
Using Property Specifications to Achieve
. Graceful Disconnected Operation in an

Intermittent Mobile Computing
Environment

Michael Tso

Using Property Specifications to Achieve Graceful
Disconnected Operation in an Intermittent Mobile
Computing Environment

Michael Tso

CSL-93-8 June 1993 [P93-00018]

@ Copyright 1993 Michael Tso. All rights reserved.

CR Categories and Subject Descriptors: 0.4.3 [Operating Systems]: File Systems
Management - distibuted file systems, 0.4.7 [Operating Systems]: Organization
and Design - interactive systems, H.5.2 [Information Interfaces and Presentation]:
User Interfaces

Additional Keywords and Phrases: caching, disconnected, file system,
hints, portable computer, predictable, property specification,
splitting, wireless computer

General Terms: Design, Human Factors, Performance, Reliability

XEROX Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

USING PROPERTY SPECIFICATIONS TO ACHIEVE

GRACEFUL DISCONNECTED OPERATION IN AN

INTERMITTENT MOBILE COMPUTING ENVIRONMENT

by

MICHAEL MAN-HAK Tso

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degrees of

MASTER OF SCIENCE in Electrical Engineering and Computer Science

and

BACHELOR OF SCIENCE in Computer Science and Engineering

and

BACHELOR OF SCIENCE in Electrical Science and Engineering

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1993

© Michael M. Tso, 1993. All rights reserved.
The author hereby grants MIT permission to reproduce and to distribute

publicly copies of this thesis document in whole or in part.

Signature of Author ___________________ --:--___ _
Michael M. Tso

MIT Department of EECS, May 21, 1993

Certifiedby __________________________________ __

Dr. David D. Clark
Senior Research Scientist, MIT Department of EECS

Certifiedby ______________________________ ~~ __ --
Dr. David Goldberg

Research Scientist, Computer Science Laboratory, Xerox Palo Alto Research Center

Accepted by ___________________________ __
Professor Campbell L. Searle

Chair, MIT Department of EECS Committee on Graduate Students

1

USING PROPERTY SPECIFICATIONS TO ACHIEVE
GRACEFUL DISCONNECTED OPERATION IN AN

INTERMITTENT MOB~E COMPUTING ENVIRONMENT
by

MICHAEL MAN-HAK Tso

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 1993 in Partial Fulfillment of the Requirements for the Degrees of

MASTER OF SCIENCE in Electrical Engineering and Computer Science,
BACHELOR OF SCIENCE in Computer Science and Engineering, and

BACHELOR OF SCIENCE in Electrical Science and Engineering

Abstract

This thesis studies the problem of providing autonomy and predictable
performance for computers with an intermittent network, e.g. wireless computers. For
autonomy, we support Coda's programming model in which applications run on the
portable computer and access data through a caching distributed file system. Although
caching lets applications operate disconnected, it can also cause applications to be
unpredictable. The problem is that caching is transparent in existing file system
interfaces. Since the availability of files is unpredictable, it is impossible for the
application to predict which of its features are (or will be) available. For improving
predictability, we introduce a new system level abstraction, Property Specifications which
enables system services to expose to the application fundamental aspects of the
computing environment in a structured way. The application can become more
predictable by unobtrusively informing the user the effects of changes in the
environment, such as becoming disconnected, through the application's user interface.
The application changes the user's expectation about which features are (or will be)
available. In order for applications to efficiently access, monitor, influence and
manipulate the exported properties, Property Specifications provide mechanisms for
Query , Notification and Hinting. Applications learn about the current state of system
properties through Query. Changes in the state of properties are modeled as
Environmental Events. Notification enables applications to monitor changes in the
environment by binding callback procedures to Environmental Events. Hinting lets
applications give optional information to influence and sometimes manipulate the
system's properties. Collectively, Query, Notification and Hinting define a framework
for structured communication and collaboration between applications and system
services.

We designed and implemented Property Specifications for a caching distributed
file system and a network interface which exported properties of the file cache and a
network with variable latency. We added new features to an existing mail tool (xmh) to
improve its predictability and autonomy. In a simulated intermittent environment, our
users found these features to be very effective in making xmh more friendly and usable.
Property Specifications enabled us to implement these features easily and efficiently.

By specifying the properties of the environment and the functions provided by the
implementation in separate interfaces, we give power and flexibility to sophisticated
applications while maintaining transparency for ordinary applications.

Thesis Advisor: Dr. David D. Clark
Title: Senior Research Scientist, MIT Laboratory for Computer Science

Thesis Advisor: Dr. David Goldberg
Title: Research Scientist, Computer Science Laboratory, Xerox P ARC

2

Acknowledgments

I thank my advisors David Goldberg and David Clark for their patience and guidance.
Their insight in debugging my half baked ideas amazes me. I feel fortunate to have had
such brilliant and understanding advisors, from whom I have learned a great deal.

I am grateful to Greg Papadopoulos, Jeannette Wing, and Gregor Kiczales. Even though I
was never officially one of their advisees, Greg, Jeannette and Gregor were always
willing to listen and provide encouragement. I deeply respect them as colleagues and as
friends.

Marvin Theimer, Brent Welch, David Nichols and David Goldberg deserve special
thanks for participating in the experimental part of this thesis. Together with Jeannette
Wing, Bill Schilit, and Bob Scheifler, they provided a lot of valuable feedback while my
ideas for this thesis were still in fennentation.

The preparation of this thesis document benefited greatly from Hector Ayala's Macintosh
wizardry as well as Stephen Wong and Joseph DiMare's willingness to loan me their
Powerbooks. The Powerbooks were critical in helping me finish this thesis despite my
hectic travel schedule this semester.

Thanks to Bill, Dick, Donger, Fergie, Furball, Gilly-Billy, Hanes, Jerko, Joe, Looney,
Norton, Prashun, Shin, Toast, Van Veen, and Vasik. Your friendship and sense of humor
make me want to repeat the MIT experience again despite all those late nights, mind
boggling problem sets, intenninable labs, and harrowing exams.

My education would not have been possible without the help of several very dear people.
I thank my financee, Cecilia Wong, whose love and encouragement always give me the
energy and will to go on. The 10,000 miles that separated us for four years could not
divide our hearts. May Poon and Andrew and Cissy Chung opened their homes and
hearts to me during those trying years of my adolescence. Without their nurturing, I
probably would not have graduated from high school. lowe my inspiration and
determination to my mother. Although her body rests, her spirit lives on. Finally, I thank
God for His immense love. All I had to offer Him was brokenness and pain, but He made
something beautiful of my life.

3

Table Of Contents

Chapter 1 ... 6
Introd.uction ... 6

1.1 Outline .. 10
Chapter 2 .. 0 ... 0 12
Motivation and Related Work ... 12

2.1 User Level Features for Graceful Disconnected Operation 12
2 .1.1 Availability Indicators .. 13
2.1.2 Delayed Operation and Friendly Errors ... 15
2.1.3 Smart Availability Management .. 18
2.1.4 Dependable Future Availability ... 19
2.1.5 Monitoring and Reacting to Environmental Changes 24
2.1.6 Discussion ... 25

2.2 Related Work ... 27
2.2.1 Disconnected Operation in Coda ... ~ 27
2.2.2 Adaptive Applications .. 29
2.2.3 File System For Mobile Computing ... 29
2.2.4 Application Specific Virtual Memory Management 30
2.2.5 Exposing Abstractions with MetaObject Protocols 31

Chapter 3 ... 32
Programming Models for Application Splitting .. 32

3.1 Splitting at the User Interface Level ... 33
3.1.1 XRemote / LBX ... 35
3.1.2 Split UI Toolkit .. 39
3.1.3 Extensible Servers .. 41

3.2 Splitting at the Data Access Level .. 43
3.2.1 Remote Evaluation ... 44
3.2.2 Splitting at the File System Level .. 46

3.3 Conclusion ... 49
3.3.1 The Programming Model for this Thesis 51

Chapter 4 ... 52
Property Specifications ... 52

4.1 Motivation ... 53
4.1.1 Separation of Functional and Property Specifications 53
4.1.2 Using Property Specifications to Provide Application
Specific Support .. 54
4.1.3 Using Property Specifications to Provide Application
Independent Support ... 55

4.2 Property Specifications Mechanisms .. 56
4.3 Designing Property Specifications .. 58

4.3.1 Property Specification for a Caching Distributed File System 58
4.3.2 Property Specification for a Network Statistics Monitor 61

4.4 Subtleties in the Semantics of Query and Notification 62
4.5 Generalizing Property Specifications .. 65

4.5.1 The Traditional Virtual Memory Interface 65
4.5.2 Property Specifications for a Virtual Memory Interface 66

Chapter 5 ... 69
Implementation .. 69

5.1 Implementing Property Specifications .. 70
5.1.1 System Overview ... 70

5.1.2 Implementing Notification ... 72
5.1.3 Implementing the File System Property Specifications 73
5.1.4 Implementing LinkSim .. 75
5.1.5 Implementing the Network Statistics Monitor 77

5 .2 Using Property Specifications for Application Programming 78
5.2.1 Approach and Choice of Application ... 78
5.2.2 Wc-xmh: Weakly Connected xmh ... 79

5.3 Challenging Aspects .. 82
5.4 Ideas for Future Work ... 85

5.4.1 Verifiability of Property Specifications ... 85
5.4.2 The "cause/effect" Problem ... 86
5.4.3 Supporting Atomicity ... 88
5.4.4 Remote Evaluation ... 88
5.4.5 Loose RPC ... 89

Chapter 6 ... 90
Experience and Evaluation .. 90

6.1 User Experience .. 90
6.1.1 A Furious User ... 90
6.1.2 Obtrusive User Interface Techniques ... : ... 91
6.1.3 Voluntary Disconnection .. 92

6.2 Five Conclusions From Our Experiences .. 93
6.3 Evaluating Property Specifications ... 95

Bibliography .. 97

Chapter 1

Introduction

The premise of this thesis is that autonomy and predictable performance (availability and

response time) were key to the success of PCs and workstations over timesharing

systems. This thesis studies the problem of extending these properties to intermittent

computing, e.g. wireless mobile computing. We assume that wireless computers are

mostly limited by an intermittent network which has low bandwidth, high latency, and

unpredictable availability. Computers using radio or infrared networks can be frequently

and unpredictably disconnected due to interference and coverage limitations. The

proposed solution is a new programming model and system abstraction that support

autonomous, predictable operation.

We choose to use Coda's [Kistler] [Satya90] programming model in which the

application runs on the portable computer and accesses data through a caching network

file system. We call this the Autonomous programming model. The main advantage

of the Autonomous model is increased autonomy: applications can operate disconnected

using fues cached on the portable machine. In addition, by splitting the application at the

file system layer instead of the window system layer such as X [Scheifler], the user

6

interface response time is no longer directly dependent on the network round-trip delay.

Chapter 3 discusses other programming models and how they are affected by different

assumed operating environments.

The main difficulty with using caching to increase availability is that from the

application's point of view, the content of a transparent cache is inherently unpredictable.

Hence an application whose availability depends on the cache is also unpredictable. A

disconnected application is partially functional when some of its features require the use

of the network or files which are not in the cache. Neither the application and nor the

user knows which features work and which do not because the availability of the files

needed by the application is unpredictable. This can be frustrating for the user. For

example, a user reading NetNews has to try clicking on every article in order to find out

which ones he can read. The goal of this thesis is to achieve predictable performance

through graceful disconnected operation - the ability . for partially functional

applications to remain user friendly by providing predictable performance.

One way to achieve predictable performance is to guarantee that the data and resources

the user needs are always available. This is not possible because we have an intermittent

network and we do not have an infinite cache. Our approach is to accept the fact that

applications will be partially functional when disconnected, and achieve predictable

performance by unobtrusively indicating which features work and which do not. The

application's user interface changes as the availability of its features and data changes,

affecting the user's expectations about what works and what does not. For example, a

disconnected mail tool can grayout unavailable buttons such as "get new mail", and

distinguish those messages which are available by italicizing their headers. Similarly, as

the user prepares to disconnect voluntarily, the mail tool can tell him what will be

unavailable by visually dis:~nguishing those buttons which will not work. These new

7

functionalities require the application to have intimate knowledge of its computing

environment, e.g. the current and expected availability of the files and system services

needed by each of its features. Our key innovation is in informing the user of the effects

of fundamental properties of the computing environment, such as disconnections, through

the application's user interface.

Without adequate support, forcing the application to deal with the operating

environment's dynamic properties will cause significant complexities for programmers.

We introduce Property Specifications, a new abstraction which enables system services

to expose fundamental aspects of the computing environment in a structured way. Most

existing system interfaces specify only the functions and services provided by the

implementation, and we refer to them as Functional Specifications. In contrast,

Property Specifications define an interface for the application to access the properties of

the computing environment without being exposed to irrelevant details of the

implementation. Properties which affect the performance and availability of applications

may include the availability of files, network latency, and expected battery life.

In addition, we define three basic mechanisms that Property Specifications should

provide for applications to efficiently access, monitor, influence and manipulate the

exported properties. They are Query, Notification and Hinting. Applications learn

about the current state of system properties through Query. Property changes are

modeled as Environmental Events. Notification enables applications to monitor

changes in the environment by binding callback procedures to Environmental Events.

Hinting lets applications give optional information to influence and sometimes

manipulate the system's properties. Collectively, Query, Notification and Hinting defme

a framework for structured communication and collaboration between applications and

system services.

8

The actual semantics for Environmental Events and the above mechanisms depend on the

specific properties of the particular system service. We designed and implemented

Property Specifications for a caching distributed file system and a Network Statistics

Monitor. Our file system interface exposes the property that files are moved in or out of

the cache. We export four new procedures:

• FilesAvailable () ,which lets an application query the cache manager about the

availability of files;

• Moni torFiles () ,which lets an application monitor the availability of one or more

files, and be called back by the cache manager whenever any of these files are moved

in or out of the cache;

• Gi veHin t () , which allows the application to influence the cache manager's

replacement policy;

• MakeAvailable () , which is an explicit hint given by the application to the cache

manager requesting some files to be moved into the cache.

Our network interface exposes the property that network operations have associated

latencies which vary over time. We export two procedures:

• Ge tLa tency () , which returns the current expected network latency;

• Moni torLa tency () , which lets the application be called back whenever the

network latency moves in or out of its operating range.

We used the above interfaces to implement wc-xmh(weakly connected xmhl [Peek]), a

modified version of xmh with new features to enhance usability during disconnected

operation. Users ran wc-xmh in a simulated intermittent environment and found the new

features to be effective and user friendly. Our users reaffirmed our belief that predictable

lxmb is an X mail tool based on the mh message handling system [peek].

9

performance is vital to usability. Wc-xmb's adaptive user interface allowed users to

continue working during disconnections. Hinting proved useful for voluntary
.'

disconnections as it allowed users to directly negotiate with the application about what

features and data objects to make available for future use. The user manipulates

application level entities such as folders and features rather than system level entities like

files, and is thus hidden from the internal dependencies of the application. Our

implementation experience helped us understand the system level tools and abstractions

required to reduce the programming complexity needed to obtain application features

similar to those we implemented for wc-xmh.

One of the key contributions of this thesis is in separating Property Specifications from

Functional Specifications. This gives the application programmer the flexibility of

trading programming effort for application robustness. An application which uses only

the Functional interface is easy to program but not very robust, e.g. it may crash if the

network fails. It takes more effort to program an application using both the Property

interface and the Functional interface, but the application would be very robust, e.g. it

grays out some buttons when the network fails. The separation of the two interfaces is of

key importance because the Property interface can support sophisticated applications

which need to look inside black box abstractions without sacrificing any transparency at

the Functional interface.

1.1 Outline

In Chapter 2, we use wc-xmh's features to illustrate what we mean by graceful

disconnected operation, and compare our goal and approach with related work in

distributed file systems and operating systems. In Chapters 3 through 5, we revisit the

10

sequence of ideas which enabled us to implement the features described in Chapter 2.

We choose the Autonomous programming model in Chapter 3 after surveying other

programming models for application partitioning. In Chapter 4 we discuss the motivation

and mechanisms for separating system interfaces into Functional Specifications and

Property Specifications. The Property Specifications for a caching distributed file system,
)

a network service interface and a virtual memory manager are also presented. Chapter 5

describes the lessons we learned during the design and implementation of our prototype

system and highlight some ideas for future work. Chapter 6 summarizes our users'

experiences with wc-xmh, and conclude by evaluating our ideas in light of our design,

engineering and usage experiences.

11

C·hapter 2

Motivation and Related Work

This chapter elaborates on the basic goal of this thesis, to provide new application

features for graceful disconnected operation. We draw examples of application features

from wc-xmh, such as availability indicators for individual messages, infonnative error

messages, managing future availability and monitoring environmental changes. The

general applicability of these features in other applications is also discussed. Section 2.2

describes related work in distributed file systems as well as ideas similar to Property

Specifications found in operating systems and programming language implementations.

2.1 User Level Features for Graceful Disconnected
Operation

We built a prototype system to demonstrate graceful disconnected operation and explore

the design space of Property Specifications. The design of our Property Specifications

was heavily influenced by the user level features we wished to support. In the following

12

sections, we will illustrate some of wc-xmh's features which motivated our system

design. In Section 5.2, we describe how we implemented these features in wc-xmb using

the tools and abstractions we will describe in the next three chapters.

2.1.1 Availability Indicators

When wc-xmh is disconnected, some of the messages or folders will not be available for

browsing and some of the features in menus and buttons may not work. We make clever

use of wc-xmb's user interface so the user can be unobtrusively informed of what works

and what does not. We annotate the available messages with asterisks and grayout the

unavailable buttons and menus. The network performance is displayed by a

thermometer: the more asterisks, the higher the network latency. This is illustrated by

Figures 2.1a and 2.lb. We note that most of wc-xmb's features are still available even

when it is disconnected. The user can browse cached messages and folders, delete or

refile any message, commit changes, and compose new messages.

13

menu
buttons

folder
buttons

cannot

for an available
message, most
wc-xmh features
are also a

new features,
see Section 2.1.4

table of
contents

inco~rnrert~~~~~~~~~~~~~~~~~~~~~~~~~~ new mail I
or print

network
latency
indicator
(currently

about the relative rerits of Trestle
about the idea of a Dealer on the

bllnl!'lllbJ:Lnartoolkits. Perhaps in the forM of a
would bo i"PlolllOt"ltod in oooh toolkit.

