Palo Alto Research Center

The Cedar Programming Environment:
A Midterm Report and Examination

Warren Teitelman

XEROX

The Cedar Programming Environment: A
Midterm Report and Examination

Warren TeitelmanT
CSL-83-11 June 1984 [P83-0001 2]

© Copyright 1984 Xerox Corporation. All rights reserved.

CR Categories and Subject Descriptors: D.2.6 [Software Engineering]: Programming
environments.

Additional Keywords and Phrases: integrated programming environment, experimental
programming, display oriented user interface, strongly typed programming language
environment, personal computing. '

T The author’s present address is: Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain
View, Ca. 94043. The work described here was performed while employed by Xerox
Corporation.

XEROX Xerbx Corporation

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

Abstract:

This collection of papers comprises a report on Cedar, a state-of-the-art programming
system. Cedar combines in a single integrated environment: high-quality graphics, a
sophisticated editor and document preparation facility, and a variety of tools for the
programmer to use in the construction and debugging of his programs. The Cedar
Programming Language is a strongly-typed, compiler-oriented language of the Pascal family.
What is especially interesting about the Cedar project is that it is one of the few examples
where an interactive, experimental programming environment has been built for this kind of
language. In the past, such environments have been confined to dynamically typed languages
like Lisp and Smalltalk.

The first paper, "The Roots of Cedar," describes the conditions in 1978 in the Xerox Palo
Alto Research Center’'s Computer Science Laboratory that led us to embark on the Cedar
project and helped to define its objectives and goals. Important decisions had to be made
about what facilities and features were essential versus simply desirable, both with regard to
the programming language as well as tools and packages. This section not only presents
these decisions, but also describes the process by which we reached them. These deliberations
are especially interesting in light of the fact that three communities with diverse programming
languages (Mesa, Lisp, and Smalltalk) and very different programming styles, met to discuss
the merits and drawbacks of their individual systems and religions, with the purpose of
reaching some sort of consensus that would allow the construction of a programming
environment that would be satisfactory to all of them.

The second paper, "A Tour Through Cedar," is essentially a travelogue through the
current Cedar environment (as of September, 1983) in the form of a transcript of an actual
session. This transcript consists of numerous snapshots of the display screen interspersed
with dialogue and commentary. The intent is to produce an effect similar to that of the reader
sitting down with a user in front of a display terminal and being given a live demonstration of
the system, while an expert comments on some of the why's and wherefore’s. During the
course of this demonstration, the reader is introduced to most of the salient features of the
Cedar Programming Environment as they come up and are used. In many cases we will
digress from this demonstration to discuss some aspect of these features, such as why we
did it this way, how important this particular facility actually turned out to be, etc.

The final paper, "Cedar: The Report Card," discusses and attempts to evaluate how well
we have succeeded in reaching our objectives and goals, to what extent the original objectives

.and goals were changed or evolved during the course of the project, and what remains to be
done.

A version of the paper "A Tour Through Cedar" appeared in IEEE Software, April 1984.

XEROX PARC, CSL-83-11, JUNE 1984

INTRODUCTION 1

Introduction

A major activity in the Computer Science Laboratory (CSL) of the Xerox Palo Alto Research Center
(PARC) is the production of prototype systems that provide interactive, personal computing services.
Some of these systems are short-lived experiments to test novel ideas, and some are solid systems that
are used by many people. The ability to conduct such experiments quickly, and at low cost, is thus of
paramount importance to CSL: "The software that we can produce, and the rate at which we can produce
it, are too often limiting factors in our research. ... We believe that it is increasingly desirable, feasible,
and economic to use computers to directly assist the process of experimental programming. [by which
we mean] ... the production of moderate-sized systems that are usable by moderate numbers of people
in order to test ideas about such systems. We believe that it will be important to conduct future
experiments more quickly and at lower cost than is possible at present” [8].

This belief provided much of the initial impetus for Cedar, a major project now under way in CSL
to develop an advanced, integrated programming environment. Cedar is a programming environment
designed to help programmers build experimental systems. It is the software equivalent of the kind of
machine shop needed by an engineering laboratory, but unlike a machine shop, it does not represent a
known technology: Cedar is itself an experimental system, and a very large one.

The main goal of Cedar is to increase programmer productivity, specifically the productivity of the
programmers in CSL, by reducing the cost of solving a problem by software and by improving the quality
of the solutions. The improvement will come from three main sources: a programming language that
takes more responsibility for certain programming tasks, programming tools that make program
development and debugging faster, and a package library that allows programmers to build upon one
another’s work. [21] We intend for Cedar to be the basis for most of our programming during the next
several years. Cedar will also provide the platform for these experimental applications themselves, i.e.,
the applications that we develop will not only be constructed using Cedar, they will run on top of Cedar.
Cedar will also support non-programmers, and programmers when they are not programming, by
providing various office-related facilities such as an electronic mail system, a sophisticated editor and
document preparation system, and a high-quality typesetter.

This report consists of three papers on Cedar, a system which is now in its adolescence: while there
are approximately thirty serious users of the system, most of whom are extremely satisfied and view the
environment as a vast improvement over the way they used to operate, a number of the facilities that
~ we envision have not yet been provided, and others need significant improvements. Nevertheless, we feel
that Cedar is a state-of-the-art programming system. It combines in a single integrated environment:
high-quality graphics, a sophisticated editor and document preparation facility, and a variety of tools for
the programmer to use in the construction and debugging of his programs. The Cedar Programming
Language is a strongly-typed, compiler-oriented language of the Pascal family. What is especially
interesting about the Cedar project is that it is one of the few examples where an interactive, experimental
programming environment has been built for this kind of language. In the past, such environments have
been confined to dynamically typed languages like Lisp and Smalltalk. (Not surprisingly, we have drawn
heavily on our experiences with these latter two environments in the design of Cedar.)

XEROX PARC, CSL-83-11, JUNE 1984

2 THE CEDAR PROGRAMMING ENVIRONMENT

ear Get Ceumpl PrevEile Siore Sove Time Spit Flaces Levels ChongeLog Find Spht New Swp Compile Eval Redo er Clear
Find Word Def' Position Normalize PrevPlace Reselect &S run sp;l])ngwoll
FirstLevelOnly MoreLevels FewerLevels AllLevels

Figure 1 is a snapshot of the Cedar display which illustrates some of its capabilities. At the

> Spelling Tool
Loaded and started: "pellmgTo(!l bed

bottom of the screen are icons representing: a mail facility, a spelling 1001 (for use as a proofreader), .:I‘G;A”Ln Traps. : from Traps. isorTrap

2 printer, a remote file server, plus various documents that the user is editing or simply

In the center portion of the screen Cedar’s integration is readily apparent, A tool for monitoring P e @ Action Are2 B..
performance, a7 executive, & debugger, a document preparation system (editing this very SEIEAGE).

and a scanned image sll share the same working space,

The first paper, " The Roots of Cedar,” descrives the conditions in CSINin 1978 that led us to
embark on the Cedar project, and that helped us to define its ub;ecnve: and goals, Important
decisions had 10 be made about what facilities and features were essential versus simply desirable,
both with regard 1o the programming language as well as tools and packages. This section not only
presenis these decisions, but also describes the process by which we reached them. These

are in the light of the fact that three communities with diverse
programming languages (Mesa, Lisp, Smalltalk) and very ditferent pmgrammmg Styles, met to
discuss the merits and drawbacks of their individual systems and religions, with the purpose of
reaching some sort of consensus that would allow the of a p
that would be satisfactory to all of them, The pragmatic nature of these discussions forestalled the
religions discussions that frequently ensued when such commumnes interacted in the past. We had
1o reach decisions about whether feature A was , as
feature B, e.g, tight, commlﬂ time type checking versus cumplete run-time ﬂexnbumy or whemm
there was & compromise position that permitted both,

The second paper, " A Tour Through Cedar," presents the current state of the Cedar
environment (as of September, 1983) in the form of a transcript of an actual session. This transcipt Words 917150 1 10 100 1000 10000
consists of numerous snapshots of the display screen interspersed with umlogue and commentary, CPU Load
The intent is to produce an effect similar to that of the reader sitting down with a user in front of a Faults 8012 1 I m m

requests 7170 disk 3615 gfi 8% mds 28 VM 1809 VM run 701

16000 done. (GC#40 got 5948 words, 350 objs)

interval] 2 CIFS status (inverted 1ff active)

nterrupt Mouse Reset

.

ind Split New swp Complle Eval Redo set Clear
Proceed Abort Source WalkStack ShowFrame

% Action #1 (kind: signal, process: 211B) (from Work Area A)
SIGNAL Traps.ZeroDivisor from Traps.ZeroDivisorTrap
at«

The Cedar Display

The above snapshot of the Cedar display illustrates some of Cedar’s capabilities. At the bottom of
the screen are icons representing: a mail facility, a spelling tool (for use as a proofreader), a printer, a
remote file server, plus various documents that the user is editing or simply examining. In the center
portion of the screen Cedar’s integration is readily apparent. A tool for monitoring performance, an
executive, a debugger, a document preparation system (editing this very sentence), and a scanned image
all share the same working space.

The first paper, "The Roots of Cedar,” describes the conditions in CSL in 1978 that led us to
embark on the Cedar project, and that helped us to define its objectives and goals. Important decisions
had to be made about what facilities and features were essential versus simply desirable, both with regard
to the programming language as well as tools and packages. This section not only presents these decisions,
but also describes the process by which we reached them. These deliberations are especially interesting
in the light of the fact that three communities with diverse programming languages (Mesa, Lisp, and
Smalltalk) and very different programming styles, met to discuss the merits and drawbacks of their
individual systems and religions, with the purpose of reaching some sort of consensus that would allow
the construction of a programming environment that would be satisfactory to all of them. The pragmatic
nature of these discussions forestalled the religious discussions that frequently ensued when such
communities interacted in the past. We had to reach decisions about whether feature A was preferable,
and cost-effective, as compared with feature B, e.g., tight, compile-time type checking versus complete
run-time flexibility, or whether there was a compromise position that permitted both.

The second paper, "A Tour Through Cedar," presents the current state of the Cedar environment
(as of September, 1983) in the form of a transcript of an actual session. This transcript consists of
numerous snapshots of the display screen interspersed with dialogue and commentary. The intent is to
produce an effect similar to that of the reader sitting down with a user in front of a display terminal and

XEROX PARC, CSL-83-11, JUNE 1984

INTRODUCTION 3

being given a live demonstration of the system, while an expert comments on some of the why’s and
wherefore’s. During the course of this demonstration, the reader will be introduced to most of the salient
features of the Cedar Programming Environment as they come up and are used. In many cases we will
digress from the demonstration to discuss some aspect of these features, such as why we did it this way,
how important this particular facility actually turned out to be, etc. A somewhat condensed version of
this paper appears in the Proceedings of the Seventh International Conference on Software Engineering,
March, 1984, Orlando, Florida, as well as in the April 1984 issue of IEEE Software.

The final paper, "Cedar: The Report Card," discusses and attempts to evaluate how well we have
succeeded in reaching our objectives and goals, to what extent the original objectives and goals were
changed or evolved during the course of the project, and what remains to be done.

XEROX PARC, CSL-83-11, JUNE 1984

THE RoOTS OF CEDAR 5

"Those who cannot remember the past are condemned to repeat it." -- George Santayana

The Roots of Cedar

In 1978, the computing community at PARC consisted of three distinct cultures: Mesa, Interlisp,
and Smalltalk. Both the Smalltalk and Mesa communities programmed primarily on the Alto, a small
personal computer that had been developed at PARC [32]. The Interlisp programmers continued to
operate on a time-shared, main-frame computer called MAXC, a home grown machine that emulated a
PDP-10 and ran Tenex. (An existence-proof implementation of Interlisp on the Alto had been completed,
but performance problems, aggravated by the small size of the machine, were so severe that no one
actually used this system to get serious work done.) Each of these communities was beginning to run
into the limits imposed by the size of memory, both real and virtual, and by the computational power
that the corresponding machine provided. CSL decided to solve these problems by designing and building
a much more powerful personal computer, rather than by obtaining additional, more powerful time-shared,
main-frame machines. To understand this decision, one must understand the unique (at that time)
commitment at PARC to personal computing that began with the Alto computer.

Personal Computing at PARC

During early 1973, members of CSL, in consultation with others at PARC, designed the Alto
computer system as an experiment in personal computing: "to study how a small, personal machine
could be used to replace facilities provided only by much larger shared systems." Although the original
design of the Alto was modified several times between 1973 and 1978 in order to increase its memory
capacity and reduce its cost, the basic capabilities of the machine remained essentially the same.

The primary goal in the design of the Alto was radical (remember this was 1973): "to provide
sufficient computing power, local storage, and input-output capability to satisfy the computational needs
of a single user”" [32]. The standard Alto system consisted of an 808 line bit map display, a keyboard
and mouse pointing device, a 2.5MByte disk, an interface to the Ethernet, a microprogrammed processor
that controlled input-output devices and allowed a number of instruction sets to be emulated, and 64K
16 bit words of memory.

As an experiment in personal computing, we considered the Alto a success.T! The combination of
high-resolution display and mouse pointing device provided a high-bandwidth, comfortable user interface.
The Alto provided extremely reliable service as part of a distributed system: if one Alto broke, the user
simply took out his disk pack and moved to another machine. The capabilities provided to the user by
his personal Alto were supplemented by a large number of services available over the network, such as
printing, electronic mail, and access to bulk file storage devices. This also led us into developing expertise
in distributed computation, which was to become an integral part of our milieu.

The introduction of time-sharing in the early 1960’s provided not only an economic way of utilizing
the computing power of the large, expensive main-frames, but also produced a qualitatively different way
of computing. Similarly, the introduction of the Alto significantly changed not only the way we used
computers, but the way we thought about how computers should be used. For example, it was wryly
observed that one of the best features of the Alto was that "it did not run faster at night." In other
words, users of a time-shared machine encountering the tremendous competition for cycles during rush

1 In fact, CSL almost suffered a success disaster. The Alto was so successful that other organizations within Xerox clamored for
them, resulting in increased demands for CSL to provide support and software maintenance that threatened to interfere with our
ability to do research. By the time the experiment was over, the number of Altos in use within Xerox had exceeded the original
estimates of its designers by nearly two orders of magnitude!

XEROX PARC, CSL-83-11, JUNE 1984

6 THE CEDAR PROGRAMMING ENVIRONMENT

hours often responded by working at odd hours of the night. These same users now found that they
could get just as much work done on their personal machine during the day. Having everyone around
at the same time is of considerable benefit to a research laboratory where chance interactions in the halls
often lead to serendipity.

Another advantage of the Alto over a time-shared machine was that its personal nature made it
socially acceptable for applications to devote the entire machine to interacting with a single user. This
enabled a variety of real-time, interactive applications and tools to be built, such as illustrators and
What-You-See-Is-What-You-Get text editors.

But there were aspects of the Alto design that did not work out well. In particular, the limitations
on the size of the address space and on the amount of real memory were serious.T2 As a result, a great
deal of time was spent squeezing software into the limited space available. However, we did not take
this as an indictment of personal computing, but merely an indication that we had to think bigger.

The Dorado

By 1976, there were many hundreds of Altos in use within PARC and elsewhere. In CSL, Altos
comprised the lion’s share of our hardware base. But, it was evident that "a large and rapidly increasing
amount of effort was going into surmounting the Alto’s limited speed and storage capacity, rather than
trying out research ideas in experimental systems" [15]. After much painful deliberation, we decided to
design a new machine, the Dorado, to overcome these obstacles. '3 We intended that the Dorado would
provide the hardware base for the next generation of computer system research at PARC.

Our requirements were that the Dorado had to rapidly execute programs compiled into a sequence
of byte codes and also support high-bandwidth input/output. "In particular, color monitors, raster scanned
printers, and high-speed communications [were] all part of the computer research activities; these devices
typically have bandwidths of 20 to 400 million bits per second. [Such] fast devices must not excessively
degrade program execution, even when the two functions compete for many of the same resources.
Relatively slow devices, such as a keyboard or an Ethernet interface, must also be supported cheaply,
without tying up the high-bandwidth i/o system" [7]. Furthermore, the Dorado had to be physically
small and quiet enough so that it could sit in a user’s office, and cheap enough that we could acquire
them in significant numbers. (Cheap is a relative notion: the Dorado is still the most expensive personal
computer ever built!)

These requirements resulted in a machine with a 60ns microcycle and an input/output bandwidth
of 530 megabits/sec. (By comparison, the Alto had a 170ns microcycle and an input/output bandwidth
of 32 megabytes.“) Most Dorados currently have 2 megabytes of main storage expandable to 8 megabytes.
(The Alto had 128K bytes of memory, later expanded to 512K via additional memory banks.) Dorado
configurations range from our current 24-bit virtual address space (the addressable unit of the Dorado

+2 It is only fair to add, in the designers’ defense, that these limitations became severe only after the Alto system had outlived
its planned lifetime.

13 The reason this decision was a difficult one was that designing and building the Dorado would require the full-time commitment
of a number of our scientists for whom such activity would be a significant departure from their research interests. In effect, we
were asking these individuals to sacrifice their opportunity to do interesting research for several years in order that the majority of
the laboratory might benefit.

4 Comparing the microcycle times of the Alto and Dorado may be misleading. The Alto was a lot less suited than the Dorado
for interpreting the Mesa instruction set: the Dorado could execute a macroinstruction such as load or store in a single microcycle
whereas on the Alto it might take a dozen microcycles. Furthermore, the Dorado had an instruction fetch unit that fetched
instruction bytes from a stream and decoded them in parallel with, and independently of, the execution unit. The Dorado also had
a hardware stack and hardware virtual memory. All of this resulted in an effective speedup of between a factor of ten and twenty
over the Alto for strictly compute-bound programs (i.e., not accessing the disk).

XEROX PARC, CSL-83-11, JUNE 1984

THE ROOTS OF CEDAR 7

is a 16-bit word) with two million bytes of main storage on up to the ultimate 28-bit virtual address with
32 million bytes of storage. A rough approximation is to think of a Dorado as having the power of an
1BM 370/168 processor, dedicated to a single user. Although so powerful a machine could easily support
several users and still give each much more computing power than had been provided by the Alto, we
- steadfastly resisted acting on this observation. The Dorado was designed and intended to be a powerful
but personal computing system: as a workstation, it would support a single user.

In 1977, implementation of the laboratory prototype for the Dorado was begun. In the summer of
1978, this prototype successfully ran (by emulation) all of the Alto software. In the spring of 1979,
Dorado Model 1 was pronounced operational. Currently, 75 Dorados have been built. In CSL, we have
25 personal Dorados and 6 pool dorados. By mid-1984, all CSL research scientists will have their own
personal, dedicated Dorados.

Why Yet Another Programniing Environment?

The arrival of the Dorado in 1978 resolved our immediate hardware problems; execution speed,
memory size, and address space would not be issues for the foreseeable future. Thus, our ability to
experiment with computer systems was now limited only by our programming capabilities, of which the
principal component was the programming environment.

At this point in time, CSL had two major programming environments, Interlisp on MAXC [30] and
Mesa on the Alto [20]. (Smalltalk [13] was also available, but its user community inside CSL was quite
small.) Interlisp was a teletype-oriented environment, although an experimental window-oriented system
had been designed and implemented [29]. Furthermore, the Interlisp model was of a single thread of
control: there was no scheduler or support for concurrent operations.TS Mesa, on the other hand, having
evolved on the Alto, was display oriented. It also provided support for concurrent operations. But Mesa,
had been severely stunted, much like a bonsai tree, by the nature of the Alto, particularly its hardware
limitations. Thus, neither of these environments could really exploit the capabilities of the Dorado without
a lot of work. At the same time, we were becoming increasingly concerned that having two programming
environments was leading to duplication of effort and an inability to share results, especially programs.
We saw the arrival of the Dorado as a golden opportunity to remove many of the limitations of our
existing environments, while at the same time unifying our programming activities, by providing a single
programming environment for the entire laboratory.

To explore this possibility, the first CSL Experimental Programming Environment (EPE) Working
Group’r6 was chartered and met intensively for a month during the summer of 1978. The results of this
group are detailed in [11] and [8] from which much of the following material has been extracted.

The First EPE Working Group - Should We Do It?

Each of the members of the EPE Working Group had experience with only one of our environments:
Interlisp. Mesa, or Smalltalk. Given our diverse backgrounds, we needed to decide on a common measure
for evaluating programming environments. What makes one programming environment better than
another, and under what circumstances? (For example, a feature that facilitates rapid prototyping may
actually be detrimental to the development of robust, long-lived software.)

15 The two issues of concurrency and use of the display are subtly related. It is hard for a user to monitor and control several
parallel operations in an environment where he interacts with the system in a linear, teletype-oriented fashion. It is only with the
flexibility provided by a display-oriented system that concurrency becomes an attractive and useful feature.

16 Peter Deutsch, James Horning, Butler Lampson, James Morris, Edwin Satterthwaite, and Warren Teitelman, with the occasional
participation of Alan Perlis.

XEROX PARC, CSL-83-11, JUNE 1984

8 THE CEDAR PROGRAMMING ENVIRONMENT

We decided to restrict our attention on the foreseeable needs within CSL in the next few years,
paying particular attention to what we called experimental programmin. by which was meant "the
production of moderate-sized systems that are usable by moderate numbers of people in order to test
ideas about such systems" [8]. Underlying all of our discussions was the belief that we had to be able to
perform such experiments more quickly and with less manpower than was possible with our existing
environments.

Having agreed to focus on experimental programming, we then decided to proceed by producing a
catalogue of programming environment capabilities that are desirable for experimental programming,
guided by our experience with the three previously mentioned environments - both their strengths and
weaknesses. The catalogue would also include an estimate of the value, cost, and priority of each proposed
capability. We would then use this catalogue as a basis for deciding whether it was feasible to build a
single environment which included all or most of these capabilities.

Note that the existence of the Dorado meant that we were considering capabilities for a
computationally rich environment: many of the capabilities on the list that we generated are feasible only
when each programmer has substantial computing power available at all times.

- Catalogue of Programming Environment Capabilities

To facilitate ‘discussion and evaluation, we divided the capabilities of a programming environment
into four categories: virtual machine/programming language, tools, packages, and other. Virtual
machine/programming language was the most basic category and referred to those capabilities that were
primitive concepts in the programming language, or in the virtual machine on which the programming
language runs. Examples of such capabilities include object management (garbage collection), statically
checked type system, abstraction mechanisms (explicit notion of 1nterface) adequate runtime efficiency,
large virtual address space (> 24 bits), run-time availability of all information derivable from source
programs, good facilities for processes, monitors, mterruptsT and exception handling. 9 A total of 31
items were generated in this category.

The Tools category referred to capabilities employed by the user in dealing with his programs.
Examples of tools are a prettyprinter, a source-language debugger, a cross-reference capability, and an
available interpreter. Packages referred to programs that could be used by other programs. Examples of
packages are a generalized cache mechanism, menus and other standard user interfaces, remote file
storage, and a message transmission system. (The division between Tools and Packages was admittedly
somewhat arbitrary since, in a good environment, the capability provided to the user by the tools would
also be available to the programmer in the form of packages.) The Other category included documentation
as well as non-technical considerations.

We then arrived at a priority ranking for these capabilities by giving each member of the working
group 100 votes to be divided among the list. Each item was also rated as to how fundamental it was, in
the sense of how difficult it would be to add that capability if it were not allowed for in the initial system
design. We also estimated the difficulty of providing each capability in Mesa, Interlisp, and Smalltalk.
(All of this information can be found in [8].)

+7 The importance and role of a statically checked type system and the explicit notion of an interface are discussed further in
the subsection entitled "If We Start With Mesa" (page 14). :

+8 Many members of the group felt that synchronization between logically asynchronous processes would be necessary for many
of the applications we wanted to build, either for functional reasons or for efficiency, and that the programming language should
provide mechanisms that would help the programmer to write such programs.

+9 Similarly, our experiences with Mesa suggested that an integrated mechanism for handling exceptional conditions aided the
construction and debugging of robust programs by clearly distinguishing between normal and exceptional algorithms.

XEROX PARC, CSL-83-11, JUNE 1984

THE ROOTS OF CEDAR 9

The complete catalogue of capabilities may be found in Appendix 1. It is interesting to note that
there are very few surprises on this list: Despite our diversity, we were pretty much in agreement about
what programming capabilities were desirable. The principal differences of opinion related to priorities
(or difficulty of implementation). Appendix 2 contains the catalogue ranked according to priorities.

Fundamental Principles

In addition to the catalogue of specific capabilities shown in Appendix 1, in the course of our
deliberations we also identified a few principles that were not captured as features, or else were so
fundamental in our deliberations that they are worth repeating here:

Automatic storage deallocation is an absolute necessity. It produces a qualitative
improvement in the ease of programming and the reliability of the results.T10 This need
not preclude another class of variables with programmer-managed deallocation, but the
latter must not be able to destroy the data structurcs necessary for the former.

Easy use of programs as data underlies many other facilities in the system. Implementing
this seems to require having Lisp-style atoms, a run-time type system, and universal
pointers (pointers that carry a type with them).

Editing facilities closely coupled with the compiler and the executive interface to the
system are essential, both to reduce the turnaround time for minor changes, and to allow
easy construction of tools that interact with these facilities.

Capabilities for precisely defining interfaces, and restricting the communication between
modules to those interfaces, are essential to reliable and readable programming. This
includes, as a special case, the ability to restrict the use of types and names to a local
lexical context.

The ability to perform static checking ... over designated program regions is necessary
for both security and efficiency reasons.

The present Lisp, Mesa, and Smalltalk programming styles a// must be supported in a
satisfactory way. The same packages, and tools of equivalent power, must be available in
all styles. In particular, the Lisp capabilities for embedded variant languages and for
programming entirely without type declarations must be supported.

Both large, multi-person and small, single-person styles must be supported well. Bringing
a wider range of experiments within the scope of a single person’s effort is an important
EPE goal.

The EPE must support a wide range of binding times, including the Mesa and Smalltalk
extremes [compile-time binding for Mesa and run-time binding for Smalltalk], in a way
that allows changes in binding time without structural changes in the program. Different
choices of binding time by the programmer may lead to different turnaround times for
apparently minor changes, and to different execution efficiencies, but the functional
behavior of programs must not depend on such choices. [8]

+10 It is not surprising that those members of the group with experience in the Lisp world would consider garbage collection
non-negotiable. However, those from the Mesa community, which did not have garbage collection, were also becoming increasingly
aware of its importance. Storage leaks, i.e., inappropriate retention of explicitly allocated storage, and the inverse problem of
premature deallocation were the cause of some of the most pernicious bugs in Mesa programs, and some of the most difficult to
find. Furthermore, many Mesa programs would become considerably simplified with the availability of automatic storage
management and, for applications that employed parallel processing, a lot of synchronization issues would disappear.

XEROX PARC, CSL-83-11, JUNE 1984

10 THE CEDAR PROGRAMMING ENVIRONMENT

Conclusions of the First Working Group

The EPE working group recommended that "CSL should launch a project on the scale of the
Dorado ! to develop a]programming environment for the entire laboratory starting from either Lisp
[Interlisp] or Mesa" [11]. 12 We also concluded that the laboratory could support only one major
programming environment. If a new programming environment were to be developed, "then other work
on the existing systems must be kept to a minimum during this development, and support for these
systems must be phased out as the new environment became viable" [11]. Finally, we observed that there
did not seem to be any reason to attempt a multi-language programming environment. If we succeeded
in constructing an environment with all or most of the capabilities in our catalogue, that environment
would certainly support any existing style of programming. Furthermore, although the result might not
satisfy everyone, an attempt to do so might cause the system to collapse under its own weight (cf. Lisp
2 and Algol 68).

The Second EPE Working Group — Where To Start?

From its creation in 1970, CSL had always been willing and able to take a long-term approach in
planning and building for its future. We all felt that the laboratory as a unit, as well as most of the
individuals that comprised it, were not merely transients; we were comfortable with investments in
software and hardware that might take years to come to fruition. Mesa is a good example of the former,
and the Alto and the Dorado examples of the latter. Thus, it is not surprising that the laboratory accepted
the recommendation of the first EPE working group to develop a new programming environment for
the Dorado starting from either Interlisp or Mesa. A second working group was formedt13 and met
weekly for almost three months, exploring in more detail the "probable consequences of the alternative
starting points." The results of this group are detailed in [11] from which much of the following material
has been extracted.

The discussions of the second working group focused on four areas:
What are the key technical issues that arise from each of the possible starting points?

What differences in the ultimate system would necessarily follow from each choice of
starting point?

How much effort would be required to reach various levels of result from each starting
point? What people would be available to do the work?

What other non-technical considerations should play a significant role in our decision
about what to do? [11]

F11 i.e., around 20 man years. We were a little optimistic; the current estimate of man years spent on the Cedar project, as of
June 1983, is 45.

+12 Fairly early in our discussions we decided that either Interlisp or Mesa would be sufficiently preferable to Smalltalk as a
starting point that we did not consider Smalitalk further. This decision was based on the following: (1) The Smalltalk 76
implementation was written in Alto assembly language and could not support more than 128K of real memory or 64K addressable
objects without a major redesign and reimplementation. (Note that this was in 1978. Smalltalk 80, which was in fact a major
redesign and reimplementation of Smalltalk, has removed these limitations [10].) (2) Many members of CSL were familiar with
either Interlisp or Mesa, whereas there was no corresponding user community within CSL familiar with Smalltalk; and (3) the
direction of Smalltalk evolution was towards smaller machines, whereas we wanted to take significant advantage of the Dorado’s
capabilities.

113 Daniel Bobrow, Peter Deutsch, James Horning, Butler Lampson, Roy Levin, Larry Masinter, Gene McDaniel, James Mitchell,
James Morris, Edwin Satterthwaite, Nori Suzuki, and Dan Swinehart. Many other members of CSL also attended some or most
of the meetings and/or provided written material for the group.

XEROX PARC, CSL-83-11, JUNE 1984

THE ROOTS OF CEDAR 11

Technical Issues

Most of our discussions centered around the first area: the technical issues that arose from the choice
of starting with either Interlisp or Mesa. We addressed this question by taking the catalogue of
programming environment capabilities and examining each of them in terms of the amount of effort
required to provide the corresponding facility in Interlisp or Mesa. In many cases, the corresponding
environment already provided that facility, so the effort would be minimal. For example, Interlisp already
provided automatic storage management, and Mesa already had a statically checked type system.
Conversely, adding automatic storage management to Mesa or adding encapsulation mechanisms to
Interlisp was considered to be hard. Our discussions focused primarily on those key facilities missing
from each environment. The next two sections examine each of the two environments in turn.

Mesa Facilities Needed in Lisp

The following capabilities from our catalogue were identified as being present in Mesa but not
adequately available in Interlisp: statically checked type system, abstraction mechanisms (i.e., the explicit
notion of interface), adequate run-time efficiency, encapsulation/protection mechanisms, consistent
compilation, and user ability to pack data. A proposal was made to provide each of these facilities as
follows:

Static type checking -- by making types be objects and checking that all users of a
declared variable refer to identical type objects.

Explicit interfaces -- by defining an object called a dictionary that generalizes the notion
of parameter list, record, and interface, and by requiring that such an object be associated
with every defined or imported function.

Greater run-time efficiency, packed data -- by making the internal representation of a
quantity be one of its attributes in the type system, and extending the instruction set to
allow more efficient execution when more tightly bound representations are used.

Encapsulation/protection -- by associating protection information with entries in
dictionaries.

Consistent compilation -- by extending the notion of type identity and compatibility into
the permanent filing system, through an object called a permanent pointer. [11]

In the Lisp tradition, the method proposed to provide these facilities was to define new objects, e.g.,
for representing types, interfaces, name scopes, and then to define functions for manipulating them. For
example, the following plan was set forth for implementing the statically checked type system. Types
would be objects, just like integers or lists. There would be three kinds of types: interface, which describe
how objects behave in general, descriptive, which specify predicates that hold true of objects in particular
situations, and representation, which describe the bit patterns used to represent objects inside the machine.
Interface types would be built up from elementary types by (possibly recursive) applications of various
operators such as: ANYOF][tl...tn: Type], which produces a type for objects that can be of any of the types
tl...tn; FUNCTION[argT,resultT: Type], which is a type for functions that take arguments of type argT
and return result of type resultT; READONLY, UNIQUE, etc. Interface types could also be defined as
structures, where a structure was a type that had named components, each of which may have type
declarations. For example, an interface type in the Mesa sense is simply a structure type with fields that
are of various function types. Under this scheme, type checking, conformity, and coercion could all be
dealt with straightforwardly. The remaining missing facilities were dealt with in a similar manner. [11]

XEROX PARC, CSL-83-11, JUNE 1984

12 THE CEDAR PROGRAMMING ENVIRONMENT

Lisp Facilities Needed in Mesa
The group distinguished two different kinds of facilities available in Interlisp but missing from Mesa:

Foundations: basic, low-level facilities needed to match the functionality of Lisp. ...

Features: equivalents for the Lisp Masterscope,“14 file package, programmer’s assistant,
Helpsys, and similar features, in a more general setting, together with improvements to
the [Mesa] debugger and editor, facilities for specifying the construction of complex
systems, and other "environmental” capabilities. [11]

In general, the group felt that those capabilities from our catalogue that fell under the features
category presented no serious technical problems, i.e., were straightforward albeit non-trivial. We did
observe that the right set of facilities for the EPE we were considering might look substantially different
from existing facilities, given that we had the opportunity to redesign the user interface to take advantage
of the high-bandwidth display. In fact, some of the new experimental applications being developed in
our existing environments were already demonstrating this, such as the Smalltalk browser, DLisp, and
the Mesa Tools environment. Thus, these capabilities might need a great deal of additional design work
once the EPE project was under way. But there was no compelling reason why their absence from Mesa
and presence in Lisp mitigated strongly in favor of the latter.

With regard to foundations capabilities, more detailed consideration and planning would be required.
We identified the following as being present in Interlisp but not available in Mesa: automatic storage
deallocation, fast turnaround for minor program changes, run-time type system and self-typing data,
runtime availability of all source program information, compiler/interpreter available with low overhead
at run-time, and program-manipulable representation of programs.

The group proposed a plan for adding each missing facility. For example, to provide for automatically
deallocated objects, the plan was to use the Deutsch-Bobrow scheme for incremental garbage collection
[9]. This required "knowledge of the location and type of every pointer to an automatically deallocated
object, but the techniques are well-known and straightforward" [11]. Similarly, the Mesa compiler already
built symbol tables that included a mapping between source identifiers and internal, unique identifiers
for an individual module. Implementing the Lisp atom capability would simply require a global map
into which each module’s map would be merged when it was loaded.

Character of the Result

As a result of these deliberations, the working group concluded that the advantages accrued by
choosing Interlisp over Mesa or vice versa were insignificant. In other words, the choice between Interlisp
and Mesa could not be made "solely on the basis of technical considerations” [11].

To within the uncertainty of estimation, both starting points present challenges of
comparable difficulty, and would lead to systems of comparable utility, with comparable
investments, over comparable time spans. [11]

Regardless of which system was chosen as the starting point, the group reaffirmed the goal of
supporting the programming styles of both communities:

+14 Masterscope is an interactive program for analyzing and cross-referencing user programs. It contains facilities for analyzing
user functions to determine what other functions are called, how and where variables are bound, set, or referenced, as well as
which functions use particular record declarations. It maintains a database of the results of the analyses it performs, which the user
may interrogate via a simple command language. Masterscope is interfaced with both the editor and the file package so that when
a datum is changed or loaded, Masterscope knows that it must be re-analyzed [17], [14).

XEROX PARC, CSL-83-11, JUNE 1984

THE ROOTS OF CEDAR 13

We are agreed that it is necessary and feasible for an EPE based on either system to
support comfortably the programming styles currently associated with Lisp and Mesa. ...
The final system would provide all the facilities that present Lisp and Mesa users value
highly: from Lisp, tools similar to the existing array of tools in the current Interlisp, and
the ability to support integrated sublanguages and to delay bindings; from Mesa, the
provisions for modularization with explicit interfaces, and the amenability to static
checking. However, the system would probably retain some of the "flavor” of its starting
point. [11]

This last sentence deserves further elaboration. What the group was saying was that depending on
the system chosen for the starting point, there would be differences in the "character of the result." In
fact, it was "the value judgments placed on these differences [that] generated most of the heat in our
discussion™ [11].

What would these differences be? The following two sections contain some of what the group
thought the flavor of a Lisp-based or Mesa-based EPE would be, and the strengths and weaknesses that
would result from starting from each. 13

If We Start With Lisp

To understand the flavor of a Lisp-based programming environment, one has to look at how such
systems developed, and how they are typically used.

Lisp systems have been used for highly interactive programming for more than a decade.
During that time, special properties of the Lisp language have enabled a certain style of
interactive programming to develop, characterized by powerful interactive support for
the programmer, nonstandard program structures, and nonstandard program development
methods. ...

Lisp is used almost entirely as a research tool. ... The average Lisp user writes a program
as a programming experiment, i.e., in order to develop the understanding of some task,
rather than in expectation of production use of the program. The act of developing the
program, not the act of running it (even for test data), constitutes the experiment. As a
consequence, the program is likely to be large and complex, to undergo drastic revisions
while it is being developed, and to be thrown away before it has been "completed” by
conven[tioi'nal programming standards since it will already have served its purpose before
then. [25

Beau Sheil [27] calls this style of use:

exploratory programming, the conscious intertwining of system design and implementation.
... Some applications are best thought of as design problems, rather than implementation
projects. These problems require programming systems which allow the design to emerge
from experimentation with the program, so that the design and program develop together.

Current Lisp implementations (and especially Interlisp) evolved in response to the need for
programming environments that facilitated the exploratory programming style of use. The following
aspects of Interlisp are especially relevant for supporting this style:

Incremental: Small changes require only a small amount of work (both mental effort and
real time). This is true for both ordinary Lisp programs and programs written in embedded
languages. (Current implementations, unfortunately, have relatively weak tools for
discovering whether one’s changes are consistent.)

115 At times in the discussion, it may seem that we are comparing the Mesa language with the Interlisp environment. This is
appropriate: most of the focus of energy and effort in Interlisp has been on its environment, whereas Mesa’s great strength is its
language. We expected that if we started with Mesa, most of our efforts would be in environmental-related areas, whereas if we
started with Lisp, a lot more of our effort would have to be devoted to language-related issues.

XEROX PARC, CSL-83-11, JUNE 1984

14 THE CEDAR PROGRAMMING ENVIRONMENT

Open: The basic facilities of Lisp are open to change at a very low level; one can modify
the operation of the entire system from a user program. There is no distinction between
system and user code, variables, name spaces, etc. (This is also a weakness, in that it is
not uncommon to find that parts of the system make assumptions about each other that
casual modifications violate.)

Integrated: The user can slip relatively gracefully from procedures written in an embedded
language back to procedures written in Lisp itself, and vice versa. Since the parser and
interpreter are packages, code (in a variety of languages) can be stored in data structures
and executed when retrieved.

Aware of user activities: Standard packages in Lisp [Interlisp] keep track of new objects
added to the system by the user on-line, and changed objects, and help the user keep
track of his complex environment. Because all transactions with system objects (such as
editing, creating new variables, etc.) are handled through an active intermediary and a
set of functional interfaces, it is easy to provide all the "hooks" for complex assistants
like Masterscope.

Abstraction-based: The user is completely freed from concern with basic questions like
the representation of integers and symbols, and the management of storage. (Most Lisp
implementations, including the present Interlisp, have a related weakness in that they
provide few mechanisms for attaining better efficiency even when the user knows full
generality is not needed.) [11]

We expected that an EPE based on Interlisp would support the exploratory programming paradigm,
i.e., facilitate rapid changes, better than one based on Mesa.

If We Start With Mesa

Mesa evolved in response to an entirely different need: producing reliable, robust systems, developed
by large teams of programmers,ﬂ(’ and the ability to maintain such systems over a fairly long period,
often by programmers who were not the original implementors. The second EPE report described the
Mesa style as follows [11]:

The "Mesa style" tends to place greater emphasis on structure than on unconstrained
flexibility. Probably its two most important aspects for an EPE are its emphasis on static
checkability and its provision for explicit interfaces. Both are important in speeding up
the programming process and in improving the quality of the result; they become even
more so if the units that programmers manipulate are large (packages or subsystems),
rather than small (statements or functions). The advantages will be small for programs
whose "characteristic times" (design, programming, checkout, existence, total execution)
are all measured in minutes, large if they are measured in weeks or months. In an
environment where programs are undergoing rapid change, however, mandatory checking
mechanisms tend to introduce unnecessary overhead by requiring complete internal
consistency at every step of the development process.

Note that in sharp contrast to adherents of the Lisp style, proponents of Mesa are perfectly willing
to accept the greater inertia to change imposed by the mandatory checking mechanisms. In fact, many
would consider this to be a feature of Mesa, just as the fact that amending the Constitution of the United
States is an extremely difficult and lengthy process is a feature because it tends to ensure that only well
thought out and mutually agreed upon changes are implemented.

