrix of black and white dots that can be displayed
on the screen and in which the user can paint ("edit"). It can:

show itself on the screen;

update itself from its current image on the screen:

do anything defined by its superclass. Rectangle.

40
APPENDIX I: PREDEFINED CLASSES

BitHectEclitor

A bit rectangle editor is a window in which are displayed a painting and a menu of
painting tools (a "toolbox"). When the user wakes up the window, the mouse can be
used to select tools and to paint. A bit rectangle editor· allows the user to:

select one of six tools (pen, eraser, straightedge, block-of-gray-maker, paint
brush, magnifier); .

use the selected tool;

change properties of the selected tool (see class BitRectTool);

do ar.ything defined by its superclass, Window.

Caution: as of the release of this manual, there are a few bugs in the toolbox
program which most often strike people who have not read its documentation. Full
documentation is available on-line in the class organizations of this class and of the
two classes below.

BitRectTooJ

A bit rectangle tool is a tool that can change the contents of a bit rectangle. Its
behavior is determined by a combination of properties: a grid, a tone of gray, a
penpoint width, a mode, and an action. A bit rectangle tool can have each of its
properties changed independently.

Radio Buttons

An instance of class RadioButtons is a row or column of square regions ("buttons")
on the display screen, each of which has an undisplayed value. There is always
exactly one button "pushed". The screen regions corresponding to all the unpushed
buttons are grayed. RadioButtons are used in the BitRectEditor menu. An instance
of RadioButtons can:

be told to "push" the button whose region includes a given screen point (such
as the cursor location);

return the value associated with the currently pushed button;

be asked whether a. given point is within any button's region.

41
SMALLTALK KERNEL LANGUAGE MANUAL

Text objects

Note: Significant changes to this category are imminent.

Paragraph

A paragraph is an array of characters each of which is assigned a typeface. The
paragraph as a whole has a specified alignment:. flush left. flush right, centered, or
justified~ A paragraph can:

TextStyle

have any sequence of characters inserted, deleted, or replaced;

have any sequence of characters change their typeface;

have its alignment changed;

. be converted to or from Bravo representation:

have anything done to its characters (ignoring typeface) defined by its
superclass. Array.

A text style specifies typesetting information that can be applied to a paragraph· to
display it on the screen. A text style can:

Textframe

associate with any font index a real dot-matrix font {there is no class Font,
so the "strike" format font is stored in a string);

be told a logical operation ("mode") by which the dots of characters should
be put into the screen bit map;

be. told the size of. a space character;

be told the distance between tab stops;

be told the height of displayed lines in two parts, the ascent and descent
relative to the baseline (the letter "b" is said to ascend above the baseline, while
the letter "p" both ascends and descends).

A text frame allows paragraphs to be displayed on the screen according to a
specified text style, typeset to a specified width, and clipped on a specified
boundary. It can:

display a paragraph according to those constraints;

report the screen position of any character in a paragraph that has been or
could be displayed;

report the index in the paragraph of the character displayed nearest to a
specified screen position.

42
APPENDIX I: PREDEFINED CLASSES

Dispframe

A display frame is a window on the display screen through which a teletype-style
dialogue can be carried on. There is typically a single display frame, managed by
user (the only instanc~ of class UserView). It can: ·

prompt for a user input;

• ·read a user input into a tokenized form;

evaluate the tokenized input as a Smalltalk program and print the last value
· computed by that program;

do anything defined by its superclass, Stream;

show the recent dialogue, including anything appended by Stream operations.

ParagraphEditor

A paragraph editor is an intermediary between a paragraph and a window. It· can:

let the user select an inter-character position in the paragraph, or a sequence
of characters;

cut out the selected characters and put them in a global ScrajJ;.

replace the selection by the characters in the Scrap;

let the user replace the selection by newly typed characters, or backspace over
the characters preceding the selection;

let the user scroll the image of the paragraph through a rectangular area on
the display; ·

display the paragraph in that area;

do anything defined by its superclass, Textframe.

FontWindow

A font window is a window on the display screen in which one character at a time
out of a font (typeface) can be edited. The character is displayed blown up so that
each dot in its dot-matrix representation is easily distinguishable. The user can:

point the cursor at any dot; set it black with red bug, white with yellow bug;

depress blue bug to obtain a menu which allows a new width to be specified
for the character, and which allows the whole window to be moved ("framed")
elsewhere on the screen;

type a character to be edited.

a note about fonts

There is no Font class in the current implementation of Smalltalk. A display font
is encoded in "strike format", a standard Alto format documented elsewhere. As an
expedient, the font is stored as a series of bytes in an instance of class String.
Printing a font string will yield nonsense characters.

