
XEROX

Office Systems Technology

A Look in to the W or ld of the Xerox 8000 Series Prod ucts:
Workstations, Services, Ethernet, and Software Development

Office Systems Technology

A Look into the World of the Xerox 8000 Series Products:

Workstations, Services, Ethernet, and Software Development

OSD-R8203
November 1982

Managing Editors:
Ted Linden and Eric Harslem

Office Systems Division
3333 Coyote II ill Road

Palo Alto, California 94:304

XEROX

All of the articles in this volume have been or will
be published in other publications (as indicated in
the Contents). All articles are reprinted with
permlsswn.

Copyright © 1982 by Xerox Corporation.

Dedication

This book is dedicated to all the hardworking and creative people
of Xerox' Systems Development Department who have seen the
promise in the office of the future and made it in to a reali ty.

Notice

The papers reproduced in this book were written by different authors and were originally published
at various times. Neither the original publication nor their republication implies any specific
endorsement by the Xerox Corporation. Some statements in these papers are not valid concerning
current products. ~'urthermore, no statement in these papers should be construed to imply a
commitment or warranty by the Xerox Corporation concerning past, present, or future products.

Introduction

The members of the Xerox Systems Development Department, while creating the Xerox 8000 Series
products, have explored many new frontiers in office systems technology. Many of their technical
breakthroughs have been recorded in the open literature. This book gathers the majority of these
publications together to make them more readily accessible.

This book is organized as follows: papers about new features that are visible to users of these products
come first; papers about underlying technology come later. The first section has the papers about the
user interface and functionality of the 8010 Workstation; the second section has papers about the
Network Services that support this and other workstations. The three succeeding sections cover:
Ethernet and Communications Protocols, Programming I .. anguage and Operating System, and
Processor Architecture. The final section has papers about the Software Engineering methodology
that was used during the development of all these products.

In the first section dealing with the 8010 workstation, the first two papers describe the dramatically
new user interface concepts that are employed-the first focusing on workstation features and the
second on the user interface design goals. The next two papers describe, respectively, the design of
the integrated graphics facility and the records processing functionality. The final paper in this
section contains a comparative evaluation of text editors.

An office system is not just a collection of workstations. Network Services provide the functionality
that make the difference between a collection of workstations and an office system. There are three
papers about Network Services. The first describes the Clearinghouse, which enables a workstation
to locate named resources in a widely distributed office system. User authentication is the
cornerstone of most security and audit controls and presents some challenging problems in a
distributed system-as discussed in the next paper. The final paper in this section describes the mail
service developed by researchers at Xerox PARCo It has served as a prototype for the Mail Service
and for other distributed services in the 8000 Series products. There are no published papers about
the 8000 Series Print Service, File Service, or External Communication Service.

The glue that holds together all of the previous functions is the Ethernet and the Xerox Network
Systems Communication Protocols. The first paper is an overview of communications and the office.
The next paper describes the evolution of the f~thernet local area network. Office communications
are not always local, and the remaining papers in this section deal with issues about building
individual local networks into an effective, geographically-dispersed internetwork. The use of
multiple local networks is covered in the third paper in this section, the fourth deals with addressing
in an internetwork using 4S-bit addresses, and the fifth describes the higher-level communication
protocols.

Behind the scenes for all of these products is a programming language and operating system capable
of supporting the incremental growth of a large office system. The fourth section deals with these
topics. First there are two papers about :Ylesa, a practical programming language that incorporates
many recent ideas from research on programming languages. The. following paper on multiple
inheritance subclassing describes the approach that was used to support object-oriented
programming in the design and implementation of the 8000 Series products. The final paper
discusses Pilot, the operating system used in all Xerox SOOO Series products.

The processor architecture for the Xerox 8000 Series products is the subject of the two papers in the
fifth section. The first provides an overview of the Mesa processor architecture and the second reports
the findings from an analysis of the Mesa instruction set.

Building an integrated office system is a large software engineering project. Pilot, the operating
system in the 8000 Series products, provides one case study in software engineering· which is
discussed from different viewpoints in the first and fourth papers in this section. The Mesa language
was designed to encourage the use of better software engineering methods, and that topic is examined
in the second paper in this section. The third paper describes the software engineering techniques
that were used during the development of the application code for the 8000 Series products.

This book itself exemplifies the use of the technology that it describes. The front cover design and
front matter of this book were created using 8000 Series products. All of the recent papers were
created using the Xerox 8000 Series products. While some of them were typeset for their original
publication, the following papers are reproduced exactly as they were created and printed using 8000
Series products:

Star Graphics: An Object-Oriented Implementation
The Design of Star's Records Processing
Authentication in Xerox' Star and Network Systems
Traits - An Approach to Multiple-Inheritance Subclassing
A Retrospecti ve on the Development of Star

Acknowledgments

We are indebted to Paula Balch and Stan Suk for many hours of work producing this collective
volume. The front cover design was created by Norman Cox of the Xerox Office Products Division.
Bill Verplank provided valuable assistance in the cover design.

No book on Xerox office systems technology would be complete without an acknowledgment of the
pioneering research in this area done by our colleagues at the Xerox Palo Alto Research Center
(PARC). Without them this book would not have been possible. The volume of PARC publications on
office systems technology has generally prohibited us from including their publications here-unless
one or more of the authors was a member of the Systems Development Department.

Office Systems Technology

Table of Contents

The 8010 Workstation

Smith, D. C.; Harslem, E.; Irby, C.; Kimball, R. The Star User Interface: An 1
Overview. Proc. of National Computer Conference; 1982 June 7-10; Houston. [pages]
515-528.

Smith, D. C.; Irby, C.; Kimball, R.; Verplank, B.; Harslem, E. Designing the Star 15
User Interface. Byte. 7(4): 242-282; 1982 April.

Lipkie, Daniel E.; Evans, Steven R.; Newlin, John K.; Weissman, Robert L. Star 29
Graphics: An Object-Oriented Implementation. Computer Graphics. 16(3): 115-
124; July 1982. [also presented at SIGGRAPH '82 conference, Boston.]

Purvy, R.; Farrell, J.; Klose, P; The Design of Star's Records Processing. 39
[Submitted to ACM's Transactions on Office Information Systems, to appear first
quarter, 1983.]

Roberts, T. L.; Moran, T. P. Evaluation of Text Editors. Proc. of the Conference on 59
Human Factors in Computer Systems; 1982 March 15-17; Gaithersburg, MD. [pages]
136-141.

Network Services

Oppen, D. C.; Dalal, Y. K. The Clearinghouse: A Decentralized Agent for Locating 65
Named Objects in a Distributed Environment. Palo Alto: Xerox Corporation, Office
Products Division; 1981 October; OPD-T8103.

Israel, J. E.; Linden, T. A. Authentication in Xerox' Star and Network Systems. 93
Palo Alto: Xerox Corporation, Office Products Division; 1982 May; OSD-T8201.

Birrell, A. D.; Levin, R.; Needham, R. M.; Schroeder, M. D. Grapevine: An Exercise 109
in Distributed Computing. Comm. ACM. 25(4): 260-274; 1982 April.

Ethernet and Communications Protocols

Dalal, Y. K. The Information Outlet: A new tool for office organization. Palo Alto: 124
Xerox Corporation, Office Products Division; 1981 October; OPD-T8104. [A version of
this paper appeared in Proc. of the Online Conference on Local Networks and
Distributed Office Systems; 1981 May.J

Shoch, J. F.; Dalal, Y. K.; Crane, R. C.; Redell, D. D. Evolution of the Ethernet Local 133
Computer Network. IEEE Computer magazine. 15(8): 10-27; 1982 August. [Also
published by Xerox Corporation, Office Products Division; 1981 September; OPD-
T8102.]

Dalal, Y. K. Use of Multiple Networks in the Xerox Network System. IEEE 150
Computer magazine. 15(10): 82-92; 1982 October.

Dalal, Y. K.; Printis, R. S. 48-bit Absolute Internet and Ethernet Host Numbers. 161
Proc. of the 7th Data Communications Symposium; 1981 October 27~29; Mexico City.
[!lages] 240-245. [Also published by Xerox Corporation, Office Products Division; 1981
July; OPD-T8101.]

White, J. E.; Dalal, Y. K. Higher-level protocols enhance Ethernet. Electronic 167
Design. 30(8): ss33-ss41; 1982 April 15.

Office Systems Technology

Table of Contents

Programming Language and Operating System

Geschke, C. M.; Morris, J. H., Jr.; Satterthwaite, E. H. Early Experience with Mesa. 177
Comm. ACM. 20(8): 540-553~ 1977 August. [A version of this paper was presented at
the Conference on Language Design for Reliable Software; 1977 March 28-30; Raleigh
NC.]

Lampson, B. W.; Redell, D. D. Experience with Processes and Monitors in Mesa. 191
Comm. ACM. 23(2): 105-117; 1980 February.

Curry, G.; Baer, L.; Lipkie, D.; Lee, B. Traits - An Approach to Multiple- 204
Inheritance Subclassing. Proc. of the SIGOA Conference on Office Automation
Systems; 1982 June 21-23; location. [Also published by Xerox Corporation, Office
Systems Division; 1982 September; OSD-T8202.1.

Redell, D. D.; Dalal, Y. K.; Horsley, T. R.; Lauer, H. C.; Lynch, W. C.; McJones, P. R.; 213
Murray, H. G.; Purcell, S. C. Pilot: An Operating System for a Personal Computer.
Comm. ACM, 23(2): 81-92; 1980 February. [Presented at the 7th ~J1~CM Symposium on
Operating Systems Principles; 1979 December; Pacific Grove.]

Processor Architecture

Johnsson, R. K.; Wick, J. D. An Overview of the Mesa Processor Architecture. 225
Proc. of the Symposium on Architectural Support for Programming Languages and
Operating Systems; 1982 March; Palo Alto. [Also published in SIGARCH Computer
Architecture News 10(2) and SIGPLAN Notices 17(4).]

Sweet, R. E.; Sandman, J. G., Jr. Empirical Analysis of the Mesa Instruction Set. 235
Proc. of the Symposium on Architectural Support for Programming Languages and
Operating Systems; 1982 March; Palo Alto. [Also published in SIGARCH Computer
Architecture News 10(2) and SIGPLAN Notices 17(4).]

Software Engineering
24~ Horsiey, T. R.; Lynch, W. C. Pilot: A Software Engineering Case Study. Proc. of the v

Fourth International Conference on Software Engineering; 1979 September; Munich.
[pages] 94-99.

Lauer, H. C.; Satterthwaite, E. H. The Impact of Mesa on System Design. Proc. of 251
the Fourth International Conference on Software Engineering; 1979 September;
M unich. [pages] 174-182.

IIarslem, E.; Nelson, L. E. A Retrospective on the Development of Star. Proc. of the 261
6th International Conference on Software Engineering; 1982 September; Tokyo,
Japan.

Lauer, H. C. Observations on the Development of an Operating System. Proc. of 269
the 8th Symposium on Operating Systems; 1981 December; Asilomar. [pages] 30-36.

The star user interface: an overview

by DAVID CANFIELD SMITH, CHARLES IRBY, and RALPH KIMBALL
Xerox Corporation
Palo Alto, California

and

ERIC HARSLEM

Xerox Corporation
EI Segundo, California

ABSTRACT

In April 1981 Xerox announced the 8010 Star Information System, a new personal
computer designed for office professionals who create, analyze, and distribute
information. The Star user interface differs from that of other office computer
systems by its emphasis on graphics, its adherence to a metaphor of a physical
office, and its rigorous application of a small set of design principles. The graphic
imagery reduces the amount of typing and remembering required to operate the
system. The office metaphor makes the system seem familiar and friendly; it reduc­
es the alien feel that many computer systems have. The design principles unify the
nearly two dozen functional areas of Star, increasing the coherence of the system
and allowing user experience in one area to apply in others.

1

2

INTRODUCTION

In this paper we present the features in the Star system with­
out justifying them in detail. In a companion paper, 1 we dis­
cuss the rationale for the design decisions made in Star. We
assume that the reader has a general familiarity with computer
text editors, but no familiarity with Star.

The Star hardware consists of a processor, a two-page-wide
bit-mapped display, a keyboard, and a cursor control device.
The Star software addresses about two dozen functional areas
of the office, encompassing document creation; data pro­
cessing; and electronic filing, mailing, and printing. Docu­
ment creation includes text editing and formatting, graphics
editing, mathematical formula editing, and page layout. Data
processing deals with homogeneous databases that can be
sorted, filtered, and formatted under user control. Filing is an
example of a network service using the Ethernet local area
network.2,3 Files may be stored on a work station's disk (Fig­
ure 1), on a file server on the work station's network, or on a
file server on a different network. Mailing permits users of
work stations to communicate with one another. Printing uses
laser-driven xerographic printers capable of printing both text
and graphics. The term Star refers to the total system, hard­
ware plus software.

As Jonathan Seybold has written, "This is a very different
product: Different because it truly bridges word processing

Figure I-A Star workstation showing the processor, display, keyboard and
mouse

The Star User Interface: An Overview

and typesetting functions; different because it has a broader
range of capabilities than anything which has preceded it; and
different because it introduces to the commercial market rad­
ically new concepts in human engineering.,,4

The Star hardware was modeled after the experimental
Alto computer developed at the Xerox Palo Alto Research
Center.s Like Alto, Star consists of a Xerox-developed high­
bandwidth MSI processor, local disk storage, a bit-mapped
display screen having a 72-dot-per-inch resolution, a pointing
device called the mouse, and a connection to the Ethernet.
Stars are higher-performance machines than Altos, being
about three times as fast, having 512K bytes of main memory
(vs. 256K bytes on most Altos), 10 or 29M bytes of disk
memory (vs. 2.5M bytes), a lOY2-by-13Y2-inch display screen
(vs. a lOYz-by-82-inch one), 1024 x 808 addressable screen
dots (vs. 606 x 808), and a 10M bits-per-second Ethernet (vs.
3M bits). Typically, Stars, like Altos, are linked via Ethernets
to each other and to shared file, mail, and print servers. Com­
munication servers connect Ethernets to one another either
directly or over phone lines, enabling internetwork commu­
nication to take place. This means, for example, that from the
user's perspective it is no harder to retrieve a file from a file
server across the country than from a local one.

Unlike the Alto, however, the Star user interface was de­
signed before the hardware or software was built. Alto soft­
ware, of which there was eventually a large amount, was de­
veloped by independent research teams and individuals.
There was little or no coordination among projects as each
pursued its own goals. This was acceptable and even desirable
in a research environment producing experimental software.
But it presented the Star designers with the challenge of syn­
thesizing the various interfaces into a single, coherent, uni­
form one.

ESSENTIAL HARDWARE

Before describing Star's user interface, we should point out
that there are several aspects of the Star (and Alto) architec­
ture that are essential to it. Without these elements, it would
have been impossible to design a user interface anything like
the present one.

Display

Both Star and Alto devote a portion of main memory to the
bit-mapped display screen: lOOK bytes in Star, 50K bytes
(usually) in Alto. Every screen dot can be individually turned
on or off by setting or resetting the corresponding bit in
memory. This gives both systems substantial ability to portray
graphic images.

3

4

National Computer Conference, 1982

Memory Bandwidth

Both Star and Alto have a high memory bandwidth-about
50 MHz, in Star. The entire Star screen is repainted from
memory 39 times per second. This 50-MHz video rate would
swamp most computer memories, and in fact refreshing the
screen takes about 60% of the Alto's memory bandwidth.
However, Star's memory is double-ported; therefore, refresh­
ing the display does not appreciably slow down CPU memory
access. Star also has separate logic devoted solely to refresh­
ing the display.

Microcoded Personal Computer

Both Star and Alto are personal computers, one user per
machine. Therefore the needed memory access and CPU cy­
cles are consistently available. Special microcode has been
written to assist in changing the contents of memory quickly,
permitting a variety of screen processing that would otherwise
not be practical. 6

Mouse

Both Star and the Alto use a pointing device called the
mouse (Figure 2). First developed at SRI,7 Xerox's version
has a ball on the bottom that turns as the mouse slides over a
flat surface such as a table. Electronics sense the ball rotation
and guide a cursor on the screen in corresponding motions.
The mouse is a "Fitts's law" device: that is, after some practice

Figure 2-The Star keyboard and mouse

The keyboard has 24 easy-to-understand function keys. The mouse has two
buttons on top.

you can point with a mouse as quickly and easily as you can
with the tip of your finger. The limitations on pointing speed
are those inherent in the human nervous system. 8,9 The mouse
has buttons on top that can be sensed under program control.
The buttons let you point to and interact with objects on the
screen in a variety of ways.

Local Disk

Every Star and Alto has its own rigid disk for local storage
of programs and data. Editing does not require using the
network. This enhances the personal nature of the machines,
resulting in consistent behavior regardless of how many other
machines there are on the network or what anyone else is
doing. Large programs can be written, using the disk for
swapping.

Network

The Ethernet lets both Stars and Altos have a distributed
architecture. Each machine is connected to an Ethernet.
Other machines on the Ethernet are dedicated as servers,
machines that are attached to a resource and that provide
access to that resource. Typical servers are these:

1. File server-Sends and receives files over the network,
storing them on its disks. A file server improves on a
work station's rigid disk in several ways: (a) Its capacity
is greater-up to 1.2 billion bytes. (b) It provides backup
facilities. (c) It allows files to be shared among users.
Files on a work station's disk are inaccessible to anyone
else on the network.

2. Mail server-Accepts files over the network and distrib­
utes them to other machines on behalf of users, employ­
ing . the Clearinghouse's database of names and ad­
dresses (see below).

3. Print server-Accepts print-format files over the net­
work and prints them on the printer connected to it.

4. Communication server-Provides several services: The
Clearinghouse service resolves symbolic names into net­
work addresses.lO The Internetwork Routing service
manages the routing of information between networks
over phone lines. The Gateway service allows word pro­
cessors and dumb terminals to access network resources.

A network-based server architecture is economical, since
many machines can share the resources. And it frees work
stations for other tasks, since most server actions happen in
the background. For example, while a print server is printing
your document, you can edit another document or read your
mail.

PHYSICAL OFFICE METAPHOR

We will briefly describe one of the most important principles
that influenced the form of the Star user interface. The reader
is referred to Smith et al. 1 for a detailed discussion of all the
principles behind the Star design. The principle is to apply
users' existing knowledge to the new situation of the com­
puter. We decided to create electronic counterparts to the
objects in an office: paper, folders, file cabinets, mail boxes,
calculators, and so on-an electronic metaphor for the phys­
ical office. We hoped that this would make the electronic
world seem more familiar and require less training. (Our ini­
tial experiences with users have confirmed this.) We further
decided to make the electronic analogues be concrete objects.

Star documents are represented, not as file names on a disk,
but as pictures on the display screen. They may be selected by
pointing to them with the mouse and clicking one of the
mouse buttons. Once selected, documents may be moved,
copied, or deleted by pushing the MOVE, COPY, or DE­
LETE key on the keyboard. Moving a document is the elec­
tronic equivalent of picking up a piece of paper and walking
somewhere with it. To file a document, you move it to a
picture of a file drawer, just as you take a piece of paper to a
physical filing cabinet. To print a document, you move it to a
picture of a printer, just as you take a piece of paper to a
copying machine.

Though we want an analogy with the physical world for
familiarity, we don't want to limit ourselves to its capabilities.
One of the raisons d'etre for Star is that physical objects do not
provide people with enough power to manage the increasing
complexity of their information. For example, we can take
advantage of the computer's ability to search rapidly by pro­
viding a search function for its electronic file drawers, thus
helping to solve the problem of lost files.

THE DESKTOP

Every user's initial view of Star is the Desktop, which resem­
bles the top of an office desk, together with surrounding fur­
niture and equipment. It represents a working environment,
where current projects and accessible resources reside. On the
screen (Figure 3) are displayed pictures of familiar office ob­
jects, such as documents, folders, file drawers, in-baskets, and
out-baskets. These objects are displayed as small pictures, or
icons.

You can "open" an icon by selecting it and pushing the
OPEN key on the keyboard. When opened, an icon expands
into a larger form called a window, which displays the icon's
contents. This enables you to read docuJllents, inspect the

XfRUX STAIIU-.-f_

P.9f29
LJU

Figure 3--A "Desktop" as it appears on the Star screen

This one has several commonly used icons along the top, including documents to
serve as . 'form pad" sources for letters, memos and blank paper. There is also an
open window displaying a document.

The Star User Interface: An Overview

contents of folders and file drawers, see what mail has arrived,
and perform other activities. Windows are the principal mech­
anism for displaying and manipulating information.

The Desktop surface is displayed as a distinctive grey pat­
tern. This is restful and makes the icons and windows on it
stand out crisply, minimizing eye strain. The surface is or­
ganized as an array of I-inch squares, 14 wide by 11 high. An
icon may be placed in any square, giving a maximum of 154
icons. Star centers an icon in its square, making it easy to line
up icons neatly. The Desktop always occupies the entire dis­
play screen; even when windows appear on the screen, the
Desktop continues to exist "beneath" them.

The Desktop is the principal Star technique for realizing the
physical office metaphor. The icons on it are visible, concrete
embodiments of the corresponding physical objects. Star
users are encouraged to think of the objects on the Desktop
in physical terms. You can move the icons around to arrange
your Desktop as you wish. (Messy Desktops are certainly
possible, just as in real life.) You can leave documents on your
Desktop indefinitely, just as on a real desk, or you can file
them away.

ICONS

An icon is a pictorial representation of a Star object that can
exist on the Desktop. On the Desktop, the size of an icon is
approximately 1 inch square. Inside a window such as a folder
window, the size of an icon is approximately 1/4-inch square.
Iconic images have played a role in human communication
from cave paintings in prehistoric times to Egyptian hiero­
glyphics to religious symbols to modern corporate logos.
Computer science has been slow to exploit the potential of
visual imagery for presenting information, particularly ab­
stract information. "Among [the] reasons are the lack of
development of appropriate hardware and software for pro­
ducing visual imagery easily and inexpensively; computer
technology has been dominated by persons who seem to be
happy with a simple, very limited alphabet of characters used
to produce linear strings of symbols. ,,11 One of the authors has
applied icons to an environment for writing programs; he
found that they greatly facilitated human-computer commu­
nication. 12 Negroponte's Spatial Data Management system
has effectively used iconic images in a research setting. 13 And
there have been other efforts. 14

,15,16 But Star is the first com­
puter system designed for a mass market to employ icons
methodically in its user interface. We do not claim that Star
exploits visual communication to the ultimate extent; we do
claim that Star's use of imagery is a significant improvement
over traditional human-machine interfaces.

At the highest level the Star world is divided into two classes
of icons, (1) data and (2) function icons:

Data Icons

Data icons (Figure 4) represent objects on which actions are
performed. All data icons can be moved, copied, deleted,
filed, mailed, printed, opened, closed, and have a variety of
other operations performed on them. The three types of data
icons are document, folder, and record file.

5

6

National Computer Conference. 1982

§j [j0 [j' EJ EJ~ :: l-:-ttfi!"'" ~ ~~:t~,. .. ,,~~~..... , .. ,:.~.. ; .. .':". ;: ;, '''1:11: :
tl:, _,:rl''':' tl' _'~ ~ ~ .. ' " ,
-::" ",:,,, "

.; "

!Dlde,

Figure 4--The "data" icons: document. folder and record file

Document

A document is the fundamental object in Star. It corre­
sponds to the standard notion of what a document should be.
lt most often contains text, but it may also include illustra­
tions, mathematical formulas, tables, fields, footnotes, and
formatting information. Like all data icons, documents can be
shown on the screen, rendered on paper, sent to other people,
stored on a file server or floppy disk, etc. When opened,
documents are always rendered on the display screen exactly
as they print on paper (informally called "what you see is what
you get"), including displaying the correct type fonts, multiple
columns, headings and footings, illustration placement, etc.
Documents can reside in the system in a variety of formats
(e.g., Xerox 860, IBM OS6), but they can be edited only in
Star format. Conversion operations are provided to translate
between the various formats.

Folder

A folder is used to group data icons together. It can contain
documents, record files, and other folders. Folders can be
nested inside folders to any level. Like file drawers (see be­
low), folders can be sorted and searched.

Record file

A record file is a collection of information organized as a set
of records. Frequently this information will be the variable
data from forms. These records may be sorted, subset via
pattern matching, and formatted into reports. Record files
provide a rich set of information storage and retrieval
functions.

Function Icons

Function icons represent objects that perform actions. Most
function icons will operate on any data icon. There are many
kinds of function icons, with more being added as the system
evolves:

File drawer

A file drawer (Figure 5) is a place to store data icons. lt is
modeled after the drawers in office filing cabinets. The or­
ganization of a file drawer is up to you; it can vary from a
simple list of documents to a multilevel hierarchy of folders

1 E3 I ... k~'b~I:J
.:~.~. ~ .. ~~~
, .

Figure 5-A file drawer icon

containing other folders. File drawers are distinguished from
other storage places (folders, floppy disks, and the Desktop)
in that (1) icons placed in a file drawer are physically stored
on a file server, and (2) the contents of file drawers can be
shared by multiple users. File drawers have associated access
rights to control the ability of people to look at and modify
their contents (Figure 6).

Although the design of file drawers was motivated by their
physical counterparts, they are a good example of why it is
neither necessary nor desirable to stop with just duplicating
real-world behavior. People have a lot of trouble finding
things in filing cabinets. Their categorization schemes are fre­
quently ad hoc and idiosyncratic. If the person who did the
categorizing leaves the company, information may be per­
manently lost. Star improves on physical filing cabinets by
taking advantage of the computer's ability to search rapidly.
You can search the contents of a file drawer for an object
having a certain name, or author, or creation date, or size, or
a variety of other attributes. The search criteria can use fuzzy
patterns containing match-anything symbols, ranges, and
other predicates. You can also sort the contents on the basis
of those criteria. The point is that whatever information re­
trieval facilities are available in a system should be applied to

Figure 6-An open file drawer window

Note that there is a miniature icon for each object inside the file drawer.

the information in files. Any system that does not do so is not
exploiting the full potential of the computer.

In basket and Out basket

These provide the principal mechanism for sending data
icons to other people (Figure 7). A data icon placed in the Out
basket will be sent over the Ethernet to a mail server (usually
the same machine as a file server), thence to the mail servers
of the recipients (which may be the same as the sender's), and
thence to the In baskets of the recipients. When you have mail
waiting for you, an envelope appears in your In basket icon.
When you open your In basket, you can display and read the
mail in the window.

Any document, record file, or folder can be mailed. Docu­
ments need not be limited to plain text, but can contain illus­
trations, mathematical formulas, and other nontext material.
Folders can contain any number of items. Record files can be
arbitrarily large and complex.

Figure 7-In and Out basket icons

Printer

Printer icons (Figure 8) provide access to printing services.
The actual printer may be directly connected to your work
station, or it may be attached to a print server connected to an
Ethernet. You can have more than one printer icon on your
Desktop, providing access to a variety of printing resources.
Most printers are expected to be laser-driven raster-scan xero­
graphic machines; these can render on paper anything that
can be created on the screen. Low-cost typewriter-based
printers are also available; these can render only text.

As with filing and mailing, the existence of the Ethernet
greatly enhances the power of printing. The printer repre­
sented by an icon on your Desktop can be in the same room
as your work station, in a different room, in a different build-

.••.•..........•...•.••• ~! •• : ••• : •• ::::::::: ••••• :.~.:.· ••• ··.i.!ili.i!!l
'<' •

Figure 8-A printer icon

The Star User Interface: An Overview

ing, in a different city, even in a different country. You per­
form exactly the same actions to print on any of them: Select
a data icon, push the MOVE key, and indicate the printer icon
as the destination.

Floppy disk drive

The floppy disk drive icon (Figure 9) allows you to move
data icons to and from a floppy disk inserted in the machine.
This provides a way to store documents, record files and fold­
ers off line. When you open the floppy disk drive icon, Star
reads the floppy disk and displays its contents in the window.
Its window looks and acts just like a folder window: icons may
be moved or copied in or out, or deleted. The only difference
is the physical location of the data.

Figure 9-A floppy disk drive icon

User

The user icon (Figure 10) displays the information that the
system knows about each user: name, location, password
(invisible, of course), aliases if any, home file and mail serv­
ers, access level (ordinary user, system administrator, help/
training writer), and so on. We expect the information stored
for each user to increase as Star adds new functionality. User
icons may be placed in address fields for electronic mail.

User icons are Star's solution to the naming problem. There
is a crisis in computer naming of people, particularly in elec­
tronic mail addressing. The convention in most systems is to

Figure lO-A user icon

7

8

National Computer Conference, 1982

use last names for user identification. Anyone named Smith,
as is one of the authors, knows that this doesn't work. When
he first became a user on such a system, Smith had long ago
been taken. In fact, "D. Smith" and even "D. C. Smith" had
been taken. He finally settled on "DaveSmith", all one word,
with which he has been stuck to this day. Needless to say, that
is not how he identifies himself to people. In the future, peo­
ple will not tolerate this kind of antihumanism from comput­
ers. Star already does better: it follows society's conventions.
User icons provide unambiguous unique references to individ­
ual people, using their normal names. The information about
users, and indeed about all network resources, is physically
stored in the Clearinghouse, a distributed database of names.
In addition to a person's name in the ordinary sense, this
information includes the name of the organization (e.g., Xe­
rox, General Motors) and the name of the user's division
within the organization. A person's linear name need be
unique only within his division. It can be fully spelled out if
necessary, including spaces and punctuation. Aliases can be
defined. User icons are references to this information. You
need not even know, let alone type, the unique linear repre­
sentation for a user; you need only have the icon.

User group

User group icons (Figure 11) contain individual users and/
or other user groups. They allow you to organize people ac­
cording to various criteria. User groups serve both to control

•• ,', ••• I, *, ... , 11 " fI-•• t." It •• "". t •• "»'''' ', ,', .. "
t • ~ .. • .. ., ... ,
~:~: ,. ,. ,. :~:~
:::: ::::
:::: ::;:
:::: ::::
""II!. .*.'
~:i: C-e sign ers :~::
.. ,. •••• , t .. f ... t' *' t'.',' .. ' t t •••• ., ~ II!. t t :
.•. " t,.,_," ',I •.•.•. " .•.• ,,'.".

Figure 11-A user group icon

access to information such as file drawers (access control lists)
and to make it easy to send mail to a large number of people
(distribution lists). The latter is becoming increasingly im­
portant as more and more people start to take advantage of
computer-assisted communication. At Xerox we have found
that as soon as there were more than a thousand Alto users,
there were almost always enough people interested in any
topic whatsoever to form a distribution list for it. These user
groups have broken the bonds of geographical proximity that
have historically limited group membership and commu­
nication. They have begun to turn Xerox into a nationwide
"village," just as the Arpanet has brought computer science
researchers around the world closer together. This may be the
most profound impact that computers have on society.

Calculator

A variety of styles of calculators (Figure 12) let you perform
arithmetic calculations. Numbers can be moved between Star
documents and calculators. thereby reducing the amount of
typing and the possibility of errors. Rows or columns of tables
can be summed. The calculators are user-tailorable and exten­
sible. Most are modeled after pocket calculators-business,
scientific, four-function-but one is a tabular calculator simi­
lar to the popular Visicalc program.

. . - - , , ~ . , , ~ ~
• f • , ~ • 4 • I ~ , J • , , • •

~ • ' 1 • • • ~ $ • f • > • _ ,

---.. --­------
Figure 12-A calculator icon

Terminal emulators

The terminal emulators permit you to communicate with
existing mainframe computers using existing protocols. Ini­
tially, teletype and 3270 terminals are emulated, with addi­
tional ones later (Figure 13). You open one of the terminal
icons and type into its window; the contents of the window
behave exactly as if you were typing at the corresponding
terminal. Text in the window can be copied to and from Star
documents, which makes Star's rich environment available to
them.

Figure 13-3270 and TrY emulation icons

Directory

The Directory provides access to network resources. It
serves as the source for icons representing those resources;
the Directory contains one icon for each resource available
(Figure 14). When you are first registered in a Star network,

. _.. .-

Figure 14---A Directory icon

your Desktop contains nothing but a Directory icon. From
this initial state, you access resources such as file drawers,
printers, and mail baskets by opening the Directory and copy­
ing out their icons. You can also get blank data icons out of the
Directory. You can retrieve other data icons from file draw­
ers. Star places no limits on the complexity of your Desktop
except the limitation imposed by physical screen area (Figure
15). The Directory also contains Remote Directories repre­
senting resources available on other networks. These can be
opened, recursively, and their resource icons copied out, just
as with the local Directory. You deal with local and remote
resources in exactly the same way.

Figure 15--The Directory window, showing the categories of resources
available

The important thing to observe is that although the func­
tions performed by the various icons differ, the way you inter­
act with them is the same. You select them with the mouse.
You push the MOVE, COPY, or DELETE key. You push the
OPEN key to see their contents, the PROPERTIES key to see
their properties, and the SAME key to copy their properties.
This is the result of rigorously applying the principle of uni­
formity to the design of icons. We have applied it to other
areas of Star as well, as will be seen.

WINDOWS

Windows are rectangular areas that display the contents of
icons on the screen. Much of the inspiration for Star's design

The Star User Interface: An Overview

came from Alan Kay's Flex machine 17 and his later Smalltalk
programming environment on the Alto.18 The Officetalk
treatment of windows was also influential; in fact, Officetalk,
an experimental office-forms-processing system on the Alto,
provided ideas in a variety of areas. 19 Windows greatly in­
crease the amount of information that can be manipulated on
a display screen. Up to six windows at a time can be open in
Star. Each window has a header containing the name of the
icon and a menu of commands. The commands consist of a
standard set present in all windows ("?", CLOSE, SET WIN­
DOW) and others that depend on the type of icon. For exam­
ple, the window for a record file contains commands tailored
to information retrieval. CLOSE removes the window from
the display screen, returning the icon to its tiny size. The "?"
command displays the online documentation describing the
type of window and its applications.

Each window has two scroll bars for scrolling the contents
vertically and horizontally, The scroll bars have jump-to-end
areas for quickly going to the top, bottom, left, or right end
of the contents. The vertical scroll bar also has areas labeled
Nand P for quickly getting the next or previous screenful of
the contents; in the case of a document window, they go to the
next or previous page. Finally, the vertical scroll bar has a
jumping area for going to a particular part of the contents,
such as to a particular page in a document.

Unlike the windows in some Alto programs, Star windows
do not overlap. This is a deliberate decision, based on our
observation that many Alto users were spending an inordinate
amount of time manipulating windows themselves rather than
their contents. This manipulation of the medium is overhead,
and we want to reduce it. Star automatically partitions the
display space among the currently open windows. You can
control on which side of the screen a window appea~ and its
height.

PROPERTY SHEETS

At a finer grain, the Star world is organized in terms of objects
that have properties and upon which actions are performed. A
few examples of objects in Star are text characters, text para­
graphs, graphic lines, graphic illustrations, mathematical sum­
mation signs, mathematical formulas, and icons. Every object
has properties. Properties of text characters include type
style, size, face, and posture (e.g., bold, italic). Properties of
paragraphs include indentation, leading, and alignment.
Properties of graphic lines include thickness and structure
(e.g., solid, dashed, dotted). Properties of document icons
include name, size, creator, and creation date. So the proper­
ties of an object depend on the type of the object. These ideas
are similar to the notions of classes, objects, and messages in
Simula20 and Smalltalk. Among the editors that use these
ideas are the experimental text editor Brav021 and the experi­
mental graphics editor Draw, 22 both developed at the Xerox
Palo Alto Research Center. These all supplied valuable
knowledge and insight to Star. In fact, the text editor aspects
of Star were derived from Bravo.

In order to make properties visible, we invented the notion
of a property sheet (Figure 16). A property sheet is a two­
dimensional formlike environment which shows the proper-

9

10

National Computer Conference, 1982

Figure 16-The property sheet for text chqracters

ties of an object. To display one, you select the object of
interest using the mouse and push the PROPERTIES key on
the keyboard. Property sheets may contain three types of
parameters:

1. State-State parameters display an independent proper­
ty, which may be either on or off. You turn it on or off
by pointing to it with the mouse and clicking a mouse
button. When on, the parameter is shown video re­
versed. In general, any combination of state parameters
in a property sheet can be on. If several state parameters
are logically related, they are shown on the same line
with space between them. (See "Face" in Figure 16.)

2. Choice-Choice parameters display a set of mutually
exclusive values for a property. Exactly one value must
be on at all times. As with state parameters, you turn on
a choice by pointing to it with the mouse and clicking a
mouse button. If you turn on a different value, the sys­
tem turns off the previous one. Again the one that is on
is shown video reversed. (See "Font" in Figure 16.) The
motivation for state and choice parameters is the obser­
vation that it is generally easier to take a multiple-choice
test than a fill-in-the-blanks one. When options are
made visible, they become easier to understand, remem­
ber, and use.

3. Text-Text parameters display a box into which you can
type a value. This provides a (largely) unconstrained
choice space; you may type any value you please, within
the limits of the system. The disadvantage of this is that
the set of possible values is not visible; therefore Star
uses text parameters only when that set is large. (See
"Search for" in Figure 17.)

Property sheets have several important attributes:

1. A small number of parameters gives you a large number
of combinations of properties. They permit a rich choice
space without a lot of complexity. For example, the char­
acter property sheet alone provides for 8 fonts, from 1 to
6 sizes for each (an average of about 2), 4 faces (any

Figure 17-The option sheet for the Find command

combination of which can be on), and 8 positions rela­
tive to the baseline (iricluding OTHER. which lets you
type in a value). So in just four parameters, there are
over 8 x 2 x 2~ x 8 = 2048 combinations of character
properties.

2. They show all of the properties of an object. None is
hidden. You are constantly reminded what is available
every time you display a property sheet.

3. They provide progressive disclosure. There are a large
number of properties in the system as a whole, but you
want to deal With only a small subset at anyone time.
Only the properties of the selected object are shown.

4. They provide a "bullet-proof" environment for altering
the characteristics of an object. Since only the properties
of the selected object are shown, you can't accidentally
alter other objects. Since only valid choices are dis­
played, you can't specify illegal properties. This reduces
errors.

Property sheets are an example of the Star design principle
that seeing and pointing is preferred over remembering and
typing. You don't have to remember what properties are avail­
able for an object; the property sheet will show them to you.
This reduces the burden on your memory, which is particu­
larly important in a functionally rich system. And most prop­
erties can be changed by a simple pointing action with the
mouse.

The three types of parameters are also used in option sheets.
(Figure 18). Option sheets are just like property sheets, ex­
cept that they provide a visual interface for arguments to com­
mands instead of properties of objects. For example, in the
Find option sheet there is a text parameter for the string to
search for, a choice parameter for the range over which to
search, and a state parameter (CHANGE IT) controlling
whether to replace that string with another one. When
CHANGE IT is turned on, an additional set of parameters
appears to contain the replacement text. This technique of
having some parameters appear depending on the settings of
others is another part of our strategy of progressive disclo­
sure: hiding information (and therefore complexity) until it is

needed, but making it visible when it is needed. The various
sheets appear simpler than if all the options were always
shown.

COMMANDS

Commands in Star take the form of noun-verb pairs. You
specify the object of interest (the noun) and then invoke a
command to manipulate it (the verb). Specifying an object is
called making a selection. Star provides powerful selection
mechanisms, which reduce the number and complexity of
commands in the system. Typically, you exercise more dexter­
ity and judgment in making a selection than in invoking a
command. The ways to make a selection are as follows:

1. With the mouse-Place the cursor over the object on the
screen you want to select and click the first (SELECT)
mouse button. Additional objects can be selected by
using the second (ADJUST) mouse button; it adjusts the
selection to include more or fewer objects. Most selec­
tions are made in this way.

2. With the NEXT key on the keyboard-Push the NEXT
key, and the system will select the contents of the next
field in a document. Fields are one of the types of special
higher-level objects that can be placed in documents. If
the selection is currently in a table, NEXT will step
through the rows and columns of the table, making it
easy to fill in and modify them. If the selection is cur­
rently in a mathematical formula, NEXT will step
through the various elements in the formula, making it
easy to edit them. NEXT is like an intelligent step key;
it moves the selection between semantically meaningful
locations in a document.

3. With a command-Invoke the FIND command, and the
system will select the next occurrence of the specified
text, if there is one. Other commands that make a selec­
tion include OPEN (the first object in the opened win­
dow is selected) and CLOSE (the icon that was closed
becomes selected). These optimize the use of the
system.

Figure 1S-The Find option sheet showing Substitute options (The extra
options appear only when CHANGE IT is turned on)

The Star User Interface: An Overview

The object (noun) is almost always specified before the
action (verb) to be performed. This makes the command in­
terface modeless; you can change your mind as to which object
to affect simply by changing the selection before invoking the
command.23 No "accept" function is needed to terminate or
confirm commands, since invoking the command is the last
step. Inserting text does not require a command; you simply
make a selection and begin typing. The text is placed after the
end of the selection. A few commands require more than one
operand and hence are modal. For example, the MOVE and
COpy commands require a destination as well as a source.

GENERIC COMMANDS

Star has a few commands that can be used throughout the
system: MOVE, COPY, DELETE, SHOW PROPERTIES,
COpy PROPERTIES, AGAIN, UNDO, and HELP. Each
performs the same way regardless of the type of object se­
lected. Thus we call them generic commands. For example,
you follow the same set of actions to move text in a document
as to move a document in a folder or a line in an illustration:
select the object, move the MOVE key, and indicate the
destination. Each generic command has a key devoted to it on
the keyboard. (HELP and UNDO don't use a selection.)

These commands are more basic than the ones in other
computer systems. They strip away extraneous application­
specific semantics to get at the underlying principles. Star's
generic commands are derived from fundamental computer
science concepts because they also underlie operations in pro­
gramming languages. For example, program manipulation of
data structures involves moving or copying values from one
data structure to another. Since Star's generic commands em­
body fundamental underlying concepts, they are widely appli­
cable. Each command fills a host of needs. Few commands are
required. This simplicity is desirable in itself, but it has anoth­
er subtle advantage: it makes it easy for users to form a model
ofthe system. What people can understand, they can use. Just
as progress in science derives from simple, clear theories, so
progress in the usability of computers depends on simple,
clear user interfaces.

Move

MOVE is the most powerful command in the system. It is
used during text editing to rearrange letters in a word, words
in a sentence, sentences in a paragraph, and paragraphs in a
document. It is used during graphics editing to move picture
elements such as lines and rectangles around in an illustration.
It is used during formula editing to move mathematical struc­
tures such as summations and integrals around in an equation.
It replaces the conventional "store file" and "retrieve file"
commands; you simply move an icon into or out of a file
drawer or folder. It eliminates the "send mail" and "receive
mail" commands; you move an icon to an Out basket or from
an In basket. It replaces the "print" command; you move an
icon to a printer. And so on. MOVE strips away much of the
historical clutter of computer commands. It is more funda­
mental than the myriad of commands it replaces. It is simulta­
neously more powerful and simpler.

11

12

National Computer Conference, 1982

MOVE also reinforces Star's physical metaphor: a moved
object can be in only one place at one time. Most computer
file transfer programs only make copies; they leave the origi­
nals behind. Although this is an admirable attempt to keep
information from accidentally getting lost, an unfortunate
side effect is that sometimes you lose track of where the most
recent information is, since there are multiple copies floating
around. MOVE lets you model the way you manipulate infor­
mation in the real world, should you wish to. We expect that
during the creation of information, people will primarily use
MOVE; during the dissemination of information, people will
make extensive use of COPY.

Copy

COpy is just like MOVE, except that it leaves the original
object behind untouched. Star elevates the concept of copying
to the level of a paradigm for creating. In all the various
domains of Star, you create by copying. Creating something
out of nothing is a difficult task. Everyone has observed that
it is easier to modify an existing document or program than to
write it originally. Picasso once said, "The most awful thing
for a painter is the white canvas To copy others is neces­
sary. ,,24 Star makes a serious attempt to alleviate the problem
of the "white canvas," to make copying a practical aid to
creation. Consider:

• You create new documents by copying existing ones.
Typically you set up blank documents with appropriate
formatting properties (e.g., fonts, margins) and then use
those documents as form pad sources for new documents.
You select one, push COPY, and presto, you have a new
document. The form pad documents need not be blank;
they can contain text and graphics, along with fields for
variable text such as for business forms.

• You place new network resource icons (e.g., printers, file
drawers) on your Desktop by copying them out of the
Directory. The icons are registered in the Directory by a
system administrator working at a server. You simply
copy them out; n0 other initialization is required.

• You create graphics by copying existing graphic images
and modifying them. Star supplies an initial set of such
images, called transfer symbols. Transfer symbols are
based on the idea of dry-transfer rub-off symbols used by
many secretaries and graphic artists. Unlike the physical
transfer symbols, however, the computer versions can be
modified: they can be moved, their sizes and proportions
can be changed, and their appearance properties can be
altered. Thus a single Star transfer symbol can produce a
wide range of images. We will eventually supply a set of
documents (transfer sheets) containing nothing but spe­
cial images tailored to one application or another: peo­
ple, buildings, vehicles, machinery. Having these as
sources for graphics copying helps to alleviate the "white
canvas" feeling.

• In a sense, you can even type characters by copying them
from keyboard windows. Since there are many more
characters (up to 216

) in the Star character set than there
are keys on the keyboard, Star provides a series of key-

board interpretation windows (Figure 19), which allow
you to see and change the meanings of the keyboard
keys. You are presented with the options; you look them
over and choose the ones you want.

Figure 19-The Keyboard Interpretation window

This displays other characters that may be entered from the keyboard. The
character set shown here contains a variety of common office symbols.

Delete

This deletes the selected object. If you delete something by
mistake, UNDO will restore it.

Show Properties

SHOW PROPERTIES displays the properties of the se­
lected object in a property sheet. You select the object(s) of
interest, push the PROPERTIES (PROP'S) key, and the ap­
propriate property sheet appears on the screen in such a pos­
ition as to not overlie the selection, if possible. You may
change as many properties as you wish, including none. When
finished, you invoke the Done command in the property sheet
menu. The property changes are applied to the selected ob­
jects, and the property sheet disappears. Notice that SHOW
PROPERTIES is therefore used both to examine the current
properties of an object and to change those properties.

Copy Properties

You need not use property sheets to alter properties if there
is another object on the screen that already has the desired
properties. You can select the object(s) to be changed, push
the SAME key, then designate the object to use as the source.
COpy PROPERTIES makes the selection look the "same"
as the source. This is particularly useful in graphics editing.
Frequently you will have a collection of lines and symbols
whose appearance you want to be coordinated (all the same
line width, shade of grey, etc.). You can select all the objects
to be changed, push SAME, and select a line or symbol having

the desired appearance. In fact, we find it helpful to set up a
document with a variety of graphic objects in a variety of
appearances to be used as sources for copying properties.

Again

AGAIN repeats the last command(s) on a new selection.
All the commands done since the last time a selection was
made are repeated. This is useful when a short sequence of
commands needs to be done on several different selections;
for example, make several scattered words bold and italic and
in a larger font.

Undo

UNDO reverses the effects of the last command. It provides
protection against mistakes, making the system more forgiv­
ing and user-friendly. Only a few commands cannot be re­
peated or undone.

Help

Our effort to make Star a personal, self-contained system
goes beyond the hardware and software to the tools that Star
provides to teach people how to use the system. Nearly all of
its teaching and reference material is on line, stored on a file
server. The Help facilities automatically retrieve the relevant
material as you request it.

The HELP key on the keyboard is the primary entrance into
this online information. You can push it at any time, and a
window will appear on the screen displaying the Help table of
contents (Figure 20). Three mechanisms make finding infor­
mation easier: context-dependent invocation, help references,
and a keyword search command. Together they make the
online documentation more powerful and useful than printed
documentation.

• Context-dependent invocation-The command menu in
every window and property/option sheet contains a"?"
command. Invoking it takes you to a part of the Help
documentation describing the window, its commands,
and its functions. The "?" command also appears in the
message area at the top of the screen; invoking that one
takes you to a description of the message (if any) cur­
rently in the message area. That provides more detailed
explanations of system messages.

• Help references-These are like menu commands whose
effect is to take you to a different part of the Help mate­
rial. You invoke one by pointing to it with the mouse, just
as you invoke a menu command. The writers of the ma­
terial use the references to organize it into a network of
interconnections, in a way similar to that suggested by
Vannevar Bush25 and pioneered by Doug Engelbart in his
NLS system.26

,27 The interconnections permit cross­
referencing without duplication.

• The SEARCH FOR KEYWORD command-This com­
mand in the Help window menu lets you search the avail­
able documentation for information on a specific topic.
The keywords are predefined by the writers of the Help
material.

The Star User Interface: An Overview

.WtndoWl,. ~

.SaM"s,...... IITM~

• "n_"'9 0 __

• EI .. d:ronK Mail

F_and Ffficfs
.•.. "'·:;"u"'~
• ':-"''''''' , "~kjs TMat Fi1f In A.utO>!'I'>ati.::aHy

.... conlsP~

.Handlinv STM~

Figure 20--The Help window. showing the table of contents

Selecting a square with a question mark in it takes you to the associated part of
the Help documentation.

SUMMARY

We have learned from Star the importance of formulating the
user's conceptual model first, before software is written, rath­
er than tacking on a user interface afterward. Doing good user
interface design is not easy. Xerox devoted about thirty work­
years to the design of the Star user interface. It was designed
before the functionality of the system was fully decided. It was
designed before the computer hardware was even built. We
worked for two years before we wrote a single line of actual
product software. Jonathan Seybold put it this way: "Most
system design efforts start with hardware specifications, fol­
low this with a set of functional specifications for the software,
then try to figure out a logical user interface and command
structure. The Star project started the other way around: the
paramount concern was to define a conceptual model of how
the user would relate to the system. Hardware and software
followed from this.,,4

Alto served as a valuable prototype for Star. Over a thou­
sand Altos were eventually built, and Alto users have had
several thousand work-years of experience with them over a
period of eight years, making Alto perhaps the largest proto-

13

14

National Computer Conference, 1982

typing effort in history. There were dozens of experimental
programs written for the Alto by members of the Xerox Palo
Alto Research Center. Without the creative ideas of the au­
thors of those systems, Star in its present form would have
been impossible. On the other hand, it was a real challenge to
bring some order to the different user interfaces on the Alto.
In addition, we ourselves programmed various aspects of the
Star design on Alto, but every bit (sic) of it was throwaway
code. Alto, with its bit-mapped display screen, was powerful
enough to implement and test our ideas on visual interaction.

REFERENCES

1. Smith, D. c., E. F. Harslem, C. H. Irby, R. B. Kimball, and W. L.
Verplank. "Designing the Star User Interface." Byte, April 1982.

2. Metcalfe, R. M., and D. R. Boggs. "Ethernet: Distributed Packet Switch­
ing for Local Computer Networks." Communications of the ACM, 19
(1976), pp. 395-404.

3. Intel, Digital Equipment, and Xerox Corporations. "The Ethernet, A Lo­
cal Area Network: Data Link Layer and Physical Layer Specifications
(version 1.0)." Palo Alto: Xerox Office Products Division, 1980.

4. Seybold, J. W. "Xerox's 'Star.'" The Seybold Report. Media, Pennsyl­
vania: Seybold Publications, 10 (1981), 16.

5. Thacker, C. P., E. M. McCreight, B. W. Lampson, R. F. Sproull, and D.
R. Boggs. "Alto: A Personal Computer." In D. Siewiorek, C. G. Bell, and
A. Newell (eds.), Computer StrUCtures: Principles and Examples. New
York: McGraw-Hill, 1982.

6. Ingalls, D. H. "The Smalltalk Graphics Kernel." Byte, 6 (1981), pp.
168-194.

7. English, W. K., D. C. Engelbart, and M. L. Berman. "Display·Selection
Techniques for Text Manipulation." IEEE Transactions on Human Factors
in Electronics, HFE-8 (1967), pp. 21-31.

8. Fitts, P. M. "The Information Capacity of the Human Motor System in
Controlling Amplitude of Movement." Journal of Experimental Psy­
chology, 47 (1954), pp. 381-391.

9. Card, S., W. K. English, and B. Burr. "Evaluation of Mouse, Rate­
Controlled Isometric Joystick, Step Keys, and Text Keys for Text Selection
on a CRT." Ergonomics, 21 (1978), pp. 601-613.

10. Oppen, D. c., and Y. K. Dalal. "The Clearinghouse: A Decentralized
Agent for Locating Named Objects in a Distributed Environment." Palo
Alto: Xerox Office Products Division, OPD-T8103, 1981.

11. Huggins, W. H .. and D. Entwisle. Iconic Communication. Baltimore and
London: The Johns Hopkins University Press, 1974.

12. Smith, D. C. Pygmalion, A Computer Program to Model and Stimulate
Creative Thought. Basel and Stuttgart: Birkhauser Verlag, 1977.

13. Bolt, R. Spatial Data-Management. Cambridge, Massachusetts: Massachu­
setts Institute of Technology Architecture Machine Group, 1979.

14. Sutherland, I. "Sketchpad, A Man-Machine Graphical Communication
System." AFIPS, Proceedings of the Fall Joint Computer Conference (Vol.
23), 1963, pp. 329-346.

15. Sutherland, W. "On-Line Graphical Specifications of Computer Proced­
ures." Cambridge, Massachusetts: Massachusetts Institute of Technology,
1966.

16. Christensen, C. "An Example of the Manipulation of Directed Graphs in
the AMBIT/G Programming Language." In M. Klerer and J. Reinfelds
(eds.), Interactive Systems for Experimental and Applied Mathematics. New
York: Academic Press, 1968.

17. Kay, A. C. The Reactive Engine. Salt Lake City: University-of Utah, 1969.
18. Kay, A. c., and the Learning Research Group. "Personal Dynamic Me­

dia." Xerox Palo Alto Research Center Technical Report SSL-76-1, 1976.
(A condensed version is in IEEE Computer, March 1977, pp. 31-41.)

19. Newman, W. M. "Officetalk-Zero: A User's Manual." Xerox Palo Alto
Research Center Internal Report, 1977.

20. Dahl, O. J., and K. Nygaard. "SIMULA-An Algol-Based Simulation Lan­
guage." Communications of the ACM, 9 (1966), pp. 671-678.

21. Lampson, B. "Bravo Manual." In Alto User's Handbook, Xerox Palo Alto
Research Center, 1976 and 1978. (Much of the design and all of the imp le-
mentation of Brave Vias done by Char!es Simony; and the skilled pro-
grammers in his "software factory. ")

22. Baudelaire, P., and M. Stone. "Techniques for Interactive Raster Graph-
ics." Proceedings of the 1980 Siggraph Conference, 14 (1980), 3.

23. Tesler, L. "The Smalltalk Environment." Byte, 6 (1981). pp. 90-147.
24. Wertenbaker, L. The World of Picasso. New York: Time-Life Books, 1967.
25. Bush, V. "As We May Think." Atlantic Monthly, July 1945.
26. Engelbart, D. C. "Augmenting Human Intellect: A Conceptual Frame­

work." Technical Report AFOSR-3223, SRI International, Menlo Park,
Calif., 1962.

27. Engelbart, D. c., and W. K. English. "A Research Center for Augmenting
Human Intellect." AFlPS Proceedings of the Fall Joint Computer Confer­
ence (Vol. 33), 1968, pp. 395-410.

Designing the Star User Interface
The Star user interface adheres rigorously to a small set of
principles designed to make the system seem friendly by

simplifying the human-machine interface.

In April 1981, Xerox announced
the 8010 Star Information System, a
new personal computer designed for
offices. Consisting of a processor, a
large display, a keyboard, and a
cursor-control device (see photo 1), it
is intended for business professionals
who handle information.

Star is a multifunction system com­
bining document creation, data pro­
cessing, and electronic filing, mailing,
and printing. Document creation in­
cludes text editing and formatting,
graphics editing, mathematical for­
mula editing, and page layout. Data
processing deals with homogeneous,
relational databases that can be
sorted, filtered, and formatted under
user control. Filing is an example of a
network service utilizing the Ethernet
local-area network (see references 9
and 13). Files may be stored on a
work station's disk, on a file server on

About the Authors
These five Xerox employees have worked on
the Star user interface project for the past five
years. Their academic backgrounds are in com­
puter science and psychology.

Dr. David Canfield Smith, Charles Irby,
Ralph Kimball, and Bill Verplank

Xerox Corporation
3333 Coyote Hill Rd.
Palo Alto, CA 94304

Eric Harslem
Xerox Corporation

El Segundo, CA 90245

the work station's network, or on a
file server on a different network.
Mailing permits users of work sta­
tions to communicate with one
another. Printing utilizes laser-driven
raster printers capable of printing
both text and graphics.

As Jonathan Seybold has written,
"This is a very different product: Dif­
ferent because it truly bridges word
processing and typesetting functions;
different because it has a broader
range of capabilities than anything
which has preceded it; and different
because it introduces to the commer­
cial market radically new concepts in
human engineering." (See reference
15.)

The Star user interface adheres
rigorously to a small set of design
principles. These principles make the
system seem familiar and friendly,
simplify the human-machine interac­
tion, unify the nearly two dozen func­
tional areas of Star, and allow user
experience in one area to apply in
others. In reference 17, we presented
an overview of the features in Star.
Here, we describe the principles

behind those features and illustrate
the principles with examples. This
discussion is addressed to the
designers of other computer pro­
grams and systems-large and small.

Star Architecture
Before describing Star's user inter­

face, several essential aspects of the
Star architecture should be pointed
out. Without these elements, it would
have been impossible to design an
interface anything like the present
one.

The Star hardware was modeled
after the experimental Xerox Alto
computer (see reference 19). Like
Alto, Star consists of a Xerox­
developed, high-bandwidth, MSI
(medium-scale integration) processor;
local disk storage; a bit-mapped
display screen having a 72-dots-per­
inch resolution; a pointing device
called the "mouse"; and a connection
to the Ethernet network. Stars are
higher-performance machines than
Altos, being about three times as fast,
having S12K bytes of main memory
(versus 2S6K bytes on most Altos), 10

15

16

Photo 1: A Star work station showing the processor, display, keyboard, and mouse.

Photo 2: The Star keyboard and mouse. Note the two buttons on top of the mouse.

or 29 megabytes or disk memory (ver­
sus 2.5 megabytes), a 10%- by
13V2-inch display screen (versus 10%
by 8 inches), and a 10-megabits-per­
second Ethernet (versus 3 megabits).
Typically, Stars, like Altos, are
linked via Ethernets to each other and
to shared file, mail, and print servers.
Communication servers connect
Ethemets to one another either direct­
ly or over telephone lines, enabling
internetwork communication. (For a
detailed description of the Xerox Alto
computer, see the September 1981
BYTE article "The Xerox Alto Com­
puter" by Thomas A. Wadlow on
page 58.)

The most important ingredient of

the user interface is the bit-mapped
display screen. Both Star and Alto
devote a portion of main memory to
the screen: lOOK bytes in Star, 50K
bytes (usually) in Alto. Every screen
dot can be individually turned on or
off by setting or resetting the cor­
responding bit in memory. It should
be obvious that this gives both com­
puters an excellent ability to portray
visual images. We believe that all im­
pressive office systems of the futurE
will have bit-mapped displays.
Memory cost will soon be insignifi·
cant enough that they will be feasiblE
even in home computers. Visual com·
munication is effective, and it can't bE
exploited without graphics flexibility.

There must be " a way to change
dots on the screen quickly. Star has a
high memory bandwidth, about 90
megahertz (MHz). The entire Star
screen is repainted from memory 39
times per second, about a 50-MHz
data rate between memory and the
screen. This would swamp most com­
puter memories. However, since
Star's memory is double-ported,
refreshing the display does not ap­
preciably slow down processor
memory access. Star also has separate
logic devoted solely to refreshing the
display. Finally, special microcode
has been written to assist in changing
the contents of memory quickly, per­
mitting a variety of screen processing
that would not otherwise be practical
(see reference 8).

People need a way to quickly point
to items on the screen. Cursor step
keys are too slow; nor are they
suitable for graphics. Both Star and
Alto use a pointing device called the
mouse (see photo 2). First developed
at Stanford Research Institute (see
reference 6), Xerox's version has a
ball on the bottom that turns as the
mouse slides over a flat surface such
as a table. Electronics sense the ball
rotation and guide a cursor on the
screen in corresponding motions. The
mouse possesses several important
attributes:

.It is a "Fitts's law" device. That is,
after some practice you can point
with a mouse as quickly and easily as
you can with the tip of your finger.
The limitations on pointing speed are
those inherent in the human nervous
system (see references 3 and 7).
• It stays where it was left when you
are not touching it. It doesn't have to
be picked up like a light pen or stylus.
• It has buttons on top that can be
sensed under program control. The
buttons let you point to and interact
with objects on the screen in a variety
of ways.

Every Star and Alto has its own
hard disk for local storage of pro­
grams and data. This enhances their
personal nature, providing consistent
access to information regardless of
how many other machines are on the

network or what anyone else is do­
ing. Larger programs can be written,
using the disk for swapping.

The Ethernet lets both Stars and
Altos have a distributed architecture.
Each machine is connected to an
Ethernet. Other machines on the
Ethernet are dedicated as
"servers" -machines that are at­
tached to a resource and provide ac­
cess to tha t resource.

Star Design Methodology
We have learned from Star the im­

portance of formulating the fun­
damental concepts (the user's concep­
tual model) before software is writ­
ten, rather than tacking on a user in­
terface afterward. Xerox devoted
about thirty work-years to the design
of the Star user interface. It was
designed before the functionality of
the system was fully decided. It was
even designed before the computer
hardware was built. We worked for
two years before we wrote a single
line of actual product software.
Jonathan Seybold put it this way,
"Most system design efforts start with
hardware specifications, follow this
with a set of functional specifications
for the software, then try to figure
out a logical user interface and com­
mand structure. The Star project
started the other way around: the
paramount concern was to define a
conceptual model of how the user
would relate to the system. Hardware
and software followed from this."
(See reference 15.)

In fact, before we even began
designing the model, we developed a
methodology by which we would do
the design. Our methodology report
(see reference 10) stated:

One of the most troublesome and
least understood aspects of interactive
systems is the user interface. In the
design of user interfaces, we are con­
cerned with several issues: the provi­
sion of languages by which users can
express their commands to the com­
puter; the design of display representa­
tions that show the state of the system
to the user; and other more abstract
issues that affect the user's understand­
ing of the system's behavior. Many of
these issues are highly subjective and
are therefore often addressed in an ad
hoc fashion. We believe, however,

that more rigorous approaches to user
interface design can be developed

These design methodologies are all
unsatisfactory for the same basic
reason: they all omit an essential step
that must precede the design of any
successful user interface, namely task
analysis. By this we mean the analysis
of the task performed by the user, or
users, prior to introducing the pro­
posed computer system. Task analysis
involves establishing who the users
are, what their goals are in performing
the task, what information they use in
performing it, what information they
generate, and what methods they
employ. The descriptions of input and
output information should include an
analysis of the various objects, or in­
dividual types of information entity,
employed by the user. ...

The purpose of task analysis is to
simplify the remaining stages in user
interface design. The current task
description, with its breakdown of the
information objects and methods
presently employed, offers a starting
point for the definition of a corre­
sponding set of objects and methods to
be provided by the computer system.
The idea behind this phase of design is
to build up a new task environment for
the user, in which he can work to ac­
complish the same goals as before, sur-"
rounded now by a different set of ob­
jects, and employing new methods.

Proto typing is another crucial ele­
ment of the design process. System
designers should be prepared to im­
plement the new or difficult concepts
and then to throwaway that code
when doing the actual implementa­
tion. As Frederick Brooks says, the
question "is not whether to build a
pilot system and throw it away. You
will do that. The only question is
whether to plan in advance to build a
throwaway, or to promise to deliver
the throwaway to customers.. ..
Hence plan to throw one away; you
will, anyhow." (See reference 2.) The
Alto served as a valuable prototype
for Star. Over a thousand Altos were
eventually built. Alto users have had
several thousand work-years of ex­
perience with them over a period of
eight years, making Alto perhaps the
largest proto typing effort eVer.
Dozens of experimental programs
were written for the Alto by members
of the Xerox Palo Alto Research

Center. Without the creative ideas of
the authors of those systems, Star in
its present form would have been im­
possible. In addition, we ourselves
programmed various aspects of the
Star design on Alto, but all of it was
"throwaway" code. Alto, with its bit­
mapped display screen, was powerful
enough to implement and test our
ideas on visual interaction.

Some types of concepts are in­
herently difficult for people to grasp.
Without being too formal about it,
our experience before and during the
Star design led us to the following
classification:

Easy Hard

concrete abstract
visible invisible

copying creating
choosing filling in

recognizing generating
editing programming

interactive batch

The characteristics on the left were in­
corporated into the Star user's con­
ceptual model. The characteristics on
the right we attempted to avoid.

Principles Used
The following main goals were pur­

sued in designing the Star user inter­
face:

.familiar user's conceptual model

.seeing and pointing versus remem-
bering and typing

.what you see is what you get
• universal commands
• consistency
• simplicity
.modeless interaction
.user tailorability

We will discuss each of these in turn.

17

18

Familiar User's Conceptual Model
A user's conceptual model is the set

of concepts a person gradually ac­
quires to explain the behavior of a
system, whether it be a computer
system, a physical system, or a
hypothetical system. It is the model
developed in the mind of the user that
enables that person to understand
and interact with the system. The first
task for a system designer is to decide
what model is preferable for users of
the system. This extremely important
step is often neglected or done poor­
ly. The Star designers devoted several
work-years at the outset of the proj­
ect discussing and evolving what we
considered an appropriate model for
an office information system: the
metaphor of a physical office.

The designer of a computer system
can choose to pursue familiar
analogies and metaphors or to in­
troduce entirely new functions requir­
ing new approaches. Each option has
advantages and disadvantages. We
decided to create electronic counter­
parts to the physical objects in an of­
fice: paper, folders, file cabinets, mail
boxes, and so on-an electronic
metaphor for the office. We hoped
this would make the electronic
"world" seem more familiar, less
alien, and require less training. (Our
initial experiences with users have
confirmed this.) We further decided
to make the electronic analogues be
concrete objects. Documents would
be more than file names on a disk;
they would also be represented by
pictures on the display screen. They
would be selected by pointing to them
with the mouse and clicking one of
the buttons. Once selected, they
would be moved, copied, or deleted
by pushing the appropriate key.
Moving a document became the elec­
tronic equivalent of picking up a
piece of paper and walking
somewhere with it. To file a docu­
ment, you would move it to a picture
of a file drawer, just as you take a
physical piece of paper to a physical
file cabinet.

The reason that the user's concep­
tual model should be decided first

Figure 1: In-basket and out-basket icons. The in-basket contains an envelope indicating
that mail has been received. (This figure was taken directly from the Star screen.
Therefore, the text appears at screen resolution.)

when designing a system is that the
approach adopted changes the func­
tionality of the system. An example is
electronic mail. Most electronic-mail
systems draw a distinction between
messages and files to be sent to other
people. Typically, one program sends
messages and a different program:
handles file transfers, each with its
own interface. But we observed that
offices make no such distinction.
Everything arrives through the mail,
from one-page memos to books and
reports, from intraoffice mail to inter­
national mail. Therefore, this became
part of Star's physical-office
metaphor. Star users mail documents
of any size, from one page to many
pages. Messages are short documents,
just as in the real world. User actions
are the same whether the recipients
are in the next office or in another
country.

A physical metaphor can simplify
and clarify a system. In addition to
eliminating the artificial distinctions
of traditional computers, it can
eliminate commands by taking ad­
vantage of more general concepts.
For example, since moving a docu­
ment on the screen is the equivalent
of picking up a piece of paper and
walking somewhere with it, there is
no "send mail" command. You sim­
ply move it to a picture of an out­
basket. Nor is there a "receive mail"
command. New mail appears in the
in-basket as it is received. When new
mail is waiting, an envelope appears
in the picture of the in-basket (see

figure 1). This is a simple, familiar,
nontechnical approach to computer
mail. And it's easy once the physical­
office metaphor is adopted!

While we want an analogy with the
physical world for familiarity, we
don't want to limit ourselves to its
capabilities. One of the raisons d'etre
for Star is that physical objects do not
provide people with enough power to
manage the increasing complexity of
the "information age." For example,
we can take advantage of the com­
puter's ability to search rapidly by
providing a search function for its
electronic file drawers, thus helping
to solve the long-standing problem of
lost files.

The "Desktop"
Every user's initial view of Star is

the "Desktop," which resembles the
top of an office desk, together with
surrounding furniture and equip­
ment. It represents your working en­
vironment-where your current proj­
ects and accessible resources reside.
On the screen are displayed pictures
of familiar office objects, such as
documents, folders, file drawers,. in­
baskets, and out-baskets. These ob­
jects are displayed as small pictures or
"icons," as shown in figure 2.

You can "open" an icon to deal
with what it represents. This enables
you to read documents, inspect the
contents of folders and file drawers,
see what mail you have received, etc.
When opened, an icon expands into a

larger form called a "window," which
displays the icon's contents. Win­
dows are the principal mechanism for
displaying and manipulating infor­
mation.

The Desktop "surface" is displayed
as a distinctive gray pattern. This
restful design makes the icons and
windows on it stand out crisply,
minimizing eyestrain. The surface is
organized as an array of one-inch
squares, 14 wide by 11 high. An icon
can be placed in any square, giving a
maximum of 154 icons. Star centers
an icon in its square, making it easy
to line up icons neatly. The Desktop
always occupies the entire display
screen; even when windows appear
on the screen, the Desktop continues
to exist "beneath" them.

XEROX STAR User-Interface.!,

DOCUMENT OBJECTS

Page

Text
dl::ar~(1:E'r

Pdr?:l9r-~ph

Frame
I~r::allhl':: _

Ime

(h~rt

Equ~t'('rl
T e t

field

Footnote

DISPLAY

bJ
.... ~

j I J I ! ! I

~I
I

KEYBOARD

UNIVERSAL COMMANDS

[,.;:Iet.;:

;:;::t:·
~h(l'''' F'rof.'t=:t1:le.
':')fJ/ F'r(lperTle'
-.~~~UI

1.ltldo

H.;:lf)

ICONS

[J(j(lJrrl~nt

F:.;:(ord Fil.;:
F,:dd.;:r

file [Ir~··.:·:,er

-------- F'rlflte.r
Flopp " ['i .. 1 [,' , e
I):er :::tnd I), er l~rJ)up
':·s.klJl::ttl)["
Te-rfrJHI.:.1 Ernul::.1:or"
I]u:d ~r
[Iif el:t(lr-_~'

MOUSE

Select Adjust

The Desktop is the principal Star
technique for realizing the physical­
office metaphor. The icons on it are
visible, concrete embodiments of the
corresponding physical objects. Star
users are encouraged to think of the
objects on the Desktop in physical
terms. Therefore, you can move the
icons around to arrange your
Desktop as you wish. (Messy
Desktops are certainly possible, just
as in real life.) Two icons cannot oc­
cupy the same space (a basic law of
physics). Although moving a docu­
ment to a Desktop resource such as a
printer involves transferring the
document icon to the same square as
the printer icon, the printer im­
mediately "absorbs" the document,
queuing it for printing. You can leave

Figure 2: A Desktop as it appears on the Star screen. Several commonly used icons appear across the top of the screen, including
documents to serve as "form-pad" sources for letters, memos, and blank paper. An open window displaying a document containing
an illustration is also shown.

19

20

documents on your Desktop in­
definitely, just as on a real desk, or
you can file them away in folders or
file drawers. Our intention and hope
is that users will intuit things to do
with icons, and that those things will
indeed be part of the system. This will
happen if:

(a) Star models the real world ac­
curately enough. Its similarity with
the office environment preserves your
familiar way of working and your ex­
isting concepts and knowledge.
(b) Sufficient uniformity is in the
system. Star's principles and
"generic" commands (discussed
below) are applied throughout the
system, allowing lessons learned in
one area to apply to others.

The model of a physical office pro­
vides a simple base from which learn­
ing can proceed in an incremental
fashion. 'You are not exposed to
entirely new concepts all at once.
Much of your existing knowledge is
embedded in the base.

In a functionally rich system, it is
probably not possible to represent
everything in terms of a single model.
There may need to be more than one
model. For example, Star's records­
processing facility cannot use the
physical-office model because
physical offices have no "records pro­
cessing" worthy of the name.
Therefore, we invented a different
model, a record file as a collection of
fields. A record can be displayed as a
row in a table or as filled-in fields in a
form. Querying is accomplished by
filling in a blank example of a record
with predicates describing the desired
values, which is philosophically
similar to 2100f's "Query-by­
Example" (see reference 21).

Of course, the number of different
user models in a system must be kept
to a minimum. And they should not
overlap; a new model should be in­
troduced only when an existing one
does not cover the situation.

Seeing and Pointing
A well-designed system makes

everything relevant to a task visible
on the screen. It doesn't hide things
under CODE+key combinations or

force you to remember conventions.
That burdens your memory, During
conscious thought, the brain utiEzes
several levels of memory, the most
important being the "short-term
memory." Many studies have ana­
lyzed the short-term memory and its
role in thinking. Two conclusions
stand out: (1) consciou.s thought deals
with concepts in the short-term
memory (see reference 1) and (2)
the capacity of the short-term
memory is limited (see reference 14).
When everything being dealt with in
a computer system is visible, the
display screen relieves the load on the
short-term memory by acting as a sort
of "visual cache. f1 Thinking becomes
easier and more productive. A well­
designed computer system can actual­
ly improve the quality of your think­
ing (see reference 16). In addition,
visual communication is often more
efficient than linear communication;
a picture is worth a thousand words.

A subtle thing happens when
everything is visible: the display
becomes reality. The user model
becomes identical with what is on the
screen. Objects can be understood
purely in terms of their visible
characteristics. Actions can be

abolish the CODE key. (We have yet
to see a computer system with a
CODE key that doesn't violate the
principle of visibility.) You never in­
voke a command or push a key and
have nothing visible happen. At the
very least, a message is posted ex­
plaining that the command doesn't
work in this context, or it is not im­
plemented, or there is an error. It is
understood in terms of their effects on
the screen. This l~ts users conduct ex­
p'eriments to test, verify, and expand
their understanding-the essence of
experimental science.

In Star, we have tried to make the
objects and actions in the system visi­
ble. Everything to be dealt with and
all commands and effects have a visi­
ble representation on the display
screen or on the keyboard. You never
have to remember that, for example,
CODE+Q does something in one
context and something different in
another coptext. In fact, our desire to
eliminate this possibility led us to

disastrous to the user's model when
you invoke an action and the system
does nothing in response. We have
seen people push a key several times
in one system or another trying to get
a response. They are not sure whether
the system has "heard" them or not.
Sometimes the system is simply
throwing away their keystrokes.
Sometimes it is just slow and is queu­
ing the keystrokes; you can imagine
the unpredictable behavior that is
possible.

We have already mentioned icons
and windows as mechanisms for
making the concepts in Star visible.
Other such mechanisms are Star's
property and option sheets. t-v10st ob­
jects in Star have properties. A prop­
erty sheet is a two-dimensional, form­
like environment that displays those
properties. Figure 3 shows the
character property sheet. It appears
on the screen whenever you make a
text selection and push the PROPER­
TIES key. It contains such properties
as type font and size; bold, italic,
underline, and strikeout face; and
superscript/subscript positioning. In­
stead of having to remember the
properties of characters, the current
settings of those properties, and,
worst of all, how to change those
properties, property sheets simply
show everything on the screen. All
the options are presented. To change
one, you point to it with the mouse
and push a button. Properties in ef­
fect are displayed in reverse video.

This mechanism is used for all
properties of all objects in the system.
Star contains a couple of hundred
properties. To keep you from being
overwhelmed with information,
property sheets display only the
properties relevant to the type of ob­
ject currently selected (e.g.,
character, paragraph, page, graphic
line, formula element, frame, docu­
ment, or folder). This is an example
of "progressive disclosure": hiding
complexity until it is needed. It is also
one of the clearest examples of how
an emphasis on visibility can reduce
the amount of remembering and typ­
ing required.

Property sheets may be thought of
as an alternate representation for ob-

Si:e I;:; 11 (11111'1 411 ::: 1241
Face lEI IIT,:::',LlCS I IIJf"JDERLINEI I~·TR.I~:E()'')T ,.

Po~:ition I_I XO I Xo IXXolxXolxxolxXolOTHERI

Figure 3: The property sheet for text characters.

By rnatching IIIIIIITE::'::T ,'::',r'·J[1 PF:CIPEF:TIEsl II Mn,];!,,}, 'I
In EN TIRE DOCUMEN T

. It"MI"i'll
Chan~le to b

~~===~-By altering IIIIIIITE:"::T ,6.ND PF:()PEF:T'Esl I CI)NFIF:r·· ... ' E,:::',CH CHM'.IGEI

Figure 4: The option sheet for the Find command showing both the Search and
Substitute options. The last two lines of options appear only when CHANGE IT is
turned on.

jects. The screen shows you the visi­
ble characteristics of objects, such as
the type font of text characters or the
names of icons. Property sheets sh~w
you the underlying structure ofob­
jects as they make this structure visi­
ble and accessible.

Invisibility also plagues the com­
mands in some systems. Commands
often have several arguments and op­
tions that you must remember with
no -assistance from the.system. Star
addresses this problem with option
sheets (see figure 4), a two-dimen-

sional, form-like environment that
displays the arguments to commands.
It serves the same function for com­
mand arguments that property sheets
do for object properties.

What You See Is What You Get
'What you see is what you get" (or

WYSIWYG) refers to the situation in
which the display screen portrays an
accurate rendition of the printed
page. In systems having such
capabilities as multiple fonts and
variable line spacing, WYSIWYG re­
quires a bit-mapped display because
only that has sufficient graphic power
to render those characteristics ac­
curately.

WYSIWYG is a simplifying tech­
nique for document-creation systems.
All composition is done on the
screen. It eliminates the iterations
that plague users of document com­
pilers. y'ou can examine the ap­
pearance of a page on the screen and
make changes until it looks right. The
printed page will look the same (see
figure 5). Anyone who has used a
document compiler or post-processor
knows how valuable WYSIWYG is.
The first powerful WYSIWYG editor
was Bravo, an experimental editor
developed for Alto at the Xerox Palo
Alto Research Center (see reference
12). The text-editor aspects of Star
were derived from Bravo.

Trade-offs are involved in
WYSIWYG editors, chiefly having to
do with the lower resolution of
display screens. It is never possible to
get an exact representation of a
printed page on the screen since most
screens have only 50 to 100 dots per
inch (72 in Star), while most printers
have higher resolution. Completely
accurate character positioning is not
possible. Nor is it usually possible to
represent shape differences for fonts
smaller than eight points in size since
there are too few dots per character to

be recognizable. Even 10-point ("nor­
mal" size) fonts may be uncomfort­
ably small on the screen, necessitating
a magnified mode for viewing text.

21

22

XEROX Productivity under the old and the new

8010 Star Information System
User-Interface Design

'100 I~~i~~!~: U I,d

ne:· ... ·.··

To rfl ake it e a:::,y to eo m po 3e te :·:t :1nd :~:ral)hie3,
to do electronic filin:~:, printi~l:~:, and r.il.:).ilin:~:
all at. the :::ame. '.~ .. or~.st:atlor7' requIres a
revolutlornr,y US8r-luteI1:1ee d8s1:~:n. 50

B~'t-mca~' d~~;"m~:l",·' - Each of the 827,::::92 dots on
the ser;en i/ rfL:~pped tCf :1 bit in meriLory; thus,
:arbitrarilv eoml)lex im1~~'es ean 'be dL::t",hved.
_~ I I '." 'II I_I • "-r
~".:,Tp ... R dl;~plays all font;:: and ;~:raplues as they
··dll be printed. In addition, familiar offiee
obieets sueh).::: do(:ument::, folders. file
dr:1\';,rers1nd in-baskets are portrayed as
re (~O :~:ni2able im ag:e s.

Th~: ;"no)~~.;;·of: - 1.!!.1. unique. pointin:~: cleviee that
allo"~" 5. the .l~~e r tl:1 q luckly s~ Ie et any te :·:t,
:~:raplue or oHlee obJee! on the dL::pIa,y.

See ana Point

• ':::'.11 Star funetiOtlS1re visible to the user on
the kevboard or on the screen. The user does
filin~t ':1nd retrieval bv seleetiJl!~' them ',~"ith

..... I," 1_'

the mouse and touehin:~: the M')~lE .. G(iF'Y ..
DELETE or PRo:)PERTIE;) command keys. Text
:1ud g:r1ph.ies :He edited ,·;t; .. ith the same keys,

,I.

[I
I I I I I i I I I

111111111111111111

DISPLAY: familia ...
office objeds

t.tOUSE: seled
objeds, menus

o
1979 1 qj=jfl

Shorter Pro(luction Time s

Experietlee at Xerox ··x:ith protot.}1)e '·x .. ork­
.::tations h:13 sho',~"n shorter produetiotl times
1tld lo"~"E' r c~o .::t::. The fo llo'.xrin:~: equa til) n
e:·:pre;::ses tIu;:: .. t .

.-', . J J
'~

.:. ~'\'r.).:::.:'r.:

St:~r use rs are like 1" to do more of the ir o\~"n
(!omposition and la.~/out, eontrollin:~: the entire
proeess including: printing: and distribution.

To rel:,l:lee t.}T-lesetting:, Star offers :~ choke of
t.~t1)e f'HIts and sizes, from ::: point to 24 point.

H~ is .. So"'..nte.n.·~ ·:·f ;:;~.jinttot:.:t.
Reo>:! L a :o:ntel(~o: of 10 "l)oi.llt to:xt.

H~r:~ i~~:a_3:~lt~eJ~~'~ I~~ l?~poin~ ~e.x"t. _"
Hl::'tl::' I';..~ ;.l::'tltl::'tl'_1::' ,_,t 14-p,)ltlt tl::'.·:.t.

Here is a sentence of 18-point
text.

Figure 5: A Star document showing multicolumn text, graphics, and formulas. This is the way the document appears on the screen. It
is also the way it will print (at higher resolution, of course).

WYSIWYG requires very careful
design of the screen fonts in order to
keep text on the screen readable and
attractive. Nevertheless, the increase
in productivity made possible by
WYSIWYG editors more than
outweighs these difficulties.

Universal Commands
Star has a few commands that can

be used throughout the system:
MOVE, COPY, DELETE, SHOW
PROPERTIES, COpy PROPERTIES,
AGAIN, UNDO, and HELP. Each
performs the same way regardless of
the type of object selected. Thus, we
call them "universal" or "generic"
commands. For example, you follow
the same set of actions to move text in
a document and to move a line in an
illustration or a document in a folder:
select the object, push the MOVE
key, and indicate a destination.
(HELP and UNDO don't use a selec­
tion.) Each generic command has a
key devoted to it on the keyboard.

These commands are far more
basic than the commands in other
computer systems. They strip away
the extraneous' application-specific
semantics to get at the underlying
principles. Star's generic commands
derive from fundamental computer­
science concepts because they also
underlie operations in programming
languages. For example, much pro­
gram manipulation of data structures
involves moving or copying values
from one data structure to another.
Since Star's generic commands em­
body fundamental underlying con­
cepts, they are widely applicable.
Each command fills a variety of
needs, meaning fewer commands are
required. This simplicity is desirable
in itself, but it has another subtle ad­
vantage: it makes it easy for users to
form a model of the system. People
can use whatthey understand. Just as
progress in science derives from sim-

I pIe, clear theories, progress in the
usability of computers is coming to
depend on simple, clear user inter­
faces.

MOVE is the most powerful com­
mand in the system. It is used during
text editing to rearrange letters in a
word, words in a sentence, sentences
in a paragraph, and paragraphs in a
document. It is used during graphics
editing to move picture elements,
such as lines and rectangles, around
in an illustration. It is used during
formula editing to move mathemati­
cal structures, such as summations
and integrals, around in an equation.
It replaces the conventional "store
file" and "retrieve file" commands;
you simply move an icon into or out
of a file drawer or folder. It eliminates
the "send mail" and "receive mail"
commands; you move an icon to an
out-basket or from an in-basket. It
replaces the "print" command; you
move an icon to a printer. And so
on. MOVE strips away much of the
historical clutter of computer com­
mands. It is more fundamental than
the myriad of commands it replaces.
It is simultaneously more powerful
and simpler.

Much simplification comes from
Star's object-oriented interface. The
action of setting properties also re­
places a myriad of commands. For ex­
ample, changing paragraph margins
is a command in many systems. In
Star, you do it by selecting a
paragraph object and setting its
MARGINS property. (For more in­
formation on object-oriented lan­
guages, see the August 1981 BYTE.)

Consistency
Consistency asserts that mecha­

nisms should be used in the same way
wherever they occur. For example, if
the left mouse button is used to select
a character, the same button should
be used to select a graphic line or an
icon. Everyone agrees that consisten­
cy is an admirable goal. However, it
is perhaps the single, hardest
,characteristic of all to achieve in a
computer system. In fact, in systems
of even moderate complexity,. con­
sistency may not be well defined.

A question that has defied consen-

sus in Star is what should happen to a
document after it has been printed.
Recall that a user prints a document
by selecting its icon, invoking
MOVE, and designating a printer
icon. The printer absorbs the docu­
ment, queuing it for printing. What
happens to that document icon after
printing is completed? The two
plausible alternatives are:

1. The system deletes the icon.
2. The system does not delete the
icon, which leads to several further
alternatives:

2a. The system puts th~ icon back
where it came from (i.e., where it
was before MOVE was invoked).
2b. The system puts the icon at an
arbitrary spot on the Desktop.
2c. The system leaves the icqn in
the printer. You must move it out
of the printer explicitly.

The consistency argumen~ for the
first alternative goes as follows: when
you move an icon to an out-basket,
the system mails it and then deletes it
from your Desktop. When you move
an icon to a file drawer, the system
files it and then deletes it from your
Desktop. Therefore, when you move
an icon to a printer, the system
should print it and then delete it from
your Desktop. Function icons should
behave consistently with one
another.

The consistency argument for the
second alternative is: the user's con­
ceptual model at the Desktop level is
the physical-office metaphor. Icons
are' supposed to behave similarly to
their physical counterparts. It makes
sense that icons are deleted after they
are mailed because after you put a
piece of paper in a physical out­
basket and the mailperson picks it up,
it is gone. However, the physical
analogue for printers is the office
c9pier, and there is no notion of
deleting a piece of paper when you
make a ,copy of it. Function icons
should behave consistently with their
physical counterparts.

23

24

There is no one right answer here.
Both arguments emphasize a dimen­
sion of consistency. In this case, the
dimensions happen to overlap. We
eventually chose alternative 2a for
the following reasons:

1. Model dominance-The physi­
cal metaphor is the stronger model at
the Desktop level. Analogy with
physical counterparts does form the
basis for people's understanding of
what icons are and how they behave.
Argument 1 advocates an implicit
model that must be learned; argu­
ment 2 advocates ap explicit model
that people already have when they
are introduced to the system. Since
people do use their existing knowl­
edge when confronted with new sit­
uations, the design of the system
should be based on that knowledge.
This is especially important if people
are to be able to intuit new uses for
the features they have learned.

2. Pragmatics-It is dangerous to
delete things when users don't expect
it. The first time a person labors over
a document, gets it just right, prints
it, and finds that it has disappeared,
that person is going to become very
nervous, not to mention angry. We
also decided to put it back where it
came from (2a instead of 2b or 2c) for
the pragmatic reason that this in­
volves slightly less work on the user's
part.

fII ~ III ~: (~) 4 (~)

:+ 0 ,
" Ij 1.'.1 E f;:

3. Seriousness-When you file or
nail an icon, it is not deleted entirely

from the system. It still exists in the
file drawer or in the recipients' in-bas­
kets. If you want it back, you can
move it back out of the file drawer or
send a message to one of the recip­
ients asking to have a copy sent back.
Deleting after printing, however, is
final; if you move a document to a
printer and the printer deletes it, that
document is gone for good.

One way to get consistency into a
system is to adhere to paradigms for
operations. By applying a successful
way of working in one area to other
areas, a system acquires a unity that
is both apparent and real. Paradigms
that Star uses are:

e Editing-Much of what you do in
Star can be thought of as editing. In
addition to the conventional text,
graphics, and formula editing, you
manage your files by editing filing
windows, You arrange your working
environment by editing your Desk­
top. You alter properties by editing
property sheets. Even programming
can be thought of as editing data
structures (see reference 16).
eInformation retrieval-A lot of
power can be gained by applying in-
formation-retrieval techniques to in­
formation wherever it exists in a sys­
tem. Star broadens the definition of
"database." In addition to the tradi­
tional notion as represented by its

!:;. .;. (~) (I

Tt-1 TEL ¥ ¢ Fr
T I (I

• ~
(i H

1/4 3/4

record files, Star views file drawers as
databases of documents, in-baskets as
databases of mail, etc. This teaches
users to think of information retrieval
as a general tool applicable through­
out the system.
e Copying-Star elevates the concept
of "copying" to a high level: that of a
paradigm for creating. In all the vari-
ous domains of Star, you create by
copying. Creating something out of
nothing is a difficult task. Everyone
has observed that it is easier to
modify an existing document or pro­
gram than to write it originally.
Picasso once said, "The most awful
thing for a painter is the white can­
vas . . . To copy others is nec­
essary." (See reference 20.) Star
makes a serious attempt to alleviate
the problem of the "white canvas" by
making copying a practical aid to
creation. For example, you create
new icons by copying existing ones.

Graphics are created by copying
existing graphic images and modify­
ing them. In a sense, you can even
type characters in Star's 2H'-character
set by "copying" them from keyboard
windows (see figure 6).

(!~II
a f-

=

£ Ph Cr t1 F·]

N!
.. fI

I
C/o

Figure 6: The keyboard-interpretation window serves as the source of characters that may be entered from the keyboard. The
character set shown here contains a variety of office symbols.

These paradigms change the very
way you think. They lead to new
habit~ and models of behavior that
are more powerful and productive.
They can lead to a human-machine
synergism.

Star obtains additional consistency
by using the class and subclass no­
tions of Simula (see reference 4) and
Small talk (see reference 11). The
clearest example of this is classifying
icons at a higher level into data icons
and function icons. Data icons repre­
sent objects on which actions are per­
formed. Currently, the three types
(i.e., subclasses) of data icons are
documents, folders, and record files.
Function icons represent objects that
perform actions. Function icons are
of many types, with more being
added as the system evolves: file
drawers, in- and out-baskets,
printers, floppy-disk drives, calcula­
tors, terminal emulators, etc.

In general, anything that can be
done to one data icon can be done to
all, regardless of its type, size, or
location. All data icons can be
moved, copied, deleted, filed, mailed,
printed, opened, closed, and a variety
of other operations applied. Most
function icons will accept any data
icon; for example, you can move any
data icon to an out-basket. This use
of the class concept in the user-inter­
face design reduces the artificial
distinctions that occur in some sys­
tems.

Simplicity
Simplicity is another principle with

which no one can disagree. Obvious­
ly, a simple system is better than a
complicated one if they have the same
capabilities. Unfortunately, the world
is never as simple as that. Typically, a
trade-off exists between easy novice
use and efficient expert use. The two
goals are not always compatible. In
Star, we have tried to follow Alan
Kay's maxim: "simple things should
be simple; complex things should be
possible." To do this, it was some­
times necessary to make common
things simple at the expense of un­
common things being harder. Sim­
plicity, like consistency, is not a
clear-cut principle.

One way to make a system appear
simple is to make it uniform and con­
sistent, as we discussed earlier.
Adhering to those principles le~ds to
a simple user's model. Simple models
are easier to understand and work
with than intricate ones.

Another way to achieve simplicity
is to minimize the redundancy in a
system. Having two or more ways to
do something increases the complexi­
ty without increasing the capabilities.
The ideal system would have a mini­
mum of powerful commands that ob­
tained all the desired functionality
and that did not overlap. That was
the motivation for Star's "generic"
commands. But again the world is not
so simple. General mechanisms are
often inconvenient for high-frequen­
cy actions. For example, the SHOW
PROPERTIES command is Star's gen­
eral mechanism for changing prop­
erties, but it is too much of an inter­
ruption during typing. Therefore, we
added keys to optimize the changing
of certain character properties:
BOLD, ITALICS, UNDERLINE,
SUPERSCRIPT, SUBSCRIPT,
LARGER/SMALLER (font),
CENTER (paragraph). These signifi­
cantly speed up typing, but they don't
add any new functionality. In this
case, we felt the trade-off was worth
it because typing is a frequent activi­
ty. "Minimum redundancy" is a good
but not absolute guideline.

In general, it is better to introduce
new general mechanisms by which
"experts" can obtain accelerators
rather than add a lot of special one­
purpose-only features. Star's mecha­
nisms are discussed below under
''User Tailorability."

Another way to have the system as
a whole appear simple is to make
each of its parts simple. In particular,
the system should avoid overloading
the semantics of the parts. Each part
should be kept conceptually clean.
Sometimes, this may involve a major
redesign of the user interface. An ex­
ample from Star is the mouse, which
has been used on the Alto for eight
years. Before that, it was used on the
NLS system at Stanford Research In­
stitute (see reference 5). All of those

mice have three buttons on top. Star
has only two. Why did we depart
from "tradition"? We observed that
the dozens of Alto programs all had
different semantics for the mouse but­
tons. Some u~ed them one way, some
another. There was no consistency
between systems. Sometimes, there
was not even consistency within a
system. For example, Bravo uses the
mouse buttons for selecting text,
scrolling windows, and creating and
deleting windows, depending on
where the cursor is when you push a
mouse button. Each of the three but­
tons has its own meaning in each of
the different regions. It is difficult to
remember which button does what
where.

Thus, we decided to simplify the
mouse for Star. Since it is apparently
quite a temptation to overload the
semantics of the buttons, we
eliminated temptation by eliminating
buttons. Well then, why didn't we use
a one-button mouse? Here the plot
thickens. We did consider and pro­
totype a one-button mouse interface.
One button is sufficient (with a little
cleverness) to provide all the func­
tionality needed in a mouse. But
when we tested the interface on naive
users, as we did with a variety of
features, we found that they had a lot
of trouble making selections with it.
In fact, we prototyped and tested six
different semantics for the mouse but­
tons: one one-button, four two­
button, and a three-button design.
We were chagrined to find that while
some were better than others, none of
them WaS completely easy to use,
even though, a priori, it seemed like

t

all of them would work! We then
took the most successful features of
two of the two-button designs and
prototyped and tested them as a
seventh design. To our relief, it not
only tested better than any of the
other six, everyone found it simple
and trouble-free to use.

This story has a couple of morals:

• The intuition of designers is error­
prone, no matter how good or bad
they are.

25

26

• The critical parts of a system should
be tested on representative users,
preferably of the "lowest common
denominator" type.
• What is simplest along anyone
dimension (e.g., number of buttons)
is not necessarily conceptually
simplest for users; in particular,
minimizing the number of keystrokes
may not make a system easier to use.

Modeless Interaction
Larry Tesler defines a mode as

follows:

A mode of an interactive computer
system is a state of the user interface
that lasts for a period of time, is not
associated with any particular object,
and has no role other than to place an
interpretation on operator input.
(See reference 18.)

Many computer systems use modes
because there are too few keys on the
keyboard to represent all the avail­
able commands. Therefore, the inter­
pretation of the keys depends on the
mode or state the system is in. Modes
can and do cause trouble by making
habitual actions cause unexpected
results. If you do not notice what
mode the system is in, you may find
yourself invoking a sequence of com­
mands quite different from what you
had intended.

Our favorite story about modes,
probably apocryphal, involves
Bravo. In Bravo, the main typing
keys are normally interpreted as com­
mands. The "i" key invokes the Insert
command, which puts the system in
"insert mode." In insert mode, Bravo
interprets keystrokes as letters. The
story goes that a person intended to
type the word "edit" into his docu­
ment, but he forgot to enter insert
mode first. Bravo interpreted "edit"
as the following commands:

E(verything) select everything in

D(elete)
I(nsert)

the document
delete it
enter insert mode
type a "t"

The entire contents of the document
were replaced by the letter "t." This
makes the point, perhaps too strong­
ly, that modes should be introduced
into a user interface with caution, if
at all.

Commands in Star take the form of
noun-verb. You specify the object of
interest (the noun) and then in~oke a
command to manipulate it (the verb).
Specifying an object is f:alled "making
a selection." Star provides powerful
selection mechanisms that reduce the
number and complexity of commands
in the system. Typically, you will ex­
ercise more dexterity and judgment in
making a selection than in invoking a
command. The object (noun) is
almost always specified before the ac­
tion (verb) to be. performed. This
helps make the command interface
modeless; you can change your mind
as to which object to affect simply by
making a new selection before invok­
ing the command. No "accept" func­
tion is needed to terminate or confirm
commands since invoking the com­
mand is the last step. Inserting text
does not even require a command;
you simply make a selection and
begin typing. The text is placed after
the end of the selection.

The noun-verb command form
does not by itself imply that a com­
mand interface is modeless. Bravo
also uses the noun-verb form; yet, it
is a highly modal editor (although the
latest version of Bravo has drastically
reduced its modalness). The dif­
ference is that Bravo tries to make
one mechanism (the main typing
keys) serve more than one function
(entering letters and invoking com­
mands). This inevitably leads to con­
fusion. Star avoids the problem by
having special keys on the keyboard
devoted solely to invoking functions.
The main typing keys only enter
characters. (This is another example
of the simplicity principle: avoid
overloading mechanisms with mean­
ings.)

Modes are not necessarily bad.
Some modes can be helpful by simpli-

fying the specification of extended
commands. For example, Star uses a
"field fill-in order specification
mode." In this mode, you can specify
the order in which the NEXT key will
step through the fields in the docu­
ment. Invoking the SET FILL-IN
ORDER command puts the system in
the mode. Each field you now select is
added to the fill-in order. You ter­
minate the mode by pushing the
STOP key. Star also utilizes tem­
porary modes as part of the MOVE,
COPY, and COpy PROPERTIES
commands. For example, to move an
object, you select it, push the MOVE
key that puts the system in "move
mode," and then select the destina­
tion. These modes work for two rea­
sons. First, they are visible. Star posts
a message in the Message Area at the
top of the screen indicating that a
mode is in effect. The message re­
mains there for the duration of the
mode. Star also changes the shape of
the cursor as an additional indication.
You can always tell the state of the
system by inspection (see figure 7).
Second, the allowable actions are
constrained during modes. The only
action that is allowed-except for ac­
tions directly related to the mode-is
scrolling to another part of the docu­
ment. This constraint makes it even
more apparent that the system is in an
unusual state.

Actual Size

Double Size

t i ~ ~ ? EB I I • -. .-

Normal Move Copy Copy Properties Menu Illegal Graphics

mode mode mode selecting destination

Figure 7: Some of the cursor shapes used by the Star to indicate the state of the system. The cursor is a 16- by 16-bit map that can be
changed under program control.

User Tailorability
No matter how general or powerful

a system is, it will never satisfy all its
potential users. People always want
ways to speed up often-performed
operations. Yet, everyone is different.
The only solution is to design the sys­
tem with provisions for user extensi­
bility built in. The following mecha­
nisms are provided by Star:

• You can tailor the appearance of
your system in a variety of ways. The
simplest is to choose the ico~s you
want on your Desktop, thus tailoring
your working environment. At a
more sophisticated level, a work sta­
tion can be purchased with or with­
out certain functions. For example,
not everyone may want the equation
facility. Xerox calls this "product fac­
toring."
.You can set up blank documents
with text, paragraph, and page layout
defaults. For example, you might set
up one document with the normal
text font being lO-point Classic and
another with it being l2-point
Modern italic. The documents need
not be blank; they may contain fixed
text and graphics, and fields for vari­
able fill-in. A typical form might be a
business-letter form with address, ad­
dressee, salutation, and body fields,

each field with its own default text
style. Or it might be an accounting
form with lines and tables. Or it
might be a mail form with To, From,
and Subject fields, and a heading
tailored to each individual. Whatever
the form or document, you can put it
on your Desktop and make new in­
stances of it by selecting it and invok­
ing COPY. Thus, each form can act
like a "pad of paper" from which new
sheets can be "torn off."

Interesting documents to set up are
"transfer sheets," documents contain­
ing a variety of graphics symbols
tailored to different applications. For
example, you might have a transfer
sheet containing buildings in different
sizes and shapes, or one devoted to
furniture, animals, geometric shapes,
flowchart symbols, circuit com­
ponents, logos, or a hundred other
possibilities. Each sheet would make
it easier to create a certain type of il-
lustration. Graphics experts could
even construct the symbols on the
sheets, so that users could create
high-quality illustrations without
needing as much skill.
• You can tailor your filing system by
changing the sort order in file drawers
and folders. You can also control the
filing hierarchy by putting folders in­
side folders inside folders, to any
desired level.

• You can tailor your record files by
defining any number of "views" on
them. Each view consists of a filter, a
sort order, and a formatting docu­
ment. A filter is a set of predicates
that produces a subset of the record
file. A formatting document is any
document that contains fields whose
names correspond to those in the
record file. Records are always dis­
played through some formatting
document; they have no inherent ex­
ternal representation. Thus, you can
set up your own individual subset(s)
and appearance(s) for a record file,
even if the record file is shared by
several users.
• You can define "meta operations"
by writing programs in the CUStomer
Programming language CUSP. For
example, you can further tailor your
forms by assigning computation rules
expressed in CUSP to fields. Even­
tually, you will be able to define your
own commands by placing CUSP
"buttons" into documents.
• You can define abbreviations for
commonly used terms by means of
the abbreviation definition/expan­
sion facility. For example, you might
define "sdd" as an abbreviation for
"Xerox Systems Development De­
partment." The expansion can be an
entire paragraph, or even multiple
paragraphs. This is handy if you

27

28

create documents out of predefined
"boilerplate" paragraphs, as the legal
profession does. The expansion can
even be an illustration or mathe­
matical formula.
• Every user has a unique name used
for identification to the system,
usually the user's full name. How­
ever, you can define one or more
aliases by which you are willing to be
known, such as your last name only,
a shortened form of your name, or a
nickname. This lets you personalize
your identification to the rest of the
network.

Summary
In the 1980s, the most important

factors affecting how prevalent com­
puter usage becomes will be reduced
cost, increased functionality, im·
proved availability and servicing,
and, perhaps most important of all.
progress in user-interface design. The
first three alone are necessary, but
not sufficient for widespread use. Re­
duced cost will allow people to buy
computers, but improved user inter­
faces will allow people to use com- -
puters. In this article, we have pre­
sented some principles and techniques
tha t we hope will lead to better user
interfaces.

User-interface design is still an art,
not a science. Many times during the
Star design we were amazed at the
depth and subtlety of user-interface
issues, even such supposedly straight­
fOf"Nard issues as consistency and
simplicity. Often there is no one
"right" answer. Much of the time
there is no scientific evidence to sup­
port one alternative over another,
just intuition. Almost always there
are trade-offs. Perhaps by the end of
the decade, user-interface design will
be a more rigorous process. We hope
that we have contributed to that pro­
gress .•

References
1. Arnheim, Rudolf. Visual Thinking.

Berkeley: University of California Press,
1971.

2. Brooks, Frederick. The Mythical Man­
Month. Reading, MA: Addison-Wesley,
1975.

3. Card, Stuart, William English, and Betty
Burr. "Evaluation of Mouse, Rate­
Controlled Isometric Joystick, Step Keys,
and Text Keys for Text Selection on a
CRT." Ergonomics, vol. 21, no. 8, 1978,
pp. 601-613.

4. Dahl, Ole-Johan and Kristen Nygaard.
"SIMULA-An Algol-Based Simulation
Language." Communications of the
ACM, vol. 9, no. 9, 1966, pp. 671-678.

5. Engelbart, Douglas and William English.
"A Research Center for Augmenting
Human Intellect." Proceedings of the
AFIPS 1968 Fall Joint Computer Con­
ference, vol. 33, 1968, pp. 395-410.

6. English, William, Douglas Engelhart, and
M. L. Berman. "Display-Selection Tech­
niques for Text Manipulation." IEEE
Transactions on Human Factors in Elec­
tronics, vol. HFE-8, no. 1, 1967, pp.
21-31.

7. Fitts, P. M. "The Information Capacity of
the Human Motor System in Controlling
Amplitude of Movement." Journal of Ex­
perimental Psychology, vol. 47,1954, pp.
381-391.

8. Ingalls, Daniel. "The Smalltalk Graphics
Kernel." BYTE, August 1981, pp.
168-194.

9. Intel, Digital Equipment, and Xerox Cor­
porations. The Ethernet, A Local Area
Network: Data Link Layer and Physical
Layer Specifications. Version 1.0, 1980.

10. Irby, Charles, Linda Bergsteinsson,
Thomas Moran, William Newman, and
Larry Tesler. A Methodology for User In­
terface Design. Systems Development
Division, Xerox Corporation, January
1977

11. Kay, Alan and the Learning Research
Group. Personal Dynamic Media. Xerox
Palo Alto Research Center Technical
Report SSL-76-1, 1976. (A condensed
version is in IEEE Computer, March
1977, pp. 31-41.)

12. Lampson, Butler. "Bravo Manual." Alto
User's Handbook, Xerox Palo Alto Re­
search Center, 1976 and 1978. (Much of
the design of all the implementation of
Bravo was done "by Charles Simonyi and
the skilled programmers in his "software
factory. ")

13. Metcalfe, Robert and David Boggs.
"Ethernet: Distributed Packet Switching
for Local Computer Networks." Com­
munications of the ACM, vol. 19, no. 7,
1976, pp. 395-404.

14. Miller, George. "The Magical Number
Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Informa­
tion." In The Psychology of Communica­
tion, by G. Miller, New York: Basic Books,
1967. (An earlier version appeared in
Psychology Review, vol. 63, no. 2, 1956,
pp.81-97.

15. Seybold, Jonathan. "Xerox's ·Star'." In
The Seybold Report, Media, PA: Seybold
Publications, vol. 10, no. 16, 1981.

16. Smith, David Canfield. Pygmalion, A
Computer Program to Model and Stimu­
late Creative Thought. Basel, Switzer­
land: Birkhauser Verlag, 1977.

17. Smith, David Canfield, Charles Irby,
Ralph Kimball, and Eric Harslem. "The
Star User Interface: An Overview." Sub­
mitted to the AFIPS 1982 National Com­
puter Conference.

18. Tesler, Larry. Private communication; but
also see his excellent discussion of
modes In "The Smaiitalk Environment.··
BYTE, August 1981, pp. 90-147.

19. Thacker, C. P., E. M. McCreight. B. W.
Lampson, R. F. Sproull, and D. R. Boggs.
"Alto: A Personal Computer." In Com­
puter Structures: Principles and Ex­
amples, edited by D. Siewiorek, C. G.
Bell, and A. Newell, New York: McGraw­
Hill, 1982.

20. Wertenbaker, Lael. The World of
Picasso, New York: Time-Life Books,
1967.

21. Zloof, M. M. "Query-by-Example." Pro­
ceedings of the AFIPS 1975 National
Computer Conference. vol. 44, 1975, pp.
431-438.

Computer Graphics Volume 16, Number 3 July 1982

Star Graphics:
An Object-Oriented Implementation

Dr. Daniel E. Lipkie
Xerox Corporation, EI Segundo, California

Steven R. Evans,John K. Newlin, Robert L. Weissman
Xerox Corporation, Palo Alto, California

Abstract: The XEROX Star 8010 Information
System features an integrated text and graphics
editor. The Star hardware consists of a processor, a
large bit-mapped display, a keyboard and a pointing
device. Star's basic graphic elements are points, lines,
rectangles, triangles, graphics frames, text frames and
bar charts. The internal representation is in terms of
idealized objects that are displayed or printed at
resolutions determined by the output device. This
paper describes the design and implementation of a
graphics editor using an object-oriented technique
based on a Star-wide subclassing method called the
Trai t Mechanism.

CR Categories and Subject Descriptors: D.2.2 [Soft­
ware Engineering]: Tools and Techniques - User
interfaces; H.4.1 [Information Systems Applica­
tions]: Office Automation - Word processing; 1.3.6
[Computer Graphics]: Methodology and Techniques­
Interaction techniques; 1.7.2 [Text Processing]:
Document Preparation

General Terms: Design

Key Words: business graphics, subclassing

I. The Star Workstation

In 1975 Xerox started an effort to transfer research
from the Xerox Palo Alto Research Center (PARC) into .
mainline office products. Central to this strategy was
the development of a top-of-the-line professional
workstation, subsequently named Star, that was to

XEROX®, 8010 and Star are trademarks of XEROX CORP.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/ or specific permission.

© 1982 ACM 0-89791-076-1/82/007/0115

provide a major step forward in several different
domains of office automation. A retrospective on the
development of Star is presented in [2].

A unique aspect of Star is its user interface (UI) and
the role it played in the development of Star [5, 6, 7].
About 30 work years of effort were expended in
designing the UI before the functionality of the system
was fully decided and before the computer hardware
was even built.

The hardware that supports this UI (figure 1)

Ethernet ~

+---- Display with
3 icons and
1 open document

Keyboard wi th
3 function groups

Mouse with
2 buttons

+---- Processor with
29MB disk drive

Figure 1
Star Workstation Schematic

consists of a microprogrammable 22-bit virtual, 18-bit
real address space processor, an 808 by 1024 pixel (11';

x 14") bit-mapped display, a keyboard, a pointing
device called a mouse and a 10 or 29M byte disk. The
workstation may be attached to a 10M bits-per-second
Ethernet for access to remote printing, filing,
communication and electronic mail services.

The mouse has a ball on the bottom that turns as
the mouse slides over a flat surface. Electronics sense
the ball rotation and displaces a cursor on the screen in

29

30

Computer Graphics Volume 16. Number 3 July 1982

corresponding motions. There are two buttons on the
mouse, called SELECT and ADJUST, used to make and
adjust a selection as described below.

The keyboard has a conventional central part and
three groups of function keys.

The left function group contains the generic
commands: MOVE, COPY, DELETE, SHOW PROPERTIES, COpy

PROPERTIES, and AGAIN. Their meaning is defined only
in a generic sense; it is up to the currently selected
element to further define them as explained below.

The keys in the upper function group are referred to
as soft keys. Their meanings and use are discussed
below.

The right function group includes the command
KEYBOARD and others that are not of interest in this
paper. When KEYBOARD is pressed, the soft keys allow
the user to assign a new interpretation to the central
keyboard and to display a window that shows the
meaning of each key top. Keyboards supported are
Japanese, various European keyboards, Dvorak and
keyboards with useful office and mathematical
symbols,

Central concepts to the Star UI are what you see is
what you get, visibility (don't hide things under
CODE + key combinations) and a physical office
metaphor.

One of the functional areas of the office addressed
by Star is document creation, which encompasses text
editing and formatting, figure editing (graphics),
mathematical formula editing and page layout. These
are all integrated. As an example of what you see is
what you get, the Star user edits on the display both
text and graphic figures, which appear exactly as they
do when the document is printed. This document was
prepared using Star; no special step was needed to
merge the figures and text. Visibility and the office
metaphor are discussed in the next section.

The design of the Star software began in the spring
of 1978 and the first release, containing 255,000 lines
of code, was completed in Oct. 1981. Over the 3.5 years
approximately 93 work years of effort were expended
and in excess of 400,000 lines of code were written.
This effort was aided by the adoption of an object­
oriented style of coding right from the start and by the
use later of a multiple-inheritance subclassing
mechanism, Traits [1], as the basis for defining and
implementing objects. An object-oriented imple­
mentation was chosen because it corresponded closely
to the UI model of interacting screen elements. In this
paper we use the term element to refer to User
perceived entities and reserve the term object for the
corresponding internal implementations.

As explained below, there is no graphics editor per
se, but of the 255,000 lines of code in the release about

28,000 are associated with editing figures in
documents.

In Section II we describe the Star user interface.
The Trait mechanism is presented in Section III. Its
application in the Star implementation is discussed in
Sections IV and V.

lI. The Star User Interface

The Star UI differs from that of other computer
systems through its heavy use of the graphics
capabilities of a bitmap display, its adherence to a
physical office metaphor, and its rigorous application
of a small set of design principles [3]. The graphics
capabilites reduce the amount of typing and
remembering required to operate the system; the office
metaphor makes the system familiar and friendly; the
design principles unify the nearly two dozen functional
areas of Star.

One important principle is to make objects and
actions in the system visible. The system should not
hide things under obscure CODE + key combinations
or force the user to remember a lot of conventions.
When a choice had to be made between easy novice use
and efficient expert use, Alan Kay's maxim was
followed: ((Simple things should be simple; complex
things should be possible".

As you make everything visible, the display
becomes reality, and the user model becomes identical
with what is on the screen.

Using the physical office metaphor Star creates
electronic counterparts to the physical elements in an
office: paper, folders, file cabinets, mail boxes and so
on. The Star screen represents a desktop on which are
placed small (-1" x 1") pictograms or lcons that
represent these elements, e.g. the document (paper)
and file drawer (file cabinet) icons in figure 2.

Bar
Chart
Example

Figure 2

Old
Memos

Document and File Drawer Icons

Within a illustration the currently implemented
graphics elements are points, lines, rectangles,
triangles, graphics frames, text frames and bar charts.
Examples are shown in figure 3. A graphics frame is a

Comput~r Graphics Volume 16, Number 3 July 1982

Points

Lines

.......•
---~

Rectangles

D
111111111

Triangles

6~
Text Frame wi th
invisible border

Figure 3
Examples of Graphic Elements

rectangular area reserved for figures. Text frames
allow the user to put labels in figures.

Iconic, text and graphic elements are selected by
pointing at them with the mouse and clicking (pressing
and releasing) one of the buttons on the mouse.

Icons show that they are selected by highlighting
(video reversing) their image. Character selections
highlight themselves by inverting a rectangular
region around the characters.

The user selects a graphics element by pointing
anywhere along one of its linel:> or edges. When a
graphic element is selected, it inverts a small square
region around each of its control points. Lines have
control points at each end, rectangles (figure 4) and

Guiding Point

Figure 4
Rectangle with Inverted Control Points

(Expanded Scale)

frames at each corner and midpoint of each side and

triangles at each vertex. The inverted region around
the control point closest to the cursor is slightly larger.
This control point is called the guiding point and
becomes attached to the cursor when the element is
moved, copied or stretched .

An element highlights as if selected when the
mouse button is depressed, but it is selected only when
the button is released. The user may change the
candidate selection by moving the mouse with the
button still depressed until the desired element is
highlighted.

After an icon, character or graphics element has
been selected, it may be manipulated by one of the
generic operations. To move a document to a file
drawer, select the document icon, press MOVE, point at
the file drawer icon and click the SELECT button.
Elements may also be manipulated in other ways
described below.

The meaning of the operation is determined by the
selected element. Moving a document icon to a file
drawer icon sends the document over the Ethernet and
stores it on a file server; moving it to an out-basket
icon sends the document via electronic mail; moving it
to a printer icon makes a hardcopy of it.

Copying and deleting have similar straightforward
semantics.

The OPEN command in the left function group may
only be applied to an icon and creates a window
through which the icon's contents are displayed and
edited. Star has a modeless editing style; there are no
start edit or end edit commands. The user merely
selects a character in a window displaying a document
and begins typing and the text is appended to the
selected character. The page content is reformatted as
the user edits. The generic operations also may be
applied inside a window; e.g. text may be moved,
copied or deleted by merely selecting, pressing the
function key and pointing to the destination.

Before discussing the other editing actions, we will
explain how graphics elements are entered into text.

To enter a figure into a document the user selects a
character in the document and types a character that
represents a graphics frame. (The character is found
on a keyboard accessible through the KEYBOARD key.)
This non-printing, but screen-displayable, character is
inserted after the selected character. It looks like a
boat anchor and represents an anchoring point for the
graphics frame. The frame appears between two lines
of text at the same time the anchor character is typed.
As the textual content of the document is reformatted
during subsequent editing this anchor character is
shifted as any other character and in addition its
associated graphics frame is also repositioned, e.g. the
anchor character acts like a footnote reference mark,

31

32

Computer Graphics Volume 16, Number 3 July 1982

and the graphics frame moves from page to page as its
reference mark is moved.

Once the user has a graphics frame in a document,
other graphics elements may be moved or copied into
the frame. Star graphics has only two creation actions,
inserting a graphics frame as described above and
MAKE LINE described below. All other graphics
elements are made by copying. Every desktop has a
directory icon that contains a blank document and a
graphics document that has all the graphics elements.
The directory's documents can only be copied, not
moved or deleted, so the user always has a source of
documents and graphics elements.

Pressing the SHOW PROPERTIES key opens a small
window in which a property sheet appropriate to the
current selection is displayed. The property sheet
displays the property values for the currently selected
element. The properties are changed by setting them
to the desired values and clicking at the Done
command which applies the new properties and closes
the property sheet window. For each property the
property sheet either displays an enumeratation of all
possible values or provides a box into which the value
is typed. The property sheet for a graphics line is
shown in figure 5.

left (Upper) line End

e e~I+-I+-1
Right (lower) line End

e e~I-+I---+1
Constraint I FIXED ANGLE I

Figure 5
Line Property Sheet

The ? command provides access to online
documentation about the line property sheet; Defaults
sets the properties to system defined values; Apply
applies the properties but does not close the property
sheet; Reset sets the properties to the values they had

when Show Properties was invoked.

There are three kinds of properties: choice, state and
text.

A choice-type property displays a set of mutually
exclusive values for the property which are shown
immediately adjacent to each other; e.g. a line's width,
structure and line endings are each choice properties.
Exactly one is on at anyone time and is video reversed.
To change it the user points at the desired value and
clicks a mouse button.

A state-type property may be either on or ofT.
Pointing at and clicking a mouse button toggles its
setting. A line may be constrained to be at a fixed
angle so that its length but not its direction may be
changed during the stretching action described below.
An unconstrained line may have its length and/or
direction changed.

A text-type property displays a box. into which a
text value is typed. None of the properties on the line
property sheet are text-type. But an example is the
text-type property on the document property sheet
which determines the name of the document.

The properties of a rectangle are the width and
style of its bounding box, its interior shading and a
fixed shape constraint.

The properties of text and graphics frame include
the width and style of the border. Text frames may be
constrained to be fixed or flexible. A flexible text frame
will change shape as its text contents are edited.
Graphics frames may be positioned horizontally within
a column (flush left, centered, flush right) and
vertically within a column (top, centered, bottom or
floating). Graphics frames also have a grid that may
be displayed as dots or plus marks at each grid point or
as ticks around the edge of the frame. Grid spacing is
also variable.

Another way to change a selected element's
properties is to press COpy PROPERTIES and then point at
an element that is the source of the desired properties.

Associated with every text selection is a multi-click
level: character, word, sentence or paragraph.
Clicking at an unhighlighted character with the SELECT

mouse button selects the character at the character
level; clicking again with the SELECT mouse button at
the same character selects the enclosing word; clicking
at any character in a selected word selects the
enclosing sentence; clicking at any character in a
selected sentence selects the enclosing paragraph;
clicking at a character in a selected paragraph brings
the selection back to the character level and selects
that character. Clicking at a character with the
·ADJUST mouse button expands or shrinks the selection
at the current level to minimally span the pre-existing
selection and the character pointed at.

Computer Graphics Volume 16. Number 3 July 1982

There is no selection level associated with a
graphics selection, but the ADJUST button has a
graphics interpretation that is used to extend the
selection to include multiple elements. Clicking the
ADJUST button at a graphics element toggles it in/out of
the current selection. The ADJUST button may also be
used to extend the selection by adding all elements
properly contained in a bounding box. The user
presses the ADJUST button, which fixes one corner of the
bounding box, and moves the mouse with the button
depressed. The current mouse position defines the
opposite corner of the bounding box. As long as the
ADJUST button is depressed, a box is drawn on the
screen from the fixed point to the current mouse
postion and all elements properly contained are
highlighted. When the button is released (at button
up) these elements are added to the selection. An
extended selection may be moved, copied, deleted,
joined, stretched or the elements may have their
properties changed.