$16 It is unusual for a programming project in Lisp to involve more than three or four programmers, whereas there were as many
as 35 programmers at work at one time on the Star project developed at Xerox.

XEROX PARC, CSL-83-11, JUNE 1984

THE ROOTS OF CEDAR 15

Static Checkability. On the issue of static checking versus run-time checking, arguments about the
advantages and disadvantages of both have raged back and forth for some time. The proponents of Mesa
argue that it is better to locate faults by static checking than via run-time errors because [11]:

Many faults can be identified in a single run of the checker, rather than surfacing one
at a time in debugging runs.

There is experimental -- as well as anecdotal -- evidence for the proposition that program
faults located statically are diagnosed and removed more quickly than those located
dynamically.

Passing the static test ensures that all faults in a given class have been removed; in
general, no finite set of test cases gives such assurance with dynamic checking.

"Correctness"” is a static property of the program text; it is hard to ensure that a program
that relies heavily on dynamic properties actually does what is intended. ...

The belief that this style actually speeds programming, measured as problem solutions
per unit time, is closely tied to the observation that most programmers spend more time
worrying about the possibility of programming errors -- and coping with their
consequences -- than they spend actually writing new code. This style does require more
planning before a running program is created -- some would consider this a disadvantage.
A definite weakness of this approach is that it will be relatively difficult to add flexibility
that was not anticipated in the program design, thus restricting the range of experiments
that can be easily performed.

The importance of detecting faults earlier rather than later is captured in an aphorism attributed to
James Morris: "There is no debugger in Peoria." If a program is to be run by unsophisticated users at
sites distant from its implementors, encountering problems at that time is simply not acceptable. On the
other hand, most Lisp programs are written as experiments: they may never be run in Peoria (though
this is beginning to change). Thus, it is of no consequence that there may be bugs lurking in as yet
untried portions of such a Lisp program; the Lisp programmer is happy to defer dealing with those
problems until he encounters them. In fact, it is a feature of Lisp that programs can be run when they
are only partially complete.

Another aspect of the issue of when it is best to detect errors is that because it is relatively hard to
change Mesa programs (edit, recompile, reload, etc.), it is important to detect as many faults as possible
in a program before it is run, and to fix them all at once. In other words, precisely because the
consequence of encountering a problem is more serious in the Mesa environment than in Lisp, it is more
important to find at one time as many problems as possible. By contrast, when a problem is encountered
in a Lisp program, e.g., a type conflict, it is usually a simple matter to fix it immediately and even to
continue with the computation. (Sometimes the programmer may have to backtrack the computation to
get to a consistent state, but most Lisp debuggers provide such facilities.) Thus, encountering problems
as a sequence of isolated, individual events during the course of testing a program is perfectly acceptable
to the Lisp programmer.

Explicit Interfaces. Much of the original motivation behind the development of Mesa was to facilitate
a modular style of programming. Thus, a great deal of thought has been placed on the issue of explicit
interfaces in its design. The separation of Mesa programs into interfaces and implementations of these
interfaces enable implementors and clients to work independently, and to make changes independently,
as long as they respect the interface. As stated in the first EPE report [8]:

Abstraction mechanisms are important because they make explicit the logical
dependencies of one part of a program on another, while concealing implementation
choices irrelevant to the communication between such parts. Thus, these mechanisms
enable the system architect to factor the development, debugging, testing, documentation,
understanding, and maintenance of programs into manageable pieces, while leaving
individual programmers the appropriate freedom to design those pieces.

XEROX PARC, CSL-83-11, JUNE 1984

16 THE CEDAR PROGRAMMING ENVIRONMENT

Of course, (just as with static checkability) the need to specify interfaces in advance can be viewed
as either a strength or weakness of Mesa, depending on one’s point of view. T17

Early versus late binding. The combination of static checkability and explicit interfaces encourages,
indeed, often requires, relatively early binding of many aspects of Mesa programs that in Lisp are
typically bound during execution. This is in sharp contrast to the approach taken by Lisp and other
programming languages designed for exploration:

The key property of the programming languages used in exploratory programming
systems is their emphasis on minimizing and deferring the constraints placed on the
programmer, in the interest of minimizing and deferring the cost of making large-scale
program changes. ... [These] languages make extensive use of late binding, i.e., allowing
the programmer to defer commitments as long as possible. [27]

Note that the Lisp programmer is not necessarily adverse to the availability of explicit interfaces or
static checkability. He just wants them to be optional. 18

The bottom line is that we expected that an EPE based on Mesa would emphasize robustness,
reliability, and maintainability at the expense of the ability to make rapid changes.

The Decision to Start With Mesa

The principal conclusion of the second working group was that the choice between Interlisp and
Mesa as the starting point for Cedar could not be made solely on the basis of technical considerations.
Thus, social and political factors, including the availability of people to fill key roles in the project, as
well as our concern for relations with both the computer science research community and the rest of the
Xerox Corporation, became decisive concerns. These considerations could be divided into the categories
of importation and exportation - of ideas, people, and code. In many cases, symmetry prevailed: there
were roughly the same kinds of advantages and disadvantages for Interlisp as Mesa. However, where
there was an edge, it tended to go to Mesa. For example:

* The rest of Xerox had a fairly large and growing commitment to Mesa, and none to Interlisp.
Remaining largely compatible with the rest of the corporation had both advantages and disadvantages,
but the advantages predominated. With respect to research communities outside of Xerox, either choice
would reduce communication with important (but different) research communities in the outside world:
Lisp favors the Al community, Mesa favors the programming language and systems programming
community. .

° Although the efforts required were about the same, a somewhat larger number of qualified people
were available to work on a Mesa-based EPE. It was noted, however, that if Mesa were chosen, some
effort would be needed to ensure that those members of the Lisp community concerned with programmer
assistance, programs as data bases, and integrated sublanguages were able to provide enough input to
ensure that Cedar would be of use and attractive to them.

117 The present need for recompilations of a large number of files whenever a fundamental interface is changed, even in an
upwards compatible fashion, has to count as a weakness. But, it is simply an artifact of the current implementation, can certainly
be reduced, and probably eliminated..

118 For example, the Decl package developed by Ron Kaplan and Beau Sheil extends Interlisp to allow the user to declare the
types of variables and expressions. "It provides a convenient way of constraining the behavior of programs when the generality
and flexibility of ordinary Interlisp is either unnecessary, confusing or inefficient" [14].

XEROX PARC, CSL-83-11, JUNE 1984

THE ROOTS OF CEDAR 17

* We wanted to keep abreast of developments in computer science in the world at large. Most of
the knowledge representation, expert systems, automatic programming, and programmer’s assistant type
of work is done in various Lisp dialects. However, much of the formal specification and verification work
was directed towards Pascal dialects, and would therefore be more easily applicable to Mesa. Also Ada
being based on Pascal, is much more similar to Mesa than to Lisp, so that work on Ada environments
would be highly relevant, 19

* We wanted to move implementors into the project easily, and were even more concerned that it
be easy for users to convert to the use of Cedar. 20 Within CSL, there were roughly comparable numbers
of hard core users in each camp, so that the issues of migration seemed roughly symmetric. However,
within Xerox, Mesa was much more widely known and used. Outside of Xerox, generic Lisp was more
widely known than Mesa, but generic Pascal was more widely known and used than Interlisp.

As a result, the decision was made in early 1979 to launch a project to build Cedar, an experimental
programming environment, starting with Mesa.

First Steps

1979. Work began on Cedar in 1979 with the creation of seven committees to investigate and propose
implementation strategies for various components of the system: Language Features, User Facilities,
Communications, Data Base Package, Text and Figure Displayer, Filing and Consistent Compilation, and
Programmable Scanner Capabilities. However, with so large a system and so many diverse components
(many of which involved research problems themselves), it was important that we did not simply disperse
into independent efforts and then try to fit everything together at the last minute. We needed to define
various points along the way when we would try to put together a working system in order to provide
us with feedback, and also (hopefully) provide us with interim environments that would allow us at each
stage to be more productive than before. Dependency was another issue; some components could not
effectively proceed until others were in place or at least designed. Thus, the order in which we attacked
various issues would be extremely important.

At this point in time, there was no integrated Mesa programming environment. Users composed and
edited Mesa programs using a separate, stand-alone editor (Bravo), compiled them using the stand-alone
Mesa compiler, and then loaded and tested them using the Mesa debugger. When problems were
encountered, the user had to exit from the debugger, return to the editor, load the source files, make the
changes, leave the editor, recompile the programs, and then reload and resume testing.

We decided that there would be sufficient short-term payoff in our productivity while building
Cedar to spend some initial effort at bootstrapping ourselves into a better environment. Therefore, we
constructed the Interim Mesa Environment (IME) specifically as a tool for building Cedar. IME’s aim
was to reduce the delays experienced in developing Mesa programs by providing support for the edit,
compile, and load phases in a single environment. By the end of 1979, IME was in place and was being
used seriously by about six people. ‘

+19 Five years later, it now appears that the converse of this statement is going to be of greater importance, i.e., the fact that
Cedar is built on top of Mesa makes Cedar highly relevant to Ada environments,

20 CSL programmers have a wide range of goals and styles: system programming, mathematics, hardware design, artificial
intelligence, etc. Most of them are permanent employees who can be expected to invest effort in learning how to use a programming
system, but an appreciable fraction are visiting scientists or computer science students who can be productive only if they can
quickly assimilate the basic system.

XEROX PARC, CSL-83-11, JUNE 1984

18 THE CEDAR PROGRAMMING ENVIRONMENT

Meanwhile, we worked on specifying a subset of the Mesa language in which it was possible to do
automatic storage deallocation. By the end of 1979, the design was complete and implementation begun.
In the area of user facilities, we held substantial design discussions about the Cedar document metaphor
(DOCs), which was intended to provide a standard mechanism by which data structures were displayed
and changed. These discussions led to a detailed implementation design and we started the actual
implementation of a number of document types.Tzl We also designed, implemented, and tested a
collection of graphics-oriented algorithms that would form the basis for the Cedar Display facilities.
These included geometric transformation routines that implement arbitrary scaling, rotation, and
translation, and clipping algorithms for text, lines, and curves.

1980. Up to this point, we had been using the Alto operating systém, and emulating the Alto
instruction set on our Dorados. Not only did the emulation cause performance inefficiencies, but the
Alto operating system contained no support for virtual memory, and its file system was inadequate for
our purposes (it only enabled addressing of about one fifth of the Dorado’s 80 megabyte disk). We were
faced with the choice of either implementing our own operating system or adapting the existing Pilot
operating system [24]. We chose the latter course because of our limited manpower resources. (We
revisited this decision in 1983.) By the end of 1980, we had modified the Pilot operating system to enable
it to run on the Dorado, had produced an initial version of the Cedar kernel built on top of Pilot, and
had succeeded in transferring all of our code to run on top of this kernel. We replaced IME by a system
called Cascade, which allowed the user to edit, compile, bind, execute and debug Mesa programs under
Pilot, i.e. without resorting to Alto emulation.

In the area of language development, 1980 saw many of the changes required for Cedar Mesa
incorporated into the Mesa compiler and runtime system, including: reference-counted assignments, type
equivalence, run-time type checking, and LISP-like atoms and lists. The incremental garbage collector,
which would be the most critical component of the Cedar Mesa runtime system, was thoroughly tested,
and its performance improved via special microcode. A trace-and-sweep garbage collector had been
designed and an initial implementation tested.

In 1980, we also began work on the Cedar data base facility and system modeling. Much of the
data base storage system and the lower levels of the system were implemented and extensively tested. A
design document specifying the system modeling language was written. An interim facility was developed
to create systems from their configuration files by performing all of the necessary file transfers,
compilations, and bindings automatically. Besides its immediate usefulness, this facility contained many
building blocks for the eventual system model implementation.

The design for a document preparation system called Tioga progressed significantly during 1980.
Tioga would consist of a coordinated editor and typesetter to aid users in creating documents with
high-quality typography. An implementation of the Tioga editor was begun.

We also investigated how the Cedar debugger, compiler, and run-time support would interact to
enable evaluation of expressions at run time (i.e., an interpreter), to provide a powerful breakpointing
facility, and to access/display values using the run-time type system. This investigation resulted in a set
of interfaces for these tasks. We also began implementation of the base-level software for providing input
events from the user (keystrokes, mouse positions and selections) to higher level software.

121 DOC:s proved to be too ambitious an undertaking for the time scale and resources available, and was subsequently abandoned
in favor of the Viewers Window Package.

XEROX PARC, CSL-83-11, JUNE 1984

THE R0OOTS OF CEDAR 19

First Usable Systems Appear

1981. In January, we held a week-long review of the Cedar project by a panel drawn from various
groups in the Xerox Palo Alto community. The reviewers’ basic conclusions were that a significant
amount of good work had been done on the many building blocks and it was time to pull a system
together that could be used by programmers. Partly as a result of this recommendation, we spent
significant effort during 1981 on integrating the useful pieces of Cedar, so that by mid-1981, approximately
ten programmers were using the core facilities and five of them had begun to use the tools. By the end
of the year, approximately 20 programmers were using Cedar, several of them for projects other than
Cedar itself.

During 1981, we improved the performance and robustness of the allocator, garbage collector, and
basic run-time type system. Critical parts of the allocator and run-time type discrimination machinery
were microcoded on the Dorado, completing the planned Dorado microcode support for Cedar. We also
developed software tools for measurement, and used them to make changes to improve system
performance, including refinements to strategies for balancing allocation and collection activity, and to
improve that part of the run-time that deals with the virtual memory allocator.

In the language area, the typed-value part of the Cedar abstract machine interface (for performing
operations at run-time on the types of values) began to be used extensively. A facility for inserting break
points into user programs was designed and implemented. We also identified a subset of the Cedar
language, the Safe subset, in which incorrect programs could not interfere with the garbage collector,
and implemented compiler-enforced restrictions for guaranteeing that programs remained in this subset.

In 1981, the Cedar Interim File System (CIFS) was designed and coded. A client of CIFS used a
single mechanism to access the diverse set of storage facilities at PARC. The implementation of Tioga
progressed substantially; we decided to use it as the program editor for Cedar. We began the design and
implementation of Viewers, a high-performance, general-purpose window package for uniform screen
management. BugBane, the Cedar debugger, was released for alpha testing. BugBane provided facilities
for expression evaluation, stack display, uncaught signal handling, and breakpoints. Since it ran in the
same address space as the program being debugged, user interaction was significantly faster than with
previous debuggers. 2

The first version of the system modeler was completed and testing begun. Description Files (DF
files), an interim file management tool for describing system components, was implemented and used for
maintaining virtually all Cedar programs. By mid-1981, Cedar had grown sufficiently large and
complicated that we implemented the Release Tool, a facility for automating the process of releasing
Cedar. Based on an extension to DF files that permitted automatic consistency and completeness
verification of an entire system, the Release Tool validated a candidate release and stored it in a safe
repository. It made it possible for new releases of Cedar to occur at a rate of about once a month and
greatly increased the dependability of the system. Cedar 2.0, the first release of Cedar using the Release
Tool, took place in October 1981, and consisted of 22 components and approximately 1800 files.

122 Up until this point. debugging in Mesa had been performed via a world-swap debugger. World-swap debugging is a debugging
system that works by writing the real memory of the target system (the one being debugged) onto a secondary storage device, and
reading in the debugging system in its place. The debugger then provides its user with complete access to the target world, mapping
each target memory address to the proper place on secondary storage. This somewhat clumsy style of operating allows very low
levels of a system to be debugged conveniently, since the debugger does not depend on the correct function of anything in the
target, except for the very simple world-swap mechanism. However, it requires writing and reading all of real memory (2 megabytes)
each time control is transferred from the client to the debugger, or vice versa. Thus, the availability of Bugbane meant that a
simple operation like hitting a breakpoint and proceeding was reduced from on the order of ten seconds to on the order of one
or two seconds.

XEROX PARC, CSL-83-11, JUNE 1984

20 THE CEDAR PROGRAMMING ENVIRONMENT

The First Real System

By the end of 1981, we had set for ourselves the immediate goal of creating an environment that
would be preferred to the Mesa/Cascade system (Tajo). This configuration, Cedar 3.0, would not initially
dominate the Tajo environment in all respects; but the temporary lack of certain features would be
overcome by other aspects of Cedar: garbage collection, run-time types, graphics facilities, system
modelling, and fast turnaround for small program changes. We decided that other Cedar goals would be
deferred until this goal was met.

1982 1982 saw furious activity and growth in the Cedar project. Cedar 2.2 containing BugBane, the
Cedar debugger, was released in January. Cedar 2.2 consisted of 26 components and was followed quickly
by Cedar 2.4 (40 components) in February, which was the first Cedar release to include Viewers and
Tioga. This marked the first release in which the hardy user could edit, compile, load, and run programs
entirely within Cedar. In March, we demonstrated Cedar to approximately 150 attendees of the Symposium
on Architectural Support for Programming Languages and Operating Systems. Their extremely favorable
reaction provided us with a much needed morale boost. Cedar was becoming real.

Cedar 2.5 (48 components) was released in March and included the UserExec, an Interlisp-style
executive complete with history and spelling correction. Finally, in May, Cedar 3.0 was released marking
our official break with Tajo, which was eliminated entirely from the release. Cedar 3.0 involved 62
components, over 300,000 lines of source code, and over 4000 files (including both source and object
files). By the end of 1982 when Cedar 3.5 was released, Cedar had grown to 96 components, 4800 files,
450,000 lines of code, and 300 pages of documentation.

During 1982, the Safe Subset of the Cedar language began to come into general use, thereby making
programs less subject to hard-to-diagnose errors. The trace-and-sweep garbage collector was implemented;
it was designed to recover unreferenced circular data structures and to serve as a reliable backstop for
the incremental collector. The use of collectible storage was pushed lower in the system to support a new
loader based on interface records. The abstract machine was extended to deal with breakpoints, processes,
paving the way for the use of Cedar for both world-swap debugging and tele-debugging.T23 During 1982,
the Safe Subset of the Cedar language began to come into general use, thereby making programs less
subject to hard-to-diagnose errors.

Meanwhile, we made significant improvements to BugBane, thereby allowing many users to avoid
the use of world-swap debugging altogether for diagnosis of simple bugs. By the end of 1982, most Cedar
users were using BugBane entirely for their debugging: world-swap debugging was used primarily by
developers of the lower levels of the system. The interfaces between Bugbane and the UserExecutive
were overhauled and the two facilities unified, yielding major improvements in the smoothness and
robustness of the system. Bugbane was simplified to use the abstract machine implementation exclusively
for access to symbols and system data structures. The UserExecutive was extended to incorporate a
separate action area for each pending action (breakpoint, uncaught signal, etc.). All symbol and source
files associated with a release system were made accessible to the debugger, whether or not copies resided
on the local disk.

Version 1.0 of Tioga was released, marking the completion of a reliable, high-quality editor and
page formatter that was now in general use. The Viewers Window Package was largely completed and
also in general use. We had reached the stage where we had the luxury of beginning work implementing
various experimental creature comforts, such as automatically generating and updating change logs when
the user edits a file.

123 Tele-debugging is a slight variation to world-swap debugging in which the debugger runs on a different machine with a small
nub in the target world which can interpret ReadWord, WriteWord, Stop, and Go commands arriving from the debugger over a
network.

XEROX PARC, CSL-83-11, JUNE 1984

THE ROOTS OF CEDAR 21

Cedar 3.0 marked the first time that users could send electronic mail without leaving their Cedar
environment. Cedar 3.3 contained the full Walnut mail system which allowed users both to send and
receive mail, sorting their incoming messages into message sets stored in a data base which could be
interrogated in various ways.

By the end of 1982, the catalog of Cedar packages included: graphics, data bases, performance
measurement, screen management, lists, priority queues, symbol tables, remote procedure calls, random
numbers, and file comparison. Documentation was under way. Applications were beginning to appear.
Cedar was rapidly becoming an environment.

Today

1983. In March, we released Cedar 4.0, the first release in which Cedar facilities were used for both
client and world-swap debugging. Having reached this plateau, we decided to embark on a project to
design and implement the Nucleus, a replacement for the remaining major piece of software in Cedar
which had not been implemented as part of the Cedar project itself, namely the Pilot operating system. 124
At the time of this writing, that project is nearing completion, and the next major release of Cedar,
Cedar 5.0, will be built upon the Nucleus.

Meanwhile

Lest the reader get the mistaken impression that Cedar was the only programming environment
(experimental or otherwise) being developed at PARC from 1978 to 1983, while CSL was engaged in
developing Cedar, work on both the Interlisp and Smalltalk environments continued in other laboratories
within PARC.T2 This was fortunate, for as discussed in "Cedar: The Report Card," the third paper in
this report, Cedar did not achieve its initial goal of providing support for the Lisp and Smalitalk
programming styles, and therefore never became an attractive alternative to these communities.

Smalltalk

In 1978, Smalltalk had finally completed the transition from the proof-of-concept provided by the
Smalltalk-72 system to a mature programming environment, Smalltalk-76 [13]. Smalltalk-76 was the first
system to introduce to the PARC community the notion of windows and menus. It featured a mouse-driven
code browser capable of accessing the source code of all the procedures in the system, either locally or
via Ethernet access to remote servers. Code and any other text could be easily modified by a point-and-type
modeless text editor. Smalltalk-76 included a debugger that was fully integrated with the window system,
gave immediate access to source code and variable values, and allowed in-place editing of code and
resumed processing from the point of suspension. Owing to the modularity of Smalltalk’s message-passing
model (callers do not depend on callee), the total turnaround time for making a change to the system
was under five seconds. Note that most of these features of Smalltalk were also goals of Cedar.

124 There were two major reasons why it was important to eliminate Cedar’s dependence on Pilot, both stemming from the fact
that Pilot had as its primary purpose and orientation the support of a product. First, the maintainers of Pilot could not afford to
be as responsive to our needs as we would like, since their software was tied to a product release cycle. Second, since the typical
Cedar work station was so different from product work stations, both in terms of hardware, software, and style of use, many
engineering decisions and tradeoffs appropriate for one application were simply wrong for the other. A good example is the
demands placed on an operating system by the presence of garbage collection, a key component of Cedar.

+25 Although further work on the Mesa environment in CSL stopped, another organization within Xerox developed an integrated,
interactive programming development environment for Mesa called Tajo. Somewhat less ambitious in its goals than Cedar, Tajo
nevertheless included a number of EPE-related features: large virtual address space, emphasis on integration and consistency of
user interface, support for concurrent operations, a uniform screen manager and window system, and a variety of packages and

tools.

XEROX PARC, CSL-83-11, JUNE 1984

22 THE CEDAR PROGRAMMING ENVIRONMENT

From 1978 to 1983, the Smalltalk group concentrated on taking Smalltalk to the world outside
Xerox, both as an exercise in portability, and so that it could be shared and built on by other groups
with similar views about system design. There were several aspects of this work: redesigning the system
for available microprocessors, specifying and publishing a standard virtual machine definition, refining
and licensing a portable standard virtual image of the Smalltalk programming environment, and
publication of a series of books documenting the results of the Smalltalk work. This effort culminated in
1983 with the public release of the system in the series of Smalltalk-80 books from Addison Wesley, and
licensing by the Xerox Corporation of the complete Smalltalk-80 programming environment. By the close
of 1983, Smalltalk had been successfully ported to the DEC VAX, the Intel 8086, and several machines
based on the Motorola 68000.

In the process of documenting and releasing the Smalltalk system, the system itself was rewritten
almost from scratch. A number of EPE-related facilities were also developed during this period, including:
a new "Model-View-Controller" framework that enabled separation of computational models from viewing
mechanisms and became the basis of the entire user interface, a version management system, a document
editor for text and graphics, and an integrated mail system. Browsing capabilities were enhanced with
access to callers, callees and class inheritance paths. Interactive correction of common coding errors was
also considerably simplified, further reducing development turnaround time.

Interlisp

During the same period, the bulk of the Interlisp effort was also devoted to non-EPE related
activities, namely the transferring of Interlisp from a time-shared, teletype-oriented system for the PDP-10
to a display-oriented system for high-performance, personal computers. Interlisp was totally re-engineered
during this process. All of the operating system functions provided by Tenex or TOPS-20, were rewritten
in Interlisp, as well as device controllers and networking facilities. All of these capabilities were
implemented in the Lisp language itself, so that the entire system was made significantly more portable
and easier to maintain. The user interface to all of the existing Interlisp packages, such as Masterscope,
the programmer’s assistant, and the Interlisp editor, was redesigned to take advantage of the
high-resolution display.

In addition, the following EPE-related facilities were also added to the system: a process mechanism,
support for object oriented programming [3], a uniform screen manager and window system. a high-quality
text editor combining graphics and text. an integrated mail system, and performance tools.

A Tour Through Cedar

The next paper in this report, "A Tour Through Cedar," shows the state of Cedar (as of September,
1983). It contains a highly visual presentation of the current Cedar system in the form of a demonstration
of the system during which many of the components of Cedar discussed earlier, including Tioga, Viewers,
the Userexec, and Walnut, are presented and discussed. A somewhat condensed version of "A Tour
Through Cedar" appears in the Proceedings of the Seventh International Conference on Software
Engineering, March, 1984, Orlando, Florida, as well as in the April 1984 issue of IEEE Software.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 23

A Tour Through Cedar

Introduction

This paper introduces the reader to many of the salient features of the Cedar Programming
Environment, a state-of-the-art programming system that combines in a single integrated environment:
high-quality graphics, a sophisticated editor and document preparation facility, and a variety of tools for
the programmer to use in the construction and debugging of his programs. The Cedar Programming
Language is a strongly-typed, compiler-oriented language of the Pascal family. What is especially
interesting about the Cedar project is that it is one of the few examples where an interactive, experimental
programming environment has been built for this kind of language. In the past, such environments have
been confined to dynamically typed languages like Lisp and Smalltalk.

The paper attempts to give the reader the feel of the Cedar system by simulating a live demonstration.
The demonstration is actually taken from a video tape of such a live demo; the sequence of events, as
well as the dialogue, is fairly close to what a viewer of this tape would see and hear. Numerous snapshots
of the display taken at various points during the session simulate the visual information contained in the
tape. Text that would actually appear on the display during a demonstration-either because the user
typed it or the system printed it-will appear in this paper in a distinguished font. The explanations that
the demonstrator would give will be in the normal font. Observations and comments that would be
distracting during a live demonstration, but are appropriate for a paper, are included as footnotes. 126

Now let’s begin our tour.
The Display

You are looking at (see Figure 1) a bitmap display connected to my personal computer, a Dorado.t?
The figures you see at the bottom of the screen in Figure 1 are called icons. They represent objects that
are of potential interest, but not currently in active use. Some of them represent text documents, scanned
images, or other data structures that I can look at and manipulate. Others represent tools or services that
I can use. Their shapes are meant to be suggestive of their functions. For example, the icon on the lower
right that looks like a mail box represents my mail reader, called Walnut. The fact that the flag on the
mail box is up indicates that I have new mail. The icon next to the mailbox that looks like a stack of
envelopes represents my active message set. We will use both of these later in the demonstration. The
icon next to my messages is used for sending hardcopy to the printer whose name is Clover (located

126 These footnotes contain a lot of information about Cedar: why we did things certain ways, how useful a particular feature
turned out to be, etc. For some readers of this paper, the footnotes will contain the most interesting material. However, the reader
who is unfamiliar with Cedar and simply wants to get an overview might find the footnotes distracting to the flow of the
demonstration. Therefore, a good way for him to read this paper might be to ignore the footnotes on the first reading (especially
the long ones), and then come back to them later.

$27 All Dorados use as a display a high-resolution television monitor, 1024 pixels wide by 808 high. The physical dimensions of
the display are 12" x 9". Figures in this paper that show the entire display are about 1/2 scale (but full resolution). Dorados
originally used a narrower monitor, 608 by 808, but we have found that for both editing and programming tasks the extra width
was extremely desirable. In fact. many users feel that they could make effective use of even more screen real estate, and would
like to be able to connect more than one monitor to the same machine. We think that this is feasible, both from the software and
human engineering aspects; the hardware is certainly capable of supporting it. In fact, those researchers with applications involving
color already operate in a configuration consisting of a wide-screen black-and-white display adjacent to a 1000-line color monitor,
both connected to the same Dorado and maintained by the same software.

XEROX PARC, CSL-83-11, JUNE 1984

24 THE CEDAR PROGRAMMING ENVIRONMENT

down the hall), and the icon in the left corner of the display that looks like a file cabinet views the
FileTool, a facility for obtaining files from remote servers, 728

Figure 1

Initial Cedar screen layout showing various icons

Viewers Window Package

The Viewers Window Package provides the basic display paradigm for Cedar [19]. It allows users
and programs to create, destroy, move, and resize rectangular individual viewing areas called viewers. (To
a first approximation, a viewer corresponds to what is called a window in many other systems.) Some
viewers present textual or graphical data to the user; others provide the user with various forms of
control, such as access to facilities or the ability to invoke procedures. Viewers that provide access to a

+28 1In a traditional time-sharing environment, users share files straightforwardly since all files reside in the same place. In our
distributed environment, files that are created by a user on his personal machine can only be shared if they are stored on another
machine called a file-server, a computer with a large disk dedicated to the task of storing and retrieving files, to which all of the
personal machines have network access. For files that are part of the standard system, such as sources, documentation, and fonts,
the user need not be aware of where the files are stored, or whether they have already been retrieved onto his local disk-the
system takes care of this automatically for him using a version map that is built when the system is released. However, the user
must explicitly store. retrieve. and keep track of files that are not part of the standard system (but there are packages to aid him
in this task).

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 25

facility are called tools, and viewers that simply invoke a procedure are called buttons.? The FileTool
and the Walnut Mail Reader shown at the bottom of Figure 1 are examples of tools, and the nine small
boxes labeled Idle, Clean, New, et al, at the upper right in Figure 1 are examples of buttons.

The icons at the bottom of Figure 1 are also viewers, namely viewers in their iconic form. Opening
an iconic viewer tells the Viewers Package to allocate screen real estate to the viewer in the center portion
of the display (see Figure 2), thereby allowing the viewer to present its contents in a more detailed and
comprehensive fashion. Conversely, closing a viewer releases the space that the viewer currently occupies,
and causes it to be displayed in iconic form at the bottom of the screen.

The user can open an icon by pointing at it using a device called a mouse [32]. Pointing is
accomplished by sliding the mouse along a horizontal surface to position a mouse-controlled cursor on
the display. (In Figure 1, the cursor is displayed near the center of the screen as an arrow.) When the
desired location is reached, the user depresses and releases one of the three buttons located on top of
the mouse. We use the verb click to describe this act of positioning the cursor and pressing and releasing
a button. Let’s open the icon for the Clock and for the FileTool. This produces the configuration shown
in Figure 2 in which both the Clock and the FileTool viewers now occupy large, rectangular areas whose
height is nearly the height of the entire display.

Most top-level viewers (viewers that are themselves not contained as part of another viewer) include
a collection of buttons for invoking various operations associated with that viewer. For example, the
FileTool viewer includes buttons for retrieving, storing, and listing files. The user clicks a button to make
the corresponding operation happen. Often, these buttons are arranged in a horizontal array called a
menu that is displayed just below the viewer's caption, the black area at the top of each opened viewer
that contains the viewer's name. For example, if you look at Figure 2, you will see that the Clock has a
menu that includes the buttons SwapColor and ChangeOffset.T>? More elaborate menus are associated
with text viewers, as shown in Figure 7.

129 The principal difference between tools and buttons is in the number of operations and degrees of freedom they provide to
the user. Tools typically allow the user to specify a number of parameters (and retain these parameters between invocations),
whereas a button may take an argument, but essentially performs the same operation each time.

+30 The Viewers Window Package directly supports the horizontal arrangement of buttons into menus and the positioning of
such menus below the caption; the implementor simply calls a procedure specifying a viewer and a button, and the Viewers
Package does the rest. Since this is so convenient, most simple, data-presentation viewers use this facility when providing buttons.
For example. the Cedar Documentation Browser shown in Figure 5 provides a menu including the buttons Reset., Freeze, NewBox.
For viewers that represent tools, such as the FileTool shown here in Figure 2 and the WatchTool shown in Figure 15, each viewer
typically provides access to a different and unique service, requiring a different display interface. Thus, the implementor of a new
tool has to design and implement the display interface that seems appropriate for that particular task. Since the implementor is
explicitly specifying the display of the viewer anyway, he often will explicitly position within the viewer the buttons provided by
the tool. rather than using the default arrangement of menus below the caption.

XEROX PARC, CSL-83-11, JUNE 1984

26

THE CEDAR PROGRAMMING ENVIRONMENT

Sop! VET of 4-May-83 16:12:38 PDT

P lehee!

SwapColor _ChangeCffset 31 Oct 33

ede) Boot] Cmd| Open] New] Clean] Idle]

Directary
FileName(s}

Local:

DF File:

Connect, Password

Update 3>
Update
ExportsOnly
Venfy

Retrieve! Local-List! List-Options!
Gtare! Remote-List! Clase!

DFEGet! teecd-—Deletst
DFGetBoth! Remote—Deteet

Figure 2

Same screen layout after opening the FileTool and Clock viewers

is used for displaying icons.

XEROX PARC, CSL-83-11, JUNE 1984

In addition to buttons specific to particular classes of viewers, buttons for various operations that
apply to all viewers regardless of their class, such as Destroy, Close, and Switch columns, are contained
in a menu that is hidden under the caption. This caption menu is only displayed when the mouse is
actually in the caption area (it can be seen in Figures 4 and 11). Other buttons for invoking system-wide
activities, such as creating a new viewer, performing a checkpoint, and booting, are not contained in a
particular viewer but instead are included in the message area at the top of the screen (see Figure 2).
For example. the button PS (PrintScreen) is used to produce hardcopy images of portions of the screen
and was used to generate the figures in this paper. The remainder of the message area is used for
displaying various comments about the system’s status and behavior. The bottom portion of the screen

A TOUR THROUGH CEDAR 27

The large, middle part of the screen that, in Figure 2, is occupied by the FileTool and Clock viewers,
is divided into two columns. 3! When more than one viewer is created or opened in the same column,
the viewers automatically share the available space. Conversely, when a viewer is closed or destroyed,
the screen space that it occupied is then shared among the remaining viewers in its column. If a viewer
is grown, i.e., given the full column to itself, then any other viewers in that column are automatically
closed.t32 To show you how this works, I'll open the remaining icon on the left side of Figure 2, the
one labeled "Cedar” that looks like a chalkboard with erasers on its ledge. This produces the arrangement
shown in Figure 3.

131 Both the width and height of these columns can be easily adjusted by the user using the mouse.

132 This strategy of placing viewers adjacent to one another with no overlapping and no blank space is called tiling the screen.
It is one of the most widely discussed aspects of the Cedar user interface, and often leads to heated, religious debates between its
adherents and advocates of overlapping windows such as those employed in Interlisp and Smalltalk. However, regardless of how
they resolve them, each of these screen management systems deal with the following issues: (a) provide for some form of default
window placement so that the user does not have to be involved in specifying the position and size of windows if he does not
wish to: (b) allow the user flexibility with regard to screen layout (in particular, some way of overriding default window placement);
(c) strive to make maximal use of the screen real estate: (d) give the user a predictable and intuitive model about what will happen
to the display when he performs a given operation. With regard to this framework. the two screen management algorithms have
different advantages and disadvantages. For example. overlapping windows give the user a lot of flexibility with regard to screen
layout. but can lead to wasted. i.e., unused, screen space. Also, the extra degrees of freedom provided by overlapping windows
require that the user (or program) must specify additional information in placing a window. On the other hand, overlapping
windows are more economical in that no window need be larger than the information it contains. Overlapping windows also have
the advantage that the working set of active windows can be quite large, since only a small portion of a window has to be visible
for the user to have access to the window. (This effect of using the corners as handles for those windows that the user might want
access to is provided for in Cedar through icons.). However. users wind up spending a fair amount of time ensuring that the
desired corners are always visible, and even so, overlapping windows seem to have an uncanny knack for getting lost. Something
that is sometimes good and sometimes bad about overlapping windows is that changing the size or position of one does not change
any of the others.

Similar arguments can be made about various schemes for menus. Pop-up menus are more economical with screen real estate as
compared to fixed menus: they require screen space only when they are being used. However, pop-up menus do not allow the
user to know ahead of time exactly where the menu will appear, and therefore require visual feedback before the operation can
be completed. Pop-up menus also do not permit buttoning ahead, which can be annoying when system response falls behind the
user. because it requires the user to wait for the system to catch up before he can input the corresponding operation. (The hidden
caption menu in Cedar is a form of pop-up menu. When it was first introduced. users complained about the need to scan the
menu to find the desired button. and the inability to button ahead. In response to their complaints, the two most common
operations. Grow and Close, can now be invoked by simply clicking anywhere in the caption area with the middle or right mouse
button respectively. Thus. the user does not have to wait for the hidden menu to be displayed and then visually find the Grow
and Close buttons.)

Thus. there is room for considerable disagreement. It is. however, interesting to note that Interlisp is begmmng to experiment with
icons, while the use of pop-up menus is being discussed for Cedar,

XEROX PARC, CSL-83-11, JUNE 1984

28 THE CEDAR PROGRAMMING ENVIRONMENT

Su:'p" VET of 4-May-83 16:12:58 PDT

Directory

FileName(s}: Update a>
Local: Update >
DF File ExportsOnly
Connect: Password: Verify

Retnewe! Local-List! List-Options! DFGet! | Teeak-Belete!
Hrore! Remote-List Close! DFGetBoth! Remete—DBeletel

eset Freeze NewBox NewWE AddSelected Showlines Grid: | Store .

Cedar 4.4 Documentation Browser

Last edited hy: Jim Donahue July 26, 1983 4:24 pm, Jim Horning May 23, 1933 1:43 pm

This database gives s very preliminary version ot online documentation tor Cedar, It consists of * &
several Whiteboards, sach ot which contains references to ather Whitetwards, to various files that
contain important intormation and to tools that you will find useful, To browse around in it, just

MIODLE click the icons to "open” them ~ disglaying the tile or whiteboard or starting the taol.
The ToeiFox whiteboard below contains a (growing) number of Cedar toofs for your enjoyment
Also, ok out the Fricfing Riurd below tor the scoop on FARC and Cedar (o ompliments of Lyte
Ramshaw). The entire Cedar documentation is descrived in the Monuol.7 file, which contains a &
number of component 4f files with information on particular aspects of Cedar; much (hut not alf)
ot the included in Manual s is on these]

ranual N

dt : cedar- Kudos ¢nd Quaries

5 alastiny i—————includes fexamples
: o Send them along
4 to Dronahue. pa

- URM.OF

7

ipefudes

Whitedoard info

ter fave0e] B
o g

EREoral S e atmanaats]
o g o : or : Ir's part of the
Squirrel

Figure 3

Viewers for the FileTool and Documentation Browser share the left column
Whiteboards

The viewer that 1 just opened is an example of a class of viewers called whiteboards. A whiteboard
is simply a viewer consisting of a two-dimensional area in which viewers and text can be inserted,
removed. or repositioned.T33 The whiteboard at the bottom of the left column in Figure 3 serves as a
documentation browser for Cedar. Notice that not all of the information on the whiteboard is visible in
the viewer; the bottom of the viewer clips off additional information. This particular class of viewers,
whiteboards, elects to simply clip information that is not visible, rather than scaling the display to fit the
amount of screen space available, as the Clock does in Figure 5 (upper right).

133 Whiteboard viewers attempt to provide a spatial way of organizing data. They resulted from one person’s observation that he
liked to arrange material on his desk spatially. and could usually remember where he placed something more easily than remembering
under what category he filed it in a filing cabinet, or the name of the electronic file in which he stored it. Whiteboards appeared
in Cedar the following week. courtesy of John Maxwell.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 29

In order to see more of this whiteboard viewer, let's move the FileTool from the left column to the
right column using the appropriate button contained in the menu that is hidden under the FileTool’s
caption. We do this by moving the mouse into the caption area of the FileTool, which causes the caption
menu to be displayed as shown in Figure 4 (the bullseye shape in the menu is the cursor), and then
clicking the button labeled "-->". This produces the screen layout shown in Figure 5. 3

Destroy Adjust Top <-- --»¢ Grow Close (2)
Stop! VET of 4-May-83 16:12:58 PDT 5w spColor

Directory:

FileName(s) Update ax
Local: Update

DF File: ExportsOmly
Connect: Pazaword: Yerify
IRetriewe! Local-List! List-Options! DFGet! Eoeal-Beletet
Store! Remote -List! Close! DFGetBoth! -Remete-Beletel

Reset Freere NewBox NewWE Addfelected HELP Showlines Grid: 1 Store

Cedar 4.4 Documentation Browser

Last edited by: Jim Donahue July 26, 1953 4:24 pm, Jim Horning May 23, 1953 1:43 pm

Figure 4

The caption menu becomes visible when the mouse is moved into the caption area

134 Note that we could have accomplished the same result by growing the whiteboard using the Grow menu button in the same
caption menu to give the whiteboard the whole column. Or. we could have simply closed the FileTool, which would also have
caused the whiteboard to get the entire column, since it would have been the only viewer that remained in that column. Alternatively,
without changing the current arrangement of viewers, we could have viewed other parts of the whiteboard viewer by simply

scrolling it. the same as we would a text document.