43
SMALLTALK KERNEL LANGUAGE MANUAL

Browser and Debugger

Note: Extensive changes to this category are imminent

Window

A window is a rectangular area of the display screen with which is associated a user
interface to a system facility. Each such facility defines a subclass of class
Window. The messages of a window perform standard operations such as watching
user input devices and sending itself messages corresponding to the events on those
devices; it is expected that the subclass will intercept most of these messages and
behave appropriately. A subclass of class Window should respond to the following
messages:

enter the user has just awakened this window;

leave the user has just put this window to sleep;

close the user has just closed this window;

red bug the user has pressed the red mouse button;

yel/owbug the user has pressed the yellow mouse button;

kbd the user has just struck a key on the keyboard;

key set the user is holding down keys on the keyset.

The messages of class Window have trivial default responses to all these messages.
They also have non-trivial default responses to such conditions as b!uebug (which
presents a menu for reframing the window, closing it, or yielding control to a
window it obscures); the subclasses may override these as well.

ScrollBar

A scroll bar is a gray zone at the left edge of an awake window. When the cursor
moves from the window into its scroll bar, the cursor shape changes to an up or
down arrow. Redbug can then be used to scroll the contents of the window is the
indicated direction. ·At each increment of scrolling, the text beside the cursor jumps
to the middle of the window; therefore, the rate of scrolling is slowest when the
cursor is near the middle.

Paned Window

A paned window is a window which has subwindows ("panes") that are awakened
and resized in unison. It is common for the contents of some panes to be
dependent on selections made in others. Two of the standard paned windows in the
Smalltalk user interface· are browse windows and notify windows.

44
APPENDIX I: PREDEFINED CLASSES

Not if yWintlow

This class is a subclass of PanedWindow. A notify window is created whenever an
error, warning message, or breakpoint is encountered in the execution of a program.
It initially has one pane that shows the class and message of the ctirrently executing
method and which can display the "stack", i.e., the method that invoked the current
one, the one that invoked that one, and so forth. It can be grown to six panes that
displa)' extensive information about the context of the event. It is possible to
proceed from the point of the event (as from a breakpoint) or to close the window
and start over.

List Pane

A list pane is a pane in which is displayed a vertical list of one-line items. The list
can be scrolled slow or fast, and any item can be selected. When an item is selected
(or deselected), a dependent pane can be told to display appropriate material.

Code Pane

A code editor is a pane in which is displayed the source code for a single Smalltalk
method. It can be edited (see class ParagraphEditor) and compiled.

SystemPane, ClassPane, OrganizationPane, SelectorPane, CodePane

Each browse window has one instance of each of these classes. The first four are
subclasses of ListPane and the last is described above.

StackPane, VariablePane, CodePane .

Each notify window has one instance of class StackPane, two of class VariablePane,
and three of class CodePane. The first two are subclasses of ListPane and the last is
described above.

- Fife

45
SMALLTALK KERNEL LANGUAGE MANUAL

Files and Compiler

Note: Extensive changes to this category are imminent.

A file ,is an object that accesses an Alto disk file on one disk or the other. It can:

read or write a sequence of disk pages;

·.

extend or shonen the disk file;

read the whole (reasonably sized) disk file into a string:

read and compile Smalltalk programs from the disk file;

write a printed representat~on of Smalltalk definitions onto the disk file;

read or write a byte or word;

skip a specified number of bytes or pages in either direction; .

do anything defined by its superclass. Stream.

Directory

A directory is an object that accesses an Alto disk file directory (e.g., 'sysdir" on
dpO). It can:·

allocate and deallocate disk pages;

insert, delete, or tename file entries;

look up a name and return information about the corresponding file;

find all file names that match a pattern.

Compiler

Reader

Class Compiler translates Smalltalk programs from source code to object code. It is
invoked by the user interface commands compile and doit. The current compiler is
not reentrant.

A reader scans a character sequence and builds a vector of tokens such as numbers
and stririgs. It can:

turn an identifier or a one-character token into a unique string;

turn a digit sequence with sign, decimal point, and exponent into_ a number;

turn a parenthesized substring into a vector;

turn a single-quoted substring into a string;

skip comments, Bravo trailers, and separators.

46
APPENDIX I: PREDEFINED CLASSES

Primitive access

These classes allow access by knowledgeable programmers to the innards of the system ..

· BitBlt

A bit block transferrer ("bit-blitter") allows access to the microcode that moves
sub-bitmaps from one part of memory to another. User programs generally access
that microcode not through this class but through class Textframe or class
Rectangle.

CoreLocs

An instance of class Corelocs is an array of integers whose elements are the
contents of successive locations in main memory. The most often used instance of
this class is the value of the yariable mem, which maps the entire Alto memory.

FieldReference

An instance of class Field Reference allows access to a specified field of a specified
instance. It will be used by future versions of the compiler to pass a method or
instance variable by reference for remote assignment.

Prioritylnterrupt

A priority interrupt is an association between a priority scheduler and a priority
level number. It can relay a message to its scheduler, after attaching the priority
level number to the message.