We have advocates for Trestle, TklTcl,
and Xtk.) signed up. Who wi 11 advocate the

Si91ificant others include OLIT (the Openlook toolkit), the Motif
, InterView and/or Fresco, and ~e xv1ew. I don't know what the

is in the LISP world.

Figure 2.1a - Availability indicators for a cached message during disconnected operntion

14

current
message

(unavailable)

many features
unavailable
(buttons are
disabled)

network
disconnected

change(<BIll, en you ~ -1'" tIred of haY
~~~~~::=~ for 10:30 "., 1125193<<CONJUTATION STlI£TlRES G 
!'WI fer 2:30 pili, lI25/S'3<<CIl1PUTATI!14 STROCTURES GR 

on for Ylo~ ch~«terr!ol.PARCixerox.cm .. rites: > BilL 
Annol.l'lCEWlBnt for 1119193«COI'fUTATI()I STRUCT~ES GROJI Tuesd 

In6!!~~ClA-111"l! <!l3J.alr.15.13533jr9lft~.12m~al tltla.xerox. CQJI) 

aAJest,lonl~ asked about the t'elatlw ... its of Trestle 
ickl~ enthused about the idea of a Dealer on the 
IIllnda..lng tooiklts. PerhapS in the fom of a 

;'~~:7.~;:-:s;;;OM:-;;e Fixed exMlple would be i~le.lented in each toolkit. 
1n the fom of a panel debate. We have adYocates for Trertle, TklTcl. 
tkJO Cedat' toolklts (Ylelllers and Xtk) Slgtled up. Ioho ~111 aclvcx::ate the 
Significant others include OLIT (the OperLook toolkit), the Hotif 

it, IntervielllS ardlor Fresco, 5ld Mybe xview. I don't know wi'wlt the 
is in the LISP IIIOI"'ld. 

Figure 2.1 b - Availability indicators for an uncached message during disconnected 
operation 

2.1.2 Delayed Operation and Friendly Errors 

When wc-xmh is disconnected, the user can still compose and send messages. Outgoing 

messages are queued by wc-xmh in a folder named Out, so the user can easily check 

15 



some 
messages 
marked 

...... ' ............................... .. . . . . . , ................................. .. 

01115 
01'15 Hike_Spre1tzer.PA 
01'15 NancyJre1ge.PARC 
01115 L.oma..Feer.parcIi:( 
01115 l.l.Ic~ Suct.an 
01/15 !::t;eve rutz: 

sugge:stion you p~se to rencJlle the ctrrerlt 

-----""'111:::~~~ 01'15 ~Fre1ge.PARC 
01115 Pad S ..... th 

Re: suggestion for Vlog c1mge«lf we nailed the vers1Qf'1S like EJlace 
Voicepo1nt 5peakerphone<<Would whoever borrowed CSI..'s Voicepolnt Spe 
No-fee fOl' Hike TSO<<Dallid, please send fme a bIo-sentence descript 
REHINlER - Work Practices«REHINlER, *if !:IOU haven't notified us ~ 
.1a.dns NotGeM 'D1 CD 1U1«~'IO borrC*ed II NetGeM 'D1 CD ROH fr 
Conference ROOIII COI.rteey(<The CSt. CoMan, MI. 2231), 1s clrt"el'ltly boo 
<<Date: Fri, 15 Jan 93 20:1.:20 +QOOO Froa: arvi .... U.t.u-t:okyo.ac. 
illpOrt outage yesterda!:l at SPH<<AIL As you "l1l:I have noticed, IiIlpOl" 
Help 9i\18 winciowil'l9 toolkits bake-of'f Dealer?«ln this weeJr.'s Dealer 
Re: ~tion for VI~ c1m!l8«~.PARC@xerox.COIII .... ites: ) Bill, 
S.inar IhlOI.rIcelWlt for 1I19/93<<llIRJTATION STRl.tT~ GP.IlP Tueed 

01115 Jdrl Lllli9 
329+*01115 Hike_Spreitzer.PA 
~D*01I15 Bill Sch1lit 
335 1101'15 Lori Lynn Avirett 

user clicks on 17-=:::;-;::::==;-:;::=:::;;;;;;;=;;;::::=~=:;-;;::=:==;;-;=:::::::;-;==;-;:=::::;-;::::==;-;:===::;-~ 
" . " 

~~~~De;,ler, a c:pestioner asked about the relative ... Its of Trestle 
~ the audience quickly entrused about the idea of a Dealer on the

of various windowin9 toolkits. PerMps in the fOMl of a
~.¥'ison of how SOllIe fi>at exanple would be illple.ented in each toolkit.

in the fOMl of a panel debate. Ie haw advocates fOl' Trestle. TklTcl.
two Cedar toolk1ts <V1ewers and Xtk) s1gned 1.4'. ltIo ~J111 aIJo.oocate the
Significant others include ILIT (the Opert.ook toolkit), the I10ttf

, Interviews .end/0l' Fresco, .end M'dbe XIIiew. I don't know whot the
is in the LISP ..arId.

Figure 2.2a - User chooses to commit changes to unavailable messages during
disconnection

which pending messages have or have not been sent. He can also edit, delete or move

messages in the Out folder just like messages in any other folder . We feel that this

feedback information is very important and is best provided within the context of the

application, i.e. it is more intuitive for the user to manipulate pending outgoing messages

as wc-xmh objects instead of fIles in the fIle system.

16

Not all errors can be prevented by disabling buttons. Handling errors at the system layer

simplifies the application but is often too general because there is little information about

the overall context of the error. Without knowing which application feature caused the

316 01115 I«SEE VIl.l... in9'l* Tod~,
317 01/15 Victor _V-leintz.w Re: Copllot<<Recelved: ~ latrlchpad.paa.xerox.<Xl'l (4.1ISt1I
318 01115 SJohnson.~CQxer eich:/pixe11 is 98% full<<Please prtIle what ~ou Ca'l fro.l !:J)Ur direct
319 01/15 David Nichols Re: suggestion for ~log change«Do ~u propose to rename the ctrrent
320 01/15 Hike_Spreitzer.PA Re: suggestion for ~log change«If we naMed the versions like ENcs
321 01/15 Nenc~rreige.I"ARC Voic.epoint Cpeekerpi-.ol"le«Would whoevel" bOrl"C*ed C~'5 Voic.epolnt ~
322 01/15 Lorna_Fear.parcQx Ho-fee for Mike TSO«DaYld, please send Anne a two-sentence descrlpt
323 01/15 lucy SuchlrlcYl REI'IIHIER - Work Pr5:ticeS<<REI'IIHIER, .if \:IOU haven't notified us ye
324 01/15 Steve Putt Missing HetGe..s '91 CD-ROtt<<Soneone borrowed a NetGeM$ '91 CD-FD1 fr
325D 01/15 Narx:!j..Freise.PARC Conference RoOfll COI.rt~<<The CSL CoM*X'l, Nl. 2231), 1s current-II:! boo
327D 01115 P~l s. Berth <~te: Fri, 15 J~ 93 20:14:20 +~ FrOM: arvin.tl.t.u-tok.40.ac.
328 01/15 Jcrn I.ill is i"POrt outage yesterday at GPH«AII, As ~ou M<lI:J have ooticed, IiMpar
329+Il101/15 Hike._Spreitzer.P~ Help give winaing toolkits bake-off Dealer?«In this lIJeek's Dealer

~_33_4_Il*01 __ /1_5_B_i_I_1 _Sc_h-r::il;:::i:-t--:::--~R::;;e:;;;;;;;;sugges:tion for ~109 cllange«t~.PARClb:erox.CCII'I ites: > Bi

Irl this ...aek's Daaler, a questioner asked about the relative IllE!rlts I,)f Trestle
'.Ie. Tk/Tcl~ the audience qulckl~ enthused about the idea of a Dealer on the

PIer-its of various windo ... ing toolkits. Perh~ in the fONl of a
cr.nlc il!l:OI'l of hobl SOMe fixed ex~l1IPle bIOuld be iMpleMented in e.!Ich toolkit.

Mike

in the fonn of a panel debate. We have adwcates for Trestle, TklTcL
tbIO Cedar toolktts ('hewer's drd XtkJ slgned UP. Who 1.01111 adyocate the
Sisnificant others include OLIT (the Openlook toolk it), the Motif
Intervi~ and/or Fresco, ~nd M<l\:lbe xview. I don't know ""'~t the

is in the LISP war ld.

Figure 2.2b - Commit feature exits with a more meaningful error

error, system level error messages are often uninformative. For example, when the user

clicks the "compose" button to create a new mail message, he might get a "file not found:

17

compform" error. The average user would not understand this error: compform is a

template file used to create a new message header, and the user's command failed

because wc-xmh is disconnected and compform is not in the cache. We believe that in

general, the system layer is much better at detecting errors than handling errors.

Uninformative error messages are intolerable if errors occur frequently. We allow the

application to override the default error handler provided by the system to return more

user friendly error messages based on the application's semantics. Figures 2.2a and 2.2b

illustrate this idea: wc-xmh had to abort the "commit" command2 prematurely because it

could not verify the existence of unavailable messages. Instead of the file system timing

out and printing a low level error to the console like "RPC timed out, retrying ... ", the

error is intercepted by wc-xmh which notifies the user and aborts the "commit" operation

instead of hanging on retries.

2.1.3 Smart Availability Management

It is no accident that wc-xmh is almost fully functional when it is disconnected.

Maintaining a high level of functionality requires a number of resource files (such as the

context, header summaries and filters) to be available. One of the key features of wc-

xmh is its ability to influence the cache manager so that these critical files remain

available as much as possible. Similarly, wc-xmh influences the cache manager to

always make new mail messages available, as shown in Figures 2.3a and 2.3b.

2 typically, the user marks the changes he wants to make to individual messages, e.g. move or delete, and
then hits the "commit" button tf' :.:tually make the changes at the file system level, e.g. renaming or
deleting files.

18

user clicks
on

"inc" to
incorpOrate
new mail

network is
connected

247 01108
255 01lU Jae Roo
260 01112 Lcri lynn AVlrett
263 01/12 WilliM_Tlrner.pa
274 01112 Hike_Spreitmr.PA
275 01/12 Georse Chen
291 iII01I13 Hichael Han-Hak T
292 iII01I13 weihll1!photon.lcs.
293 *01/13 WilliM_Tlrner.pa
299 *01113 ter~.PARCQxerox.
303 *01113 Michelle Dlen~
3Qa-o-iII01I14 Brent Welch

Se .. 1MI"'~ Ttl.Irs .. 1114, - 6th livery-Date: Fr
get by with a little help<<I11ke~ if !:IOU halle sme tiN! e8"ly this we
SeJlinar I=nnol.l'lcerent«"'-@--"'-@--I--@--"'-@--"'-@--"'-@
Guest speaker;Hartin SchJliclt, HIT Hicrohbri~tion Technologies For
CSL Lab Htg in Rooll 1500 Dealers: David Goldberg and H8"k Weiser, Ja
I<UOOG I «Kudos to the acU ... ea rot" puttins t0gether an e:.;cellent edi ti
PDS - The ParcTab Packet Deliver!:! Switch«Hi, The ParcTab Packet Del
Flrst 6033 steff r.eetu19«u,e of the r.ajcr issues IIJe will be deahng
Forw.!ll"ding: Guest speaker~Hartin Schllidt, HIT Hicrof8bri~tion Techn
lblqultous Cmput1ng Archltectlre and ~pl1catlons r.aet1ngr<<I1ark~s
Newweekt Cannibals of the Red Guard«Cannibals of the Red Guard Sill!
experill8nt de-brlef<<Hl - I~" ganna be gone tororrow, so I'd like to

be 90ne tororrow, so I'd like to
.. ~ 1M; 1 rAArHI'l9 A'l:ppr;IIPI'It. tnrL::I~,

you stop by at U:OO or' so? thanks.
Brent

Figure 2.3a - User chooses to get new mail

2.1.4 Dependable Future Availability

When the user plans for voluntary disconnection, wc-xmb lets him check what data and

features will be available when he becomes disconnected. If a feature will not be

19

IiIlnbOX
+ • .. • • • • .. • • .. • • .. • • .. • •

I Folder II Table of Contents II Message II Yie ... II Options II Enable II BringOver I
irilox

irbox:all
274 01112 Hike_Spreitzer.PA CSt. Lab Htg In ROOllI 1500 :Ileo!!ler'S:)).,vid Golcber-g «id ~ Wel~, Ja
275 01/12 George Chen KUDOS!«Kudos to the actives for putt11'19 together an excellent ed1t1
291 11(11/13 l'Iichael ttan-HaIc. T PDS - The ParcTab Packet Deliver!:! ~itch<<Hi, The ParcTab Packet Del
292 *01113 weihIOphoton.lcs. First 6033 staff .eetil'l9<<cr.e of the ..aJor' issues we will be dealil'l9

new mail 293 *01113 loIillian_Tlrner.pa Forwarding: Guest speaker~M.rtin sa.idt, MIT Microfabrication Techn
200 *01/13 t.err!:t.rARCft,;eo!'ox. Ub1qu1 toua. Co"f'Util'l9 AI'c.hi tecture Sod Appl1G8tion.$ lIIeetinsa«Herk·.$
303 *01/13 Hichelle CheI'l9 Hewsweek: Canntbale of the Red Guard<<Cannibale of the Red Gucrd s..u

messages are 308 Il1011104 Brent Welch experiMent de-brief«Hi - I'M gonM be gone tOlllOl"I"QIJ, so I'd like to
made available 309+Il101/104 George Robertson REMIND: PARe SeMir18I' 1/19: Revolutionary Tools For Softl.ll.Y'e Develo

o *01114 Geor98 Robertson REttINIER (FIXED): PARC Selilinar 1119: Re\lolLitioncrlj Tools For Soft
automaticall 311 1IIQ1/14 D'"lfonso+PA~e * .. Rminder: Fberdeen UPlrade to 4.1.3 Tonite -*«Thil$ eveni~, th -======--(1_1 312 *O1l14 Bru::e_Halililton.LA El Segllldo area: Sun Local Users Groop«This if: jus:t a rerdnder that

313 Il1011104 Bru::e_Halililton.LA EI Segllldo area: Sun Local Users GrooP«[fixed type: T'tu-sday. not T
"' 4 1IIQ1/14 Bill Schilit suggestion fOI' Ylog change«I suggest the follCMllillg change to Vlo :

________________ ~rbox:~ _________________ ~

Networlc. L8tenC!:j :

ro .. : Brent ldelch (welch@p.rc.xerox.cov
0: tso@parc.:l:erox.coo

SubJect: experiMent de-brlef
ttess~ Id; <93JoIlI'I14.09113Opsl.36867brllina.parc.xerox.CQIIl)
Date: ThJ, 104 Jan 1993 09:11:28 -0800

Bi - I'll gonna be gone tooorl"CMll, so I'd like to
I.inrl rlnwn 11\:1 lMi 1 rFl;wiing FlxpFIt"illlF!flt. t.nrl~.
Could !:IOU stop by at 11:00 or so? thanks.

Brent

Figure 2.3b - New mail is automatically made available

available, its entry in the "Enable" menu would not be grayed out, as shown in Figure 2.4.

The user can make a feature available by selecting the appropriate "Enable". He can also

make individual messages or folders available by using the "BringOver" menu, as shown

in Figures 2.5a and 2.5b. Wc-xmh informs the user whether his request was successful.

The key utility of the "Enable" and "BringOver" features is that they allow the user to

establish a level of dependable service across disconnections without having to

understand wc-xmb's internal dependencies.

20

users can
enable

individual
features in

preparation for
disconnection

here the menu
selections are
grayed out to
show that all
features will
be available

.. - -.. -.. _ .. - -.. -. - .. .
I Folder II Table of Cmtents I I Message IIVtec.J II Options I Enable

247 01108 Lori ~m Ayirett
255 *01lU Jae PoOh
261) 01112 Lori L~m AI/irett
263 01112 Willi __ Turner.pa
274 01112 Mike_Sprai tzar.PA
275 01112 George Chen
291 *01113 Mic~l Man-+t.ek T
292 *01113 weihliphoton.lcs.
293 *01113 ill ill io/llll_ Turner. pa
299 *01113 terf1j.PARCi:cerox.
303 *01113 Hichelle Chens
309+*01114 Brent Welch

Netblork Latenc!-4 :

STEMSTROI1 Selllinar, All 6th floor<<Del1v8l'1rDate: Fr
get bid with a l1ttl haYe eoMe t1"" early this we
Sefllnar tnI0ll'lC8r.ent«I-~--t-~--t-~--t--@--t--@--t--@-
Guest speakel"'~HaI~tin Sctllaidt, MIT Microfabrication Technologies for
CSl Lab t1tg in Real 1500 Dealers: Dayid Goldberg en:! Mark Weiser, Ja
KUroS!«Kudos to the act1ves for putting together an excellent edit1
PIJS - The PercTeb Pecket Delivery Switch«Hi, The PercTeb Pecket Del
First 6033 susff .,eting«One of the Mjor issues we will be deeling'
Forw~iI19: Guest speac.eI~~Mel"'tin Sch.idt, MIT Microfabricetion Teem
lblqultous Con.,utlng Archltecbre and ~pl1cat1ons .eettngs(<I1ark's
IbIsweelc.: Cemib~ls of the Red Guerd«Cemibals of tile Red Guerd 5nJ
experi~nt de4Jrief<<Hi - I'M goma be gone tofiort"OW, so I'd like to

inbox:30B

rei'll! Brent Welch <J.Jelc:h@parc.xerox.con)
To: tso~rc.xel~.co.I
StbJect: experlllent de-brief
Nessage-Id: <93Jan14 .09U30pst. 368671k:orvina .. parc. xerox • COM>
&te: Thu, 14 J51 1993 09:U:2B -0800

Hi .• I'. gorm be gone toJtol~"', so I'd like to
wind down .~ "ail reading experiment toda!:!.
Could !::lOll stop b!:I at 11:00 or so? thanks.