XEROX PARC, CSL-83-11, JUNE 1984

30 THE CEDAR PROGRAMMING ENVIRONMENT

Screen L press written. 5 a= Boot Cmdl Open] New] Clean]ldle
eset reeze NewBox few ddSelectad HEL Showlines Grid: 1 Store SwapCaolor _ChangeOffset lSeE B3
Gedar 4.4 Documentation Browser * »

Last edited by: Jim Donahue July 26, 1983 4:24 pm, Jim Horning May 23,1963 1:43 pm

This database gives & very preliminary version of online documentation for Cedar, It consists of . ‘
several Whitehoards, each of which contains references to ather Whitehaards, o various files that
contain important mmrmanon and to tools that you will find useful. Tobrowse around in it, just
MIDOLE click the icans to "open’ them - displaying the file or whiteboard or starting the too.

The ToolFox whitehoard below contains a (growing) number ot Cedar t00ls for your enjoyment,
Also, check out the FriefingBiurd below for the scoop on PARC and Cedar (compliments of Lyle

Ramshaw). The entire Cedar documentation is described in the Morue!.d7 file, which contains a a =
number ot component dt files with information on patticular aspects of Cedar; much (bt not alf) =
of the i ion included in Manualdt is di on these whi
anual Kados ané Cueries
At cedar - “
L RM.OF i nclude ————includes Jesamples
o Send them along
3 to Donahue, pa . +
/A iy S Tudes
Whitedoard info i quiratooe | |
= cedarsryle seneral tens |
o o o I It's part ot the
Sruirrel
stopl VET of 4-May-83 16:12:58 PDT

To find out more shout the structure of Cedar, browse the Whiteboards given below—they provide
intormation about the basic operation ot Cedar, the Cedar Language, the major components of the Dirsctary
Cedar system (things yow'll end up nsmg all the time), the mast widely used Cedar tools (like the

mail system, the file tool, etc.) and the important programming intertaces of Cedar, Also, read the | | FrieNameis): Uy
Introduction reterenced below—it gives important general intormation ahout Cedat, Local: 1y

- DF File: Ex

i | Basics Language | |cempanents | | Tools Interfaces | | ToolBox games Connect: Fassward: el

M0ga
Retnieve! Local-List! List-Options! LEGe! Leeat—Ed
Store! Remote-List! Class! DEGetBoth! -Resmote]
The Brieting Blurd
eriefing- aoseary
The truth about PARC and Cedat (from Lyle Ramshaw) Blurts 10ga
everything you want to know about the local environment tioga
tincluding some hints for gracious living), The glossary
provides all the "PARC-speak” that you will need to
Cedar History R . | WHITEBOARD INSTRUCTIONS:
(More Getaited 1nfo in SquirrdDiontiagal
Here are references to the collection of LEFT => move entity
CSL-Wotebook entries that document CTRL LEFT => delete entity
:mpomm pieces of Cedar history; to WIDOLE => open icon
by SHIFT MIDDLE => open full sized
No(ebo to the UserExec first RIGHT =

Figure 5

The Cedar documentation browser

Online Documentation

The Cedar Documentation Browser shown in Figure 5 uses a whiteboard viewer to display a data
base for the online documentation for Cedar [5]. About halfway down this whiteboard is a row of icons
for seven other whiteboards: Basics, Language, Components, Tools, Interfaces, ToolBox, and Games. We
can find out more about any of these aspects of Cedar by browsing the corresponding whiteboard. To
do this, we follow the instructions displayed in the lower right corner of the whiteboard: we move the
mouse into the corresponding icon and click the middle button. This will cause a new viewer for the
corresponding whiteboard to be created and displayed.Jr35 For example, let’'s open the Components
whiteboard, which includes whiteboards for various important components of Cedar such as the Viewers
Package, the Tioga editor, and the UserExecutive. The Components whiteboard in turn contains an icon
for the Vlewjrers Package whiteboard. If we middle-click this latter icon, we get the configuration shown
in Figure 6.

135 The system will automatically obtain the necessary information from the corresponding data base, which is stored on a
file-server. All of this happens reasonably quickly (a few seconds).

136 1In order to obtain the screen layout shown in Figure 6, [also moved the Viewers whiteboard to the right column, made it
full size, and slightly readjusted the width of the columns. Having already explained how viewers are moved and changed, I will
refrain from itemizing each and every such operation for the remainder of the paper.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 31

Cedar 4.4 Dooumentanon Browser The Viewers Gomponent of Cedar edar
Last edited by: Jim Donahue July 26, 1983 4,24 pm, Jim Horning M4 The Viewsrs Window Package is the arbiter of the user input and display
hardware in the Cedar pro(nmmmg environment, It provides the illusion to the
that there is a private dlsplay mouse and keyboard associated with each
This database gives a very preliminary version of online documentation fol application, while allowing the user to simultanecusly interact with many such Component
several Whitehoards, each of which contains refarences to other Whiteboag applications.
contain important intormation and 1o tools that you will find useful, To brf The basic obj
ject manipulated by client programs and visible 1o the user is the
g;‘m;‘ "I‘;’k the jcons to "open” them -- displaying the file or whiteboard viewer. a rectangular area with arbitrary contents which may e made visible on the
® ToolBox Whiteboard below contains a {growing) number of Cedar toold user msplay A viewer takes its name in that it allows the human user to view and
Also. check out the Bne?msﬂ!um below for the scoop on PARC and Cedi interact with the data with a Cedar The r
f“‘"'g""’" The 9"“:’9 P ‘ﬁ“" M":r‘:""“‘“‘“"‘" is de*“‘b‘” 1"‘ the M. ‘"‘"“’ éd applications software has complete control over the displayed contents of a viewer owars
n;| et of component .dt tiles :}' mx‘o;ma ion on particular aspects of Cef and has available a rich user interface for user input, The screen position and size of
ot the included in Manualdt on these a viewer may be moditied ty the user as well as under program conteol,
Manual N The document /Indige/Cedar/ Docamentation/Viewer Doc tzoga is written for the
o Y foadar - Kudos programmer intending to use the Viewers Window Package to build a new
¢ . y——‘”“‘l'“"‘ ———ncludes J camples application. It is organised along the broad areas of functionality that the Viewers
of Seny system provides and attempts to explain design theory and some pragmatics, For
to Don examples of usage, see the references within each section, and for exact details
1pefodes in ludes consult the interfaces directly, Below we give some of the vasic Viewer interfaces.
P o [win : —
TartareD: redu rgie sereral || stranuai] Basics Buili-in Classes
or or g o g or g 1]
| l Sauirre ‘The definition of the Viewers data A handy collection of Viewer classes (eg.,
structure and the set of basic operations on Buttons, Labels)
eset Freeze NewBox New! AddSelec ShowLines_ Grid: fewers (Create, Destroy, Paint, etc.)
r- jieweraps ewertoo: chorce- onainers | B Juatats umber -
Important Cedar Components Ghasses “nasa mess nesa Burtons s mesa Labets
mesa masa mess
The components of Cedar that you are likely to use most includ
Viewers (the Cedar window manager),
Tioga (the Cedar editor), e et tans,
3 > ons
the UserExen, ‘ nesa
Cypress (the database system), Tefinition and Menus
’ Management - .
For each of these components, we give the DF tile containing all ot the so Defining new entries
with turther i on the i and a default coflection
companents provide, irons
mesa mesa
Jmeruas
mesa imesa
Wiewers Juiawer < Tinga Tioga.df UserExes sertiec
ar)
Anyd there’s more
Additionally. there are a large number of nther Fomponents of Cedar that imo“l;rl\‘iég;eﬂace Summary section of the Viewers Documentation gives all of the relevant
The place to look tor them is in the Cedar,catalog and the Cedar and ISL
most recent ot which is given below)

Figure 6

Browsing the documentation using whiteboards

The whiteboard for the Viewers Package that appears on the right in Figure 6 includes icons for the
various public interfaces of the Viewers Package, as well as an icon for the Viewers Package online
documentation contained in the file ViewerDoc.Tioga. We can cause this documentation to be displayed
using the same method as we did to display the whiteboards, namely by simply moving the cursor into-
the icon and clicking. 37

137 We have placed a great deal of emphasis in the design of Cedar on uniformity of command interface. In fact, "Uniformity
in Command Interface” was one of the items in our catalogue of desired programming environment capabilities (see Appendix 2
of this report). "What is important about a standard user interface package is that the user be able to confidently predict the
general manner of interaction with a program that uses the package, even though he hasn't experienced it yet; and that by and
large. the user will be right. This has been called the Law of Least Astonishment” [8]. Here is -a testimonial from a new user
regarding the user interface in Cedar taken from an electronic message sent to the Cedar implementors (the user has used the
word "integration” where the author would have used "consistency” or "uniformity"): "I can’t praise you all enough for the way
that integration ‘helps a beginner when he encounters it. ['ve started using Clean and wanted to throw away some stuff from my
MRU cache. ‘How to do that? Well, what works other places? Control ... control-left-click. Got it in one. Ahhh, wonderful.
Novice user feels smart. happy. wishes to learn more. More integration, please."

XEROX PARC, CSL-83-11, JUNE 1934

32 THE CEDAR PROGRAMMING ENVIRONMENT

Get & Save Time 3plit B
Find WDrd Def Pusmon Normahze PrevPlace Reselect
FirstLevelOnly MoreLevels FewerLevels AllLevels The Viewers Component of Cedar

Inter-Office Memorandum

The Viewers Window Package is the arbiter of the user input

To Cedar Interest Date December 21, 1982 hardware in the Cedar programming environment, It provides th

. programmer that there 18 a private display, mouse and keyboard aj

From Scott MeGregor Locaton Palo Al npplmanon while allowing the user to simultaneously interact wi
applications,

Subject The Viewers Window Package CQrganization PARC/ISL The hasic abject manipulated by client programs and visible t

viewer; a rectangular area with arbitrary contents which may be
nser display, A viewer takes its name in that it allows the human|
XEROX interact with the data associated with a Cedar application, The u

applications software has complete control over the displayed con|
and has available a rich user interface for user input. The screen
a viewer may he modified by the user as well as under program c

The document /Indigo/Ceddr / Documentation/Viewer Dot 4ic)
ogrammer m(snamg o use the Viewers Window Package 1o buil
application, Tt is organised along the broad areas of functionality

Filed on: [Indigo]<Cedar»DocumentationViewetDoc. Tiags and ViewsrDac Press, system provides and attempts 1o explaifl design theory andt some
i examples of usage, see the references within sach section, and for
Documents: [Indigo)<Cedar>Viewsrs>Viewers.df, as exported by the Cedar boot file, consult the interfaces directly, Below we give some of the basic ¥
Basics Buiit-in i
The Viewers Window Package The definition of the Viewers data 3 A handy
structure and the set of basic operations on Buttons, Label
Viewers (Create, Destroy, Paint, etc)

Disclaimer fuiewer - Juiewerops P Jehaice - an
classes mesa mes3 mesa Buttans mef
mesa meza

Introduction

Icons
Tee: out - N
Screen Layou Detinition and Menas
a . .
Management Detining new entries
: and a default collection
Viewer Classes iconis
mesa meza
fers
mess mesa
Viewer Instances

Predefined Viewer Classes And there’s more

The Interface Summary section of the Viewers Documentation)
information

Implementation Guidelines

Figure 7

Online documentation for the Viewers Package
The Tioga Editor and Document Preparation System
The text viewer that appears in the left column of the display in Figure 7 is the on-line documentation

for the Viewers Package itself, in the form of a Tioga document. Tioga is both the editor for Cedar
programs as well as its document preparation system.t3 3 In Tioga, a document is a tree

138 Tt is worth pointing out that the Viewers Package documentation shown in Figure 7, as well as all Cedar documentation, was
prepared using the Tioga editor. as was the paper that you are now reading. When hardcopy is needed, the Tioga typesetter
(represented by the printer icon shown at the bottom of Figure 7, fourth icon from the right) is used to generate high-quality
hardcopy from the document and send it to the corresponding printer.

139 In many environments, document production systems are frequently de-coupled from text editors, e.g., Scribe, TgX, Pub.
"One normally takes the text that one wants to include in a document, wraps it in mysterious commands understood by a document
processor, feeds it to that processor, and puzzles over the resulting jumble of characters on the page. In short, one programs in the
document processor's language using conventional programming tools-an editor, a compiler, and sometimes even a debugger.
Programmers tend to think this is neat; after all, one can do anything with a sufficiently powerful programming language. However,
document processors of this sort frequently define bizarre and semantically complex languages, and one soon discovers that all of
the time goes into the edit/compile/debug cycle, not into careful prose composition” [23].

At PARC, we favor the WYSIWYG (pronounced whiz-ee-wig) approach to document preparation systems. WYSIWYG is an
acronym for What You See (on the screen) Is What You Get (on paper). A single program provides both. the usual editing
functions and a reasonable collection of formatting tools. You can’t program a WYSIWYG editor as you would a document
compiler. but you can get very tolerable results in far less time.

Strictly speaking, Tioga is not a WYSIWYG editor; there are various operations performed by the typesetter in producing hardcopy
that are not faithfully reproduced on the screen, such as filling and justification. (Mostly, this is a performance issue.) However,
Tioga certainly inherits the spirit of WYSIWYG editors.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR | 33

structure of nodes rather than a list of paragraphs so that a hierarchical structure can be ‘explicitly
represented. Successive levels correspond to greater levels of detail, and the viewer of a Tioga document
can be instructed to suppress the display of all nodes deeper than a certain level. For example, in Figure
7 only the top level of nodes are shown, thus effectively providing a table of contents.

In combination with scrolling, the use of levels in Tioga makes it easy for the user to browse through
a document or program source and quickly find the part that interests him. For example, let’s scroll to
the section entitled "PreDefinedViewer Classes” %0 and click the MoreLevels menu button at the top of
the viewer. 4! This allows us to see one more level of detail, the titles of subsections, as shown in Figure
8. '

pSes

Ger mpl PrevFile Stere Save Sphit aces Levels Changelog Reset Freeze NewBox
Fm-S Waord Def. tion Normalize PrevFlace R-selec'
FurstLevelOnly relevels FewerLevels Alllevels The Viewer

Predefined Viewer Classes

The Viawars Wi
hardware in the Ces
programmer that th
application, while a

Listed below is a set ot viewer classes for client use with implementations provided in the Cedar
hoat tile.

Buttons

applications,
Containers The basic object
viewer; a rectanzu)f
Labels user display. A vief
interact with the dal
Rules applications softwar]
and has available a
Text a viewer may be m

The document
programmer intendi|
application, It is or]

system provides ang
examples of usage.
consult the intertacd

Implementation Guidelines

The procedures and variables in a viewer were desizned o support a particular style of
implementation tor new classes. Many of the procedures and variables were added specitically 1o
help solve some Zeneral probilem of COncurrency or user interaction. Implementors are not required
10 use these procedures, but they should only depart from them when they have good reasons, Basics

The best way 1o write a user application that uses Viewers is to first write a applications package
accessible o client programs and then make a thin veneer over it tor users. It is tempting t tailor
it your implementation 1o the user interface, but this temptation should be resistes. Mo matter how

user-oriented your program is. some user some day will want to write a program that uses your
application directly. It is best that you prepare tor that eventuality now.

The detinition of
structure and the sef
Viewers (Zreate, D

. e - swarng:
There are tour difterent ways that a particular function in your program could be invoked prioe "
notification of an user event through the Wotify Proc, 8 call on a pre-defined function in the Viewers masa

class (such as set, get, and save). invokation through a button or menu item on the viewer, and &
client call on an interface you export, If you use more than one of these paths to invoke a function
you should be absolutely certain that they all have exactly the same semantics, The best way to do
This is 1o have them all call the same procedure. Thus the NotifyFroc that handles special user

actions should do no more than gather and dispatch to that are detined in an Teons
intertace exparted by your program. The same should be true of procedures that are invoked with X
tmttons and menus. Detinition and

eme
The functions ‘create” and “destroy’ are special functions in the Viewers world. £11 of the Management

creation and destruction that is necessary for a particular Viewers class should happen in the class’s
InitProc and DestroyProc. In particular it is very important that all of the menu construction, ons
sub-viewer creation and private data initialization happen in the InitProc. This allows the Viewers mez3,

package 1o create and destroy instances of & class without having to know about interfaces exported
by the class's implementation. This is important since opening a deskiop sometimes requires the
re-creation of & viewer that the user had destroyed. All that the Viewers package can o is call
ViewerO, ateViewer[viewerFlavor. into: [name: viewerName]] and hope that this is sutficient
10 create and initialize the viewer. Application tools should create their own viewer's Class just so
they can have their own InitProc, even if there is never more than one instance of the tool,
Similarly. ViewerOps Diestray Viewse[viewer] should be all the Viewers parkage needs 10 make sure
that the viewer has cleaned up all of its internal data structures, (Cleaning up internal data
structures includes breaking circular links so the garbage collector will reclaim the storage.)

And there’s m

The Intertace 5
information

M

and Keyhoard Iny

 ompanents

Figure 8

Browsing a Tioga document using level clipping to suppress detail

+40 Scrolling is accomplished by moving the mouse into the scrollbar, a vertical area at the left side of a viewer, and then clicking
the mouse. The cursor (the double vertical arrow) is in the scrollbar in Figure 8, causing it to be displayed as a grey bar. The
darker part of the scrollbar represents the part of the document that is currently visible. The user scrolls the viewer up by an
amount equal to the distance from the mouse to the top of the viewer by clicking the left button on the mouse, and scrolls down
a like distance by clicking the right button. Clicking the middle button scrolls the viewer by an amount proportional to the position
of the cursor in the viewer. For example, if the cursor is 1/3 of the way down from the top of the viewer, scroll to 1/3 of the way
from the beginning of the document.

141 The more advanced user can perform this same operation with a single action by holding down the SHIFT key while scrolling.
This is an example of our concern for an efficient interface for experts. Many systems that boast of being extremely easy to use
have the drawback that they do not allow the experienced user to become much more proficient with the system than the novice
user. For experts. the desire for common operations to require a minimum of effort can be more important than the desire for the
greatest possible simplicity in the user interface. However, in order to protect novice users from accidentally invoking an esoteric
operation and becoming confused. each user of Cedar specifies in his user profile his user category: Beginner, Intermediate, or
Advanced. For users that are Beginner or Intermediate, certain commands and operations are disabled.

XEROX PARC, CSL-83-11, JUNE 1984

34 THE CEDAR PROGRAMMING ENVIRONMENT

Clicking the MoreLevels menu button again would show yet further detail, i.e., the contents of the
subsections entitled Buttons, Containers, etc. Now let’s scroll back to the beginning of the document and
I'll briefly demonstrate how the Tioga editor works. »

The Tioga editor allows the user to select individual characters, words, or entire nodes or branches
(a branch is a node plus all of its children). For example, I can select the word "environment” in the
first paragraph of the introduction (see Figure 9) by pointing at it and clicking the middle button of the
mouse. This does two things. First, it establishes the input focus, i.e., tells the Viewers Package that any
characters that I type should be seen and interpreted by this viewer, not by some other viewer also
waiting for input. Secondly, clicking the mouse in a Tioga document tells the Tioga editor the location
of the current insertion point, in this case, immediately following the word "environment." 142 Tioga
indicates the current insertion point on the display by the appearance of a blinking caret. (The caret can
be seen in the third line of the first paragraph, just after the word "over.") Basically, what all this means
is that to use Tioga, you simply point and type and the characters are inserted into the document at the
place where you pointed. Figure 9 shows the state of this document after I pointed at the word
"environment" in the second line of the first paragraph and typed "Here | am in the process of inserting
material: the quick brown fox jumps over."

ma}' be atnle 1o find a more recent version on [Inmgo]{CedarViewers>waersﬂhpwerDuc tmﬂa

Introduction

The Viewers Window Package is the arbiter of the user input and n:iispla:,r hardware in the Ced
prooramming environment Here T am in the process of inserting material: the guick brown fox
jumps over, It provides the illusion to the programmer that there is a private dl“pl&j, mouse and
keyboard e('seocmted with each application, while allowing the user to simultaneously interact with
many such applications,

The basic object manipulated by client programs and visible to the user is the viewer; a
rectangular area with arbitrary contents which may be made visible on the user display, A& viewer
takes its name in that it allows the human user to view and interact with the data associated with 3
Cedar application, The undetlying applications software has complete control over the displayed
contents of a viewer and has available a rich user interface for user input, The screen position and
size of a viewer may be modified by the user as well as under program control,

This documentation is written fot the programmer intending to use the Viewers Window Packal
to build a new application, It is organised along the broad areas of functionality that the Viewers
system provides and attempts to explam design theory and some pragmam:s For e.-'amples of usag
see the references within each section, and for exact details consult the intetrfaces directly, One
pmm of nmanon used throughout t]’llS document, client refers to a program calling the Viewets

Figure 9

Inserting characters into a Tioga document

142 When the user selects the space between two characters, the insertion point is unambiguous. For other selections, e.g.,
character, word, node, etc., the insertion point is taken as the end of the selection closest to the actual position of the mouse when
the selection was made. For example, if I selected the word "environment” by pointing at the "o" or any character to its left. the
insertion point would be at the beginning of the word, whereas if I selected the second "n" or any character to its right, the
insertion point would be at the end of the word. This arrangement is fairly intuitive and works out quite well in practice.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 35

Commands can be given to Tioga using various control keys, e.g., typing a character while the CTRL
key is depressed"r43 For example, I'll undo the insertion I just made with a single keystroke. This ability
to undo arbitrary editing operations allows the user to recover from mistakes.

Another command that I can give to Tioga is to change the way characters appear by changing their
looks. T4 For example, let me emphasize a sentence of this document to draw it to your attention by
making it appear in a larger font and underlined (as shown in Figure 10).745

B
The Viewers Window Package e
Vig
Disclaimer Viewer -
clazzes
This document is currently in progress and hence is incomplete (as witnessed by a number of meza
sections not yet written), It reflects the state of the Viewers package for Cedar version 4.0, You
may be able to find a more recent version on [Indigo]<CedarVievers» Viewers: ViewerDoc, tioga,
Ie
Introduction
I

The Viewers Window Package is the arbiter of the user input and display hardware in the Cedar
programming environment Here I am in the process of inserting characters, 1t provides the

illusion to the programmer that there iz a private display, mouse and kevooard icons
app fg the user to mmuItaneousiy mesa

The basic cbject manipulated by client programs and visible to the user is the viewer; a
rectangular area with arbitrary contents which may be made visible on the user display, A viewer
takes its name in that it allows the human user to view and interact with the data associated with a
Cedar application, The ufderlying applications software has complete control over the displayed
contents of a viewer and has available a tich user interface for user input, The screen position and A
size of a viewer may be modified by the user as well as under program control,

This documentation is written for the programmer intending to use the Viewers Window Package
to build a new application, It is organised along the broad areas of functionality that the Viewers
system provides and attempts to explain design theory and some pragmatics, For examples of usage,
see the references within each section, and for exact details consult the interfaces directly, Cne
point of notation; used throughont this document, ciient refers to a program calling the Viewers

\| Components
g Y Al Enes

Figure 10

Changing fonts

as such. is self documenting;: if the user does not know the particular key and mouse combinations to invoke an infrequently used
operation. it is still an easy matter to perform it using the EditTool. The EditTool also provides the user with some additional,
powerful capabilities not available through the keyboard, such as the ability to specify fairly complicated search operations and
patterns. as well as to construct sophisticated macros.

44 The documentation for Tioga explains its underlying structure as follows: "Each node in a Tioga document contains text.
The characters of the text can have /ooks which control various aspects of their appearance such as font and size. Appearance is
also influenced by the format of the node which determines things such as vertical and horizontal spacing. The document contains
names of looks and formats. but not the specific interpretation of them. The interpretations are instead collected in a style which
can be shared by many documents. [For example, in the style for this paper, there are definitions of formats for headings,
quotations, and program output. and similarly. there are definitions of looks for emphasis and for small caps.] Rather than copying
the specific details for the formats and looks. the document refers to them by name so it is easy to change the definitions in the
style and modify the appearance uniformly throughout the document” [22].

145 Notice that to accomplish this font change, T do not insert commands into the document to change the font, but give the
command directly to the editor. and see the result of the command immediately take effect.

XEROX PARC, CSL-83-11, JUNE 1984

36 THE CEDAR PROGRAMMING ENVIRONMENT

The sentence that I underlined makes an important point: users can and do make heavy use of
parallelism in Cedar. It enables them to start one task before another has finished, and to switch back
and forth among several tasks, such as editing, compiling, reading mail, etc. T46

Pestpey Adjust Top <-- --» Grow Close

Clear Resetr Get Getlmpl PrevFile &Stepe Save Time Split Places Lewvels Changelog
Find Word Def Position Normalize PrevPlace Reselect

FirstLevelOnly MorelLevels FewerLevels AlllLevels

Inter-Office Memorandum

To Cedar Interest Diate December 21, 1982
From Scott McGre'gor Location Palo Al
Subject The Wiewers Window Package Organization PARC/ISL

XEROX

Filed on: [Indigo]<Cedar>Documentation *ViewerDoc. Tioga and ViewerDoc Press.

Documents: [Indigo](Ceda.r>Viewers>Viewers.df, as exported by the Cedar boot file,

The Viewers Window Package

L DNicalaixmor

Figure 11

The Destroy menu button is guarded to prevent accidents

We aren’t going to be needing this viewer, so let’s destroy it using the Destroy menu button which
is also contained in the caption menu. Notice that the Destroy button in the caption menu in Figure 11
has a line through it (whereas the Destroy menu button in Figure 4 does not). This indicates that the
button is guarded. Guarded buttons must be clicked twice in a short time interval to take effect. 47 This

46 To facilitate this parallelism. we have pursued in the design of the Cedar user interface what might be called the Principle
of Non-Preemption: "Individual interactive programs operate in a non-intrusive manner with respect to the user’s activities. The
system does not usurp the attention and prerogatives of the user, A program responds to the user’s stimuli, but then quietly retains
its context and logical state until the user elects to interact with the program again, not (for example) monopolizing the resources
of the computer” [8]. This is especially important in an environment such as ours where the use of personal machines encourages
(and makes socially acceptable) using the time when the user is thinking or the time between keystrokes for performing various
background processing, e.g.. sending and receiving mail, printing, recompilation, and database maintenance. Such activity loses a
lot of its utility and attractiveness if the user is continually forced to deal with unexpected interrupts from these background tasks.

47 The first click removes the guard. If a second click does not occur within a specified interval (about five seconds), the guard
is restored. We feel that this interface is preferable to having the system enter into a confirmation mode; the latter would violate
our principal of non-preemption.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 37

is to guard against the user’s inadvertent destruction of useful work. For example, the first time any edits
are made to a Tioga document, the Destroy button automatically becomes guarded. Similarly, the
Local-Delete and Remote-Delete buttons in the FileTool (see Figure 2) are also guarded. Let’s go ahead
and destroy the viewer in Figure 11 anyway and see what happens.

| Components

| bocuments
| List

Figure 12

Recovering lost edits

In the lower portion of the screen, a new icon labeled UnsavedDocuments List has been created. If
1 were to open this icon, it would be found to contain: "The following files were edited but not saved.
They may still be restored with edits intact simply by loading them. If you really want to get rid of the
edits. load the file and hit Reset." i.e.. I can still get my edits back if I really want them.

Such touches as undoing, guarded buttons, and the ability to recover destroyed edits, are what some
might describe as frills. However, we believe that they contribute a surprising amount to programmer
productivity. They allow the user to move ahead quickly with the confidence that he will be able either
to avoid disaster or to recover from it. We have placed a great deal of emphasis on them in the design
of Cedar.

The UserExecutive

An increasing number of users of Cedar are non-programmers; they use Cedar to prepare documents
and read and send mail. However, Cedar is primarily a programming environment. So let us now focus
our attention on the programming aspect of Cedar. To do this, I'll open up a UserExecutive. Notice that
I said a UserExecutive, not the UserExecutive. Consistent with our philosophy of providing parallelism,
there can be several instances of the executive, each with its own state, and performing its own operations.

XEROX PARC, CSL-83-11, JUNE 1984

38 THE CEDAR PROGRAMMING ENVIRONMENT

Each instance of an executive is associated with a viewer called a Work Area through which the
user interacts with the executive. Commands are typed to the executive by typing to this viewer, and
output from the executive is displayed in the same viewer. At this point in the demonstration, there is
only one instance of the executive; it is associated with the icon at the lower right of Figure 7 that looks
like a scroll and is labeled "A: Executive." I'll open this icon in the usual way, and then move the mouse
into the resulting viewer and click it. In Figure 13, the caret is in Work Area A indicating that this
UserExec is now listening to me, i.e., it will see the characters that I type.

Figure 13

A UserExecutive waiting for commands

The Cedar UserExecutive implements various standard executive functions such as accessing the
directory system, compiling, binding, loading, and running programs. Each interaction with the
UserExecutive is called an event, and consists of a command name, followed by any parameters. The
user can request explanatory information about a command or its arguments by typing "?". For example,

&7 run?

Run Load and Start the named programs. T8

+48 Text that actually appears on the display, either because the user typed it or the system printed it, will be in this font. The
reason this event is number 7 is that it was preceded by six events-consisting of various initializations to prepare for making the
figures for this paper. The Work Area has been scrolled so that these events are not visible since they are not of interest.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 39

The "?" indicates that I want to see more information about the preceding subject, in this case, the
run command. The UserExec tells me that this command is used for loading and starting programs. I'l
use the run command to run the program Watch, which is a performance monitoring tool that periodically
samples and displays the words allocated, cpu load, and page faults.

&8 run watcch
watcch -> watch
Loaded and started: watch.bcd

I misspelled the name of the program to be run. In most systems, this would cause some sort of a
FileNotFound error to occur. Instead, the Cedar spelling corrector was invoked, and given the name
"watcch” and the context "a file to be run," quickly (a few seconds) produced a file which was reasonably
close in spelling. The executive then loaded and started the corresponding program, which created the
Watch tool box icon shown at the bottom of Figure 14.749

&7 ron’

run Load and Start the named programs.
&8 run watcch

watcch -N Watch

Loaded and started: Watch.bed

&9.«

Figure 14
Loading and starting the Watch program

+49 Some tools supply their own icon. such as the FileTool and the TypeSetter (the printer icon). The toolbox icon employed by
the Watch tool is provided as the default icon for those tools that do not. Not every implementor is artistic enough to design his
own icon, though icon art is flourishing (some would say getting out of hand!).

XEROX PARC, CSL-83-11, JUNE 1984

40 THE CEDAR PROGRAMMING ENVIRONMENT

The automatic correction of "watcch” to "watch” is an example of what we call DWIM, short for
Do-What-I-Mean. The Cedar DwiM facility is patterned after the Interlisp DWIM facility in philosophy
and style [31].750

+50 DWIM is an important part of Interlisp. In fact, is has been cited as one of the most impressive features in the Interlisp
system [25]. Nevertheless, the reaction of the Cedar user community to DWIM has been mixed, and serves to highlight some of
the basic differences in style and philosophy between the Lisp and Mesa communities (most Cedar users come from the Mesa
community). Historically, Mesa programmers have never really had the opportunity to develop their programs interactively in the
sense that Lisp programmers do: when a change is required in a Mesa program, the programmer has to edit his source, compile
it, correct syntactic errors (except for minor changes, it is unusual for a program to compile successfully on the first attempt),
recompile, and then reload the program, before he can evaluate the effects of his change. For programs that change the system in
some global way so that multiple instances of the same program cannot be simply loaded on top of one another, the programmer
may even have to reboot (reload the system), or at least rollback to a previously established checkpoint, before he can load his
program. Running.on Dorados, we have been able to reduce this turnaround time to the order of minutes, rather than hours (or
large fractions thereof), as was often the case in the Alto Mesa world. Nevertheless, the situation is still qualitatively very different
from that of the Lisp programmer who can make a change and see the effect of his change immediately. Furthermore, as Erik
Sandewall has observed [25]: "The average Lisp user often writes a program as a programming experiment, i.e., in order to develop
the understanding of some task, rather than in expectation of production use of the program. The act of developing the program,
not the act of running it, constitutes the experiment” [25]. During the course of such an experiment, the Lisp programmer expects
to have to change his mind and his program many times. The Interlisp system also provides a general undo capability for allowing
the user to reverse the effects of changes that he makes.

As a result of these factors, the average Mesa programmer tends to put more thought and planning into each change, and to
proceed at a slower, more deliberate pace in interacting with the system when compared with the average Lisp user. Because of
this philosophy of "go slowly, don’t make mistakes because they are expensive to correct,” Mesa users tend to make fewer careless
errors when interacting with the system than Lisp users, so that the utility of DWIM is correspondingly reduced. However, the
general consensus is that a DWIM facility for dealing with simple syntactic errors detected by the compiler would be well received
by Cedar users.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 41

I'll open the Watch icon, and then we'll observe the Watch tool in action as I execute another event
in the UserExec (see Figure 15).T51

&7 Tun;

Tun Load and Start the named programs.

&8 run watcch

watceh - Watch

Loaded and started: Watch.bcd

&9 list *.press

figurel.press 105472 31-Aug-33 12:09:06 PDT
figurel.press 105472 31-Aug-83 12:09:29 PDT

| Words 913144 10000

CPU Load
Faults 605§ 1 3 10 30
requests 16218 disk 4423 gfi 108 mds 27 VM 3593 VM run 2465
16000 done. (GC#45 got 17194 words, 1305 objs)
Sample|(interval| 2 CIFS status (inverted iff active)

T ;-&-}\ AR
23 P>
e 2 X "

1000

Figure 15
The Watch tool in operation

151 Cedar programs are often written in expectation of production use of the program. Thus, performance monitoring and tuning
is an important issue to Cedar programmers, and "Dynamic Measurement Facilities" was one of the items in our catalogue of
programming environment capabilities. The Watch tool is just one example of a number of such tools available in Cedar. Watch
is used to give a rough answer to the question "What's it doing” (Watch is also used to answer the question "Is the system still
alive?" when an operation seems to be taking an extraordinarily long time.) A much more elaborate and precise performance tool
is the Cedar Spy. developed by John Maxwell. "With the Spy, the programmer can see which procedures are consuming CPU
cycles. which are causing page faults, which are using the allocator, or which. are calling a particular procedure. When the
programmer narrows his focus to just one process, the Spy will tell him where that process is spending its time, where it is waiting
on page faults, where it is waiting on monitor locks, where it is waiting on condition variables, and when it is preempted by other
processes. In addition. the programmer can measure precisely what he is interested in since the Spy provides a facility for setting
breakpoints to determine where the Spy should start and stop its measurements" [18].

XEROX PARC, CSL-83-11, JUNE 1984

42 THE CEDAR PROGRAMMING ENVIRONMENT

The Interpreter

One of the valuable lessons we learned from Interlisp and Smalltalk was that the availability of an
interpreter greatly facilitates debugging and testing, even when the programs being debugged are
themselves totally compiled.’r52 Thus, the Cedar interpreter is an important and integral part of the Cedar
environment, despite the fact that Cedar is a compiler-oriented language.’fs‘3

To show you how the Cedar interpreter works, let’s interpret some Cedar expressions. I'll create an
interpreter Work Area by clicking the New menu button at the top of Work Area A (Figure 16).’r54

+52 Actually, all Smalitalk expressions that are input by the user are compiled before execution, although it is not clear that
Smalltalk users are (or need to be) aware of this operation. The important point is the ability to create and execute program
Jfragments in a specified, dynamic context. Whether this is done via a separate interpreter, as is the case with Interlisp, or by
compiling each expression. as Smalltalk does. is simply an implementation issue. We originally had hoped that Cedar could obtain
the benefits of an interpreter by appropriately reconfiguring the Cedar compiler. However, the Cedar compiler, having evolved
over several years under several implementors, turned out to be so monolithic as to make restructuring it intractable (almost as
difficult as starting over from scratch), and so we were forced to implement a separate interpreter.

§53 The availability of a source-language debugger was one of our priority B items in the original EPE report [8]. We felt that:
"It is essential that the programmer be able to debug using the same language constructs and concepts used in writing the original
program” [8]. To a large extent, we have been successful in meeting this goal with the current Cedar Interpreter. With respect to
other uses of the interpreter, the interpreter has not yet reached the stage where it is robust enough, or performs well enough, to
allow and encourage the kind of parameterization of programs by expressions that is employed routinely by Lisp programs. The
reason for this failure is partly that, for historical and cultural reasons, Mesa programmers simply tend to write applications in a
different style than Lisp programmers. However, another reason is that in Cedar, the interpreter was viewed principally as an
enabling facility for source-language debugging, and less thought and effort were devoted to the use of the interpreter as a package
to be invoked by applications programs. Since the availability of an interpreter with low overhead at runtime was rated as only a
priority C item, and program-manipulable representation of programs was rated even lower than that, the current state of affairs
is not surprising. (There is some debate on this point; some members of the Cedar project do not agree with the author’s
conclusions.)

54 Actually there is very little difference between an Executive Work Area and an Interpreter Work Area. Both represent
instances of the UserExecutive. The only difference is that the UserExecutive associated with the Interpreter Work Area treats
inputs as expressions to be interpreted, whereas the UserExecutive associated with an Executive Work Area expects inputs to
correspond to commands to be executed. It is possible (but not considered hygienic) to interpret expressions in an Executive Work
Area, and conversely to execute commands in an Interpreter Work Area. In fact, if the user forgets himself and types into an
Interpreter Work Area something that does not look like an expression but does look like a command, the system will respond
with "Perhaps you meant” followed by the corresponding command, and allow the user to confirm with a single keystroke. (Another
example of DWIM.)

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 43

A.O Tun watcch

watsch - b Watch

Loaded end started: Watch bod

&9 list *.press

figure l.press 105472 31-Aug- ES 12:09: TJG PDT
figure2 press
figure3.press
figured.press
figures.press
figure.press
figure? press
figured.press
figured.press
NewSwff press
Temember.press
Screen Lpress
fcreen Lpress
spell press - PET
UserExec .hoga.press 123904 4-May -83 0 06 PDT
UserProfile.press 12288 9-Mar-§3 2 2 PST
UserProfiledoc.press 32768 3-May-83 23 49:43 FDT
Total of 17 files, 2631 pages

&10

Words 1008130 1 10 100 1000 10000
CPI Load
Faults 6916 1 3 10 30

requests 17672 disk 4304 gfi 104 mds 27 VM 3310 VM run 2154
[GC intervall 16000 [GC] done. (GC#48 got 51648 words, 2943 objs)
[Saple][interval 2 CIFS status (mv»rwd iff scrive)

L
Find Split_New stop Comglle E!al Rea sor lear
edar Fxecutive June &9, [983 9:44 sm. Type 7 for Zommands.

&1 «

Figure 16

Creating a new interpreter Work Area

The Cedar language includes the data types found in most modern programming languages, such as
integers, reals, booleans, characters, arrays, pointers, records, etc.

For example,

&1 «3 + 4
7

a slightly more complicated example:

&2 « ABS[1.414 * 1.414 - 2.0] < .001
TRUE

The first event, &1 « 3 + 4, really means assign the value of 3 + 4 to the variable &1, and I can
refer to this value in later expressions.TSS For example, let’s multiply it by 1.4:

&3 < &1 *14
9.8

+55 All & variables are local to the corresponding executive, i.e., each executive has its own symbol table.

XEROX PARC, CSL-83-11, JUNE 1984

44 _ THE CEDAR PROGRAMMING ENVIRONMENT

The Cedar interpreter also allows me to perform operations on types as well as values. For example,
typing ? following an expression will show the type of the value of the expression.T56

&4 « 3.2?

is of type REAL

&5 « 'X?

is of type CHAR

&6 « Time.Current?

is of type PROC RETURNS [time: System.GreenwichMeanTime]

In the Cedar language, "." is used to denote field extraction. For example, x.y means the field of x
whose name is y. In this case, Time is the name of an interface, and Current names a procedure in that
interface. An interface is like a contract between implementors and clients. It declares that a procedure
of a specified name, such as Current, takes certain arguments and returns certain results. The Cedar
compiler can then make sure that any programs that import (use) this interface conform to its specifications.
The compiler also checks that the implementation module conforms to the same specifications. T’

156 Note that we are not just talking about primitive, built-in data types, such as integer, boolean, string, etc. Cedar encourages
the programmer to augment the collection of predefined types by constructing new types defined in terms of built-in or previously
constructed types. In a typical Cedar system, there may be over a thousand such types. Thus, for the purposes of debugging,
knowing that a particular object is a pointer to a word containing all 0’s may not be anywhere near as informative as finding out
that the object in question is of type REF Foo, rather than REF Baz, where both Foo and Baz happen to be synonyms for the
type INTEGER.