The elements of an extended selection may be of
different types, e.g. lines, rectangles and text frames.

Whenever there is a graphics selection the soft keys
at the top of the keyboard take on graphics meanings:
STRETCH, MAGNIFY, GRID, MAKE LINE, JOIN/SPLIT and
Top/BonOM. When the current selection is textual the
soft keys take on meanings that allow the appearance
of the charaters to be changed, e.g. bold, italic,
underlined, superscript, subscript, larger font size and
smaller font size.

When STRETCH is pressed the selection is de­
highlighted and the control point furthest from the
guiding point is replaced by an X and is considered
pinned. The guiding point becomes attached to the
mouse when a button is pressed. As the mouse is
moved the selection is horizontally and vertically
scaled to conform to the pinned and guiding points and
redisplayed. On button up the element retains the new
size, the X is removed, and the selection is
rehighlighted. MAGNIFY is simlar to STRETCH except
that the same scaling factor is applied in the horizontal
and vertical directions, i.e. aspect is maintained.

The GRID soft key toggles the grid on/off for the
frame containing the selection. If the grid is active, it
controls the placement of the guiding point during
move, copy, stretch and magnify.

MAKE LINE creates a line between two successive
mouse click positions.

JOIN combines an extended selection of graphics
elements into a cluster element. Once joined, all of the
original elements behave as a single element for
purposes of selection and editing. This allows users to
define their own graphics symbols. The SPLIT function
acts on a cluster and reverses the effect of JOIN.

Graphics and text frames are opaque, that is they
obscure elements that are under them. In figure 6a the

Above Rectangle

(6a)

Fi~re6
OverlappIng Elements

(6b)

text frame is above the rectangle, while in figure 6b it
is below. The soft keys Top and BonOM allow the user
to move the current selection to the top or bottom level
in a frame.

In keeping with'Star's style of mode less editing, the
graphics editor is not invoked in the traditional sense.
In fact, as we shall see later, there is no graphics editor
in the traditional sense. All graphics editing
capabilities are available whenever there is a
document open. The Star user may pause during
document editing and read incoming mail or use the
records processing feature or any of the other Star
functions. The responsibili ty for making the transition
between these editing environments resides with the
elements on the desktop, not the user. This is a major
difference between Star and other information
systems, including the Alto system [9] where the user
explicitly invokes BRAVO for text editing, SIL or
DRAW for figure editing, and LAUREL for electronic
mail.

The full text editing capabilities are available for
editing the contents of text frames within graphics
frames, e.g. text frames may contain anchor characters
and graphics frames. This means that Star must
support the virtual nested invocation of editbrs.

HI. Traits - The Star Subclassing Mechanism

Object-orientation is a method for organizing
software such that, at any time, computation is
performed under the aegis of a particular object, not a
centralized program that handles every case from one
place. The nature of the Star UI and the user model it
fosters led to the adoption of an object-oriented method
from the beginning of the software development.

Subclassing is a refinement of the basic object­
oriented methodology that constructs objects out of
more primitive behaviors. Initial Star subclassing
efforts were in the SIMULA-67 and Smalltalk [8] style
where the specialization relations form a tree. We
found it necessary to generalize this concept to allow
specialization relations that are represented by
directed acyclic graphs. A full description of the Trait

33

34

Computer Graphics Volume 16, Number 3 July 1982

mechanism and the generalized concept of multiple­
inheri tance subclassing is beyond the scope of this
discussion but may be found in [1].

Subclassing as a way of implementing objects was
not used during initial development of Star. This was
partly because the designers had had little experience
with subclassing as a methodology for large production
software systems where performance is a primary
consideration. It was also believed, incorrectly, that
an extensible design based on subclassing would
necessitate a violation of the typing mechansim of the
implementing language, Mesa [4]. But as
implementation progressed, it became clear that
significant code-sharing was possible since we were
dealing with objects that were more similar than
different and we re-examined the subclassng problem.

We first present some of the central concepts of the
trait mechanism and then describe how it has been
applied in graphics. The initial graphics
implementation was about 17,000 lines of code and
space does not permit a full presentation of the
graphics traits and their interaction. During this
description we will refer to trait definitions
summarized in Section VI.

A trait is a characterization of a behavior and is the
primitive abstraction used to define objects. A trait
used to define an object is said to be carried by the
object, e.g. the trait TreeElement is carried by objects

Trait definition:
trait name
state
component traits
fixed operations
replaceable operations

that live in tree-like data structures. To implement a
behavior,. an object carrying a trait remembers
information in a state defined by the trait. For example
objects carrying TreeElement have 3 state variables,
next, parent and eldest, that are pointers to the
corresponding objects or are the special value
objectNil, pointer to no object.

In a departure from SIMULA-67, traits may carry
other component traits where the carry relationship is
represented as an acyclic directed graph. This permits
behaviors to be built on multiple lower-level
abstractions. The basic imaging trai t, Schema, carries
TreeElement because all imaging objects are part of an
imaging tree rooted at a Desktop Object that manages
the Star display (see figure 9 below).

A trait defines operations as a means of presenting
information to or extracting information from an
object, e.g. the operations GetParent and SetParent for
TreeElement. Operations also may be invoked for

effect, e.g. the Schema operation Paint is a request to
an object to paint its image on the display.

An operation is invoked on an object by specifying a
trait carried by the object, an operation defined by the
trait and the object. In Mesa, an operation invocation
is implemented as a procedure call with the object
handle as the first parameter and other parameters as
needed, e.g.

Schema.Paint[object, ...]

Operations that extract information are
implemented as procedures that return values.

A trait operation has a specification (name,
parameters, return type) and a realization (an
implementing piece of code).

Fixed operations are those for which the trait
supplies the realization, e.g. the implementing code for
GetParent in TreeElement is the same for all objects
carrying the trait, it merely accesses the state variable
parent and returns its value.

Replaceable operations are analogous to SIMULA-
67 VIRTUAL procedures. The trait defines the
specification and each class supplies its own
realization that is used by all objects in the class, e.g.
the Schema trait provides the specification for Paint
but the classes Line and Rectangle each provide their
own realizations that access the object's state to
display the appropriate image.

A class trait is a trait that provides fixed operations
for creating and destroying objects in the class.
Associated with each class is a replaceable operations
vector that is the composition of its own and its
component trait's replaceable operations. The
realizations of replaceable operations are assigned to
the vector elements. The vector for the Line class is
shown in figure 7.

Size .-- Schema Operations
Paint
PointedAt
Edit
RelLocChild
. ..

Contend .-- GSchema Operations
...

CountCp .-- HasCp Operations
LocCp
...

Figure 7
Replaceable Operations Vector for Line Class

Each object created by a class trait has an object
state vector that is the composition of the class's state
and the class's component trait's states. The vector for

Computer Graphics Volume 16, Number 3 July 1982

a Line object is shown in figure 8.

Line +-- ClassId

next +-- TreeElement State
parent
eldest

size +-- GSchema State
loc in parent

width +-- Line State
style
line endings
constraint

Figure 8
Object State Vector for a Line Object

[v. Applying the Trait Mechanism to Star

The first release of Star defined 169 traits, 129 of
which were class traits. 99 traits required state
variables and 39 had replaceable operations.

Non-class traits we will discuss are: TreeElement,
Schema, GSchema, ListSchema and HasCp. Class
traits we will discuss are AnchoredFrame, Line and
TextBlock. Traits definitions for these traits are
summarized in Section VI.

The TreeElement trait allows objects to be
organized into tree data structures. The tree structure
corresponding to a 3 page, 3 column document
containing graphics and text is shown in figure 9. This

I
Window

I
Page

I
Heading

I
Column

I
Text Block

Desktop

I
Window

I
Document

Page

I
Body

I
Column

Anchored Frame

Graphics Frame

I
Window

I
Page

I
Footing

I
Column

I
Text Block

I I
Graphics Element, ••• Graphics ElementN

Figure 9
Desktop Imaging Tree

structure will be explained more fully after we have
introduced the Schema and ListSchema traits.

The Schema trait forms the basis for imaging,
pointing resolution, selecting and editing within Star.
It defines 22 replaceable operations but for the
purposes of this discussion we are only be concerned
with those shown in Section VI. These operations
allow an object to be asked its size (Size), to honor a
request that it paint its image (Paint), to handle a
pointing action by the mouse (PointedAt), to respond to
an editing action when it is selected (Edit), to return
the location ofa child relative to itself(ReILocChild) or
relative to the upper left corner of the screen
(Screen LocChild).

GSchema is an extension to Schema to meet the
needs of graphics objects and is the basic trait carried
by all graphics objects. It provides state variables for
its size and location within its parent. Of the 39
replaceable operations it defines we are concerned only
with Contend which is used during pointing.

ListSchema is a trait carried by an object that has
non-overlapping children that are arranged either
vertically with left edges aligned (pages in a
document) or horizontally with top edges aligned
(columns on a page), see figure 10. These two

itfO----O-O---Ol
I I I

~L:= ~~r~i~ - - - - -~ '-1= ~p~~n: J

Figure 10
Horizon tal ListSchema

arrangements are embodied in the ListSchema trait
that is carried by an object that wishes to arrange its
children in this manner. The state defines the inter­
child spacing, the margin between the children and the
parent carrying this trait and the color for the areas
not covered by childreno A list with color black and
non-zero spacing and margin values is a common
method for drawing lines around objects.

HasCp is a trait carried by all graphics objects that
have control points. The only graphics object that does
not have control points is the cluster object created and
destroyed by the JOIN and SPLIT functions. For a given
class the number of control points is the same so a
replaceable operation, CountCp, is defined to return
this value, e.g. 2 for line objects, 8 for rectangles. The
replaceable operation LocCp returns the object-relative
location of a control point. The fixed operation
HighlightCp highlights a control point in one of the
styles: default (small square), guiding (larger square)
or pinned (an X). ClosestCp and FurthestCp are fixed

35

36

Computer Graphics Volume 16. Number 3 July 1982

operations that enumerate the control points for an
object and use locCp to determine the control point
closest and furthest from a particular coordinate. They
are used to determine g'Qiding and pinned control
points. Rectangles, graphics frames and text frames
have the same number and arrangement of control
points and so use the same realizations for CountCp
and locCp. This increases code sharing so that only 2
realizations for 2 separate replaceable operations are
needed to implement all the control point behaviors for
3 classes of objects. This is typical of the code sharing
benefi ts of the trait mechanism.

AnchoredFrame is the class trait for the graphics
frame that is associated with the anchor character.
There is no screen-visible element for this object. The
keyboard insert of an graphics frame actually creates
two objects, an anchored frame with a graphics frame
inside it. It is the graphics frame that is the visible
box. Anchored frame objects are also used to anchor
equations in text.

An anchored frame object forms the boundary
between the non-graphics and graphics domains. A
page column is a vertical list of left edge aligned text
blocks and anchored frames. The one and only child of
the anchored frame is a graphics frame that may be
aligned flush left, centered or flush right within the
anchored frame as determined by a property on the
graphics frame property sheet. Within the graphics
frame there are no restrictions on object arrangement.

Line is the class trait for graphics lines. Its state
retains the properties shown in figure 5.

TextBlock is the class trait for objects that have
textual content. Further details about this trait are
beyond the scope of this discussion. Text blocks and
anchored frames are the only objects that exists in a
document column.

Note that the Schema trait defines operations for
asking an object its size and location but does not
define corresponding state variables. Also note that
the replaceable location query is a request to a parent
object for the location within the parent of a child
object, i.e. a parent-relative location. This is done, as
we discuss below, for flexibility and economy of
storage and for performance.

It was felt best not to force all classes to store their
size in the same manner at the Schema level because
the trait is used as a component trait for a large
number of classes each with possibly quite different
behavior, e.g. a horizontal list-like object may
determine its size by summing the widths of its
children and use the height of its tallest child as its
own height while a graphics object may store this
information in its state. This judgement has been
shown correct by the diversity of methods for
determing size that now exist as the Star software has

matured and new features, objects and behaviors have
been implemented. It is quite common for a trait to
define a behavior, such as Schema Size, that requires
the cooperation of all objects that carry it in order to
complete the behavior.

For performance reasons the fundamental location
query is in terms oflocation within parent. Displaying
an object or changing its location on the screen should
not require changing its state.

For example, the Star workstation processor has
instructions that support moving bits from one part of
the screen to another. Scrolling a page upward is
merely a matter of moving existing screen bits and
painting new bits into the vacated portion of the
window; none of the scrolled objects needs to be told to
modify any of their state. This processor support also
aids performance because it is not necessary to invoke
the Paint operation for objects that already have their
image on the screen.

Also, changing the size of an object or deleting an
object near the front of a document does not require
changing the state of all following objects in the
document.

When the screen location of an object is needed for
an operation the object is passed its screen location as a
parameter or it invokes the operation ScreenlocChild
on it paren t.

V. Two Examples

Star graphics was the first major piece of Star
software designed in terms of traits and that used the
full generality of the mechanism. Pieces of software
designed or implemented prior to graphics have
subsequently been converted to the traits mechanism.
In this section we will describe two interactions
between the tr-aits presented in section Ill. We first
show how the GSchema trait completes the Schema
size and location behaviors and second show how it
extends the Schema trait for pointing behavior.

The GSchema state records a size and parent­
relative location. Fixed GSchema operations allow
this information to be accessed and changed. All
GSchema objects use the same realization for the
Schema replaceable operation RellocChild which
invokes the fixed GSchema operation GetRellocSelf on
the child object. Note that for a graphics object

GSchema. GetRellocSelf[object]

returns the same value as

Schema.RellocChild[
TreeElement.GetParent[object], object]

Objects that carry the Schema trait are responsible
for a rectangular patch of the screen. Among sibling
objects this may be sole responsibility, as is the case
between page objects, or may be a shared

Compute..- G..-aphics . Volume 16. Number 3 July 1982

responsibility, as is the case between overlapping
graphics objects.

Sole vs shared responsibility has interesting
implications for the implementation of imaging
behaviors. We will look at the pointing and selecting
behavior of objects.

The document object carries the ListSchema trait
and is the parent of page objects. It is quite easy for a
document to determine which page contains the cursor
and then pass the buck for processing the pointing
action to that page. As long as the cursor remains
within the bounds of the window displaying the
document and within the bounds of the page, the page
object has sole responsibility for tracking the
movement of the cursor, for providing user feedback in
the form of highlighting and for making a selection
when the user releases the mouse button. If the cursor
leaves these bounds with the button still depressed the
page passes responsibility back to the document object
for continued processing. A page satisfies its
obligation by passing the buck to the column
containing the cursor, etc.

When the user releases the button, the currently
pointed~at object registers itself as the current
selection with a central mechanism. Subsequent user
editing actions are sent to it via the Schema Edit
operation. It is up to the object to decide how to
respond to the editing action, e.g. graphics lines ignore
typing.

This method for button processing is embodied in
the' Schema replaceable operation PointedAt.
Parameters for the operations are the object being
asked to process the pointing action, its screen
location, a tracking region, the current cursor location
and the state of the mouse buttons. The return value
for the operation is an updated cursor location and an
updated mouse button state.· The object must track the
cursor as long as it is in the tracking region and must
return control when the cursor leaves the region.

The semantics of PointedAt were designed for the
non-graphics domain where nested list-like
arrangements predominate, e.g. pages in documents,
columns in pages. List-like arrangements also
predominate outside windows but a description of their
uses there is beyond the scope of this discussion.

The ListSchema trait provides a buck-passing
realization for PointedAt that is used by almost all
objects carrying the ListSchema trait.

Sibling graphics objects must share responsibility
for pointing, ego pointing inside the boundary of a
rectangle may really lead to the selection of some other
object. If the user points at the letter "x" in "Text" in
figure 6a the text frame does not allow the user to point
through to the rectangle under it. If the user points at

the upper left corner of the text frame in figure 6b the
user is pointing through the rectangle. This sharing
behavior is implemented by the GSchema operation
Contend described below.

If the cursor is positioned inside a graphics frame
and a mouse button is pushed, the list-like PointedAt
realization behavior described above resolves the
cursor to the window containing the cursor, the
document within the window, the proper page, the
proper column and finally to the anchored frame
within the column.

The anchored frame's realization for PointedAt is to
enumerate it descendants and ask each how much
interest it has in the current cursor position. The child
with the greatest interest is passed the buck for
processing the pointing action by invoking its
PointedAt realization. The tracking region it is passed
is very small, a box about 1/8" square. This allows the
anchored frame to regain control and re-poll its
descendants if the user moves the cursor any
significant amount. The GSchema operation Contend
is the operation used to ask a graphics object how much
interest it has in the current cursor position. The
descendants are enumerated top-down and
enumeration stops when all have been enumerated or
one of the descendants says stop, e.g. the text frame in
figure 6a when the cursor is pointing at the letter "x".

Rather than change the semantics of PointedAt for
graphics objects, or replacing it completely with a new
set of operations to do pointing resolution, we merely
added a pre-processing phase by adding Contend. The
extending of behaviors by addition, not replacement, of
operations is a capability offered by the traits
mechanism and used widely throughout Star.

Note also that the user is allowed to button down
near a graphics element and see it highlight, move the
mouse with the button still down out of the graphics
frame and point to a letter in the main document text
and see the graphics element de-highlight and the
letter highlight, continue dragging the mouse out of
the document window and point to an icon and see the
letter de-highlight and see the icon highlight and then
select the icon by releasing the button.

All this is possible as a single user action. In the
traditional sense this may be thought of as
automatically invoking three editors in succession, the
graphics editor, the text editor and the desktop editor,
and passing control between them when in reality we
are traversing a tree of objects and asking each to
exhibit its own behavior. The implementation
corresponds'to this model and for this reason there is
no graphics editor per se that is invoked by the Star
user; there are only graphics behaviors that are
exhibited in response to user actions and these
behaviors are available at all times.

37

38

Computer Graphics Volume 16, Number 3 July 1982

VI. Trait Summary

The following trait summary is in the order they
were introduced above. Additional state variables and
operations beyond the scope of this discussion are
represented as n ••• ".

trait name: TreeElement
state: next, parent, eldest
component traits: none
fixed operations: GetNext, SetNext, GetParent,
SetParent, GetEldest, SetEldest, ...
replaceable operations: none

trait name: Schema
state: none
component traits: TreeElement
fixed operations: ScreenLocChild, ...
replaceable operations: Size, Paint, PointedAt, Edit,
RelLocChild, ...

trait name: GSchema
state: size, location in parent, ...
component traits: Schema
fixed operations: GetSize, SetSize, GetRelLocSelf,
SetRelLocSelf, ...
replaceable operations: Contend, ...

trait name: ListSchema
state: margin, spacing, color
component traits: Schema
fixed operations: ...
replaceable operations:

trait name: HasCp
state: none
component traits: none
fixed operations: HighlightCp, ClosestCp, FurthestCp, ...
replaceable operations: CountCp, LocCp, ...

trait name: Line
state: width, style, line endings, constraint
component traits: GSchema, HasCp
fixed operations: none
replaceable operations: none

trait name: TextBlock
state: text contents, ...
component traits: Schema, ...
fixed operations: ...
replaceable operations: ...

VII. Conclusions

Adopting an object-oriented implementation and
the trai ts mechanism has been a success.

The initial graphics design and implementation
(without bar charts and text frames) was done in one
work year by a new hire who knew nothing about the
Mesa language or the Star object-oriented
methodology or the trai ts mechansim. This was in
large part due to the building block nature of the
methodology. Also the graphics functional

specification had already been written, and one of the
authors had validated the graphics user interface by
prototyping on the Xerox Alto using a different
implementation technique.

Subsequent to graphics, most of Star has been
converted to this methodology, and three other major
pieces of software have been undertaken: an equations
editing capability, a 3720 emulations window, and a
table editing capability. All are having equally good
results.

The trait mechanism has allowed a rather
straightforward mapping of Star UI elements to
internal implementing objects.

REF~~RENCES

1. G. Curry, L. Baer, D. Lipkie and B. Lee, "Traits -
An Approach to Multiple-Inheritance Subclassing,"
Conference on Office Automation Systems,
Philadelphia, Penn., June 1982.

2. E. Harslem and L.E. Nelson, "A Retrospective on
the Development of Star," submitted to 6th

International Conference on Software Engineering;
Tokyo, Japan. Sept. 1982.

3. C. Irby, L. Berginsteinsson, T. Moran, W. Newman
and L. Tesler, "A Methodology for User Interface
Design", Systems Development Division, Xerox
Corporation, January 1977.

4. J. Mitchell, W. Maybury and R. Sweet, "Mesa
Language manual," Technical Report CSL-79-3, Xerox
Corp., Palo Alto Research Center, Palo Alto, CA, April
1979.

5. J. Seybold, "Xerox's 'Star'" in The Seybold Report,
Media, Pennsylvania: Seybold Publications, v. 10, no.
16,1981..

6. D. Smith, C. Irby, R. Kimball and E. Harslem, "The
7tar User Interface: An Overview," NCC '82.

7. D. Smith, C. Irby, R. Kimball, B. Verplank, and E.
Harslem, "Designing the Star User Interface," Byte, v.
7, no. 4, 1982.

8. L. Tesler, "The Smalltalk Environment", Byte, V. 6,
no. 8, 1981.

9. C. Thacker, E. McCreight, B. Lampson, R. Sproull
and D. Boggs, "Alto: A Personal Computer," Computer
Structures: Principles and Examples, D. Siewiorek, C.
Bell and A. Newell, editors, McGraw-Hill, 1982.

The Design of Star's Records Processing
Data Processing for the Non-Computer Professional

Robert Purvy, Jerry Farrell, Paul Klose

September 1982

© Copyright Association for Computing Machinery 1983. Printed with permission.

Abstract: Xerox' Star Professional Workstation is distinguished by a graphic user
interface committed to the What-you-see-is-what-you-get design philosophy. The
system promotes a see / point / push-a-button style of interaction with immediate
feedback, in marked contrast to more familiar programming or command-language
interfaces.

Star's Records Processing feature integrates traditional data processIng
functionality into this user model, using standard Star documents for data
definition, entry, display, update and report generation. Benefits include an
economy of concepts and effort for user and implementor alike, along with the
synergy of a unified environment.

A version of this paper has been submitted to ACM's Transactions on Office

Information Systems, to appear in the first quarter of 1983.

CR Categories: H.2.3, H.3.3, H.4.*

Key Words and phrases: office automation, office information systems, records

processing, database, user interface.

XEROX Xerox Corporation
Office Systems Division
3450 Hillview Av.
Palo Alto, California 94304

39

40

1. Background

The Records Processing (hereafter "RP") feature in the Xerox 8010 "Star" Professional Workstation is

heavily influenced by the nature of the system it is associated with. Star's intended users are the so­

called knowledge workers: financial analysts, research and development scientists and engineers,

technical writers etc. These individuals work in relatively unstructured situations; they produce and

communicate ideas. They may be contrasted with clerical personnel on the one hand, whose jobs tend

to be much more structured, and defined in terms of some more concrete product~ and managers on

the other, who tend to concentrate on analyzing and deciding among already-presented alternatives,

and exercising interpersonal skills to direct and motivate subordinates in implementing those

decisions.

This model of Star's users has significant implications for the design of the system. Timely, effective

communication is a paramount requirement for Star's user, both in collecting input and in presenting

output. This means rich media, with the quality of traditional typographic and graphic

communications. At the same time, the speed and comprehensiveness of electronic processing must

be maintained. Facilities for automating large and routine systems are considered less important, as

we expect our users to devote relatively less time to those processes, and to have diverse routines

which are difficult to cover completely. Finally, while Star users are intelligent and capable people,

they generally are not computer professionals; Star can not require computer sophistication from

them, however advanced their needs become. This dictates a user interface which presents a familiar

and uniform model to the user. To motivate a discussion of how Star's u'nified environment requires

new and interesting approaches to these facilities, we first present a brief overview of the whole

system.

1.1 Overview of Star

Star is a powerful perso1.al computer and office automation system. Its hardware consists of one or

two cabinets 12 inches wi(:e by 25 inches high and deep, housing a processor of about .5 mips, 384KB

or more of memory, and a 10 or 28MB hard disk. (The second cabinet is required if the larger disk is

installed). This system is connected to an Ethernet [DEC / Intel/Xerox 80] with associated network

services, such as filing, printing and electronic mail. The user faces a large, high-resolution (1024 x

808) bit-mapped display, an independent keyboard, and 2-key mouse for cursor control.

Star's user interface has been described in detail elsewhere ([Seybold 811, [Smith 82]); we sketch it

briefly here for the reader's convenience. The user is presented an environment modeled on common

office equipment and procedures. The screen displays a desktop, and on it, icons of elements of a

physical office: stylized pictures of documents, file drawers and folders, in- and outbaskets, etc. These

objects may be selected: the user moves the mouse until the cursor is over one, and presses one of the

mouse keys. A selected icon may be moved and copied about on the Desktop, or deleted: it is selected,

and the MOVE, COpy or DELETE key is pressed. When a destination is required, the user indicates it with

the mouse. An icon which has contents (e.g. a document or a folder) may be opened: it is selected, and

the OPEN key is pressed. A window opens on the screen, displaying the contents of that object.

The Design of Star's Records Processing

Window contents, such as text in a document, may be selected and manipulated in the same fashion:

Users point the cursor at text and press the mouse button to select it. They move, copy and delete

selected text as they do icons on the Desktop. They add new text to the selection by simply typing it.

Similarly, users may select and move a document from a folder to the Desktop or back, or select and

open one folder nested inside another.

Some icons incorporate functions: File drawers, printers, and in- and outbaskets provide the interface

to services provided on the Ethernet. Thus, moving a document to a printer icon causes it to be

printed. A document is transferred to a file server by moving it to a file drawer; it is retrieved by

opening the file drawer and moving or copying it back to the Desktop. Electronic mail is sent by

moving an icon to the out-basket; and incoming mail accessed by opening the inbasket.

Objects in Star have properties appropriate to their type. For example

Object Type

documents

characters

graphic rectangles

Properties

name, size, owner, create I read I write timestamps

font, size, position, bold and italic faces

border weight and style, gray-scale

Users access an object's properties by selecting it and pressing the PROP'S key. A new window is opened

on the screen to display the properties, which may then be adjusted as desired. Figure 1 shows a Star

screen with many facilities in evidence (moce than would generally be seen in real circumstances).

Since the screen is bit-mapped, it can display characters in a multitude of fonts and faces, accented

letters appropriate to various European languages, non-Roman scripts, and special symbols for math,

logic and office applications. To select from these various collections of characters, the keyboard may

be remapped via the KEYBOARD key, with the current interpretation displayed on the screen whenever

the user wishes, as shown in Figure 1.

1.2 Star User Interface and RP

Star is a unified and integrated environment. The operations invoked by selection and the keys MOVE,

COPY, DELETE and PROP'S are considered universal: their semantics are expected to be uniform

throughout the system, and the main operations a user wishes to perform in any domain are

expressed in terms of them. There is no conventional command language, nor any executive to

interpret one. In the usual case, the user does not write independent programs, and there is no

mechanism for running them; for example, text editing is a function performed by the same actions

throughout the system, rather than the special province of a text-editor program to be run as

required.

Professionals require access to collections of structured data and facilities for processing them,

sometimes in fairly repetitious ways. However, their requirements are quite changeable and

personalized, and often small in volume; we contrast this domain to applications served by

traditional data-processing, report-writing, and data management systems controlled by a

programming language interface or command language. At the same time, the results of this

processing appear commonly in other materials, and so require thorough integration with the

remainder of the professional's system - document creation, electronic mail, and the like.

41

42

The Design of Star's Records Processing

The Design of Star's Records Processing

Data Processing for the Non-Computer Professional

Robert Purvy .. Jerry Farrell, Paul Klose*

XEROX ·Corpo.ration

~
::...,:, StAr Pr<tossioDal W~ti& is
1i ~04 br a p-apbio ,... in_

o To m..ee"aperties • .,..-.....,:
- Select the aIIiect In,.. ~
- Press the CS-> u,.
- Selectthe~··s.me--.

m.- _4 ~intt is requiHd it thelut .. diJI< i:
instIlledl. nw'l'~i:~to ... m_ot
[DEC I mWI x_x 80] with as,ociatod "oW ..

E:J
... '"'.

~ .'.

-_.-

~ ... W f!]' ': :,:. •... E3
:_. -: .. :: .. ;1··~
...... -_.-

.. :.: (?l~
> EEJ c:::::::J

In keeping with this model, RP is fully integrated into the Desktop environment, using the same

basic operations and paradigms that hold throughout Star. It makes especially heavy use of standard

Star documents to define the structure of record files, display results of queries, format and generate

reports, and accept data for additions and updates to stored data. It has extended the graphical

interface to the process of specifying queries.

To some extent, RP has traded functional power for conceptual simplicity: Data are shared only in

the sense that record files, like documents, may be mailed and stored in commonly accessible

locations. There are no facilities for constructing virtual collections of data by specifying joins and

other manipulations of independent record files. (This latter restriction is mitigated by RP's use of

hierarchical structures, allowing related data to be stored together in a single file.)

The Design of Star's Records Processing

1.3 Comparison of RP to Other Systems

A number of recently-developed commercial and academic systems share Star RP's departure from

traditional data processing. Use of a form, generally taken to mean some kind of stylized document

with a defined field structure, is particularly common, although details differ from system to system.

Several systems are based on relational database systems; as such, they tend to provide richer

database facilities than RP, but less integration into other aspects of office automation, such as print­

quality text and graphics and electronic mail. We consider two systems in some detail: Zloofs Office­

By-Example (an extension of his earlier, well-known Query-By-Example), and the University of

Toronto's OFS office forms system. For discussions of other relevant work, see [Ellis 80], [Embley 81],

and[Yao 81].

Star differs from Query-By-Example / Office-By-Example [Zloof 77, Zloof 81] primarily in its scope.

QBE is an interface to a general relational data management system, while a Star record file is

primarily a simpler, personal database. This less powerful design has enabled considerable

simplication in the specification of queries and the relationship of Star documents to record files.

To a very large extent, we have made interactions with a record file the same as interactions with

document structures, particularly Tables (see 2.2). Thus, whereas in QBE the user indicates update,

deletion, or insertion of a record with special operators (U, D, or I), in Star he might accomplish the

same ends by normal editing of a table row's contents, deletion of a row, or insertion of a new row.

Since hierarchically nested fields, if any, are actually stored with the record, rather than being linked

to in a separate file, there is no ambiguity about what happens to them during update: if you delete a

row in a table, you also delete all of its subrows, and the analogy carries across to record files.

Star maintains the basic query syntax ofQBE. However, Star uses views (4.1) in a more fundamental

and universal way than does QBE. In Star, certain functions that are performed by special operators

in QBE are implicit in the user's definition of view properties, especially the choice of view document.

The University of Toronto's OFS [Tsichritzis 80] is explicitly aimed at a more structured environment

than Star, the office conceived more in the sense of a bureau. Forms are associated with well-defined

office procedures, and considerable emphasis is laid on authentication, authorization, and

accountability. Interaction with forms is carried out through a command language at the user

station, which may be either a personal computer or a terminal to a shared processor. Forms are

communicated to or from a station via electronic mail. Alternatively, a collection of forms may be

accessed as a relation in a database system, with the underlying data and indices shared between the

two systems. The conception of the form file as the relation of data plus an associated form is similar

in spirit to Star's association of display forms with a record, although Star considers the data more

fundamental than the form in which it is rendered, and hence allows the association of multiple forms

with the same collection of records. As with OBE, OFS exhibits the power of a full database system,

which enables more and larger applications. This is particularly relevant for OFS' target

environment, where collections of data may be expected to be larger than Star's, and required forms of

access may be at once more established and more complex. The inclusion of office procedures is less

clearly a distinction between the systems, since some of the RP icon-level manipulations embody

simple office procedures (5), and more complicated procedures may be handled by the Star customer

43

44

The Design of Star's Records Processing

programming language (2.3). By its association with Star, RP derives a very high-quality graphical

interface~ in contrast, OFS is designed to be operable from a minimal terminal. This has effects on

the capabilities of the system; display of repeating groups, for instance, is excluded from OFS, while

Star requires the facility in many contexts besides RP.

Tsichritzis notes the conflict between providing enough power in a language to handle a broad

selection of applications and the fear of overwhelming the user with the attendant complexity. Star's

RP and customer programming designs have had to confront this same dilemma, with approximately

the same result: a simple facility is provided to cover many interesting simple cases, with escape to a

more general programming language for users with the need and ambition.

Star in general, and RP in particular, exhibit a sophistication about multi-national and multi-lingual

applications which we have not seen in any comparable system. There are no deep theoretical issues

here, but there are a great many practical details which must be dealt with. Texts can be stored in

any of the various scripts supported by Star, including special characters in languages which

basically use a Roman alphabet (currency symbols for pounds or yen), non-Roman alphabets (Greek,

Katakana and Hiragana), and ideographic texts (Kanji). Ordering relations depend on the language

(ch is a single letter in Spanish, falling between c and d; ii sorts the same as a in German, but is a

separate letter which follows z in Swedish). Formats for dates and numbers differ among countries,

affecting the interpretation of input and the form of output (123.456 is three orders of magnitude

greater in France than in the US; Japanese may schedule a conference in the 6th month of the 58th

year of the era of Shining Harmony).

2. Star Features Closely Related to RP

Three features of Star are particularly relevant to consideration of RP: Document Fields, Tables, and

the customer programming language.

2.1 Fields

As described in the first section, the user has available several remappings of the standard keyboard.

One such mapping is to a collection of special objects that may be inserted in text. These include

equations, graphic frames and page breaks. Also included are fields and tables, which correspond

approximately to the notion of variables in a programming language. In the simplest case, a field is a

container for a single value. Structured data is represented in tables, discussed below; these

correspond to programming language record definitions. Fields may occur in running text, as in a

form letter, in which case their contents are formatted along with the surrounding characters.

Alternatively, they may be placed in a frame with fixed size and position, as in a business form or

report. Documents containing illustrations and/or fields are treated like any others on the Desktop

and in the filing system.

The user fills in fields with the normal Star editing operations, augmented with the NEXT and SKIP

keys. The fields in a document are arranged in an order (settable by the user), and the NEXT and SKIP

keys on the keyboard will move the selection through the fields of the document in this order,

ignoring intervening document contents. Field contents may be selected with the mouse, like any

other document contents, and edited, moved or copied to other areas.

The Design of Star's Records Processing

The mechanism for getting a new (empty) field in a document is, essentially, to type it. Star's

alternate keyboard mappings are presented in response to the KEYBOARD key on the keyboard.

Selecting the SPECIAL option sets the keyboard keys to the special objects that may be inserted in text,
. ,

mentioned at the beginning of this section. Inparticular, the "Z" key is remapped to a field; pressing

it now results in insertion (at the current type-in point) of a new field with default properties. Its

position is marked with a pair of bracket characters: r J. Once a field is inserted, it may be selected,

and its properties set, as with normal characters or any other Star object. Thus, users create forms by

straightforward extensions of other document operations.

2.1.1 Field properties

A field has a rich collection of properties, of which the most important are its name, its type, the

format of its contents, its range of valid values, and optionally a rule for determining its value. Other

properties include a description (which may be used as a prompt), and the language of the contents

(which is required to deal with the multi-lingual issues mentioned in l.3).

A field's name is assigned by the system when it is inserted in the document; it may be changed by

the user at any time. The name must be unique among fields in the containing document.

There are four field types: Text, Amount, Date, and Any. The first three have obvious constraints

on their values. Any fields are allowed to contain anything legal in a document. The default is Any.

Formats may be used for data validation on input of Text fields, e.g. part number or social security

number format. Date and Amount fields do not have input validation according to formats, but

instead accept anything that "makes sense" according to the rules for those field types. Formats may

be specified for output of Dates and Amounts to enforce uniformity of appearance. Date formats offer

a choice among standard representations of dates, and are language-dependent. Format characters

for Amounts and Text are similar to those in COBOL or PUl picture clauses, and appear on the SPECIAL

keyboard.

The Range property specifies acceptable values for the field. These involve more characters from the

SPECIAL keyboard, indicating a closed interval and a textual ellipsis which matches 0 or more arbitrary

characters. (These may be indicated by "-" and " ... "; on the screen, they are given distinctive images

which do not appear in text.) The range may be unbounded at either end: 0-, 1-10, -127. These

same forms are used in specifying desired values in RP Filters (4).

The Fill-in Rule property is discussed in section 2.3. Figure 2 shows a form with an open property

sheet for a field with a fill-in rule.

2.2 Tables*

A table is another of the special objects which may be inserted in a document. It is a rectangular

frame with rich formatting characteristics: headings, footings, ruling lines, margins, captions, rows

and columns which automatically adjust their extents and which may be selected, moved, copied, etc.

* We should note here that the implementation of Tables was not completed until after the first
release of Star.

45

46

The Design of Star's Records Processing

NwM of En'IfIIo7H

Be.,et Mwion

'IIIIWIder, Jeri.AIWI

FarYeII, Jerry

KirnbMI, ftaIph .

"'~huI
NewIin,John

Pettit,. Ten
PutIIY,Rot*t

_. :'see ., ... _-­
.... , .. :2

Age o.t.oflHt

!5 11&'41

-

21 IW2fIS2

" 11 It '''''

!1 ~

!4 "'..,..7
53 JI'I0t4,

2t "'21S2
Y 12/2145

ChIIcIrWI
Nwrie Age

GrWIMI 3

Sutw 1

AiM 15

I<eWI 12

s.ra 5

1IrIM· 2

Of more interest here, a table is also a hierarchical structure of fields, arranged in rows and columns.

A column may be divided (have sub-columns). A divided column may also be repeating, which allows

for nested sub-rows within a row. (See, for instance, Figure 3b.) Conceptually, the table itself is a

simply a higher-level repeating divided column. Thus, tables correspond to structured variables in

standard programming languages.

Besides formatting control, the properties of a table column include the standard field properties.

These apply to each of the fields in that column. Thus, all fields in a column bear the same name

(they are distinguished by an index)~ they share the same format~ and a single fill-in rule may be

applied to each.

2.3 Fill-in Rules and CUSP

The use of fill-in rules on fields must qualify the statement above, that " ... the user does not write

independent programs, and there is no mechanism for running them." A user's day-to-day activities

are not normally addressed by writing programs. Nonetheless, some user computations are best

expressed by the user; Star's CUStomer Programming language responds to this requirement. In the

first release of Star, CUSP appears only in a fill-in rule, which is a property of a field or table column.

The Design of Star's Records Processing

A fill-in rule is an expression in a simple language with no side effects, and no control constructs

except the conditional expression. It does include arithmetic, string concatenation, and aggregate

operations like Sum and Count, comparison and boolean operators, and a conditional expression

which selects a single value from a number of alternatives. There are built-in expressions for the

current date, time and user identification. The value returned by the expression is stored in its field,

properly converted and formatted. Simple fill-in rules include

CurrentDate

Taxable * 1.065

Choose

~Taxable" must be the name of another field in the same document

Miles < 200 -> Miles * .20;
Otherwise -> 40 + (Miles - 200)*.11

The Choice is simply a CASE statement, with a required Else.

The use of fill-in rules is extended to table columns, with provision for referencing the current row.

Thus, a rule for computing one field as the sum of two others may be used to make one column in a

table hold line totals for corresponding elements of the other columns.

A later release of Star includes a capability for users to program their own Buttons. These are

parameterless procedures which may include iteration over sets, side-effects on fields and manipu­

lation of objects on the Desktop, parallel to manual actions in the user interface. Buttons may appear

in documents, and they mimic, in appearance and operation, the behavior of menu commands built

into Star. Eventually, CUSP will become a full programming language, with procedures, variables,

parameters and a programming environment. We are proceeding in this direction for two reasons:

1. The complexity of user applications is essentially unbounded, which makes some sort of

programming language virtually mandatory.

2. As in the rest of Star, we believe we can layer the complexity of CUSP, presenting only

as much as is relevant in a given situation. Non-programming users may content

themselves with the facilities described in the rest of this paper; fill-in rules ignore

flow-of-control and binding issues; buttons introduce restricted procedurality in a

familiar context.

Taken together, these points echo Alan Kay's dictum "Simple things should be simple; hard

things should be possible."

3. A Functional Description of Star RP

The next three sections of this paper review the functions of traditional data processing, with

attention to how the Star user interface provides a graphical, non-procedural way of presenting them

to the user.

3.1 Data definition

Data definition is the first function required of RP. The field structure of the record file must be

indicated to the system (along with the types and constraints on the individual fields) before data can

be entered or retrieved. This function is normally served by a data definition [sub]language. Star

47

48

The Design of Star's Records Processing

provides this function via the mechanisms already used to define fields in documents; in fact, the

structure of a record file is set simply by indicating a document whose field structure is to be copied.

Each Star Desktop includes access to a collection of useful templates, e.g. an empty folder and a blank

document. To create a new record file, the user copies the empty record file, and opens the copy. The

window menu will include a command named Define Structure. The user selects a document which

has the field structure desired for the new record file, and invokes the Define Structure command.

Star reads through this defining form, copying to the record file the descriptions of fields and tables

encountered. When this process is completed, the Define Structure command disappears from the

window, and the record file is defined.

Employee Information

Name:
Children

Name Age
Age:

Date of Birth:

I

Figure 3a: Fields in a Form

Employees

Name Age Date of Birth Children

Name Age

Figure 3b: Corresponding Record Structure

The details of the definition process may be illustrated with an example: The personnel form in

Figure 3a has a number of independent fields (Name, Age and Date of Birth), and a table of

dependents named Children; the table's columns are Name and Age. If used as a defining form, this

document would generate a record file structure as illustrated in Figure 3b. The independent fields

and the table generate top-level fields in the record; the additional hierarchy of the Children table is

reflected in a subdivided column in the record with repeating sub-records. All field properties (name,

type, language, range constraints, ...) are carried over to the field in the record, except for any fill-in

rule. (Since this is the definition of the stored data, it would be either redundant or inconsistent to

leave a fill-in rule on the field. Therefore, the field is generated with all its properties except the

rule.) A slightly anomalous case arises for documents which contain only a single table. By a strict

adherence to the process we have described, we would expect a record with a single field; that field in

The Design of Star's Records Processing

turn would be sub-divided, with a sub-structure corresponding to the columns of the table. For

convenience, such a document generates instead a record whose structure exactly matches the table's.

3.2 Display of data

The correspondence between the field structure of records and of documents carries over into all other

access to record file data: Star documents containing fields and/or tables are used to add, display and

modify records in record files. Multiple documents may be associated with a record file to provide

varied forms of display of the data. Each such document is called a display document. A display

document may contain only a subset of the fields in a record. It may contain additional fields which

have fill-in rules to compute aggregate functions over the data. Its format may be that of a tabular

report with data from many records gathered into a single document, or of a form whose multiple

instances each correspond to ~ single record. Non-field text and formatting may include all the

general facilities of Star documents, including arbitrary formatting and graphics. While these

documents are referred to as display documents, it should be clear that anyone may be used for both

input and output; in fact there is no access to the data in a record file except through some document.

3.2.1 Lading

The process of establishing the correspondence between data in a document and in the records of a

record file is called lading. Lading consists essentially of data transfer between fields that correspond

by name. This covers both data input to the record file and output from it. The definition of

corresponding names is generally straightforward, but must account for th~ capability of a single

document to correspond to either a single record, or to a whole collection of them. (The two cases are

very similar to the two varieties of defining document mentioned above.)

As mentioned in 2.Ll, a field's name must be unique within its containing document or record. This

is enforced immediately for independent fields and the top level of tables. In tables, only the fully

qualified name (in the obvious pathname scheme) must be unique. Thus, in Figure 4, there is a field

named Age, and a different one named Children.Age.

When lading between a record and a document which contains independent fields, the document and

the record are considered to match; then any contained fields match if they have the same simple

name, and their containers match. In this case) it will be seen there is one occurrence of a field in the

document for each occurrence in a single record; multiple instances of the document must be

generated for multiple records. Such a display document is called a non-tabular form; it would be

appropriate for a form letter application, or form-style entry into the record file.

A document with a single table and no independent fields is treated somewhat differently. If the table

has one or more columns whose names match record fields, then the table is considered to match the

whole record, and rows of the table correspond to records. This is called a tabular form, and is

typically used for reports and queries which may return several records. Independent fields which do

not match record fields may occur in a tabular form; these typically have fill-in rules which compute

summary data.

In either variety of display document, smaller tables may provide hierarchical structure with

repeating sub-rows. The matching criterion must be refined to handle this case: fields do not match

49

50

The Design of Star's Records Processing

unless they share the same values for the Repeating and Divided properties. Figure 4 illustrates

lading from a record into a tabular form. A new row will be generated in the Roster table for each

record in the record file, and Children sub-rows will be generated in each row if there are

corresponding children sub-records in that record of the record file. The defining form illustrated in

Figure 3a could likewise be used as a display document for this record file; when laded, a new

instance of the form would be generated for each record in the record file, each with its Children table

filled out appropriately.

Field values are transferred between source and destination in the fill-in order of the destination. For

output from the record file, fields with fill-in rules are computed as they are encountered in the fill-in

order, on the basis of data already in the form. Fields which have neither computation rule nor

matching source field are left unchanged. As each value is transferred, it is converted to the type and

format of the destination field.

Figure 4 illustrates lading from the record structure of Figure 3 into a tabular form with a slightly

different structure. In this case, the fields with the name Name match. The fields Date of Hire and

I I I
Employees (record file)

Name Age Date of Birth Children

Name Age

1
II
'/1

/; 'I
Roster (tabular document) //J I

Name Salary Date of Hire Children Number

Age Grade

~ ~ Z
11
f

Figure 4: An Example of Lading

Date of Birth do not match, despite the fact that they are both dates and are both at the same position.

Therefore Date of Hire remains empty. The repeating divided field Children of the record file matches

the column Children of the table. Their Age subcolumns therefore also match, and field values are

transferred for each sub-row. No columns in Roster match either the other field named Age or the

field Children.Name in the record, so their values are never accessed. The columns Salary and Grade

do not match any field in the record and thus are not laded. Number will have a fill-in rule

(Count [Roster[ThisRow].ChildrenD, so its value is computed as the record is laded.

The Design of Star's Records Processing

3.2.2 Scrolling and Thumbing

The portion of the record file displayed in the window is controlled in the same way as with documents

and other long Star objects: by pointing with the mouse into a scroll bar on the right margin of the

window. In a tabular form, there may be more records than can be displayed at once on the screen.

The table is filled with rows which display a contiguous subset of the records in the record file. By

thumbing, the user can jump to any point of the record file, causing the table to display a different set

of records. The user can also scroll the records up or down one at a time.

In a non-tabular form, scrolling and thumbing cause the display document to be repositioned, since

one record may be formatted into several document pages. The Next menu command displays the

record following the one currently displayed; Prev backs up one record.

3.3 Inserting Records

To add a record in a tabular form, the user adds a new row to the table, using the standard table

operations. The user then types the data for the fields of the new record. Star provides automatic

confirmation during record insertion.

In a non-tabular form, the user is provided with an additional command in the auxiliary menu, Add

Record. Invoking Add Record causes a new copy of the form to be displayed, with all of its fields

empty and with all of its tables rowless. The user may now enter data by typing into the empty fields.

When the user confirms his changes, the record is added.

Records may also be added to a record file in a batch; this process is invoked by user actions at the

icon level, described in section 5.

3.4 Updating Records

A record is updated by editing its contents while it is being displayed through a document. Therefore,

modifying the contents of a record involves exactly the same user actions as editing the contents of

fields within a document.

RP uses a data validation scheme which minimizes the chance for user error: once the user begins

editing a record, he is not permitted to edit any other record in the file; he must first confirm or cancel

the changes already made. Until he confirms or cancels his edits, the user has only modified the

display form, and not the record file.· When confirmed, all fields of the updated record are validated

according to both the record file's and the display document's field constraints. If any fields are

invalid, then the record is not modified, and the user is notified as to which field is in error, so that he

can can make the appropriate corrections. No changes are made to the record file; either all of the

changes go through or none of them. If the user cancels his edits, then all changes are undone; the

form is redisplayed so that it shows the original record contents.

3.5 MOVE I COpy I DELETE Record

One or more records displayed in a tabular form can be manipulated as a unit by selecting one or more

rows and invoking MOVE, COpy or DELETE. These commands operate exactly as in documents and do not

ha ve to be confirmed. New records may also be added by selecting one or more table rows in another

51

52

The Design of Star's Records Processing

record file window and moving or copying them into the destination record file window. Source field

values are copied into destination fields with matching field names, using the lading mechanism.

For records displayed through a non-tabular form, the user cannot select the whole documenUrecord

in the window; therefore menu commands are added to the window to Add and Delete records.

4. Querying using filters

Every database system provides some mechanism by which the user can cause a subset of the data to

be extracted from the database and displayed, copied, printed, or otherwise made available for further

operations. While the first database systems required some sort of programmer intervention to

accomplish this, the current state of the art allows for direct query by non-data-processing personnel.

Star has no query language as such; rather, it provides a facility called filtering, similar to Query­

By-Example [ZI00f77].

Filtering is the process by which the user queries a Star record file. A filter is a predicate on the fields

of the record file. When a user sets a fi~ter, he is asking to see only those records that "pass" the filter.

The filter appears to the user as a table; in fact, it looks exactly like the Full Tabular Form. All

normal table operations (e.g. NEXT and selecting and adding rows) are available in the filter table. The

filter acts as a template which defines the subset of records that the user is interested in. Each entry

in the table may contain a field pattern, which specifies a condition that a corresponding record's field

must satisfy in order to pass the filter. Field patterns have the same syntax and capabilities as the

range specifications for fields in forms. Some examples of field patterns that might be specified for

the example record file of employees used above are:

employee names starting with A thru M:

employees born in 1951:

A4> M ...

1951

employees whose records have no entry for Age: the Special

(presumably an errOT condition) nEmpty" character

in the Name field

in Date of Birth

in the Age field

Each row in the filter represents a simultaneous set of conditions that records must satisfy. In other

words, the field patterns are AND'ed in a row. Thus, using the above examples, by filling in both the

Name column and the Date of Birth column, the user may construct a filter passing only those

employees whose names are between A and M, AND who were born in 1951.

To get an OR'ing of conditions, additional rows can be added to the filter using the normal table

operations. If the user wanted to change the above example to pass employees whose names are

between A and M, OR who were born in 1951, he would simply have two rows, one with the first

condition and one with the second. To summarize, field predicates are AND'ed across columns and

OR'ed down rows.

By using filters, the user is able to extract the subset of the records that he is interested in, merely by

filling in a table, i.e. using the same operations that he already uses to interact with the records

themselves. Figure 4 illustrates our example record file, with a filter selecting employees with non­

null names and ages in the range 25 thru 40.

The Design of Star's Records Processing

4.1 Views

All interaction with a Star record file is through views. A view consists of three attributes: a sort

order, a View Filter, and a display form. It can be thought of as the encapsulation of one distinct use

of the record file. For example, a large record file of employees might be used in a number of different

ways within an organization: to input new employees; to print out monthly reports of all employees,

alphabetically; to send form letters to special groups of employees; and perhaps for a wide range of

querying by the personnel manager: who has been hired in the last month? how many employees are

over 60? etc. It should be noted that our definition of "view" differs somewhat from a more common

use of the term, namely a virtual, and usually read-only, table synthesized from multiple tables (e.g.

[Zloof 77]). A view in RP is limited to displaying and editing data from a single record file, and all

views allow updates.

Each distinct use of the record file may dictate that a view be created to support it. A record file can

have arbitrarily many views, and views are moved, copied, deleted, and have their properties

displayed and modified in exactly the same way as other objects in Star. It is important to note here

that no matter how many views are defined, the actual records are stored only once.

Views have both static and dynamic properties. If the record file is used in the same way frequently,

the user may choose to optimize that application by defining a view with a sort order and View Filter

that are permanently maintained via an index (see 4.6). On the other hand, the user may also specify

the view properties interactively, without the overhead of permanent indices.

4.2 Sorting

The sort order for a view specifies the order in which the records in that view appear. Each view may

have its own sort order, with the only cost being that indexes (see below) must be constructed. Thus,

each view can display the records in the order that makes the most sense for its application. The sort

order may either be maintained permanently via an index, or created dynamically each time the view

is opened.

4.3 View Filters

Each view may have a view filter, which specifies a permanent subsettingofthe records in the file. If,

for example, one particular use of the record file required that notices be sent to those employees who

have children, then it might be helpful to define a view whose filter passes only those employees. The

effect of this is that whenever this view is opened, only those employees are displayed. The view filter

functions, in effect, as a permanent query on the record file for those subsets of records that the user

knows he will be accessing again and again. (There is also another level of filter, called the Retrieval

Filter, for more transient queries; this is explained below.)

53

54

The Design of Star's Records Processing

4.4 Display Form

The third important attribute of a view is the display form. Any Star document may be used as the

display form of a view, although normally forms whose field structure has some correspondence to

that of the record file are used. By changing the display form of a view, the user is able to control the

format with which the data is displayed. Although in practice, some forms might be used

predominantly for reports, others for interactive querying, and still others for updates, there is

nothing that requires this. All display forms can be used for both input and output.

4.5 Current View

Each record file has a current view, which is the view that was last selected by the user. It is

maintained after the record file is closed and selected automatically by Star when the record file is

opened. The current view is important in printing record files and in moving or copying one record

file icon to another.

4.6 Indices

The sort order and view filter together define an index, which is maintained across all record updates.

The more distinct views that are defined for a given record file, the more indices have to be updated as

records are added, deleted, or revised. This is the standard retrieval vs. update tradeoff of data

management. If the record file is relatively stable, then the user would likely want to capture as

many of his frequent queries as possible in views, but if the record file were in a constant state of flux,

haVIng this many indices might impose too high a cost on updates.

The View Property Sheet contains a parameter called Save Index, which can be used to specify

whether the index is to be permanently maintained, or created dynamically each time the view is

opened and deleted when it is closed. This allows the user to make the tradeoff referred to above. For

example, a view that is used only once a month for reporting might be defined with Save Index off;

this would allow its definition to be permanently stored, but the view would not require any overhead

to maintain when not in use.

4.7 Retrieval Filter

M:any of the queries that will be made against a record file cannot be predicted in advance, and they

are often of a one-time-only nature. For such queries, it may not be appropriate to pay the cost of

creating an index. The Retrieval Filter provides a low-cost alternative for this sort of application.

The Retrieval Filter has exactly the same appearance and operations as the View Filter. It is applied

in addition to the View Filter; that is, it further restricts the set of records that are displayed in a

VIew.

5. Record File Manipulations at the Icon Level

Most of the operations described so far (filtering, adding, deleting and modifying records, even

defining record files and views) are performed within a record file window, i.e. an opened record file

icon. Icon-level operations are also used in RP, in a way analogous to their use in other Star domains.

The Design of Star's Records Processing

5.1 Record File to Printer

The normal way of printing something in Star is to select its icon and move or copy it to a printer icon.

The current view is what is printed when a record file is moved or copied to a printer. Thus, the user

chooses the report format desired by selecting the appropriate view. The task of making regular

reports from a Star record file now becomes simply that of defining the appropriate view once, and

then printing it as needed. During the printing process, the records for the current view are laded

into the display form, producing either a single document including a table with one row per record

(with a tabular form), or multiple copies of the document, with one document per record (a non­

tabular form). Repetitive mail (form letters) may be generated by using the form letter as the display

form for a record file of names and addresses.

5.2 Document or Folder to Record File

New records can be inserted into a record file by moving or copying a document or folder to the record

file icon. In this case, each document is matched to the record file structure, as described above in

Lading (3.2.1). If any fields in the document have names matching fields in the record file, a new

record is created, and the contents of those fields are copied over. This process is repeated for each

item in the folder. Documents which are not accepted for some reason (e.g. failure to meet format or

range constraints) are copied into another special folder, called the Error Folder, for the user's

subsequent examination and editing. Using this facility, records can be created as forms and added to

the record file whenever it is convenient.

5.3 Record File to Record File

By moving or copying one record file icon to another, records can be added to the destination en masse.

This facility also provides a form of reorganization: the same process of matching on field names that

is performed between documents and record files is also done between record files. Thus, fields can be

added to a record file by creating a new record file with the same fields plus the new ones, and moving

the old record file icon to the new one. In this case, the new fields are left empty in the destination

record file. Similarly, fields can be deleted, reordered, or have their types, formats, or ranges changed

by creating a new record file with the desired characteristics. When a record file is moved or copied,

the current view is the source of records. By setting the appropriate filter on some view and making it

current, the user can transfer only a subset of the records to the destination file.

5.4 Record File to Other Icons

A record file is transferred to a file server by moving or copying its icon to a file drawer icon on the

user's Desktop. By opening the file drawer icon, the user can select and move or copy the record file

icon back to his Desktop. Folders may hold record files as wells as simple documents and other

folders.

A record file is mailed by moving or copying it to an outbasket icon, just like a document. In this case,

the entire record file, including the Forms Folder and all its display forms, is transferred to the

recipients'inbaskets.

55

56

The Design of Star's Records Processing

5.5 Make Document

The Make Document command in the View window menu creates a Star document on the Desktop (or

folder full of them, in the case of a non-tabular form) corresponding to all the records in the Current

View. Such a document can now be edited and annotated, merged with other document contents,

filed, mailed, printed, etc.

6. Review and outlook

6.1 Overall Appraisal

In general~ we believe Star's RP feature has fulfilled its design goals. In the first place, RP objects and

actions co-exist with the rest of Star; there is no more necessity to switch contexts to perform data

retrieval or update functions than to draw a picture or to send electronic mail. Further, users remain

within the standard Star paradigm. Intuitions about the general nature and behavior of icons extend

naturally to record files; they behave in corresponding fashion, and the functions they share with

other Star objects are invoked with the same user actions, particularly in the use of the universal

commands. Data entry and update follows directly on the text processing model, and query

specification by filters demonstrates an extension of the \X/hat-you-see-is-what-you-get principle to a

new and powerful application.

l\fore particularly, access to Star's document production facilities offers benefits in several areas. Our

experience has been that report formatting constitutes a significant burden on computer

professionals (from DB~IS implementors to computing center personnel). All of the pO\ver of Star's

text world is made available for the definition of output from RP; what has been a tedious and error­

prone task for programmers becomes a straightforward matter for the end user to specify, with a final

product that offers unsurpassed visual quality.

The lading paradigm has proved powerful in designing applications and extensions. The progression

from a simple forms-processing model of an office application to a more sophisticated RP environment

is eased by the use of forms for record file definition and data entry. Future extensions, such as

graphic idioms (e.g. bar- and pie-charts) driven from record file data, appear natural and

straightforward.

The success of the attempt to encapsulate stylized user applications in the View is less complete. Our

experience to date indicates there is a significant conceptual hurdle in the concept of the view. One

difficulty involves terminology: naive users often equate the view with its display document. Some

users have found it difficult to understand what might be an appropriate use of the view mechanism

in their own applications. Once comprehended, it seems to be enthusiastically accepted and

effectively used, but the lack of immediacy is troublesome. Further research on sources of user

confusion and means of obviating it seems appropriate.

6.2 Particular Risks

For all the benefits of unification with the rest of Star (the text world in particular), it also entails two

major risks: one is the well-known tendency for performance to vary inversely with generality, and

the other arises from the organizational difficulties attendant on increasing the size of any project.

The Design of Star's Records Processing

The threat of diminished performance is not absolute for several reasons. Consistency in the user

interface need not preclude recognizing and taking advantage of appropriate special cases in the

implementation. The incentive to make effective optimizations is, if anything, increased in a more

general system. And a global approach to implementing a system promotes application of talents to

areas where they will produce best results. But the problem is real, and requires careful attention, in

Star in particular as well as in the world in general.

The organizational difficulties in dealing with a system as large as Star may also be ameliorated, but

they have had a real impact. The design task was painfully extended by the requirement to maintain

consistency with the rest of Star, and that consistency sometimes was bought at the price of an

"obvious" solution regarded strictly within the context ofRP. A trivial example concerns the fact that

records are "filtered" in a query; it would have been much closer to common usage to speak of

"selecting" them, but the conflicts that would have introduced with the rest of Star would have been

intolerable. In a more serious vein, support for the RP functions described here has laid an additional

(and heavy) burden on the implementors of Star's document facilities. There have been a number of

painful choices to make in: the distribution of limited resources.

6.3 Contemplated extensions

Facilities for combining data in multiple record files are an obvious extension. Several approaches

present themselves, ranging from providing sufficient power in CUSP for users to specify joins

themselves, up to providing a graphical editor for constructing expressions in some version of a

relational calculus. The database issues are reasonably well understood; selecting a user model and

finding implementation resources present more difficulties.

Another extension would make the view closer to what goes' under that name in database

terminology, a virtual relation constructed by an established query. Such a step might involve

distributing views to users, while a Database Administrator reserves access to the real record file.

Benefits accrue in security (users can see only the records and fields in their own view), more effective

data sharing, and database administration (centralized allocation and backup become feasible, for

instance). But the issue of updates in virtual data also arises. This is a problem both in the semantics

of the database (see e.g. [Bancilhon 81]), and in presenting an intelligible user model of those

semantics. The current design ofRP is intended to allow compatible growth into such a scheme.

7. Acknowledgements

Dave Smith, Derry Kabcenell, Ralph Kimball, Charles Irby, Eric Harslem, and Jim Reiley, as well as

the authors, made major contributions to the RP user interface. The implementors of Star RP were:

Fred Bulah, Dan DeSantis, Eric Harslem, Derry Kabcenell, Paul Klose, Robert Levine, Dimitri

Moursellas, Chi Nguyen, Charlene Nohara, Robert Purvy, and Jim Reiley.

57

58

The Design of Star's Records Processing

8. References

[Bancilhon 81] Bancilhon, F., and Spyratos, N., "Update Semantics of Relational Views," ACM

Transactions on Database Systems 6, 4 (December 1981), 557 - 575

[DEC / Intel/Xerox 80] Digital Equipment Corp., Intel Corp., and Xerox Corp., "The Ethernet: A

Local Area Network", Version 1.0, September 1980

[Ellis 80] Ellis, C., and Nutt, G. "Computer Science and Office Automation," Computing Surveys

12,1 (March 1980), 27-60

[Embley 80] Embley, David "A Forms-Based Nonprocedural Programming System," Dept. of

Computer Science, University of Nebraska, Lincoln, NE 68588

[Seybold 81] Seybold, Jonathon, "Xerox's 'Star'" The Seybold Report 10,16 (April 27 1981) Seybold

Publications, Inc., Box 644, Media, PA 19063

[Smith 82] Smith, Harslem, Irby and Kimball, "The Star User Interface: An Overview," AFIPS

National Computer Conference 51 (1982), AFIPS Press, Arlington, VA 22209.

[Tsichritzis 80] Tsichritzis, D., "OFS: An Integrated Form Management System," Proceedings of the

6th Conference on Very Large Data Bases, Montreal (1980),161- 166

[Yao 81] Yao, S. B. and Luo, D. "Form Operation by Example: A Language for Office Information

Processing," Proceedings of the ACM SIGMOD Conference on Mangement of Data (1981),212-223.

[Zloof 77] Zloof, :\1oshe, "Query-By-Example: A Database Language," IBM Systems Journal 16 (Fall

1977) 324-343

[Zloof 81] Zloof, Moshe, "QBE/OBE: A Language for Office and Business Automation," Computer

14,5 (May 1981) 13-22

Evaluation of Text Editors

Teresa L. Roberts
Xerox Systems Development Department

3333 Coyote Hill Road

Palo Alto, CA 94304

This paper presents a methodology for eYaluating
computer text editors from the viewpoint of their
users-from novices learning the editor to dedicated
experts who haye mastered the editor. The dimensions
which this methodology addresses are:

- Time to perfonn edit tasks by experts.
-Errors made by experts.
-Learning of basic edit tasks by novices.
-FunctionaliTY oyer all possible edit tasks.

The methodology is objective and thorough, yet easy
to use. The criterion of objectivity implies that the
evaluation scheme not be biased in favor of any particular
eaitor" s conceptual model-its way of represeming ten
and operations on the text. In addition, data is gathered
by observing people who are equally familiar with each
system. Thoroughness implies that several different aspects
of editor usage be considered. Ease-oJ-use means that the
methodology is usable by editor designers, managers of
word processing centers, or other non-psychologists who
need this kind of infonnation, but have limited time and
equipment resources.

In this paper, we explain the methodology first, then
giYe some interesting empirical results from applying it to
se\"eral editors.

THE METHODOLOGY

The methodology is based on a taxonom) of 212
editing tasks which could be performed by a text editor.
These tasks are specified in tenns of their effect on a
document, independent of any specific editor"s conceptual
model. The tasks cover:

-modifying the content of the document,
-altering the appearance of paragraphs and char-

acters and the page layout,

This is a minor modification of a paper which appeared in the

Proceedings oj {he Conference on Human Factors in" Compu~er
Svstems. Gaithersburg. :\1d.. 15-17 March 1982. Repnnted vdth
p~rrnission from the Association for Computing Machinery.

Thomas P. Moran
Xerox Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, CA 94304

-creating and modifying special kinds of text
(such as tables),

-specifying locations and text in the document in
various ways,

-programming automatic repetition of edits,
-displaying the document in various Wqys,
-printing, filing, and other miscellaneous tasks.

The functionality dimension of an editor is measured with
respect to this taxonomy. However, comparisons between
editors on the performance dimensions (time, errors, and
learning) must be done on tasks which all editors can do.
For this purpose, a set of 32 core tasks was identified.

The core tasks were chosen to be thosetasks that m/'st
editors perform and that are most common in everyday
work. Most of the core tasks are generated by crossing a
set of basic text editing operations with a set of basic text
entities. Thus, a core task consists of one of the operations
(insert, delete, replace, move, copy, transpose, split, merge)
applied to one of (or a string of) the text entities
(character, word, number, sentence, paragraph, line,
section). The core tasks also include locating a place in the
online document which corresponds to a place in a
hardcopy document (using the editor's simplest addressing
mechanism), locating a string of texT according to its
coments, displaying a continuous segment of the
document, saving and retrieving copies of the document,
printing, and creating a new document.

Time. The speed at which normal text modification
can be done is measured by observing expert users as they
perfoITIl a set of benchmark tasks from the core tasks.
There are 50 editing tasks in the benchmark, embedded in
four documents: a short inter-office memo, two two-page
reports, and one chapter from a philosophy book. The
locations and complexities of the benchmark tasks are
randomly distributed. The distribution emphasizes small
tasks because those are most common in nOITIlal work and
tasks involving boundary conditions in order to identify
special cases, such as insertion at the beginning of a
paragraph, which editors may treat awkwardly. Four

59

60

experts are tested separately on the benchmarks. They are
chosen to represent a spectrum of the user community: at
least one user must be non-technical (i.e., does not have a
programming background) and at least one must be
technJcal (i.e., is very familiar with programming). The
evaluator measures the performance in the test sessions
with a stopwatch, timing the error-free performance of the
tasks (errors are discussed belo\\'), and noting whether or
not all tasks are performed correctly. This method of
measurement is used because of the requirement that the
test be easy for anyone to run (not everyone has an
instrumented editor or a videotape setup, but anyone can
aCiu?.re :t stopwatch). That is als0 tte reas()'1 for the
limited number of subjects. The benchmark tasks typically
take 30 minutes of steady work to complete. The score
which results from this part of the test is the average error­
free time to perfonn each task (the error-free time is the
elapsed time minus time spent making and correcting
errors). The overall time score is the average score for the
four experts.

Additional information about the speed of use of a
text editor may be obtained by applying the theoretical
Keystroke-Level Model [1] to the benchmark tasks. This
model predicts editing time by counting the number of
physical and mental operations required to perform a task
and by assigning a standard time to each operation. The
operations counted include typmg. pointing Wlth the
mouse, homing on the keyboard. mentally preparing for a
group of physical operations, and waiting for system
responses. In the present methodology. the evaluator must
predict what methods a user would employ to perfonn the
benchmark tasks; then the model is used to predict the
amount of time to execute those methods. Differences
between the conditions under which the Keystroke-Level
Model was validated and the conditions here (e.g., small
typographic errors are included, not all subjects use the
same methods, etc.) lead to expected differences between
predicted performance and the results of the experiments
above. However, in addition to being a prediction of the
benchmark time, the model also serves as a theoretical
standard of expert performance.

En-ors. The error-proneness of the editor is measured
by recording the amount of time the expert users spend
making and correcting errors on the benchmark tasks.
Only those errors which take more than a few seconds to
correct are noted (which is the best that can be done with
a stopwatch). Thus, the time taken by simple
typographical errors is not counted. Actually, this does not
hurt the error time estimate too much, since the total
rmC'lInt f)f time :n thest' l(nds i)f sm8.11 err0rs is relatively
small. In addition to timing errors made and corrected
while the user is working on the benchmarks, the evaluator

also notes the tasks incorrectly performed; at the end of
the experiment the user is asked to go back and complete
those tasks correctly. The time to redo these tasks is added
to the error time. Thus, the error score consists of all this
error time as a percentage of the error-free time. The
overall error score is the average for the four expen users.

Learning. The ease of learning to perform basic text
modifications on the editor is tested by teaching four
novices (with no previous computer or word processing
experience) to perfonn the core tasks. The learning tests
are perfonned in a one-on-one situation, i.e., by
individually teaching each novice the editor. The
evaluator orally teaches the novice how to do the core
tasks in the editor, and the subject practices the tasks on
the system. The methodology specifies the order in which
to teach the tasks, but it is up to the evaluator to determine
which specific editor commands to teach. Although all the
teaching is oral, the evaluator supplies the novice with a
one-page summary sheet listing all commands, so that the
training is not hung up because of simple memory
difficulties. After a set of tasks is taught, the novice is
given a quiz, consisting of a document marked with
changes to be made. Only a sample of possible tasks
appears on each quiz. and not all tasks on the quiz have
necessarily been taught up to that poinL This allows for
the novice to figure out. if possible, how to do tasks which
haven't explicitly been taught. Referring to the summary
sheet is pennitted. but discouraged. The novice performs
all of the tasks that he or she knows how to do, after which
slhe is invited to take a short break if s/he wants it. Then
another teaching period begins. In all, there are five
training-plus-quiz cycles to teach all of the core tasks.
Learning is evaluated by scoring the number of different
tasks the subject has shown the ability to perform on the
quizze~. The le8f11irg scorF. is t.he total number of
different tasks learned divided by the amount of time
taken for the experiment, that is, the average time it takes
to learn a task. The overall learning score is the average
learning time for the four novices.

Functionality. The range of functionality available in
the editor is tested by a checklist of tasks covering the full
task taxonomy. Determining whether a task can be done
or not with a given system isn't as trivial as it seems at first
glance. Almost any task can be performed on almost any
system. given enough effort. Consequently, the editor gets
full credit for a task only if the task can be done efficiently
with the system. It gets half credit jf the task can be done
clumsily (where clumsiness has several aspects: repetitious­
ness, requiring excessive text typing, limitations in the
values of parameters to the task, interference with other
functions. or a requirement of substantial planning by the

user). The editor gets no credit for a task if either it can't
be done at all (like use of italic typefaces on a system
made for a line printer) or if doing the task requires as
much \xork as retyping all affected text (such as manually
inserting a heading on every page). The functionality
checklist is filled out by a very experienced user of the
editor, who may refer to a reference manual to ensure
accuracy. The overall functionality score is the percentage
of the total number of tasks that the editor can do. This
percentage may be broken down by subclasses of tasks to

show the strengths and weakness of the editor.

EMPIRICAL RESULTS

This methodology has been used to evaluate a diverse
set of nine text editors: TECO [5], WYLBUR [9], a WANG

word processor [10]. :\LS [3.4], EMACS [8], STAR [11].
BRAVO [7], BRA YOX [6]. and GYPSY (the last three editors
are experimental systems developed within Xerox). The
first t\\'0 of these editors are made for teletype-like

termin?J~, the rest are fo" display-ba~f.d tennina1s. The'
intended users of these editors range from devoted system
hackers to publishers and secretaries who have had linle or
no contact with computers. The results of these
evaluations may be used in several ways: (1) as a
comparison of the editors. (2) as a validation of the
evaluation methodology itself. and (3) as general
behavioral data on user performance.

Comparison of Editors. An editor's evaluation is a
multi-dimensional score-a four-tuple of numbers, one
from each performance dimension. A summary of the
overall evaluation scores for the nine editors is gjven in
Figure 1. Differences were found between the editors on
all the evaluation dimensions (although only large
differences were statistically significant, because of the
large indi\·;idual differences between the users tested). No
editor was superior on all dimensions, indicating that
tradeoffs must be made in deciding which editor is most
appropriate for a given application.

Evaluation Dimensions

Time Errors Lea rning Fu nctionality
Editor M± CV M± CV M±CV

(sec/task) (ClO Time) (min/task) (°10 tasks)

TECO 49 ± .17 15'1'0.± .70 19.5 ± .29 39%
WYLBUR 42 ± .15 18'1'0± .85 8.2 ± .24 42%
EMACS 37 ± .15 6% ± 1.2 6.6 ± .22 49%
NLS 29 ± .15 22'1'0± .71 7.7 ± .26 77%
BRAVOX 29 ± .2~ 8% ± 1.0 5.A. ± .De 70%
WANG 26 ± .21 11'1'0± 1.1 6.2 ± .45 50%
BRAVO 26 ± .32 8'1'0± .75 7.3 ± .14 59%
STAR 21 ± .16 19'1'0± .51 6.2 ± .42 62%
GYPSY 19±.11 4% ± 2.1 4.3 ± .26 37%

M(M) M(CV) 31 .19 12% .99 7.9 .26 54%
CV(M) .31 .49 .53 .25

Figure 1. Overall evaluation scores for nine text-editors.
The Time score is the average error-free time per benchmark task. The Error score is the average

time. as a percentage of the error-free. that time experts spend making and correcting errors. The
Learning score is the average time to learn a core task. The Functionality score is the percentage of

the tasks in the task taxonomy that can be accomplished with the editor. The Coefficient of Variation

(CV) = Stardard Deviation .I fv7ear is a normalized measure of variability. The CV's on the individual

scores indicate the amount of between-user variability_ The /v1(CV)'s give the mean between-user

variability on each dimension. and the CI/(fvl)'s give the mean between-editor variance on each

dimension. The evaluations for TECO. NLS. WANG. and WYLBUR are from Roberts [2].

61

62

eo
I!

I! ~ o. Non·Technical Expert 1
50 0 $ • Technical Expert

.. 0 .. ~~ • Prediction

~~

.. , .. I!
.a 0

I! ..•.. 0 0

Expert
$

Error·free ~~ C8
0

Performance
Time 3:l I!

8
iHC:I1Dk1

0
~~ I! 0 0 e E!I:J

20 ~~
e

~
ce .:.(H !
.~~ J::

~~ e

'0
TECO WYU!UR EMACS NLS BRAVOX WANG BRAVO STAR GYPSY

EDITOR

Figure 2. Time scores for individual expert users.

.a 0

0

0 0 I O. Non· Technical Expert I
I"

3:l
•• Technical Expert

e
0

0

Expert 20
Error Time 0 0
(percent 01 • 0 I! Error·F_

~.".)

I
0

$
Q

10 I 0
.~.

I!

I! e 0

0
NlS STAR WYLBUR TECO WANG BRAVOX BRAVO EM~ .GYPSY

EDITOR

Figu re 3. Error scores for individual expert users.

o

HI

Leeming 0
Time

("",,/_,

'0 B 0 0
o

0
··0'· ··8·· co .. ~. 0

.... -.

0
0

0 0

8

o ~------------------------------~ TECO WYLeUR NLS BRAVO EMACS WANG STAR BRAVOX GYPSY

EDITOR

Figure 4. Learning scores for individual novice

learners.

Time. The summary time data in Figure 1 is
expanded in Figure 2 to show individual users' scores.
These results show that TECO. WYLBUR, and EMACS are
the slowest editors and that GYPSY and STAR are the
fastest. Most of the display-based systems were used at
about twice the speed of the non-display systems.

The times predicted by the Keystroke-Level Model,
also shown in Figure 2, can be seen to be about 70% of the
average error-free experimental time. But the data for
individual users show that for most editors, one user comes
very close to the "standard expert" performance that the
Keystroke-Level Model predicts.

Errors. Individual users' error scores are shown in
Figure 3. This data finds a factor of five difference
between the best and the worst editors, but eyen so these
differences are small compared to the differences between
users. ~o conclusions about the error-proneness of editors
can be drawn .

l earning PH' 'Jwmll learning scorf'S are sl)own in
Figure 1, and the scores for individual novices are shown
in Figure 4. Large differences were found in Lhe
learn ability of the different editors. TEco turned out to be
an outlier, taking over t\l,·ice as long to learn as the next
editor (WYLBCR). The rest of the editors lie along a
smooth progression which covers another factor of two in
learning rate. with GYPSY being four times faster to learn
than TECO.

Learning/Speed Tradeoff. The conventional wisdom
is that there is a tradeoff between the speed of learning
and the speed· of expert use of a system. Combining the
ieaming results with the time results, we see exactly the
opposite. The data from this study shows a high positive
correlation (R =.79) between the time and learning scores.
The major difference was between the set of display
editors and the set of non-display editors. Display editors
are better for both expert time and novice learning.

Funclionaliry. The functionality results showed that
most of the editors could perform roughly half of the tasks
in the task taxonomy. The reason for this was that, in
general, each system had its areas of strength and
weakness. In order to show this, the data are broken down
by task categories in Figure 5. EMACS shows up well in
programming capability, while NLS and BRAVOX shine in
formatting and layout. Because the numbers of tasks in
the taxonomy was more weighted toward text layout than
editor programming, the document-oriented editors
generally showed up as being somewhat better than
E~ACS. But ~LS, which tries to cover all needs, was the
clear winner in overall functionality.

Evaluation of the Methodology. The results above
show that diverse editors can indeed be evaluated and
compared. As a whole. the evaluation methodology seems
to successfully pro\'ide an objective, multi-dimensional
picture of text editors. This methodology is also quite
practical. For an experienced evaluator, about one week
oftime i~ required to e\'aluate a new editor: ilius it is quite
accessible to a system designer or a potential buyer.

There are still many areas of editor use which are not
covered by the methodology, for instance the needs of
occasional users. In addition, use of the methodology has
pointed out areas, such as error-proneness, where more
reliable measures are needed to differentiate specific
editors. Any further work will have to take into account
the effect of large differences among the users.

Behavioral Results. The data gathered from these
evaluations are also interesting for what they tell us about
user behavior. It provides a pool of data on overall levels
of user performance. We see from this data that typical
core editing tasks require on the order of 30 seconds for
experts to perform. and \\e see iliat a period of about two
hours of one-on-one training is enough to get users started
v,'ith the core tasks in most editors. Such data should be of
interest to researchers in office productivity, e.g., to
measure the cost-effectiveness of word processing.

Task # of

Our data also pro\ides some insight into individual
differences in performance among users:

(1) By far the greatest individual differences are
found in error rate (ranging from 0% to 39%), which
reflects a wide variation in the style of using text editors.

(2) Comparing speed of expert; error-free use with
error rate shows that it is ilie slower users who make more
errors. So while there may be a speed/error tradeoff that
an individual user can make, we don't see such a tradeoff
bet',veen people.

(3) There is only moderate variation among experts
in speed of editing-about a factor of 1.5 to 2 between the
fastest and slowest user within each editor.

(4) A somewhat surprising result is that iliere is not
much more variation among novice learners ilian among
experts, i.e., about the same range of differences between
the fastest and slowest learners.

Conclusion. This meThodology has proven itself to be
an effective tool for the empirical evaluation of text
editors. helping us understand how people adapt to them
as well as providing us with much-needed feedback on
how they actually perform.

Editor All
Editors

Category Tasks NLS BRAVOX STAR BRAVO EMACS WANG WYLBUR TECO GYPSY M±CV

TOTAL 212 77 70 62 59 49 48 42 39 37 54±.25

Modification
Content 66 94 89 93 90 74 87 63 88 80 84±.13
Text Layout 19 89 71 66 71 37 37 26 3 26 47±.56
Page Layout 25 74 62 56 40 2 34 6 4 4 31±.85
Characters 21 43 76 57 62 14 38 21 0 17 36±.66
SpeCial Purpose 16 53 59 50 22 0 34 16 3 0 26±.84

AddreSSing 22 68 36 30 30 61 16 34 25 18 35±.48
Control 23 56 37 24 20 89 24 61 48 9 41±.58
Display 8 94 94 63 69 81 19 62 38 50 63±.42
Misc. 12 100 88 100 71 46 71 71 25 42 68±.38

Figu re 5. Functionality sub-scores for eight text-editors.
Each functionality sub·score is given as a percentage of the total number of tasks in its task
category (the italic numbers in the" # of Tasks" column), The numbers in the "All Editors"
column summarize how well the task categories are- handled by the whole collection of editors.

63

64

Acknowledgement. We would like to thank Betsey
Summers for organizing and running many of these
evaluation studies and for helping us analyze the data.

REFERENCES

[1] Card, S. K .. Moran. T. P., and Newell A. The
Keystroke-Level Model for user performance time
with interactive systems. Communications of the
ACAf. 1980, 23. 396-410.

[2] Roberts, T. L. Evaluation of Computer Tex! Editors.
Ph.D. dissenation. Depanment of Computer Science,
Stanford University, 1980. Available as Repon AAD
80-11699 from University Microfilms, Ann Arbor,
Michigan.

Editor Documentation References

[3] Augmentation Re~earch Center. NLS-8 Command
Summary. Menlo Park, California: Stanford Research
Institute, May 1975.

[4] Augmentation Research Center. N LS-8 Glossary.
Menlo Park, California: Stanford Research Institute,
July 1975.

[5] Bolt, Beranek, and ~ewman, Inc. TENEX Text
EdiTor and CorrecTor (Manual DECI0-NGZEB-D).
Cambridge, Massachusetts: Author, 1973.

[6] Garcia, Karla. Xerox Documenr SYSTem Reference
Afanual. Palo Alto, California: Xerox Office Products
Division, 1980.

[7] Palo Alto Research Center. Alto Use"s Handbook.
Palo Alto. California: Xerox PARC, September 1979.

[8] Stnllypan. R. \1. f\f).C~ M'2nual for ITS Users
MIT, AI Lab Memo 554, 1980.

[9] Stanford Center for Information Processing.
Wylbur/370 The Slanford Timesharing System
Reference Manual. 3rd ed Stanford, California:
Stanford University, ~ovember 1975.

[10] W'ang Laboratories, Inc. Wang Word Processor
OperalOr's Guide. 3rd release. Lowell, Mass., 1978.

[11] Xerox Corporation. 8010 STar InformaTion SYSTem
Reference Guide. Dallas. Texas, 1981.

The Clearingho.use: A Decentralized Agent for Locating
Named Objects in a Distributed Environment

by Derek C. Oppen and Yogen K. Dalal

OPD-T8103 October, 1981

Abstract: We consider the problem of naming and locating objects in a distributed

environment, and describe the clearinghouse-a decentralized agent for supporting network­

visible objects. Binding is an important architectural component of a distributed system, and

the clearinghouse serves the role of "glue" that binds together the many loosely-coupled~

network-visible objects.

CR Categories: 3.74, 3.81.

Key wo rds and ph rases: Clearinghouse, names, locations, binding, network-visible objects,

internetwork, distributed database.

@Copyright 1981 by Xerox Corporation.

XEROX
OFFICE PRODUCTS DIVISION
SYSTEMS DEVELOPMENT DEPARTMENT
3333 Coyote Hill Road / Palo Alto / California 94304

65

66

THE CLEARIl'GHODSE

Preface

Vole consider the problem of naming and locating objects in a distributed environment, and describe
the clearinghouse-a decentralized agent for supporting the naming and locating of distributed
objects.

Objects may be individuals, such as individual machines, workstations, file sen'ers, or people. A
typical use of the clearinghouse is to locale individuals~ The clearinghouse provides two ways for
locating individual objects: by name and by genre. To provide the first, the clearinghouse maintains
a database mapping names into locations, and supports at least the following primitive operations
using or modifying this database: (1) locating named objects, (2) creating, deleting and changing the
locations of objects, (3) creating, deleting and changing the names of objects. and (4) passing the
name of an object from one user to another so that others can access the object To provide the
second, the clearinghouse maintains a database mapping generic names (such as "Printers") into
objects in the genre.

Objects may also be groups of other objects, .as in distribution lists or access control lists. The
clearinghouse maintains a database mapping names of groups into the sets of names of objects
constituting each group. and provides primitives for (1) enumerating names in groups, (2) testing
membership in groups, (3) creating. deleting and changing the names of groups, (4) adding and
deleting members from groups. and (5) passing the name of a group from one user to another so
that others can access L.~e group. The clearinghouse also maintains a database mapping generic
names (such as "distribution lists") into groups in the genre.

The objects "known" to the clearinghouse are therefore of many different types, and include
workstations, servers (file servers, print servers, mail servers; clearinghouse servers), human users,
and groups of these. All objects known to the clearinghouse are named using the same naming
convention. The clearinghouse fields requests for information about objects in a uniform fashion.
regardless of their type.

The mappings supponed by the clearinghouse are richer than those described above. A name is
bound to a set of properTies of various types. 'Ne can, for instance, associate with the name of a user
the location of his local workstation (so L.1.at others can send messages to his terminal, say). his local
file server (so that he can store and retrieve files), his local mail server (so that he can receive mail).
his local printer (so that he can print files), and non-location infonnation such as password and
comments. The clearinghouse also supports aliases of names.

The clearinghouse (and its associated database) is decentralized and replicated. That is, instead of
one global clearinghouse server. there are many local clearinghouse servers scattered throughout the
internetwork (perhaps. but not necessarily, one per local network), each storing a copy of a pO[T"Jon
of the global database. The totality of services supplied by these clearinghouse servers we call "the
clearinghouse. II Decentralization and replication increase efficiency (it is usually faster to access a
clearinghouse server that is physically nearby), security (each organization can control access to its
clearinghouse servers), and reliability (if one clearinghouse server is down, perhaps another can
respond to a request).

Updates to the various copies of a mapping may occur asynchronously and be interleaved with
requests for bindings of names to properties; updates to the various copies are not treated as
indivisible transactions. Any resulting inconsistency between the various copies is only transient: the
clearinghouse automatically arbitrates between conflicting updates to restore consistency.

67

68

THE CLEARI~GHOUSE

A client of the clearinghouse may refer by name to, and query the clearinghouse about any named
object in the distributed environment (subject to access control) regardless of the location of the
object, the location of the client or the present distributed configuration of the clearinghouse. No
assumptions are made about the physical proximity of clients of the clearinghouse to the objects
whose names they present to the clearinghouse. A request to the clearinghouse to bind a name to its
set of properties may originate anywhere in the internetwork and be directed to any clearinghouse
server. If that clearinghouse server does not have the binding in its local database, it communicates
with other clearinghouse servers to get the infonnation. A client of the clearinghouse need not
concern itself with the question of which clearinghouse server actually contains the binding-the
clearinghouse automatically finds the mapping if it exists.

The clearinghouse described in this paper is the binding agent in Xerox Network Systems (including
the Xerox 8010 Star information system), and is one of the key components of the underlying
distribut~d systems architecture.

In Sections 1 and 2 we introduce the subject of this paper and many of the concepts. In Sections 3,
4, and 5 we discuss names, present a unifonn naming convention for objects in an internetwork, and
describe one particular application of this convention: naming users. In Section 6 we describe the
mappings stored by the clearinghouse. In Section 7 we describe the clearinghouse from the client's
perspective, and discuss various binding strategies (when the client should bind, or have the
clearinghouse bind. a name). In Section 8 we describe the client-clearinghouse interface: what
operations are provided to access and manipulate the data stored in the clearinghouse. In Section 9
we discuss the internal structure of the clearinghouse. In Section 10 we describe the algorithm used
to find a mapping. the communication betv.:een the various clearinghouse servers in response to
client ;-equests for database lookups. In Section 11 we describe the distributed update algorithm
used to update the clearinghouse database and maintain its consistency. In Section 12 we discuss
clearinghouse security. In Section 13 we discuss the decentralized administration of the
clearinghouse. In Appendix 1 we discuss in some detail the question of address validation. In
Appendix 2 we discuss an alternative internal structure for the clearinghouse.

THE CLEARI\'OHOt.:'SE

1. Introduction

Let us introduce the subject matter of this paper by considering the role of the information
operator, the "White Pages" and the "Yellow Pages" in the telephone system.

Consider how we telephone a mend. There are two steps we take. First we find the person's
telephone number, and then we dial the number. The fact that we consider these to be "steps"
rather than "problems" is eloquent testimony to the success of the telephone system. But how do
the two steps compare? The second-making the 'connection once we have the telephone
number-is certainly the more mechanical and more predictable, from the use{s point of view. and
the more automated, from the telephone system's point of view. The first step-finding someone's
telephone number given his or her name-is less automatic. less straightforward, and less reliable. If
we already know the number or can ask somebody for it, then this is a trivial step. Otherwise, we
have to use the telephone system's information system, which we call the telephone clearinghouse. If
the person lives locally, we telephone information ("411") or look up the telephone number in the
\Vhite Pages. (The White Pages map names: optionally associated with addresses, into telephone
numbers.) If the person's telephone is non-locaL we telephone information for the appropriate city
("555-1212"). Once we have accessed the appropriate information operator, we begin our dialogue
in search of the telephone number. ¥le present the last name to the operator. If the name is
"Oppen" or "DalaL"the operator may immediately give us the telephone number. If the name is
"Smith." he or she probably responds, "Can you give me a first name or address?" If \\"e know
them. we sUPPlY them. If we are lucky, we get the telephone number. Otherwise, we are given a set
of telephone numbers. all satisfying the data given the telephone clearinghouse. In any case, \x,'e
always have to treat whatever information \\'e get from the telephone clearinghouse with a certain
amount of suspicion, and treat it as a "hint." \Ve have to accept the possibility that we have been
given an incorrect number. perhaps because the person we wish to call has just moved. We are
conditioned to this and automatically begin calls with "Is this ... 7" to validate the hint.

In other words, although making the connection once we have the correct telephone number offers
few surprises. finding the telephone number may be a time-consuming and frustrating task. The
electrical and mechanical aspects of the telephone system have become so sophisticated that we can
easily telephone almost anyv.there in the world. The telephone clearinghouse remains unpredictable,
and may require considerable interaction between us, as clients, and the information operator. As a
result we all maintain our ow'n personal database of telephone numbers (generally a combination of
memory, little black books, and pieces of scrap paper) and rely on the telephone system"s database
only when necessary.

The telephone clearinghouse provides another service: the Yellow Pages. The Yellow Pages map
generic names of services (such as "Automobile Dealers") into the names, addresses and telephone
numbers of providers of t.~ese services. The properties of the information given by the Yellow Pages
are the same as the properties described above for the White Pages.

In brief, there are three ways for objects in the telephone system to be found: by name, by number,
or by subject. The telephone system prefers to use numbers, but its clients prefer names and generic
names. The telephone clearinghouse provides a means fOi mapping between these various ways of
referring to objects in the telephone world.

Let us move from the telephone system to distributed systems and, in particular, to interconnections
of local networks of computers. An example might be the distributed "office of the future"
consisting of several thousand workstations, assoned file servers, mail servers, communications
seTYers, print servers, and so on. spread over several interconnected networks. Sitting at our local
tenninal or workstation, \l;'e ,.,rant to send a file to our local printer or to someone else's workstation.
Or we want to mail a message to someone elsewhere in the internetwork. The two steps \ve have to

69

70

THE CLEARI:-':GHOCSE

take remain the same: finding out where the printer or workstation or mail server is (that is. what
its network address is), and then using this netvwrk address to access it

As with the telephone system, the second step is fast becoming the step to be taken for granted. The
design and implementation of internetworks of computers have become increasingly sophisticated,
and their perfonnance increasingly reliable. Although the content of this paper does not depend on
any particular networking configuration, we will use as an example throughout this paper the
Ethernet and its associated Pup-based or Xerox Network Systems-based internell·vork routing
machinery ([~1etca1fe and Boggs 1976, Boggs el al. 1980, Ethernet 1980, Dalal and Printis 1981,
Dalal 1981]). The internetwork knows how to use a network address to route a packet to the
appropriate machine in the internetwork. So the second step-accessing an object once we know its
network address-has well-known solutions. It is the first step-finding the location of a distributed
object given its name-that we consider here.

An obvious question to ask at this point is: do we need names at all? Why not just refer to an
object by its location? Why not just directly use the network address of our local file server or mail
server or printer? The reasons are much like those for using names in the telephone system or iII a
file system. The first is that locations are unappealingly unintuitive; we do not want to refer to our
local printer by its network address 5# 346#6745 any more than we want to refer to a colleague as
415-494-4763 or to a file by its disk address. The second is that distributed objects change locations
much more frequently than they change names. \Ve want a level of indirection between us and the
object \J,'e wish to access, and that level of indirection is given by a name. (See also [Shoch 1978]
and [Abraham and Dalal 1980].)

\\'hen a network object is referred to by name. the name must be bound to the address of t.he
object. The binding technique used greatly influences the ability of the system to react to changes in
the environment. If client software binds names to addresses statically (for instance, if software
supponing printing has the addresses of the print servers stored in it), the softv.,'are must be updated
if the environl'ner.t changes (for instance, if new print servers are added or old servers are moved or
removed). If client software binds names to addresses early (at the moment of system initialization)
or late (at the moment the software wants to access the service), the system reacts much more
gracefully to changes in L~e environ ... '11ent (L~ey are not necessarily even noticed by the client). There
are several possible approaches to binding (and we will discuss them later) but, regardless of me
approach, clients need a clearinghouse, like the telephone clearinghouse, which maintains mappings
from names into addresses and trom which clients can request bindings for names.

The problems we address in this paper are therefore the related problems of how to name objects in
a distributed computer environment, how to find objects given their names, and how to find objects
given their generic names. In other words, how to create an environment similar to the telephone
system's VI'ith its notions of names, telephone numbers, White Pages and Yellow Pages.

Vl e also consider the administration, rather than just the use, of the internetwork and its
clearinghouse. A configuration of several thousand users and their associated workstations, printers,
file servers, mail servers, etc., requires considerable management. Administrative tasks include
bringing up new networks; adding, changing and deleting services (such as mail services, file
services. and even clearinghouse services); adding and deleting users; maintaining users' passwords,
the addresses of their chosen local printer, mail and file servers, and so on; and maintaining access
lists and other security features of the network. Since our clearinghouse is the main repository of
information on users, workstations, and the other components of the internetwork, the clearinghouse
provides facilities to aid system administrators in the administration of the distributed environment
in which it resides. In addition, the clearinghouse "scales upwards" gracefully, and takes in its stride
the addition of new networks, the addition of new clearinghouse servers, the interconnection of
previously-disjoint networks, and so on.

THE CLEARI:SGHOl.:SE

Our clearinghouse naturally differs from the telephone clearinghouse, not least because of
differences in the domains of discourse. The clients of the telephone clearinghouse are people, and
the objects known to the telephone clearinghouse are also people (or rather their telephones). The
telephone clearinghouse relies on human judgment and human interaction. The clients of our
clearinghouse are machines, not 'people, and so all aspects of client-clearinghouse interaction must
be fully automated and predictable.

We faced many questions in designing our clearinghous~; the following are a few of them:

Naming Conlention. How shall \\'e name the objects known to the clearinghouse? Should names be
hierarchical (as in the Dewey Decimal System), or non-hierarchical (as in the social security
numbering system)? Should names be unambiguous like social security numbers (no tv.'o people
have the same social security number), or ambiguous like surnames (many people can have the
same surname)? More generally, what sort of mapping should hold between names and the objects
being named: should the mapping be one-to-one (each object has exactly one name and no two
objects have the same name: names are unique and unambiguous), many-to-one (no two objects
have the same name, but each object can have more than one name; names are non-unique but
unambiguous), one-to-many (each object has exactly one name, but many objects may have the
same name: names are unique but ambiguous). or many-to-many (names are non-unique and
ambiguous)?

Design of the Clearinghouse. How shall we configure the clearinghouse? Is there just one
clearinghouse with one monolithic database? Or is there one monolithic database decentralized
among many local clearinghouses? If the latter, is the database strictly partitioned among local
clearinghouses or can their databases overlap or be replicated? If the latter, are the different copies
of the database always consistent? These options all assume that there is just one database. however
decentralized. An alternative is that the database is relativized: there are many mappings from
names, not just one. This leads to the question of the correctness of information given our by the
clearinghouse. If the clearinghouse maps a name into a network address. is that address to be
treated as correct or as merely a "hint"?

\lanagement of the Clearinghouse. How is the clearinghouse managed? Are names anocated by the
clearinghouse? If so, is there a central naming authority v.-hich allocates names for the whole
internetwork, or is the naming authority decentralized? If not, who allocates a name: the object
being named. anyone else \\-ho wants the object to be named, or perhaps both? Does the
clearinghouse suppon nicknames. abbreviations and aliases? Who has updating authority over the
database: the clearinghouse, its clients, or both?

Access Control. \Vho may obtain information from the clearinghouse? If the internetwork spans
numerous companies, may any client obtain information from any clearinghouse?

In the preface we hinted at some of the design decisions we took, but before describing the options
in more detail and our reasons for choosing the ones we did, let us look further at a familiar
example of a clearinghouse-that maintained by the telephone system.

2. The Telephone Clearinghouse

The telephone system provides an excellent introduction to the problem of designing a
clearinghouse for computer networks. We therefore consider the telephone model in some detail,
emphasizing design decisions we refer to later in describing the design of our internetwork
clearinghouse. Let us call the whole system provided by the telephone companies for mapping
names into telephone numbers the telephone clearinghouse, and consider some of its more obvious

71

72

THE CLEARI~GHOCSE

properties in terms of the four basic operations specified in the preface. We consider only the \Vhite
Pages component of the telephone clearinghouse; the Yellow Pages are similar.

2.1. Locating Named Objects

In the telephone system, mapping names into telephone numbers is relatively straightforward., at
least from the user's point of view. If the person's telephone is local, we look up the telephone
number in the telephone book or ask the information operator (by dialing 411) for the number. If
the person's telephone is non-local, we telephone the information operator for the appropriate city
to find the telephone number.

The database used by the telephone clearinghouse-the "telephone book" (whether printed or
online }-is highly decentralized. The decentralization is based on physical locality: each telephone
book covers a specific part of the country. It is up to the client of the telephone clearinghouse to
know in which telephone book to look or to have the information operator look. (The alternative is
exhaustive search.)

This decentralization is partly motivated by size; there are just too many telephones for there to be
a common database. It is also motivated b:y the fact that people's names are ambiguous. r,.,1any
peop1e may share the same name, and corresponding to one name may be many telephone numbers
(even ignoring the case of one person having more than one telephone)~ Decentralizing the
telephone clearing..l)ouse is one way to provide additional information to disambiguate a reference to
a person-there may be many John Smiths in the country but hopefully not all are living in the
sa.rne city as the John Smith whose telephone number I want. However, even by partitioning the
database by city and by using other information such as street address, the telephone clearinghouse
still may be confronted \-vith a name for which it has several telephone numbers. When this happens
it beco!11es the client's responsibility to disambiguate the reference, perhaps by trying each telephone
number until he find~ the one he wants, The essential point to nNe, however, is that the telephone
clearinghouse cannot assume that names are unambiguous, and leaves it to the client to resolve
ambiguities.

2.2. Creating. Deleting and Changing Locations

Locations may change beCause a person moves (his name remains the same but the mapping from
his name to his telephone number has changed), adds telephone service or cancels telephone service.

Responsibility for initiating updates rests with the users of the telephone system. However, the
actual updating of the database is done by the telephone company. Users of L1e telephone
clearinghouse have read-only access to the clearinghouse's database. Further, requests for updates
may be made only by the provider of the resource (the person who pays for the telephone whose
location is being updated) and not by other users of the telephone clearinghouse.

Allocation of telephone numbers is the responsibility of the telephone company; the telephone
company provides a naming authority to allocate telephone numbers. Users may request a particular
number but the telephone company has the final say. There are two reasons for this. First, the
telephone company has to guarantee the unambiguity of the number. Second, the telephone number
has to conform to the addressing and routing conventions of the telephone system.

The updating process deserves scrutiny because it helps determine the accuracy of the information
given out by the telephone clearinghouse. The infonnation is not necessarily "correct." Offline
telephone directories ("telephone books") are updated only periodically and so do not contain
updates more recent than their date of publication. Even the online telephone directory used by
information operators may give information which turns out to be erroneous when used. One reason
for this is that asking the operator for a telephone number and using that telephone number to

THE CLEARI~GHOlJSE

make a call are not treated by the telephone system as an indivisible operation: the directory may
be updated between the two events. Another reason is that physically changing a telephone number
and updating the database are asynchronous operations. The telephone clearinghouse system is
highly parallel with considerable asynchrony.

The partitioning of the telephone clearinghouse's database is not strict. The database is a replicated
database. Copies of a directory may appear in different versions~ and telephone directories for
different cities may overlap in the telephone numbers. they cover. Since the updating process is
asynchronous, the database used by the telephone company may not be internally consistent.

The effect of this-information given out by the telephone clearinghouse does not necessarily reflect
all existing updates-is that the information provided by the telephone clearinghouse can only be
used as a hint. The user must accept the possibility that he is dialing a wrong number, and validate
the hint by checking in some way that he has reached the right person. However, the telephone
company does provide some mechanisms for helping a user who is relying on an out-of-date
directory, memory, or little black book. For instance, if a person moves to another city, his old
telephone number is not reassigned to another user for some time, and during that period caners of
his old number are either referred to his new number, or are less infonnatively told that they have
reached an out-of-service number.

2.3. Creating. Deleting and Changing Names

Generally, names are added and deleted when service is added or cancelled; names are rarely
changed.

\\'hat we said above about updating locations generally applies as well to updating names, with one
exception. The choice of name appearing in the telephone clearinghouse database rests with the
holder of the telephone being named, and only the holder can request an update. (That is, you are
permitted to choose under ~rhat name you will appear in the telephone directory, even if the name
is ambiguous.) This raises an interesting issue, that of nicknames, abbreviations and aliases. The
above does not mean that 1, as a user of the telephone system, cannot choose my own name for you
(a njckllame). but only that the telephone company \\'ill not maintain the mapping of my name for
you into your telephone number-it will only maintain the mapping of your name for yourself into
your telephone number. I may have my own "little black book" conUlining my own relativized
\'ersion of the telephone clearinghouse, but the telephone company does not try to maintain its
accuracy. Similarly, the telephone clearinghouse does not necessarily respond to abbreyiations of
names. And, finally. the clearinghouse will handle aliases (names I give myself other than my "real"
name) only if they are entered in its database. That is, the telephone c1earinghouse,allows names to
be non-unique: a person may have more than one name.

V./e can summarize some of the differences between telephone numbers (addresses), names,
nicknames, aliases and abbreviations-whether they are ambiguous, whether they are chosen by the
telephone system or by the owner of the telephone or by others, and whether they are maintained
through changes by the telephone system.

. .o\.mbiguous? Chosen by Maintained by System?

Address No System Yes

Name Yes Owner Yes

Alias Yes Owner Yes

:t\ickname Yes Others No

Ab breyiation Yes Anyone No

73

74

THE CLEARI\'GHO"CSE

2.4. Passing Names and Locations

Giving someone else a telephone number (fully expanded to include country and area code) cannot
raise problems because telephone numbers are unambiguous. (Of course, the telephone number may
be incorrect by the time that person uses it.)

Giving a name to someone else is trickier since names are ambiguous. For instance, because the
clearinghouse database is decentralized, giving a name to an infonnation operator in one part of the
country may elicit a different response from giving it toone in another pan of the country. In the
telephone clearinghouse, names are context-dependent You can ensure that the person to whom
you are giving a name will get exactly the same response only if you specify the appropriate
clearinghouse as well.

3. Naming Distributed Objects

\Vith this background, we return to the problem of designing a distributed system clearinghouse. A
central question in designing such a clearinghouse is how to name the objects known to the
clearinghouse.

3.1. Naming Conlentions

A naming convention describes how diel1ls of the naming convention refer to the objects named
using the convention. The set of clients may overlap with the set of named objects; for instance,
people are both clients of, and objects named using the common firstname-middlename-surname
naming convention.

Our basic model for describing nanling conventions is a directed graph wit.~ vertices and edges.
Venices and edges may be labelled. If vertex u has edge labelled i leading from it, then uri} denotes
the vertex at the end of the edge. (For this to be well-defined, edges leading from any vertex must
be unambiguously labelled.) If u{iJ[i) ... [ikl = v, then i1)i? ...)ik denotes the (possibly non-unique)
path from u to v.

\Ve assume that each named object and each client is represented by exactly one vertex in the
graph. With these assumptions, we need not distinguish in the rest of this section between vertices
in the name graph, named objects, and clients of the naming system, and our problem becomes:
what is the name of one vertex (a named object) relative to another (a client)? There are two
fundamental naming conventions, each of which we now describe.

3.2. Absolute Naming

Under the absolute naming convention, the graph consists of labelled veruces but no edges. Each
vertex has a unique and unambiguous label. The distinguished name of a vertex is its label. Each
vertex therefore has an unambiguous distinguished name; the name is the same regardless of the
client.

(An equivalent model is the following. The graph has only unlabelled vertices. There is a
distinguished vertex called the directory or root vertex. There is exactly one edge from the directory
vertex to each other vertex in the graph; each such edge is uniquely and unambiguously labelled.
There are no other edges in the graph. The name of a vertex is the label of the edge leading from
the directory vertex to this vertex.)

This is a somewhat precise if rather pedantic definition of what is usually meant by "choosing
names from a flat n2u~e space." One obvious example of names using absolute naming conventions

THE CLEARI~GHOlJSE

are Social Security numbers. In the Pilot environment ([Redell et al. 1980]), it is possible for each
object to have a unique and unambiguous name consisting of a unique and unambiguous processor
number (hardwired into the processor at the factory) concatenated to the time of day; this name is
called the object's universal idenl{fier ([Dalal and Printis 1981]).

3.3. Relative Naming

Under the relative naming convention, the graph has unlabelled venices but labelled edges. There is
either zero or one uniquely-labelled edge from any vertex to any other. If there is an edge labelled i
from u to v, then the distinguished name of v relative to u is i. Here, u is the client and v the named
object. Note that names are ambiguous-a relative name is unambiguous only if qualified by some
source venex, the client venex.

Without additional disambiguating information, people's names are relative. One person's use of the
name "John Smith" may well differ from another's.

3.4. Comparison of the Absolute and Relative Naming Conventions

There are advantages and disadvantages to each naming convention corresponding to the various
tasks of the clearinghouse mentioned in the Preface.

Locating Named Objects. One of the main roles of the clearinghouse is to maintain the mapping
LookUp from names into objects. If i is the name of an object, then LookUp(i) is t..lJ.at object. (The
actual form of the righthand side of the mapping \".'ill be described in Section 6.) Under the relative
naming convention, Look Up is relative to each client venex. That is, if the name of an object l'

relative to u is i, then LookUpjiJ is 1'. Under the absolute naming convention, Lookl1p is relath'e to
the whole graph. That is, if the name of an object v is i, then LookUp(i) is v; we do not have to
qualify LookUp with the source vertex. Thus, the database required by the absolute convention may
be smaller (since the number of names is exactly the number of vertices) than under L1e relative
convention (where the number of names is on the order of the square of the number of vertices).
However, since the relative convention does not require that every vertex be able to directly name
every oLl"ter venex (there need not be an edge from every venex to every other), the domain of each
LookUp under the relative convention \\'il1 typically be much smaller than the domain for LookUp
under the absolute convention.

The relative convention encourages decentralization, since the mapping from names to objects is
relative to each vertex. The absolute convention encourages centralization, since there is only one
mapping for the v,;hole system. Thus the relative convention allows more efficient implementation of
the LookUp function. Of course, one can use efficient methods such as binary search or hashing
with either convention, but these make use only of syntactic information in names, not semantic
infonnarion.

Changing Locations or Names. The main considerations here are the size and degree of
centralization of the databases. Consider, for instance, the allocation of names. The absolute naming
convention requires a centralized naming authority, allocating names for the whole graph. The
relative naming convention permits decentralized naming authorities, one for each vertex. The local
data base handled by the naming authority under the relative convention will typically be much
smaller than the global data base handled by the naming authority under the absolute convention.

Passing Names and Locations. A major advantage of the absolute naming convention is that there is
a common v.ray for clients to refer to named objects. It is possible for any client to hand any other
client the name of any object in Ll}e environment and be guaranteed that the name will mean the
same thing to the second client (that is, refer to the same object). This is not the case with the
relative addressing convention; if u and v are vertices, uri} need not equal 1{i}. Under the relative

75

76

THE CLEARI;\GHOUSE

naming convention, the first client must give the second client the name of the object relative to the
second client. In practice, this means that the first client has to understand how the second client
names objects. This suggests excessive decentralization; it requires too much coordination when
objects are to be shared or passed.

3.5. Hierarchical Naming

Neither the absolute nor the relative naming convention is obviously superior to the other; both
have advantages and disadvantages. One might imagine combining the two notions, but we can do
even better by adding another layer of structure to the basic naming model.

Vle partition the graph into subgraphs, consisting of subsets of the set of vertices. We assume that
each vertex is in exactly one subgraph. The distinguished name of a vertex is
vertexname@subgraphname where subgraphname is the name of its containing sub graph and
vertexname is the name of the vertex in that subgraph. This definition is only well-defined if names
are unambiguous within a subgraph; the absolute naming convention must be used within a
subgraph. That is, within any subgraph, no two vertices can have the same name. Two different
vertices may have names A@B and A@C however: names need be unambiguous only 'within a
subgraph

The mapping LookUp implemented by the clearinghouse becomes a mapping from Vertexnames x
Subgraphnames into objects. If B is the name of a subgraph and A is the name of vertex u within
that subgraph. then LookUp(A@B) = u.

The name of a vertex consists of both its name within a subgraph and the name of the subgraph.
We have already pointed out that the absolute naming convention must be used for naming vertices
within any subgraph. How shall we name subgraphs? They may be named using either the relative
or t.~e absolute na...'11ing con\·ention. All the remarks made previously about absolute and relative
naming conventions hold.

If the absolute naming convention is used, each distinct subgraph has an unambiguous distinguished
name. Since the absolute naming convention is also used for naming vertices within each subgraph,
it follows that vertices ha\'e unambiguous distinguished names. That is, no two vertices have the
same name A@B. Telephone numbers such as 494-4763 fit into this two-level absolute naming
hierarchy. The local exchange is uniquely and unambiguously determined (within each area code)
by the exchange number 494; within exchange 494, exactly one telephone has number 4763.

If the relative naming convention is used, each distinct subgraph has an unambiguous distinguished
name relative to each oU.~er subgraph. And, since we are using the absolute n3.LTJng convention
within subgraphs, it follows that each venex has an unambiguous distinguished name relative to
each source. An example of this is the interface between the Xerox mail transport mechanism
[Birrell, Levin, Needham and Schroeder 1981] and the Arpanet mail transport system. A name may
be Oppen.PA within Xerox but Oppen@A1AXC outside-the subgraph name has changed.

In either case, the advantages of using a hierarchy is clear: it admits the advantages of absolute
naming without barring decentralization. A partitioned name helps suggest the search path to the
object being named and encourages a decentralized naming authority.

There is no need to stop at just one level of hierarchy. One can- imagine a hierarchy of graphs with
corresponding names of the form il@i2@~ .. @ik' Examples include telephone numbers fully
expanded to include country and area, codes (a four-level hierarchy), or network addresses (a three­
level hierarchy of network number, host number, socket number), or booknaming conventions such
as the Dewey Decimal System.

THE CLEARINGHOUSE

We see now that the usual distinction made between "flat" and "hierarchical" is somewhat
misleading. The distinctions should be "flat" or "absolute" versus "relative" and "hierarchical"
versus "non-hierarchical."

3.6. Abbreyiations

The notion of abbreviation arises naturally with hierarchical naming. Within subgraph B, the name
A@'B can be abbreviated to A without ambiguity, given the convention that abbreviations are
expanded to include the name of the graph in which' the client vertex exists. Abbreviation is a
relative notion. (See, for example, [Daley and Neumann 1965] for another approach to
ab breviations.)

3.7. Combining Networks

One major advantage of the hierarchical superstructure that we have not considered before, and
which is independent of the absolute versus relative naming question, concerns combining networks.
One feature that any clearinghouse should be able to handle gracefully is joining its database with
the database of another clearinghouse, an event that happens when their respective networks are
joined. For instance, consider the telephone model. When the various· local telephone systems in
North America combined, they did so by adding a superstructure above their existing numbering
system, consisting of area codes. Area codes are the names of graphs encompassing various
collections of local exchanges. \Vhen direct dialing between countries was introduced, yet another
layer was added: country codes.

Adding ne\,,- layers to names is one obvious way to combine networks. The major advantage is that
if a name is unambiguous within one netv·/Ork then it is still unambiguous with its network name as
prefix, even if the name also appears in some other network (becau§e the latter name is prefixed by
the name of that network). The major disadvantage is that the software or hardware has to be
modified to admit the new level of naming. The latter problem is compounded if abbre\'iations are
allowed.

The alternative to adding a nevv layer is expanding the existing topmost layer. For instance. the
North American area code numbering system is sufficiently flexible that another area code can be
added if necessary. The advantage of this is that less change is required to existing softVl'are and
hardware. The disadvantage, if absolute naming is wanted, is that there has to be a centralized
naming authority to ensure L.~at the new area code is unambiguous.

3.8. Leyels of Hierarchy

If one chooses to use a hierarchical naming convention, an obvious question is the following: should
we agree on a constant number of levels (such as two levels in the Arpanet mailing system or four
in the telephone system) or an arbitrary number of levels? If a name is a sequence of the fonn
i/gi/§ ... (gik' should k be constant or arbitrary? There are pros and cons to either scheme. The
advantage of the arbitrary scheme is that the naming system may evolve (acquire new levels as a
result of combining networks) very easily. That is, if we have a network now with names of the
fonn A@B, and combine this network (let us call it network C) with another network, then we can
just change all our names to names of the fonn A@B@C without changing any of the algorithms
manipulating names. Allowing arbitrary numbers of levels dearly has an advantage. It also has
several non-trivial disadvantages. First, all software must be able to handle an arbitrary number of
levels, so software manipulating names will tend to be more complicated than in the constant level
scheme. Second, abbreviations become very difficult: does A@B mean exactly that (an object with a
two-level name) or is it an abbreviation for some name A@B@C! The disadvantage with the
constant scheme is that one has to choose a number, and if we later" add new levels, we have to do
considerably more work.

77

78

THE CLEARI:\'GHOCSE

3.9. Aliases

Our basic model allows each vertex to have exactly one name under the absolute naming
convention, and exactly one name relative to any other vertex under the relative naming convention.
An obvious extension to this model is to allow aliases or alternative names for vertices. To do this,
we define an equivalence relation on names; if two names are in the same equivalence class, they
are names of the same vertex. Under the relative naming convention, there is one equivalence
relation defined on names for each client vertex in the graph. Under the absolute naming
convention, there is only one equivalence relation for the whole graph. Each equivalence class has a
root or distinguished member, and this we designate the distinguished name of the vertex.

The notion of aliasing is easily confused with the notion of relative naming, since each introduces
multiple names for objects. The difference lies in the distinction between ambiguity and non­
uniqueness. Under the relative naming convention, a name can be ambiguous in that it can be the
name of more than one node (relative to different source nodes). Under the absolute naming
convention, names are unambiguous. In either case. without aliasing, names are unique: if a vertex
knows another vertex by name, it knows that vertex by exactly one name. \Vith aliasing, names are
non-unique; one vertex may know another by several names. Another way of expressing the
difference is to consider the mapping from names to vertices. Without aliasing, the mapping is
either one-to-one (under the absolute naming convention: each object has exactly one name and no
two objects have the same name) or one-to-many (under the relative naming convention: each
object has exactly one na.rne relative to any oLl1er, but many vertices may have the ~me no-me).
\Vithaliasing, the mappings become many-to-one or many-to-many. The distinction is subtle. The
following table illustrates the various combinations that are possible, in telms of ambiguity and
uniqueness:

Absolute Naming
Convention

Relative Naming
Convention

\Vithout Aliasing
Unambiguous, unique
One-to-one

Ambiguous, unique
One-to-many

4. Clearinghouse: Naming Conyention

With Aliasing
Unambiguous. non-unique
Many-to-one

Ambiguous, non-unique
Many-to-many

¥/ e now describe the naming system supported by our clearinghouse. Recall first that we have a
very general notion of the objects being named: an object is anything that has a name known to the
clearinghouse and t.l-}e vague property of "network visibility." We shall give some concrete examples
in the following sections.

Objects are named in a uniform fashion. We use the same naming convention for every object,
regardless of whether it is a user, a workstation, a server, a distribution list or whatever.

A name is a non-null character string of the fonn <substringj>@<substring?@<subsrring?, where
substring} denotes the loealname, substring2 the domain, and substring3 the organization. Thus names
are of the form L@D@O where L is the localname, D the domain and 0 the organization. None of
the substrings may contain occurrences of n@" or "*" (the reasons for the latter exclusion will be
given later). The clearinghouse does not attach any meaning to the substrings constituting a name.

Each object has a distinguished name. Distinguished names are absolute; no two objects may have
the same distinguished name. In addition to its distinguished name, an object may have one or

THE CLEARI1\GHOUSE

more aliases. Aliases are also absolute: no two objects may have the same alias. A name is either a
distinguished name or an alias, but not both.

We have thus divided the world of objects into organizations, and subdivided organizations into
domains: a three-level hierarchy. An object is in organization 0 if it has a name of the form
(anything>@'(anything>@O. An object is in domain D in organization 0 or in D@O if it has a
name of the form (anything>@D@O.

This division into organizations and, \vithin them, domalns is a logical rather than physical division.
An organization will typically be a corporate entity such as Xerox Corporation. The names of all
objects within Xerox will be of the form (anything>@(anything>@Xerox. Xerox will choose domain
names to reflect administrative, geographical, functional or other divisions. Very large corporations
may choose to use several organization names if their name space is very, very large. In any case,
the fact that two addressable objects have names in the same domain or organization does not imply
in any way that they are physically close.

Two names are equal if they are identical strings, ignoring case.

4.1. Rationale

Vtle use a uniform naming convention for all objects, regardless of their type. Our approach
therefore differs from most systems where different naming conventions are used to name objects of
different types: where people, distribution lists, machines, and so on are all named in different
fashions. Our approach is much "friendlier" to the user since he has to remember only one
convention. A disadvantage is that we cannot tell the type of an object merely by looking at the
name. We consider this disadvantage unimportant; the type of the object is easily obtained by
checking what its name is mapped into.

Objects known to the clearinghouse have absolute distinguished names and aliases. Thus we favour
an absolute naming convention over a relative naming convention. Most systems (including most
mail transport systems) have opted for a relative naming convention. However, the ad\"antages of an
absolute convention (\I."here a name alv,.'ays denotes the same object regardless of where the name is
used) are so clear that we are willing to put up with the burden of some centralization. By choosing
the naming convention carefully, we can reduce the pain of this centralization to an acceptable level.

Names are hierarchical. We rejected a non-hierarchical system because, among their other
advantages, hierarchical names can be used to help suggest the search path to the mapping.