Brent

Figure 2.4 - Enable features for dependable future availability

21

II BringOver "
lets messages
and folders to

be made
available

here user
selects

to make all
messges in the

folder "M3"
available

none of the
messages in

folder "M3" is
currently
available

..................................... " •••• +

1 08110 Hlke_Spreltzer.PA ..:3chest1nstall problM«I'JI senclitl9 this to ell of n3chest beca..se I
2 08110 Hlke_Spreltzer.PA TiIileParse.13 added to blob/tineflllt«I solvecllllY earlier probleM. I'll
4 08118 HarvIn TheiMr Changes to iWnix and tiMf"t directorieS<<Hi~ I've (finally) coales
5 OOl1B their.er.PARrnxero Ylog changes r.acle<<Hi~ I've ir.pleRented the changes Dave Nichols reo
6 08120 DaI.'id Nichols new .i3rpc, n3rpcgen«I'lIe installed a new Hodula-3 librar'\J and stub
o ro.'02 thaifller" .rMroxero Re; rTAGG rUea ror l113C;hNt<(Jli~ Tha tesa,el that I wote e ...,Ue be
9 09102 Hlke_Spreltzer.PA Re: FTf(;S files for IIl3chest<<For optiOns (1) - (3), I suspect the be

10 09102 DlWid Golcberg Re: FTf(;S files for IIl3chest<<Ii=2 "auld work fUle for lIle. It seens th
11 09/03 their.er.PMCOxero Re: FTf(;S files For .i3chest<OIi~ The chemge !:IOU Mde to ~ tegs.el p
12 09103 DaI.'id Golcberg Re: FTf(;S files for .i3chest<<Right, when you know the rodule nane, t
13 10119 DlWid Nicho13 ch/ll1!=1eS<Vl3chestin~ll - 8dded -f to FTt(;S Jl\/ CORMndS to keep then
14 10127 Hike_Spreitzer.PA installation.doc ..,S. fIl3unixlHakefile«/project/n3chest/c:b:linstallat
15 10/31 Michelle Cheng FIolD>>ltodul~ vs C++«--- Besin Included Mess~ --- In erticle <
16 11/09 D.!Nid Golcherg new routines in blob«I edded SOllie neu thires to the blob: in Text

-----------------~~:~-----------------~ HetAJork L~~ :
lite: Wed, 13 J/lI1 1993 10:22:59 -0000

'rOIll: Hichael H/lI1-Hfik Tso <tdperc.xerox.cOlll>
Subject.: PDS - The ParcTab Packet Del111er\:l Swlt.ch
To: tebtei!lnl.PARCixerox.coJl
Message- ID: {93Jan13.102313pst.6917@ferlllius.parc.x8I"Ox.corrV

Hi,

The PercTeb Paet Delivery Switch (PIlS) provides relieble ~ck.et
delivery between applications and Par-cTabs. Each Par-cTab has an
assocIated PD5 StlNet' that sxpot"ts a lOCCltlotl tf'ansparent RPC
interface to the application, The PDS tracks the Par-cTab's oovslllent
end sillitches pecket delivery between infrerecl 9et~s (1r'Getew~).
The PIlS elso provides the nechllniSlll for epplicetion r.~egenent:
switching the Tab betklSel'l nl.iltiple act1\o1e applications. Finally, the
PDS routell n!jnChronolill Tab eventll to the Cl.rrent1!J lIehctlPd
application.

I ha...e installed the illlplE!l1lentation into Iproject/tab/src/pds. In
/projectltablbin, there is a progral'll PBS, you can tr!,l runnil'l9 it with
the -tab Q.O.l -sheU Iprcject/tablbir/lest!:ihell options to get a
debug Shell progrCIII rlJ'lt"ung with the PDS.

There 1s also docl.lllentat1on 1n IproJect/tabldoc.

Figure 2.5a - User chooses to make some messages available for voluntary disconnection

Another idea for influencing the user's expectations is to use tri-state buttons. A tri-state

button has three visually distinct states: currently available and will be available if

disconnected, currently available and will be unavailable if disconnected, and currently

unavailable. This is illustrated in Figure 2.6. Tri-state buttons let the user easily

anticipate what will not work should a disconnection occur, thus enabling the application

22

to deliver a predictable level of service regardless of whether disconnections are planned

or unplanned.

I messages in al
fj older "M3" are

now available j
\

w c-xmh notifies
the user that

th ese messages
w ill be available

even if he
disconnects

iii MJ 1m
I Folder I (Table of Contents II Message II V1E1l~ II Optlom II Enable II BrlngOwr I -113 -I Amounce II CSG II CYA I I Cecil "Intern II]!] I NellIS IIpBE I\PJF IISoftlllat"e II Tab IIVI-i=lIIbfde "crafts I
[h""l.ROfl r iOOox 1 [irbox91] [T.u] [Tcbs I [otherS] [!"hesi"S] ~ICa.p J -113:811 -

1 iII08/10 Hlke_Spreltzer.PA ~chestimtall probleA«I'1fl sending this to all of ,,3chest because I t 2 *08110 Hike_Spreltzer.PA TiMeParse.13 added to blob/Uf'ef"t«I solyed 111\:1 earlier problelfl. !'y
.. *08/18 Harvin TheiJler Ola'lges to ~nix cn:I tiJlefilt dlrectorleS<<Hl: I've (finallll> coales
5 11(18/18 thei'ler .PARmxero Vlog changes 'lo!ide<<Hi~ I'ye irlple.ented the chenges Dave Nichols reo
S *08.120 DaYid Nicl-ols new n3rpc, ,,3rpcgen«I'ye installed a ne ... Hodula-3 libr J and stub
8 *09/02 theif'er .PMCQxero Re: FTf4;S files for ~chest<<Hi~ The tags.el that I ~ote a ~lle ba
9 *09102 Hike_Sprei tzcr. PA Rc: FT~S fi lcs for ~chest<<For options (1) - (3). I suspect the be

10 t09I02 DI!IYid GoldJers Re: FT~S files for I113chest<<N=2 would !lark fme for lIIe. It seem th
11 iII09/03 thei,.er .PARmxero Re: FTf4;S files For I113chest<Oli; The change you Mcie to Wd tags.el p
12 *09103 DaYid Golmer9 Re: FTAGS files for I113chest<<Rlght, !ItIen !lOU kl"lD'lJ the module nMe, t
13 *10/19 DaYid rilcl-ols cha'lgeS(<III3chestinstall - added -f to FT~S J'N COOlilands to keep theA

~ 14 *10/27 Hike_Spreitzcr.PA installation.doc YS. l13unixll'lakefile«/project/.-3cl'est/doclinst.allat
"'" 15 11110/31 Hichelle Cheng FWD>>Hodul~ \1$ C++«--- Begin Included Mess. --- In articl~;

16 lICiL'09 DIWid GoidJerS new routines in blc.b«I added 50Jle new things to the blob: in Text

~ [next llfrev J [coolili t] ! delete] [;cNe] ! co~ose 1 [repl"M] [Pt-lnt] !IIlMrk] [cnlard] [U~ as Co~ -Teb:70 -
Hetwri<. Latenc!-! :
~ate: Wed, 13 Jan 1993 10:22:59 -0800
Fro ... : Hichael Han-Hek T50 <t.soQparc.xerc.x.ccn)
SLbJect: PDS - The PareTa fi]notlce ~ To: tabteaR.PARC@xero
Message- ID: <93Jan13.1023 Br1ngFolderOver: All MeSSages in Folder

~13
..,ill be avai lable

""" LrAck;;;; ledgecil u, - I

The PareTab P.::JCkct Ilcli'o'Cry SloIitoh (PDS> provid~ I"Clioblc p.:lckct
deliYef1:j between appllcatlom cn:I Par-dabs-. Each ParcTab has a'I

aSSOCiated PDS server that exports a location transparent RPC
interface to the application. Tho PDS tracks the Pardab's rol!elllent
./Ind switches packet deliuer\:j betlleen infr8l"ed gat~$ (irGatell~).
The PDS also provides the "echaniSl1 fer appl ication l1anagelletlt:
oklitohil'l9 tho Tab bot",ooon '-'..Iltiplc ootillO opplio.otlona. Fin.:lll~, too
PDS routes as!l'lChronous Tab events to the Cl..l"rently selected
application.

! haYe installed the 11lPieAentation into IproJect/tab/src/pels. In
Ipro,icotltoblbin, thoro 10 Q prosralll PDS, lP..I oon ~ I"'YI"Inins it wi th
the -tab 0.0.1 -shell Iproject/tab/biniTestSi1ell options to get a
debug Shell progra.. rln'ling with the PDS.

There is also docl.ftentat1on in Iproject/tab/doc.

Figure 2.5b - User gets immediate feedback

23

(compose)

Available Now·

Available also
when Disconnected

Available Now

Unavailable
when Disconnected

Figure 2.6 - Using Tri-state Buttons to Manage Future Availability

Unavailable

2.1.5 Monitoring and Reacting to Environmental Changes

The computing environment may be changing continuously: the network connectivity

may fluctuate and files are paged in and out of the cache. Wc-xmb needs to monitor

these changes so the state of its buttons, availability indicators and network thermometer

can be updated in a timely fashion. A naive implementation would poll the cache

manager and the Network Statistics Monitor. Notification allows these features to be

implemented efficiently by invoking callback procedures as soon as changes are detected.

Figures 2.7a and 2.}b illustrate the result of invoking a callback procedure after a file

needed by the "compose" function is paged out. Typically, instead of drawing attention

to the user, wc-xmh's callback procedure would automatically attempt to make

"compose" available through Hinting.

24

user can also
ake "compose" ~==~==========~====~==~====~~~~~--~~--------------~~
available by
clicking here

wc-xmh warns
the user that

"compose" has
become

unavailable

user chooses to
make

"compose"
available

05/29 91 n.
06/09 sl on9!34@athet'la.lIli
06/25 To:gregor
07/10 Dill Janss.en
08/03 Joe Norton

G 00/04 ~AJUal1ilflopn2,d.s
7 08/10 andrew scott lllalo
8 08/17 andrew scott .alo
9 08/31 Bi 11 Schi Ii t

10 09/11 Wellnerieuroparc.
11 09116 !4enou~othena.1II
12 09/19 !lealilou~athena.1!l
13 09/21 tccho~atherl.!l.ld t
14 09/29 kohl i l~athena.11Ii t

tten water in Id, I IfO

Re: Thanks!«HIl\:! With !leu? Have you found
DLS questlOns«Gre8Dr, John, SOllIe qJestioos I dici'l't set to ask at t
ATr. T PM plans«Froo: roeOJSb!:ftes.lklarinet.coo tl6loIsgro~s.: clari ,00, tr
talk«He!l Mike, He,,· are you doin9? I'A doing well in Car.bridge and a
Re; Tsoing MGhine??«Hem Iii»;; we hod CUI- rush peI"ties IMt llleekend,
Happ\:! B1rt~.<<Hi. 1'111 or: the right side of the date line I ca
Re: HI!!!!! {(B> HI llIde, B> B) Li fe ~n be Sl.IIIlfk!II"lzed into one word!
Forwarded rr.ess~e fror. Peter Allen{{------ Stc!lrt of foril<!lrded r.essa
CACH call for paperS«Please forward this to anyone ""0 you think 1111
Re: Mil<-<he!-I OOIlleH! Good to hear froo !-Iou! I ltIill write bock later,
Re: ~at's up?«He\:l Mike, IoIell its Frida\:! and I'lil in 10Ye with you!
{{Hey Hike: No, I ~n't TA'ed 6.004 since last Fall: nonetheless I
Re: OIhat's up«Greetings Hicheel tee-zc.h. I'll tl1l to Si..-e you a cal

i Idaming:
~ ___ ~! CO"PQSe '-Jill not be available if you becxJIIIIe disconnected!

j Enable eo.pose?

I.~ __________ , __

Figure 2.7a - Users are notified if an important feature may become unavailable

2.1.6 Discussion

At fIrst glance, it appears that the graying out of buttons and the availability indicators for

messages can be implemented without any special system support. For example, a

disconnected application can find out what does not work by pretending to click on every

25

user can also
check in the
future that

"compose" is
available

user gets
confmnation

1 OS/29 glilll@au-bon-pain.
2 06/09 sl ong94@athet'la.lIli
3 06/25 To:gt'~or
4 07/10 Dill Janss,en
5 00/03 Joe Norton
6 08/04 RAJUCH@flopn2.ds
7 09/10 andrew scott JIlalo
8 08/17 andrew scott Mlo
9 08/31 lli 11 Schi Ii t

10 09/11 IoI~Ilnerieuroparc.
11 09/16 ~eaiilou!:jQathena.1II
12 09/18 ~eahbou~athcr.a.PI
13 09121 tccl1oU@athena.llli t
14 09/29 kohl i lllathena.l1Ii t

/}(] noUce

Re: GrouP llleeti reIKi tten wator in Id. I 1<10
Re: Thanks!«He!:j ins with ~ou? Have !f,)U found
DLS quest 1 OI"Is«Gre90r , John, SOllIe guestions I didn't set to ask at t
AT&T PDt:! plans(<FrOOl: r.ewst.ytes,lklarinet.cOOl N6IIJssr~s,: clari.nb.tr
talk«He!:I Mike, He ... ar~ ~u doing? I'", doing l~ell in Ccnbridge and a
Re: Tsoirl9 l1Iachine??«Man Hak: we had our rush parties last. laJeekend,
Happ~ Birthda\:t.{{Hi. I'III on the right side of the cUste line •••• I ca
Re: HI!!!! !<(]) HI Dude, ll) B) Life can be st.nlLlc'5rlzed into one lIIord:
Forlllarded rr.essflge frOftl Peter Allen{{------- Start of foruarded lIIessa
CACM call for papers«Please forwrd th1 s to al1'don~ who l:jOu think 1111
Re: lIlai1«he!:.t hoirle!:.t! Good to heor frOlll !:.tou! I will write bock later,
Rc: Ioilat's up?(<Hc!;; Hike, Io!ell its Frida\:! and 1'111 in 10",e t.li th ~OIJ!
«He!:! Hike: No, I MOJen't TA'ed 6.004 since last F.!Ill~ nonetheless I
Re: iJhal's up«Greelin9s Hichae1 tee-zoh. I'll l~ to give ~ a cal

Enable CoMpose: COMPOSe is now available!

I Acknwiedged I

Figure 2.7b - User gets immediate feedback after choosing to make "compose" available

button or menu and seeing if a network timeout error occurs. There are two problems

with this approach. First, graying out what will become unavailable (and tri-state

buttons) cannot be implemented by the above technique. Second, there may be hundreds

of buttons, menus and messages in wc-xmh and simulating a click on each one

periodically is both inefficient and tedious.

26

Wc-xmb's features illustrate some generally applicable ideas for adaptive user interfaces.

The idea of graying out buttons and menus can be used in any application with a

graphical user interface. Availability indicators are generally applicable for programs

which let the user select from a list of possibilities, such as NetNews readers and

directory browsers. "Enable" menus are useful for any application to assist the user in

planning for future disconnections. For portables running on batteries, a thermometer

similar to wc-xmh's network latency indicator showing the amount of battery power

remaining would be useful. Tri-state buttons can be generalized to have different colors

indicating an estimate of the expected response time if that button is clicked. For

example, the "BringOver Folder" button may be colored red because copying all those

messages over a slow network can take a long time, while buttons for low latency

operations like reading a cached message are colored green.

2.2 Related Work

2.2.1 Disconnected Operation in Coda

Coda [Kistler] [Satya90] also provides disconnected operation using cached data. The

key difference between our approach and Coda is that Coda does not change the ftIe

system interface and provides no special support for unplanned disconnections. Coda

assumes strong connectivity for normal operations. Hoarding allows users to give

explicit hints to the cache manager by prioritizing files. but it is less effective for

unplanned disconnections than voluntary disconnection. We assume an intermittent

network for normal operations and provide full support for both voluntary and

involuntary disconnected operation. Caching is transparent to the application in Coda, so

applications which depend Oft the cache for availability cannot predetermine what works

27

and what does not because the content of the cache is unpredictable. For example,

applications using Coda cannot implement features like graying out buttons which are

currently unavailable or will become unavailable. When a Coda user is involuntarily

disconnected, he must click on every button in order to detennine what works and what

does not (assuming the application does not hang).

Hoarding in Coda is equivalent to our Hinting mechanism except the cache manager gets

hints from the user rather than the application. The user creates a Hoard Profile

(sometimes with the help of a trace program) which prioritizes all the files he may use.

The main problem with Hoarding is the complexity it places on the user - he must

understand the internal dependencies of the application. It is up to the user to ensure that

the resources he needs for disconnected operation are made available by keeping the

Hoard Profile current and invoking Hoard Walks just before he disconnects. Creating a

Hoard Profile is cumbersome because tracing does not always produce the complete

dependencies of an application's features. The user does not have fine grained control

over what features are made available unless he understands the precise dependencies of

each of the application's features. In our system, the user manipulates application level

entities like messages, appointments and buttons rather than system level entities like

files. The user gets direct feedback from the application about what is available and what

will be available. Callbacks enable applications to notify the user if vital features become

unavailable. Hoarding in Coda can be implemented a~ an ordinary application in our

system using Hinting.

28

2.2.2 Adaptive Applications

Schilit's current thesis work [Schilit] uses adaptive applications to address the problem of

dynamic system reconfiguration. Although his motivation is similar to ours, his emphasis

is different. This thesis investigates the separation of system interfaces and definition of

new abstractions, while Schilit' s work focuses on mechanisms for communication

between applications and system services. He uses a database, the Environmental

Database, to maintain attribute-value pairs as a general interprocess communication

mechanism. The Localization Manager binds applications' callback requests to persistent

queries in the Environmental Database. Unlike our implementation which provided a

direct channel of communication between each application and its system services,

environmental events in Schilit's system go through two levels of indirection. For an

application to be notified about an environmental event, the event must fIrst be reported

to the Environmental Database, trigger a query which sends a callback to the Localization

Manager, which then notifIes the application. Although our experimental system could

have been implemented with Schilit's mechanisms, we chose a more direct approach to

avoid the delay and race conditions possibly associated with the extra indirections.

2.2.3 File System For Mobile Computing

Tait's current thesis research [Tait] focuses on the tradeoff between consistency and

performance in distributed file systems for mobile computing. His file system interface

provides two read operations, a strict read which has high synchronization costs and an

inexpensive loose read. He exports no other interface for cache or consistency control,

and provides no support for disconnected operation.