157 The Cedar Briefing Blurb contains a good introduction to the notions of interface and implementation module: "Although
Mesa [and hence Cedar] programs look a lot like PASCAL programs when viewed in the small, Mesa provides and enforces a
modularization concept that allows large programs to be built up out of smaller pieces. These smaller pieces are compiled separately,
and yet the strong type checking of Mesa is enforced even between different modules. The basic idea is to structure a system by
determining certain abstract collections of facilities that -some portions of the system will supply to other portions. Such an
abstraction is called an interface and it is codified for the compiler’s benefit in a Mesa source file called an interface module. An
interface module defines certain types. and specifies a collection of procedures that act on values of those types [e.g., see the Rope
interface in Figure 21]. Only the procedure headers go into the interface module, not the procedure bodies. This makes sense,
since all the interface module has to do is to give the compiler enough information so that it can type-check programs that use the
abstraction. ... The procedure bodies go into a different type of module called an implementation module” [23].

The notion of abstraction mechanisms and the explicit notion of interface was a priority A item in our original catalogue of
programming environment capabilities: "Abstraction mechanisms are important because they make explicit the logical dependencies
of one part of a program on another, while concealing the implementation choices irrelevant to the communication between parts.
Thus. these mechanisms enable the ability to factor the development, debugging, testing, documentation, understanding, and
maintenance of programs into manageable pieces, while leaving individual programmers the appropriate freedom to design those
pieces” [8]. The author believes that the abstract notion of an interface is one of the great strengths of the Mesa programming
language. However, the need to specify interfaces in advance can also be cited as a weakness of the Mesa approach. Certainly, the
present need for vast recompilations whenever a fundamental interface is changed, even in a backwards compatible fashion, is a
weakness, but one that certainly can be reduced and maybe even eliminated (for example, by maintaining version stamps at the
interface item level. rather than at the interface level, as is currently done). It just hasn't happened yet.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 45

Let's call this procedure. It takes no arguments.

&7 « Time.Current[]
Thursday, September 1, 1983 12:33:21 pm

Its value is of type:

&8 « &? 138
is of type System.GreenwichMeanTime

CIFS status {inwverted iff active)
Work Area B Interpreter

nd Split New Stop Compile Ewvwal Redo Set Clear

Cedar Exscunve fune I8, 19537 w14 am, Twvpe 7 for Domimands,

| sample||intervall 2

&1« 3+ 4
?
&2 « ABS[1.414 * 1.414 - 2.0] < .00

TRUE

&3 « &1 % 14

9.8

&4 « 3,27

is of t¥pe REAL

&S5 « X7

is of type CHAR

&6 « Time.Current? .

is of type PROC RETURNS [time: System . GreenwichleanTime]
&7 « Time.Current[]

Thursday, September 1, 1983 12:33:21 pm

&8 +« &7

is of type System.GreenwichMeanTime: TYPE = RECORD[LONG
CARDINAL]

&9 «

EditTool |

Figure 17

Interpreting expressions

The reason that the value of Time.Current in event number 7 prints so nicely as a day, date, and
time, rather than as a 32-bit quantity, is that a PrintProc has been associated with the type
System.GreenwichMeanTime. A PrintProc is a procedure that provides a more desirable way of
presenting an object of a certain type. rather than simply printing its data structure using the default
methods. The PrintProc facility is quite useful for dealing with large and complicated data structures
such as viewers, documents, and streams, where the user typically just wants to be able to identify the
object. rather than seeing its actual structure. Cedar includes a number of PrintProcs for just this purpose.
In addition. individual users may define new PrintProcs for their own types. We will see more examples
of PrintProcs later.

+58 The value of the variable & is the value of the last event executed, i.e., in this case & and &7 have the same value.

XEROX PARC, CSL-83-11, JUNE 1984

46 THE CEDAR PROGRAMMING ENVIRONMENT

Automatic Storage Management and REFs

In the early stages of planning for Cedar, one of the features that received the highest priority was
automatic storage management-a garbage collector.t5? The Cedar language was extended to include a
data type called a REF, which is a pointer to an object in collectible storage. In addition to REFs to
particular types, such as REF REAL, REF BOOL, REF PROCEDURE, etc., the Cedar language includes a generic
REF type, REF ANY.T60

159 In fact. it was the highest priority item, the reason being that it freed programmers from excessive concern for the size and
location of their code and data. An excellent account of the importance and effect of the availability of garbage collection on
programming style in Cedar is contained in [23]: "The programming language underlying Cedar is essentially Mesa with garbage
collection added. Adding garbage collection actually changes things quite a bit. First of all, it changes programming style in large
systems tremendously. Without garbage collection, you have to enforce some set of conventions about who owns the storage. When
I call you and pass you a string argument, we must agree whether I am just letting you look at my string, or I am actually turning
over ownership of the string to you. If we don't see eye to eye on this point, either we will end up both owning the string (and
you will aggravate me by changing my string!) or else neither of us will own it (and its storage will never be reclaimed —a storage
leak). Once garbage collection is available, most of these problems go away: God, in the person of the garbage collector, owns all
of the storage: it gets reclaimed when it is no longer needed, and not before. But there is a price to be paid for this convenience.
The garbage collector takes time to do its work. In addition, all programmers must follow certain rules about using pointers so as
not to confuse the garbage collector about what is garbage and what is not."

It is only fair to observe that the above statement "it gets reclaimed when it is no longer needed” is not strictly true: circular, or
self-referencing structures are only reclaimed by the trace-and-sweep garbage collector, which must be explicitly invoked. However,
data structures that are not self-referencing are automatically reclaimed by the incremental garbage collector, which runs all the
time as a background task.

60 A recurring theme in our discussions of requirements for an experimental programming environment centered around the
issue of early versus late binding of various implementation decisions. On this subject, Beau Sheil [27] observed that: "The key
property of the programming languages used in exploratory programming systems is their emphasis on minimizing and deferring
the constraints placed on the programmer, in the interests of minimizing and deferring the cost of making large-scale program
changes. ... The languages make extensive use of late binding, i.e., allowing the programmer to defer commitments as long as
possible" [27].

The addition of the type REF ANY to the Cedar-Mesa language represents an attempt to provide for one form of late binding;
use of the type REF ANY enables an implementor to defer type checking from compile time to runtime on a case by case basis.
Note that in the Lisp programming language, every item is effectively a REF ANY: all objects are pointers, and the type of each
object can always be determined at runtime. As a result, certain classes of errors can remain undetected until a program is run,
perhaps even until the program is run on particular data. At the other extreme, the Mesa programming language requires the
specification of the type of each object at compile time. Consequently, unanticipated modifications or extensions to Mesa programs
often require changes to type declarations and recompilation of interfaces and implementation modules.

In Cedar, we wanted the best of both worlds: the flexibility of runtime (dynamic) type checking and the reliability and performance
of compile-time (static) type checking. We hoped that by employing REF ANY in the early stages of development, programs could
opt for more flexibility at the expense of performance and/or runtime errors. As the program matured, various binding decisions
could be made earlier by employing specific types where appropriate.

Another important use of REF ANY in Cedar is to enable generic programs. Since programs can determine the type of a REF
ANY at runtime, they can operate differently depending on the type of the object they are given. For example, the same Sort
program can be used to sort lists of integers, reals, strings, or even viewers, by selecting the appropriate comparison algorithm
based on the type of the objects being compared. The capability provided by REF ANY is also essential for enabling object-oriented
programming. For example, streams, viewers, and ropes are all objects in Cedar whose definition consists of a block of procedures
along with a datum which contains the state of the object. Since the type of the datum is different for each different implementation,
for example, file streams need different information than keyboard streams, the datum is represented as a REF ANY which the
individual procedures can then interpret.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 47

Atoms, which are very similar to Lisp atoms, 6! and Lists are also examples of REFs. 62

For example, let’s make a list of some of the values that we just computed.

&9 « LIST[&1, &2, &3, &7] .

(17, *TRUE, 19.8, 1Thursday, September 1, 1983 12:33:21 pm) {63
&10 « &?

is of type LIST OF REF ANY

Since each of these objects is of a different type, the type of the value of event 9 is LIST OF REF
ANY. Note that the first element is really a REF INT, the second a REF BOOL, the third a REF REAL, etc.
In other words, the type of &9.first, the first element of this list, is REF ANY, but the type of the referent
of this element, &9.firstt, is INT.

+61 In order to ascertain the degree and nature to which atoms were actually used in Cedar, the author undertook an informal
canvass of Cedar users. This footnote reports on the results of that poll.

One of the principal uses made of atoms is to provide for a form of late binding: provide the client with an open-ended enumeration
at run-time (with correspondingly less compile-time checking). as opposed to the standard Cedar enumerated type in which each
element of the enumeration must be specified at compile-time. For example, one user reported: "In some situations, I pass a
general atom instead of an element of a specific enumeration in order to avoid recompilation when [add a new element (especially
to an error enumeration when the list of errors is not quite clear). Later I convert to a specific enumeration to gain the tighter
binding."” '

Another use made of atoms in Cedar takes advantage of their unique print names, i.e., there is a one-to-one mapping between a
sequence of characters and an atom (a 32-bit quantity), and it is very cheap to compare atoms for equality (which is not the case
for comparison of two sequences of characters). Applications take advantage of this fact to save space and time

A third use made of atoms in Cedar involves property lists. Each atom has a property list associated with it; applications use these
property lists to provide for unforeseen extensions. However, some applications such as Viewers and Tioga prefer to include a
separate property list as part of the data structure for the corresponding object, rather than using the more global atom property
list. "Property lists attached to objects are wonderful, but I think ‘'global’ property lists attached to the atoms.themselves are
probably a bad idea." Associating property lists with the objects themselves also provides a place for clients to store information
associated with the object that the client can then subsequently interpret and use.

162 A List in Cedar is a REF to a structure consisting of two fields, first and rest. The first field contains the element of the list
and the rest field the tail of the list (the Lisp CAR and CDR). Cedar provides language support for the construction of lists (via
LIST and CONS). but no polymorphism;: it is not possible to write a program that traffics in LIST OF T without specifying T at
compile time. Since most programs using lists employ lists of specific types, the absence of polymorphism means programmers
must (re)implement for each specific type list primitives such as Reverse, Append. Union, and Intersection. This absence of
polymorphism is cited as the biggest shortcoming of the current implementation.

163 t is how Cedar prints REFs, e.g.. 17 is a REF to the object that prints as 7.

XEROX PARC, CSL-83-11, JUNE 1984

48 THE CEDAR PROGRAMMING ENVIRONMENT

Manipulating Lists

The List interface includes a variety of procedures for manipulating lists. Let’s create a viewer on
the List interface and look at it. I click the New button in the message area at the top of the screen to
create a new viewer on the left. Then I type the name of the interface into this viewer to cause the
corresponding file to be loaded into the viewer, as has been done in Figure 18.764

0
C Get Gethnpl PrevFile &wfe Save Time Split Places Lewvels (Changelog Find Split New Stop Compile
Find Word Def Position Normalize PrevPlace Reselect &8 run warch
FirstLevelOnly Morelevels FewerLevels AllLevels watcoh - Watch
-- edited by Teitelman, December 14, 1982 3:45 pim Loaded and started: Watch bed
&9 List *press
DIRECTORY figure ! press 105472 31-Anug-83 1
) figure2 press 105472 31-Ang-23 1
List: cepar DEFINITIONS = figure3.press 103472 31-Ang-33 12:08;
BEGIN figured.press 105472 31-Aug-33 12:09:06 PDT
figures press 547, -83 14:11:38 PDT
figureb press 3
Types figure? press
figures press
. figured press H 1-A
Predicates: IsaList, IsdListOtRefAny. EqLists. Member Newstuff press 31232 12-Mar-33 1
Temember press 34816 25-Jun-§ FI
Screen Lpress 105472 1-Sep-83 10:21:04 PDT
constructors of lists: Cons, Append. Reverse, Remove, Union, Intersection, ListDifference ., Screen.press 24576 1-Sep-#3 10:22:30 PDT
spell press 24064 9-Mar-33 23:00:25 PET
UserExec loga press 123904 4-May-63 0:20:06 PDT
like some constructors, but destructive to structure: Nconc, DReverse, DSubst .. UserProfile.press 12238 9-Mar-83 25:03:52 PST
UserProfiledoc.press 32768 3-May-83 23:49:49 PDT
Total of 17 files, 2631 pages
extractors: NthTail NthElement, Car, Cdr, Cadr, Cadr, etc. &10

Words 1058750 1 10 101 1000 10000

CPU Load

Faults 7369 1 3 0 £

requests 19199 disk 4012 gfi 104 mds 27 WM 3306 VM ron 2180
16000 me. (GC#S51 got 3580 words, 168 ohjs)
2

Alist operations: DatCons, Assoc. PutAssoc

miscellaneous: Length. Map, Subst

Sorting

ized Tome vsed fur storing new ListNodes, such a5 thess cresied by

TRU
&3 « &1* 148
9.8

a4
10-Feb-82 14:24:31 Added ListZone. Cons. Changed SortList to Sort 3 la Mark Brown's ListSortRef is of type REAL
Package &5 <%

June 1, 1982 328 pm Valve returned by Length now an INT. 'x' and 'y’ arguments changed to &6 « Tume.Current?

st ‘ref” or 11, 12 15 of type PROC RETURNS [time: System.GreenwichiMeanTime]
&7 « Time.Current|

Edited on Decomber 4. 1982 345 pm. by Teitelman Thursday, September 1, 1983 12:33:21 pm

&8 « &7

is of type System GreenwichMeanTime: TYPE = RECORD[LONG
CARDINAL

&9 « LIET[&1, &2, &3, &7

{47, tTRUE, 19.8, 1Thursday, September 1, 1983 12:33:21 pm)
&10 « &7

is of type LIST OF REF ANY

&1l ¢

Figure 18

The List interface contains procedures for creating and manipulating lists

Let’s try the procedure Reverse on the list that we constructed in event 9. We return to our
interpreter Work Area on the right and type...

&11 « List.Revers[&]
Revers -> Reverse ?

64 As mentioned earlier, we also use the Tioga editor for creating and modifying Cedar programs. The List interface shown in
Figure 18 is in fact a Tioga document. Note that the use of node structure and levels here effectively provide a table of contents.
The same node structure also enables the user to manipulate program statements, blocks, etc., as single entities, even though Tioga
does not know about the Cedar language syntax.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 49

I misspelled the name of the procedure causing an error to occur, i.e., the procedure Revers was
not found in the set of procedures contained in the interface List. DWIM was invoked and searched
through the set of items declared in the interface List.¥%5 pwiM found a procedure, Reverse, whose
spelling was pretty close to what I typed, and in Figure 19, DWIM is now waiting for me to confirm or
reject the correction. T which 1 can do via the keyboard, or by clicking the Yes or No menu buttons
which have been added to the Work Area’s menu for this purpose (just above the arrow-shaped cursor
in Figure 19).7“"7 When (and if) I confirm the correction, the corrected expression will be evaluated.

165 When we first began work on Cedar; some thought that the complexity of the Cedar language would make it too difficult to
implement any sort of automatic error-correction facility such as was available in Interlisp. However, this very complexity turns
out to be of great benefit for error correction in Cedar expressions, because more information is available at the time of the error
than with Lisp. where all the interpreter knows is that an identifier is unrecognized and whether it was used as a function or a
variable. For example, when the user typed List.Revers above, DWIM was called given the identifier "Revers." the message
"selection failed." and the context the List interface. DWIM knew that it was looking for an element defined in the List interface.
which immediately narrowed the search down to 42 possible candidates. Similarly, List.Subst is a procedure which takes three
arguments whose names are new. old. and expr. If the user types List.Subst[new: $Foo, old: $Fie, exrp: x] (misspelling the
name of the third argument). then DWIM only has to consider three candidates. For assignments, the type of the target can also
be used to guide the correction. For example. if x is declared to be of type Color, where Color is an enumerated type consisting
of {red, green, blue}. and the user writes x « bue, then he probably means blue, whereas if x is of type {feature, nonfeature,
bug}. and the user writes x « bue. he probably means bug.

T66 The algorithm for spelling correction and confirmation is the same as that used in Interlisp [14]. Basically, a metric is computed
which measures the distance between two tokens in terms of the number of characters that do not match. If all characters are
accounted for. i.e.. the only errors are transpositions or doubled characters, then confirmation is not required. In the case shown
here. a character was missing, so confirmation was required. However, the user can specify in his user profile a default timeout
and value for confirmation. In this case. when confirmation is required, if the user does not respond within the indicated interval,
the value specified as a default is taken as the response. For example, if my default timeout is 60 seconds and the default value is
Yes. then if I type ahead a sequence of operations and go to lunch, the system will wait 60 seconds for me to confirm a correction,
and then proceed with the correction. On the other hand. a conservative user may not want the system to make any corrections
without confirmation. User profiles in Cedar allow users to customize the behavior of the system to suit their own preferences.

T67 1In general. we try to give the user the choice of performing operations either via menu or via the keyboard. The main reason
for this redundancy is that if the user's hands happen to be on the keyboard, it is more convenient to interact through that medium
rather than having to reach for the mouse. Conversely, if the user’s hands are already on the mouse, it is easier to click a menu
button than to reach back to the keyboard. The use of menus in conjunction with confirmation provides the added benefit of
allowing the system to gracefully handle the issue of type-ahead and its potential interaction with confirmation. Consider the case
where the user has entered some operation, and then typed ahead the next operation not realizing that the first would require
some kind of confirmation. The desired behavior of the system is that the user be able to confirm without having his type-ahead
affected. i.e.. that he not have to retype it after confirmation. This is accomplished by requiring that the user only confirm via
menu once there has been any type-ahead.

XEROX PARC, CSL-83-11, JUNE 1984

50 THE CEDAR PROGRAMMING ENVIRONMENT

Find §8Split New Stop Compile Eval Redo Set Clear Yes No
&S5 « X » k.
X
&6 « Time.Current?
is of type PROC RETURNS [time: System.GreenwichMeanTime]
&7 « Time.Current[]

Thursday, September 1, 1983 12:33:21 pm
&8 « &7
is of type System.GreenwichMeanTime: TYPE = RECORD[LONG
CARDINAL]
&9 « LIST[&1, &2, &3, &7]
(+7, +TRUE, +9.8, +Thursday, September 1, 1983 12:33:21 pm)
&E10 « &7
is of type LIST OF REF ANY
&11 « List.Rewvers[&]
Rewvers -> Reverse 7
A

00800000000

Clover
LN : : EditTool |

"
Vthannnnnnnnnnreed WA U

Figure 19
Confirming a DWIM error correction

&11 « List.Revers[&]
Revers -> Reverse ? Yes
(*Thursday, September 1, 1983 12:33:21 pm, 9.8, tTRUE, 17)

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 51

Ropes

Cedar also includes another useful type of REF called a ROPE. A ROPE is Cedar’s standard string
type.“68 The input syntax for a ROPE is a sequence of characters delimited by "’s. For example:

&12 « "this is a rope"
"this is a rope"

&13 « &?

is of type ROPE

Just as the List interface provides operations for dealing with lists, the Rope interface contains a
variety of useful operations on ROPES. For example, Rope.Find is a procedure that searches one ROPE
for the occurrence of another.

&14 « Rope.Find?
is of type PROC [s1: ROPE, s2: ROPE, posi: INT « 0, case: BOOL « TRUE] RETURNS [INT]

This tells us both the names and the types of the arguments that Rope.Find expects, and that it
returns an integer. (This integer indicates the character position in the first ROPE at which the second
ROPE begins.) Let’s try it.

&15 « Rope.Find[

At this point, instead of retyping the ROPE "this is a rope," I can simply select the corresponding
text in event number 12 using the mouse, and cause the characters to be treated exactly as though they
had been typed. I can do this because this Work Area I have been typing to as though it were simply a
glass teletype is really a full-fledged Tioga document, and I can make use of any of the facilities of the
Tioga Editor when constructing expressions to be interpreted. For example, if I hold down the SHIFT
key while selecting in a Tioga document, the selected material is displayed with a gray underline (as is
shown in Figure 20). Such a selection is called a source selection. When I release the SHIFT key, this
source selection will be copied to the current insertion point, i.e., the place where the caret is.T69

168 A ROPE is a garbage-collectible sequence of characters. ROPEs are immutable; the sequence of characters denoted by a
ROPE never changes. Thus, ROPEs may be shared freely among independently-written applications, since no application can hand
out a ROPE and have some client free its storage or somehow alter the characters it contains. ROPEs are also more general than
conventional strings: a client can provide his own specialized implementation of a ROPE by implementing a small set of basic
operations on the new representation, and applications that traffic in ROPEs need not distinguish between these specialized ropes
and the standard variety. In other words, the Rope interface treats a ROPE as an object (in the Smalltalk sense) which knows how
to perform certain operations. (Such object-style programming is generally recognized as a good thing, but except for some isolated
instances, has not caught on in general with the Cedar community. Some of this is due to identified and understood language
deficiencies.) Ropes were designed and implemented by Russ Atkinson. It is generally agreed that ROPEs are something that
Cedar got right.

169 This feature is tremendously useful. It greatly increases the bandwidth of the user’s interaction with the system. It also enables
the use of long and descriptive identifiers, such as [0.CreateEditedStream, UserExec.FindExecFromViewer, and
ViewerTools.GetSelectionContents, even though many of our users are not fast typists. Such long identifiers are tolerable because
they rarely have to be typed, but usually can be copied from somewhere else on the screen, e.g.. from a viewer on the interface
that defines them. (Note that having to read long identifiers in programs is not a burden, but in fact is an asset, since the name
contains so much information it is, in effect, a form of documentation.)

XEROX PARC, CSL-83-11. JUNE 1984

52 THE CEDAR PROGRAMMING ENVIRONMENT

Work Area B Interpreter

Find &Split New Stop Compile Eval Redo 8et Clear

CARDINAL]

&9 « LIST[&1, &2, &3, &7)]

(+7, +TRUE, +9.8, +Thursday, September 1, 1983 12:33:21 pm)
&10 « &7

is of type LIST OF REF ANY

&11 « List.Revers[&]

Rewers - Reverse 7 Yes

(+Thursday, September 1, 1983 12:33:21 pm, +9.8, +TRUE, +7)
&12 « "this is a rope"

"this is a rope!”

&13 < &7 N

is of type ROFE

& 14 « Rope Find?

is of type PROC [s1: ROPE, 52! ROPE, posl: INT « 0, case: BOOL «
TRUE] RETURNS [INT]

&15 « Rope. Fmd;\

Active

EditTool [

Flgure 20
Source selections permit copying characters from one place to another as an alternative to typing

&15 « Rope.Find["this is a rope", "is a"]
5

The value 5 indicates that the second ROPE begins at character position 5 in the first ROPE.

This gives you a general overview of the Cedar interpreter. Now let’s try using the Cedar system in
earnest.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 53

Tracking Down a Bug

Earlier when I typed Rope.Find? in event 14, the system simply told me the names and types of
the arguments and return values. I thought that the system was also supposed to show me the comments
associated with the procedure Find in the Rope interface, so that I would know what the various
arguments and the return value meant. Let’s open this interface and see if there are any comments
associated with this procedure. Rather than creating a new viewer, I'll simply reuse the viewer on the
List interface. I select Rope.Find in my Work Area, and then click the Get menu button in the viewer.
This tells the Viewers Package to load the file Rope.mesa into this viewer, and then search for the
definition of the procedure Find, which it has finished doing in Figure 21.

Boot) Cmdj OpenlNew] Clean] ldls

Clear Get Getlmpl PrevFile $were Save Time Split Places Levels Changelog ind lit New Stop Compile Eval Redo Set Clear
Find Word Def Position Normalize PrevPlace Reselect figured.press 105472 1-Sep-83 11:24:26 PDT
FirstLevelOnly MoreLevels Fewerlevels AllLevels figures.press 105472 31-Aug-83 14:11:33 PDT
figure€ press 105472 31-Ang-83 14:13:0
Fetch: proc [base: ROPE, index: INT « 0] RETURNS [C: CHAR]; figured press 24576 1-5ep-83 10:
-- ferches indexed character from given ropes NewStff press 31232 12-Mar-33 3
-- BoundsFault sccurs if index 15 = the rope size remember press 34816 25-Jun-83 20¢ 59 05 PDT
Screen L.press 105472 1-8ep-83 14:41:09 PDT
m: PROC [s1, 52 ROPE, POSL: INT « 0, case: BOOL « TRUE] RETURNS [INT]; Screenl.press 20992 |-Sep-83 14:42:01 PDT
-- like Index, returns position in 5! where s ocours (slarts Iooking 2t posti spell press 28064 9-Mar-83 23:00:25 PET
-- rerurns -£f not founs UserExec.ioga.press 123904 Q-May-ﬂ'i 0:20:06 PDT
== Case =) case of Characiers is siEnincant UserProfile.press 12288 9-Mar-83 23:03: ST
UserProfiledoc.press 32768 3-May-83 23 49:43 PDT
Index: prROC Tatal of 16 files, 2521 pages
&10

[sl ROPE, p0sl: INT « 0, 52! ROPE, Cas¢ BOOL ¢ TRUE] RETURNS [INT];
- Returns the smailest character position N such that

-- sSoccwrs m sL &t N and N b= posl. If s2 does not

== occur in s at or after posl, sllength 1s returned,

-- case < oase of ChAraclers s signiicant

1sEmpty: snoc [r: nap) nerunns {rcoL];
- retirns Lengtht] =

Length: rroc [base: ROFE] RETURNS [INT];
-~ teturns the length of the rope (Length{NIL] = G}

Words 1030524 . 1 10 100 1000 10000
Replace: proc
[base: RGFE, Start: INT « 0, len: INT « MaxLen, with: ROPE « NIL] CPU Load
N earins topa wain given range replaced by new Faulis sia¢ L ’ ' iy
e T ,mgjl’,,, ﬁ,d or result wo long requests 20806 disk 3368 gfi 104 mds 27 VM 3439 VM run 2312
16000 done. (GC#51 got 16342 words, 831 objs)
size: "°*§:’e_ 5‘,"3;;1 “;;“;‘” (s 2 CIFS status (inverted iff active)
Substri proc (base: ROPE, STt INT « 0, leni INT « MaxLen] zTURNS [ROFE]; [Find Spht New Swop Compile Eval Redo et Clear
- retarns & subrope of the hase CARDINAL]
- BoundsFault occurs if the range gaven is not valid &9 « LIST[&1, &2, &3, &7]
(» , TRUE, 43,6, +Thursday, September i, 1985 1233221 pm)

-~ characier conversions (RRA sec: why sre they here?}
o \7pe LIST OF REF ANY

Control: rroc [ch: CHAR) RETURNS [CHAR] = INLINE { &11 ¢ ListRevers[a]
RETURN (17 ch v ['‘A.T) THEN ch - controlOffset eLsE ch] Revers -> Reverse 7 Yes
: (+Thursday, Seprember 1, 1983 123321 pm, 19.8, +TRUE, 17)
&12 ¢ "this is a rope”
Upper: sxoc [ch! CHAR) RETURNS [CHAR] = INLINE { “this is 2 rope”
RETURN [1F ch 1§ ['3.2] THEN Ch - caseOffset ELsE ch] &13 € 47

is of type ROPE

414 ¢ Rope Find?

Lower: sroc [chi CHAR] RETURNS [FHAR] = INLINE { 15 of type PROC [s1: ROPE, s ROPE, post: INT « 0, case; BOOL «
RETURN [IF ch IN ['4..7] THEN ch + caseOffset. sLeE ch] TRUE] RETURNS [INT]

415 - EEEAN) “this 15 > rope”, "is 2"]
b "

Leuter: proc [ch: chaR) RETURNS [s00L] - LN { &15 «
RETURN [ch IN ['4.2] 0R ch v ['a.'z]]
M

*

Digit: PrRoC [th! CHAR] RETURNS [BOOL] = INLINE {

Figure 21

Convenient access to program sources provides a form of online documentation

As you can see, there are comments here. Let’s try to find out why they weren’t shown when I
typed "?". To do this, I am going to plant a breakpoint in the code that implements the ? feature of the
UserExecutive. First, I create a viewer on the corresponding source file, as shown in Figure 22.

XEROX PARC, CSL-83-11, JUNE 1984

54 THE CEDAR PROGRAMMING ENVIRONMENT

PSlehee] Boot] Cimd) Open| New| Cleandldl
mp] revEile Save Time sSplit Places Levels Changelog Find Split New Stop Compile Eval Redo Set Clear
Fmd ‘Word Def Position Normahize PrevPlace Reselect Thursday, September 1, 195 133
FurstLevelOnly MoreLevels FewerLevels AllLevels P ;‘;’ P 1, 1983 12:33:21 pm
is of type System GreenwichMeanTime: TYFE = RECORD[LONG
Feu:h PROC [base: ROPE, index: INT « 0] RETURNS [o: CHAR]: CARDINAL
- fowhes indexed character from given ropes &9 « LIST[&1, &2, &3, &7]
- BoundsEault accurs if index is = the rope size (47, +TRUE, +3.8, 1Thursday, September 1, 1983 12:33:21 pm)
&10 « &7
m: PROC [S1, 520 ROPE, POSL: INT « 0, Case: BOOL « TRUE] RETURNS [INT]; is of type LIST OF REF ANY
-- like Indsx, returns posiuon in s where 5& ocours (starts looking 2t posll &11 « List.Revers[&]
-~ remrns -1 if not found Revers - Reverse 7 Yes
-- case = case of characters is significant (1Thnrsday Sepiember 1, 1983 123321 pm, 19.8, 1TRUE, 17)
« “this is & rope”
Index: FrOC thxs 15 3 rope”
[sl ROFE, Posl: INT « 0, 52 ROPE, C35€: BOOL ¢ nwz] RETURNS [INT]; &13 « &7
- Rerurns the smallsst LRSAEY&I‘ postuon N such that is of !ype ROPE
- 57 occurs mr s1 3t N and N 5= posl. 1Y 52 does not 4148 « Rope.Find?
- eccur in s 3t or after posl, sliengwk 15 rewarnsd. is of type PROC [Sl' ROPE, s2: ROPE, posl: INT « 0, case: BOOL «
- gase =) case of charscters Is significant TRUE] RETURNS [INT

AIS + Rope Find["this 15 2 rope”, "15 a"]
LsEmpty: sroc [1: sosz) xeTuans [rooL;
ns Length{r] = &16 «

Lengt.h PROC [base: ROPE] RETURNS [INT].
- returns the length of the fope .le"glh['\"l 7.

Replace: prOC
[base: ROFE, start: INT « 0, len: INT « MaxLen, with: ROPE « NIL]

Clear et Getlmpl TevEile Save Time split Places Levels Changelog
Find Word Def Position Normalize PrevPlace Reselect

FirstLevelOnly MoreLevels FewerLewels AllLevels

Last Edited by telteiman, june 27, 1953 9:43 pm

DIRECTORY

UserExecMiscImpl: czpar prosram

mroRTS AMEvents, Atom, CIFS, ConvertUnsafe, Directory, FilelQ, 10, IOExtras, Loader, Rope,
Ropeluline, RTProcess, SafeStorage, ShowTime, Time, UserExec, Process, TiogaOps, TiogaExtraOps,
UserExecExtras, UserExecPrivate, UserProfile, ViewerOps

EXPORTS UserExec, UserExecExtras, UserExecPrivate

= BEGIN OPEN I0;
Types
processing individual events
looking up declarations in file

running hcds

Figure 22

Opening a viewer on a source file in preparation for setting a breakpoint

I then scroll to the section entitled "looking up declarations in file," click the MoreLevels menu
button a few times, and select a location within the procedure PrintDeclFromSource where I want the
breakpoint inserted. 70 T then plant the breakpoint at this location by clicking the Set menu button in
my Work Area.T’!

& 16 SetBreak UserExecMisclmpl.mesa 13897 Break #1 set.
Break # 1 in UserExecMisclmpl.PrintDeclFromSource (source: 13891)
pattern « TiogaOps.CreateSimplePattern[target]; -- creates a pattern for the search.

$70 The reader may wonder how I knew where to place the breakpoint. In this particular case, I happened to be familiar with
the internal workings of the UserExecutive. However, it is not at all uncommon for Cedar users, especially experienced ones, to
poke around in other people’s code, planting breakpoints, examining data, etc. This behavior is facilitated by the use of long,
suggestive names as well as the structuring of the source files that Tioga enables. As a result, it is not uncommon for a bug report
not only to describe the symptom, but to identify the offending line of code.

171 Clicking the Set menu button causes an appropriate command line to be constructed and input to the UserExecutive, rather
than executing the operation directly. This technique provides the user with a record of all of his interactions with the executive
and enables him to examine or replay them at some later point.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 55

c R (mp fiore Save Time Spl
Find Werd Def Position Nommalize PrevFlace Ressict
FirstLevelOnly MoreLevels FewerLevels AlllLevels

Thursda/ Heptember l 1923 12:33:21 pm

:s Dl‘ 'vpe System GreenwichMeanTime: TYPE = RECORD(LONG

Fetch: proc [base: Rore, index: INT « 0] RETURNS [¢: CHAR); CARDINAL
-- feiches indexed characler MYom grven ropes 49 « LIET[&1, &3, &7]
~ BounadsFault accurs of index 15 s the rope size {7, +TRUE, +9.8, vThursdav. September 1, 1983 12:33:21 pm)
&10 « &7
Pmd PROC [S1, 52i ROPE, posl: INT « 0, case; BOOL « TRUE] RETURNS [mr]: is of type LIST OF REF ANY
like Indsx. reworns position in 5! whers s ocours (swares looking &t posfi &11 « List] PPvers[&]
- remrns -4 not found Revers -) Reverse 7 Yes
- oase =t ORSE GF chAPACISIS 15 SigImNcAnt HThUrsﬂay <epuamher 1, 1983 125021 pm, t9.8, +TRUE, 17}
212« “this 15 a rope”
Index: proc "this is » rope”
[sl: ROPE, posl INT « (, 520 ROPE, Case! FOOL « TRUE] RETURNS [INT]: &13 « &2
- s acter possien N such hat 18 of type ROFE
urs e SL 3t N and N b= pos! If 52 does not 414 « Rope Find?
-- urn sator arer sliength 15 returned. is of type PROC [s1: ROPE, 52: ROFE, posh: INT « 0, case: BOOL «
-- oase = oase of -.’iuiracYéI‘s is signifcant TRUE] RETURNE [IN
als < Rope.Find["this 1s a rope”, "1s a"]
IsEmpty: PROC [T ROFE] RETURNS [BOOL]
- returns Length{r] - 8 416 SetBresk UsesExecMisolmptmesa 13691 Break #1 5
Ereak #11n UserExecMisclinpl FrintDeclFromSourse IaDUh‘.P 13891y
Length: rROC [base: ROFE] RETURNS [meT]; pattern « TingaOps CreateSimplePanern [target); -- cresies 3
-~ remirns the length of the rape (Length{NIL] = 5} paniern for the sexrch.
Replace: rroC a17 ¢

[base: ROPE, s'art: INT ¢ 0, len: INT « MaxLen, with: ROPE ¢ NIL]

Cloar Reser Gl GeUmpl PrevEle Sere fave Tume Spllt Flaces Levels Changer0f
Find Word Def Position Normalize PrevPlace Reselerv
FirstLevelOnly MoreLevels FewerLevels AllLevels

looking up declarations in file

PrintDeclFromSource: PUBLIC PROC [target: ROPE, file: ROFE, exec: UserExec ExecHandle)
RETURNS [value: FOOLEAN] =
oul: 10.3TREAM = UserExec.Geistreams[Jout:
fileAtom: ATOM = Atom MakeAtom[file];
doc: TiogaCps Ref;
wiewer: ViewerClasses.Viewer;
pattern: TicgaOps.Pattern;
start, end: TiogaOps.Location;
found, inline: pooL:
I ROFE:
SIS I0.STREAM;
TRUSTED {dor ¢ LooPHOLE[Atm GetProp(stom: fileAtom, prop: $Root]]}
1r doc # NIL THEN NULL
ELSE IF (Viewer « ViewerOps.FindWiewer[flle]) # wiL THEN doc «
TiegaOps ViewerDoc {viewer
ELSE AwicPutProp(atom: fileAtom, prop: §Root, val: doc « TiogaExtraOps GetFile[file !
CIFS.Ermar =» coNTINUE]]
IF d0f = NIL THEN {valug ¢ FALZE{ RETURN}:
pavern « TngaOp< CreatesimplePattern[target]; -- crastes & pavtern o7 the search.
Ftart ¢ [doc, 0]

o
i - of PrnDeciFromsonree

Figure 23
Setting a breakpoint

The breakpoint has been set, as shown in Figure 23.172 The system provides feedback by displaying
in my Work Area the corresponding line of source text with the location of the breakpoint underlined,
as well as by underlining the corresponding location in the source viewer (in Figure 23, the bottom
viewer in the left column).

Now let’s reexecute Rope.Find?. 1 can do this by simply selecting anywhere inside of the
corresponding event and clicking the Redo menu button. The UserExecutive maintains a history of the
events that have been executed.?’? It uses this history list to find the event corresponding to my selection
and reexecute it.t74

+72 Setting a breakpoint involves finding the place in the object (compiled) code that corresponds to the indicated location in
the source, and then inserting a special instruction that will invoke the breakpoint machinery. The Cedar compiler facilitates this
process by constructing as a by-product of compilation a table that contains for each statement the mapping from the object
locations to the corresponding source location. However, most users are unaware of this process, and simply think of and treat the
source file as the program. Cedar goes to great lengths to encourage this model.

173 The notion of a history list and facilities for manipulating it came from Interlisp. We have not yet implemented the notion
of Undo as applied to events that Interlisp provides. This is partly because it is harder to capture all of the side effects of an
operation in a language such as Cedar, and partly because other tasks were given higher priority.

174 The user can also reexecute events by selecting the characters that were originally typed while holding the SHIFT key down,
as was done in event 15. The principal convenience of the REDO menu button is (a) the user can simply select anywhere in the
event. and (b) multiple events can be reexecuted by selecting a range that spans the desired events.

XEROX PARC, CSL-83-11, JUNE 1984

56

THE CEDAR PROGRAMMING ENVIRONMENT

&17 Redo 14

>« Rope.Find?

is of type

Break # 1 in UserExecMisclmpl.PrintDeclFromSource
computation suspended, switching to Action Area C...

(and down below a new Work Area pops up in which appears:)
Action #1 (kind: break, process: 173B) (from Work Area B)

Break # 1 in UserExecMisclimpl.PrintDeclFromSource
pattern « TiogaOps.CreateSimplePattern[target]; -- creates a pattern for the search.

pl Store ime Split Find Split_New Stop Compile
Find Word Def Position Ncrmahze Prev?lace Reselect &10 « &7
FirstLevelOnly MoreLevels FewerLevels AllLevels is of type LIST OF REF ANY
&11 « ListRevers[&]
Fetch: proc [base: RoOPE, index: INT « 0] RETURNS [c: CHAR]; Revers -} Reverse ?Yes
-- fouches indexed character from given ropes {*+Thursday, Sapuamber 1, 1983 12:33:21 pm, 9.8, +TRUE, +7)
- BoundsFauit ocours i index is)= the rope size &12 « "this is a rope”
“this is a rope"
Find: PROC [s1, 520 ROPE, POSL: INT « 0, case: BOOL « TRUE] RETURNZ [INT]; &13 « &2
-- like Index, returns position in s{ where 52 accurs (starss looking at posl} is of type ROPE
-- returns -{ if not found &14 « Rope Find?
-- case =} case of characters is signficant is of type PROC [s1: ROPE, 52: ROPE, posl: INT « 0, case: BOOL «
TRUE] RETURNS [INT
Index: prOC l.lS « Rope Find["this 15 a rope”, "is a"}
[s1: ROPE, posl: INT « 0, 52! ROPE, Case: BOOL ¢ TRUE] RETURNS [INT);
-~ Returns the smailest chamczet posiuon N such that als 3etBreak v:serzx-clvnmmp: tmess 13891 Ereak #1 set.
-~ s2 occurs in st 3 N and N 3= post. If 52 does not Break #1 in UserE: FPrintDeclF {source: 13891)
-- occur i st at or aﬂbr poel, sllength is returned. patiern « ngaow CreateSimplePattern[target]; -- cre3es 3
-- case =) case of characters 15 signifioant pavern for the search
ISEmpty: PROC [Ii ROPE] RETURNS [00L); 417 Redo 14
-- rewurns Lengthfr] = ¢ >« Rope.Find?
is of cypo
Length: proc [base: ROPE] RETURNS [INT]; Brask #!in
-~ returns the lengih of the rope (Lengih{NIL] = 8} campz,zmm suspended, a'u'luhmg w Action Ares C.