¥ie have chosen a three-level naming hierarchy, consisting of organizations, within them domains,
and within them local names. We did not choose the arbitrary level scheme because of the greater
complexity of the software required to handle names, because we do not think that networks will be
ccmbined very often, and because (as with area codes) we will make the name space for
organizations large enough so that combinations can generally be made within the three-level
hierarchy by adding new organizations. We choose three levels rather than, say, two or four, for
pragmatic reasons. A mail system such as the Xerox Laurel-Grapevine system [Birrell, Levin,
~eedham and Schroeder 1981] works well with only a two-level hierarchy, combining networks
across the company's divisional boundaries. We add the third level primarily to facilitate combining
networks across company lines. However, the clearinghouse does not give any particular meaning to
the partitions; this is why we chose the relatively innocuous names "organization" and "domain."
Vtle leave the partitioning of names within an organization to the clearinghouse administrators
within the organization (see Section 13); giving them the freedom to partition their name space in
the way most convenient to them is clearly desirable.

79

80

THE CLEA.RI~GHOCSE

The usefulness of aliases will be made clear in the next section. Our clearinghouse maintains aliases
(that is, modifies them appropriately when updates occur); this is explained later.

The clearinghouse does not support abbreviations. An abbreviated name is a relative, as opposed to
absolute, name (for example, A abbreviates both A@B@C and A@B@D) and the clearinghouse
concerns itself only with absolute names. Typically, client software will allow its users to abbreviate
names, and will add appropriate defaults before presenting them to the clearinghouse.

5. User Names

One important class of "objects" known to the clearinghouse is the set of users. For instance, as we
shall see, the clearinghouse may be used to map a user's name into the network address of the mail
server where his incoming mail resides. To deliver a piece of mail to a user, an electronic mail
system first asks the clearinghouse where the mail server for that user is and then routes the piece'
of mail to that server.

A major design decision is how users are to be named. We describe our approach (to be used in the
Xerox Network Systems product line) to naming users as this will provide further motivation for
our naming convention. The following is not part of the design of our clearinghouse. but illustrates
one of its important uses.

A User Name is a string of the form (firstname) <blanks) (middlename> <blanks)
<7astname)@(domain>@(organization>. Here, (jirsmame>.. (rniddlename) and <1astname> are strings
separated by blanks (they may themselves contain blanks, as in the last name de Gaulle).
(firstname), (middlename) and (lasll1ame) are the first name, middle name and last name of the
user being named. The following are examples of user names:

Derek Charles Oppen@SDD@Xerox
Yogen Kantilal Dalal@SDD@Xerox

The basic scheme. therefore, is that a legal name consists of the user's three-pan localname, domain
and organization. No panicular semantics are given to domains and organizations; in the abm'e
example, the organization name is the name of the company, and the domain name is the name of
a logical unit of the company. The reason for making the user nanle the complete three-pan name
(rather than just the last name) is to discourage clashes of names and encourage unambiguity. The
chance of there being two people with the name Derek Charles Oppen in domain SDD in
organization Xerox is hopefully rather remote, and certainly more remote than their being two
people wiu'11ast millie Oppen.

Our convention for naming users differs from those used in most computer environments in
requiring that names be absolute and in using full names to reduce the chance of ambiguity. We
have discussed the issue of absolute versus relative naming conventions already, but the second
topic deserves attention because it shows the advantages of having a consistent approach to aliases.

The most common way of choosing unambiguous user names in computer environments is to use
last names prefixed with however many letters are needed to exclude ambiguity. Thus, if there are
two Oppen's, one might be DOppen and the other HOppen. This· scheme we find unsatisfactory. It is
difficult for users (who have to remember to map their name for the person into the system's name
for the person) and difficult for system administrators (who have to manage this rather artificial
scheme). Further, it requires users to occasionally change their system names: if a system name is
presently DOppen and another D. Oppen becomes a user, the system name must be changed to
avoid ambiguity.

THE CLEARli'GHOUSE

Another scheme is to name users Oppen- J, Oppen-2, ... This avoids the problem of names becoming
ambiguous, but again is difficult to use and manage.

Our convention is not cumbersome to the user, in theory at least, since we use the same flfStname­
middlename-lastname convention people are used to already. However, since users would find it
very cumbersome to type in full names, various aliases for user names are stored in the
clearinghouse. For instance, associated with the user name Derek Charles Oppen might be the aliases
Derek Oppen, D Oppen and Oppelt Associated with the p.ame Robert Allen Mitchell might be aliases
such as the above, together with Bob Al itchell, etc. Since our naming convention requires that
aliases be absolute, it follows that no two users can have the same alias. For instance, if there are
two Smiths in SDD at Xerox, the alias Smith cannot be used. More information must be provided
with the name, such as initials or first name.

The advantage of using aliases is that· it makes the naming convention friendly to the user. The
disadvantage is that storage is required to maintain them. Another approach, using pattern
matching, is described in Section 8.

The clearinghouse does not explicitly support abbreviations but client software (such as the mail
system) may choose to support them, allowing the user to address a message to Oppen, say, instead
of Oppen@'SDD@Xerox. The client software adds appropriate defaults to construct the full name.

5.1. Birthmarks

Even with our convention of using a user's full name. there is a possibility that there will be two
users with exactly the same name in a domain. Our approach is to disallow this, and let the two
users (or a system administrator) choose unambiguous names for each. Another approach is to .add
as a suffix to each full name a "birthmark." A <birthmark> is any string which, together with the
user name, the domain name and the organization name, unambiguously identifies the user. The
birthmark may be a universal identifier (perhaps the concatenation of the processor number of the
v.'orkstation on which the name is being added together with the time of day). It might be the social
security number of the individual (perhaps not a good idea on privacy grounds). It might be just a
positive integer: the naming authority for each domain is responsible for handing out integers. In
any case, the combination of the full name and the birthmark must be unambiguous so that no two
users can have the same legal name. Again. aliases are used so that users do not need to provide a
birthmark unless necessary.

6. Clearinghouse: 1\1appings

Now that we know how to name the objects known to the clearinghouse, we treat the question of
what names are mapped into.

The clearinghouse maps each name into a set of properties to be associated with that name. A
property is an ordered tuple consisting of a PropertyName, a PropertyType and a Property Value. The
clearinghouse maintains mappings of the form:

name -+ {(Propert),Namel' PropertyTypej , PropertyValuej >,

(PropenyNameJ(PropertyT}'PeJ(PropertyValuek!J.

More precisely, to admit aliasing, the clearinghouse maps equivalence classes, rather than names,
into sets of properties. Each equivalence class consists of a distinguished name and its aliases.

81

82

THE CLEARI~GHOCSE

However, unless necessary, we will not bother distinguishing between a name and the equivalence
class it is in, and so will continue to refer to the clearinghouse mappings as mappings from names
to propenies.

The value of k is not fixed for any given name. A name may have associated with it any number of
properties.

A PropertyName identifies a particular property associated with a given name. There may be only
one property with a given property name associated with any name; that is, Prop erryNam e

j
::1=

PropertyNamej if i ;z!: j. (In the examples given in this paper we will use strings for property names;
in practice we use integers.) To promote consistency in the use of property names, each property
name is registered with the clearinghouse (as discussed in Section 13).

A Property Value is a datum of type Property Type. There are only two types of property values. The
first, of type individual or 0, is "uninterpreted block of data." The clearinghouse attaches no
meaning to the contents of this datum, but treats it as just a sequence of bits. The second. of type
group or J, is "set of names," where a name is any name as defined in Section 4. A name may
appear only once in the set, but the set may contain any number of different names (including
aliases and names of other groups). The names "individual" and "group" reflect the semantics
attached by the clearinghouse. whether the property is an individual datum or a group of data: t..l)ey
do not suggest that the object with these properties is an "individual" or a "group."

6.1. Examples

:Mapping a name into a network address is an example of a type individual mapping, as in the
fonowing:

Daisy@SDD@Xerox -+ {("Printer", 0, network address of the printer named Daisy»).

or

Oppen@SDD@Xerox -+ {("H1orkstation': 0, network cuidress ofworkslation>j.

Since the value associated with an indiridual property is uninterpreted, it need not be a network
address. It might be a name, a comment, or anything else. For example:

Tundra@SDD@Xerox -+ {

("File Sen1er", 0, [network address of the file server named Tundra,
descriptive comment}»).

A distribution list in electronic mail is an eX3L'11ple of a mapping of type group, as hi:

ClearinghouseAuthors@SDD@Xerox -+ {

("Distribution List", 1, ("Dalal@SDD@Xerox", "Oppen@SDD@Xerox"})}.

In each of the above examples, only one property was associated with a name. The following are
more realistic examples, where many properties are associated with a name:

Oppen@SDD@Xerox -+ {

("User",O, descriptive cornment>,
("Password", 0, password to be usedforuserauthentication>,
("File Server Name". 0, name offile server containing user'sjiles),
("Alail Server Name", 0, name of mail server where user's mail is stored>,
("Printer Names", J, set of names of local printers any ofwhich may be used>).

THE CLEARINGHOUSE

In this example, the clearinghouse is used to store the user's "profile." Associated with the user's
name is the location of his local file server (so that he can store and retrieve files), his local mail
server (so that he can receive mail), his local printer (so that he can print files), and so on. Note
that we choose to map the user's name into the name of his local file server (and mail server and
printer) rather than directly into its netVv'ork address. The reason for this extra level of indirection is
that the name of the file server will perhaps never change but its location certainly will occasionally
change, and we do not want a change in a server's location to require a major update of the
clearinghouse's database.

Alternatively, a user's profile may be stored as:

Yogen K. Dalal@SDD@Xerox ~ (
<"User Profile", 0, [descriptive comment,

6.2. Rationale

password to be used for user authentication,
name offile server containing user's files,
name of mail server where user's mail is stored,
set ofnames of local printers any ofwhich may be used])}

In the Preface, we separated objects into two broad categories: individual objects such as
workstations, servers or people whose names are mapped into addresses, and groups whose names
art mapped into sets of names. As the above shows, the mappings supported by the clearinghouse
are more general.

\Ve differentiate between data of type individual and data of type group, but allow many pieces of
data of differing types to be associated with each name. The example given above showing the
mapping for a user name shows why. Unlike the simpler t(~lephone model where a single mapping
from a user name into a telephone number suffices, we want to map a user's name into a richer
collection of information. This applies even to non-user individuals. We may want to associate with
a printer's name not only its location (so that files to be printed can be sent to it), but also
information describing what fonts the printer supports, if it prints in color, and so on.

The main reason for haYing "set of names" as a distinct data type is to allow different clients to
update the same set simultaneously. For instance. if the set represents an electronic mail distribution
list, we want to allow t\\70 users to asynchronously add themselves to this list. This is discussed
further in Section 8 when we describe the operations supponed on elements of a set and in Section
11 when we describe how the clearinghouse automatically arbitrates between conflicting,
asynchronous update requests.

7. Clearinghouse: Client's Perspective

VtT e now know how objects are named in the clearinghouse, and what names nlay be mapped into.
Before describing the functions the clearinghouse provides its clients, let us first describe how the
clients are to perceive the clearinghouse, repeating many of the points made in the Preface. and the
question of when clients should bind names to properties.

Recall first that the clients of the clearinghouse are pieces of software and hardware making use of
the clearinghouse client interface. The fact that people are not clients of the clearinghouse (except
very indirectly by means of a software interface) immediately introduces an important difference
between our clearinghouse and the telephone system's. The telephone system relies on human
judgement and human interaction. The clients of our clearinghouse are machines, not people, and
so all aspects of client-clearinghouse interaction,. including fault-tolerance, must be fully automated.

83

84

THE CLEARL\'GHOL'SE

The clearinghouse (and its associated database) is decentralized and replicated. That is. instead of
one global clearinghouse, there are many clearinghouse servers scattered throughout the internetwork
(perhaps, but not necessarily, one per local network), each storing a copy of a portion of the global
database. Decentralization and replication increase efficiency (it is faster to access a clearinghouse
server physically nearby), security (each organization can control access to its own clearinghouse
servers) and reliability (if one clearinghouse server is down, perhaps another can respond to a
request). However, we do assume that there is one global database (conceptually, that is; physically
the database is decentralized). Each clearinghouse server contains a portion of this database. We
make no assumptions about how much of the database any particular clearinghouse server stores.
The union of all the local databases stored by the clearinghouse servers is assumed to be the global
database.

A client of the clearinghouse may refer by name to, and query the clearinghouse about, any named
object in the distributed environment (subject to access control) regardless of the location of the
object, the location of the client or the present distributed configuration of the clearinghouse. We
make no assumptions about the physical proximity of clients of the clearinghouse to the objects
whose names they present to the clearinghouse. A request to the clearinghouse to bind a name to its
properties may originate anY'Nhere in the internetwork. This makes the internal structure of our
clearinghouse considerably more intricate than that of the telephone clearinghous~ (where clients
have to know which local telephone directory to access), but makes it much easier to use.

In order to provide a uniform way for clients to access Ll1e clearinghouse, we assume that all clients
contain a (generally '"ery small) clearinghouse component, which we call a stub clearinghouse. Stub
clearinghouses usually contain little in their databases except pointers to clearinghouse servers, but
they provide a uniform way for clients to access the clearinghouse.

A client requests a binding from its stub clearinghouse. The stub communicates with clearinghouse
servers to get the information. A client of the clearinghouse need not concern itself with the
question of which clearinghouse server actually contains the binding-the clearinghouse
automatically finds the mapping if it exists. This differs from many models of distributed
environments where one is restricted to local queries or references, and where clearinghouses (or
their equivalents) know about objects of specific types only.

Updates to the various copies of a mapping may occur asynchronously and be interleaved with
requests for bindings of names to properties. Therefore, clearinghouse server databases may
occasionally have incorrect information or be mutually inconsistent. (In this respect, we follow the
telephone system's model and not the various models for distributed databases in which there is a
notion of "indivisible transaction." We find the latter too complicated for our needs.) 111erefore, as
in the telephone system, bindings given by clearinghouse servers should be considered by clients to
be hints. If a client requests the address of a printer, it may wish to check with the server at that
address to make sure it is in fact a printer. If not, it must be prepared to fmd the printer by other
means (perhaps the printer will respond to a local broadcast of its name), wait for the clearinghouse
to receive the update, or reject the printing request. If the infOImation given out by the
clearinghouse is incorrect, it cannot, of course, guarantee that the error in its database will be
corrected. It can only hope that whoever has invalidated the information will send (or preferably
already has sent) the appropriate update. However, the clearinghouse does guarantee that any
inconsistencies between copies of the same portion of the database will be resolved, that any such
inconsistency is transient. This guarantee holds even in the case of conflicting updates to the same
piece of information; the clearinghouse arbitrates between conflicting updates in a uniform fashion.
The updating mechanism is described in Section 11.

Assuming this model of goodwill on the part of its clients-that they will quickly update any
clearinghouse entry they have caused to become invalid-and assuming an automatic arbitration

THE CLEA..RI:\fGHOUSE

mechanism for quickly resolving in a predictable fashion any transient inconsistencies between
clearinghouse servers, clients can assume that any information stored by the clearinghouse is either
correct or, if not, will soon be corrected. Clients therefore may assume that the clearinghouse either
contains the truth about any entry, or soon will contain it. It is very important that clients can trust
the clearinghouse in this way, because the clearinghouse is often the only source of information
available to the client on the locations of servers, on user profiles, and so on.

The fact that the information returned by the clearinghouse is treated by the clients as both the
truth (the information is available only from the clearinghouse and so had better be correct) and a
hint (the information may be temporarily incorrect) is not self-contradictory. It merely reflects the
difference between the long-term and short-term properties of clearinghouse information.

7.1. Binding Strategies

An important consideration to be taken by the client (or, rather, the author of the software
comprising the client) is that of 11,'hen to ask the clearinghouse for a binding. The binding technique
used greatly influences the ability of the system to react to changes in the environment.

There are three possibilities: static binding, in which names are bound at the time of system
generation; early binding, in which names are bound, say, at the time the system is initialized; and
late binding, in which names are bound at the time their bindings are to be used. (The boundaries
between the three possibilities are somewhat i1l-defined~ there is a continuum of choices.)

The main tradeoff to be taken into consideration in choosing a binding strategy is perJornzance
versus flexibilitv.

The later a system binds names. the more gracefully it can react to changes in the environment. If
client software binds names statically, the softVl'are must be updated whenever the environment
changes. For instance. if soft'Nare supponing printing directly stores the addresses of the print
servers (that is. uses a static binding strategy), it must be updated whenever new print servers are
added or existing servers are moved or removed. If the software uses a late binding strategy, it will
automatically obtain the most up-to-date bindings known to the clearinghouse.

On the other band, binding requires the resolution of one or more indirect references, and this takes
time. Static or early binding increases runtime efficiency since, with either, names are already bound
at runtime. Fumer, late binding requires interaction with the clearinghouse at runtime. Although
v.'e have designed the clearinghouse to be very reliable, the possibility exists that a client may
occasionally be unable to find any clearinghouse server up and able to resolve a reference.

There are therefore advantages and disadvantages to any binding strategy. A useful compromise
combines early and late binding, giving the performance and reliability of the fonner and the
flexibility of the latter. The client uses early binding wherever possible, and uses late binding only if
any of these (early) bindings becomes invalid. Thus, software supporting printing stores the
addresses of print servers at initialization, and updates these addresses only if they become invalid.
Of course, the client must be able to recognize if a stored address is invalid Gust as it must accept
the possibility that the information received from the clearinghouse is temporarily invalid). We
discuss hint validation further in Appendix 1.

7.2. Names versus Generic Names

Allied to the question of when to bind is the question of how many levels of indirection a client
should use in referring to an object, in panicular the question of whether to use names or generic
names. For instance, should printing software know the names of printers at SDn (such as
Daisy@SDD@Xerox) or should it use a generic name (such as Printers@SDD@Xerox which

85

86

THE CLE<\RI:\GHOl:SE

perhaps maps into the names of printers at SDD)? If the client stores actual names, it must accept
the possibility that the name is invalid at runtime or that it is missing a new name-even if the
client uses a late binding strategy. The advantage of using generic names (and binding them at
runtime) is that the client reacts very gracefully to the addition or deletion of objects. The
disadvantage is the introduction of yet another level of indirection.

In the next section, we describe an operation for looking up objects by genre. Our generic lookup
differs from the Yellow Pages in that it does not require any explicit mappings from generic names
into sets of names.

8. Clearinghouse: Client Interface

The clearinghouse provides a basic set of operations, some of which are exported operations which
may be called by clients of the clearinghouse by means of the stub clearinghouse resident in the
client, and some of which are internal operations used by clearinghouse components to
communicate with each other. In this section we describe the exported operations. Vie describe only
the most commonly-used operations and do not, for instance, describe the operations required to
add new domains and organizations, to change access control lists, etc.

In the following, a name may be either a distinguished name or an alias. With the exception of
some operations -which allow "wildcard" characters or which take domain or organiz.ation names as
arguments, all names presented to the clearinghouse must be full names, of the form
!ocalname@domain@organization.

The operations abort if there are access control violations, but we defer discussion of access control
until Section 12.

Notes on the operations are given at the end of this section.

8.1. Names

AddName(lUlme) adds the mapping name ~ (J, the mapping into the empty set It aborts if a
mapping for name already exists.

DeletelVame(lUlme) deletes the mapping name ~ {}, and name and all equivalent names
(distinguished name and/or aliases) are released. It aborts if a mapping for name does not exist or
if name is not mapped into the empty set.

ChangeName(name1, name2) changes the distinguished name of an object with name name1 to
name}. If name] is the distinguished name, it is released. If name1 is an alias, the corresponding
distinguished name is released. ChangeName aborts if name} is already a distinguished name or an
alias.

AddAlias(newname, oldname) adds newname as an alias of oldname (oldname may be either an alias
or a distinguished name.). More precisely, AddAlias adds newname to the equivalence class of
oldname. AddAlias aborts if oldname is not known to the clearinghous~ or if newname is already a
distinguished name or an alias.

DeleteAlills(name) deletes name from the equivalence class it has been in. DeleteAlias aborts if name
is not an alias of some distinguished name.

LookupDistinguishedName(name) returns the distinguished name equivalent to name. (If name is
already a distinguished name, LookupDistinguishedName returns name.)

THE CLEARINGHOUSE

LookupAIUzses(name) returns all the aliases for name, where name may be a distinguished name or
itself an alias.

8.2. Indhiduals

Lookuplndividual(name, propertyname) finds the mapping name -+- { •• , (propertyname, 0,
propertyvalue), .. .}, if it exists, and returns propertyvalue. It aborts if there is no such mapping (and
indicates the reason: whether there is no such name, no property with identifier propertyname, or if
the property identified by propertyname is not an individual).

Addlndividual(name, propertyname, propertyvaIue) adds the tuple (propertyname, 0, propertyva!ue> to
the set of properties associated with name, if a mapping for name already exists. Addlndividual
aborts if no mapping for name already exists or if a mapping name -+- {. ... (propertyname, ...), ... }
already exists.

Deletelndividual(name~ propertyname) deletes the tuple <propertyname, 0, propertyvalue) from the
mapping for name. Deletelndividual aborts if no mapping name -+- (.. , <propertyname, 0,
propertyva!ue), ... } exists.

Changelndividual(name~ propertyname, prop ertyvalu e) finds the mapping name -+- {. .. ,

(propertyname, 0, oldpropertyva!ue), ... }, if it exists, and replaces the existing oldpropertyvalue with
propertyvalue. It aborts if no mapping name -+- { .. , (propertyname, 0, oldp ropertYl'alu e), .. .} already
exists.

8.3. Groups

Lookup Group (name, propertyname) finds the mapping name -+- (. .. , <propertyname, 1,
propertyva!ue), ... j, if it exists, and returns properlyva!ue. It aborts if there is no such mapping (and
indicates the reason: whether there is no such name, no property with identifier propertyname, or if
L'l-Je property identified by properlyname is not a group).

AddGroup(name, propertyname, propertyvaIue) adds the tuple (propertyname, 1, propertYl'alue) to the
mapping for name if a mapping for name already exists. AddGroup aborts if no mapping for name
already exists or if a mapping name -+- {oo, (propertyname, ...), ... j already exists.

Delete Group (name, propertyname) deletes the tuple <propertyname, 1, propertyva!ue) from the
mapping for name. DeleleGroup aborts if no mapping name { .. , (propertyname, 1, propertYl'alue),
.. .} exists.

ChangeGroup(name, propertyname, propertyvaIue) finds the mapping name -+ {. .. , (propertyname, 1,
oldpropertyvalue), ... j, if it exists, and replaces the existing (propertyname, 1, oldpropertyvalue) with
(propertyname, 1, propertyva!ue). It abort.s if no mapping name -+- {. •. , (propertyname, 1,
oldpropertyvalue), ... } already exists.

8.4. Group Elements

IsMemher(element, name, propertyname) finds the mapping name -+- {. •• , (propertyname, 1,
propertyvalue), ... }, if it exists, and determines if element is a member of the group propertyva!ue. It
aborts if there is no such mapping.

IsMemherClosure(element, name, propertyname) fmds the mapping name -+ (. .. , <propertyname, 1,
propert,J'value), ... j, if it exists, and determines if element is a member of the group propertyvalue. If
so, it returns with success. If not, it calls IsAfemberClosure(element, name, propertyname) for each
element x in the set propertyvalue with an associated property named properlyname.
ISl\femberClosure aborts if there is no mapping name -+ {. .. , (propertyname, 1, properlyva!ue), .. .}.

87

88

THE CLEARINGHOL'SE

AddAfemher(element, name, propertyname) finds the mapping name --+ (. •• , <propertyname. 1,
propertyvalue), .. .}, if it exists, and adds element to the group propertyvalue. It aborts if the mapping
name --+ (•• , <propertyname~ 1, propertyvalue), .. .} does not exist or if element is already a member
of propertyvalue.

DeleteMember(element, name, propertyname) finds the mapping name --+ (. .• , <propertyname, 1,
properlyvalue), .. .}, if it exists, and deletes element from the group propertyvalue. It aborts if the
mapping name --+ (. .• , <propertyname. 1, propertyvalue), .. .} does not exist or if element is not a
member of propertyvalue.

AddSelf(element, name, propertyname) abons if the originator of the request does not have name
element, and othePA!ise is equivalent to Addlo.f ember(elemenl, name, propertyname). (See Section 8.8
below.)

DeleteSelf(element. name, propertyname) abons if the originator of the request does not have name
element, and otherwise is equivalent to Deletel ... lember(element, name, propertyname).

8.5. Generic Names

LookupGeneric(name, propertyr.ame), where name is of the form localname@domain@organization.
returns tJle set of object names which map into properties of the form name -+ (. .. , <propertyname,
propertytJpe, propertyvalue), .. .}. The set may of course be empty. The loealname component of
name may optionally contain one or more wildcard characters "*". Each wildcard character may
match zero or more characters. Thus, name matches an entry in the database if the entry is equal
(ignoring case) to name with each occurrence of "*" replaced by any string of characters. If
loea/name is the single character "*", then LookupGeneric returns the set of all object names which
map into properties of the form name -+ {. .. , <propertyname, propertytJPe, propertyvalue>, .. .} in the
domain domain@organizalion. If name contains no occurrence of "*". then LookupGeneric returns
either the empty set or the singleton set {name}.

8.6. Enumeration

EnumerateObjects(name), where name is a domain name domain@organization, enumerates all
names known to the clearinghouse in this domain.

EnumerateDomains(name), where name is an organization name, enumerates all names of domains
in this organization.

EnumerateOrganizationsO enumerates all names of organizations.

EnumerateProperties(name) returns the set (<propertynamep propertytype1, propertyvalue j), ••• ,

(properlynamek propertytypek propertyva!ue;?J that name maps into.

8.7. Notes on these Operations

Strictly speaking, the clearinghouse requires only a very few commands, for reading, adding, and
deleting entries. We provide many different operations, in particular, different commands for
different types (for instance, different commands to add an individual and to add a group) and for
different levels of granularity (for instance, different commands for adding groups and adding
elements to a group). We give different operations for different types to provide a primitive type­
checking facility. We give different operations for different levels of granularity for three reasons.
First, it minimizes the data that must be transmitted by the clearinghouse or the client when reading
or updating an entry. Second, it allows different clients to change different pans of the same entry
at the same time. For instance, two clients may add different elements to the same group
simultaneously using the AddAfember command; if each were required to update the whole entry,

THE CLEARI~GHOUSE

their two updates would conflict (this is described further in Section 11). Third, as we shall see in
Section 12, we make use of the different operations for different levels of granularity in our access
control facility. Finally, we provide separate operations for changing an entry or sub-entry although
these operations are functionally equivalent to deleting the original entry and adding the changed
entry. However, changing an entry constitutes one, indivisible transaction; deleting and adding an
entry constitute two transactions separated. by a period during which another client may try to read
the incorrectly-empty entry.

Names are explicitly, rather than implicitly, registered and deleted. Typically, systems administrators
for a particular domain will add and delete names, but may allow users to modify some of the
properties associated with names.

Is.\femberClosure is the closure of IsA,fember. An example of its use is in the use of membership
lists. An example of a membership list might be:

Clearinghouselnlerest@SDD@Xerox -+ {

("Descriptive Comment", 0, "List oJthose interested in the Clearinghouse Design"),
("Distribution Lisl", 1, {"ClearinghouseDesigners@SDD@Xerox",

"e learinghouseSupporz@SDD@Xerox"})j

ClearinghouseDesigners@SDD@Xerox -+ {

("Distribution List". 1, {"Dalal@SDD@Xerox", "Oppen@SDD@Xerox"j>}

ClearinghouseSupporl@SDD@Xerox -+ {

("Distribution Lis!", 1, ("Clearinghouselmplementers@SDD@Xerox",
"ClearinghouseAfaintainers@SDD@Xerox"j>j,

where Clearinghouselmplementers and ClearinghouseAfaintainers map into further distribution lists.
To check if Dalal@SDD@Xerox is on the Clearinghouselnteresl distribution list, we call
1s.hfemberClosure("Dalal@'SDD@Xerox", "Clearinghouselnterest@SDD@Xerox", "Distribution
List") which automatically checks the "Distribution List" group associated \vith
Clearinghouselnleresl. Since Dalal is not an entry, IsAfemberClosure then checks any subsets of this
entry, any of their subsets, and so on. IsAfemberClosure allows circularities (a list may contain
another VI"hich in turn contains the first).

AddSelfand DeleleSeljprovide additional access control to AddMember and DeleteAfember, and are
discussed further in Section 12. They are used, for instance, in electronic mail to allow users to add
and delete themselves from distribution lists.

LookupGeneric provides a primitive "Yellow Pages" facility. As we shall see in Section 13 on
clearinghouse administration, property names are centrally allocated to provide consistency across
domain boundaries. For instance, the property name "Printer" is reserved as the name of the
network address of printers. (Recall our previous example showing the entry for the printer Daisy:
Daisy@SDDgXerox -+ {("Printer': 0, network address oj the printer named DaiSY>}.) To find the
printers in SDD@Xerox, a client calls LookupGeneric(,'*@SDD@Xerox", "Printer"). This "Yellow
Pages" facility is fairly simple but considerably less expensive than, for instance, a relational
database. LookupGeneric suffices for the purposes we envision. For example, when a new user is
being registered, part of the registration dialogue involves choosing his preferred local printer,
preferred mail server, etc. The LookupGeneric operation allows the user (or system administrator) to
enumerate all printers or all mail servers, and choose among them. Typically, the mapping for each
printer or mail server will also contain descriptive comments (describing in what room the server is
located, if it prints in color, etc.) which helps him in making the appropriate choices.

89

90

THE CLEARI~GHOUSE

The LookupGeneric, EnumerateDomains and EnumerateOrganizations operations also provide a
"directory" service to users. For instance~ the Xerox 8010 Star workstations provide a directory
service by means of which a user can list network-based resources. The directory gives the user a
window into the clearinghouse database, and is implemented by means of generic lookup.

As we will see in Section 13 on clearinghouse administration, we standardize the use of propeny
names. Thus all clients of the clearinghouse agree on the use of each generic name, in much the
same way that the telephone system uses (roughly) the same generic names (such as "Automobile
Repair") in all the Yellow Pages it publishes. The advantage of this is that client software can
request a service in a standardized fashion, and need not be tailored to a particular environment
with a particular set of names for senTers supplying this service.

For instance, each user workstation generally has a piece of software that replies to the user
command "Help!" This software accesses some server to obtain the information needed to help the
user. (The software could store all this information itself, but it is more reasonable to store it in a
central location, both to reduce the size of the workstation storage and to make updating the
information easier.) Suppose the generic name "Help Senrice" is agreed upon as the standard
property name for such a service. To find the addresses of the servers providing help to users in
SDD@Xerox, the workstation software calls LookupGeneric("*@SDD@Xerox", "Help Senice").
The workstation then calls Lookuplndividual to find the addresses. This piece of code can be used
by any workstation, regardless of its location.

The "wildcard" feature of LookupGeneric allov.'s clients to find valid names where they haye only
partial information on or can only guess the name. It is particularly useful in electronic mail and in
other uses of user names. Recall our discussion in Section 5 on the use of aliases to make L~e
naming convention as friendly as possible. The problem with using aliases is the tradeoff between
the number of aliases stored (to make sure that any reasonable alias works) and the time and space
required to find and store these aliases. It is unlikely that we can afford to store all plausible aliases.
Further, we want to be able to respond gracefully to a user's use of an ambiguous name. For
instance, we want to do more than just reject a piece of mail addressed to "Smith" if there is more
than one Smith.

If Lookuplndividual("Smilh", "J\fail Server") fails, because "Smith" is ambiguous, the electronic
mail system may choose to call LookupGeneric("*Smirh*", "SDD@Xerox", "Alai! Server") to find
the set of user names matching this name. It presents this set to the sender of the mail and allows
him to choose whjch unambiguous name is appropriate. A simple algorithm to use in general mig.~t
be to take any string provided by the user, surround the string with *s, delete any periods, and
replace any occurrence of <blank> by *<blank>. Thus Yogen K. Dalal becomes *Yogen* K* Dalal*,
which matches Yogen Kantilal Dalal, as desired.

9. Clearinghouse: Structure

We now describe how the clearinghouse is structured internally. This description will be augmented
in Section 12 when we discuss access control.

9.1. Clearinghouse Servers

The database of mappings is decentralized. Copies of portions of the database are contained in
clearinghouse servers which are servers (or perhaps services on servers) spread throughout the
internetwork. We refer to the union of all these clearinghouse servers as "the clearinghouse." Each
clearinghouse server is a named object in the internetwork, and so has a distinguished name and
possibly aliases as well.

THE CLEARI~GHOVSE

As stated in Section 7, we assume that every client of the clearinghouse contains a clearinghouse
component~ called a stub clearinghouse. Stub clearinghouses provide a unifonn way for clients to
access the clearinghouse. Stubs provide at least the operations described in Section 8. Stub
clearinghouses do not have names (although they will typically be on machines containing named
objects). Stubs are required to store the address of at least one clearinghouse server, or at least to be
able to find one, perhaps by local or directed broadcast ([Boggs 1981]).

9.2. Domain and Organization Clearinghouses

Each clearinghouse server may contain any ponion of the global database (subject, as we shall see,
to access control). However, this decentralization is not totally arbitrary. Some clearinghouse sen'ers
accept responsibility for maintaining specific portions of the global database.

Corresponding to each domain D in each organization 0 are one or more clearinghouse servers
each containing a copy of all mappings for every name of the form (anything)@D@'O, that is, the
mappings for all objects in domain D@O. Each such clearinghouse server is caned a domain
clearinghouse for D@O. (Each clearinghouse sen'er that is a domain clearinghouse for D@O may
contain other portions of the database other than just the database for this domain, and each of the
domain clearinghouses for D@O may differ on what other portions of the global database, if any,
they contain.) There is at least one domain clearinghouse for each domain in the distributed
em·ironment. Domain clearinghouses are addressable objects in the internetwork and hence have
names; Each domainc1earinghouse for each domain in organization 0 has a name of the form
(al1ylhing)@O@ClearinghouseServers which maps into the network address of the sener, under
property name Clearinghouse Localion. (ClearinghouseServers is a resen'ed organization name.)
Thus, if L@O@ClearinghouseSen'ers is the na.rne of a domain clearinghouse for D@O, then there
is a mapping of the form L@;O@ClearinghouseServers ~ r .. , ("Clearinghouse Location", 0,
network address), ... }.

The final 26 pages of this paper have not heen reproduced here. While
supplies last, copies of the full paper can be requested hy writing to:

References

[Abraham and Dalal 1980]

Xerox Corporation
Office Systems Division
I~:thernet Literature Department
3333 Coyote iii II Road
Palo Alto, CA 94304

S. 1\,1. Abraham and Y. K. Dalal, "Techniques for Decentralized :rv1anagement of Distributed
Systems." 20111 IEEE Computer Society International Conftrence (Compeon), February 1980, pp.
430-436.

[Birrell, Levin, 1\'eedham, and Schroeder 1981]
A. D. Birrell, R. LeYin. R. 1\-1. Needham and M. D. Schroeder; "Grapevine: an Exercise in
Distributed Computing." submitted for publication.

[Boggs 1981]
D. R. Boggs, "Internet Broadcasting," Ph.D. Thesis, Stanford University, 1981, in preparation,
(will be available from Xerox Palo Alto Research Center).

[Boggs. el al. 1980]
D. R. Boggs, 1. F. Shoch, E. A. Taft, and R. M. :M etcal fe, "PUP: An internetwork architecture,"
IEEE Transactions on Communications. com-28:4. April 1980, pp. 612·624.

[Dalal 1981]
Y. K. Dalal. "The Information Outlet: A new tool for office organization." Proceedings of the
Online Conference on Local Setworks & Distributed Office Systems, London, 11-13 May, 1981,
pp. 11-19. Also Xerox Office Products Division, Palo Alto, OPD-T8104, October 1981.

91

92

THE ClEARI:\GHOCSE

[Dalal and Printis 1981]
Y. K. Dalal and R. S. Printis, "48-bit Absolute Internet and Ethernet Host Numbers," to be
published in Proceedings of the 7th Data Communications Conference, October 1981. Also Xerox
Office Products Division, Palo Alto, OPD-T8101, July 1981.

[Daley and Neumann 1965]
R. C. Daley and P. G. Neumann, "A general-purpose file system for secondary storage," Proc.
Fall Joint Computer Conj., 1965, AFIPS Press, pp. 213-228.

[Dawes et al 1981]
N. Dawes, S. Harris, M. Magoon, S. Maveety, D. Petty, "The Design and Service Impact of
COCOS-An Electronic Office System," Proc. IFIP International Symposium on Computer
lv/ essage Systems.

[Ethernet 1980]
The Ethernet, A Local Area Network: Data Link Layer and Physical Link Layer Specifications.
Version 1.0. September 30, 1980.

[Galler and Fischer 1964]
B. A. Galler and M. 1. Fischer, "An Improved Equivalence Algorithm," CACM, 7:5, pp. 301-
303.

[Levin and Schroeder 1979]
R. Levin and } .. 1. D. Schroeder, "Transport of Electronic ~vfessages Through a Network," Xerox
PARC Technical Report CSL-79-4, April 1979.

[Metcalfe and Boggs 1976] .
R. M. Metcalfe and D. R. Boggs, "Ethernet: Distributed packet switching for local computer
networks," CACM, 19:7, July 1976, pp. 395-404.

[Needham and Schroeder 1979]
'R. M. Needham and M. D. Schroeder, "Using Encryption for Authentication in Large Networks
of Computer," CACM, 21:12, December 1978, pp. 993-999.

[pickens, Feinler, and Mathis 1979]
1. R. Pickens, E. 1. Feinler, and J. E. Mathis, "The NIC Name Server-A Datagram Based
Information Utility," Proceedings 4th Berkeley Workshop on Distributed Data Management and
Computer Networks, August 1979.

[Redell, et al. 1980]
D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer, W. C. Lynch, P. R. Melones. H. G.
Murray, and S. C. Purcell, "Pilot: An Operating System for a Personal Computer," CACM, 23:2,
February 1980, pp. 81-91.

[Shoch 1978]
1. F. Shoch, "Internetwork Naming Addressing and Routing," 17th IEEE Computer Society
International Conference (Compcon), September 1978.

[Tarjan 1975]
R. E. Tarjan, "Efficiency of a Good but not Linear Set Union Algorithm," JCSS, 9:3, pp. 355-
365.

[Thomas 1976]
R. H. Thomas, "A Solution to the Update Problem for Multiple Copy Data Bases which use
Distributed Control," Bolt, Beranek and Newman technical report No. 3340.

Authentication in Star and Network Systems

by Jay E. Israel and Theodore A. Linden

OSD-T8201 May, 1982

Abstract: A large, decentralized office system requires a practical scheme for user authentication
which is neither totally centralized nor totally distributed. The authentication scheme must not
become a single point of failure, but the authentication database must be easily and reliably
updated and maintained. This paper describes the approach used in Xerox' Star and Network
Systems products. It also describes the added exposures that occur as nodes from various sources
are added into an open network architecture. Encryption techniques could protect user
authenticators and other data from intruders on the network; however, an office system has very
low tolerance for added administrative complexity, user inconvenience, service downtime, or lost
data that might result from a simplistic implementation of encryption. This paper identifies the
added requirements, outlines known solutions for handling some of these concerns, and discusses
the need for encryption protocol standards suitable for use in office systems.

Copyright © Xerox Corporation, 1982

All Rights Reserved

XEROX

Office Systems Division
Office Systems Business Unit
3333 Coyote Hill Road I Palo Alto I California 94304

93

94

AUTHENTICATION IN STAR AND NETWORK SYSTEMS

1. Introduction

Designers and users of office information systems share a serious concern over the integrity and
confidentiality of the information being managed. In a distributed system consisting of many small
autonomous processors, some security concerns become less severe than they are in a more
centralized system; however, user authentication becomes a more challenging problem. In this paper
we deal with the issue of authentication, the mechanism by which communicating entities establish
their identities to one another. The design of this mechanism must take into account not only
security issues, but also the other design objectives of the system, including responsiveness,
availability, and ease of administration. This paper addresses the relationships among these
objectives, pointing out some of the trade-offs to be made and problems to be solved.

We start in Section 2 by describing the distributed environment of the Xerox Star and other Network
Systems products. This provides background for the rest of the paper. The distinction is explained
between a workstation (a user's private machine) and a server (a machine that manages resources
shared by many users). Additional background material is found in Section 3, where we discuss
global names for users and resources. We also discuss the security features associated with a user's
private work space (a desktop).

Autnentication comes lllto piay in two different situations: a user beginning a session at a
workstation, and a server being contacted to perform operations on the resources it manages. The
initial implementations addressing these two situations are described in Sections 4 and 5. We
introduce there, and in Section 6, the distinction between an open architecture and a closed one. An
open architecture (in which means of connection are publicly known and components come from
multiple sources) involves additional exposures that must be considered.

Threats come in varying degrees, and the costs of countering them vary accordingly. Sections 6 and 7
discuss levels of security requirements from different points of view. Encryption is the primary tool
that can meet these requirements. The system designer must consider the cost of these measures, but
not only the equipment cost. Encryption can bring with it an operating cost in terms of
administrative burden, user inconvenience, and system unavailability. Section 8 motivates system
design objectives in this area.

To bring encryption into widespread use, it is not enough for low-cost chips implementing it to be
available in the marketplace, and for the practical operational problems to be addressed. Protocol
standards are needed fitting encryption into the distributed network architecture. Alternatives for
introducing these protocols are described in Section 9. The main idea drawn from the literature is
that of an authentication service, a trusted intermediary in the act of validating the identities of
communicating parties. Practical complications in the design of such a service are discussed in
Section 10, along with problems still open.

2. I)istributed Office System Architecture

Our context is that of an integrated office system based on distributed processing of information.
Local communication within a facility or campus is accomplished through an Ethernet
communication system. This is a high bandwidth local area network using an underlying broadcast
medium. Specifications for the network can be found in [fmC 801. An internetwork is formed by using
outside communication lines and an internetwork routing service (described below) to connect

AUTHENTICATION IN STAR AND NETWORK SYSTEMS

together Ethernet installations in different locations. The nodes attached to an Ethernet cable are
typically small, autonomous processors. Each has specified roles to play, and sometimes has to
communicate with other nodes to cooperate in ajoint task.

Nodes are divided into two general categories: workstations and servers. A workstation is the
physical device that the user sees. It is at a person's desk, providing direct interactive functions.
Xerox provides different models of workstations with different levels of functionality. This paper
deals primarily with the most powerful of these, the 8010 Star Information System, and its
interactions with servers. Star is a functionally rich, private electronic environment, providing a
variety of operations on text, business graphics, and records. Some details of its capabilities are
documented in [Smith 82, 82al, [Purvy 821.

In contrast with workstations, a server is generally an unattended device that manages resources
that are shared among many users. At a user's instigation, a workstation communicates with a
server of current interest to operate on the shared resource. Sometimes, one server calls on another in
a sort of sub-contractor arrangement to do part of the work. Generally, servers are small processors
(they use the same processor as the Star workstation) with limited roles. A service is a program that
runs on a server to provide a specific set of capabilities. The distinction is that a server is a device and
a service is a program running on it. It is possible for several services to reside in the same server,
with limitations dictated by device capacities and level of usage. Likewise, different servers on the
same network can provide instances of the same generic service. The services are referred to as the
Xerox Network Systems (NS) products. The NS protocols supported by these services are documented
in [Xerox 81], [Xerox 81 a I, and other forthcoming Xerox standards.

Currently available services include the following:

Print service. Provides paper copy of documents and records transmitted to it.

File service. Stores and retrieves documents and record files. It has larger storage
capacity than workstations, and provides a mechanism for sharing files among users.

Electronic mail service. Routes information to named users or to lists of users.

Internetwork routing service. Governs communication with a remote instance of the
same service over an external communication line. Its purpose is to make multiple
Ethernets into a single, logical internetwork with a uniform address space.

Gateway service and interactive terminal service. Allow network services to be extended
over an external telephone line (rather than by direct connection to an Ethernet cable).

External communication service. A lower-level service that controls external telephone
lines. It supports some of the previously-mentioned services, as well as workstations
that can interact with data processing systems by emulating terminals.

Clearinghouse service. A repository of information about users, services, and other
resources accessible in the inter-network.

Clearinghouse service deserves extended discussion here because of its central role in user
authentication. The philosophy and design are elucidated in [Oppen 811. A clearinghouse is itself a
distributed system, maintaining a data base of entities of interest to users and to other services. For
example, it keeps a record of the names, types, and locations of all instances of services available in an
internetwork. This information is available to other nodes, whenever they need to discover

95

96

AUTHENTICATION IN STAR AND NETWORK SYSTEMS

something about their environment. A clearinghouse service also keeps a record of the users who are
registered in an internetwork. In what follows, we use the term "clearinghouse" by itself as an
informal way of referring to a clearinghouse service. Keep in mind that it is not a machine, but a
distributed system with instances in (potentially) many servers.

Figure 1 depicts a typical, small internetwork.

3. Users, Desktops, and Authentication

Each person authorized to use workstations and network services is a "user," represented by a record
of information in the internetwork's clearinghouse. Each user has a textual name (as does, in fact,
each instance of a service in the internetwork). Some of the challenges in implementing
authentication arise not from security requirements, but from the flexible way by which entities can
be named. Objectives of the naming system include:

N ames are unique throughout the world, so different internetworks can join without
global renaming. (This is analogous to Ethernet's global assignment of physical host
numbers.)

Administration of name assignment can be decentralized in the user community.

Users' network names are predictable from their ordinary names.

Users can be identified with short, informal names when there is no ambiguity.

A hierarchical naming scheme is used, to permit management of names to be decentralized. The
parts of a fully qualified name are an "organization," a "domain" within it and the "local name." The
convention is that a user's local name is his or her full legal name. This minimizes name collisions,
and provides a firm basis for unambiguous, stable name assignment. As a convenience, a user can
have one or more secondary names, or aliases. One may also omit the domain name and/or
organization name when reasonable default values can be inferred from the context.

A clearinghouse records the names and aliases, together with relevant information about the entities
to which the names apply. Any workstation or service desiring to authenticate a user relies on this
common facility, vastly simplifying administrative procedures compared with a design requiring
different services to keep track of their valid users separately. For each user, the clearinghouse also
keeps a record of interesting information about him or her, including the password employed during
authentication. It also keeps named lists of users, employed (for example) as electronic mail
distribution lists. Assignment of names and aliases is the responsibility of system administrators,
users with special privileges.

Each Star user has a desktop. This is his or her private working environment. When someone is
using Star, their desktop is kept entirely at the local workstation. It is not shared; no one else may
gain accesf' to any object stored in the desktop unless the user explicitly moves or copies that object to
some other node that allows shared access. When Star is in use, the desktop is portrayed graphically
to the user as a collection of documents, folders, record files, text, graphics, etc. Several desktops are

. allowed to reside on a workstation concurrently, though only one may be in use at any given time.
Each bears the name of its user.

Print Service

External
Communicdtlon
Line

, :::z: "-. ·--:.-"'~':~-:":'-J':'.·.·l· . li:T,·, .. :· ".'

·IVIII,r.11 .r
Sl'[V Ir.<:

\. xl'::1 1:,1;

C0rnrn .. ,I' '-~:~ (.J:!

L,! 'It'

Figure 1. Schematic of typical small internetwork.

. --.-.

.- .
. --

Various
Communicating
Devices

Clea r 111~1110U5e
S~rvl(e

---_._------_ .. __ ._----- ---------_._-_._-..... -._---_ _-_._-_ .. _._-------_

98

AUTHENTICATION IN STAR AND NETWORK SYSTEMS

A desktop is allowed to migrate from one workstation to another in the internetwork. At the end of a
session, the user has the option of moving the desktop to a file service. At a later time, the act of
logging on retrieves the desktop to a workstation - either the same one as before or a different one.
The file service chosen is the user's "home" file service, the one identified for this purpose in that
user's clearinghouse entry. Desktop migration enables somebody to take their work environment
with them when visiting another office, or to use any available machine in a pool of workstations. For
the most part, however, it is expected that a desktop remains on a particular workstation. In fact, the
distribution of functionality is designed in such a way that a great deal of a user's work can be
accomplished on the local workstation alone, relying on services only when access is needed to their
shared resources.

In its interactions with other nodes, a workstation is always the initiator. It does not respond to
communication requests from elsewhere. A user who has left his desktop on a workstation and has
not stored it on a file server must return to that workstation to resume work with that desktop. In
some cases this could be inconvenient, but it has the important security advantage that if a desktop is
left permanently on one workstation, the objects on it are about as secure as anything can be in an
electronic office. They can only be accessed by somebody who goes to that workstation and
successfully authenticates himself as that user. If the user stores a desktop on a file server, then
obviously it is exposed to threats from the communications network and its protection is dependent on
the file service's access controls. However, it is still true that t.he user can maintain a very simple
security model, if something is really on his desktop, it is his own private object and no one else has
access to it.

The desktop data structure is a convenient place to cache interesting information about the
environment. This serves two purposes: performance and reliability are both enhanced if information
is available lacally, in additian ta being accessible by cammunicating wiLh a server. Of course,
mechanisms must be in place to deal with cached information that becomes outdated. One feature
utilizing a cache is "file drawer" objects that can appear on the Star display. These do not represent
local objects; rather, each is a reference to a remote data aggregate: a collection of files on a file
service. Cached locally is the address of the service and a service-specific identifier for the collection
of files. Another kind of cache contains information about the user who owns the desktop; this is
essentially a copy of the record maintained for that user in the clearinghouse.

Authentication is necessary in two places: when a user desires access to a workstation, and when
some requestor wants access to a service. (The requestar may be a workstation acting on behalf of a
user, .or it may be another service.) Design of the authentication mechanisms raises several issues:

There is a trade-off between centralized and distributed operation. The former provides
a single point where physical security measures can be applied, and thus may be more
credible. But it also implies a single point of failure that can disable a large
internetwork. Distributed operation eases the administrati ve bottleneck by permitting
the assignment of privileges to be decentralized along with name administration.

Users should be able to access a service anywhere in the internetwork, even those very
remote geographically or organizationally. Of course, a service has the prerogative of
granting different kinds of privileges to different requestors, but users should have a
way of identifying themselves to a remote service.

Similarly, electronic mail should be universal, with no geographical or organizational
barriers (other than those that the service administrators decide are warranted).

AUTHENTICATION IN STAR AND NETWORK SYSTEMS

A user should be allowed to access his or her desktop from any workstation.

In the next two sections, we describe the initial designs of first the workstation authentication
mechanism, then the services procedures.

4. Star Workstation Logon

A user begins a session at a Star workstation by logging on. A name and password are presented, and
access to a desktop is granted if they are found to be correct. The design of the initial logon
mechanism was intended to meet certain objectives.

Verify user credentials. Check that the name and password are those of a user registered
in the clearinghouse. Th,e name may be abbreviated and may contain an alias, as
discussed above.

Ascertain user characteristics. Some Star features require information about the user
that is maintained by the clearinghouse. For example, electronic mail must know where
to look for incoming messages. This information is obtained at logon and cached locally.

Tolerate equipment failures. If the services normally involved are inaccessible, or if a
workstation fails, users should still be able to carry out much of their work.

Control proliferation of desktops. In general, a policy of one desktop per user is desired.

As is readily apparent, these objectives are partially in conflict with one another, and some
compromise is necessary. For example, if a user's desktop is temporarily trapped on a broken
workstation or file server, the last two objectives conflict. Our approach is to permit an additional
desktop for a user under such unusual conditions.

One objective not addressed by the initial design is protection against unauthorized access by an
intruder to the underlying communication media. Thus, for example, it was deemed acceptable for
names and passwords to be communicated in the clear. Later in this paper, we will discuss the
implications of adding encryption to the design of authentication in distributed systems. First,
however, we sketch the initial implementation.

The first step is to check the user name and password. There are two sources of information on which
this test can be made: the clearinghouse service and data cached within the workstation. The former
is tried first, since the latter may be out of date. This brings us to the possibility that the
clearinghouse is inaccessible. This is a rare problem, since the clearinghouse is distributed and its
data can be replicated in more than one server. Nonetheless, the logon program has a way to press on
even if attempted communication with a clearinghouse fails to decide the authentication issue. This
is accomplished by using the second source of information - locally cached data. The workstation may
contain a number of desktops. Each desktop contains its user's fully qualified name. [t also contains
the corresponding password (protected by one-way encryption). So purely local processing is
sufficient to authenticate a person claiming to be a valid user provided that (a) the relevant desktop is
local, and (b) the fully qualified name was submitted. The second restriction could be eliminated if all
the user's aliases were also cached. We have found it adequate to relax restriction (b) simply by
caching the user's most recently used alias in the desktop.

99

100

AUTHENTICATION IN STAR AND NETWORK SYSTEMS

So far, we have validated the user's credentials if either a clearinghouse service was accessible or the
desired desktop was on the local workstation. In the unlikely event that neither of these situations
prevails, we cannot continue. Of course, if the name or password is determined to be invalid, we abort
the logon attempt.

The second step during logon is to locate the user's desktop. There are two cases. In the case of an
inaccessible clearinghouse, we have already located the desktop on the local workstation. In the
common case where the clearinghouse was contacted, it provided some additional information about
the user. For example, if an alias or abbreviated name was used, it supplied the corresponding fully
qualified name. Using this, we can look on the workstation and determine whether or not the desktop
being sought is there. If it is not, we employ a second piece of information that was obtained from the
clearinghouse: the identity of the user's "home" file service. If the desktop exists, that is where it
must be (unless it is at another workstation, and thus is inaccessible). The logon program attempts to
retrieve the desktop from that service. This could fail if the desktop is not there, or the server is
broken, or communication with it is severed, or there is inadequate space on the workstation. In
these situations, the user is given the option of having a new desktop created.

As a final step, the logon program caches in the desktop the information about the user obtained from
the clearinghouse, overwriting whatever version of this information was there previously. Note that
in all the logon processing, this cache was never used as a source of information if the clearinghouse
was accessible. Thus, no problem arises if any of the cached information is out of date. At worst, the
clearinghouse contains a new password for the user, changed since the last session. If the
clearinghouse is inaccessible, the user may have to employ the old password temporarily. It is
important to note, however, that validity of the old password is indeed temporary; it becomes invalid
the first time a logon occurs while the clearinghouse is accessible. This design was deemed to be a
pruper trade-orrbetween security and availability.

5. Logon for Services

In the course of providing its services, a server receives requests over the communication network
from workstations (or other services). The service-provider has an option: it can accede to requests
indiscriminately (trusting workstations to have performed the authentication), or it can
(re)authenticate the user's credentials. There are both philosophical and pragmatic aspects to this
decision. In a closed architecture (one in which the network, the nodes, and their software are from a
single source and are reasonably immune to tampering), one is tempted to think of the local area
network as an internal bus in a multi-processor system. The image is enhanced by the speed of a local
area network, though not by its physical dispersal. From this point of view, it seems superfluous for a
service to do authentication. An open architecture is a different situation. The greatest exposure
comes from nodes on which users can do systems programming, bypassing any and all software with
which the machine was delivered. In principle, such users can read any data communicated on the
local area network, and can inject arbitrary packets. A concerted effort is required to provide data
integrity and privacy in this environment.

Of course, there is an associated cost if servers re-authenticate users' credentials. First, there is the
performance cost: it takes time. Second, there is an availability cost. For example, if a node crucial to
authentication is inaccessible, the user may be unable to use a file service, even if the workstation
and file service are both operational. The file service could be designed with a cache to help in this
situation, but it is not clear how the server is to decide what to cache - far less clear, certainly, than in
the case of the workstation. If it caches information on all potential users, that is a large storage

AUTHENTICATION IN STAR AND NETWORK SYSTEMS

burden. One must also consider the processing burden to keep it all up to date. If it caches less, there
will be situations in which some users can do remote filing but not other users. This may be
undesirable from the point of view of the user community as a whole, especially if the discrimination
among users appeared to be arbitrary.

In the rnitial implementation of the Xerox Network Systems, some services are trusting. For
example, the external communication service does not validate credentials. It is a low-level service,
and assumes that any authentication necessary will be performed by the application software
employing it.

A file service or clearinghouse is much more discriminating. When a workstation contacts a file
service, the user credentials are presented. (Of course, the user does not have to retype them; they are
already known by the workstation software.) The service checks the credentials against the
clearinghouse data base, and accepts the connection attempt only if it is satisfied that the user is who
he or she claims to be. Note that a three-way interchange can result, involving the workstation, file
service, and clearinghouse service. In validating a user's credentials, therefore, the initial Network
Services design places a server in much the same role as a workstation in its relationship to the
clearinghouse. The problems and techniques for security mechanisms stronger than this are
discussed in the sections that follow.

6. Security Requirements in an Open Architecture Office Network

Before considering further security enhancements for user authentication, desktop migration, and
interactions with servers, we should pause to understand the range of different security requirements
in office environments. Different offices have very different requirements for security, and each office
has to determine its requirements in terms of a cost/benefit trade-off. The cost involves not only
equipment cost but also administrative effort, user inconvenience, and decreased functionality or
availability. This trade-off will lead to a wide range of requirements for added security controls.

In some offices there is no significant threat that someone would go to any real trouble to read or
modify information intended for someone else. At the other extreme, an office handling classified
national security information requires very reliable safeguards whenever the information leaves a
controlled environment. Most offices will fall somewhere between-many will have the characteristic
that most of the information is not very sensitive, but a small amount of information such as
personnel data or corporate strategic planning documents are very sensitive. In many cases there is a
strong desire to protect this sensitive information from other authorized users on the same
internetwork.

The workstations and servers that Xerox supplies as nodes for its Network Systems are programmed
so that a user of these machines cannot read or modify information being sent to a different node.
Ilowever, even in a network which contains only trustworthy nodes, user authenticators and
sensitive data should be protected if there is a serious concern about an illicit tap on a local area
network or on an external communication line. Furthermore, Xerox is committed to an open
architecture, so the protocols for connecting to the network and communicating with the services are
known. As such a network grows and becomes more diverse, it becomes increasingly unrealistic to
assume that no one will look at user authenticators or other information in transit. This is especially
true if devices that support systems programming are attached to the network.

The Ethernet and Internet Transport protocols are designed to transmit information reliably from
one node to another. These lower level protocols by themselves are not intended to insure data
integrity or data confidentiality when one of the nodes in the network is deliberately breaking the
rules; i.e., not using the communications protocols as intended. Encryption is the standard way to

101

102

AUTHENTICATION IN STAR AND NETWORK SYSTEMS

thwart an intruder who is attempting to read or modify data intended for other nodes. Encryption can
also be applied to files, where the key must be available at a much later time. Another application is
electronic mail, where a valid recipient must be able to decrypt and authenticate a message at a later
time.

The remainder of this paper deals with the security threats, constraints, costs, and available solutions
for encrypting both user authenticators and other information in an office network. Note that we do
not discuss the related topics of access controls, audit, or other components of a balanced set of
security controls for an office system.

7. Threats to be Handled by Encryption

In designing controls to provide a certain level of security, it docs little good to protect against one
threat if another threat of equal simplicity and equal consequence is left uncontrolled. It is often
debatable whether one weakness is simpler to exploit or has more serious consequences than another
against which one has no protection. In this paper we do not discuss the relative importance of
protecting against intruders on the network vs. other threats.

As a prerequisite to all other security against an intruder on the network, user authenticators (such
as passwords) must be protected before it makes sense to protect other data. Otherwise, the simplest
attack for an intruder on the network is to watch for some privileged user's authenticator and then
later logon as that user in order to read or modify information. To protect the user authenticator, note
that simply encrypting it under some stable key would do little good. An intruder on the network
could simply read the encrypted string, then later deceive the same service by replaying the
encrypted string. Note also that to protect the user authenticators, spoofing threats must be handled
so that an intruder cannot imitate a legitimate service and have a user's authenticator sent to it.

The second level of concern is to insure the confidentiality and integrity of data moving between
nodes - even in the presence of hostile nodes in the network. In specialized applications, one might be
concerned only about protecting the data from being read, or only about protecting it from undetected
modifications. For example, in electronic funds transfer, protecting the information against
undetected modification may be far more important than confidentiality. However, in a large office
system if one needs encryption at all, one is likely to need it for both reasons. Once one goes to the
trouble of introducing encryption, it is not that much harder to design it so it can counter both
threats.

In some environments one can derive useful information by watching for patterns in the amount of
data flowing between nodes even if one cannot decipher any of the data. This threat is called "traffic
analysis." In the context of a local area network supporting an office system, it is likely that any
information that could be derived by traffic analysis could be obtained more easily by other means.
For example, traffic analysis might lead to a conclusion that some branch of the office is undergoing a
crisis; however, in an office one is likely to have many easier ways to discover that. This line of
argument leads to the assertion that encryption of the source and destination addresses in packet
headers on the gthernet is not needed for office applications. This assumption will make encryption
significantly more cost effective in meeting its other goals and allows encryption to be handled at
considerably higher levels in the communications protocols. The result is considerably more
flexibility. (If one is concerned about traffic analysis in a large interconnection of local nets, there are
a variety of other techniques available such as a second level of encryption on the long distance
interconnections between Ethernets using available point-to-point encryption technology.)

AUTHENTICATION IN STAR AND NETWORK SYSTEMS

8. Practical Constraints on Encryption for Office Systems

Security is a very important concern in office systems. However, even in large computer
communications applications, encryption has come into widespread usage only for the limited
applications where there is an overwhelmingly clear need for it. The reasons for this are clear. Using
currently available devices, encryption:

requires careful system-wide planning,

involves a substantial amount of administrative burden for the organization and the
individual user,

can be a cause of system downtime,

is usually expensive.

These characteristics are even more serious concerns in an office system. Fortunately, the hardware
costs for encryption will continue to drop rapidly, and the other practical constraints on widespread
use of it in an office system can be made to disappear by proper design of the office system. The
following paragraphs discuss examples of the concerns that need to be resolved to make encryption
practical in office systems.

Limited advance planning. Office systems will grow incrementally from small systems
to large internetworks. It is generally impossible to foresee all future requirements at
the beginning. The authentication and encryption capability must he compatible with
this incremental growth.

Little added administrative burden. Experience across a number of office systems
indicates that 1 % of the workstations are relocated every week. Authorized users will be
added and deleted frequently. The administrative effort to support encryption in this
environment of frequent changes must be small. And it must be simple to enforce
desired controls reliably despite these constant updates.

User convenience. Users of office systems will be under pressure to get a job done. They
are likely to resent any complicated actions that are required to specify security controls.
The right thing must happen by default most of the time.

Low user learning time. Star is carefully designed so a user does not have to understand
when his action will trigger communication with a service elsewhere on the network
(although it is also designed so the experienced user can understand this). It would be
inappropriate for the user to do some special added action every time his workstation
interacts with a service.

Tolerance for user mistakes. [n an office system, users will make mistakes. While no
system can be secure in the face of all possible errors, a system can be designed to be
tolerant of some of the more likely user errors.

No impact on system availability. We have discussed the approach Star currently uses to
continue operations even if a clearinghouse cannot be reached. Similarly, key
distribution for encryption should not become a single, central point of failure. In
general, an office system manager wants some way to continue operations with a

103

104

AUTHENTICATION IN STAR AND NETWORK SYSTEMS

degraded level of protection as an alternative to shutting down the system because of
failures to establish encrypted communications.

No lost information. Once a file has been encrypted, it is lost if the encryption key is lost.
Whether the user or some part of the system is to remember the key, there is a hard
problem to make sure it is not lost while at the same time protecting the key from all
unauthorized parties.

Low incremental equipment cost. There are only a few offices where the equipment cost
for security can be more than a small percentage added to the base equipment cost.

On the last point, one dilemma is whether to include hardware for encryption in all processors or to
have it be optional. Unfortunately, the cost of encryption chips has not yet dropped to the point where
they can be included in all processors whether or not encryption is going to be used. On the other
hand, the added manufacturing, distribution, and service costs to support an extra hardware
configuration can be far more significant than the chip costs. More generally, note that for a fully
configured, high functionality office workstation, the cost of the hardware components is only a small
fraction of the total cost. To make encryption functionality an effective part of a full office system,
hardware costs must be a similarly small fraction of the total cost, which must include the costs for
software, testing, documentation, and customer support for the encryption functionality.

Clearly encryption is something that can benefit greatly from economies of scale in all these areas.
Costs can drop dramatically as it comes into widespread use and becomes a natural part of the office
system. This is one argument for develop,ng a single scheme for encryption that satisfies a wide
range of different office system requirements. It would be best if a scheme for encryption in office
systems received broad support from many vendors.

9. Protocol Standards for Using Encryption

One question is how we get from where we are now, with very limited and very costly uses of
encryption, to a point where it is cheap and widely available. Clearly, the timely development of high
level protocol standards for using encryption in office systems could playa large role in accomplishing
this. But there are some difficult decisions to be made. For example, different protocol designs
possess different amounts of strength in the security they provide. These are analogous to the
different levels of exposure discussed in Section 7. Let us indicate some typical designs, in increasing
order of strength and cost.

1. Password checking. Users are validated by comparing their names and passwords
with records kept in a generally accessible repository. There is no attempt to prohibit
authenticators from being transmitted in the clear. This is comparable in strength to
the initial Star logon mechanism.

2. Authentication service. The objective is to transmit user authenticators in encrypted
form only. While there are various schemes for accomplishing this objective, designs
that are particularly relevant to our environment are documented in [Needham 7S1 as
well as in [Branstad 73, 751, I Cole 7SI, I Denning S11. Briefly, if a user at workstation A
wants to talk to service B, then A first asks the authentication service for a conversation
key that A and B can use to encrypt their communications with each other. Of course,
the conversation key itselfha.s to be encrypted when it is sent to A and to B. Node A can
cache the credentials it received from the authentication service, and re-use them for

AUTHENTICATION IN STAR AND NETWORK SYSTEMS

several sessions with B. If one is only concerned about protecting passwords from casual
inspection on the network, then only a few bytes of information have to be encrypted.

3. Command protection. In addition to the previous level of protection, it is sometimes
useful to protect commands and status information in the communication network, even
if an eavesdropper can overhear the data being transmitted. For example, an intruder
might read the content of a file being transmitted, but could not change a "rename file"
command to a "delete file" command. The primary reason for considering this as a
separate level is that this kind of protection can be accomplished by attaching an
encrypted digital signature computed over a comparatively small number of bytes. It is
therefore feasible to consider doing the encryption in software up through this level.

4. Data protection. In addition to the previous two levels of protection, encrypt the data
as well. Here, we reach the point that special-purpose encryption hardware becomes a
practical necessity.

There are in existence networks that have chosen one of these levels and incorporated it into a system
design. However, this is not enough. We must deal with networks of devices with widely varying
capabilities. Everything is connectable one way or another, from the lowly teletypewriter to the lofty
super-computer. Some nodes may have encryption implemented in hardware; others, in software;
still others, not at all. Standardizing on a level low enough so that inexpensive devices can be used
implies a rather weak security system. Choosing a higher level increases the cost of the entire
system. Not only the backbone equipment cost is involved; there is also a substantial user acceptance
factor. For example, many of our users value the ability to dial in for their electronic mail using
ordinary teletypewriter terminals or home computers (with voice mail systems, even an ordinary
telephone has to be considered). Some day perhaps all such devices will be equipped with encryption
chips, but that is certainly many years away. Our systems and protocols must deal with the mixed
environment of today.

The main design objective we have to meet is to allow different protocol variations with different
protective strengths to co-exist in the same internetwork. Devices having different levels of
capability must be able to communicate with one another, despite those differences. The weakness of
one type of device should not compromise communication among more capable nodes.

This set of design objectives has several implications. First, one user may have to use different
passwords with different kinds of workstations. Second, servers should have a notion of the different
levels of protection and support the protocol variations this implies. They must remember which
level is in use throughout a user's session. The third implication affects access control. Some services
maintain an access control list, based on a conceptual two-dimensional matrix of users vs. resources.
(Typically, users are also categorized by groups, with privileges inherited from group membership.)
The new goal is for access control to take into consideration the strength of the authentication
arrangement being used in a particular session. This becomes a third dimension of the matrix.
Finally, the authentication service should support the notion of varying levels of security strength in
the conversations it arranges. Its responsibilities include insuring that each party knows the security
strength of its partner's authentication. It should support multiple passwords for each user (forcing a
user to adopt multiple identities is an unpleasant alternative). Basing· protection on workstation type
alone is inadequate: a user having only a "weak" password that has been exposed to potential
intruders on the net should be able to use a "strong" workstation and be granted only "weak"
privileges by servers.

Of course, the managers of a particular internetwork might decide that the extra security is not worth
the inconvenience it imposes on users or system administrators. In such cases, they have the

105

106

AUTHENTICATION IN STAR AND NETWORK SYSTEMS

prerogative of using a weaker level of security even with more powerful devices. Another
management option is to maintain strong security by excluding low-capability devices from the
network. The overall system design should provide these options to different user organizations.

10. Additional Protocol Issues

The authentication service acts as an intermediary in establishing a conversation between two nodes
in the internetwork. However, this is only one of the two types of authentication required: a service
being contacted by a requestor. The basic authentication service design does not deal with a user
logging onto a workstation in the first place. An alternative protocol is needed to convince the
software running in the workstation that the user is authentic. Note that if spoofing is to be
countered, the protocol must deal with the situation in which the person typing in the claimed
password also controls a node pretending to provide an authentication service.

Another set of design decisions involves one service calling on another in order to do work on behalf of
an end user. The chain of calls can involve several intermediary services between the user and the
final service. The issue is: what privileges does the end service grant to the request? That of the end
user? That of the next-to-Iast service? Do the intermediate services even have their own sets of
privileges ascribed to them'? If so, do we want to take their minimum? Does the user have to grant
the intermediary services all his privileges, or can he circumscribe the activities they may do on his
behalf? Reliable, secure protocols must be devised to implement whatever policy emerges from
answering these questions.

In some protocol variations and some types of devices, we discussed implementing encryption in
software. In fact, this is how the initial Star workstation stores a user's password in the desktop, as
discussed in Section 4. Aside from the comparative slowness of this method, a software
implementation is technically excluded from conforming with the Federal Data Encryption Standard
[NBS 771. Nonetheless, it does seem to be an imp9rtant intermediary step to get through a transition
phase and make encryption more widely available without a large startup cost.

For office systems, another question is exactly what the ends of the authentication are. Above, we
assumed that the user's password was to be authenticated. It is equally possible to have a secret key
associated with a machine and authenticate the machine. By combining the user's password with a
key from the machine in some fixed way, it is possible to authenticate both the user and the machine
in use. (See [Smid 79].) The additional benefit to be gained is the ability to secure physically a room
containing privileged machines. For example, an authorized user who could access sensitive
information only in an open room in front of colleagues might be less likely to do something irregular.

11. Conclusion

There are-many possible approaches to authenticating users in a small office system. Ilowever, as the
system grows larger and more diverse, many of these authentication schemes will either become a
large administrative burden or they will sometimes he the cause of the entire system being
unavailable. The approach chosen in Star was designed to avoid these two prohlems, and to have an
evolutionary path open to ever increasing levels of security.

It is easy to supply encryption functionality as a feature in an office system. Clearly, some simple
encryption feature can easily be provided to allow users to encrypt files - assuming they were willing

AUTHENTICATION IN STAR AND NETWORK SYSTEMS

to manage their own keys and take responsibility for the loss of the file if they ever forget the key. It
is much harder to build a set of facilities so that users and system administrators can get a consistent
and balanced level of security for all their sensitive information without unnecessary complexity or
. .
Inconvemence.

Acknowledgement

Many colleagues contributed to the design concepts discussed in this paper and to the initial
implementation. Dorothy Andrews, Bob Ayers, Marney Beard, Andrew Birrell, Yogen Dalal, Bob
Lyon, John Maloney, Dave Redell, and Michael Schroeder deserve special mention.

References

[Branstad 731
D. Branstad, "Security Aspects of Computer Networks." Proc. AIAA Comptr. Network Syst.
Con{., April, 1973.

[Branstad 751
D. Branstad, "Encryption Protection in Computer Data Communications." Proc. Fourth Data
Communications Symp., ACM, October,rI975.

[Cole 78]
G.D. Cole, "Design Alternatives for Computer Network Security." NBS SP-SOO-2 I, vol. I,
January, 1978.

[DEC 80]
Digital Equipment Corp., Intel Corp, and Xerox Corp., "The Ethernet, a Local Area Network:
Data Link Layer and Physical Layer Specifications." Version 1.0, September, 1980.

[Denning 81j
D.E. Denning and G.M. Sacco, "Timestamps in Key Distribution Protocols." Comm. AeM, 24, 8,
August, 1981.

[NBS 77]
National Bureau of Standards, Data Encryption Standard. FIPS Pub. 46, NBS, Washington,
D.C., January, 1977.

[N eedham 78 J

R.M. Needham and M.D. Schroeder, "Using Encryption for Authentication in Large Networks of
Computers." Comm. AeM, 21,12, December, 1978.

[Oppen 811
D.C. Oppen and Y.K. Dalal, "The Clearinghouse: a Decentralized Agent for Locating Named
Objects in a Distributed Environment." Op[)-T8103, Xerox, Palo Alto, Cal., October, 1981.

[Purvy 821
R. Purvy, J. Farrell, and P. Klose, "The Design of Star's Records Processing," Proc. ACM-SIGOA

Con{. on Office Automation Systems, June 1982.

[Smid 79J
M.E. Smid, "A Key Notarization System for Computer Networks." NBS SP-SOO-S4, vol. 1,

October, 1979.

107

108

AUTHENTICATION IN STAR AND NETWORK SYSTEMS

[Smith 82]
D.C. Smith, C. Irby, R. Kimball, and W. Verplank, "Designing the Star User Interface," Byte,
April, 1982.

[Smith 82al
D.C. Smith, E. Harslem, C. Irby, and R. Kimball, "The Star User Interface, An Overview," AFIPS

Conf Proc. ofNCC, June, 1982.

[Xerox 81]
Xerox Corp., "Internet Transport Protocols." XSIS 028112, Xerox, Stamford, Conn., December,
1981.

[Xerox 81al
Xerox Corp., "Courier: the Remote Procedure Call Protocol." XSIS 038112, Xerox, Stamford,
Conn., December, 1981.

Grapevine: An Exercise in
Distributed Computing

Andrew D. Birrell, Roy Levin,
Roger M. Needham, and Michael D. Schroeder

Xerox Palo Alto Research Center

Grapevine is a multicomputer system on the Xerox
research internet. It provides facilities for the delivery of
digital messages such as computer mail; for naming
people, machines. and s('rvices~ for authenticating people
and machines~ and for locating services on the internet.
This paper has two goals: to describe the system itself
and to serve 3j a case study of a real application of
distributed computing. Part I describes t ",," set 0fservic~:s
provided by Grapevine and how its data and function are
divided among computers on the internet. Part II pre­
sents in more detail selected aspects of Grapevine that
illustrate novel facilities or implementation techniques.
or that provide insight into the structure of a distributed
system. Part III summarizes the current state of the
system and the lessons learned from it so far.

CR Categories and Subject Descriptors: C.2A [Com­
puter-Communication Networks]: Distributed Systems­
distributed applications, distributed databases; CA [Per­
formance of Systems]-reliability, availability and ser­
viceability; DA.7 [Operating Systems]: Organization and
Design-distributed systems; H.2A [Database Manage­
ment]: Systems-distributed systems; H.2.7 [Database
Management]: Database Administration; HA.3 [Infor­
mation Systems Applications]: Communications Appli­
cations-electronic mail

General Terms: Design, Experimentation, Reliability

Part I. Description of Grapevine

1. Introduction

Grapevine is a system that provides message delivery,
resource location, authentication, and access control ser-

Authors' Present Addresses: Andrew D. Birrell. Roy Levin. and
Michael D. Schroeder. Xerox Palo Alto Research Center. Computer
Science Laboratory. 3333 Coyote Hill Road, Palo Alto. CA 94304;
Roger M. Needham. University of Cambridge Computer Laboratory.
Corn Exchange Street. Cambridge. CB2 3QG. United Kingdom.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage. the ACM copyright notice and the title of the
publication and its date appear. and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise. or to republish. requires a fee and/or specific permission.
© 19R2 ACM OOOI-07R2/R2/0400-0260 $00.75.

109

110

vices in a computer internet. The implementation of
Grapevine is distributed and replicated. By distributed
we mean that some of the services provided by Grape­
vine involve the use of multiple computers communicat­
ing through an internet; by replicated we mean that some
of the services are provided equally well by any of several
distinct computers. The primary use of Grapevine is
delivering computer mail, but Grapevine is used in many
other ways as well. The Grapevine project was motivated
by our desire to do research into the structure of distrib­
uted systems and to provide our community with better
computer mail service.

Plans for the system were presented in an earlier
paper [5]. This paper describes the completed system.
The mechanisms discussed below are in service support­
ing more than 1500 users. Designing and building
Grapevine took about three years by a team that aver­
aged two to three persons.

1.1 Environment for Grapevine
Figure 1 illustrates the kind of computing environ­

ment in which Grapevine was constructed and operates.
A large internet of this style exists within the Xerox
Corporation research and development community. This
internet extends from coast-to-coast in the U.S.A. to
Canada, and to England. It contains over 1500 computers
on more than 50 local networks.

Most computing is done in personal workstation com­
puters [12 J: typically each workstation has a modest
amount of local disk storage. These workstations may be
used at different times for different tasks, although gen­
erally each is used only by a single individual. The
internet connecting these workstations is a collection of
Ethernet local networks [6J, gateways, and long distance
links (typically telephone lines at data rates of 9.6 to 56
Kbps). Also connected to the internet are server com­
puters that provide shared services to the community,
such as file storage or printing.

Protocols already exist for communicating between
computers attached to the internet [11]. These protocols
provide a uniform means for addressing any computer

Fig. I. An Example of a Small Internet.

Ethernct

attached to any local network in order to send individual
packets or to establish and use byte streams. The indi­
vidual packets are typically small (up to 532 bytes). and
are sent unreliably (though with high probability of
success) with no acknowledgment. The byte stream pro­
tocols provide reliable, acknowledged, transmission of
unlimited amounts of data ll].

1.2 Services and Clients
Our primary consideration when designing and im­

plementing Grapevine was its use as the delivery mech­
anism for a large, dispersed computer mail system. A
computer mail system allows a group of human users to
exchange messages of digital text. The sender prepares
a message using some sort of text editing facility and
names a set of recipients. He then presents the message
to a delivery mechanism. The delivery mechanism moves
the message from the sender to an internal buffer for
each recipient, where it is stored along with other mes­
sages for that recipient until he wants to receive them.
We call the buffer for a recipient's messages an inbox.
When ready, the recipient can read and process the
messages in his inbox with an appropriate text display
program. The recipient names supplied by the sender
may identify distribution lists: named sets of recipients,
each of whom is to receive the message. We feel that
computer mail is both an important application of dis­
tributed computing and a good test bed for ideas about
how to structure distributed systems.

Buffered delivery of a digital message from a sender
to one or more recipients is a mechanism that is useful
in many contexts: it may be thought of as a genera 1
communication protocol, with the distinctive property
that the recipient of the data need not be available at the
time the sender wishes to transmit the data. Grapevine
separates this message delivery function from message
creation and interpretation, and makes the delivery func­
tion available for a wider range of uses. Grapevine does
not interpret the contents of the messages it transports.
Interpretation is up to the various message manipulation
programs that are software clients of Grapevine. A client

telephone line

Ethernet Ethernct

program lmplementing a computer mail user lllterface
will interpret messages as interpersonaL textual memos.
Other clients might interpret messages as print files,
digital audio, software. capabilities, or data base updates.

Grapevine also offers authentication. access control.
and resource location services to clients. For example, a
document preparation system might use Grapevine's
resource location service to find a suitable printing server
attached to the internet (and then the message delivery
service to transfer a document there for printing) or 2-

file server might use Grapevine's authentication and
access control services to decide if a read req uest for a
particular file should be honored.

Grapevine's clients run on various workstations and
server computers attached to the internet. Grapevine
itself is implemented as programs running on server
computers dedicated to Grapevine. A client accesses the
services provided by Grapevine through the mediation
of a software package running on the client's computer.
The Grapevine computers cooperate to provide services
that are distributed and repliclted.

2. Design Goals

We view distributed implementation of Grapevine
both as a design goal and as the implementation tech­
nique that best meets the other design goals. A primary
motivation for the Grapevine project was implementing
a useful distributed system in order to understand some
system structures that met a real set of requirements.
Once we chose message delivery as the functional do­
main for the project, the following specific design goals
played a significant role in dt:termining system structure.

Grapevine makes its services available to many dif­
ferent clients. Thus, it should make no assumptions
about message content. Also, the integrity of these ser­
vices should not in any way depend on correctness of
the clients. Though the use of an unsatisfactory client
program will affect the service given to its user, it should
not affect the service given to others. These two goals
help determine the distribution of function between
Grapevine and its clients.

Two goals relate to Grapevine's reliability properties.
First a user or client implementor should feel confident
that if a message is accepted for delivery then it will
either be made available to its intended recipients or
returned with an indication of what went wrong. The
delivery mechanism should meet this goal in the face of
user errors (such as invalid names), client errors (such as
protocol violations), server problems (such as disk space
congestion or hardware failures), or communication dif­
ficulties (sucb as internet link severance or gateway
crashes). Second, failure of a single Grapevine server
computer should not mean the unavailability of the
Grapevine services to any client.

The typical interval from sending a message to its
arrival in a recipient's inbox should be a few minutes at

most. The typical interactive delay perceived by a client
program when delivering or receiving a message should
be a few seconds at most. Since small additions to
delivery times are not likely to be noticed by users, it is
permissible to improve interactive behavior .at the ex­
pense of delivery time.

Grapevine should allow decentralized administra­
tion. The users of a widespread internet naturally belong
to different organizations. Such activities as admission
of users, control of the names by which they are known.
and i.heii· inclusion in distribution lists should not require
an unnatural degree of cooperation and shared conven­
tions among administrations. An administrator should
be able to implement his decisions by interacting directly
with Grapevine rather than by sending requests to a
central agency.

Grapevine should work well in a large size range of
user communities. Administrators should be able to im­
plement decentralized decisions to adjust storage and
computing resources in convenient increments when the
~hape, size. or load patterns of the internet change.

Grapevine should provide authentication of senders
and recipients. message delivery secure from eavesdrop­
ping or content alteration, and control on use and mod­
ification of its data bases.

3. Overview

3.1 Registration Data Base
Grapevine maintains a registration data base that

maps names to information about the users, machines.
services, distribution lists, and access control lists that
those names signify. This data base is used in controlling
the message delivery service; is accessed directly for the
resource location, access c011trol, and authentication ser­
vices; and is used to configure Grapevine itself. Grape­
vine also makes the values in the data base available to
clients to apply their own semantics.

There are two types of entries in the registration data
base: individual and group. We call the name of an entry
in the registration data base an RN arne.

A group entry contains a set of RNames of other
data base entries, as well as additional information that
will be discussed later. Groups are a way of naming
collections of RNames. The groups form a naming net­
work with no structural constraints. Groups are used
primarily as distribution lists: specifying a group RName
as a recipient for a message causes that message to be
sent to all RNames in that group, and in contained
groups. Groups also are used to represent access control
lists and collections of like resources.

An individual entry contains an authenticator (a pass­
word), a list of inbox sites, and a connect site, as well as
additional information that will be discussed later. The
inbox site list indicates, in order of preference, the
Grapevine computers where the individual's messages
may be buffered. The way these multiple inboxes are

111

112

used IS dIscussed m Sec. 4.2. 'lhe connect sIte IS an
internet address for making a connection to the individ­
ual. Thus, an individual entry specifies ways of authen­
ticating the identity of and communicating with-by
message delivery or internet connection-the named
entity. Individuals are used to represent human users
and servers, in particular the servers that implement
Grapevine. Usually the connect site is used only for
individuals that represent servers. Specifying an individ­
ual RName (either a human or a server) as a recipient of
a message causes the message to be forwarded to and
buffered in an inbox for that RName.

3.2 Functions
Following is a list of the functions that Grapevine

makes available to its clients. Responses to error condi­
tions are omitted from this description. The first three
functions constitute Grapevine's delivery service.

A ccept message:
[sender, password, recipients, message-body] ~ ok

The client presents a message body from the sender
for delivery to the recipients. The sender must be
RName of an individual and the password must au­
thenticate that individual (see below). The recipients
are indi\'idual and group R!'-!ames. The individuals
correspond directly to message recipients while the
groups name distribution lists. After Grapevine ac­
knowledges acceptance of the message the client can
go about its other business. Grapevine then expands
any groups specified as recipients to produce the com­
plete set of individuals that are to receive the message
and delivers the message to an inbox for each.

Message polling:
[individual] ~ {empty, nonempty}

Message polling is used to determine whether an
individual's inboxes contain messages that can be
retrieved. We chose not to authenticate this function
so it would respond faster and load the Grapevine
computers less.

Retrieve messages:
[name, password] ~ sequence of messages ~ ok

The client presents an individual's name and pass­
word. If the password authenticates the individual
then Grapevine returns all messages from the corre­
sponding inboxes. When the client indicates "ok,"
Grapevine erases these messages from those inboxes.

Grapevine's authentication, access control, and resource
location services are implemented by the remaining func­
tions. These are called the registration service, because
they are all based on the registration data base.

Authenticate:
[individual, password] ~ {authentic, bogus}

The authentication function allows any client to
determine the authenticity of an individual. An indi-

VIdual/password combmatlOn IS authentIc 11 the pass­
word matches the one in the individual's registration
data base entry.1

Membership:
[name, group] ~ {in, out}

Grapevine returns an indication of whether the
name is included in the group. Usually the client is
interpreting the group as an access control list. There
are two forms of the membership function. One indi­
cates direct membership in the named group: the other
indicates membership in its closure.

Resource location:
[group] ~ members
[individual] ~ connect site
[individual] ~ ordered list of inbox sites

The first reSOUfce location function returns a
group's rrlembership set. 1f the group is interpreted as
a distribution list, this function yields the individual
recipients of a message sent to the distribution list if
the group is interpreted as the name of some service,
this function yields the names of the servers that offer
the service. For a group representing a service, com­
bining the first function with the second enables a
client to discover the internet addresses of machines
offering the service, as described in Sec. 5. The third
function is used for message delivery and retrieval as
described in Sec. 4.

Registration data base update and inquiry:

There are various functions for adding and deleting
names in the registration data hase, and for inspecting
and changing the associated values.

3.3 Registries
We use a partitioned naming scheme for RNames.

The partitions serve as the basis for dividing the admin­
istrative responsibility, and for distributing the data base
among the Grapevine computers. We structure the name
space of RNames as a two-level hierarchy. An RName
is a character string of the form F.R where R is a registry
name and F is a name within that registry. Registries can
correspond to organizational, geographic, or other arbi­
trary partitions that exist within the user community. A
two-level hierarchy is appropriate for the size and orga­
nizational complexity of our user community, but a
larger community or one with more organizational di­
versity would cause us to use a three-level scheme. Using
more levels would not be a fundamental change to
Grapevine.

I This password-based authentication scheme is intrinsically weak.
Passwords are transmitted over the internet as clear-text. and clients of
the authentication service see individuals' passwords. It also does not
provide two-way authentication: clients cannot authenticate servers.
The Grapevine design includes proper encryption-based authentication
and security facilities that use Needham and Schroeder'S protocols [()]
and the Federal Data EncryptIOn Standard I ~q. These better facilities,
however. are not implemented yet.

3.4 Distribution of Function
As indicated earlier, Grapevine is implemented by

code that runs in dedicated Grapevine computers, and
by code that runs in clients' computers. The code running
in a Grapevine computer is partitioned into two parts,
called the registration server and the message server.
Although one registration server and one message server
cohabit each Grapevine computer. they should be
thought of as separate entities. (Message servers and
registration servers communicate with one another
purely by internet protocols.) Several Grapevine com­
puters are scattered around the internet, their placement
being dictated by load and topology. Their registration
servers work together to implement the registration ser­
vice. Their message servers work together to implement
the delivery service. As we will see in Secs. 4 and 5,
message and registration services are each clients of the
other.

The registration data base is distributed and repli­
cated. Distribution is at the grain of a registry; that is,
each registration server contains either entries for all
RNames in a registry or no entries for that registry.
Typically no registration server contains all registries.
Also, each registry is replicated in several different reg­
istration servers. Each registration server supports, by
publicly available internet protocols, the registration
functions described above for names in the registries that
it contains. Any server that contains the data for a
registry can accept a change to that registry. That server
takes the responsibility for propagating the change to the
other relevant servers.

Any message server is willing to accept any message
for delivery, thus providing a replicated mail submission
service. Each message server will accept message polling
and retrieval requests for inboxes on that server. An
individual may have inboxes on several message servers,
thus replicating the delivery path for the individual.

If an increase in Grapevine's capacity is required to
meet expanding load, then another Grapevine computer
can be added easily without disrupting the operation of
existing servers or clients. If usage patterns change, then
the distribution of function among the Grapevine com­
puters can be changed for a particular individual, or for
an entire registry. As we shall see later this redistribution
is facilitated by using the registration data base to de­
scribe the configuration of Grapevine itself.

The code that runs in clients' machines is called the
Grapevine User package. There are several versions of the
GrapevineUser package: one for each language or op­
erating environment. Their function and characteristics
are sufficiently similar, however, that they may be
thought of as a single package. This package has two
roles: it implements the internet protocols for commu­
nicating with particular Grapevine servers; and it per­
forms the resource location required to choose which
server to contact for a particular function, given the data
distribution and server availability situation of the mo­
ment. GrapevineUser thus makes the multiple Grape-

vine servers look like a single service. A client using the
GrapevineUser package never has to mention the name
or internet address of a particular Grapevine server. The
Grapevine User package is not trusted by the rest of
Grapevine. Although an incorrect package could affect
the services provided to any client that uses it. it cannot
affect the use of Grapevine by other clients. The imple­
mentation of Grapevine. however. includes engineering
decisions based on the known behavior of the
GrapevineUser package, on the assumption that most
clients will use it or equivalent packages.

3.5 Examples of How Grapevine Works
With Fig. 2 we consider examples of how Grapevine

works. If a user named P. Q were using workstation I to
send a message to x. Y., then events would proceed as
follows. After the user had prepared the message using
a suitable client program, the client program would call
the delivery function of the GrapevineUser package on
workstation l. GrapevineUser would contact some reg­
istration server such as A and use the Grapevine resource
location functions to locate any message server such as
B; it would then submit the message to B. For each
recipient, B would use the resource location facilities,
and suitable registration servers (such as A) to determine
that recipient's best inbox site. For the recipient X. y, this
might be message server C in which case B would
forward the message to C. C would buffer this message
locally in the inbox for X. Y. If the message had more
recipients, the message server B might consult other
registration servers and forward the message to multiple
message serve-rs. If some of the recipients were distribu­
tion lists, B would use the registration servers to obtain
the members of the appropriate groups.

When X. Y wishes to use workstation 2 to read his
mail, his client program calls the retrieval function of the
GrapevineUser package in workstation 2. Grapevine­
User uses some registration server (such as D) that
contains the Y registry to locate inbox sites for X. y, then
connects to each of these inbox sites to retrieve his
messages. Before allowing this retrieval, C uses a regis­
tration server to authenticate X. Y.

If X. Y wanted to access a file on the file server E
through some file transfer program (FTP) the file server
might authenticate his identity and check access control
lists by communicating with some registration server
(such as A).

3.6 Choice of Functions
The particular facilities provided by Grapevine were

chosen because they are required to support computer
mail. The functions were generalized and separated so
other applications also could make use of them. If they
want to, the designers of other systems are invited to use
the Grapevine facilities. Two important benefits occur,
however, if Grapevine becomes the only mechanism fot
authentication and for grouping individuals by organi­
zation. interest, and function. First, if Grapevine per-

113

114

Fig. 2. Distribution of Function. ,_.
GRAPEVINE

I R egist ration k authenticate, mcmbcrship_ I
GrnpevineUser

I
I

Server "A" I' I
/[" /f'. Registration

locate Server "0" I File Server" E"
authenticate / "-

I
. /:'- /i'

I forward authenticate locate

W I fTP I
I I Message I I Message I I

connection
Server "8" Server "C"

/f'.

locate send I
L - -- - f--- -----

I

GrapevineUser
Workstation 1

Client program

user "P.Q"

forms all authentications, then users have the same name
and password everywhere, thus simplifying many admin­
istrative operations. Second, if Grapevine is used every­
where for grouping, then the same group structure can
be used for many different purposes. For example, a
single group can be an access control list for several
different file servers and also be a distribution list for
message delivery. The groups in the registration data
base can capture the structure of the user community in
one place to be used in many ways.

4. Message Delivery

We now consider the message delivery service in
more detail.

4.1 Acceptance
To submit a message for delivery a client must estab­

lish an internet connection to a message server; any
operational server will do. This resource location step,
done by the GrapevineUser package, ;s described in
Sec. 5. Once such a connection is established, the
GrapevineUser package simply translates client proce­
dure calls into the corresponding server protocol actions.
If that particular message server crashes or otherwise
becomes inaccessible during the message submission,
then the GrapevineUser package locates another mes­
sage server (if possible) and allows the client to restart
the message submission.

The client next presents the RName and password of
the sender, a returnTo RName, and a list of recipient
RNames. The message server authenticates the sender
by using the registration service. If the authentication
fails, the server refuses to accept the message for delivery.
Each recipient RName is then checked to see if it

/I'\.

retrieve I
- - --- ~-

I

GrapevineUser
Workstation 2

Client program

user "X.Y"

matches an RName in the registration data base. All
invalid recipient names are reported back to the client.
In the infrequent case that no registration server for a
registrj is accessible, all RN ames in that registry are
presumed for the time being to be valid. The server
constructs a property list for the message containing the
sender name, returnTo name j recipient list, and a post­
mark. The postmark is a unique identification of the
message, and consists of the server's clock reading at the
time the message was presented for debvery together
with the server's internet address. Next, the client ma­
chine presents the message body to the server. The server
puts the property list and message body in reliable
storage, indicates that the message is accepted for deliv­
ery, and closes the connection. The client may cancel
delivery anytime prior to sending the final packet of the
message body, for example, after being informed of
invalid recipients.

Only the property list is used to direct delivery. A
client might obtain the property values by parsing a text
message body and require that the parsed text be syn­
tactically separated as a "header," but this happens
before Grapevine is involved in the delivery. The prop­
erty list stays with the message body throughout the
delivery process and is available to the receiving client.
Grapevine guarantees that the recipient names in the
property list were used to control the delivery of the
message, and that the sender RName and postmark are
accurate.

4.2 Transport and Buffering
Once a message is accepted for delivery, the client

may go about its other business. The message server,
however, has more to do. It first determines the complete
list of individuals that should receive the message by

recursively enumerating groups in the property list. It
obtains from the registration· service each individual's
inbox site list. It chooses a destination message server for
each on the basis of the inbox site list ordering and its
opinion of the present accessibility of the other message
servers. The individual names are accumulated in steer­
ing lists, one for each message server to which the mes­
sage should be forwarded and one for local recipients.
The message server then forwards the message and ap­
propriate steering list to each of the other servers, and
places the message in the inboxes for local recipients.
Upon receiving a forwarded message from another
server, the same algorithm is performed using the indi­
viduals in the incoming steering list as the recipients, all
of which will have local inboxes unless the registration
data base has changed. The message server stores the
property list and body just once on its local disk and
places references to the disk object in the individual's
inboxes. This sharing of messages that appear in more
that one local inbox saves a considerable amount of
storage in the server. 2

With this delivery algorithm, messages for an indi­
vidual tend to accumulate at the server that is first on
the inbox site list. Duplicate elimination, required be­
cause distribution lists can overlap, is achieved while
adding the message into the inboxes by being sure never
to add a message if that same message, as identified by
its postmark, was the one previously added to that inbox.
This duplicate elimination mechanism fails under certain
unusual circumstances such as servers crashing or the
data base changing during the delivery process, but
requires less computation than the alternative of sorting
the list of recipient individuals.

In some circumstances delivery must be delayed, for
example, all of an individual's in box sites or a registry'S
registration servers may be inaccessible. In such cases
the message is queued for later delivery.

In some circumstances delivery will be impossible:
for example, a recipient RName may be removed from
the registration data base between validation and deliv­
ery, or a valid distribution list may contain invalid
RNames. Occasionally delivery may not occur within a
reasonable time, for example, a network link may be
down for several days. In such cases the message server
mails a copy of the message to an appropriate RN ame
with a text explanation of what the problem was and
who did not get the message. The appropriate RName
for this error notification may be the returnTo name
recorded in the message's property list or the owner of
the distribution list that contained the invalid name, as
recorded in a group entry in the registration data base.
Even this error notification can fail, however, and ulti-

2 As another measure to conserve disk storage, messages from an
inbox not emptied within seven days are copied to a file server and the
references in the inbox are changed to point at these archived copies.
Archiving is transparent to clients: archived messages are transferred
back through the message server when messages from the inbox are
retrieved.

mately such messages end up in a dead letter inbox for
consideration by a human administrator.

4.3 Retrieval
To retrieve new messages for an individual, a client

invokes the GrapevineUser package to determine the
internet addresses of all inbox sites for the individual,
and to poll each site for new messages by sending it a
single inbox check packet containing the individual's
RName. For each positive response, GrapevineUser con­
nects to the message server and presents the individual's
name and password. If these are authentic, then the
message server permits the client to inspect waiting
messages one at a time, obtaining first the property list
and then the body. When a client has safely stored the
messages, it may send an acknowledgment to the mes­
sage server. On receipt of this acknowledgment, the
server discards all record of the retrieved messages.
Closing the retrieval connection without acknowledg­
ment causes the message server to retain these messages.
F or the benefit of users who want to inspect new mes­
sages when away from their personal workstation, the
message server also allows the client to specify that some
messages from the in box be retained and some be dis-

. carded.
There is no guarantee that messages will be retrieved

in the order they were presented for delivery. Since the
inbox is read first-in, first-out and messages tend to
accumulate in the first inbox of an individual's inbox site
list, however, this order is highly likely to be preserved.
The postmark allows clients who care to sort their mes­
sages into approximate chronological order. The order is
approximate because the postmarks are based on the
time as perceived by individual message servers, not on
any universal time.

4.4 Use of Replication in Message Delivery
Replication is used to achieve a highly available

message delivery service. Any message server can accept
any message for delivery. Complete replication of this
acceptance function is important because the human
user of a computer mail client may be severely incon­
venienced if he cannot present a message for delivery
when he wants to. He would have to put the message
somewhere and remember to present it later. Fortu­
nately, complete replication of the acceptance function
is cheap and simple to provide. Message transport and
buffering, however, are not completely replicated. Once
accepted for delivery, the crash of a single message server
can delay delivery of a particular message until the server
is operational again, by temporarily trapping the message
in a forwarding queue or an inbox.3 Allowing multiple
inboxes for an individual replicates the delivery path.
Unless all servers containing an individual's inbox sites

:3 The servers are programmed so any crash short of a physical disk
catastrophe will not lose information. Writing a single page to the disk
is used as the primitive atomic action.

115

116

are inaccessible at once, new messages for that individual
can get through. We could have replicated messages in
several of an individual's inboxes, but the expense and
complexity of doing so does not seem to be justified by
the extra availability it would provide. If the immediate
delivery of a message is important then its failure to
arrive is likely to be noticed outside the system; it can be
sent again because a delivery path for new messages still
exists.

S. The Registration Data Base

The registration data baseis used by Grapevine to
name registration servers, message servers, and indeed,
registries themselves. This recursive use of the registra­
ti9n data base to represent itself results in an implemen­
tation that is quite compact.

S.l Implementing Registries
One registry in the data base is of particular impor­

tance, the registry named GV (for Qrapeyine). TheGV
registry is replicated in every registration server; all
names of the form *.gv exist in every registration server.
The GV registry controls the distribution and replication
of the registration data base, and allows clients to locate
appropriate registration servers for particular RNames.

Each registration server is represented as an individ­
ual in the GV registry. The connect site for this individ­
ual is the internet address where clients of this registra­
tion server can connect to it. (The authenticator and
inbox site list in the entry are used also. as we will see
later.)

The groups of the GV registry are the registries them­
selves; reg is a registry if and only if there exists a group
reg.gv. The members of this group are the RNames of
the registration servers that contain the registry. The GV
registry is represented this way too. Since the G V registry
is in every registration server, the membership set for
gv.gv includes the RNames of all registration servers.

S.2 Message Server Names
Each message server is represented as an individual

in the MS registry (for message ~ervers). The connect
site in this entry is the internet address where clients of
this message server can connect to it. (The authenticator
and inbox site list in the entry are used also, as we will
see later.) It is message server RNames that appear in
individuals' in box site lists.

A group in the MS registry, Maildrop.ms, contains as
members some subset (usually, but not necessarily, all)
of the message server RNames. This group is used to
find a message server that will accept a message for
delivery.

S.3 Resource Location
The registration data base is used to locate resources.

In general, a service is represented as a group in the data

base; servers are individuals. The members of the group
are the RN ames of the servers offering the service; the
connect sites of the individuals are the internet addresses
for the servers. To contact an instance of the service, a
client uses the GrapevineUser package to obtain the
membership of the group and then to obtain the connect
site of each member. The client then may choose among
these addresses, for example, on the basis of closeness
and availability. .

The GrapevineUser package employs such a resource
location strategy to find things in the distributed regis­
tration data base. Assume for a moment that there is a
way of getting the internet address of some operational
registration server, say Cabernet.gv. GrapevineUser can
find the internet addresses of those registration servers
that contain the entry for RName fr by connecting to
Cabernet.gv and asking it to produce the membership of
r.gv. GrapevineUser can pick a particular registration
server to use by asking Cabernet.gv to produce the con­
nect site for each server in r.gv and attempting to make
a connection until one responds. If fr is a valid name,
then any registration server in r.gv has the entry for it.
At this point GrapevineUser can extract any needed
information from the entry of fr, for example, the inbox
site list.

Similarly, GrapevineUser can obtain the internet
addresses of message servers that are willing to accept
messages for delivery by using this resource location
mechanism to locate the servers in the group
MailDrop.ms. Any available server on this list will do.

In practice, these resource location algorithms are
streamlined so that although the general algorithms are
very flexible, the commonly occurring cases are handled
with acceptable efficiency. For example, a client may
assume initially that any registration server contains the
data base entry for a particular name; the registration
server will return the requested information or a name
not found error if this registration server knows the
registry, and otherwise will return a wrong server error.
To obtain a value from the registration data base a client
can try any registration server; only in the case of a
wrong server response does the client need to perform the
full resource location algorithm.

We are left with the problem of determining the
internet address of some registration server in order to
get started. Here it is necessary to depend on some more .
primitive resource location protocol. The appropriate
mechanism depends on what primitive facilities are
available in the internet. We use two mechanisms. First,
on each local network is a primitive name lookup server,
which can be contacted by a broadcast protocol. The
name lookup server contains an infrequently updated
data base that maps character strings to internet ad­
dresses. We arrange for the fixed character string
GrapevineRServer to be entered in this data base and
mapped to the internet addresses of some subset of the
registration servers in the internet. The GrapevineUser
package can get a set of addresses of registration servers

using the broadcast name lookup protocol, and send a
distinctive packet to each of these addresses. Any acces­
sible registration server will respond to such packets, and
the client may then attempt to connect to whichever
server responds. Second, we broadcast a distinctive
packet on the directly connected local network. ~gain,
any accessible registration server will respond. ThIs sec­
ond mechanism is used in addition to the first because,
when there is a registration server on the local network,
the second method gives response faster and allows a
client to find a local registration server when the name
lookup server is down.

Part II. Grapevine as a Distributed System

6. Updating the Registration Data Base

The choice of methods for managing the distributed
registration data base was largely determined by the
requirement that Grapevine provide highly available,
decentralized administrative functions. Administrative
functions are performed by changing the registration
data base. Replication of this data base makes high
availability of administrative functions possible. An in­
appropriate choice of the method for ensuring the con­
sistency of copies of the data, however, might limit this
potential high availability. In particular, if we demanded
that data base updates be atomic across all servers, then
most servers would have to' be accessible before any
update could be started. For Grapevine, the nature of
the services dependent on the registration data allows a
looser definition of consistency that results in higher
availability of the update function. Grapevine guarantees
only that the copies of a registration data base entry
eventually will have the same new vaiue following an
update to one of them. If all servers containing copies
are up and can communicate with one another, conver­
gence will occur within a few minutes at most. While an
update is converging, clients may detect inconsistency by
reading the value of an entry from several servers.

6.1 Representation
The value for each entry in the registration data base

is represented mainly as a collection of lists. The mem­
bership set of a group is one such list. Each list is
represented as two sublists of items, called the active
sublist and the deleted sublist. An item consists of a string
and a timestamp. A particular string can appear only
once in a list, either in the active or the deleted sublist.
A timestamp is a unique identifier whose most significant
bits are a time and least significant bits an internet
address. The time is that perceived by the server that
placed the item in the list; the address is that server's.
Because a particular server never includes the same time
in two different timestamps, all timestamps from all
servers are totally ordered.4

Fig. 3. A Group from the Registration Data Base.

Prefix: [l-Apr-81 12:46:45,3#14], type = group, LaurelImpj.pa

Remark: (stamp=[22-Aug-80 23:42: 14,3#22]) Laurel Team

Members: Birrell.pa Brotz.pa, Horning.pa, Levin.pa, Schroeder.pa
Stamp-list: [23-Aug-80 17:27:45, 3#22], [23-Aug-80 17:42:35, 3#22],

[23-Aug-80 19:04:54, 3#22], [23-Aug-80 19:31:0 I, 3#22], [23-Aug-
8020:50:23,3#22]

DelMembers: Butterfield.pa
Stamp-list: [25-Mar-81 14:15:12,3#14]

Owners: Brotz.pa
Stamp-list: [22-Aug-80 23:43:09,3#14]
DelOwners: none
Stamp-list: !lull

Friends: LaurelImpj.pa
Stamp-list: [l-Apr-81 12:46:45,3#14]
Del Friends: none
Stamp-list: null

F or example, Fig. 3 presents the complete entry for
a group named "LaurelImpj.pa" from the registration
data base as it appeared in early April 1981. There are
three such lists in this entry: the membership set labeled
members and two access control lists labeled owners and
friends (see Sec. 6.5 for the semantics of these). Th~re
are five current members followed by the correspondmg
five timestamps, and one deleted member follow~d by
the corresponding timestamp. The owners and fnends
lists each contain one name and no deletions are recorded
from either.

A registration data base entry also contains a version
timestamp. This timestamp, which has the same form as
an item timestamp, functions as an entry's version num­
ber. Whenever anything in an entry changes the v~rsion
timestamp increases in value, usually to t~e maxIm~m
of the other timestamps in the entry. When mterrogatmg
the data base a client can compare the version timestamp
on which it based some cached information with that in
the data base. If the cached timestamp matches then the
client is saved the expense of obtaining the data base
value again and recomputing the cached in~o~ati~n.
The version timestamp appears in the prefix Ime m FIg.
3.

6.2 Primitive Operations .
Grapevine uses two primitive operations on the l~sts

in a registration data base entry. An update oper~tIOn
can add or delete a list item. To add/delete the stnng s
to/from a list, any item with the matching string in either
of the sublists first is removed. Then a timestamp t is
produced from the server's internet address. and clock.
Finally the item (s, t) is added to the act1v~/ deleted
sublist. A merge operation combines two verSIOns of a
complete list to produce a new list with the mo~t r~cent
information from both. Each string that appears m eIther

4 The item timestamps in the active sublist are used to imply the
preference order for the inbox site list in a~ indi~idual's entry; o~der
items are preferred. Thus, deleting then addmg a sIte name moves It to
the end of the preference ordering.

117

118

version will appear precisely once in the result. Each
string will be in the active or deleted sublist of the result
according to the largest timestamp value associated with
that string in either version. That largest timestamp value
also provides the timestamp for the string in the result.
Keeping the sublists sorted by string value greatly in­
creases the speed with which the merge can be per­
formed. The update and merge operations are atomic in
each particular server.

6.3 Propagation
The administrative interface to Grapevine is pro­

vided by client software running in an administrator's
computer. To make a change to the data of any registry,
a client machine uses the resource location facilities of
the GrapevineUser package to find and connect to some
registration server that knows about that registry. That
registration server performs an update operation on the
local copy of an entry. Once this update has been com­
pleted the client can go about its other business. The
server propagates the change to the replicas of the entry
in other servers. The means used to propagate the change
is Grapevine's delivery service itself, since it gives a
guarantee of delivery and provides buffering when other
servers are temporarily inaccessible. As described in Sec.
5.1, the members of the group that represent a registry
are the registration servers that contain a copy of the
data for that registry. Thus, if the change is to an entry
in the reg registry, the accepting server sends a change
message to the members, other than itself, of the distri­
bution list reg.gv. A change message contains the name
of the affected entry and the entire new value for the
entry. Registration servers poll their inboxes for new
messages every 30 seconds. When a change message is
received by a server it uses merge operations to combine
the entry from the change message with its own copy.

With this propagation algorithm, the same final state
eventually prevails everywhere. When a client makes
multiple updates to an entry at the same server, a com­
patible sequence of entry values will occur everywhere,
even if the resulting change messages are processed in
different orders by different servers. If two administra­
tors perform conflicting updates to the data base such as
adding and removing the same member of a group,
initiating the updates at different servers at nearly the
same time, it is hard to predict which one of them will
prevail; this appears to be acceptable, since the admin­
istrators presumably are not communicating with each
other outside the system. Also, since copies will be out of
step until the change messages are received and acted
upon, clients must be prepared to cope with transient
inconsistencies. The algorithms used by clients have to
be convergent in the sense that an acceptable result will
eventually ensue even if different and inconsistent ver­
sions of the r(;gistration data appear at various stages in
a computation. The message delivery algorithms have
this property. Similar update propagation techniques
have been proposed by others who have encountered

situations that do not demand instantaneous consistency
[10, 13].

If deleted items were never removed from an entry,
continued updates would cause the data base to grow.
Deleted items are kept in an entry so that out-of-order
arrival of change messages involving addition followed
by deletion of the same string will not cause the wrong
final state. Deleted items also provide a record of recent
events for use by human administrators. We declare an
upper bound of 14 days upon the clock asynchrony
among the registration servers, on message delivery de­
lay, and on administrative hindsight. The Grapevine
servers each scan their local data base once a day during
inactive periods and purge all deleted items older than
the bound.

If a change message gets destroyed because of a
software bug or equipment failure, there is a danger that
a permanent inconsistency will result. Since a few de­
stroyed messages over the life of the system are inevita­
ble, we must provide some way to resynchronize the data
base. At one point we dealt with this problem by detect­
ing during the merge operation whether the local copy
of the entry contained information that was missing from
the incoming copy. Missing information caused the
server to send the result of the merge in a change message
to all servers for the registr'j. \Vhile this "anti-entropy"
mechanism tended to push the data base back into a
consistent state, the effect was too haphazard to be useful;
errors were not corrected until the next change to an
entry. Our present plan for handling long-term incon­
sistencies is for each registration server periodically, say
once a night, to compare its copy of the data base for a
registry with another and to use merges to resolve any
inconsistencies that are discovered. The version time­
stamp in each entry makes this comparison efficient: if
two version timestamps are equal then the entries match.
Care must be taken that the comparisons span all regis­
tration servers for a registry, or else disconnected regions
of inconsistency can survive.

6.4 Creating and Deleting Names
The rule that the latest timestamp wins does not deal

adequately with the creation of new names. If two ad­
ministrators connect to two different registration servers
at about the same time and try to create a new data base
entry with the same name, it is likely that both will
succeed. When this data base change propagates, the
entry with the latest time timestamp will prevail. The
losing administrator may be very surprised, if he ever
finds out. Because the later creation could be trapped in
a crashed registration server for some time, an adminis­
trator could never be sure that his creation had won. For
name creation we want the earlier creation to prevail. To
achieve this effect, we faced the possibility of having to
implement one of the known and substantial algorithms
for atomic updates to replicated databases [3], which
seemed excessive, or of working out a way to make all
names unique by appending a hidden timestamp, which

seemed complex. We instead fell back on observations
about the way in which systems of this nature are used.
For each registry there is usually some human-level
centra~ization of name creation, if only to deal with
questions of suitability of RNames (not having a junior
clerk preempt the RName which everyone would asso­
ciate with the company president). We consider this
centralization enough to solve the problem. Note that
there is no requirement that a particular server be used
for name creation: there is no centralization at the ma­
chine level.

Deleting names is straightforward. A deleted entry is
marked as such and retained in the data base with a
version timestamp. Further updates to a deleted entry
are not allowed. Recreation of a deleted entry is not
allowed. Suffi,ciently old deleted entries are removed
from the data base by the purging process described in
Sec. 6.3.

6.5 Access Controls
An important aspect of system administration is con­

trol of who can make which administrative changes. To
address this need we associate two access control lists
with each group: the owners list and the friends list. These
lists appear in the example entry in Fig. 3. The interpre­
tation of these access lists is the responsibility of the
registration server. For ordinary groups the conventions
are as follows: membership in the owners list confers
permission to add or remove any group member, owner,
or friend; membership in the friends list confers permis­
sion to add or remove oneself. The names in the owners
and friends lists may themselves be the names of groups.
Quite separately, clients of the registration server have
freedom to use membership in groups for access control
purposes about which the registration server itself knows
nothing at all. The owners and friends lists on the groups
that represent registries are used to control name creation
and deletion within registries; these lists also provide the
default access controls on groups whose owners list is
empty. While we have spent some time adjusting the
specific semantics of the Grapevine access controls, we
do not present further details here.

6.6 Other Consequences of Changes
The registration servers and message servers are nor­

mal clients of one another's services, with no special
relationship. Registration servers use message server de­
livery functions and message servers use the registration
service to authenticate clients, locate inboxes, etc. This
view, however, is not quite complete. If a change is made
to the inbox locations of any individual, notice has to be
given to all message servers that are removed, so they
can redeliver any messages for that individual buffered
in local inboxes. Notice is given by the registration server
delivering a message to the message servers in question
informing them of the change. Correctness requires that
the last registration server that changes its copy of the

entry emit the message; we achieve this effect by having
each registration server emit such a message as the
change is made. A message server receiving an inbox
removal message simply redelivers all messages in the
affected inbox. Redelivery is sufficient to rebuffer the
messages in the proper server. In the system as imple­
mented a simplification is made; inbox removal messages
are sent to all inbox sites for the affected individual, not
just to removed sites. While this may appear to be
wasteful, it is most unusual for any site other than the
primary one to have anything to redeliver.

Other registration service clients that use the registra­
tion data base to control resource bindings may also
desire notification of changes to certain entries. A general
notification facility would require allowing a notification
list to be associated with any data base entry. Any change
to an entry would result in a message being sent to the
RNames on its notification list. We have not provided
this general facility in the present implementation, but
would do so if the system were reimplemented.

7. Finding an lnbox Site

The structure and distribution of the Grapevine reg­
istration data base are quite complex, with many indi­
rections. Algorithms for performing actions based on this
data base should execute reliably in the face of admin­
istrative changes to the registration data base (including
those which cause dynamic reconfiguration of the sys­
tem) and multiple servers that can crash independently.
In their full generality such algorithms are expensive to
execute. To counter this, we have adopted a technique
of using caches and hints to optimize these algorithms.
By cache we mean a record of the parameters and results
of previous calculations. A cache is useful if accessing it
is much faster than repeating the calculation and fre­
quently produces the required value. By hint we mean a
value that is highly likely to be correct and that is faster
to check than to recalculate. To illustrate how caches
and hints can work, we describe here in some detail how
the message server caches hints about individuals' inbox
sites.

The key step in the delivery process is mapping the
name of an individual receiving a message to the pre­
ferred in box site. The mapping depends upon the current
state of the registration data base and the availability of
particular message servers. To make this mapping pro­
cess as efficient as possible, each message server main­
tains an inbox site cache that maps RNames of individ­
uals to a hint for the currently preferred inbox site. Each
message server also maintains a down server list contain­
ing the names of message servers that it believes to be
inaccessible at present. A message server is placed on
this list when it does not accept connections or fails
during a connection. The rules for using the inbox site
cache to determine the preferred message server for a
recipient I are:

119

120

I. If an entry for I is in the cache and the site indicated
for I in the cache is not on the down server list, then
use that site;

2. Otherwise get the inbox site list for I from the
registration service; cache and return for use the first
site not on the down server list; if the selected site is
not first on the list, mark the entry as "secondary."

There has to be a rule for removing message servers
from the down server list; this happens when the server
shows signs of life by responding to a periodic single
packet poll.

When a message server is removed from the down
server list, the inbox site cache must be brought up to
date. Any entry that is marked as "secondary" and that
is not the revived site could be there as a substitute for
the revived site; all such entries are removed from the
cache. This heuristic removes from the cache a superset
of the entries whose preferred in box site has changed
(but not all entries in the cache) and will cause recalcu­
lation of the preferred inbox site for those entries the
next time they are needed.

We noted earlier that changing an individual's in box
site list may require a message server to redeliver all
messages in that individual's inbox, and that this redeliv­
ery is triggered by messages from registration servers to
the affected message servers. The same changes also can
cause site caches to become out-of-date. Part of this
problem is solved by having the inbox redelivery mes­
sages also trigger appropriate site cache flushing in the
servers that had an affected inbox. Unfortunately any
message server potentially has a site cache entry made
out-of-date by the change. Instead of sending a message
to all message servers, we correct the remaining obsolete
caches by providing feedback from one message server
to another when incorrect forwarding occurs as a result
of an out-of-date cache. Thus, the site cache really does
contain hints.

To summarize the cache flushing and redelivery ar­
rangements, then, registration servers remove servers
from an in box site list and send messages to all servers
originally on the list. Each responds by removing any
entry for the subject individual from its site cache and
redelivering any messages found in that individual's
in box. During this redelivery process, the cache entry
will naturally be refreshed. Other message servers with
out-of-date caches may continue to forward messages
here for the subject individual. Upon receiving any
message forwarded from another server, then, the target
message server repeats the inbox site mapping for each
name in the steering list. If the preferred site is indeed
this target message server, then the message is added to
the corresponding inbox. If not, then the target site does
the following:
I. Forwards the message according to the new mapping

result;
2. Sends a cache flush notification for the subject in­

dividual back to the server that incorrectly forwarded
the message here.

The cache flush notification is a single packet sent un­
reliably: if it fails to arrive, another one will be provoked
in due course. This strategy results in the minimum of
cache flush notifications being sent-one to each mes­
sage server whose cache actually needs attention, sent
when the need for attention has become obvious. This
mechanism is more economical than the alternative of
sending cache flush notifications to all message servers,
and even if that were done it would still be necessary to
cope with the arrival of messages at old inbox sites.

8. System Configuration

As described in Sec. 5, the configuration of the
Grapevine system is controlled by its registration data
base. Various entries in the data base define the servers
available to Grapevine and the ways in which the data
and functions of Grapevine are distributed among them.
We now consider procedures for reconfiguring Grape­
vine.

8.1 Adding and Deleting Registry Replicas
The set of registration servers that contain some

registry is defined by the membership set for the corre­
sponding group in the GV registry, When a change
occurs to this membership set, the affected server(s) need
to acquire or discard a copy of the registry data. To
discover such changes, each registration server simply
monitors all change messages for groups in the GV
registry, watching for additions or deletions of its own
name. A registration server responds to being deleted by
discarding the local replica of the registry. With the
present implementation, a registration server ignores
being added to a registry site list. Responding to a
registry addition in the obvious way-by connecting to
another registration server for the registry and retrieving
the registry data-is not sufficient. Synchronization
problems arise that can lead to the failure to send change
messages to the added server. Solving these problems
may require the use of global locks, but we would prefer
a solution more compatible with the looser synchroni­
zation philosophy of Grapevine. For the present obtain­
ing a registry replica is triggered manually, after waiting
for the updates to the G V registry to propagate and after
ensuring that other such reconfigurations are not in
progress.