29

2.2.4 Application Specific Virtual Memory Management

Allowing applications to control aspects of virtual memory management, such as pinning

a page in physical memory, has been implemented in many operating systems

[McNamee] [Young87] [Young89] [Cheriton]. The V++ kernel [Harty] support for

application controlled external page-cache management is the most recent attempt at

overcoming the inadequacies of the conventional "transparent" virtual memory model.

Using the abstraction of a page frame cache provided by the kernel, the application can

monitor and control the amount of physical memory it has available for execution, the

exact contents of this memory, and the scheduling and nature of page-in and page-out.

The idea of exposing the virtual memory system to sophisticated applications is similar to

our notion of providing two separate interfaces for cache management. V ++ allows the

application to explicitly control most aspects of how its physical memory is managed. By

contrast, our approach is more conservative. We allow the application to influence, but

not control, how the file cache is managed. This is because we are using the same

technique to solve different problems. External page-cache management in V ++ caters

for the desire of sophisticated applications whose memory requirements are almost

unbounded, such as large simulations or data base systems, to better mask the cost of

page faults. Our system improves the usability of applications sharing a file cache by

allowing the user to see the consequences of disconnectedness through the context of the

application. We were reluctant to give applications explicit control of the file cache

because we felt that fairness is important since the portable computer's disk capacity is

still fairly limited. In addition, we designed our interfaces so that the desired features can

be implemented without introducing unnecessary complications to the application, such

as requiring applications to explicitly manage their own cache. Although V++ provides a

default memory manager, the application is exposed to the complexity of implementing a

custom memory manager even if the paging policy it needs is just slightly different. This

30

is an important consideration because we expect even ordinary applications such as the

mail reader and calendar manager to utilize the support we are providing.

2.2.5 Exposing Abstractions with MetaObject Protocols

Designing programming languages using metaobject protocols [Kiczales] [Rodriguez] is

based on the notion that limiting a programmer to using pre-existing implementations

(i.e. compilers) as black box abstractions is artificially restrictive; a programmer should

be able to, and sometimes needs to, augment the functionality provided by these

implementations, without being exposed to arbitrary or irrelevant implementation details.

Metaobject protocols are interfaces to the language that give users the ability to

incrementally modify the language's behavior and implementation.

At first glance it may appear that Property Specifications bear no relation to metaobject

protocols. In fact, our idea of Property Specifications for system services was inspired

by the metaobject protocol approach to language design. The power and flexibility of the

metaobject protocol originates from exposing traditional black box abstractions in

structured ways. Property Specifications give applications the power to operate in an

unpredictable computing environment by exposing traditionally sacred black box

abstractions such as caching in structured and controlled ways. The common thread

linking our work to the metaobject protocol is the notion of designing an abstraction for

exposing abstractions. Adding Property Specifications to an existing operating system is

like adding windows and knobs to a black box: the application can choose to look into the

windows and tum the knobs when the need arises. Adding windows and knobs is better

than replacing the black box with a glass box because applications are hidden from

irrelevant details of the implementation.

31

Chapter 3

Programming Models for Application
Splitting

The primary motivation for splitting an application is that frontend machines, such as

portable computers and display tenninals, are often limited in storage and computational

capabilities. The desire is to distribute some of the application's computational and data

accessing load to more powerful computers on the backend, i.e. a machine (or machines)

at the other end of the network. There are many existing and proposed programming

models for writing split programs. Broadly speaking, they split the application either at

the user interface level or the data access level. Window systems such as X [Scheifler]

and NeWS [SunNeWS] [Gosling] provide abstraction boundaries which allow an

application to be cleanly split at the user interface level. Similarly, file systems and

database interfaces allow clean splits at the data access level. This chapter surveys these

programming models and compares their relative merits with respect to the following

operating environment constraints:

• Network Reliability - frequency of voluntaryandlor involuntary disconnections;

• Network Bandwidth - how much bandwidth is available and how is it shared?

32

• User Visible Latency - how response time is affected by network latency and

availability;

• Frontend Capabilities - compute power, memory and disk capacity;

• Programmability - how easy is it to program, debug and tune applications?

• Flexibility and Adaptability - are programs able to leverage off new resources when

they become available? (e.g. improved connectivity);

• Application Migration - can application context be preserved across different

instances of the application the user is running on different machines?

• Cost of Data Synchronization - synchronizing cached data and preserving consistency

across network partitioning.

3.1 Splitting at the User Interface Level

The main motivation for splitting applications at the user interface level is to

accommodate computationally limited frontend machines. The application is partitioned

into a user interface (UI) engine and a data processing engine, running on the frontend

and backend respectively. The data engine is optimized for information access while the

UI engine reduces user visible latency by handling UI events on the frontend. When the

network is slow, the goal is to split the application in a way which minimizes the

communication between the UI engine and the data engine.

Window systems such as X [Scheifler] provide good abstractions to split applications

cleanly. X has four software abstractions: the X server, Xlib [Nye90a], UI Toolkit (Xt

and widget set [Xtlntrinsics] [AsenteD and the application, as shown in Figure 3.1. The

X server controls the display and directs input events to the appropriate X client. Xlib is

the programming interface to the X wire protocol [Nye90b] and the raw windowing

33

system, but is too primitive as an application programming interface. U1 Toolkits such as

Xaw3 [XtIntrinsics], Xm4 [Heller92], and XView5 [Heller91] address this problem by

providing U1 building blocks (widgets) such as scroll bars and menus, and allows the

application to bind callback procedures to widget activities.

Typically Called
the "X Client"

Figure 3.1 - The X system architecture

3 Athena widget set.

Application

)~
Procedure

Calls ,t'

UI Toolkit
(Xt and Widget Set)

),
Procedure

Calls
'(

X Lib

),
X

Protocol

"
X Server

4Motifwidget set. Based on the OSFlMotifuser interface style guide.
50pen1ook widget set. Based on the Sun/AT&T Open1ook user interface standard.

34

3.1.1 XRemote / LBX

LBX [Fulton] is an emerging standard for running X over telephone lines and other low

bandwidth channels based on techniques pioneered by NCD's XRemote™ [Herbert]

[Cornelius]. LBX squeezes the X protocol streams from various applications using

techniques such as caching, delta replacement, and compression prior to transmission.

Backend applications communicate with an LBX "proxy" which appears to be a normal

X server running on the backend network. But instead of controlling a display, the proxy

converts the X protocol stream to an LBX protocol, and sends it over the low bandwidth

link to the real X server (which understands the LBX protocol) on the frontend machine.

The LBX architecture is shown in Figure 3.2. For LBX, splitting occurs at the wire

protocol level.

LBX reduces the bandwidth requirements of X applications in two ways. First,

converting X protocol packets into LBX packets reduces the size of the packets. The

conversion process eliminates inefficiencies in the X protocol, reencodes packets more

efficiently when possible (e.g. images), replaces packets that can be more efficiently

represented as changes against previous packets with their deltas, and compresses the

result before transmission. Second, the LBX proxy reduces the number of packets

transmitted by caching previous answers to X requests and replying client queries

directly. This technique allows the serial line to be bypassed in many cases when

different X clients request for the same information from the X server, e.g. font metrics

and keysym tables. However, it is worth noting that caching does not reduce the number

of roundtrips required for the X client to respond to user input, such as inverting a button

after it has been clicked. Thus LBX does not significantly improve the user visible

latency for interactive activities.

35

~ ,

... ..

Application
),

Procedure
Calls

" UI Toolkit

)~
Procedure

,~
Calls

X Lib

)~
X

,~
Protocol

LBXProxy

.... -..... ~•

LBX
I Protocol
I -----y--

LBX Server

I

~- -........ -_ .. ---.~~

Figure 3.2 - LBX supporting X applications over low bandwidth connections

36

Besides dramatically reducing the bandwidth requirements of X, one of the other

advantages of LBX is its ability to support low end frontend machines such as X

terminals. A related approach, the Split Server approach, supports even less powerful

frontend machines by splitting the program across the X server. The X server runs on a

backend host and sends escape sequences to a frontend graphics terminal which provides

only rastering and input handling. This is illustrated in Figure 3.3. This approach may be

practical for very small computers such as the ParcTab [Adams], allowing them to be

used as mobile I/O devices. But its usefulness is limited because it does not allow for any

X application, not even the window manager, to run on the frontend.

Both LBX and the Split Server approach reduce the bandwidth requirements of X

applications in an application independent way. But they give the application

programmer no flexibility over how the program is split, which is both an advantage and

a disadvantage. On one hand, the application programmer is freed from having to

hardwire the notion of a slow network into his program. On the other hand, the

application programmer cannot improve the performance for those applications which

need special features like local button inverting or rubberbanding of windows. The main

disadvantage for both approaches is that if the network is intermittent, the application will

hang when the network fails because it runs on the backend.

37

f
II

..,." ---------------------- . .. ~

Application

)~
Procedure

Calls
,~

UI Toolkit

}, Procedure
Calls

" X Lib

x
Protocol

,~

I Escape
I Sequences
I ~-----y------------------ ~.

j :
~ Graphics Terminal :
II •

~ :
II JFJr({))ll1l~ell1ldl •
)
~ /
~--.--------------------~

Figure 3.3 - Split Server approach for supporting X applications over low bandwidth
connections

38

3.1.2 Split UI Toolkit

Another idea is to split the program at the UI Toolkit level such that all or part of the UI

Toolkit runs on the frontend, as depicted in Figure 3.4. We are unaware of any existing

systems that use this approach. It is based on the observation that after setting up the

widgets, the UI Toolkit and the application code communicates only at a very high level,

i.e. callbacks from widgets or procedure calls to manipulate widgets. Immediate UI

activities such as inverting buttons, highlighting selections and scrolling are all internal to

the widgets and are done on the frontend. One complication for this approach is that the

application and toolkit run in separate domains. Thus a mechanism for sharing data

between the toolkit and the client is needed since most toolkits invoke client callbacks

with pre-registered pointers to mutable data. The main disadvantage of this approach is

the same as for XRemote and LBX: the application does no useful work when the UI

Toolkit is disconnected from the backend.

The communication bandwidth is reduced because the UI engine communicates with the

backend via callbacks only when there is real work to be done, rather than for every I/O

event as in XRemote or LBX. User visible latency is reduced by manipulating widgets

locally on the frontend. The application programmer's interface is unchanged and there

still is no explicit way to control how the program is split. Another disadvantage of this

approach is that applications are restricted to using a predefined set of widgets.

Supporting customizable widgets introduces complications as it requires the UI Toolkit to

allow dynamic extensions such as those supported by NeWS [SunNeWS] [Gosling] and

Tcl [Ousterhout]. They are discussed in the following section.

39

t······················· ,
~ JBSl\CkeJDldl

I Application
• I { ~ } ·'T'···········

Remote
I Procedure
I Calls

I
~~ ... -........ ~ . --........ ""~
~
I

• • • • • • I.
~
•
• • • • • • • • • • • • • • I

• I
~

• ~ ,,- --

UI Toolkit

)~
Procedure

Calls
,~

X Lib

x
Protocol

"
X Server

.------ -.... -.----~

Application

)~
Procedure

Calls
,~

UI Toolkit Backend

"

. ~ ~
~ _________-..--,.._.__._.-._"".,."'!Ir--r-------------..-.-.--.----... -----------'

I Remote
I Procedure

Calls
I "' ~ ~

l

UI Toolkit Frontend

)~
Procedure

Calls
,~

X Lib

x
Protocol

,~

X Server

IF [<I)JDl ~eJDldl
,~.~~~~~--~~~~.~

Figure 3.4 - Two ways of application splitting at the UI Toolkit level

40

3.1.3 Extensible Servers

It is difficult for the U1 Toolkit or the display server (X or NeWS server) to provide an

interface that is suitable for all applications. NeWS and Tcl are motivated by the desire

to support application specific customizations to the window system server. They

provide mechanisms for the application to download programs into the frontend server to

customize existing widgets, define new widgets, and perform unusual tasks like

"rubberbanding" locally. Both systems are targeted towards dividing a client program

into two sections: one to perform the basic computation executing on the backend, and

one to provide windows or graphics and is interpreted by the server process. Figure 3.5

illustrates their architecture. The mechanisms provided by NeWS and Tcl are flexible

enough to allow the program to be arbitrarily partitioned with the restriction that the

partition is fixed at runtime. This is different from systems supporting dynamic process

migration [Jul] [Douglis] which can change the partition during runtime by moving the

program's execution context between the frontend and the backend.We do not discuss

dynamic process migration systems in this chapter because their applicability to low

bandwidth or intermittent networks is not well understood.

The flexibility offered by NeWS and Tcl is both a strength and a weakness. On the one

hand, the programmer can partition the program in any way he chooses. On the other

hand, he has no reliable algorithms for deciding what is the best partition. The program

is split explicitly by writing it in two parts, making it difficult for the programmer to

iterate his design and experiment with different splits. In addition, NeWS has the

"disadvantage of requiring frontends to be powerful enough to support an elaborate

dynamic environment including an interpreter, light weight process management, a UI

Toolkit, and automatic memory management.

41

"y- >

~ JE~(CkeJTIldl :
1 : ~ Application Backend ·
~ :
~"'-- ----------.4.- ----------..,,/

I Byte Stream
I Protocol
I

~~-- ----------t- ----------..... \
~
I Inter.preter

I

!
l
1

Application Frontend

)1'
Procedure

'v
Calls

VI Toolkit

h,
Procedure

Calls

"
Window System

x LiblX Server
or

NeWS Server

I lFmIDl~eIDlcdl ,
'--~-~-~-~--~~-~-~~~~~-~-~---~

Figure 3.5 - Client Extensible Window System Servers

42

3.2 Splitting at the Data Access Level

The primary motivation for us to split the application at the data access level is for

increased autonomy. The application runs on the frontend and can respond to

disconnections in user friendly ways such as graying out buttons. We define the level of

autonomy to be the application's ability to operate disconnected. At one extreme,

applications for PenPoint [Novobilski], Macintosh [MacOS], MS DOS [Jams a], MS

Windows [Petzold], and MS Windows for Pen Computing [Ward] operating

environments use local file systems and can operate completely autonomously. But

accessing and sharing large amounts of data are more difficult for these applications. At

the other extreme, an application using a distributed file system such as NFS [Sandberg]

which does no file caching, is not very useful when disconnected because it has no access

to data. Coda [Kistler] [Satya90] provides all the benefits of a distributed file system as

well as autonomy. Applications in Coda can operate disconnected provided the files they

need are available in the frontend's file cache. The increased autonomy comes at the

expense of the cost of synchronizing mUltiple copies of files.

Autonomy also makes application migration difficult. Application migration is where an

application's context is moved from one machine to another, e.g. the user might bring the

particular configuration of buffers from the Emacs instance running on his office

workstation to his home computer. If the frontend is stateless, migration is easy because

only the user interface needs to be moved. We increase the application's level of

autonomy by moving part or all of its state and data onto the frontend. Application

migration now requires moving an application's dynamic state from one machine to

another, a non-trivial task in any network environment.

43

The following two sections describe two ways to split the application at the data access

level.

3.2.1 Remote Evaluation

Remote Evaluation is the ability to evaluate a program expression at a remote computer.

Remote Evaluation is designed to support the construction of distributed applications that

examine significant amounts of data stored at a remote server, but ultimately return a

compact answer to the client. As shown in Figure 3.6, an application can execute entirely

on the mobile frontend and use Remote Evaluation when it needs to access remote

databases or perform heavy computation. For servers which support remote evaluation,

these requests go directly to the servers; otherwise an intermediary proxy is required to

translate the Remote Evaluation expressions into corresponding RPCs to database or file

servers. Examples of systems supporting Remote Evaluation include REV [Stamos],

NCL [Falcone], and NeFS [SunNeFS]. REV was an experimental system built on top of

an RPC mechanism in a Lisp environment. The Network Command Language (NCL) is

a Lisp like language which enables heterogeneous machines to communicate by

programming one another. NeFS was an experimental distributed file system where

clients can execute PostScript programs on file servers. None of these systems was ever

in wide use.

44

A··-·--·---·--·--·--···-···-··-····-··-·········~ . ..

Database File
Server Server

,~ j

Remote ,~ Remote
FTocedure FTocedure

,~ Calls '\ ~ Calls
~--------------------~-.

Remote Evaluation Proxy
" ,
~---------------------+-------------------------~

Remote
I FTocedure
I Calls ,.'" _____________ If.. ________________

(,
I Remote Evaulation Toolkit •

!), !
~ FTocedure.

~ Calls ~
" ~ ~ ~

I
!
~
~
!

I
~
I

Application ~

)~ ~
FTocedure •

,~
Calls ~

UI Toolkit
),

FTocedure
Calls

'(
Window System

x Lib/X Server
or

NeWS Server, etc.

,
....

~--~~~--~~--~~--~~--~

Figure 3.6 - Remote Evaluation for Mobile Clients

45

Remote Evaluation reduces the application's bandwidth requirements by processing data

remotely. It reduces user visible latency by performing all UI and basic computation

locally on the frontend. Besides requiring the frontend to be a more powerful computer,

the problem with using Remote Evaluation lies in the difficulty in deciding when it is

more efficient to use Remote Evaluation rather than copying the data to the frontend and

computing locally. For example, a file frequently searched with "grep"6 should be copied

to the frontend instead of using Remote Evaluation for every grep, but only if the file is

not too big. A mail program that uses grep to generate a summary of all the message

headers would be wise to use Remote Evaluation to avoid copying all the messages to the

frontend. But it may choose to copy all the files if the messages are likely to be read

soon.

3.2.2 Splitting at the File System Level

Completely standalone applications using only local file systems do not pose any major

challenges for disconnected operation. They are less interesting because portable

computers are seen as standalone personal computers, rather than entry points to a

distributed information and communication system. Splitting the application across a

non-caching distributed file system provides access to distributed data only when the

frontend is connected. Neither of these models are particularly interesting in our

discussion of graceful disconnected operation because in one there is little to be done

while in the other, very little can be done. We will focus our discussions on Coda's

programming model because it provides both autonomy and distributed information

access. We call Coda's programming model the Autonomous model, as illustrated in

Figure 3.7.

6grep _ a UNIX command which searches through a list of files for all instances where a matching string or
regular expression occurs.

46

~- ~
~ B~cte~d

1
~

Distributed
File

~
~ System .,
\ ! •

~- ...•........... ,~, ...•......... -. ~,
Remote

Procedure
Calls

f~-~~~~: Fi: ~~: .. -- -- - ']
~ .
• • ~)~ ~
; System.