Replace: PrOC
[base: ROPE, start: INT « 0, len: INT ¢« MaxLen, with: ROPE ¢ NIL]
RETURNS [RoPEl

3 i k \m 3 FrintLeec [F roodn
Clear R Get Getlmpl PrevEile o Save: Time SRINT evels ChangeLog ind Split New Stop Compile R et Clear
Find Word Def Padtion Nommalize PrevFlaee Reestect Proceed Sebor Soures_ Walbhtack ShnwFramP

FirstLevelOnly Morelevels Fewerlevels AllLevels
i Action #1 (kind: break, procsss: zuaB) (f‘rom Work Area B)
looking up declarations in file Break #1 in, User
PrintDeclFromSource: puzLic nac [1arget: RovE, file: Rore, exec: UserExec ExecHandle] e o ia0ps C""’es""‘}‘lepa“’m[‘“ge'] T o835 3 paviern

RETURNS [value: BOOLEAN] = 0o
Ut 10.STREAM = UserExec. uewueams[]out, A
fileAtom: aToM = Atom.MakeAtom[file];
doc: TiogaOps.Ref;
wiewer: ViewerClasses.Viewer;
pattern: TiogaOps.Pattern;
start, end: TiogaOps.Location;
found, inline: BooL;

I ROPE;

stream: 10.STREAM;

TRUSTED {doc ¢ LOOPHOLE[Atom.GetProp[atom: fileAtom, prop: §Root]]};

1F doc # NIL THEN NULL

ELSE IF (Viewer « ViewerOps.FindViewer[file]) # w11 THEN doc «
TiogaOps.ViewerDoc[viewer]

ELSE AtomPutPropfatom: fileAtom, prop: $Root, val: doc « TiogaExtraOps.GetFile[file !
crFsError => CoNTINUE]J;

IF doc = NIL THEN {value « FALSE; RETURN};

Raltern « TiogaOps. Creaws;mp\e?euem[mgst] -- cTeales 3 pavern ror the search.
\lan « [doc, 0];

}v -- of PrintDeciFromSource

Hitting a breakpoint

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 57

Breakpoints and Action Areas

Whenever a breakpoint is encountered in Cedar, the corresponding process is suspended so that the
user can examine the state of the computation. We have found it useful for these interactions to take
place in an entirely separate Work Area called an Action Area.t75 In Figure 24 we see that a new Action
Area has been created. This Action Area tells me that I am at a breakpoint that arose out of an operation
in Work Area B. It also tells me that the breakpoint is in the procedure PnntDechromSource and
shows me the line of code in which the breakpoint occurred.

The first thing I want to do in this breakpoint is to examine the arguments to the procedure
PrintDeclFromSource. To do this, I middle-click the ShowFrame menu button in my Action Area. 176

&1 ShowFrame args UserExecMisclmpl.PrintDeclFromSource
A- target: "Find\n", 77
file: "Rope.mesa", :
exec: {UserExecHandle: "B"} 118
The debugger tells me that this procedure, PrintDeclFromSource, has three arguments, target, file,
and exec. The values for file and exec are ok, but the value of target should be "Find" rather than
"Find\n." Let's see if this is the only problem, i.e., if target were "Find," would the comments be
printed? So I reset the variable target using the interpreter.

&2 « target « "Find"
"Find"

Now I'll allow the computation to continue by clicking the Proceed menu button, and we’ll see if
the comments from the Rope interface are in fact printed in Work Area B above.

75 This method also supports the Principle of Non-Preemption espoused in footnote 46. The user is not required to deal with
this action at this time. He can continue editing documents, create and interact with other executives, read his mail, etc., and this
action will wait for him. Another benefit of separate Action Areas is that it enables the user to keep track of the flow of control
if another action occurs while pursuing this one.

176 Left-clicking this menu button would show me just the frame's name, right-clicking would show the name, arguments, plus
the local variables. There is some controversy over this overloading of menu buttons, especially when the use of the various mouse
buttons is further inflected via the CTRL or SHIFT keys. On the one hand, some users feel that it makes the interface too
complicated to learn. On the other hand, there is the desire on the part of experts who are facile with the system to be able to
perform complicated operations with a minimum of keystrokes and mouse actions, and the competition for screen real estate (there
is room for only so many buttons). Our current plan is to try to satisfy both camps by providing for pop-up menus that will allow
the novice (or forgetful) user to peruse all of his options, while retaining the ability for allowing the expert to specify his own
abbreviations via various mouse and CTRL/SHIFT combinations.

77 \n is how Cedar prints carriage-return when it appears as part of a value.

§78 The printing of UserExec handles is another example of the use of PrintProcs. The actual handle is a fairly complicated data
structure.

XEROX PARC, CSL-83-11, JUNE 1984

58 THE CEDAR PROGRAMMING ENVIRONMENT

&3 Proceed
proceeded Action # 1, returning to Work Area B

A T A N R N

(and in Work Area B above:)

PROC [s1, s2: ROPE, pos1: INT « 0, case: BOOL « TRUE] RETURNS [INT];
-- like Index, returns position in s1 where s2 occurs (starts looking at pos1)
-- returns -1 if not found
-- case =) case of characters is significant

and sure enough, there are the comments.

& 16 setBreak UserExecMiscImplmesa 13891 Break #1 set,

Break #1 in UserExecMiscImpl PrintDeclFromSource (source: 13891)
pattern « TiogaOps.CreateSimplePatternftarget]; -- creates a

pantern for the saarch.

& 17 Redo 14
>« Rope Find?
is of type
Brazk &1 in UserExecllisclmpl PrintDeciFromiource
computation suspended, switching o Action Arez L., PrROC [31, 52!
ROPE, posl: INT « (0, case: 5OOL ¢ TRUE] RETURNS [INT];
-- like Index, returns position in 5! where 58 ocours (51arts
looking &t positi
-- returns -1 it not found
-- 0358 =) case of characters is significant

&18 «
A

Action Area ed Break #1 in UserExechlizchnpl PrintDeclFromd
1s Changelog ind Split New Stop Compile Eval Redo Set Clear

Action #1 (kind: break, process: 204B) (from Work Area B)
Break #1 in UserExecMiscImpl PrintDeclFromSource
pattern « TiogaDps.CreateiimplePattern[tarzet]; -- creates & pavern
for the search.
&1 showPrame args UserExecMisclmpl PrintDeclFromSource
A~ target: "Find\n"
file: "Rope.mesa"
exec: {UserExecHandle: "B"}
&2 « target ¢« "Find"

rExec. ExecHandle]

"Find"
&3 Proceed
proceeded Action #1, returning to Work Area B

1H

Pps. GetFile[file !

Figure 25
Testing a proposed bug fix by manually resetting data and proceeding

Having identified the nature of the problem, now we must find out the cause-why is the wrong
value being given for target in the first place? Let’s redo Rope.Find? again...

&18 Redo 17

>« Rope.Find?

is of type

Break # 1 in UserExecMiscimpl.PrintDeclFromSource
computation suspended, switching to Action Area C...

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR

59

. and we are back at the breakpoint. Now I'll use the WalkStack menu button to climb the call

stack. Each time we click the WalkStack menu button, we climb/descend the call stack one frame.

&4 WalkStack

+79

UserExecMethodsimpl.Help

Now we are at the frame corresponding to the procedure that called PrintDeclFromSource. I'd like
to look at the source code corresponding to this call. I click the Source menu button, and the system
will find the source and display it in a new viewer on the left. 780

curs m sl at N 3:“‘ N M= n:hl AR ;z‘:\?s nat
r in 5! ar or afver posl, ~He‘wz1' is returned.

3 revFile Store Save Time Split
Def Posmnn Normalize PrevPlace Reselect
ly MorelLevels FewerLewvels AllLevels

COMPUIRNGOT SUSPen:
ROPE, P05 1: INT ¢ 0, case: BOOL « -muz] RETURNS [m'r],

-- like Index, returns position in 5! where 52 occurs (513ris
looking at posti

-- returns -{ i not found

-- case =* case of characwers is significant

&18 Redo 14

" |up declarations in file

leclFromSource: FUBLIC PROC [target: ROPE, file: ROPE, exec: UserExec ExecHandle]
N3 [value: BOOLEAN] =

[0.STREAM = UserExec GetStreams[].out;

tom: ATOM = Atom MakeAtom[file];

[TiogaOps.Ref;

er: ViewerClasses. Viewer;

rn: TiogaOps. Pattern;

end: Tiogalps.Location;

3, inhine: sooL;

PE;

i 10.STREAM;

TED {doc « LOOFHOLE[Atom.GetProp[atom: fileAtom, prop: $Root]]};
c # NIL THEN NULL

E xec Plethodalmpl nesa
Get Getlmpl PrevFile $ere Sa Time Split Places Levels
Def Position Normalize PrevPlace Reselect
17 Morelewvels Fewerlevels Alllevels

ChangeLog

»¢ Rope Find?

is of type

Break #! in UserExecMisclinpl PrintDeciF Z]
campuation suspended, sw z!c)zmg 0 Action Ares L.

T BEireal &1 an LeerEae
ew Swp Compile Ewva
Fource WalkStack ShowFrame

Ll Ll FrintDos | F

ind Split N
Proceed Adbert

Action #1 (kind: break, process: 204B) (from Work Area B)
Break #1! in UserExecMiscImpl.PrintDeclFromSource
pattern « TingaOps.CreateSimplePanern[target]; -- creawes @ pariern
for the sesrch. :
&1 3nowPrame args UserExecMisclmpl PrintDeclFrom&ource
A- target: "Find\n"
file: "Rope.mesa”
exec: {UserExecHandle: "B"}
&2 « target « "Find"
"Find"

1F {1 -~ Repe Find[exprrope, "]} # -1 -- i5 of form a.&, rawher than abec
aND Rope Find[sl: exprrope, s ".", posli1 + 1] = -1 THEN {
fileName: rore = Rope.Concat[Rope.Substr[base: expr.rope, len: i], ".mesa"];
La.\'cret « Rope Substr[base: expr.rope, start: 1 + 1, len: Rope.Length[expr.rope] - i -

g.No'r UserExecFrivate.PrintDeclFromSource[target: target, file: fileName, exec:
exeu] THEN target « NIL; -- & indicate that it didnt find it in Nie

t¥p, underType: Type;

class: AMTypes.Class;

typeName: ROPE;

typ « TVType[expr.valuel;

underType « UnderType[typ];

class « TypeClass{underType];
v ;s S it

&3 Proceed

proreeded Acuon #1, retummg w Work Area B
Action #2 (kind: break, process; 204B) (from Work Area B)

Break #1 in UserExecMisclmpl.PrintDeclFromSource

pattern « TiogaOpsCreatefimplePattern[target]; -- creates 2 panern
for the search.

&8 wakstack UserExecMethodsImpl Help

&S source userexecmethodsimpl.unesa 3822

1r_Nort UserExecPrivate.PrintDeclFromSource[target: target, file:
fileName, exec: exec] THEN target « NIL; -- & indicate that i1
didnt find it in fle

&6 «

Figure 26

The Source command finds the location in the source file corresponding to the call stack

&5 Source

userexecmethodsimpl.mesa

3822

IF NOT UserExecPrivate.PrintDeclFromSource[target: target, file: fileName, exec: exec] THEN

target « NiL;

-- to indicate that it didnt find it in file

The underlined location is the point in the procedure UserExecMethodsimpl.Help that corresponds
to where the computation is right now, i.e., the statement from which PrintDeclFromSource was called.
Notice in Figure 26 that immediately before this statement is the expression: target « Rope.Substr[base:

179 Left-clicking climbs, right-clicking descends.

180 This operation involves using the compiler’s statement map to perform the inverse mapping from that of planting breakpoints,
namely given a location in object code, find the corresponding location in the source. If the source file is not on the user’s local
disk. but is part of the released system, i.e.. is contained in the version map (see footnote 28), the file will be automatically obtained

from a file server.

XEROX PARC, CSL-83-11,

JUNE 1984

60 THE CEDAR PROGRAMMING ENVIRONMENT

expr.rope, start: i + 1, len: Rope.Length[expr.rope] - i - 1]. This expression uses the procedure
Rope.Substr to compute target as the substring of expr.rope that is len characters long, and begins at
position start. We already determined in the previous breakpoint that the value of target at this point
is the ROPE "Find\n," instead of the ROPE "Find." Let’s find out why this is the case by examining the
arguments specified in the call to Rope.Substr. First, we’ll find out the value of the argument named
base by evaluating the expression expr.rope. We can do this by simply pointing at the expression in
the source viewer while holding down the SHIFT key, thereby causing the characters to be copied into
the interpreter Work Area, the same as we did earlier, even though in this case we are copying characters
from one viewer into another. '

&6 « expr.rope
"Rope.Find\n"

That's what we expected. Similarly, let’s check the value of start, the starting position for the
substring. specified to be i + 1, and the value of len, the length of the substring, given by
Rope.Length[expr.rope] - i - 1. Figure 27 shows the display as I am about to evaluate this latter
expression. (Note the source selection underlined in gray in the viewer on the lower left.)

BT N1 I Do B e e I L DY e T)
computation suspended, switching o Aclq

UzerExechIizchnpl mesa
et Getlmpl PrevFile #epe Save Time Split
ef Position Normalize PrevPlace Reselect
MoreLevels FewerLevels AllLewvels

b declarations in file

Flaces Lewvels Changelog

IFromSource: PUBLIC FROC [target: ROFE, file: ROFPE, exec: UserExec ExecHandle]
[walue: BOOLEAN] =
FTREAM = UserExec.Getétreams[]out;
i atom = Atom MakeAtom[file];
galps Ref; » .
Erllg;:or;ia;;:;;z:e“er Proceed Akerr Source WalkStack .JhowFr
nd: nga{ﬁps‘Locaﬁon; :l sr:;;:grer;m"} is;g‘;\nl{serzxechsclmpl Frin
%nlme, BOOL file: "Rop:a.mesa."'
exec: {UserExecHandle: "B"}
&2 « target « "Find"
"Find"

1o.sTREAM;
D {doc + roorHoLE[Atom.CGetPropatom: fileAtom, prop: $Root]]h;

¥ NIL THEN NULL
&3 Proceed

proceeded Acuon #1, returning tw Work A

angelog o i b i o 0 0 0 4 0 6 0 70 0 0 0 50 50 0 70

UzerExechlethodzImplonegsa
et Setlinpl PrevFile #ere Save Time Split Places Levels
ef Fosition Normalize PrevPlace Reselect

MD:eL&vel§ FewerLevels AllLevels i Antion #2 (kind: break, process: 177B) (frg
{1 « Rope.Find[exprrope, ""]) # -1 -- is of form a.b, rather than abo Break #1 in UserExecMisclinpl PrintDeclF1f
aND Rope Find[s1: exprrope, 520 ", posl: i + 1] = -1 THEN { pattern « TiogaOps CreatefimplePattern[tar

fileName: rRoOFE = Rope Concat[Rope Substr[base: exprrope, len: i], ".mesa"]; for the search.
target « Ropefubstr[base: exprrope, start: 1 + 1, len: RopsLenathlexprropel - i.o &4 waxstack UserExecMethodslmpl. Hely
11; &S zource userexecmethodsimplmesa 39
I NoT UserExecPrivate PrintDeclFromSource[target: target, file: fileName, exec: 1F_NoT UserExecPrivate PrintDeclFromsor)
exec] THEN target « NIL; -- % indicaie thay 17 didnt find it in file fileName, exec: exec] THEN target ¢ NIL;
s didnt find it in Nle
&6 « exprrope
t¥p, underType: Type; "Rope Findwn"
class: AMTypes.Class; &7 i+ 1
typeNamne: ROPE; 5
t¥p « TWType[expr.value]; &8

underType « UnderType(typl;
class « TypeClass[underType];
IF target = NIL -- didn? Ond ¢ in Nle,

Figure 27

Evaluating expressions from a source program by pointing at them
&7 «i + 1

5
&8 « Rope.Length[expr.rope] - i - 1
5

Here is the problem, an off-by-one bug. If we don’t want the \n to be included, there should only

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 61

be four characters in the substring, instead of five. In other words, the length argument should be the
length of the entire ROPE, minus the start position, minus 1 (so as not to include the last character), i.e.,
Rope.Length[expr.rope] - (i + 1) - 1. Let’s make that change in the source.

I make the edit using Tioga, and then click the ChangeLog menu button. This automatically
constructs a change log entry containing my name, the date, and a list of those items that have been
changed. It also provides a space for me to fill in a comment describing each change, as shown in Figure
28.

viewer: ViewerClasses Viewer;
pattern: TiogaOps.Pattern;
start, end: TiogaOps.Location;
found, inline: pooL;
I! ROPE;
stream: 10.STREAM;)
TRUSTED {doc ¢ LOOPHOLE[Atom.GetProp[atom: fileAtom, prop: $Root]]k;
IF doc # NIL THEN NULL
UzerExeckiethodzlmplmesa [Mew Wersion
Clear Reset Get Getlmpl PrevFile #tere Save Time Split Places Levwvels Changelog
Find Word Def Position Normalize PrevPlace Reselect
FirstLewelOnly Morelevels Fewerlewvels Alllevels
Bdited on May 4, 1987 1038 am, By Teltelman
changed ocall o GetToken in escapecomplete w use [DProc rather than TokenFProc because of fiis
names containing -, &g Horning tried wping Larch-H B3 and got “No mach”
changes w Escape
Fdited on September f, 19837 135! pm, By Teltelman

Figure 28

Automatic Changel.og maintenance

1 fill in the comments field, and then save the file using the Save menu button. 8!

Now let’s go back to the Action Area on the right, clear the breakpoint, and since we are finished
with this problem, let’s just abort the action and control will return to the Work Area from which the
action originated.

181 Had I just clicked the Save menu button without clicking the ChangeLog button first, the system would have automatically
constructed a ChangelLog entry containing my name, the date, and a list of items that had been changed, but without any
explanation of the reason behind or nature of the change. However, even this amount of information can be extremely useful in
an environment in which several different programmers may edit the same program.

XEROX PARC, CSL-83-11, JUNE 1984

62 THE CEDAR PROGRAMMING ENVIRONMENT

Electronic Mail

The next thing I want to do is to fix a bug that was reported to me in a message. As I mentioned
earlier, the mail box shaped icon in the lower right corner of the screen (see Figure 1) is my Walnut
Control Panel. I'll open it now. As the flag on the mail box icon indicated, the Walnut Control Panel
tells me that I have new mail. I click the NewMail menu button in the Walnut Control Panel to retrieve
these messages from the mail server. These messages will initially be placed in my Active message set,
represented by the icon that looks like a stack of envelopes. I'll open my Active messages and we will
be able to see my new mail, 182

The messages marked with ? in Figure 29 are the ones that [haven’t read yet.t83 Some I'll simply
read and delete (or delete without reading because the subject does not interest me, e.g., "eye glasses

Baek] Boot] cnd[2
ea B IN1=TPIeter
SopCompile Eval Redo

s Aethodshinpl.mesa

C eset el Gellmpl PrevFlle Swre Save Tune Splt evels Changelog

Find Word Def Fosion Nommahze FrevFlace Reselect Took

FursiLevelonly Morel AllLevels

Inan

it o use IDProc rather than
-E B a2

snd
o chanaciers 15 significant

mg w PravDeciFromSource

251
Compile Ew

“Rope.Find n"
&7 -1+ 1

&8 « RopeLength[exproope] - i - 1

&9 ciestaurrean: Al breaks cleared
&10 &

n #2, TeTArning w v

Categonies MoveTo [nsplay Deletz AddTo NewMal Print Printielected

83 TramontanaPA PARC/OSD PICNIC

8% Flassps Re: wse of lists and List

&5 Hormnz pa Shdes

#3 Don & Ted & next bridge Wednesday 28 September
ramshavw.pa Re: vse of ists and List

LevinFA Re: use of lists and List

Jacoh Re: use of Iists and List

Resmck ES DEC/Ethernet Interface NeswForm Newlvail Comni
Pindar P4 Missing library books Thers 12 e new mail at
atkinson.pa Two bugs 1 avoid

eall MessagesetOps
10:08:15 PDT

. AT ol L3
MErawn.pa Nell Wilhelm semunar changed o 10:30 tomorraw i+ on Fil
Parker P Farewell Party for Sam and Jack Sargent creawe
Rawson pa More Info: Santa Clara Ballet at Flint Center Active Dele

larrabee. pa Re: use of hsts and Last DatesndTiim e
Toos P4 eye glasses found HowTo Humeor Imple
MErawn.pe MySuggesuons Noteby
nmehart.pa Examples Riverk:
orrng pa I
Farrand &5
Cara FA

83 AllenPa More Tennis Tickets -- All G
ep 3 TremainFa FemnderdDL Seminar Wednes

Cabernet.ms: ...

v Sepiember 21 Jnfandelms: . retmieved 1

retrieved 14 messages.

Figure 29

My Active message set and the Walnut control panel

182 We rely heavily on our electronic mail systems at PARC. We use them for mail as well as for the type of announcement that
might in other environments be posted on a bulletin board. In addition to messages from one user to another, announcements of
impending meetings. for sale notices, and the like are all sent as messages directed at expansive distribution lists. You can see
examples of such messages in my Active Message Set in Figure 29 (bottom viewer, left hand column).

There are a number of such electronic mail systems in use at PARC (because there are several different programming environments).
However. all of these access a common mail distribution service [1]. Walnut, the mail system for Cedar, provides facilities to send
and retrieve mail and to display and classify stored (previously retrieved) messages. Walnut uses the Cypress database system [5]
to maintain information about stored messages.

183 The observant reader may have noticed that the date in the change log entry in the file I edited (Figure 28) is September 1,
whereas the date in the Walnut control panel and on many of the messages is September 20. There are other such anomalies later
in this paper. all attributable to the fact that the figures in this paper were not all produced on the same day.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 63

found" or "Tennis Tickets Gone"). Messages regarding events I want to be sure not to forget, such as a
talk or meeting. I can enter into my personal calendar/reminder system by simply clicking the Remind
menu button on the corresponding message, as I have in Figure 30. The Reminder system obtains the
time and date for the corresponding event from the message itself, T8 and when the corresponding time

rolls around, a blinking icon is automatically displayed on my screen (see Figure 33). If I open this icon,
the corresponding viewer will contain this message.

Rerunder svill be posted at Tuesd September 20, 1383 10:30 aung for 60 inuies PiLe Boot) CmdlDpen)New] Zlean] Idl
Clear Rese+ CGet Gethnpl TevEile e fave Time Split aces Lewels Changelog Find <‘phv New Stp Compile Ewal Redo fet Tlear
Find Word Def Fositon Normalize PrevFlace Reselect

FirstLevelOnly MoreLevels FewerLewels AllLevels
Fetizad on M’,\} 4. ¢ . by Teivelnen
ch { cali 7 GerTaken i escapecomplers 1o use IDProC_rather than TokenFro: hecouse of Nie

25 contanmg - 2.8, Harning ined geping Larch -H ESC and gor "No match
hmces 2 Escape

g
racters ks signifisang

&18 Redo 17

e Rope Find

15 of type

Erexk #1n UserExecMhsc, LErintDeciF]

L985 185 1y, by Tertedinan
was ner passing the nght swing 1w PriDeciFre

w
changes o Help

SOMPRIINON SUSPEnIed. SWIIRINE 1 ACTGN Ared 1
aborted
&19 -

Stye B Ay wak ® 10 1TzerExec Moo F
Categories MowveTo Display Delete AddTo NewMai P ew cwp Campile Ewal Reda c,. ~1ear

13 Sep 83 jacobipa Re: use of lists and List = -
T 16 Sep 83 ResmckES DEC/Ethernet Interface Rnpeflfdl\n
I 1b Sep 83 FindarFA Missing Wbrary books ar-1
I b Sep 81 atkinson.ps Two bugs 1 swad &8 « Rope Length[exprrope] - i
19 Sep 83 MErown.ps Neal Wilhelm semanar changed o 10:30 tomorrow 5
: 3 ParkerPA Farewell Party for Sam and Jack Sargent &9 CieariuBresk A1l breaks cleared

Rawson.pa More Info: Santa Clars Ballet at Flint Center 410 shon

Jarrshes.pa Re: use of hists and List atorted Acnon #1, returming t Work Ares B

ove s tmd [e
Weil Witheln savdnae changed w 10:350 wmoeriw
Hinng Meeting Wednesday after Dezaler
Computer Systems Reliability and Risks to the Pulkhc
3 Farrandes Expert System Interest
} CanoPA Umons?

r\.m Ta Sop 3 18

From. ME) Ther
. MErwn pa
Subject: Netl Wilhelm seminar changed 1o 1030 mmerrow
To: Methadalogy 1 Messagedet:
Reply -to: MBrown ps

Active Deleted AMTypesiuzzestions Atoms BackBummer Cedarfape
DatehndTine dealersxamples Discussion Docomentanon Foruim

Diate. 19 Sep 83 10:0149 POT HowTo Humor Implediugg mhnePoll 1o Mnsr MyBugg
From: MErwn.pa Mysuggestions

Subject: Neul Wilhelm semmar changed 1 10:30 tamarrow RenunderExamples FiverRaft ,peu Tiopsfugzssnens TShirts
i ter UserExecChanges UserExecFoll UserRequests VidesTape

Mph ~To: MEBrown Wievrersiuggestions

To awad conflict with the IDL 1sh meeting, the nme of Nell Wilkelm's semnar has been Eestart finished o

changed to 10:30 tomorraw, 20 September (sull n CSL Conomonsi. Here 1s 3 repeat of the utle Cahernet.ns : retrieved 14 messages.

and shatract

Zinfandelm triewed | messazes.

Figure 30

Entering a message into my reminder system

+84 You can see the feedback from the reminder system in Figure 29 in the message window at the top of the screen: "Reminder
will be posted at Tuesday, September 20, 1983 10:30 am for 60 minutes." This time was computed from the string "10:30 tomorrow"
in the subject field of the message. using the date field of the message to determine the reference point for "tomorrow," i.e.,

pretend today is 19 Sep 83 when figuring out what tomorrow is, even though I am actually reading the message on September 20
(the day after it was sent).

185 Here is an excellent example of what we mean when we say Cedar is integrated. the various facilities can use each other in
important ways since they all coexist in the same address space. (Here the reminder system uses both Walnut and Tioga.)
Furthermore. there need not be any explicit context switch and corresponding loss of state when switching between tasks or
programming tools, for example, in switching from debugging. to editing, to reading mail. Integration is one of the reasons why a

large virtual address space (> 24 bits) was one of the Priority A items in our original Catalogue of Programming Environment
Capabilities [8]. '

XEROX PARC, CSL-83-11, JUNE 1984

64 THE CEDAR PROGRAMMING ENVIRONMENT

Messages that 1 want to save so that I can refer to them later I frequently sort into various categories
called message sets. 86 1 have about thirty of these categories and can add more whenever I need them.
My current message sets are shown in the Walnut Control Panel (at the lower right in Figure 30):
BackBurner, CedarPaper, Discussion, Documentation, etc. Notice in Figure 29 that my Active message
set contains a number of messages about the use of lists. These are in response to a poll I sent to Cedar
users about how they used lists (for material for this paper). In Figure 31, I have created a new message
set called Lists, and am in the process of moving these messages into that message set so that I will have
them all in one convenient place. I do this by pointing at the corresponding message in my Active
message set viewer and then clicking the MoveTo menu button.

Warh, dures F
3t setlmpl - Prev! ime sSplit P evels Changelog d_Split New Stop Compile Ev.
Find Wcrd Def Position Normalize PrevFlace Reselect Tooking ot pos i}
FurstLewvelOnly MoreLevels FewerLevels AllLevels - returns -1 i not found
Eedped on May 24, (987 18:06 am, by Teieiman -~ case =) case of characwers is significant
changed call v GerToken In escapecomplste to use IDProc rather than TokenProc because of Nie
nURSS conwning - e.g. Horning wied wping Larch -H ESC snd gor "No mawch” &18 Redo 17
changes w: Escape 3+ Rope Find?
Edited on Seprember I, 1983 1851 pim, by Terslman 15 of type
Nxed bug whersin | was nov passing the right swing 1o FrintDeciFromSource Brezk #1in et
changes w: Help compuranon suspended, m;m&mg u Acuon Arez .
aboried
&19 «
~
{Caegories MoveTo Display Delete AddTo NewMail Primt PrintSelected [Find Split New Stp Compile Eval Redo et Clear
15 Sep 83 Horning.pa Slides : -
15 Sep 83 Don & Ted & .. next tridge Wednesday 28 Sepwmbex "Rope.Findn"
Y teq By isasiAwpE Bt Gl of NS And Lish i o T
16 Sep 83 ResnickES DEC/Ethernet Interface &8 « Rope Length[expraope] - i - 1
T 16 Sep §9 PindarPA WMissing library books
¥ 16 Sep 83 atkinson.pa Two bugs o avod &9 ClesratiBreaxs All breaks cleared
7 19 §ep #5 MBrown.pa Neal Wilhelm seminar changed 1o 10:30 tomorrose &10 Abort
T 19 Sep 23 ParkerPA Farewell Party for $am and Jack $argent aborted Action #2, returning % Work Area E
¢ 19 §ep 83 Rawson.pa More Info: Santa Clara Ballet at Flint Center ST e Ry Ty m——
I 19 Sep 83 larrabeepa Re: use of lists and List
> 18 fep §3 JoosPA eye glasses found
19 Sep 83 MEBrown.pa Neil Wilhelm seminar changed 1 10:30 tamorraw
19 Sep 83 Swinehart.pa Hiring Meeting Wednesday after Dealer

7 1% Sep 83 Horning.pa Computer Systems Reliability and Risks to the Public
7 20 Sep 83 Farrand.es

'pen System [merest

§u' P R d NewForm NewMail Comumit ClossAll Messageseuops

ari
E;;smﬂ':\;mlx:gep 83 16:55 PDT There is no new mail at 20-Sep-83 10:18:16 PDT
Subject: Be: use of lists and Lis m on File:
T reyly va: "our message of 16 Sep 83 10:20:02 PDT" [Create] Messageser: Lists
To: tentelman Active Deleted AMTypesSugge tions Atoms BackBurner CedarPape
13 1use LIST {but rarely; DeteandTime D Forum
N o ” - HowTo Humor ImpledSvugzg InlmePoll io Misc MyBu gs
21 1use CONS extensively. MySugge O
RemmnderExamples RiverRaft Spell TiogaSugzestions Tshirts
3) 1 frequently define LIST OF T, and only accasionally LIST OF REF ANY. UserExecChanges UseiExecPoll UserRequests VideoTape
Viewersiuggestions
4y T use LIST when I can, usvally for Sort or Reverse. Howewer, given my answer to i), this - "
wounld imply & LOOFHOLE, so I only use List when I happen to have a LIST OF REF ANY. “abernet.ms: ... rewieved 14 messages.

Zinfandelms: 1 messages

Re: use of lists and ..i has been Moved. to: Lists

§) Yes, have the language constroct has helped a lot, even with LIET OF T, since it has ! :
eliunated lots of hst-processing bugs that I frequently made. e of lists and has been Moved

M & of lists and has been Moved

Figure 31

Sorting messages into message sets

If I point at one of the message set buttons in the Walnut control panel and click the mouse, Walnut
creates a viewer on the corresponding message set. This viewer shows the date, sender, and subject of
each message in the set. For example, I typically save messages about bugs in my software in the message
set called MyBugs. The message regarding the bug I want to fix is in this message set, which I'll now
open.

186 Walnut's database contains two types of entities: messages and message sets. A message entity corresponds to a message
retrieved from the mail distribution system. A message entity can be a member of one or more message sets. There are two
distinguished message sets: Active and Deleted. A newly retrieved message automatically becomes a member of Active. A message
that is removed from all other messages sets is added to Deleted. The user can create or destroy additional message sets as the
demonstration illustrates.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 65

The message that I am interested in is 11-Feb-83 Willie-Sue.pa bug??.787 T'll click it, and Walnut
will obtain the message contents from the data base and put it in a new viewer, as shown in Figure 32
(left column, top viewer).

3 d R d
Date: 11-Feb-83 1‘022 PST a19
From: Willie-Sve pa
Subject: bug??

Te: Tertelman

oo willie-sue pa

1 typed what 1 expected would be a comiment to the exec, e.g,
1 was greeted with an acuon ares announcing ERROR IOlmpl ins“?"ﬁueammumme]

Categories Movelo Display Delete AddTo PriniPrintselecte

10 Jan 63 Maxwell.pa Userxer(‘onhrmlmpl Sempﬂ.onnm\
< -XEEeR R Willie-gueipac NI

1 Mar 83 willie-sve.pa misplaced looks

13 Mar 83 MBrown.pa fetBreak scrolls split acton ares

24 May 63 kelling.pa rug

15 Jun 63 Spreiizer.pa Re: Last edited by:

21 Jun 83 Beachpa CTRL-e on Butans Create

21 Jun 83 Stewart.pa # command in UserExec

26 Iun 83 To: Spremzer Re: DWIM hooks

28 Jun 83 To: Sprentzer Re: DWIM hooks

29 Jun 83 Maxwell.pa Menus in files created due o compilation errors

29 Jun 83 Swinehart.pa Re: Menus in files created due o compilation errors

1Jul 8% kelling pa Re: More DWIM

£ Jul §3 keling.pa Re: More DWINM

7 Jul $5 Swinehart.pa Quotes 1n commands agan

Categories MoveTo Display Delete AddTo NewMail PrintPrintSelecie ewForm NewMal Commit_CloseAll MessageReiops

15 Sep 83 Horning.pa Shdes There is no new mal at 20-fep-#3 10:23:16 PLT

15 %ep §3 Don & Ted & .. next bridge Wednesday 25 September on File:

Tiden 8% ramshawpa o Re: use of Hsts dnd List . Messagesiet: Lists
16 §ep 83 ResnickES DEC/Ethernet Interface Arhive Delowd AMTT Tome P e
16 Sep 83 PandarPA Missing hbrary books DateAndTime dealerexamples Discussion Dotum'maunn Forum
P16 Sep §3 atkinson.pa Two bugs o avaid HowTo Humor ImpledSuge InhnePoll io Mse
T 19 Sep B3 MBrown.pa Neil Wilhelm serunar changed 1o 10:30 tomorrow MySug o »f

¢ 18 3ep &5 ParkerPA Farewell Party for Sam and Jack Sargent FeminderExamples RiverRaft Spell TiogaSvggestions TShirs

3 Rawson pa More Info: Santa Clars Ballet af Flint Center UserExecChanges UserExecPoll UserBequests WidenTape
719 Zep 83 larrabeepa Re: use of hsts and List Wiewers§uggestions Lists
D19 Sep 83 JoosFA eye glasses found
19 Sep 83 MBrown.pa Neil Wilhelm seminar changed o 10:30 tomorrow CADETNOLINS: vt TEMIEVED 14
19 Sep 83 Swinehartpa Hiring Mesting Wednesday after Dealer Zinfandeluns: - retrieved | messages

7 19 Sep 83 Horming.pa Computer Systems Reliability and Risks to the Public]\Bﬁw Re: uss 31(1:25 ;nng h

Sep 83 Farrand.es Expert System Interest pE e of lists and

Figure 32

A user reports a bug via an electronic message

A Bug Report

The message states that when an event consisting of just a comment is typed to the executive, an
error occurs. Let’s try it and see. I'll return to Work Area A and then, instead of typing the comment,
copy it from the message directly into the Work Area. In Figure 32, I have selected the corresponding
characters in the message with the SHIFT key depressed. When 1 lift the SHIFT key, the characters will
be copied into Work Area A.T88

+87 The video tape that this demonstration was taken from was originally produced in February 1983, whereas this paper was
written in September 1983. Obviously this and other bugs that I will fix during the course of this demonstration were actually
taken care of many months ago. However, for the purposes of this paper, | have restored Cedar to the state that it was in February,
at least with respect to these changes. and am reenacting the scenario.

+88 Note that in this case I will be copying characters from a Walnut message viewer into an Executive Work Area. still using
the same method as we used previously. Consistency of user interface!

XEROX PARC, CSL-83-11, JUNE 1984

66

&10 -- try it now

THE CEDAR PROGRAMMING

ENVIRONMENT

ERROR I0Impl.EndOfStream from Inputimpl. GelCedarScannerTokem
computation suspended, switching to Action Area E...

(and down below a new Work Area pops up in which appears:)

Action # 1 (kind: signal, process: 204B) (from Work Area A)

ERROR

IOImpl.EndOfStream|[stream:

Inputimpl.GetCedarScannerToken1

{15501066B -

Answer F

Freeze Categories

* Plates Levels Remind

Find_Split New

Date: 11-Feb-83 10:02:27 PXT
From: Wilhe-Sue.pa
Subgeet: bug?

To: Teitelman
cci wnlhe-sue.ps

1 was gregted with an achon

1 typed what 1 expected would be a comment o the exec, £.g. "--

try 1t now" CR;
arsa announcing ERROR 10npl EndOfStrean [mumble],

&10 -- try 1t now
ERROR IOImpl.. EndOfStzeam from
Inputimpl.GetCedarScannerToken |

comprtanen suspended, SWitching w Acton Area E..

Categnries MoveTo Disploy Delete AddTo Print Prinwelerie NewForm Newhisil Commit Gloseall Messazesetops
70l 83 Swinehartpa Quates in commands: again You have new mail ot 20-Sep-83-10:25:43 PDT

on File:

21 Aug 83

TaftPa

Well. it’s just like the message said. We got an EndOfStream error, and are now in a new Action Area. T8

7 Iul 83 MErown) error generated by "% 18 source commander”
81 To: wtieiman g ¢ i | [Create] Messageser Lists
& Il 85 MBrown.ps end-of -file 1n string literal Active Deleted AMTyp Zgesti Atoms ZedarPape|
& Jul &3 MBrown.ps nmussing help from 7 command Datesnd Time Discussion Do Forum
12 Jul 83 crow.pa Uncompiled procedures HowTo Humor Impleﬂougg InlineFall o Lists Misc MyBugs
27 Jul 83 Maxwell.pa prehistone error MySuggestons Notebookindex CthersBugs RememberSmff
1 Aug 83 Wilhe-Svepa Test.mesa RemunderExamples RiverRaft &pell Twogafuggestions TShirs
1 Sep 83 gomez.pa trouble wath Newstoff UserExecChanges UserExecPoll UserReguests VideoTape
& Sep 83 Nix.pa Eug in Spell GetMatchungFileList Wiewersiu ggestions
19 Fep 83 Stolflpa Newstuff date parsing Tning Checkpoint. ..,
Cloding Walnut tranzscton .. .done
Closing Walnut transactiondone
Opening Walnut transactiondone
Restart finished
Categories _Movelo Display Delete 0_NewMall Pnnt _Printselected Find Split New Sop Compile Zet Clear
1 Aug 83 pa updating edited entry Procesd Akert Source Wal](‘hack “howframﬂ
P12 Aug 83 To: wanlevnen Re: updaung last-eduted entry .] .
12 Aug & SargentFa Seminar, Thurs.. 313, 10:30 am. {Auditanum). Baldev Singh (1. of oy f&m{fghg‘g&ﬂ;gmﬁﬁ;ﬁ“‘?]?Sg’zfj?c‘zg’ ‘?"}‘ngf}ﬁ';n Rope
12 Aug 8% wvanlevnenpa Re: updating last-edited entry Streamn}] from Inputlmpl GeviedarieanmnerTaken
15 Ang 83 Gohbel PA Re: car serwce: strong ANTI-recommendation -
16 Aug 83 SchillerPa Incadescent humor
16 4vg 89 Doughty P4 Party Time for MeGregor and Friends
17 Aug £3 LehnerFa Menuy for the week ending 5726
17 Aug &3 Hormng.pa Re: Cedar Command Line
17 Aug §3 wanleunenps PMartinPA
18 Aug 83 Beach.pa Baldev §ingh's interview postponed one week
18 Aug 83 donahueps Sawing Cedar Lore
18 sug 83 Beachpa Forms for PostCedar 4.2
16 sug 73 FierPa Re: The Memory System of & High-Performance Personal Computer

Planning for the demse of, M

Figure 33

An error causes the creation of a new Action Area

Let’'s walk the stack and see what’s happening.

89 Uncaught errors and signals are handled the same as breakpoints: they constitute actions and are given their own Action

Area.

190 Notice that. since it is now 10:30AM, the reminder concerning that talk I wanted to attend (entered in Figure 30) has popped
up at the bottom of my display. fourth icon from the left. (Though the reader obviously can’t see it in the figure, the icon is

blinking to call itself to my attention.) If | were to open this icon, I would find the original message.

XEROX PARC, CSL-83-11, JUNE 1984

Input From Rope Stream}] from

&1 WalkStack
&2 WalkStack
&3 WalkStack
&4 WalkStack
&5 WalkStack
&6 WalkStack

A TOUR THROUGH CEDAR

Inputimpl.GetCedarScannerToken
Inputimpl.GetCedarToken
Inputimpl.fromTokenProc
Inputimpl.GetCedarScannerToken
Inputimpl.GetCedarToken
UserExeclmpl.IsWellFormed

67

The first five levels of procedure nesting correspond to internal calls within the IO package. However,
the procedure UserExeclmpl.lsWellFormed looks more promising. Let’s look at its source.

&7 Source

userexecimpl.mesa

23932

IF Rope.IsEmpty[rope] OorR NOT Rope.Equal["«", 10.GetCedarToken[stream]] THEN GOTO Yes; tol

Teeze Categories Answer

Date: 11-Feb-83 15:02:27 FST
From: Wilhe-Sue.pa
Subject: bug??