8.2 Creating Servers
Installing a new Grapevine computer requires creat­

ing a new registration server and a new message server.
To create the new registration server named, say, Zinfan­
del.gv, a system administrator first creates that individual
(with password) in the registration data base, and gives
it a connect site that is the internet address of the new
computer. Next, Zinfandel.gv is added to the membership
set of all registries that are to be recorded in this new
registration server. To create the new message server

named, say, Zinfandel.ms, the administrator creates that
individual with the same connect site, then adds Zinfan­
de/.ms to MailDrop.ms. Both servers are assigned inbox
sites.

Once the data base changes have been made, the
registration and message servers are started on the new
computer. The first task for each is to determine its own
name and password so that it may authenticate itself to
the other Grapevine servers. A server obtains its name
by noting its own internet address, which is always
available to a machine, then consulting the data base in
a different registration server to determine which server
is specified to be at that address: the registration server
looks for a name in the group gv.gv, the message server
looks for a name in the group MailDrop.ms. Having
found its name, the server asks a human operator to type
its password; the operator being able to do this correctly
is the fundamental source of the server's authority. The
server verifies its password by the authentication proto­
col, again using a registration server that is already in
operation, and then records its name and password on
its own disk. The new registration server then consults
some other registration server to obtain the contents of
the G V registry in order to determine which groups in
the G V registry contain its name: these specify which
registries the new server should contain. It then contacts
appropriate other servers to obtain copies of the data
base for these registries. Because the new server can
authenticate itself as an individual in the GV registry,
other registration servers are willing to give it entire data
base entries, including individuals' passwords.

Obtaining the registry replicas for the new registra­
tion server suffers from the saqle synchronization prob­
lems as adding a registry replica to an existing server.
We solve them the same way, by waiting for the admin­
istrative updates to the G V registry to propagate before
starting the new computer and avoiding other simulta­
neous reconfigurations.

8.3 Stopping and Restarting Servers
Stopping a server is very easy. Grapevine computers

can be stopped without disturbing any disk write in
progress. The message and registration servers are pro­
grammed so that, when interrupted between disk page
writes, they can be restarted without losing any perma­
nent information. While a message or registration server
is not running, messages for it accumulate in its inboxes
in message servers elsewhere, to be read after it restarts.

Whenever a message and registration server restart,
each verifies its name and password by consulting other
servers, and verifies that its internet address corresponds
to the connect site recorded for it in the data base; if
necessarry it changes the connect site recorded in the
data baSe. Updating the connect site allows a server to
be moved to a new machine just by moving the contents
of the disk. After restarting, a registration server acts on
all accumulated data base change messages before de­
claring itself open for business.

Using the internet, it is possible, subject to suitable
access controls, to load a new software version into a
remote running Grapevine computer, stop it, and restart
it with the new version.

8.4 Other Reconfigurations
One form of reconfiguration of the system requires

great care: changing the location of inbox sites for a
registration server. Unless special precautions are taken,
the registration server may never encounter the change
message telling it about a new inbox site, because that
message is waiting for it at the new site. A similar
problem arises when we change the internet address of
a message server that contains a registration server's
inbox. Restrictions on where such data base changes can
be initiated appear to be sufficient to solve these prob­
lems, but we have not automated them. Although this
resolution of this problem is somewhat inelegant, the
problem is not common enough to justify special mech­
anisms.

Part III. Conclusions

9. Present State

The Grapevine system was first made available to a
limited number of clients during 1980. At present (Fall
1981) it is respopsible for most of the mail traffic and
distribution lists on the Xerox research internet. There
are five dedicated Grapevine computers, each containing
a registration server and a message server. The computers
are physically distributed among northern and southern
California and New York. The registration data base
contains about 1500 individuals and 500 groups, divided
mainly into four major registries; there are two other
registries used by nonmail clients of the registration
service, plus the G V and MS registries. The total message
traffic amounts to some 2500 messages each working
day, with an average of 4 recipients each; the messages
average about 500 characters, and are almost exclusively
text.

The registration data base also is used for authenti­
cation and configuration of various file servers, for au­
thentication and access control in connection with main­
tenance of the basic software and data bases that support
our internet gateways, and for resource location associ­
ated with remote procedure call binding. The registration
data base is administered almost exclusively by non­
technical staff. There are at least three separate computer
mail interface programs in use for human-readable mail.
Most mail system users add and delete themselves from
various distribution lists, removing this tiresome job from
administrative staff.

The Grapevine registration and message servers are
programmed in Mesa [7]. They contain some 33,000 lines

121

122

of custom written code, together with standard packages
for runtime support and PUP-level communications. The
Grapevine computers are Altos [12] with 128K bytes
of main memory and 5M bytes of disk storage. A running
Grapevine computer has between 40 and 70 Mesa pro­
cesses [4], and can handle 12 simultaneous connections.
The peak load of messages handled by a single message
server so far exceeds 150 per hour and 1000 messages
per day. One server handled 30,000 messages while
running for 1000 hours. The maximum number of pri­
mary inboxes that have been assigned to a server is 380.

10. Discussion

The fundamental design decision to use a distributed
data base as the basis for Grapevine's message delivery
services has worked out well. The distributed data base
allowed us to meet the design goals specified in Sec. 2,
and has not generated operational difficulties. The dis­
tributed update algorithms that trade atomic update for
increased availability have had the desired effect. The
temporary inconsistencies do not bother the users or
administrators and the ability to continue data base
changes while the internet is partitioned by failed long­
distance links is exercised enough to be appreciated.

In retrospect, our particular implementation of the
data base for Grapevine was too inflexible. As the use of
the system grew, the need for various extensions to the
values recorded in individual and group entries has
become apparent. Reformatting the existing distributed
data base to include space for the new values is difficult
operationally. In a new implementation we would con­
sider providing facilities for dynamic extension of the
value set in each entry. With value set extension, how­
ever, we would keep the present update algorithm and
its loose consistency guarantees. These guarantees are
sufficient for Grapevine's functional domain, and their
simplicity and efficiency are compelling. There is a re­
quirement in a message system for some data base which
allows more flexible descriptions of recipients or distri­
bution lists to be mapped onto message system RNames
(such as the white or yellow page services of the tele­
phone system), but in our view that service falls outside
of Grapevine's domain. A system which provides more
flexibility in this direction is described in [2].

Providing all naming semantics by indirection
through the registration data base has been very power­
ful. It has allowed us to separate the concept of naming
a recipient from that of addressing the recipient. For
example, the fact that a recipient is named Birrell.pa says
nothing about where his messages should be sent. This
is in contrast to many previous message systems. Indi­
rections also provide us with flexibility in configuring
the system.

One feature which recurs in descriptions of Grape­
vine is the concept of a "group" as a generalization of a

distribution list. Our experience with use of the system
confirms the utility of use of the single "group" mecha­
nism for distribution lists, access control lists, services,
and administrative purposes.

Clients other than computer mail interfaces are be­
ginning to use Grapevine's naming, authentication, and
resource location facilities. Their experience suggests that
these are an important set of primitives to provide in an
internet for constructing other distributed applications.
Message transport as a communication protocol for data
other than textual messages is a useful addition to our
set of communication protocols. The firm separation
between Grapevine and its clients was a good decision:
it allows us to serve a wide variety of clients and to give
useful guarantees to our clients, even if the clients operate
in different languages and in different computing envi­
ronments.

At several points in Grapevine, we have defined and
implemented mechanisms of substantial versatility. As a
consequence, the algorithms to implement these mecha­
nisms in their full generality are expensive. The tech­
niques of caches and hints are powerful tools that allow
us to regain acceptable efficiency without sacrificing
"'correct" structure. The technique of adding caches and
hints to a general mechanism is preferable to the alter­
native style of using special case short cut mechanisms
whose existence complicates algorithmic invariants.

Grapevine was built partly to demonstrate the asser­
tion that a properly designed replicated system can pro­
vide a very robust service. The chance of all replicas
being unavailable at the same time seems low. Our
experience suggests that unavailability due to hardware
failure follows this pattern. No more than one Grapevine
computer at a time has ever been down because of a
hardware problem. On the other hand, some software
bugs do not exhibit this independence. Generally all
servers are running the same software version. Ifa client's
action provokes a bug that causes a particular server to
fail, then in taking advantage of the service replication
that client may cause many servers to fail. A client once
provoked a protocol bug when attempting to present a
message for delivery. By systematically trying again at
each server in MailDrop.ms, that client soon crashed all
the Grapevine computers. Another widespread failure
occurred as a result of a malformed registration data
base update propagating to all servers for a particular
registry. We conclude that it is hard to design a replicated
system that is immune from such coordinated software
unreliability.

Our experience with Grapevine has reinforced our
belief in the value of producing "real" implementations
of systems to test ideas. At several points in the imple­
mentation, reality forced us to rethink initial design
proposals: for example, the arrangements to ensure long­
term consistency of the data base in the presence of lost
messages. There is no alternative to a substantial user
community when investigating how the design performs
under heavy load and incremental expansion.

Acknowledgments. Many people have contributed to
the success of the Grapevine project. Bob Taylor and
Bob Metcalfe recognized early the need for work on
computer mail systems and encouraged us to develop
Grapevine. Ben Wegbreit participated in the initial sys­
tem design effort. Many colleagues have helped the
project in various ways: Dave Boggs, Doug Brotz, Jeremy
Dion, Jim Horning, Robert Kierr, and Ed Taft deserve
special mention. Jerry Saltzer and several anonymous
referees have made valuable commentaries on earlier
drafts of the paper.

References
1. Boggs, D.R., Shoch, J.F., Taft, E.A., and Metcalfe, R.M. PUP:
An internetwork architecture. IEEE Trans. on Communications 28, 4
(April 1980),612-634.
2. Dawes, N., Harris, S., Magoon, M., Maveety, S., and Petty, D.
The design and service impact of COCOS-An electronic office
system. In Computer Message Systems. R.P. Uhlig (Ed.) North­
Holland, New York, 1981, pp 373-384.
3. Gifford, D.K. Weighted voting for replicated data. In Proc. 7th
Symposium on Operating Systems Principles. (Dec. 1979), ACM Order
No. 534790, pp 150-162.
4. Lampson, B.W., and Redell, D.O. Experience with processes and
monitors in Mesa. Comm. ACM 23,2 (Feb. 1980), 105-117.
5. Levin, R., and Schroeder, M.D. Transport of electronic messages
through a network. TeleInformatics 79, North Holland, 1979, pp. 29-
33; also available as Xerox Palo Alto Research Center Technical
Report CSL-79-4.
6. Metcalfe, R.M., and Boggs, D.R. Ethernet: Distributed packet
switching for local computer networks. Comm. ACM 19, 7 (July
1976),395-404.
7. Mitchell, J.G., Maybury, W., and Sweet, R. Mesa language
manual (Version 5.0) Technical Report CSL-79-3, Xerox Palo Alto
Research Center, 1979.
8. National Bureau of Standards, Data encryption standard. Federal
Information Processing Standards 46, Jan. 1977.
9. Needham, R.M., and Schroeder, M.D. Using encryption for
authentication in large networks of computers. Comm. ACM 21,12
(Dec. 1978),993-999.
10. Rothnie, J.B., Goodman, N., and Bernstein, P.A. The redundant
update methodology of SOD-I: A system for distributed databases
(The fully redundant case). Computer Corporation of America, June
1977.
11. Shoch, J.F. Internetwork naming, addressing and routing. In
Proc. 17th IEEE Computer Society International Conference, Sept.
1978, IEEE Cat. No. 78 CH 1388-8C, pp 72-79.
12. Thacker, c.P., McCreight, E.M., Lampson, B.W., Sproull, R.F.,
and Boggs, D.R. Alto: A personal computer. In D.P. Siewiorek, c.G.
Bell, and A. Newell, Computer Structures: Principles and Examples.
(2nd Ed.) McGraw-Hill, New York 1981.
13. Thomas, R.H. A solution to the update problem for multiple
copy data base which used distributed control. Bolt, Beranek and
Newman Technical Report #3340, July 1976.

123

124

The Information Outlet: A new tool
for office organization

by Yogen K. Dalal

OPD·T8104 October 1981

,.\c,strac.t: Tod~y's ~ffice can be be.tt~r orgc.nizzd b1 uJing tools that he~p in mal'z.~ing

information. Distributed office information systems permit an organization to control their
conversion to "the office of the future" by reducing the initial purchase cost, and by
permitting the system to evolve according to the needs and structure of the organization.
Within an organization one finds a natural partitioning of activity and interaction~ which can
be preserved and exploited by local computer networks such as the Ethernet system.
Although local computer networks are the foundation of office information systems, they
should still be viewed as one component of an internetwork communication system.

The architecture of the system must permit growth both in size and types of office services.
It must also permit interconnection with systems from other vendors through protocol
translation gateways that capture the incompatibilities, rather than forcing each application
to handle the incompatibilities

CR Categories: 3.81, 4.32.

Key words and phrases: office informat·ion systems, local networks, internetworks,
distributed systems.

An earlier version of this paper was presented at the Online Conference on Local Networks
& Distributed Office Systems, London, 11·13 May, 1981.

© Copyright 1981 by Xerox Corporation

XEROX
OFFICE PRODUCTS DIVISION
SYSTEMS DEVELOPMENT DEPARTMENT
3333 Coyote Hill Road / Palo Alto / California 94304

THE I:\FOR\1ATIO:\ OCTLET: A ~EW TOOL FOR OFFICE ORGA:\IZA TIO:\

Introduction

\1anaging information is an integral pan of toda:<s office.

Organizations and businesses are becoming more complex. both in the way they function and

eyohe. and in the sen'ices and products they offer. Information exists in many forms. such as on

paper. as moYing Yideo images and as Yoice, and is constantly being generated. used and exchanged.

Executi\'es and managers constantly process information that determines the future of their

organization. professionals examine \-ast amounts of information that help them proyide new

sen'ices and products. marketeers distribute information describing these sen'ices and products. and

the administratiye staff records information on the daily progress of their organization.

Adyances in technology, panicular1y in the communications and computer industry. are making it

possible to build new tools that help manage information in ways that are natural to the operation

~;f an Jffice. Tr.cse rods make ;r pC's~!rl(' TO create. ~to,:,e. re!ri~ve. di')~la~;, modif:' reproduce and

share information in ways that encourage creath-ity and increase the productivity of the office

worker. Inexpensive. yet powerful workstations simplify creating. modifying and displaying

information. Electronic filing. printing. and database systems will simplify storing. retrieving.

reproducing. and selectively extracting information.

exchanging and sharing information.

Communication networks will permit

The hzfomwlion Outlel. which Xerox Corporation describes as a "plug in the wall" to an Ethernet

local computer network. is the conduit to tools that manage this information. A sophisticated

communication and distributed systems architecture is necessary to provide meaning to the

electronic signals as they go in and out of this "plug."

This paper describes ho'lll' local computer networks like the Ethernet system [Metcalfe76. Ethernet80.

Shoch80a. Shoch81a. Shoch81b] form the backbone of a distributed communication system on

which many automated office sen'ices can be built.

Distributed Architectures

\Vith the continuing imprO\'ement in the price/performance ratio of computing and

communications. the structure of computerized office information systems is beginning to change.

It is no longer necessary to have large centralized systems in order to realize economies of scale. By

pushing intelligence back into the terminal or workstation. and decentralizing resources by function

into dedicated sen-ers. an office information system becomes a collection of loosely-coupled system

elements tied together by a communication network. System elements communicate (1) for the

economic sharing of expensive resources like electronic printing and filing systems. and (2) for the

exchange of information among users. as in the case of electronic mail.

125

126

THE I:\FOR.\1A TIO:\ OLiLET: A NEW TOOL FOR OFFICE ORGA:\IZA TIO:\

The inherent flexibility of distributed systems pennits an office infonnation system to be closely tied

to the needs of the surrounding user community. The overall system may be reconfigured to satisfy

immediate and future requirements. This flexibility will prove invaluable in the business

environment since a system will be able to evolve and adapt to changes necessitated by alterations

in an organization's requirements.

In general tenns. a distributed system requires (1) a set of standards or protocols that define the

structure of data. and the rules by which it is exchanged. and (2) a binding mechanism that brings

together the relatively autonomous system elements.

It is a fortunate property of communication systems that functions can be layered one on top of

another. Standards for the following levels are necessary:

1) Data jornzals that describe files, records. documents. fonns. images. voice .. etc. They
describe objects that an end-user is familiar with.

2) Control protocols that define mechanisms by which files are exchanged, documents sent
to printers, and electronic mail delivered to recipients.

3) Transport protocols that provide media-, processor- and application-independent delivery
of data.

4) Digitaitransmission systems that specify conventions for signalling and line control.

These levels may be refined into a number of layers using L'1e ISO Open Systems Interconnection

Reference· Model [Zimmerrnann80. OSI81].

Binding mechanisms are necessary for providing resource directories analogous to the telephone

system's "white" and "yellow" pages [Oppen81]. By decoupling the many objects in a system

correctly it is possible to reconfigure it easily.

Local computer networks like the Ethernet system provide digital transmission of data. They fonn

the very foundation upon which office infonnation systems are built. but in tenns of the functions

and standards necessary to build such an integrated system they represent only about 1 to 2% of the

complexity [Metcalfe81].

We now describe various features of an architecture which make it possible to build the remaining

98% of the system in stages. as and when they are required.

Communication Systems

Within an organization one finds natural localities of activity and interaction. This usually decreases

as one moves geographically further away. While the nature and characteristics of interaction

between geographically close and geographically distant stations are different. they are both essential

to the functioning of an organization.

THE I:\FOR.\IATIO:" OllLET: A NEW TOOL FOR OFFICE ORGA:\IZATIO:"

Communication technologies have e\"oh"ed to provide both local and long-haul networks. \\"e

postulate that for a given cost the bandwidth-distance product is constant. That is. for a gi\en cost

a local network will co\"er a small area and provide high bandwidth. while a long-haul network will

cover a wider area and pro\"ide lower bandwidth. Such price/performance structures are exactly

\\'hat is needed for office information systems where we expect that on the average most of the bits

transmitted will be within the natural locality of activity.

To meet the communication needs of a large organization. the design of any local network muSl be

considered in the context of an overall network architecture. A local network is one component of

an internetwork system that pro\"ides communications sen"ices to many diverse devices connected to

many different kinds networks (see for example [BoggsSO. Cerf7S]).

There are many different kinds of local computer networks, like Ethernet. Mitrenet. Primenel

Local);"et. Cambridge Ring. SDLC loop. etc. [Shoch80b]. They differ along the following axes:

technology. media. topology. speed, moaulation, control. and applications. Ine Ethernet system

satisfies most of the requirements for local office communications.

An inlemellmrk is simply an interconnection of networks. An additional protocol layer must be

interposed between the application-specific layer and the layer that transmits information across a

net\\:ork. This layer. is called the internet layer, and permits the addressing of system elements on

any network and the delivery of data to them. Internetwork transport protocols are network­

independent and define a communication system one level higher up from local networks.

~et\1\·orks are interconnected by internellmrk routers. as illustrated in the figure. There are many

ways to view and build internetwork systems. Internetworks should provide store-and-forward

delivery of datagram packets. Virtual circuit-like connections may then be easily built on top

wherever necessary. Such a strategy is adopted by the Advanced Research Projects Agency's

(ARPA) Internet and Transmission Control Protocols [IPSO. TCPSO]. and Xerox's internal. research

Pup Protocols [BoggsSO]. Other schemes like X.75 assume that each of the constituent networks

provides X.25 virtual circuits that may be concatenated to provide an end-to-end \"irtual circuit

[X25. X7S. Grossman79].

A well-designed netv,"ork architecture must permit interconnection to systems from other vendors.

obeying different protocols. This is achieved by pro\"iding pr%col translatioll gatelmys at different

levels. as required in the system. rather than having each application aware of all possible protocols.

Incompatibilities between different \"endors (and the different products of a single \"endor) is a fact

of life that must be accounted for from the very start to permit customers to integrate their existing

tools into a new system.

The Ethernet system underlies Xerox' distributed systems architecture much the same way that

SDLC underlies IBM's SNA. It is important to note. however. that the Ethernet and the

127

128

THE I:\FOR.\1ATIO:\ OL"TLET: A NEW TOOL FOR OFFICE ORGA:\IZATIO:\

Infonnation Outlet are not alternatiyes to IBM's SNA. It is possible for our internetworks to use

SDLC links or broadband communication satellites or X.25 networks internally, and conversely

SNA systems may use the Ethernet local network as a communications link. Both systems will

surely interconnect through appropriate protocol translation gateways, thereby providing users access

to resources on both sides.

Network Management

Distributed systems pennit users to tailor the system to meet their needs. rather than change their

operating procedures to meet the system's structure. The Ethernet local network uses distributed

algorithms to control access to the communications channel. thereby doing away with any

centralized component. This should encourage office infonnation systems designers to use similar

mechanisms at higher levels whenever possible.

In general. it snould be possible to:

1) Incrementally add or remove new system elements, services, and resources as necessary.

2) Migrate seryices and resources to other system elements should the one on which they
reside need repair or maintenance.

3) Move workstations easily when, for example, users change offices.

4) Modify the topology of the communication system to better meet the traffic flow
patterns of a particular set of users.

5) Isolate malfunctions. thereby pennitting the rest of the system to continue functioning.

In order to achieve these goals, certain functions in a distributed system should be decoupled. In

particular. it is necessary to differentiate between aliases. names, addresses, and routes [Shoch78,

Abraham80]. At run time an alias must be resolved into a name. an address located for a name.

and a route determined for an address.

An online directory or registry sen'ice. that we call the clearinghoL!,se. resolYes aliases into names.

and maps names into addresses [OppenS1]. This is similar to the telephone system's "white" and

"yellow" pages, and pennits services and system elements to be moved. added or removed. An

internetwork communication system that uses adaptive routing algorithms permits the topology to

be easily modified to meet changing traffic patterns. and permits graceful degradation of service in

the event of line failures by using alternate and possibly less efficient routes.

One of the major adyantages of decentralized network management techniques is that the system

structure can be made to complement organizational structures. thus reducing the burden on the

customer. Such systems can nevertheless be managed in a centralized fashion should customers so

desire: they have the choice.

THE I:\FOR.\1ATIO~ OL lLET: A NEW TOOL FOR OFFICE ORGA~IZATIO~

Office Sen-ices

So far. all we haye done is describe the architecture of a distributed computer and communication

system. and said Yery little about the design of specific office sen-ices and tools. That is precisely

the point-a well-designed system pennits all kinds of office sen-ices to be added as and w-hen their

need arise. This pennits an organization to grow their office infonnation system in a controlled

manner. while minimizing the initial purchase cost.

Vo';e expect that higher-IeYel protocols and data fonnats will be designed for many kinds of office

sen-ices. and distributed office management procedures [Ellis80]. In particular. those that pennit

arbitrarily complex text graphics and images to be printed. documents stored in and retrieyed from

electronic files. database queries. deliyery of electronic mail [LeYin 79, Birre1l81]. tenninal emulation

to timesharing systems. yoice communication, teleconferencing, etc. The list is endless. The figure

shows Xerox' i'etwork System.

8011 STAR
Information System

8044 P ri nt Se rve r D

Leased line

Ethernet

8071 Communications Server
(lriternetw,ork router,
Clearinghouse.
Protocol Gateway)

8012

D

8032 8071

860

o

8011

D

8044

11-:..11

The Xerox Network System

8011

Ethernet

860

o 820

872

/' Server

820

Terminal

129

130

THE I~FOR.\1:\ TIO;"; OL TIET: A NEW TOOL FOR OFFICE ORGA:\"ILA. TIO;";

Mutual Suspicion

\Vhile an office information sy'stem should provide the right tools for manipulating information. it

must also proyide mechanisms for protecting information. The system should be designed with

hooks to provide access control. authentication and security, should the need arise [Needham7S].

Organizations are usually suspicious of one another, and would like to control the manner in v,'hich

they interact. Building ultra-secure. yet yery general systems is not always cost-effectiye for many

commercial organizations. \Ve believe that in many cases mutually suspicious organizations will

resort to secure electronic document distribution as the yehicle for interaction. This is yery similar

to the way the postal system currently carries mail among organizations.

Conclusions

Local computtr ne'L~OIics pf0virit. the \elY fuundation with which tc "plug ont'~ office into th;

future." Such a network mUSl however, be viewed as one component of an internetwork

communication. system. and represents only about 1 to 2% of the complexity of an office

information system, The protocol architecture must be layered and open-ended to permit eyolution

and growth. and to minimize initial purchase cost. Decentralized management of office information

systems compliment organizational structures, thus reducing the burden on the customer.

Designers of local computer networks. in turn, should be influenced by some of the broader

architectural considerations that go into building distributed systems.

The distributed systems architecture underlying the Ethernet local computer network, and Xerox'

8000 Network System adhere to these principles, thus permitting the Information Outlet to provide

new tools for organizing the office.

Acknowledgements

The design and deyelopment of office information systems underlying the Information Outlet have

involved many people from Xerox' Office Products Division and Palo Alto Research Center. Our

netv,ork architecture embodies principles that evolved from experiences gained from research on the

Pup Internet\\'ork; David Boggs. John Shoch, Ed Taft, Bob Metcalfe, Hal Murray and Jim White

contributed to this effort.

References

[AbrahamSO]
S. M. Abraham and Y. K. Dalal. "Techniques for Decentralized Management of Distributed
Systems." 20th IEEE Computer Societ), International Conference (Compean). February 1980. pp.
430-436.

THE I~FOR...\1A TIO~ OCTLET: A NEW TOOL FOR OFFICE ORGA~IZA TIO~

[BirrellSl]
A. D. Birrell. R. Leyin. R. ~1. :\eedham. and M. D. Schroeder. "Grapeyine." to appear in
C AC_H.

[BoggsSO]
D. R. Boggs. 1. F. Shoch. E. A. Taft. and R. M. Metcalfe. "PUP: An internetwork architecture."
IEEE Transactions on Communications. com-2S:4. April 1980. pp. 612-624.

[Cerf7S]
V. G. Cerf and P. K. Kirstein. "Issues in Packet-?\etwork Interconnection." Proceedings of the
IEEE. y01 66. no 11. ~o\"ember 1975. pp. 1386-140S.

[EllisSO]
C. A. Ellis and G. 1. Nutt. "Computer Science and Office Information System." ACAf
Computing Surre:\'s. \"01 12. no 1. \1arch 1980. pp. 27-60.

[EthernetSO]
The Ethernet, A Local Area Nenvork: Dala Link Layer and Physical Layer Spec (fica 1 iOl1S.
Version 1.0, September 30, 1980. A \"ailable from InteL Digital Equipment and Xerox
Corporations.

[Grossman79]
G. R. Grossman. A. Hinchley, and C. A. Sunshine, "Issues in International Public Data
Networking." Computer Networks. '-01 3, no 4. September 1979. pp. 259-266.

[IP80]
DoD Standard Internet Protocol. Januarv 1980. 1. Postel editor. NTIS No. ADA079730. also in
ACi\[Computer Communication Revie~-, vol 10. no 4, October 80. pp. 2-51.

[Levin79]
R. Leyin and M. D. Schroeder. "Transport of Electronic Messages Through a Network." Xerox
PARC Technical Report CSL-79-4. April 1979.

[Metca1fe76]
R. M. Metcalfe and D. R. Boggs. "Ethernet: Distributed packet switching for local computer
net\\-orks." Communications of the ACJ\[. 19:7. July 1976. pp. 395-404.

[Metcalfe81]
R. M. Metcalfe. "A strategic oven-iew of local computer networks." Proceedings of the Online
Conference on Local Sell''.'Orks & Distributed Office Syslems. London. 11-13 May. 1981. pp. 1-10.

[Oppen81]
D. C. Oppen and Y. K. Dalal, "The Clearinghouse: A Decentralized Agent for Locating Named
Objects in a Distributed Em-ironment." Xerox Office Products Division. Palo Alto. OPD-T8103.
October. 1981.

[OSI81]
ISO Open Systems Imerconllection- Basic Reference i\lodel. ISO/TC 97/SC 16 j\' 719. August.
'1981.

[Shoch78]
1. F. Shoch. "Internet\\'ork Naming_ Addressing. and Routing," 17lh IEEE Computer Society
In/ernational C onferellce (C ompcon). September 1978. pp. 430-437.

131

132

THE I:\"FOR.\1ATIO:\" Ol"TLET: A NEW TOOL FOR OFFICE ORGA;\IZA TIO:\"

[Shoch80a]
1. F. Shoch and 1. A. Hupp. "\1easured perfonnance of an Ethernet local network."
Communications of the AC"H. 23:12. December 1980. pp. 711-i21.

[ShochSOb]
1. F. Shoch. "An Annotated Bibliography on Local Computer Networks." Third Edition. Xerox
PARC Technical Report SSL-80-2. April 1980.

[ShochSla]
1. F. Shoch. Y. K. Dalal. R. C. Crane. and D. D. Redell "Eyolution of the Ethernet Local
Computer :\'etwork." Xerox Office Products Di\"ision. Palo Alto. OPD-T8102. September. 19S1:
and to appear in IEEE Computer Magazine.

[ShochSlb]
J. F. Shoch. Local C ompUler Setworks. !\1cGraw-Hill. in press.

[TCP80]
DoD Standard Transmission Comra! Protocol, January 19S0. 1. Postel editor. NTIS No.
ADAOS2609. also in AC"\I CompUler Communication Review, vol 10. no 4. October SO. pp. 52-
132.

[X25]
Recommendation X.25/Interface between Data Tenninal Equipment (DTE) and Data Circuit­
tenninaling Equiprnenl (DeE) for Temlinals Operating in the Packet "Hode on Public Data
Aell .. Drks. CCnT Orange Book. \"01 7. International Telephone and Telegraph Consultatiye
Committee. Gene\'a.

[X75]
Proposal for Prorisional RecommEndation X.75 on Inlernaliona/ Inienvorking bE/WEeil Packel
Switched Data Sellmrks. in CCITT Study Group VII Contribution No. 207. International
T,elephone and Telegraph Consultatiye Committee. Geneva. May 1978.

[ZimmennannSO]
H. Zimmennann. "OSI Reference Model-The ISO Model of Architecture for Open Systems
Interconnection. IEEE Transactions 011 Cormnunicalions. com-2S:4. April 1980. pp. 425-432.

With the continuing decline in the cost of computing,
we have witnessed a dramatic increase in the number of
independent computer systems used for scientific com­
puting, business, process control, word processing, and
personal computing. These machines do not compute in
isolation, and with their proliferation comes a need for
suitable communication networks-particularly local
computer networks that can interconnect locally
distributed computing systems. While there is no single
definition of a local computer network, there is a broad
set of requirements:

• relatively high data rates (typically 1 to 10M bits per
second);

• geographic distance spanning about one kilometer
(typically within a building or a small set of
buildings);

• ability to support several hundred independent
devices;

• simplicity, or the ability "to provide the simplest
possible mechanisms that have the required func­
tionality and performance"; 1

• good error characteristics, good reliability, and
minimal dependence upon any centralized com­
ponents or control;

• efficient use of shared resources, particularly the
communications network itself;

• stability under high load;
• fair access to the system by all devices;
• easy installation of a small system, with graceful

growth as the system evolves;
• ease of reconfiguration and maintenance; and
• low cost.

One of the more successful designs for a system of this
kind is the Ethernet local computer network.2,3 Ethernet
installations have been in use for many years. They sup­
port hundreds of stations and meet the requirements
listed above.

In general terms, Ethernet is a multi-access, packe~­
switched communications system for carrying digital data
among locally distributed computing systems. The shared
communications channel in an Ethernet is a passive
broadcast medium with no central control; packet ad­
dress recognition in each station- is used to take pa.ckets
from the channel. Access to the channel by stations
wishing to transmit is coordinated in a distributed fashion
by the stations themselves, using a statistical arbitration
scheme.

The Ethernet strategy can be used on many different
broadcast media, but our major focus has been on the use
of coaxial cable as the shared transmission medium. The
Experimental Ethernet system was developed at the
Xerox Palo Alto Research Center starting in 1972. Since
then, numerous other organizations have developed and
built "Ethernet-like" local networks.4 More recently, a
cooperative effort involving Digital Equipment Corpora­
tion, Intel, and Xerox has produced an updated version
of the Ethernet design, generally known as the Ethernet
Specification. 5

One of the primary goals of the Ethernet Specification
is compatibility-providing enough information for dif­
ferent manufacturers to build widely differing machines
in such a way that they can directly communicate with one
another. It might be tempting to view the Specification as
simply a design handbook that will allow designers to
develop their own Ethernet-like network, perhaps cus-

0018-9162/82/0800-0010$00.75 © 1982 IEEE
133

134

tomized for some specific'requirements or local con­
straints. But this would miss the major point: Successful
interconnection of heterogeneous machines requires
equipment that precisely matches a single specification.

Meeting the Specification is only one of the necessary
conditions for intermachine communication at all levels
of the network architecture. There are many levels of pro­
tocol, such as transport, name binding, and file transfer,
that must also be agreed upon and implemented in order
to provide useful services.6-8 This is analogous to the
telephone system: The common low-level specifications
for telephony make it possible to dial from the US to
France, but this is not of much use if the caller speaks only
English while the person who answers the phone speaks
only French. Specification of these additional protocols is
an important area for further work.

The design of any local network must be considered in
the context of a distributed system architecture. Although
the Ethernet Specification does not directly address issues
of high-level network architecture, we view the local net­
work as one component in an internetwork system, pro­
viding communication services to many diverse devices
connected to different networks. 6,9 The services provided
by the Ethernet are influenced by these broader architec­
tural considerations.

As we highlight important design considerations and
trace the evolution of the Ethernet from research pro­
totype to multicompany standard, we use the term Ex­
perimental Ethernet for the former and Ethernet or
Ethernet Specification for the latter. The term Ethernet is
also used to describe design principles common to both
systems,

General description of Ethernet-class
systems

Theory of operation. The general Ethernet approach
uses a shared communications channel managed with a
distributed control policy known as carrier sense multiple
access with collision detection, or CSMA/CD. With this
approach, there is no central controller managing access
to the channel, and there is no preallocation of time slots
or frequency bands. A station wishing to transmit is said
to "contend" for use of the common shared communica­

quired the Ether and continues transmission of the
packet. If a station detects collision, the transmission of
the rest of the packet is immediately aborted. To ensure
that all parties to the collision have properly detected it,
any station that detects a collision invokes a collision con­
sensus enforcement procedure that briefly jams the chan­
nel. Each transmitter involved in the collision then
schedules its packet for retransmission at some later time.

To minimize repeated collisions, each station involved
in a collision tries to retransmit at a different time by
scheduling the retransmission to take place after a ran­
dom delay period. In order to achieve channel stability
under overload conditions, a controlled retransmission
strategy is used whereby the mean of the random retrans­
mission delay is increased as a function of the channel
load. An estimate of the channel load can be derived by
monitoring the number of collisions experienced by any
one packet. This has been shown to be the optimal
strategy among the options available for decentralized
decision and control problems of this class. 10

Stations accept packets addressed to them and discard
any that are found to be in error. Deference reduces the
probability of collision, and collision detection alJows the
timely retransmission of a packet. It is impossible, how­
ever, to guarantee that all packets transmitted will be
delivered successfully. For exa.mple, if a receiver is not
enabled, an error-free packet addressed to it will not be
delivered; higher levels of protocol must detect these
situations and retransmit.

Under very high load, short periods of time on the
channel may be lost due to collisions, but the collision
resolution procedure operates quickly.2,11-13 Channel
utilization under these conditions will remain high, par­
ticularly if packets are large with respect to the collision
interval. One of the fundamental parameters of any
Ethernet implementation is the length of this collision in­
terval, which is based on the round-trip propagation time
between the farthest two points in the system.

Basic components. The CSMA/CD access procedure
can use any broadcast multi-access channel, including
radio, twisted pair, coaxial cable, diffuse infrared, and
fiber optics. 14 Figure 1 illustrates a typical Ethernet
system using coaxial cable. There are four components.

tions channel (sometimes called the Ether) until it "ac- Station. A station makes use of the communication
quires" the channel; once the channel is acquired the sta- system and is the basic addressable device connected to an
tion uses it to transmit a packet. Ethernet; in general, it is a computer. We do not expect

To acquire the channel, stations check whether the net- that "simple" terminals will be connected directly to an
work is busy (that is, use carrier sense) and defer transmis- Ethernet. Terminals can be connected to some form of
sion of their packet until the Ether is quiet (no other terminal controller, however, which provides access to
transmissions occurring). When quiet is detected, the the network. In the future, as the level of sophistication in
deferring station immediately begins to transmit. During terminals increases, many terminals will support direct
transmission, the transmitting station listens for a colli- connection to the network. Furthermore, specialized 110
sion (other transmitters attempting to use the channel devices, such as magnetic tapes or disk drives, may incor­
simultaneously). In a correctly functioning system, colli- porate sufficient computing resources to function as sta­
sions occur only within a short time interval following the tions on the network.
start of transmission, since after this interval all stations Within the station there is some interface between the
will detect carrier and defer transmission. This time inter- operating system environment and the Ethernet con­
val is called the collision window or the collision interval troller. The nature of this interface (often in software)
and is a function of the end-to-end propagation delay. If depends upon the particular implementation of the con­
no collisions occur during this time, a transmitter has ac- troller functions in the station.

Controller. A controller for a station is really the set of
functions and algorithms needed to manage access to the
channel. These include signaling conventions, encoding
and decoding, serial-to-parallel conversion, address recog­
nition, error detection, buffering, the basic CSMA/CD
channel management, and packet~tion. These functions
can be grouped into two logically independent sections of
each controller: the transmitter and the receiver.

The controller functions are generally implemented
using a combination of hardware, microcode, and soft­
ware, depending on the nature of the station. It would be
possible, for example, for a very capable station to have a
minimal hardware connection to the transmission system
and perform most of these functions in software. Alter­
natively, a station might implement all the controller
functions in hardware, or perhaps in a controller-specific
microprocessor. Most controller implementations fall

Figure 1. A general Ethernet implementation.

somewhere in between. With the continuing advances in
LSI development, many of these functions will be pack­
aged in a single chip, and several semiconductor manufac­
turers have already announced plans to build Ethernet
controllers. The precise boundary between functions per­
formed on the chip and those in the station is implementa­
tion-dependent, but the nature of that interface is of great
importa:nce. As many of the functions as possible should
be moved into the chip, provided that this preserves all of
the flexibility needed in the construction and use of
system interfaces and higher level software.

The description of the controller in this article is func­
tional in nature and indicates how the controller must
behave independent of particular implementations.
There is some flexibility in implementing a correct con­
troller, and w~ will make several recommendations con­
cerning efficient operation of the system.

135

136

Transmission system, The transmISSIon system in­
cludes all the components used to establish a communica­
tions path among the controllers. In general, this includes
a suitable broadcast transmission medium, the appropri­
ate transmitting and receiving devices-transceivers­
and, optionally, repeaters to extend the range of the medi­
urn. The protocol for managing access to the transmission
system is implemented in the controller; the transmission
system does not attempt to interpret any of the bits
transmitted on the channel.

The broadcast transmission medium contains those
components that provide a physical communication path.
In the case of coaxial cable, this includes the cable plus any
essential hardware-connectors, terminators, and taps.

Transceivers contain the necessary electronics to trans­
mit and receive signals on the channel and recognize the
presence of a signal when another station transmits. They
also recognize a collision that takes place when two or
more stations transmit simultaneously.

Repeaters are used to extend the length of the transmis­
sion system beyond the physical limits imposed by the
transmission medium. A repeater uses two transceivers to
connect to two different Ethernet segments and combines
them into one logical channel, amplifying and regenerat­
ing signals as they pass through in either direction. 15

Repeaters are transparent to the rest of the system, and
stations on different segments can still collide. Thus, the
repeater must propagate a collision detected on one seg­
ment through to the other segment, and it must do so
without becoming unstable. A repeater makes an Ether­
net channel longer and as a result increases the maximum
propagation delay of the system, meaning delay through
the repeater and propagation delay through the addi­
tional segments. To avoid multipath interference in an
Ethernet installation, there must be only one path be­
tween any two stations through the network. (The higher
level internetwork architecture can support alternate
paths between stations through different communica­
tions channels.)

Controller-to-transmission-system interface. One of
the major interfaces in an Ethernet system is the point at
which the controller in a station connects to the transmis­
sion system. The controller does much of the work in
managing the communications process, so this is a fairly
simple interface. It includes paths for data going to and
from the transmission system. The data received can be
used by the controller to sense carrier, but the transmis­
sion system normally includes a medium-specific mecha­
nism for detecting collisions on the channel; this must also
be communicated through the interface to the controller.
It is possible to power a transceiver from a separate power
source, but power is usually taken from the controller in­
terface. In most transmission systems, the connection
from the controller is made to a transceiver, and this inter­
face is called the transceiver cable interface.

Two generations of Ethernet designs. The Experimen­
tal Ethernet circa 1972 confirmed the feasibility of the
design, and dozens of installations have been in regular
use since then. A typical installation su pports hundreds of
stations and a wide-ranging set of applications: file

transfer, mail distribution, document printing, terminal
access to timesharing systems, data-base access, copying
disks, multimachine programs, and more. Stations in­
clude the Alto workstation,16 the Dorado (an internal
research machine). 17 the Digital Equipment PDP-II, and
the Data General Nova. The system has been the subject
of extensive performance measurements confirming its
predicted behavior .12,13

Based upon that experience, a second-generation sys­
tem was designed at Xerox in the late 1970's. That effort
subsequently led to the joint development of the Ethernet
Specification. Stations built by Xerox for this network in­
clude the Xerox 860, the Xerox 8000 Network System
Processor, and the Xerox 1100 Scientific Information
Processor (the "Dolphin").

The two systems are very similar: they both use coaxial
cable, Manchester signal encoding, and CSMA/CD with
dynamic control. Some changes were made based on exper­
ience with the experimental system or in an effort to en­
hance the characteristics of the network. Some of the dif­
ferences between the systems are summarized in Table 1.

An "Ethernet Technical Summary," which brings to­
gether the important features of Version 1 of the joint
specification on two pages, is included for reference (pp.
14-15). (In building a compatible device or component, the
full Ethernet Specification5 remains the controlling
document. In describing the Ethernet Specification, this
article corresponds to Version 1.0; Version 2.0, including
extensions and some minor revisions, will be completed
later this year.)

Figure 2 is a photograph of some typical components
from the Experimental Ethernet. induding a transceiver
and tap, transceiver cable, and an Alto controller board.
Figure 3 is a photograph of similar components based on
the Ethernet Specification. Note that both controller
boards have been implemented with standard MSI circuits.

Transmission system design

A number of design issues and trade-offs emerged in
the development of the Ethernet transmission system,
and several lessons were learned from that experience.

Coaxial cable subsystem. In addition to having
favorable signaling characteristics and the ability to
handle multimegabit transmission rates, a single coaxial

Table 1.
Comparison of Ethernet systems.

Data rate
Maximum end-to-end length
Maximum segment length
Encoding
Coax cable impedance
Coax cable signal levels
Transceiver cable connectors
Length of preamble
Length of CRC
Length of address fields

Experimental Ethernet

2.94M bps
1 km
1 km
Manchester
75 ohms
o to +3V
25- and 15-pin D series
1 bit
16 bits
8 bits

Ethernet Specification

10M bps
2.5 km
500 m
Manchester
50 ohms
o to -2V
15-pin D series
64 bits
32 bits
48 bits

Packet Format

Preamble

64

Ethernet 1.0 Technical Summary

Packet

Dest. SourCI Type Data
Addr. Addr. Field Field

48 48 16 8n

~ CRC covers these fields---1
G(x)

CRC Preamble Dest. Sourc~
Addr. Addr.

32 64 48 48

H Minimum Packet Spacing

Type Data CRC
Field Field

16 8n 32

Stations must be able to transmit and receive packets on the common coaxial cable with the indicated packet format and spacing. Each packet should be
viewed as a sequence of 8·bit bytes; the least significant bit of each byte (starting with the preamble) is transmitted first.

Maximum Packet Size: 1526 bytes (8 byte preamble + 14 byte header + 1500 data bytes + 4 byte CRC)

Minimum Packet Size: 72 bytes (8 byte preamble + 14 byte header + 46 data bytes + 4 byte CRe)

Preamble: This 54·bit synchronization pattern contains alternating 1 's and O's, ending with two consecutive 1 'so
The preamble is: 10101010 10 10101011.

Destination Address: This 48·bit field specifies the station(s) to which the packet is being transmitted. Each station examines this field to determine
whether it should accept the packet. The first bit transmitted indicates the type of address. If it is a 0, the field contains the unique address of the one
destination station. If it is a 1, the field specifies a logical group of recipients; a special case is the broadcast (all stations) address, which is all 1 'So

Source Address: This 48·bit field contains the unique address of the station that is transmitting the packet.

Type Field: This 16·bit field is used to identify the higher· level protocol type associated with the packet. It determines how the data field is interpreted.

Data Field: This field contains an integral number of bytes ranging from 46 to 1500. (The minimum ensures that valid packets will be distinguishable
from Collision fragments.)

Packet Check Sequence: This 32·bit field contains a redundancy check (CRG) code, defined by the generating polynomial:

G(x) = x32 + i 6 + x23 + i2 + x 16 + x 12 + x 11 + x 10 + x8 + x7 + x5 + x4 + x2 + x + 1

The CRC covers the address (destination/source), type, and data fields. The first transmitted bit of the destination field is the high·order term of the
message polynomial to be divided by G(x) producing remainder R(x). The high·order term of R(x) is the first transmitted bit of the Packet Check Sequence
field. The algorithm uses a linear feedback register which is initially preset to all 1 'so After the last data bit is transmitted, the contents of this register
(the remainder) are inverted and transmitted as the eRC field. After receiving a good packet, the receiver's shift register contains 11000111 00000100

11011101 01111011 (X31 , ... ,xO).

Minimum Packet Spacing: This spacing is 9.6 usec, the minimum time that must elapse after one transmission before another transmission may begin.

Round· trip Delay: The maximum end·to·end, round·trip delay for a bit is 51.2 usee.

Collision Filtering: Any received bit sequence smaller than the minimum valid packet (with minimum data field) is discarded as a collision fragment.

Control Procedu re
The control procedure defines how and when a station may transmit packets into the common cable. The key purpose is fair resolution of occasional
contention among transmitting stations.

Defer: A station must not transmit into the coaxial cable when carrier is present or within the minimum packet spacing time after carrier has ended.

Transmit: A station may transmit if it is not deferring. It may continue to transmit until either the end of the packet is reached or a collision is
detected.

Abort: If a collision is detected, transmission of the packet must terminate, and a jam (~·6 bytes of arbitrary data) is transmitted to ensure that all other
participants in the collision also recognize its occurrence.

Retransmit: After a station has detected a collision and aborted, it must wait for a random retransmission delay, defer as usual, and then attempt to
retransmit the packet. The random time interval is computed using the backoff algorithm (below). After 16 transmission attempts, a higher level (e.g.
software) decision is made to determ:ne whether to continue or abandon the effort.

Sackoff: Retransmission delays are computed using the Truncated Binary Exponential Backoff algorithm, with the aim of fairly resolving contention among

up to 1024 stations. The d~lay (the number of time units) before the nth attempt is a uniformly distributed random number from [0 to 2n.1] for O<n~ 10
(n=O is the original attempt). For attempts 11·15, the interval is truncated and remains at [0 to 1023]. The unit of time for the retransmission delay is
512 bit times (51.2 usec).

Channel Encoding
Manchester encoding is used on the coaxial cable. It has a
50% duty cycle, and insures a transition in the midd Ie of every
bit cell ("data transition"). The first half of the bit cell contains
the complement of the bit value, and the second half contains
the true value of the bit.

Data Rate
Data rate is 10 M bits/sec = 100 nsec bit cell ± 0.01%.

Carrier

BitCell i
110

--~I~~~I~----~~
High (also quiescent state)

Low

100 nS ~ Logic High.: 1 = 0 mA = 0 V
0.75 1 1.25 Logic Low. 0 = -82 rnA = -2.05 V I > Cable has 0 volts in quiescent state

Determination of Carrier at receiver.

The presence of data transitions indicates that carrier is present. If a transition is not seen between 0.75 and 1.25 bit times since the center of the last
bit cell, then carrier has been lost, indicating the end of a packet. For purposes of deferring, carrier means any activity on the cable, independent of
being properly formed. Specifically, it is any activity on either receive or collision detect signals in the last 160 nsec.

137

138

Terminator

r------------- Coax Cable Segment (1 electrical segment)

Coax Cable Section Coax Cable Section

Tap
Transceiver

Female-Female
Adapter (Barrel)

Male coax
Connector

Female cable
connector

Transceive..;.r ____ -J-t ____ ~~
Cable

Coax Cable
Male cable
Connector

Connectorized
Transceiver

Terminator

Impedance: 50 ohms ± 2 Ohms (Mil Std. C17·E). This impedance variation includes batch-to-batch variations. Periodic variations in impedance of up

to ± 3 ohms are permitted along a single piE2~e of cable.

Cable Loss: The maximum loss from one end of a cable segment to the other end is 8.5 db at 10 MHz {equivalent to -500 meters of low loss cable).

Shielding: The physical channel hardware must operate in an ambient field of 2 volts per meter from 10 KHz to 30 MHz and 5 V/meter from 30 MHz to
1 GHz. The shield has a transfer impedance of less than 1 milliohm per meter over the frequency range of 0.1 MHz to 20 MHz (exact value is a function
of frequency).

Ground Connections: The coax cable shield shall not be connected to any building or AC ground along its length. If for safety reasons a ground
connection of the shield is necessary, it must be in only one place.

Physical Dimensions: This specifies the dimensions of a cable which can be used with the standard tap. Other cables may also be used. if they are
not to be used with a tap·type transceiver (such as use with connectorized transceivers. or as a section between sections to which standard taps are
connected).

Center Conductor:
Core Material:
Core 0.0.:
Shield:
Jacket:
Jacket 0.0.:

0.0855" diameter solid tinned copper
Foam polyethylene or foam teflon FEP
0.242 " minimum
0.326" maximum shield 0.0. (>90% coverage for outer braid shield)
PVC or teflon FEP
0.405"

Coax Connectors and Terminators
Coax cables must be terminated with male N-series connectors. and cable sections 'Nill be joined with female-female adapters. Connector shells shall be
insulated such that the coax shield is protected from contact to building grounds. A sleeve or boot is acceptable. Cable segments should be terminated
with a female N-series connector (can be made up of a barrel connector and a male terminator) having an impedance of 50 ohms ± 1 %. and able to
dissipate 1 watt. The outside surface of the terminator should also be insulated.

Transceiver
CONNECTION RULES

lJp to 100 transceivers may be placed on a cable segment no closer together than 2.5 meters. Following this placement rule reduces to a very low (but
not zero) probability the chance that objectionable standing waves will result.

COAX CABLE INTERFACE

Input Impedance: The resistive component of the impedance must be greater then 50 Kohms. The total capacitance must be less than 4 picofarads.

Nominal Transmit Level: The important parameter is average DC level with 50% duty cycle waveform input. It must be -1.025 V (41 mAl nominal with
a range of -0.9 V to -1.2 V (36 to 48 mAl. The peak-to-peak AC waveform must be centered on the average DC level and its value can range from 1.4
V pop to twice the average DC level. The voltage must never go positive on the coax. The quiescent state of the coax is logic high (0 V). Voltage
measurements are made on the coax near the transceiver with the shield as reference. Positive current is current flowing out of the center conductor of
the coax.

Rise and Fall Time: 25 nSec ± 5 nSec with a maximum of 1 nSec difference between rise time and fall time in a given unit. The intent is that dV Idt
should not significantly exceed that present in a 10 MHz sine wave of same peak-to-peak amplitude.

Signal Symmetry: Asymmetry on output should not exceed 2 nSec for a 50-50 square wave input to either transmit or receive section of transceiver.

TRANSCEIVER CABLE INTERFACE

Signal Pairs: Both transceiver and station shall drive and present at the receiving end a 78 ohm balanced load. The differential signal voltage shall be
0.7 volts nominal peak with a common mode voltage between 0 and +5 volts using power return as reference. (This amounts to shifted ECl levels
operating between Gnd and +5 volts. A 10116 with suitable pulldown reSistor may be used). The quiescent state of a line corresponds to logic high,
which occurs when the + line is more positive than the - line of a pair.

Collision Signal: The active state of this line is a 10 MHz waveform and its quiescent state is logic high. It is active if the transceiver is transmitting
and another transmission is detected, or if two or more other stations are transmitting, independent of the state of the local transmit signal.

Power: + 11.4 volts to + 16 volts DC at controller. Maximum current available to transceiver is 0.5 ampere. Actual voltage at transceiver is determined
by the interface cable reSistance (max 4 ohms loop resistance) and current drain.

ISOLATION

The impedance between the coax connection and the transceiver cable connection must exceed 250 Kohms at 60 Hz and withstand 250 VRMS at 60 Hz.

Transceiver Cable and Connectors
Maximum signal loss '" 3 db @ 10 MHz. (equivalent to -50 meters of either 20 or 22 AWG twisted pair).

Transceiver Cable Connector Pin Assignment

1. Shield·
2. Collision +
3. Transmit +
4. Reserved
5. Receive +
6. Power Return
7. Reserved
8. Reserved

9.
10.
11.
12.
13.
14.
15.

Collision -
Transmit -
Reserved
Receive -
+ Power
Reserved
Reserved

·Shield must be terminated to connector shell.

Male 15 pin
O-Series connector
with lock posts_

4 pai r # 20 A WG 0 r 22 A WG
78 ohm differential impedance
1 overall shield Insulating jacket Female 15 pin O-Series
4 ohms max loop reSistance for power pair connector with slide lock

assembly.

cable can support communication among many different
stations. The mechanical aspects of coaxial cable make it
feasible to tap in at any point without severing the cable or
producing excessive RF leakage; such considerations re­
lating to installation, maintenance, and reconfigurability
are important aspects in any local network design.

There are reflections and attenuation in a cable, how­
ever, and these combine to impose some limits on the sys­
tem design. Engineering the shared channel entails trade­
offs involving the data rate on the cable, the length of the
cable, electrical characteristics of the transceiver, and the
number of stations. For example, it is possible to operate
at very high data rates over short distances, but the rate
must be reduced to support a greater maximum length.
Also, if each transceiver introduces significant reflec­
tions, it may be necessary to limit the placement and
possibly the number of transceivers.

The characteristics of the coaxial cable fix the maximum
data rate, but the actual clock is generated in the controller.
Thus, the station interface and controller must be designed
to match the data rates used over the cable. Selection of
coaxial cable as the transmission medium has no other
direct impact on either the station or the controller.

Cable. The Experimental Ethernet used 75-ohm, RG­
ll-type foam cable. The Ethernet Specification uses a
50-ohm, solid-center-conductor, double-shield, foam di­
electric cable in order to provide some reduction in the
magnitude of reflections from insertion capacitance (in­
troduced by tapping into the cable) and to provide better
immunity against environmental electromagnetic noise.
Belden Number 9880 Ethernet Coax meets the Ethernet
Specification.

Terminators and connectors. A small terminator is at­
tached to the cable at each end to provide a termination
impedance for the cable equal to its characteristic im­
pedance, thereby eliminating reflection from the ends of
the cable. For convenience, the cable can be divided into a
number of sections using simple connectors between sec­
tions to produce one electrically continuous segment.

Figure 2. Experimental Ethernet components: (a) transceiver and tap,
(b) tap-block, (c) transceiver cable, and (d) Alto controller board.

Segment length and the use of repeaters. The Ex­
perimental Ethernet was designed to accommodate a
maximum end-to-end length of 1 km, implemented as a
single electrically continuous segment. Active repeaters
could be used with that system to create complex topolo­
gies that would cover a wider area in a building (or com­
plex of buildings) within the end-to-end length limit. With
the use of those repeaters, however, the maximum end-to­
end length between any two stations was still meant to be
approximately 1 km. Thus, the segment length and the
maximum end-to-end length were the same, and repeaters
were used to provide additional flexibility.

In developing the Ethernet Specification, the strong
desire to support a 10M-bps data rate-with reasonable
transceiver cost-led to a maximum segment length of
500 meters. We expect that this length will be sufficient to
support many installations and applications with a single
Ethernet segment. In some cases, however, we recognized
a requirement for greater maximum end-to-end length in
one network. In these cases, repeaters may now be used
not just for additional flexibility but also to extend the
overall length of an Ethernet. The Ethernet Specification
permits the concatenation of up to three segments; the
maximum end-to-end delay between two stations mea­
sured as a distance is 2.5 km, including the delay through
repeaters containing a point-to-point link.5

Taps. Transceivers can connect to a coax cable with the
use of a pressure tap, borrowed from CATV technology.
Such a tap allows connection to the cable without cutting
it to insert a connector and avoids the need to interrupt
network service while installing a new station. One design
uses a tap-block that is clamped on the cable and uses a
special tool to penetrate the outer jacket and shield. The
tool is removed and the separate tap is screwed into the
block. Another design has the tap and tap-block inte­
grated into one unit, with the tap puncturing the cable to
make contact with the center conductor as the tap-block is
being clamped on.

Alternatively, the cable can be cut and connectors fas­
tened to each piece of cable. This unfortunately disrupts
the network during the installation process. After the
connectors are installed at the break in the cable, a
T -connector can be inserted in between and then con­
nected to a transceiver. Another option, a connectorized
transceiver, has two connectors built into it for direct at­
tachment to the cable ends without aT-connector.

Experimental Ethernet installations have used pressure
taps where the tap and tap-block are separate, as il­
lustrated in Figure 2. Installations conforming to the
Ethernet Specification have used all the options. Figure 3
illustrates a connectorized transceiver and a pressure tap
with separate tap and tap-block.

Transceiver. The transceiver couples the station to the
cable and is the most important part of the transmission
system.

The controller-to-transmission-system interface is very
simple, and functionally it has not changed between the
two Ethernet designs. It performs four functions: (1)
transferring transmit data from the controller to the
transmission system, (2) transferring receive data from

139

140

the transmission system to the controller, (3) indicating to
the controller that a collision is taking place, and (4) pro­
viding power to the transmission system.

It is important that the two ground references in the
system-the common coaxial cable shield and the local
ground associated with each station-not be tied to­
gether, since one local ground typically may differ from
another local ground by several volts. Connection of sev­
eral local grounds to the common cable could cause a
large current to flow through the cable's shield, introduc­
ing noise and creating a potential safety hazard. For this
reason, the cable shield should be grounded in only one
place.

It is the transceiver that provides this ground isolation
between signals from the controller and signals on the
cable. Several isolation techniques are po~sible: trans­
former isolation, optical isolation, and capacitive isola­
tion. Transformer isolation provides both power and sig­
nal isolation; it has low differential impedance for signals
and power, and a high common-mode impedance for iso­
lation. It is also relatively inexpensive to implement. Opti­
cal isolators that preserve tight signal symmetry at a com­
petitive price are not readily available. Capacitive cou­
pling is inexpensive and preserves signal symmetry but has
poor common-mode rejection. For these reasons trans­
former isolation is used in Ethernet Specification trans­
ceivers. in addition, the mechanicai design and installa­
tion of the transceiver must preserve this isolation. For ex­
ample, cable shield connections should not come in con­
tact with a building ground (e.g .• a cable tray, conduit, or
ceiling hanger).

The transceiver provides a high-impedance connection
to the cable in both the power-on and power-off states. In
addition, it should protect the network from possible in­
ternal circuit failures that could cause it to disrupt the net­
work as a whole. It is also important for the transceiver to
withstand transient voltages on' the coax between the
center conductor and shield. While such voltages should
not occur if the coax shield is grounded in only one place,
such isolation may not exist during installation. l

Negative transmit levels were selected for the Ethernet
Specification to permit use of fast and more easily inte­
grated NPN transistors for the output current source. A
current source output was chosen over the voltage source
used in the Experimental Ethernet to facilitate collision
detection.

The key factor affecting the maximum number of trans­
ceivers on a segment in the Ethernet Specification is the in­
put bias current for the transceivers. With easily achievable
bias currents and collision threshold tolerances, the max­
imum number was conservatively set at 100 per segment. If
the only factors taken into consideration were signal at­
tenuation and reflections, then the number would have
been larger.

Controller design

The transmitter and receiver sections of the controller
perform signal conversion, encoding and decoding,
serial-to-parallel conversion, address recognition, error
detection, CSMA/CD channel management, buffering,

and packetization. Postponing for now a discussion of
buffering and packetization, we will first deal with the
various functions that the controller needs to perform
and then show how they are coordinated into an effective
CSMA/CD channel management policy.

Figure 3. Ethernet Specification components: (a) transceiver, tap, and
tap-block, (b) connectorized transceiver, (c) transceiver cable, (d)
Dolphin controller board, and (e) Xerox 8000 controller board.

Signaling, data rate, and framing. The transmitter
generates the serial bit stream inserted into the transmis­
sion system. Clock and data are combined into one signal
using a suitable encoding scheme. Because of its simplici­
ty, Manchester encoding was used in the Experimental
Ethernet. In Manchester encoding, each bit cell has two
parts: the first half of the cell is the complement of the bit
value and the second half is the bit value. Thus, there is
always a transition in the middle of every bit cell, and this
is used by the receiver to extract the data.

For the Ethernet Specification, MFM encoding (used in
double-density disk recording) was considered, but it was
rejected because decoding was more sensitive to phase dis­
tortions from the transmission system and required more
components to implement. Compensation is not as easy as
in the disk situation because a station must receive signals
from both nearby and distant stations. Thus, Manchester
encoding is retained in the Ethernet Specification.

In the Experimental Ethernet, any data rate in the range
of 1 M to 5M bps might have been chosen. The particular
rate of 2.94M bps was convenient for working with the
first Altos. For the Ethernet Specification, we wanted a
data rate as high as possible; very high data rates,
however, limit the effective length of the system and re­
quire more precise electronics. The data rate of 10M bps
represents a trade-off among these considerations.

Packet framing on the Ethernet is simple. The presence
of a packet is indicated by the presence of carrier, or tran­
sitions. In addition, all packets begin with a known pat­
tern of bits called the preamble. This is used by the
receiver to establish bit synchronization and then to
locate the first bit of the packet. The pream ble is inserted
by the controller at the sending station and stripped off
by the controller at the receiving station. Packets may be
of variable length, and absence of carrier marks the end of
a packet. Hence, there is no need to have framing flags
and "bit stuffing" in the packet as in other data-link pro­
tocols such as SDLC or HDLe.

The Experimental Ethernet used a one-bit preamble.
While this worked very well, we have, on rare occasions,
seen some receivers that could not synchronize with this
very short preamble. IS The Ethernet Specification uses a
64-bit preamble to ensure synchronization of phase-lock
loop receivers often used at the higher data rate. It is
necessary to specify 64 bits to allow for (1) worst-case
tolerances on phase-lock loop components, (2) maximum
times to reach steady-state conditions through transceivers,
and (3) loss of preamble bits owing to squelch on input and
output within the transceivers. Note that the presence of
repeaters can add up to four extra transceivers between a
source and destination.

Additional conventions can be imposed upon the frame
structure. Requiring that all packets be a multiple of some
particular byte or word size simplifies controller design
and provides an additional consistency check. All packets
on the Experimental Ethernet are viewed as a sequence of
16-bit words with the most significant bit of each word
transmitted first. The Ethernet Specification requires all
packets to be an integral number of eight-bit bytes (ex­
clusive of the preamble, of course) with the least signifi­
cant bit of each byte transmitted first. The order in which
the bytes of an Ethernet packet are stored in the memory

of a particular station is part of the controller-to-station
interface.

Encoding and decoding. The transmitter is responsible
for taking a serial bit stream from the station and en­
coding it into the Manchester format. The receiver is re­
sponsible for decoding an incoming signal and converting
it into a serial bit stream for the station. The process of en­
coding is fairly straightforward, but decoding is more dif-

During transmission a controller
must recognize that another station is also

transmitting.

ficult and is realized in a phase decoder. The known
preamble pattern can be used to help initialize the phase
decoder, which can employ any of several techniques in­
cluding an analog timing circuit, a phase-locked loop, or a
digital phase decoder (which rapidly samples the input
and performs a pattern match). The particular decoding
technique selected can be a function of the data rate,
since some decoder designs may not run as fast as others.
Some phase decoding techniques-particularly the digital
one-have the added advantage of being able to recognize
certain phase violations as collisions on the transmission
medium. This is one way to implement collision detec­
tion, although it does not work with all transmission
systems.

The phase decoders used by stations on the Experimen­
tal Ethernet included an analog timing circuit in the form
of a delay line on the PDP-II, an analog timing circuit in
the form of a simple one-shot-based timer on the Alto, and
a digital decoder on the Dorado. All stations built by Xerox
for the Ethernet Specification use phase-locked loops.

Carrier sense. Recognizing packets passing by is one of
the important requirements of the Ethernet access pro­
cedure. Although transmission is baseband, we have bor­
rowed the term' 'sensing carrier" from radio terminology
to describe the detection of signals on the channel. Carrier
sense is used for two purposes: (1) in the receiver to delimit
the beginning and end of the packet, and (2) in the trans­
mitter to tell when it is permissible to send. With the use of
Manchester phase encoding, carrier is conveniently in­
dicated by the presence of transitions on the channel.
Thus, the basic phase decoding mechanism can produce a
signal indicating the presence of carrier independent of
the data being extracted. The Ethernet Specification re­
quires a slightly subtle carrier sense technique owing to
the possibility of a saturated collision.

Collision detection. The ability to detect collisions and
shut down the transmitter promptly is an important fea­
ture in minimizing the channel time lost to collisions. The
general requirement is that during transmission a con­
troller must recognize that another station is also trans­
mitting. There are two approaches:

141

142

(1) Collision detection in the transmission system. It is
usually possible for the transmission system itself to
recognize a collision. This allows any medium-dependent
technique to be used and is usually implemented by com­
paring the injected signal with the received signal. Com­
paring the transmitted and received signals is best done in
the transceiver where there is a known relationship be­
tween the two signals. It is the controller, howev~r, which
needs to know that a collision is taking place.

(2) Collision detection in the controller. Alternatively,
the controller itself can recognize a collision by compar­
ing the transmitted signal with the received signal, or the
receiver section can attempt to unilaterally recognize col­
lisions, since they often appear as phase violations.

Both generations of Ethernet detect collisions within
the transceiver and generate the collision signal in the
controller-to-transmission-system interface. Where fea­
sible, this can be supplemented with a collision detection
facility in the controller. Collision detection may not be
absolutely foolproof. Some transmission schemes can
recognize all collisions, but other combinations of trans­
mission scheme and collision detection may not provide
lOO-percent recognition. For example, the Experimental
Ethernet system functions, in principle, as a wired OR. It
is remotely possible for one station to transmit while
another station sends a packet whose waveform, at the
first station, exactly matches the signal sent by the
first station; thus, no collision is recognized there. Un­
fortunately, the intended recipient might be located be­
tween the two stations, and the two signals would indeed
interfere.

There is another possible scenario in which collision
detection breaks down. One station begins transmitting
and its signal propagates down the channel. Another sta­
tion still senses the channel idle, begins to transmit, gets
out a bit or two, and then detects a collision. If the col­
liding station shuts down immediately, it leaves a very
small collision moving through the channel. In some ap­
proaches (e.g., DC threshold collision detection) this may
be attenuated and simply not make it back to the transmit­
ting station to trigger its collision detection circuitry.

The probability of such occurrences is small. Actual
measurements in the Experimental Ethernet system in­
dicate that the collision detection mechanism works very
well. Yet it is important to remember that an Ethernet
system delivers packets only with high probability-not
certainty.

To help ensure proper detection of collisions, each
transmitter adopts a collision consensus enforcement
procedure. This makes sure that all other parties to the
collision will recognize that a collision has taken place. In
spite of its lengthy name, this is a simple procedure. After
detecting a collision, a controller transmits a jam that
every operating transmitter should detect as a collision. In
the Experimental Ethernet the jam is a phase violation,
while in the Ethernet Specification it is the transmission of
four to six bytes of random data.

Another possible collision scenario arises in the context
of the Ethernet Specification. It is possible for a collision
to involve so many participants that a transceiver is in­
capable of injecting any more current into the cable. Dur-

ing such a coiiision, one cannot guarantee that the wave­
form on the cable will exhibit any transitions. (In the ex­
treme case, it simply sits at a constant DC level equal to
the saturation voltage.) This is called a saturated colli­
sion. In this situation, the simple notion of sensing carrier
by detecting transitions would not work anymore. In par­
ticular, a station that deferred only when seeing transi­
tions would think the Ether was idle and jump right in,
becoming another participant in the collision. Of course,
it would immediately detect the collision and back off,
but in the extreme case (everyone wanting to transmit),
such jumping-in could theoretically cause the saturated
collision to snowball and go on for a very long time. While
we recognized that this form of instability was highly
unlikely to occur in practice, we included a simple
enhancement to the carrier sense mechanism in the
Ethernet Specification to prevent the problem.

We have focused on collision detection by the transmit­
ter of a packet and have seen that the transmitter may de­
pend on a collision detect signal generated unilaterally by
its receiving phase decoder. Can this receiver-based colli­
sion detection be used just by a receiver (that is, a station
that is not trying to transmit)? A receiver with this capa­
bility could immediately abort an input operation and
could even generate a jam signal to help ensure that the
coliision came to a prompt termination. With a reason­
able transmitter-based collision detection scheme, how­
ever, the collision is recognized by the trausmitters and
the damaged packet would come to an end very shortly.
Receiver-based collision detection could provide an early
warning of a collision for use by the receiver, but this is
not a necessary function and 'Ne have not used it in either
generation of Ethernet design.

CRC generation and checking. The transmitter gener­
ates a cyclic redundancy check, or CRC, of each transmit­
ted packet and appends it to a packet before transmission.
The receiver checks the CRC on packets it receives and
strips it off before giving the packet to the station. If the
CRC is incorrect, there are two options: either discard the
packet or deliver the damaged packet with an appropriate
status indicating a CRC error.

While most eRe algorithms are quite good, they are
not infallible. There is a small probability that undetected
errors may slip through. More importantly, the CRC only
protects a packet from the point at which the CRC is
generated to the point at which it is checked. Thus, the
CRC cannot protect a packet from damage that occurs in
parts of the controller, as, for example, in a FIFO in the
parallel path to the memory of a station (the DMA), or in
the memory itself. If error detection at a higher level is re­
quired, then an end-to-end software checksum can be
added to the protocol architecture.

In measuring the Experimental Ethernet system, we
have seen packets whose CRC was reported as correct but
whose software checksum was incorrect. 18 These did not
necessarily represent an undetected Ethernet error; they
usually resulted from an external malfunction such as a
broken interface, a bad CRC checker, or even an incor­
rect software checksum algorithm.

Selection of the CRC algorithm is guided by several
concerns. It should have sufficient strength to properly

detect virtually all packet errors. Unfortunately, only a
limited set of CRC algorithms are currently implemented
in LSI chips. The Experimental Ethernet used a 16-bit
CRC, taking advantage of a single-chip eRe generator/
checker. The Ethernet Specification provides better error
detection by using a 32-bit CRC. 19.20 This function will be
easily implemented in an Ethernet chip.

Addressing. The packet format includes both a source
and destination address. A local network design can
adopt either of two basic addressing structures: network­
specific station addresses or unique station addresses. 21

In the first case, stations are assigned network addresses
that must be unique on their network but may be the same
as the address held by a station on another network. Such
addresses are sometimes caJIed network relative ad­
dresses, since they depend upon the particular network to
which the station is attached. In the second case, each sta­
tion is assigned an address that is unique over all space and
time. Such addresses are also known as absolute or uni­
versal addresses, drawn from a flat address space.

To permit internetwork communication, the network­
specific address of a station must usually be combined
with a unique network number in order to produce an un­
ambiguous address ar the next level of protocol. On the
other hand, there is no need to combine an absolute sta­
tion address with a unique network number to produce an
unambiguous address. However, it is possible that inter­
network systems based on flat (internetwork and local
network) absolute addresses will include a unique net­
work number at the internetwork layer as a "very strong
hint" for the routing m:achinery.

If network-specific addressing is adopted, Ethernet ad­
dress fields need only be large enough to accommodate
the maximum number of stations that will be connected to
one local network. In addition, there must be a suitable
administrative procedure for assigning addresses to sta­
tions. Some installations will have more than one Ether­
net, and if a station is moved from one network to another
it may be necessary to change its network-specific ad­
dress, since its former address may be in use on the new
network. This was the approach used on the Experimen­
tal Ethernet, with an eight-bit field for the source and the
destination addresses.

We anticipate that there will be a large number of sta­
tions and many local networks in an internetwork. Thus,
the management of network-specific station addresses
can represent a severe problem. The use of a flat address
space provides for reliable and manageable operation as a
system grows, as machines move, and as the overall topol­
ogy changes. A flat internet address space requires that
the address space be large enough to ensure uniqueness
while providing adequate room for growth. It is most con­
venient if the local network can directly support these
fairly large address fields.

For these reasons the Ethernet Specification uses 48-bit
addresses. 22 Note that these are station addresses and are
not associated with a particular network interface or con­
troller. In particular, we believe that higher level routing
and addressing procedures are simplified if a station con­
nected to multiple networks has only one identity which is
unique over all networks. The address should not be hard-

wired into a particular interface or controller but should
be able to be set from the station. It may be very useful,
however, to allow a station to read a unique station iden­
tifier from the controller. The station can then choose
whether to return this identifier to the controller as its ad­
dress.

In addition to single-station addressing, several en­
hanced addressing modes are also desirable. Multicast ad­
dressing is a mechanism by which packets may be targeted
to more than one destination. This kind of service is par­
ticularly valuable in certain kinds of distributed applica­
tions, for instance the access and update of distributed
data bases, teleconferencing, and the distributed algo­
rithms that are used to manage the network and the inter­
network. We believe that multicast should be supported
by allowing the destination address to specify either a
physical or logical address. A logical address is known as a
multicast ID. Broadcast is a special case of multicast in
which a packet is intended for all active stations. Both
generations of Ethernet support broadcast, while only the
Ethernet Specification directly supports multicast.

Stations supporting multicast must recognize multicast
IDs of interest. Because of the anticipated growth in the
use of multicast service, serious consideration should be
given to aspects of the station and controller design that
reduce the system load required to filter unwanted
multicast packets. Broadcast should be used with discre­
tion, since all nodes incur the overhead of processing
every broadcast packet.

Controllers capable of accepting packets regardless of
. destination address provide promiscuous address
recognition. On such stations one can develop software to
observe all of the channel's traffic, construct traffic
matrices, perform load analysis, (potentially) perform
fault isolation, and debug protocol implementations.
While such a station is able to read packets not addressed
to it, we expect that sensitive data will be encrypted by
higher levels of software.

CSMA/CD channel management

A major portion of the controller is devoted to Ethernet
channel management. These conventions specify pro­
cedures by which packets are transmitted and received on
the multi-access channel.

Transmitter. The transmitter is invoked when the sta­
tion has a packet to send. If a collision occurs, the con­
troller enforces the collision with a suitable jam, shuts
down the transmitter, and schedules a retransmission.

Retransmission policies have two conflicting goals: (I)
scheduling a retransmission quickly to get the packet out
and maintain use of the channel, and (2) voluntarily back­
ing off to reduce the station's load on a busy channel.
Both generations of Ethernet use the binary exponential
back-off algorithm described below. After some max­
imum number of collisions the transmitter gives up and
reports a suitable error back to the station; both genera­
tions of Ethernet give up after 15 collisions.

The binary exponential back-off algorithm is used to
calculate the delay before retransmission. After a colli-

143

144

sion takes place the objective is to obtain delay periods
that will reschedule each station at times quantized in
steps at least as large as a collision interval. This time
quantization is called the retransmission slot time. To
guarantee quick use of the channel, this slot time should
be short; yet to avoid collisions it should be larger than a
collision interval. Therefore, the slot time is usually set to
be a little longer than the round-trip time of the channel.
The real-time delay is the product of some retransmission
delay (a positive integer) and the retransmission slot time.

Collisions on the channel can produce
collision fragments, which can be eliminated

with a fragment filter in the controller.

To minimize the probability of repeated collisions,
each retransmission delay is selected as a random number
from a particular retransmission interval between zero
and some upper limit. In order to control the channel and
keep it stable under high load, the interval is doubled with
each successive collision, thus extending the range of
possible retransmission delays. This algoiithm has very
short retransmission delays at the beginning but will back
off quickly, preventing the channel from becoming over­
loaded. After some number of back-offs, the retransmis­
sion interval becomes large. To avoid undue delays and
slow response to improved channel characteristics, the
doubling can be stopped at some point, with additional
retransmissions still being drawn from this interval,
before the transmission is finally aborted. This is referred
to as truncated binary exponential back-off

The truncated binary exponential back-off algorithm
approximates the ideal algorithm where the probability of
transmission of a packet is 1/Q, with Q representing the
number of stations attempting to transmit. 23 The retrans­
mission interval is truncated when Q becomes equal to the
maximum number of stations.

In the Experimental Ethernet, the very first transmis­
sion attempt proceeds with no delay (i.e., the retransmis­
sion interval is [0-0]). The retransmission interval is
doubled after each of the first eight transmission attempts.
Thus, the retransmission delays should be uniformly
distributed between 0 and 2min(retransmission attempt, 8) - 1.
After the first transmission attempt, the next eight inter­
vals will be [0-1], [0-3], [0-7], [0-15], [0-31], [0-63],
[0-127], and [0-255]. The retransmission interval remains
at [0-255] on any subsequent attempt, as the maximum
number of stations is 256. The Ethernet Specification has
the same algorithm with ten intervals, since the network
permits up to 1024 stations; the maximum interval is
therefore [0-1023]. The back-off algorithm restarts with a
zero retransmission interval for the transmission of every
new packet.

This particular algorithm was chosen because it has the
proper basic behavior and because it allows a very simple
implementation. The algorithm is now supported by em­
pirical data verifying the stability of the system under
heavy load. 12, I3 Additional attempts to explore more

sophisticated aigorithms resuited in negligible perfor­
mance improvement.

Receiver. The receiver section of the controller is ac­
tivated when the carrier appears on the channel. The re­
ceiver processes the incoming bit stream in the following
manner:

The remaining preamble is first removed. If the bit
stream ends before the preamble completes, it is assumed
to be the result of a short collision, and the receiver is
restarted.

The receiver next determines whether the packet is ad­
dressed to it. The controller will accept a packet in any of
the following circumstances:

(1) The destination address matches the specific ad­
dress of the station.

(2) The destination address has the distinguished
broadcast destination.

(3) The destination address is a multicast group of
which the station is a member.

(4) The station has set the controller in promiscuous
mode and receives all packets.

Some controller designs might choose to receive the en­
tire packet before invoking the address recognition pro­
cedure. This is feasible but consumes both memory and
processing resources in the controller. More typically, ad­
dress recognition takes place at a fairly low level in the
controller, and if the packet is not to be accepted the con­
troller can ignore the rest of it.

Assuming that the address is recognized, the receiver
now accepts the entire packet. Before the packet is actual­
ly delivered to the station, the CRC is verified and other
consistency checks are performed. For example, the packet
should end on an appropriate byte or word boundary and
be of appropriate minimum length; a minimum packet
would have to include at least a destination and source ad­
dress, a packet type, and a CRe. Collisions on the chan­
nel, however, can produce short, damaged packets called
collision fragments. It is generally unnecessary to report
these errors to the station, since they can be eliminated
with a fragment filter in the controller. It is important,
however, for the receiver to be restarted promptly after a
collision fragment is received, since the sender of the
packet may be about to retransmit.

Packet length. One important goal of the Ethernet is
data transparency. In principle, this means that the data
field of a packet can contain any bit pattern and be of any
length, from zero to arbitrarily large. In practice, while it
is easy to allow any bit pattern to appear in the data field,
there are some practical considerations that suggest im­
posing upper and lower bounds on its length.

At one extreme, an empty packet (one with a zero­
length data field) would consist of just a preamble, source
and destination addresses, a type field, and a CRC. The
Experimental Ethernet permitted empty packets. How­
ever, in some situations it is desirable to enforce a
minimum overall packet size by mandating a minimum­
length data field, as in the Ethernet Specification. Higher

level protocols wishing to transmit shorter packets must
then pad out the data field to reach the minimum.

At the other extreme, one could imagine sending many
thousands or even millions of bytes in a single packet.
There are, however, several factors that tend to limit
packet size, including (1) the desire to limit the size of the
buffers in the station for sending and receiving packets,
(2) similar considerations concerning the packet buffers
that are sometimes built into the Ethernet controller
itself, and (3) the need to avoid tying up the channel and
increasing average channel latency for other stations.
Buffer management tends to be the dominant considera­
tion. The maximum requirement for buffers in the station
is usually a parameter of higher level software determined
by Lhe overall network architecture; it is typically on the
order of 500 to 2000 bytes. The size of any packet buffers
in the cont roller, on the other hand, is usually a design
parameter of the controller hardware and thus represents
a more rigid limitation. To insure compatibility among
buffered controllers, the Ethernet Specification man­
dates a maximum packet length of 1526 bytes (1500 data
bytes plus overhead).

Note that the upper and lower bounds on packet length
are of more than passing interest, since observed distribu­
tions are typically quite bimodal. Packets tend to be either
very short (control packets or packets carrying a small
amount of data) or maximum length (usually some form
of bulk data transfer). 12,13

The efficiency of an Ethernet system is largely depen­
dent on the size of the packets being sent and can be very
high when large packets are used. Measurements have
shown total utilization as high as 98 percent. A small
quantum of channel capacity is lost whenever there is a
collision, but the carrier sense and collision detection
mechanisms combine to minimize this loss. Carrier sense
reduces the likelihood of a collision, since the acquisition
effect renders a given transmission immune to collisions
once it has continued for longer than a collision interval.
Collision detection limits the duration of a collision to a
single collision interval. If packets are long compared
with the collision interval, then the network is vulnerable
to collisions only a small fraction of the time and total
utilization will remain high. If the average packet size is
reduced, however, both carrier sense and collision detec­
tion become less effective. Ultimately, as the packet size
approaches the collision interval, system performance de­
grades to that of a straight CSMA channel without colli­
sion detection. This condition only occurs under a heavy
load consisting predominantly of very small packets; with a
typical mix of applications this is not a practical problem.

If the packet size is reduced still further until it is less
than the collision interval, some new problems appear. Of
course, if an empty packet is already longer than the colli­
sion interval, as in the Experimental Ethernet. th"is case
cannot arise. As the channel length and/or the data rate
are increased, however, the length (in bits) of the collision
interval also increases. When it becomes larger than an
empty packet, one mmt decide whether stations are al­
lowed to send tiny packets that are smaller than the colli­
sion interval. If so, two more problems arise, one affec­
ting the transmitter and one the receiver.

The transmitter's problem is that it can complete the
entire transmission of a tiny packet before network ac­
quisition has occurred. If the packet subsequently ex­
periences a collision farther down the channel, it is too
late for the transmitter to detect the collision and prompt­
ly schedule a retransmission. In this situation, the prob­
ability of a collision has not increased, nor has any addi­
tional channel capacity been sacrificed; the problem is
simply that the transmitter will occasionally fail to
recognize and handle a collision. To deal with such fail­
ures, the sender of tiny packets must rely on retransmis­
sions invoked by a higher level protocol and thus suffer
reduced throughput and increased delay. This occasional
performance reduction is generally not a serious problem,
however. Note that only the sender of tiny packets en­
counters this behavior; there is no unusual impact on
other stations sending larger packets.

While occasional collisions should be viewed
as a normal part of the CSMA/CD access

procedure, line errors should not. One would
therefore like to accumulate information

about the two classes of events separately.

The receiver's problem with tiny packets concerns its
ability to recognize collision fragments by their small size
and discard them. If the receiver can assume that packets
smaller than the collision interval are collision fragments,
it can use this to implement a simple and inexpensive frag­
ment filter. It is important for the receiver to discard colli­
sion fragments, both to reduce the processing load at the
station and to ensure that it is ready to receive the impend­
ing retransmission from the transmitter involved in the
collision. The fragment filter approach is automatically
valid in a network in which there are no tiny packets, such
as the Experimental Ethernet. If tiny packets can occur,
however, the receiver cannot reliably distinguish them
from collision fragments purely on the basis of size. This
means that at least the longer collision fragments must be
rejected on the basis of some other error detection
mechanism such as the CRC check or a byte or word align­
ment check. One disadvantage of this approach is that it
increases the load on the CRe mechanism, which, while
strong, is not infallible. Another problem is that the CRC
error condition will now be indicating two kinds of faults:
long collisions and genuine line errors. While occasional
collisions should be viewed as a normal part of the
CSMA/CD access procedure, line errors should not. One
would therefore like to accumulate information about the
two classes of events separately.

The problems caused by tiny packets are not insur­
mountable, but they do increase the attractiveness of
simply legislating the problem out of existence by forbid­
ding the sending of packets smaller than the collision in­
terval. Thus, in a network whose collision interval is
longer than an empty packet, the alternatives are

(1) Allow tiny packets. In this case, the transmitter will
sometimes fail to detect collisions, requiring retransmis-

145

146

sion at a higher level and impacting performance. The re­
ceiver can use a partial fragment filter to discard collision
fragments shorter than an empty packet, but longer colIi­
sion fragments will make it through this filter and must be
rejected on the basis of other error checks, such as the
eRC check, with the resultant jumbling of the error
statistics.

(2) Forbid tiny packets. In this case, the transmitter
can always detect a collision and perform prompt retrans­
mission. The receiver can use a fragment filter to auto­
matically discard all packets shorter than the collision in­
terval. The disadvantage is the imposition of a minimum
packet size.

Unlike the Experimental Ethernet, the Ethernet Speci­
fication defines a collision interval longer than an empty
packet and must therefore choose between these alterna­
tives. The choice is to forbid tiny packets by requiring a
minimum data field size of 46 bytes. Since we expect that
Ethernet packets will typically contain internetwork packet
headers and other overhead, this is not viewed as a signifi­
cant disadvantage ..

Controller-to-station interface design

The properties of the controller-to-station interface
can dramatically affect the reliability and efficiency of
systems based on Ethernet.

Turning the controller on and off. A well-designed con­
troller must be able to (1) keep the receiver on in order to
catch back-to-back packets (those separated by some
minimum packet spacing), and (2) receive packets a sta­
tion transmits to itself. We will now look in detail at these
requirements and the techniques for satisfying them.

Keeping the receiver on. The most frequent cause of a
lost packet has nothing to do with collision or bad CRes.
Packets are usually missed simply because the receiver
was not listening. The Ethernet is an asynchronous device
that can present a packet at any time, and it is important
that higher level software keep the receiver enabled.

The problem is even more subtle, however, for even
when operating normally there can be periods during
which the receiver is not listening. There may, for in­
stance, be turnaround times between certain operations
when the receiver is left turned off. For example, a
receive-to-receive turnaround takes place after one
packet is received and before the receiver is again enabled.
If the design of the interface, controller, or station soft­
ware keeps the receiver off for too long, arriving packets
can be lost during this turnaround. This occurs most fre­
quently in servers on a network, which may be receiving
packets from several sources in rapid succession. If back­
to-back packets come down the wire, the second one will
be lost in the receive-to-receive turnaround time. The
same problem can occur within a normal workstation, for
example, if a desired packet immediately follows a broad­
cast packet; the workstation gets the broadcast but misses
the packet specifically addressed to it. Higher level pro­
tocol software will presumably recover from these situa­
tions, but the performance penalty may be severe.

Similaily, there may be a transmit-to-receive turn­
around time when the receiver is deaf. This is determined
by how long it takes to enable the receiver after sending a
packet. If, for example, a workstation with a slow trans­
mit-to-receive turnaround sends a packet to a well-tuned
server, the answer may come back before the receiver is
enabled again. No amount of retransmission by higher
levels will ever solve this problem!

It is important to minimize the length of any turn­
around times when the receiver might be off. There can
also be receive-to-transmit and transmit-to-transmit turn­
around times, but their impact on performance is not as
critical.

Sending to itself. A good diagnostic tool for a network
interface is the ability of a station to send packets to itself.
While an internal loop-back in the controller provides a
partial test, actual transmission and simultaneous recep­
tion provide more complete verification.

The Ethernet channel is, in some sense, half duplex:
there is normally only one station transmitting at a time.
There is a temptation, therefore, to also make the con­
troller half duplex-that is, unable to send and receive at
the same time. if possible, however, the design of the in­
terface, controller, and station software should allow a
station to send packets io itseif.

Recommendations. The Ethernet Specification in­
cludes one specific requirement that helps to solve the first
of these problems: There must be a minimal interpacket
spacing on the cable of 9.6 microseconds. This require­
ment applies to a transmitter getting ready to send a
packet and does not necessarily mean that all receivers
conforming to the Specification must receive two adja­
cent packets. This requirement at least makes it possible
to build a controller that can receive adjacent packets on
the cable.

Satisfying the two requirements described earlier in­
volves the use of two related features in the design of a
controller: full-duplex interfaces and back-to-back
receivers. A full-duplex interface allows the receiver and
the transmitter to be started independently. A back-to­
back receiver has facilities to automatically restart the
receiver upon completion of a reception. Limited back­
to-back reception can be done with two buffers; the first
catches a packet and then the second catches the next
without requiring the receiver to wait. Generalized back­
to-back reception can be accomplished by using chained
110 commands; the receiver is driven by a list of free input
buffers, taking one when needed. These two notions can
be combined to build any of the following four interfaces:
(1) half-duplex interface, (2) full-duplex interface, (3)
half-duplex interface with back-to-back receive, and (4)
full-duplex interface with back-to-back receive.

The Experimental Ethernet controller for the Alto is
half duplex, runs only in a transmit or receive mode, and
must be explicitly started in each mode. The need to ex­
plicitly start the receiver (there is no automatic hardware
turnaround) means that there may be lengthy turnaround
times in which packets may be missed. This approach
allows sharing certain components, like the CRe func­
tion and the FIFO.

Experimental Ethernet controllers built for the PDP-II
and the Nova are full-duplex interfaces. The transmit-to­
receive turnaround has been minimized, but there is no
provision for back-to-back packets.

The Ethernet controller for the Xerox 8000 processor is
a half-duplex interface with back-to-back receive. Al­
though it cannot send to itself, the transmit-to-receive
turnaround delay has been avoided by having the hard­
ware automatically revert to the receive state when a
transmission is completed.

The Experimental Ethernet and Ethernet Specification
controllers for the Dolphin are full-duplex interfaces with
back-to-back receivers. They are the ultimate in interface
organization.

Our experience shows that anyone of the four alter­
natives will work. However, we strongly recommend that
all interface and controller designs support full-duplex
operation and provide for reception of back-to-back
packets (chained lIO).

The controller-to-station interface
defines the manner in which data

received from the cable is stored in memory
and, conversely, how data stored in memory

is transmitted on the cable.

Buffering. Depending upon the particular data rate of
the channel and the characteristics of the station, the con­
troller may have to provide suitable buffering of packets.
If the station can keep up with the data rate of the chan­
nel, only a small FIFO may be needed to deal with station
latency. If the station cannot sustain the channel data
rate, it may be necessary to include a full-packet buffer as
part of the controller. For this reason, full compatibility
across different stations necessitates the specification of a
maximum packet length.

If a single-packet buffer is provided in the controller (a
buffer that has no marker mechanism to distinguish
boundaries between packets), it will generally be impossi­
ble to catch back-to-back packets, and in such cases it is
preferable to have at least two input buffers.

Packets in memory. The controller-to-station interface
defines the manner in which data received from the cable
is stored in memory and, conversely, how data stored in
memory is transmitted on the cable. There are many ways
in which this parallel-to-serial transformation can be
defined. 24 The Ethernet Specification defines a packet on
the cable to be a sequence of eight-bit bytes, with the least
significant bit of each b)1e transmitted first. Higher level
protocols will in most cases, however, define data types
that are multiples of eight bits. The parallel-to-serial
transformations will be influenced by the programming
conventions of the station and by the higher level pro­
tocols. Stations with different parallel-to-serial transfor­
mations that use the same higher level protocol must
make sure that all data types are viewed consistently.

Type field. An Ethernet packet can encapsulate many
kinds of client-defined packets. Thus, the packet format
includes only a data field, two addresses, and a type field.
The type field identifies the special client-level protocol
that will interpret the data encapsulated within the
packet. The type field is never processed by the Ethernet
system itself but can be thought of as an escape, providing
a consistent way to specify the interpretation of the rest of
the packet.

Low-level system services such as diagnostics, boot­
strap, loading, or specialized network management func­
tions can take advantage of the identification provided by
this field. In fact, it is possible to use the type field to iden­
tify all the different packets in a protocol architecture. In
general, however, we recommend that the Ethernet
packet encapsulate higher level internetwork packets. In­
ternetwork router stations might concurrently support a
number of different internetwork protocols, and the use
of the type field allows the internetwork router to encap­
sulate different kinds of internetwork packets for a local
network transmission. 25 The use of a type field in the
Ethernet packet is an instance of a principle we apply to all
layers in a protocol architecture. A type field is used at
each level of the hierarchy to identify the protocol used at
the next higher level; it is the bridge between adjacent
levels. This results in an architecture that defines a layered
tree of protocols.

The Experimental Ethernet design uses a I6-bit type
field. This has proved to be a very useful feature and has
been carried over into the Ethernet Specification.

Summary and conclusions

We have highlighted a number of important considera­
tions that affect the design of an Ethernet local computer
network and have traced the evolution of the system from
a research prototype to a multicompany standard by
discussbg strategies and trade-offs between alternative
implementations.

The Ethernet is intended primarily for use in such areas
as office automation, distributed data processing, ter­
minal access, and other situations requiring economical
connection to a local communication medium carrying
bursts of traffic at high peak data rates. Experience with
the Experimental Ethernet in building distributed systems
that support electronic mail, distributed filing, calendar
systems, and other applications has confirmed many of
our design goals and decisions. 26-29

Questions sometimes arise concerning the ways in
which the Ethernet design addresses (or chooses not to ad­
dress) the following considerations: reliability, address­
ing, priority, encryption, and compatibility. It is impor­
tant to note that some functions are better left out of the
Ethernet itself for implementation at higher levels in the
architecture.

All systems should be reliable, and network-based
systems are no exception. We believe that reliability must
be addessed at each level in the protocol hierarchy; each
level should provide only what it can guarantee at a
reasonable price. Our model for internetworking is one in

147

148

which reliability and sequencing are performed using end~
to-end transport protocols. Thus, the Ethernet provides a
"best effort" datagram service. The Ethernet has been
designed to have very good error characteristics, and,
without promising to deliver all packets, it will deliver a
very large percentage of offered packets without error. It
includes error detection procedures but provides no error
correction.

We expect internetworks to be very large. Many of the
problems in managing them can be simplified by using ab­
solute station addresses that are directly supported within
the local network. Thus, address fields in the Ethernet
Specification seem to be very generous-well beyond the
number of stations that might connect to one local net­
work but meant to efficiently support large internetwork
systems.

Our experience indicates that for practically all applica­
tions falling into the category "loosely coupled
distributed system," the average utilization of the com­
munications networ\<: is low. The Ethernet has been
designed to have excess bandwidth, not all of which must
be utilized. Systems should be engineered to run with a
sustained load of no more than 50 percent. As a conse­
quence, the network will generally provide high
throughput of data with low delay, and there are no
priority levels associated \vith particular packets.
Designers of individual devices, network servers, and
higher level protocols are free to develop priority schemes
for accessing particular resources.

Protection, security, and access control are all system­
wide functions that require a comprehensive strategy.
The Ethernet system itself is not designed to provide en­
cryption or other mechanisms for security, since these
techniques by themselves do not provide the kind of pro­
tection most users require. Security in the form of encryp­
tion, where required, is the responsibIlity of the end-user
processes.

Higher level protocols raise their own issues of com­
patibility over and above those addressed by the Ethernet
and other link-level facilities. While the compatibility
provided by the Ethernet does not guarantee solutions to
higher level compatibility problems, it does provide a con­
text within which such problems cari be addressed by
avoiding low-level incompatibilities that would make
direct communication impossible. We expect to see stan­
dards for higher level protocols emerge during the next
few years.

Within an overall distributed systems architecture, the
two generations of Ethernet systems have proven to be
very effective local computer networks .•

Acknowledgments

Many people have contributed to the success and evolu­
tion of the Ethernet local computer network. Bob Met­
calfe and David Boggs built the Experimental Ethernet at
the Xerox Palo Alto Research Center ,and Tat Lam built
and supplied the many transceivers. Since then, Ed Taft,
Hal Murray, Will Crowther, Roy Ogus, Bob Garner, Ed
Markowski, Bob Printis, Bob Belleville, Bill Gunning,

and Juan. Bulnes have contributed to the design and im­
plementation of the Ethernet. Cooperation among Digital
Equipment Corporation, Intel, and Xerox also pro­
duced many important contributions to the Ethernet
Specification.

References

1. R. C. Crane and E. A. Taft, "Practical Considerations in
Ethernet Local Network Design," Proc. 13th Hawaii Int'l
Conf. Systems Sciences, Jan. 1980, pp. 166-174.

2. R. M. Metcalfe and D. R. Boggs, "Ethernet: Distributed
Packet Switching for Local Computer Networks," Comm.
ACM, 19:7, July 1976, pp. 395-404.

3. R. M. Metcalfe, D. R. Boggs, C. P. Thacker, and B. W.
Lampson, "Multipoint Data Communication System with
Collision Detection," US Patent No. 4,063,220, Dec. 13,
1977.

4. J. F. Shoch, "An Annotated Bibliography on Local Com­
puter Networks" (3rd ed.), Xerox Pare Technical Report
SSL-80-2, and IFIP Working Group 6.4 Working Paper
80-12, Apr. 1980.

5. The Ethernet, A Local Area Network: Data Link Layer
and Physical Layer Specifications, Version 1.0, Digital
Equipment Corporation, Intel, Xerox, Sept. 30, 1980.

6. D. R. Boggs, J. F. Shoch, E. A. Taft, and R. M. Metcalfe,
"PUP: An Internetwork Architecture," IEEE Trans.
Comm., Apr. 1980, pp. 612-624.

7. H. Zimmermann, "OSI Reference Model-The ISO Model
of Architecture for Open Systems Interconnection," IEEE
Trans. Comm., Apr. 1980, pp. 425-432.

8. Y. K. Dalal, "The Information Outlel: A ;-;ew Tool for Of­
fice Organization," Proc. On-line Conf. Local Networks
and Distributed Office Systems, London, May 1981, pp.
11-19.

9. V. G. Cerf and P. K. Kirstein, "Issues in Packet-Network
Interconnection," Proc. IEEE, Vol. 66, No. 11, Nov.
1978, pp. 1386-1408.

10. F. C. Shoute, "Decentralized Control in Computer Com­
munication," Technical Report No. 667, Division of Engi­
neering and Applied Physics, Harvard University, Apr.
1977.

11. R. M. Metcalfe, "Packet Communication," Thesis Har­
vard University, Project MAC Report MAC TR-114, Mas­
sachusetts Institute of Technology, Dec. 1973.

12. J. F. Shoch and J. A. Hupp, "Performance of an Ethernet
Local Network-A Preliminary Report," Local Area
Comm. Network Symp., Boston, May 1979, pp. 113-125.
Revised version Proc. Compcon Spring 80, San Francisco,
pp.318-322.

13. J. F. Shoch and J. A. Hupp, "Measured Performance of
an Ethernet Local Network," Comm. ACM, Vol. 23, No.
12, Dec. 1980, pp. 711-721.

14. E. G. Rawson and R. M. Metcalfe, "Fibernet: Multimode
Optical Fibers for Local Computer Networks," IEEE
Trans. Comm., July 1978, pp. 983-990.

15. D. R. Boggs and R. M. Metcalfe, Communications net­
work repeater, US Patent No. 4,099,024, July 4, 1978.

16. C. P. Thacker et aI., "Alto: A Personal Computer," Xerox
Palo Alto Research Center Technical Report CSL-79-II,
Aug. 1979.

17. "The Dorado: A High-Performance Personal Computer,"
Three Reports, Xerox Palo Alto Research Center,
CSL-81-1, Jan. 1981.

18. J. F. Shoch, Local Computer Networks, McGraw-Hill, in
press.

19. J. L. Hammond, J. E. Brown, and S. S. Liu, "Develop­
ment of a Transmission Error Model and an Error Control
Model," Technical Report RADC-TR-75-138, Rome Air
Development Center, 1975.

20. R. Bittel, "On Frame Check Sequence (FCS) Generation
and Checking," ANSI working paper X3-S34-77 -43, 1977.

21. J. F. Shoch, "Internetwork Naming, Addressing, and
Routing," Proc. Compcon Fall 78, pp. 430-437.

22. Y. K. Dalal and R. S. Printis, "48-bit Internet and Ethernet
Host Numbers," Proc. Seventh Data Comm. Symp., Oct.
1981.

23. R. M. Metcalfe, "Steady-State Analysis of a Slotted and
Controlled Aloha System with Blocking," Proc. Sixth
Hawaii Conf. System Sciences, Jan. 1973. Reprinted in
Sigcom Review, Jan. 1975.

24. D. Cohen, "On Holy Wars and a Plea for Peace," Com­
puter, Vol. 14, No. 10, Oct. 1981, pp. 48-54.

25. J. F. Shoch, D. Cohen, and E. A. Taft, "Mutual Encap­
sulation of Internetwork Protocols," Computer Net­
works, Vol. 5, No.4, July 1981, pp. 287-301.

26. A. D. Birrell et aI., "Grapevine: An Exercise in Distributed
Computing," Comm. ACM, Vol. 25, No.4, Apr. 1982,
pp. 260-274.

27. H. Sturgis, J. Mitchell, and J. Israel, "Issues in the Design
and Use of a Distributed File System," ACM Operating
Systems Rev., Vol. 14, No.3, July 1980, pp. 55-69.

28. D. K. Gifford, "Violet, an Experimental Decentralized
System," Xerox Palo Alto Research Center, CSL-79-12,
Sept. 1979.

29. J. F. Shoch and J. A. Hupp, "Notes on the 'Worm' Pro­
grams-Some Early Experiences with a Distributed Com­
putation," Comm. ACM, Vol. 25, No.3, Mar. 1982, pp.
172-180.

John F. Shoch is deputy general manager
for office systems in the Office Products
Division of Xerox Corporation. From
1980 to 1982, he served as assistant to the
president of Xerox and director of the cor­
po rate policy committee. He joined the
research staff at the Xerox Palo Alto
Research Center in 1971. His research in­
terests have included local computer net­
works (such as the Ethernet), internetwork

protocols, packet radio, and other aspects of distributed
systems. In addition, he has taught at Stanford University, is a
member of the ACM and the IEEE, and serves as vice-chairman
(US) of IFIP Working Group 6.4 on local computer networks.
Shoch received the BA degree in political science and the MS and
PhD degrees in computer science from Stanford University.

Yogen K. Dalal is manager of services and
architecture for. office systems in the Of­
fice Products Division of Xerox Corpora­
tion. He has been with the company in Palo
Alto since 1977. His research interests in­
clude local computer networks, internet­
work protocols, distributed systems archi­
tecture, broadcast protocols, and operat­
ing systems. He is a member of the ACM
and the IEEE. He received the B. Tech.

degree in electrical engineering from the Indian Institute of
Technology, Bombay, in 1972, and the MS and PhD degrees in
electrical engineering and computer science from Stanford
University in 1973 ana 1977, respectively.

David D. Redell is a staff scientist in the
Office Products Division of Xerox Cor­
poration. He was previously on the faculty
of the Massachusetts Institute of Technol­
ogy. His research interests include com­
puter networks, distributed systems, infor­
mation security, and computer architec­
ture. He received his BA, MS, and PhD
degrees in computer science from the Uni­
versity of California at Berkeley.

Ronald C. Crane, a founder of 3Com Cor­
poration in Mountain View, California,
now heads advanced engineering for the
firm. From 1977 to 1980 he served as a
technical staff member and subsequently a
consultant to Xerox's Office Products
Division in Palo Alto where he was a prin­
cipal designer of the Digital, Intel, Xerox
Ethernet system. His research interests
have included adaptive topology packet

networks, digital broadcasting systems (Digicast), and baseband
transmission systems. He is a member of the ACM and IEEE.
He received the BS degree in electrical engineering from the
Massachusetts Institute of Technology in 1972 and the MS
degree in electrical engineering from Stanford University in
1974.

149

150

In this distributed office information system, Ethernets can be
interconnected either directly or via public data networks. Systems from

other vendors are connectable through protocol conversion gateways.

Special Feature
Use of Multiple Networks in the

Xerox Network System

Yogen K. Dalal, Xerox

Managing information is an integral part of today's
office, and Xerox's Network System is a distributed of­
fice information system that provides tools for doing this.
With these tools, office personnel can create, store,
retrieve, display, modify, reproduce, and share informa­
tion in ways that encourage creativity and increase pro­
ductivity. Workstations like Star help to simplify creat­
ion, modifiying, and displaying information. l Electronic
filing, printing, database, and mail systems simplify stor­
ing, retrieving, reproducing, and sharing information.

With the contin,uing improvements in the price/perfor­
mance ratio of computing and communications, the
structure of computerized office information systems is
changing. We no longer need large centralized systems to
realize economies of scale. Instead, we can push intelli­
gence back into the workstation, and decentralize
res<?urces by function into dedicated servers to create a
system that is a collection of loosely coupled elements tied
t,ogether by a communication network. The Network Sys­
tem is just such a system, in which expensive resources are
shared and information is exchanged among users.

Within an o,rganization, we typically find natural
localities of activity and interaction. Interaction between
localities generally decreases as they are farther apart.
While the nature and characteristics of the interaction
between close and distant stations are different, both are
essential to the functioning of an organization. The
Ethernet local computer network2-4 provides digital
transmission of data, and satisfies most of the require­
ments for local office communications. The Ethernet,

however, was designed in the context of an overall net­
work architecture and is viewed as one component of an
internetwork communication system that serves many
diverse devices connected to many different kinds of net­
works.5-S

An internetwork architecture allows the communica­
tion system to be reconfigured to satisfy the immediate
and future requirements of the user. For example, the
Network System may have only one Ethernet initially and
then be expanded (without software modification) to con­
tain two or more Ethernets, which are interconnected
directly or via other communication media, whose choice
depends on the volume, frequency, and dispersion of com­
munications. Public and private packet-switching facilities
can be used to carry higher dispersions of low-volume of­
fice communication, and as facilities for lower cost, higher
rate, modemless digital transmission become available,
they can be used to carry higher volumes of data.

Of concern in this article are the major features of the
Network System's internetwork communication system,
in particular, its ability to use different kinds of networks
(Figure 1). Protocol layers above the internetwork
communication system permit different kinds of office
services to be added as the need arises, thereby allowing
an organization to minimize the initial purchase cost and
to control any system expansion. The article also
describes how the Network System can be connected to
systems (network-based or stand-alone) from other ven­
dors that obey different protocols by using protocol con­
version gateways at different levels.

Internetwork model

An internetwork, or internet as it is often called, is
simply an interconnection of networks. The communica­
tion system underlying the Network System embodies the
fundamental principles associated with store-and-for­
ward, packet-switching, datagram, internetwork com­
munication, and is modeled after the experimental Pup
internetwork system developed at the Xerox Palo Alto
Research Centers.7 This approach is similar to that
adopted by the Advanced Research Projects Agency's In­
terrtet Protocols.9,10 But other techniques can be used
in interconnecting communication systems, such as the
X.75 virtual-circuit model. ll-14

The fundamental unit of information flow in the Xerox
internet is the media-, processor-, and application­
independent internet packet. An internet packet contains

control information, source and destination network ad­
dresses, and data. Data may range from a few bits to
several thousand bits. Internet packets are routed
through the internetwork as datagrams via store-and­
forward system elements called internetwork routers
(also called internetwork gateways). Internetwork routers
connect networks together. Internet packets are routed
from a source machine to a destination machine, poten­
tially through a variety of networks, each encapsulating
and decapsulating the internet packet according to its
rules. The internet gives its best effort to deliver an in­
ternet packet; that is, Xerox does not mandate that the in­
ternet always deliver a packet once and only once or that it
deliver packets in the order submitted.

Fortunately the functions provided by a communica­
tion system can be layered, and an internet is defined by
dividing the network layer specified by the ISO open

Figure 1. The Xerox Network System, a distributed office information system.

151

152

systems interconnection reference model 15 ,16 into two
sublayers: the network-specific sublayer and the internet
sublayer (Figure 2). The internet sublayer is concerned
with addressing a source and a destination in the internet
and routing the internet packet through one or more net­
works toward its goal. Other standards groups are now in­
cluding this sublayer in their architecture. 17

A transport protocol sufficient for the needs of all
possible clients cannot really be defined, so Xerox did not
attempt such a task; instead a number of transport pro­
tocols based on the internet packet were specified l8 (as
was done in the Pup architecture). These protocols
accomplish general communication functions, such as
delivery of sequenced data, notification of errors, and
exchange of routing information. The protocol architec­
ture permits implementers with special needs to build
their own transport protocols. Since both the incorrect
delivery of data and the delivery of incorrect data are
serious problems, steps are taken at different layers, as
appropriate, to greatly reduce the probability that these
errors will occur. But bear in mind that the internet
sublayer gives only its best effort.

An office information system should provide the right
tools for manipulating information, but it must also pro­
vide mechanisms for protecting information. Access con­
tre!, authentication, and security, where appropriate and
needed, are provided at protocol layers above the internet
sublayer. 19-21

Xerox specifies one internet protocol, and assumes that
an internet packet may be delayed in its delivery for periods
averaging a few hundred milliseconds; an exceptional
packet may be delayed about a minute. The maximum in­
ternet packet lifetime is therefore assumed to be about a
minute. Packet lifetimes within the internet are bounded
by this value in the majority of internet configurations.
Therefore, this value can be used in fine-tuning system
performance and designing transport protocols.

PRESENTATION LAYER

SESSION LAYER

TRANSPORT LAYER

INTERNET SUBLAYER

NETWORK-SPECIFIC SUBLAYER

DATA LINK LAYER

PHYSICAL LAYER

Figure 2. Enhanced ISO open systems interconnection
reference model with seven layers.

The layers up to and including the network-specific
sublayer depend heavily on the particular transmission
medium involved, but they must perform certain special
functions to transport an internet packet. In the Network
System, a network is a transmission medium configured
to carry internet packets, and a transmission medium is
any communication equipment configured to carry data.
The transmissions media now under consideration are
expected to operate at bandwidths from low kilobits to
megabits. A network can be a broadcast network, a
multicast network, or a point-to-point network. A broad­
cast network is one in which the routing algorithms of the
network allow a packet to be transmitted to all hosts
connected to the network. A multicast network is one in
which the routing algorithms of the network allow a
packet to be transmitted to some subset of the hosts
connected to the network. Point-to-point networks per­
mit the routing of packets only from one host to another.
The Ethernet is an example of a broadcast and multicast
network, while a phone line and Telenet22 are examples of
a point-to-point network.

A host is any system element that supports the Network
System communication protocols and is connected to a
network. A socket is a uniquely identified data structure
within a host, to which internet packets can be delivered,
and from which internet packets can be transmitted. A
socket is inherently a bidirectional structure, able to both
send and receive packets.

The internet delivers packets as datagrams among
sockets in much the same way that the post office
transfers letters between post office boxes. The sockets
may be on the same host, on hosts on the same network,
or on hosts on different networks. A host that receives an
internet packet first delivers the packet to the appropriate
socket, and then the client of the socket demultiplexes the
packet according to its transport protocol type. In this
respect, the Network System approach differs from that
used in other internetwork architectures such as the one
defined by the ARPA Internet Protocol, which does not
include a socket number in its network address-a host
receiving an ARPA internet packet demultiplexes it ac­
cording to its protocol type, and the next higher level of
protocol then has the option of defining a socketlike
object.

Properties of network addresses

A network address is a sequence of three fields n, h, and
s, where n is 32-bit network number that uniquely iden­
tifies a network in an internet, h is a 48-bit host number
that uniquely identifies a host across all Network Systems
processors ever manufactured (by Xerox and others), and
s is a 16-bit socket number that uniquely identifies a
socket within the operating system of a host.

Host number. Host numbers are absolute, and every
system element must be assigned a unique 48-bit number
independent of the networks to which it is connected.
Xerox chose an absolute host numbering scheme instead
of the more conventional network-specific host number­
ing scheme.23 ,24 Absolute host numbers have many ad-

vantages when building large distributed systems.
Operating systems and application software can use this
number in generating unique identifiers. 25 Also, when a
host is moved from one network to another, its host
number does not change, making alterations to the hard­
ware or special bookkeeping unnecessary. Since such
alterations are required when using network-specific host
numbers, use of absolute host numbers substantially
reduces field service overhead. However, when a host is
moved to another network, the network addresses of
resources in it will change, thereby requiring the update of
resource directories, etc. This higher-level operation must
be performed often but can be automated through soft­
ware procedures.

The host number will probably be hard-wired (using
jumper wires, dip-switches, or PROMs) to some part of
the machine, for example, the backplane or one of the
processor boards. If this piece of hardware is replaced,
the host number of the machine and its associated soft­
ware could change. Reinitializing the software may then
be necessary but would typically have to be done anyway
if other characteristics of the hardware changed. Note
that a machine's host number can change, but no two
machines can have the same number at the same time.

Xerox internets consist, for the most part, of Ether­
nets, which is the main reason that Ethernet addresses are
identical to 48-bit host numbers. 24 This structure is strict­
ly for convenience, and in no way compromises the
generality of the architecture. When a host is connected to
more than one Ethernet, its 48-bit Ethernet address on all
Ethernets is equal to its 48-bit host number.

Network number. Since a host number uniquely identi­
fies a specific host, the network number field would seem
redundant, but it is needed for internetwork routing. When
the network number is included in the network address,
each host has to know only the (partial) path to each net­
work rather than that to each host-significantly reducing
the amount of information that must be retained. A host
may be connected to more than one network but still has a
unique identity, even though a socket within it has multiple
network addresses. In other words, sources or destinations
of internet packets can have more than one network ad­
dress, but no two sources or destinations can have the same
network address.

An internet packet addressed to a host contains the
identity of the network to which the source believes the
host is connected. Internetwork routers attempt to route
the internet packet to the host via this network. If no route
to the specified network exists, the packet is not delivered
and client software must use another network address. A
higher level binding agent called the clearinghouse sup­
plies all network addresses for resources such as file
servers, print servers, or a user's mailbox. 20 All networks
within an internet have unique network numbers.

Socket number. A socket is inherently a bidirectional
structure, able to both send and receive internet packets at
the same address. Certain socket numbers are considered
well known; that is, the service performed by software
using them is statically defined. Each host supplying a

specific well-known service does so at the same well­
known socket. All other socket numbers can be reused.

Multidestination addressing. Multicast is the delivery
of a packet to more than one destination, and it can be
performed at either the internetwork or intranetwork
level if the transmission medium supports the concept.
The Network System supports internetwork multicast.
Broadcast is a special case of multicast in which a packet is
delivered to all hosts in the internet. The need for a gener­
alized multicast capability arises from the anticipated
need for a more general addressing capability ~6-28 Broad­
cast is used in many situations to search for an object or to
inform all hosts of an event. 29 Although all applications
can be designed without this capability, multicast pro­
vides some performance improvements.

A multicast group is the list of intended recipients of the
packet and can be specified by explicitly enumerating the
destinations or by using an identifier that has a suitable
encoding. Before accepting a multicast packet every
system element uses an acceptance filter to determine
whether or not the packet is intended for that particular
system element.

Multicast groups are indentified at the internet sub­
layer by logical host numbers. Each host must have exact­
ly one physical host number, but a simple extension to the
host numbering scheme permits a group of hosts to be
identifi~d as a logical host. One bit in the host number
field indicates whether the number is a physical host
number or a multicast id~ntifier. The logical host number,
"ali hosts," is 48 ones and is reserved for broadcast.

Physical host numbers are assigned to system elements
at manufacture time or later using carefully controlled
administrative procedures.24 Multicast identifiers are
assigned by some dynamic resource allocation mecha­
nism, by administrative procedure, or by both, depending
on whether or not multicast identifiers can be reused.

Since internetwork multicast involves communication
between one sender and many recipients, the recipients
must use the same network address: a multicast network
address. The socket number in all multicast network ad­
dresses could be the same, but then all packets for all
multicast groups must be received at one socket and
demultiplexed using a multicast transport protocol. Hav­
ing one socket number for all multicast network addresses
is not necessary. In fact, a multicast group can have a
number of multicast network addresses, each with a dif­
ferent socket number so that semantically different
packets can be easily demultiplexed.

Since all recipients of a multicast packet must receive
the packet on the same socket, a set of well-known sockets
are reserved for multicast. Assigning multicast well-known
socket numbers requires the same form of allocation as that
for multicast identifiers. A somewhat centralized mecha­
nism is a reasonable choice for the assignment of multicast
identifiers and associated well-known socket numbers. The
way they are assigned-by administrative procedure or
through a dynamic resource-allocation strategy-is a mat­
ter of style and a function of the rate at which new multicast
network addresses are created, the number of multicast
network addresses available, and the need to reuse them.

153

154

In general, the three fields that define a network ad­
dress of an internet packet can take on the values un­
known, all, or specific (Table 1). Zero is reserved for
unknown, one for all, and any other value for specific,
but a value from each class may not be appropriate for
each field of a network address. For network addresses
containing physical host numbers, for example, the n~t­
work number can be unknown or specific, while the host
and socket numbers must be specific and cannot have the
value unknown. A network number of unknown implies
that the packet should be transmitted on the locally con­
nected networks. The network number unknown stands
for the networks to which the host is connected until the
host discovers the specific values. The notion of directing
a packet to all sockets within a host has not proved useful
and is therefore disallowed.

For multicast network addresses, the network number
can be unknown, specific, or all; the host number is
specific or all; and the socket number is specific. A multi­
dl.st group, by its very definition at the internet layer, can
span many individual networks. Directed multicast is the
delivery of an internet packet to the members of the
multicast group on the network contained in the desti­
nation multicast network address. The network number
in such directed multicast internet packets is unknown or
soecific. A network number of unknown implies that the
packet should be transmitted on the locally connected
networks. The network number unknown again stands
for the networks to which the host is connected until the
host discovers the specific values. Directed broadcast is
the delivery of an internet packet to all machines on the
specified network.

In global multicast or global broadcast the internet
packet is delivered to all members of the group within the
entire internet. The internet does not support global
multicast or broadcast, but this and other forms of
multicast (such as expanding search rings29) are imple­
mented by a series of directed multicasts.

Since multicast refers to the delivery of a packet to
multiple destinations, the internet protocol permits multi­
cast identifiers to appear only in the destination network
address field of an internet packet. The internet layer
gives its best effort to deliver multicast packets to
their destinations.

Table 1.
Combination of network, host, and socket numbers in

network addresses.

NETWORK NETWORK HOST SOCKET
ADDRESS NO. NO. NO.

PHYSICAL SPECIFIC/ SPECIFIC SPECIFIC
UNKNOWN

MULTICAST
DIRECTED SPECIFIC/ SPECIFIC SPECIFIC

UNKNOWN

GLOBAL ALL SPECIFIC SPECIFIC

BROADCAST
DIRECTED SPECIFIC/ ALL SPECIFIC

UNKNOWN

GLOBAL ALL ALL SPECIFiC

Internetwork delivery

In the delivery of internet packets, packets are routed
from source to destination through zero or more internet­
work routers using the network address of the destination
host. The internet packet is usually encapsulated for
transmission through the various communication net­
works; the encapsulation specifies the addressing and
delivery mechanisms specific to that network. Each
communication network may have a different form of
internal addressing. When an internetwork packet is to be
transported over a communication medium, the immedi­
ate destination of the packet must be determined and
specified in the encapsulation. The immediate destination
is determined directly from the network address ifitis the
final destination or through a routing table if it is an
intermediate destination.