PriorityScheduler

A priority scheduler is a collection of contexts, some suspended and some not yet
started, plus a collection of priority level numbers classified as to their status
(awake, enabled, interrupted, or current). It can:

execute a "critical" section of code· with interrupts disabled;

change the status of a priority level;

switch control to the highest priority enabled context;

become the "top" scheduler, which receives hardware interrupts.

Appendix II: Syntax Summary

. .

Chapters 2 through 5 describe each language construct in detail. Here, the complete syntax
is presented in a formal notation derived from a suggestion by Wirth:

" ..
I
{}
<>
[]

()

· · surround a literal
delimits alternatives
mean 0 or more of the constituents inside
mean i" or more of the constituents inside
mean 0 or 1 of the constituents inside
means any character except those that foJlow
stands for all characters between what precedes and what follows·

. group things together ·

The delimiters of Smalltalk include spaces, tabs. ends of Jines. ends of pages, and
comments. ·

comment = {"""""""} ''""

Within the fol1owing constructs, delimiters may not occur.

digit ·= "o" I ... I "9"

nonZeroDigit = ''1" I ... I "9"

integerLiteral = ["-"] nonZeroDigit {digit}

floatLiteral = integerLiteral "." (digit) ["e" integerLiteral]

octalLiteral = ["-"] "o" {"o" I ... I "7"}

basicLiteral = integerLiteral I fioatLiteral I octalLiteral I stringLiteral

letter = "A .. I ... I "z" I "a .. I ... I "z"

constant = .. nil" I "false" I "true"

self Reference = "self" I ''super" I "thisContext"

variable = letter {letter I digit}

unarySelector = letter {letter I digit}

binarySelector = -(letter I digit I ":" I "g" I "(" I ")" I "[" I "]"
I "..,." I "=> 0 I "-" I "·" I .. @=> .. I """ I "." I ";'')

keyword = letter {letter I digit} (":" I "&")

selector = unarySelector I binarySelector I <keyword>

atomLiteral = (letter I ":" I "g") {letter I digit I ":" I "g"}
I -(letter I digit I ":" I "g" I "('' l ")")

48
APPENDIX JI: SYNTAX SUMMARY

Within the following construct, all characters are significant, including delimiters.

stringliterat = {-''•" I "•''} "•"

Within the following constructs, delimiters may occur between constituents. The delimiters
are ignored.

vectorLiteral = "(" {basicLiteral I vectorLiteral I atomliteral} ")"

literal = basicLiteral I "@"" (vectorLiteral I atomLiteral)

primary = literal I constant I variable I self Reference I sub Expression I block

subExpression = "(" expression '')"

expression = variable assignment I primary [messageChain]

assignment = "+-" expression

messageChain = {unaryMessage} {binaryMessage} [keywordMessage]

keywordMessage = <keyword term> [assignment]

term = factor {binaryMessage}

binary Message = · binarySelector factor [assignment]

factor = primary {unaryMessage}

unaryMessage = unarySelector [assignment]

block = "[" statements '1"

statements = {statement ". "} [statement I returnStmt]

returnStm·t = "11'" expression [". ")

statement = expression [cascade] I loopStmt

cascade = {";" messageChain} [alternatives]

alternatives · = "~" block [cascade I statements]

JoopStmt = keywordMessage

method = pattern (temporaries] [block [primitive]]

pattern = unaryPattern I binaryPattern I kcywordPattern

keywordPattern = <keyword variable> [assignPattern]

binaryPattern · = binarySetector [assignPattern]

unaryPattern = unarySelector [assignPattern]

assignPattern = variable

temporaries = "I" {variable}

primitive = "primitive:" integerLiteral

Appendix III: Character set

The current implementation of Smalltalk has a non-standard character set. Future versions
will conform more closely to Ascii. The current set can be typed in either Bravo or the
Smalltalk user interface. A couple of characters are currently printed differently on the
display than on paper: ® is displayed as a rough circle with a central dot. and @ is displayed
as -·

Bravo Stroke Character

a'ts ::!:

nf'S :;i:

f'tS ;;i,

f'ts @

C1'S 0
0

? :::>
! ft .. @a
U1'S
01'S "

gf's
% ~
Sf'S 'S
@ ®

'tf'S . !

s fu> e'l'S
kts n
pts ~ tts
yt-s ~
)1'S §

q'l'S !
v-r-s %
[ts $

?

Smalltalk Stroke

't{

1':
"t)

H

1':
?
! ..
1'-
1'."

'tg
%
ts
@

LF

tw
DEL
'tb

•1'i
1'-
1'd
1'C
1'shift-ESC

$
te
1'k
1'{
1't

. 1'Y
-t]

. Meaning

Relational

Is same object. as

Remote evaluation:
Then only ·
Return
Literal
Negative literal
Comment

Subscript
Peek
Compile
Point

Do It

Backspace word
Cut
Toggle bold face
Toggle italic face
Toggle underline
Proceed

·interrupt.
Restart

Misc. symbols

English punctuation