! W Calls :
f •

~ Application :
~ .
~ . .), .~

.' Procedure-

I V Calls 1

• VI Toolkit :
•)~ :

Procedure •
• Calls •

,~ :
• • .: Window Systenl :

.: x LiblX Server -.:

"

or .'
NeWS Server, etc. :

.... --------------,--....--...--...-..----------. .--""-.......-0-__ -_,------..... '"

• .:
• .: •

Figure 3.7 - The Autonomol!s programming model

47

In the Autonomous model, the application runs entirely on the frontend device and

accesses data through a caching distributed file system or Remote Evaluation at remote

database servers. The main advantage of Autonomous applications over traditional

client/server models is the ability to operate disconnected using cached data, thus

reducing, but not eliminating, the application's reliance on the network for availability.

The AutonomO~ls programming model is simple because the program is not explicitly

partitioned. The system can automatically translate data access requests into file

transfers, RPC or Remote Evaluation.

The main disadvantage of the Autonomous programming model is that data consistency

problems are amplified by the intermittent environment. Consistency protocols based on

callbacks [Satya85] depend on strong connectivity for timely notification. Time based

mechanisms such as Leases [Gray] require periodic negotiations between the frontend

and backend file server, and is inadequate if disconnections can be lengthy and

unplanned. Data consistency has not been a major issue in today's distributed file

systems because write sharing of files is uncommon [Satya85] [Kistler] [Nelson88].

Mobile computing is likely to worsen this problem. Each user is likely to use several

machines, such as a palmtop, a notebook, and desktop machines in the office and at

home. The user's working set of files is likely to be cached by all of these machines,

some of which may become disconnected. This is a difficult problem whose solution

may lie in the observation that the common case is when files are write shared by the

same user. In general, addressing the consistency prohlcm requires an understanding of

the trade-off between the level of consistency and the cost of reconnection and

consistency protocols. The desired solution depends on the degree of sharing, the

frequency of disconnections. and whether the disconnections are planned or unplanned.

48

An additional disadvantage of the Autonomous model is that frontends must be powerful

enough to run the applications locally. We do not see this as a major issue based on the

observation that portable computers will continue to be used as personal communicators

and information organizers. Typical applications such as editors, mail/news readers,

file/directory browsers and calendar managers are not compute intensive.

3.3 Conclusion

Table 3.1 summarizes our discussions in this chapter: the programming models are in

rows and the design space is in the columns. It is not intended to be an exhaustive set of

design choices but merely a framework for understanding the tradeoffs which confront

designers of split programs. A "+" under the bandwidth and latency categories means

that the application's bandwidth requirements and user visible latency are significantly

improved as compared to the X protocol [Nye90b]. For disconnected operation and

application migration, "+" means these features can be supported easily. A "+" under

programmability means application programming is relatively easy, under data

consistency means relatively cheap mechanisms can ensure consistency, and under

frontend capability means frontends do not need to be powerful computers.

There is a pattern is Table 3.1: effective disconnected operation comes at the expense of

application mobility and increased complexity in dealing with data consistency.

Similarly, the computational and storage requirement for the frontend machine also

increases. Selecting a programming model involves understanding the tradeoff between

autonomy and consistency in the context of constraints in the operating environment.

For example, for a company which provides dialup database services, it may be

advantageous to split the application at the window system level because telephone lines

49

are relatively reliable. This also allows the company to maintain control over all the

application software. Performance for interactive applications can be enhanced by

putting a UI toolkit on the clients' machines 7.

Bandwidth Latency Disconnected Frontend Program- Data Application
Operation Capabi- mability Consistency Migration

lity
XRemotel + - - + + + +

LBX
Split VI ++ + - + + + +
Toolkit

Extensible ++ + - - - - + -
Servers
Remote ++ + - - - - + - -

Evaluation
Autonomous ++ + + - - + - - - -

Table 3.1 - Characteristics of Different Split Programming Models in a mobile computing
environment

Our strategy for reducing the application's network bandwidth requirements and user

visible latency is by reducing the size and number of user interface level packets such as

mouse events. We accomplish this by managing the user interface on the frontend

computer as much as possible. This strategy should work well when we split the

application at the user interface level. But when the application is split at the data access

level, it is unclear whether the network bandwidth the application needs is reduced. The

wireless network can be easily saturated if the file cache thrashes or if a query evaluated

remotely at a database server returns a lot of hits. Improvements in the cache manager

and Remote Evaluation system may reduce the effects of these problems, but these issues

are not considered in this thesis.

Programmability is listed in Table 3.1 because the usefulness of a programming model in

the real world is in part affected to how easy it is to write applications. The tradeoff here

7Tbis example came from discussions the author had with FactSet Data Systems Inc., a Connecticut based
company specializing in online fmancial information systems.

50

is simplicity versus power. Applications are split implicitly at the window system or the

file system level with the XRemote, Split VI Toolkit and Autonomous models. The

programmer does not have the flexibility to control how an application's computation is

split, but they are easy to program and debug. Extensible server based systems like

NeWS and systems which support Remote Evaluation allows application specific code to

be executed remotely. Programming such systems is harder because the program is split

explicitly. Experimenting with different splits is difficult because the programmer must

make substantial modifications to the program.

3.3.1 The Programming Model for this Thesis

Given our stated assumption of an intermittent environment and our goal of supporting

graceful disconnected operation, Autonomous is clearly the best programming model.

The main advantage of Autonomous applications is their high availability, remaining at

least partially functional during disconnections. An additional advantage is that UI

events are handled on the frontend, thus decoupling VI response time from the network

round-trip delay. We feel that the advantages of the Autonomous model outweigh the

problems associated with cache consistency. Although the data consistency and

application migration problems are very real, we chose not to address them within the

scope of this thesis because we believe that graceful disconnected operation is the first

order problem for mobile computing.

51

Chapter 4

Property Specifications

Much of the effort in building systems over the past two decades has been directed at

building system service interfaces which provide a transparent network to the application.

Software is layered such that "irrelevant" details such as variations in latency are hidden

from the application. The underlying philosophy is that these abstractions reduce

complexity and improve programmability. Property Specifications seems to be at odds

with this philosophy as they allow applications to be actively engaged in preventing and

handling errors. Section 4.1 of this chapter discusses the philosophical justification for

separating system interfaces into Functional Specifications and Property Specifications.

It also discusses how Property Specifications can be used to build both application

specific features and application independent tools for graceful disconnected operation.

Section 4.2 defines and elaborates the mechanisms our new system abstraction should

provide. In Section 4.3, we show how to apply these mechanisms to system services.

The Property Specifications for a caching distributed file system and a network service

interface are presented. Section 4.4 explores some subtle issues in the semantics of the

52

Property Specifications we had designed. In Section 4.5, we generalize Property

Specifications beyond the context of mobile computing, and present a Property

Specification for a virtual memory interface.

4.1 Motivation

4.1.1 Separation of Functional and Property Specifications

There are two problems with rigid, transparent system interfaces. First, abstractions often

hide the power of the underlying system. For example, Birrell and Nelson [Birrell] found

that implementing RPC using the more primitive Unreliable Datagram Packet interface

was twice as efficient as using the Reliable Datagram Protocol. Second, the effort

invested in building existing applications gives old interfaces tremendous inertia against

change, even when the underlying technology they were designed for have changed

dramatically. The mobile computing environment is fundamentally different from

today's distributed computing environments, where network connectivity is usually

reliable. Unfortunately, to date we have not looked very hard at designing new system

abstractions designed specifically for intermittent computing environments. The desire

for backward compatibility often forces programmers to work with sub-optimal

abstractions. Building systems on top of bad abstractions is like putting in screws with a

hammer: it takes a lot of effort to attain an unsatisfactory outcome.

In the real world, there is one principle more important than "make it clean": "make it

work." In practice, real world applications need to monitor and handle errors and

environmental changes regardless of the level of support the system interface provides.

For example, Automatic Teller Machines (ATM) must continue to provide service even

53

when they become disconnected or the central database servers are 10st8 . System

designers have been faced with the dilemma of having to reveal some details in the

system interface which is irrelevant for some applications but necessary for others. By

isolating the underlying properties of the system into a separate interface, we achieve the

best of both principles: "making it clean" with Functional Specifications while "making it

work" with Property Specifications. Another advantage of providing two separate

interfaces is that today's applications can be ported incrementally, i.e. existing

applications like xmh will still work using only the Functional Interface and extra

programming is only necessary if new features are desired.

4.1.2 Using Property Specifications to Provide Application Specific
Support

Property Specification is a step towards exploring the continuum in system abstractions

from application specific to application independent support. The idea is based on the

observation that collectively, the application and the operating system know precisely

what the user needs to know: will feature M in application A work. This is because the

application knows about the services and resources each of its feature needs while the

operating system knows the availability of those services and resources. Hence close

collaboration between the system and the application is required for graceful

disconnected operation.

Property Specification provides a structured way for efficient information exchange

between the application and the system. It fosters a programming model where the

8A recent snow storm destroyed the ATM network's database servers in New Jersey. Their backup system
in New York City was unavailable because it was already running as a backup system for other servers lost
during the World Trade Center bombing. Although the central information service in New Jersey was not
restored for another 2 weeks, ATM service was not disrupted because the software on individual ATMs
switched to disconnected operations mode. Source: Professor Jerry Saltzer, saltzer@mit.edu.

54

application uses its information about the environment to prevent errors, the system has

the responsibility of detecting errors, and the application has the option of overriding the

system's default error handlers with application specific ones. We model changes in the

operating environment with environmental events, which an application can elect to

receive. For example, the discovery of a printer in the vicinity of the user might generate

an environmental event for the print spooler9. Our experience with programming event

driven applications gives us confidence that environmental events is a powerful and

elegant abstraction.

4.1.3 Using Property Specifications to Provide Application Independent
Support

W c-xmh only demonstrates how Property Specifications can be used in application

specific ways. In fact, Property Specifications also enables a new class of tools which

provides application independent support. For example, Coda's Hoarding can be

implemented as an application which monitors other applications' file usage patterns and

provides a friendly user interface for the user to directly influence the cache manager's

decisions. Can we support graceful disconnected operation using only application

independent tools? We believe this is unlikely because features such as those described

in Chapter 2 cannot be implemented without application specific information. The most

we can imagine for an application independent tool is one which intercepts failed system

calls and gives the user the option of retrying later when the network is reconnected

instead of hanging or crashing the application. This level of help is similar to printing

"RPC timed out, retrying ... " in the console to give the user the option of either to wait or

kill the offending process, as used in the Sprite file system [Welch]. These methods are

9 The print spooler spools print jobs and puts them in a buffer. When a printer is found nearby, the spooler
sends the print job to the printer, perhaps via a wireless network.

55

much less user friendly than what wc-xmh provides, and are much less desirable because

waiting for retries prevents the user from making further progress during disconnections.

4.2 Property Specifications Mechanisms

Property Specifications are different from Functional Specifications in that they

specify the set of properties a particular system service exports, rather than the

functionalities the system service provides. The state of the system's properties

represents the operating environment, and environmental events reflect dynamic changes

in the system's properties. We define three mechanisms Property Interfaces should

provide for accessing, monitoring, influencing and manipulating the exported properties

efficiently. They are Query, Notification and Hinting.

• Query allows the application to obtain information from system services, for

example, querying the file system to find out whether a file is in the cache. On

startup, an application queries the system and builds a model for its computing

environment. An application can also use Query to update its model or to verify the

effects of its actions, such as giving a hint.

• Notification lets an application bind callback procedures to environmental events of

interest, such as binding a procedure which disables/enables the "get new mail"

button to the "change in connectivity" event. The control flow is best described as the

system service waking a waiting thread in the application domain. Notification

enables the application to monitor and react to environmental changes which affect

the availability of its features. The application uses Notification to keep its model of

the environment updated.

56

• Hinting enables applications to pass special requests and optional information to

influence or customize system services. For example, the application can hint to the

cache manager to distinguish resource files from data files so that resource files are

less likely to be purged from the cache.

Query and Notification empower the application to interpret the dynamic properties of the

system services with respect to its own dependencies, and present the results to the user

in user friendly ways. Our experience shows that presenting the state of the operating

environment to the user can be of great utility, but users absolutely cannot tolerate an

application which does not manage its partial functionality effectively.

Applications communicate specific needs and desires to system services by Hinting.

Hinting is like the system providing handles to some of its internal controls so that

applications can influence or even customize its behavior. For example, the application

can customize the consistency requirements of a file it uses (e.g. write through or write

behind.) Hinting in a file system is very useful for voluntary disconnection. A user

requests the application to make a particular feature available, and the application hints to

the file system that the files needed for that functions should be paged into the cache due

to user request. Since the cache is a shared resource, the request is only a hint, but the

application is notified of its effects. This is of great utility because the application can

provide dependable pre-negotiated service to a voluntarily disconnected user. The user

deals with application level entities like folders and features in the context of the

particular application rather than system level entities like files. This is an important

advantage for user friendliness because the user is hidden from the application's internal

dependencies.

57

4.3 Designing Property Specifications

Query, Notification and Hinting are general and powerful mechanisms that can be applied

to a wide range of system services. The actual semantics of these mechanisms depend on

the specific properties of the particular system service. In this section, we share our

experience in the design of Property Specifications for a caching distributed file system

and a network statistics monitor. Since OUf experience in designing property interfaces is

still limited, we present our experimental designs for the reader to draw insights from

rather than as an algorithm for designing the best interface.

Our design was driven by the need to balance between the user's requirement for

autonomy and predictable performance and the application programmer's desire for a

simple and clean system interface. We used a top down process, first creating a list of

desired user level features like those described in Chapter 2, from which we extracted the

key properties of the underlying system we need to include. Based on the nature of the

property, such as how it changes dynamically and whether it should be customizable, we

then designed any appropriate mechanisms to access, monitor, influence and manipulate

the property. Our design was iterative, it evolved as we gained experience through

implementation and use. What we present here is the result of a couple of iterations.

4.3.1 Property Specification for a Caching Distributed File System

The key property sPecified by our interface in Figure 4.1 is that files are either in or out

of the cache. We provide a Query mechanism, FilesAvailable () ,which allows the

application to synchronously inquire the availability of a group of files.

Moni torFiles () providc-, Notification, it lets the application to continuously monitor

58

the paging activities of a group of files with a callback procedure. We define two

environmental events, pagedln and PagedOu t, which encapsulate the property that

files are moved in and out of the cache. When one or more files in the group is paged in

or out, the callback procedure is invoked by the file system in the application's address

space.

GiveHints () and MakeAvailable () are our Hinting mechanisms which allow the

application to influence and customize the cache manager's paging policy. The hint

"UserRequest" is typically used with MakeAvailable () when the files need to be

cached due to direct user request, such as for voluntary disconnection. An application

also uses MakeAvailable () to ensure the availability of the vital resources needed by

its features by using the "AppResource" hint. MakeAvailable () causes the file

system to associate the given set of hints with a group of files, and synchronously return

the files' availability after attempting to cache them. MakeAvailable () needs to be

synchronous because the user needs to know whether his request is satisfied. The

application can also influence the cache manager's future behavior by associating hints

with files using Gi veHin ts () . We define three other Hints: "AIIOrNothing"

specifies that the given files are inter-dependent and it is of no value to make only a

subset of the files available; "Wri teBehind" and "Wri teThrough" lets the

application choose the consistency/performance tradeoff for its files. All the hints except

for "Wri teThrough" and "Wri teBehind" influence the cache manager's current and

future decisions so their precise effects are unspecified. "Wri teThrough" and

"Wri teBehind" are customizations because they have well defined effects on how the

file system will manage the given files.

59

INTERFACE FileSystemPropertYi

TYPE
EnvEvent = {Pagedln, pagedOut}i (*Environmental Event*)

Filename - TEXTi

Hints - {UserRequest, AppResource, AppData,
AIIOrNothing, WriteBehind, WriteThrough}

(* Definitions:

*)

UserRequest - the files are needed due to
user action

AppResource - resource and configuration
files vital for the application's features

AppData - non-critical application data
AllOrNothing - files are dependent, caching

any subset is of no value
WriteBehind - weak consistency requirement,

asynchronous paging out OK
WriteThrough - strong consistency

(synchronous writes) required

CallbackProc - PROCEDURE callback(event EnvEventi
files: ARRAY OF Filename; callback_arg : REFANY);

(* callback arg is supplied by the application
when registers the callback procedure *)

PROCEDURE FilesAvailable(files : ARRAY OF Filename)
: ARRAY OF BOOLEANi

(* Query: the ith boolean is TRUE iff the ith filename in
files is in the cache, and FALSE otherwise *)

PROCEDURE MonitorFiles(files : ARRAY OF Filenamei
callback: CallbackProci callback arg : REFANY)i

(* Notification: invokes callback in the application's
address space if one or more of files is paged in
or out of the cache *)

PROCEDURE GiveHint(files : ARRAY OF Filenamei
hints: SET OF Hints)i

(* Hinting: associates hints with all of files *)

PROCEDURE MakeAvailable(files : ARRAY OF Filename;
hints : SET OF Hints) : ARRAY OF BOOLEAN;

(* Hinting: associates hints with all of files, returns the
resulting availability of files in an array of boolean *)

END FileSystemProperty.

Figure 4.1 - The Property Specification for a Caching Distributed File System in Modula-
3 [Nelson90]

60

4.3.2 Property Specification for a Network Statistics Monitor

The packet latency of an intennittent network can vary greatly. The end-to-end latency

depends on the level of congestion for the medium and the availability of the network.

When the user invokes a function, the latency he experiences is often related to the

current network performance, e.g. clicking on a button to read an uncached mail message.

In order to provide predictable performance, the application needs to monitor changes in

the network latency so it can adapt its user interface accordingly. Existing network

interfaces do not provide access to latency information.

Fortunately statistical multiplexing in networks does not result in unpredictable

performance parameters. To a first approximation, the expected latency on the next

packet is close to the average latency of recent packets. We propose a new system

service, the Network Statistics Monitor, which collects performance statistics at the

transport layer. This statistics is used as hints for predicting the current network

performance. The Network Statistics Monitor exports the property that the performance

of the network can vary with time. The Network Property Interface is shown in Figure

4.2. Applications can use GetLa tency () to get the predicted latency of the network.

We allow applications to monitor changes in the predicted network latency by binding a

callback procedure to the La ten eye han 9 e d environmental event using the

Moni torLa tency () call. Applications can register callback procedures for more than

one latency range. .