Encapsulation and decapsulation. The absolute host
number may have no relation to the internal addressing
schemes used by the communication networks, and
during encapsulation, the absolute host number is mere­
ly a name that must be translated to an address on the
network. Translation involves consulting a translation
table, possibly in conjunction with the routing table if
we assume that the routing table supplies the absolute
host number of the next internetwork router rather than
its network-specific address. (Internetwork routers will
then have other network addresses, if direct communica­
tion is needed to exchange routing information or
statistics.)

In a very general internet, the overhead resulting from
the translation of an absolute host number to an internal
address can be large in both space and time and requires
the maintenance of translation tables in all hosts. Since
Network System internets are expected to contain many
Ethernets, Xerox chose to support the absolute host num­
bering scheme directly on the Ethernet to avoid transla­
tion. Therefore, for Ethernets the absolute host number is
an address, not a name.

When internet packets traverse other communication
networks that do not support 48-bit absolute host num­
bers-like the Bell Telephone DDD network, Telenet, or
other public or private data networks-hosts and inter­
network routers must have translation tables to translate
absolute host numbers into internal addresses. These
tables do not cause many operational problems, other
than setup and maintenance at a limited number of hosts
and internetwork routers. Absolute internet host num­
bers are not widely used because designers of internet­
works have little or no control over the design of the con­
stituent communication networks and are thus forced to
use network-specific host numbers instead.

Figure 3 illustrates a typical internet and shows how an
internet packet is routed from a source host s to a des­
tination host d through an internet router host r. When
the internet packet is transmitted through network H, the
absolute host number d is translated into the network­
specific host number m.

By decoupling a system element's host numbers from
the connected network, we can solve many hard internet­
work routing problems in situations involving network

partitioning, multihoming, mobile hosts, etc. (Sunshine
describes these situations and the new problems they
create. 30) With this decoupling, stand-alone workstations
that implement Network System protocols can connect to
an internetwork router using any communication media.

Since multicast groups are identified by logical host
numbers, the routing of directed multicast packets by the
internet is no different from the delivery of an internet
packet addressed to a physical host. If the target network
is not a broadcast network and does not support multicast
the way the Ethernet does, then the 48-bit multicast group
identifier must be translated upon entering the target net-

work into one or more 48-bit physical host numbers. A
separate copy of the packet is then delivered to each host on
the target network. As we have just seen, if the target net­
work does not support delivery of 48-bit addressed packets,
then another host number translation is necessary.

Routing tables. Internet packets are routed as data­
grams through the internet using a store-and-forward
algorithm that relies on a routing table in each host. This
database directs packets toward other internetwork
routers on their way to the final destination, and routing
information is maintained in a manner very similar to the

INTERNET PACKET
DESTINATION NETWORK B
HOST d
SOCKET P

IMMEDIATE DESTINATION
NETWORK A
HOST r

NETWORK B
(SOME OTHER KIND)

Figure 3. Internetwork store·and·forward delivery.

NETWORK A
(ETHERNET)

INTERNET PACKET
DESTINATION NETWORK B
HOST d
SOCKET P

IMMEDIATE DESTINATION
NETWORK B
HOST d

155

156

old Arpanet adaptive procedures. 31 Neighboring in­
ternetwork routers periodically exchange routing infor­
mation using a connectionless transport protocol. 29

Changes in internetwork topology may cause the routing
tables in different internetwork routers to become
momentarily inconsistent, but the algorithm is stable,
since routing tables rapidly converge to a consistent state
and remain that way until the topology changes again.

A host that is not an internetwork router obtains rout­
ing information by polling internetwork routers on its
directly connected networks. The host may obtain up­
dates periodically if it receives the broadcast packets that
other internetwork routers are exchanging; if not, then it
may periodically poll internetwork routers for updates
with which to manage its cache. If more than one internet­
work router is providing paths to other networks, then an
internetwork router or host can merge the information it
receives and thus select the best route for packets directed
to any network.

The fundamental assumption made for routing is that
an internet contains at most a few hundred networks. As a
consequence, the network number space can be flat, and
all internetwork routers can maintain a complete image of
the internet in their routing tables. Area routing is not
being used.

Another assumption is that an internet may contain
Ethernets, leased lines, public or private data networks
that use packet or circuit switching, and other high-speed
local networks. Even though these networks have dif­
ferent delay-bandwidth characteristics, the metric for in­
ternetwork delay is the number of internetwork router
hops. The predominant network in Xerox internets is ex­
pected to be Ethernet, and hence the algorithms use the
broadcast capabilities of the internet protocol and
Ethernet to exchange routing information. Public data
networks, however, may not support broadcast, or
broadcast may be expensive; in these configurations, in,.
ternetwork routers must know the identity ofthe other in­
ternetwork routers with which they periodically exchange
routing information.

These assumptions and, therefore, the protocol for up­
dating routing tables may not be suitable in large complex
internetwork topologies for a number of reasons. First,
for all internetwork routers to hold and update an image
of the entire internet is inefficient and time consuming.
Second, large internets have networks of different delay­
bandwidth characteristics, which, in conjunction with
queuing delays in internetwork routers, must be reflected
in the information exchanged between routers if they are
to pick nearly optimal routes. Mismatches in the delay­
bandwidth characteristics of the constituent networks can
result in congestion.

Both the routing algorithm and routing table update
algorithm and their implementations are designed to be
flexible to permit upgrades in the field when new algo­
rithms are developed.

Maximum packet lifetime. To ensure that the maxi­
mum lifetime of a packet is less than about one minute,
the internet layer in each internetwork router must dis­
card an internet packet that has been forwarded through
more than 15 networks, and the network layer must dis-

card packets that have remained on its "transmit queue"
for longer than a tenth of the maximum packet lifetime.
Packets may, therefore, be discarded; this activity is con­
sistent with the previously described expectation that the
internet gives only its best effort to deliver a packet.

Fragmentation. We assume that all hosts can process
internet packets up to a certain length, and that all
internetwork routers are capable of forwarding such
packets. Networks incapable of transmitting such packets
must perform internetwork fragmentation and reas­
sembly at the network layer. 32.33

Recursive encapsulation. Protocol hierarchies are
traditionally defined and implemented in a strict "top­
down" fashion, with higher layers calling lower layers.
Such a structure is also used in many operating systems
and is desirable when dealing with data abstraction and
proof of correctness. However, when products from dif­
ferent vendors subject to different protocol hierarchies
(each consistent with the ISO OSI model) coexist, one
hierarchy must often refer to the other. For example,
when the Pup internetwork was connected to the ARPA
internetwork; ARPA internet packets were encapsulated
in Pup internet packets for transmission over the Pup
internetwork and vice versa.34 The important observation
is that the interface (often called a service interface) be­
tween the internet and network-specific sublayers is the
same for all networks whether they offer datagram ser­
vices, circuit-oriented services, or host-based transport
services. In the Network System, the network-specific
sublayer for a particular network may transport an in­
ternet packet using any protocol. The network-specific
sublayer is, therefore, said to be implemented' 'recursive­
Iy.,,17 Care must be taken to avoid deadlocks, since pro­
tocol modules interact in much the same way as program
modules in a large software system.

Circuit-oriented communication systems. So far, we
have used a rather intuitive definition of the term
network -a transmission medium configured to carry
internet packets. This definition of a network can be
applied without modification to any datagram communi­
cation system, but further refinement allows us to easily
incorporate circuit-oriented communication systems (like
those available from the phone company, or PTTs),
which can provide dedicated or dynamically set-up cir­
cuits. Stand-alone system elements can now be connected
to an internetwork router through phone lines or other
commercially available circuit-oriented communication
systems to become remote system elements (with the same
privileges as any other system element in the internet) dur­
ing the time they are part of the internet.

A communication system (a virtual circuit or leased line
in many cases) that just connects internetwork routers is
not considered a network with its own network number
unless no other way exists to create a network address for
the internetwork router. The two internetwork routers
can be thought of as "half internetwork" routers con­
nected by a "line." In computing routing metrics, the

delay-bandwidth characteristic of the line is absorbed by
the internetwork routers. Algorithms or heuristics that set
up and take down short-lived circuits are needed.

A communication system that just connects stations
(workstations and servers) is also not considered a net­
work with its own network number (it could simply be
zero), since no internetworking is taking place. However,
we specifically require that stand-alone Ethernets have a
network number, since the probability that they will
remain stand-alone is very low.

An entire circuit-oriented communication system (such
as the Bell Telephone's DDD system) that connects sta­
tions to an internetwork router is not considered a net­
work either. Rather, the collection of circuit ports at an
internetwork router is thought of as a network with its
own network number. (A circuit port can be a physical
"plug" identified by a modem or a logical channel as in
X.25, for example.) We call such networks cluster net­
works. The network number in a station on such a circuit­
oriented communication system corresponds to that of
the cluster network where the circuit terminates during
the time it is active. The internetwork router at which its
circuit terminates can change from call to call without any
problems.

Stand-alone workstations therefore are not assigned a
network number of their own and instead acquire one
when they connect to the internet. Stand-alone servers,
however, must register with the clearinghouse all network
addresses corresponding to all internetwork routers from
which they can be called. Further, each internetwork
router associates a local address (analogous to a phone
number or an X.25 address) with the server's host
number, so the server can be called when a packet with its
destination first arrives. No resulting operational prob­
lem is expected, since the number of stand-alone servers is
small, while the number of stand-alone workstations is
very large.

In this internetwork configuration the definition of
network has been stretched to be a collection of circuit
ports (possibly of different types) at an internetwork
router. The circuit-handling drivers can be thought of as a
"switch" connecting the stations and the internetwork
router. A station that communicates with another on the
same network sends its packets to the switch (resident as a
"star network" on the internetwork router) that loops the
packet back onto another circuit.

Hence, if hosts are classified into two groups, internet­
work routers and stations, where stations may be either
workstations or servers, then a network becomes a com­
munication system configured to carry internet packets,
such that it connects stations together and is connected to
an internetwork router. A network is assigned a network
number. Stations on the same network can intercom­
municate without the explicit aid of the internetwork
router's store-and-forward services.

In general, techniques to initialize and manage the in­
ternet are optimized for datagram and broadcast net­
works and permit decentralized management of the in­
ternet. 35 When the internet includes non broadcast
datagram networks and circuit-oriented communication
systems, additional specialized initialization and binding
is necessary.

157

158

Protocol conversion gateways

The set of protocols provided by the Network System
architecture enables the design of many office services
and permits any two hosts implementing the protocols to
communicate. However, foreign devices (devices obeying
other protocols) must also be able to access services pro­
vided by the Network System, and the Network System
hosts need to access services provided by foreign devices.
Since these devices use their own protocols to com­
municate instead of Network System protocols, protocol
conversion gateways are needed to handle any incom­
patibilities. These gateways communicate with the
foreign devices using their protocol and convert to Net­
work System protocol at any of the necessary layers.

In general, seven kinds of incompatibilities are possible
when communicating with foreign devices-one corres­
ponding to each of the seven ISO open systems intercon­
nection layers. If the incompatibility occurs only at the
network-specific sublayer, the internetwork architecture
described earlier accommodates it. Problems arise when
incompatibilities exist through higher layers. On the basis
of experiences with protocol design and implementation,
we conclude that the seven-layer protocol hierarchy per­
forms two important functions: (1) it provides a reliable
data-transparent session with the communicating device
and (2) it interprets the data transmitted to achieve some
application. Therefore, instead of seven different types
of incompatibility we have only two: transport incom­
patibility and application incompatibility. A gateway
transport function deals with the first, and a gateway
application function deals with the second.

The gateway transport function communicates with a
foreign device using its protocols, up to and including
the transport and session layer, and provides a generic

Figure 4. An interactive terminal service.

"stream" interface (much like the Bell Laboratories Unix
pipe),25 by which data and control are transported to and
from the foreign device. This stream interface preserves
all the semantics associated with the foreign device but
couches them in a general form, thereby allowing com­
munication with many different kinds of devices using the
same interface. This gateway stream interface can be ac­
cessed by software in the host connected to the foreign
device and by software in other Network System hosts
through use of a Network System application protocol.
The gateway transport function can then be thought of as
"converting" the foreign device's transport protocol into
a Network System application protocol.

The gateway application function communicates with
the foreign device at its application level and uses the
gateway transport function as a communication vehicle.
The foreign device may be connected to the hosts im­
plementing the gateway transport function directly or
through phone lines or public data networks. The gate­
way application functions convert to and from a Network
System service, such as filing, printing, or electronic mail.

Figure 4 illustrates how users at simple terminals access
services in the Network System and manipulate resources.
An interactive terminal service, which is a gateway ap­
plication function, manipulates Network System re­
sources on behalf of the user at an interactive terminal
and uses an external communication service, which is a
gateway transport function, to transport characters to
and from the terminal.

Figure 5 illustrates how a user at a Star workstation ac­
cesses services in an IBM mainframe, and manipulates
resources. The workstation software creates the illusion
that it is an IBM 3270 terminal by implementing a gateway
application function and uses an external communication
service to transport data to and from an IBM mainframe.

These simple examples illustrate the architecture for
protocol conversion gateways, in particular, how a
foreign device's transport protocol is converted into a
Network System application protocol. The gateway ap­
plication and transport functions may be in the same host
or in two different hosts. With this architecture, gateways
can be built to exchange electronic mail with systems like
Telex or Teletex or to exchange documents between
different filing systems.

The protocol architecture underlying the Network
System is layered and meets the goals of the ISO open
systems interconnection reference model. The model has
been generalized, however, by introducing an internet
sublayer and by permitting any layer to be recursively
defined in terms of other layers.

The internet delivers packets from any host connected
to it to any other connected host, and access control is
performed by higher levels of protocol. The internet ar­
chitecture permits complex topologies and the use of dif­
ferent communication media and public data networks.
The network-specific sublayer supporting Xerox's in­
ternet protocol must, in addition, perform certain func­
tions such as intranetwork fragmentation, if necessary.
The internet sublayer defines one protocol and supports
the use of many different protocols at the transport and
network layers. The protocol hierarchy has an hourglass
shape, with the internet protocol at the narrow point.

The protocol conversion gateway architecture permits
the design of any number of gateway functions. The
gateway transport function communicates with foreign
devices, which may be connected to the Network System
through various communication systems using their pro­
tocols. Gateway application functions deal with the hard
problem of converting one service into another .•

Figure 5. IBM 3270 emulation.

Acknowledgments

The design and development of the Network System
involved many people from Xerox's Office Products
Division and Palo Alto Research Centers. The internet­
work architecture embodies principles that evolved from
experience with the Pup internetwork and ARPA internet
Protocol. Members of the Systems Development Depart­
ment designed and implemented this communication
system.

References

1. D. C. Smith et aI., "The Star User Interface: An Overview,"
Proc. NCC, May 1982, pp. 515-528.

2. R. M. Metcalfe and D. R. Boggs, "Ethernet: Distributed
Packet Switching for Local Computer Networks," Comm.
ACM, Vol. 19, No.7, July 1976, pp. 395-404.

3. The Ethernet, a Local Area Network: Data Link Layer and
Physical Layer Specifications, Digital Equipment, Intel,
and Xerox Corporations, Version 1.0, Sept., 1980.

4. J. F. Shoch et aI., "Evolution of the Ethernet Local Com­
puter Network," Xerox Office Products Division, Palo
Alto, OPD-T8102, Sept. 1981, and Computer, Vol. 15,
No.8, Aug. 1982, pp. 10-26.

5. C. A. Sunshine, "Interconnection of Computer Networks,"
Computer Network, Vol. 1, No.3, Jan. 1977, pp. 175-195.

6. V. G. Cerf and P. K. Kirstein, "Issues in Packet-Network
Interconnection," Proc. IEEE, Vol. 66, No. 11, Nov. 1978,
pp. 1386-1408.

7. D. R. Boggset aI., "Pup: An Internetwork Architecture,"
IEEE Trans. Comm. Vol. COM-28, No.4, Apr. 1980, pp.
612-624.

159

160

8. J. B. Postel, "Internetwork Protocol Approaches," IEEE
Trans. Comm., Vol. COM-28, No.4, Apr. 1980, pp.
604-611.

9. DoD Standard Internet Protocol, J. Postel, ed., NTIS
ADA079730, Jan. 1980, also in ACM Computer Comm.
Review, Vol. 10, No.4, Oct. 1980, pp. 2-51, revised; as
"Internet Protocol-DARPA Internet Program Protocol
Specification," RFC 791, USC/Information Sciences
Institute, Sept. 1981.

10. J. B. Postel, C. A. Sunshine, and D. Cohen, "The ARPA
Internet Protocol," Computer Networks, Vol. 5, No.4,
July 1981, pp. 261-271.

11. Recommendation X.25/ Interface Between Data Terminal
Equipment (DTE) and Data Circuit-terminating Equip­
ment (DCE) for Terminals Operating in the Packet Mode
on Public Data Networks, CCITT Orange Book, Vol. 7,
International Telephone and Telegraph Consultative
Committee, Geneva.

12. Proposalfor Provisional Recommendation X. 75 on Inter­
national Interworking Between Packet Switched Data
Networks, CCITT Study Group VII Contribution No. 207,
International Telephone and Telegraph Consultative
Committee, Geneva; May 1978.

13. G. R. Grossman, A. Hinchley, and C. A. Sunshine,
"Issues in International Public Data Networking," Com­
puter Networks, Vol. 3, No.4, Sept. 1979, pp. 259-266.

14. M. H. Unsoy and T. A. Shanahan, "X.75 Internetworking
of Datapac and Teienet," Proc. Seventh Data Comm.
Symp., Oct. 1981, pp. 232-239.

15. H. Zimmermann, "OSI Reference Model-The ISO
Model of Architecture for Open Systems Interconnec­
tion," IEEE Trans. Comm., Vol. COM-28, No.4, Apr.
1980, pp. 425-432.

16. ISO Open Systems Interconnection-Basic Reference
Model, DP 7498, ISO/TC97/SC 16 N 719, Aug. 1981.

17. Network Layer Principles, ECMA/TC23/811169 pre­
pared by TC24 TG NS, Nov. 1981, p. 4.

18. Internet Transport Protocols, Xerox System Integration
Standard, XSIS-028112, Stamford, Connecticut, Dec.
1981.

19. R. M. Needham and M. D. Schroeder, "Using Encryption
for Authentication in Large Networks of Computers,"
Comm. ACM, Vol. 21, No. 12, Dec. 1978, pp. 993-999.

20. D. C. Oppen and Y. K. Dalal, "The Clearinghouse: A
Decentralized Agent for Locating Named Objects in a
Distributed Environment," Xerox Office Products Divi­
sion, Palo Alto, OPD-T8103, Oct. 1981.

21. Courier: The Remote Procedure Call Protocol, Xerox
System Integration Standard, XSIS-038112, Stamford,
Connecticut, Dec. 1981.

22. L. G. Roberts, "Telenet: Principles and Practice," Proc.
European Computing Con! Comm. Networks, London,
England, 1975, pp. 315-329.

23. J. F. Shoch, "Internetwork Naming, Addressing, and
Routing," Proc. Compcon Fall 78, Sept. 1978, pp.
430-437.

24. Y. K. Dalal and R. S. Printis, "48-bit Internet and Ethernet
Host Numbers," Proc. Seventh Data Comm. Symp., Oct.
1981, pp. 240-245.

25. D. D. Redell et al., "Pilot: An Operating System fora Per­
sonal Computer," Comm. ACM, COM-Vol. 23, No.2,
Feb. 1980, pp. 81-92.

26. Y. K. Dalal, "Broadcast Protocols in Packet Switched
Computer Networks," PhD dissertation, Stanford Univer­
sity, DSL Tech. Report 128, Apr. 1977.

27. Y. K. Dalal and R. M. ~1etcalfe, "Reverse Path Forward­
ingofBroadcast Packets," Comm. ACM, Vol. 21, No. 12,
Dec. 1978, pp. 1040-1048.

28. J. M. McQuillan, "Enhanced Message Addressing
Capabilities for Computer Networks," Proc. IEEE, Vol.
66, No. 11, 1978, pp. 1517-1527.

29. D. R. Boggs, "Internet Broadcasting," PhD dissertation,
Stanford University, Jan. 1982 (also available from Xerox
Palo Alto Research Center).

30. C. A. Sunshine, "Addressing Problems in Multi-Network
Systems," Proc. IEEE Infocom, Mar. 1982, pp. 12-18.

31. J. M. McQuillan, G. Falk, and I. Richer, "A Review of the
Development and Performance of the ARPANET Routing
Algorithm," IEEE Trans. Comm., Vol. COM-26, No. 12,
Dec. 1978, pp. 1802-1811.

32. J. F. Shoch, "Packet Fragmentation in Internetwork­
Protocols," Computer Networks, Vol. 3, No.1, Feb. 1979,
pp.3-8.

33. J. F. Shoch and L. Stewart, "Interconnecting Local Net­
works via the Packet Radio Network," Proc. Sixth Data
Comm. Symp., Nov. 1979, pp. 153-158.

34. J. F. Shoch, D. Cohen, and E. A. Taft, "Mutual Encap­
sulation of Internetwork Protocols," Proc. Trends and
Applications: 1980-Computer Network Protocols, May
1980, pp. 1-11; revised version in Computer Networks,
Vol. 5, No.4, July 1981, pp. 287-301.

35. S. M. Abraham and Y. K. Dalal, "Techniques for De­
centralized Management of Distributed Systems," Proc.
Compcon Winter 80, Feb. 1980, pp. 430-436.

Yogen K. Dalal is manager of services and
architecture for office systems in the Of­
fice Products Division of Xerox Corpora­
tion. He has been with the company in Palo
Alto since 1977. His research interests in­
clude local computer networks, internet­
work protocols, distributed systems archi­
tecture, broadcast protocols, and operat­
ing systems. He is a member of the ACM

. and the IEEE. He received the B. Tech.
degree in electrical engineering from the Indian Institute of
Technology, Bombay, in 1972, and the MS and PhD degrees in
electrical engineering and computer science from Stanford
University in 1973 and 1977, respectively.

Reprinted from PROCEEDINGS OF THE SEVENTH DATA COMMUNICATIONS SYMPOSIUM, October 1981

48-bit Absolute Internet and Ethernet Host :\"umbers

Yogen K. Dalal and Robert S. Printis

Xerox Office Products Di\ision
Palo Alto. California

Xerox internets and Ethernet local computer networks use 4S-bit
absolute ~ost nUJ?b~rs. 1l1is is a radical departure from practices
currently III use m mternetwork systems and local netv, orks. This
paper describes how the host numbering scheme was designed in
the context of an overall internetwork and distributed systems
architecture. -

1. Introduction

The Ethernet local computer network is a multi-access. packet­
switched communications svstem for carn'ina diaital data amona
locally distributed computing systems' [Metc~lfe76. CraneSo.
Shoch80. Ethernet80. Shoch81]. The shared communications
channel in the Ethernet system is a coaxial cable-a passive
broadcast medium with no central control. Access to the channel
by stations or hoSlS wishing to transmit is coordinated in a
distributed fashion by the hosts themsehes. using a statistical
arbitration scheme called carrier sense multiple access with collision
delection (CSMA/CD). Packet address recognition in each host is
used to take packets from the channel.

Ethernet packets include both a source and a destination host
nU1!1~er, that is, the "address" of the transmitter and intended
recIpIent(s), respectively. Ethernet host numbers are 48 bits lona
[~thernet80]. 48 bits can uniquely identify 2S1.474.977 mi11io~
dIfferent hosts! Since the Ethernet specification permits only 1024
hosts per Ethernet system, the question that is often asked is'
"why use 48 bits when 10, or 11, or at 171051 16 will suffice?" rni~
paper answers this question, and describes the benefits of using:
large absolute host numbers. ~

We view the Ethernet local netw'ork as one component in a store­
and-forward datagram internetwork system that provides
communications services to many diverse devices connected to
different networks (see. for example. [Boggs80, Cerf78]). Our
host numbering scheme was designed in the context of an overall
network and distributed system architecture to take into account:

o the use of host numbers by higher-level software,

o the identification of a host or a logical group of hosts
within the internetw'ork,

a the addressing of a host or a logical group of hosts on
the Ethernet channel, and

o the management of distributed systems as they grow,
evolve and are reconfigured.

Sections 2, 3, and 4 of this paper describe the pros and cons of
various host numbering schemes in inter- and intra-network
systems, and describe the properties and advantages of our host
numbering scheme. Section 5 discusses our host numbers in the
context of "names" and "addresses" in network systems. Sections
6 and 7 describe the reasons for choosing 48 bits, and the
mechanisms for managing this space.

2. Addressing Altcrnati' cs

The addres.s of a host specifies its location. ,\ ile[\\urk desisw may
adopt either of two basic addressing structures: lle!lmrk-~5peciflc
has! addresse~. or. Ulllqile host addresses [Shoch 78]. I n the first
case. a host I~ assIgned an address which must be unique on its
network. but hlCh may be the same as an addr'ess held b~ .1 host
on another network. Such addresses are sometimes called
network-relative addresses. since they depend upon the particular
network to which the host is attached. In the second case. each
host is assigned an address which is unique (l\·er all space and
time. Such addresses are known as absolUle or unirersaf addresses.
drawn from a flat address space. Both network-specific and
absolute host addresses can ha\·e am internal structure. For the
purposes of this paper. we will treat' them as "numbers" and will
use host addresses and host numbers interchangeably.

To pernlit internetwork communication. the network-specific
address of a host usually must be combined v,ith a unique netv,ork
number in order to produce an unambiguous ill/emet address at
the next lc\el of protocol. Such internet addresses are often called
hierarchical ill/ernet addresses. On the other hand. there is no
need to combine an absolute host number with a unique network
number to produce an unambiguous internet address. Such
internet addresses are often called flu.! il/iernet addresses.
Howe\er. internetwork systems using -nat internet addresses.
containing only the absolute host number. \\ill require \ery large
routing tables indexed 0;' the host numbel. To sohe Lllis jjroblem.
a unique network number. or other routing information is often
included in the internet address as a '\en strong hint" to the
internetwork routing machinery: the routing- information has been
separated from host identification.

We anticipate that there will be a large number of hosts and many
(local) networks in an internetwork. thus requiring a large internet
address space. For example. the Pup-based internetwork system
[Boggs80] currently in use within Xerox. as a research network.
includes 5 different types of networks. has o\er 1200 hosts. 35
Experimental Ethernet local networks. and 30 internet routers
(often called internetwork gateways). Figure 1 illustrates the
topology of the internet in the San Francisco Bay Area.

If network-specific addressing is used. then the host number need
only be large enough to accommodate the maximum number of
hosts that might be connected to the network. Suitable
installation-specific administrative procedures are also needed for
assigning numbers to hosts on a network. If a host is moved from
one network to another it may be necessary to change its host
number if its former number is in use on the new network. This
is easier said than done, as each network must have an
administrator who must record the continuously changing state of
the system (often on a piece of paper tacked to the wall!). It is
anticipated that in future office emironments. host locations will
be changed as often as telephones are changed in present-day
offices. In addition, a local network mav be shared bv
uncooperative organizations, often leading - to inconsisten"t
management of the network. Duplication of addresses may lead to
misdelivered or undeliverable data. Thus, the overall management
of network-specific host numbers can represent a severe problem.

161

162

INR • In'.r t.o"' Aout.,

GT"! ,.. lO~01.ocotG.I ••• ,

2805 80 •• " .v.

FIgure 1 The Xerox Pup, based bperomentallnternetwork on the Bay Area

Th.e use of absolute host numbers in an internetwork provides for
rellab.lc and manageable operation as the system grows, as
mach Illes mo\'e. and as the o\'erall topology changes. if the (local)

network can directly support these large host numbers. This is
true. because the host is given one number or identit)' when it is
first built. and this number is never modified 'Jihen 'the network
configurat,ion changes. A distributed system can be effectively
managed If the speCial purpose parameterizing of the hardware can
be reduced to a minimum. The absolute host number space
should be large enough to ensure uniqueness and pro\'ide
adequate room for growth.

?ince a~ absolute host number is a property of a host rather than
Its locatIon In the network to which it is connected. the number
should not be associated with, nor based on. a particular network
interface or controller. A host connected to zero or more networks
has only one identity. which should not be "hard wired" into a
particular interface or controller. but should be setable from the
station (see Section 5). The address of this host on all connected
networks that directly support absolute host numbers wilL in
generaL be the same as the host's identity (see Sections 3 and 5).
A host connected to a network that does not directly support
absoll'te host numbers will. in addition. have an address relative to
that netw0rJ<.

Such host numbers can be used by operating systems software ,to
generate unique numbers for use by the file system, resource
manager. etc. [Rede1l80, AbrahamSO]. By decoupling the host's
number. from the network to which it is connected, a unifonn
mechanIsm can be applied to networked and stand-alone
workstations so that they may imeract at higher levels. For
example. both stand-alone and networked Pilot-based [RedellS0]

workstations may generate tiles that are identified by unique
numbers and Lhen exchan2.e them bv copying them onto
removable storage media su~h as flopp'y disks.

Xerox internetwork systems will use flat internet addresses
containing 48-bit host numbers. and a unique network number as
a \ery strong routing hint. The imernet address(es) for an object
or resource in the internetwork is obtained from a distributed
agent called the clearinghouse: it senes a function similar to the
telephone system's "white" and "yellow" pages [OppenSl]. The
user of the resource does not compute or detennine the network
number after disco\ering the host number of the resource-the
network number is included in the binding infonnation returned
from the clearinghouse. We believe that our host number space is
large enough for the foreseeable future (see Section 6). We expect
that these internetworks will be built primarily from Ethernet local
networks and thus directly support 48-bit absolute host numbers
?n the Ethernet channel. An internet packet is still encapsulated
111 an Ethernet packet \I,'hen it is transmitted on the Ethernet
channel.

48-bit host numbers lead to large Ethernet and internet packets.
We believe that this will not pose a problem as both local and
public data networks continue to offer higher bandwidths at
reasonable costs, and the memory and logic costs associated with
storing and processing these numbers continue to become lower
with the ad\ ances in LSI technology.

We further justify our choice of absolute host numbers in the next
section by comparing internetwork routing techniques that use
hierarchical and flat internet addresses. We show that routing
based on flat internet addresses is very general. and especially
efficient if the constituent (local) networks directly support the
absolute host number.

3. Internetwork Deliver"

In this section. we illustrate the pros and cons of using hierarchical
and flat internet addresses for internetwork delivery by comparing
the techniques prescribed by the Arpa Internet Protocols [IP80]
and the Pup Protocols [Boggs80]. with those prescribed by the new
Xerox internetwork protocols.

A host is identified in an internetwork bv its internet address. In
general. a host may haw many internet addresses. but an internet
address can identify only one host.

Hierarchical internet addresses ha\ e a routing decision implicitly
encoded in them because they specify the network through which
a packet must be delh ered to the host. This is not necessarily true
for flat internet addresses. Flat internet addresses may contain
routing infonnation hints in them, and in such· cases a
sophisticated routing mechanism is free to use or ignore these
hints.

The delivery of interne! packets imohes routing the packet from
source host to destination host, through zero or more internet
routers based on the internet address of the destination host. The
internet packet usually must be encapsulated for transmission
through the various communication networks, on its way from
source host to destination host. The encapsulation specifies
addressing and delivery mechanisms specific to that
communication network. Each communication network may have
a different fonn of internal addressing. When an internetwork
packet is to be transported over a communication medium, the
immediate destination of the packet must be detennined and
specified in the encapsulation. The immediate destination is
detennined directly from the internet address if it is the final
destination, or through a routing table if it is an intennediate
destination. We do not discuss mechanisms and metrics for
managing routing iables in this paper.

The structure of the imernet address influences the algorithms
used for determining immediate destinations during encapsulation.

Consider flat internet addresses first: the absolute host number in
a flat internet address may ha\e no relation to am of L'1e internal
addressing schemes used by the communication networks. Hence.
during encapsulation. as far as each of the communication
networks is concerned. the absolute host number is a !lallle [hat
must be translated to an address on the network. This imohes
consulting some fonn of a frans/alion lable. possibly in conjunnion
v, ith the routing table (v, e assume that the routing table supplies
the absolute host number of the next internet router rather than its
network-specific address. so that internet routers know one
anothers' internet addresses should the\" wish to directly
communicate, for the purpose of exchanging routing infonnation
or statistics, etc.). In a \"ery general internetwork. the overhead of
perfonning an absolute host number to internal address translation
can be large both in space and time, and also requires the
maintenance of translation tables in all hosts. Xerox internetworks
will consist primarily of Et!1ernets. Since absolme host numbers
ha\e many other ad\antages. we chose the internal addressing on
an- Ethernet svstem [0 be identical to the absolute host number to
a\ oid translation. Therefore. as far as Ethernet s\stcms are
concerned. the absolute host number is indeed an address and not
a name. V· ... hen Xerox internet packets tra\erse other
communication networks that do not support our absolute host
numbers. like the Bell Telephone DOD network. Telenet. or other
public or pri\ate data netv.orks, translation tables \\ ill ha\e to exist
in the necessary hosts and internet routers to perfonn translation
from absolute host numbers tu internal addresses. We feel that
this will not cause man~ operational problems. other than setting
up and mairlta,ning dicse trami.J.tion tabl~s ii, ap~ropriate ,a,ld
limited) hosts and internet routers. Flat internet addresses are not
in \\idespread use because the designers of internet\\orks ha\'e hild
little or no control oyer the desi!:!n of the constituent
communication networks. and thus. ha;e been forced to use
hierarchical internet addresses. rather than flat internet address
containing roming infonnation or hints.

Flat internet addresses pro\ide a \ehicle for soh ing many of the
hard internetwork routing problems in situations like net\\ork
partitioning. multihoming. mobile hosts_ etc. Rut they create
others! These situations are descrihed in greater detail in
[SunshineS1).

A host in an internetwork that has hierarchical internet addresses
has as many internet addresses as the number of networks to
which it is connected. It is the encoding of the network-specific
host number itself that distin!:!uishes \arious schemes in this
category. There are two cases. one represented by the Arpa
Internet Protocols and the other by the Pup Protocols.

The Arpa Internet Protocols specify that the internet address is an
8-bit network number followed by a 24-bit host number. The host
number is encoded such that it is synonymous with the internal
addressing scheme of the communication network to which the
host is connected. For example. a host connected to the Bay Area
Packet Radio ?\etv,ork has a network-relath e inwrnal address of
16 bits. and therefore the host number in its internet address will
contain these 16 bits in the "least signit1cant" positions. During
encapsulation, if the immediate destination is the final destination
then it is equal to the host number in the destination internet
address. and if the immediate destination is an intennediate
destination then it is detennined from the routing tables and has
the right fonnat. For such a scheme to work. the space resen-ed
for the host number must be as large as the largest internal
addressing scheme expected in any communication network. In
the case of the Arpa Internet Protocols, this is already too small
since it cannot encode new Ethernet host numbers!

The Pup protocols encode the host number in the internet address
with only 8 bits, and so cannot be used to encode the various
network-specific host numbers. The Pup Protocols were designed
to be used in an internetwork environment consisting mainly of
interconnected Experimental Ethernet systems which have 8-bit
internal addresses, and that is why the host number in the internet
address is 8 bits long. Hence. even though the Pup Protocols use
network-specific host numbers. when packets are transmitted

through non-Experimental Ethernets a translation table is needed
~ust as for absolute host numbers. For example. when Pup
mternet packets tra\ erse the Bay Area Packet Radio ~etwork. the
8-bit host number of the internet routers must be translated into
the 16-bit ID used within the radio nw\ork [Shoch79).

Here is another wa) to look at internet Clddresses: whether the
host number is absolute or netv,ork-specific. if it does not encode
the communication network's internal addresses. then it mal be
necessar) to nanslate from the Internet ho~t number to- the
communication network's internal address v,heneler the packet is
to be transmitted o\er the network.

4_ I'lulticast

In addition to identif\-ine: a sin!:!le host. our absolute host
numhering scheme prO\:ideS se\-craJ enhanced addressing modes.
-'fullicasl addressing is a mechanism by which pdckets may be
targeted for more than one destination. This kind of senice is
particularly \aluable in cenain kinds of distributed applications.
such as the access and update of distributed data bases,
teleconferencing. and the distributed algorithms which are used to
manage the network (and the internetwork). Multicast is
suppcned by allowing the destination host numbers to specify
either a physical or "logical" host number. A logical host number
is called a mullicasl I D and identifies a group of hosts. Since the
space of multicast IDs is large. hosts must filTer out mulitcast IDs
that are not of interest. We anticipate wide growth in the use of
multicast and all implementations should. therefore, minimize the
system load required to filter unwanted multicast IDs.

BroadcaSI is a special case of multicast: a packet is intended for ail
hosts. The distinguished host number consisting of all ones is
defined to be the broadcast address. This specialized fonn of
multicast should be used with discretion. howc\er. since all nodes
incur the o\erhead of processing such packets.

By generalizing the host number to encompass both physical and
logical host numbers. and by supporting this absolute host number
within the Ethernet system (which is inherently broadcast in
nature) we have made it possible to implement multicast
efficiently. For example. perfect multicast filtering can be
perfonned in hardware and/or microcode associated with the
Ethernet controller. Since logical host numbers are pennitted in

flat internet addresses we also have the capability for internetwork
mU/licasl. This is. however. easier said than done as the multicast
10 may span many networks. Internetwork multicast and reliable
multicast are subjects we are currently researching: an appreciation
of the problems can be found in [Dalal78 and Boggs8l].

5. Names and Addresses

The words "name" and "address" are used in many different ways
when describing components of a computer system. The question
that we often get asked is: "is a 48-bit number the name or the
address of a host computer?" In the area of computer­
communications we ha\'e tried to de\elop a usage that is consistent
with that found elsewhere. and an excellent expose of the issues
may be found in [Shoch79]. An important result of this paper is
that a mode of identification (whether it be a number or a string
of characters) is treated as a name or address depending on the
context in which it is \iewed.

From an internetworking point of view. the 48-bit number asigned
to a host is its identity, and never changes. Thus, the identity
could be thought of as the "name" (in .the \'Cry broadest sense). of
the host in the internetwork. According to Shoch's taxonomy, this
identity could also be thought of as a flat address. as it is
recognizable by all elements of the internetwork.

The Ethernet local network is a component of an internet. and was
designed to support 4S-bit host numbers. One could \-iew this
design decision as "supporting host name recognition directly on

163

164

the Ethernet channel" (since broadcast routing is used to deliver a
packet). This would be true if a host was connected to an
Ethernet at only one point-a policy decision we made for the
Xerox internetwork architecture. Howe\er, this is not a
requirement of the Ethernet design. and it is possible for a host to
be connected to man) points on a single Ethernet channel. each
one potentially responding to a different 48-bit number. In this
situation the 48-bit number does in fact become an address in the
classical sense as it indicates "where" the host is located on the
channel. One of these 48-bit numbers could also be the host's
internet identity; the mapping from internet address to local
netv.ork address is now more cumbersome.

6. Market Projections

We have described our reasons for choosing absolute host
numbers in internet addresses. and for using them as station
addresses on the Ethernet channel. The host number space should
be large enough to allow the Xerox internet architecture to have a
life span well into the twenty-first century. 48 bits allow for
140,737.488 million physical hosts and mulitcast IDs each. We
chose this size based on marketing projections for computers and
computer-based products, and to permit easy management of the
host number space.

An estimate of the number of computer systems that will be built
in the 1980s varies, but it is quite clear that this number will be
very large and will continue to increase in the decades that follow.
The U.S. Department of Commerce, Bureau of Census estimates
that in 1979 there were 165 manufacturers of general-purpose
computers, producing about 635.000 units valued at $6,439,000.000
[USCensus79]. There were also about 992.000 terminals and about
1,925,000 standard typewriters built! International Data
Corporation estimates that during 1980-1984 there wiii be about
3.5 million general purpose mini, small business, and desktop
computers built in the United States [IDC80]. Gnostics Concepts
Inc. estimates that during 1980-1988 about 63 million central
processing units (cpus) of different sizes with minimum memory
will be built in the United States alone [Gnostics80]. •

We expect that the production of microcomputer chips will
lDcrea5e in the decddes that foilov., and therc will be
microprocessors in typewriters, cars. telephones. kitchen appliances,
games. etc. While all these processors will not be in constant
communication with one another it is likely that every now and
then they will communicate in a networt.: of proctssors. For
example, when a car containing a microprocessor chip needs
repairs. it might be plugged into a diagnostics system thereby
putting the car on a communications system. During the time it {s
hooked into the communication network it would be very
convenient if it behaved like all other computers hooked into the
system.

We believe that 32 bits. providing over 2,147,483.648,000 physical
host numbers and multicast IDs, is probably enough. However,
when this large space is carved up among the many computer
manufacturers participating in this network architecture, there are
bound to be many thousands of unused numbers. It is for this
reason that we increased the size to 48 bits. The next section
discusses the problems of managing this space.

7. Management and Assignmem Procedures

In order that an absolute host numbering scheme work,
management policies are needed for the distribution and
assignment of both physical and logical host numbers. The major
requirement is to generate host numbers in such a way that the
probability of the same number being assigned elsewhere is less
than the probability that the hardware used to store the number
will fail in an undetected manner. There are two ways to manage
the host number space:

1) Partition the host number space into blocks and assign
blocks to manufacturers or users on demand. The
assignment of numbers within a block to machines IS
the responsibility of each manufacturer or user.

2) Formulate an appropriate algorithm for generating host
numbers in a decentralized manner. For exampl~, use
a random number generator that reduces the
probability of address collisions to a very small
acceptable value.

Both options r~quire the existence of an administrative procedure,
and perhaps an agency supported by the user community which
will have the overall reponsibility of ensuring the uniqueness of
host number assignments.

The second option has a great deal of academic appeal. but
nevertheless requires an administrative agency that must control
the way the random number generator is used to ensure that users
d~. n?t initial~ze it \~'ith the same seed. One way to accomplish
thiS IS to assign umque seeds. This is not very different from
assigning unique blocks of numbers! Another wa'y is to provide a
thermal noise device on the host to generate a seed or the random
host number itself. From a technical standpoint this solution is
superior to using software-implemented random number
generators. but administrative procedures are still necessarY. An
agency must certify the "correctness" of the component.' i.e., it
must guarantee that the component is drawing its numbers from a
uniform distribution. In addition to these technical issues, the
problem of controlling the assignment of multicast IDs does not
lend itself to a random number assignment procedure.

The first option was selected because of its simplicity and ease of
ad'!1inistration and control. Xerox Corporataion will manage the
aSSignment of blocks to manufacturers. An in-house database
system is being used to assign numbers and produce summaries
and reports. This is very similar to the way Ullifonn product codes
are aSSigned [UPC78]. The 48-bit host number space is partitioned
into 8.388.608 (223) bloCks. each containing 16.777.216 (224)
physical and 16,777.216 (224) logical host numbers. The
partitioning is strictly syntatctic. that is. the "block number" has
no semantics, and does not identify a manufacturer.

The owner of a block of host numbers should use all of them
before requesting another block. That is, the host numbers within
a block should be used "densely", and should not encode the part
number. batch number. etc. Mechanisms by which physical host
numbers within a block are assigned to machines is manufacturer
dependent. Typicaiiy, a iarge-\oiume manufacturer would make
PROMs containing the host number, and then perform quality
control tests to ensure that there weren't any duplicates.

Multicast 10 assignment is a higher-level, system-wide function,
and is a subject we are investigating.

With either assignment option it is possible that two machines
inadvertantly received the same host number. Suitable techniaues
for discovering such anomalies will have to be developed· by
installations, as part of their network management strategy.

The continued advances in LSI development will make it possible
to manufacture an inexpensive "Ethernet chip." Even though host
numbers are associated with the host and not a particular network
~nterface. it ~ight be useful to have a unique host number built
Into each chip and allow the host to read it. The host can then
choose whether or not to return this number to the chip as its host
number; a host connected to many Ethernet systems can read a
unique number from one of the chips and set the physical host
number filter to this value in all of them.

The 48-bit host number is represented as a sequence of six 8-bit
bytes A, B, C, 0, E, F. The bytes are transmitted on the Ethernet
channel in the order A, B, C, 0, E, F with the least significant bit

of each byte transmitted first. The least significant bit of byte A is
the l11Ullicasl bit. identifying: whether the 48-bit number is a
physical or logical host number. Figure 2 illustrates how the bytes
of a 4S-bir host number are laid out in an Ethernet packet.

1--- OBITS ----l

- -
'-- -
r- -
I- PREAMBLE -
J-- -
J-- -
f- -

A I'" MUL TICAST BIT

B

C BLOCK NUMBER

DESTINATION D

E

F

t- 1.2.
I- -

SOURCE
I- -
r- -

J-- TYPE -

- -
- -

DATA
ftypic..lly en Internet pac:k.t)

Figure 2. Ethernet Packet and Host Number Formal

Although the destination address in an internet or intranet packet
may specify either a physical host number or a multicast 10, the
source address in a packet is generally the physical host number of
the host which sent the packet. Knowing the source address is
important for error control, diagnostic tests, and maintenance. A
host which receives a multicast packet is also free to use (hat same
multicast ID (the destination) in order to transmit an answer
"back" to the multicast group.

8. Summary and Conclusions

We belie\'e that ali hosts shouid have a unique physical host
number independent of the type or number of networks to which
they are physically connected. With the continuing decline in the
cost of computing and communications, we expect thel.!
internetworks wiII be very large. Many of the problems in
managing the internetwork can be simplified by directly
supporting the large absolute host number in the constituent
networks, such as the Ethernet. Thus. addresses in the Ethernet
system seem to be very generous, well beyond the number of hosts
that might be connected to one local network.

The architecture of the Xerox internetwork communication 5\'stem
has been designed to ha\·e a life span well into the tv. ent;·-first
cemury. We expect that it will recei\e wide acceptance as a style
of imernetworking. and therefore chose the host number to be 48
bits long, As a policy decision our internet\\ork architecture
legislates that a host (mulitiply) connected to one or more Ethernet
local netv.orks has the same physical host number on each one,

In summary. absolute host numbers ha\e the following properties:

a they pennit hosts to be added to. or remo\ed from
networks in the imernetwork with minimum
adminstratiye 0\ erhead.

o they pennit mapping internet addresses to network
addresses during encapsulation without translation,

o they pennit the separation of routing from addressing.
\\ hich is especially useful in internetworks \\·ith

multihomed or mobile hosts.

o they provide the basis for unique identification of files.
programs and other objects on stand-alone and
netv.orked hosts.

o they support multicast. or the deli\·ery of data to a
group of recepients rather than only to a single
physical host.

Although a host has the same number for use by operating system
software. both within the internetwork and on an Ethernet svstem.
none of the principles of layered protocol design ha\'e' been
violated. Things ha\"e simply been conveniently arranged to be
optimal in the most common configurations.

We encourage designers of other local computer netv.orks and
distributed systems to use absolute host numbers from our 48-bit
address space.

Acknowledgements

Our decision to support an absolute host numbering scheme in
internetwork and Ethernet systems was based on mam \ears of
experience with the Pup internetwork and the Experimental
Ethernet system: DaYid Boggs. John Shoch. Ed Taft. Bob Metcalfe
and Hal Murray ha\e helped refine our ideas to their current state.
Alan Kotok. Bill Strecker and others at" Digital Equipment
Corporation provided many recommendations on managing the
host number space ""'hile we were de\eloping the Ethernet
specification.

References

[Abraham80]
Abraham, S. M.. and Dalal. Y. K.. "Techniques for
Decentralized Management of Distributed Systems," 201h
JEEE Computer Society Internaliona! COllfrrence (Compcon),
February 1980, pp. 430-436.

[Boggs80]
Boggs, D. R., Shoch, 1. F., Taft. E. A .. and Metcalfe, R. M.,
"PUP: An internetwork architecture," IEEE Transaclions 011

Communications, com-28:4, April 1980. pp. 612-624.

[Boggs81}
Boggs, D. R., "Internet Broadcasting," PhD. Thesis, Stanford
University, 1981, in preparation, (will be available from Xerox
Palo Alto Research Center).

165

166

[Cert7S]
Cerr. \'. G., and Kirstein. P. K .. "Issues in Packet-Network
InterC0nnection," Proceedings of the IEEE. vol 66. no It
:\'0\ ember 1978. pp. 1336-1408.

ICrane80]
Crane. R. C. and Taft. E. A.. "Practical considerations in
Ethernet local netv.ork desis!n." Proc. u([he 13[h HaMii
Infernatiollal C onferellce on '-Systems Scie~rces. January 19S0.
pp. 166-174.

[DalaI78]
Dalal. Y. K .. and :-"1etcalfe. R. \1.. "Re\erse Path Forv.ardIn2
of Broadcast Packets." Communications of the ACM. 21:12~
December 191 5. pp. 1040-1048.

[EthernetSO]
Intel. Digital Equipment and Xerox Corporations. The
Fthemet. A-/.oca! .,1 rea .\"etl\"Ork: Della Link Larer alld Phnical
layer .<';pecUlc<l[iolls. \'ersion 1.0. September- 30. 1980:

IGnosticsSO]
Gnpstic Concepts. Inc.. COI/1PUt('r Industry Econometric Seryiee.
1 (/,\(1. I 'u!U!lIe 1.

[11)CSO]
Internati(lnal Dat.! Corporation. Corporate Planning Sen ice.
Prucessur D,J1J Ruuk fQ80.

[IPSO]
Postel. J.. cd .. D(·/) St(}l1dard Internet ProlUcol. lanuan 1980.
'.;TlS '.;0. AD:\0797 30. also in AC.\1 Computer COIllIl1U/-rication
R (l ifl\. \ 01 10. no 4. October 80. pp. 2-51.

[\1ctcalfe76]
\1ctcalfe. R. \1.. and Boggs. D. R .. "Ethernet: Distributed
packet s\\ itch ing for local computer networks."
(lll1mUl1iC[iljUIIS of tire AC.H. 19:7. JlJl~ 19"76. pp. 395-404.

[OppenSI]
Oppen. D. c.. and Dalal. Y. K .. "The Clcarimd10use: .-\
Decemralized .\gent for Locating '.;"amed Objects in a
0i~Li;J ~Cl! E=--l' :~I.~~~::-~c;-::." ::-: ;::-C;;2:-o.::2:-:.

[Shoch80]
Shoch. J. F .. and Hupp, J. A .. "Measured performance of an
Ethernet local network," Communications of the ACM, 23:12,
December 1980. pp. 711-721.

[Shoch81]
Shoch, J. F .. Local Computer ,Vet works, McGraw-Hill, in
preparation.

[Sunshine81]
Sunshine .. c.. "Addressing Problems in Multi-Network
Systems," In preparation.

[LTPC78]
L?.c Guidelines Manual, January 1978. A vailable from
li:lform Product Code CounciL Inc., 7061 Corporate Way,
SuIte 106, Dayton Ohio.

[USCensus79]
u.s. Deoanment of. Commerce. Bureau of Census. "Computers
and Office AccountIng ~achines." Current Industrial Reports
1979. .

[RedellSO]
Redell. D. D .. Dalal. Y. K .. Horseh. T. R .. Lauer. H. C ..
Lynch. W. C ~1cJones. P. 1., Murra;. H. G .. and Purcell, S.
C. "Pilot: An Operating System for a Personal Computer."
COlll1l11lllicaiiollS of the AC\!. 23:2. Febmary 1980. pp. 81-92.

[Shoch78]
Shoch. J. F.. "Internetwork ~aming, Addressing. and Routing."
j":'lh IEEE Computer Society Illternatiollal Conference
(Compcon). September 1978. pp. 430-437.

rShoch 791
. Shoc1-i. J. F .. and StC\\ art. L "I nterconncctin2: Local 1\'ctworks

\ia the Packet Radio "\"etv.ork." Sixth Data~ Communications
S)mposiUlIl. '.;()\ ember 1979. pp. 153-158.

Higher-level protocols
enhance Ethernet

Internet Transport Protocols enable
system elements on multiple Ethernets to
communicate with one another. Courier
specifies the manner in which a work station
invokes operations provided by a server.

The Ethernet specification announced by Digital
Equipment Corp., Intel Corp., and Xerox Corp. in 1980
only covers the lowest level hardware and software
building blocks necessary for an expandable distributed
computer network that can serve large office environ­
ments. Additional levels of protocol are needed to allow
communication between networks and. communication
between processes within different pieces of equipment
from different manufacturers.

Xerox' recently announced Network Systems Inter­
net Transport Protocols and Courier: The Remote Pro­
cedure Call Protocol, define protocols that address these
issues.

To serve large office environments, Ethernet's basic
communication capability must be augmented in various
ways. Interconnecting multiple Ethernets will circum­
vent the ma.ximum end to end cable length restriction of
2.5 km, but requires mechanisms for internetwork com­
munication. The Internet Transport Protocols offer a
richer addressing scheme and a more sophisticated rout­
ing algorithm, and will enable Ethernets to be intercon­
nected by telephone lines, public data networks, or
other long-distance transmission media but \\ill allow
transmission of data larger than the 1526-byte packet­
size restriction imposed by the Ethernet.

Network system protocols

As illustrated by Xerox' five-level Network Systems
protocol architecture (Fig. 1), the new protocols go well
beyond the original Ethernet specification, which covers
level O-physically transmitting data from one point to
another. This corresponds to the physical, data link, and
network (network-specific sublayer) layers in the Inter-

James White, Manager, Electronic Mail
Yogen Dalal, Manager, Advanced Network Services
Xerox Corp. Office Products Division
3450 Hillview Ave., Palo Alto, Calif. 94304

national Standards Organization's Open Systems Inter­
connect (OS1) reference model. The Internet Transport
protocols cover levels 1 and 2; the first level decides
where the data should go, and the second for structured
sequences of related packets. Levels 1 and 2 correspond
to the network (internet-specific sublayer), transport,
and session layers of the OSI model.

At level 3, the protocols have less to do \\ith communi­
cation and more to do ""ith the content of data and the
control of manipulation of resources. Level 3 corre­
sponds to the OSI model's presentation layer and is
covered by Courier. Level 4 defines specific applications
and corresponds to the OSI model's application layer;
Xerox plans to disclose some of them later this year.

T'nere are several protocols in this family:
• The internet datagram protocol, which defines the

fundamental unit of information flow within the
internetwork-the internet datagram packet.

Level 4 and above

Application protocols

Level 3

Control protocols:
conventions for
data structuring and
process interaction

Level 2

Transport protocols:
interprocess
communication
primitives

Level 1

Transport protocols:
internetwork packet format.
internetwork addressing and
routing

Level 0

Transmission media
protocols:
packet transport
mechanism

1. Network system protocols are arranged in five levels. The
internet transport protocols are at levels 1 and 2; the Courier
remote procedure call protocol is at level 3. Xerox plans to
announce the application protocols at level 4 later this year.

167

168

Systems & Software: Ethernet protocols

• The sequenced packet protocol, which provides for
reliable, sequenced, and duplicate-suppressed transmis­
sion of a stream of packets.

• The packet exchange protocol, which supports sim­
ple transaction-oriented communication involving the
exchange of a request and its response.

• The routing information protocol, which provides
for the exchange and dissemination of internetwork to­
pological information necessary for the proper routing of
datagrams.

• The error protocol, which is intended to standardize
the manner in which low-level communication or trans­
port errors are reported.

• The echo protocol, which is used to verify the exis­
tence and correct operation of a host, and the path to it.

The internet packet transport protocols embody the
fundamental principles of store-and-forward internet­
work packet communications. The fundamental unit of
information flow is the internet packet, which is media-,
processor-, and application-independent (Fig. 2).

Internetwork packets are routed from one network to
another via store-and-forward system elements called
internetwork routers that connect transmission sys­
tems. Each datagram is treated independently by the
routing machinery; it gives its best effort, but will not
guarantee that packets will be delivered once and only
once, or that they will be delivered in the same order in
which they were transmitted.

When an internet packet is received over a transmis­
sion medium, it is first decapsulated by stripping away
the immediate source and destination addresses. If the
packet is destined for this host, it will be delivered to a

Immediate
destination

Immediate
source

6
o

Checksum

Length

local socket (a uniquely identified port within the oper­
ating system in a host). If the packet is to be routed to
another network, it will be reencapsulated and subse­
quently transmitted according to the conventions of the
second transmission medium.

Internet packet fields fall into three categories: ad­
dressing fields, which specify the address of the destina­
tion and source of the internet packet and consist of
source and destination network addresses; control
fields, which are related to controlling data transmission
and consist of checksum, length, transport control, and
packet type fields; and data fields, which carry the data
and consist of information that is interpreted only at
level 2.

The network address fields provide a more general
addressing mechanism than the 48-bit host number used
on the Ethernet by a 32-bit network number and a I6-bit
socket number. The network number reaches out to
encompass multiple interconnected Ethernets or other
transmission media. The socket number reaches in to
distinguish among multiple post-office-box-like objects
within the operating system in a machine.

Tne checksum is an end-to-end checksum (unlike the
Ethernet's cyclic redundancy check) that is computed
once by the original source of the packet and checked
once by the ultimate recipient to verify the integrity of
all the data it encompasses. It is an optional one's­
complement add-and-Ieft cycle (rotate) of all the I6-bit
words of the internet packet, excluding the checksum
word itself. Internet packets are always transmitted as
an integral number of I6-bit words. A garbage byte is
added at the end if the numbers of bytes is odd; this byte

o 1 15 - Checksum
Length

; Transport control I Packet type

- Destination network -
- -Destination host - - Level 1

Destination socket

- Source network -
- -Source host - --

Source socket

Transport control
Packet type - Level 2

Cyclic redundanGY
check

Ethernet packet

- -

(0 to 546 bytes of transparent data)
Data

I Potential garbage byte

Internetwork packet

0 1 7
-'1 n Packet I I I I I Hop cou tI type

2. An Internet packet (16 bits wide) is encapsulated in an Ethernet packet.

Process A

Virtual circuit

Message i II Me~~ge II M~~ge I· .. ~

3. A connection is a transient association between two processes that allows messages to flow
back and forth. The sequenced packet protocol allows packets to be assembled into messages
and removes the limitation on packet size at lower architectural levels.

is included in the checksum, but not in the length.
The length field carries the complete length of the

internet packet measured in bytes, beginning with the
checksum and continuing to the end of the data field.
However, the possible garbage byte at the end is not
included.

The transport control field contains a hop-count sub­
field, which is incremented by 1 each time the packet is
handled by an internetwork router. An internetwork
packet reaching its sixteenth internetwork router is
discarded.

The packet type field describes how the data field is to
be interpreted, providing a bridge to level 2.

A client process typically interfaces to the internet­
work datagram protocol package in an operating system
by acquiring a socket and then transmitting and receiv­
ing internet packets on that socket.

Two modes of communication are partiCUlarly impor­
tant in building a distributed system: connections and
simple transactions. Connection-oriented communica­
tions, which is supported by the sequenced packet pro­
tocol, involves an extended conversation by two
machines in which much more information is conveyed
than can be sent in one packet going in one direction.
Thus, the need arises for a series of related packets that
could number in the thousands.

Simple transaction-oriented communication, which is
supported by the packet exchange protocol, involves one
machine (the consumer) simply sending a request to
perform an operation; the other machine (the server)
performs the operation and provides information about
its outcome.

Sequenced packet protocol

The sequenced-packet protocol provides reliable, se­
quenced, and duplicate suppressed transmission of suc­
cessive internetwork packets by implementing the
virtual-circuit connection abstraction, which is common
to many communications systems (Fig. 3). The connec­
tion links two processes in different machines and car­
ries a sequence of messages, each consisting of a se­
quence of packets, in each direction.

Arranging packets into messages and message se­
quences is one way to circumvent the packet-size limita­
tion at lower levels of the protocol architecture. The
sequenced packet protocol provides a mechanism to
punctuate the stream of packets with end-of-message
boundaries.

Each client packet gets a sequence number when it is
transmitted by the source; sequence numbers are used
to order the packets, to detect and suppress duplicates
and, when returned to the source, to acknowledge re­
ception of the packets. The flow of data from sender to
receiver is controlled on a packet basis. The protocol
specifies the format of the packets (Fig. 4) and the
meaning of packet sequences.

Throughput vs buffering

One of the major design goals when implementing
connections is to maximize throughput-controlling the
packet flow so that the receiver accepts packets at the
speed the source is sending them. But another goal is to
minimize the amount of buffer resources allocated to the
connection, since a typical machine, particularly a
server, might have to maintain many connections (to
different work stations) at the same time. Since these
two goals could conflict, the system designer will have to
make tradeoffs according to individual requirements.

The connection control field contains four bits that
control the protocol's actions: system packet, send ac­
knowledgment, attention, and end-of-message. The sys­
tem packet bit enables the recipient to determine
whether the data field contains client data or is empty
and the packet has been sent only to communicate con­
trol information required for the connection to function
properly. If the send acknowledgment bit is set, the
source wants the receiver to acknowledge previously
received packets.

In a distributed environment, special procedures
must be provided to bypass the normal flow control and
interrupt a process. If the attention bit is set, the source
client process wants the destination client process to be
notified that this has arrived. If the end-of-message bit is
set, then the packet and its contents will terminate a

169

170

Systems & Software: Ethernet protocols

message and the next packet \\-ill begin the following
message.

The primary bridge between this level 2 prototype
and any level 3 protocols is the data stream type field,
which provides information that may be useful to higher­
level software in interpreting data transmitted over the
connection.

Should one ofthe partners in a connection fail, it must
be noticed by the other partner. Accordingly, each
packet includes two 16-bit connection identifiers, one
specified by each end of the connection. Each end tries
to ensure that if it fails and is restarted, it \\-ill not reuse
the same identifier. Thus, the restarted program \\-ill be
easy to distinguish from the old instance of the same
program.

The sequence number is a unique number assigned to
each packet sent on the connection. Each direction of
data flow is independently sequenced. One purpose of
the sequence number is to provide a means for the
receiver to reorder the incoming packets (as necessary)
before presenting them to the application software. The
sequence number also provides a basis for the acknowl­
edgment and flow-control mechanisms.

The acknowledgment number field specifies the se­
quence number of the first packet, which has not yet

I ~ ___ ~~ _____ . _____ . ___ ~ ... ~~~::~~=~~m==========~I--
Transport control I Sequenced packet type

t- Destination network -
f-- -
f--

Destination host Level 1 -

I

Destination socket
Addressing and delivery

~ Source network -
f-- -Source host
f-- -

Source socket

I~
Connection control I Data-stream type

Source connection identification

Destination connection identification Levei 2
Sequence number Sequenced packet

Acknowledge number protocol

Allocation number -

Level 3
Data Control

0 4 7 15

I I I I I I I Reserved I Data-stream type

I I End of message
Attention

Send acknowledgment

System packet

4. A sequenced packet protocol packet allows successive
transmission of internet packets.

been seen traveling in the reverse direction, thus identi­
fying the next expected packet. The allocation number
field specifies the sequence number of the last packet
that will be accepted from the other end. However, if the
attention bit is set, the allocation mechanism described
will be ignored and the packet \\ill be sent. even though
the destination may have no room.

Flow control by windowing

The sequenced-packet protocol has been designed to
support both high- and low-band\\idth communication.
The receiving end controls the rate at which data may be
sent to it; the sending end controls the frequency \\ith
which the receiving end must return acknowledgments.

The protocol controls data flow \\ith \\indO\\ing (Fig.
5). A window is a contiguous set of sequence numbers
that form the current focus of the transmission. The
window is a range of packets such that all packets to the
left of the window-the lower-numbered packets-are
understood to have been received by the destination
machine. All packets to the right of the window-the
higher sequence numbers-are not to be sent at that
moment. All packets in the 'hindow are packets that the
receiver has allowed to be sent, not all that may have
been received. As the \\indow is filled from the left. it is
advanced to the right.

There are several compatible strategies for imple­
menting this window mechanism. A conservative imple­
mentation could have windows one packet wide; an
ambitious implementation might have very 'hide \\in­
dows. The amount of buffer space allocated to the con­
nection is traded off against performance because a very
small window forces a compiete two-way interaction
between source and destination on every packet. But
with wide windows, an entire sequence of packets can be
sent in bulk by the source.

In a certain sense, these strategies conflict, two ma­
chines employing different strategies can still communi­
cate, but at the lowest common denominator.

Establishing and terminating connections

A connection, of course, must be created before it can
be used and discarded when no longer required. One end
of a connection is said to be established when it knows
the address (host and socket number) and connection
identification of both ends of the co~nection. If both ends
are established symmetrically. the connection is said to
be open. Data can only flow reliably on an open connec­
tion; that is, a packet \\-ill be delivered to the client
process only if its source-and-destination host number,
socket number, and connection identification match
those associated with the connection.

The first packet on a new connection 'hill address
some particular socket in the machine, and the imple­
mentation of the sequenced packet protocol \\ill know
whether any application in that machine has expressed
interest in that network address. If no process has ex-

pressed an interest in the socket, the sequenced packet
protocol implementation will inform the sender via the
error protocol.

In order to open a connection between a consumer
process and a server process that advertises service on a
well-known socket, the server first establishes a service­
listener process at a well-known or well-advertised
socket. This process accesses the Internet Transport
Protocol package at the level of the internet datagram
protocol and indicates a willingness to accept packets
from any source. The consumer process then creates an
unestablished end of a connection. Once the consumer's
packet is received, the service listener creates a new
service process and creates one end of the unestablished
connection. An empty packet returned by the new ser­
vice process causes the consumer's end of the connection
to be established.

Termination of a connection is not handled by the
sequence packet protocol, but by the communicating
clients. There are three separate but interlocking mes­
sages they transmit-one signifying that all data has
been sent; one signifying that all the data has been
received and processed; and one signifying that the
sender understands and is turning to other things.

Packet exchange protocol

Transmitting a request in a packet and receiving a
response via the packet exchange protocol (Fig. 6) \\till
be more reliable than transmitting internet packets di­
rectly as datagrams, but less reliable than the se­
quenced packet protocol.

There are only three fields in the packet. An identi­
fication field, which contains a transaction identifier, is
the means by which a request and its response are
associated. A client type field indicates how the data
field should be interpreted at higher levels. A data field
contains whatever the higher-level protocols specify.
Such a protocol might be used in locating a file server
through a resource-location service, such as the Xerox
Clearinghouse.

Other protocols

As dominant as the sequenced packet and packet
exchange protocols are at level 2, they do not handle
everything. The routing-information protocol, for one,
provides for the exchange of topological information
among internetwork routers and work stations.

Two packets are defined by the protocol: one of them
requests routing information, and the other supplies it.
The information supplied is a set of network numbers
and an indication of how far away those networks are.
This information is either sent on specific request or
periodically distributed by all internetwork routers,
which use the data to maintain routing tables that de­
scribe all or part of the internetwork topology.

An error protocol is intended to standardize the man­
ner in which low-level communication or transport er-

Packets received Packets allowed Packets not sent
and acknowledged but unreceived or and disallowed

unacknowledged

EJ ~ EJBC=] B ~

Window three packets wide

5. A flow-control window is set up by the sequenced packet
protocol, using its sequence, acknowledgment, and
allocation numbers. The wider the window, the fewer the
number of interactions between source and destination
during message transmission.

Checksum
Length Level 1

Transport control I Packet-exchange type Addressing

r- Destination network - and delivery

f-- -
r- Destination host -

Destination socket

- Source network -

./ - -
Source host - -

Source socket

Identification
Level 2
Packet-

Client type exchange

protocol

Data

6. A packet exchange protocol packet simply
transmits a request and receives a response.

rors are reported. Moreover, it can be used as a
debugging tool. If, for example, a machine receives a
packet that it detects as invalid, it may return a portion
of that packet by means of the error protocol, along with
an indication of what is wrong. If, say, the packet is too
large to be forwarded through some intermediate net­
work, the error protocol can be used to report that fact
and to indicate the length of the longest packet that can
be accommodated. If too many of these return, the
system designer may conclude that something is wrong
with his implementation.

Another useful diagnostic and debugging tool is a
protocol called the echo protocol, which is used to verify
the existence and correct operation of a host and the
path to it. It specifies that all echo-protocol packets
received shall be returned to the source. The echo pro­
tocol also can be used to verify the correct operation of

171

172

Systems & Software: Ethernet protocols

an implementation of the internet datagram protocol.
Protocols above the Internet Transport Protocols are

required when, for example, a work station requests a
particular file from a remotely located file server. Agree­
ments are needed on how a work station will ask for the
service and indicate the file name and how the file server
win indicate that it can or cannot find the file (among
other things).

Courier is a level 3 protocol that facilitates the
construction of distributed systems by defining a sin­
gle request-reply discipline for an open-ended set of
higher-level application protocols such as filing. Cou­
rier specifies the manner in which a work station or
other active system element invokes operations
provided by a server or other passive system element
(Fig. 7).

Courier uses the subroutine or procedure call as a
metaphor for the exchange of a request and its posi­
tive reply. An operation code is modeled as the name
of a remote procedure, the parameters of the request
as the arguments of that procedure, and the para­
meters of the positive reply as the procedure's results.
Courier uses the raising of an exception condition or
error as a metaphor for the return of a negative reply.
An error code is modeled as the name of a remote
error and the parameters of the negative reply as the
arguments of that error. Courier uses the module or
program as a collection of related operations and their
associated exception conditions. A family of remote
procedures and the remote errors those procedures
can raise are said to constitute a remote program.

Courier does for distributed-system builders some
of what a high-level programming language does for
implementers of more conventional systems. Pascal,
for example, allows the system builder to think in
terms of procedure calls, not in terms of base regis­
ters, save areas, and branch-and-link instructions.
Courier allows the distributed-system builder to
think in terms of remote procedure calls, not in terms
of socket numbers, network connections, and mes­
sage transmission. Pascal allows the system builder
to think in terms of integers and strings, rather than
in terms of sign bits, length fields, and character
codes. Courier allows the distributed-system builder
to do the same.

Request, reply parameter types

Courier defines a family of data types from which
request and reply parameters can be constructed (see
"Courier data types"). Many high-level languages
define data types that are semantically equivalent (or
similar) to those defined by Courier. In such environ­
ments, it is often useful to define mappings between
Courier data types and those of the host language. A
Courier implementation can then provide software
that converts a Courier data object (in its standard

representation) to or from a form in which it can be
manipulated using normal language or run-time
facilities.

Courier also defines four standard message formats
for requests and replies: a call message calls a remote
procedure, i.e., invokes a remote operation; a reject
message rejects such a call, i.e., reports an inability
to even attempt a remote operation; a return message
reports a procedure'S return, i.e., acknowledges the
operation's successful completion; and an abort mes­
sage raises a remote error, i.e., reports the opera­
tion's failure. The message formats are defined using
the same standard notation described for request and
reply parameters.

Every remote program is assigned a program num­
ber, which identifies it at run time. Every remote
program is further characterized by a version num­
ber, which distinguishes successive versions of the
program and helps to ensure at run time that caller

Active
system
element

Call procedure, arguments

Return results
or A.,,," ~'r~r ~rgl.!...,~"'t~

...-, P-ass-ive----.I I
system
element

7. The Courier remote procedure call protocol covers the
manner in which a client invokes operations from a remote
program. It simply calls for a procedure and expects the
results to be returned or the operation to be aborted.

SimpleFile Transfer: PROGRAM 13 VERSION 1 =
BEGIN
-types
Credentials: TYPE = RECORD [user, password: STRING);
Handle: TYPE = UNSPECIFIED;

- procedures
OpenDirectory: PROCEDURE [name: STRING, credentials:

Credentials)
RETURNS [directory: Handle) REPORTS [NoSuchUser,
IncorrectPassword, NoSuchDirectory, AccessDenied) = 1;

Store File: PROCEDURE [name: STRING, directory: Handle)
REPORTS [NoSuchFile, Invalid Handle) = 2;

RetrieveFile: PROCEDURE [name: STRING, directory: Handle)
REPORTS [NoSuchFile, Invalid Handle) = 3;

CloseDirectory: PROCEDURE [directory: Handle) REPORTS
[lnvalidHandle) = 4;

-errors
NoSuchUser:
NoSuchDirectory:
NoSuchFile:
IncorrectPassword:
AccessDeniecl:
InvalidHandle:
END.

ERROR = 1;
ERROR = 2;
ERROR = 3;
ERROR = 4;
ERROR = 5;
ERROR = 6;

8. As part of Courier's operation, a simple file-transfer
protocol requests access to a directory to store or retrieve a
file, gains the access and then closes the directory. Note the
use of the high-level-like programming language in Courier's
standard notation.

and callee have agreed upon the calling sequences of
the program's remote procedures.

Each remote program has its own version-number
space. Whenever a program's declaration is changed
in any way, its version number is incremented by 1. A
remote program consists of zero or more remote pro­
cedures and the errors they can raise. The specifica­
tion of a remote program defines a numeric value of
each procedure and error.

A call message invokes the remote procedure
whose program number, program version number,_
and procedure value are specified.

A reject message rejects a call to a remote pro­
cedure, specifying the nature of the problem encoun­
tered. A return message reports a procedure's return
and supplies its results. An abort message raises,
with the arguments supplied, the remote error whose
error value is specified.

In addition, a standard notation is defined for for­
mally specifying the remote procedures and errors of
a remote program, which means higher-level protocol
specifications are written in what resembles a high­
level programming language.

To see how Courier is used, consider a user named
Stevens (password etyyq), who wishes to retrieve a
file named Drawings from a directory named Projects
on a file server named Development. The work station
in Stevens' office and the file server at a branch office
in another part of the state are attached to different
Ethernet local networks, which are interconnected by
means of a leased phone line. The file server is sup­
plied by Xerox; the work station is not.

A simple file-transfer protocol is assumed to
provide access to a two-level hierarchical file system
maintained by the file server. The file system contains
one or more named directories, each of which com­
prises one or more named files. The hypothetical file­
transfer protocol is formally specified using Courier's
standard notation (Fig. 8). Remote procedures are
provided for gaining and relinquishing access to direc­
tories and for storing and retrieving files.

To retrieve the file, Stevens' work station locates
and then establishes a connection to the file server.
The work station opens the directory, retrieves the
file, and closes the directory. The work station then
terminates the connection. The work station opens
and closes the directory by calling the remote pro­
cedures named OpenDirectory and Close Directory,
respectively, in the file server. It requests retrieval of
the file by calling the remote procedure named Re­
trieveFile, which tells the file server of the intention
to retrieve. As soon as that procedure returns, the file
server transmits the contents of the file on the connec­
tion using a protocol not described here.

Before anything can happen, however, the work
station must discover the network address of the file

Courier data types
The data types defined by Courier fall into two

classes: predefined and constructed. Predefined data
types are fully specified by Courier, whereas con­
structed data types are defined by an application­
protocol designer, in most cases using predefined or
other constructed data types. Courier covers seven
predefined data types:

• Boolean: a logical quantity that can assume either
of two values, true and false.

• Cardinal: an integer in the interval 0 to 65535 (that
is, an unsigned integer representable in 16 bits).

• Long-cardinal: an integer in the interval 0 to
4,294,967,295 (32 bits).

• Integer: a signed integer in the interval - 32768 to
32767 (that is, a signed integer representable in 16 bits).

• Long-integer: a signed integer in the interval
-2,147,483,648 to 2,147,483,647 (32 bits).

• String: an ordered collection of text characters
whose number need not be specified until run time.

• Unspecified: a 16-bit quantity whose interpreta­
tion is unspecified.

Courier also defines seven constructed data types:
• Enumeration: a quantity that can assume any of a

relatively few named integer values in the interval 0 to
65535.

• Array: an ordered, one-dimensional, homoge­
neous collection of data objects whose type and number
are specified at documentation time.

• Sequence: an ordered, one-dimensional homoge­
neous collection of data objects whose type and maxi­
mum number are specified at documentation time but
whose actual number can be specified at run time.

• Record: an ordered, possibly heterogeneous col­
lection of data objects whose types and number are
specified at documentation time.

• Choice: a data object whose type is chosen at run
time from a set of candidates specified at documenta­
tion time.

• Procedure: the identifier or code for an operation
that one system element will perform at the request of
another. The operation may require parameters when
it is invoked, return parameters if it succeeds, and
report exception conditions if it fails. The arguments
and results of a procedure are data objects whose types
and number are specified at documentation time.

• Error: the identifier or code for an exception con­
dition that one system element may report to another
in response to a request to perform an operation. Pa­
rameters may accompany the report. The arguments of
an error are data objects whose types and number are
specified at doc}.lmentation time.

173

174

Systems & Software: Ethernet protocols

server named Development by contacting a resource
location service (the Clearinghouse). It does this by
broadcasting an internet packet with a specially
structured net work address. The network number
field contains a code that me am; "the local network";
the processor field contains a code that means
"broadcast"; the socket number field is the Clearing­
house's well-known socket number.

Clearinghouse operations

The Clearinghouse consults its (distributed) data
base and returns the file server's network address.
The work station then initiates a connection by send­
ing the first packet to the file server.

1. Open the directory named Projects, on behalf of the user named
Stevens (password etyyq):

1 a. Call the remote procedure named Open Directory, with:
Arguments: name: "Projects," credentials: [user: "Stevens:
password: "etyyq").

Results: directory: 10A4H ("H" signifies hexadecimal).

1 a 1. Send a call message, with parameters:
transactionID:O, programNumber: 13, versionNumber: 1,
procedurevalue: 1, procedureArguments: [name:
"Projects", credentials: [user: "Stevens", password:
"etyyq"ll

1a1a. Send the following 16-bit words (shown in
hexadecimal) on the connection:
message type (call): 0000
transactionlD: 0000
programNumber: 0000
verslonNumOer: 0001
procedurevalue: 0001
name: 0008 5072 6F6A 6543

7473
user: 000753746576 656E

7300
password: 0005657479797100

1a2. Receive a return me$sage, with parameters:
transactionlD: 0, procecJureResults: [directory: 10A4H)

1 a2a. Receive the following 16-bit words (shown in
hexadecimal) on the connection:
message type (return): 0002
transactionlD: 0000
directory: 10A4

2. Retrieve the file named Drawings:

2a. Call the remote procedure named RetrieveFile, with:
Arguments: name: "Drawings", directory: 10A4H.
Results: none.

2a1. Send a call message, with parameters:
transactionlD: 0, programNumber: 13, versionNumber: 1,
procedureValue: 3, procedureArguments: [name:
"Drawings", directory: 10A4H)

Once a connection has been established, the work
station makes three remote procedure calls on the file
server and then terminates the connection. The steps
carried out to make these calls are shown in Fig. 9.
Each step is hierarchically divided into substeps,
which show the Courier messages exchanged by the
work station and server (taking the work station's
point of view), as well as how those messages appear
on the connection as a sequence ofl6-bit words (shown
in hexadecimal).

But the document transfer may not work out as
described; various problems may crop up. The most
common mistakes are made by the human user, such
as specifying a nonexistent file server, directory, or

2a1a. Send the following 16-bit words (shown in
hexadecimal) on the connection:
message type (call): 0000
transactionlD: 0000
program Number: 0000
version Number: 0001
procedurevalue: 0003
name: 00084472 61n 696E

6n3
di~ory: 10A4

2a2. Receive a return message, with parameters:
transactionlD: 0, procedureResults: 0
2a2a. Receive the following 16-bit words (shown in

hexadecimal) on the connection:
message type (return): 0002
transactionlD: 0000

2b Receive the contents of the file transmitted via the connection
(details unspecified here).

3. Close the directory:

3a. Call the remote procedure named Close Directory, with:
Arguments: directory: 10A4H.
Results: none.

381. Sencl a call message, with parameters:
transactionlD: 0, program Number: 13, versionNumber: 1,
procedureValue: 4, procedureArguments: [directory:
10A4H)

3a1a. Send the following 16-bit words (shown in
hexadecimal) on the connection:
message type (call): 0000
transactionlD: 0000
program Number: 0000
versionNumber: 0001
procedurevalue: 0004
directory: 10A4

3a2. Receive a return message, with parameters:
transactionlD: 0, procedureResults: 0

3a2a. Receive the following 16-bit words (shown in
hexadecimal) on the connection:
message type (return): 0002
transactionlD: 0000

9. With Courier, a user named Stevens (password etyyq) retrieves a file from a directory. Each step is hierarchically
divided into substeps. The messages appear as a sequence of 16-bit words, shown in hexadecimal.

file. Such mistakes are reported to the work station
by the file server or the Clearinghouse. using the
Courier remote error reporting mechanism.

In addition, a connection may not go through for a
number of reasons-the file server has crashed. an
internetwork router has crashed, there is an un­
detected break in the network, or the telephone, line
has failed in some way not directly detectable by the
software.

Testing and debugging may be needed

When no response is returned, the first task is to
isolate the failure. A call to the system administrator
may help ascertain which part of the communication
path is at fault. If there is a print server on the same
Ethernet as the file server, and something can be sent
to the print server, the file server is probably at fault.
The internetwork router can be checked in the same
way. If none of these attempts isolates the problem,
the system implementer can turn to one of several
software tools.

Many of these tools depend on the broadcasting
nature of the Ethernet medium, and the reSUlting

ability of one machine to observe packets sent by
another. For example, a peek-type tool makes visible
on the screen (in a convenient format) the contents of
packets. An internet peek-type tool can also do selec­
tive filtering of packets based on sequenced-packet
protocol connections or Courier calls, and display
them symbolically, which proves useful in debugging.
Another useful tool tests the network hardware. mi­
crocode, and software within a single machine. Yet
another program permits the user to examine routing
tables and network device driver statistics in any
internetwork rQuter and to echo packets from any
machine. 0

Bibliography

Digital Equipment Corp., Intel Corp., and Xerox Corp., Eth­
ernet, A Local Area Network: Data Link Layer and Physical Layer
Specifications, Sept. 30. 1980.

Internet Transport Protocols; Xerox Systel1l Integration Stan­
dard. Xerox Corp., Stamford, Conn., December, 1981.

Xerox Corp., Courier: The Remote Procedure Call Protocol. Xe­
rox System Integration Standard. Stamford, Conn.; Dec., 1981;
XSIS-038112.

Oppen. D.C., and Dalal, Y.K., The Clearinghouse: A De­
centralized Agent for Locating Named Objects in a Distributed
Environment. Xerox Office Products Div., Palo Alto, Calif., Octo­
ber, 1981.

175

176

Early Experience with
Mesa
Charles M. Geschke, James H. Morris Jr.,
and Edwin H. Satterthwaite
Xerox Palo Alto Research Center

The experiences of Mesa's first users - primarily its
implementers - are discussed, and some implications

. for Mesa and similar programming languages are sug­
gested. The specific topics addressed are: module struc­
ture and its use in defining abstractions, data-structur­
ing facilities in Mesa, an equivalence algorithm for
types and type coercions, the benefits of the type sys­
tem and why it is breached occasionally, and the diffi­
culty of making the treatment of variant records safe.

Key Words and Phrases: programming languages,
types, modules, data structures, systems programming

CR Categories: 4.22

1. Introduction

What happens when professional programmers
change over from an old-fashioned systems program­
ming language to a new, modular, type-checked one
like Mesa? Considering the large number of groups
developing such languages, this is certainly a question
of great interest.

This paper focuses on our experiences with strict
type checking and modularization within the Mesa pro­
gramming system. Most of the local structure of Mesa

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication. to its date of
issue, and to the fact that reprinting privileges were granted by per­
mission of the Association for Computing Machinery.

A version of this paper was presented at the SIGPLAN/SIG­
OPS/SICSOFT Conference on Language Design for Reliable Soft­
ware, Raleigh, N.C., March 28-30,1977.

Authors' address: Computer Science Laboratory. Palo Alto Re­
search Center. Xerox Corporation. 3333 Coyote Hill Road. Palo
Alto CA 94304

was inspired by. and is similar to, that of Pascal [14] or
Algol 68 [12], while the global structure is more like
that of Simula 67 [1]. We have chosen features from
these and related languages selectively, cast them in a
different syntax, and added a few new ideas of our own.
All this has been constrained by our need for a lan­
guage to be used for the production of real system
software right now. We believe that most of our obser­
vations are relevant to the languages mentioned above.
and others like them. when used in a similar environ­
ment. We have therefore omitted a comprehensive
description of Mesa and concentrated on annotated
examples that should be intelligible to anyone familiar
with a similar language. We hope that our experiences
will help others who are creating or studying such
languages.

An interested reader can find more information
about the details of Mesa elsewhere. A previous paper
[7] addresses issues concerning transfer of control. An­
other paper [3] discusses some more advanced data­
structuring ideas. A paper on schemes [8] suggests
another possible direction of advance. In this paper we
restrain our desires to redesign or extend Mesa and
simply describe how we are using the language as cur­
rently implemented.

The version of Mesa presented in this paper is one
component of a continuing investigation into program­
ming methodology and language design. Most major
aspects of the language were frozen when implementa­
tion was begun in the autumn of 1974. Although we
were dissatisfied with our understanding of certain de­
sign issues even then. we proceeded with implementa­
tion for the following reasons.

- We perceived a need for a "state of the art" imple­
mentation langauge within our laboratory. It
seemed possible to combine' some of our ideas
into a design that was fairly conservative, but that

. would still dominate the existing and proposed
alternatives.

- We wanted feedback from a community of users.
both to evaluate those ideas that were ready for
implementation and to focus subsequent research
on problems actually encountered in building real
systems.

- We had accumulated a backlog of ideas about im­
plementation techniques that we were anxious to
try.

It is important to understand that we have con­
sciously decided to attempt a complete programming
system for demanding and sophisticated users. Their
own research projects were known to involve the con­
struction of "state of the art" programs. many of which
tax the limits of available computing resources. These
users are well aware of the capabilities of the underly­
ing hardware, and they have developed a wide range of
programming styles that they have been loath to aban­
don. Working in this environment has had the follow­
ing consequences.

177

178

- We could not afford to be too dogmatic. The lan­
guage design is conservative and permissive; we
have attempted to accommodate old methods of
programming as well as new. even at some cost in
elegance.

- Efficiency is important. Mesa reflects the general
properties of existing machines and contains no
features that cannot be implemented efficiently
(perhaps with some microcode assistance); for ex­
ample. there is no automatic garbage collection.

A cross-compiler for Mesa became operational in
the spring of 1975. We used it to build a small opera­
ting system and a display-oriented symbolic debugger.
By early 1976. it was possible to run a system built
entirely in Mesa on our target machine, and rewriting
the compiler in its own language was completed in the
summer of 1976. The basic system. debugger. and
compiler consist of approximately 50.000 lines of Mesa
code. the bulk of which was written by four people.
Since mid-1976. the community of users and scope of
application of Mesa have been expanding rapidly, but
its most experienced and demanding users are still its
implementers. It is in this context that we shall try to
describe our experiences and to suggest some tentative
conclusions. Naturally, we have discovered some bugs
and omissions in the design. and the implemented ver­
sion of the language is already several years from the
frontiers of research. We have tried to restrain our
desire to redesign. however, and we report on Mesa as
it is. not as we now wish it were.

The paper hegins with a brief overview of Mesa's
module structure. The uses of types and strict type
checking In Mesa are then examined in some detail.
The facilities for defining data structures are summa­
rized. and an abstract description of the Mesa type
calculus is presented. We discuss the rationale an:1
methods for breaching the type system and illustrate
them with a "type-strenuous" example that exploits
several of the type system's interesting properties. A
final section discusses the difficulties of handling var­
iant records in a type-safe way.

2. Modules

Modules provide a capability for partitioning a large
system into manageable units. They can be used to
encapsulate abstractions and to provide a degree of
protection. In the design of Mesa, we were particularly
influenced by the work of Parnas [10]. who proposes
information hiding as the appropriate criterion for
modular decomposition. and by the concerns of Morris
[9] regarding protection in programming languages.

Module Structure
Viewed as a piece of source text, a module is similar

to an Algol procedure declaration or a Simula class

definition. It typically declares a collection of variables
that provide a localized database and a set of proce­
dures performing operations upon that database. Mod­
ules are designed to be compiled independently. but
the declarations in one module can be made visible
during the compilation of another by arranging to ref­
erence the first within the second by a mechanism
called inclusion. To decouple the internal details of an
implementation from its abstract behavior, Mesa
provides two kinds of modules: definitions and
programs.

A definitions module defines the interface to an
abstraction. I t typically declares some shared types and
useful constants. and it defines the interface by naming
a set of procedures and specifying their input/output
types. Definitions modules claim no storage and have
no existence at run time. Included modules are usually
definitions modules. but they need not be.

Certain program modules. called implementers.
provide the concrete implementation of an abstraction;
they declare variables and specify bodies of procedures.
There can be a one-to-many relation between defini­
tions modules and concrete implementations. At run
time. one or more instances of a module can be cre­
ated. and a separate frame (activation record) is allo­
cated for each. In this respect .. module instances resem­
ble Simula class objects. Unlike procedure instances.
the lifetimes of module instances are not constrained to
follow any particular discipline. Communication paths
among modules are established dynamically as de­
scribed below and are not constrained by. e.g .. com­
pile-time or run-time ne~ting Ielation:,hip~. Thli~ lif~­
times and access paths are completely decoupled.

The following skeletal Mesa modules suggest the
general form of a definitions module and one of its
implementers:

Abstraction: DEFINITIONS =

BEGIN

it: TYPE = ... ; rt: TYPE =

p: PROCEDURE;
pJ: PROCEDURE [INTEGER]:

pi: PROCEDURE (it] RETURNS (rt];

END

Implementer: PROGRAM IMPLEMENTING Abslraction =

BEGIN
OPEN Abstraction;
x: INTEGER;

p: PUBLIC PROCEDURE = (code for p);

pJ: PUBLIC PROCEDURE [i: INTEGER] = (code for pJ);

pi: PUBLIC PROCEDURE [x: it] RETURNS Lv: rt] =

(code for pi);

END

Longer but more complete and realistic examples can
be found in the discussion of ArrayStore below;
ArrayStoreDefs and ArraJ'Store correspond to Abstrac­
tion and Implementer, respectively.

Mesa allows specification of attributes that can be
used to control intermodular access to identifiers. In
the definition of an abstraction. some types or record
fields are of legitimate concern only to an implementer.
but they involve or are components of other types that
are parts of the advertised interface to the abstraction.
Any identifier with the attribute PRIVATE is visible only
in the module in which it is declared and in any module
claiming to implement that module. Subject to the
ordinary rules of scope. an identifier with the attribute
PUBLIC is visible in any module that includes and opens
the module in which it is declared. The PUBLIC attribute
can be restricted by specifying the additional attribute
READ-ONLY. By default. identifiers are PUBLIC in defini­
tions modules and PRIVATE otherwise.

In the example above. Abstraction contains defini­
tions of shared types and enumerates the elements of a
procedural interface. Implementer uses those type defi­
nitions and provides the bodies of the procedures; the
compiler will check that an actual procedure with the
same name and type is supplied for each public proce­
dure declared in Abstraction.

A module that uses an abstraction is called a client
of that abstraction. Interface definitions are obtained
by including the Abstraction module. Any instance of a
client must be connected to an instance of an appropri­
ate implementer before the actual operations of the
abstraction become available. This connection is called
binding. and there are several ways to do it.

Binding Mechanisms
When a relatively static and purely procedural in­

terface between modules is acceptable. the connection
can be made in a conventional way. Consider the fol­
lowing skeleton:

Client 1: PROGRAM :=

BEGIN
OPEN Abstraction;

px: EXTERNAL PROCEDURE;

p[l;px[I;

END.

A client module can request a system facility called the
binder to locate and assign appropriate values to all
external procedure names. such as px. The binder fol­
lows a well-defined binding path from module instance
to module instance. When the binder encounters an
actual procedure with the same name as. and a type
compatible with. an external procedure. it makes the
linkage. The compiler automatically inserts an EXTER­

NAL procedure declaration for any procedure identi­
fier. such as p, that is mentioned by a client but defined
only in an included definitions module. The binder also

checks that all identifiers from a single definitions
module are bound consistently (that is, to a single
implementer) .

The observant reader will have noticed that this
binding mechanism and the undisciplined lifetimes of
module instances leave Mesa programs vulnerable to
dangling reference problems. We are not happy about
this. but so far we have not observed any serious bugs
attributable to such references.

As an alternate binding mechanism. Mesa supports
the Simula paradigm as suggested by the following
skeleton (which assumes that x is a public variable):

Client2: PROGRAM :=

BEGIN
OPEN Abstraction:
frame: POINTER TO FRAME[Implementerl­

NEW Implementer;

frame t.x - 0;
frame t .p! I;

END.

Here. the client creates an instance of Implementer
directly. Through a pointer to the frame of that in­
stance. the client can access any public variable or
invoke any public procedure. Note that the relevant
declarations are in Implementer; the Abstraction mod­
ule is included only for type definitions. Some of the
binding has been moved to compile time. In return for
a wider, not necessarily procedural interface (and po­
tentially more efficient code). the client has committed
itself to using a particular implementation of the ab­
straction.

Because Mesa has procedure variables. it is possible
for a user to create any binding regime he wishes simply
by writing a program that distributes procedures. Some
users have created their own versions of Simula classes.
They have not used the binding mechanism described
above for a number of reasons. First. the actual imple­
mentation of an abstract object is sometimes unknown
when a program is compiled or instantiated; there
might be several coexisting implementations. or the
actual implementation of a particular object might
change dynamically. Their binding scheme deals with
such situations by representing objects as record struc­
tures with procedure-valued fields. The basic idea was
described in connection with the implementation of
streams in OS6 [11]: some fields of each record contain
the state information necessary to characterize the ob­
ject, while others contain procedure values that imple­
ment the set of operations. If the number of objects is
much larger than the number of implementations, it is
space-efficient to replace the procedure fields in each
object with a link to a separate record containing the
set of values appropriate to a particular implementa­
tion. When this binding mechanism is used. interface
specifications consist primarily of type definitions. as
suggested by the following skeleton:

179

180

ObjectAbslraction: DEFINITIONS =
BEGIN
Handle: TYPE = POINTER TO Object;
Object: TYPE = RECORD i

ops: POINTER TO Operations.
state: POINTER TO ObjectRecord •
.. . J;

Operations: TYPE = RECORD [
pI: PROCEDURE [Handle. INTEGER].
... J;

END.

A client invokes a typical operation by writing han­
dle i .ops i .pl [handle, x], where handle is an object
of type Handle.

Observations
We believe that we could not have built the current

Mesa system if we had been forced to work with large
logically monolithic programs. Assembly language pro­
grammers are well aware of the benefits of modularity.
but many designers of high-level programming lan­
guages pay little attention to the problems of independ­
ent compilation and instantiation. Since these capabili­
ties will be grafted on anyway. they should be antici­
pated in the original design. We have more to say about
interface control in our discussion of types. but it is
hard to overestimate the value of articulating abstrac­
tions. centralizing their definitions. and propagating
them through the inclusion mechanism.

3. The Mesa Type System

Strict vs. Nonstrict Type Cbecking
A widely held view is that the purpose of type

declarations is to allow one to write more succinct
programs. For example. the Algol 60 declarations

real x,y; integer i,j;

allow one to attach two different interpretations to the
symbol .. +" in the expressions x + y and i + j.
Similarly. the declaration

x: RECORD[a: 10 .. 7]. b: [0 .. 255]]

permits one to write x.a and x.b in place of descriptions
of the shifting and masking that might occur. Descrip­
tive declarations also allow utility programs such as
debuggers to display values of variables in a helpful way
when the type is not encoded as part of the value.

This view predominated in an earlier version of
Mesa. Type declarations were used primarily as devices
to improve the expressive power and readability of the
language. Types were ignored by the compiler except
to discover the number of bits involved in an operation.
In contrast. the current version of Mesa checks type
agreement as rigorously as languages such as Pascal or
Algol 68, potentially rendering compile-time com­
plaints in great volume. This means in effect that the
language is more redundant since there are fewer pro­
grams acceptable to the compiler.

What benefit do we hope to gain by stricter check­
ing and the attendant obligations on the programmer?
We expect that imposing additional structure on the
data space of the program and checking it mechanically
will make the modification and maintenance of pro­
grams easier. The type system allows us to write down
certain design decisions. The type checker is a tool that
is used to discover violations of the conventions implied
by those decisions without a great expenditure of
thought.

Type Expressions
Mesa provides a fairly conventional set of expres­

sions for describing types; detailed discussions of the
more important constructors are available elsewhere
[3]. We shall attempt just enough of an introduction to
help in reading the subsequent examples and concen­
trate upon the relations among types.

There is a set of predefined basic types and a set of
type operators which construct new types. The argu­
ments of these operators may be other types. integer
constants. or identifiers with no a priori meanings.
Most of the operators are familiar from languages such
as Pascal or Algol 68. and the foHowing summary
emphasizes only the differences.

Basic Types. The basic types are INTEGER. BOO­

LEAN, CHARACfER. and UNSPECIFIED. the last of which
is a one-word. wild-card type.

Enumerated Types. If aI' a2, ...• an are distinct
identifiers, the form {a l • a2, ... , an} denotes an or­
dered type of which the identifi~r'3 de~0t~ the ~!!c'.\'ed
constant values.

Unique Types. If n is a manifest (compile-time)
constant of type INTEGER. the form UNIQUE (n] denotes
a type distinct from any other type. The value of n
determines the amount of storage allocated for values
of that type. which are otherwise uninterpreted. Its use
is illustrated by the ArrayStore example in Section 4.

Record Types. If T1 • T2 •••.• Tn are types and 12'
. .. ,In are distinct identifiers. the the form RECORD [[1:
T1,/2: T2 •... . /n: Tn] denotes a record type. Thefi are
called field selectors. As usual. the field selectors are
used to access individual components; in addition. lin­
guistic forms called constructors and extractors are
available for synthesizing and decomposing entire rec­
ords. The latter forms allow either keyword notation.
using the field names. or positional notation. Inter­
module access to individual fields can be controlled by
specifying the attributes PUBLIC. PRIVATE. or READ­

ONLY; if no such attributes appear. they are inherited
from the enclosing declaration. Some examples:

Thing: TYPE = RECORD In: INTEGER.p: BOOLEANJ~
v: Thing; i: INTEGER; b: BOOLEAN;

IF v,p THEN l'.n +-- v.n + 1; --field selection
v +-- [100, TRUE]; --a positional constructor
v +-- [p:b. n :i]; --a keyword constructor
[n:i. p:b] +-- v; --the inverse extractor.

Pointer Types. If T is a type. the form POINTER TO T
denotes a pointer type. If x is a variable of that type,
then x i dereferences the pointer and designates the
object pointed to, as in Pascal. If v is of type T, then
@v is its address with type POINTER TO T. The form
POINTER TO READ-ONLY T denotes a similar type; how­
ever. values of this type cannot be used to change the
indirectly referenced object. Such pointer types were
introduced so that objects could be passed by reference
across module interfaces with assurance that their val­
ues would not be modified.

Array Types. If Tj and Tc are types, the form ARRAY

Tj OF Tc denotes an array type. Tj must be a finite
ordered type. An array a maps an index i from the
index type Tj into a value a [i] of the component type
Tc. If a is a variable, the mapping can be changed by
assignment to a [i].

Array Descriptor Types. If Tj and Tc are types, the
form DESCRIPTOR FOR ARRAY Tj OF Tc denotes an array
descriptor type. Tj must be an ordered type. An array
descriptor value provides indirect access to an array
and contains enuugh auxiliary information to deter­
mine the allowable indices as a subrange of Tj •

Set Types. If T is a type, the form SET OF T denotes a
type. values of which are the subsets of the set of values
of T. T must evaluate to an enumerated type.

Transfer Types. If T I , ... , T j , Tj , ••• , Tn are types
and /1' ... , h . .fJ, ... ,in are distinct identifiers. then the
form PROCEDURE [fl: T j. • ••• f: T j] RETURNS [jj: Tj ,

.... fn: Tn] denotes a procedure type. Each nonlocal
control transfer passes an argument record; the field
lists enclosed by the paired brackets, if not empty,
implicitly declare the types of the records accepted and
returned by the procedure [7]. If x has some transfer
type, a control transfer is invoked by the evaluation of
x[e j , •••• ej]. where the bracketed expressions are used
to construct the input record. and the value is the
record constructed in preparation for the transfer that
returns control.

The symbol PROCEDURE can be replaced by several
alternatives that specify different transfer disciplines
with respect to name binding. storage allocation. etc.,
but the argument transmission mechanism is uniform.
Transfer types are full-fledged types; it is possible to
declare procedure variables and otherwise to manipu­
late procedure values, which are represented by proce­
dure descriptors. Indeed, some of the intermodule
binding mechanisms described previously depend cru­
cially upon the assignment of values to procedure
variables.

Sub range Types. If T is INTEGER or an enumerated
type, and m and n are manifest constants of that type,
the form T [m .. n] denotes a finite, ordered subrange
type for which any legal value x satisfiesm :$ X:$ n. 1fT
is INTEGER, the abbreviated form [m .. n] is accepted.
These types are especially useful as the index types of
arrays. Other notational forms, e.g. [m .. n), allow inter-

vals to be open or closed at either endpoint.
Finally, Mesa has adapted Pascal's variant record

concept to provide values whose complete type can
only be known after a run-time discrimination. Because
they are of more than passing interest, variant records
are discussed separately in Section 5.

Declarations and Definitions
The form

v: Thing-e

declares a variable v of type Thing and initializes it to
the value of e; the form
v: Thing = e

is similar except that assignments cannot be made to v
subsequently. When e itself is a manifest constant, this
form makes v such a constant also.

This syntax is used for the introduction of new type
names. using the special type TYPE. Thus

Thing: TYPE = TypeExpression

defines the type Thing. This approach came from ECL

[13], in which a type is a value that can be computed by
a running program and then used to declare variables.
In Mesa, however, TypeExpression must be constant.

Recursive type declarations are essential for de­
scribing most list structures and are allowed more gen­
erally whenever they make sense. To accommodate a
mutually recursive list structure, forward references to
type identifiers are allowed and do not yield "uninitial­
ized" values. (This is to be contrasted with forward
references to ordinary variables.) In effect, all type
expressions within a scope are evaluated simultane­
ously. Meaningful recursion in a type declaration usu­
ally involves the type constructor POINTER; in corre­
sponding values, the recursion involves a level of indi­
rection and can be terminated by the empty pointer
value NIL. Recursion that is patently meaningless is
rejected by the compiler; for example,

r: TYPE = RECORD [left. right: r] --not permitted
a: TYPE = ARRAY [0 .. 10) OF s;

s: TYPE = RECORD [i: INTEGER. m: a] --not permitted.

Similar pathological types have been noted and pro­
hibited in Algol 68 [6].

Equivalence of Type Expressions
One might expect that two identical type expres­

sions appearing in different places in the program text
would always stand for the same type. In Algol 68 they
do. In Mesa (and certain implementations of Pascal)
they do not. Specifically, the type operators RECORD,

UNIQUE, and { ... } generate new types whenever they
appear in the text.

The original reasons for this choice are not very
important, but we have not regretted the following
consequences for records:

(a) All modules wishing to communicate using a
shared record type must obtain the definition of that

181

182

type from the same source. In practice. this means that
all definitions of an abstraction tend to come from a
single module; there is less temptation to declare scat­
tered, partial interface definitions.

(b) Tests for record type equivalence are cheap. In
our experience. most record types contain references to
other record types, and this linking continues to a
considerable depth. A recursive definition of equiva­
lence would, in the worst case. require examining many
modules unknown and perhaps unavailable to the cas­
ual user of a record type or. alternatively. copying all
type definitions supporting a particular type into the
symbol table of any module mentioning that type.

(c) The rule for record equivalence provides a
mechanism for sealing values that are distributed to
clients as passkeys for later transactions with an imple­
menter. Suppose that the following declaration occurs
in a definitions module:

Handle: PUBLIC TYPE = RECORD [value: PRIVATE Thing].

The PRIVATE attribute of value is overridden in any
implementer of Handle. A client of that implementer
can declare variables of type Handle and can store or
duplicate values of that type. but there is no way for the
client to construct a counterfeit Handle without violat-
ing the type system. Such sealed types appear to pro­
vide a basis for a compile-time capability scheme [2].

(d) Finally. this choice has not caused discomfort
because programmers are naturally inclined to intro­
duce names for record types anyway.

Th.: ~a~e fur di5tin(:tne~~ of enumeraleo types IS

much weaker; we solved the problem of the exact
rela tionships among such types of {a, b, c}, {c, b, a},
{a, c}, {aa, b, cc}, etc. by specifying tha t all these types
are distinct. In this case, we are less happy that identi­
cal sequences of symbols construct different enumer­
ated types.

Why did we not choose a similar policy for other
types? It would mean that a new type identifier would
have to be introduced for virtually every type expres­
sion, and we found it to be too tedious. In the case of
procedures we went even further in liberalizing the
notion of equivalence. Even though the formal argu­
ment and result lists are considered to be record decla­
rations, we not only permit recursive matching but also
ignore the field selectors in doing the match. We were
unwilling to abandon the idea that procedures are map­
pings in which the identifiers of bound variables are
irrelevant. We also had a pragmatic motivation. In
contrast to records, where the type definitions cross
interface boundaries, procedural communication
among modules is based upon procedure values, not
procedure types. Declaring named types for all inter­
face procedures seemed tiresome. Fortunately all argu­
ment records are constructed in a standard way, so this
view causes no implementation problems.

To summarize, we state an informal algorithm for
testing for type equivalence. Given one or more pro-

gram texts and two particular type expressions in them:

1. Tag each occurrence of RECORD. UNIQUE. and { ... }
with a distinct number.

2. Erase all the variable names in the formal parame­
ter and the result lists of procedures.

3. Compare the two expressions. replacing type iden­
tifiers with their defining expressions whenever
they are encountered. If a difference (possibly in a
tag attached in step 1) is ever encountered. the two
type expressions are not equivalent. Otherwise
they are equivalent.

The final step appears to be a semidecision procedure
since the existence of recursive types makes it impossi­
ble to eliminate all the identifiers. In fact. it is always
possible to tell when one has explored enough (cf. [5].
Section 2.3.5. Exercise 11).

Coercions
To increase the flexibility of the type system Mesa

permits a variety of implicit type conversions beyond
those implied by type equivalence. They fall into two
categories: free coercions and computed coercions.

Free Coercions. Free coercions involve no computa­
tion whatsoever. For two types T and S, we write T C S
if any value of type T can be stored into a variable of
type S without checking, change of representation, or
other computation. (By "store" we mean to encompass
assignment, parameter passing, resu1t passing, and aJ]
other value transmission.) The following recursive rules
~h0W how to c()!T!pu~e t!1e re!3tioD ~, a~~ur.niijg
equivalence has already been accounted for:

1. T k T.

In the following assume that T k S.

~ 1 ..
tHdt

2. T[i .. j] k S if i is the minimum value of type S.

The restriction is necessary because we chose to repre­
sent values of a subrange type relative to its minimum
value. Coercions in other cases require computation.
Similarly,

3. T[i .. j] k S[i .. k] iff j :s k.
4. var T k S if var is a variant of T (cf. Section 5).
5. RECORD[f: T] k S for any field name f unless f has

the PRIVATE attribute.
6. POINTER TO T k POINTER TO READ-ONLY S.

In other words, one can always treat a pointer as a
read-only pointer, but not vice versa.

7. POINTER TO READ-ONLY T k POINTER TO READ­

ONLY S.

The relation POINTER TO T k POINTER TO S is not true
because it would allow

ps: POINTER TO S;
pt: POINTER TO T = @t;
ps +- pI;
ps i +- s;

which is a sneaky way of accomplishing "t +- s," which
is not allowed unless S t::; T.

8. ARRAY I OF T t::; ARRAY I OF S.

Note that the index sets must be the same.

9. PROCEDURE [S'] RETL'Rr-oS [T] ~ PROCEDURE [T']
RETURNS [S] if T' t::; S' as well.

Here the relation between the input types is the reverse
of what one might expect.

511brange Coercions. Coercions between subranges
require further comment. As others have noted [-+],
associating range restrictions with types instead of spe­
cific variables leads to certain conceptual problems;
however, we wanted to be able to fold range restric­
tions into more complex constructed types. We were
somewhat surprised by the subtlety of this problem,
and our initial solutions allowed several unintended
breaches of the type system.

Values of an ordered type and all its subranges are
interassignable even if they do not satisfy cases (2) or
(3) above. This is an example of a computed coercion.
Code is generated to check that the value is in the
proper subrange and to convert its representation if
necessary. It is important to realize that computed
coercions cannot be extended recursively as was done
above. Consider the declarations

x: [0 .. 100] ~ 15;
y: [10 .. 20];
px: POINTER TO READ-ONLY [0 .. 100] ~ @x;

py: POI~TER TO READ-ONLY [10 .. 20];

The assignment y +- x is permitted because x is 15; 5 is
stored in y since its value is represented relative to 10.
However, the assignment py ~ px, which rule 7 might
suggest, is not permitted because the value of x can
change and there is no reasonable way to generate
checking code. Even if the value of x cannot change, we
could not perform any change in representation be­
cause the value 15 is shared. Similar problems arise
when one considers rules 6, 8, and 9.

Other Computed Coercions. Research in program­
ming language design has continued in parallel with our
implementation work, and some proposals for dealing
with uniform references [3] and generalizations of
classes [8] suggested adding the following computed
coercions to the language:

Dere ferencil~g: POINTER TO T ~ T
Deproceduring: PROCEDURE RETURNS T ~ T
Referencing: T ~ POINTER TO T.

Initially we had intended to support contextually im­
plied application of these coercions much as does Algol
68. Reactions of Mesa' s early users to this proposal
ranged from lukewarm to strongly negative. In addi­
tion, the data structures and accounting algorithms
necessary to deduce the required coercions and detect
pathological types substantially complicated the com-

piler. We therefore decided to reconsider our decision
even after the design and some of the implementation
had been done. The current language allows subrange
coercion as described above. There is no uniform sup­
port for other computed coercions, but automatic dere­
ferencing is invoked by the operators for field extrac­
tion and array indexing. Thus such forms as p i .f and
a i i [i], which are common when indirection is used
extensively, may be written as p.f and a [i].

There are hints of a significant problem for lan­
guage designers here. Competent and experienced pro­
grammers seem to believe that coercion rules make
their programs less understandable and thus less relia­
ble and efficient. On the other hand, techniques being
developed with the goal of decreasing the cost of creat­
ing and changing programs seem to build heavily upon
coercion. Our experience suggests that such work
should proceed with caution.

Why is coercion distrusted? Our discussions with
programmers suggest that the reasons include the fol­
lowing:

- Mesa programmers are familiar with the underlying
hardware and want to be aware of the exact conse­
quences of what they write.

- Many of them have been burned by forgotten indi­
rect bits and the like in previous programming and
are suspicious of any unexpected potential for side
effects.

- To some extent, coercion negates the advantages of
type checking. One view of coercion is that it cor­
rects common type errors, and some of the detec­
tion capability is sacrificed to obtain the correction.

We conjecture that the first two objections will dimin­
ish as programmers learn to think in terms of higher­
level abstractions and to use the type checking to
advantage.

The third objection appears to have some merit.
We know of no system of coercions in which strict type
checking can be trusted to flag all coercion errors, and
such errors are likely to be especially subtle and persist­
ent. The difficulties seem to arise from the interactions
of coercion with generic operators. In Algol 68, there
are rules about '"loosely related" types that are in­
tended to avoid this problem, but the identity operators
still suffer. With the coercion rules that had been pro­
posed for Mesa, the following trap occurs. Given the
declaration p, q: POINTER TO INTEGER, the Mesa
expressions p i = q i and 2*p = 2*q would compare
integers and give identical results; on the other hand,
the expression p = q would compare pointers and could
give a quite different answer. In the presence of such
traps, we believe that most programmers would resolve
to supply the" i " always. If this is their philosophy,
coercions can only hide errors. Even if such potentially
ambiguous expressions as p = q were disallowed, this
example suggests that using coercion to achieve repre­
sentational independence can easily destroy referential
transparency instead.

183

184

4. Experiences with Strict Type Checking

It is hard to give objective evidence that increasing
compile-time checking has materially helped the pro­
gramming process. We believe that it will take more
effort to get one's program to compile and that some of
the effort eliminates errors that would have shown up
during testing or later, but the magnitude of these
effects is hard to measure. All we can present at the
moment are testimonials and anecdotes.

A Testimonial
Programmers whose previous experience was with

unchecked languages report that the usual fear and
trepidation that accompanied making modifications to
programs has substantially diminished. Under previous
regimes they would never change the number or types
of arguments that a procedure took for fear that they
would forget to fix all of the calls on that procedure.
Now they know that all references will be checked
before they try to run the program.

An Anecdote
The following kind of record is used extensively in

the compiler:

RelativePtr: TYPE = [0 .. 377778];

TaggedPtr: TYPE = RECORD[tag: {IO,l1,12,13},

ptr: RelativePtr].

This record consists of a 2-bit tag and a 14-bit pointer.
As an accident of the compiler's choice of representa­
tion, the expressIOns x and J aggedPtr[to,x J generated
the same internal value. The nonstrict type checker
considered these types equivalent, and unwittingly we
used TaggedPtrs in many places actually requiring
RelativePtrs. As it happened, the tag in these contexts
was always to.

, The compiler was working well, but one day we
made the unfortunate decision to redefine TaggedPtr as

RECORD (ptr: RelativePtr, tag: {to,tlh,13}].

This caused a complete breakdown, and we hastily
unmade that decision because we were unsure about
what parts of the code were unintentionally depending
upon the old representation. Later. when we submitted
a transliteration of the compiler to the strict type
checker, we found all the places where this error had
been committed. At present, making such a change is
routine. In general, we believe that the benefits of
static checking are significant and cost-effective once
the programmer learns how to use the type system
effectively.

A Shortcoming
The type system is very good at detecting the differ­

ence in usage between T and POINTER TO T; however.
programmers often use array indices as pointers, espe­
cially when they want to perform arithmetic on them.
The difference between an integer used as a pointer

and an integer used otherwise is invisible to the type
checker. For example, the declaration

map: ARRAY [i .. j] OF INTEGER[m .. n];

defines a variable map with the property that compile­
time type checking cannot distinguish between legiti­
mate uses of k and map [k]. Furthermore. if m :5 i and j
:5 n , even a run-time bounds check could never detect a
use of k when map [k] was intended. We have observed
several troublesome bugs of this nature and would like
to change the language so that indices of different
arrays can be made into distinct types.

Violating the Type System
One of the questions often asked about languages

with compile-time type checking is whether it is possi­
ble to write real programs without violating the type
system. It goes without saying that one can bring vir­
tually any program within the confines of a type system
by methods analogous to the silly methods for eliminat­
ing gotos; e.g. simulate things with integers. However.
our experience has been that it is not always desirable
to remain within the system. given the realities of
programming and the restrictiveness of the current lan­
guage. There are three reasons for which we found it
desirable to evade the current type system.

Sometimes the violation is logically necessary. Fairly
often one chooses to implement part of a language's
run-time system in the language itself. There are cer­
tain things of this nature that cannot be done in a type­
safe way in Mesa. or any other strictly type-checked
lauguagt: wt: AHU~. E:H CAdlhplt:. ih,t,; pail vi tht: ~) :)LdlJ

that takes the compiler's output and creates values of
type PROCEDURE must exercise a rather profound
loophole in turning data into program. Another exam­
pIe, discussed in detail below, is a storage allocator.
Most languages with compile-time checking submerge
these activities into the implementation and thereby
avoid the need for type breaches.

Sometimes efficiency is more important than type
safety. In many cases the way to avoid a type breach is
to redesign a data structure in a way that takes more
space. usually by introducing extra levels of pointers.
The section on variant records gives an example.

Sometimes a breach is advisable to increase type
checking eLsewhere. Occasionally a breach could be
avoided by declaring two distinct types to be the same.
but merging them would reduce a great deal of check­
ing elsewhere. The ArrayStore example below illus­
trates this point.

Given these considerations. we chose to allow occa­
sional breaches of the type system. making them as
explicit as possible. The advantages of doing this are
twofold. First. making breaches explicit makes them
less dangerous since they are clearer to the reader.
Second, their occurrences provide valuable hints to a
language designer about where the type system needs
improvement.

One of the simplest ways to breach the Mesa type

system is to declare something to be UNSPECIFIED. The
type checking algorithm regards this as a one-word
don't-care type that matches any other one-word type.
This is similar to PL/I UNSPEC. We have come to the
conclusion that using UNSPECIFIED is too drastic in most
cases. On~ usually wants to turn off type checking in
only a few places involving a particular variable. not
everywhere. In practice there is a tendency to use
UNSPECIFIED in the worst possible way: at the inter­
faces of modules. The effect is to turn off type checking
in other people's modules without their knowing it!

As an alternative. Mesa provides a general type
transfer function, RECAST, that (without performing
any computation) converts between any two types of
equal size. It can often be used instead of UNSPECIFIED.

In cases where we had declared a particular variable
UNSPECIFIED, we now prefer to give, it some specific
type and to use RECAST whenever it is being treated in a
way that violates the assumptions about that type.

The existence of RECAST makes many decisions
much less painful. Consider the type CHARACTER. On
the one hand we would like it to be disjoint from
INTEGER so that simple mistakes would be caught by
the type checker. On the other hand. one occasionally
needs to do arithmetic on characters. We chose to
make CHARACTER a distinct type and use RECAST in
those places where character arithmetic is needed. Why
reduce the quality of type checking everywhere just to
accommodate a rare case?

Pointer arithmetic is a popular pastime for system
programmers. Rather than outlawing it. or even requir­
ing a RECAST. Mesa permits it in a restricted form. One
can add or subtract an integer from a pointer to pro­
duce a pointer of the same type. One can subtract two
pointers of the same type to produce an integer. The
need for more exotic arithmetic has not been observed.

Here is a typical example: It is common to use a
large contiguous area of memory to hold a data struc­
ture consisting of many records, e.g. a parse tree. To
conserve space one would like to make all pointers
relative to the start of the area, thus reducing the size of
pointers that are internal to the structure. Further­
more, one might like to move the entire area, possibly
via secondary storage. These needs would be met by an
unimplemented feature called the tied pointer. The idea
is that a certain type of pointer would be made relative
to a designated base value and this value would be
added just before dereferencing the pointer. In other
words, if ptr were declared to be tied to base then ptr i
actually would mean (base +ptr) i . Since tied pointers
have not yet been implemented, this notation is in fact
used extensively within the Mesa compiler. Subsequent
versions of Mesa will include tied pointers, and this
temporary loophole will be reconsidered.

The Skeleton Type System
Once we provided the opportunity for evading the

official type system. we had to ask ourselves just why

we thought certain breaches were safe while others
were not. Ultimately, we came to the conclusion that
the only really dangerous breaches of the type systems
were those that require detailed knowledge of the run­
time environment. First and foremost, fabricating a
procedure value requires a detailed understanding of
how various structures in memory are arranged. Sec­
ond. pointer types also depend on various memory
structures' being set up properly and should not be
passed through loopholes without some care. In con­
trast, the distinction between the two types RECORD

[v,b: INTEGER] and RECORD[c,d: INTEGER] is not vital to
the run-time system's integrity. To be sure. the user
might wish to keep them distinct, but using a loophole
to store one into the other would go entirely unnoticed
by the system.

The present scheme that is used to judge the appro­
priateness of RECAST transformations merely checks to
ensure that the source and destination types occupy the
same number of bits. Since most of the code invoking
RECAST has been written by Mesa implementers. this
simplified check has proved to be sufficient. However,
as the community of users has grown, we have observed
a justifiable anxiety over the use of RECAST. Users fear
that unchecked use of this escape will cause a violation
of some system convention unknown to them.

We are in the process of investigating a more com­
plete and formal skeletal type system that will reduce
the hazards of the present RECAST mechanism. Its aim
is to ensure that although a RECAST may do great
violence to user-defined type conventions, the system's
type integrity will not be violated.