To: Teutelman.
cc! willie-sne.pa

Get Getlmpl PrevEile

1 typed what I expected would be a comment t the exec, " CR;
1 was greeted with an action area announcing ERROR IOImpl EndOfS'ream[mumblB]

= i v o
Finﬂ Word Def Position Normalize PrevPlace Reselect
FirstLevelOnly MoreLevels FewerLevels Alllevels

P
&10 -~ try 1t now
ERROR IOImpl.EndOfStream from
Inpuimpl.GetCedarScannerToken |
computanon suspended, switching % Action Are E...

Achion &res B2 ERECE T
evels Changelog Fina. Spit New Smp Comp\le Eval Redo
Froceed bort Source WalkStack £howF rame

stream: STREAM;

scrawch stream and using it

w.SyntaxError = SoTo Nos
10 EndOfitream => 0T Yes

Yes =) RETURN[TRUE];
Noo=* RETURN[FALSE]:
W
it

Acquiring Streams

o dstnguish « fool Mrom « Yoot
IsWellFormed: Proc [rope: ROPE] RETURNS[BOOLEAN] = {

strean « I0.RIS[Tope); -- smce sirexms dresdy scguirsd, we might consider saving &
”ope IsEmpty[rope) ok woT Rope.Equal(“«", 10.GetCedarToken[stream]] THEN GOTO Ves:

I“'Exu'as ue!C’edaI*tannerToken[iueam NIt

AcquireExec: rurLIc PROC [exec: ExecHandle] RETURNS[newly Aciguired: BOOL] = TRUSTED {

private: REF

PrOCess: UNSAFE PROCE, s s = Pmcess Geﬂ(’.‘urrent[]

thisExec:

[process: pro

Acton #9 (kind: signal, process: 206B) {from Work Ares A}
ERROR I0lmpl EndOfStream([stream: { 157254228 - Input Fram Rope
Stream}] from Inputlnpl GeCedarscannerToken |

&1 wasstex Inpwilmpl GetCedaricanner Token

&2 wakzteex Inputhnpl CenedarToken

&3 warsteek Inpuilmpl fromTokenProc

&8 waksteex Inpwilmpl GetCedaricannerToken

&S waxstx Inputlmpl.GetCedarTaken

&6 wakaaex UserExeclmplIsWellFormed

A7 sousce userexecimplmess 23932

1r Rope :Empty(rope] ok wot Rope Equal("e",

10 GetCedar Token [siream]] THEN GUTO Yer:

a8 -

Figure 34

Tracking down a bug

The underlined location marks the place in the source that corresponds to where the computation
is now. It looks like the program is using the procedure 10.GetCedarToken to read a token from stream.
Let's examine the variable stream using the interpreter.

91 The Cedar Language provides for an extremely restricted form of GOTO statements, namely to a series of labeled statements
called an ExitsClause that appear at the end of a block. Think of GOTO as the Cedar way of spelling EXIT.

XEROX PARC, CSL-83-11, JUNE 1984

68 THE CEDAR PROGRAMMING ENVIRONMENT

&8 « stream
{15725422B - Input From Rope Stream}

Note that streams have PrintProcs which print out the kind of stream, suppressing the stream’s actual
representation.T92 In this case, we do want to look inside of the stream at its data, which we can do
using the interpreter. First, I'll find out the stream’s type using the interpreter.

&9 « &?

is of type STREAM: TYPE = REF I0.STREAMRecord;

I0.STREAMRecord: TYPE = RECORD[streamProcs: REF 10.StreamProcs, streamData: REF
ANY, propList: Atom.PropList ¢« NIL, backingStream: STREAM « NIL]

This says that a stream is a REF to a record consisting of four fields: streamProcs, streamData,
propList. and backingStream, each of which have the indicated type. Let’s look at the streamData
field, which contains the data for this particular stream.

&10 « &.streamData
t[rope: "-- try it now", pos: 13]

Even though the type of this field is REF ANY (so that different kinds of streams can store different
types of data in the same field). the interpreter is able to figure out the type of the reférent using the
run-time type system. It tells me that the data for this stream is a REF to a record consisting of two fields
named rope and pos. whose values are "-- try it now" (notice that this ROPE has 13 characters), and 13.
In other words, the current position, pos, does indeed correspond to the end of the stream. What
happened to the previous 13 characters?

In puzzlement. 1 decide to look at the definition for 10.GetCedarToken. I select the characters
10.GetCedarToken in the source viewer, and then click the Open menu button to create a new viewer
on the 10 interface positioned at the definition of GetCedarToken, as shown in Figure 35.

192 A stream in Cedar is simply a producer and/or consumer of byte sequences. The stream abstraction can be implemented in
a variety of ways. For instance, the producer behind an input stream might be a file or a user typing at a keyboard. We call each
stream implementation (file. keyboard, and so on) a stream class. One of the most important aspects of streams are that a client
program can manipulate a stream without regard to the class that implements it. Thus, varying stream implementations can be
substituted without effect on the program. Furthermore, new implementations of streams can be supplied by the user at runtime.
Examples of such user defined streams are: decrypted input and encrypted output streams layered on top of other streams, an
output stream that automatically indents to indicate structure, a stream which reads Intel format absolute binary object files, and
a stream that emulates Unix pipes.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 69

Clzar Reset Get Getlmpl PrevFile #&epe Save Time Split Places Lewels ChangeLog
Find Word Def Positon Normalize FPrevFlace Reselect
FirstLevelOnly MoreLevels Fewerlewels AllLevels
w disungvish « el rom «"Yoe?
IsWellFormed: prOC [rope: ROPE] RETURNS[BOOLEAN] = {
Stream: STREAM;
stream « I0.RI3[ropel; - swexms arexdy scguired, we might consider saving

S g
rope] OR NOT RopeEqual['e”,

RSENDRAN stream]] THEN GOTO Yes:

Action Sres | Dl Evd ooy

“edaricanner Token[stream, NIL ! Find Split Ne p Compile
Error = coTo Noj Proceed Adbert Source WalkStack
10, EndOfitream = soTo Yes
H Action #4 (kind: signal, process: 3
ENDLOOF; ERROFR ICLnpl. EndOfitream[strean
EXITS stream }] from Inputlmpl.GetCedar:
Yes =» RETURN[TRUE]; &1 watkstack Inputlmpl.GetCed o

No =* RETURN[FALSE]; &2 wax3tacx Inputlmpl. GetCed §
&3 wWalk3tack Inputlmpl.fromToH
- - &4 wakstack Inputlmpl.GetCed
Clear set Get Getlmpl FPrevFile Store Save Time Split Places Levels Changelog &S wakstack Inputlmpl.GetCed
Find Word Def Position Normalize PrewPlace Reselect &6 wakstack UserExeclmpl.IsWwe
FirstLevelOnly MoreLevels Fewerlevels Alllevels &7 2ource userexecimplinesa

ETURN[FALSE, TRUE]} 1.2 in(etiaguencefEvery Thing] returns the 1F Rope IsEmpty[rope] oR NOT Roj
G a

CORISENN

Parsing the input stream as a sequence of Cedar Tokens: GetCedarToken

&9 « &7
15 of type STREAM: TYPE = REF

Sream: STREAM] RETURNS[ROPE]:
Y Sirean 1or the ne. esz twken, whic

TREAMRecord: TYFE = RECOH

R Is returned 3
dar Teken
wedarToken
rpretwer, & is &10 « & streamData
will parse 33 t[rope: "-- wy it now", pos: 13]
&11 «

enIen in use
ng 3 S¥RLIX SITOr, 1.8,

ol, GetZard, Getint, GetReal, and GetRope described below provide ways of
parsing the input stream into objects of the corresponding type. If the client knows what type of
it INT <

Figure 35

The 10 interface serves as online documentation

Aha! The comment in the 1O interface says: "GetCedarToken automatically filters out all
comments.” The problem is that when my program asks for the next token from the stream, there isn’t
one. because comments are filtered out when reading tokens. So the error EndOfStream is raised. 93
What | should be doing in this program is catching the signal EndOfStream in the call to
10.GetCedarToken, and simply returning TRUE. Let’'s make that change.

Now let's return to our Action Area on the right, and since we are finished with this problem, we
can abort the action, and return to the Work Area above.

193 The Cedar language uses signals and errors as a mechanism for handling exceptional conditions. (The only difference between
a signal and an error is that the program that catches the signal can resume the program that raised the signal, whereas errors
cannot be resumed.) Think of a signal/error as a procedure call where the body of the procedure is determined dynamically using
the call stack. In this way, an implementor can allow a client to specify what to do for various exceptional cases, without requiring
that the client specify a plethora of extra arguments to cover all such cases, or returning various invalid values for which the caller
must check. This way of handling exceptions has two important aspects, one for the human reader of the program, and one for its
execution efficiency. First, anyone reading the program can see immediately that an exceptional condition can arise by the catch
phrase. knows that this is an unusual event, and can read on with the normal program flow. Second. when the program is executing,
the code to handle the exceptional cases is not executed on every call. but only when the actual signal is generated, i.e.. when the
exceptional condition occurs [20]. It is worth pointing out that a facility for raising and catching signals very similar to Cedar’s
has recently been implemented for Interlisp.

XEROX PARC, CSL-83-11, JUNE 1934

70 THE CEDAR PROGRAMMING ENVIRONMENT

Compiling, Support for Concurrent Operations

Now | want to compile the files that I have edited. The system keeps a list of those files that need
to be compiled. i.e., those that were edited but not yet successfully compiled. It also provides visual
reminders in the form of a black border around the corresponding icons, as shown in Figure 36. I can
instruct the system to compile all of the files that need compilation via the command compileall. %4

&10 compileall
>Compile UserExecMethodsimpl.mesa UserExeclmpl.mesa

While that is going on, I'll answer Willie-Sue’s message. [click the Answer menu button in the
viewer containing her message, and Walnut creates a reply form containing the appropriate Subject, To,
and cc fields. In Figure 36, I am in the process of composing my answer in the viewer on the lower left,

Freeze Categories Answer
Date: 11-Feh-63 150227 PST
From: Wille-§ue.ps
Subject: bug?
To: Tertelman
ce: wilhe-sue pa

&10 - uy it now
ERROR IOImpl.EndOfStream [Yom
GetC Token §
compuianen suspended, switching 1w Acten Ares F.
abor
& 10 compileall
“Compile UserExech 55 UserExeclmpl
Compiling: UserExecMethodshnpl . . .

I typed what I expected would be a comment to the exec, e.g. "-- uwy it now" CR;
1 was greeted with an action ares announcing ERRCR 10Impl EndOfEtream [mumble].

NewForm NewMail Comimit Closeall MessagebetCps
There is no new mail at 27-Zep-33 11:29:02 PDT

on File:

MessageSet: | Lists

Aotive Deleed AMTypesingeesions Atoms BackEurner Cedarbape
DisteAndTime dealerexamples Discussion Documentation Forom
HowTo Humor ImpledSugg InhnePoll is Lists Misc MyBuves
MySugzestions NotebookIndex OthersBugs RememberStuff

s RiverRaft Spell Tiogasuggesnons TShirts
UserExecChanges UserExecPoll UserReguests VideoTape
Viewersiuggestions

Send Cloar Prewi

Fuhject: Re: bug:~
In-teply-to: "Your message of 11-Feb-83 15:02:27 FET"
To. Withe v

G5 [New ersion
StoreMsy Newsender Split P

o Doing Checkpoint ..

ce: Teaelman Closing Walnut transacuon .. .done
nks for ve . . “losing Walnut transachondone

Thanks for your bug report. 1 fixed the problem Cpening Walnut transactiondone

Restart finished

1 of type STREAM: TTPE - REF 10 STREAMRscord;

1OETRE AMRecord: TYPE = REC‘C?RDF':ea.mPr(u:s: REF

10 SteamPracs, streambData: REF ANY, propList: Atom PropList «
NIL, backing§tream: STREAM « NIL]

&10 < &.streamData

t[rope: "-- uy 1t now", pas: 13]

interprete

Figure 36

Concurrency: answering mail while compiling

194 CompileAll simply keeps track of those files that have been edited. It does not deduce that because Interface A has been
recompiled. Modules B, C, and D also need to be recompiled. This latter behavior is much more ambitious and falls under the
category of what we call System Modeling: "The user describes his software in a system model that lists the versions of files used,
the information needed to compile the system. and the interconnections between the various modules. The modeler is connected
to the editor and is notified when files are edited and new versions are created” [26]. A preliminary version of a system modeler
has been built and tested, and a more comprehensive version has been partially implemented.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 71

while the compiler continues to run in the Work Area at the upper right.t%

I finish composing the message, and click Send, and the message is sent on its way. In Figure 37,
the Walnut Control Panel tells me that the message has been delivered. The next time that Willie-Sue
clicks her NewMail menu button, she will see the message.

Teeze Calegories Answer Forward nt gv. Split Places Lewels Remind ind_ Split New Stop ,omgxle wal Redo Set Clear
Date: 11-Feb-83 15:02:27 PST ERROR IOImpl.EndOfStream from
From: Wilhe-Sue.pa Inputimpl.GetCedarScanner Token !
Subject: bug?? compuiation suspended, swivhing w Action Ares E.
To: Teitelman aborred
oo willie-sue,pa am compileall
wompile UserExec €35 UserE mesa

I typed what I expected would be a comment 1o the exec, e.g. "-- try 1t now" CR; Complllng UserExec Methaods] lmpl . no errors
1 was greetad with an action area announcing ERROR IOImplEndOfStream[mumble]. Compiling: UserExechnpl urs

End of compilation

-- Errors in -- UserExeclmpl

&1

NewForm NewMal Comrmit Close Al MessageletOps
There is no new smadl at 27-Sep-83 22:17:42 PDT

on Files

[Create] Messageser. Lists

Active Deleted AMTypesiuggestions Atoms EsckBurner ZedarPapef
DateAndTime dealerexamples Discussion Documentation Forum
HowTa Humor Impledfngz lnthPoH io Lists Misc Mysws

e TR e e FA ARG
Clear Get_Getlnpl _PrevFile Save Time Split Places Levels Changelog RemunderExamples Riverkaft ?pell Tiogaiuggesuons T“hlr'v

Cedar 3.4 Compiler of 12-Apr-83 17:21:28 UserExecChanges UserExecFoll UserRequests VideoTape
27-Sep-83 221517 iewersiuggestions
Restart finished
Command: UserExecMethndslinplmess
Authenticaung vserok
UserExecMethodsImplmesa -- source tokens: 3176, ume: 23 : S e .
code bytes: 2762, links: 61, frame size: 96 .. F3rSing.... fending message...sending 1w 1 reciplents

... Message has heen delivered
Command: UserExeclnpl mesa
IF Rope, laﬁmpw[rops] OF NOT RopeEqual("«", I0.GetCedarToken[stream ! [0.EndOfStrean =

2. CIF,
GOTC Yes] T ind Split. New Stop omplle T e
+ fyntax

Error [23889] 15 of type STREAM: TYFE = REF IOETREAMRecord;
Text inserted 150] IOSTREAMRecord: TYPE = RECORD[streamProcs: REF

10 StreamPraocs, streamData; REF ANY, propList: Atom FroplList «
UserExeclmpl.masa -~ abarted, 1 errors, time: 25 NIL, backingitream: STREAM « NIL]

&10 « &streamDats
Total elapsed ume: 52 +[rope: *-- 1ry 1t now", pos: 13]

&11 Abort
aborted Action #4, remurning to Work Area &

Figure 37

Compiler error log

Meanwhile, the compiler has successfully compiled the first file (notice in Figure 37 that the black
border around the fifth icon from the left is now gone), but ran into a problem in compiling the second
file. The UserExec has created a viewer on the left which displays the compiler log containing the error
message.

195 As mentioned earlier, Cedar supports and encourages concurrent operations, and users make heavy use of this parallelism.
Here I am sending a message while compiling a file. In this particular case, only one task requires my attention: the other is
running in background (my background, not the computer’s). However, it is not uncommon for users to be performing several
foreground tasks simultaneously, such as editing several source files at the same time, or debugging a program by stepping it from
breakpoint to breakpoint, while simultaneously reading mail, etc. The important point is that the user’s interactions with the system
can match the style with which he is most comfortable.

XEROX PARC, CSL-83-11, JUNE 1984

72 THE CEDAR PROGRAMMING ENVIRONMENT

The error is a simple syntactic error, a missing). Y% I'll make this fix and recompile. In the meantime,
this reminds me that a user had sent me a message about a request concerning the UserExec’s behavior
with regard to the compiler log. I keep such messages in my UserRequests message set. I click the
UserRequests button in my Walnut Control Panel to create a viewer for this message set, and then click
the corresponding message in the message set viewer (see Figure 38).

lear el mpl Fres Htore e’ Sply ES 3 plif p_Comp:
Find V\orﬂ Def Pnnuon Norma.lve PreuPlace Reselect ERROR Iolnpl Dndom ”9.
| FirsilevelOnly MoreLevels FewerLevels AllLevels FeLCe
IsWellFormed: FROC [rope: ROPE] RETURNS[BOOLEAN] = | compurancn ;v.fpen'hd Switching 1 Affmn Ares E..
ST STREAM, abor
q[lopt] - since sweums siresdy scgursd, we might consider saving 3 &10 compileall
. “Compile UserExecMethodsImpl mess UserExeclmpl.mesa
wpe] or wet Rope Equal["e", 1o.GetCedarToken stweam | 10 EndOftream Compiling: UserExecMethodslmpl . . . no error:
= BO0TO ¥es]] THEN GOTO ¥ Compiling: UserExeclmpl 1 errors
oo End of compilation
ICExtras cetledarsc anner'l‘:ken[vxeam‘ Wi ! -- Errors im -- UserExeclupl
wdyntaxError =0 soTo Noj & 11 Redo 10
10 EndOfStrean = GoTa Yes seompileall
“Camgale UserExeclmpl.mesa
ENTLOOE Compiling: UserExeclnpl

ExITS
Tes = RETURN|[TRUE):
No =% RETURN[FALSE]:

Categuries play Del 3 rintselected
ket 82 cattell pa Cedar nit There 15 no new mail at 27 Sep §3 22:22:42 PDT
" Now #2 MErown pa prssible time-sawer on rollback on File:
? New 62 MEBrown.pa Fe: posstble nme-saver an rallback . MessageSeV: Lists
ing i eaapBering

 active Deletzd AMTypesiuggestions Atoms BackBurner r~edarPapel
DateAndTime dealerexamples Discussion Documentation Forom
HowTo Humor Impledivgg Inlln?F‘Dll in Lists Misc M/BU’

My g gestan:

RemunderExamples RiverRaft pell Tingafuggesnons T"l'nm
UserExecChanges UserExecPoll UserRequests “ideoTape
Viewersiuggestions

Wew jcon for compilerlog

serProfile.ListOf Tokens

1s "What I Mean" different from "What You Mean"?
1 dom't know what this should da, but

BreakEntry opens wiewer

Compiler errlogs

A couple of nits

Re: & conple of nits Restart finished

v’;;:;i:i:i:'p‘: i:lg;a ;;ro(edures from the command hine - Message has been delivered

reeze ategones A
after all these months, 1 still yearn for the

Thanges helow. 1 usually kil the 1con or

unregquested matenalized viewer because 11 so annoying, and then have to recreate the viewer 15 of type STREAM: TYPE = REF I0STREAMRecord;
later when I want 1o see the results. | have tried selecting the icon as you suggested -- IOSTREAMERecord: TYFE = RECORD([streamProcs: REF
whatever the fime 12 that's required to "tarn it off* 15 interaanable, better & profile option IDéreamProcs, streamData: REF ANY, proplist Atom Proplist «
anyway NIL, vackingstream: STREAM « NIL]
&10 « & streamliats

. RO B t[rape: "-- try 2t now”, pos 17]
Liate Jf-Oct-82 1410019 PLT &11 Abort
From: kelling pa aborted Action #94, remrning o Work Ares &

Sulbgect campiler log
To. teutelinan
e kolling.pa

What new festures I would like 1o be able 1o specify to have happen o the compilerlog at the
end of & compilaton:

oon't ever bhink 1t

Figure 38

A user request
The User Profile

The message (bottom viewer, left column in Figure 38) states that the user wants to be able to
specify that compiler logs are always created iconic instead of being open, as in Figure 37. Since some
users like the way compiler logs currently work, to satisfy this user’s request, I am going to define a new
user profile option so that each user can specify how they want the compiler log handled. In the area of
user interface, rather than enforcing a consensus upon everyone, we allow individuals to tailor the system
to suit themselves, enabling facilities that they like and disabling those that they don’t. For example, I'll
open my profile.

96 The compiler log includes for each error a position (character count) in the source file, e.g., in Figure 37 the Syntax Error
occurred at position 23868. The user selects this position, and then clicks the Position menu button in the corresponding source
file and the source file is automatically positioned at the indicated location (as I have done in Figure 38). The user can thus quickly
step through the source file from error to error and make the necessary edits. Even so, the process of getting a file to compile
successfully is still very tedious. More tools are required. For example, many compiler errors turn out to be of the nature that their
correction could be automated. One could imagine an extension of DWIM that would handle this task.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR

Date: 28 -82 14:10:19 POT
Fram: kelling.pa

Subject. compaler log

To: teitelman

oo kolling pa

Wh
end of a compilation

L't ever blink 1t
If 1t's neather 1comc nor & wewer, make 1t an 1con on the LH side.

Karen

Find Word ef Position Normahze PrevPlace Reselect
FirstLevelCmly MoreLewvels FewerLevels Alllevels

After all these months, 1 shll yearn for the changes below, [usually kill the icon or

unrequested matenialized viewer because 1t's 50 annoying, and then have to recreate the wewer
later when I want 1 see the results. [have tried selecting the icon as you suggested
whatever the time 1z

anyway.

that's required to “turn 1t off" 1s interminable, better a profile option

new festures [would like to be able w0 specify 1w have happen tw the compilerlog at the

t!Lar E !v l!!l[ll\pl !l‘ev!||e Eere !ave !m\e !p 1t !la(es !eve!s !!ange!ag

Pl
“Compile U;erExe-.Me'hadslmpl mesa s orDXer[mpl mesa
Chmpiling: UserExecMethadslmpl 1o errore
Compiling: UserExecmpl . 1 errars
End of compilation
-- Errors in - - serExeclmpl
&11 Redo 10
seompileall
»Zompile UserExechoplmesa
Compiling: UserExer linpl . no errors
End of compilanon
&12

NewForm HPWHN! Commit _CloseAll MessagefetOps
| 2

You have new mail at 28-Zep-&% 16:40:39 FDT

MessageSet: Lists
“Active Deleted AMTypesm.lgges'lom Awm: BackBurner CedarPape]
DateAndTime Do Forum
HowTo Humor Implﬂd‘?ugg Inlm'Pﬂll io Lists Mo MyBugﬁ

Remmdernm\p]es RiverRaft pell Tiogafingzesnons T”hmy
UserExecChanges UserExecPoll UserReguests VideoTape

userexec

Crestefesstonlog: TRUE
CreateWorkArealogs: FALSE
CresteChangeslog TRUE
ComumandsErom: teitelman commands
WhenLogFieEqste Append
Newsmiff UseLocks: TRUE

spelling corrector

Spell.confirm
spellinform: 3
Epell nmeant: 6000
Spell defsultlonfinm TRUE

melistakes

compiler

Compaler Destr

agCminceess: TRUE
Crmpaler oS

debugging

Wiewerssuggestions

Restart finished }

Authenticating vser .. .ok

.. Pafsing..... Sending message...sending 1o 1 recipients
.. Message has been delivered

ind Split New stap Compile Ev; o Gel Clear

15 of type STREAM: TYPE = REF IOSTREAMRecord;

10 STREAMPecard: TYPE = RECORD([streamProcs: REF

10 treamProcs, streamData: REF ANY, propList Atom Proplisr «
NIL, vackingitream; STREAM « HNIL]

&10 « .& streamDat.
'[rope -~ vry 1t naw", pes: 13]

ahnned Aruon #0‘ revurmng 0o V\ork Area A

As you can see (lower left in Figure 39), my profile specifies a variety of options and defaults.

Figure 39

User profiles allow tailoring of the system to suit individual tastes

73

Let's implement the new profile option. I'll create a new viewer, load it with the appropriate source
file, and then scroll to the procedure Showlog, where I want to make the change. What [want to do
is to insert a conditional statement that will check the user’s profile to determine whether or not to create

the viewer for the compiler log iconic.

XEROX PARC, CSL-83-11, JUNE 1984

74 THE CEDAR PROGRAMMING ENVIRONMENT

Abbreviation Expansion and Templates as an Aid for Editing Programs

To accomplish this, I will use Tioga’s abbreviation expansion facility to cause a template for an
IF-THEN statement to be inserted. To do this, I type IF followed by CTRL-E (E with the CTRL key
depressed). This causes Tioga to expand the abbreviation for IF into the template you see in Figure
40.797 This template contains two fields, TEST and TRUEPART, each delimited by special brackets called
placeholders, which are displayed as P 4. Tioga allows me to move to the next/previous field delimited
by placeholders with a single keystroke. If I am positioned at one of these fields, anything I type
automatically replaces the field. In Figure 40, I am ready to specify the predicate for my IF-THEN
statement.

: ComnpilerExecOpslmplanesa [MNew Version
Clear Reset Get Getlmpl PrevFile #&tere Save Time Split Places Levels Changelog
Find Word Def Position Normalize PrevPlace Reselect

FirstLevelOnly Morelevels FewerLevels Alllevels

ShowLog: prOC [name: ROPE, 0k! BOOLEAN, exec: ExecHandle, blinkIt: BooL « TRUE]
RETURN3[log: Viewer] = {
log « ViewerOps FindViewer[name];
IF NOT 0k THEN
r

createlconic: BOOLEAN < TRUE;
IF exec # NIL AND NOT exXec.viewericonic aND (InputFocus.GetlnputFocus[]owner =
exec.viewer) THEN createlconic < FALSE;
IF THEN PTRUEPARTY
1F log # NIL THEN ViewerOps.RestoreViewer[log]
ELSE IF UserExec.CheckForFile[name] THEN log « CreatzLog[name: name, iconic:
createlconic]; ---log not there in case of ne such source
1
ELSE JIP log # NIL THEN {
1F destroyLogOnSuccess THEN {ViewerOps.DestroyViewer[log]; log « wIL}
ELSE ViewerOps.RestoreViewer[log];

H

J

CreateLog: rrOC [name: ROFPE, iconic: B0OL « TRUE] RETURN:[viewer: Viewer] = {
wviewer « ViewerOps.CreateViewer[flavor: $Text, info: [name: name, file: name, iconic:
iconic]]
ks

BlinkIcon: rUBLIC PROC [icon: Viewer, n: INT « 10] = TRUSTED {
Process Detach[Fork Blink[icon, nl);
1.

Figure 40

Tioga abbreviation expansion facility

197 The Tioga abbreviation expansion facility helps the user in dealing with the Cedar syntax, avoiding errors, and formatting
programs consistently. There are similar abbreviations for many of the language constructs in Cedar, e.g., FOR expands to FOR
P ControlVariabled ¢ PInitialExpr4, P NextExpr{ DO PBODY 4 ENDLOOP. In addition. the user can add to or change the
set of predefined abbreviations.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 75

The predicate I want to use is the procedure UserProfile.Boolean. I type the name of the procedure,
UserProfile.Boolean, and then | type CTRL-E again, this time to request a template for its arguments.
Note that UserProfile.Boolean is not defined as an abbreviation; Tioga computes a template consisting
of the names, types, and default values for this procedure using the run-time type system, and inserts it
in the document as shown in Figure 41.198

CompilerExecOpelinplinessa [HMew Werslon

Clear Reset Get Getlmpl PrevFile $tope Save Time Split Places Levels Changelog
Find Word Def Position Normalize PrevPlace Reselect

FirstLevelOnly MoreLevels FewerLevels AlllLevels

ShowLog: FrROC [hame: ROPE, 0K: BOOLEAN, exec; ExecHandle, blinkIt: BooL « TRUE]
RETURNS[log: Viewer] = §
log « WViewerOps FindViewer[name];
IF NOT 0K THEN
{
createlconic: BOOLEAN « TRUE;
IF exec # NIL AND NOT exec.wviewericonic aND (InputFocus.GetlnputFocus[].owner =
exec. viewer) THEN creatglconic ¢« FALS3E;
IF UserProﬁle.Boolean[key:m, default: pBOOLEAN « FALSE4] THENW
PTRUEPART4
IF log # NIL THEN ViewerCps.RestoreViewer[log]
ELSE IF UserExec.CheckForFile[name] THEN log « CreateLog[name: name, iconic:
createlcanic]y; -- fog net there in case of no such source

ELSE IF log # NIL THEN {

1r destroyLogOnduccess THEN {ViewerOps.DestroyWViewer[log]; log « wIL}
ELsE ViewerOps.RestoreViewer[log];
+
i

CreateLog: PROC [name: ROPE, iconic: BOOL « TRUE] RETURNE[vViewer: Viewer] = {
wviewer « ViewerOps.CreateViewer[flavor: $Text, info: [hame: name, file: name, iconic:
iconic]]

B

BlinkIcon: PUELIC PROC [icon: Wiewer, n: INT ¢ 10] = TRUSTED {
ha] s Datacrbhleon BElnllican i1l

Figure 41

Computing a template for a procedure call

As the template indicates, UserProfile.Boolean takes two arguments; the first is named key, and is
of type ROPE, the second is named default, and is of type BOOLEAN. I'll call the key for the new user
profile option that I am going to define Compiler.lconicLogs. If the value of this key is TRUE, i.e., if
the user’s profile contains an entry of the form Compiler.lconicLogs: TRUE, then we make the compiler
log viewer iconic (by setting the variable createlconic to TRUE). The entire statement that I inserted is:

IF UserProfile.Boolean[key: "Compiler.lconicLogs", default: FALSE] THEN createlconic « TRUE;
but I only had to type the underlined characters plus two CTRL-E’s.

198 Runtime availability of all source program information was one of the priority B items on our original catalogue of
programming environment capabilities. Underlying this was our desire to make it easy to extend the set of tools for assisting the
programmer. The computed template facility shown here is a good example of the kind of thing we had in mind.

XEROX PARC, CSL-83-11, JUNE 1984

76 THE CEDAR PROGRAMMING ENVIRONMENT

Using the Interpreter for Experimentation

There was another request in my UserRequests message set concerning compiler logs, namely that
the compiler log use the typescript icon rather than the document icon, to make it easier to distinguish
the compiler log from other iconic Tioga documents. If we look at all of the icons at the bottom of
Figure 39. we can indeed see that it is hard to find the compiler log among all these other documents
with the same icon (it's in the center).

Before we make this edit, let’s try changing the icon for this viewer by hand, i.e., by using the
interpreter. 9 So 1711 reopen my interpreter Work Area, select the compiler log, and use the Eval menu
button to evaluate the current selection (see Figure 42).

e Bt cnd[openfiew] Ziean]iol
Categories Moveln Display Delete A90To Print_Printelected NewFarm Newlail CommitClosesll Messageserops
26 Oct 82 canellpa Cedar nit You have new mail at 3-fep-#3 11:44:44 FLT
7 Wow 82 MBrown pa possible nme-saver an rallback on File:
7 Mov 82 MErown.pa Re: possible ume-saver on rollback Messageiet: Lists
12 1an &5 kolling pa complerlog Active Deleted AMTy) 5 Atome BackBumner CedarPape
3 jan 85 Matwéllpa Wew 1con for ceipieriog DiateAndTime dealerexanpl on Dorumentanan Formn

4 Feh &% Swinehart.FA UserProfile ListOfTokens

‘ H\"‘VTfy
Is "What | Mean® different from “What Tou Mean®"

Humor Tnples

AyEuzs

ol 1 don' knew what tus should da, bt
l’ Mar &3 MBrown.ps BresKEnwy opens wiewer

l° Mar 85 stewartps Compiler errlogs

nehart pe & couple of mts

winehartF4 Re: & couple of nts

Restart 1y

. Anthentic ok
To levn @ | running L of s bed Parsing (essage... sending 1w | rRCIpents
Creightpa the cominand lne . Message has tm. elrversd

levnen pa

Teeze Uatezomies Answer Eand _spht_New
Dete: 3T1an 83 161731 FST &16 catbrean U
Maxwrellpa

t: Mew 1con for compiler.dog
Melinan pa

o Maxweell pa

&17 Redo 14
Warren, - Fope Find *
15 of type
anld you change MiewerEecOpsin Result an that the compiier og's 10om 15 & 1ypescnpt Freak #1
mistead of 3 document’ Here 15 the necessary code SO

log « Wiewerops Creatediewer(flawor $Text, nfo: [name: name, file: name, 100N 1wome, icon
1y pescrpt]]

mstead of

log = ViewsrOpsCrestetewsr[flavor. $Text, info: [name. naime, file: name, wons: conc]]s &18 Redl‘; 17
-« Rope Fmd

Clear R mpl Pre ve S aces Levels hangeLog
Find Ward |:--r Pnsnmn Nnrmﬂlze FrewFlace Reselect
FirstLevelonly MoreLewels FewerLewels &llLevels

1F UserProfile Boolean(key: "compiler conicLogs", defanlt: FALSE] THEN createlcanic «

TRUE;

IF log # WL THEN ViewerCps RestoreViewer(log]

EL3E 17 UserExe CheckForFile[name] THEN log = CreateLog[name: name, iconic:

cresteleomic i - ing not there wn case of Bo sovrse

|

ompaler Log }

ELSE TP log # WL T
1F destraylogoniy THEN {WiewenOpe Destraytiewer[log] log ¢ wiL}
newer(log),

ELSE MViewerOps Restore
\
CreateLog Froc [name. ROPE, I00MIC: BOGL © TRUE] RETURNS[v1ewer: Viewer] = |

wiewer « Viewercps Createliewer[flavar: §Text, nfn: [name: name, file name, 10onE
wenic)]
5

Figure 42

Using the interpreter to experiment

199 Using the interpreter to try things out before going to the trouble of making changes to a program is a technique that is
relatively new to the Mesa community (although it has been commonplace in Interlisp for many years). Part of the reason for this
is historical. All levels of the Mesa system are written in Mesa itself. even the lowest level of run-time support, i.e., there is no
assembly code or other language. Since using source-level debugging was desirable for the entire system, even those primitives that
the debugger itself would need to operate. the solution adopted was to implement a non-resident or world-swap debugger. one in
which the debugger operated at arm’s length from the debuggee in an entirely separate address space. Interpreting expressions in
this remote world was slow and cumbersome. Furthermore, the interpreter only handled a limited subset of the language.

We had higher aspirations for Cedar: to provide a resident debugger, one that shared the same address space as the programs
being debugged. as well as a complete expression interpreter. (A world-swap debugger is included in Cedar, however. for debugging
those levels of the system that are more primitive than the debugger itself.) Thus, the Cedar environment represents the first
opportunity that Mesa programmers have had for using an interpreter to carry out experiments. Consequently. this style has not
yet caught on.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 77

&19 CurrentSelection
{Viewer - class: Text, name: Compiler.Log}

The value of this event is the viewer for the Compiler Log. I can manipulate this value. For example,
let’s look at its icon field.

&20 « &19.icon
document

As expected. Now let’s change this field to be typescript. The simplest way to do this is to repeat
the previous line up to but not including the CR. I can do this with a single keystroke (by typing ESC).
Now I'll complete the line by typing an assignment that will assign a new value to the icon.

&21 « &19.icon « typescriptt
typescriptt -> typescript
typescript

Obviously, 1 am making some of these typing mistakes just to demonstrate the pervasiveness of the
error-correction facilities. However. this correction is especially interesting because, in this case, DWIM
uses as candidates for the correction only the set of values that an object of type icon can assume. In
order to find what these are, DWIM uses the run-ime type system to compute this information when the
error occurs. In this way, DWIM can work on user defined types as well as those that are defined in the
basic system.

Now let’s repaint the icon and see how it looks. 1 can do this by using the procedure PaintViewer,
which is in the interface ViewerOps.

&22 « ViewerOps.PaintViewer[&19]
***Missing Arguments: hint: ViewerOps.PaintHint

What's a paint hint? I'll evaluate it and find out.T100

&23 « ViewerOps.PaintHint
ViewerQps.PaintHint: TYPE = {all, client, menu, caption}

This says that a PaintHint is an enumerated type consisting of the four values all, client, menu,
and caption. I'll bet I can just pass in all for the hint argument. However, there may be other arguments
to PaintViewer that also have to be specified, so I'll use the template feature again to construct a template
for PaintViewer, as shown in Flgure 43.

100 Note that in this example. we are evaluating an expression whose value is a type. One of the goals of Cedar was to make
types into first-class citizens. We have not succeeded in making much progress on this so far with respect to the Cedar language;
it is not possible to pass types around as values, and there is no polymorphism in the language. However, with regard to the Cedar
run-time system, it is possible to perform a wide variety of operations on types, e.g.. given a record type, compute the names and
types for each field. or. given a REF type, compute the type of the referent. Here is an example of an application: a user tried to
use the interpreter to call a procedure one of whose arguments was defined to be of type LIST OF ROPE. For this argument, he
typed LIST["abc". "def™]. a list of ropes. but got an error message complaining that the value supplied was of type LIST OF REF
ANY. This is a current shortfall in the interpreter: whenever it sees LIST, it constructs a LIST OF REF ANY regardless of the
target type. However. it was fairly straightforward to extend DWIM to perform the necessary coercion after the fact. This involved
writing a procedure which took a type. TYP, and a value, VAL. and: (1) determined whether TYP was of the form LIST OF REF
T for some type T. (2) if so. determined the type of the elements of the list. i.e.. REF T, (3) checked that VAL was of type LIST
OF REF ANY. (4) if so. iterated down VAL and verified that each element was in fact of type REF T, and finally (5) constructed
a new value of type LIST OF REF T whose elements were the corresponding elements of VAL.

XEROX PARC, CSL-83-11, JUNE 1984

78 THE CEDAR PROGRAMMING ENVIRONMENT

TTEak W1 10 UselEReC I IsC iR pl PR EeCIF T0mooUICE
compuRiation suspended, switching o Action Arez C.. PROC [51, 52!
ROFE, posli INT « 0, case! BOOL ¢ TRUE] RETURNS [INT];

-- like Index, returns position in 5! where 54 00oUIs (5aris
looking at posi}

-- returns -1 if not found

-- OR§e =) case of characters is significant

& 18 Redo 17
>+ Rope Find?

— is of type
rels ChangeLog Frazk #1! in UserBxecMiscimpl PrintDeclFromsource

campuiaton suspended, switching w0 Aclish Arez O,
aboried

EOOL ¢ TRUE] & 19 Currentielection

{Viewer - class: Text, name: Compiler.Log}

&20 « &19icon

document

&21 « &19%icon « typescriptt

IVRESCTIPY - I¥pesoTint

tInputFocus[].owner = typescript

&22 « ViewerOps PaintViewer[&19]

E] THEN createlconic «
1 **Ipdissing Arguments: hint: ViewerOps.PaintHint
&23 « ViewerOps PaintHint

jone: name, iconic: WiewerOps PaintHint: TYPE = {all, client, TENU., caption
&24 « ViewerOps PaintWViewer[viewer: UM EIRESCEEIE],
hint: pViewerOps PaintHintd, clearClied pPBOCL « TRUE{,
whatChanged: PREF ANY « NILA]

300000000800000000000000000308 5000000000000

Clover
b Sl

Figure 43

Computing a template for a procedure call to be executed

There are two additional arguments, clearClient and whatChanged, but both have default values
so 1 can omit them. I fill in the viewer field with the viewer I want to repamt which is the value of
event 19. fill in the hint field with all, and I'm done.t10!

&24 « ViewerOps.PaintViewer[viewer: &19, hint: all]
{does not return a value}

$101 It is interesting to consider how few keystrokes and mouse actions were actually necessary to construct the expression:
ViewerOps.PaintViewer[viewer: &19, hint: all]. First, I selected the word "ViewerOps" in event 22 by clicking in that word using
the middle button on my mouse; then I extended the selection to include "PaintViewer" by clicking in the latter word using the
right button. Both of these selections were performed while holding the SHIFT Key down. I then lifted the SHIFT key causing
the entire selection, i.e.. the characters "ViewerOps.PaintViewer," to be inserted into the Work Area. Next I typed CTRL-E to
construct the template shown in Figure 43, SHIFT-selected the word "&19" from event 22, hit the NEXT key on my keyboard to
move the caret to the hint: field; SHIFT-selected "all" from the value of event 23; and then finally hit CTRL-NEXT to delete the
remaining argument fields, all of which have default values, and to advance the caret to just past the "." [completed the event
by typing CR. Total: 4 mouse clicks, 4 keystrokes.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR

frels Changelog

BOOL ¢ TRUE]

tInputFocus|].owner =

E] THEN createlconic «

june: name, iconic:

ETeak W10 UselErechlcimpl nniDeciFromsource . |
computation suspendsd, switching o Action Arex .. FrROC [sl, 52
ROPE, posl: INT « 0, case: BOOL ¢ TRUE] RETURN3 [INT];

-- like Index, returns position in 5! where 52 occurs (5tarts
locking at posi}
-- returns -1 if not found
-- 358 =0 oase of cRAraclers Is significant

& 18 Redo 17

»¢ Rope Find?

is of type

Freak ! in UssrFxechlisclupd FrintDeclFromisource
computanen suspended, switching o Action Ares O,
aboriad

& 19 Currentlelection

{Viewer - class: Text, name: Compiler.Log}

&20 « &19icon

document

&21 « &1%icon « typescriptt

IFPESCTIpIt - I¥pescript

typescript

&22 « ViewerOps PaintViewer[4 19]

***Missing Arguments: hint: ViewerOps.PaintHint
&23 « ViewerOps PaintHint

WiewerOps PaintHint: TYPE = {all, client, menu, caption}
&24 « ViewerOps PaintViewer[viewer: &19, hint: all]
{does not return a value}

&25 «

Y R Erecutiv

K 4 oA

Figure

The icon for the Compiler Log has been changed to a typescript

79

Sure enough, the icon for the compiler log is now a typescript. I can now implement this feature by
editing the source, which is still in the viewer immediately to the left.