At first glance, our use of a latency range appears to be overkill because most

applications only need to know if they are connected or not. There are two reasons for

using a range instead of a single latency value. First, if a single value is used, the

application could be flooded with callbacks if the average latency oscillates around that

61

value. Second, the definition of connectivity is application specific: the distinction

between a slow network and a disconnected network depends on how slow a network the

application can tolerate. For example, background printing can tolerate network latencies

on the order of minutes but xmh is practically disconnected if the latency is even a few

tens of seconds.

INTERFACE NetworkProperty;
IMPORT Time;

TYPE
EnvEvent - {LatencyChanged}; (* Environmental Event *)
Range - RECORD

low : Time.T;
high: Time.Ti

ENDi
CallbackProc - PROCEDURE callback(event

callback_arg : REFANY)i

PROCEDURE GetLatency() : Time.Ti

EnvEventi

(* Query: returns the average network latency in units of
seconds and microseconds *)

PROCEDURE MonitorLatency(threshold : Range;
callback: CallbackProci callback arg : REFANY)i

(* Notification: invokes callback in the application's
address space when the average network latency exceeds
threshold.high or falls below threshold. low *)

END NetworkProperty.

Figure 4.2 - The Property Specification for a Network Interface

4.4 Subtleties in the Semantics of Query and
Notification .

There is a subtlety in the semantics of the interfaces given in Figure 4.1 and 4.2. Since

paging activities are asynchronous and the cache manager may be serving many

applications concurrently, the results from the F i I e sAva i I ab 1 e () and the events

62

from Moni torF i 1 es () are only hints. Those calls give a snapshot of the state of the

cache at some point in time between the start and completion of the call, but the state of

the cache may well be different by the time the result is returned to the application. This

causes race conditions which are especially complex when the application is

multithreaded 10 .

Let us first consider a single threaded application. All incoming events are queued and

handled in turn with an event loop. An application starts up, makes a query on file A and

then registers a callback to monitor it, as shown with the pseudo code in Figure 4.3. If A

was in the cache at line 1, the button gets enabled in line 2. Now assume A is paged out

of the cache before we register the callback procedure in line 3. The button will remain

enabled even though A is not available.

1 AisAvailable:- FilesAvailable("A");
2 EnableOrDisableButtons(AisAvailable);
3 MonitorFiles("A", EnableOrDisableButtons);

Figure 4.3 - Potential Race Condition in using the FileSystemProperty Interface.

It appears that the problem might be solved by putting line 3 in Figure 4.3 before line 1,

as illustrated in Figure 4.4. If A is paged out between lines 2 and 3, the button will be

incorrectly enabled after line 3, but a Paged Out event will invoke the callback to disable

the button later. It seems to work for the single threaded case. Now let's assume the

application is multithreaded, and the callback procedure is invoked before line 3 in a

different thread. We see that the fix in Figure 4.4 does not work either: at line 2, A is still

in the cache; the callback disables the button before line 3; but line 3 enables the button

again using the state of the cache obtained in line 2.

10 A multithreaded application has multiple simultaneous points of execution in a shared address space.
Refer to Chapter 4 of [Nelson91] for an introductory discussion to concurrent programming using threads.

63

1 MonitorFiles("A", EnableOrDisableButtons);
2 AisAvailable:- FilesAvailable("A");
3 EnableOrDisableButtons(AisAvailable);

Figure 4.4 - Fix for Race Condition described in Figure 4.3 for Single Threaded
Applications

The problem in Figure 4.4 can be solved by executing lines 2 and 3 atomically, that is,

disabling callbacks between lines 2 and 3. If the callback is invoked after line 3, it would

leave the button in the correct state. lithe callback is invoked before line 2, there is no

problem because the result of FilesAvailable () in line 2 is up to date. Figure 4.5

shows how the multithreaded application's problem can be fixed using mutual exclusion.

In general, an application should register callbacks for all the files it is interested in

before querying the cache. Similar problems in the Network Monitor Interface can be

solved in the same way.

VAR CallbacksMu : MUTEX;· (* lock for mutual exclusion *)

PROCEDURE EnableOrDisableButtons(...) -
BEGIN

LOCK CallbacksMu DO (* acquire MUTEX to proceed *)

END; (* release MUTEX *)
END EnableOrDisableButtons;

BEGIN (* Main Body of Program *)

MonitorFiles("A", EnableOrDisableButtons);
LOCK CallbacksMu DO

AisAvailable :- FilesAvailable("A");
EnableOrDisableButtons(AisAvailable);

END;

END.

Figure 4.5 - Disabling Callbacks using Mutual Exclusion

64

A careful reader might notice that our effectiveness in managing partially functional

applications depends on the quality of the hints we get from the Query and Notification

mechanisms. This is only a problem if events are generated faster than we can handle

them, e.g. if file A is paged in and then paged out while we are still in the callback

procedure, the button will incorrectly enabled until we complete next callback for the

PagedOu t event. The only time this can happen is if the cache is thrashing or if the

network latency oscillates. One solution is to detect these conditions and suppress

callbacks until the system stabilizes. We ignored this problem in our implementation

because it does not occur frequently enough to justify the additional programming

complexity.

4.5 Generalizing Property Specifications

Although we claim that Property Specifications are a generally useful abstraction for

system service interface design, our discussions have focused on Property Specifications

in the context of mobile computing. This section describes how Property Specifications

can be applied to virtual memory (VM) management. Our discussion here is aimed at

VM systems in general, not just in the context of mobile computing.

4.5.1 The Traditional Virtual Memory Interface

Like caching, virtual memory management has traditionally been transparent to

applications. The basic idea is to use primary storage as a cache for secondary storage.

65

The VM manager is essentially a cache manager which moves chunks of data (or pages)

between primary and secondary storage.

For most applications, the transparent VM interface is a feature. Application

programmers are freed from the tedious task of storage management. But for some

applications, the VM interface seems to hide too much. One class of applications that

wants less transparency is applications which need to keep key data structures in primary

storage for performance reasons. For example, both the UNIX Fast File System (FFS)

[McKusick] and the Sprite Log-structured File System (LFS) [Rosenblum] cache

inodes 11 in main memory to reduce disk accesses. The problem is that the VM manager

can swap these data structures out to disk without informing or asking for the

applications' opinion, causing poor performance or even incorrect behavior. Property

Specifications solves this problem without sacrificing the transparency preferred by most

applications.

4.5.2 Property Specifications for a Virtual Memory Interface

For simplicity, we define a memory object to be an arbitrary chunk of storage allocated

by malloc () and deallocated by free (). The key property we choose to expose is

that a memory object has two states: either it is entirely in primary storage or otherwise

(part or all in secondary storage). The Property Specification, as shown in Figure 4.6,

exports three procedures. I sInPrimary () lets an application query the location of a

memory object. The application can monitor the paging activities of a memory object

with Moni torMemoryObj (). We also allow the application to explicitly request to

llIn the UNIX file system, every file and directory is represented by an inode. It is a data structure internal
to the file system and contains the file's attributes (access rights, owner, etc.) and the physical location of
the file on disk.

66

have a memory object "pinned" in primary storage by cal1i~g KeepInprimary () .

KeepInprimary () 's semantics is similar to MakeAvailable () of the file system

Property Specification: it is a one time request which the VM manager can accept or

refuse. The VM manager can limit the amount of primary storage each application can

pin down to guard against overly demanding applications.

INTERFACE VMProperty;

FROM VMFunctional IMPORT MEMORY_OBJ; (* Import definition *)

TYPE

EnvEvent - {InToPrimary, OutOfPrimary};

MEMORY OBJ - REF ARRAY OF CHAR;

CallbackProc - PROCEDURE callback(event : EnvEventi
mem : MEMORY OBJ; callback arg : REFANY)i

(* callback arg is supplied by the application
when registers the callback procedure *)

PROCEDURE IsInPrimary (mem : MEMORY OBJ) : BOOLEAN;
(* Query: Returns TRUE if all of mem is in primary

memory, FALSE otherwise *)

PROCEDURE MonitorMemoryObj (mem : MEMORY_OBJ;
callback: CallbackProc; callback arg : REFANY);

(* Notification: invokes callback in the -
application's address space if any part of mem is
moved out of primary memory, or if all of mem is
moved into primary memory *)

PROCEDURE KeepInPrimary (mem : MEMORY_OBJ) : BOOLEAN;
(* Hinting: RETURNS TRUE if the VM manager can promise

to keep all of mem in primary storage until
mem is freed, FALSE otherwise *)

END VMProperty.

Figure 4.6 - Property Specifications for the Virtual Memory Interface

With the VMProperty interface, it is trivial for LFS and FFS to monitor the paging

activities of their critical <12' . structures and to keep them in primary storage if necessary.

67

FFS also caches parts of files in memory, and it can now pin those pages in primary

storage to prevent the VM manager from making another copy of the files on the swap

disk. The VMProperty interface allows us to provide adequate support for sophisticated

applications such as LFS and FFS while maintaining transparency for ordinary

applications.

68

Chapter 5

Implementation

We built a prototype system to clarify, demonstrate and evaluate our ideas. Our rewards

have been threefold. First, we gained a better understanding of the engineering and

semantic issues in realizing Property Specifications. Second, we experienced first hand

how an application programmer might use Property Specifications. Third, we verified

the effectiveness of our approach through using wc-xmh. The feedback we got from

users instigated changes and simplifications to our interface design.

This chapter describes the design and implementation of our prototype system. In

Section 5.1, we provide the system overview and describe the major design decisions we

faced for each component of the system. In Section 5.2, we explain our decision to

modify xmh and describe how wc-xmh's features were implemented. We save the trials

and tribulations we experienced during those frustrating debugging sessions for Section

5.3. In Section 5.4, we present some ideas for future research.

69

5.1 Implementing Property Specifications

5.1.1 System Overview

As shown in Figure 5.1, the prototype system consists of a simulator for an intermittent

network (LinkSim), a user level cache manager and file system (file system with Property

Interface or FPI), a Network Statistics Monitor (NSM), and a modified version of xmh

(weakly connected xmh or wc-xmh, as illustrated in Chapter 2.) We implemented FPI

and NSM as specified in Figures 4.1 and 4.2. Any distributed file system would have

been adequate as our underlying file system, but we chose NFS [Sandberg] because it

does not cache files. Since our implementation was for UNIX workstations, it is no

surprise that we chose to test our ideas by redesigning the file -system and network

interfaces: both are key components of the UNIX distributed computing environment.

Our decision to simulate a mobile environment was due to the flexibility and control we

needed to better explore the design space, e.g. being able to easily change the frequency

and duration of unplanned disconnections.

We chose to implement the NSM, FPI and LinkSim as separate processes because they

are functionally and logically independent. In a production system, these three entities

will most probably exist separately: the NSM will be part of the transport layer network

interface, the FPI will be part of the file system, and LinkSim will be replaced by the true

characteristics of the network's link layer. Using RPC as our primary interprocess

communication mechanism forced us to focus on our original goal of designing clean

abstraction boundaries. It would have been harder for us to stay focused had we

implemented the NSM, FPI and LinkSim as a single UNIX process with multiple threads.

70

New
Application
(wc-xmh)

Library

Remote
Procedure

Calls

Network
Statistics

Monitor (NSM)

t ------------------------------- ,

Existing
Application

(xmh)