Example - A Compacting Storage Allocator
A module that provides many arrays of various sizes

by parceling out pieces of one large array is an interest­
ing benchmark for a systems programming language for
a number of reasons:

(a) It taxes the type system severely. We must deal
with an array containing variable length heterogeneous
objects. something one cannot declare in Mesa.

(b) The clients of the allocator wish to use it for
arrays of differing types. This is a familiar polymor­
phism problem.

(c) As a programming exercise, the module can
involve tricky pointer manipulations. We would like
help to prevent programming errors such as the ubiqui­
tous address/contents confusion.

(d) A nasty kind of bug associated with the use of
such packages is the so-called dangling reference prob­
lem: variables or data structures might be used after
their space has been relinquished.

(e) Another usage bug, peculiar to compacting aIlo­
cators, is that a client might retain a pointer to storage
that the compacter might move.

The first two problems make it impossible to stay
entirely within the type system. One's first impulse is to

185

186

Fig. 1. Definitions module.

An-aySlonDefs: DEFINITIONS =
BEGIN
ArrayPtr: TYPE = POINTER TO PR;
PR: TYPE = POINTER TO R;
R: TYPE =

RECORD [p: Prefix,
a: ARRAY [0 .. 0] OF Thing];

Prefix: TYPE = RECORD [backp: PRIVATE A rray Ptr ,
length : READ-ONLY INTEGER];

Thing: TYPE = UNIQUE[16];
AlIocArray: PROCEDURE [length: INTEGER]

RETURNS [new: ArrayPtr];
FreeArray: PROCEDURE [dying: ArrayPtr];
END

Fig. 2. Implementation of a compacting storage allocator.

DIRECTORY ArrayStoreDefs: FROM "ArrayStoreDefs";
DEFINITIONS FROM ArrayStoreDefs.

An-aySton: PROGRAM IMPLEMENTING A"ayStoreDefs =
BEGIN
Storage: ARRAY (O . .storageSize) OF UNSPECIFIED;
StorageSize: INTEGER = 2000;
Table: ARRAY Tablelndex OF PR;
Table Index: TYPE = 10 .. TableSize);
TableSize: INTEGER = 500;
beginStorage: PR = @StoragerO);

--the address of Storage [0]
endStorage: PR = @Storage[StorageSize];
nextR: PR - beginStorage; --next space to put an R
begin Table: A"ayPtr = @Table[O);
endTable: A"ayPtr = @Table(TableSize);
ovh: INTEGER = SIZEIPrejix); --overhead

411~""fJy' P'_TBUC PROCEDl'RE ['?: !NTEGER!
RETURNS (new: A"ayPtr] =

BEGIN i:Tablelndex;
IF n < ° OR n > 77777B - ovh THEN ERROR;
IF n + ovh > endStorage - nextR THEN

BEGIN
Compact();
IF n + ovh > endStorage - nextR THEN ERROR;
END;

--Find a table entry
FOR; IN Tablelndex DO

IF Table Ii] = NIL THEN GOTO found
REPEAT

found => new - @Tableli];
FINISHED => ERROR

ENDLOOP;
new t - nextR;
-initialize the array storage
new t t .p.backp - new;
new t t .p.length - n;
nextR - nextR + (n + ovh);
END;

COlIIJIdct: PROCEDURE = (omitted)

FrwArrtly: PUBLIC PROCEDURE (dead: An-ayPtr] =
BEGIN IF dead t = NIL THEN ERROR; -:.-.array already free
dead t t .p.backp - NIL;
deadt - NIL;
END;

--laitializaooa
i: Tablelndex;
FOR i IN Tablelndex DO Table (i) - NIL ENDLOOP;
END.

declare everything unspecified and proceed to program
as in days of yore. The remaining problems are real
ones, however, and we are reluctant to turn off the
entire type system just when we need it most. The
following is a compromise solution.

To deal with problem (a). we have two different
ways of designating the array to be parceled out. which
we call Storage. From a client's point of view. the
storage is accessible through the definitions shown in
the module ArraySlOreDefs (cf. Figure 1).

These definitions suggest that the client can get
ArrayPtrs (i.e. pointers to pointers to array records) by
calling AllocArray and can relinquish them by calling
FreeArray. The PRIVATE attribute on backp means that
the client cannot access that field at all. The READ-ONLY

attribute on length means that the client cannot change
it. Of course these restrictions do not apply to the
implementing module. The type Thing occupies 16 bits
of storage (one word) and matches no other type.
Intuitively it is our way of simulating a type variable.
The implementing module ArrayStore is shown in Fig­
ure 20 It declares the array Storage to create the raw
material for allocation. We chose to declare its element
type UNSPECIFIED. This means that every transaction
involving Storage is an implicit invocation of a loop­
hole. Specifically the initializations of beginStorage and
endStorage store pointers to UNSPECIFIED into variables
declared as pointers to R.

The general representation scheme is as follows:
The storage area (begin Storage .. nextR) consists of zero
or more Rs. each with the form (backp, length, eo .. 0 o.
e(lCI'.Qtl: 1) whPTP IlPngfh v~Tipc;: frnm IOP'1"pnrp tn IOP­

quence. The array represented by the record is (eo ,
t1't'1U1th-l)' If backp is not NIL then backp is an address
in Table and backp t is the address of backp itself. If
Table [I] is not NIL. it is the address of one of these
records (cf. Figure 3) 0

After the initialization. Storage is not mentioned
again. All the subsequent type breaches in ArrayStore
are of the pointer arithmetic variety. The expression
endStorage - nextR in AliocArray subtracts two PR's
to produce an integer. The type checker is not entirely
asleep here: If we slipped up and wrote

IF n + ovh > endStorage - n

there would be a complaint because the left-hand side
of the comparison is an integer and the right is a PRo
The assignment

nextR - nextR + (n + ovh)

at the end of AllocArray also uses the pointer arithme­
tic breach. The rule PR + INTEGER = PR makes sense
here because n + ovh is just the right amount to add to
nextR to produce the next place where an R can go.

Despite all these breaches, we are still getting a
good deal of checking. The checker would point out (or
correct) any address/contents confusions we had, mani­
fested by the omission of t 's or their unnecessary

appearance. We can be sure that integers and PRs are
not being mixed up. In the (unlikely) event that we
wrote something like

newj.p.length -newj.a[k]

we would be warned because the value on the left is an
integer and the value on the right is a Thing. Notice
that none of this checking would occur if Thing were
replaced by lJNSPECIFIED. Thus. even though the type
system is not airtight. we are better off than we would
be in a completely unchecked language (unless. per­
haps. we get a false sense of security).

Now let us consider how this module is to be used
by a client who wants to manipulate two different kinds
of arrays: arrays of integers and arrays of strings. At
first it looks as if the code is going to have a very high
density of RECAST·S. For example. to create an array
and store an integer in it the client will have to say

fA: Arra.vPlr = AllocArray[lOOJ;
IA i j .a[2]- RECAST[6]

because the type of fA i i .a[2] is Thing, which does
not match anything. Writing a loophole every time is
intolerable. so we are tempted to replace Thing by
UNSPECIFIED. thereby losing a certain amount of type
checking elsewhere.

There are much nicer ways out of this problem.
Rather than passing every array element through a
loophole. one can pass the procedures AliocArray and
FreeArray through loopholes (once. during initializa­
tion). The module ArrayClient (d. Figure 4) shows
how this is done. Not only does this save our having to
make Thing UNSPECIFIED, it allows us to use the type
checker to ensure that integer arrays contain only inte­
gers and that string arrays contain only strings. More
precisely. the type checker guarantees that every store
into IA stores an integer. We must depend upon the
correctness of the code in ArrayStore. particularly the
compactor. to make sure that data structures stay well
formed.

This scheme does not have any provisions for cop­
ing with problem (d). dangling reference errors. How­
ever, somewhat surprisingly, problem (e) - saving a
raw pointer - cannot happen as long as the client does
not commit any further breaches of the type system.
The trick is in the way we declared fntArray - all in one
mouthful. That makes it impossible to declare a varia­
ble to hold a raw pointer. This is because (as mentioned
before) every occurrence of the type constructor RE­

CORD generates a new type, distinct from all other
types. Therefore. even if we should declare

raw Pointer: POINTER TO RECORD [
p: Prefix.
a: ARRA Y[O .. O] OF INTEGER];

we could not perform the assignment rawpointer ~
fA i because fA i has a different type, even though it
looks the same. If one cannot declare the type of fA i ,
it is rather difficult to hang onto it for very long. In fact.

the compiler has been carefully designed to ensure that
no type-checked program can hold such a pointer
across a procedure call.

Passing procedure values through loopholes is a
rather frightening thing to do. What if. by some mis­
chance. AliocArray doesn't have the number of param­
eters ascribed to it by the client? Since we have waved
off the type checker to do the assignment of AliocArray
to Alloc/ntArray and AllocStrArray. no compile-time
type violation would be detected and some hard-to­
diagnose disaster would occur at run time. To compen­
sate for this, we introduce the curious procedure Ge­
danken. whose only purpose is to fail to compile if the
number or size of AliocArray 's parameters change. The
skeleton type system, discussed earlier in this section.
would obviate the need for this foolishness.

We would like to emphasize that. although our
examples focus on controlled breaches of the type sys­
tem. many real Mesa programs do not violate the type
system at all. We also expect the density of breaches to
decrease as the descriptive powers of the type system
increase.

5. Variant Records

Mesa. like PascaL has variant records. The descrip­
tive aspects of the two languages' notion of variant
records are very similar. Mesa. however, also requires
strict type checking for accessing the components of
variant records. To illustrate the Mesa variant record
facility consider the following example of the declara­
tion for an I/O stream:

StreamHandle: TYPE = POINTER TO Stream;
StreamType: TYPE = {disk. display, keyboard};
Stream: TYPE = RECORD [

Get: PROCEDURE[StreamHandle]RETURNS[ItemJ.
Put: PROCEDURE[StreamHandle, Item].
body: SELECT type; Stream Type FROM

disk ~ [
file: File Pointer,
position: Position,
Set Position: PROCEDURE [

POINTER TO disk Stream,
Position],

buffer: SELECT size:· FROM
shon ~ [b: ShonArray J,
long ~ [b: LongArray] ,
ENDCASE J.

display ~ [
first: Display Control Block,
last: Display Control Block ,
position: Screen Position,
nLines: [0 .. 100]].

keyboard ~ NULL,
ENDCASE];

The record type has three main variants; disk, dis­
play, and keyboard. Furthermore, the disk variant has
two variants of its own: short and long. Note that the
field names used in variant subparts need not be
unique. The asterisk used in declaring the subvariant of

187

188

Fig. 3. ArrayStore's data structure.

T
n

1

disk is a shorthand mechanism for generating an enu­
merated type for tagging variant subparts.

The declaration of a variant record species a type.
as usual; it is the type of the whole record. The declara­
tion itself defines some other types: one for each var­
iant in the record. In the above example. the total
number of type variations is six. and they are used in
the following declarations:

r: Stream;
rDisk: disk Stream:
rDisplay: display Stream;
rKeyb: keyboard Stream:
rShorr: short disk Stream:
rLong: long disk Stream:

The last five types are called bound variant types. The
rightmost name must be the type identifier for a variant
record. The other names are adjectives modifying the
type identified to their right. Thus disk modifies the
type Stream and identifies a new type. Further. short
modifies the type disk Stream and identifies still an­
other type. Names must occur in order and may not be
skipped. (For instance. short Stream would be incorrect
since short does not identify a Stream variant.)

When a record is a bound variant. the components
of its variant part may be accessed without a prelimi­
nary test. For example. the following assignments are
legal:

rDisplay . last -- rDisplay ,first:
rDisk .position -- rShort . position ;

If a record is not a bound variant (e.g. r in the previous
section), the program needs a way to decide which
variant it is before accessing variant components. More
importantly, the testing of the variant must be done in a
formal way so that the type checker can verify that the
programmer is not making unwarranted assumptions
about which variant is in hand. For this purpose, Mesa
uses a discrimination statement which resembles the­
declaration of the variant part. However. the anns in a
discriminating SELECT contain statements; and. within a
given arm, the discriminated record value is viewed as a

bound variant. Therefore, within that arm, its variant
components may be accessed using normal qualifica­
tion. The following example discriminates on r:

WITH stream Rec: r SELECT FROM
display ~

BEGIN streamRec .first -- streamRec .Iast:
stream Rec . position -- 73; stream Rec . n Lines -- 4:
END;

disk ~
WITH disk Rec: stream Rec SELECT FROM

shon ~ diskRec.b[O] -- 10;
long ~ diskRec.b[O] -- 100;
ENDCASE;

ENDCASE ~ streamrec .put -- streamrec .newput;

The expression in the WITH clause must represent
either a variant record (e.g. r) or a pointer to a variant
record. The identifier preceding the colon in the WITH

clause is a synonym for the record. Within each selec­
tion. the type of the identifier is the selected bound
variant type. and fields specific to the particular variant
can be mentioned.

In addition to the descriptive advantages of bound
variant types, the Mesa compiler also exploits the more
precise declaration of a particular variant to allocate
the minimal amount of storage for variables declared to
be of a bound variant type. For example. the storage
for r above must be sufficient to contain anyone of the
five possible variants. The storage for r Keyb, on the
other hand, need only be sufficient for storing a key­
board Stream.

The i'tIuLlble Variant Record Problem
The names streamRec and diskRec in the example

above are really synonyms in the sense that they name
the same storage as r; no copying is done by the dis­
crimination operation. This decision opens a loophole
in the type system. Given the declaration

Splodge: TYPE = RECORD [
refcounr: INTEGER:
vp: SELECT t: • FROM

blue ~
[x: ARRAY[O .. 1000) OF CHARACTER].

red ~
[item: INTEGER. left • right: POINTER TO Sp10 dge],

green ~
[item: INTEGER. next: POINTER TO green Sp/odge] ,

ENDCASE]:

one can write the code

r: Splodge;
P: PROCEDURE = BEGIN t -- Splodge[O, green [10, NIL]] END:

WITH s: t SELECT FROM
red ~ BEGIN ... P[] s.left -- s.right END:

The procedure P overwrites t. and therefore s. with a
green Splodge. The subsequent references to s . left and
s . right are invalid and will cause great mischief.

Closing this breach is simple enough: we could have
simply followed Algol 68 and combined the discrimi­
nation with a copying operation that places the entire

Fig. 4. Client of a compacting allocator.

DIRECTORY ArrayStoreDefs: FROM "A"ayStoreDefs";
DEFINITIONS FROM Arra)'StoreDefs;

A"tlyClltnl: PROGRAM =
BEGIN
--Integer array primiti't'es
lmArra)': TYPE = POINTER TO POINTER TO

RECORD[p: Prefix, a: ARRAY [0 .. 0] OF INTEGER);
AllocbuATTay: PROCEDURE [INTEGER) RETIJRNS [lnlAlTay)

= RECAST[AllocArray];
FreelmArra}'; PROCEDURE [lmArray]

= RECAST [FreeArray];

--String array primiti~es
StrArray: TYPE = POINTER TO POINTER TO

RECORD[p: Prefix. a: ARRAY [0 .. 0) OF STRING];
AllocSrrATTay: PROCEDURE [INTEGER) RETUR.'iS [SrrATTay]

= RECAST (AllocArray]:
FreeStrArray: PROCEDURE (StrArray]

= RECAST [FreeArray];

Gedanken: PROCEDURE =
--This procedure's only role in life is to fail to
compile if ArrayStore does not have the right sort of
procedures.
BEGIN
uAllocArra}' :

PROCEDURE (INTEGER] RETURNS [UNSPECIFIED]
= AllocArra.,,;

uFreeArray: PROCEDURE [UNSPECIFIED] = FreeArray;
END:

fA: fnrArra.v = A llocInrA rray [IOOj;
SA: StrArra.v = A llocStrA rray [10];
i: INTEGER;

FORi IN [O . .IA i i .p.length) DOIA i i .a[i] -if3 ENDLOOP;

SA i i .a[O]- "zero"; SA i i .a[l] - "one";
SA t i .a[2] - "two"; SA i i .a[3] - "surprise";
SA i t .a(4] - "four";

FreeInrArray [IA j;
FreeStrArray [SA];
END.

Splodge in a new location (s) which is fixed to be red.
We chose not to do so for three reasons:
(1) Making copies can be expensive.
(2) Making a copy destroys useful sharing relations.
(3) This loophole has yet to cause a problem.

Consider the following procedure, which is repre­
sentative of those found. throughout the Mesa com­
piler's symbol table processor:

Add5: PROCEDURE[x: POINTER TO Sp/odge] =
BEGIN y: POINTER TO green Splodge;
IF x = NIL THEN RETURN;
WITH 5: x i SELECT FROM

blue => RETURN;
red =>

BEGIN 5 . item - 5 . item + 5;
Add5[s.left]; Add5[s.right] END;

green =>
BEGIN y - @s; -- meansy-x
UNTIL}' = NIL DO

y i .item - y i .item + 5; y - y i .next;
ENDLOOP;

END
ENDCASE

END

As it stands, this procedure runs through a Splodge,
adding 5 to all the integers in it. Suppose we chose to
copy while discriminating: i.e. suppose x i were copied
into some new storage named s . In the blue ann a lot of
space and time would be wasted copying a 1000-char­
acter array intos, even though it was never used. In the
red arm the assignment tos'sitem field is useless since it
doesn't affect the original structure.

The green arm illustrates the usefulness of declaring
bound variant types like green Splodge explicitly. If we
had to declare y and the next field of a green Splodge to
be simply Splodges. even though we knew they were
always green, the loop in that arm would have to be
rewritten to contain a useless discrimination.

To achieve the effect we desire under a copy-while­
discriminating regime, we would have to redesign our
data structure to include another level of pointers:

Splodge: TYPE = RECORD [
refcount: INTEGER;
vp: SELECT t: • FROM

blue => [POINTER TO BlueSplodge] ,
red => [POINTER TO RedSplodge],
green => [POINTER TO GreenSplodge],
ENDCASE];

BlueSplodge: TYPE = RECORD[
x: ARRA Y{O .. lOOO) OF CHARACTER];

RedSpolodge: TYPE = RECORD[
item: INTEGER. left, right: POINTER TO Splodge];

GreenSp/odge: TYPE = RECORD[
item: INTEGER. next: POINTER TO GreenSplodge];

Now we do not mind copying because it doesn't con­
sume much time or space, and it doesn't destroy the
sharing relations. Unfortunately, we must pay for the
storage occupied by the extra pointers, and this might
be intolerable if we have a large collection of Splodges.

How have we lived with this loophole so far without
getting burnt? It seems that we hardly ever change the
variant of a record once it has been initialized. There­
fore the possible confusions never occur because the
variant never changes after being discriminated. In
light of this observation, our suggestion for getting rid
of the breach is simply to invent an attribute IMMUT­

ABLE whose attachment to a variant record declaration
guarantees that changing the variant is impossible after
initialization. This means that special syntax must be
invented for the initialization step, but that is all to the
good since it provides an opportunity for a storage
allocator to allocate precisely the right amount of
space.

6. Conclusions

In this paper, we have discussed our experiences
with program modularization and strict type checking.
It is hard to resist drawing parallels between the disci­
plines introduced by these features on the one hand and
those introduced by programming without gatos on the
other. In view of the great goto debates of recent

189

190

memory. we would like to summarize our experiences
with the following observations and cautions.

(1) The benefits from these linguistic mechanisms.
large though they might be. do not come automatically.
A programmer must learn to use them effectively. We
are just beginning to learn how to do so.

(2) Just as the absence of gatos does not always
make a program better. the absence of type errors does
not make it better if their absence is purchased by
sacrificing clarity. efficiency. or type articulation.

(3) Most good programmers use many of the tech­
niques implied by these disciplines. often subcon­
sciously. and can do so in any reasonable language.
Language design can help by making the discipline
more convenient and systematic. and by catching blun­
ders or other unintended violations of conventions.
Acquiring a particular programming style seems to de­
pend on having a language that supports or requires it;
once assimilated. however. that style can be applied in
many other languages.

Acknowledgments. The principal designers of Mesa.
in addition to the authors. have been Butler Lampson
and Jim Mitchell. The major portion of the Mesa oper­
ating system was programmed by Richard Johnsson
and John Wick of the System Development Division of
Xerox. In addition to those mentioned above. Douglas
Clark. Howard Sturgis. and Niklaus Wirth have made
helpful comments on earlier versions of this paper.

References
1. Dahl. O.-J .. Myhrhaug. B .. and Nygaard. K. The SIMULA 67
common base language. Publ. No. S-2. Norwegian Comptng. Ctr.,
Oslo.May 1968.
2. Dennis. J.B .. and Van Horn. E. Programming semantics for
multiprogrammed computations. Comm. ACM 9,3 (March 1966).
143-155.
3. Geschke. C .. and Mitchell. J. On the problem of uniform refer­
ences to data structures. IEEE Trans. Software Eng. SE-l ,2 (June
1975).207-219.
4. Habermann. A.N . Critical comments on the programming lan­
guage PASCAL. Acta Informatica 3 (1973).47-57.
S. Knuth,D. The An of Com pUler Programming. Vol. 1: Funda­
mental Algorithms. Addison-Wesley. Reading, Mass .. 1968.
6. Koster. C.H.A. On infinite modes. ALGOL Bull. AB 30.3.3
(Feb. 1969), 109-112.
7. Lampson, B .. Mitchell. J., and Satterthwaite. E. On the transfer
of control between contexts. In Lecture Notes in Computer Science.
Vol. 19. G. Goos and J. Hartmanis. Eds .. Springer-Verlag. New
York. (1974).181-203.
8. Mitchell. J .. and Wegbreit. B. Schemes: a high level data struc­
turing concept. To appear in Current Trends in Programming Metho­
dologies. R. Yeh. Ed .. Prentice-Hall, Englewood Cliffs. N.J.
9. Morris. J. Protection in programming languages. Comm. ACM
16. 1 (Jan 1973), 15-21.
10. Parnas. D. A technique for software module specification.
Comm. ACM 15.5 (May 1972).330-336.
11. Stoy. J .E .. and Strachey. C. OS6- an experimental operating
system for a small computer. Part 2; input/output and filing system.
Computer J. 15. 3 (Aug 1972). 195-203.
12. van Wijngaarden, A .. Ed. A report on the algorithmic language
ALGOL 68. Num. Math. 14.2 (1969).79-218.
13. Wegbreit. B. The treatment of data types in ELI. Comm. ACM
17,5 (May 1974).251-264.
14. Wirth. N. The programming language PASCAL. Acta Informa­
tica 1 (1971).35-63.

Operating
Systems

R. Stockton Gaines
Editor

Experience with
Processes and
Monitors in Mesa
Butler W. Lampson
Xerox Palo Alto Research Center

David D. Redell
Xerox Business Systems

The use of monitors for describing concurrency has
been much discussed in the literature. When monitors
are used in real systems of any size, however, a number
of problems arise which have not been adequately dealt
with: the semantics of nested monitor calls; the various
ways of defining the meaning of WAIT; priority
scheduling; handling of timeouts, aborts and other
exceptional conditions; interactions with process
creation and destruction; monitoring large numbers of
small objects. These problems are addressed by the
facilities described here for concurrent programming in
Mesa. Experience with several substantial applications
gives us some confidence in the validity of our
solutions.

Key Words and Phrases: concurrency, condition
variable, deadlock, module, monitor, operating system,
process, synchronization, task

CR Categories: 4.32, 4.35, ~.24

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

A version of this paper was presented at the 7th ACM Symposium
on Operating Systems Principles, Pacific Grove, Calif., Dec. 10-12,
1979.

Authors' present address: B. W. Lampson and D. D. Redell, Xerox
Corporation, 3333 Coyote Hill Road, Palo Alto, CA 94304.
© 1980 ACM 0001-0782/80/0200--0105 $00.75.

191

192

1. Introduction

In early 1977 we began to design the concurrent
programming facilities of Pilot, a new operating system
for a personal computer [18]. Pilot is a fairly large
program itself (24,000 lines of Mesa code). In addition,
it must support a variety of quite large application
programs, ranging from database management to inter­
network message transmission, which are heavy users of
concurrency; our experience with some of these appli­
cations is discussed later in the paper. We intended the
new facilities to be used at least for the following pur­
poses:

Local concurrent programming. An individual appli­
cation can be implemented as a tightly coupled group of
synchronized processes to express the concurrency in­
herent in the application.

Global resource sharing. Independent applications
can run together on the same machine, cooperatively
sharing the resources; in particular, their processes can
share the processor.

Replacing interrupts. A request for software attention
to a device can be handled directly by waking up an
appropriate process, without going through a separate
interrupt mechanism (e.g,; a forced branch),

Pilot is closely coupled to the Mesa language [17],
which is used to write both Pilot itself and the applica­
tions programs it supports. Hence it was natural to design
these facilities as part of Mesa; this makes them easier to
use, and also allows the compiler to detect many kinds
0f CiI0IS iIi theiI use. The idea uf irltegrating such
facilities into a language is certainly not new; it goes
back at least as far as PL/I [1]. Furthermore the invention
of monitors by Dijkstra, Hoare, and Brinch Hansen (3,
5, 8] provided a very attractive framework for reliable
concurrent programming. There followed a number of
papers on the integration of concurrency into program­
ming languages, and at least one implementation [4].

We therefore thought that our task would be an easy
one: read the literature, compare the alternatives offered
there, and pick the one most suitable for our needs. This
expectation proved to be naive. Because of the large size
and wide variety of our applications, we had to address
a number of issues which were not clearly resolved in
the published work on monitors. The most notable
among these are listed below, with the sections in which
they are discussed.
(a) Program structure. Mesa has facilities for organizing

programs into modules which communicate
through well-defined interfaces. Processes must fit
into this scheme (see Section 3.1).

(b) Creating processes. A set of processes fixed at com­
pile-time is unacceptable in such a general-purpose
system (see Section 2). Existing proposals for vary­
ing the amount of concurrency were limited to
concurrent elaboration of the statements in a block,
in the style of Algol 68 (except for the rather
complex mechanism in PL/I).

(c) Creating monitors. A fixed number of monitors is
also unacceptable, since the number of synchroniz­
ers should be a function of the amount of data, but
many of the details of existing proposals depended
on a fixed association of a monitor with a block of
the program text (see Section 3.2).

(d) WAIT in a nested monitor call. This issue had been
(and has continued to be) the source of a consid­
erable amount of confusion, which we had to re­
solve in an acceptable manner before we could
proceed (see Section 3.1).

(e) Exceptions. A realistic system must have timeouts,
and it must have a way to abort a process (see
Section 4.1). Mesa has an UNWIND mechanism for
abandoning part of a sequential computation in an
orderly way, and this must interact properly with
monitors (see Section 3.3).

(f) Scheduling. The precise semantics of waiting on a
condition variable had been discussed [10] but not
agreed upon, and the reasons for making any par­
ticular choice had not been articulated (see Section
4). No attention had been paid to the interaction
between monitors and priority scheduling of pro­
cesses (see Section 4.3).

(g) Input-ou~Dut. The details of fitting I/O devices into
the fr.amework of monitors and condition variables
had not been fully worked out (see Section 4.2).

Some of these points have also been made by Keedy
[12], who discusses the usefulness of monitors in a mod­
em general-purpose mainframe operating system. The
:Modula language [: 1 J addresses (b) and (g), but ill a
more limited context than ours.

Before settling on the monitor scheme described be­
low, we considered other possibilities. We felt that our
first task was to choose either shared memory (i.e.,
monitors) or message passing as our basic interprocess
communication paradigm.

Message passing has been used (without language
support) in a number of operating systems; for a recent
proposal to embed messages in a language, see [9]. An
analysis of the differences between such schemes and
those based on monitors was made by Lauer and Need­
ham [14]. They conclude that, given certain mild restric­
tions on programming style, the two schemes are duals
under the transformation

message ~ process
process ~ monitor
send/reply ~ call/return

Since our work is based on a language whose main tool
of program structuring is the procedure, it was consid­
erably easier to use a monitor scheme than to devise a
message-passing scheme properly integrated with the
type system and control structures of the language.

Within the shared memory paradigm, we considered
the possibility of adopting a simpler primitive synchro­
nization facility than monitors. Assuming the absence of
multiple processors, the simplest form of mutual exclu-

sion appears to be a nonpreemptive scheduler; if pro­
cesses only yield the processor voluntarily, then mutual
exclusion is insured between yield-points. In its simplest
form, this approach tends to produce very delicate pro­
grams, since the insertion of a yield in a random place
can introduce a subtle bug in a previously correct pro­
gram. This danger can be alleviated by the addition of
a modest amount of "syntactic sugar" to delineate critical
sections within which the processor must not be yielded
(e.g., pseudo monitors). This sugared form of non­
preemptive scheduling can provide extremely efficient
solutions to simple problems, but was nonetheless re­
jected for four reasons:

(1) While we were willing to accept an implementation
which would not work on multiple processors, we
did not want to embed this restriction in our basic
semantics.

(2) A separate preemptive mechanism is needed any­
way, since the processor must respond to time­
critical events (e.g., I/O interrupts) for which vol­
untary process switching is clearly too sluggish.
With preemptive process scheduling, interrupts can
be treated as ordinary process wakeups, which re­
duces the total amount of machinery needed and
eliminates the awkward situations which tend to
occur at the boundary between two scheduling re­
gimes.

(3) The use of nonpreemption as mutual exclusion
restricts programming generality within critical sec­
tions; in particular, a procedure that happens to
yield the processor cannot be called. In large sys­
tems where modularity is essential, such restrictions
are intolerable.

(4) The Mesa concurrency facilities function in a vir­
tual memory environment. The use of nonpreemp­
tion as mutual exclusion forbids multiprogramming
across page faults, since that would effectively insert
preemptions at arbitrary points in the program.

For mutual exclusion with a preemptive scheduler, it
is necessary to introduce explicit locks, and machinery
which makes requesting processes wait when a lock is
unavailable. We considered casting our locks as sema­
phores, but decided that, compared with monitors, they
exert too little structuring discipline on concurrent pro­
grams. Semaphores do solve several different problems
with a single mechanism (e.g, mutual exclusion, pro­
ducer/consumer) but we found similar economies in our
implementation of monitors and condition variables (see
Section 5.1).

We have not associated any protection mechanism
with processes in Mesa, except what is implicit in the
type system of the language. Since the system supports
only one user, we feel that the considerable protection
offered by the strong typing of the language is sufficient.
This fact contributes substantially to the low cost of
process operations.

2. Processes

Mesa casts the creation of a new process as a special
procedure activation which executes concurrently with
its caller. Mesa allows any procedure (except an internal
procedure of a monitor; see Section 3.1) to be invoked in
this way, at the caller's discretion. It is possible to later
retrieve the results returned by the procedure. For ex­
ample, a keyboard input routine might be invoked as a
normal procedure by writing:

buffer +- ReadLine[terminal]

but since ReadLine is likely to wait for input, its caller
might wish instead to compute concurrently:

p +- FORK Readline[terminal];
... < concurrent computation> ...
buffer +- JOIN p;

Here the types are

Readline: PROCEDURE [Device] RETURNS [Line];
p: PROCESS RETURNS [Line].

The rendezvous between the return from ReadLine
which terminates the new process and the JOIN in the old
process is provided automatically. ReadLine is the root
procedure of the new process.

This scheme has a number of important properties.
(a) It treats a process as a first-class value in the lan­

guage, which can be assigned to a variable or an
array element, passed as a parameter, and in general
treated exactly like any other value. A process value
is like a pointer value or a procedure value which
refers to a nested procedure, in that it can become
a dangling reference if the process to which it refers
goes away.

(b) The method for passing parameters to a new pro­
cess and retrieving its results is exactly the same as
the corresponding method for procedures, and is
subject to the same strict type checking. Just as
PROCEDURE is a generator for a family of types
(depending on the argument and result types), so
PROCESS is a similar generator, slightly simpler since
it depends only on result types.

(c) No special declaration is needed for a procedure
which is invoked as a process. Because of the im­
plementation of procedure calls and other global
control transfers in Mesa [13], there is no extra
execution cost for this generality.

(d) The cost of creating and destroying a process is
moderate, and the cost in storage is only twice the
minimum cost of a procedure instance. It is there­
fore feasible to program with a large number of
processes, and to vary the number quite rapidly. As
Lauer and Needham [14] point out, there are many
synchronization problems which have straightfor­
ward solutions using monitors only when obtaining
a new process is cheap.

193

194

Many patterns of process creation are possible. A
common one is to create a detached process, which never
returns a resuit to its creator, but instead functions quite
independently. When the root procedure p of a detached
process returns, the process is destroyed without any
fuss. The fact that no one intends to wait for a result
from p can be expressed by executing:

Detach[p]

From the point of view of the caller, this is similar to
freeing a dynamic variable-it is generally an erro.r to
make any further use of the current value of p, SInce
the process, running asynchronously, may complete
its work and be destroyed at any time. Of course the
design of the program may be such that this c~nnot
happen, and in this case the value of p can still be
useful as a parameter to the Abort operation (see
Section 4.1).

This remark illustrates a general point: Processes
offer some new opportunities to create dangling refer­
ences. A process variable itself is a kind of pointer, and
must not be used after the process is destroyed. Further­
more, parameters passed by reference to a process are
pointers, and if they happen to be local variables of a
procedure, that procedure must not return ~ntil the
process is destroyed. Like most implemen~atIOn ~an­

guages, Mesa does not provide any protectIOn agamst
dangling references, whether connnected with processes
or not.

The ordinary Mesa facility for exception handling
uses the ordering established by procedure calls to con­
trol the processi~g of exceptions. Any block may have
an attached exception handler. The block containing the
statement which causes the exception is given the first
chance to handle it, then its enclosing block, and so forth
until a procedure body is reached. Then the caller of the
procedure is given a chance in the same way. Since the
root procedure of a process has no caller, it must be
prepared to handle any exceptions which can be gener­
ated in the process, including exceptions generated by
the procedure itself. If it fails to do so, the resulting error
sends control to the debugger, where the identity of the
procedure and the exception can easily be determined
by a programmer. This is not much comfort, however,
when a system is in operational use. The practical con­
sequence is that while any procedure suitable for forking
can also be called sequentially, the converse is not gen­
erally true.

3. Monitors

When several processes interact by sharing data, care
must be taken to properly synchronize access to the data.
The idea behind monitors is that a proper vehicle for this
interaction is one which unifies

-the synchronization,
-the shared data,
-the body of code which performs the accesses.

The data is protected by a monitor. and can only be
accessed within the body of a monitor procedure. There
are two kinds of monitor procedures: entry procedures,
which can be called from outside the monitor, and
internal procedures, which can only be called from ~on­
itor procedures. Processes can only perform operat1?ns
on the data bv calling entry procedures. The mOllItor
ensures that a; most one process is executing a monitor
procedure at a time; this process is said to be in the
monitor. If a process is in the monitor. any other process
which calls an entry procedure will be delayed. The
monitor procedures are written textually next to each
other, and next to the declaration of the protected data,
so that a reader can conveniently survey all the references
to the data.

As long as any order of calling the entry procedur~s
produces meaningful results, no addition~l synchron~­
zation is needed among the processes shanng the mOllI­
tor. If a random order is not acceptable, other provisions
must be made in the program outside the monitor. For
example, an unbounded buffer with Put and Get proce­
rll1rpc 1nlnnCIPC' no constraints '\of course a Get may ha\re ~~.I.""'\JI..I..I.yv..:J""'"

to wait, but this is taken care of within the monitor, as
described in the next section). On the other hand, a tape
unit with Reserve, Read, Write, and Release operations
requires that each process execute a Reserve first and. a
Release last. A second process executing a Reserve wIll
be delayed by the mOllItor, but another process domg a
Read without a prior Reserve will produce chaos. Thus
monitors do not solve all the problems of concurrent
programming; they are intended, in part.' as p~i~itive
building blocks for more complex schedulIng polICIes. A
discussion of such policies and how to implement them
using monitors is beyond the scope of this paper.

3.1 Monitor Modules

In Mesa the simplest monitor is an instance of a
module, which is the basic unit of global program struc­
turing. A Mesa module consists of a collection of pro­
cedures and their global data, and in sequential program­
ming is used to implement a data abstraction. Such a
module has PUBLIC procedures which constitute the ex­
ternal interface to the abstraction, and PRIVATE proce­
dures which are internal to the implementation and
cannot be called from outside the module; its data is
normally entirely private. A MONITOR module differs
only slightly. It has three kinds of procedures: entry,
internal (private), and external (non monitor procedures).
The first two are the monitor procedures, and execute
with the monitor lock held. For example, consider a
simple storage allocator with two entry procedures, Al­
locate and Free, and an external procedure Expand which
increases the size of a block.

StorageAllocator: MONITOR = BEGIN

available Storage: INTEG ER;

moreA vailable: CONDITION;

Allocate: ENTRY PROCEDURE [size: INTEGER)

RETl'RNS [p: POINTER) = BEGIN

UNTIL availableStorage ~ size
DO WAIT moreA vailable ENDLOOP;

p ~ (remove chunk of size words & update availableStorage>
END;

Free: ENTRY PROCEDURE [p: POINTER, size: INTEGER)

= BEGI!'

(put back chunk of size words & update availableStorage);
NOTIFY moreA vailable END;

Expand: PUBLIC PROCEDURE [paid: POINTER,

size: INTEGER]

RETURNS [pNew: POINTER] = BEGIN

pNew ~ Allocate[size];
(copy contents from old block to new block};
Free[pOld] END;

END.

A Mesa module is normally used to package a col­
lection of related procedures and protect their private
data from external access. In order to avoid introducing
a new lexical structuring mechanism, we chose to make
the scope of a monitor identical to a module. Sometimes,
however, procedures which belong in an abstraction do
not need access to any shared data, and hence need not
be entry procedures of the monitor; these must be distin­
guished somehow.

F or example, two asynchronous processes clearly
must not execute in the Allocate or Free procedures at
the same time; hence, these must be entry procedures.
On the other hand, it is unnecessary to hold the monitor
lock during the copy in Expand, even though this pro­
cedure logically belongs in the storage allocator module;
it is thus written as an external procedure. A more
complex monitor might also have internal procedures,
which are used to structure its computations, but which
are inaccessible from outside the monitor. These do not
acq uire and release the lock on call and return, since
they can only be called when the lock is already held.

I[no suitable block is available, Allocate makes its
caller wait on the condition variable moreA vailable. Free
does a NOTIFY to this variable whenever a new block
becomes available; this causes some process waiting on
the variable to resume execution (see Section 4 for
details). The WAIT releases the monitor lock, which is
reacquired when the waiting process reenters the moni­
tor. If aWAIT is done in an internal procedure, it still
releases the lock. If, however, the monitor calls some
other procedure which is outside the monitor module,
the lock is not released, even if the other procedure is
in (or calls) another monitor and ends up doing a
WAIT. The same rule is adopted in Concurrent
Pascal [4].

To understand the reasons for this, consider the form
of a correctness argument for a program using a monitor.
The basic idea is that the monitor maintains an invariant
which is always true of its data, except when some
process is executing in the monitor. Whenever control

leaves the monitor, this invariant must be established. In
return, whenever control enters the monitor the invariant
can be assumed. Thus an entry procedure must establish
the invariant before returning, and monitor procedures
must establish it before doing a WAIT. The invariant can
be assumed at the start of an entry procedure, and after
each WAIT. Under these conditions, the monitor lock
ensures that no one can enter the monitor when the
invariant is false. Now, if the lock were to be released on
aWAIT done in another monitor which happens to be
called from this one, the invariant would have to be
established before making the call which leads to the
WAIT. Since in general there is no way to know whether
a call outside the monitor will lead to aWAIT, the
invariant would have to be established before every such
call. The result would be to make calling such procedures
hopelessly cumbersome.

An alternative solution is to allow an outside block to
be written inside a monitor, with the following meaning:
on entry to the block the lock is released (and hence the
invariant must be established); within the block the
protected data is inaccessible; on leaving the block the
lock is reacquired. This scheme allows the state repre­
sented by the execution environment of the monitor to
be maintained during the outside call, and imposes a
minimal burden on the programmer: to establish the
invariant before making the call. This mechanism would
be easy to add to Mesa; we have left it out because we
have not seen convincing examples in which it signifi­
cantly simplifies the program.

I[an entry procedure generates an exception in the
usual way, the result will be a call on the exception
handler from within the monitor, so that the lock will
not be released. In particular, this means that the excep­
tion handler must carefully avoid invoking that same
monitor, or a deadlock will result. To avoid this restric­
tion, the entry procedure can restore the invariant and
then execute

RETURN WITH ERROR[(arguments)]

which returns from the entry procedure, thus releasing
the lock, and then generates the exception.

3.2 Monitors and Deadlock
There are three patterns of pairwise deadlock that

can occur using monitors. In practice, of course, dead­
locks often involve more than two processes, in which
case the actual patterns observed tend to be more com­
plicated; conversely, it is also possible for a single process
to deadlock with itself (e.g., if an entry procedure is
recursive).

The simplest form of deadlock takes place inside a
single monitor when two processes do aWAIT, each
expecting to be awakened by the other. This represents
a localized bug in the monitor code and is usually easy
to locate and correct.

A more subtle form of deadlock can occur if there is
a cyclic calling pattern between two monitors. Thus if

195

196

monitor M calls an entry procedure in N, and N calls
one in M, each will wait for the other to release the
monitor lock. This kind of deadlock is made neither
more nor less serious by the monitor mechanism. It arises
whenever such cyclic dependencies are allowed to occur
in a program, and can be avoided in a number of ways.
The simplest is to impose a partial ordering on resources
such that all the resources simultaneously possessed by
any process are totally ordered, and insist that if resource
r precedes s in the ordering, then r cannot be acquired
later than s. When the resources are monitors, this re­
duces to the simple rule that mutually recursive monitors
must be avoided. Concurrent Pascal [4] makes this check
at compile time; Mesa cannot do so because it has
procedure variables.

A more serious problem arises if M calls N, and N
then waits for a condition which can only occur when
another process enters N through M and makes the
condition true. In this situation, N will be unlocked,
since the WAIT occurred there, but M will remain locked
during the WAIT in N. This kind of two-level data
abstraction must be handled with some care. A straight­
forward solution using standard monitors is to break M
into two parts: a monitor M' and an ordinary module 0
which implements the abstraction defined by M, and
cails M; for access to the shared data. The caB on N must
be done from 0 rather than from within M'.

Monitors, like any other interprocess communication
mechanism, are a tool for implementing synchroniza­
tion constraints chosen by the programmer. It is unrea­
sonable to blame the tool when poorly chosen constraints
lead to deadlock. What is crucial, however, is that the
tool make the program structure as understandable as
possible, while not restricting the programmer too much
in his choice of constraints (e.g., by forcing a monitor
lock to be held much longer than necessary). To some
extent, these two goals tend to conflict; the Mesa con­
currency facilities attempt to strike a reasonable balance
and provide an environment in which the conscientious
programmer can avoid deadlock reasonably easily. Our
experience in this area is reported in Section 6.

3.3 Monitored Objects
Often we wish to have a collection of shared data

objects, each one representing an instance of some ab­
stract object such as a file, a storage volume, a virtual
circuit, or a database view, and we wish to add objects
to the collection and delete them dynamically. In a
sequential program this is done with standard techniques
for allocating and freeing storage. In a concurrent pro­
gram, however, provision must also be made for serial­
izing access to each object. The straightforward way is to
use a single monitor for accessing all instances of the
object, and we recommend this approach whenever pos­
sible. If the objects function independently of each other
for the most part, however, the single monitor drastically
reduces the maximum concurrency which can be ob­
tained. In this case, what we want is to give each object

its own monitor: all these monitors will share the same
code, since all the instances of the abstract object share
the same code, but each object will have its own luck.

One way to achieve this result is to make multiple
instances of the monitor module. Mesa makes this quite
easy, and it is the next recommended approach. How­
ever, the data associated with a module instance includes
information which the Mesa system uses to support
program linking and code swapping, and there is some
cost in duplicating this information. Furthermore, mod­
ule instances are allocated by the system; hence the
program cannot exercise the fine control over allocation
strategies which is possible for ordinary Mesa data ob­
jects. We have therefore introduced a new type construc­
tor called a monitored record, which is exactly like an
ordinary record, except that it includes a monitor lock
and is intended to be used as the protected data of a
monitor.

In writing the code for such a monitor, the program­
mer must specify how to access the monitored record,
which might be embedded in some larger data structure
passed as a parameter to the entry procedures. This is
done with a LOCKS clause which is written at the begin­
ning of the module:

MONITOR LOCKS filet
USING file: POINTER TO FileData;

if the FileData is the protected data. An arbitrary expres­
sion can appear in the LOCKS clause; for instance, LOCKS

file.buffers[currentPage] might be appropriate if the pro-
tected data is one of the buffers in an array which is part
of the file. Every entry procedure of this monitor, and
every internal procedure that does a WAIT, must have
access to a file, so that it can acquire and release the lock
upon entry or around a WAIT. This can be accomplished
in two ways: the file may be a global variable of the
module, or it may be a parameter to every such proce­
dure. In the latter case, we have effectively created a
separate monitor for each object, without limiting the
program's freedom to arrange access paths and storage
allocation as it likes.

Unfortunately, the type system of Mesa is not strong
enough to make this construction completely safe. If the
value of file is changed within an entry procedure, for
example, chaos will result, since the return from this
procedure will release not the lock which was acquired
during the call, but some other lock instead. In this
example we can insist that file be read-only, but with
another level of indirection aliasing can occur and such
a restriction cannot be enforced. In practice this lack of
safety has not been a problem.

3.4 Abandoning a Computation
Suppose that a procedure PI has called another pro­

cedure P2, which in turn has called P3 and so forth until
the current procedure is P n. If P n generates an exception
which is eventually handled by PI (because P2 ••• Pn do
not provide handlers), Mesa allows the exception handler

m J!l to abandon the portion of the computation being
done in P2 ••• Pn and continue execution in Pl. When
this happens, a distinguished exception called UNWIND
is first generated, and each of P2 ••• Pn is given a chance
to handle it and do any necessary cleanup before its
activation is destroyed.

This feature of Mesa is not part of the concurrency
facilities, but it does interact with those facilities in the
following way. If one of the procedures being aban­
doned, say Pi, is an entry procedure, then the invariant
must be restored and the monitor lock released before Pi
is destroyed. Thus if the logic of the program allows an
UNWIND, the programmer must supply a suitable handler
in Pi to restore the invariant; Mesa will automatically
supply the code to release the lock. If the programmer
fails to supply an UNWIND handler for an entry proce­
dure, the lock is not automatically released, but remains
set; the cause of the resulting deadlock is not hard to
find.

4. Condition Variables

In this section we discuss the precise semantics of
WAIT, and other details associated with condition varia­
bles. Hoare's defmition of monitors [8] req~ires that a
process waiting on a condition variable must run im­
mediately when another process signals that variable,
and that the signaling process in tum runs as soon as the
waiter leaves, the monitor. This defmition allows the
waiter to assume the truth of some predicate stronger
than the monitor invariant (which the signaler must of
course establish), but it requires several additional pro­
cess switches whenever a process continues after aWAIT.
It also requires that the signaling mechanism be perfectly
reliable.

Mesa takes a different view: When one process estab­
lishes a condition for which some other process may be
waiting, it notifies the corresponding condition variable.
A NOTIFY is regarded as a hint to a waiting process; it
causes execution of some process waiting on the condi­
tion to resume at some convenient future time. When the
waiting process resumes, it will reacquire the monitor
lock. There is no guarantee that some other process will
not enter the monitor before the waiting process. Hence
nothing more than the monitor invariant may be as­
sumed after a WAIT, and the waiter must reevaluate the
situation each time it resumes. The proper pattern of
code for waiting is therefore:

WHILE NOT (OK to proceed) DO WAIT C

ENDLOOP.

This arrangement results in an extra evaluation of the
(OK to proceed) predicate after a wait, compared to
Hoare's monitors, in which the code is:

IF NOT (OK to proceed) THEN WAIT c.

In return, however, there are no extra process switches,

and indeed no constraints at all on when the waiting
process must run after a NOTIFY. In fact, it is perfectly all
right to run the waiting process even if there is not any
NOTIFY, although this is presumably pointless if a NOTIFY
is done whenever an interesting change is made to the
protected data.

It is possible that such a laissez-faire attitude to
scheduling monitor accesses will lead to unfairness and
even starvation. We do not think this is a legitimate
cause for concern, since in a properly designed system
there should typically be no processes waiting for a
monitor lock. As Hoare, Brinch ,Hansen, Keedy, and
others have pointed out, the low level scheduling mech­
anism provided by monitor locks should not be used to
implement high level scheduling decisions within a sys­
tem (e.g., about which process should get a printer next).
High level scheduling should be done by taking account
of the specific charaCteristics of the resource being sched­
uled (e.g., whether the right kind of paper is in the
printer). Such a scheduler will delay its client processes
on condition variables after recording information about
their requirements, make its decisions based on this
information, and notify the proper conditions. In such a
design the data protected by a monitor is never a bottle­
neck.

The verification rules for Mesa monitors are thus
extremely simple: The monitor invariant must be estab­
lished just before a return from an entry procedure or a
WAIT, and it may be assumed at the start of an entry
procedure and just after aWAIT. Since awakened waiters
do not run immediately, the predicate established before
a NOTIFY cannot be assumed after the corresponding
WAIT, but since the waiter tests explicitly for (OK to
proceed), verification is actually made simpler and more
localized.

Another consequence of Mesa's treatment of NO­
TIFY as a hint is that many applications do not trouble to
determine whether the exact condition needed by a
waiter has been established. Instead, they choose a very
cheap predicate which implies the exact condition (e.g.,
some change has occurred), and NOTIFY a covering con­
dition variable. Any waiting process is then responsible
for determining whether the exact condition holds; if not,
it simply waits again. For example, a process may need
to wait until a particular object in a set changes state. A
single condition covers the entire set, and a process
changing any of the objects broadcasts to this condition
(see Section 4.1). The information about exactly which
objects are currently of interest is implicit in the states of
the waiting processes, rather than having to be repre­
sented explicitly in a shared data structure. This is an
attractive way to decouple the detailed design of two
processes; it is feasible because the cost of waking up a
process is small.

4.1 Alternatives to NOTIFY

With this rule it is easy to add three additional ways
to resume a waiting process:

197

198

Timeout. Associated with a condition variable is a
timeout interval t. A process which has been waiting for
time t will resume regardless of whether the condition
has been notified. Presumably in most cases it will check
the time and take some recovery action before waiting
again. The original design for timeouts raised an excep­
tion if the timeout occurred; it was changed because
many users simply wanted to retry on a timeout, and
objected to the cost and coding complexity of handling
the exception. This decision could certainly go either
way.

Abort. A process may be aborted at any time by
executing Abort[p]' The effect is that the next time the
process waits, or if it is waiting now, it will resume
immediately and the Aborted exception will occur. This
mechanism allows one process to gently prod another,
generally to suggest that it should clean up and terminate.
The aborted process is, however, free to do arbitrary
computations, or indeed to ignore the abort entireiy.

Broadcast. Instead of doing a NOTIFY to a condition,
a process may do a BROADCAST, which causes all the
processes waiting on the condition to resume, instead of
simply one of them. Since a NOTIFY is just a hint, it is
always correct to use BROADCAST. It is better to use
NOTIFY if there will typically be several processes waiting
on the condition, and it is known that any waiting
process can respond properly. On the other hand, there
are times when a BROADCAST is correct and a NOTIFY is
not; the alert reader may have noticed a problem· with
the example program in Section 3.1, which can be solved
by repladng the YOT!FY with a BROADCAST.

N one of these mechanisms affects the proof rule for
monitors at all. Each provides a way to attract the
attention of a waiting process at an appropriate time.

Note that there is no way to stop a runaway process.
This reflects the fact that Mesa processes are cooperative.
Many aspects of the design would not be appropriate in
a competitive environment such as a general-purpose
time-sharing system.

4.2 Naked NOTIFY

Communication with input/output devices is han­
dled by monitors and condition variables much like
communication among processes. There is typically a
shared data structure, whose details are determined by
the hardware, for passing commands to the device and
returning status information. Since it is not possible for
the device to wait on a monitor lock, the updating
operations on this structure must be designed so that the
single-word atomic read and write operations provided
by the memory are sufficient to make them atomic.
When the device needs attention, it can NOTIFY a con­
dition variable to wake up a waiting process (i.e., the
interrupt handler); since the device does not actually
acquire the monitor lock, its NOTIFY is called a naked

NOTIFY. The device finds the address of the condition
variable in a fixed memory location.

There is one complication associated with a naked
NOTIFY: Since the notification is not protected by a
monitor lock, there can be a race. It is possible for a
process to be in the monitor, find the (OK to proceed>
predicate to be FALSE (i.e., the device does not need
attention), and be about to do aWAlT, when the device
updates the shared data and does its NOTIFY. The WAIT
will then be done and the NOTIFY from the device will be
lost. With ordinary processes, this cannot happen, since
the monitor lock ensures that one process cannot be
testing the predicate and preparing to WAIT, while an­
other is changing the value of (OK to proceed, and doing
the NOTIFY. The problem is avoided by providing the
familiar wakeup-waiting switch [19] in a condition vari­
able, thus turning it into a binary semaphore [8]. This
switch is needed only for condition variables that are
notified by devices.

We briefly considered a design in which devices
would wait on and acquire the monitor lock, exactly like
ordinary Mesa processes; this design is attractive because
it avoids both the anomalies just discussed. However,
there is a serious problem with any kind of mutual
exclusion between two processes which run on processors
of substantially different speeds: The faster process may
have to wait for the slower one. The worst-case response
time of the faster process therefore cannot be less than
the time the slower one needs to finish its critical section.
Although one can get higher throughput from the faster
processor than from the slower one, one cannot get better
worSl-case real-lime performam.:e. V'ie ~onsider lhi~ a
fundamental deficiency.

It therefore seemed best to avoid any mutual exclu­
sion (except for that provided by the atomic memory
read and write operations) between Mesa code and
device hardware and microcode. Their relationship is
easily cast into a producer-consumer form, and this can
be implemented, using linked lists or arrays, with only
the memory's mutual exclusion. Only a small amount of
Mesa code must handle device data structures without
the protection of a monitor. Clearly a change of models
must occur at some point between a disk head and an
application program; we see no good reason why it
should not happen within Mesa code, although it should
certainly be tightly encapsulated.

4.3 Priorities

In some applications it is desirable to use a priority
scheduling discipline for allocating the processor(s) to
processes which are not waiting. Unless care is taken, the
ordering implied by the assignment of priorities can be
subverted by monitors. Suppose there are three priority
levels (3 highest, 1 lowest), and three processes Ph P2,

and P3, one running at each level. Let PI and Pa com­
municate using a monitor M. Now consider the following
sequence of events:

P1 enters M.
PI is preempted by P2•

P2 is preempted by Pl.
P:l tries to enter the monitor, and waits for the lock.
P'2 runs again, and can effectively prevent P3 from
running, contrary to the purpose of the priorities.

A simple way to avoid this situation is to associate
with each monitor the priority of the highest-priority
process which ever enters that monitor. Then whenever
a process enters a monitor, its priority is temporarily
increased to the monitor's priority. Modula solves the
problem in an even simpler way-interrupts are disabled
on entry to M, thus effectively giving the process the
highest possible priority, as well as supplying the monitor
lock for M. This approach fails if a page fault can occur
while executing in M.

The mechanism is not free, and whether or not it is
needed depends on the application. For instance, if only
processes with adjacent priorities share a monitor, the
problem described above cannot occur. Even if this is
not the case, the problem may occur rarely, and absolute
enforcement of the priority scheduling may not be im­
portant.

5. Implementation

The implementation of processes and monitors is
split more or less equally among the Mesa compiler, the
runtime package, and the underlying machine. The com­
piler recognizes the various syntactic constructs and gen­
erates appropriate code, including implicit calls on built­
in (i.e., known to the compiler) support procedures. The
runtime implements the less heavily used operations,
such as process creation and destruction. The machine
directly implements the more heavily used features, such
as process scheduling and monitor entry/exit.

Note that it was primarily frequency of use, rather
than cleanliness of abstraction, that motivated our divi­
sion of labor between processor and software. Nonethe­
less, the split did turn out to be a fairly clean layering, in
which the birth and death of processes are implemented
on top of monitors and process scheduling.

5.1 The Processor
The existence of a r rocess is normally represented

only by its stack of procedure activation records or
frames, plus a small (lO-byte) description called a
ProcessState. Frames are allocated from a frame heap by
a microcoded allocator. They come in a range of sizes
which differ by 20 percent to 30 percent; there is a
separate free list for each size up to a few hundred bytes
(about 15 sizes). Allocating and freeing frames are thus
very fast, except when more frames of a given size are
needed. Because all frames come from the heap, there is
no need to preplan the stack space needed by a process.
When a frame of a given size is needed but not available,

Fig. 1. A process queue.

Queue Cell

Head

there is a frame fault, and the fault handler allocates
more frames in virtual memory. Resident procedures
have a private frame heap which is replenished by seizing
real memory from the virtual memory manager.

The Process States are kept in a fixed table known to
the processor; the size of this table determines the max­
imum number of processes. At any given time, a
Process State is on exactly one queue. There are four
kinds of queues:

Ready queue. There is one ready queue, containing
all processes which are ready to run.

Monitor lock queue. When a process attempts to enter
a locked monitor, it is moved from the ready queue to a
queue associated with the monitor lock.

Condition variable queue. When a process executes a
WAIT, it is moved from the ready queue to a queue
associated with the condition variable.

Fault queue. A fault can make a process temporarily
unable to run; such a process is moved from the ready
queue to a fau.!t queue, and a fault-handling process is
notified.

Queues are kept sorted by process priority. The im­
plementation of queues is a simple one-way circular list,
with the queue-cell pointing to the tail of the queue (see
Figure I). This compact structure allows rapid access to
both the head and the tail of the queue. Insertion at the
tail and removal at the head are quick and easy: more
general insertion and deletion involve scanning some
fraction of the queue. The queues are usually short
enough that this is not a problem. Only the ready queue
grows to a substantial size during normal operation, and
its patterns of insertions and deletions are such that
queue scanning overhead is small.

The queue cell of the ready queue is kept in a fixed
location known to the processor, whose fundamental
task is to always execute the next instruction of the
highest priority ready process. To this end, a check is
made before each instruction, and a process switch is
done if necessary. In particular, this is the mechanism by
which interrupts are serviced. The machine thus imple­
ments a simple priority scheduler, which is preemptive
between priorities and FIFO within a given priority.

Queues other than the ready list are passed to the
processor by software as operands of instructions. or
through a trap vector in the case of fault queues. The
queue cells are passed by reference, since in general they
must be updated (i.e., the identity of the tail may change.)
Monitor locks and condition variables are implemented
as small records containing their associated queue cells

199

200

plus a small amount of extra information: in a monitor
lock, the actual lock; in a condition variable, the timeout
interval and the wakeup-waiting switch.

At a fixed interval (-20 times per second) the pro­
cessor scans the table of Process States and notifies any
waiting processes whose timeout intervals have expired.
This special NOTIFY is tricky because the processor does
not know the location of the condition variables on
which such processes are waiting, and hence cannot
update the queue cells. This problem is solved by leaving
the queue cells out of date, but marking the processes in
such a way that the next normal usage of the queue cells
will notice the situation and update them appropriately.

There is no provision for time-slicing in the current
implementation, but it could easily be added, since it has
no effect on the semantics of processes.

5.2 The Runtime Support Package
The Process module of the Mesa runtime package

does creation and deletion of processes. This module is
written (in Mesa) as a monitor, thus utilizing the under­
lying synchronization machinery of the processor
to coordinate the implementation of FORK and JOIN as
the built-in entry procedures Process.Fork and
Process.Join, respectively. The unused ProcessStates are
treated as essentially normal processes which are all
waiting on a condition variable called rebirth. A call of
Process. Fork performs appropriate "brain surgery" on
the first process in the queue and then notifies rebirth to
bring the process to life; Process.Join synchronizes with
the dying process and retrieves the results. The (implicitly
invoked) procedure Process.End synchronizes the dying
process with the joining process and then commits sui­
cide by waiting on rebirth. An explicit cell on
Process. Detach marks the process so that when it later
calls Process. End, it will simply destroy itself immedi­
ately.

The operations Process. A bort and Process. Yield are
provided to allow special handling of processes which
wait too long and compute too long, respectively. Both
adjust the states of the appropriate queues, using the
machine's standard queueing mechanisms. Utility rou­
tines are also provided by the runtime for such operations
as setting a condition variable timeout and setting a
process priority.

5.3 The Compiler
The compiler recognizes the syntactic constructs for

processes and monitors and emits the appropriate code
(e.g., a. MONITOR ENTRY instruction at the start of each
entry procedure, an implicit call of Process. Fork for each
FORK). The compiler also performs special static checks
to help avoid certain frequently encountered errors. For
example, use of WAIT in an external procedure is flagged
as an error, as is a direct call from an external procedure
to an internal one. Because of the power of the under­
lying Mesa control structure primitives, and the care with

which concurrency was integrated into the language, the
introduction of processes and monitors into Mesa re­
sulted in remarkably little upheaval inside the compiler.

5.4 Performance
Mesa's concurrent programming facilities allow the

intrinsic parallelism of application programs to be rep­
resented naturally; the hope is that well-structured pro­
grams with high global efficiency will result. At the same
time, these facilities have nontrivial local costs in storage
and/ or execution time when compared with similar se­
quential constructs; it is important to minimize these
costs, so that the facilities can be applied to a finer
"grain" of concurrency. This section summarizes the
costs of processes and monitors relative to other basic
Mesa constructs, such as simple statements, procedures,
and modules. Of course, the relative efficiency of an
arbitrary concurrent program and an equivalent sequen­
tial one cannot be determined from these numbers alone;
the intent is simply to provide an indication of the
relative costs of various local constructs.

Storage costs fall naturally into data and program
storage (both of which reside in swappable virtual mem­
ory unless otherwise indicated). The minimum cost for
the existence of a Mesa module is 8 bytes of data and 2
bytes of code. Changing the module to a monitor adds
2 bytes of data and 2 bytes of code. The prime component
of a module is a set of procedures, each of which requires
a minimum of an 8-byte activation record and 2 bytes of
code. Changing a normal procedure to a monitor entry
orocedure leaves the size of the activation record un­
~hanged, and adds 8 bytes of code. All of these costs are
small compared with the program and data storage
actually needed by typical modules and procedures. The
other cost specific to monitors is space for condition
variables; each condition variable occupies 4 bytes of
data storage, while WAIT and NOTIFY require 12 bytes
and 3 bytes of code, respectively.

The data storage overhead for a process is 10 bytes
of resident storage for its ProcessState, plus the swapp­
able storage for its stack of procedure activation records.
The process itself contains no extra code, but the code
for the FORK and JOIN which create and delete it together
occupy 13 bytes, as compared with 3 bytes for a normal
procedure call and return. The FORK/JOIN sequence also
uses 2 data bytes to store the process value. In summary:

Construct

module
procedure
call + return
monitor
entry procedure
FORK+JOIN
process
condition variable
WAIT
NOTIFY

Space (bytes)
data code

8 2
8 2

3
lO 4
8 lO
2 13

lO 0
4

12
3

For measuring execution times we define a unit called
a tick: The time required to execute a simple instruction
(e.g., on a "one-MIP" machine, one tick would be one
microsecond). A tick is arbitrarily set at one-fourth of
the time needed to execute the simple statement Ha ~ b
+ c" (i.e., two loads, an add, and a store). One interesting
number against which to compare the concurrency facil­
ities is the cost of a normal procedure call (and its
associated return), which takes 30 ticks if there are no
arguments or results.

The cost of calling and returning from a monitor
entry procedure is SO ticks, about 70 percent more than
an ordinary call and return. In practice, the percentage
increase is somewhat lower, since typical procedures pass
arguments and return results, at a cost of 2-4 ticks per
item. A process switch takes 60 ticks; this includes the
queue manipulations and all the state saving and restor­
ing. The speed of WAIT and NOTIFY depends somewhat
on the number and priorities of the processes involved,
but representative figures are 15 ticks for aWAIT and 6
ticks for a NOTIFY. Finally, the minimum cost of a FORK/
JOIN pair is 1,100 ticks, or about 38 times that of a
procedure call. To summarize:

Construct

simple instruction
call+return
monitor call+return
process switch
WAIT
NOTIFY, no one waiting
NOTIFY, process waiting
FORK+JOIN

Time (ticks)

30
50
60
15
4

9
1,100

On the basis of these performance figures, we feel
that our implementation has met our efficiency goals,
with the possible exception of FORK and JOIN. The deci­
sion to implement these two language constructs in soft­
ware rather than in the underlying machine is the main
reason for their somewhat lackluster performance.
Nevertheless, we still regard this decision as a sound one,
since these two facilities are considerably more complex
than the basic synchronization mechanism, and are used
much less frequently (especially JOIN, since the detached
processes discussed in Section 2 have turned out to be
quite popular).

6. Applications

In this section we describe the way in which processes
and monitors are used by three substantial Mesa pro­
grams: an operating system, a calendar system using
replicated databases, and an internetwork gateway.

6.1 Pilot: A General-Purpose Operating System
Pilot is a Mesa-based operating system [18] which

runs on a large personal computer. It was designed
jointly with the new language features, and makes heavy
use of them. Pilot has several autonomous processes of

its own, and can be called by any number of client
processes of any priority, in a fully asynchronous man­
ner. Exploiting this potential concurrency requires exten­
sive use of monitors within Pilot; the roughly 75 program
modules contain nearly 40 separate monitors.

The Pilot implementation includes about 15 dedi­
cated processes (the exact number depends on the hard­
ware configuration); most of these are event handlers for
three classes of events:

I/O interrupts. Naked notifies as discussed in
Section 4.2.

Process faults. Page faults and other such events,
signaled via fault queues as discussed in Section 5.1.
Both client code and the higher levels of Pilot, including
some of the dedicated processes, can cause such faults.

Internal exceptions. Missing entries in resident data­
bases, for example, cause an appropriate high level
"helper" process to wake up and retrieve the needed
data from secondary storage.

There are also a few "daemon" processes, which
awaken periodically and perform housekeeping chores
(e.g., swap out unreferenced pages). Essentially all of
Pilot's internal processes and monitors are created at
system initialization time (in particular, a suitable com­
plement of interrupt-handler processes is created to
match the actual hardware configuration, which is deter­
mined by interrogating the hardware). The running sys­
tem makes no use of dynamic process and monitor
creation, largely because much of Pilot is involved in
implementing facilities such as virtual memory which
are themselves used by the dynamic creation software.

The internal structure of Pilot is fairly complicated,
but careful placement of monitors and dedicated pro­
cesses succeeded in limiting the number of bugs which
caused deadlock; over the life of the system, somewhere
between one and two dozen distinct deadlocks have been
discovered, all of which have been fixed relatively easily
without any global disruption of the system's structure.

At least two areas have caused annoying problems in
the development of Pilot:

(I) The lack of mutual exclusion in the handling of
interrupts. As in more conventional interrupt systems,
subtle bugs have occurred due to timing races between
I/O devices and their handlers. To some extent, the
illusion of mutual exclusion provided by the casting of
interrupt code as a monitor may have contributed to this,
although we feel that the resultant economy of mecha­
nism still justifies this choice.

(2) The interaction of the concurrency and exception
facilities. Aside from the general problems of exception
handling in a concurrent environment, we have experi­
enced some difficulties due to the specific interactions of
Mesa signals with processes and monitors (see Sections
3.1 and 3.4). In particular, the reasonable and consistent
handling of signals (including UNWINDS) in entry pro­
cedures represents a considerable increase in the mental

20]

202

overhead involved in designing a new monitor or under­
standing an existing one.

6.2 Violet: A Distributed Calendar System
The Violet system [6, 7] is a distributed database

manager which supports replicated data files, and pro­
vides a display interface to a distributed calendar system.
It is constructed according to the hierarchy of abstrac­
tions in Figure 2. Each level builds on the next lower
one by calling procedures supplied by it. In addition, two
of the levels explicitly deal with more than one process.
Of course, as any level with multiple processes calls
lower levels, it is possible for multiple processes to be
executing procedures in those levels as well.

The user interface level has three processes: Display,
Keyboard, and Data Changes. The Display process is
responsible for keeping the display of the database con­
sistent with the views specified by the user and with
changes occurring in the database itself. It is notified by
the other processes when changes occur, and calls on
lower levels to read information for updating the display.
Display never calls uprate operations in any lower level.
The other two proc ',sses respond to changes initiated
either by the user (Keyboard) or by the database
(DataChanges). The latter process is FORKed from the
Transactions module when data being looked at by Violet
changes, and disappears when it has reported the changes
to Display.

A more complex constellation of processes exists in
FileSuites, which constructs a single replicated file from
a set of representative files, each containing data from
some version of the replicated file. The representatives
are stored in a transactional file system [II], so that each
one is updated atomically, and each carries a version
number. For each FileSuite being accessed, there is a
monitor which keeps track of the known representatives
and their version numbers. The replicated file is consid­
ered to be updated when all the representatives in a write
quorum have been updated; the latest version can be
found by examining a read quorum. Provided the s4m of
the read quorum and the write quorum is as large as the
total set of representatives, the replicated file behaves
like a conventional file.

When the file ."'uite is created, it FORKS and detaches
an inquiry process':or each representative. This process
tries to read the representative's version number, and if
successful, reports the number to the monitor associated
with the file suite and notifies the condition Crowd­
Larger. Any process trying to read from the suite must
collect a read quorum. If there are not enough repre­
sentatives present yet, it waits on CrowdLarger. The
inquiry processes expire after their work is done.

When the client wants to update the FileSuite, he
must collect a write quorum of representatives containing
the current version, again waiting on CrowdLarger if one
is not yet present. He then FORKS an update process for
each representative in the quorum, and each tries to
write its file. After FORKing the update processes, the

Fig. 2. The internal structure of Violet

level

4

3

2

User interface

Views

'" Calendar names

Buffers

File suites

/~
Transactions Containers

o Process table Stable files Volatile files

client JOINS each one in turn, and hence does not proceed
until all have completed. Because all processes run within
the same transaction, the underlying transactional file
system guarantees that either all the representatives in
the quorum will be written, or none of them.

It is possible that a write quorum is not currently
accessible, but a read quorum is. In this case the writing
client FORKS a copy process for each representative which
is accessible but is not up to date. This process copies the
current file suite contents (obtained from the read quo­
rum) into the representative, which is now eligible to join
the write quorum.

Thus as many as three processes may be created for
each representative in each replicated file. In the normal
situation when the state of enough representatives is
known, however, all these processes have done their
work and vanished; only one monitor call is required to
collect a quorum. This potentially complex structure is
held together by a single monitor containing an array of
representative states and a single condition variable.

6.3 Gateway: An Internetwork Forwarder
Another substantial application program which has

been implemented in Mesa using the process and moni­
tor facilities is an internetwork gateway for packet net­
works [2]. The gateway is attached to two or more
networks and serves as the connection point between
them, passing packets across network boundaries as re­
quired. To perform this task efficiently requires rather
heavy use of concurrency.

At the lowest level, the gateway contains a set of
device drivers, one per device, typically consisting of a
high priority interrupt process, and a monitor for syn­
chronizing with the device and with non interrupt level
software. Aside from the drivers for standard devices
(disk, keyboard, etc.) a gateway contains two or more
drivers for Ethernet local broadcast networks [16] and/

()r COmni'.Hl·l\irrier line:, LciCh Ethernet driver has t\\·()

prncessc:<. an interrupt process. and a background pro­
ce~s fur <tUll)I\()PHlUS handling l)f timeOllb and other
infrequent eVl;!nts. The driver (or ce,mmon-carrier lines
is similar, hut has a third process which makes a collec­
tion of lines resemhle J single Ethernet by iteratively
simulating a hroad~.\ht. The ~)ther network drivers have
much the same structure; all drivers provide the same
standard network interface to higher level ..;oftware.

The next level of software provides packet routing
and dIspatching functions. The Jispalcher l0nsists of ,1
monitor and a dedicated process. The monitor synchr~)­
nizes interactions between the Jri\er:~ anJ the disratcher
process. The dispatcher process IS normally waiting for
the completion of a IXil ket transfcl (input or output):
when one occurs, the interrupt process handles the inter­
rupt. notifies the di~r)(ltchel. ano immediately returns to
await the next interrHpt. For ex.ample. on input the
interrupt process notifies the dispatcher, which dis­
patches the newly arrived packet to the appropriate
socket for further processing hy invl)king a procedure
associated with the socket.

The router contains a monitor which keeps a routing
table mapping network names to addresses of other
gateway machines. This defines the next "hop" in the
path to each accessible remote network. The router also
contains a dedicated housekeeping process which main­
tains the tahle by exchanging special packets with other
gateways. A packet is transmitted rather differently than
it is received. The process wishing to transmit to a remote
socket calls into the router monitor to consult the routing
tahle, and then the same process calls directly into the
appropriate network driver monitor to initiate the output
operation. Such asymmetry between input and output
is particularly characteristic of packet communication,
but is also typical of much other I/O software.

The primary operation of the gateway is now easy to
describe: When the arrival of a packet has been processed
up through the level of the dispatcher, and it is discovered
that the packet is addressed to a remote socket, the
dispatcher forwards it by doing a normal transmission;
i.e., consulting the routing table and calling back down
to the driver to initiate output. Thus, although the gate­
way contains a substantial number of asynchronous
processes, the most critical path (forwarding a message)
involves only a single switch between a pair of processes.

Conclusion

The integration of processes and monitors into the
Mesa language was a somewhat more substantial task
than one might have anticipated, given the flexibility of
Mesa's control structures and the amount of published
work on monitors. This was largely due to the fact that
Mesa is designed for the construction of large, serious
programs, and that processes and monitors had to be

refined sufficiently to fit into this context. The task has
heen accomplished, however. yielding a set of language
features of sufficient power that they serve as the only
software concurrency mechanism on our personal com­
puter. handling situations ranging from input/output
interrupts to cooperative resource sharing among unre­
lated application programs.

Received June 19'79: accepted September 1979: revised No ember IY7Y

R('[('renccs
I. American Sationa! Standard Praf!,famming Lmguage Pl./ I.
Xl.5~. American Nat. Standards Inst..]\iew York. 197b.
2. Bl)ggS. D.R .. et. al. Pup: An internetwork architecture If.IF
FrailI' (If! Communications IN, 4 (April IYXO).
3. Brinch Hansen. P. Operating Sl's/em Principles. Prentice-Hall.
Englewood Cliffs. New Jersey. July 1973.
~. Brinch Hansen. P. The programming language Concurrent
Pascal. IEEE Trans. on Sr!/iware Eng. 1.2 (June 1975). IYY-207.
5. Dijbtra. LW. Hierarchical ordering of seLjuential processes. In
Operating Srstems li!chniques. Academic Press. New York. 1972.
6. Gifford. D.K. Weighted voting for replicated data. Operating
Sl.lts. ReI'. 13.5 (Dec. 1979). 150 .. 162.
7. Gifford. D.K. Violet. an experimental decentralized system.
Integrated Office Syst. Workshop. IRIA. RocLjuenc()un. France.]\inv.
I Y79 (also availahle as CSL Rep. 79-12. Xerox Res. Ctr.. Palo Alto.
Calif).
8. Hoare. CA.R. Monitors: An operating system structuring
concept Comm. ACM 17, 10 (Oct. 1974),549-557.
9. Hoare. C.A.R. Communicating sequential processes. Comm.
AeM ll, 8 (Aug. 1978),666-677.
10. Howard. J.H. Signaling in monitors. Second Int. ConL on
Software Eng., San Francisco. Calif.. Oct. 1976. pp. 47-52.
11. Israel. J.E .. Mitchell. J.G .. and Sturgis. H.E. Separating data
from function in a distributed file system. Second Int Symp. on
Operating Systs .. IRIA, Rocquencourt. France, Oct. 1978.
12. Keedy. J.1. On structuring operating systems with monitors.
Australian Comptr. J. If), I (Feb. 1978).23-27 (reprinted in OperatinJ!,
Srsts. ReI'. 13. I (Jan. 1979). 5-9).
13. Lampson. B.W., Mitchell. J.G .. and Satterthwaite. E.H On the
transfer of control between contexts. In Lecture Notes in Compu/er
Science N. Springer-Verlag. New York, 1974. pp. 181-203.
14. Lauer. H.E.. and Needham. R.M. On the duality of operating
system structures. Second Int. Symp. on Operating Systems. IRIA,
RocLjuencourt. France, Oct. 1978 (reprinted in OperatinJ!, .~rsts. ReI'.
13.2 (April 1979).3-19).
15. Lister, A.M., and Maynard. K.1. An implementation of monitors.
Sojiware-· Practice and Experience n. 3 (July 1976).377-386.
16. Metcalfe. R.M .. and Boggs, D.G. Ethernet: Packet switching for
local computer networks. Comm. ACM N. 7 (July 1976).395-403.
17. MitchelL J.G .. Maybury, W., and Sweet. R. Mesa Language
Manual. Xerox Res. Ctr., Palo Alto. Calif.. 1979.
18. RedelL D .. et. al. Pilot: An operating system for a personal
computer. Comm. ACM 23,2 (Feb. 1980).
19. Saltzer. J.H. Traffic control in a multiplexed computer system.
Th., MAC-TR-30. MIT, Cambridge. Mass., July 1966.
20. Saxena. A.R .. and Bredt. T.H. A structured specification l)f a
hierarchical operating system. SIGPLAN Notices 10.6 (June 1975).
3\0-318.
21. Wirth. N. Modula: A language for modular multiprogramming.
Software-- Pract ice and Experience 7, I (J an. 1977). 3- 36.

203

204

Traits:
An Approach to

Multiple-Inheritance Subclassing
Gael Curry, Larry Baer, Daniel Lipkie, Bruce Lee

Xerox Corporation, F.l Segundo, California

Abstract: This paper describes a new technique for
organizing software which has been used successfully
by the Xerox Star 8010 workstation. The workstation
(WS) software is written in an nobject-oriented" style:
it can be viewed as a system of inter-communicating
objects of different object types. Most of the WS
software considers object types to be constructed by
assembling more primitive abstractions called traits.
A trait is a characteristic of an object, and is expressed
as a set of operations which may be applied to objects
carrying that trait. The traits model of subclassing
generalizes the SIMULA-67 model by permitting
multiple inheritance paths. This paper describes the
relationship ofWS software to the traits model and
then describes the model itself.

Star Workstation Software and the Traits Model

History: Star WS software has been committed to an
object-oriented coding style (discussed shortly) in the
Mesa programming language[Mitche1l79] since actual
development first started in the spring of 1978
[Harslem 82]. Initial designs did not rely on
subclassing. This was partly because the designers
had had little experience with it (authors included),
and partly because an extensible design based on
subclassing seemed to necessitate a violation of Mesa's
type system. An early Star text editor was built
without the benefit of subclassing. It gradually
became clear that significant code-sharing was
possible if the design were based on subclassing, since
the objects we were dealing with were more similar
than different.

By late 1978, we had re-implemented that editor in
terms of SIMULA-67-style subclassing, where object
types were considered to form a tree under the
specialization relation. The subclassing was
represented as coding conventions in Mesa. That was
a great help, particularly the analogue of SIMULA-67
VIRTUAL procedures (which permitted operations to
be specified at more abstract levels and interpreted at
more concrete ones). Use of this subclassing style
extended into other areas of WS software, especially
support for property sheets and open icon windows
[Smith 82], [Seybold 81]; Star graphics and tables were
initially designed in these terms also. As the class
hierarchy grew, we began to notice that the constraint
of pure-tree class hierarchies was causing code to
become contorted, and that generalizing the concept of
"class hierarchy" to include directed acyclic graphs
would allow code to be organized more cleanly.

A new subclassing model was defined along those
lines. It postulated that object types were constructed
from more primitive abstractions, traits,
corresponding roughly to SIMULA-67 classes. The
major difference was that a given trait may be defined
in terms of several more primitive ones, rather than
just a single one. Supporting software - the ('Traits
Mechanism" - was implemented in late 1979. Star
graphics [Lipkie 82] was the first major piece of Star
software designed in terms of traits and using the full
generality of the model. Other areas, especially Star
folders and record files, began using the generality
permitted by traits heavily.

The Traits Mechanism: A major design goal was to
make the new mechanism as efficient as the old coding
pattern for the case of static, tree-structured class
hierarchies. We found a way to do this with a
particular global optimization (outside the scope of
this paper), but it required that a central facility, or
trait manager, collect information about all extant
traits. This trait manager collects information from
each trait in the system regarding its storage
requirements, arranges that trait's storage (in objects)

fOi' optimum access, and mediates access to it upon the
individual trait's demand. Client code (code calling
the trait mechanism) adopts a Mesa coding pattern to
use trait-style subclassing.

Another important property of the traits mechanism is
that the cost of accessing a trait's data in an object, or
the implementation of an operation that the trait
introduces, is not a function of the position of the trait
in the class hierarchy. There is no run-time searching.

Star today: Star software has been using the Traits
~odel of subclaSsing since 1979 with good results.
Star-1 was completed in October, 1981. It defined 169
traits. Of those, 129 were object types, or class traits;
i.e., 40 were purely internal abstractions. In general,
each trait requires some storage in objects which carry
it; 99 were of this sort. Also, each trait introduces
some number of operations which can be applied to
objects which carry it. While not all of these
operations may be "VIRTUAL", 31 traits in Star-1
introduce this kind of operation.

The Traits Model

Object Orientation: Object-orientation is a method
for orgamzmg software where, at any time,
computation is performed under the aegis of a
particular object. Part of the computation may include
transferring control and information to another object
(message-passing), which then continues the
computation; control and other information may be
returned to the first subsequently. An object's state is
typically represented as some sort of storage; each
object has a name. A restricted form of message­
passing is typically represented by procedure call,
where a distinguished parameter of each procedure is
the name of the object which is to continue the
computation. Objects' state may be represented as
records, pointers to records, names of records, implicit
records, or in any number of other ways.

Subclassing : SIMULA-67 noted that often an object
is a specialization of another, being able to to the job of
the first - and more. It provided a means of expressing
the common portion once, in order that the specialized
object need only specify the way in which it was
different from the simpler one. The specialized object
inherited the properties of the simpler one.

The Traits model notes that an object (type) may be a
synthesis of several component abstractions, being
able to do the job of its components and more. It
provides a means of expressing the common, or shared,
parts once.

In both cases advantages come from sharing: clarity of
code through factoring or abstraction; uniformity of
behavior, including correctness; ease of maintenance;
reduced swapping. Another important property for
large systems, which both models possess, is
extensibility: the addition of a new class or trait does
not invalidate existing code.

Instances: There is a wide range of interpretations
for the term "object". In order to avoid problems of
language, we will use the term instance to refer to any
of the objects in our universe of discourse. This is left
intentionally vague.

Instances have state, which allows them to remember
information. They also have names, or handles. Often
an instance will remember the names of other useful
instances.

Operations: An operation is a means of presenting
information to and/or extracting information from an
instance. Every instance possesses an identifiable set
of operations, called its operation set. An operation is
applied to an instance, perhaps presenting some
information to the instance (in a well-defined format)
and perhaps receiving some information from it (also
in a well-defined format) in return. Applying an
operation to an instance changes the state of the
instance, in general.

Each operation has a specification and a realization;
the realization meets the specification. The range of
specifications in actual practice extends from strictly
functional inpuUoutput specifications, to those
including some behavioral clauses (operational
specifications), to those including contextual clauses
(behavior varies with context), to that which is simply
"it works when you plug it in". Two operations are
equal if they have the same specification and
realization. They are equivalent if they have the same
specification; one operation is a variant of another if
they are equivalent.

Types : Many times instances will have the same
operation set, being different only in their internal
state and in their identity. The universe of instances
can be partitioned into equivalence classes, based on
having the same operation set (that is, two instances
are in some sense equivalent if they have the same
operation set). These equivalence classes are types.
The operation set of a type is also well-defined.

This view says that two instances have different type if
their operation sets are different, however minor the
difference. While that is correct, it also ignores a lot of
information about exactly how those operation sets are
different.

205

206

Type Structure: There are many ways in which the
operation sets for types can be related to those of other
types.

• UNRELATED - The operation sets for all types can
be totally different, so that we see no interesting
type structure. This situation is supported well by
programming conventions which devote one
"module" to each type, and implement operations
for the type's operation set within that module.

• VARIATION - It may be that there is a one-to-one
correspondence between operations of one type and
those of another, and that each operation is
equivalent to its corresponding one. Then, each
type is a variant of the other. This situation is
supported well by the programming style which
accords each object one procedure variable for each
operation; realizations for each operation are
recorded in the corresponding procedure variable.
Streams are sometimes implemented this way.

• EXTENSION - It may be that all of the operations of
one type are equal to operations of another type,
but that the latter type has extra operations.
Then, the latter type is an extension of the former.
This situation is supported well by simple
inheri tance mechanisms.

• SPECIALIZATION - It may be that one type's
operation set can be gotten from another's by
variation, perhaps followed by extension. Then,
the former type is a specialization of the latter.
This situation is supported well by SIMULA-67 and
Smalltalk-80.

In the cases above, it was possible to see how the
operation sets could be derived from the operation sets
of other types. In the cases below, type structure is
derived from units which are more basic than other
types.

• UNIONS - It may be that of three types A, Band C :
A has operadons
B has operations
C has operations

01 U 02
02 U 03

01 U 03,

where 01 02 and 03 are sets of operations. This is
a somewhat contrived case. The same sort of thing
happens naturally on a larger scale (indeed,
perhaps only on a larger scale). Being minimal, the
example shows more clearly what is going on. In
this case, no type is a specialization of another, yet
there is clearly an interesting type structure.

Notice that the operation sets are not naturally
derivable from the operation sets of other types, but
rather from lower-level operation subsets. These

operation subsets represent a characterization of
some aspect of an instance's behavior in terms of a
set of operations. The pattern arises whenever an
instance has several independent aspects.

A trait is a characterization of an aspect of an
instance's behavior. The primary representation of
the trait may be an natural language description of
that aspect or may be some individual's intent for
or understanding of that aspect. The
chax;acterization is represented by a set of
spec'ifications for operations which, considered
together, embody that aspect. A set of operations
with those specifications is called an operation set
for the trai t.

• SYNTHESIS - It may be that one type's operation set
can be gotten from operation sets of several other
component traits by variation of the operations in
the trait operation sets, followed by union of the
results, perhaps followed by extension. Then, the
type is a synthesis of the component traits.

This is the basic operation adopted by the Traits
approach.

• RESTRICTED SYNTHESIS - It may be that one
type's operation set can be gotten from those of
several other component traits by synthesis,
followed by discarding some of the resulting
operations. This is not well handled by the current
Traits mechanism; it can be simulated by re­
defining an undesired component trait's operation
to have nil realization (Note that the operation may
then not meet its specification).

The discussion above has been analytical. It assumed
instances, operations and types already existed; it
tried to dissect the situ2-tion. The ensuing discussion
is constructive. It tries to develop a view of traits as
basic design units, in order to show how to
incrementally build a system of trait-based instances.

Traits: A trait is a characterization of an aspect of an
instance's behavior. It is expressed as a set of
operations. Some examples of traits are:

• IS-FORWARD-lINKED-lIST-ELEMENT - This represents
the notion that an instance carrying this trait will
be linked with other instances in some forward­
linked list. It specifies operations

GetLink:

PROC [instance: Instance]

RETURNS [Instance], and

SetLink:

PROC [instance: Instance,

instanceLink: Instance].

whose semantics are obvious.

• IS-TREE-ELEMENT - Represents the notion that an
instance carrying this trait will be embedded in a
tree of instances. It specifies operations

GetParent:

PROC [instance: Instance]

RETURNS [Instance],

SetParent:

PROC [instance: Instance,

instanceParent: Instance],

GetNextSibling:

PROC [instance: Instance]

RETURNS [Instance],

SetNextSibling :

PROC [instance: Instance,

instanceNextSibling : Instance],

GetEldestChild:

PROC [instance: Instance 1
RETURNS [Instance],

SetEldestChild :

PROC [instance: Instance,

instanceEldestChild : Instance],

whose semantics are also obvious.

• IS-NAMED - An instance carrying this trait has a
textual name. It specifies operations

GetName:

PROC [instance: Instance]

RETURNS [Name], and

SetName:

PROC [instance: Instance, name: Name],

whose semantics are obvious.

• IS-PRINTABLE - This represents the notion that the
instance can print itself. It specifies the operation

Print: PROC [instance: Instance, printer: Printer],

which causes the instance to emit an image level
representation of itself to a printer.

Note that the trait does not include realizations for the
various specifications.

Simple Traits : The traits listed above are simple
traits. A simple trait is completely defined by
specifying the operations which characterize it.
Figure 1 depicts a simple trait graphically.

YrilSiTREE;;ELEMENT•. •

Operation Name
GetParent
SetParent
GetNextSibling
SetNextSibling
GetEldestChild
SetEldestChild

Specification

SGetParent
SSetParent
SGetNextSibling
S SetN extS ibling
SGetEldestChild
SSetEldestChild

Figure 1. Definition of Simple Trait T

Compound Traits: Sometimes a trait will be best
expressed as the "sum" of other traits. For example,
the trait

IS-IN-NAME-HIERARCHY =
IS-TREE-ELEMENT U IS-NAMED.

specifies operations for an element of a named instance
hierarchy. The operations specified by IS-IN-NAME­

HIERARCHY might be the union of the operations
specified by IS-TREE-ELEMENT and IS-NAMED individually.
An instance having that trait would know that it was
part of an instance hierarchy, and would know it was
named. It mayor may not know the same for its
subordinates in that hierarchy.

In any case, it might be meaningful to augment that
trait's operation set with something like

Search:

PROCEDURE [instance: Instance, name: Name]

RETURNS [Instance],

which would return the name of the subordinate
having the indicated name, if there was one, and
instanceNil otherwise.

We could define a new trait, IS-SEARCHABLE, which
specifies the Search operation as its sole operation - in
order to define the compound trait

IS-TREE-ELEMENT U IS-NAMED U IS·SEARCHABLE,

but it seems more straightforward to associate it
directly with the compound trait, as in

IS·IN·NAME·HIERARCHY =
IS·TREE·ELEMENT U IS·NAMED U {Search}.

The latter demonstrates the compounding method for
trait definitions. Figure 2 illustrates the compounding
graphically.

The ttCarries" Relation : A trait directly carries
another trait if it is defined in terms of that trait. So,
for example, IS·IN·NAME-HIERARCHY carries IS-NAMED

directly. "carries" is the reflexive transitive closure of
«directly carries", and we assume it is acyclic.

207

208

Operation Name
Search

S peci{ication

SSearch

T: IS-TREE-ELEMENT
Operation Name
GetParent
SetParent
GetNextSibling

SetN extS ibling
GetEldestChild
SetEldestChild

Spec i(ication

SGetParent
SSetParent
SGetN extS ibling
SSetN extS ibling

SGetEldestChild
SSetEldestChild

. N: IS·NAMED
Operation Name
GetName
SetName

carries

Spec i(ication
SGetName
SSetName

Figure 2. Definition of Compound Trait H

The Traits Graph: The collection of all traits used in
a system of instances are inter-related, and form a
directed acyclic graph under the "carries" relation.
Nodes in the graph represent traits. Arcs represent
the "carries" relation. Associated with each node in
the traits graph are the specifications for operations
introduced at that level. For simple traits, that means
all of its operations. For compound traits, that means
operations over and above those of the component
traits. Figure 3 shows a possible trait graph.

T
Names Specs
06 S6

Names Specs
02 S2

T.:.

Figure 3. A Possible Traits Graph

Realizations for Trait Operations : Every trait
determines a set of "carried" traits (i.e., those that it
dominates in the traits graph). A trait may

recomniend or provide optional realizations for each of

its operations - including operations introduced by the
traits it carries. Figure 4 shows trait Ts carrying
traits Tl, T2, T4, T5, and Ts (itselO by displaying them
in bold. The boxes adjoining each of those traits

N
01

.. ---•........ ,
Real'zns:

§E.
55 RT./T6J: .. ---•........ ~

........ _-•........ ,
Real'zns:

RT/T6J : RT/T6J: ... _-_ •........ ~ ... _-_ •........ ~
Figure 4. Realizations for Operations of Carried

Traits

represent trait T6'S choices of realizations for the
operations of its carried traits. The notation RTJTj]
means Tj's choices for the realizations for the
operations introduced by trait Ti.

Default Realizations : A t!""ait always assign.s a
default realization to each of the operations it
introduces. The default realization may be the nil
realization.

Optional Realizations : A trait sometimes makes
optional realizations for its operations available. For
any of a trait's operations, a trait may designate a pool
of realizations from which other traits may choose
their default realizations. This helps to maximize
sharing. The default realization for an operation
should be viewed as a distinguished member of the set
of optional realizations for that operation. Figure 5
shows a closeup of the realizations for a particular
operation 0 of a carried trait. The notation rofT]

o s

. ,
Realizations

rofT) =
< optionsofT}, dfltofT} >

•
•
•
•

... _ _____II

Figure 5. rofT] - Realizations for 0 in T

denotes T's choices for realizations of o. ro[T] is a 2-
tuple. The first element is a set of optional realizations
for 0 from the trait T's point of view; they must all
meet the specification s. The second element is a
singleton or empty set of realizations from optionsafT]
which are T's choices for what it considers to be the
default realization for o. All of the operations in rafT']
must in some sense be defined below the level ofT.

Inheritance of Realizations for Operations: In
principle, each trait in the trait graph for a system is
solely responsible for determining the realizations for
the operations of all of the traits it carries. In practice
we find that most of a trait's choices for operations of a
carried trait are exactly the choices of the traits that it
directly carries for those operations. For this reason,
realizations for a trait's operations are defined
ini tially by inheritance.

Pure Inheritance : That is, unless the trait declares
otherwise, its assignment of realizations to the
operations of carried traits will be the union of
assignments made by the traits it immediately carries.
If those choices do not suit the trait, it must be able to
override those assignments. The trait always has
opportunity to define optional realizations for the
operations that it itself introduces; it has the
responsibility for defining default realizations for
those operations if it can.

Suppose T is a trait in some trait graph, and that it
carries a trait S which introduces an operation o.
Suppose that S is carried by immediate sub-traits Ti ...
Tk ofT. Th~n we have: .

ralTjl =
< optionsolTjJ, defaultolTjJ >. for j = i, ... , k.

The trait T initially views its realizations for the
operation 0 as consisting of the union of the
realizations as seen by each of the immediate sub­
traits, and is potentially confused about the default
realization:

inherited-ralT] =
<inherited-optionsolTJ,inherited-defaultolT] >,

where
inherited-optionsolT] =

optionsolTJ U ... U optionsolTkl, and
inherited-defaultolT] =

defaultolTJ U ... U defaultolTkl.

The difficulty is clear - traits Tj and Tj' can specify
different default realizations for an operation of a
shared sub-trait, so that pure inheritance does not
guarantee well-defined default realizations for
operations.

Consistent Inheritance and Conflict Resolution:
If 0 is an operation introduced by trait S carried by
trait T, the realizations for 0 are consistently inherited

at Tiff inherited-defaultolT] is a singleton or null. If
this is not the case, then the trait T must resolve the
inconsistency by explicitly designating some
realization as the default. It is a design error for T not
to do so.

Qualified Inheritance: Normally, a trait need not
explicitly designate realizations for any but its own
operations (except to resolve occurrences of
inconsistent inheritance). However, it is the trait's
prerogative to modify its realizations for any operation
introduced by a trait it carries. This includes changing
the default, or modifying the set of optional
realiza tions.

Traits, Class Traits and Instances: There is a set of
operation names associated with every trait T in the
trait graph for a system. Those include names for
operations introduced by the trait itself, as well as
names for operations introduced by carried traits.
Specifications exist for each of the names. Associated
with each of those names is also a default realization
(actually, some might be nil, but ignore that problem
for now). The operation set for a trait T in a trait
graph is the set of operations

{ 0 : < s, defaultolT] >,
where 0 is an operation introduced by a trait
carried by T, s is its specification}.

It might be nice to have instances extant in the system
with the same operation set as certain traits.

In some cases, it doesn't seem to make much sense. It doesn't

seem like it would be very useful to have instances whose

operation set is the same as that of the simple trait IS­

FORWARD-LINKED-LIST-ELEMENT; those instances would be

pretty uninteresting.

Any trait having such an interesting operation set can
be designated a class trait, and instances having the
same operation set can be generated. The instance is
tagged with the name of its class trait; that is the
instance's type. The instance carries the same traits as
its class trai t.

Specifications for Trait Operations: Any operation
for a trait T should have well-defined semantics. The
meaning of an operation should be specified as clearly
as possible when the trait is defined. That
specification is the invariant part of the trait; it does
not change (as do realizations for the operation)
depending on which other trai t is carrying T.

The specification for a trait's operation should be in
terms of the instance carrying the trait. The client of a
trait must have a clear idea of the meaning of an
operation's semantics independent of its carrier.

209

210

Denoting Applications of Trait Operations : The
application of an operation to an instance is often
denoted as

<results> +- instance.operation[<parameters>].

The denotation is non-committal regarding the trait
(subclass) to which the operation belongs. That has
the advantage that the denotation need not change if
the operation migrates from one trait to another
during the course of system development. It has the
disadvantage that it presents the instance as having a
rather unstructured "pile" of operations, which may
make the nature of the instance harder to understand.
If structure in the set of operations applicable to an
instance can be clearly seen, perhaps it should be
expressed, as in

<results> +-
instance.operationtrait[< parameters>],

where "operation" is introduced by "trait".

Another possible form is:

<results> +-
trait.operation[instance, < parameters>].

In both of the cases above where the trait is mentioned,
it is assumed that the instance carries the trait
introducing the operation. The last form is well suited
for use in a module-oriented language. where each
trait can be represented by a single module.

Expressing Realizations for Trait Operations : It
is important to find a way to express realizations of a
trait's operations in a way which is independent of
context (i.e., who carries that trait), so that
realizations for a trait need be implemented when the
trait is defined (as opposed to only when it is carried).

A realization is expressed in terms of ttcode" to be
invoked over a particular instance I. That code may
express the application of an operation of a carried
trait to the same instance I. It may also involve
applying operations to another instance I' of which I
has knowledge (remembers, or was just told about). It
may also involve changing the state of the instance
somehow.

The code may also involve computations over other
'tobjects" which happen not to be instances in the
system in question. For example, it may involve
numeric computations. While in principle 'tnumber
objects" might be instances, performance
considerations might recommend against it. All that
is required is that the code be able to compute locally,
invoke operations over instances, incorporate the
results .of such invocations, and change appropriate

parts of the state of the instance upon which the code is
operating.

Instance State vs. Trait State I Trait Data: Suppose
T is a simple trait which introduces operation 0 with
specification s, and assigns as its default realization r.
Suppose i is an instance carrying T. If the specification
s indicates that applying 0 to i will change the state of
i, then it is important to ask how the realization r
accesses the state it needs to change.

The problem is addressed in the Traits model by
asserting that every trait carried by an instance has
its own state, or storage, within the larger state of the
instance itself. We go so far as to say that the state
space of an instance is the product of the state spaces of
the traits that it carries. Figure 6 expresses that idea
graphically. Furthermore, only realizations defined

I s;,or~!.: for

I
i J. l u-u-.u.

: .. I
Figure 6. Instance Storage is the Sum of Trait

Storage

by the trait can access or modify that trait storage
directly. The internal format for a trait's storage is
completely up to the trait itself.

We will say nothing about the location of storage for a
particular trait in instance storage. All that is
important is that a realization defined to act directly
on the storage for a particular trait must be able to
gain access to that storage. For this purpose (and
others) there is a trait manager, who knows how to
access the storage for any particular trait, given the
instance's name and the trait's name.

Instance Initialization : When an instance is
generated, storage is obtained from somewhere.
Embedded in that storage is storage for the individual
traits carried by that instance. After the storage is
allocated, individual traits are told to initialize their
storage. Carried traits initialize their storage before
carrying traits. In the example in Figure 6, trait Tl
would be told to initialize its storage before trait T4
was so instructed, which would be done before trait T6

was so instructed. The bottom-up order of trait
initialization permits carrying traits to invoke carried
traits operations during their own initialization.

Classes: Instances may be generated for class traits.
If T is a class trait, then it needs to record its choices
for realizations for all of the operations it carries. The
Traits model postulates a class (object) for each class
trait. Associated with this class is storage which
records the choice of realizations. For brevity, the
operation set of the class trait is called the behavior of
the class.

Every trait which is carried by the class introduces
some number of operations whose realizations can be
assigned by the class. Associated with each trait T
carried by a class trait Tc is enough storage to record
the class trait's realizations for the operations of T.
Figure 7 depicts that situation.

Storage for
DefaultT zIT 61

Figure 7. Class Storage Records Realizations for
Trait Operations

Again, we will say nothing about the location of
storage for a particular trait in class storage. All that
is important is that at the time a trait operation is
invoked, the realization for that operation can be
found. The trait manager knows how to access a
particular trait's (realizations) storage, given the
name of the instance and the name of the trait.

Class Initialization : Initialization of a class is a
bottom-up enumeration of that part of the traits graph
dominated by the class' trait. Each trait enumerated
should override any default realizations of the traits it
carries and should establish its own default
realizations. In order to do so, it must be able to obtain
access to its component of class storage.

Instantiation: The class (object) is generally viewed
as the agent which generates, or instantiates,
instances. There may be many instances associated
with a particular class, but the storage for recording

the class trait's choices for default realizations is
allocated only once.

Conclusions

Multiple-inheritance subclassing is a valid and useful
method for organizing object-oriented software; as
demonstrated by the existence of the Star
Workstation. The complexity of the Star WS software
has been controlled by object-orientation first,
subclassing second and multiple-inheritance third.

The Traits Model is a reasonable approach to multiple­
inheritance subclassing. It is possible to implement
efficient supporting mechanisms, especially for
statically specified class structures. The Traits
mechanism is optimal for pure-tree class structures,
and deep class structures cost nothing extra at run­
time.

Acknowledgements : Derry Kabcenell and Tim
Rentsch made useful comments during early reviews
of the proposed Traits model. Eric Harslem allowed us
to apply this unproven software technique to a large
and important piece of software - successfully. Dan
Ingalls, Alan Borning, and Dave Gifford all later noted
the similarities between the traits approach and the
flavors approach [Weinreb 81] of the MIT LISP
machine and helped to articulate the differences. The
Xerox PARe Methodology Discussion Group made
plenty of interesting observations.

211

212

REFERENCES

[Harslem 82] E. Harslem and L.E. Nelson, "A
Retrospective on the Development of
Star," to be published in the
proceedings of the 6th International
Conference on Software Engineering;
Tokyo,Japan;Sept,1~82.

[Lipkie 82] Daniel Lipkie, Steven R. Evans,
Robert Weissman, John K. Newlin,
"Star Graphics : An Object Oriented
Implementation," to be published in
the proceedings ofSIGGRAPH 1982.

[Mitchell 78] J.G. Mitchell, W. Maybury, and R.E.
Sweet, "Mesa Language Manual,"
Technical report CSL-79-3, Xerox
Corporation, Palo Alto Research
Center, Palo Alto, California; April
1979.

[Weinreb 81] Daniel Weinreb, David Moon, USP
Machine Manual, Third Edition,
March, 1981.

[Seybold 81] Seybold Report, "Xerox's Star,"
Volume 10, Number 16; April 27,
1981.

[Smith 82] D.C. Smith, E. Harslem, C. Irby, R.
Kimball, "The Star User Interface, an
Overview," to be published ir: t~e

proceedings of NCe '82.

Operating Systems

Pilot: An Operating System for a Personal
Computer
David D. Redell, Yogeh K. Dalal, Thomas R. Horsley, Hugh C. Lauer, William C. Lynch,
Paul R. McJones, Hal G. Murray, and Stephen C. Purcell
Xerox Business Systems

The Pilot operating system provides a single-user,
single-language environment for higher level software
on a powerful personal computer. Its features include
virtual memory, a large "flat" file system, streams,
network communication facilities, and concurrent
programming support. Pilot thus provides rather more
powerful facilities than are normally associated with
personal computers. The exact facilities provided
display interesting similarities to and differences from
corresponding facilities provided in large multi-user
systems. Pilot is implemented entirely in Mesa, a high­
level system programming language. The
modularization of the implementation displays some
interesting aspects in terms of both the static structure
and dynamic interactions of the various components.

Key Words and Phrases: personal computer,
operating system, high-level language, virtual memory,
file, process, network, modular programming, system
structure

CR Categories: 4.32, 4.35, 4.42, 6.20

1. Introduction

As digital hardware becomes less expensive, more
resources can be devoted to providing a very high grade
of interactive service to computer users. One important
expression of this trend is the personal computer. The
dedication of a substantial computer to each individual
user suggests an operating system design emphasizing

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

A version of this paper was presented at the 7th ACM Symposium
on Operating Systems Principles, Pacific Grove, Calif., Dec. 10-12,
1979.

Authors' address: Xerox Business Systems, 3333 Coyote Hill Rd.,
Palo Alto, CA 94304.
© 1980 ACM 0001-0782/80/0200-0081 $00.75.

close user/system cooperation, allowing full exploitation
of a resource-rich environment. Such a system can also
function as its user's representative in a larger community
of autonomous personal computers and other informa­
tion resources, but tends to deemphasize the largely
ajudicatory role of a monolithic time-sharing system.

The Pilot operating system is designed for the per­
sonal computing environment. It provides a basic set of
services within which higher level programs can more
easily serve the user and/or communicate with other
programs on other machines. Pilot omits certain func­
tions that have been integrated into some other operating
systems, such as character-string naming and user-com­
mand interpretation; such facilities are provided by
higher level software, as needed. On the other hand,
Pilot provides a more complete set of services than is
normally associated with the "kernel" or "nucleus" of
an operating system. Pilot is closely coupled to the Mesa
programmJng langauge [16] and runs on a rather pow­
erful personal computer, which would have been thought
sufficient to support a substantial time-sharing system of
a few years ago. The primary user interface is a high
resolution bit-map display, with a keyboard and a point­
ing device. Secondary storage is provided by a sizable
moving-arm disk. A local packet network provides a
high bandwidth connection to other personal computers
and to server systems offering such remote services as
printing and shared file storage.

Much of the design of Pilot stems from an initial set
of assumptions and goals rather different from those
underlying most time-sharing systems. Pilot is a single­
language, single-user system, with only limited features
for protection and resource allocation. Pilot's protection
mechanisms are defensive, rather than absolute [9], since
in a single-user system, errors are a more serious problem
than maliciousness. All protection in Pilot ultimately
depends on the type-checking provided by Mesa, which
is extremely reliable but by no means impenetrable. We
have chosen to ignore such problems as "Trojan Horse"
programs [20], not because they are unimportant, but
because our environment allows such threats to be coped
with adequately from outside the system. Similarly,

213

214

Pilot's resource allocation features are not oriented to­
ward enforcing fair distribution of scarce resources
among contending parties. In traditional multi-user sys­
tems, most resources tend to be in short supply, and
prevention of inequitable distribution is a serious prob­
lem. In a single-user system like Pilot, shortage of some
resource must generally be dealt with either through
more effective utilization or by adding more of the
resource.

The close coupling between Pilot and Mesa is based
on mutual interdependence; Pilot is written in Mesa, and
Mesa depends on Pilot for much of its runtime support.
Since other languages are not supported, many of the
language-independence arguments that tend to maintain
distance between an operating system and a program­
ming language are not relevant. In a sense, all of Pilot
can be thought of as a very powerful runtime support
package for the Mesa language. Naturally, none of these
considerations eliminates the need for careful structuring
of the combined Pilot/Mesa system to avoid accidental
circular dependencies.

Since the Mesa programming language formalizes
and emphasizes the distinction between an interface and
its implementation, it is particularly appropriate to split
the description of Pilot along these lines. As an environ­
ment for its client programs, Pilot consists of a set of
Mesa interfaces, each defining a group of related types,
operations, and error signals. Section 2 enumerates the
major interfaces of Pilot and describes their semantics,
in terms of both the formal interface and the intended
behavior of the system as a whole. As a Mesa program,
Pilot consists of a large collection of modules supporting
the various interfaces seen by clients. Section 3 describes
the interior structure of the Pilot implementation and
mentions a few of the lessons learned in implementing
an operating system in Mesa.

2. Pilot Interfaces

In Mesa, a large software system is constructed from
two kinds of modules: program modules specify the
algorithms and the actual data structures comprising the
implementation of the system, while definitions modules
formally specify the interfaces between program mod­
ules. Generally, a given interface, defined in a defmitions
module, is exported by one program module (its imple~
mentor) and imported by one or more other program
modules (its clients). Both program and definitions mod­
ules are written in the Mesa source language and are
compiled to produce binary object modules. The object
form of a program module contains the actual code to
be executed; the object form of a definitions module
contains detailed specifications controlling the binding
together of program modules. Modular programming in
Mesa is discussed in more detail by Lauer and Satterth­
waite [13].

Pilot contains two kinds of interfaces:

(i) Public interfaces defining the services piOvided by
Pilot to its clients (i.e .• higher level Mesa programs):

(2) Private interfaces, which form the connective tissue
binding the implementation together.

This section describes the major features supported by
the public interfaces of Pilot, including files, virtual
memory, streams, network communication, and concur­
rent programming support. Each interface defines some
number of named items, which are denoted Inter-
face.Item. There are four kinds of items in interfaces:
types, procedures, constants, and error signals. (For ex­
ample, the interface File defines the type File. Capability,
the procedure File. Create, the constant file.maxPages
PerFile, and the error signal File. Unknown.) The discus­
sion that follows makes no attempt at complete enumer­
ation of the items in each interface, but focuses instead
on the overall facility provided, emphasizing the more
important and unusual features of Pilot.

2.1 Files
The Pilot interfaces File and Volume define the basic

facilities for permanent storage of data. Files are the
standard containers for information storage; volumes
represent the media on which files are stored (e.g., mag­
netic disks). Higher level software is expected to super­
impose further structure on files and volumes as neces­
sary (e.g., an executable subsystem on a file, or a detach­
able directory subtree on a removable volume). The
emphasis at the Pilot level is on simple but powerful
primitives for accessing large bodies of information. Pilot
can handle files containing up to about a million pages
of English text, and volumes larger than any currently
available storage device (_101

:
3 bits). The total number

of files and volumes that can exist is essentially un­
bounded (264

). The space of files provided is "flat," in
the sense that files have no recognized relationships
among them (e.g., no directory hierarchy). The size of a
file is adjustable in units of pages. As discussed below,
the contents of a file are accessed by mapping one or
more of its pages into a section of virtual memory.

The File. Create operation creates a new file and
returns a capability for it. Pilot file capabilities are
intended for defenSive protection against errors [9]; they
are mechanically similar to capabilities used in other
systems for absolute protection, but are not desigfted to
withstand determined attack by a malicious programmer.
More significant than the protection aspect of capabilities
is the fact that files and volumes are named by 64-bit
universal identifiers (uids) which are guaranteed unique
in both space and time. This means that distinct files,
created anywhere at any time by any incarnation of
Pilot, wil~ always have distinct uids. This guarantee is
crucial, since removable volumes are expected to be a
standard method of transporting information from one

Pilot system to another. If uid -ambiguity were allowed
(e.g., different files on the same machine with the same
uid), Pilot's life would become more difficult, and uids
would be much less useful to clients. To guarantee
uniqueness, Pilot essentially· concatenates the machine
serial number with the real time clock to produce each
new uid.

Pilot attaches only a small fixed set of attributes to
each file, with the expectation that a higher level direc­
tory facility will provide an extendible mechanism for
associating with a file more general properties unknown
to Pilot (e.g., length in bytes, date of creation, etc.). Pilot
recognizes only four attributes: size, type, permanence,
and immutability.

The size of a file is adjustable from 0 pages to 223

pages, each containing 512 bytes. When the size of a file
is increased, Pilot attempts to avoid fragmentation of
storage on the physical device so that sequential or
otherwise clustered accesses can exploit physical conti­
guity. On the other hand, random probes into a file are
handled as efficiently as possible, by minimizing file
system mapping overhead.

The type of a file is a 16-bit tag which is essentially
uninterpreted, but is implemented at the Pilot level to
aid in type-dependent recovery of the file system (e.g.,
after a system failure). Such recovery is discussed further
in Section 3.4.

Permanence is an attribute attached to Pilot files that
are intended to hold valuable permanent information.
The intent is that creation of such a file proceed in four
steps:

(1) The file is created using File. Create and has tempo­
rary status.

(2) A capability for the file is stored in some permanent
directory structure.

(3) The file is made permanent using the
File.MakePermanent operation.

(4) The valuable contents are placed in the file.

If a system failure occurs before step 3,- the file will be
automatically deleted (by the scavenger; see Section 3.4)
w hen the system restarts; if a system failure occurs after
step 2, the file is registered in the directory structure and
is thereby accessible. (In particular, a failure between
steps 2 and 3 produces a. registered but nonexistent file,
an eventuality which any robust directory system must
be prepared to cope with.) This simple mechanism solves
the "lost object problem" [25] in which inaccessible files
take up space but cannot be deleted. Temporary files are
also useful as scratch storage which will be reclaimed
automatically in case of system failure.

A Pilot file may be made immutable. This means that
it is permanently read-only and may never be modified
again under any circumstances. The intent is that mul­
tiple physical copies of an immutable file, all sharing the
same universal identifier, may be replicated at many
physical sites to improve accessibility without danger of

ambiguity concerning the contents of the file. For ex­
ample, a higher level "linkage editor" program might
wish to link a pair of object-code files by embedding the
uid of one in the other. This would be efficient and
unambiguous, but would fail if the contents were copied
into a new pair of files, since they would have different
uids. Making such files immutable and using a special
operation (File.Replicatelmmutable) allows propagation
of physical copies to other volumes without changing the
uids, thus preserving any direct uid-Ievel bindings.

As with files, Pilot treats volumes in a straightforward
fashion, while at the same time avoiding oversimplifica­
tions that would render its facilities inadequate for de­
manding clients. Several different sizes and types of
storage devices are supported as Pilot volumes. (All are
varieties of moving-arm disk, removable or nonremova­
ble; other nonvolatile random access storage devices
could be supported.) The simplest notion of a volume
would correspond one to one with a physical storage
medium. This is too restrictive, and hence the abstraction
presented at the Volume interface is actually a logical
volume; Pilot is fairly flexible about the correspondence
between logical volumes and physical volumes (e.g., disk
packs, diskettes, etc.). On the one hand, it is possible to
have a large logical volume which spans several physical
volumes. Conversely, it is possible to put several, small
logical volumes on the same physical volume. In all
cases, Pilot recognizes the comings and goings of physical
volumes (e.g., mounting a disk pack) and makes acces­
sible to client programs. those logical volumes all of
whose pages are on-line.

Two examples which originally motivated the flexi­
bility of the volume machinery were database applica­
tions, in which a very large database could be cast as a
multi-disk-pack volume, and the CoPilot debugger,
which requires its own separate logical volume (see
Section 2.5), but must be usable on a single-disk machine.

2.2. Virtual Memory
The machine architecture on which Pilot runs defines

a simple linear virtual memory of up to 232 16-bit words.
All computations on the machine (including Pilot itself)
run in the same address space, which is unadorned with
any noteworthy features, save a set ofthree flags attached
to each page: referenced, written, and write-protected.
Pilot structures this homogenous address space into con­
tiguous runs of page called spaces, accessed through the
interface Space. Above the level of Pilot, client software
superimposes still further structure upon the contents of
spaces, casting them as client -defined data structures
within the Mesa language.

While the underlying linear virtual memory is con­
ventional and fairly straightforward, the space machin­
ery superimposed by Pilot is somewhat novel in its
design, and rather more powerful than one would expect
given the simplicity of the Space interface. A space is
capable of playing three fundamental roles:

215

216

Allocation Entity. To allocate a region of virtual
memory, a client creates a space of appropriate size.

Mapping Entity. To associate information content
and backing store with a region of virtual memory, a
client maps a space to a region of some file.

Swapping Entity. The transfer of pages between pri­
mary memory and backing store is performed in units of
spaces.

Any given space may play any or all of these roles.
Largely because of their multifunctional nature, it is
often useful to nest spaces. A new space is always created
as a subspace of some previously existing space, so that
the set of all spaces forms a tree by containment, the root
of which is a predefined space covering all of virtual
memory.

Spaces function as allocation entities in two senses:
when a space is created, by calling Space. Create, it is
serving as the unit of allocation; if it is later broken into
subspaces, it is serving as an allocation subpool within
which smaller units are allocated and freed [19]. Such
suballocation may be nested to several levels; at some
level (typically fairly quickly) the page granularity of the
space mechanism becomes too coarse, at which point
finer grained allocation must be performed by higher
level software.

Spaces function as mapping entities when the oper­
ation Space.Map is applied to them. This operation
associates the space with a run of pages in a file, thus
defining the content of each page of the space as the
content of its associated file page, and propagating the
write-protection status of the file capabIlity to the space.
At any given time, a page in virtual memory may be
accessed only if its content is well-defined, i.e., if exactly
one of the nested spaces containing it is mapped. If none
of the containing spaces is mapped, the fatal error
AddressFault is signaled. (The situation in which more
than one containing space is mapped cannot arise, since
the Space. Map operation checks that none of the ances­
tors or descendents of a space being mapped are them­
selves already mapped.) The decision to cast Address­
Fault and WriteProtectFault (i.e., storing into a write­
protected space) as fatal errors is based on the judgment
that any program which has incurred such a fault is
misusing the virtual memory facilities and should be
debugged; to this end, Pilot unconditionally activates the
CoPilot debugger (see Section 2.5).

Spaces function as swapping entities when a page of
a mapped space is found to be missing from primary
memory. The swapping strategy followed is essentially
to swap in the lowest level (i.e., smallest) space containing
the page (see Section 3.2). A client program can thus
optimize its swapping behavior by subdividing its
mapped spaces into subspaces containing items whose
access patterns are known to be strongly correlated. In
the absence of such subdivision, the entire mapped space
is swapped in. Note that while the client can always opt
for demand paging (by breaking a space up into one­
page subspaces), this is not the default, since it tends to

promote thrashing. Further optimization is possible us­
ing the Space.A ctivate operation. This operation advises
Pilot that a space will be used soon and should be
swapped in as soon as possible. The inverse operation,
Space. Deactivate, advises Pilot that a space is no longer
needed in primary memory. The Space.Kill operation
advises Pilot that the current contents of a space are of
no further interest (i.e., will be completely overwritten
before next being read) so that useless swapping of the
data may be suppressed. These forms of optional advice
are intended to allow tuning of heavy traffic periods by
eliminating unnecessary transfers, by scheduling the disk
arm efficiently, and by insuring that during the visit to
a given arm position all of the appropriate transfers take
place. Such advice-taking is a good example of a feature
which has been deemed undesirable by most designers
of timesharing systems, but which can be very useful in
the context of a dedicated personal computer.

There is an intrinsic close coupling between Pilot's
file and virtual memory features: virtual memory is the
only access path to the contents of files, and files are the
only backing store for virtual memory; An alternative
would have been to provide a separate backing store for
virtual memory and require that clients transfer data
between virtual memory and files using explicit read/
write operations. There are several reasons for preferring
the mapping approach, including the following.

(I) Separating the operations of mapping and swapping
decouples buffer allocation from disk scheduling, as
compared with explicit file read/write operations.

(2) When a space is mapped, the read/write privileges
of the file capability can propagate automatically to
the space by setting a simple read/write lock in the
hardware memory map, allowing illegitimate stores
to be caught immediately.

(3) In either approach, there are certain cases that gen­
erate extra unnecessary disk transfers; extra "advice­
taking" operations like Space. Kill can eliminate the
extra disk transfers in the mapping approach; this
does not seem to apply to the read/write approach.