XEROX PARC, CSL-83-11, JUNE 1984

80 THE CEDAR PROGRAMMING ENVIRONMENT

However, now 1 find that while I have made it easy to distinguish the compiler log from the other
documents, there are so many typescript icons that it is hard to find the compiler log among all of them
(Figure 45).

G 1
Categories MaveTo Display Delete AddTo Print PrintSelected NewForm NewMail Commit 05e.A] MessagesetOps

26 Dot 82 cattellpa Cedar nit Tou have new mail at 28-Sep-83 16:50:40 PDT
? Now &2 MErown.pa possible time-saver on rollback pp on File:

? Nov &2 MEBErown.pa Re: possible time-saver on rollback MessageSiet: Lists

12 Jan &3 kolling pa compiler log Active Deleted AMTypesiuggestions Awnns BackBurner CedarPape
T ds R ML B NE deonl ot iEdnpBRniog: T ‘ “{ DateAndTime bt ggt-lsrusswn D ion Forum v
4 Feb 8% SwinehartPA UserProfile ListOf Tokens HowTo Humor ImpledSugg InlinePoll in Lists Misc My /Eu 25

10 Feh 83 Horning.pa Is "What 1 Mean" different from "What You Mean"? MySuggestions OthersBugs

3 Feb 83 kollingpa T don't know what this should do, but ReminderExamples RiverRaft Spell Tiogafuggestions T“hlm

13 Mar 83 MEBrown.pa EreakEntry cpens viewer UserExecChanges UserExecPoll UserRequests VideoTape

19 Mar &3 stewart.pa Compiler errlogs Viewersiu ggestions

23 Apr 83 Swinehartpa A couple of mits

20 Apr 83 SwinehartPA Re: 4 couple of nits B e eer . 0k

1 May 83 To: levin an 1 running this version of a bed? A pareing. . Senaimg magsage. .sending 1 1

31 May &3 McoCreight.p Callimg from the o d hine . Message has been delivered

6§ Jun 83 vanleunenps beyond *
] = 2

Freeze Categories Answer Find Split New ?mp Complle Eval Redo Set Clear
Date: 31-Jan-83 14:17:21 PST &16 setBreax \‘J‘slt‘lxecmsclmpl fnesa 13891 Bresk #1 set.
From: Maxwell.pa Break #1in U aurce: 13891y
Svkect: New icon for compilerlog pattern « Txoga0p> Lr’a'eSxmplePaUPrn[ka.rge']; - LI93185 3
To: Tentslinan ps partern for the search.
cc: Maxwellpa
&17 Redo 14
Warren, e Rope.Find?
is of type
“ould you change ViewerExecOpsimpl ShowResult so that the compiler log's icon is a typescript Bresk #1 in FrintDe
mstead of & document? Here 15 the necessary code: computation suspended, swivhing o Action Ares 2. wroc (s, 52
ROPE, posli INT = 0, case: BOOL ~ TRUE] RETURNZ [INT];
log « ViewerOps CreateViewer[flavor: $Text, info: [name: name, file: name, iconic: iconie, icon: -~ hke In/jpx, TEONNS pesINGR i 51 Where 50 GCCUrS (Saris
typescript]] Iooking &t posti
== rewrns -1 if not found
instead of: - case =) case of characiers 15 significant
log « ViewsrOps Create\Viewer[fla &18 Redo 17
> RopeFind?
is of type
Clear Setlmpl PrevEl ave ol Erezk #1in
Find Word De[Position Mormalize PrevPlace Reselect computation suspendsd, 5uanhm; wAcmm Ares .
FirstLevelOnly MoreLewvels FewerlLevels AllLevels aborted
& 19 Currentielection
Edired o Seprember J8. 1983 & pm, by Teftelman “Viewer - class: Text, name: Compler.Log}
added userproftie opuon 1T making c'»mpusr log wonic, Nxed createlog o USe Lypescript 1won 20 « Moxcun
changes v ShowLog, CreatsLog documen

&21 « &lslcon « typescriptt
typescript - wpescript

typescript

&22 « ViewerOps PaintViewer[419]

***Missing Arguments: hint: ViewerOps.PaintHint
&23 « ViewerOps PaintHint

WiewerOps.PaintHint: TYPE = {sll, client, menu, caption }
&24 « ViewerOpsPantViewer[viewer: £19, hint: all]
{does not return a walue}

&25 «

Figure 45

Now there are too many typescript icons

Designing a New Icon

One way of solving the problem of too many typescript icons is to use a different icon for some of
the executives. I'll use a graphics tool called the Icon Editor to design a new icon for Action Areas
executives (the two executives on the right in Figure 45).

&25 run iconeditor
Loaded and started: lconEditor.bcd

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 81

NewForm NewM Commit_CloseAll MessageSetO;

Reset &awe Load RotateDisplay Del reatelcon ShowLal a

UNDC ShifWp ShifiDn Shifilf ShiftRu Mirror Setlabel UnSetLabel Register i Sep 53 11:09:47

White DeskToporay DarkGray Black Inverwolor Drawline WhiteLabel BlackLabel e‘of";ﬂe‘ep 83 11:4%:43 PLT

File: Sampleacons lcon Name: MessageSet. Lists

@'Numtﬁr[ﬂ-.v]: from Icon file: Sample.icons Active Deleted AMTygesiuggestions Atoms BackBurner CedarPape|

DateAndTime dealerexamples Discussion Documentation Forum
HowTo Humor Impled$ugg InlinePoll in Lists Misc MyBugs
M i (=l B 1
ReminderExamples RiverRaft &pell TingaSuggestions TShirs
UserExecChanges UserExecPall UserRequests VideoTape
ViewersSuggestions

Restart. finished

Authenticating vserok

. Parsing..... Sending message...sending 1 1 recipients

.. Message has been deliversd

ind_5plit New Stop Complle Eval Redo set Clear
comgtatian suspended, swiching 1w Action Ares .

2Baris
& 19 Currentielection

T L — {Viewer - class: Text, name: CompilerLog}
A&20 « &1%con
document

&21 « &19icon « typescriptt
Typescriptt - (ypestipt

) mum Ly pesCTipn

T — &22 « ViewerOps FaintViewer([& 19]

***Missing Argumenis: hint: ViewerOps. PaintHint
423 « ViewerOps PaintHint

ViewerOps PaintHint: TYPE = {all; client, menu, caption}
424 « ViewerOps.Paint'iewer[viewer: 419, hint: all]
{does not return a value}

&25 ~

I!m!!.pllt Hew !'opi !ommFei Eval Relmdo Se.v., C‘-]car-l-l-

>Compile UserE xecMethodslmpl.mess UserExeclmpl.mess
Compiling: UserExecMethodslmpl no errors
Compiling: UserExechnpl 1 srrors

End of compilation

-~ Errors in -- UserExeclinpl

H 1 &11 Redo 10
" "BnS Ens Bus Sus Eus Bu scompileall
ut s un Aub s Hes mes'i “Compile UserExeclmpl.mesa
Compiling: UserExeclmpl no errors

End of compilation

&12 run 1coneditor

Loaded and started: IconEditor.bod
&13

Figure 46
The Icon Editor

In Figure 46, the Icon Editor contains some of the icons that other people have designed for various
applications. The Squirrel icon is for our data base facility which is named Squirrel. Next to it is the
Walnut mail reader icon you have already seen. Also included in the two rows of icons are an icon for
a calendar, a bus schedule, a TV listing, an organization chart, etc. The last icon in the second row is
the trafficLight icon I am working on (for executives stopped because of a signal).

The 64 x 64 array of squares that occupies the lower two-thirds of the Icon Editor’s viewer represents
the individual pixels in the icon currently being edited. I can change individual pixels from black to
white or vice versa by clicking with the mouse in the corresponding square. I can also draw lines, change
rectangular areas to different textures (stiple patterns), shift rectangular areas up, down, left or right. As
I make changes in this array, the smaller version of the icon is updated so that I can see how the icon
is going to look, actual size. You can see this as I make a few finishing touches to my icon-darkening
the red light and adding rays of light coming from it.

XEROX PARC, CSL-83-11, JUNE 1984

82 THE CEDAR PROGRAMMING ENVIRONMENT

Icon Editor

Reset #awe Load RotateDisplay Deletelcon Createlcon owLabel NewForm «
UNDO ShiftUp ShiftDn ShiftLf ShiftRt Mirror SetLabel Un3etLabel Register You have 1l

White DeskTopGray DarkGray Elack InvertColor Drawline WhiteLabel BElackLabel E

File: sampleicons Icon Name: Mes
Fetchlcon: |y, na : i Active Del
- Date AndTing
HowTo Hu
Myduggesti
ReminderEx|
UserExecCh,
Viewersiug
Restart fin
Authentic|
... Parsing
v Messa;

Find Split
COMPILIN
aborted
&19 Curn
{Wiewer
&20 « &1
document
&21 « &
LY BESCTIpY
typescript
&22 « Vi

T

H
|

R S 25T
&23 « Vi
WViewerOp
&24 « Vi

T

NS RN
T
T

{does not
&25 «

T

T
NN

Find &plit
>Compile
Compiling|
Compiling]

T TT End of co

-- Errory

&11 Redo

scompileal

»Corpile
Compilin

T

T

Figure 47

Designing a new icon

I'm happy with the icon now, so I'll save it on a file. I'll also associate the name "trafficLight" with
this icon by using the Register menu button IconEditor viewer. This will allow me to refer to the icon
by name without having to remember where it is stored.

Now let’s use the interpreter to change the icon of one of my executives to be the trafficLight and
see how it looks. First, we obtain an exec handle using the same method we did earlier, namely selecting
the viewer and evaluating the current selection.

&26 « CurrentSelection :
t[viewer: {Viewer - class: Typescript, name: Action Area E: aborted ERROR
IOImpl.EndOfStream from Inputimpl.GetCedarScannerToken1}, privateStuff: 7246044B+1]

This value is the handle for Work Area E. Now let’s set its icon to be a trafficLight.

&27 « &26.icon « IconRegistry.Getlcon["trafficLight"]
selection failed on icon

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 83

The viewer is one of the fields of the exec handle, and icon is one of the fields of the viewer. I am
one level of indirection off: 1 should have said "&26.viewer.icon." Since what I did type is correct in
every other respect, I can fix this error by simply replaying the line by typing ESC, gointing at the "." in
"8&26.icon,", and typing "viewer," as I am in the process of doing in Figure 481102

VIcWelonU g oo oo
Restart finished
Authenticating user ok
.. Parsing...... fending message...sending to 1 recipients

... Message has been delivered

Wiork Area B Interpreter
Find Split New Stop Compile Ewal Redo 3et Clear

&23 « ViewerOps.PaintHint

ViewerOps PaintHint: TYPE = {all, client, menu, caption}
&24 « ViewerOps PaintViewer[viewer: &19, hint: all]

{does not return a value}

&235 Currentdelection

+[wviewer: {Viewer - class: Typescript, name: Action Area E:
aborted ERROR ICImpl EndCOfStream from
Inputlmpl.GetCedarScannerToken 1}, privatestuff: 72460445+]
&26 « &25icon « IconRegistry Getlcon["trafficLight"]
selection failed on icon

&27 « &2<5.\,'ie’.‘icon « IconRegistry.Getlcon["trafficLight”]

Find Split New Stop Compile Ewal Redo Set Clear
»Compile UserExecMethodsImpl.mesa UserExeclmpl.mesa
Compiling: UserExecMethodslmpl no errors
Compiling: UserExeclmpl 1| errors
End of compilation
-- Errers in -- UserExecImpl

& 11 Redo 10

>compileall

>Compile UserExeclnpl.mesa
Figure 48

Editing events as they are being composed

&28 « &26.viewer.icon « lconRegistry.Getlcon["trafficLight"]

278? 103

102 In previous examples. the caret was always at the end of the typescript, so that our editing consisted of simply appending
characters. This example illustrates that we really can edit. in the full generality of the term, events that are being entered for
execution.)

1103 The type of an icon is somewhat esoteric: it is a MACHINE DEPENDENT enumerated type. The predefined icons such
as document. typescript. tool. etc., have names for the corresponding values, and hence print nicely. However, user-defined icons
print in the strange fashion you see here. Ignore it.

XEROX PARC, CSL-83-11, JUNE 1984

84 THE CEDAR PROGRAMMING ENVIRONMENT

Now let’s repaint the icon for Action Area E and see how it looks. We already have an expression
in event 24 that is pretty close to what we want, namely ViewerOps.PaintViewer[viewer: &19, hint:
all]. We can use the use command to specify reexecution of this event with a different value for the
viewer argumemﬂLl

&29 use "&25.viewer" for &19
>« ViewerOps.PaintViewer[viewer: &25.viewer, hint: all]
{does not return a value}

o ——e
Find Split New Stop Compile Ewal Redo Set Clear
&23 « ViewerOps FaintHint
WiewerOps PaintHint: TYPE = {all, client, menu, caption}
&24 « ViewerOps.PaintViewer[viewer: & 19, hint: all]
- {does not return a value}
&25 CurrentSelection

t[wiewer: {Viewer - class: Typescript, name: Action Ares E:
aborted ERROR IOImpl. EndOfStream from
Inputlmpl.GetCedarScannerToken 1}, privatestuff: 7246044E+1]
&26 « &2%icon « IconRegistry Getlcon[“trafficLight"]
selection failed on icon

&27 « &25wiewericon « IconRegistry Getlcon[“trafficLight"]
2767

&28 use "&25.viewer" for 419

»e ViewerOps PaintViewer[viewer: &25.viewer, hint: all]
{does not return a value}

&29 <-A

Work Area & Executive

ind Split top Compile Eval Redo Set Clear
Poompileall

»Compile UserExeclmpl mesa

Compiling: UserExeclmpl no errors

End of compilation

&12 run iconeditor

Loaded and started: IconEditor.bed
&13

ompilerExer
opsimpl
mesa

1 PHintDes
Fromsoure

Ccompiler
Log

Figure 49
The Action Area icon has been changed to a traffic light

And there’s our traffic light.

Let’'s go ahead and make the edit that will cause the system to use the trafficLight icon for Action
Areas. We simply create a viewer on the file ActlonAreasImpl and insert at the appropriate place in the
procedure NewAction the statement:
exec.viewer.icon « lconRegistry.Getlcon["trafficLight"];

(The characters to the right of the « can simply be copied from event 27.)

104 We could also have replayed event 19 (either by SHIFT-selecting it or via the REDO command), and then made the desired
change by editing. In this particular example, this would have actually resulted in fewer keystrokes than the use command. However,
for a fast typist. moving one hand to the mouse and then positioning the mouse appropriately might actually take more time than
typing the above. In any case, | wanted to demonstrate this feature of the history facility.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 85

Wrapping it up
Now let’s compile the files we have changed.

& 13 compileall

>Compile ActionAreasimpl.mesa CompilerExecOpsimpl.mesa
Compiling: CompilerExecOpsimpl no errors
Compiling: ActionAreasimpl . . . 1 errors

End of compilation

-- Errors in -- ActionAreasimpl

NewForm NewMail Commit

There i5 no new mail

Clear Reset el Getlmpl
Find Word Def Fosition Norma.h.,e

revPlace Rese!

FirstLevelOnly MoreLevels FewerLevels AllLevels
rchive p on Fil
Menus el ine[menu: viewer menu, lne: 1, entryList M‘ f
UserExecPnivate secondMenuLine]; | [Create] MessageSet: _Lists
Menus SetGuarded[entry: Menus.FindEntry [menu: viewer.menu, entryName: Active Deleted AMTypessugzesuons Atoms BackBurner CedarPapel
"Abort"], guard: break]; DateAndTime D Forum
¥ viewericonic THEN ViewerOps Openicon{viewer] HowTo Humer Impledsugg lnlm,,mu fo Lists Misc MyBugs
ELSE ViewerOps PaintViewsr[viewer: viewer, hint: men J; MySuggestions NotebookIndex OthersBugs RememberStuff
pnvane « exec.privateStufy; ReminderExanples RiverRaft Spell TiogaSnggestions TShirts
ForAllSplity wiewer, viewerProc]; UserExecChanges UserExecFoll UserRequests VideoTape
pnvm action AreaDataMlIMsg « (\.\HMsx Viewerssuggestions
Fvate. ac:xonAreaDava:conNBg " roperarlion;. ckpoint
’ Clasing Walnut transactiondone
private. afl{onAreaDaa chon ¢ scuon . Closmg Walnut transactiondone
[] « USE]‘E‘ECPHV&'?»_.\panFOIEXCL[EXEC‘ TRUE); Opening Walnut transactiondone

I
exec viewer.icon « lconRegistry Getlcon["trafficLight"]; Restart. finished
evalHead « UserExecPrivate GetEvalHead[exec; _ - —_—
evalHead context « BEContext.ContextForLacalFrame{frameTV ; [Find Sput New Stop Complle Eval Redo Set Clear
IF parent # NIL THEN TRUSTED { &23 « ViewerOps.PaintHint
viewerProc: UserExecPrivate. Spht\hewerrmc = TRUSTED { aintHint: TYPE = {all, chent, menu, caption}
1F parentsPrivate actionAreaData # NIL THEN A28 « ViewerOps. Pmm«lnew»r[mewer 219, hant: all]
Menus SetLine[menu: viewerenu, line: 1, entryList: N1L]; {does not return a walu
&25 CurrentSelection

ViewerOps PaintViewer[viewer, menuj;
; +[viewer: wer - class: Typescript, name: AchonArea E:
T aborted ER] I0Impl. EndOfStream from
- Inputlmpl. edarScannerToken 1}, privateStuff: 7246044B+]
S .26 .10, e g5 e e igh)
Clear = Get GetImpl PrevFEile awe Time Split Places Levels Changelog selection led on icon
Cedar 3.4 Compiler of 12-Apr-83 17:21:29 427 « g25.vieweracon « IconRegistry Getlcon["rafficLight"]
30-Sep-83 18:01:15 27B7
&28 use "&25.viewer" for &19

Command: CompilerExecOpslmpl mesa Y« ViewerCrps PantViewer[viewer: &25.viewer, hint: all]
CompilerExecOpsImpl.mesa -- source tokens: 4828, time: 39 {does not return a value}
code bytes: 1348, links: 68, frame size: 148 &29 «

TeomReEiry e W
IconRegistry 15 undeclared, at New Action[2993):
conRegistry e [0998): g Spht New Stop Compile. Eval Redo St Clear

exec.viewer.icon « IconRegistry Getlcon[“wrafficLight"]; i
>compile:

>Compile UserExecImpl.mesa

Compiling: UserExechnpl ne errors

End of compilation

412 run 1coneditor

Loaded and started: IconEditor.bed

&13 compileall

>Compile CompilerExecOpslmplunesa AchonAreashnplnesa

Compiling: CompilerExecOpsImpl

Compiling: ActionAreasimpl

End of compilation

-- Errers in -- ActionAreasimpl

&14

actionareasimpl.mesa - aborted, 1 errors, time: 15

Figure 50

More simple compiler errors

There was an error in the compilation of the second file. It is displayed in the log on the left in
Figure 50: "IconRegistry is undeclared."” This error is due to the fact that I forgot to add IconRegistry
to my Directory and Imports list and it reveals one area of weakness in Cedar common to many strongly
typed languages: the tedium of getting a file to successfully compile. The majority of compiler errors
turn out to be of the nature that their correction could be automated (such as the case with the missing
’] earlier). An extension to DWIM to handle such errors automatically would be of great utility.

XEROX PARC, CSL-83-11, JUNE 1984

86 : THE CEDAR PROGRAMMING ENVIRONMENT

Let’s fix this error and recompile.

&14 redo 13

>compileall

>Compile ActionAreasimpl.mesa
Compiling: ActionAreasimpl . . . no errors
End of compilation

The compilation has finished successfully. Now let’s bind the program.

&15 bind userexecutive

Loading Binder.bcd...

Binding: userexecutive no errors
End of binding

Unfortunately, since the changes we have made were to the UserExec, a component of the system
that is already running, in order to test the changes we have to boot (reload) the system; we can’t simply
replace the UserExec that is running with the new one. Reloading of booting takes about two minutes.
We hope to implement a facility for replacing an individual module in a running system. This should
greatly improve the turnaround time on making and testing changes.“o5

&16 boot
Testing Our Changes

(Later...) We have just finished booting the system. Let’s test our changes. The system maintains a
log of all of the files that were changed in our previous session. Let’s open Work Area A and then open
this log.

&2 open changes.log
Created Viewer: Changes.Log

The changes log tells us (see Figure 51) that the first problem we fixed was the one regarding not
getting comments from files when I typed "?". Let’s create an interpreter Work Area and try it out.

&1 « Rope.Find?

is of type PROC [s1, s2: ROPE, pos1: INT « 0, case: BOOL ¢ TRUE] RETURNS [INT];
-- like Index, returns position in s1 where s2 occurs (starts looking at pos1)
-- returns -1 if not found
-- case = case of characters is significant

1105 One of the top priorities in our original catalogue of programming environment capabilities was fast turnaround for minor
program changes (< 5 sec). "Our concern with fast turnaround comes from the observation that programming should be think
bound. not compute bound. There are several ‘knees’ (points of substantial non-linearity) in one’s perception of response delays.
One such knee is in the vicinity of 3 to 5 seconds. We believe that it is essential to reduce the system time for minor program
changes to below this point” [8]. While the changes that we made in this tour were not minor, sad to say that even had they been
minor, we would still have been forced to reboot (or at least return to an earlier checkpoint), in order to test them out. Attacking
this shortcoming is now one of our highest priority items.

XEROX PARC, CSL-83-11, JUNE 1984

A TOUR THROUGH CEDAR 87

The UserExec printed the comments correctly (see Figure 51). The next change was to fix the
problem wherein an event consisting of just a comment caused an EndOfStream error. Let’s try this in
Work Area A.

&3 -- try it now

That worked: it didn’t raise an EndOfStream signal like it used to. The next change was to the
procedure CreatelLog to cause it to use the typescript icon for compiler logs. Let’s try this out.

&2 « CompilerExecOpsimpl.CreateLog["compiler.log"]
{Viewer - class: Text, name: compiler.log}

Now we close this viewer and see whether its icon is a typescript (see Figure 51). Finally, the last
change we made was to use the trafficLight icon for Action Areas. Let’s do something that will cause an
error, like dividing by zero.

&3 « 1/0
SIGNAL Traps.ZeroDivisor from Traps.ZeroDivisorTrap
computation suspended, switching to Action Area C...

Now we’ll make the viewer for Action Area C iconic and see if the trafficLight is used.

€ Boot] Cimd| OpeniNew] Clean] ldle
Clear Get Getlmpl | PrevFile ave Time Split FPlaces Levels Changelog ind_ Split New Stop Compile Eval Redo Set Clear
Find Word Def Position Normalize PrevPlace Reselect Cedar Executive Seplember 30, 1963 6:05 pm. Tvpe 7 for Commands.

FirstLevelOnly MoareLevels FewerLevels AllLevels

&2 open changes.log
HEERBRBRRBHBBBBRBBRBBBBERBERBRRBRRRBREY Created Viewer: Changes Log

Changes log created at 9-Sep-83 22:41:41 FDT {Viewer - class: Text, name: ChangesLoz}
&3 -- 1y it now

L1}

Changed File: UserExechethadsImplmesa
Edited on September 9, 1983 10:40 pm, by Teitelman
fixed bug wherein ? was not getung comments from file
changes t: Help

BERBBHBRBRRNBBBREBBHRBRABRRERERRRBERBRBHE

Changed File: UserExecImpl mesa
Edited on September 27, 1983 11:22 am, by Teitelman
fixed bug wherein typing just a comment to an exec caused an endofstream error
changes to: IsWellFormed

HRRARBBBBRRERRERBRRERBERBBBRBBRRRARIRRR

Changed File: l.ompuerExecOpslmpl mesa
dited on September 27, 1983 10:43 pm, by Teitelman
added userprofile .:.puon for making compiler log iconic, fixed creatslog to use typescript
1con
changes t: $howLog, CreateLog

Find split New & 2
HEHERARBERBRAARGRRERB BB RBABERERRABRREY Cadar Executive June 3, 193 9.4 am. Twpe 7 for Commands,

Changed File: Action Areashnplinesa &1 « RopeFind?
Edited on September 30, 1983 3:37 pm, by Teitelman is of type PROC [51, 52 ROPE, posl: T « 0, case: BOOL « TRUE]
changes to: New Action RETURNS [mN1];

-- like [ndex, returns position in 51 where 52 0ccwrs (SLarts
toking at pos ()
HURRBBRBRERBBBBRBRRBBBBRBRBRERRRRBGRBRE - revarns -1 if not found
-- case =) case of characters 15 sigmificant
Changed File: ActionAresslmplmesa

Edited on Seprember 30, 1983 £:05 pm, by Teitelman &2 « CompilerExecOpslnpl CreateLog["compiler log"]
changes to: NewAction, DIRECTORY, IMPORTS {V]awel class: Text, name: compiler.log}
&3 «

SIGEAL Traps. from Tr. i rap
compRtaon suspended uumhm_e w Action Arez C.

Figure 51

Trying out our changes

XEROX PARC, CSL-83-11, JUNE 1984

88 THE CEDAR PROGRAMMING ENVIRONMENT

Summary

The demonstration contained in this paper has presented a number of the key concepts and facilities
in Cedar. Some of these are: a highly visual user interface which exploits the high-bandwidth display
and mouse pointing device; a uniform screen paradigm provided by the Viewers Window package, which
includes facilities for icons, whiteboards, and tools, as well as text viewers; a high-quality editor and
document preparation system (Tioga); spelling correction (DWIM); availability of an interpreter for a
compiler-based language: a strongly typed programming language of the Pascal family which also includes
automatic storage management, the ability to manipulate types at run-time, and support for Lisp-style
lists and atoms; a sophisticated debugger which includes source-object code mapping to facilitate planting
of breakpoints and examining program state; support for concurrent operations; and a high degree of
integration of facilities and uniformity of user interface. The next paper, "Cedar: The Report Card,”
evaluates the successes and failures of Cedar.

XEROX PARC, CSL-83-11, JUNE 1984

CEDAR: THE REPORT CARD 89

Cedar: The Report Card

This paper takes a closer look at various aspects of the Cedar programming environment, its successes,
its failures, and the lessons to be learned from both. The paper consists of four sections: Catalog
Scorecard, Notable Successes, Shortcomings, and What Next? The first section, Catalog Scorecard, grades
the current Cedar system against the original catalog of programming environment capabilities drawn up
in 1978. The conclusion it draws is that we were successful with respect to most of our high priority
items with a few exceptions that are discussed in the section on shortcomings. The second section,
Notable Successes, looks in more detail at some areas of Cedar considered (by the author) to have been
successes. These include: Object Management, Self Typing Data, Run-time type System, Manipulation
of Images, Uniform Screen Management, Remote Procedure Call, Version Control, and Remote File
Storage. The third section looks at some of the shortcomings of Cedar in its current form. Most of these
shortcomings are in the area of providing support for the Lisp programming style, one of our original
goals. This section discusses some of the basic differences between the Lisp and Mesa programming style,
and then looks at some specific shortcomings of Cedar including: Fast Turnaround for Small Changes,
Support for Wide Range of Binding Times, Easy Use of Programs as Data, and Inheritance/defaulting.
The final section, What Next?, discusses some areas that might fruitfully be attacked next.

It is important to bear in mind while reading this paper that while I have attempted to be objective,
it is only fair to note that the observations and conclusions presented here belong to the author, and that
some members of the Cedar project almost certainly would disagree with many of them.

Catalog Scorecard

Evaluating a programming environment is an extremely difficult task. There is no concept of
certification of environments, as there is for compilers, because there is no well-defined notion of what
an environment is supposed to do, other than increase productivity. There is no objective metric for the
performance of a programming environment, as there is for sort algorithms. Whether or not a
programming environment is good or bad depends on what it was trying to achieve, what its goals were.
In the case of Cedar, we were in the somewhat unusual position of having articulated our goals before
we started ([8] and reproduced in Appendix 1 and 2). Thus, one way of evaluating Cedar is to return to
these original goals and grade Cedar on each item.

The original list of capabilities was divided into four categories by priority. The seven priority A
items were: object management (garbage collection, reference counting), statically checked type system,
memory management (object/page swapping), abstraction mechanisms and the explicit notion of interface,
fast turnaround for minor program changes (less than 5 seconds), adequate run-time efficiency, and large
virtual address space (> 24 bits). With respect to these items, we have done extremely well with one
glaring exception: fast turnaround for minor program changes (see discussion under "Shortcomings"”
below). Mesa already had a statically checked type system, memory management, the explicit notion of
an interface, and adequate run-time efficiency. The extension of the virtual address space to 24 bits was
a difficult, but straightforward task. The addition of garbage collection to Cedar is discussed in the next
section.

There were ten items on our priority B list of capabilities: encapsulation/protection mechanisms
(scopes, classes, import/export rules), well-integrated access to large, robust data bases, self-typing data
(a la Lisp and Smalltalk) and a run-time type system, consistent compilation, version control,
source-language debugger, text objects and images, uniform screen management, user access to the
machine’s capability for packed data, and run-time availability of all information derivable from source
program (e.g., names, types, scopes). With respect to these items, we have also attained most of our goals.
Mesa already had encapsulation/protection mechanisms, consistent compilation, and user access to the
machine’s capability for packed data. We successfully implemented a run-time type system,
source-language debugger, uniform screen manager (discussed in more detail below), and provided for

XEROX PARC, CSL-83-11, JUNE 1984

90 THE CEDAR PROGRAMMING ENVIRONMENT

run-time availability of all information derivable from source program. Facilities for version control and
uniform screen management were provided and are two of Cedar’s notable successes (see discussion of
successes below). We believe that the Cypress database system [5] is the first step towards providing
well-integrated access to large, robust data bases, but the verdict is not yet in.

Successes among the twelve priority C items include: support for interrupts, compiler/interpreter
available with low overhead at run time, dynamic measurement facilities, scanned bitmap objects and
images, formatted document files, line objects and images, and remote file storage, many of which are
discussed in more detail below. Adequate reference documentation is just beginning to appear but work
on a librarian and a program-oriented filing system including a browser has not yet begun. Program
manipulable representation of programs has not been fully achieved for some of the same reasons that
polymorphism and the ability to create fully integrated local sublanguages has failed to materialize (see
discussion under "Shortcomings" below).

Other items on our shopping list were checkpoint, menus and other standard user interfaces,
document editing, adequate exceptional handling, remote procedure call, message transmission system,
all of which have been done. Access to on-line documentation is just beginning to happen.
Inheritance/defaulting, the ability to extend the language, and the ability to create fully integrated local
sublanguages have not been attacked at all and are discussed further in the section "Shortcomings."

Notable Successes
This section elaborates on some areas of Cedar generally considered to have been successes.
Object Management - Garbage Collection

The addition of garbage collection to Cedar has been an unqualified success; many diechard Mesa
programmers that were initially skeptical about the need for a garbage collector in Cedar now state that
they would find it extremely difficult to give it up. Although originally thought of as just a convenience
for programmers, the addition of garbage collection to Cedar has also caused profound changes both in
interface design and programming styles. Without garbage collection, the programmer must insert explicit
deallocation statements in all the appropriate places to free storage when it is no longer being used.
However, for certain styles of use, it is not always clear that there is any "appropriate place" to insert a
deallocation statement. For example, it would be a substantial challenge in a system without garbage
collection to ensure that that when no references to a particular stream remain, a backing file would
automatically be closed. Thus, the availability of garbage collection to Cedar has enabled a variety of
styles of programming not previously available to the Mesa community.

The addition of garbage collection to Cedar required the solution of two problems. The first problem
was simply enabling the garbage collector to locate the pointers to objects in collectible storage, since
not enough information was present in the actual data itself, i.e., pointers do not carry type information
in Mesa. We solved this problem by modifying the compiler to put out additional information in the
object code to enable the garbage collector to perform this task.

The second problem was more fundamental: the presence of LOOPHOLEs (breaches of the type
system), pointer arithmetic, overlaid variants, and relative pointers in the Mesa language makes it possible
for the Mesa programmer to easily fool or confuse the garbage collector without intending to do so.
Furthermore, in such a case, a single programming error that smashed a pointer to an object in collectible
storage could destroy critical system data structures in ways that would make it difficult to reconstruct,
after the fact, any evidence of the original clause of the crash: the system would be, in effect, reduced
to a rubble of bits.

In order to resolve this latter problem, we took the approach of identifying a subset of the Mesa
language, the so-called safe language, that did not contain any of the LOOPHOLE-like features mentioned

XEROX PARC, CSL-83-11, JUNE 1984

CEDAR: THE REPORT CARD 91

above. We then added language constructs to Cedar to draw a protection boundary around a program
written in this subset. Even incorrect programs written using this safe subset of Cedar were guaranteed
not to be able to interfere with the reliable operation of the garbage collector. The vast majority of Cedar
programs are now written primarily (or entirely) in Safe Cedar. (For more information, see [12].)

Self Typing Data, Run-time Type System

The addition of self typing data (REF ANY) to Mesa’s statically checked type system was also
performed successfully. Self typing data was intended to provide for a form of late binding by allowing
the implementor to defer type checking from compile time to run-time on a case by case basis. By
employing REF ANY in the early stages of development, programmers could opt for more flexibility at
the expensive of performance and/or run-time errors. As the program matured, various binding decisions
could be made earlier by employing specific types where appropriate. However, due to the lack of other
forms of system support for late binding (see discussion below under "Shortcomings"), this particular
use for self typing data did not come into widespread use.

However, we had also envisioned two other important uses for self typing data, both of which were
realized and are widespread in Cedar today. The first use is to enable generic programs — programs that
can determine the type of a REF ANY at run-time, and operate differently depending on the type of the
object they are given. For example, a Sort program could be written which takes as arguments two items
of type LIST OF REF ANY, and a comparison procedure of type PROC[Xx: REF ANY, y: REF ANY]
RETURNS[inOrder: BOOLEAN]. The same Sort program could thus be used to sort lists of integers, reals,
strings, etc., by supplying a comparison procedure which selected the appropriate metric based on the
type of objects being compared.

The second use for REF ANY is to enable object-oriented programming (also called closures), where
an object in Cedar consists of a block of procedures that defines various operations, along with some
private data, represented by a REF ANY, that contains the state information. The use of REF ANY enables
the form and representation of the private data to vary between different implementations of the same
object, for example, between file streams and keyboard streams. However, from the standpoint of Cedar’s
type system, these different implementations are nevertheless objects of the same type. Thus, an application
can be passed different implementations of a stream without requiring breaching the type system, i.e. a
LOOPHOLE. For example, a procedure that takes as an argument an output stream can output material
to this stream without caring whether the ultimate destination of the characters is a file, a rope, or a
viewer.

In each of the applications discussed so far, the type discrimination being performed at run time is
among a collection of types that were known ahead of time, i.e., specified at compile time. For example,
the generic Sort routine could only sort those objects whose types were built into the comparison
procedure, even though that procedure could determine at run-time which of these types was the type
of the object it was processing. Being able to perform such type discriminations is sufficient for most
applications. However, we also implemented in Cedar a full-blown run-time type system which allows
programs to manipulate types as data in a completely general fashion. For example, having determined
that the type of an object it has been given is a record, a program can compute the number and names
of the fields of the record and obtain the value of the datum stored in any particular field. A Lisp
analogy might be to contrast a function that takes an atom and sees whether it is one of a particular set
of atoms (very fast) with a function that unpacks the atom into its constitutent characters and then
performs some processing on these, e.g., determine if two atoms are the same except for differences in
the case of the component characters.

1106 In actual practice, if the application will be sorting long lists of such objects or it is important that the sort be as efficient as
possible, clients will customize the Sort program to the specific type of the object so as to avoid the run time type discrimination.

XEROX PARC, CSL-83-11, JUNE 1984

92 THE CEDAR PROGRAMMING ENVIRONMENT

Such a capability is admittedly needed only for specialized applications. However, it enables users
to implement a class of applications that are normally only in the province of system wizards. For
example, the expression interpreter used by the debugger is simply a client of the Cedar run-time type
system: it does not include or use any specialized information that is not available to any other client.
Another one of the first clients of the run-time type system was a general print routine which took an
arbitrary object and printed its value in a manner appropriate to its type. Another interesting application
designed by a student is the ViewRec Package, which accepts an aggregate datum (a record, sequence,
or array) and constructs a visual interface to this datum. This interface (a viewer) displays and continuously
keeps up to date the various fields and values of the datum. It can also be used to change the contents
of the data structure.

In most programming environments that are built on top of strongly typed languages, it is simply
not possible for an arbitrary user to construct such applications.

Manipulation of Images-Cedar Graphics

There were several items relating to the manipulation of images in our original catalog of
programming environment capabilities: text objects and images, line objects and images, scanned (bitmap)
objects and images. and formatted document files. This was not surprising, given that the manipulation
of images is of primary concern to us in our experimental systems. We divided these manipulations into
two categories: manipulation of abstract objects such as formatted documents, forms, line drawings, and
continuous-tone images: and manipulation of these objects on displays or printers. Operations in the first
category are defined by the semantics of the objects, not by their representation on a particular medium,
whereas operations in the second category must take the nature of the medium into account. The first
EPE working group believed that "enough experience had been gained in these areas that it [would be]
possible to construct packages that will be useful in a wide range of programs, and that will markedly
decrease the effort required to write programs that use them" [8] .

The Cedar Graphics package designed and implemented by John Warnock and Doug Wyatt [33]
amply confirmed this belief. It provides the support for Cedar’s uniform screen manager, the Viewers
Window Package. (described earlier in "A Tour Through Cedar" and discussed further in the section
below). The flexibility of Cedar Graphics has enabled Viewers to support not only simple typescript-style
text applications but also applications involving drawings, scanned images, and combinations of graphics
and text. In addition to Viewers, Cedar Graphics has been used to implement a music composition
system. a VLSI design system, and a graphic arts design package.

The key idea in Cedar Graphics is a unified graphics imaging model and an associated programming
interface. The imaging model is totally independent of display devices: it provides an abstraction of how
an image would ideally look on a perfect medium. The implementation for a specific device renders the
appearance of this ideal image as well as possible. For example, a device that can show grey values might
display color values via appropriate grey values, or a binary device might display colors with stipple
patterns. Isolating the device-dependent portions of Cedar Graphics into a relatively small set of primitives
reduces the cost of implementation for additional devices. For example, Cedar Graphics has already been
implemented for binary, grey-scale, and full-color raster display systems, and for high-resolution
black-and-white printers and color raster printers.

A good way to think about the Cedar Graphics imaging model is to consider a slide projector shining
a general-colored image through a stencil onto a piece of paper, or a silk-screen printer pushing colored
ink through a stencil onto paper. The programmer defines sources and stencils via a sequence of procedure
calls, and then uses other procedures to produce the effect of pushing a given source through a given
stencil. Each stencil and source can also be mapped through any linear transformation prior to display.
Very complex images can be built using different combinations of stencils, sources, and mappings. For
example. Figure 52 shows the result of using a two-dimensional sampled image of a photograph of our
laboratory as a source. and a collection of analytic curves that form the outline of the letters P-A-R-C as

XEROX PARC, CSL-83-11, JUNE 1984
/

CEDAR: THE REPORT CARD 93

a stencil. The upper image is the result of scaling the same source and stencil by .5 in height and .75 in
width.

Created Vi
{Wiewer -
&6 run TJ
Loaded an
&7 jamgral
Tald Types
&8

[k | woras 64118
g | CFU Load '
Faults 3957 ,
B | requests 9363
|[CC interval

Fause Stop

Documents:
Re

Copiss: 1

G

Figure 52

Cedar Graphics enables the display of very complex images

The Cedar Graphics imaging model also includes an additional level of stencil called a clipping
region. which restricts the area where ink is displayed regardless of what other shapes or masks are used.
The Viewers window package makes heavy use of clipping regions. It enables clients of Viewers to ignore
the fact that the display is shared among many applications.