Library

Remote
Procedure

Calls

Application Independent
Tool

,
~~~-~~~--~-~--~-~-~-~--~-~-~-~--~-~-~-~--~ 

FPICache 
Manager 

System 
Calls Local 

File 
Cache 

LinkSim 

System 
Calls 

NFS 

Figure 5.1 - Overview of the Prototype System 

71 



The implementation was done entirely on a UNIX workstation. FPI, NSM and LinkSim 

were all written in Modula-3 [Nelson90] with the exception of the application libraries 

for FPI and NSM, which were written in C. Wc-xmh added about 1,000 lines of C to 

xmh's 13,000. We chose Modula-3 as our primary implementation language because it 

provided lightweight threads, objects oriented programming, modules, garbage collection 

and type checking, which all contributed to the shortening of development time. NSM 

and FPI are multithreaded so they can handle multiple client applications concurrently, 

mimicking concurrency in the kernel. For interprocess communication, we used Sun 

RPC [SunRPC], Xerox P ARC Modula-3 RPC [ParcRPC] and UNIX FIFO files. 

5.1.2 Implementing Notification 

Both the FPI and NSM have an application library which is linked into every application. 

The actual services are implemented in the FPI and NSM servers. The libraries provide 

wrappers which initialize RPC connections and cause the RPC's to the servers to look like 

system calls local to the application. The key function of the libraries is in managing 

callback procedures. This is necessary because the callback threads need to execute in 

the application's address space. Each library maintains a table of callback procedures and 

arguments, indexed by environmental events. When an application registers a callback 

on a particular event, the library registers with the FPI or NSM server to receive the event 

and inserts the given callback procedure into the table entry for that event. An event can 

arrive either by RPC or on a UNIX FIFO, at which point the libr;;rry extracts the 

appropriate callback procedure from the table and invokes it. In our implementation for 

the Xt12 toolkit [Xtlntrinsics] [Asente], we mounted a UNIX FIFO as an input source for 

Xt, and caused Xt to call our table lookup procedure whenever the FIFO is ready for 

12Xt is a toolkit for the X window system. Wc-xmh was implemented using Xt and Xaw [XtIntrinsics], the 
MIT Athena widget set. 

72 



reading. The lookup procedure then invokes the application's callback procedure before 

returning control to the Xt event loop. 

5.1.3 Implementing the File System Property Specifications 

As shown in Figure 5.1, FPI has two components: an application library and a cache 

manager. The application library provides wrappers for all the file system calls, similar 

to libc.a13 , but re-directs those calls to our user level file system instead of the kernel. 

We implemented FPI as a user level process instead of modifying the NFS code in the 

UNIX kernel. This enabled us to easily experiment with different file system interfaces 

and implementations without dealing with the complexity of kernel programming or 

affecting other processes running on the workstation. In order to transparently route 

system calls away from the kernel, we implemented wrappers for existing file system 

calls such as open and close as well as the new calls we added. Applications which use 

the FPI must be linked with the FPI library (libfpLa). The UNIX linker resolves library 

calls on a "first come, first served" basis, thus in order to have libfpi.a's wrappers shadow 

those supplied by libc.a, libfpi.a must be linked before libc.a. For example, the open () 

call from an application linked with libfpi.a would go to our user level file system rather 

than the kernel open () call, whose wrapper is in libc.a. Although our user level file 

system is functionally backward compatible with the existing UNIX and NFS file system 

semantics, it is not binary compatible. Existing applications linked with libc.a must be 

relinked against libfpi.a even if they only want to use FPI's functional interface. In a 

production system where the FPI is implemented in the kernel, the new file system will 

be binary compatible. 

13libc.a is the UNIX C library, which includes wrappers for system calls. 

73 



FPI's cache manager maintains a file cache on the workstation's local disk. The cache 

manager's replacement and write back policies are detennined in part by the hints given 

by applications. For each file, the cache manager keeps the set union of all the hints 

given by different applications. Files marked "UserRequest" are given the highest 

priority, followed by "AppRe s oure e" and then "AppDa ta". The priority of a fue is the 

sum of all the hints it is associated with, so an "AppResouree" file shared by many 

applications may have a higher priority than a file with a single "UserReques til hint. 

Our replacement algorithm also ages all hints so their influence deteriorates with time and 

lack of use. The algorithm was kept quite simple because we were not trying to find 

optimal use for hints in the cache manager. 

Figure 5.2 - A Command Interpreter for FPI 

For our user experiments, it was useful for the cache size to be dynamically configurable. 

The FPI server has a command interpreter as shown in Figure 5.2. It allows the user to 

change the cache size dynamically, and to choose whether or not to simulate the network 

with LinkSim. We were able to observe the effects of a thrashing cache on wc-xmb by 

reducing the cache size. All network operations in FPI such as file copying were delayed 

74 



by the latency value supplied by LinkSim. Large files were delayed proportionally more 

than small files. 

5.1.4 Implementing LinkSim 

LinkSim is an event driven simulator for the packet latency of an intermittent network. It 

has three states: disconnected, connected and interference. The latency for both 

disconnected and interference modes is infinite. Disconnected mode simulates the user 

moving out of range of the communication medium or being forced to disconnect for 

congestion or cost reasons. Disconnected mode typically lasts from seconds to minutes 

whereas interference is temporary, lasting for a few seconds in most cases. Interference 

mode corresponds to the user moving near a phone, refrigerator or other sources of 

interference for radio and infrared networks. The simulator goes between connected and 

disconnected states, spending a random duration in each. A certain percentage 

(probinterl) of time in connected mode is spent in interference mode, and the duration of 

the interference is also a randomly distributed. We chose to model these durations with 

exponential distributions because we did not need to specify the variance. The means of 

the exponential distributions and probinterf, the percentage of time spent in interference 

mode, can be set dynamically using a command interpreter, as shown in Figure 5.3. The 

default means were 10 minutes for connected mode, 5 minutes for disconnected, and 2 

seconds for interference. On average, 10% of the connected time is in interference mode. 

Increasing the interference percentage has the effect of increasing the frequency of 

interference. 

75 



urrent state 
of the 

Figure 5.3 - The LinkSim Command Interpreter 

While in connected mode, the latency is randomly distributed but is a function of the base 

latency and the number of users sharing the medium. We modeled the interval between 

new users arriving and the duration of each user's stay as exponentially distributed 

random numbers. They can also be set using the command interpreter. The user can also 

explicitly set the simulation state and latency. This was useful for simulating voluntary 

disconnections. Figure 5.4 illustrates the output of a typical run by LinkSim. LinkSim 

makes RPCs to FPI and NSM whenever the latency changes, this proved to be much 

more efficient than having FPI and NSM polling LinkSim. 

76 



Infinity 
Interference Disconnected 

800 . ·······r ··················1· ....... ···r ... . 
600 

400 

200 .................... ····r·· .. 
r....a.....a ......... L-····_····-+·T ...... · ...... .....I •• ·········r· ... ········· ... 

O+-~~~~~~~~~+-~~-r~~~~~~+ 

12:50 

Connected 
but variable 

Latency 

12:56 

Time 

12:58 

Figure 5.4 - Typical Variations in Latency as given by LinkSim 

5.1.5 Implementing the Network Statistics Monitor 

13:00 13:02 

Our implementation for NSM is an event generator which monitors change in the 

network latency given by LinkSim and sends La tencyChanged events onto 

applications which have registered interest. If the underlying network interface is a real 

77 



network instead of LinkSim, our NSM will monitor statistics collected by programs 

similar to TCP [Postel]. For example, the TCP retransmission mechanism has an 

efficient and effective algorithm [Jacobson] for estimating the mean and variance of the 

round-trip packet latency. Therefore implementing the NSM in real networks should be 

quite trivial. 

5.2 Using Property Specifications for Application 
Programming 

5.2.1 Approach and Choice of Application 

Our primary goal was to gain experience in implementing and using new application 

features that support mobile computing. We were faced with the following possibilities: 

implement a new application from scratch, modify an existing application, or build an 

application independent tool as we discussed in 4.1.3 but make no change to existing 

applications. We would liked to have tried all three options, but time limitations forced 

us to choose only one. Our decision to modify an existing application was mainly due to 

our desire to learn about the effectiveness of application specific features as well as the 

implementation overhead needed to acquire them. We did not implement the application 

independent tool because we believe that the scope of support it can provide is limited 

and does not fully exploit the power of Property Specifications. Building an application 

from scratch would allow us the freedom of exploring new application features but it 

would be difficult fo~ us to gauge the implementation overhead caused by these features. 

We chose to modify xmh because it was widely used, had a graphical user interface, used 

the file system extensively. and because we had access to the source code. In addition, 

email was of particular inte~ : to us because it was being hailed by industrial sources as 

78 



the "killer" application for wireless mobile computing [Loudermilk]. Xmb's popularity 

was an advantage because our users were familiar with the user interface and basic 

functionalities, allowing them to focus on exploring the effectiveness of our new features. 

Some of the other applications we considered were: xrn14, cm15, and xedit16, because we 

felt they would be useful applications for mobile computing. We did not choose xm 

because it used NNTP17 to access its articles instead of the file system. Therefore, unlike 

the file system, any solution we provided for NNTP would not be applicable to any other 

application. We chose xmh over cm and xed it because it was more challenging. Xmh 

worked with a much larger data set and had many more interesting features. 

5.2.2 Wc-xmh: Weakly Connected xmh 

First we partitioned all the files wc-xmh used into two categories: resource and data. 

Resource files are needed for xmh's features, e.g. context, .mh_profile, mtstailor, and all 

the .xmhcache files. Mail messages are data files. We then had to understand wc-xmh's 

internal dependencies, i.e. the resources needed by each of its features. In designing the 

user interface techniques to handle graceful disconnected operation, we tried to be 

consistent with original xmh conventions and being as unobtrusive as possible. We were 

delighted to find that our users often did not even notice the new features at work until we 

pointed out to them. 

The majority of the implementation was fairly mechanical. An excerpt from wc-xmh's 

startup sequence is shown in Figure 5.5. Note mutual exclusion is not necessary because 

wc-xmh is single threaded. At startup, we register callback procedures to all the resource 

14X News Reader, a NetNews browser with a graphical user interface. 
15Calendar Manager from Sun's SparcStation DeskSet. 
16Simple text editorlbrowser built with the Xt toolkit and Xaw widget set. 
17Net News Transfer Protocol, xrn uses it to access news articles stored on a NetNews server. 

79 



files, and ask the cache to try to make them available. We then query the cache and 

enable or disable all the menus and buttons according to the availability of the resource 

files. The same callback procedure, EnableProperBu t tons () ,is registered with 

both the cache and the NSM. It is invoked whenever a resource file is paged in or out and 

when the network connectivity changes. EnableProperBu t tons () encapsulates all 

of xmh's internal dependencies. It enables or disables buttons depending on the state of 

the network and the availability of wc-xmh's resource files. Callbacks from NSM 

updates the network latency thermometer shown in Figure 2.3 whenever the network 

latency changes substantially. Code excerpts from Enabl eProperBu t tons () is 

shown in Figure 5.6 and Figure 5.7 shows the callback procedure for monitoring the 

network latency. 

static char *resources[] - { 
IIreplcompsll, II .mhyrofile ll , IIcontext ll , IImtstailor ll , 
IIforwcompsll, "components fl

, IIMailAliases ll /* etc. */}; 

struct latency latency_range; /* the latency range which 
defines what it means to be 
connected for xmh */ 

void InitializeWorld() 
{ 

} 

MonitorFiles(resources, EnableProperButtons(), NULL); 
MonitorLatency(latency_range, EnableProperButtons(), 

NULL) ; 

(void) MakeAvailable(resources, AppResources); 
EnableProperButtons(FilesAvailable(resources»; 

Figure 5.5 - wc-xmh startup sequence 

80 



The availability indicators described in Section 2.1.1 are implemented by registering 

callback procedures for messages, and adding or removing the asterisk next to the 

message header when the corresponding file becomes available or unavailable. Since wc-

xmh typically manages thousands of old messages, we only registered callback 

procedures for messages in folders which the user had opened. 

Boolean CompAvailable{) 
{ /* Dependencies of the "compose" feature */ 

return (BareEssentialsCached{) 

} 

/* resource files required by all features */ 
&& EssentiaIFilesMonitor[COMPONENTS] . cached 

/* the "Components" template is needed for compose */ 
&& TocGetScanfileCached{DraftsFolder» 

/* .xmhcache file for drafts folder is needed */ 
I I NetworkGood () ) i 
/* these files are all available if we are connected */ 

void EnableProperButtons{) 
{ 

} 

{ 

SendMenuEntryEnableMsg{Message Menu, "compose", 
CompAvailable{»i -

NetLatencyCallbackProc{event, latency, client_data) 
EnvEvent eventi 
struct timeval latencYi 
XtPointer client_datai /* unused */ 

switch (event) { 

} 

case LatencyChanged: 
NetLatency - latencYi /* NetLatency is global */ 
UpdateNetworklndicator{)i 
EnableproperButtons{)i 
if «PendingJobs > 0) && NetworkGood(latency» 

DoPendingJobs{)i /* send any pending mail */ 
default: break; 

Figure 5.7 - Callback procedure for network latency changes 

81 



Implementing the Smart Availability Management and Dependable Future Availability 

features as described in Sections 2.2.3 and 2.2.4 were relatively simple using Hinting. 

Resource files critical to wc-xmb's features were distinguished by the "AppResource" 

hint, given by the Gi veHint () call. Any user request to make files available through 

"Enable" or "BringOver" commands translated into MakeAvailable () calls with the 

"u ~ erReque s t" hint. These calls are answered synchronously, providing the 

application and the user with immediate feedback on whether the request was granted or 

not. Wc-xmh also registers callback procedures on any files explicitly made available 

due to user request, so that if these files later become unavailable, wc-xmh will either try 

to make them available or notify the user. This way, after the user has explicitly made 

some data and features available, he can continue working without worrying about 

unknowingly causing some of those data and features to become unavailable again. Thus 

the user does not have to request his set of data and features just prior to disconnection. 

He can request whenever he wants and unless otherwise notified, he can depend on those 

features and data to be available when he disconnects. 

5.3 Challenging Aspects 

Since wc-xmh was written in C, it was not multi-threaded. This made asynchronous 

callbacks difficult to implement. Fortunately, wc-xmh used Xt toolkit's event loop, and 

we were able to simulate an X event by writing the event record into a UNIX FIFO file, 

and mounting the FIFO as an event source for Xt. However, if wc-xmb is busy, the FIFO 

may not be read for a long time. We found that during long running wc-xmh operations 

such as generating the header summary for a folder, events were lost because UNIX only 

buffers 2 KB of data for each FIFO file. Our solution to this problem was for the NSM 

and FPI to each maintain a queue for all the events destined for a particular FIFO, and 

82 



monitor the FIFO with a background thread. Whenever the FIFO is empty or near empty , 

the background thread takes one event record off the queue and writes it to the FIFO. 

There are a number of difficulties associated with implementing the user level file system 

on top of the kernel file system. First, the user process only gets a maximum of 256 open 

descriptors, which must be shared by all of its client applications. This was not a 

problem in our prototype system because we rarely ran more than one or two applications 

simultaneously as FPI clients. Second, we could not arbitrarily assign "pseudo" 

descriptors for the files managed by the FPI because they might conflict with descriptors 

the kernel gives to things other than files, e.g. sockets. We generated non-conflicting 

"pseudo" descriptors by forcing the kernel to assign a descriptor to "/dev/null" every time 

we needed a new descriptor. The third difficulty with our user level file system was 

preserving the application library's state, e.g. our "pseudo" descriptor table, in child 

processes created by the exec () system call. The problem exists because our descriptor 

table is in the application's address space which is not inherited by the child process 

created by exec ( ). Our solution was to write the library's state to the /tmp directory 

before the ex e c () call and reading and restoring the library state in the child process 

when the library initializes itself. 

Xt, Xaw and the mh library programs consist a large amount of fairly sophisticated code. 

Our reluctance to change this body of code had two effects. First, we did not get to test 

out our ideas for "tri-state" buttons and "color-coded" buttons we introduced in Section 

2.1.4. Second, some of wc-xmh's new features were hard to implement because these 

library programs did not provide adequate error prevention and handling. For example, if 

the Xaw text widget cannot open the file containing the text it needs to display, it calls 

Xt's "quit application" procedure. Thus if we try to read an uncached message and the 

network disconnects while Xaw is trying to open the file containing the message, wc-xmh 

83 



will crash. Similarly, some of the mh library programs exit when they encounter errors 

like "network timed out". It is difficult for wc-xmh, which forks these programs as child 

processes, to detect and report such errors in a meaningful way to the user. 

Another problem we confronted was the need for atomicity and recoverability. This 

problem was amplified by the mh library programs: when they crashed, they often left the 

wc-xmh's file and directory structure in an inconsistent state. There are two 

complementary approaches to address this problem. One option is to provide application 

independent support, such as a file system level transaction mechanism which allows 

groups of operations to be executed atomically or use a programming language which 

provides transactions as primitive operations [Liskov87]. These solutions have very nice 

semantics but implementing them efficiently for production systems is a major challenge. 

Our other option is to always proceed optimistically, detect errors and restore the 

application's external state using application specific methods. We implemented error 

recovery for wc-xmh' s "pack" feature using this technique. "Pack" uses the mh program 

pack () to consolidate the message numbers of all the messages in a folder by renaming 

the files containing those messages. If the network disconnects while pac k () is 

running, pack () immediately stops and returns with an error. But it is impossible for 

wc-xmh to know exactly which message caused the error and how much pack () was 

able to accomplish. Thus the table of contents for the folder (the .xmhcache file) 

becomes out of date, e.g. the header for message 5 may no longer refer to the same 

message. Instead of executing "pack" as an atomic operation to ensure consistency, we 

chose to mark the effected folder as "out of date" and use wc-xmh's built-in feature, 

"rescan", to bring the table of contents up to date once connectivity is restored. "Rescan" 

generates new table of content files. This is an example where error recovery is greatly 

simplified by using application specific information and tools. We think it may be a good 

idea for system services to allow applications to override system level error recovery 

84 



methods with application specific ones. We believe that support for transactions will still 

be necessary for application operations where error recovery is difficult. Transactions 

may also be useful for application programmers who do not wish to deal with the 

overhead of writing application specific error recovery routines. 

We considered letting the cache manager allow applications to "pin" down files in the 

cache temporarily. The idea of "pinning" is not new, virtual memory systems [Y oung92] 

[McNamee] [Cheriton] [Harty] often provide this feature. In our file system, pinning 

would be useful to prevent errors caused by disconnections: an application can bring all 

the files it needs for a particular operation into the cache by calling MakeAvailable () , 

and pin them in the cache for the duration of the operation. Of course this only prevents 

those errors caused by using unavailable files when disconnected. We did not implement 

this feature because wc-xmh did not need it. We also had no desire to complicate the 

semantics of FPI or to distract any attention from clearly illustrating the idea of Property 

Specifications. 

5.4 Ideas for Future Work 

5.4.1 Verifiability of Property Specifications 

Formal specifications [Wing] allow us to reason about the correctness of programs. 

Although formal specifications are a promising area of research in programming 

methods, their utility across a wide range of software development projects has yet to be 

demonstrated [Liskov90]. But this is likely to change as we build larger and more 

complex systems. The use of formal methods is especially important for understanding 

85 



the behavior of mobile computing environments because they are massively distributed, 

highly heterogeneous, dynamically configured, and evolve over time. 

There exist languages and tools [Guttag85] [Guttag90] that reason about the correctness 

of programs based on their Functional Specifications. While Functional Specifications 

describe the behavior of the program, Property Specifications describe the effects of the 

computing environment on the program. We believe that it should be possible to reason 

about Property Specifications just as we reason about Functional Specifications. 

Auxiliary specifications are needed to model aspects of the computing environment, such 

as network latency and disconnections. Although it appears that modeling the 

environment in real time is difficult, e.g. distinguishing sluggish networks from 

disconnected ones, the fact that we were able to implement Property Specifications 

successfully gives us confidence that we can reason about them. We propose the 

verification of Property Specifications and formal specifications of environmental 

constraints as future work. 

5.4.2 The "cause/effect" Problem 

One problem in a multiprogramming environment is the "cause/effect" problem: when 

something is paged out, how does the user know what caused it to be paged out? When 

disk space is limited, the user needs a way to tailor the availability of features, which 

requires knowledge of the effect of enabling one feature on the availability of others. 

This is particularly difficult when the operating system is multitasking: background jobs 

may be running and may wake up to run periodically (e.g. cronjobs18), causing files to be 

paged out of the cache. 

18Background UNIX tasks which are scheduled to run periodically. 

86 



We are optimistic that this problem can be solved for two reasons. First, inside the cache 

manager, there is definitely sufficient information to know at least which application 

caused paging activities. The cache manager may allow some files to be marked "super 

critical", and when they must be paged out, it will lock the cache and notify the 

application before proceeding. The application can tell the user the consequences of this 