(4) It is relatively easy to simulate a read/write interface
given a mapping interface, and with appropriate use
of advice, the efficiency can be essentially the same.'
The converse appears to be false.

The Pilot virtual memory also provides an advice-like
operation called Space. ForceOut, which is designed as
an underpinning for client crash-recovery algorithms. (It
is advice-like in that its effect is invisible in normal
operation, but becomes visible if the system crashes.)
ForceOut causes a space's contents to be written to its
backing file and does not return until the write is com­
pleted. This means that the contents will survive a sub­
sequent system crash. Since Pilot's page replacement
algorithm is also free to write the pages to the file at any
time (e.g., between ForceOuts), this facility by itself does
not constitute even a minimal crash recovery mechanism;
it is intended only as a "toehold" for higher level software

to use in providing transactional atomicity in the face of
system crashes.

2.3 Streams and I/O Devices
A Pilot client can access an I/O device in three

different ways:

: 1) implicitly, via some feature of Pilot (e.g., a Pilot file
accessed via virtual memory);

(2) directly, via a low-level device driver interface ex-
ported from Pilot;

(3) indirectly, via the Pilot stream facility.

In keeping with the objectives of Pilot as an operating
system for a personal computer, most I/O devices are
made directly available to clients through low-level pro­
cedural interfaces. These interfaces generally do little
more than convert device-specific I/O operations into
appropriate procedure calls. The emphasis is on provid­
ing maximum flexibility to client programs; protection is
not required. The only exception to this policy is for
devices accessed implicitly by Pilot itself (e.g., disks used
for files), since chaos would ensue if clients also tried to
access them directly.

For most applications, direct device access via the
device driver interface is rather inconvenient, since all
the details of the device are exposed to view. Further­
more, many applications tend to reference devices in a
basically sequential fashion, with only occasional, and
usually very stylized, control or repositioning operations.
F or these reasons, the Pilot stream facility is provided,
comprising the following components:

(1) The stream interface, which defines device independ­
ent operations for full-duplex sequential access to a
source/sink of data. This is very similar in spirit to
the stream facilities of other operating systems, such
as os6 [23] and UNIX [18].

(2) A standard for stream components, which connect
streams to various devices and/or implement "on­
the-fly" transformations of the data flowing through
them.

(3) A means for cascading a number of primitive stream
components to provide a compound stream.

There are two kinds of stream components defined
by Pilot: the transducer and the filter. A transducer is a
module which imports a device driver interface and
exports an instance of the Pilot Stream interface. The
transducer is thus the implementation of the basic se­
quential access facility for that device. Pilot provides
standard transducers for a variety of supported devices.
A filter is a module which imports one instance of the
Pilot standard Stream interface and exports another. Its
purpose is to transform a stream of data "on the fly"
(e.g., to do code or format conversion). Naturally, clients
can augment the standard set of stream components
provided with Pilot by writing filters and transducers of
their own. The Stream interface provides for dynamic
binding of stream components at runtime, so that a

Fig. 1. A pipeline of cascaded stream components.

Client -1 Filter 1 ~ - - Device

transducer and a set of filters can be cascaded to provide
a pipeline, as shown in Figure 1.

The transducer occupies the lowest position in the
pipeline (Le., nearest the device) while the client program
accesses the highest position. Each filter accesses the next
lower filter (or transducer) via the Stream interface, just
as if it were a client program, so that no component need
be aware of its position in the pipeline, or of the nature
of the device at the end. This facility resembles the UNIX

pipe and filter facility, except that it is implemented
at the module level within the Pilot virtual memory,
rather than as a separate system task with its own address
space.

2.4 Communications

Mesa supports a shared-memory style of interprocess
communication for tightly coupled processes [11]~ Inter­
action between loosely coupled processes (e.g., suitable to
reside on different machines) is provided by the Pilot
communications facility. This facility allows client pro­
cesses. in different machines to communicate with each
other via a hierarchically structured family of packet
communication protocols. Communication software is
an integral part of Pilot, rather than an optional addition,
because Pilot is intended to be a suitable foundation for
network-based distributed systems.

The protocols are designed to provide communica­
tion across multiple interconnected networks. An inter­
connection of networks is referred to as an internet. A
Pilot internet typically consists of local, high bandwidth
Ethernet broadcast networks [15], and public and private
long-distance data networks like SBS, TELENET, TYMNET,

DDS, and ACS. Constituent networks are in,terconnected
by internetwork routers (often referred to as gateways in
the literature) which store and forward packets to their
destination using distributed routing algorithms [2, 4].
The constituent networks of an internet are used only as
a transmission medium. The source, destination, and
internetwork router computers are all Pilot machines.
Pilot provides software drivers for a variety of networks;
a given machine may connect directly to one or several
networks of the same or different kinds.

Pilot clients identify one another by means of network
addresses when they wish to communicate and need not
know anything about the internet toplogy or each other's
locations or even the structure of a network address. In
particular, it is not necessary that the two communicators
be on different computers. If they are on the same
computer, Pilot will optimize the transmission of data
between them and will avoid use of the physical network
resources. This implies that an isolated computer (i.e.,

217

218

one which is not connected to any network) may still
ccntain the communications facilities of Pilot. Pilot
clients on the same computer should communicate with
one another using Pilot's communications facilities, as
opposed to the tightly coupled mechanisms of Mesa, if
the communicators are loosely coupled subsystems that
could some day be reconfigured to execute on different
machines on the network. For example, printing and file
storage server programs written to communicate in the
loosely coupled mode could share the same machine if
the combined load were light. yet be easily moved to
separate machines if increased load justified the extra
cost.

A network address is a resource assigned to clients
by Pilot and identifies a specific socket on a specific
machine. A socket is simply a site from which packets
are transmitted and at which packets are received: it is
rather like a post office box, in the sense that there is no
assumed relationship among the packets being sent and
received via a given socket. The identity of a socket is
unique only at a given point in time; it may be reused,
since there is no long-term static association between the
socket and any other resources. Protection against dan­
gling references (e.g., delivery of packets intended for a
previous instance of a given socket) is guaranteed by
higher level protocols.

A network address is, in reality, a triple consisting of
a 16-bit network number, a 32-bit processor 10, and a
16-bit socket number, represented by a system-wide
Mesa data type S.vstem. NetworkA ddress. The internal
"tnJctur(, nf a netw0rk ~ddre"" ;" T10t lJ"ed h~' die"t", ~1Jt
by the communications facilities of Pilot and the inter­
network routers to deliver a packet to its destination.
The administrative procedures for the assignment of
network numbers and processor IDs to networks and
computers, respectively, are outside the scope of this
paper, as are the mechanisms by which clients find out
each others' network addresses.

The family of packet protocols by which Pilot pro­
vides communication is based on our experiences with
the Pup Protocols [2]. The Arpa Internetwork Protocol
family [8] resemble our protocols in spirit. The protocols
fall naturally into three levels:

Level 0: Every packet must be encapsulated for
transmission over a particular communication medium,
according to the network-specific rules for that commu­
nication medium. This has been termed level 0 in our
protocol hierarchy, since its definition is of no concern
to the typical Pilot client.

Levell: Level 1 defines the format of the internet­
work packet, which specifies among other things the
source and destination network addresses, a checksum
field, the length of the entire packet, a transport control
field that is used by internetwork routers, and a packet
type field that indicates the kind of packet defined at
level 2.

Level 2: A number of level 2 packet formats exist,
such as error packet, connection-oriented sequenced

packet. routing table uf1dat~ p:H.:ket. and so em. Varinu~;
level 2 prot(x.'ols arc defined ,h:cnrding tel the kinds of
level 2 packets they llse. and the rules governmg their
interaction.

The Socket interface provide:-- level I access to the
communication facilities. inciuding the ahility to create
a socket at a (local) networ/.. addres~. and (() transmit and
receive internetwork packets. In the terms of Section 2,3,
sockets can be thought of as I'irfuai devices, accessed
directly via the Sockef (virtual driver) interface. The
protocol defining the format of the internetwork packet
provides end-to-end communication at the packet level.
The internet is required only to be able to transport
independently addressed packets from source to desti­
nation network addresses. As a consequence. packets
transmitted over a socket may be expected to arrive at
their destination only with high prohahilizr and not nec­
essarily in the order they were transmitted. It is the
responsibility of the communicating end processes to
agree upon higher level protocols that provide the ap­
propriate level of reliable communication. The Socket
interface, therefore. provides service similar to that pro­
vided by networks that offer datagram services [17] and
is most useful for connectionless protocols.

The interface NetworkStream defines the principal
means by which Pilot clients can communicate reliably
between any two network addreses. It provides access to
the implementation of the sequenced packet protocol-a
level 2 protocol. This protocol provides sequenced, du­
plicate-suppressed, error-free. flow-controlled packet

nication networks and is similar in philosophy to the
Pup Byte Stream Protocol [2] or the Arpa Transmission
Control Protocol [3. 24]. This protocol is implemented as
a transducer, which converts the device-like Socket in­
terface into a Pilot stream. Thus all data transmission
via a network stream is invoked by means of the opera­
tions defined in the standard Stream interface.

Network streams provide reliable communication, in
the sense that the data is reliably sent from the source
transducer's packet buffer to the destination transducer's
packet buffer. No guarantees can be made as to whether
the data was successfully received by the destination
client or that the data was appropriately processed. This
final degree of reliability must lie with the clients of
network streams, since they alone know the higher level
protocol governing the data transfer. Pilot provides com­
munication with varying degrees of reliability. since the
communicating clients will, in general, have differing
needs for it. This is in keeping with the design goals of
Pilot, much like the provision of defensive rather than
absolute protection.

A network stream can be set up between two com­
municators in many ways. The most typical case, in a
network-based distributed system, involves a server (a
supplier of a service) at one end and a client of the service
at the other. Creation of such a network stream is
inherently asymmetric. At one end is the server which

advertise~ a network address to which clients can connect
h) obtain its services, Clients do this by calling
NelworkSrream.Creale. specifying the address of the
server as parameter. It is important that concurrent
requests from clients not conflict over the server's net~
work address; to avoid this. some additional machinery
is provided at the server end of the connection. When a
server is operational. one of its processes listens for
requests on its advertised network address. This is done
by calling NetworkStream.Listen, which automatically
creates a new network stream each time a request arrives
at the specified network address. The newly created
network stream connects the client to another unique
network address on the server machine, leaving the
server's advertised netw0rk address free for the reception
of additional requests.

The switchover from one network address to another
is transparent to the client, and is part of the definition
of the sequenced packet protocol. At the server end, the
Stream. Handle for the newly created stream is typically
passed to an agent, a subsidiary process or subsystem
which gives its full attention to performing the service
for that particular client. These two then communicate
by means of the new network stream set up between
them for the duration of the service. Of course, the
NetworkStream interface also provides mechanisms for
creating connections between arbitrary network ad­
dresses, where the relationship between the processes is
more general than that of server and client.

The mechanisms for establishing and deleting a con­
nection between any two communicators and for guard­
ing against old duplicate packets are a departure from
the mechanisms used by the Pup Byte Stream Protocol
[2] or the Transmission Control Protocol [22], although
our protocol embodies similar principles. A network
stream is terminated by calling NetworkStream.Delete.
This call initiates no network traffic and simply deletes
all the data structures associated with the network
stream. It is the responsibility of the communicating
processes to have decided a priori that they wish to
terminate the stream. This is in keeping with the decision
that the reliable processing of the transmitted data ulti­
mately rests with the clients of network streams.

The manner in which server addresses are advertised
by servers and discovered by clients is not defined by
Pilot; this facility must be provided by the architecture
of a particular distributed system built on Pilot. Gener­
ally, the binding of names of resources to their addresses
is accomplished by means of a network-based database
referred to as a clearinghouse. The manner in which the
binding is structured and the way in which clearing­
houses are located and accessed are outside the scope of
this paper.

The communication facilities of Pilot provide clients
various interfaces, which provide varying degrees of
service at the internetworking level. In keeping with the
overall design of Pilot, the communication facility at­
tempts to provide a standard set of features which cap-

ture the most common needs. while still allowing clients
to custom tailor their own solutions to their communi~
cations requirements if that proves necessary,

2.5 Mesa Language Support
The Mesa language provides a number of features

which require a nontrivial amount of runtime support
[16J. These are primarily involved with the control struc­
ture of the language [10, 11] which allow not only
recursive procedure calls, but also coroutines. concurrent
processes, and signals (a specialized form of dynamically
bound procedure call used primarily for exception han­
dling). The runtime support facilities are invoked in
three ways:

(1) explicitly, via normal Mesa interfaces exported by
Pilot (e.g .. the Process interface):

(2) implicitly. via compiler-generated calls on built-in
procedures:

(3) via traps. when machine-level op-codes encounter
exceptional conditions.

Pilot's involvement in client procedure calls is limited
to trap handling when the supply of activation record
storage is exhausted, To support the full generality of the
Mesa control structures, activation records are allocated
from a heap, even when a strict LIFO usage pattern is in
force. This heap is replenished and maintained by Pilot.

Coroutine calls also proceed without intervention by
Pilot, except during initialization when a trap handler is
provided to aid in the original setup of the coroutine
linkage,

Pilot's involvement with concurrent processes is
somewhat more substantiaL Mesa casts process creation
as a variant of a procedure call, but unlike a normal
procedure call, such a FORK statement alwa),'s invokes
Pilot to create the new process, Similarly, termination of
a process also involves substantial participation by Pilot.
Mesa also provides monitors and condition variables for
synchronized interprocess communication via shared
memory; these facilities are supported directly by the
machine and thus require less direct involvement of
Pilot.

The Mesa control structure facilities, including con­
current processes, are light weight enough to be used in
the fine-scale structuring of normal Mesa programs. A
typical Pilot client program consists of some number of
processes, any of which may at any time invoke Pilot
facilities through the various public interfaces. It is Pilot's
responsibility to maintain the semantic integrity of its
interfaces in the face of such client-level concurrency
(see Section 3.3). Naturally, any higher level consistency
constraints invented by the client must be guaranteed by
client-level synchronization, using monitors and condi­
tion variables as provided in the Mesa language.

Another important Mesa-support facility which is
provided as an integral part of Pilot is a "world-swap"
facility to allow a graceful exit to CoPilot, the Pilot/Mesa
interactive debugger. The world-swap facility saves the

219

220

contents of memory and the total machine state and then
starts CoPilot from a boo/file, just as if the machine's
bootstrap-load button had been pressed. The original
state is saved on a second boot-file so that execution can
be resumed by doing a second world-swap. The state is
saved with sufficient care that it is virtually always
possible to resume execution without any detectable
perturbation of the program being debugged. The world­
swap approach to debugging yields strong isolation be­
tween the debugger and the program under test. Not
only the contents of main memory, but the version of
Pilot. the accessible volume(s}, and even the microcode
can be different in the two worlds. This is especially
useful when debugging a new version of Pilot, since
CoPilot can run on the old, stable version until the new
version becomes trustworthy. Needless to say, this ap­
proach is not directly applicable to conventional multi­
user time-sharing systems.

3. Implementation

The implementation of Pilot consists of a large num­
ber of Mesa modules which collectively provide the client
environment as decribed above. The modules are
grouped into larger components, each of which is respon­
sible for implementing some coherent subset of the over­
all Pilot functionality. The relationships among the ma­
jor components are illustrated in Figure 2.

Of particular interest is the interlocking structure of
the four components of the storage system which together
implement file" and virtual memory. This is an example
of what we call the manager/kernel pattern, in which a
given facility is implemented in two stages: a low-level
kernel provides a basic core of function, which is ex­
tended by the higher level manager. Layers interposed
between the kernel and the manager can make use of
the kernel and can in turn be used by the manager. The
same basic technique has been used before in other
systems to good effect, as discussed by Habermann et al.
[6], who refer to it as "functional hierarchy." It is also
quite similar to the familiar "policy/mechanism" pattern
[1,25]. The main difference is that we place no emphasis
on the possibility of using the same kernel with a variety
of managers (or without any manager at all). In Pilot,
the manager/kernel pattern is intended only as a fruitful
decomposition tool for the design of integrated mecha­
nisms.

3.1 Layering of the Storage System Implementation
The kernel/manager pattern can be motivated by

noting that since the purpose of Pilot is to provide a
more hospitable environment than the bare machine, it
would clearly be more pleasant for the code implement­
ing Pilot if it could use the facilities of Pilot in getting its
job done. In particular, both components of the storage
system (the file and virtual memory implementations)
maintain internal databases which are too large tc fit in

Fig. 2. Major components of Pilot.

Pliot Cllent(s)

Network Streams

Sockets

Mesa Support (High· level)

Router

Virtual Memory Manager

I File Manager
Network Drivers

Swapper I
Filer

Mesa Support (Low· level)

Machine

primary memory, but only parts of which are needed at
anyone time. A client-level program would simply place
such a database in a file and access it via virtual memory,
but if Pilot itself did so, the resulting circular depend­
encies would tie the system in knots, making it unreliable
and difficult to understand. One alternative would be
the invention of a special separate mechanism for low­
level disk access and main memory buffering, used only
by the storage system to access its internal databases.
This would eliminate the danger of circular dependency
but would introduce more machinery, making the system
bulkier and harder to understand in a different sense. A
more attractive alternative is the extraction of a stream­
lined kernel of the storage system functionality with the
following properties:

(I) It can be implemented by a small body of code which
resides permanently in primary memory.

(2) It provides a powerful enough storage facility to
significantly ease the implementation of the remain­
der of the full-fledged storage system.

(3) It can handle the majority of the "fast cases" of
client-level use of the storage system.

Figure 2 shows the implementation of such a kernel
storage facility by the swapper and the filer. These two
subcomponents are the kernels of the virtual memory
and file components, respectively, and provide a reason­
ably powerful environment for the nonresident subcom­
ponents, the virtual memory manager, and the file man­
ager, whose code and data are both swappable. The
kernel environment provides somewhat restricted virtual
memory access to a small number of special files and to
preexisting normal files of fixed size.

The managers implement the more powerful opera­
tions, such as file creation and deletion, and the more
complex virtual memory operations, such as those that

traverse subtrees of the hierarchy of nested spaces. The
most frequent l)perations, however, are handled by the
kernels essentially on their own. For example, a page
fault is handled by code in the swapper, which calls the
filer to read the appropriate page(s) into memory. adjusts
the hardware memory map, and restarts the faulting
process.

The resident data structures of the kernels serve as
caches on the swappable databases maintained by the
managers. Whenever a kernel finds that it cannot per­
form an operation using only the data in its cache, it
conceptually "passes the buck" to its manager, retaining
no state information about the failed operation. In this
way, a circular dependency is avoided, since such failed
operations become the total responsibility of the man­
ager. The typical response of a manager in such a
situation is to consult its swappable database, call the
resident subcomponent to update its cache, and then
retry the failed operation.

The intended dynamics of the storage system imple­
mentation described above are based on the expectation
that Pilot will experience three quite different kinds of
load.

(1) For short periods of time, client programs will have
their essentially static working sets in primary mem­
ory and the storage system will not be needed.

(2) Most of the time, the client working set will be
changing slowly, but the description of it will fit in
the swapper/filer caches, so that swapping can take
place with little or no extra disk activity to access the
storage system databases.

(3) Periodically, the client working set will change dras­
tically, requiring extensive reloading of the caches as
well as heavy swapping.

It is intended that the Pilot storage system be able to
respond reasonably to all three situations: In case (1), it
should assume a low profile by allowing its swappable
components (e.g., the managers) to swap out. In case (2),
it should be as efficient as possible, using its caches to
avoid causing spurious disk activity. In case (3), it should
do the best it can, with the understanding that while
continuous operation in this mode is probably not viable,
short periods of heavy traffic can and must be optimized,
largely via the advice-taking operations discussed in
Section 2.2.

3.2 Cached Databases of the Virtual Memory
Implementation

The virtual memory manager implements the client
visible operations on spaces and is thus primarily con­
cerned with checking validity and maintaining the da­
tabase constituting the fundamental representation be­
hind the Space interface. This database, called the hier­
archy, represents the tree of nested spaces defined in
Section 2.2. For each space, it contains a record whose
fields hold attributes such as size, base page number, and
mapping information.

The swapper, or virtual memory kernel, manages
primary memory and supervises the swapping of data
between mapped memory and files. For this purpose it
needs access to information in the hierarchy. Since the
hierarchy is swappable and thus offlimits to the swapper,
the swapper maintains a resident space cache which is
loaded from the hierarchy in the manner described in
Section 3.1.

There are several other data structures maintained
by the swapper. One is a bit-table describing the alloca­
tion status of each page of primary memory. Most of the
bookkeeping performed by the swapper, however, is on
the basis of the swap unit, or smallest set of pages
transferred between primary memory and file backing
storage. A swap unit generally corresponds to a "leaf'
space; however, if a space is only partially covered with
subspaces, each maximal run of pages not containing
any subspaces is also a swap unit. The swapper keeps a
swap unit cache containing information about swap units
such as extent (first page and length), containing mapped
space, and state (mapped or not, swapped in or out,
replacement algorithm data).

The swap unit cache is addressed by page rather than
by space; for example, it is used by the page fault handler
to find the swap unit in which a page fault occurred. The
content of an entry in this cache is logically derived from
a sequence of entries in the hierarchy, but direct imple­
mentation of this would require several file accesses to
construct a single cache entry. To avoid this, we have
chosen to maintain another database: the projection. This
is a second swappable database maintained by the virtual
memory manager, containing descriptions of all existing
swap units, and is used to update the swap unit cache.
The existence of the projection speeds up page faults
which cannot be handled from the swap unit cache; it
slows down space creation/deletion since then the pro­
jection must be updated. We expect this to be a useful
optimization based on our assumptions about the relative
frequencies and CPU times of these events; detailed
measurements of a fully loaded system will be needed to
evaluate the actual effectiveness of the projection.

An important detail regarding the relationship be­
tween the manager and kernel components has been
ignored up to this point. That detail is avoiding "recur­
sive" cache faults; when a manager is attempting to
supply a missing cache entry, it will often incur a page
fault of its own; the handling of that page fault must not
incur a second cache fault or the fault episode will never
terminate. Basically the answer is to make certain key
records in the cache ineligible for replacement. This
pertains to the space and swap unit caches and to the
caches maintained by the filer as well.

3.3 Process Implementation
The implementation of processes and monitors in

Pilot/Mesa is summarized here; more detail can be found
in [11].

221

222

The task of implementing the concurrency facilities
is split roughly equally among Pilot, the Mesa compiler.
and the underlying machine. The basic primitives are
defined as language constructs (e.g .. entering a MOl"ITOR,
wAITing on a CONDITIO!\; vanable, FORKing a new
PROCESS) and are implemented either by machine
op-codes (for heavily used constructs. e.g .. \\'.\IT) or by
calls on Pilot (for less heavily used constructs. e.g .. FORK).
The constructs supported by the machine and the low­
level Mesa support component provide procedure calls
and synchronization among existing processes, allowing
the remainder of Pilot to be implemented as a collection
of monitors, which carefully synchronize the multiple
processes executing concurrently inside them. These
processes comprise a variable number of client processes
(e.g., which have called into Pilot through some public
interface) plus a fixed number of dedicated system pro­
cesses (about a dozen) which are created specially at
system initialization time. The machinery for creating
and deleting processes is a monitor within the high-level
Mesa support component; this places it above the virtual
memory implementation; this means that it is swappable,
but also means that the rest of Pilot (with the exception
of network streams) cannot make use of dynamic process
creation. The process implementation is thus another
example of the manager/kernel pattern, in which the
manager is implemented at a very high level and the
kernel is pushed down to a very low level (in this case,
largely into the underlying machine). To the Pilot client,
the split implementation appears as a unified mechanism
comprising the Mesa language features and the opera­
tivns defined by the Pilot Fl'uct:ss interface.

3.4 File System Robustness
One of the most important properties of the Pilot file

system is robustness. This is achieved primarily through
the use of reconstructable maps. Many previous systems
have demonstrated the value of afile scavenger, a utility
program which can repair a damaged file system, often
on a more or less ad hoc basis [5, 12, 14,21]. In Pilot, the
scavenger is given first-class citizenship, in the sense that
the file structures were all designed from the beginning
with the scavenger in mind. Each file page is self-iden­
tifying by virtue of its label, written as a separate physical
record adjacent to the one holding the actual contents of
the page. (Again, this is not a new idea, but is the crucial
foundation on which the file system's robustness is
based.) Conceptually, one can think of a file page access
proceeding by scanning all known volumes, checking the
label of each page encountered until the desired one is
found. In practice, this scan is performed only once by
the scavenger, which leaves behind maps on each volume
describing what it found there; Pilot then uses the maps
and incrementally updates them as file pages are created
and deleted. The logical redundancy of the maps does
not, of course. imply lack of importance. since the system
would be not be viable without them; the point is that
since they contain on(v redundant information, they can

be completely reconstructed should they be lost. In par­
ticular. this means that damage to any page on the disk
can compromise only data on that page.

The primary map structure is the volume file map, a
B-tree keyed on (file-uid, page-number) which returns
the device address of the page. All file storage devices
check the label of the page and abort the I/O operation
in case of a mismatch; this does not OCCllr in normal
operation and generally indicates the need to scavenge
the volume. The volume file map uses extensive com­
pression of uids and run-encoding of page numbers to
maximize the out-degree of the internal nodes of the B­
tree and thus minimize its depth.

Equally important but much simpler is the volume
allocation map, a table which describes the allocation
status of each page on the disk. Each free page is a self­
identifying member of a hypothetical file of free pages,
allowing reconstruction of the volume allocation map.

The robustness provided by the scavenger can only
guarantee the integrity of files as defined by Pilot. If a
database defined by client software becomes inconsistent
due to a system crash. a software bug, or some other
unfortunate event, it is little comfort to know that the
underlying file has been declared healthy by the scav­
enger. An '"escape-hatch" is therefore provided to allow
client software to be invoked when a file is scavenged.
This is the main use of the file-type attribute mentioned
in Section 2.1. After the Pilot scavenger has restored the
low-level integrity of the file system, Pilot is restarted:
before resuming normal processing, Pilot first invokes all
client-level scavenging routines (if any) to reestablish
any highcr levcl consistency constraints that may have
been violated. File types are used to determine which
files should be processed by which client-level scaven­
gers.

An interesting example of the first-class status of the
scavenger is its routine use in transporting volumes
between versions of Pilot. The freedom to redesign the
complex map structures stored on volumes represents a
crucial opportunity for continuing file system perform­
ance improvement, but this means that one version of
Pilot may find the maps left by another version totally
inscrutable. Since such incompatibility is just a particular
form of "damage," however, the scavenger can be in­
voked to reconstruct the maps in the proper format, after
which the corresponding version of Pilot will recognize
the volume as its own.

3.5 Communication Implementation
The software that implements the packet communi­

cation protocols consists of a set of network -specific
drivers, modules that implement sockets, network stream
transducers, and at the heart of it all, a router. The router
is a software switch. It routes packets among sockets,
sockets and networks, and networks themselves. A router
is present on every Pilot machine. On personal machines,
the router handles only incoming, outgoing, and intra-

machine packet traffic. On internetwork router ma­
chines, the router acts as a service to other machines by
transporting internetwork packets across network
boundaries. The router's data structures include a list of
all active sockets and networks on the local computer. ,
The router is designed so that network drivers may easily
be added to or removed from new configurations of
Pilot; this can even be done dynamically during execu­
tion. Sockets come and go as clients create and delete
them. Each router maintains a routing table indicating,
for a given remote network, the best internetwork router
to use as the next "hop" toward the final destination.
Thus, the two kinds of machines are essentially special
cases of the same program. An internetwork router is
simply a router that spends most of its time forwarding
packets between networks and exchanging routing tables
with other internetwork routers. On personal machines
the router updates its routing table by querying internet­
work routers or by overhearing their exchanges over
broadcast networks.

Pilot has taken the approach of connecting a network
much like any other input/output device, so that the
packet communication protocol software becomes part
of the operating system and operates in the same personal
computer. In particular, Pilot does not employ a dedi­
cated front-end communications processor connected to
the Pilot machine via a secondary interface.

Network-oriented communication differs from con­
ventional input! output in that packets arrive at a com­
puter unsolicited, implying that the intended recipient is
unknown until the packet . is ~xamined. As a conse­
quence, each incoming packet must be buffered initially
in router-supplied storage for examination. The router,
therefore, maintains a buffer pool shared by all the
network drivers. If a packet is undamaged and its desti­
nation socket exists, then the packet is copied into a
buffer associated with the socket and provided by the
socket's client.

The architecture of the communication software per­
mits the computer supporting Pilot to behave as a user's
personal computer, a supplier of information, or as a
dedicated internetwork router.

3.6 The Implementation Experience
The initial construction of Pilot was accomplished by

a fairly small group of people (averaging about 6 to 8) in
a fairly short period of time (about 18 months). We feel
that this is largely due to the use of Mesa. Pilot consists
of approximately 24,000 lines of Mesa, broken into about
160 modules (programs and interfaces), yielding an av­
erage module size of roughly 150 lines. The use of small
modules and minimal intermodule connectivity, com­
bined with the strongly typed interface facilities of Mesa,
aided in the creation of an implementation which
avoided many common kinds of errors and which is
relatively rugged in the face of modification. These issues
are discussed in more detail in [7] and [13].

4. Conclusion

The context of a large personal computer has moti­
vated us to reevaluate many design decisions which
characterize systems designed for more familiar situa­
tions (e.g., large shared machines or small personal com­
puters). This has resulted in a somewhat novel system
which, for example, provides sophisticated features but
only minimal protection, accepts advice from client pro­
grams, and even boot-loads the machine periodically in
the normal course of execution.

Aside from its novel aspects, however, Pilot's real
significance is its careful integration, in a single relatively
compact system, of a number of good ideas which have
previously tended to appear individually, often in sys­
tems which were demonstration vehicles not intended to
support serious client programs. The combination of
streams, packet communications, a hierarchical virtual
memory mapped to a large file space, concurrent pro­
gramming support, and a modular high-level language,
provides an environment with relatively few artificial
limitations on the size and complexity of the client
programs which can be supported.

Acknowledgments. The primary design and imple­
mentation of Pilot were done by the authors. Some of
the earliest ideas were contributed by D. Gifford, R.
Metcalfe, W. Shultz, and D. Stottlemyre. More recent
contributions have been made by C. Fay, R. Gobbel, F.
Howard, C. Jose, and D. Knutsen. Since the inception
of the project, we have had continuous fruitful interac­
tion with all the members of the Mesa language group:
in particular, R. Johnsson, J. Sandman, and J. Wick
have provided much of the software that stands on the
border between Pilot and Mesa. We are also indebted to
P. Jarvis and V. Schwartz, who designed and imple­
mented some of the low-level input/output drivers. The
success of the close integration of Mesa and Pilot with
the machine architecture is largely due to the talent and
energy of the people who designed and built the hard­
ware and microcode for our personal computer.

Received June 1979; accepted September 1979; revised November 1979

References
1. Brinch-Hansen, P. The nucleus of a multiprogramming system.
Comm. ACM 13,4 (April 1970),238-241.
2. Boggs, D.R., Shoch, J.F., Taft, E., and Metcalfe. R.M. Pup: An
internetwork architecture. To appear in IEEE Trans. Commun.
(Special Issue on Computer Network Architecture and Protocols).
3. Cerf, V.G., and Kahn, R.E. A protocol for packet network
interconnection. IEEE Trans. Commun. COM-22, 5 (May 1974).637-
641.
4. Cerf, V.G., and Kirstein, P.T. Issues in packet-network
interconnection. Proc. IEEE 66, 11 (Nov. 1978), 1386-1408.
5. Farber, D.1., and Heinrich, F.R. The structure of a distributed
computer system: The distributed file system. In Proc. 1st Int. Conf.
Computer Communication, 1972, pp. 364-370.
6. Habermann, A.N., Flon, L., and Cooprider, L. Modularization
and hierarchy in a family of operating systems. Comm. A CM 19. 5
(May 1976),266-272.
7. Horsley, T.R., and Lynch, W.e. Pilot: A software engineering

223

224

case history. In Proc. 4th Int. Conf. Software Engineering. Munich.
Germany. Sept. 1979. pp. 94-99.
8. Internet Datagram Protocol, Version 4. Prepared by USC/
Information Sciences Institute. for the Defense Advanced Research
Projects Agency. Information Processing Techniques Office. Feb.
1979.
9. Lampson. B.W. Redundancy and robustness in memory
protection. Proc. 1 F/ P 1974. North Holland. Amsterdam. pp. 128-
132.
10. Lampson, B.W., Mitchell. J.G., and Satterthwaite, E.H. On the
transfer of control between contexts. In Lecture Notes in Computer
Science 19, Springer-Verlag, New York, 1974, pp. 181-203.
11. Lampson, B.W., and Redell. D.D. Experience with processes and
monitors in Mesa. Comm. ACM 23. 2 (Feb. 1980), IOS-1 17.
12. Lampson, B.W., and Sproull, R.F. An open operating system for
a single user machine. Presented at the ACM 7th Symp. Operating
System Principles (Operating Syst. Rev. 13. S), Dec. 1979, pp. 98-IOS.
13. Lauer, H.C., and Satterthwaite, E.H. The impact of Mesa on
system design. In Proc. 4th Int. Conf. Software Engineering, Munich,
Germany, Sept. 1979, pp. 174-182.
14. Lockemann, P.c., and Knutsen, W.D. Recovery of disk contents
after system failure. Comm. ACM 11, 8 (Aug. 1968), S42.
15. Metcalfe, R.M., and Boggs, D.R. Ethernet: Distributed packet
switching for local computer networks. Comm. ACM 19, 7 (July
1976), pp. 395-404.
16. Mitchell, J.G., Maybury, W., and Sweet, R. Mesa Language
Manual. Tech. Rep., Xerox Palo Alto Res. Ctr., 1979.
17. Pouzin, L. Virtual circuits vs. datagrams-technical and political
problems. Proc. 1976 NCC, AFIPS Press, Arlington. Va., pp. 483-
494.
18. Ritchie, D.M., and Thompson, K. The UNIX time-sharing
system. Comm. ACM 17, 7 (July 1974),365-375.
19. Ross, D.T. The AED free storage package. Comm. ACM 10, 8
(Aug. 1967),481-492.
20. Rotenberg, Leo J. Making computers keep secrets. Tech. Rep.
MAC-TR-IIS, MIT Lab. for Computer Science.
21. Stern, J.A. Backup and recovery of on-line information in a
computer utility. Tech. Rep. MAC-TR-116 (thesis), MIT Lab. for
Computer Science, 1974.
22. Sunshine, C.A., and Dalal, Y.K. Connection management in
transport protocol. Compul. Selworks 2, 6 ,Del:. 1973),454-473.
23. Stoy, J.E., and Strachey, C. OS6-An experimental operating
system for a small computer. Comput. J. 15, 2 and 3 (May, Aug.
1972).
24. Transmission Control Protocol, TCP, Version 4. Prepared by
USC/Information Sciences Institute, for the Defense Advanced
Research Projects Agency, Information Processing Techniques Office,
Feb. 1979.
25. Wulf, W., et. al. HYDRA: The kernel of a multiprocessor
operating system. Comm. ACM 17, 6 (June 1974), 337-34S.

An Overview of the Mesa Processor Architecture

Richard K. Johnsson
John D. Wick

Xerox Office Products Division
3333 Coyote Hill Road

Palo Alto, California 94304

Introduction

This paper provides an overview of the architecture of the
Mesa processor, an architecture which was designed to
support the Mesa programming system [4]. Mesa is a high
level systems programming language and associated tools
designed to support the development of large information
processing applications (on the order of one million source
lines). Since the start of development in 1971, the
processor architecture, the programming language, and the
operating system have been designed as a unit, so that
proper tradeoffs among these components could be made.
The three main goals of the architecture were:

- To enable the efficient implementation of a
modular, high level programming language such as
Mesa. The emphasis here is not on simplicity of the
compiler, but on efficiency of the generated object
code and on a good match between the semantics of
the language and the capabilities of the processor.

- To provide a very compact representation of
programs and data so that large, complex systems
can run efficiently in machines with relatively small
amounts of primary memory.

- To separate the architecture from any particular
implementation of the processor, and thus
accommodate new implementations whenever it is
technically or economically advantageous, without
materially affecting either system or application
software.

We will present a general introduction to the processor
and its memory and control structure; we then consider an

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

example of how the Mesa instruction set enables
significant reductions in code size over more traditional
architectures. We will also discuss in considerable detail
the control transfer mechanism used to implement
procedure calls and context switches among concurrent
processes. A brief description of the process facilities is
also included.

General Oveniew

All Mesa processors have the following characteristics
which distinguish them from other computers:

High Level Language

The Mesa architecture is designed to' efficiently execute
high level languages in the style of Algol, Mesa, and
Pascal. Constructs in the programming languages such as
modules, procedures and processes al1 have concrete
representations in the processor and main memory, and
the instruction set includes opcodes that efficiently
implement those language constructs (e.g. procedure call
and return) using these structures. The processor does not
"directly execute" any particular high level programming
language.

Compact Program Representation

The Mesa instruction set is designed primarily for a
compact, dense representation of programs. Instructions
are variable length with the most frequently used
operations and operands encoded in a single byte opcode;
less frequently used combinations are encoded in two
bytes, and so on. The instructions themselves are chosen
based on their frequency of use. This design leads to an
asymmetrical instruction set. For example, there are
twenty-four different instructions that can be used to load
local variables from memory, but only twenty-one that
store into such variables; this occurs because typical
programs perform many more loads than stores. The
average instruction length (stark) is 1.45 bytes.

225

226

Compact Data Representation

The instruction set includes a wide variety of instructions
for accessing partial and multiword fields of the memory's
basic unit, the sixteen bit word. Except for system data
structures defined by the architecture, there are no
alignment restrictions on the allocation of variables. and
data structures are generally assumed to be tightly packed
in memory.

Evaluation Stack

The Mesa processor is a stack machine; it has no general
purpose registers. The evaluation stack is used as the
destination for load instructions. the source for store
instructions, and as both the source and destination for
arithmetic instructions: it is also used for passing
parameters to procedures. The primary motivation for the
stack architecture is not to simplify code generation, but to
achic\'(! compact program representation. Since the stack is
assumed as the source and/or destination of one or more
operands, specifying operand location requires no bits in
the instruction. Another motivation for the stack is to
minimize the register saving and restoring required in the
procedure calling mechanism.

Control Transfers

The architecture is designed to support modular
programming, and therefore suitably optimizes transfers of
control between modules. The Mesa processor implements
<ll: ':'uiil[U; Ljunsf~rs Vwith d singk primiLilc c.llkd XFER,

which is a generalization of the notion of a procedure or
subroutine call. All of the standard procedure calJing
conventions (call by value, call by reference (reSUlt), etc.)
and all transfers of control belween contexts (procedure
cal1 and return, nested procedure calls, coroutine transfers,
traps, and process switches) are implemented using the
XFER primitive. To support arbitrary control transfer
disciplines, activation records (called frames) are allocated
by x FER from a heap rather than a stack; this allows the
heap to be shared by multiple processes.

Process Alechanism

The architecture is designed for applications that expect a
large amount of concurrent activity. The Mesa processor
provides for the simultaneous execution of up to one
thousand asynchronous preemptable processes on a single
processor. The process mechanism implements monitors
and condition variables to control the synchronization and
mutual exclusion of processes and the sharing of resources
among them. Scheduling is event driven, rather than time
sliced. Interrupts, timeouts, and communication with lID
devices also utilize the process mechanism.

Virtual Memory

The Mesa processor provides a single large, uniformly
addressed virtual memory, shared by all processes. The
memory is addressed linearly as an array of 232 sixteen-bit
words, and, for mapping purposes, is further organizt,!d as
an array of 224 pages of 256 words each; it has no other
programmer visible substructure. Each page can be
individually write-protected, and the processor records the
fact that a page has been written into or referenced.

Protection

The architecture is designed for the execution of
cooperating, not competing, processes. There is no
protection mechanism (other than the write-protected
page) to hmit the sharing of resources among processes.
There is no "supervisor mode," nor are there any
"privileged" instructions.

Virtual Memory Organization

Virtual addresses are mapped into real addresses by the
processor. The mapping mechanism can be modeled as an
array of real page numbers indexed by virtual page
numbers. The array can have holes so that an associative
or hashed implementation of the map is allowed; the
actual implementation is not specified by the architecture
and differs among the various implementations of the
Mesa processor.

In<;;tqlctiol1S 3T"f~ rf(\vjd~d to eT1Dry1e ~ pr0gr<tm (lJs!I:llly the

operating system) to examine and modify the virtual-to­
real mapping. The processor maintains "write-protected,"
"dirty," and "referenced" flags for each mapped virtual
page which can also be examined and modified by the
program.

The address translation process is identical for all memory
accesses, whether they originate from the processor or
from 110 devices. There is no way to bypass the mapping
and directly reference a main memory location using a real
address. Any reference to a virtual page which has no
associated real page (page fault), or an attempt to store into
a write-protected page (wrileprotec(faUlt) will cause the
processor to initiate a process switch (as described below).
The abstraction of faults is that they occur between
instructions so L'1at the processor state at the time of the
fault is well defined. In order to honor this abstraction,
each instruction must avoid al1 changes to processor state
registers (including the evaluation stack) and main
memory until the possibility of faults has passed, or such
changes must be undone in the event of a fault

Virtual memory is addressed by either long (two word)
pointers containing a full virtual address or by short (one

Code

Segment

1

Virtual Memory

Reserved

locations

Boot Data

10 Page

Process Data Area

State

Vectors

Timeout

Vector

code bytes

o Main Data Space

Allocation Vector

I I

D
Global Frame Table

CJ

128K

Main Data

Space

1.-_____ ~232.1

Figure L Virrual Memory Structure

word) pointers containing an offset from an implicit 64K
word aligned base address. Tnere are several uses of short
pointers defined by the architecture:

- The first 64K words of virtual memory are reserved
for booting data and communication with I/O
devices. Virtual addresses known to be in this range
are passed to 110 devices as short pointers with an
implicit base of zero.

- The second 64K of virtual memory contains data
structures relating to processes. Pointers to data
structures in this area are stored as short pointers
with an implicit base of 64K.

- Any other 64K region of virtual memory can be a
main data space (MOS). Each process executes
within some MOS in which its module and
procedure variables are stored~ these variables can
be referenced by short pointers using as an implicit
base the value stored in the processor's MOS

register.

Code may be placed anywhere in virtual memory,
although in general it is not located within any of the three
regions mentioned above. A code segment contains read
only instructions and constants for the procedures that
comprise a Mesa module; it is never modified during
normal execution and is usually write-protected. A code

227

228

Curen!

Local Frame

Caller's

Local Frame

Global Frame r---...,
I Links I

Variables

Procedure

Variables

Read Only

Data

return link

Saved PC

Figure 2. Local and Global Frames and Code Segments

segment is relocatable without modification; no
information in a code segment depends on its location in
virtual memory.

The data associated with a Mesa program is allocated in a
main data space in the form of local and global frames. A
global frame contains the data common to all procedures
in the module, i.e. declared outside the scope of any
procedure. The global frame is allocated when a module IS

loaded. and freed when the module is destroyed. A local
frame contains data declared within a procedure; it is
allocated when the procedure is called and freed when it
returns.

Any region of the virtual memory, including any main
data space, can contain additional dynamically allocated
user data: it is managed by the programmer and
referenced indirectly using long or short pointers. An MDS

also contains a few system data structures used in the
implementation of control transfers (discussed beiow). The
overall structure of virtual memory is shown in Figure 1.

Besides enabling standard high level language features
such as recursive procedures, ml.iltiple modllle inst~ccs,
coroutines. and multiple processes, the representation of a
program as local data, global data, and code segment tends
to increase locality of rerer~nce: this is important in a
paged virtual memory environment

Contexts

In addition to a program's variables, there is a small
amount of linkage and control information in each frame.
A local frame contains a short pointer to the associated
gJob~.d frame and a short pointer to the local frame of its

caller (the relUrn link). A local frame also holds the code
segment relative program counter for a procedure whose
execution has been suspended (by preemption or by a call
to another procedure). Each global frame contains a long
pointer to the code segment of the module. A global frame
optionally is preceded by an area called the link space,
where links to procedures and variables in other modules
are st8red. Th1S structure ~s shc,,\,n i~ Figure ~.

To speed access to code and data., the processor contains
registers which hold the local and global frame addresses
(LF and GF), and the code base and program counter (CB

and pc) for the currently executing procedure; these are
collectively called a context. When a procedure is
suspended, the single sixteen bit value which is the MDS

relative pointer to its local frame is sufficient to reestablish
this complete context by fetching GF and pc from the
local frame and CB from the global frame. The
management of these registers during context switches is
discussed in the section on control transfers below.

The Mesa Instruction Set

As mentioned above, a primary goal of the Mesa
architecture is compact representation of programs. The
general idea is to introduce special mechanisms into the
instruction set so that the most frequent operations can be
represented in a minimum number of bytes. See [5] for a
description of how the instruction set is tuned to
accomplish this goal. Below we enumerate a representative
sample of the instruction set.

Many functions are implemented with a family of
instructions with the most common forms being a single

byte. In the descriptions of instructions below, operand
bytes in the code stream are represented by a and {3: a{3
represents two bytes that are taken together ~ a sixteen bit
quantity. The suffix n on an opcodc mnemonic represents
a group of instructions with n st~mding for small integers,
e.g. Lin represents L10. L11. Ll2. etc. A trailing B in an
opcode indicates a following operand byte (a); W
indicates a word (a{3): P indicates that the operand byte is
a pair of four bit quantities. a.left and a.right

Operalions on the stack. These instructions obtain
arguments from and return results to the evaluation stack.
Although elements in the stack are sixteen bits, some
instructions treat two elements as single thi11y-two bit
quantities. Numbers are represented in two's complement

DIS Discard the top element of the stack
(decrement the stack pointer).

REC Recover the previous top of stack
(increment the stack pointer).

EXCH

DEXCH

DUP

DDUP

DBl

Exchange the top two elements of the
stack.

Exchange the top two doubleword
elements of the stack.

Duplicate the top element of the stack.

Duplicate the top doubleword element of
the stack.

Double the top of stack (multiply by 2).

unary operations: NEG, INC, DEC, etc.

logical operations: lOR. AND. XOR.

arithmetic: ADD, SUB, MUL.

doubleword arithmetic: DADO, DSUB.

Divide and other infrequent operations are relegated to a
multibyte escape opcode that extends the instruction set
beyond 256 instructions.

Simple Load and Slore instructions. These instructions
move data between the evaluation stack and local or global
variables.

LIn Load Immediate n.

LIB a Load Immediate Byte.

L1wa{3 Lo~d Immediate Word.

lln Load Local n; load the word at offset n
from IF.

llB a Load Local Byte; load the word at offset a
from IF.

Sln Store Local n.

SlB a Store Local Byte.

PLn

LGn

LGB a

SGB a

LLKB a

Put Local n: equivalent to Sln REC. i.e.
store and leave the value on the stack.

Load Global n; load the word at offset n
from GF.

Load Global B'yte; load the word at offset
a from GF.

Store Global Byte.

Load Link; load a word at offset a in the
link space.

There are also versions of these instructions that load
doubleword quantities. Note that there are no three-byte
versions of these loads and stores and no one-byte Store
Global instructions. These do not occur frequently enough
to warrant inclusion in the instruction set

Jumps. All jump distances are measured in bytes relative to
the beginning of the jump instruction; they are specified as
signed eight or sixteen bit numbers.

In short positive jumps.

JB a jump -128 to + 127 bytes.

JWa{3 long positive or negative jumps.

JLB a compare (unsigned) top two elements of
stack and jump if less; also JlEB, JEB,
JGB, JGEB and unsigned versions.

JESB a {3 if top of stack is equal to to a. jump
distance in {3; also JNBB.

JZB a

JEP a

JIB a{3

jump if top of stack is zero; also JNZB.

if top of stack is equal to a.left, jump
distance in a.right; also JNEP.

at offseta{3 in the code segment find a
table of eight bit distances to be indexed
by the top of stack; also JIW with a table
of sixteen bit distances.

Read and Wrile through poinlers. These instructions read
and write data through pointers on the stack or stored in
local variables.

Rn Read through pointer on stack plus small
offset.

RB a Read through pointer on stack plus offset
a.

WB a Write through pointer on stack plus offset
a.

RlIP a

WLlPa

Read Local Indirect; use pointer in local
variable a.left; add offset a.right

\Vrite Local Indirect

229

230

RnF a

RF a fJ

WF a fJ
RKIB a

Read Field using pointer on the stack plus
n: a contains starting bit and bit count as
four bit quantities.

Read Field using pointer on the stack plus
a: fJ contains starring bit and bit count as
four bit quantities.

Write Field.

Read Link Indirect; use the word at offset
a in the link space as a pointer.

There are also versions of these instructions that take long
pointers and versions that read or write doubleword
quantities.

COnTrol Transfers. These instructions handle procedure call
and return. Local calls (in the same module) specify the
enlry point number of the destination procedure; external
calls (to another module) specify an index of a control link
in the module·s link space (see the section on Control
Transfers).

LFCn

LFCB a

EFCn

EFCB a

SFC

RET

BRK

local Function Call using entry point n.

Local Function Call using entry point a.

External Function Call using control link
n.

External Function Call Byte using control
link a.

Stack Function Call: use control link from
the stack.

Return. XFER using the return link in the
local fr~me as the destination; frec the
frame.

Breakpoint: a distinguished one-byte
instruction that causes a trap.

Miscellaneous. These instructions are used to generate and
manipUlate pointer values.

LAn

LAB a

LAwa{3

Local Address n; put the address of local
variable n on the stack.

Local Address Byte; put the address of
local variable a on the stack.

Local Address Word; put the address of
local variabie a{3 on the stack.

GAn Global Address n; put the address of
global variable n on the stack.

GAB a Global Address Byte; put the address of
global variable a on the stack.

GAW afJ Global Address Word; put the address of
global variable a{3 on the stack.

LP Lengthen Pointer; convert the short
pointer on the stack to a long pointer by
adding MDS; includes a check for invalid
pointers.

An example. Consider the program fragment below. The
statement c +- Q[p.f + i] means "call procedure Q, passing
the sum of i and field f of the record pointed to by local
variable p; store the result in global variable c." The
statement RETURN [a[i].c] means ";-eturn as the value of
the procedure Q field c of the ith record of global array
a."

Prog: PROGRAM =
BEGIN

c: CHARACTER;
a: ARRAY INTEGER OF RECORD [

b: BOOLEAN,
c: CHARACTER,
s: INTEGER[O .. 12S),
W: CARDINAL];

P: PROCEDURE =
BEGIN
i: INTEGER = 2;
p: POINTER TO RECORD [••• , f: INTEGER];
... ,
c +- Q[p.f + i];
. .. ,
END;

Q: PROCEDURE [i: INTEGER]
RETURNS [CHARACTER] =

BEGIN
RETURN [a[i].c];
END;

END.

Below we have shown the code generated for this program
fragment in a generalized Mesa instruction set, and then in
the current optimized version of the instruction set.

Source

p.f

j

p.f + i
Q[..]
n+-

Q:

:I:).c
RETURN

Mesa/Gen

II p
R f
LI
ADD
lFC q
SG n

11 Code Bytes
5 Inst ructions

Sl
REC
DBl
GAB a
ADD
RF O,{1,8)
RET

11 Code Bytes
7 Instructions

Mesa/OQt

RLiP (p, f)

Ui
ADD
lFCq
SG n

7 Code Bytes
5 Instructions

PLi

DBl
GAa
ADD
ROF (1,8)
RET

7 Code Bytes
6 Instructions

Although this is admittedly a contrived example. it cannot
be called pathological. and it does illustrate quite well
several of the ways the Mesa instruction set achieves code
size reduction. I n particular:

- Use of the evaluation Slack. The stack is the implicit
dcstin:ltion or source for load and store operations;
instructions can be smaller because they need not
specify all operand locations. Since the stack is also
used to pass parameters, no extra instructions are
needed to set up for the procedure call. Most
statements and expressions are quite simple so that
the added generality of a general register
architecture is a liability rather than an asset

- Control transfer primitive. By using a single,
standard calling convention with built-in storage
allocation. almost all of the overhead associated
with a call is eliminated. There is minimal register
saving and restoring.

- Common operations are single instructions.
Operations that occur frequently are encoded in
single instructions. Reading a word from a record
given a pointer to the record in a local variable is a
good example (RLI P). There are similar
instructions for storing values through pointers.
There are instructions that deal with partial word
quantities or that include runtime as well as
compile time offsets. Procedure calls are also given
single instructions.

- Frequently referenced variables are slOred together.
Most operands are addressed with small offsets
from local or global frame pointers or from variable
pointers stored in the local or global frame. Using
small offsets means that instructions can be smaller
because fewer bits are needed to record the offset
The compiler assists by assigning variable locations
based on static frequency so that the smallest offsets
occur most often.

These last two points are the guiding principles of the
Mesa instruction set. If an operation. even a complex one
involving indirection and indexing, occurs frequently in
"real" programs, then it should be a single instruction or
family of instructions. For instruction families with
compile time constant operands such as offsets, assigning
operand values by frequency increases the payoff of
merging small operand values into the opcode or packing
multiple values into a single operand byte. There are a
small number of cases in which an infrequently used
function is provided as an instruction because it is required
for technical reasons or for efficiency (e.g. disable
interrupts or block transfer).

Control Transfers

The Mesa architecture supports several types of transfers
of control. including procedure call and return, nested
procedure calls. coroutine transfers. traps and process
switches. using a single primitive called XFER [1]. In its
simplest form. XFER is supplied with a destination control
link in the fonn of a pointer to a local frame: XFER then
establishes the context associated with that frame by
loading the processor state registers: the PC and global
frame pointer GF are obtained from the local frame, and
the code base CB is obtained from the global frame. Most
control transfer instructions pcrfonn some initial setup
before invoking the XFER primitive; some specify action to
be taken after the XFER. If after the XFER we add code to
free the source frame. we have the mechanism for
performing a procedure return. On the other hand, if we
add code before the XFER to save the current context (only
the pc), we have the basic mechanism to implement a
coroutine transfer between any two existing contexts.

A process switch is little more than a coroutine transfer.
except that it may be preemptive. in which case the
evaluation stack must be saved and restored on each side
of the XFER. In the Mesa architecture, we have also added
the ability to change the main data space on a process
switch (see the next section).

The procedure call is the most interesting form of control
transfer in any architecture; it is complicated by the fact
that the destination context does not yet exist. and must be
created out of whole cloth. We represent the context of a
not-yet-executing procedure by a control link called a
procedure descriptor. It must contain enough information
to derive all of the following:

The global frame pointer of the module containing
the procedure,

The address of the code segment of the module,

The starting PC of the procedure within the code
segment, and

The size of the frame to aJlocate for the procedure's
local variables.

Note that in the case of a local call within the current
module, only the last two items arc needed; L1C first two
remain unchanged.

It is desirable to pack all of this information into a single
word. and at the same time make room for a tag bit to
distinguish between local frames and procedure
descriptors, so the two can be used interchangeably. Then.
at the Mesa source level, a program need not concern itself
with whether it is calling a procedure or a coroutine.

231

232

Procedure Descriptor
r- gfi epi II I

GFT Code Segment

1 +~ Code Base

I rCB ~
-32 .11- Entry

~. Vector
~ I

pc

I lsi f--

1
Code bytes

Global Frame fpc 1--+ m flags
.~

code
j". base

fGF ~

AV

local Frame I
Ifsi

return link Frame Heap

global link

~ pc T r flF r--+
+

lta-,
II I ~~JI1

L----_-----' --c=J
Figure 3. Procedure Calls

The obvious representation of a procedure descriptor
would include the global fmme address (sixteen bits), the
code segment address (thirty-two bits), the starting PC

(sixteen bits). and the local frame size (sixteen bits), for a
total of eighty bits. We use a combination of indirection,
auxiliary tables. and imposed restrictions to reduce this to
the required fifteen bits, leaving one bit for the
frame/procedure tag (refer to Figure 3).

We eliminate the code segment address by noticing that it
is available in the global frame of the destination module,
at the cost of a double word fetch.

We replace the PC and frame size by a small (five bit)
entry painl index into a table at the beginning of each code
segment containing these values for each procedure. This
costs another double word fetch, and limits the number of

procedures per module to a maximum of thirty-two. (By
an encoding trick, we will increase this to 128 later.)

We replace the global frame pointer by a ten bit index into
an MDs-unique structure called the global frame table
(GFT); it contains a global frame pointer for each module
in the main data space. This costs one additional memory
reference per XFER and limits the number of modules in
an MDS to 1024 and the number of procedures in an MDS
to 32,768.

We obtain our tag bit by aligning local frames to at least
even addresses; the low order bit of all procedure
descriptors is one.

To increase the maximum number of procedures per
module, we first free up two bits in each entry of the
global frame table by aligning all global frames on quad

word boundaries. We lise these two bits to indicate that
the entry point index should be increased by O. 32. 64. or
96 before it is used to index the code segment entry vector.
Of course. this requires mUltiple entries in the global
frame table for modules with more than thirty-two
procedures.

SO, XFER'S job in the case of a procedure call is
conceptually the same as a simple frame transfer, except
that it must pick apart the procedure descriptor and
reference all the auxiliary data structures created above. It
also needs a mechanism for allocating a new local frame.
given its size.

As mentioned above. local frames are anocated from a
heap rather than a stack, so that a pool of available frames
can be shared among several processes executing in the
same MOS. We organize this pool as an array of lists of
frames of the most frequently used sizes; each list contains
frames of only one size. Rather than actual frame sizes. the
code segment entry vector contains frame size indexes into
this array. called the allocation vector. or AV (see Figure
3).

Assuming that a frame is present on the appropriate list, it
costs three memory references to remove the frame from
the Jist and update the list head. This scheme requires that
the frame's frame size index be kept in its overhead words.
so that it can be returned to the proper list; it therefore
requires four memory references to free a frame. Again we
take advantage of the fact that fr['mes are aligned to make
use of the low order bits of the list pointers as a tag to
indicate an empty list There is also a facility for chaining a
list to a larger frame size list

In the (rare) event that no frame of the required size (or
larger) is available. a trap to software is generated; it may
resume the operation after supplying more frame storage.
Of course. the frequency of traps depends on the initial
allocation of frames of each size. as well as the calling
patterns of the application; this is determined by the
obvious static and dynamic analysis of frame usage.

Calling a nested procedure involves additional complexity
because the new context must be able to access the local
variables of the lexically enclosing procedure. The
semantics of procedure variables in the Mesa language
dictate that the caller of a nested procedure cannot be
aware of its context or depth of nesting; all of the
complexity must be handled by the called procedure. The
implementation of this is beyond the scope of this paper.

Conrurrent Processes

The Mesa architecture implements concurrent processes as
defined by the Mesa programming language for
controlling the execution of multiple processes and
guaranteeing mutual exclusion [2].

The process implementation is based on queues of small
objects called Process State Blocks (~SBS). each
representing a single process. When a process is not
mnning, its PSB records the state associated with the
process, inclclding the process's MDS and the local frame it
was last executing. I f the process was preempted. its
evaluation stack is also saved in an auxiliary data structure;
the evaluation stack is known to be empty when a process
stops running voluntarily (by waiting on a condition or
blocking on a monitor). The PSB also records the process's
priority and a few flag bits.

When a process is running, its state is contained in the
evaluation stack and in the processor registers that hold
pointers to the current local and global frames, code
segment and MOS. An MDS may be shared by more than
one process or may be restricted to a single process. All of
these processor registers are modified when a process
switch takes place.

Each PSB is a member of exactly one process queue.
There is one queue for each monitor lock, condition
variable, and fault handler in the system. A process that is
not blocked on a monitor, waiting on a condition variable.
or faulted (e.g. suspended by a page fault) is on the ready
queue and is available for execution by the processor. The
process at the head of the ready queue is the one currently
being executed.

The primary effect of the process instructions is to move
PSBS back and forth between the ready queue and a
monitor or condition queue. A process moves from the
ready to a monitor queue when it attempts to enter a
locked monitor; it moves from the monitor queue to the
ready queue when the monitor is unlocked (by some other
process). Similarly, a process moves from the ready queue
to a condition queue when it waits on a condition variable.
and it moves back to the ready queue when the condition
variable is notified, or when the process has timed out
The instruction set includes both notify and broadcast
instructions, the latter having the effect of moving all
processes waiting on a condition variable to the ready
queue.

Each time a process is requeued, the scheduler is invoked;
it saves the state of the current process in the process's
PSB, loads the state of the highest priority ready process,
and continues execution. To simplify the task of choosing
the highest priority task from a queue, all queues are kept
sorted by priority.

In addition to normal interaction with monitors and
condition variables, certain other conditions result in
process switches. Faults (e.g. page faults or write-protect
faults) cause the current process to be moved to a fault
queue (specific to the type of fault); a condition variable
associated with the fault is then notified. An interrupt

233

234

(from an 1/0 device) causes one of a set of preassigned
condition variables to be notified. Finally, a timeout causes
a waiting process to be moved to the ready queue, even
though the condition variable on which it was waiting has
not been notified by another process.

Conclusions

The Mesa architecture accomplishes its goals of supporting
the Mesa programming system and allowing significant
code size reduction. Key to this success is that the
architecture has evolved in conjunction with the language
and the operating system, and that the hardware
architecture has been driven by the software architecture,
rather than the other way around.

The Mesa architecture has been implemented on several
machines ranging from the Alto [6] to the Dorado [3], and
is the basis of the Xerox 8000 series products and the
Xerox 5700 electronic printing system. The ability to
transport almost all Mesa software (i.e. all except unusual
I/O device drivers) among these machines while retaining
the advantages of the semantic match between the
language and the architecture has been invaluable. The
code size reduction over conventional architectures (which
averages about a factor of two) has allowed considerable
shoehorning of software function into relatively small
machines.

Acknowledgments

The first version of the Mesa architecture was designed
and implemented by the Computer Science Laboratory of
the Xerox Palo Alto Research Center. Butler Lampson was
responsible for much of the overall design and many of
the encoding tricks. Subsequent development and
maintcmmce have been done by the Systems Development
Depanment of the Office Products Division. Chuck
Geschke, Richard Johnsson, But1er Lampson, Roy Levin,
Jim Mitchel1, . Dave Redell, Jim Sandman, Ed
Satterthwaite, Dick Sweet, Chuck Thacker, and John Wick
have all made major technical contributions.

References

[1] Lampson, B., Mitchel1, 1., and Sattenhwaite, E. On the
transfer of control between contexts. LecTure NOles in
Computer Science 19, (1974).

[2] Lampson, B. W. and Redell, D. D. Experience with
processes and monitors in Mesa. Comm ACM 23, 2
(Feb. 1980), 105-117.

[3] Lampson, B. W. el. aL The Dorado: A high­
perfonnance personal computer-three papers. Tech.
Rep. CSL 81-1, Xerox Palo Alto Res. Ctr., 1981.

[4] Mitchell, 1. G., Maybury, W., and Sweet, R. Mesa
Language Manual. Tech. Rep. CSL 79-3, Xerox Palo
Alto Res. Ctr., 1979.

[5] Sweet, R. E. and Sandman, 1. G. Empirical Analysis of
the Mesa Instruction Set, ACM Symposium on
Architectural Support for Programming Languages &
Operating Systems, March 1982.

[6] Thacker, c.P. et. al. Alto: a personal computer, in
Computer Structures: Readings and Examples, Second
edition, Sieworek, Bell, and Newell, Eds., McGraw­
Hill, 1981. Also available as Tech. Rep. CSL 81-1,
Xerox Palo Alto Res. Ctr., 1981.

Empi rical Analysis of the Mesa
Instruction Set

Richard E. Sweet
James G. Sandman, Jr.

Xerox Office Products Division
Palo Alto, California

1. Introduction
This paper describes recent work to refine the instruction
set of the Mesa processor. Mesa [8] is a high level systems
implementation language developed at Xerox PARC
during the middle 1970's. Typical systems written in Mesa
are large collections of programs running on single-user
machines. For this reason, a major design goal of the
project 'has been to generate compact object programs.

The computers that execute Mesa programs are
implementations of a stack architecture [5]. The
instructions of an object program are organized into a
stream of eight bit bytes. The exact complemeni of
instructions in the architecture has changed as the
language and machine micro architecture have evolved.

In Sections 3 and 4, we give a short history of the Mesa
instruction set and discuss the motivation for our most
recent analysis of it In Section 5, we discuss the tools and
techniques used in this analysis. Section 6 shows the
results of this analysis as applied to a large sample of
approximately 2.5 million instruction bytes. Sections 7
and 8 give advice to others who might be contemplating
similar analyses.

2. Language Oriented Instruction Sets
There has been a recent trend toward tailoring computer
architecture to a given programming language.
A vailability of machines with writeable control stores has
accelerated this trend. A recent Computer issue [2]
contains several general discussions of the subject

There are at least two reasons for choosing a language
oriented architecture: space and time. We can get

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
pUblication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/ or specific permission.

improved speed by assuring that operations done
frequently have efficient implementations. We can get
more compact object programs by using variable length
opcodes, assigning short opcodes to common operations.
The use of variable length encodings based on
probabilities is, of course, not new; see the classical papers
by Shannon [9] and Huffman [4l

Both space and time optimizations rely on knowledge of
the statistical propenies of programs. Static statistics are
sufficient for code corripaction, while dynamic statistics
help in the area of execution speed. As most of today's
computers have some sort of virtual memory, anything
that makes programs smaller tends to speed them up by
reducing the amount of swapping.

One ot the first published empirical stuaies of
programming language usage was by Knuth [6], where he
studied FORTRAN programs. Several other studies have
also been published, including [I), [111, and [13]. Similar
studies have been made of Mesa programs before each
change in the instruction set

Basing an instruction set on statistical properties of
programs leads to an asymmetric instruction set For
example, variables. are read more often than they are
assigned, ~o it makes sense to have more short load
instructions than short store ones; certain short jump
distances are more cornmon than others, so variable length
jump instructions can make address assignment a rather
complicated operation. There is a misconception held by
some that a language oriented architecture is one in which
the compiler's code generators have a very easy task.
Quite the contrary, in a production environment, we are
willing to put considerable complexity into code
generation in order to generate compact object programs.

There are trade-offs between code compaction and
processor complexity. Encoding techniques such as
variable bit length opcodes and conditional encoding add
to the amount of microcode or hardware needed, and slow
down decoding. The Mesa machines use a fIxed size
opcode (eight bits), and have instructions with zero, one,

235

236

or t\\/o data bytes. A similar architecture was
independentiy proposed by Tanenbaum [11].

The paper by 10hnsson and Wick [5] describes the current
Mesa architecture.

3. History of the Mesa Instruction Set

Each machine that runs Mesa provides a microcoded
implementation of the Mesa architecture. Machines have
spanned more than an order of magnitude in processing
power, from the Alto [12] to the Dorado [7], with several
machines in between. All have a 16 bit word size.

The overall concepts of the Mesa architecture have not
changed since 1974, but the exact complement of
instructions has changed several times. New language
features, such as a larger address space. have required new
instructions. :\ew insights into the usage of these language
features have allowed more compact encoding of common
operations.

The first implementation of Mesa was done in 1974 for the
Alto. Peter Deutsch's experience with Byte LISP [3] had
shown the feasibility of a byte code interpreter to run on
the Alto. A stack architecture was chosen to allow
"addressless" instructions. Decisions on stack size and
procedure parameter passing. etc. were partially based on
statistics gathered on programs written in MPL. a
precursor to Mesa that ran on Tenex (and partially forced
by the limitations of the Alto hardware). The MPL study
is described briefly in Sweet's thesis [10].

In 1976. a reasonable bod) of Mesa cude e,xisled and was
analyzed. A study of source programs is described in [10].
There was also a study of the object code. These analyses
lead to small changes in the instruction set; in particular to

some two byte instructions where the second (operand)
byte was divided into two four-bit fields.

It soon became clear that the small 16 bit address space of
the original Alto implementation was too restrictive.
There were several proposals for adding virtual memory to
the Alto. but they were rejected in favor of designing a
new machine whose microarchitecture was better suited
for Mesa emulation. In 1978, we had a machine with
virtual memory, and the type LONG POINTER (32 bits) was
added to the language. This, of cours~, required
instructions for dealing with the new pointers: loading,
storing, dereferencing. etc. At the same time, 32 bit
arithmetic was also added to the language (and Mesa
architecture).

4. Experimental Sample

Today, Mesa has reached a significant level of maturity.
Our programmers are working in a development
e~vir0nment writt~n completel', in Mesa; there are

products in the field, such as the Xerox 8000 series.
including the Star workstation, that are programmed
entirely in Mesa These are large programs that make
extensive use of the virtual memory. Since the LONG

POINTER instructions were added to the architecture before
we had any body of code using long pointers to analyze,
we were sure that there was room for improvement in
their encoding. We did not have the resources at this time
to completely redesign the instruction set, but we decided
that it was_worth our while to see if small changes to the
instruction set could lead to more compact object
programs.

We started with a sample of programs that was
representative of all software running under Pilot [8], the
Mesa operating system. We had to decide whether to
analyze the source code or the object code generated by
the then current compiler. We chose to do both. but this
paper deals primarily with the object code analysis.

Some changes, such as increasing the stack depth. or
adding new instructions for record construction, have
significant effects on the code generating strategy in the
compiler. These were studied by instrumenting the
compiler or producing a new compiler that generated the
expanded instruction set.

Most anticipated instruction set changes were sufficiently
similar to the existing set that observing patterns in object
code was a workable plan. This certainly included
decisions' about the proper mix of one, two. and three byte
instructions for a given function. In fact. the compiler
waits until the very last phase of code generation, the
peephole optimizer. to choose the exact opcodes. This
concentrates knowledge of the exact instruction set in a
single place in the compiler.

5. Experimental Plan

The general plan of attack was as follows:

1. Normalize the object code.

We convened the existing object code into a
canonical form. This included breaking the code
into straight line sequences, and undoing most
peephole optimizations. The sample resulted in 2.5
million bytes of normalized instructions.

2. Collect statistics by pattern matching.

Patterns took two general forms: compiled in
patterns that looked at things like operator pair
frequencies, and interactive patterns, where the user
could type in a pattern and have the data base
searched for that pattern.

3. Propose new instructions.

Based upon the statistics gathered in step 2, we
proposed new instructions.

4. Convert to new opcodes by peephole optimization,

We wrote a general framework for peephole
optimization that read and wrote tiles in a format
compatible Yfith the pattern matching utilities, This
allowed us to write procedures that would convert
sequences of simple instructions into new fancier
instructions.

S. Repeat steps 2 through 4.

While the statistics from step 2 tell us how many of
each new instruction we will get in step 4, the
ability to panially convert the data file was helpful
for questions of the form "What local variables are
we loading when the load is not folded into another
instruction ?"

NormalizaltOfl

The version of the Mesa instruction set under analysis
used 240 of the possible 256 byte values. Moreover, many
of the instructions are single byte encodings of what is
logically an operation and an operand value, e.g. "Load
Local 6" or "Jump 8." Other instructions replace two or
three instruction sequences that are sufficiently common to
warrant a more compact encoding. To simplify analysis,
all code sequences were transformed into semantically
equivalent seqpences 'Jf a subset of the instructions,
comprising slightly over 100 opcode values.

1. Expand out imbedded operand values.

All instructions with embedded operand values
were replaced by a corresponding two or three byte
instructions where the operand is given explicitly.
For example "Jump 8", a single byte opcode was
replaced by the three byte sequence: the "Jump
word" opcode, and a two byte operand with a value
of8.

2. Break apart multi-operation opcodes.

Most complicated instructions were replaced by
sequences of equivalent simpler instructions. For
example, "Jump Not Zero" was replaced by the
sequence "Load 0," "Jump Not Equal." Notable
exceptions were the "Doubleword" instructions.
These could often have been replaced by two single
word instructions, but a major thrust of this analysis
was finding out how doublewords were used in the
language.

The procedure that did the normalization first made a pass
over the code to find the targets of all jumps. These were
then sorted so that the normalizing procedure could put a
marker byte in the output fiie between each sequence of
straight line code.

The analysis software was written so that the normalization
routine could run as a coroutin€ with any of the pattern

matchers. converting object tiles to a stream of normalized
bytes, While not a complete waste of effort. this option
was not used when the mass of data becam~e large, The
normal mode of operation was to convert a related set of
object programs to a single output file, and then use that
data file, or a collection of such files. as the input to
pattern matching and peephole optimization.

When working with large amounts of data, YOLI should
plo.n fOl expansio.l. Consider th~ format of t:le code.
sequence data file. The normalization step reduces the
opcodes to a set with approximately a hundred members.
On the other hand, the peephole optimization (step 3
above) adds new opcodes. In fact. before we were done
we had more than 256 logical opcodes (some of them
became two or three byte sequences in the resulting
instruction set using an escape sequence). As we desired
to have the output of peephole acceptable to the pattern
matchers, we used two bytes for each operation "byte" of
the stream.

Paltern Alatching

The collected files of normalized instructions may now be
used to answer questions about language usage. One
obvious question is "How many of each opcode do I
have?" It is easy to write a routine that reads the data file
and counts the opcodes. This was one of a class of generic
patterns that we ran on our data file. The set of generic
patterns waxed and waned throughout the several months
of analysis, but at the end, we found the following patterns
most interesting:

1. Static opcode frequency.

Count the number of occurrences of each opcode.

2. Operands values.

For each opcode, get a histogram of operand
values.

3. Opcode successors.

For each opcode, get a histogram of the set of next
opcodes in the code sequences.

4. Opcode predecessors.

For each opcode, get a histogram of the set of
previous opcodes in the code sequences.

5. Popular opcode pairs.

Consider the set of all pairs of adjacent opcodes;
sort them by frequency.

The reader will doubtless observe that patterns 3, 4, and 5
~l report the same information. Patterns 3 and 4 are
valuable because, even when the frequency of an opcode
pair is not especially high, the conditional probability of
one based on the other might be high. Additionally, all

237

238

three patterns provide information that can suggest
additional areas of study, as described below.

We also wrote patterns for finding popular triples, and in
fact popular n-tuples, where the search space is seeded
with allowed (n-1)-tuple initial strings. These weren't as
interesting as we had suspected; we got mountains of n­
tuples that occurred only a few times, and we tended to
run out of storage. Looking at pairs, along with a
knowledge of the language and the compiler·s code
generation strategies, allowed us to generate patterns that
gave us statistics on most interesting multibyte constructs.

User Specified Patterns

For matching of longer patterns, or answering specific
questions about instruction use, we preferred not to have
to recompile the matching program for every new pattern.
Vltie therefore wrote an interactive program where the user
typed in a pattern which was parsed, and then matched
against the data base. A pattern was a sequence of
instructions: each instruction consisted of an operator and
its operands. The operator/operands could be given
explicitly in the pattern, or a certain amount of "wild
carding" was allowed. For wild card slots, we provided
the option of collecting statistics on the actual values.

Consider the pattern: LLB • IN [0 .. 16), RB $. The
instruction LLB is a two byte "load local variable"
instruction where the second byte gives the offset of the
variable in the frame (procedure activation record).
Similarly, RR <;ays "dereference the pointer on the stack,
ajding the offset ?ecified by the o,erand byte." This
pattern finds all occurrences of L L B followed by R B where
one of the first sixteen local variables is a pointer being
loaded. The $ is a wild card match like the ., except it
tells the pattern matcher to gather statistics on the actual
operand values for the R B instructions. The output of the
pattern matcher looked something like this:

Total data: 1289310 inst. 2653970 bytes

LLB • IN [0 .. 16). RB $ total: 22813

value count % cum.%

0 7575 33.20 33.20
1 3638 15.94 49.15
2 2838 12.44 61. 59
3 1700 7.45 69.04
4 1291 5.65 74.70
5 823 3.60 78.31
6 746 3.27 81. 58
7 577 2.52 84.10

13 344 1. 50 85.61
15 328 1.43 87.05
10 315 1. 38 88.43
11 283 1. 24 89.67
14 277 1. 21 90.89
12 '1)2 1.10 91.99

Figure 1. Sample Pattern Matcher Output

These data tell us that the vast majority of otrsers are
small. If the first had been a "$", statistics would have
been collected on which local variable was loaded as well.
The statistics for this field are even more skewed-over
90% of the matches are for locals at offset 0, 1, or 2.

Peephole Oplimizer

Based on the statistics gathered by pattern matching, we
proposed some new instructions. Some of these new
instructions were single byte opcodes that encoded a
common operand value of what was logically a two or
three byte operation; other new instructions were
combinations of operations that occurred frequently in
code sequences.

Decisions about the two types of instructions were
interrelated. The question "How many single byte 'load
local' instructions should we have" is best answered by
looking at the load local statistics after any loads have been
combined into fancier instructions. We solved this
problem by writing a peephole optimizer to convert
normalized code sequences into sequences of new
instructions. This simplified the patterns needed for
decisions and also allowed us to look for patterns involving
the new instructions. The actual peephole conversion was
done by straightforward case analysis, but the framework
that it was Duilt upon is worthy of some discussion.

There are several problems with operating directly on the
data files. Variable length instructions cannot be read
backward. and some instructions have two operand bytes
that are logically a single sixteen bit operand. For this
reason, the file reading procedure produced fixed sized
Mesa records containing the opcode and an array of
parameters, correctly decoding multibyte operands. These
were maintained in an array as shown in the figure below.

-2 -1 o + 1 +2

Figure 2. Peephole Optimization Framework

The optimizing procedures typically dealt with thl! element
at index 0, based upon previou,s instructions (- 1) and
following instructions (+ I). The range of index values
depends on how much history is required in the peephole
procedure. For all of our routines, a range from - 5 to

+ 3 was more than adequate. The framework provided
the following operations:

1. Delete i.

Any instruction not already written to the output
may be deleted.

2. Output new code.

:\ew instructions may be generated; they are
buffered ljntil the next c;hift. but will appear juc;t to
the right of index O.

3. Shift left.

The first new output, or the element at + 1, is
moved to index O. Deleted cells are compacted.
The buffered new code is moved into the array,
possibly pushing some of the previous + i elements
into a buffer at the right. Any instruction forced
out the left is written to the output file. In the case
of no change, this reduces to a write, a block
transfer in memory, and a read; in the general case,
the operation can be rather complicated.

One useful feature of the framework was a display facility
that showed the entire array on the screen, with the
instruction given as a mnemonic and the parameter array
shown only to the extent that the given instruction had
parameters. We had several stepping modes, allowing us
to see the instructions streaming by, or allowing us to stop
and display only when an optimization was to take place.

6. Results

There is certainly not room in this paper to show the
complete results of our analysis. Instead, we will show
some of the generally interesting results, and go into
considerable detail for one class of jump instructions.

Statistics of the Normalized Instruction Data

Table 1 shows the most frequently occurring elements of
the original normalized instruction set, together with their
statistics.

Op count % cum. %

LI 208924 16.90 16.90 Load immediate
LL 156848 12.68 29.59 Load local variable
SL 81270 6.57 36.16 Store local variable
REC 64145 5.18 41.35 Recover previous top of stack
LLD 62950 5.09 46.44 Load local doubleword
EFC 55982 4.52 50.97 E:xternal function call
J 50726 4.10 55.08 Unconditional jump
R 42328 3.42 58.50 Dereference pointer on stack
SLD 37747 3.05 61.56 Store local doubleword
LA 29205 2.36 63.92 Address oflocal variable
ADD 28987 2.34 66.26 Add top two words of stack
JNE 25499 2.06 68.33 Jump not equal
RET 24176 1. 95 70.28 Return
JE 23335 1.88 72.17 Jump equal
LG 21594 1. 74 73.92 Load global variable
LFC 21450 1. 73 75.65 Local function call
DADO 20652 1."67 77 .32 Doubleword add
LGD 17895 1.44 78.77 Load global doubleword
LLK 16193 1. 31 80.08 Load link

Table l. Frequency of normalized instructions

Table 1 contains some interesting data about language
usage. Note that the local variables of procedures are
loaded twice as often as they are stored. Doubleword (32

bit) variables are loaded and stored almost half as often as
single word ones. Over 6% of the instructions were
procedure calls (E Fe + L Fe), and there were statically three
times as many procedure calls as returns. Knowing that
the compiler generates a single return from a procedure to
facilitate setting breakpoints, we can conclude that
procedures are called from an average of three places.
Almost 17% of the instructions load constants (L I). Table
2 shows the most popular constants. Bear in mind that
some of the loads of constants go away when then are
combined into fancier instructions, as we will see in the
section on conditional jumps.

Value count % cum. %

0 96652 45.83 45.83
1 29546 14.01 59.84
2 8901 4.22 64.06
3 7094 3.36 67.42
4 5895 2.79 70.22

-1 5553 2.63 72.85
5 3411 1. 61 74.47
6 3198 1. 51 75.99
8 2220 1. 05 77.04

13 2037 0.96 78.01
9 1853 0.87 78.88
7 1841 0.87 79.76

Table 2. Distribution of values for load immediate
instructions

The distribution of local variables loaded is shown in
Table 3. The reader should be aware that the compiler
sorts the local variables by static usage before assigning

. addresses in the local frame.

Offset count % cum %

0 63152 40.29 40.29
1 23151 14.77 55.07
2 15125 9.65 64.72
3 10116 6.45 71.17
4 7886 5.03 76.21
5 5837 3.72 79.93
6 4323 2.75 82.69
7 3754 2.39 85.08
8 2718 1. 73 86.82
9 2096 1. 33 88.16

Table 3. Distribution of offsets of local variables loaded

Analysis of Conditional Jumps

We observe from Table 1 that approximately 4% of the
instructions are testing the top two elements of the stack
for equality (J E or J N E). It is instructive to describe in
some detail the steps that we took in deciding upon what
specific instructions to generate for the "Jump Not Equal"
class of instructions (JNE).

239

240

In Tanenbaum's proposed architecture [11], he allocates 20
one byte instructions and one two byte instruction to each
of "Jump ~ot Equal" and "Jump ~ot Zero." We would
rather not use this much of our opcode space. We looked
to see if some of the conditional jumps could be combined
with other operations.

From the predecessor data, we observed that 84.7% of the
JNE instructions are preceded by a load immediate. We
next wrote a pattern that ga\'e a distribution of the values
being tested against. Table 4 shows the most frequent
\'alues.

Value count % cum.9C

0 11792 54.07 54.07
1 2181 10.00 64.07
3 1441 6.60 70.68
2 1032 4.73 75.41
4 390 1. 78 77.20
5 314 1. 43 78.64
6 238 l. 09 79.73
7 232 1. 06 80.80

-1 220 1. 00 81. 81
15 198 0.90 82.72

Table 4. Constants loaded before Jump ~ot Equal
instructions

It comes as no surprise that 0 is the most common \'alue,
since 1% of the pre-nonnalization instructions were "Jump
1'\ot Zero," and they were normalized to the sequence 11
0, JNE. We clearly needed to put back in at least the two
byte version of this instruction. "Jump ~ot Zero Byte"
(JNZB), \\here the operand byte specifies the jump
distance. The frequenc;. of other small constants lead us
to prop\.1se a ne\\ instrucion: "Jump '\'ot Equal Pair." a
two byte instruction where the operand byte is treated as
two fOllr bit fields, one a constant. and the other a jump
distance. Since jump distances are measured from the first
byte of a multibyte instruction, the first reasonable \alue
to jump is 3 bytes-jump over a single byte. When we
looked at the jump distances for IN E. hov.'ever, we sav.
that 3 byte jumps occur \er~ seldom, and that 5 bytes is
the winner, followed b~ 4 bytes. For this reason. we
biased our distances by 4.

By using the data byte to hold a constant b~tween 0 and
15, and a jump distance betv.'een 4 and 19, we found 4464
opportunities for the nev. J N E P instruction. This did not
count the situations where the constant value was 0, since
they could be encoded by the equal!) shon JNZB
instruction.

After the J N Z Band J N E P instructions are removed from
J N E statistics, there are still over 5000 cases of 11 *. J N E.

left. In these, either the constant value or the jump
distance was out of range. v.,'e decided to include a "Jump
Not Equal Byte Byte" instruction-one with two operand

bytes: a value for comparison, and a signed jump distance.
This took care of most of the remaining cases.

'ow it was time to look at the operands of the remaining
JNEB instructions to see if we should have anyone byte
J N E instructions. The distribution was fairly flat. with the
most frequent occurring around 0.+:50 times. For this
reason, v.e declined to include single byte JNE
instructions.

We also looked at the operands of the JNZB instructions.
There were two \'alues. 4 and 5, that were frequent enough
to warrant single byte instructions. We added the
instructions JNZ3 and JNZ4 (remembering that the jump
distance counts from the first byte of the instruction).

In summary. our ~ot Equal testing is nov. supponed by
the following instructions:

Opcode byles count 9C oj IN E
JNEB 2 4501 18

Jump ;\ot Equal Byte (all byte jumps arc sig.ned b) tes\

JNZB 2 8878 35
Jump l'\on·Zero B} te

JNEP 2 4464 17
Jump l'\ot Equal Pair (value in [0 . .15]. dist in 14 .. 19])

JNEBB 3 4742 19
Jump !\ot Equal Byte Byte (\ alue in 10 .. 255]. dist in [·128 .. 127])

JNZ3 1 1029 4
Jump !\on-Zew 3

JNZ4 1 1885
Jump J\:on-Zero 4.

Table 5. Jump ~ot Equal in the new instruction set

The then current opcode set under analysis had a tv. 0 byte
JNZB instruction, a two byte JNEB instruction and eight
single byte J N E instructions. The new instruction set has
no single byte JNE instructions: most of them occurred in
situations where we could combine the jump v. ith the
preceding instruction into a new two byte jump. The
overall net change was a 13% decrease in code bytes used
for not-equal testing compared to the pre\'ious instruction
set, even though there are four fewer J N E instructions.

SlOlislics oj The Final Instruction Set

From infonnation theory, we know that the best encoding
would ha\"e all single byte opcodes equally probable.
While we do not meet this ideal. the distribution of opcode
frequencies is a lot flatter than that of the normalized set.
Table 6 shows the most frequently occurring instructions
in the new instruction set. ~ote that of the twenty -tv. 0

instructiuns shown in Table 6, founeen are straightforward
single operation opcades with an) operand \alue~ given
explicitly as additional bytes, six are single byte
instructions where operand values are encoded in the
opcode, and two are compound operations combined into
a single opcode.

Opcode counl %
LIO 46956 4.57

Load immediate 0

LLO 35242 3.43
Load local 0

JB 25587 2.49
Jump byte-l relati\e, signed byte distance

RET 24256 2.36
Return

LIB 19944 1.94
Load immediate byte-operand is literal \alue

LLI 18951 1.84
Load local 1

EFCB 17074 1.66
External function call byte-operand specifies a Iinle number

LAB 16706 1.62
Local address byte-load address of a local variable

LI1 16244 1.58
Load immediate 1

REC 15929 1.55
Reco\ er \alue just popped from stack

SLB 13977 1.36
Store local byte-operand is offset in frame

JZB 13618 1.32
Jump zero byte-pop stacie. jump if \Oalue = 0

LLOO 13553 1.32
Load local doubleword 0

LLB 13269 1.29
Load local byte-operand is offset in frame-

LL2 13132 1.27
Load local 2

ADD 12435 1.21
Add-adds the top two elements of the stack

SLOB 12400 1.20
Store local doubleword byte-operand is offset in frame of
first word

LLOB 11222 1.09
Load local doubleword byte-operand is offset in frame of
first \\ord

LIW 11205 1.09
Load immediate word-next two bytes are a 16 bit literal

JW 10322 1.00
Jump word-next two bytes are a 16 bit relative jump
distance

LLKB 10306 1.00
Load link byte-operand specifies linle number

RLIP 9691 0.94
Read local indirect pair-operand has four bits to specify
local \-ariable pointer. four bits to specify offset of word
relative to that pointer.

Table 6. \1ost frequent instruction of the new set.

It is interesting to compare the contents of Tables 1, 2, and
3 with that of Table 6. We see that over half of the L I 0

instructions have been folded into new instructions.
Eighty percent of the L L instructions are either encoded as
single byte instructions such as LLO, or folded into more
complicated instructions such as R LIP. Several of the
most common instructions are load immediate ones (L 1*).
In fact, the complete frequency data show that almost 13%
of all new instructions are some fonn of load immediate.
The most frequent instruction, weighted by instruction
size, is JB, a two byte unconditional jump. The most
frequent conditional jump is a test against zero, JZB;
many of these arise from tests of Boolean variables. Table
7 shows the set of one and two byte load and store local
instructions of the new instruction set.

LORd instructions-push 10cal variable 0T110 stack.
byles rotal %

LLn,forn=0,1,2,3,4, 1 103402 10.1
5,6,7,8,9,10.11

LLB 2
LLOn,forn=0.1.2,3,4, 1

5,6.7,8,9

LLOB 2

13269 1.3
39989 3.9

11222 1.t

Store instructions-pop from stack into local variable.
SLn,forn=O,1,2,3.4, 1 44598 4.3

5,6,7,8,9,10

SLB 2
SLOn,forn=0,1,2,3,4, 1

5,6,8

SLOB 2

13977 1.4
21829 2.1

12400 1.2

Put instructions-store from stack into local variable,
don't pop.

PLn,forn=O.l,2 10540 1.0
PLB 2 4195 0.4
PLOn, for n=O 1 2350 0.2
PLOB 2 5238 0.5

Table 7. Distibution of load and store local instructions

Variables outside the first 256 words of the frame are
loaded and stored so infrequently that the compiler first
generates their address on the stack and then uses the
pointer dereferencing instructions. We considered a three
byte "Load Local Word" instruction with a sixteen bit
offset, but found that "Local Address Word," which
loaded the address of a local variable, was more useful.
The compiler needs to generate the address of large
variables (larger than two words) in order to use the
"Block Transfer" instruction; if a variable is at a large
offset in the frame, it is probably a large variable as well.

We implemented fewer short instructions for storing local
variables than for loading them. ~ote in Table 6 that four
of the single byte load local instructions appear in the top
fifteen instructions. Table 7 says that the most frequently
referenced (and hence the first in the frame) locals are
loaded over twice as often as stored. The variables that are
loaded with thoe two byte LLB are loaded and stored at
about the same frequency. The "put" instructions arise
primarily at statement boundaries where a variable is
stored in one statement and then immediately used in the
next; such situations are found by the peephole optimizer
of the compiler.

7. Analysis
The most useful patterns for finding sequences of
instructions to combine are succeessors, predecessors, and
popular pairs. A simple minded scheme for generating
instructions is to start down the list of popular pairs and
make a new instruction for each pair until the number of
occurrences of that pair reaches some threshold. Of

241

242

course, each new instruction potentially changes the
frequencies of all other pairs containing one of the
instructions.

Popular pairs will find many sequences but the data from
the successors and predecessors patterns should not be
overlooked. For example, the WS (Write Swapped)
instruction writes a word in memory using a pointer and
value popped from the stack. The R E C (Recover)
instruction reco\'ers the value that was previously on the
stack; after a WS, it recovers the pointer. The successor
data showed that 91.4% of the WS instructions v. ere
follo\\cd b~ a REC. Th~se two instructions were combined
into the PS (Put S\~arpl?d) instrllction \\hich left the
pointer on the stack. We could th~n eliminate the WS
instruction entirely and use the sequence P S, 0 I S
(Discard) the remaining 8.6% of the time.

It helps to know what the compiler does when analyzing
patterns. We were suprised to find no occurrences of the
pattern L I 0, L I 0. We found them when we looked at
popular pairs-the compiler had changed that sequence
into L I 0, DUP (Duplicate). This sequence was one of the
more popular pairs, which lead us to include the new
instruction LIDO (Load Immediate Double Zero).

The pattern showing histograms of operand values is
useful for deciding when to fold an operand value into a
single byte opcode. Remember that combining
instructions may change the operand distribution. For
example, the initial operand data for J NEB showed very
popular jump distances of 3 through 9 bytes. The original
instruction set had smgle oyte instructions for these jumps.
After the analysis, most of these shon jumps had been
com bined into the J N E P or J NEB a instructions. The
operand data obtained after peephole optimization did not
warrant putting the short J N E instructions back into the
instruction set.

8. Implementation Issues

One cannot blindly apply the statistical results of the
analysis to decide what instructions to have in the new
instruction set. It is necessary to temper these data with
knowledge of the compiler, history and expected future
trends of language use. and details of the implementations
of the instruction set.

There are some operations thC:lt are needed in the machine.
even though they occur infrequentl)-the di, ide operation
is an example. Man) such operations can be encoded as a
single opcode. ESC (Escape). fa II 0\\ ed by an ope-rand byte
specifying the infrequently used operallon. This makes
available more single byte apcades for more frequently
occurring operations. \l1athematically, it makes sense to
move any operation to ESC if the a\'ailable opcode can
hold a new operation that gives a net savings in code size.

On the other hand, each new opcode adds complexity to

the implementation.

Suppose there are two potential new instructions with the
same code size savings, one that combines two operations,
and the other that combines an operand value with an
operation. The latter often results in less complexity in the
implementation of the instruction set. In particular, if you
already have aLL 6 instruction, it typically takes only a
single microinstruction to add L L 7.

There are many encoding tricks that can be used to save
space. Some of these can be decoded at virtually no cost,
others are more costly. In the analysis of JNE above, we
ended up with an instruction, IN E P, where the operand
byte was interpreted as two four bit fields, a literal value
and a jump distance. The jump distance was biased, i.e.
the microcode added 4 to the value before interpreting the
jump. The literal value, on the other hand was unbiased,
even though the compiler would not generate the
ir.c:truction for one of the values. For one of the
microprocessors implementing the instruction set, biasing
the compared value would have significantly slowed down
the execution of the instruction.

In an integrated system such as Mesa, global issues must
be considered when making instruction set decisions. For
example, many procedures return a value of zero. The
statistics sho\\ ed that an opcode that loads zero and
returns would be cost effective. However, the source level
debugger takes advantage of the fact that a procedure hac;
a single RET instruction when setting exit breakpoints (all
of the procedure's returns jump to this RET). We were
unwilling at this time to add the complexity to the
debugger of finding all possible return instructions (R E T
and the ne\\ RET Z) in order to set exit breakpoints.
Therefore \\ e declined to add this n~\\ instruction.

Finally, be careful when analyzing data obtained abollt an
e\ ohing system. Be av. are that some common code
sequences reflect attempts by older programs to cope with
restrictions that are no longer in the architecture. For
example, programs written to live in a sma)) address space
use different algorithms than those written to live in a
large address space.

9. Conclusions

We began our analysis with limited goals: we had a shan
time in which to make recommendations about changes to
the instruction set, we were generally happy with the old
instruction set, and we didn't have the resources to handle
the necessary rewriting of microcode and compiler that a
massive 'change in the instruction set would require.

Our experience showed that our chosen method, analysis
of existing object code. was a workable approach to the
problem. ~onnalization of the code to a canonical fonn

proved valuable for simplifying the subsequent pattern
matching used.

We found that simple minded analysis of n-tuples becomes
unworkable for n)2, but that informed study of opcode
pairs allowed us to postulate longer patterns for study. An
int~racti"e pattern matching progrqm was valuc~ble for
answering questions about longer patterns.

Our analysis predicted an overall reduction in code size of
12%. We converted the compiler to generate the new
instructions and realized the expected savings on a large
sample of programs.

10. Acknowledgments

The first opcode analysis of Mesa was done by Chuck
Geschke. Richard Johnsson, Butler Lampson, and Dick
Sweet. Loretta Guarino Reid helped to develop the
current analysis tools, and LeRoy :\elson helped to
produce the program sample. The analyses were run on a
Dorado, \.\hose processing power was invaluable for
handling the large amollnt of data that we had.

Bibliography

[1] Alexander, W. G., and Wonman. D. 8., "Static
and Dynamic Characteristics of XPL Programs,"
Computer, vol 8. pp. 41-46, 1975.

[2] Chu, Yaohan, ed., Special issue on Higher-Level
Architecture, CompUTer, vol. 14, no. 7, July 1981.

[3] Deutsch, L. Peter, "A LIsp machine with very
Compact Programs," Third International Joinl
ConJerence on Artificial Inlelligence, Stanford
University, 1973.

[4] Huffman, D. A., "A Method for the Construction
of Minimum Redundancy Codes," Proceedings oj
the IRE. vol 40, pp. 1098-1101, September, 1952

[5] Johnsson, Richard K., and Wick, John D.,. "An
Overview of the Mesa Processor Architecture,"
Symposium on Architectural Support Jar Prog. Lang.
and Operating Sys.. Palo Alto, Mar. 1982.

[6] Knuth, Donald E., "An Empirical Study of
FORTRAN Programs," Software-Practice and
Experience. vol. 1, pp. 105-133, 1)71

[7] Lampson, Butler W. el. al .• The Dorado,: A High­
Performance Personal CompUTer-Three papers.
CSL-81-1, Xerox Palo Alto Research Center, Palo
Alto, California, 1981.

[8] Mitchell, James G., Maybury, William, and Sweet,
Richard E., }.1esa Language ManuaL Version 5.0.
CSL -79-3, Xerox Palo Alto Research Center, Palo
Alto, California, 1979.

[9] Redell, David D. et. al.. "Pilot: An Operating
System for a Personal Computer," Communications
oj the ACM, vol. 23, pp. 81-92, 1980.

[10] Shannon, C. E., "A \1athematical Theory of
Communication," Bell Sys{cm Technical Journal.
\01 27, pp. 379-423, 623-656, 1948.

[11] S\\eet, Richard E., Empirical Estimates oj Program
Duropy. CSL-78-3, Xerox Palo Alto Research
Center, Palo Alto, California, 1978.

[12] Tanenbaum, Andrew S., "Implications of
Structured Programming for \1achine
Architecture," Communications oj lhe ACAf. vol. 31,

pp. 237-246, 1978.

[13] Thacker. C. P. el. al .. "Alto: A personal computer,"
in CompUTer SlrUClures: Readings and Examples,
Second edition, Sieworek, Bell and ~ewelL Eds.,
McGraw-Hill, 1981. Also in Technical Report
CSL-79-11. Xerox Palo Alto Research Center, 1979.

[14] Wade, James F., and Stigall, Paul D., "Instruction
Design to :v1inimize Program Size," Proceedings oj
the Second Annual Symposium on Computer
Architecture. pp. 41-44, 1975.

243

244

Pilot: A Software Engineering Case Study

Thomas R. Horsley and William C. Lynch

Xerox Corporation, Palo Alto, California

Abstract

Pilot is an operating system implemented in the strongly
typed language Mesa and prodl,lced in an environment
containing a number of sophisticated software en~ineering
and development tools. We report here on the strengths
and deficiencies of these tools and techniques as observed
in the Pilot project. We report on the ways that these tools
have allowed a division of labor among several
programming teams, and we examine the problems
introduced within each different kind of development
programming activity (ie. source editing, compiling,
binding, integration, and testing).

Introduction

The purpose of this paper is to describe our experiences in
implementing an operating system called Pilot using a software
engineering suppOrt system based on the strongly typed language
\1esa [Geschke el al. 1977. Mitchell el al. 1978]. a distributed
network of personal computers [Metcalfe el al. 1976]. and a filinsr
and indexing system on that network designed to coordinate the
activities of a score or more of programmers. In ,this paper we will
present a broad overview of our experience with this project, briefly
describing our successes and the next layer of problems and issues
engendered by this approach. Most of these new problems will not
be given a comprehensive discussion in this paper, as they are
interesting and challenging enough to deserve separate treatment

That the Mesa system, coupled with our mode of usage, enabled us
to solve the organizational and communication problems usually
associated with a development team of a score of people. These
facilities allowed us to give stable and non-interactive direction to
the several sub-teams.

We developed and used a technique of incremental integration
which avoids the difficulties and schedule risk usuallv associated
with system integration and testing. .

The use or" a Program Secretary, not unlike Harlan Mills' program
Ii.brar!an. proved to be quite valuable, panicularly in dealing with
sJtuatlons where our tools had weaknesses. We showed the worth
of the program librarian tooL which helped coordinate the
substantial parallel activity we sustained: and we identified the need
for some additional tools, panicularly tools for scheduling consistent
compilations and for controlling incremental integrations.

We determined that these additional tools require an integrated
data base wherein consistent and correct information about the
system as a whole can be found.

Background

Pilot is a medium-sized operating system designed and implemented
as a usable tool rather than as an object lesson in operating system
design. Its construction was subjected to the fiscal, schedule. and
performance pressures nonnally associated with an industrial
enterprise.

Pilot is implemented in Mesa, a modular programming system. As
reponed in [Mitchell el al. 1978], Mesa supportS both definitions
and implementing modules (see below). Pilot is comprised of some
92 definitions modules and 79 implementation modules, with an
average module size of approximately 300 lines.

Pilot consists of tens of thousands of Mesa source lines: it was
implemented and released in a few months. The team responsible
for the development of Pilot necessarily consisted of a score of
people. of which at least a dozen contributed \.1esa code to the final
result. The coordination of four separately managed sub-teams was
required.

There are a number of innovative features in Pilot, and it employs
some interesting operating system technology. However. the
structure of Pilot is not particularly relevant here and will be
reponed in a series of papers to come [Redell el al. 1979],
[Lampson et aI, 1979].

Development Environment and Tools

The hardware system supporting the development environment is
based on the Alto, a personal interactive computer [Lampson 1979],
[Boggs, el aL 1979]. Each developer has his own personal machine,
leading to a potentially large amount of concurrent development
activity and the potential for a great degree of concurrent
development difficulty. These personal computers are linked
together by means of an Ethernet multi-access communication
system [Metcalfe et al. 1976]. As the Altos have limited disk
storage, a file server machine with hundreds of megabytes of
storage is also connected to the communications facility. Likewise.
high-speed printers are locally available via the same mechanism.
The accessing. indexing. and bookkeeping of the large number of
files in the project is a serious problem (see below). To deal with
this, a file indexing facility (librarian) is also available through the
communications system ..

The Alto supports a number of Significant wideranging software
tools (of which the Mesa system is JUSt one) developed over a
period of years by various contributors. As one might imagine, the
level of integration of these tools is less than perfect. which led to a
number of difficulties and deficiencies in the Pilot project Many
of these tools were constructed as separate, almost stand-alone
systems.

245

246

The major software tools which we employed are described belov..

Mesa is a modular programming language [Geschke el af. 1977).
The Mesa system consists of a compiler for the language. a Mesa
binder for connecting the separately compiled modules. and an
interacti\ e debugger for debugging the Mesa programs. Optionally.
a set of procedures called the Mesa run-time may be used as a base
upon which to build experimental systems.

The language defines two types of modules: dejinilions modules and
Implellle171alion modules. Both of these a:e compiled into binary
(object) fonn. A definitions module describes an interface to a
function b~ pro\iding a bundle of procedure and data declarations
v. hich can be referenced by clienT programs (diellls). Declarations
are fully type specified so that the compiler can carry out strong
l)pe checking bet\~een clients and implementation modules. The
rele\'ant type infonnation is supplied to the clients (and checked
against the implementations) by reading the object modules which
resulted from pre\ ious compilation(s) of the rele\,ent definitions
module(s). The implementing modules contain the procedural
description of one or more of the functions defined in some
definitions module. Since an implementing module can be seen
onh throu~h some definitions module. a wide varien of
implementations and/or \'ersions is possible without their being
functionalh detectable b\ the clients. Thus Mesa enforces a fonn
of infonnatlon hiding (Parnas. 1972).

The \1esa binder [M itchell el al. 1978) defines another language.
called C/Mesa. which is capable of defining conjigurations. These
assemble a set of modules and/or sub-confieurations into a new
conglomerate emit:- which has the characteristics of a single
module. Configurations may be nested and used to describe a tree
of modules. Configurations were used in the Pilot project as a
management tool to precisely define the resultant output of a
contributing development sub-team.

Another softy,are lOol is the Librarian. It is designed specifically lO
index and track the histor:- of the thousands of files created during
lfl\; pruje":l. In ddditiun to it:, mde>.ing. traci..iag. <in~ sta:us
reporting functions. the Librarian is constructed lO adjudicate the
frequent conflicts arismg between programmers attempting to access
and update the same module.

Organization. Dh'ision, and Control of the Development Effort

The size of the Pilot development tea."T1 (itself mandated by
schedule considerations) posed the usual organizational and
management challenges. With 20 developers. a multi-level
management structure was necessary despite the concomitant
human communication and coordination problems.

As described below. we chose to use the modularization power of
the Mesa system lO address these problems. rather than primarily
providing the capability for rapid interface change as reponed in
[Mitchell. 1978). The resultant methodology worked well for the
larger Pilot team. We believe that this methodology will
extrapolate to organizations at least another faclOr of five larger and
one management level deeper. A description and evaluation of this
methodology are the topics of this section.

Another aspect of our approach was the use of a single person
called the Program Secretary. a person not unlike the program
librarian described by Harlan Mills [Mills. 1970J in his chief
programmer team approach. As we shall describe. the Secretary
perfonned a number of functions which would have been very
diffICult to distribute in our environment. This person allowed us to
control and make lOlerable a nl:lmber of problems. described below.
which for lack of time or insight we were not able lo solve directly.

The PilOf Conjiguralion Tree

We organized Pilot into a tree of configurations isomorphic to the
corresponding people trce of teams and sub-teams. The nodes of
the Pilot trce are C /Mesa configuration descriptions and the leaH'S
(at the bottom of the tree) are Mesa implemcntation modules. B~
strictly controlling the scope (see below) of interfaces (through use
of the facilities of the configuration language C/Mesa). different
branches of the tree were de\eloped independently. The
configuration tree was three lo four layers deep everywhere. The
lOp level configuration implements Pilot itself. Each node of the
next level down maps to each of the major Pilot de\clopment
teams, and the next lower level to sub-teams. At the Jo"est level.
the modules themseh es were usuall~ the responsibilil:' of one
person. This technique of di\"iding the labor in correspondence
with the configuration tree pro\'ed to be a viable management
technique and was supported effecti\'el:. by Mesa.

Managell7e111 Of Inlerfaces

It quickl:,. became apparent that the scope of an interface v. as an
important concept. It is important because it measures the number
of de\elopment tcams that might be impacted by a change to that
interface. The scope of an interface is defined as the least
configuration within which all clients of that interface are confined.
This configuration corresponds to the lowest C/Mesa source
module which does nOl export the interface to a containing
configuration. Thus the scope of a module may be inferred from
the C/Mesa sources. The impact of a change to an interface is
confined to the de\,elopment organization or team that corresponds
to the node which is the scope of the interface. Thus the scope
directly identifies the impacted organization and its sub­
organizations.

The higher the scope of an interface. the more rigorously it must be
(and was) control1ed and the less frequently it was altered since
changes to high scope interfaces impact broader organizations.
Changmg a high le\oel Interrace was a management deLISlon
requiring careful project planning and longer lead times. while a
lowest-level interface could be modified at the whim of the
(usual1y) individual developer responsible for it. In general.
changing an interface required project planning at the
organizational level corresponding to its scope. In panicular,
misunderstandings between development sub-teams about interface
specifications were identified early at design time rather than being
discovered late at system integration time. Also obviated were
dependencies of one team on another team's \'olatile
implementation details. The result of all of this was 1) the
elimination of schedule slips during system integration by the
elimination oi nasty interface incompatibility surprises and. even
stronger. 2) the reduction of system integration to a pro-fonna
exercise by the (thus enabJel:1) introduction of incremental
integration (see below).

[Mitchell 1978) reported good success with changing Mesa interface
specifications. followed by corresponding revisions in the
implementing modules and a virtually bug-free re-integration.
While we also found this to be a valid and valuable technique for
low-level interfaces (the scope of which corresponded to a three-to­
five-person development sub-team), the project planning required to
change high-level interfaces affecting the entire body of developers
was obviously much greater as was the requirement for stability of
such interfaces. It should be noted that the experience reported by
[MitChell 1978) refers to a team of less than a half dozen
developers.

Thus. we chose to use the precise interface definition capabilities
and StrOIlg type checking of the Mesa system differently for the
high-level interfaces than for the low-level ones. High-level

interfaces were changed only very reluctantly, and were frozen
several weeks prior to system integration. This methodology served
to decouple one development team from another since each team
was assured that they would not be affected by the on going
implementation changes made by another developer. Each could
be dependent only on the shared definitions modules. and these
were controlled quite carefully and kept very stable [Lauer el al.
1976].

The ,\faster List

As the system grew. it became painfully obvious that we had no
single master description of what constituted the System. Instead
we had a number of overlapping descriptions, each of which had to
be maintained independently.

One such description was the working: directory on the file server.
Its subdirectory structure was a representation of the Pilot tree.
Another description of this same tree was embodied in the librarian
data base which indexed the file server. Yet another deSCription
was implicit in the C/Mesa configuration files. Early in the project
we found it necessary to create a set of command files for
compiling and binding the system from source: these files contained
still another description of the Pilot tree.

The addition of a module implied manually updating each of these
related files and data bases; it was a tedious and error prone
process. In fact. not until the end of the project were all of these
descriptions made consistent.

We never did effect a good solution to this problem. We dealt
with it in an ad hoc fashion by establishing a rudimentary data base
called the Master List. This data base was fundaIT~ntal in the sense
that all other descriptions and enumerations were required to
conform to it A program was written to generate from the Master
List some of the abo\·e files and some of the required data base
changes.

A proper solution to this problem requires merging the various lists
into a single. coherent data base. This implies that each tool take
direction from such a data base and properly update the data base.
Since many of the tools were constructed apart from such a system.
they would all require' modification. Thus the implementation of a
coherent and effective data base is a large task in our environment.

Incidentally. this problem was one of those controlled by our
Progr: m Secretary. It is quite clear what chaos would have resulted
if th: updating of the numerous lists described above had not been
conc·~ntrated in the hands of a single developer.

Pilot Update Cycle

In this section we will examine some of the interesting software
engineering aspects of the inner loop of Pilot development. This
inner loop occurs after design is complete and after a skeletal
system is in place. The typical event consists of making a
coordinated set of changes or additions to a small number of
modules.

In our environment. a set of modules is fetched from the working
directory on the file sener to the disk on the developers personal
machine. \1easures must be taken to ensure that no one changes
these modules without coordinating these modifications Yo ith the
other de\elopers. Usually edits are made to the source modules:
the changed modules (and perhaps some others) are recompiled;
and a trial Pilot system is built by binding the new objcct modules
to older object modules and configurations. The resulting system is
then debugged and tested using the symbolic Mesa debugger and
test programs which ha\'e been fetched from the working directory.
When the system is operating again (usually a few days later). the

result is integrated with the current coments of the working
directory on the file seT\er. and the changed modules are stored
back Onto the working directory.

A number of interesting problems arise during this cyclic process:

C onsisteni CpdaI€ Of Files

Pilot has been implemented in the context of a distributed
computing network. The master copies of the \1esa source modules
and object modules for Pilot are kept in directories on a file server
on the network. In order to make a coordinated batch of cham!es
to a set of Pilot source files. the developer transfers the current
copies of the files from the file server to his local disk. edits.
compiles. imegrates. and tests them. and then copies them back to
the' file server.

This simple process has a number or risks. T\l,o developers could
try to change the same file simultaneously. A developer could
forget to fetch the source. and he would then be editing an old
copy on his local disk. He could fetch the correct source but fOf!m
to write the updated \ ersion back to the file sener. ~

All of these risks were addressed (after the project had begun) by
the introduction of the program librarian sen er. This sen er
indexes the files in the file sener and adjudicates access to them \ ia
a checkin/checkout mechanism. To guarantee consistenC\ bet\l,een
local and remote copies of files. it p-ro\·ides atomic operations for
"checkout and fetch the file" and "checkin and store the file". In
the latter case. it also deletes the file from the local disk. thus
removing the possibility of changing it without having it checked
out (n.b. check-in is prevented unless the dneloper has the module
currently checked out).

Consistent Compilation

Each Mesa object file is identified by its name and the time at
which it was created: it contains a list of the identifications of all
the other object modules used in its creation (e.g .• the definitions
module it is implementing). The Mesa compiler will not compile a
module in the presence of definitions modules which are not
COI/Sistelll. nor will the the binder bind a set of inconsistent object
modules. C ollsisEenl is loosely defined to mean that. in the set of
all object mOdules referenced directly or indirectly. there is no case
of more than one \ ersion of a particular object module. Each
recompilation of a source module generates a new \ersion.

For example. module A may use definitions modules Band C. and
definitions module B may also refer to C. It can easily happen that
we compile B using the original compilation of C. then we edit the
source for c;. "slightly" and recompile. and then we attempt to
compile A using C (the new version) and using B (which utilized
the original version of C). The compiler has no way of knowing
whether the "slight" edit has created compatibility problems, so it
"plays safe" and announces a consistency error.

!hus, editing a source module implies that it recompile not only
Itself. but also all of those modules which include either a direct or
an indirect reference to it. Correctly determining the list of
modules to be recompiled and an ordtT in which they are to be
recompiled is the consistent compilation problem.

This "problem" is. in fact. not a problem at all but rather an aid
enabled by the strong type checking of Mesa. In previous systems
the developer made the decision as to whether an incompatibility
had been introduced by a "slight" change. Subtle errors due to the
indirect implications of the change often manifested themselves
only during system integration or system testing. With Mesa..
recompilation is forced via the Mesa systems auditing and judging
the comparability of all such changes, thus eliminating this source
of subtle problems.

247

248

A consistent compilation order for a system (such as Pilot) having a
configuration tree can be determined largely by the following
anal~ SIS:

1) As a direct consequence of the consistency requirement. t 0
modules cannot reference each other, nor can am other cvclical
dependencies exist: other ise the set cannot be compiled, - This
implles the ex istence of a v. ell-defined order of compilation.

2) Pilot implementatlon modules may not refer to each other but
must refer ()nl~ to defInitions modules. Therefore on1\ those
implementation modules which import recompiled definitions
modules need themselves be recompiled. Such implementation
modules are recompiled in any order after the recompilation of the
definitions modules.

3) An indi\idual definitions module can have compilation
dependencies onl) on modules ha\ing the same or a higher scope
(from the definition of scope). The proper compilation order for
definitions modules with different scopes is thus detennined by the
C/\1esa configuration sources (compile the one with the higher
scope first). The PilOt tree of configurations thus imposes a global
and fairly restricti\e partial ordering on the compilation order of
defInitions modules. The set of "difficult" compilation
dependencies are hence limited and localized to definitions modules
of the s<.Ime scope and described in the same C/\'!esa source
module.

4) B~ point I) there exists a ell-defined order of compilation
among interfaces possessing the same scope. The compilation order
of such sets of inrerfaces v.as detennined at desi~n time, and. as a
maner of poIJC~, the interfaces were nOl often modified so as to
change this ordering.

As an aside. it is clear that it is possible to build a tool whiCh. given
that a specified module has been changed. v. ill examine the source
modules of the s\·stem. determine hich modules must be
recompiled, and gi\' e the order of thClf recompilation. This is a
r:H","i(,'f'I" ('nJ'Pn~.'n~~·"'" Tn~.' A. "'!'"~("";r~1 r(',,",!(l<:;TPrH rf"~nll;lrl","! '(\0~

~eed ~~t be ~~ni~ient" and itc~uid -~ca~i~n~lI~ ~a~~~ ~ ;;~dul~' to
be compiled when this was not reall} necessar}. Our auempts to
build such a tool have been less than completely successful.

Consistent compilation and the design of associated tools is one of
those topics hich requires a separate paper fOl a complete
treatment.

System BUIlding

As alread\ mentioned. the nodes of the Pilot tree are C/\1esa
configuration descriptions. Associated with each is an object
module built bv bindinl! all associated modules and confil!urations
belo the node' in the Pilot tree. If a module changes. th-e system
is rebound bottom up through the tree. First. the changed module
is bound with its siblings in its parent configuration. ~ext. the
parent is bound with its siblings in its parent's configuration. and so
on,

Since the binding must be done on the deveiopers personai
computer and the object modules are stored in the file senef. it is
nccessar~ to fetch from the file sener the object modules im oiled
in the bll1ding and to stOre (after testing [see below}) the newly
bound replacements back OntO the file sen er.

The process of fetching (from the file sener) the correct siblings for
each le\el of binding is somewhat tedious and error prone. h was
not automated except by indi\'jdual dewlopers using command
files. Clearlv this information should have been derived
automatically from the Master List or from the hypothesized data
base.

Each rebinding yields a neVI version of the object module. The
Mesa Binder enforces cOllsistent binding by ensuring that onl~ one
version of a module or sub-configuration is used either directly or
indirect)\' in a bind, This situation has a number of similarities to
the con-sistent compilation issue. The subtleties of consistent
binding also merit treatment in a separate paper.

Integration and Tesling

A key soft are engineenng technique \\ hich we implemented for
the Pilot project was that of incremenlal inlegralion. This kept Pilot
integ:rated and tested in a state which as no more than a fcv. da\s
behind the lead de\ elopers. '

Each developer integrated and tested t:hanges as he made them.
BUl!s arose incrementalh and v. ere usualh restricted to the last set
of -changes: there was' alv. ays a current orking version of the
system. This technique was particularly useful in the earl} stages of
dC\elopment. when the \arious teams were quite dependent on
what the other teams were doing (i,e., the:; needed nev. funClions as
soon as the) ""ere implemented).

Substantial payoff was realized at the time of release. Final systell1s
integralion and systems les! pro\ed to be almost tri\'ial: cssentiall)
no bugs showed up at this stage. (In man: projects it is during this
phase that project failure occurs [often with no prior warning]). We
were also required to designate several system integrations as
internal releases. This provided a continuing sequence of
milestones by which progress could be measured.

Key to meeting this objective of incremental integration is the
requirement to maintain consistency among the sources and objects
in the working directory on the file senef. In L~is case consistent
means that the stored modules are consistently compiled and
consistently bound and that the resultant Pilol object module has
been system tested using regression-test programs also stored
consistentl~ in this same working directo~.

When the Pilot object module had been constructed as described
above. the test modules \0\ ere fetched from the work ing: directon
and executed. ~othing: as to' be swred In the workinQ director.
until these tests had -been passed. \\'e referred to lim whole
process as incremental integratioll, (It is intended that the update
performed in an incremental integration require onj~ a small
amount of work. [i,e.. a fe.... man-days]),

The steps in storing a change to Pilor onto the working dlrector~
.... ere as folic) s: 1) test the change on a pri\ ate \erSlOn of Pilot 111

one's local em ironment. 2) fetch the latest object modules from
the working director:, rebuild the system, and test again. 3) \ ia the
librarian, acquire sole right to update the master copy. 4) again
fetch the latest object modules, rebuild the system and lest. 5)
write the source and nev. object modules back onto the v.orking
director). 6) relinquish sole right to update the master cop: of the
object modules via the librarian.

Steps 3-6 are, of course, necessary to resohe the "store race" hich
sometimes results from t o de\elopers perfonning incremental
integrations in paraiie!. This procedure permits such paraliei
incremental integrations provided that the~ are independent updates
and that the order in which they are performed matters not. Step
2) minimizes the time that the universal directory lock is held.
Nare thar If independent and parallel incremental integrations are,
in fact. taking place. the modules fetched at step 4) ma~ \er: v.ell
be different than those fetched at step 2). L'nless there is a subtk
interaction error bet een the changes of the t 0 concurrent
incremental integrations, the test al ~ step 4) v. ill not fail.

Whiie this procedure v.as effective in managing parallel incremental
integrations, its implementation was not \ er~ satisfacwf:. The

procedure was executed manually. introducing the potential for
error. The fetching and stOring were accomplished by command
files dem ed from the \tlaster List rather than from an integrated
data base. This situation could be considerably improved by a tool
tlexing off the appropriate data base. While the overhead of our
incremental integration procedure was considerable. the payoff
more than justified it.

It should be pointed out that certain classes of changes could not be
made as small increments to the current \ersion of Pilot. For
example, the changing of high-le\el interfaces usually had system
wide repercussions. These changes were coordinated via internal
releases (described below).

Releases

Illlerna! Releases

Internal releases of Pilot were generated when major interface
changes were required and also periodicall) to serve as milestones
for the measurement of progress. Internal releases are also useful
to assure the consistency of the source and object modules in the
directOry. In our environment it is possible (through human error)
for the source and object modules to be inconsistent with each
other due to the lack of unique version identification (e.g., a
timestamp) in each source module. (Source modules may be
updated and checked back in without being recompiled and
rebound.) Ultimately. the onl:. way to guarantee that the sources
and objects are consistent is to recompile the source.

To make an internal release. the working directory was write-locked
and the system was brought to a guaranteed consistent state by
completely recompiling and rebuilding it from source files. The
working directory was then tested and finally backed-up to an
archive directory. This was all done by the Program Secretary
using command files generated from the Master List. Any
outstanding changes to high level interfaces were made and frozen
several weeks prior to the internal release.

External Releases

An external release is accomplished simply by moving a completed
internal release from the working directory to a public test
directory. Substantial testing must take place and documentation
must be created. At the completion of the testing period. the
release should be mo\ed from the public test directory to the
proper public release directory.

The execution of this acti\'ity was another of the Program
Secretar}'s duties.

Forking

Forking is defined to be the creation of a copy of a system followed
by the development of that copy in a fashion inconsistent with the
continuing development of the original. This usually means that
there is at least one module in which changes must be made which
are incompatible between the two branch systems of the fork. We
forked at one point early in the development. and found it
sufficientlv linmanagable that we did not try it again. The extra
complexity of maint~ining twO development paths and the problems
of making parallel bug fixes were the major shortcomings of
forking. The software engineering procedures described in this
paper 0 not address the problems of forking.

File Management

All of these machinations create file and directory logistics
problems. In addition to the fP.ain working directory, we also have
a public test and a public release directory for the previous external
release. Additionally. each external release and each internal
release (four or five per external release) are captured on a
structured archive directOry.

By the end of the project. there were 600 current versions of files
stored on just the working directory. This included almost 200
source files. their corresponding object files and symbols files (for
the symbolic Mesa Debugger). and a number of other files.
including about 150 associated with the test programs. With
snapshots of past releases of the system on the archive directory. the
actual number of online files approached 5000. The time spent
keeping this data base up to date and backed up was very
significant. 'Thc t..1aslcr List and command files generated
therefrom helped allc\ iate some of the logistics problems.

Conclusion

What is the upshot of all of this? In shon, most of the
development environment and comrol concepts which we used
worked well. Of e\'en more interest is the catalog of newly
discovered issues which are the ones now constraining our
performance. Our systems are never fast enough, panicularly in
switching from one major task to another. Many tasks which we
perform manually cry out to be automated, to have their speed of
execution improved but. more important, to have their accuracy
increased. The automation of these tasks generally requires a much
more integrated data base than is easil\ constructed in concert with
our unintegrated tOols. .

Successes

What worked really well? The configuration and interface
definition capabilities of the Mesa language, the C/Mesa
configuration language. and the Mesa Binder worked spectacularly
well in allowing us to divide. organize and control our development
effon. Such facilities are clearly a must in any modern systems
language and implementation.

The important notion of the scope of an interface and the concept
of grading and controlling the volatility of each interface according
to its scope gave the project the appropriate amount of stability at
each organizational level. This stability in turn was one of the
enabling factors for incremental integration.

The Program Secretary was clearly a vital post in this scheme. He
was instrumental in maintaining the structure and consistency of the
Master List. the directories. and the many command files. He was
also the prime mover in the execution of both internal and external
rel~ases. We do have some vague suspicions. however. that the
Program Secretary's main value was in carrying the integrated data
base in his head, as we had no automated mechanism for doing so.
Certainly the implementation of an effective and integrated data
base (of which the Master List would be a pan) would reduce his
duties considerably_

The program librarian proved its worth in dealing with the problem
of updating the working directory consistently. Since this tool was
introduced slightly after the beginning of the Pilot project. its
impact was clearly observable. It was an important facility in the
implementation of the incremental integration technique.

249

250

Last. the incremental integration technique itself. despite its largely
manual implementation. was quite ,successful. p~rticula~ly from the
point of view of a\'oiding a monolithic system integration and test
just before a scheduled release.

Deficiencies

With respect to our development en~'iron~ent., ~e ~~Iative
autonomy of each of our tools reflected Itself In our lnabllJt~' to
achieve an integrated data base which would control the tools In a
consistent way. It also manifested itself in the relative slown,ess of
the system in switch ina from one tool to another. Something as
elementary as switching from the compiler to the editor requires a
fraction of a minute, This slowness raises the cost of the update
cycle and effectively imposes a minimum size on a change. The
resulting increased batching of changes tends to make the process
more error prone.

Maintaining and updating the librarian and Master List data bases
was a tedious error-prone operation. In these cases the tools are In
a relath'eh earl\' stage. and not all of the improvements possible to
the user 'interaction" have yet been made.

A strong requirement for some addi~onal tools, h~s been
established. The requirement for a Consistent Compilation Tool
(for determining the modules to recompile and the order of
recompilation) was proposed quite some time ago by memb,ers of
our staff (not participants in the Pilot project). but the necessity for
such a tool was nOt generally accepted at that time: the requirement
for a Consistent Compilation Tool is now quite clear. As a result
of the Pilot experience. The requirement for a Consistent Binding
Tool has been also now established. whereas before the Pilot project
this was not a particularly visible requirement, A third addition
which would have a large positive impact is a tool for controlJing
and automating the incremental integration process,

The design and implementation of such tools constitutes a major
effort in itself. Central to any solution is an integrated riata base.

Ackno\\ ledgements

We are particularly indebted to our colleagues Hugh Lauer. Paul
McJones. Steve Purcell. Dave Redell. Ed Satterthwaite. and John
Wick. who both Jived through. and furnished the raw data for. the
experiences related in this paper and pro\'ided encouragement and
constructive criticism for the text itself. We are also indebted to
Jude Costello for a her many suggestions for improvement in this
paper,

Reftrenccs

Geschke. C M .. Morris. J. H .. and Satterthwaite, E. H .. "Earl~
Experience with Mesa." COn7mulJicafiOI1S of the AC\! 20 8
(August 1977). pp, 540-553.

Lampson. B, W .. "An Open Operating System for a Single Lser
Machine." 10 be published. Proceedings Se\'elllh
Symposium on Operaling System Principles. (Dec .. 1979)

Lampson. B. W, and Redell. D. D .. "Experience with Processes and
Monitors in Mesa," 10 be published Proceedings - Sevelllh
S)mposium 017 Operallng Syslem Principles. (Dec .. 1979)

Lauer. H.C and Satterthwaite. E,H.. "The Impact of Mesa on
System Design." Proceedings of Ihe 41h Inlernalional
Conference on Software Engineering. 1979

Metcalfe. R, M., and Boggs, D.R., "Ethernet: Distributed Packet
Switching For Local Computer Networks," Communications
of Ihe ACM 19 7 (July 1976). pp. 395-404

Mills. H. D .. Chief Programmer Teams: Techniques and Procedures.
18\1 Internal Report. Januar} 1970

Mitchell. J. G.. "Mesa: A Designer's User Perspecti\e". Spring
CompCon 78 (1978). pp. 36-39

Mitchell, J. G .. Ma\ bun. W .. and Sweet. R, L "Mesa Language
Manual," Technical report CSL -78-1. Xerox Corpor~tio-n,
Palo Alto Research Center, Palo Alto. California. February
1978.

Parnas. D. L.. "A Technique For Software Module Specification
With Examples." Communications of Ihe ACM 15 5 (May
1972). pp, 330-336

Redell D. 0 .. Dalal. Y. K., Horsley. T. H .. Lauer. H. c., Lynch. W,
C. McJones, P. R .. Murray, H, G .. and Purcell. S, C.
"Pilot: A n operating system for a personal computer." 10 be
published Proceedings - Seventh Symposium 01/ Operating
S)'siem Principles. (Dec., 1979)

Boggs. 0 .. Lampson. B. W., McCreighL E.. Sproull. R .. and
Thacker, C P .. "Alto: A Personal Computer", Technical
report 10 be published. Xerox Corporation. Palo Alto
Research Center. Palo Alto. California. 1979.

The Impact of Mesa on System Design

Hugh C. Lauer and Edwin H. Satterthwaite

Xerox Corporation, Palo Alto, California

Abstract

The Mesa programming language supports program
modularity in ways that permit subsystems to be developed
separately but to be bound together with complete type
safety. Separate and explicit interface definitions provide
an effective means of communication, both between
programs and between programmers. A configuration
language describes the organization of a system and
controls the scopes of interfaces. These facilities have had
a profound impact on the way we design systems and
organize development projects. This paper reports our
recent experience with Mesa, particularly its use in the
development of an operating system. It illustrates
techniques for designing interfaces, for using the interface
language as a specification language. and for organizing a
system to achieve the practical benefits of program
modularity without sacrificing strict type-checking.

Mesa is a programming language designed for system
implementation. It is used within the Xerox Corporation both by
research laboratories as a vehicle for experiments and by
development organizations for 'production' programming. Some of
our initial experience with Mesa was reponed previously [Geschke
el al. 1977}. Since that time. the language has evolved in several
directions and has acquired a larger and more diverse community
of users. That community has accumulated a substantial amount of
experience in using Mesa to design and implement large systems, a
number of which are now operational. It has become increasingly
clear that the value of Mesa extends far beyond its enforcement of
type-safety within individual programs. It has profoundly affected
the ways we think about system design, organize development
projects, and communicate our ideas about the systems we build.

This paper reports some of our recent experience with Mesa. It is
based primarily upon the development of one panicular
system-what we refer to as the Pilot operating system-for a small,
personal computer. We also draw upon the lessons learned from
other systems. These represent a non-trivial amount of
piOgramming; a survey of just the authors' immediate colleagues at
the end of 1978 uncovered several hundred thousand lines of stable,
operational Mesa code. Pilot itself is a 'second generation' client of
Mesa. It is the first major system to take advantage of explicit
interface and configuration descriptions (discussed below) in its
Original design. In addition. its designers were able to make careful
assessments of earlier systems to discover both the benefits and
pitfalls of using Mesa. As a result, we were able to profit from. as
well as add to, the accumulated 'institutional learning' about the
practical problems of de\"eloping large systems in Mesa.

The purpose of this paper is to communicate those lessons, which
deserve more emphasis and discussion than they have received to
date in the literature. We concentrate upon the impact and
adequacy of the Mesa programming language and its influence
upon system design: a companion pape~ [Hors!ey and Lynch. 1979]

focuses upon organizational and management issues. This paper
contains three main sections. First., the facilities provided by Mesa
for supponing the development and organization of modular
programs are discussed. In the second section. we describe the role
J:;layed by the Mesa interface and configuration languages in system
design, particularly from the perspective of Pilot. The final section
is a qualitative assessment of the adequacy of Mesa as a system
implementation language.

Contex[

Mesa is both a language and a system. The Mesa language
[Mitchell el al. 1979} features strict type-checking much like that of
PASCAL [Wirth. 1971} or EUCLID [Lampson el al. 1977]. with similar
advantages and disadvantages. In panicular. the type-checking
moves a substantial amount of debugging from run-time to
compile-time. Much has been written on this subject: our views
and design decisions have chariged little since our earlier report
[Geschke el ai. 1977}. The type system of Mesa pervades all other
aspects of the language and system. The latter consists of a
compiler. a binder. a source language debugger. and a number of
other tools and utilities. The system has been implemented on
machines that can be microprogrammed at the register transfer
level: thus we have also been able to design and implement a
machine architecture specifically tailored to Mesa.

The Pilot operating system upon which this report is based is
programmed entirely in Mesa. as are all of its clients. In addition
to providing the usual set of operating-system facilities, Pilot
implements all of the run-time machinery needed to suppon the
execution of Mesa programs, including itself. The clients are
assumed to be friendly and cooperating, not hostile or malicious.
Since no debugging takes place on machines that are simultaneously
supporting other users, no attempt has been made to provide a
strong protection mechanism; instead the goal has been to minimize
the likelihood of uncontrolled damage due to residual errors. Pilot
was designed and implemented by a core group of six people. with
important contributions by members of other groups in specialized
areas. By late 1978, the total system consisted of approximately
twenty-five thousand lines of Mesa code.

Modularity in Mesa

Systems built in Mesa are collections of modules. The general
structure of a Mesa module is described in [Geschke el al. 1977]. A
module declaration defines a data structure consisting of a
collection of variables and a set of procedures with access to those
variables. In form. a module resembles an ALGOL procedu.re or
SI\1CLA class. Although the Mesa language enforces no p~rucular
style of module usage, a de Jacto standar~ has e\"o~ved. An msta!lce
of a module typically manages a collecuon of objects. Each object
contains information characterizing its own state. The module
instance provides a set of procedures to create. operate upon. a~d
destroy the objects: it contains any data shared by the enure
collection (e.g., a table of allocated resources) and perhaps some
initialization code also.

251

252

Modules communicate with each other via interfaces. A module
may import an interface. in which case it may use facilities defined
in that interface and implemented in other modules. We call the
imponer a client flf the interface. A module may also export an
interface. in which case it makes its own facilities available to other
modules as defined by that interface. Modules and interfaces
provide a basis for separate compilation. In the current version of
Mesa. they must in fact be compiled separately; there is no
provision for nesting modules within a single compilation unit
Instead a collection of modules is bound together into a
configuratioll by the Mesa binder: this causes all imponed interfaces
to be connected to corresponding exported interfaces.

This section contains a brief, simplified description of Mesa
interface definitions and of the configuration description language.
At the end of the section is a note on the consistent compilation
requirement. a constraint that has an imponant impact on the style
and organization of any large system programmed in Mesa.

Illlerfaces

An interface consists of a sequence of declarations and is defined
by a separate compilation unit called a DEFINITIONS module. An
interface definition can be panitioned into two pans. either of
which may be empt). A Sialic part declares types and constants
that are to be shared between client and implementor. Such
interface components have values that are completely specified in
the interface definition and can be used by any module with access
to that definition. The operations pari defines the operations
available to clients imponing the interface. In general. the
operations are defined in terms of procedures and signals
(dynamically bound unique names. used primarily for exception
handling). Only the names and types of operations (including the
types of their arguments) are specified in the interface. not their
implementations. The operations part of an interface implicitly
declares a record type with procedure- and signal-valued fields. We
call this an interface record.

Figures la and Ib are excerpts from the definition of a hypothetical
Channel interface. They illustrate the declarations typicall} found
in the static and operations pans respecti\ely. }'Irote that each
operation is defined to accept or return a Handle. Only this type
(and its distinguished value nuliHandle) are of interest to clients.
The type Object is defined within Channel because it is required
for the declaration of Handle: the attribute PRIVATE hides the
definition of Object from clients of the interface.

A module that uses an interface is said to imporl an instance of the
corresponding interface record. Every module lists the interfaces
that it imports. In essence, the importer is parametrized with
respect to these interfaces. The compiler reads (the compiled
version of) each of the imported modules and obtains all of the
information necessary to compiie the importing module. No
knowledge about any implementors of the interfaces is required,
but the types and parameters of all references to an interface are
fully checked at compile time. The compiler also allocates space in
the object program for (the required components of) the imponed
interface records but does not initialize that space.

Similarly. a module that implements an interface is said to export it.
Such a module contains procedure and/or signal declarations. each
with the PUBLIC attribute. for the procedures and/or signals defined
in the interface. The compiler ensures that the types in the
exporter are assignment compatible with the corresponding fields of
the interface record and thus with the types expected by importers
of the interface. In essence. instantiation of an exporter yields an
instance of the exponed interface. record in which procedure and
signal descriptors have been assigned to the fields. Figure Ic
suggests the form of a module that exports Channel. In this
example. Channellmplementation imports another interface,
Device. so that it can use operations defined there.

The Mesa binder collects exported interface records and assigns
their values to the corresponding interface records of the importers.
The rules for collection and assignment are expressed in a
configuration description language. which is discussed belo".

The Mesa approach to interfaces has several important advantages:

Once an interface has been agreed upon. construction of the
importer and exporter can proceed independently. In
particular. interfaces and implementations are decoupled.
Not only is information better hidden. but minor
programming bugs can be fixed in exporting modules without
invalidating a previously established interface and without
sacrificing full type-checking across module boundanes.

In large projects. interface specifications are units of
communication among design and programming groups (see
below under Interfaces and Specificalions).

Interfaces panition the name space and effectively reduce the
number of global names that must be kept distinct within a
project.

Interfaces enforce consistenc\ in the connections among
modules. The operations lIpon a class of objects are collected
into a single interface. not defined indi\'idual1~ and in
potentially incompatible ways. An earlier binding scheme.
using componcnt-by-component connection. could for
example obtain Allocate from one module and Free from an
entirely unrelated one.

I'early all of the work required for the type-checking of
interfaces is done by the compiler.

Object: PRIVATE TYPE = RECORD [...];

Handle: TYPE = POINTER TO Channel.Object;

nuliHandle: Channel.Handle = NIL;

Figure 13

Create: PROCEDURE [a: arguments] RETURNS [h:
Channel.Handle] ;

Operation: PROCEDURE [h: Channel.Handle, a:
arguments];

Figure Ib

Channellmplementation: PROGRAM IMPORTS Device
EXPORTS Channel =

BEGIN

Create: PUBLIC PROCEDURE [a: arguments]
RETURNS [h: Channel.Handle] =

BEGIN

END;

Operation: PUBLIC PROCEDURE [h: Channel.Handle,
a: arguments] =

BEGIN

END;

END.

Figure Ie

This approach should be contrasted with the alternatives. Interfaces
in typical assembly-language programming are defined implicitly by
attributes attached to symbols scattered through the text of the
implementors. The associated binders (linkage editors) and loaders
do no type checking ard impose little structure on the use of
names. Implementations of higher-level languages that are
constrained to use the same binders seldom do anv better. even
when they offer strict intra-module type-checking. We believe Ihal
lhe l)pe-checking of inrerfaces is the most imporlant application of
[he [ype machinery of Mesa. In a few PASCAL derivatives (see. for
example. [Kieburtz el 01. 1978]). inter-module type-checking is
pro\ided by a special binder. but interfaces are still defined
implicitly.

If importers and exporters refer to inconsistent versions of an
interface. the type-checking scheme used by Mesa will fail. The
following rather consenative approach has therefore been adopted
to £uarantee consistency. Whenever a DEFINITIONS module is
compiled. the compiler "generates a unique internal name for the
interface (essentially a time stamp). Interfaces are 'the same' for the
purposes of binding only if they have the same internal name. This
rule is an extension of ~1esa's equivalence rule for record types (see
[Geschke et aI, 1977] for further discussion). The compiler pJaces
the unique name of the interface in the object code generated for
any importer or exporter compiled using that interface. II is [his
internal name thaI is used by the binder to match interface';. Thus
the binder checks that each interface is used in the same l'ersion bv
every importer and exporter. "

This strategy has profound effects on the organization and
management of large systems. It guarantees complete type-safety
and consistency among all modules in a system communicating via
a particular interface. On the other hand. it introduces both direct
and indirect dependencies among modules to the level of exact
versions: establishing consistency can require a great deal of
recompilation. Subsequent sections discuss these issues.

Configurations and Billding

Mesa provides a separate configuration description language.
C/Mesa. for specifying how separately compiled modules are to be
bound together to form configurations. In the simple cases
considered here, configuration descriptions are just lists of modules
and (sub)configurations. These descriptions can be nested,
however: and the nesting implicitly determines the scope of an
interface according to the following rules:

A component of a configuration (i.e .. a module or 'sub­
configuration' named within the configuration description)
may import an interface if and only if that interface is either
imported by the configuration itself or is exported by some
component of that configuration.

A configuration may export an interface only if it is exported
by one of its components.

The Mesa configuration language is. in facL more general than this:
it has many of the attributes of a 'module interconnection language'
as defined by [DeRemer and Kron. 1976]. C/Mesa provides such
features as multiple. named instances of interfaces. the assignment
of specific instances to specific importers. and the jOint or shared
implementation of an interface by more than one module. This
generality is little used by Pilot and is not discussed here.

A complete system is represented by a hierarchy of configuration
descriptions. The scope rules for interfaces permit an interface to
be confined to, or excluded from, any given branch of the
hierarchy. This can best be illustrated by an example. Let A. B.
C. . .. be interfaces, and let U, V, W, X, ... be modules that
import and export them as indicated in the comments. Consider
the following three C/Mesa configuration descriptions:

Contig 1: CONFIGURATION
IMPORTS A
EXPORTS B =

BEGIN
U;
V' ,

END.

.. imports A, C
··exports B, C

Config2: CONFIGURATION

IMPORTS B =
BEGIN

W;
X;

END.

.. imports B. exports C

. ·imports B. C

Contig3: CONFIGURATION

IMPORTS A =
BEGIN

Config1 ;
Contig2;

END.

These configuration descriptions guarantee the foHowing properties
of the interfaces (among others):

The scope of interface C in Contig 1 is just that
configuration: that is. this instance of C is known to all
components of Contig1 but to no component outside it.
Every component of Contig 1 which imports C will be
bound to the same implementation. the one provided by V.
The interface C in Config2 is entirely independent of the
interface C in Contig 1. Whether these two interfaces are
different irlSlances of the same interface definition does not
matter: lhey do not represenl the same illlpiemefllalion. All
components of Config2 that import C are bound to the
implementation in W. not V.

Interface A is imported into Config3 (from some yer-to-be­
specified. larger configuration). but iT is imported only into
the branch of the hierarchy represente-:: by Contig 1. Thus
no component of Config2 may import A. ~ven though It is
known at a higher le\el in the hierarchy.

The scope rules for configurations provide a powerr~d tool for
controlling the interactions among different parts of th~i system.
Indhidual subgroups of the development team can define th('!r own
interfaces for their own purposes without involving larger U;f'.its.
without having to cope with unexpected calls from unrelated pa' ',"
of the system. and without having any naming conflicts. Similarly.
the organization of the whole system is subject to scrutiny. and all
interfaces between different parts of the system are funy exposed.
No private. undocumented interfaces between low-level components
in unrelated branches of the configuration hierarchy can exist.

Pilot makes extensive use of nested confil:wrations to limit the
scopes of interfaces. The configuration de~riptions are organized
as a four-level hierarchy. The highest level exports just the 'public'
interfaces defined in the Functional Specification (see below). At
the next level are the major internal interfaces. used for
cO,mmunication among the major subsystems of Pilot-e.g ..
input/output. memory management. etc. At lower levels are the
interfaces that provide communication within a subsystem. At each
le\'el. the interfaces are defined and managed by the group or
individual responsible for that configuration. This has been an
important factor in keeping the logistics of the project manageable
and its schedule reasonable.

C onsislent C ompilalioll

When one module is referenced during the course of compiling
another_ a compilalion depel/dency is established. This dependency

253

254

imposes a partial ordering on a collection of modules. If one
module is changed and recompiled, all those that follow it in the
ordering must also be recompiled before the collection is again
consistent It is seldom possible to bind a system together so long
as any inconsistencies remain. An example illustrates the problem.
Let A be an interface between modules U and V. If some change
is required in A. it is a relatively simple matter to recompile first A
and then U and V. These three are then consistent with each other
and may be correctly bound tOgether. If only U or only V were
recompiled, the binder would report an error. Suppose. however,
that interface B uses a type defined in A. say as the type of an
object pointed to by a field of a record. Suppose further that
modules X and Y communicate using B. If X also references A,
any attempt to recompile X will fail until B is recompiled; then
consistent binding requires recompi1ation of Y also. Thus Y has an
indirect compilation dependency on A. Whcnever A is recompiled.
B. X. and Y must be also.

If the number of modules and interfaces in a s\,stem is lan!c and if
interfaces are evohin~. ensurin~ this strictl\ -checked consistenC\
becomes a major logistic problem for the p'roject manager. The
practical effect of this COllsiSlelll compilation requirement is to force
system designers to pay very close anention to y.hen and hoy.
modules are updated. Without careful planning and system design.
small changes to one or a few interfaces can trigger a recompilation
of an entire system. For small systems this is not significant, but
for larger projects it is a headache: and it sacrifices many of the
operational benefits of modularity. All members of the project
must bring their work into phase and 'check in' their outstanding
modules. These must then be recompiled in a sequence consistent
with the partial order.

In our experience, such a universal recompilation effon nearl~
alwa\'s reveals newh introduced incon:iistencies ar.d interactions
among modules. These must be resolved immediately to allow the
recompilation and rebinding to proceed. In the development of
Pilot. the recompilation effort took more than a week the first lime
it was tried: this eventually converged to one-and-one-half or twO
days once the logistics were debugged. Note that this period is one
of enfcr:ed !nac!i\'i~) 3!'!1C'r:g ~he me~~ers of the ;,~cje:~-i.e .. ~l;e)
are not able to continue the coding and development of the system
being integrated. (Because of the hierarchical structure of Pilot.
uni\ ersal recompilations were rare. In most cases. only the
components of one of the nested configurations needed 10 be
recompiled. requiring much less time and effort and affecting fewer
people.)

The enforcement of consistent' compilation is a result of Mesa's
StrIct type- and version-checking at the module le\'el. We ha\e
fOllnd that a utility program capable of computing the partial
ordering and scheduling the required compilations is of great help
in dealing with consistent compilation. Three more drastic
alternati\'es can be Imagined:

First. compatibility of interfaces might be defined recursivel)
in terms of component-by-component compatibility of types
and \'alues. This not onlv inyoh'es the binder in much more
elaborate type checking -but also requires access to large
symbol tables during binding. Previous use of this scheme in
Mesa demonstrated that it had unacceptable performance and
introduced a different set of operational problems.

Second, the compiler and binder could be more
discriminating and enforce recompilation of B. X. and Y only
when they are actually affected by the changes made to A.
So far, attempts to do this in ways that do nOt reduce to the
first alternative have not been very successful.

Finally, the onus could be placed on the programmer to
recompile B, X, and Y when required. This, however,
sacrifices the type-safeness of the Mesa language in one of
the places where it is most required: at the interface between
two modules. Failure to recompile at the appropriate times
will result in a discrepancy between those modules thaI is //01

apparenl in allY source leX!. (In fact. one early version of

Mesa used 'unique' names that were incorrectly computed
and were not always' unique. We found that debugging in
the presence of undetected \'ersion mismatches was extremel)
tedious and frustrating.)

The universal recompilation effort is, in effect, the root of a
software release policy. Observe that the clients of PilOt itself must
be recompiled whenever the external interfaces (those exponed by
Pilot) are recompiled. This, of course, can be very time-consuming
and costly. Therefore, new releases of system software-i.e., ney.
versions with updated interfaces-must be carefully planned and
must not be undenaken lightly. 'Maintenance' releases. on the
other hand. involve updates only to program modules or strictI)
internal interfaces. These releases can be absorbed very easily by
clients at will and at the cost of a few seconds' or minutes' binding.

While consistent compilation is a logistic problem for the project
manager, it can also be a programming benefit. Sometimes it
becomes necessary to change an interface. e.g., to change the
representation of a shared type or to repartition functions within a
system. When this occurs. the type- and version-checking done by
the compiler and binder will detect all references to that interface
and will expose ali parts of the system that must be modified to
accommodate the change. The experience of many projects in Mesa
is .that ollce a pre\'iously running s),stem has been success folly
recompiled and rebound following change!: to its internal or external
interfaces. it will immediately run with the same reliabilitJ as before.
The correct use of strict interface checking is not always ob\'ious.
but it must be mastered if the potential benefits are to be obtained.
(This parallels our experience with intra-module type checking.)

Programming in the Interface Language of l\'lesa

Designing interfaces and reducing them to Mesa DEFINITIONS
modules are as much acts of programming as designing algorithms
and reducing. them to executable code. In Mesa. interfaces are not
derived ex post facto from the compiled modules constituting a
s\'sfem, Most of the early 'orol!ramminQ' of Pilot wac; in fae!
interface programming. and one member -of the design team was
recognized as the 'interface programmer.' This was a senior
member of the group who had the responsibility of ensuring that a11
interfaces were complete, were consistent Y. ith each other, and
conformed to project standards.

The notion of an interface programmer did not exist a priori but
arose from the methods used in the specification and design of
Pilot. The original assignment of the interface programmer was to
act as editor of the Functional Specification. a document describing
the external characteristics of the Pilot operating system. However.
it soon became apparent that Mesa text was an inherent part of this
specification. In addition. while each of the designers contributed
an interface and draft specification that was satisfactory for the area
of his responsibility. the collection of these had to be integrated
into a coherent whole. Thus. the editing task evohed into one
resembling programming. The first part of this section illustrates
the specification method and the use of the Mesa interface language
for defimng the external characteristics of Pilot.

One of the most imponant responsibilities of the interface
programmer was to ensure that there were no ~ompilatlon
dependencies between client programs and internal detaIls of PIlot.
This is not as easv as it sounds, and we had suffered some blUer
experience in pre"ious systems that failed to do this. In one case. a
field of a record representing a low-level data structure was
accidentally omitted in some code shared between Pilot and the
Mesa system itself. The omission did nOt affect the operation of
the MeSa system and was discovered only after most of the testing
of a ne~ release of that system-had been completed.
Unfortunately, the DEFINITIONS module in. which the record was
located was near ule root of the tree of compilation dependenCIes
and, because of schedule commitments, could not be corrected prior
to reJease. A.s a consequence. all versions of Pilot built on that

release of Mesa had to avoid using a fundamental feature of the
system architecture. Considerable pains were taken in the
subsequent design of the Pilot interfaces to. avoid this kind of
problem. The second pan of this section describes a language
feature that reduces the number of such undesirable interactions.

The third part of this section describes how the explicit and strictly
checked interfaces of Mesa permitted the functional simulation of
Pilot using an older operating system. Contrary to our expectations
and previous experience in operating-system design. the conversion
of the client programs from the simulated system to the real one
was painless.

lnrerfaces and Specifications

The interface language of Mesa served as the nucleus of the
functional specification of the Pilot operating system. This
pro\·ided a means for defining the scope and character of the
system. for documenting it for clients and potential clients. and for
focusing the programming effort.

In this particular project two versions of a Functional Specification
document were prepared before coding began. The first of these
was the culmination of a long study in which the general nature of
the system. its goals, and its requirements were identified. This first
version of the Functional Specification was circulated, and detailed
design of the system was begun. Approximately six months later.
the second version of the Functional Specification was prepared. It
incorporated changes and refinements resulting from the design
effort and from comments by the client organizations. Following
this. Pilot was coded and tested for a period of approximately six
months. Finally, the Functional Specification was edited to make
minor changes and distributed as a programmer's reference manual.

The external specification of Pilot at the functional level is
essentially a specification of its public interfaces-i.e .. of the types
and constants defined by the system. of the procedures that clients
can call. and of the signals representing error conditions detected by
the system. These interfaces consist of approximately a dozen
DEFINITIONS modules representing the major functional areas of the
system. They are named according to function. e.g.. File and
Volume to describe the file storage system. Space to describe
memory management etc.

Figure 2 illustrates twO fragments of the Functional Specification for
the File interface. The two parts of the figure illustrate,
respectively, the definition of the notion of file capabilities in this

A File.Capability is an encapsulation of a File.lD. along with a set
of permissions. and is used to represent the right to perform a
specific set of operations on a specific file or volume.

Note:

File.Capability: TYPE = PRIVATE RECORD [
flO: File.lD, permissions: File.Permissions];

File.Permissions: TYPE = SET OF {read, write, grow,
shrink, delete};

File.nuIlCapability: File.Capability = [flO: File.nuIllD,
permissions: {}];

Capabilities are redundant specifications of intent. not
"ironclad" vehicles for protection. If a client program
conscientiously limits the permissions in its capabilities to
those it expects to use, it will reduce its chances of
accidentally destroying its own data in case of minor
hardware or software malfunctions.

Figure 2a

s~stem and the operation for creating files. File capabilities are
slmpl~ and c~nve!liently described in terms of the type File.lD
(descnbed earher In the Functional Specification). The null value
of a file capability is also defined at this point in terms of
File.nuIllD. a previously defined null value of File.lD, and the
empty set Figure 2a contains all of the information about file
~pabilities . n~ded by a Mesa programmer designing a c1il!nt of
Pilot and It Illustrates the self-documenting nature of high-level
languages such as Mesa.

In ~i~ure 2b, the file creation operation is defined. First
defimuons of the procedure and associated error signals are
presented as they appear in the interface (note that the Create
operation defined in the File interface can cause signals defined in
the Volume interface to be raised). Following this is a narrative
describing the function of the C reate operation and the error
responses. that· .can occur. The .initial state of the file is fully
defined (including values of attnbutes defined elsewhere in the
Functional Specification). The type attribute of the file is defined
in conjunction with Create and consists of a CARDINAL (i.e .. non­
negative integer) encapsulated in a record (to create a unique type).

When the Funclional Specification was completed. the Mesa text
was extracted using a text editor. embedded in a prototype
DEFINITIONS module and compiled. This revealed a host of minor
errors and several circularities. Several omissions were also
detected. indicating that the document was incomplete in these
respects. These, of course, were corrected both in the interfaces
and in the document The result was twofold: First the interfaces
compiled from the document became the 'official' versions and
were used in the implementation. Second, we had confidence that
we ~ad adequately d~umented the whole system as an integral pan
of Its development, In advance and not as a last-minute chore.

File.Create: PROCEDURE [VOlume: Volume.lo, initialSize:
File.PageCount,
type: File.Type] RETURNS [file: File.Capability];

File.Error: ERROR [type: File.ErrorType];

File.ErrorType: TYPE = {reservedType, ... };

Volume.lnsufficientSpace: ERROR;

Volume. Unknown: ERROR [volume: VOlume,lD];

The Creat.e operation creates a new file on the specified volume.
The operation returns a File.Capability (with all permissions) for
the new file. If volume does not name a volume known to Pilot,
Volume. Unknown is signaled. The signal
Volume.lnsufficientSpace is generated if there is not enough
space on the volume to contain the file. The file initially contains
the number of pages specified by initialSize (filled with zeros) and
has the following other attributes (see §5.2.5):

type = type parameter to Create

immutable = FALSE

temporary = TRUE

The type attribute of the file is a tag provided by Pilot for the use
of higher level software. . . .

File.Type: TYPE = RECORD [CARDINAL];

The type of a file is set at the time it is created and may not be
changed.

Create may signal File.Error[reservedType] if its type
argument is one of a set of values reserved by the Pilot file
implementation.

Figure 2b

255

256

From the Pilot experience, we conclude that the combination of
Mesa and English in the style we have described is an effective
specification tool. There is no formal or mechanical verification
method to ensure or 'prove' that the resulting system satisfies the
specifications. Nevertheless, our experience has been that human
'verification' is tractable; i.e., the redundancy in this description
plus ordinary debugging and testing techniques are sufficient to
convince us that the operating system meets its specifications with a
reasonable degree of reliability. There were very few cases in
which the specifications were misinterpreted or interpreted
differently by different people.

A Note on Exporting Types

At the time Pilot was developed, Mesa did not permit modules to
expon types, only procedures and signals. Constants and types
COUld, of course, be declared in interfaces. but these were known at
compile-time to both the imponers and the exponers of the
interfaces. Unlike procedures and signals, types to be used by one
module could not be bound at some later time to types defined by
implementation modules elsewhere. Thus every module using
instances of a type had to be compiled in an environment in which
that type was completely defined. even if the compilation actually
required no knowledge of the internal structure· of the type.

This restriction introduced unreasonable compilation dependencies
between implementation details and the external interfaces of Pilot.
'Ibis is panly a result of the 'object' style of programming.
Consider, for example, the speciflCation of the Channel interface
introduced previously. The desired interface must provide the type
Channel. Handle (to be used by Pilot to identify objects describing
channels) and a number of operations. such as Channel.Create,
requiring handles as arguments or returning them as results.
Figures 1a and 1b suggest the obvious mapping of these
requirements into a Mesa DEFINITIONS module.

While Figure 1 shows the most type-safe way to define a
Channel. Handle, that interface has a serious operational
shortcoming. A client program is not concerned with the actual
values of Channel. Handle: it only stores them and passes them as
parameters. The implementati!ln might use a pointer, an array
index. or some other kind of token to represent a Channel.Handle.
In particular, the implementor should be free to change its
representation without impacting Channel clients (i.e., without
forcing them to be recompiled). Unfonunately, the definition in
Figure 1 requires a commitment to the representation of not only
Channel.Handle but also Channel.Object at the time the interface
is defined. The. only flexibility retained by the implementor is in
the algorithms and data structures hidden within
Channellmplementation. Thus, fixing bugs and improving the
system behavior must be confined to major releases of Pilot, at
which time it is expected that all clients will, at least, be
recompiled.

Oients also suffer in this approach. Because the representation of
the Channel.Object is clearly exposed in the interface (even
though it is marked PRIVATE), the client programmer is tempted to
make unwarranted assumptions about the properties of the objects.
Indeed, he can even reference objects directly (using a very simple
breach of the type system subject only to administrative control).
rather than via the exponed procedures of the interface. If the
implementation of channels is changed in a subsequent release of
Pilot, the client program must be revised, not just recompiled.

In Pilot, introducing implementation details into public interfaces
was avoided by carefully placed breaches of the type system. The
Mesa version of the Channel specification was defined as shown
in Figure 3. The declaration in Figure 3a defines Channel.Handle
to be a unique record type occupying one word of storage. This
change has no effect on clients of the interface (see Figure 3b) and
does not sacrifice type-checking of channel handles within clients.
The actual representation of the Channel. Handle is defined in the

i.-nplementation module as suggested by Figure 3c. where the
LOOPHOLE construct changes the type of its first argument to its
second argument. with no change in representation.

Note that the implementation module can be recompiled whenever
necessary and rebound to the rest of the system without affecting
any interfaces. In panicular, the implementation details of the
embedded types Object and InternalHandle (except the latter's
size) can be changed at will. The type InternalHandle is bound
at compile time to the current version of Object, but the type
Channel. Handle is constant for the life of the interface.

This need to breach the type system to minimize compilation
dependencies has suggested an improvement to the Mesa language.
namely, the exporting of types. To do this, we replace the
declaration of Channel.Handle in Figure 3a by:

Handle: TYPE WITH SIZE [POINTER];

This defines Channel. Handle to be a type that will be bound at a
later time. The size, if specified, grants to an imponer the right to
use the declaration and assignment operations for that type. An
implementation module then expons the type in exactly the same
way it expons procedures-by declaring a PUBLIC type with the
required name. The compiler checks that the representation of the

Handle: TYPE = PRIVATE RECORD[UNSPECIFIED] i

Figure 3a

Create: PROCEDURE [a: arguments] RETURNS [h:
Channel.Handle] i

Operation: PROCEDURE [h: Channel.Handle, a:
arguments];

Figure 3b

Channellmplementation: PROGRAM IMPORTS Device
EXPORTS Channel =

BEGIN
Object: TYPE = RECORD [...]i
InternalHandle: TYPE = POINTER TO Object;

Create: PUBLIC PROCEDURE [a: arguments]
RETURNS [h: Channel.Handle] =

BEGIN
h1: InternalHandlei

h1 ;

h .. LOOPHOLE[h 1, ChlJnne/.Handle1i
ENDj

Operation: PUBLIC PROCEDURE [h: Channel.Handle,
a: arguments] =

BEGIN
h1: InternalHandle = LOOPHOLE[h,

InternalHandle1i

END;

END.

Figure 3c

exported type is consistent with the specified size. In Figure 3c. the
declaration of InternalHandle is replaced by:

Handle: PUBLIC TYPE = POINTER TO Object;

references to h 1 are replaced by references to h. and the
assignments using LOOPHOLEs are removed. Breaches of the
type system are no longer required in the source code. Clients of
Channel are unaffected. The binder checks that each exported
type is exported by precisely one implementing module and that
therefore all modules of a configuration refer to the same type.
The only information that needs to be known about the type when
the interface is designed or a client is compiled is the size of the
representation of that type. Note that an exported type does not
have a run-time representation that is available to clients: only the
exporter can have any knowledge of the internal structure of that
type.

Functional Simulation of [he Pilot Operating System

A side effect of the explicit definition of interfaces in separate
compilation units is that the same set of interfaces can be
implemented by two different systems. and a client can be bound to
either one. Provided that corresponding procedures of the two
systems implement the same ·semantics.' the client perceh-es no
functional difference between them. This proved to be a \aluable
feature ~or the early ~lients of Pilot. To allow them to begin their
own testing before Pilot was complete. a simulated version of Pilot
was provided using an older operating system.

This S'imulated version used exactly the same interfaces (i.e .. source
and object DEFINITIONS modules) as the real one. It consisted of
only a small amount of code that com-erted calls upon Pilot
procedures into calls upon old operating-system procedures. In the
configuration description of the simulated svstem. all interfaces of
the old system were carefully concealed from clients. For all of
the basic operating system facilities. the simulated system and the
real one provided virtually identical functional behavior.

The conversion from the simulated environment to ille real
em-ironment took very little time and effort. In one typical case. an
operational version of an application system was demonstrated
using the simulated Pilot system. Within two weeks, it was
operational on the real system and had successfully executed the
same tests as it had in the simulated environment. We attribute
this success primarily to the strict interpretation of interface
equivalence in Mesa. Which, along with the English narrative in the
Fun~lional SpecificaTion. provided sufficient redundancy to permit
the Implementaoon of exactly the same functions on two different
systems.

This simulated system was not our first attempt. An earlier effort
demonstrated that compatibility requires more than a collection of
appropr,iately named operations: In that effort. the old operating
system Interfaces were not concealed. and the interface modules of
the simulated system were only 'approximately' the same as those of
the real system. As a result. conversion from the simulated system
was a very painful process. Programs that worked well on the
simulated system needed extensive revision prior to conversion
because (much to the surprise of their implementors) they were
found to contain extensive dependencies upon the facilities of the
old system. which were still available and visible.

Adequacy of Mesa as a System Programming Language

Previous sections ha~e discu~sed some potential benefits of high­
~evel lan,guag~s .. parucularly In the areas of consistency checking,
mformauon hidIng, and control of interfaces. These languages offer
other well-k~own advantages, such as greater descriptive power and
the suppresSIon of many coding details. A question often raised,

~owever. ~s whether a language such as Mesa is adequate for
Iffiplemenung components of 'rear systems. especially very low-level
PI"?grams such as the kernel of an operating system or a device
dnver. In the case of the Pilot project. the answer is an unqualified
'yes: All system software. including all run-lime suppOrt for the
language. trap handlers. interrupt routines. etc .. is coded in Mesa.
Even a bootstrap loader that fits into a single 256-word disk block
has been written in Mesa.

We must. however. expand upon our answer. In our opinion.
se\'eral easily overlooked characteristics of our em-ironment
contributed substantially to our success. The more important of
these are discussed in this section.

Access to the Hardware

Mesa was designed to pro\'ide complete but controlled access to the
underlying machine. There are several aspects of this. Note that
the features described below appear quite infrequently in our code.
and the use of most of them is subject to strict administrative
control. Each one. however, seems crucial in certain situations,

The programmer has the option of specifying the representation to
be used for a particular type. If, for example. the attribute
MACHINE DEPENDENT is attached to a record declaration, the
mappIng from the fields of that record to the bit positions in its
repr~entation is precisely defined and guaranteed by the compiler.
~n Important use of this attribute is to create structures that exactly
match hardware-defined formats: thereafter. interaction with the
hardware can be described symbolically. Another use is to specify
the formats of records placed on secondary storage media. The
Mesa system is still evoh"ing: each release defines a 'virtual
machine' that may differ from its pred'Aessors in certain details.
Any data structure likely to outlive a particular release is. in effect
dependem upon the virtual machine that created it. Clients are
enco,ur~ged to recognize this dependency explicitly. either by
specIfYIng some fixed format in the original declaration or bv
m\enting their own unique naming scheme for version controL
(We have found that using the MACHINE DEPENDENT attribute for
this purpose is o\erly tedious: an adequate and more satisfactorv
~lternati\e would be an attribute enforcing somc standard. release­
Independent format.)

The Mesa language allows explicit breaches of the type system. For
essentially the same reasons reported previously [Geschke el aI,
1977]. we have made modest use of such breaches. often to decode
~eprese,ntations. Trap handling" for example. sometimes requires
mspectIon of a procedure descrIptor as a string of bits. We use
another breach. the assignment of an integer to a pointer. to access
hardware-defined memory locations. This is one of the rare cases
!n which a non-pointer value must be assigned to a pointer. and it
IS almost always done by a constant declaration in an internal
DEFINITIONS module rather than by an executable program.

The language also includes a low-level 'transfer' primitive as
defined in [Lampson el aI, 1974J, for the transfer of control bet~een
contexts. Use of this primitive sacrifices a certain amount of
readability an~ type checking; in conjunction with the heap (non­
stack) allocauon of frames, however, it has allowed us to

experiment with unconventional control structures and to
implement the lowest Ic\els of trap handlers.. interrupt routines.
process schedulers and the like in Mesa.

Finally. Mesa permits bodies of procedures to be specified as
~quences of machine instructions. When one of these procedures
IS called, that sequence is compiled 'inline' in the body of the caller.
This facility permits direct access to any special operations of the
machine not reflected in the Mesa language. such as 110 controL
interrupt masking, etc.

257

258

Efficiency

Implementing Mesa on a microprogrammed machine has given us
the opportunity to design an instruction set that is well matched to
the requirements of the language. In our experience. space has
proved more critical than time in most systems for small. personal
computers: overall perfonnance depends more upon the amount of
primary memory available than on raw execution speed. We have
therefore emphasized compactness in our design.

Mesa object code is very compact. This is due primarily to the
design of the instruction set itself. We used techniques for program
analysis similar to those described in [Sweel 19781 to discover
common operations and to choose efficient encodings of them. The
current compiler does little global analysis and optimization. but
extensi\e 'peephole' optimization does contribute further to the
compactness of the object code. That code is considerably more
compact than the code produced by most other compilers known to
us. e\'en those that perfonn extenshe optimization [Wichmann.
1977]. In facl Mesa object code is often more compact than good
assembly code for machines with a comentional instruction set.

We ha\ e been careful to define operations that ha\'e reasonable
implementations in microcode. Execution speed is therefore
adequate also: critical timing-dependent code. such as a disk
interrupt handler that operates on each sector. can be satisfactorily
programmed in Mesa without making undue demands on processor
time. We seldom find it necessary to resort to obscure coding styles
to achie\e fast programs: when bottlenecks are disco\ered. it is
often more profitable to improve the microcode.

Tools

Another essential requirement for programming in a language such
as Mesa is a set of tools that maintains the illusion of a Mesa
'virtual machine'. The most notable of these is a powerful source­
language debugger. which is routinel~ used by all ~esa
programmers. To a11ov. the debugging of programs such as Pilot
itself. our debugger operates on the 'world-swap' principle.
Embedded in me prograrn to be debugged is J small nut: which
fields traps, faults. breakpoints, and other conditions. Using a few
carefully chosen primiti\'e operations. this nub causes the entire
state of the memory to be saved on a file and then loads a
debugging system to examine that file. Because of the SY. ap. an
errant program cannot damage the debugger. and the debugger is
not dependent upon the system being debugged for an~ of its
operations.

The debugger pro\ ides the usual facilities: for example. it is
possible to display variables. to set conditional breakpoints and to
display the state or call stack of any process. Al1 interactions with
the programmer are symbolic and are expressed in tenns of his
original program. Thus each displayed value is formatted according
to its type. the original source code is used to specify the location
of a breakpoint. etc. In addition. the debugger contains an
interpreter of a subset of Mesa: it is \'aluable for following paths
through data structures. setting variables. and ca11ing procedures in
the user's memory image.

Syslem IllIegralion

'ine entire Mesa system is integrated and can evolve to meet new
requirements as they are recognized. We can influence all levels of
the implementation: to add new facilities or remove a bottleneck.
changes can be made where they are most appropriate.

The evolution of processes in Mesa demonstrates this. Earlier
versions of the language had no special suppOrt for processes in any
fonn. Because of the accessibility of the underlying machine.
particularly the transfer primitives, users were able to write their
own packages supporting process creation and scheduling. In fact.

several such packages were written, each designed to perform well
for certain ciasses. of appiications. Most of the packages were
mu~ually incompatible. however. and since the language had no
notion of a 'process' or 'critical ~ection: the compiler could offer no
help in checking for process-related inconsistencies.

After much discussion of the alternatives. we decided to adopt a
'procedure-oriented model' of processes [Lauer and Needham. 19781
as our standard. The concepts of processes. monitors. and
condition variables were added to the language. While it is possible
(and. at the lowest levels of the system. sometimes necessary) to
igno~e these additions. they pro\'ide a standard way of programming
that IS adequate for most applications. The compiler was extended
not only to accept these constructs but also to check for obvious
inconsistencies in their use. In our initial implementation. process
scheduling was done largely in software: this was relath'ely easy and
gave us some flexibility for experimentation. Subsequently. certain
pans of the scheduler were moved into microcode to obtain a
substantial performance improvement.

Conclusions

The correct uses of the type system. interface' language, and
configuration language of Mesa are not always obvious. They must
be mastered both b\ indi\'iduals and b\' oH!anizations if the benefits
are to be obtained.' The benefits. how'e\er': can be verv substantial.
Mesa pro\'ides a measure of control o\er the . design and
de\'elopment of systems that greatly exceeds anything else a\ ailable
to us within the resources of a modest-sized de\elopmem project.
As a result. sophisticated systems can be implemented robustly and
reliably b) small groups within reasonable times. One of the most
imPOrtant practical benefits of Mesa is that the 'easy' bugs are
eliminated almost at once and the 'hard' bugs are encountered
much sooner in the life of a system.

AcknoVt Icdgmcnts

Many of our colleagues have shared experiences and insights that
contributed to the ideas ex pressed in this paper. We are
panicularly indebted to the other implementors of Mesa and Pilot.
Butler Lampson. Charles Simonyi and John Wick made major
contributions to the design of Mesa's interfaces and configuration
descriptions.

References

DeRemer. F .. and Kron. H. H .. Programming-in-the-large versus
programming-in-the-small. IEEE Transactions on Software
Engineering SE·2 2 (June 1976). 80-86.

Geschke. C M .. Morris. J. H .. and Satterthwaite. E. H .. Earh
experience with Mesa. Communcialiolls of Ihe ACM 20 8
(August 1977). 540-553.

Horsle). T. R .. and Lynch. W. C. Pilot: a software engineering case
study. submitted to this conference. 1979.

Kieburtz. R. 8.. Barabash. W .. and Hill. C R .. A type-checking
program linkage system for Pascal. in Proceedings 3rd
IlIIernaljollal Conference on Software Engineering. (Atlanta.
May 1978). 23-28.

Lampson. B. W .. Horning. 1. 1., London. R. L. Mitchell. J. G .. and
Popek. G. L.. Repor: on the programming language Euclid.
SIGPLAN Notices 12 2 (February 1977). 1-79.

Lampson. B. W., Mitchell. 1. G .. and Satterthwaite, E. H., On the
transfer of control between contexts, in Lecture NOles in
(ompuler Science. Vol. 19, G. Goos and 1. Hanmannis, Eds .•
Springer-Verlag, New York (1974), 181-203.

Lauer, H. c., and ~eedham, R. M. On the duality of operating
system structures, in Proceedings oj the Second International
S)mposium on Operating Systems. IRIA. Rocquencourt.
France, October 1978.

\1itchell. J. G., Ma'vburv, W., and Sweet R. E., Me.sa Lal/guage
\/anual. Technical report CSI. -79- 3. Xerox Corporation. Palo
Alto Research Center. Palo Alto. California, April 1979.

Sweet R. E .. Empirical Estimates oj Program Entropy, Technical
report CSL -78-3. Xerox Corporation, Palo Alto Research
Center, Palo Alto. California, September 1978.

Wichmann. B.. How to call procedures. or second thoughts on
Ackermann's fUllcuon. Sofiwar~Praclice and Experience 7 3
(June-july 1977). 317-329.

Wirth. N., The programming language Pascal. Acta InJormatica 1 1
(1971), 35-63.

259

260

A Retrospective on the Development of Star

Eric Harslem and LeRoy E. Nelson

Xerox Corporation, EI Segundo, California

Abstract

Star, officially known as the Xerox 8010 Information
System, is a.workstation for professionals, providing a
comprehensIve set of capabilities for the office
environment. The Star software consists of just over
250,000 lines of code. Its development required 93
work years over a 3.5 year period.

The development of Star depended heavily on the use of
powerful personal computers connected to a local-area
network and on the use of the Mesa language and
?evelopment environment. An Integration Service was
Introduced to speed up the building of Star and to
relie,,:e. the programmers of many complex, but
repetitive, tasks.

Background

In 1975, the Systems Development Department (SDD)
was formed inside Xerox to effect the technology
transfer of research from the Xerox Palo Alto Research
Center (PARC) into mainline Xerox office products.
Central to this strategy was the development of a
superior professional workstation, subsequently named
Star, that was to provide a major step forward in
several different domains of office automation.

PARC had developed a number of experimental
software development tools and office tools based on the
Alto personal computer [Thacker 82]. The most
important of these tools was a combined modular
implementation language and interactive development
enVIronment called :Vlesa [:Vlitchell 78]. Mesa played a
k~y . role in the construction of an integrated,
dIstnbuted development environment of personal
computers connected by a local-area network.

The experimental office tools were the result of several
research projects that had produced extensive user­
interface design knowledge. But these tools were not
consistent in terms of software design, implementation
language or user interface. The goal of Star was to use
the base of experience accumulated at PARC to build
an integrated system with a uniform user interface.

Xerox"', 8010 and Star are trademarks of Xerox Corporation.

The first release of Star entered the marketplace in
1981. Star provides a relatively powerful personal
computer in an elegant professional workstation
(electronic Desktop) connected to a 10 mega-bits-per­
second (Mbps), local-area network (Ethernet [Dalal
81]). Star provides a unique user interface and
comprehensive office functions [Smith 82] including
multi-font text editing integrated with graphics,
sophisticated interactive layout l , electronic mail,
printing and filing, as well as a upersonalized" data
management system.

In this paper, we generally refer to Star development in
the past tense, as if it had ended with the first release.
Actually, that first release has already been replaced
by later releases. Star is expected to evolve as a
product for several more years--adding new functions
and encompassing new domains.

Summary of Star Development

From the start of 1977 through the first quarter of
1978, a functional specification was written for Star.
Product specifications are often overly ambitious due to
pressures from the marketing organization. In the case
of Star, the problem was compounded because the very
charter of the development organization was to be
innovative. The staff of designers and implementors
aspired to build the ultimate professional workstation.
Concurrent with the writing of the functional
specification, two experimental prototypes were
developed at a cost of approximately 15 work years.

The design of the Star software began in the spring of
1978. The first release was c,)mpleted early in October
of 1981. Over that period of 3.5 years. 93 work years
were expended by the Star development group,
including project leaders, first- and second-level
managers, and software integrators. The staff grew to
20 people within the first six months and then
gradually increased to 45 people over the next three
years.

The progress of Star development was interrupted
several times when we discovered that fundamental

I Th~s paper was prepared on Star. The layout, fonts and
graphICS, as you see them, were viewed and edited directly on
St~r. The original document was printed on a Xerox 8044 laser
prmter.

261

262

found many errors that traditionally would require
tedious debugging. Also, when a working part of the
system was converted to new interfaces, type
enforcement found most errors, allowing Star to
become operational again quickly.

• Coding conventions. Star developmers chose to
observe a set of fonnally specified coding style
conventions, particularly in regard to naming types
and variables. While not specifically part of Mesa,
these conventions were made possible by Mesa's
provision for user-defined types. The naming
conventions significantly enhanced the readability of
Star code.

The Software Development Environment

Many papers on software engineering have noted that
software tools are as critical to the effectiveness of an
environment as the hardware. The key tools, ranging
from the obvious to the sublime, that were part of our
development environment, are listed below.2

• Compiler. Read interface and implementation source modules
and produced object files called Binary Configuration Descriptions
(BCDs).

• Binder. ~rerged implementation module BCDs andior
configuration BCDs into configuration HC Ds.

• IncludeChecker Examined the partial ordering of
dependencies in a :-;et of modules and/or configurations to
determine which one:; mu~t be recompiled andior rebound, and in
what order, to insure t~'pe compatibility.

• Packager. Rearrdllg"cd code \ ... ithin bound configurations
BeDs to change swapping p(·rformance.

• \lakel3oot. Pn.wtt:t.d a buol Cde' from d BCD which cuntains
Pilot. A boot file W,\~ the ba:-ic l;xecutable object on 8()OO systems.

• CoPilot. Provided interactive. source-level dp.bugging for
~lesa programs, incllldin~ a variety of performance monitoring
and debugging took

• Adobe. Submited problem reports to a data ba~e on a tile
server, maintained the data base, and generated data for status
reports. Was used extensively to keep track of problems with
hardware as well as problems with software.

• Bravo/Editor/FormatterfFindlWaterlilv. Created and
manipulated ~fesa source programs and documentation, including
string searches and line-by-line file comparisons. In the future,
Star itselfwill be used for many of these same purposes.

• Lister. Produced human-readable listings of BCD contents in
many different formats.

• Access/Librarian. Checked modules in and out of a source
library maintained on a file server via a librarian server and
updated the librarian server's data base.

• FTP/FileTooIlChaUBrownie. Transfered data files between
workstations and file servers.

• EmpresS/Print. Printed source listings, documentation, etc.
on print servers.

• LaurellHardy. Used to compose, send, receive and organize
electronic mail.

As mentioned previously [Horsley 79], the original
Alto-based environment was highly fragmented. Each

2 The diversity of tool names reflects the variety of groups
which contributed to the development of these tools. Most of the
tools with self-explanatory names were created for the
integrated Mesa development environment.

tool was a separate context to and from which the
programmer had to switch. This was burdensome, due
as much to the attention and keystrokes required as to
the time consumed. Furthennore, these tools had been
developed by many different groups. They had radical
differences in user interfaces, which taxed even the
adaptability of systems programmers. These
programmers frequently cited the context switching
and differing user interfaces as major aggravations, if
not measurable deterrents to progress.

Over the years, an integrated environment-a
Programmer's Desktop-was developed. This
environment provided editing, compiling, binding,
debugging, etc. in multiple co-existing windows on the
Desktop. This integrated environment was only
available for the last few months of Star development.

Personal Computers for Programmers

The increasing cost of software as a portion of overall
computer system development is a well known fact of
life. SDD was committed from the start to maximize
the effectiveness of a relatively scarce and expensive
resource-programmers.

Gutz, Wasserman and Spier present a thorough case for
providing professional programmers with personal
workstations. in the context of a network of larger­
scale services [Gutz 81]. The Star experience supported
their case. The personal environment was a key to the
high productivity of Star development. The
advantages included the following:

• Vehicle machine == Target machine. This condition
held at two points during Star's development: at the
beginning and at the end. Almost any degree to which
a personal vehicle machine can approximate the target
machine is a major benefit. The one year when it was
necessary to "sign up" for Dolphins was significantly
more frustrating and less productive.

• Reliability. The operational independence of
personal computers meant that a single workstation
failure affected only one person.

• Consistency/Performance. Second in importance to
reliability is the consistent feedback/response that a
personal computer provides. ·'A dependable 2-h[our]
turnaround is better than an average I-h[our]
turnaround with high variability." [Mills 76]
Furthennore, the 8000 processor provided computing
power comparable to modest timesharing systems.

• Physical environment. Personal computing in an
environment rich in services provided remotely via
Ethernet freed programmers from many traditional
restrictions--extreme noise, cold air, etc. The power of
the 8000 and of the Programmer's Desktop reduced
programmers' reliance on printed output. Portability
was certainly an option, but the capital expense of an
8000 was such that they were not made available for
home use.

• Staffing. Hiring talented programmers has been
especially difficult in recent years. We found that
being able to offer a programmer his own personal

computer with a powerful set of development tools was
of great benefit in attracting and holding a talented
staff.

• Job satisfaction. Our programmers appreciate and
enjoy having sufficient computing resources readily
available to make full use of their time and talents.

We also noticed a few pitfalls with personal computing.
There was a tendency for individuals to isolate
themselves because of the autonomy of personal
computing. Without careful coordination and
direction, it was easy for for considerable time and
effort to be wasted.

Another interesting effect was that the overhead of
doing a given task could be reduced to the point where
it was tempting, if not automatic, to do it without
appropriate forethought. For example, when it was
easy to build a new version of the system, programmers
would tend to stop debugging as soon as they found the
first bug rather than making the most efficient use of
each debugging opportuni ty. Under those condi tions, it
was also tempting to try a quick fix for a problem
rather than taking time to really understand it.

Going to Extremes with Personal Computers

At the end of the first year of development, Star had
grown to 300 modules and 67,000 lines of code. This
was far more than an individual programmer could fit
on his Alto disks along with the necessary tools to build
the system.

Of course, not all changes required compiling all of
modules in Star. In fact, most changes required only a
small number of modules to be recompiled. However,
binding Star and building a boot file each required
most of the available disk space as well as significant
amounts of time.

File servers could solve the disk space problem.
However, swapping files required a large number of
keystrokes and introduced opportunities for error. A
lot of creative time was spent on the rather mundane
task of system building.

In part, this problem could have been alleviated by a
system modeling/building tool. A system modeling tool
would provide a formal description of the system and a
means of automatically building a new version given
an arbitrary revision. Such a tool would have allowed
programmers more of an option to rebuild the system
themselves, particularly overnight. System modeling
was-and still is-an active research topic in SDD.
However, even if system bulding were completely
automatic, the time involved was frequently not
appopriate for a personal workstation.

The Integration Service

After the first few months of Star development we
"rediscovered" the need for integrations-versions of the
system that were complete, consistent, operational,
and stored on a file server for public use as a basis for
development. The requirements for an Integration
Service enumerated below may seem quite logical and

even obvious. While we recognized a few of them from
the beginning, we discovered most of them along the
way-by identifying bottlenecks and by experimenting
with proposed solutions that we found in the literature
or (re)invented ourselves.

Initially we tried to have individual programmers
perform software system integrations on a rotating
basis. It became increasingly difficult for each new
integrator to learn the techniques that had been
developed by his predecessors.

• The Integration Service permanently accepted the
responsibility for producing and storing integrations
and for documenting the structural and procedural
aspects of in tegra tions.

Producing an integration included the following
functions, among others:

• compiling the right modules in the correct order;
• binding the configurations in the correct order;
• correcting syntax errors; and
• building an executable system.

• The Integration Service was staffed with para­
programmers under the direction of a programmer.

We found performing integrations to be a sub-optimal
use of programming talent. Performing integrations
was a specialized, repetitive task, in many ways having
little to do with programming and requiring good skills
for interpersonal communication. The bulk of the work
of performing Star integrations was done by a single
para-programmer. A second integrator was added
during 1981 when the Integration Service was
expanded to support development of Services products
and the file system in addition to Star.

• The Integration Sermce tested what it built to insure
operabili ty of the system.

For an integration to be useful as a base for further
development, it had to operate with a sufficient, known
degree of correctness. We generally required that all
modules submitted to the mainline integration be ttunit
tested," but as Mills points out ff ... the difficulties
show up at system integration time there is seldom
difficulty in programming the pieces, the modules; the
main difficulty is that the modules seldom all run
together as designed." [Mills 76]

The Star project had a separate product testing group,
but it was oriented toward testing fully documented
ftfinal" products. The Integration Service was in the
best position to quickly determine the level of
operability of the system and then either to initiate
corrective action or to inform the programmers of any
pitfalls that had been discovered. Even a
malfunctioning system could often be used successfully
by programmers as long as each programmer could be
spared the burden of having to discover. each
malfunction himself.

• The Integration Service acquired and organized
computing resources to handle the burdens of large
computing tasks.

263

264

The computing resources of the Intel<ration Service
expanded gradually to include nine Altos for compiling
and binding, two Dolphins for system building, and an
8000 system for checkout. In addition, integrations
used a library of over 200 2.5MB Alto disk packs, a
dedicated file server with 600 MB of storage, and
300MB of storage on three public file servers.

By taking advantage of opportunities to automate the
integration procedures, we enabled a single para­
programmer to keep up to eight workstations busy
building different parts of Star for several different
integrations simultaneously.

The integrator's principal interactions with the
programmers were through electronic mail and a well­
publicized set of uniquely named directories on file
servers for each integration. The Ethernet
environment allowed these forms of interaction to work
equally well with programmers in EI Segundo or Palo
Alto, except for the degradation caused by the 56 Kbps
line between si tes.

Parallel Integrations

• The most interesting contribution of the Integration
Service was its management of parallel integrations.

Most Star development was planned to follow a single
thread-the mainline series of integrations. But there
were several situations where we were compelled to do
some development work in parallel with the
mainstream until it reached stability, and then to
merge it into the mainstream. We had as many as four
parallel integrations in progress at the peak of Star
developmen t.

Reworks of critical parts of the system were one such
situation. For example, the input handler was largely
reworked 3 years into the development of Star to
provide a ((virtual" or ttsoft" keyboard capability.
Untested changes could not be introduced into the
mainline integration sequence without running the
risk of stopping all development until the new feature
was operational.

In many cases, this problem could be handled
adequately by an individual on his personal
workstation. However, the changes frequently affected
interface definitions which had such wide compilation
dependencies that the computing effort would have
swamped the programmer and his workstation.

One alternative to parallel integrations was to develop
stand-alone test vehicles for critical parts of the
system. We only chose this alternative in a few cases.
In general, we found that testing changes in parallel
integrations required much less programming
resources than developing and maintaining test
programs.

• The Integration Service supported reworks and
conversions.

Parallel integrations were also used when we received
a new version of Mesa, Pilot or the file
system-especially when interfaces changed or massive
recompilations were required. We call such parallel
in tegrations conversions.

tn converting to a new version of Mesa, Pilot, the file
system or to some reworked component within Star,
much of the work was systematic and straightforward
editing that could be performed by para-programmers.
We found that this was also a good training activity for
new, junior programmers. The work was fairly easy,
and it provided an opportunity to expose them to Mesa,
toour coding standards, and to various domains of Star
in a non-threatening way.

• The Integration Service merged parallel
integrations into the mainstream.

This was another example of work that could be done
by para-programmers. Most of the work was routine,
given a good source comparison program and complete
lists of the sources that were changed in each
integration being merged.

The key to our success with this technique was our
simple method of accounting for all of the source
changes that went into each integration. Every source
file that was modified for a particular integration was
stored by the programmers on a uniquely-named
directory on a file server. As the files were processed by
the integrator, the original source files were moved to a
different uniquely-named directory. The names of both
directories included the version number of the
integration for easy traceability. At the end of the
integration, the second directory contained all of the
files which had been changed for that integration.

Conclusions

The net productivity of Star development was just over
2700 lines of code per work year. This compares
favorably with Brooks, who cites 1500 lines per year for
a typical project with u many interactions" [Brooks 75].
Boehm's formulas for the nominal productivity of a
project delivering 250K source lines yield 2066 lines
per year for usemidetached software" and 1420 lines
per year for uembedded software." Star was probably
more usemidetached" than' ·'embedded". The main
factors contributing to our productivity were as follows:

• High-level language. The number of lines of
assembly language code required for Star would have
been larger than the Mesa code by at least a factor of
three. The manpower required would have increased
by an even larger factor.

• Language explicitness. Manually debugging the
errors caught at compile time by Mesa's type checking
could easily have doubled the duration and cost of the
project.

• Source-level interactive debugging. This roughly
halved the debugging time, thereby increasing overall
progress by about 10%.

• Sophisticated development environment. We
estimate that the power of our tools and the flexibility
of the Programmer's Desktop have increased our
programming output by about 30%. Overall gain for
the project was about 10%. The attractiveness and
rarity of our personal development environment made
hiring easier and reduced turnover ..

The Alto was very good hardware for research
purposes, but it lacked virtual memory and was
therefore not suitable for a sophisticated product such
as Star. The Dolphin (also known as the DO) was still
research hardware, but its virtual memory capability,
disk capacity and user terminal put it much closer to
the 8000 than the Alto was. The Dolphin's principal
use for Star development was to emulate the 8000
workstation, while the latter was under development.
During 1980, Dolphins were a critical resource for Star
development. One Dolphin was provided for every 3-4
programmers. While each programmer had an Alto for
his programming tasks, all execution and debugging
had to be done on shared Dol phins.

An important feature was that all three computers
were micro-programmed to run Mesa. All three
systems could be used to compile and build systems as
well as to execute them. In the terminology of Brooks
[Brooks 75 L our two early vehicle machines were able
to imitate the target machine, albeit with a certain
degradation in performance. This feature accelerated
Star development and provided partial independence
from the delivery schedule for 8000 hardware.

The Network Development Environment

All three of the hardware systems used in the
development of Star were interconnected via the
Ethernet. As noted above, these systems came with
only modest disk capacity and with no printing
capability. Our requirements for large disk storage
and printing were fulfilled by server elements on the
Ethernet.

For most of the development of Star, the servers were
Alto-based. File servers used in Star development had
between 600 and 1.200 MB of online file storage. Print
servers provided between 10 and 60 pages-per-minute
raster printing to personal systems on the network.
Librarian servers medi"ated access to libraries of source
files stored on file servers.

To further complicate the process of developing Star,
SDD was geographically split between EI Segundo and
Palo Alto, California. During 1981, roughly twenty­
five programmers were located in EI Segundo, and ten
were located in Palo Alto. Communication servers
connected the El Segundo Ethernet with the Palo Alto
Ethernet via a 56 Kbps leased line.

The following diagram shows the portion of the Xerox
internetwork (internal, connected Ethernets) that was
relevant to the development of Star.

The internetwork made large-scale resources available
to geographically-separated, personal computers on a
cost-effective basis. It was also essential to the
Integration Service, which we discuss later.

The network link between EI Segundo and Palo Alto
provided high-bandwidth, inter-personal electronic
communication. Through electronic mail, minor
developments, which might otherwise have gone
unnoticed, were broadly publicized. This constant flow
of information was a primary vehicle for the

ES Ethernet

25

Integration
Service

PA Ethernet

INR = Internetwork Routing Service
FS = File Server
LS = Librarian Server
PS = Pri nt Server
PrWS = Programmer Workstation

The Fragment of the XEROX Internetwork
Used for Star Development

implementors to keep up to date on such a large project.

The Implementation language

Much has already been written about the advantages of
using .\'Iesa for the development of system software
[Horsley 791 [Lauer 79]. Our experience with Mesa in
the development of Star supported the following key
points made in the earlier papers:

• High-level language. This was the most obvious
benefit of Mesa. It provided the ability to "say" a lot in
a single statement and improved the readability of the
code.

• Interface definitions modules (Defs). Defs allowed
use of logical software objects by client modules
without any knowledge of, or dependency on, the
implementation modules. Such information hiding
greatly facilitated the rapid growth of Star, as well as
the redesigns and re-implementations of key functions
in the system. Star contained 401 Defs.

• Independent compilation of modules. Star was
composed of 440 implementation modules, each of
which could be recompiled without recompiling any of
the others. The compiled modules were bound together
into a tree-structured hierarchy of 88 configurations.
Only those configurations on a direct path between a
recompiled implementation module and the root
configuration needed to be rebound. This feature made
it possible for programmers to routinely achieve six or
more compile-build-test cycles per day.

• Strict type enforcement. The compiler and binder

265

266

components of the system required redesign to meet
objectives. For example, three successive designs for
interactive text, graphics and page layout were
implemented.

About one-fifth of Star was working by the time it was
determined that a subclassing mechanism would be
needed to complete the system. Such a mechanism was
subsequently designed and implemented [Curry 82].
The existing Star code was converted to use this new
mechanism in several phases.

The initial text display and editing implementation
supported an 8-bit character space. A little over a year
before the end of development, this was replaced with a
new design to support a 16-bit character space,
including Japanese, Chinese, Russian and European
characters.

Star workstation software was built on a specialized
operating system known as Pilot [Horsley 79]. For
historical reasons, we include a tree-structured file
system as part of Star, even though it was split off as a
separate project in 1980. There were six major releases
of the Pilot operating system and five major releases of
the file system during the course of Star development.

Each new release of underlying software required
significant changes to Star code-sometimes to take
advantage of new functionality, and sometimes to
adapt to radically restructured interfaces. The last
major restructuring of the file system occurred only
three months hefore the first release of Star.

The barchart below :;hows the size of the operational
corpus of Star code over the period of its development.
A plot of functionality would have roughly the same
shape. Star actually shrank during the conversion to
the subclassing mechanism.

250

200

150

100

11/78 7179 2180

Size of Star over time
(in 1000 lines of code)

1/81 10/81

The first release of Star (including the file system but
not Pilot) was composed of 401 interface (definitions)
r;~odules, 440 implementation (code) modules and 88
configuration description files. The modules contained
255,000 lines of code and the compiled system consisted
of908,000 bytes of Mesa opcodes.

Altogether, we probably wrote, integrated and had
working, for some period of time, in excess of 400,000
lines of code. Moreover, we expect major components of
the existing system to be rewritten in the future, based
on our most recently evolved insights.

The 8000 Workstation

The 8000 workstation hardware was developed
concurrently with the Star software. The 8000
workstation had two distinct uses for Star
development: as an electronic Office Desktop, which is
the Star product, and as a Programmer's Desktop-a
vehicle for software development which is currently
only available inside Xerox.

The 8000 workstation consists of a processing unit and
a user terminal. The 8000 processor was designed to be
the processor in all SDD products (the 8000 series).
The processing unit is installed in a wheeled cabinet
that is small enough (12"x25"x28") to fit conveniently
under a table or beside a desk. It consists of a central
processor (implemented with bit-slice microprocessor
technology), a rigid disk (8 mega bytes (MB) or, with a
second cabinet, 24MB), a floppy disk, connections for
Ethernet and user terminal, and optional controllers
for other devices. The memory system implements a
22-bit virtual and 20-bit real address space. The
typical memory configuration includes 512KB of RAM.

The central processor is microprogrammed, so it allows
an efficient implementation of a modular, high-level
language such as ~lesa through the specialization of
the ~lesa opcodes [Johnsson 82]. The 8000 processor
runs about 500,000 :Mesa opcodes per second. For
typical (non-floating-point) processing. the 8000
processor has about one-half the speed of a DEC V AX
111780 processor.

The user terminal consists of an 808 raster by 1024
pixel bitmapped display, a keyboard, and a pointing
device called a "mouse" [Thacker 82]. The bitmapped
display and mouse are of particular significance to the
functionality of Star as well as for the use of the 8000
as a programming environment.

The Evolution of Workstation Hardware

From the beginning of Star software development,
every programmer had his own Alto. Later, Altos were
supplemented by a more powerful personal computer,
the Dolphin. Finally, 8000 workstations replaced both
Altos .and Dolphins as the personal computers for
programmers. Abou t two-thirds of the Star
programmers have used all three of these computers in
the course of Star's development.

The following table summarizes the capabilities of
these three computers.

Avail- Virtual Typical Disk Mesa
ability memory memory capacity compile

Alto 1977-81 NO 256KB 5MB 2m n.
Dolphin 1979-81 YES 576KB 24MB 1.5m n.
8000 1981- YES 512KB 24MB 1 m n.

Availability is for personal use of Star developers.
Compile times are for a typical 600 line program.

• Personal computers. Personal computers with
adequate capacity to support the Mesa development
environment were essential to the development of this
particular product. We feel certain that personal
computers were cost effective relative to timesharing,
but we do not have an adequate basis for quantative
comparison.

• Integration Service and parallel integrations. Our
semi-automated integration procedures made parallel
integrations practical. Parallel integrations enabled
us to more than double the amount of development
work that could be integrated and system tested in a
given period of time, with a modest increase in less­
skilled manpower. We estimate that parallel
integrations shortened our total development schedule
by 40%.

• Electronic mail. Electronic mail was extremely
important to Star development because the group was
geographically split. Moreover, the ease of information
dissemination to a large group in a non-preemptive
fashion (vs. the telephone, for example) eliminated a lot
of disruptive administrative overhead at a low cost.

Star was an ambitious undertaking. The design and
implementation were inherently complex and entailed
many uncertainties. Many future software projects
will have these same characteristics. Like Star, such
projects will benefit from a Mesa-like language, a
source-level debugger, a comprehensive set of
development tools, personal workstations connected to
a local-area network, and an Integration Service.

References

[Boehm 81] Barry W. Boehm, Software Engineering Economics,
Prentice-Hall, 1981.

[Brooks 751 Frederick P. Brooks, Jr., The Mythical Man-Month,
Addison-Wesley Publishing Company, 1975.

[Curry 82) Gael Curry. Larry Baer. Daniel Lipkie and Bruce Lee.
"Traits - An Approach to ~ultiple-[nheritance Subc1assing,"
Proceedings of the Proceedings Conference on Office Automation
Systems, Philadelphia. Pennsylvania, June 1982.

[Dalal 81] Y.K. Dalal, "The Information Outlet: A new tool for
office organization," Proceedings of the Online Conference on Local
Networks & Distributed Office Systems, London, England, ~ay
1981. Also Xerox Office Products Division, Palo Alto, California,
OPD-T8104, October 1981.

[Gutz 81] Steve Gutz, Anthony 1. Wasserman, and Michael J.
Spier, "Personal Deve lopment Systems for the Professional
Programmer," Computer, The IEEE Computer Society, April
1981.

[Horsley 79) Thomas R. Horsley and William C. Lynch, "Pilot: A
Software Engineering Case Study," Proceedings of the 4th
International Conference on Software Engineering, The IEEE
Computer Society, September 1979.

[Johnsson 82] Richard K. Johnsson and John D. Wick, "An
Overview of the Mesa Processor Architecture," Proceedings of the
Symposium on Architectural Support for Programming Languages
and Operating Systems, Palo Alto, California, March 1982.

[Lauer 79] Hugh C. Lauer and Edwin H. Satterthwaite, "The
Impact of Mesa on System Design," Proceedings of the 4th
International Conference on Software Engineering, The IEEE
Computer Society, September 1979.

[Mills 76] Harlan D. Mills, "Software Development," IEEE
Transactions on Software Engineering, v. SE-2, no. 4, pp. 265-273,
1976.

[Mitchell 78] J.G. Mitchell, W. Maybury, and R.E. Sweet, "Mesa
Language Manual," Technical report CSL-78-1, Xerox
Corporation, Palo Alto Research Center, Palo Alto, California,
February 1978.

[Smith 82] David Canfield Smith, Eric Harslem, Charles Irby,
and Ralph Kimball, "The Star User Interface: An Overview," to be
published in the proceedings of NCC '82.

[Thacker 82] C.P. Thacker, E.M. McCreight, B.W. Lampson, R.F.
Sproull and D.R. Boggs, "Alto: A Personal Computer," Computer
Structures: Principles and Examples, D. Siewiorek, D.G. Bell and
A. Newell, editors, McGraw-Hill, 1982.

267

268

Observations on the Development of an Operating System

Hugh C. Lauer
Xerox Corporation

Palo Alto. California

The de,·elopment of Pilot. an operating system for a personal
computer. is reliewed. including a brief history and some of the
problems and lessons encountered during this de,·clopment. As part
of understanding ho"· Pilot and other operating systems come about.
an hypothesis is presented that systems can be classified into five
kinds according to the style and direction of their delelopment.
independcnt of thcir structure. A further hypothesis is presented that
systems such as Pilot. and many others in widesprcad use. take about
the to sc\en years to reach maturity. independent of the quality and
quantity of thp. t'llent aoplied to t,",eir del"t'lopmt'nt. The pressures,
constraints. and problems of producing Pilot are discussed in the
context of these hypotheses.

Key words and phrases: Operating system, system de,·elopment.
software engineering. Pilot. personal compute,r. system classification.

CR Categories: 4.35, 4.30.

This paper contains my personal observations about the
development of Pilot, an operating system for a personal computer
[Redell el an. compared ane contrasted with some other operating
systems with which I have had contact. In these observations. I
concentrate not on the anatomy of these systems but rather on their
life cycles, panicularly their formative yearS from conception to birth
to maturity. This is a somewhat unorthodox point of view in the
technical literature which abounds with papers on operating system
techniques and structures. software engineering tools and methods.
and general exhonations about the right and wrong ways to de\elop
systems. But it is a useful one. not only for the student of operating
systems and system development. but also for the managers or
sponsors of development projects who need some understanding
about why systems are so dramatically different from each other. why
some succeed and others fail. and what might expected from
development organizations.

In comparing Pilot with other operating systems, I have found it
useful to classify operating systems into five categories according to
how they came about. how successful they were. and their impact on
the computing community. This classification is one of the main
themes of this paper. It is interesting to observe that systems
classified as the second kind, including Pilot and many of the major
operating systems in widespread use, seem to take from five to seven
years to grow from birth to maturity. Furthermore, it seems that this
five to seven years is necessary, independent of the amount or
quality of L.'e talent applied to an operating system development
project.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and I or specific permission.

The paper has four main parts~ In the first two parts. I chronic.~
the de\ elopment of Pilot and some of the data and pro~lcms
pertaining to it: this chronicle is presented no~ because it is new.
diffcrent. or novcl. but because we rarely talk about these things in
the literature and there are lessons to be learned. In the third pan. I
offer the classification and some comments on sys~ems in each
category. In the final pan. I make some obsenations about the the­
to-se\ en year rule. why it seems to be true. and what its
consequences are.

History of Pilot

We use the term 'Pilot' in three different ways. to mean an
operating system kernel. a major project and system. and a way of
life.

As an operating system kernel. Pilot is the system described
in [Redell. et an. It consists of approximately 25.000-50.000
lines of code (deper.ciing "'pc'} how you count) in the ~hsa
programming language [Mitchell el a~ and was developed
oyer four years by a group of four to eight people. many of
whom had other responsibilities at the same time.
As a system development project. Pilot consists of
approximately 250.000 lines of Mesa code in about two
dozen major subsystems. including the operating system
kernel, CoPilot (the Mesa debugger). a common user
interface package and framework for building developmen:
tools, various utilities and communications packages,
microcode for defininsz the Mesa architecture in several
processors. and other facilities. For historical and
organizational reasons. another 200.000 lines of code in
compilers. binders. Mesa utilites. librarian tools. change
request tools. etC.-much of which was Alto-based until early
1981-are not included in Pilot. Together. these two bodies
of software represent both the operating system to be
embedded in client application systems and the necessary
support to de\elop and test those applications.
Approximately 40 people have contributed to these systems
0\ er fi\·e years.
As a wa\ of life. Pilot defines a framework for thinking
about. designing. and implementing systems and for
communicating among subsystems within machines and
across networks. It is the operating system for the Mesa
machine architecture and hence pan of a number of Xerox
products. the foundation for the Mesa development
environment and a tool for supporting software research
through the Cedar system [Deutsch and Taft).

Most other operating systems suffer the same multiple uses of
their names. In this paper, I will use the term Pilot and any other
operating sytem in the second sense. to include all the supponing
software that makes the system usable. Note that Pilot is not
ordinariI v visible to Xerox customers: it was primarily intended to be
embedded in products and to be used internally in the research and
development environments.

269

270

Although it has roots in earlier work on the Alto system [Sproull
and Lampson] and Mesa at the Xerox Palo Alto Research Center
(p'4,RC). serious work on Pilot began in the System Development
Depanment (SOD) in early 1976. Most of the people who worked
on Pilot over the past fhe years had previous experience primarily in
the academic and research communities. and very few had ever built
any 'production' system. let alone an operating system, to commercial
pressures of schedule and budgets. We knew about the differences
between the big. ponderous. ungainly systems sold by some
computer manufacturers and the simple, elegant, lightweight systems
imagined in the research community. and we were detennined to do
it right. This meant using a good. high-level language (Mesa).
assigning a fairly small group of knowledgeable people to the project,
carefully studying the lessons of others in the computer science
community and from the Alto environment at PARe. and designing
the hardware and software together. This ought to take two or
perhaps three years, after which the designers would be available to
work on advanced. Pilot-based applications for products, research.
and development. The following is a short chronicle of our actual
experience:

Jan. 1976:

mid-1976:

Dec. 1976:

earl) 1977:

Sept. 1977:

Sept 77-Apr. 78:

Apr. 78-oc1. 78:

July 1978:

Oct. 1978:

Nov. 78-Dec. 79:

Architectural principles established: work began
on design of a machine architecture optimized for
Mesa. The Mesa machine extended the Alto
architecture in a number of ways, including
expansion of the basic machine address from 16
to 32 bits. stack-oriented operation, addition of
virtual memory, improved handling of 110
devices. etc.

Mesa language and system becomes operational
on the Alto [Geschke el an.
Pilot Functional Specification (version 1) released
to clients. Unfortunately. the system specified in
this document looked a lot like a traditional
operating system and did not take account of the
characteristics of a personal computer. the role of
Mesa. or the (dimly perceived) needs of
distributed applications.

Mesa process facilities [Lampson and Redell] and
Pilot file system redefined.

Pilot Functional Specification (version 2) released
to clients. This set the style of Pilot as it is today
and used the Mesa interface language as the
primary specification tool [Lauer and
Satterthwaite].

Design of Pilot kernel implementation.

Implementation of Pilot kernel and basic
communication facilities.

First Dolphin processor delivered to Pilot group
(the Dolphin is one of three machines supported
by Pilot). This was microcoded to be compatible
with the Alto but with "irtual memory: some
Mesa emulator functions were still coded in
BCPL and compiled into Alto machine language.

First release of Pilot to clients. This version
retained compatiblility with the Alto system in
many areas such as disk layout. boot file fonnats,
and Mesa instruction set. even though they were
not adequate for our long tenn needs. The
debugger was a modification of the Alto/Mesa
debugger and operated in Alto mode. Since at
L~is time there was no established client base,
there was very little testing except from our own
test programs: consequently, this release was of
hmited use.

Bootstrapped away from the Alto environment.
During this time, we eliminated remaining Alto
compatibility from Pilot, implemented the Mesa
architecture entirely in microcode, supported Pilot
disk and boot file fonnats, etc. CoPilot, the Pilot
debugger. became operational as the first major
Pilot client This was a particularly painful
period for the implementors.

Dec. 1979:

Mar. 1980:

May. 1980:

July. 1980:

Oct 1980:

Dec. 1980:

Feb. 1981:

Second release of Pilot to clients. Note that at
this time, the Mesa compiler. binder. and other
facilities. as well as the program editors. were still
based on the Alto. The performance. reliability,
and usability of Pilot was grim; as each new
client tried it, a new set of disabling bugs was
uncovered. Among other things, we discovered
that Pilot could read or write the disk at the rate
of only one 256-word sector per revolution.

Third release of Pilot to clients. This was a
cleaned up version of the second release and the
first to appear in a product (the Xerox 5700
electronic printing system). We redesigned the
file system to solve the disk performance problem
and concentrated on the reliability issues with
respect to that specific client. hen so. the
application programmers had to resort to some
unnatural contortions to avoid problem areas in
the operating system.

First Dandelion processor available, but with no
disk or Ethernet (the Dandelion is the basis of all
Xerox 8000 series prodUCts).

The Pilot disk utility runs on the Dandelion (with
a simulated Ethernet).

Fourth release of Pilot to clients. The primary
emphasis of this release was to provide the
function necessary to support Xerox 8000 series
products, the Mesa development environment,
and the Cedar project at PARe. Unfortunately,
Pilot by this time had become too large and too
slow to do any of these very well.

Pilot runs on the Dorado processor at PARC (the
Dorado is a very high speed. single-user system
for the research environment [Dorado».

First Xerox 8000 network system. including Pilot.
delivered to a customer.

Apr. 1981: Fifth release of Pilot to clients. The emphasis of
this release was to improve the perfonnance and
reliability and to reduce the working set size of
the system to acceptable levels within the memory
available on the various processors. The first
version of the Pilot-based Mesa development
environment (i.e., compiler. binder. editor.
utilities. etc.) was made available to friendly
clients.

In April 1981. we received a letter from our most demanding
clients in PARe; indicating that with the fifth release, Pilot had
become the system of choice (on processors that were capable of
running either Pilot or Alto software). After five years. Pilot had
':ome of age.

During this whole time, we always had the support of the
corporation, even during the hard years when we 'should have' had a
nicely running system. Of course, it was necessary to regularly sho~
progress. which we did partly by demonstrating some early but
limited applications (to show that Pilot actual worked) and partly by
demonstrating Alto-based prototypes of some advanced applications
(to show the feasibility of the kinds of things we were aiming for).
We also had to fend off the usual kinds of pressures from other parts
of the corporation-for example, that we use a commercially
available language (e.g., Pascal) rather than Mesa or that we purchase
OEM computers rather than design our own architecture.

Selected problems and lessons

In this section. I will recount a few of the problems we
encountered and lessons we learned during the development. Most
of these we should have avoided, and afterwards there were plenty of
people to say they told us so (none of whom had any responsibilit~
for actually releasing the system. of course). Nevertheless. these
problems and lessons happened anyway.

Sizes of the s\stem. Table 1 shows some statistics for the five
releases of Pilot. Included are the sizes of the Pilot kernel and of the
entire system in tenns of lines of Mesa code. bytes of object code.
and numbers of modules. From the table it can be seen that the
Pilot kernel dominated the first release, but by the fifth release it
represented barely more than twenty percent of the system. The
growth of the total system is accounted for partly by new
de\elopment and partly by absorbing and converting code which was
orginally de\'eloped for other systems. Other development, in which
major subsystems were completely rewritten or replaced. is not
apparent in this kind of summary table. but represents a non-trivial
portion of the work that went into all but the first release.

\Vhen we began work on Pilot. none of us imagined that we
would be developing and managing a system so large. Yet in
retrospect this was probably inevitable. given that it was intended to
support several major products plus all of our software development.
some research. and a number of specialized applications. As we look
to the future. it is not clear whether the sizes of either the kernel or
the system will stabilize soon or whether thev will continue to grow
as "':e respond to new or different needs from our clients.

Working set sizes. Table 1 also shows the size of the working set of
the Pilot kernel when supporting 'typical' applications-i.e.. the
amount of real memory required to hold the virtual memory actively
needed by Pilot without thrashing. A working set size is inferred by
first artificially restricting the amount of real memory available on
the machine and then timing a selected benchmark with a stopwatch.
This is repeated for various memory sizes and the results plotted.
The total system working set for that benchmark is defined to be at
the knee of the curve and can be detennined accurately within 1%.
Then another experiment is run by setting the real memory size to

• the working set size. executing the benchmark again (most
be"l..hmarks take a fev. :..ec.onds:', and tab.g a menlory dump. With
some detective work, it is possible to attribute specific pages swapped
into real memory to the Pilot kernel, common software and other
packages. and the application. This whole exercise is repeated for
various benchmarks and for each release of Pilot (and also for each
release of critical applications on a given version of Pilot).

An unexpected result was that the content of the working set of
the Pilot kernel (i.e., the actual pages swapped in) is nearly constant
across all benchmarks. We were also surprised that by April 1980,
Pilot exceeded its share of the real memory of our product
configurations by nearly a factor of two. In retrospect. of course,
"'e should not have been surprised. Although the requirement for a
small '" ark ing set was in the front of our minds. we had no feedback
or reinforcement to achieve it. even at the expense of some features
or function. In this sense, the developers suffered from the
avaibbility of a good \'irtual memory system. It is too easy to add
more memory to their machines in order to meet cri.tical sc)1edules,
e\en if business reasons precluded such memory in the products.
The result was a year of hard work to bring the Pilot memory
requirement down to a reasonable level. at some cost in the overall
schedule. (An Alto programmer. by contrast, is forced to make his
applications fit into a non-expandable real memory and address
space because he cannot proceed with his own "'ark until they do.)

Cnfortunately. similar pressures affect many of our clients, and some
are caught by the con\ enience of \ irtual memory the way we were.

Proarammer Productivity. None of the ways that we know of for
mea~uring the producthity of our developers is Yen': statisfying. We
do, of course, measure whether or not a release IS on tlme, how
many trouble reports are submitted against it. how big it is. etc. But
none of these tell us how good the system is. We also have. on
occasion. tried to make one traditional measurement of programmer
producti\ity. namely the number of lines of code produced per work­
vear. There are two types of problems with this measurement. an
obvious one and a subtle one. The obvious one is deciding which
people and what time to count, so that an effective ~ompari~on might
be made among organizations and/or programmmg en\ Ironments
(companies slIch as Xerox are always interested in such comparisons.
even if individual development groups are not). There is also the
question of how to count the lines of code, especially when someone
is reorganizing or making major modifications to existing modules.

The subtle problem is illustrated by the following obsenation: in
my organization. a group of four or five developers. including a
project leader. can specify, design. implemenL test. and release a
complete system or subsystem of approximately 25.000 lines of \1esa
code in twelve months. This includes vacations and holidays and
time to attend conferences and seminars. to write professional papers
or continue education. to get and train some users or clients to test
the system, and to be generally effective members of the
organization. In most cases, if the same people had twice as much
time, {hey could produce as good a system ill, perhaps, half Ihal
amount of cod~i.e., the extra year yields negative productivity.
Thus. one of the conflicts that we have to manage constantly is thaI
between the need to get a system done and working satisfactorily and
the desire to make it smaller, faster. easier to use, etc.

Holy wars. In the early days of Pilot development, we got bogged
duwn in a lIumber of Cc.sic yUestiolls of u~e~8.Ling system design and
spent a lot of time, energy, and emotions before resolving them.
One of these concerned the model of processes and synchronization
and whether we should have a facility based on procedures and
monitors or a facility based on messages. Each side was finnly
entrenched and unable to accept the position of the other; not until
we developed the duality hypothesis presented in [Lauer and
Needham] were we able to resolve the issue and implement the
scheme described in [Lampson and Redell]. E\'en afterward, our
organization bore serious scars from this debate.

Another basic question concerned the kind of access to the file
system that Pilot would provide. One alternative was a simple read­
write facility with which client programs transfer pages directly
between virtual memory and files. The other alternative was a
'mapping' facility, whereby a portion of the file is made the backing
store for a portion of virtual memory (for example, as in \1u TICS
[Bensoussan el a~). While this question did not inflame emotions
the way the process question did, the proponents of each \ iew felt
that the two models were incompatible with each other. Pilot chose
the mapping approach, providing a convenience for some but causing
headaches for others, particularly those who were trying to com'ert

TABLE I - SIZES OF PILOT RELEASES

Release II III IV V

D,lte Oct 78 Dec 79 Mar 80 Oct 80 Apr 81
* Contnbutors -20 -27 -27 -35 -35

Pilot Kernel:
ilnes 24K 30K 33K 44K 53K
(;odebvtes 89K lllK 11 OK 152K 162K
moduies 88 lO2 114 123 135
interfaces 93 132 146 183 204

Pilaf System:
lines 48K 129K 125K 171K 249K
codebytes 211K 508K 508K 754K 1025K
modules 390 420 unknown 530 7lO

Wurking Sets unknown unknown -320 -260 -190
(256-wl)rd pages)

\105! contributors had responsibility for other. non·Pilol software at the same time.

271

272

programs from other systems based on the read-write m0del.
SUbsequently. the perception grew that perhaps the two approaches
are duals of each other. and that a client program structured for one
approach might have a natural counterpan of similar perfonnance
and complexity for the other approach. Howe\er. we never found a
duality transfonnation to suppon this view. Finally. we realized that
neither model excludes the other. In panicular. code files and
certain data files of limited size are better supponed by the mapping
model-the swapping characteristics are understood and address
space management in vinual memory is more convenient than
explicit reading and writing. Large data files with known. high
perfonnance access requirements, on the other hand. are better
served by the read-write approach-these files are often larger than
the virtual address space. and the complexity and o\erhead of buffer
management is worthwhile to achieve the desired perfonnance. Pilot
now supports both approaches with consistent interfaces.

Files and transactions. When the Pilot file system was being
designed. the question naturally arose about whether or not it should
include a transaction facility for crash reco\ery and atomic updating
of files. We did not include one because our expericnce was limited
and we were only just beginning to see results from research in this
area at PARe. However. we did pro\'ide enough facilities so that a
clicnt could build a spccializcd transaction mechanism on top of the
Pilot kernel. Someone built such a facilit\ and also undertook an
evangelical mission to persuade people that' it offered the solution to
all file reliability and recovery problems. As a consequence. several
of <Jur major clients came to depend upon the transaction concepl
even in cases where it is not appropriate.

. Naturally. a transaction facility built on top of Pilot could not
have as high perfonnance as one integral with it, and in this case. its
interfaf.:es were of a substantiallv different stvle than those of Pilot
itself. It was also extremelv unreliable. Thus 'we were forced to do a
quick implementation of a new transaction facility as part of. and
consistent with. the Pilot kernel. This has significantly better
perfonnance and is reliable in spite of known bugs; client programs
that d~pended on the previous facility became simpler with the new
one. However. the perfonnance is still not good enough for hIgh
intensity activities such as data base accesses and updates. At the
same time. some of the clients began to realize that even the best
transaction facility would offer inappropriate perfonnance for their
applications and that their failure modes did not require this
generality. For example. in the user level directory facility for the
Xerox 8000 series products. it is much bener to accept that crashes
can occasionally occur in the middle of updates and to rely on a
scavenger to restore things from the natural redundancy in the file
system.

It is no.t clear what the future of transactions in Pilot will be. but
since we currently satisfy no one in this area. it is likely that the
facility will change substantially again.

"irtual memory implementation. In designing the Pilot \inual
memory facilities, we recognized the client program would want to
manage the address space. map files to pieces of vinual memory. and
control (or influence) the swapping between real memory and the
backing file. We began with three different interfaces and concepts.
but quickly unified them into the single concept of the space. The
Pilot space is the unit of allocation. mapping. and swapping: spaccs
can be declared within other spaces. so that the set of all spaces
fonns a hierarchy according to the containment relation. This was a
remarkably simple generalization. but it was hard to implement and
is not used by clients. Clients have evohed a sty Ie in which almost
all mapped spaces are subspaces of the primordial space (all of
vinual memory) and only a few of these are further partitioned into
subspaces for swapping control. The implementation requires such
large data structures for each space that they have to be swapp able.
and only the very active items are cached in real memory. In the
end. several caches were needed and a lot of resident code was
written to manage them.

An assumption of the vinual memory implementation is that
disk accesses are expensive. Thus. we set up a lot of queues and
expected a lot of multiprogramming to overlap computing with disk
operation. In fact. disk accesses are cheap on both the Dandelion
and Dolphin configurations. If no ann movement is required (this
appears to be true most of the time), the computation required to
field a page fault locate the disk address. set up a disk command.
receive the disk interrupt. and dispatch the faulted process takes
about the same time as the average latency to read a sector. We
found that the system could not accept back-to-back requests for
adjacent sectors and read them on the same revolution. and thus we

had to rewrite the file system to submit single disk requests for nms
of pages whenever it could. Even so. it would almost be chcaper to
treat the disk as a synchronous device and simply wait until each
operation completes without trying to do anything else.

In view of this experience. we are currentl] reexamining the
basic design of the Pilot kernel virtual memor] system and will
probably make major revisions in both the strategy and the
implemcntation.

Pipes. filters. and streams. One of the strong features of the U'\'IX
system [Ritchie and Thompson] is the unifonn facility for input and
output which anows separate programs to be connected together by
·pipes.' The U'\IX programmer's toolkit includes a large number of
simple programs (called 'filters') which perfonn simple
tran~fJ;ma.ions 0.1 str ~arn~ of data. and it is l'ommo!' practice :0

concatenate a number of these together for a desired result. We
thought that Pilot should haw a similar facilit\ but consistent with
and implementable in Mesa. and so we designed Pilot streams (sec
[Redell et an for an overview).

Lnfonunately. although the Pilot stream facility works
satisfactorily. it was not very well received and is not wideh used b\
us or by our clients. One reason probably lies in the Mesa'mode! of
program modularity. The type-safety and interface language of ;"1esa
make it convenient to design programs with clearly specified
procedural interfaces and bind them together w'ith a little bit of
control code for a desired result. Thus the Mesa programmer's
toolkit consists of a large number of modules of varying complexity
and different kinds of control structures. For example. a module
which produces a sequence of objects of some abstract type will
export a procedure for its clients to access these one at a time. This
can be easily bound to another module that expects to get objects of
that type. and it is often more flexible than parsing a stream of
characters. Thus. Pilot streams are used almost exclUSively at the
interface with tenninals and other systems over industr} standar~
communication lines and protocols. Procedural interfaces are
preferred. both within Pilot-based programs and between system
elements over the Ethernet.

Comparing Pilot \\ith other operating systems

From the success of the April 1981 release. it is evident that Pilot
will take its place among the ranks of mature. evolving operating
systems and have a useful life long after its original deSigners have
mo\ ed on to other pursuits. However. it did not happen a~ planned
and its de\elopment was yery different from that of the Alto system.
In reflecting upon this. I found it useful to enumer:ne some of the
other operating systems 1 have known. either from direct contact or
from study of the literature or from contact with others. These
s\stcms s('cm to fall into the catcl!ories. which I shall first enumerate
and then describe. -

1. The Alto s\,stem. U'IX.
2. IBM's OS/360. MUTICS. Pilot. etc.
3. MTS (the Michigan Terminal System). TE,\EX. CP-67
4. CA.L-TSS. Project SCE. HYDRA. etc.
5. OOS1360. RS-l1, etc.

These categories are the result of my pcrsonal obsenations. not of a
systematic study. and hence many Systems are not listed because I
don't know enough about them to classify them. The ordering of
the categories is not significant. An imponant part of the
classification is the maturit~ or success of a system-i.e .. acceptance
by its clients as a useful. economic tool for hclping to get work done.
for' supporting applications. or for fulfilling other goals. A
characteristic of a successful system is that it is accepted by a non­
trivial community of users outside its developing organization as a
matter of choice and that this community contributes. directh or
indirectly. to its further dc\,elopment an'd growth. '

Systems of the first kind. These are e\eryone's fa\ourite systems.
They are successful by our measure and by most other measures
(some~i.lles too succe~sful fOI their d~vcloper"). H.c) beg:n Jif~ as
small. simple. unambitious systems meant to sene only their authors
and perhaps their immediate colleagues. They have limited
requirements. usually in the research area. But their excellence and
simplicity attract others who are willing to contribute to the further
development. additional features. or maintenance responsiblities in
exchange for being able to use such systems in their own work.
They become successful partly because potential users find it simple
and easy to adapt them when needcd facilities are missing or ill,

concei\ed. Systems of the first kind rarely e\ohe according to any
coherent plan agreed to between the implementors and clients. but
rather by the willingness to contribute facilities and features as
needed. Thus it is not surprising that these systems sometimes
appear a little haphazard.

S)stems of the second kind. These the planned systems. They are
cut 'from whole cloth: designed and implemented as major projects.
directed toward objecthes defined by negotiation. often (but not
aJwa~ s) aimed at new architectures. meant to satisfy major clients.
and buill according to schedules and budget constraints imposed for
business. contract. or other external reasons.

Some. but not all. of the major operating systems sold by
computer manufacturers fall into this category. For example. IBM's
OS1360 was conceived as a whole system to satisfy a new, broad
marketplace and to incorporate many of the technological
achie\ements of the previous five years. and thus it is a system of the
second kind. So is \inTIcs. "'-hich was bUllt primarily at MIT as a
'rear system based on the previous experimental system CTSS. Pilot
is a system of the second kind: it was conceived as a successor to the
Alto system and intended to support a range of product,
development. and research applications within Xerox over a specified
number of years on a new machine architecture.

Not all s}'stems of the second kind are successes. Some notable
failures include IBM's TSS/360. the Berkeley Computer Corporation
system [Lampson]. and the Elliot 503 Mark II system [Hoare]. Each
of these was conceived as a major system and a fairly ambitious
project. but none survi\ed the patience of its sponsors or clients to
reach maturity.

SYstems of the third kind. These systcms borrow much of thcir
s~pporting software from an existing system but represent a
fundamental change in the way of life. The \1ichigan Tenninal
System, for example. provides a paging, terminal-oriented, time­
sharing system especially suited for university use on the IBM 360/67
and IBM 370 systems. \1ost of its compilers, run-time support.
subroutine libraries. program development tools, etc., were taken and
converted directly from OS/360. but its operating system kernel is
dramatically different from OS/360 and it supports new applications
that OS/360 never could. (Of course, ,there are also many OS/360
applications that MTS cannot support.) The obvious motiviation for
building a system of this kind is to avoid the time and expense of
designing. implementing, and maintaining all new supporting
software for the operating system when it is desired only to
implement an ?perating system kernel and some basic functions.

Systems of the fourth kind. While the population of systems of the
first three kinds is relatively small, there are many systems. of the
Fourtl-J kine. They make major contributions to the art ilnd science
of operatmg systems but either never reach maturity or never gain
acceptance outside the developing organization. For many of them,
there is ne\'er any serious intent to promote them for widespread use,
to support a variety of applications, or to be 'complete.' They are
primarily laboratory exercises to support research and to teach about
operating system structures, or to support other laboratory work.
Note that systems of the first kind begin life as systems of the fourth
kind but suffer the calamity of success.

Systems of the fifth kind. Finally, the world is full of small,
uninteresting systems which do little to enhance the machines they
support and which contribute little to the technology or have little
impact on the computing community. These systems come in all
sizes, shapes. colors, and prices. and I have nothing interesting to say
about them.

This taxonomy is helpful in comparing like with like when we
talk about operating systems in a context of which work and which
do not. For example, it does not make sense to berate the excessive
generality of 05/360. which did succeed, in comparison "with the
more limited objectives and elegant structures of. say, CAL-TSS or
Project SU. both of which failed to become generally usable. It was
obsef';ed in [Lampson and Sturgis] that there is much more work
invoived in making an operating system usable by general
programmers than just providing a nice kernel. Similarly, when we
ask why the Pilot development was so different from that of the Alto
syst;:m. it is important to bear in mind the fundamental difference in
objectives and ground rules for the two systems. The following were
explicitly 1101 objectives of the Alto system:

"This system must satisfy the corporate needs for the next
10-15 years in specific areas."

"'A (nearly) complete list and specification of the functions
and facilities required of the system o\er the next five years
must be provided before design starts."

"This system must incorporate all of the wonderful lessons
of operating system technology from the past five years."

"This system is expected to have more than one hundred
users or to be installed in more than one hundred
locations. "

These or similar objccti\es did apply, howe\er. to Pilot and to
most other systems of the second kind. The developers of the Alto
system are chagrined to find that they now have to spend
considerable time and energy supporting a system which has se\ eral
thousand users and supports a wide variety of corporate needs. By
contrast. in the Pilot development, we were chagrined to discover
that in striving to meet these objectives or our schedule. we often
found ourselves unable to apply what we felt was the best technical
solution to a problem.

The fhe·to-se,'en·year rule

The above classification identifies operating systems in terms of
how they we,re developed and their impact. It separates systems of
the second kmd, which are willed into existence and operation. from
those of the first. third. and fourth kinds. which evohe in a less
deli?erate manner or as part of some other research or project.
While I have no recipe for producing successful systems of the latter
kinds, I can offer an hypothesis which. if true. will be useful to
anyone setting out to build a system of the second kind: it wkes
from fire 10 seren years for a system of [he second kind to grow from
birth 10 maturity. For example, in the systems I enumerated above:

OS1360 was begun in 1963-1964. Despite early availability
and vigourous promotion by its manufacturer, it was not
until 1968-1969 that it really gained wide acceptance by its
users as a \aluable, economic tool.

\1UTICS development began in about 1965. After an
initial flurry of publications about the system. its design.
and its goals. the outside world heard very little from
\.1UTICS-land until the early 1970's, when 'it started to
acquire a following outside \1IT and was subsequently
adopted by Honeywell, the manufacturer of \1u TICS
hardware.

The first five years of the life of Pilot were chronicled
above. Although the pre\ ious skepticism by its users is now
changing to enthusiasm. there is still much to be done
before Pilot fult1.11s their expectations.

It also appears that it takes from fi\'e to seven years for other
operating systems produced by major manufacturers or as major
system projects to mature. Let us consider what happens during
those years.

First. there is the period of planning and design. This is a time
of exceptional optimism, of desire to incorporate the past successes
and avoid past mistakes. of a detennination to 'do it right In the
Pilot project. for example, an attitude that prevailed was .. the Alto
system demonstrated a lot ilbout personal computing: now let's build
one for real, to support the company's business. And incidentally.
we should build it in Mesa. and build it with virtual memory. and
re-engineer the Ethernet, and unify the protocols, improve the file
system, etc., etc., etc."

Next comes the initial implementation and first release. There
are no operational client programs against which to validate it, so it
gets little testing. Anyway. some of the promised function was
deferred in the interests of meeting the delivery schedule.

Then comes a period of trying [0 make the system work at all.
Those first hardy users have had to pick their way throuoh
mine fields of bugs and problems. and some mav have beco~e
discouraged and turned to other alternatives. However, through
perseverance. the problems are solved one by one. and eventually the
system seems to work passably, at least for its few active users.

But now it is important to make it work well. It is too slow or
too big: it supports too few users/clients: or it fails to match the
perfonnance of. its predecessors. Promised enhancements andlor
deferred functions are abandoned and de\ elopment is concentrated

273

274

on very simple matters. During these two phases. ,dient or user
participation is essential. althou2h painful. Without the aporopriate
feedback from others who are trying to use the system tor non-trivial
reasons (other than its own development), the implementors do not
have enough infonnation to guide their work and identify problems
in perfonnance. style. or function.

Finally. if the sponsor has not lost patience. there is a period of
evolving expectations about the new system. Clients realize that it is
not the same as a previous one and that their old models of
perfonnance. behaviour. and usage need to be modified to take
advantage of the new facilities and the new constraints. Some
functions or facilities of the new system may never work as well or
as fast as the corresponding ones of the old. and programs convened
from the old may appear sluggish in the new environment. This is
the beginning of the period of 'community invol\ement' with the
operating system. during which clients learn how to live within the
framework defined bv that svstem and how to contribute to its
further success and growth. .

The fi\e-to-seven-year rule for systems of the second kind is a
strong generalization from weak evidence. I know of no analysis
.... hich might lead to it as a conclusion. I would e\en like to see it
dispro\ed (and to learn how to dispro\'e it at will). :--;e\ertheless.
from my own experience and from observations of the experience of
others. it seems to be true. at least most of the time. It seems to
apply both to the professional system designers and programmers
who populate the industry and to the elite corps of computer
scientists from the academic/research communit~. Even people with
impressi\'e credentials fail in their attempts to build systems in less
time. and very few succeed. We believed from the beginning that
we could do better in the development of Pilot.

Both in casual conversations and detailed analyses of the
successes and failures of systems of the second kind. the same tenns
keep recurring: that the systems are "too ambitious" and/or "too
general." Hoare used these tenns in his Turing Lecture [Hoare]. I
can remember as a graduate student that my colleagues and I would
sneer at the manufacturer-supplied opciating systems (IB~rs OS1360.
l'ni\'ac's Exec YIII. Burroughs' MCP. and all the rest) in exactly the
same tenns. In almost any cocktail conversation about a system in
uouble or one which the users find unsatisfactory. criticism is
focused on the generality or amibitousness of the project goals. In
my discussions with the original implementors of the kernel of the
Alto system. the same tenns were used again: "if only we had set
more limited goals for Pilot by concentrating on. say. real memory
requirements rather than on features. we would have produced a
nice. well-perfonning system in two or three ycars. just the wa} the)
did." Ho c\'er. that begs the question: we did concenuate on real
memory usage. execution speed. simple structure. and all of the other
things that are important in making a successful design. We made
task lists of things to do. problems to solve. features to suppon: we
assigned priorities and worked on first things first: we parried
requests for yet more features or complexity: we ignored
unreasonable constraints imposed externally and let our computer
science wisdom prevail. It still took us the years. and our critics at
the time still worried about the grandiosity of our system.

I suspect that there is something about the ground rules of
projects like Pilot. the Berkeley Computer Corporation system.
Mu TICS. and other systems of the second kind that makes it
difficult or impossible to plan or C::l.ITy out projects the way we do
for systems ot the other kinds. (1 ~ote that by definition. systems of
the other kinds cannot be too ambitious or general: either they
succeed on their merits. meaning that they have exactly the right
blend of generality and simplicity. or they were ne\'er meant to fulfill
the kinds of goals that a system of the second kind is.) Pan of it is.
no doubt. in the way that projects are sponsored. Systems of the
first.. third. and fourth kinds are usually financed as pan of some
other project or research.

But systems of the second kind are investments. As such they
are subject to the kinds of review of planning. budgeting. scheduling.
and scrutiny that the sponsor needs to confirm continuing suppon
(neither the Alto system. MTS, or HYDRA. for example.. were ever
subject to this kind of review). Furthennore. invesunents in system
de\'elopment are still so risky these days that most sponsors would
rather purchase a s:1tisfactory system. if available. than build one.

Thus. by definition. the new system has to be more ambitious and/or
more generdl than its predecessors. If it is necessary to finance a
new system. then the sponsors and/or their clients feel entitled to
some \oice in the facilities. features. style. character. or other
attributes of the system. I.e .. the system designers do not get to 20
otT alone to build the system of their dreams. and the fi\ e-to-sc\ e-n·
year rule prevails.

Summal1

I have been a member of the Pilot project since early 1977 and
have managed it in its later years. Coming from an academic and
research background. I have been somewhat surprised at what it has
been possible for us to do and also at what we have not been able to
do. .1 think it is important for people to write about these things
occaSIOnally because we too often concentrate on the objects we are
creating and not enough on the process of creating them. The world
of programming methodology and structured programming is
devoted to helping us achieve perfection in the systems e
design-an important goal but somewhat at odds with the need to
get something done. Pilot had to be delivered and work well
enough. despite the fact that we never had time to make it perfect or
even as small and as simple as we would have iiked. It is helpful to
ueat the major system as an organism itself. with a life cycle and a
personality and characteristics derived from the organizations that
build. use. and sponsor it. The successful ones usuallY outlive the
interests and participation of their implementors. and they captivate
or even dominate the professional lives and interests of many other
people.

I ha\e believed in the five-to-seven-year rule for at least a
decade and have not found much evidence against it. Yet this is not
proper science. so I challenge graduate students and researchers in
L~e operating system field to conduct systematic studies about how
systems are conceived and born and which ones grow. mature. and
lead productive .lives. This would be a study partly of technolog~
but panly of the sociology and dynamics of system development. and
it would teach us how to build better. simpler. less ambitious systems
more predictably.

The classirication of operating systems lllto the kmos came about
as I tried to' compare Pilot with other systems and see where the fi\e­
to-seven-year rule applied and where it did not. There is definitely a
qualitative difference between the kind of development we carried
out and the kind that I have atched or been associated with in
universities and research laboratories. Thus it is not surprising that
there is a difference in character between the kinds of systems that
emerge from these activities. I do not know whether this
classification is 'right: so again I challenge research students to
explore the field of operating systems from this point of \ iew.
making systematic studies to help us understand how we do better at
building them.

Finally. a word of ad\'ice to designers. implementors. sponsors.
and users: if you are invohed with a new. challenging system
planned and cut out of whole cloth and meant as a sen ice. not as an
experiment. but intended to stretch our horizons and
expectations-i.e .. a system of the second kind-then ha\e patience,
I have not yet seen anyone who has been able to build one as
quickl) and as well as he thought he could.

Acknowledgements

Approximately fony people in Xerox System Development
Department have made contributions to Pilot all of them yaluable.
In addition. we gained great benefit from close location to and mam
conversations with our colleagues at PARe. The number of people
deserving acknowledgement is far too great to list here. However, I
wish to specially acknowledge Dr. David E. Liddle. who crealed and
sustained SOD and the Pilot project as pan of it.

References

[RelJd~ Jnd LehmanI
f3e1.ld). l.. A. .. and L~hman. \1. \1 .. '''\ model of I'lrge program
dc\ ell1pment,' 18.\/ S) s/cm Journal. no. 3. 1976.

[B~nsous$an ('/ un
Ben'l)USsan. A .. CHngen. C. T.. and Daley. R. C .. The \1L L TICS
\'!!1uJI \le:nory: C<Jncepts and Design.' Communicalions oj rhe
.4('.\/. \lll 15. no 5. \la:- 1972. pp 308·318.

[Deutsch .md Taft]
DCtlt5Ch. 1.. P. Jnd Taft. E. A.. 'Requirements for an
ExperImental Programming Environment.' rcpon II CSL·SO·lO.
X~ro'(Corporation. Palo Alto Research Center. Palo Alto. 1980.

[Dl~:adoj
The Dorado: A. High'pcrjonnallce Persont.ll C ompuler. Three
P.lpers. Technical Report CSL ·81·1. Xerox Palo A Iro Research
C·~nter. Palo Alto. California. January 1981.

[(je~bk'c e[all
C",~c1ke. C. \,1 .. \1 orris. 1. H .. and Sa,tenh\\aire. E. H .. 'Earl)
Experience with \fesa.' Communications of [he .4C\I. \01. 20. no.
8. :\ugust 1977

[Hoare]
Hoare. C. A .. R .. The Emperor's Old Clothes. (1980 AC\1
Turin!:! -\ \\ ard Lecture). C olllmuniCillions of [he AC\f. \"01. 24.
no. 2: February 1981.

[IJmpsonj
LJmpsl'n. B. W .. 'Dynamic protection structures.' Proceedings of
;ne AF!PS Fa!! JtJil1t CompUler Conference. 1969. pp 27-38.
(\'ote: The Berkeley Computer Corporation was a widely
publicized venture by a number of respected computer scientists
to build a major time-sharing system and utility in 1968-1970. I
can find no references to it in the literature except this one.
which is mostly about the operating system structure.)

[Lilr.1pSOn and Redell]
l.ampson. B. W. and Redell. D. D .. 'Experience with Processes
and \10nitors in \1esa. Communications of [he AC\/. \01. 23. no.
2. Fdmlar:- 1980.

[Lamf)~on and Sturgis]
LZlmpson. B. W. and S:urgis. H. E.. 'Ref1ecrio:1s on an Operating
S~ stem Dl?sign.' C un~lI1;;.nic(][ioIiS cl {he . I C\!. \ 01. 19. no. 5.
\fay 19'76.

[Lauer Jnd \'eedham]
Lauer. H. C. and ~eedham. R.~.. 'On the Duality of
Operating System Structures: Proc. Second International
SymposIUm on Operating Systems. IRIA. Oct. 1978, reprinted in
Operating Systems Reriew. vol. 13. no 2, April 1979. pp 3-19.

[Lauer and Satterthwaite]
Lauer. H. C. and Satterthwaite, E. H., 'Impact of \1esa on
S:-stem Design.' Proceedings of Fourth Internatiollal Conference
011 Software Engineering. \1unich, September 1979. pp 174-182.

[Mitchell et a~
MitchelL 1. G .. Maybury. W. and Sweet, R .. Mesa Language
J/alluai. repon #' CSL-79-3, Xerox Corporation, Palo Alto
Research Center. Palo Alto. California. 1979.

[Redell el a~
Redell. D. D., Dalal. Y. K.. Horsley. T. R.. Lauer. H. c..
Lynch. W. C. \1cJoncs. P. R .. ~1urray. H. G .. Purcell. S. c..
'Pilot: An Operating System for a Personal Computer,'
C ommUlliCt.llions of the A c.\!. \'01. 23, no. 2. February 1980.

[Ritchie and Thompson]
Ritchie. D. M. and Thompson. K.. 'The UNIX Time-Sharing
System.' Commullications of the ACM. vol. 17. no. 7. July 1974.

[Sproull and Lampson]
Sproull. R. F. and Lampson. B. W .. 'An open operating system
for a single-user machine.' Proceeding of the Seventh Symposium
on Operating System Principles. Asilomar. December 1979.

275

276

XEROX

Xerox Corporation
Office Systems Division
Palo Alto, California 94304

XEROX® is a trademark of
XEROX CORPORATION.

Printed in U.S.A.

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	xBack