file being paged out as well as the name of the other process which is causing this file to 

be paged out. At this point, the user has the option to directly influence the cache 

manager's decision. 

The second reason for our optimism is that disk capacity will continue to become less 

critical in the future. Portable computers today often have hundreds of megabytes of disk 

space19. Increased disk capacity means we will not need to deal with application features 

and data on as fine a granularity as we did with wc-xmh, where messages and features 

were managed individually. Future applications might only allow the user to manipulate 

"working sets" consisting of large chunks of features and data, and either all or none of 

the features and data in a group are made available. This level of granularity would make 

user level negotiations much simpler. Another consequence of the increase in disk 

capacity is that applications can afford to keep resources like icons and fonts with the 

executable like Macintosh applications, rather than like UNIX applications which 

separate application resources and binary. If we assume that the application's binary and 

resources are local on the portable computer. we can achieve a high level of availability 

without using the "AppResource" hint. and not have to monitor every feature with 

EnableProperButtons(). 

19por example, I recently acquire- 210 MB Macintosh Powerbook internal disk for $575. 

87 



5.4.3 Supporting Atomicity 

Another interesting area for future research is in investigating data access interfaces 

which would provide better support for data consistency and atomicity. It might be 

interesting to try organizing the file system as a database and to think about operations on 

files as database transactions rather than as operations on a collection of bytes. This 

could make error prevention and recovery easier for the application. More attention 

should be paid to understanding the tradeoff between the semantics of the data access 

interface and its efficiency, and the role of application specific error recovery in allowing 

more optimism but using weaker semantics. 

5.4.4 Remote Evaluation 

Another interesting area of research is in providing support for remote evaluation. 

Remote evaluation would be particularly useful for implementing features like wc-xmb's 

"rescan". "Rescan" generates a table consisting of message headers by examining every 

message file belonging to the same folder. "Rescan" is expensive because it causes the 

cache manager to page in all the message files which will be used only once. Remote 

evaluation can prevent "rescan" from thrashing the cache by executing the code to 

generate the message headers on a backend machine. It might be challenging and 

expensive to implement general remote evaluation where an application can execute any 

arbitrary program remotely. An alternative approach is to provide a toolkit of popular 

remote procedures, such as searching. The toolkit procedures are implemented by a 

proxy process running on the backend which communicates with the toolkit on the 

frontend via RPC. For example, the toolkit might provide remote - grep () for 

searching. "Rescan" would call the remo te - grep () wrapper in the toolkit, which 

88 



sends the arguments to the backend server. The server executes grep ( ) , accessing files 

over a high speed network, and returns the result to the toolkit. Then wc-xmh would 

complete the "rescan" operation by formatting the headers returned by the toolkit into a 

table of contents fIle. 

5.4.5 Loose RPC 

We also feel that traditional RPC semantics are too strong for an intermittent 

environment. It might be interesting to explore a "loose" RPC mechanism which allows 

the application to make a call, disconnect, and then asynchronously reconnect in the 

future to collect the result. For example, an application may send a database query to a 

backend database server, disconnect, and eventually reconnect to retrieve the results of 

the query. On the client side, we need to put calling threads to sleep during the call and 

waking them when the result becomes available. On the server side, we need to collect 

and buffer results for future retrieval. The key difference between "loose" RPC and 

traditional RPC is that the call is not completed by the server returning the result as soon 

as it is produced, but rather by the client who eventually reconnects to get the result. 

89 



Chapter 6 

Experience and Evaluation 

We have learned a great deal from building and using our system, even though our 

experience is limited to one programmer and five users, four of whom read email with the 

prototype in a simulated environment for about a week each, and the other (biased) user 

used it for several months. In this chapter, we first highlight some of the interesting 

feedback from our users, and then conclude by evaluating the effectiveness of wc-xmh 

and Property Specifications in meeting our goal of supporting graceful disconnected 

operation in an intermittent environment. 

6.1 User Experience 

6.1.1 A Furious User 

One day a furious user walked into my office. He demanded to end the experiment early 

because "[he does] not know what is going on with the simulation and wc-xmh is 

90 



unusable". "But you had no complaints during the first two days. What specifically do 

you want to know?" I asked. He then told me that he had clicked a button to open a 

folder and waited for a long time and he was not sure if wc-xmh was hanging, so he 

ended up killing the process. He found wc-xmh to be no longer usable because he felt 

uncomfortable waiting for any slow operation to complete. After examining the code, I 

realized that his problem was caused by a bug in EnableProperButtons () which 

overlooked some of the folder buttons. After I fixed the bug and explained to him that 

wc-xmh was designed specifically to prevent problems like what he had experienced, he 

continued with the experiment. 

The user's fury caused by this bug immediately underscores the problem this thesis 

addresses: unpredictable failures are intolerable! Although LinkSim produced unplanned 

disconnections quite frequently, none of our other users found using wc-xmh to be very 

different from using xmh. This is an encouraging sign that wc-xmh was effective in 

allowing users get work done despite the intermittent network. 

6.1.2 Obtrusive User Interface Techniques 

The fIrst user of the wc-xmh complained that after he had left wc-xmh running overnight, 

upon his return, he found his screen covered by about a dozen pop up notices telling him 

that various features were no longer available . We learned two lessons from his 

experience. First,' it is very important for an adaptive user interface to behave 

unobtrusively. The user should be warned with pop up notices only when absolutely 

necessary. Second, pop up notices about features being unavailable are a lot more useful 

if the user can find out what was the cause. This problem raises some subtle issues about 

the role of cause and effect as discussed in Section 5.4.2. When some features of 

91 



application A are paged out, the user needs to know whether they were paged out by 

some unimportant background job or by application B when he asked it to make some 

features available. If he knew the cause, he could kill the background job or ask B to 

make fewer of its features available so he could retain A's features. 

6.1.3 Voluntary Disconnection 

One user simulated voluntary disconnection by manually switching LinkSim between 

connected and disconnected modes, pretending that he was moving in and out of active 

areas for his portable computer's radio. The surprise came when we examined his 

activities log. He was connected only a few times each day, and eacp. time for only a few 

minutes. Apparently the confidence he has gained in wc-xmh's ability to operate 

disconnected allowed him to dramatically lower his connection time. It appears that if 

the application does not handle disconnections gracefully, the user would remain 

connected for much longer than necessary just in case he might do something which will 

hang or crash the application. 

We feel that the applications' connectivity requirements can be reduced even further by 

generalizing Notification. For an application which is voluntarily disconnected because 

of network cost or congestion concerns, it is very useful to have backend services which 

will notify the application when something of interest happens. For example, wc-xmh 

would like to be notified if new mail arrived in the user's mail box. Another example: 

when I am away from my office and another user tries to schedule a meeting with the 

calendar manager on my workstation, it should try to confirm the appointment by paging 

the palmtop computer I carry with me. Notification is not only useful for managing 

92 



applications in an intermittent environment, but more importantly, it can reduce the 

applications' connectivity requirements. 

6.2 Five Conclusions From Our Experiences 

First, intermittent connectivity is a good model for mobile computing environments. For 

most mobile computing applications such as mail or news browsers, editors, calendar 

managers, and database browsers, strong connectivity is not a strong requirement because 

we can exploit the locality in their data sets. We believe the predominant mode of 

operation will be autonomous applications which occasionally connect to backend 

storage or retrieval systems, burst or trickle some data, and then disconnect. Intermittent 

connectivity is also cost effective if users are charged for network services, e.g. cellular 

modem users are charged based on connection time. Finally, the reliability of wireless 

networking will always be constrained by cost and the physical environment. An 

intermittent model for connectivity is practical because ordinary radios will always be 

cheaper and smaller than radios optimized to work near refrigerators. 

Second, Adaptive user interfaces are an effective way for providing fine grained graceful 

disconnected operation. By fine grained we mean that we can manage the availability of 

a partially functional application at the level of individual features or data objects. 

Adaptability is a powerful way of influencing a user's expectations in the capability of his 

application and computing environment. The user is hidden from the intricacies and 

dependencies in the system and interacts with high level entities like application features 

and data objects, e.g. appointments in calendar. Applications which are informed about 

their environment and can adapt to changes in it will thrive in mobile computing 

environments which are highly heterogeneous and dynamic. 

93 



Third, autonomy and predictable performance are key requirements for mobile 

computing. Autonomy and predictable performance are the prevailing reasons why we 

are willing to tolerate noisy and bulky workstations or personal computers on our desks. 

Graceful disconnected operation provides both autonomy and predictable performance. 

Ca.ching enables autonomy, and user friendly management of partially functional 

applications provides predictable performance. Predictability means there is a close 

correlation between user expectation and reality. Our users were highly irritated when 

their expectations were not met, e.g. when pressing an enabled button caused the 

application to hang. Predictable performance was enough of an incentive for our users to 

become a little more knowledgeable about the environment and to cooperate with the 

application in managing availability. Adaptive applications are important because they 

greatly reduce the amount of knowledge the user needs to have about the computing 

environment in order to work effectively. 

Fourth, Property Specifications reduce the programming overhead for application 

features supporting graceful disconnected operation. As illustrated in Section 5.2.2, well 

designed Property Interfaces made most of our modifications to xmh fairly trivial. We 

only began to fully appreciate our ideas when we had to implement some new features on 

top of these libraries which do not export Property Specifications, such as Xt and Xaw. 

For example, Xaw causes the application to exit when it encounters network timeout 

errors and we had no clean way to catch those errors and continue without leaving the 

toolkit and application in a slightly confused state. We experienced first hand the effect 

of programming with the wrong abstractions in producing ad hoc code and frustrated 

programmers. 

94 



Fifth, application specific information can greatly simplify error recovery. Even til0ugh 

this thesis does not address cache consistency as a research topic, we had to provide 

practical consistency mechanisms to entice our users to trust their mail to our system. A 

errors occurs in our system when a cached file becomes stale because the original was 

modified by a third party, e.g. the .xmhcache file changed because the user incorporated 

new mail from another instance of xmh while wc-xmh was disconnected. The system 

detects the inconsistency, but can do little to rectify it because .xmhcache looks like any 

other sequence of bytes in the file system. Traditionally, the system alerts the user who 

must then manually sort out the problem. Based on the observation that our attempt to 

hide such errors from the application burdened the user, we allowed wc-xmh to override 

the system's default error handler on .xmhcache with its method. The error handler 

supplied by wc-xmh simply called an mh library routine to regenerate a most up to date 

.xmhcache. Resolving the inconsistency was a trivial task for wc-xmh because it 

understands the exact semantics of the .xmhcache file. 

6.3 Evaluating Property Specifications 

The strengths of our approach lies in the effectiveness in supporting both planned and 

unplanned disconnected operation. We demonstrated the usefulness of adaptive 

applications and how user expectations can be changed while still keeping the user 

hidden from the intricacies of the underlying system. Property Specification is a 

powerful abstraction for providing system level support for achieving autonomy and 

predictable performance. Query and Notification allow centralized and efficient 

monitoring of environmental events, and ensures that applications are notified of 

environmental, changes in a timely manner. Hinting provides a general way for 

applications to influence and customize system level entities without having to deal with 

95 



unnecessary details of the implementation. Although applications must be modified or 

rewritten in order to take advantage of Property Specifications, we take great comfort in 

knowing that the new interfaces are backward compatible and existing applications can 

be ported incrementally. 

Although Property Specifications greatly simplify the implementation of some 

application features, one disadvantage is that it requires extra understanding from the 

application programmer and the operating system programmer. The application 

programmer must understand the internal dependencies of the application, and the 

operating system designer must decide which properties and tools to include in the 

Property Specification. We believe that there is a lot more to learn about building 

systems and applications for mobile computing. W c-xmh is evidence that there is fruitful 

research in this area. 

Critics may argue against Property Specifications because we give up transparency at 

both the system and the user level. We believe that complete transparency at the user 

level is impossible in an intermittent environment. The fact is that if the network fails 

frequently, then the only choice we have is whether to deal with it in the system, in the 

application, or leave it to the user. It is not surprising that traditional system interfaces 

are inadequate for supporting mobile computing because they were designed for 

stationary workstations connected with network cable~ which fail very occasionally; and 

when they do fail, we reboot our machines and g() f<)f" coffee. Mobile computing 

radically changes our assumptions about the computin~ environment and require new 

abstractions and tools to be developed. Property Specifications is a step in this direction. 

By specifying the properties of the environment and the functions provided by the 

implementation in separate interfaces, we give power and flexibility to sophisticated 

applications while maintaim:-:; transparency for ordinary applications. 

96 



Bibliography 

[Adams] 
N. Adams, R. Gold, B. Schilit, M. Tso, and R. Want. The ParcTab Mobile 
Computing System. Submitted to HICSS-27. 1993. 

[Asente] 
P. J. Asente and R. R Swick with J. McConnack. X Window System Toolkit, The 
Complete Programmer's Guid and Specification. Digital Press. 1990. 

[Birrell] 
A. D. Birrell and B. J. Nelson. Implementing Remote Procedure Calls. In ACM 
Transactions on Computer Systems, 2(1). February, 1984. 

[Cheriton] 
D. R. Cheriton. The V Distributed System. Communications of the ACM, 31(3). 
March, 1988. 

[Cornelius92] 
D. Cornelius, XRemote™: A Serial Line Protocol for X. Sixth Annual X 
Technical Conference, Boston MA. 1992. 

[Douglis] 
F. Douglis and J. K. Ousterhout. Transparent Process Migration Design 
Alternatives and the Sprite Implementation. Software - Practice & Experience 
21(8). August, 1991. 

[Dylan] 
Apple Computer, Eastern Research and Technology. Dylan: An object oriented 
dynamic language. Apple Computer, November 1992. 

[Falcone] 
J. R. Falcone. A Programmable Interface Language for Heterogeneous 
Distributed Systems. In ACM Transactions on Computer Systems, 5(4). 
November, 1987. 

[Fulton] 
J. Fulton and C. K. Kantarjiev. An Update on Low Bandwidth X (LBX), A 
Standard for X and Serial Lines. Technical Report P93-00001, Xerox Palo Alto 
Research Center. February, 1993. 

[Gosling] 

[Gray] 

J. Gosling, D. S. H. Rosenthal, and M. J. Arden. The NeWS Book. Springer
Verlag, 1989. 

C. G. Gray and D. R. Cheriton. Leases: An Efficient Fault-Tolerant Mechanism 
for Distributed File Cache Consistency. In Proceedings of the Twelfth ACM 
Symposium on Operating Systems Principles. Litchfield park, Arizona. 
December, 1989. 

97 



[Guttag85] 
J. V. Guttag, J. J. Homing, and J. M. Wing. The Larch family of Specification 
Languages. IEEE Software, 2(5). 1985. 

[Guttag90] 
J. V. Guttag, J. J. Homing, and A. Modet. Report on the Larch Shared Language, 
version 2.3. Research Report 58, DEC Systems Research Center. 1990. 

[Harty] 
K. Harty and D. Cheriton. Application Controlled Physical Memory Using 
External Page-Cache Management. Fifth International Conference on 
Architectural Support for Programming Languages and Operating Systems 
(ASPLOS-V) Proceedings. October, 1992. 

[Heller91] 
D. Heller. XView Progr.amming Manual. O'Reilly & Associates, Inc. 
September, 1991. 

[Heller92] 
D. Heller. Motif Programming Manual For OSFlMotif Version 1.1. O'Reilly & 
Associates, Inc. July, 1992. 

[Herbert] 
K. P. Herbert. XRemote and Terminal Services. In Proceedings of the Silicon 
Valley Networking Conference. April, 1991. 

[Jacobson] 
Van Jacobson. Congestion Avoidance and ControL In ACM SIGCOMM 
Symposium on Communications Architectures & Protocols. August, 1988. 

[Jamsa] 

[Jul] 

K. Jamsa. DOS - The Complete Reference, Fourth Edition. Osborne McGraw
Hill. 1993. 

E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine Grained Mobility in the 
Emerald System. ACM Transactions on Computer Systems 6(1). February, 
1987. 

[Kazar] 
M. L. Kazar. Synchronization and Caching issues in the Andrew file system. 
Technical Report CMU-ITC-058, Information Technology Center, Carnegie 
Mellon University. June, 1987. 

[Kiczales] 
G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the Metaobject 
Protocol. The MIT Press. 1991. 

[Kistler] 
J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File 
System. In Proceedings of the 13th ACM Symposium on Operating Systems. 
October, 1992. 

98 



[Liskov87] 
B. Liskov, D. Curtis, P. Johnson, and R. Scheifler. Implementation of Argus. In 
Proceedings of the 11th ACM Symposium on Operating Systems Principles. 
November, 1987. 

[Liskov90] 
B. Liskov and J. V. Guttag. Abstraction and Specification in Program 
Development. The MIT Press. 1990. 

[Loudermilk] 
S. Loudermilk and S. Higgins. E-mail: the 'killer' wireless application. 
Supplement on Mobile Computing, PC Week, April 1993. 

[MacOS] 
Apple Computer. Inside Macintosh: Overview. Addison-Wesley. December, 
1992. 

[McKusick] 
M. McKusick, W. Joy, S. Leiffler, R. Fabry. A Fast File System for UNIX. 
ACM Transactions on Computer Systems, 2(3). August, 1984. 

[McNamee] 
D. McNamee and K. Armstrong. Extending the Mach External Pager Interface to 
Allow U ser-Level Page Replacement Policies. Technical Report 90-09-05, 
University of Washington. September, 1990. 

[Nelson88] 
M. M. Nelson, B. B. Welch, and J. K. Ousterhout. Caching in the Sprite Network 
File System. In ACM Transaction on Computer Systems. February, 1988. 

[Nelson91] 
G. Nelson, Editor. Systems Programming with Modula-3. Prentice Hall, 1991. 

[Nye90a] 
A. Nye, Editor. Xlib Reference Manual for Version 11 of the X Window System. 
O'Reilly & Associates, Inc. October, 1990. 

[Nye90b] 
A. Nye, Editor. X Protocol Reference Manual for Version 11 of the X Window 
System. O'Reilly & Associates, Inc. May, 1990. 

[Novobilski] 
A. Novobilski. Penpoint Programming. Addison-Wesley. August, 1992. 

[Ousterhout] 
J. K. Ousterhout. TCL: An Embeddable Command Language. In Winter 
Conference Proceedings, USENIX Association. 1990. 

[ParcRPC] 
Xerox PARC Modula-3 RPC. Available via anonymous ftp from 
parcftp .parc.xerox .com or gatekeeper .dec.com. 1992. 

99 



[Peek] 
J. D. Peek. MH & xmh: e-mail for users and programmers. O'Reilly & 
Associates, Inc. January, 1991. 

[Petzold] 
C. Petzold. Programming Windows™ 3.1, Third Edition. Microsoft Press. 1992. 

[Postel] 
J. Postel, Editor. Transmission Control Protocol Specification. ARPANET 
Working Group Requests for Comment, DDN Network Information Center, SRI 
International, Menlo Park, CA. September, 1981. 

[Rodriguez] 
L. H. Rodriguez Jr. Coarse-Grained Parallelism Using Metaobject Protocols. 
Technical Report P91-00130, Xerox Palo Alto Research Center. September, 
1991. 

[Rosenblum] 
M. Rosenblum and J. K. Ousterhout. The Design and Implementation of a Log
Structured File System. Operating Systems Review, 25(5). October, 1991. 

[Sandberg] 
R. Sandberg, D. Goldberg, S. Cleiman, D. Walsh, and B. Lyon. Design and 
Implementation of the Sun Network File System. In Summer Conference 
Proceedings, USENIX Association. 1985. 

[Satya85] 
M. Satyanarayanan, J. H. Howard, D. A. Nichols, R. N. Sidebotham, A. Z. 
Spector, and M. J. West. The ITC distributed file system: principles and design. 
In Proceedings of the 100th ACM Symposium on Operating System Principles. 
Orcas Island, 1985. 

[Satya90] 
M. Satyanarayanan, J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siefel, and D. C. 
Steere. Coda: A Highly Available File System for a Distributed Workstation 
Environment. In IEEE Transactions on Computers, 39(4). April, 1990. 

[Scheifler] 
R. W. Scheifler and J. Gettys. X Window System, Second Edition. Digital Press, 
1990. 

[Schilit] 
B. Schilit. Dynamic Software Customization Supporting Mobile Computing. 
Thesis Proposal, Columbia University. February, 1992. 

[Stamos] 
J.' W. Stamos and D. K. Gifford. Implementing Remote Evaluation. IEEE 
Transactions on Software Engineering, 16(7). July, 1990. 

[SunNeFS] 
Sun Microsystems. The Network Extensible File System Protocol Specification. 
Unpublished draft, available by email: nfs3@sun.com. February, 1990. 

100 



[SunNeWS] 
Sun Microsystems. NeWS 3.0 Programmer's Guide, Revision A. Sun 
Microsystems document number 800-6736-11. December, 1991. 

[SunRPC] 

[Tait] 

Sun Microsystems. Network Programming, Revision A. Manual document 
number 800-3750-10. March, 1990. 

C. D. Tait and D. Duchamp. Service Interface and Replica Management 
Algorithms for Mobile File System Clients. In IEEE Conference on Parallel and 
Distributed Information Systems. December, 1991. 

[Xtlntrinsics] 
O'Reilly and Associates, Inc. X Toolkit Intrinsics Reference Manual. O'Reilly 
and Associates, Inc. January, 1990. 

[Welch] 

[Wing] 

[Ward] 

B. B. Welch. Naming, State Management, and User-Level Extensions in the 
Sprite Distributed File System. Ph.D. thesis and Technical Report UCB/CSD 
90/567, Department of Computer Science, University of California at Berkeley. 
April, 1990. 

J. M. Wing. A Specifier's Introduction to Formal Methods. IEEE Computer. 
September, 1990. 

T. AWard and S. M. Liffick with Editors B. Holmes and D. Paul. Microsoft 
Windows™ for Pen Computing Programmer's Reference. Microsoft Press. 
1992. 

[Young 87] 
Michael W. Young et al. The Duality of Memory and Communication in the 
implementation of a Multiprocessor Operating System. In Proceedings of 11 th 
ACM Symposium on Operating System Principles, Austin, Texas. November, 
1987. 

[Young89] 
Michael W. Young. Exporting a User Interface to Memory Management from a 
Communication-Oriented Operating System. Ph.D. thesis and Technical Report 
CMU-CS-89-202, Department of Computer Science, Carnegie Mellon University. 
November, 1989. 

101 





Using Property Specifications to Acheive Graceful Disconnected 

Operation in an Intermittent Mobile Computing Environment 

Michael Tso 