Uniform Screen Management-the Viewers Window Package

Use of the display is pervasive in our interactive systems. Lack of uniformity leads to
duplicated effort, often of low quality, since an individual builder cannot easily draw on
all past experience or devote the time to taking advantage of it. On the other hand, too
much central control over screen management may frustrate the desire to experiment
with new paradigms for interaction. We believe that it is possible to "virtualize" the
screen and the user input devices-that is, require people to write programs on the
assumption that they will only have access to a subpart of the screen, and to a slightly
filtered stream of input events-in a way that will not markedly impede our ability to
experiment, and that will have a large payoff in terms of the user’s ability to construct a
screen environment containing multiple windows on different programs. [8]

The Viewers Window Package has successfully attained these goals. It is "the arbiter of the user
input and display hardware in the Cedar programming environment. It provides the illusion to the
programmer that there is a private display, mouse and keyboard associated with each application, while

XEROX PARC, CSL-83-11, JUNE 1984

94 THE CEDAR PROGRAMMING ENVIRONMENT

allowing the user to simultaneously interact with many such applications” [19].

Resolving this issue of distributing user actions among various applications all running concurrently
was one of the most interesting and challenging issues in the design of Viewers. The problem is that
while some user actions, such as mouse clicks, include information that determines the application to
which they are directed, namely the location of the cursor at the time the mouse is clicked, many user
actions such as keystrokes do not contain such information. Instead, the recipient of these latter actions
is a function of previous user or program actions.

This problem is handled in Viewers by defining the notion of an input focus that associates keyboard
activity with a particular viewer. The corresponding application program reads characters from the
keyboard using the standard pull model: the program asks for a character, and when characters are not
available, the program waits. Note that characters may not be available to this program because the user
has not typed any. or because the user has redirected his typing to some other application.“o7 In fact,
one of the virtues of this scheme is that these two cases are indistinguishable to the program. In other
‘words. the program can ignore the fact that the keyboard is shared, just as the clipping region in Cedar
Graphics makes it possible for programs to ignore the fact that the display is shared.

Another issue successfully addressed by Viewers was the desire to facilitate experimentation with
various user interfaces. The Terminal Interface Package (TIP) makes it easy for individual applications
each to employ different user interfaces, and for individual users to change existing interfaces to meet
their own preferences. TIP achieves this by separating interface from function, i.e., separating the
operations implemented by a particular application, such as Delete, Exchange, and SelectNode for Tioga,
and Select and Draw for the IconEditor, from the way in which the user invokes the operation, such as
typing CTRL-X. or double-clicking the left mouse button. A specially formatted file called a TIP table
specifies the mapping of user actions into system operations. For each application, TIP parses the user
actions into the corresponding operations using the application’s own TIP table. This arrangement makes
it easy for individuals to change or extend the user interface. Figure 53 shows a portion of the TIP table
that interprets user actions inside of icons. For example, the line marked with an asterisk in this table
specifies that when the LeftShift key is down and the user clicks the middle button on the mouse, the
icon that the mouse is in is opened and given the full column.

The Viewers Window Package allows programmers to create new classes of viewers by specifying an
implementation for various operations, such as how to display a viewer that is an instance of this class,
what cursor shape to display when the user moves the mouse into this viewer, what to do when the user
clicks the mouse in the viewer, how to scroll the viewer, etc. This facility has been used for implementing
a wide variety of viewers. These include whiteboards (Figures 5, 6), sliders (used for displaying and
setting continuous values), histograms, graph browsers, record viewers, plus various tools such as the
Watch tool (Figure 15), File tool (Figures 2-4), EditTool, TypeSetter, Clock (Figure 2), and games such
as MazeWar. Tank. and Football (see Figure 54).

One shortfall in the current implementation is lack of support for subclassing; it is not possible to
define a new viewer class by specifying only the ways in which it differs from some existing class. For
example, it would have been very useful if Walnut, the electronic mail reader, could have defined a class
of viewers called Message Senders, which were like Tioga viewers in every way except that, in addition,
they supported the operations of Send. Although subclassing in general is not supported in Cedar (the

1107 The user changes the input focus from one viewer to another simply by clicking the mouse in the corresponding viewer.
Applications can also change the input focus. For example, when the user clicks Walnut's NewForm menu button, a message
sender viewer is created. and the input focus placed in that viewer. Similarly. when a breakpoint is encountered and a new Action
Area created (see Figure 24 in "A Tour Through Cedar"). the input focus is automatically placed in the Action Area.

XEROX PARC, CSL-83-11, JUNE 1984

CEDAR: THE REPORT CARD 95

lack of such support is discussed separately below), it would have been possible to provide some form
of support for subclassing for Viewers. 198 This issue has recently begun to receive some attention.

SELECT TRIGGER FROM
Left Down => Select;
Left Up WHILE Ctrl Down => Delete;

Middle Up => SELECT ENABLE FROM
Ctrl Down => OpenDesktop;
LeftShift Down => CloseOthers, Open; *
ENDCASE => Open;

DEL Down => Delete;

L Down => Left;

M Down => TogglePos;

O Down =) SELECT ENABLE FROM
Ctrl Down => OpenDesktop;
LeftShift Down =) CloseOthers, Open, SetlnputFocus;
RightShift Down => CloseOthers, Open, SetinputFocus;
ENDCASE => Open, SetinputFocus;

R Down WHILE Ctrl Down => ResetDesktop;

R Down =D Right;

s Down =) Save;

ENDCASE.

Figure 53

The Terminal Interface Package facilitates experimenting with user interfaces

Another shortfall of Viewers is that it is difficult to build complex windows with much internal
structure such as that employed by the Watch tool (see Figure 15). The principal reason for this is that
the language by which the client constructs a viewer is imperative rather than declarative: the client
specifies the algorithm for laying out the display via a sequence of procedure calls which perform the
layout. As a result, the various decisions about the display are wired into a program, and hence difficult
to change. Furthermore, it is difficult for all but an expert to read the program and visualize the resulting
display. Specifying such a window via a passive data structure which described the desired result and
was interpreted at run-time might provide a solution to both of these objections. Another approach would
be to design a tool for constructing such viewers, which would allow the user to experiment interactively
with various layouts, inserting, deleting and moving the components of the viewer being constructed.
When a satisfactory result was achieved, the corresponding program or data structure could be constructed
automatically. (Such a tool has been implemented in another programming environment at Xerox and
has been enthusiastically received.) A more general solution to this problem would be to allow Tioga
documents to include viewers and other graphical entities along with text. In this case, the Watch tool
would simply be a Tioga document, and could be created, edited, and saved accordingly. Future plans
for Tioga call for such generalized documents.

$108 In fact. an earlier implementation of a screen manager for Cedar did include support for subclassing.

XEROX PARC, CSL-83-11, JUNE 1984

96 THE CEDAR PROGRAMMING ENVIRONMENT

Remote Procedure Call

The ability to call a procedure on another machine as though it were on one’s local machine was
one of the package items in our catalog of capabilities. For those unfamiliar with this notion:

The idea of remote procedure calls (RPC) is quite simple. It is based on the observation
that procedure calls are a well-known and well-understood mechanism for transfer of
control and data within a program running on a single computer. Therefore, it is proposed
that this same mechanism be extended to provide for transfer of control and data across
a communication network. When a remote procedure is invoked, the calling environment
is suspended, the parameters are passed across the network to the environment where
the procedure is to execute, and the desired procedure is executed there. When the
procedure finishes and produces its results, the results are passed back to the calling
environment, where execution resumes as if returning from simple single-machine call.

2] '

The primary purpose of RPC in Cedar was to make distributed computation easy. We had observed
that building communicating programs in our research community was a difficult task, one which was
attempted only by a select group of communication experts. Even researchers with experience in building
systems found it difficult to build distributed systems with our existing tools. We considered this state of
affairs to be very undesirable:

We have available to us a very large, very powerful communication network, numerous
powerful computers, and an environment that makes building programs relatively easy.
The existing communication mechanisms appeared to be a major factor constraining
further development of distributed computing. Our hope is that by providing
communication with almost as much ease as local procedure calls, people will be
encouraged to build and experiment with distributed applications. [2]

We are still in the early stages of acquiring experience with the use of RPC and certainly more work
needs to be done, but it appears that Cedar RPC has achieved its goals of making distributed computation
easy. There have already been several projects that have used RPC to implement various distributed
applications. These include the control communication for an Ethernet-based telephone and audio project
and the complete communication protocol for Alpine, a file server supporting multi-machine transactions
and page-level access. Here is a comment from one of the implementors of Alpine:

Using RPC has proven valuable for the following two main reasons: 1. It frees both
client and implementor from worrying about the actual format of the bits going over the
wire. An ordinary Mesa interface module is the total description of the arguments and
results of all operations performed by the server. Furthermore, the RPC semantics are
sufficiently complete (i.e., similar to single-machine procedure call) that the programmer
doesn’t have to think very much about adapting an interface for remote use. 2. RPC
takes care of all aspects of remote binding, authentication, and reliable communication.
One does not need to be a communication wizard in order to communicate. [italics mine]

Several network games have also been implemented using RPC. The basic paradigm for each of
these programs is that there is one server to arbitrate among all of the players. This server acts as a
clearinghouse for the state of the game. Each player calls in with his state and gets back the state of the
world. Figure 54 shows a two player football game implemented using this scheme.

Such applications fall under the category of ‘closet’ projects: they would never be attempted if they
looked like large tasks. Here is a testimony from one of the game implementors: "How easy was it to
use? Astoundingly! The first 90% came in a couple of hours one afternoon (the last 10% dragged on at
least in part because of irrelevant reasons). Did it help me? I think it made the difference between this
being a small toy and being a big project.”

Another testimonial to the success of RPC in Cedar is that as a result of our experiences, the RPC
protocol has been implemented in both Interlisp and Smalltalk, thereby allowing applications running in

XEROX PARC, CSL-83-11, JUNE 1984

CEDAR: THE REPORT CARD 97

entirely different environments to communicate with one another.

Help favefetlUp SavePlay ReadPlays WrdePhays Hike
i-1 4-2 punt-reception Find ‘Word De
UpTheMiddle ShortPassTop FirstLewelOnly
Rush GuardEnds ManToMan Jone punt-reception I mTRODUCT |
108

Pass Kick TimeQut Accept Dechne DisableDelayfame

fonthall
There are
4 two game
4 - Nmeonts - 4

players,
first down and 10 1 go on the 20 yard line. each on a
different
machine.
Each zame
1 I player
g controls all
of the

10 20 30 an 50 an 30 20

members of
his team

He does this
o

tackhing,
recephons

Figure 54

RPC enables implementing network applications and games

Version Control

Cedar programmers work in a distributed computing environment, and have to be able to share
each other’s programs in various stages of development. In this setting, control of versions and file
management is difficultT19 both because of the large number of files in Cedar and the requirement that

versions of files must agree.T110 In anticipation of these factors, consistent compilation and version control
was one of the priority items in the catalog of programming capabilities.

The principal facility provided by Cedar for dealing with version control is description files (DF
files). DF files contain information about versions of files needed by a particular application and their
locations. There are several packages available for manipulating DF Files, of which the most frequently
used are: BringOver, for retrieving all or some subset of the files specified in a DF File; SModel, for
storing files on a server; and VerifyDF, for checking that the files mentioned in a particular DF File are

all consistent, i.e.. that if two files import a common interface, they both use the same version of that
interface.

1109 In fact. the problem of controlling software development in a distributed environment turned out to be sufficiently interesting
and difficult that it yielded a PhD thesis for one of the Cedar implementors, Eric Schmidt.

1110 Mesa ensures consistent compilation by placing time stamps on source and object files, and by recording in each object file
the complete list of time stamps for the files that produced it.

XEROX PARC, CSL-83-11, JUNE 1984

98 THE CEDAR PROGRAMMING ENVIRONMENT

Based on our experiences with the DF System, we attempted the much more ambitious task of
providing a complete program management system:

The user describes his software in system models, which are complete descriptions of a
software system. Similar to a blueprint or schematic, a model combines in one place 1)
information about the version of files needed and hints about their locations, 2) additional
information needed to compile the system, and 3) information about interconnections
between modules, such as which procedures are used and where they are defined. System
models are manipulated by the System Modeler, a program that automates development
of software in the Cedar programming environment. The system modeler is notified of
new versions of files as they are created by the editor, and automatically recompiles and
loads new versions of software. [26] :

The system modeler has only been used by two or three users, so the verdict is not yet in on its
utility. However, it is clear that the DF system was a major success in Cedar. Not only did it automate
version control for system implementors, but users soon found DF files indispensable for managing their
own private software. This was especially true for users working on public Dorados-machines that were
shared among several users. Even for those users fortunate enough to have their own private machine,
the maxim of "Keep your bags packed" turned out to be good advice in an experimental and rapidly
evolving system such as Cedar, and DF files enabled the user to do just that.

Remote File Storage

The original catalog of programming facilities included as a package item Remote File Storage, i.e.,
automating the transfer of files between machines: "The manual transfer of files between machines is a
significant source of errors and wasted time. Such transfers are necessary either because of space problems,
or because one machine has a capability (such as a printer or high-performance display) not possessed
by all" [8].

The DF system described above took a large step towards eliminating the manual transfer of files,
or at least the errors and wasted time associated with this activity. By executing a single BringOver
operation. the user could reestablish a consistent set of files on a particular machine. 111

However, we did not attain the goal of unifying the local and remote file system into a single
uniform, shared file system, so that the user need never be aware of where files are stored and could
simply treat his local disk as a form of temporary memory. Instead, the recently designed and implemented
Cedar File System (FS) represents a compromise position between such a uniform, shared file system
and what we had before —completely independent local and remote file systems with manual transfer of
files— while it eliminates the need for manual transfer of remote files, it does not completely mask the
existence of the local disk. In some cases the user must be aware of the distinction between files that
exist in the local file system. For files that exist on the local file system and nowhere else, the user is
responsible for storing the local file on a remote server.

The reason for this compromise position was that we wanted to preserve the idea of a strictly local
file., because users were familiar with it and found it useful. Another reason for not unifying the local
and remote file system was that we were committed (at least initially) to using an existing file server
which did not provide support for transactions; the absence of transactions makes it hard to synchronize
shared file access.

$111 For those files that are part of the system such as sources and fonts, the user need not be aware of their location, or even
their existence: Cedar automatically retrieves them when needed without requiring any action by the user.

XEROX PARC, CSL-83-11, JUNE 1984

CEDAR: THE REPORT CARD 99

It is not clear whether we will eventually design and implement a unified file system. It is also not
clear, given that the FS is only just beginning to be used, how effectively it will allow users to operate
in a mode in which they do not worry about where files are stored. Success or failure of the latter will
undoubtedly influence the former.

Shortcomings

Building a programming environment is an extremely difficult task. There are no solutions, no right
or wrong, just choices. Furthermore, the task is unbounded: you never finish a programming environment,
you simply gradually stop working on it (usually about the time you start planning another). One of the
most difficult challenges that faced us in the Cedar project was to decide what we would include. There
was considerable divergence on this subject among individuals in the project. This section reports on
some of the things that we chose not to do, why we made these choices, and how they have affected the
overall result. It is perhaps the most subjective part of the paper, and some members of the Cedar project
might disagree strongly with my conclusions. However, being the only Cedar implementor from the
Interlisp community, 1 was in the unique position of being proficient and intimately acquainted with
both Mesa and Interlisp. This perspective that has emboldened me to set down my observations and
conclusions in the hopes that they might be of interest or value to designers of future programming
environments.

The principal shortcomings of Cedar are in the area of providing support for various aspects of the
Lisp style of programming (and to a lesser extent Smalltalk), and can be attributed to the selection of
Mesa as a starting point for Cedar and the fact that the overwhelming majority of the Cedar implementors
and users came from the Mesa community. These shortcomings include not reaching Cedar’s original
goals with respect to: fast turnaround for small program changes, support for wide range of (i.e., late)
binding times, easy use of programs as data, and inheritance/defaulting (Smalltalk subclassing). In short,
with respect to the fundamental principle stated in the EPE report [8] that "the present Lisp, Mesa, and
Smalltalk programming styles all must be supported in a satisfactory way," it is fair to say that Cedar
has not (yet) succeeded. :

However, it should be pointed out that while Cedar has not succeeded in these areas with respect
to the original goals as stated in 1978, these goals themselves were revised and modified as the Cedar
project developed. For example, in 1980, Jim Morris, then manager of the Cedar project, stated:

Acceptance of this specific goal of increasing programmer productivity, and its immediacy,
i.e.. over the next several years, has made us conservative in our designs. In the main,
we have restricted ourselves to those ideas which can be understood and put to use by
the intended users in a timely fashion. While it is our business as Computer Science
researchers to strive for new and revolutionary ideas, they are not required for Cedar.
Indeed. employing the users of Cedar as guinea pigs for such ideas would tend to decrease
their programming productivity in the time frame of interest. [21]

Thus, in 1980 we were already beginning to recognize that we might have been overly ambitious,
and to reduce our aspirations. By 1982, the Cedar project was being described as "an attempt to take the
Mesa language and build around it a programming environment based on ideas from Interlisp and
Smalltalk, while retaining the strong type-checking properties of Mesa" [26]. In other words, by 1982
the goal of building an environment that would be attractive to both Mesa and Lisp users had been
discarded.

It is not the author’s intent to cast a value judgment about how Cedar has developed: in the face
of limited resources, choices must always be made about which areas to attack first. It is only natural
and proper that such choices be made in terms of the greatest good for the greatest number, and the
greatest number of users (and implementors) of Cedar came from the Mesa community. From the
standpoint of these users, Cedar has been an unqualified success: they are overjoyed at the increase to
their productivity that Cedar has provided them when compared with the previous Mesa programming

XEROX PARC, CSL-83-11, JUNE 1984

100 THE CEDAR PROGRAMMING ENVIRONMENT

environment. The fact that we did not achieve certain goals should not be taken as an indication that
these goals are not attainable in an environment based on a strongly typed language. Some of these goals
are not even technically difficult compared with some of the things that we did accomplish. We made
some choices, and this section reports on these choices and their consequences. In the future, we may in
fact revisit some of these choices— there is still the possibility that as Cedar matures we will address some
of the shortfalls discussed here.

Since the shortcomings listed above all relate to lack of support for various aspects of the Lisp
programming style, before we examine each of these specific areas in detail, it is appropriate to discuss
the basic differences between the Lisp programming style and that of Mesa. Such a discussion will help
to explain why the Mesa, and hence Cedar, user community glaced less importance on various issues
that are considered absolutely essential to the Lisp community. 112

A Matter of Style — Lisp versus Mesa

The principal differences between the Lisp and Mesa style arise from the types and purposes of the
programs they write:

Lisp is used almost entirely as a research tool. ... The average Lisp user writes a program
as a programming experiment, i.e., in order to develop the understanding of some task,
rather than in expectation of production use of the program. The act of developing the
program, not the act of running it (even for test data), constitutes the experiment. As a
consequence, the program is likely to be large and complex, to undergo drastic revisions
while it is being developed, and to be thrown away before it has been "completed” by
conventional pr?%ramming standards since it will already have served its purpose before

then. [25]
Beau Sheil [27] has called this style of use:

exploratory programming, the conscious intertwining of system design and implementation.
... Some applications are best thought of as design problems, rather than implementation
projects. These problems require programming systems which allow the design to emerge
from experimentation with the program, so that the design and program develop together.

Lisp evolved in response to the need for programming environments that facilitated this exploratory
style of use. For example, Lisp systems were first developed to support research in artificial intelligence,
where the programmer "invariably has to restructure his program many times before it becomes reasonably
proficient. In addition, since intelligent activities are complex, programs tend to be very large, yet they
are invariably built by very small teams, (often a single researcher)" [27].

Mesa. on the other hand, evolved in response to a need for producing reliable, robust systems,
developed by large teams of programmers, and the ability to maintain such systems over a fairly long
period, often by programmers who were not the original implementors. For example, the mandatory,
compile-time type checking employed by Mesa is particularly useful in the maintenance of large programs:
the additional, redundant information contained in the type declarations makes Mesa programs more
readable by others. 114 The type checking also gives greater confidence that when changes are made to
programs, trivial new bugs will not be introduced.

+112 For additional discussion. see the section entitled "Character of the Result,” in "The Roots of Cedar.” the first paper in this
report.

F113 Admittedly. this situation has begun changing in recent years. Increasingly. Lisp systems are being used to implement reliable
programs intended for production use. However, the thrust of the comments here concerning the difference in style between the
two communities is still valid.

1114 After much experience with both Mesa and Lisp. in the author’s opinion. it is a lot easier to write and get working your own
program written in Lisp. but much easier to read or modify someone else’s program when it has been written in Mesa.

XEROX PARC, CSL-83-11, JUNE 1984

CEDAR: THE REPORT CARD 101

The Lisp programmer would argue that the advantages provided by type-checking are not significant
for the kinds of programs that he typically writes:

The advantages will be small for programs whose "characteristic times" (design,
programming, checkout, existence, total execution) are all measured in minutes, large if
they are measured in weeks or months. In an environment where programs are undergoing
rapid change, [Mesa’s] mandatory checking mechanisms tend to introduce unnecessary
overhead by requiring complete internal consistency at every step of the development
process. [11]

In fact, the requirement that the types of all values in Mesa must be specified in advance is
considered by most Lisp programmers to be a nuisance and an irritant, rather than an attractive feature
of the Mesa language. Here is a typical comment: "I think that static type-checking is a waste of time;
it solves a small number of problems while creating many more. | and other Lisp programmers spend a
very small percentage of time chasing problems static type-checking would catch."”

Because of the need for type declarations and specification of interfaces, Mesa requires more planning
before a running program is created than does Lisp (some would consider this a disadvantage, others a
benefit). Similarly, the Mesa programmer tends to put more thought and planning into each change.’rllS
In compensation, the Mesa programmer is fairly confident that once his program is finished and has
compiled successfully, he will spend much less time debugging it. 7116 This is extremely important to the
Mesa user because the process of finding and fixing bugs in Mesa programs is much more painful and
time-consuming than it is for his Lisp counterpart, as is discussed in more detail in the next section.

A definite weakness of the Mesa approach is that it is relatively difficult to add flexibility that was
not anticipated in the original design. Furthermore, Cedar programmers rarely anticipate and provide for
generalizations ahead of time —before a particular situation is encountered requiring them — because of a
viewpoint that is more or less prevalent throughout the Mesa community, and perhaps best summed up
in [16]: "An interface should capture the minimum essentials of an abstraction. Don’t generalize,
generalizations are generally wrong." This philosophy has also been stated as "If in doubt, leave it out,"”
and "KISS: Keep it Simple, Stupid." As a result of this attitude, with which the author disagrees, there
is often a significant time delay in Cedar between a perceived need and a capability which meets this
need. This is detrimental: it hinders our ability to experiment.

The Role of Change in Program Development
Perhaps the area of greatest difference between the Lisp and Mesa communities is in how each

views the process of change. The Lisp programmer tends to view change as an integral and desirable part
of the program development cycle. A typical Lisp debugging session has a "stream of consciousness"

1115 This philosophy of "go slowly. don’t make mistakes because they are expensive to correct” seems to carry over into the way
the Mesa/Cedar user interacts with the system. which is at a more deliberate, somewhat slower pace than that of their Lisp
counterparts. It is perhaps for this reason that DWIM. the automatic error-correction facility, did not receive as widespread
acceptance in Cedar as in Interlisp.

1116 This is an extremely fuzzy area. It is true that the time a Mesa programmer spends debugging his program is often much
less than the time spent debugging the corresponding Lisp program. For example. my very first programming effort in Mesa, a
spelling corrector. took three days to get to compile. a process which I found extremely frustrating (and was undoubtedly aggravated
by my inexperience with the Mesa syntax). However. once compiled. my program was debugged and running in half an hour.

However. these times can be misleading because the Lisp programmer starts debugging much earlier in the program development
cycle. i.e.. at a point where the Mesa programmer is still designing his algorithms and data structures. Debugging and design are
often intermixed in the Lisp style. In one experiment which compared the overall time from start to finish for a programming
problem (reading in a text file and performing simple justification). the Lisp programmers in our laboratory did much better than
Mesa programmers. However. this experiment involved a program whose characteristic time was quite small, and has already been
pointed out. Mesa’s benefits come with larger, longer-lived programs.

XEROX PARC, CSL-83-11, JUNE 1984

102 THE CEDAR PROGRAMMING ENVIRONMENT

flavor to it. rather than the deliberate, planned attack that a Mesa programmer is more likely to adopt.
The Lisp programmer simply starts using his program, and analyzes and fixes problems as they come
up. While pursuing the first problem he encounters, the Lisp user will often encounter a second, which
leads to a third, and so on. When this happens, the Lisp user frequently, to use a programming metaphor,
pushes the original problem onto his stack, and pursues the new one. The facilities of the Lisp system
supports this paradigm, and also provides tools for the programmer to keep track of what he is doing.

The Mesa system, especially the multiple threads of control provided by the process mechanism,
also enables the programmer to suspend a particular debugging path and pursue a new problem that he
has just encountered, or conversely, to continue pursuing his original problem, while leaving suspended
the new problem to which he can return later. The key difference between the two systems is that when
the Lisp programmer analyzes a {)roblem, he (usually) can fix it on the spot and continue his debugging
session with the fix now in place.T117 A single Lisp debugging session may last several hours during which
time the programmer will find and fix a number of problems. The interactive nature of this process is
especially important given the kind of programs a typical Lisp programmer often writes, where the
problem being solved, much less the algorithms being used, are not well understood, hence the need to
"debug the program into existence" by experimenting with various solutions and seeing how they work.

Lisp systems have been used in this highly interactive fashion for more than a decade. Over that
period. considerable effort has been devoted to building tools which facilitate this style, especially with
respect to making changes and continuing the debugging session. For example, the debugger and editor
are integrated to allow the user, having identified a particular place on the call stack, to edit the
corresponding expression in the source. (Cedar has a similar facility.) When a problem is not detected
until after the damage has been done, the user can alter the flow of control from the debugger, returning
the computation to a specified place on the call stack from which he can then continue with the fix in
place. There is even a facility, the Advise package, which allows the user to experiment with the effects
of a proposed change without having to perform any edits. Advise operates by redefining Lisp functions
so that the indicated expressions are evaluated at the entry or exit of a procedure. Advise can also operate
on a specific call to that procedure, such as the call to Print from within the function Foo. Finally, the
Interlisp file package keeps track of the changes that the user makes to various program elements, and
informs the user which files need to be saved. 18 The file package also notes changes to elements which
are not associated with any particular file, such as is the case when the user defines new functions during
the course of a debugging session. All of these facilities allow and encourage the user to find and fix
many bugs in a single session, building up and retaining as much state and context as he wishes during
the process. This paradigm seems much more effective than having to break the debugging process up
into a sequence of small sessions consisting of find some bugs, fix the bugs, start over.

It is difficult to distinguish cause and effect in the evolution of the Lisp style: did the tools develop
in support of the exploratory style, or did the existence of these tools encourage the growth of the Lisp
style? (Probably the former is the case.) Similarly, it is difficult to separate cause and effect in the relative
lack of support for making changes in the Mesa environment. Historically, making changes was always
extremely costly in terms of programmer time in the Mesa environment. When a change was required
in a Mesa program, the programmer had to edit his source, 119 compile it, correct syntactic errors (except

1117 Note that this is not a compiler versus interpreter issue, but one of dynamic relinking. Many times, especially where
performance is an issue. the Lisp user will take the time to compile his changes, although Lisp does not require it, i.e., interpreted
and compiled code can be freely intermixed. The important point is that regardless of whether it has been compiled or is being
executed interpretively. the modified version will be the one that is executed for all subsequent calls to the program.

1118 the Interlisp editor operates on the loaded. structure representation of programs, rather than on source files.

1119 In the Alto Mesa world. editing required leaving the debugging environment and running an entirely separate editing system.
This made making changes even more painful than it currently is in Cedar where the editor and debugger are integrated into a
single environment.

XEROX PARC, CSL-83-11, JUNE 1984

CEDAR: THE REPORT CARD 103

for minor changes, it is unusual for a program to compile successfully on the first attempt), recompile,
perhaps several times, and then abandon his current context and start anew in order to load the now
changed program before he could evaluate the effects of his change. 120 The absence of an interpreter
(something that has been corrected with Cedar) meant that the pro§rammer also had to construct and
debug test programs and data structures for exercising his program.Jr 21 [f the programmer is developing
a multi-module system which includes various interfaces for communicating between its parts, a simple
change to one of these interfaces might require recompiling the entire system. (See the discussion
contained in "Recompiling Interfaces" below.)

Because making changes was so hard, they were avoided as much as possible. Considerable emphasis
came to be placed in the Mesa community on “getting it right the first time." For some, it became a
matter of pride: the Mesa programmer often views the need for a program change as an indictment of
the original design or implementation. an indication that something was done wrong.T122 Thus, providing
facilities that facilitated change tended to be given lower priority than other environmental issues.

Fast Turnaround for Small Changes

The key ingredient in the Lisp style discussed above is fast turnaround for small changes: the Lisp
programmer makes a change and sees the change take effect immediately. When we began work on
Cedar. the turnaround time for a Mesa program change was often measured in terms of dozens of
minutes. This time lag forced the programmer to operate in a fashion that resembled batch processing,
even though he was operating on a personal, dedicated machine. The programmer would identify as
many problems as possible in a single debugging session, then go off and make the required edits that
he hoped would fix these problems, and then resubmit his job and see if the changes worked. This
resulted in a tremendous loss in productivity as compared with a programmer performing a similar task
in Lisp or Smalltalk. 123

1120 For a certain. not terribly well-defined class of programs. it was possible to load multiple instances of a program into the
same environment. i.e.. on top of one another. However, this was not a practice that was encouraged or widespread because of the
possibility of confusion as to which instance a particular client was bound. For example, if A calls program B, and B is changed
and reloaded. program A continues to be bound to the original version of program B. On the other hand, programs loaded
subsequently. such as a newer version of A, will be bound to the latest version of B.

1121 Earlier Mesa environments had an interpreter for a (not well-defined) subset of the Mesa language. However, for the purposes
of experimentation. this interpreter had two serious shortcomings. First. because the debugger did not share the same address space
as the client. it was not possible to perform operations involving storage allocation. For example, the user could call a procedure
on the value of a datum that existed in his current computing context. but he could not construct such a value on the fly to supply
as the argument to a procedure. Second. it was not possible to save and reuse the values of expressions given to the interpreter,
e.g. assign the value of an expression to a newly created variable. Thus, the user could not decompose interpreting a complicated
expression into several simpler operations. The Cedar history facility, combined with the residential nature of the debugger and
interpreter, has successfully resolved both of these issues.

1122 An extreme version of this negative point of view regarding making changes easy was presented to me by an Air Force
Colonel at a programming environment workshop. We were having a discussion about the merits, and drawbacks of the automatic
spelling correction facility in Interlisp (DWIM). He was concerned about the possibility of DWIM making an inappropriate
correction to a program. | assured him that the user was always informed, that corrections had to be confirmed. and that they were
easily undoable. He remained unconvinced. I then proposed that we eliminate spelling corrections to programs, and consider only
corrections to the instructions that the user gives the operating system, such as load this file, run that program, etc. [maintained
that correcting such mistakes improved productivity. His position was: "When one of my programmers makes a mistake, I don’t
want the system to help him out. I want him to have to go home and think about it overnight." This point of view is not confined
to the military. A leading European spokesman for modern programming technology is on record as having stated that programs
should not have to be debugged. and that the only programming tools a good programmer should need are pencil and paper.

1123 Many Mesa programmers were not aware of this loss of productivity — they had never had the opportunity to develop their
programs in a truly interactive fashion.

XEROX PARC, CSL-83-11, JUNE 1984

104 THE CEDAR PROGRAMMING ENVIRONMENT

In Cedar, we were concerned with rectifying this situation and providing fast turnaround for small
program changes. "Our concern with fast turnaround comes from the observation that programming
should be think bound, not compute bound." Mesa offered several medium-size obstacles to fast turnaround
for changes: the editor was not integrated or even properly packaged, the compiler was not designed to
compile anything smaller than an entire module, and the system did not provide incremental replacement
of procedures or even modules. [8]

The development of the Tioga editor within the Cedar environment overcame the first of these
obstacles, but we never did mount a serious effort to attack-either of the latter two issues: compiling
individual procedures and replacing modules. Both of these problems were much harder than we originally
anticipated, partly because of the monolithic nature of the compiler, and the difficulty of changing or
reorganizing it significantly.

Instead, the goal of fast turn around for small changes was transmuted to the goal of reducing the
overall time spent in the edit-compile-reload cycle, i.e., speaking metaphorically, giving the batch
programmer faster turnaround, rather than providing him with interactive access to the machine. Since
the editor was resident in the Cedar environment, it was no longer necessary to abandon program state
while making changes. Since the user was free to perform other tasks such as reading mail, editing, or
even debugging other parts of his program while waiting for a compilation to finish, the edit-compile
cycle became significantly less painful. Furthermore, the availability of a checkpoint-rollback facility (in
Interlisp parlance, Sysout and Sysin) reduced to approximately 30 seconds the time required to return
the system to a pristine state into which a changed version of a program could be loaded. Thus, the
entire edit-compile-reload cycle was reduced to on the order of a very few minutes.T124 Nevertheless,
the situation was still qualitatively very different from that of the Lisp programmer who could make a
change and see it take effect immediately.

Note that the key ingredient here is not necessarily the time required to see a change take effect,
but whether the change can be made in siru. Even if restarting the entire system and reloading it with
changed programs could be performed instantaneously, Cedar would still not have achieved its goal of
providing fast turnaround for small program changes in the sense that it was originally conceived and is
provided by Lisp and Smalltalk. There would still be a need to replace an instance of a running program
with a changed version of the same program to preserve valuable program state. For example, over the
course of a lengthy session, the user may have built up a complicated data structure and program state
in which he wants to test out the effects of a proposed change. In such cases, it is desirable to replace
running programs with changed versions, even if this operation takes /onger than restarting the system
and reloading the changed program. Cedar has failed to provide this capability. In the author’s opinion,
this is the single biggest shortfall of the Cedar project.

1124 To take the example of fixing the off by one error in the file UserExecMethodImpl as shown in Figure 27-28 of "A Tour
Through Cedar,” the time required to make the edit itself is 1-3 seconds, to save the file is approximately 10 seconds, to compile
the file another 25 seconds. (Both of these times obviously will depend on the size of the file. The file in question is larger than
average by Cedar standards, about 20,000 bytes.) If this were the only change we were going to make and we wanted to test it out,
we would then have to rebind the configuration which includes this file,. This takes another 20 seconds. Then we would
rollback —another 30 seconds—and finally run the new configuration, which in the case of the userexecutive takes about 20 seconds.

XEROX PARC, CSL-83-11, JUNE 1984

CEDAR: THE REPORT CARD 105

One final comment on the subject of changes: while Cedar is weak in the area of making changes
whose implementation should take on the order of minutes, it is very strong, much stronger than Lisp
or Smalltalk. in the area of making changes which normally take on the order of days or weeks, such as
drastic reorganizations of basic data structures or algorithms in a large system. This is because the explicit
notion of interfaces in Cedar, combined with the enforced type checking, serves to detect right away
most of the problems that would only surface over a period of time if the corresponding changes were
made in Lisp or Smalltalk. Furthermore, once the changed system has been successfully compiled and
loaded. the programmer is fairly confident that it will run, whereas the Lisp or Smalltalk programmer
must embark on a lengthy checkout operation to make sure all of the things that used to work still do.

Support for Wide Range of Binding Times

According to Beau Sheil [27]:

The key property of the programming languages used in exploratory programming
systems is their emphasis on minimizing and deferring the constraints placed on the
programmer, in the interest of minimizing and deferring the cost of making large-scale
program changes. The languages make extensive use of late binding, i.e., allowing the
programmer to defer commitments as long as possible. ... [One example of late binding
is] the dynamic typing of variables (associating data type information with a variable at
run-time, rather than in the program text) and the dynamic binding of procedures. The
freedom to defer deciding the type of a value until run-time is important because it
allows the programmer to experiment with the type structure itself. Usually, the first few
drafts of an exploratory program implement most data structures in general, inefficient
structures such as linked lists, discriminated (when necessary) on the basis of their
contents. As experience’ with the application evolves, the critical distinctions which
determine the type structures are themselves determined by experimentation, and may
be among the last. rather than the first, decisions to evolve. Dynamic typing makes it
easy for the programmer to write code which keeps these decisions as tacit as possible.

By contrast, "the Mesa style requires relatively early binding of many aspects of programs that in
Lisp are typically bound during execution" [11]. Thus, it is relatively difficult to add flexibility that was
not anticipated in the program design, thereby restricting the range of experiments that can be performed
easily. We were aware of this problem in our early discussions. We agreed that:

The EPE must support a wide range of binding times, including the Mesa and Smalltalk
extremes, in a way that allows changes in binding time without structural changes in the
program. Different choices of binding time by the programmer may lead to different
turnaround times for apparently minor changes, and to different execution efficiencies,
but the functional behavior of programs must not depend on such choices. [11]

We intended that Cedar make provision for binding at a variety of times, but that delayed or
dynamic bindings would occur at the programmer’s request, rather than by default as is the case in Lisp.
This would allow programmers accustomed to the Mesa style to continue operating in the manner with
which they were familiar. For those wishing to adopt the Lisp style of delayed binding, tools would be
available to exploit program redundancy to infer suitable declarations for programs written without them,
and otherwise make it easy to convert programs originally written in a delayed-binding style to earlier
bindings for greater efficiency and ease of maintenance. For example, one reason for the addition of REF
ANY to Cedar’s type system was to allow the programmer to defer type checking from compile time to
run-time. At some later point when the program stabilized, one could imagine a tool which would assist
the programmer in the task of converting these REF ANY declarations to specific types where appropriate.
However., we never did get around to building such tools, and as a result, it is unusual for programmers
to use late binding, and then convert to earlier binding at some later point after the program matured.
However, as discussed earlier, many programs do use REF ANY for other purposes.

XEROX PARC, CSL-83-11, JUNE 1984

106 THE CEDAR PROGRAMMING ENVIRONMENT

Easy Use of Programs as Data

The keystone of the Interlisp programming environment is its very large repertoire of facilities that
support the user in the task of program development. These facilities include a sophisticated structure
editor. a history package that provides both a Redo and Undo capability, automatic error correction, the
Advise package discussed earlier. a package for analyzing user programs to determine various calling and
usage relationships, and others. Underlying most of these facilities is the easy use of programs as data,
i.e.. a convenient, program-manipulable representation of programs.’r125 In fact, in the author’s opinion,
the equivalence of programs and data in Lisp, i.e., the fact that Lisp programs are simply list structures,
is the single most important aspect of Lisp.“126

We wanted to see a collection of facilities comparable to those in Interlisp developed in and for
Cedar. We also wanted to make it possible for the average user to contribute to this collection of tools:
"Perhaps the single most important observation about the use of Lisp is that as users become more
experienced. they start building tools within the system to help them" [11]. Therefore, the issue of
program-data equivalence received special attention in our early discussions. In particular, we identified
three major facilities within the Mesa environment that would be necessary to enable treating Mesa
programs as data: Lisp-style atoms, universal pointers (pointers that carry the type of their referent with
them), and an S-expression representation of programs.

Both Lisp-style atoms and universal pointers (REF ANY) were implemented in Cedar and were great
successes (see discussion in footnotes 60, 61 in "A Tour Through Cedar"). However, we never did get
around to defining a standard S-expression representation of programs. We had originally intended to
design a representation other than the parse trees used internally by the compiler, so that the representation
of parse trees could change as the compiler/language evolved without affecting tools that depended on
this representation. We did not design such a representation, nor did the fallback position of using the
compiler’s parse trees directly prove workable. The Cedar compiler, having evolved from the Mesa
compiler, did not use collectible storage, nor was it written in the safe Cedar language. It also was not
organized in a way that made it easy to pull out pieces of it to use as packages."127 Furthermore, as a
result of its having evolved over several years under several implementors, the compiler had become
such a monolith that changing or reorganizing it in any significant way was impractical: it would have
been almost as difficult as starting over.

As a result of the difficulty of manipulating programs, tools of this type have not emerged in Cedar.
However, we have begun to see a great many tools being designed and implemented which exploit the
high-quality graphics interface. These tools include: an efficient, lightweight tool for checking spelling in
text. a tool for creating and editing icons, a reminder service, a package for constructing a visual interface
to a data structurc or Cedar program interface which also allows the components to be edited or invoked.

Another use Lisp makes of the ability to treat programs as data is to provide for more general
parameterization of tools and packages. For example, the conditions associated with breakpoints can be
arbitrary Lisp expressions, various editor commands permit their parameters to be computed dynamically
from expressions that are included in the command, etc. In principal, the Cedar interpreter makes this
possible. However, this practice has not found widespread acceptance. partly because Mesa programmers
simply tend to write applications in a different style than Lisp programmers, and partly because not
enough attention has been given to the packaging of the interpreter in Cedar.

1125 Other Lisp systems such as MacLisp may have fewer facilities and organize them differently, e.g., as separate programs rather
than as part of an integrated programming system, but the underlying capability that enables these facilities is still the ability to
treat programs as data.

1126 Others would disagree, citing perhaps the simplicity of syntax. or the fact that all expressions are in Polish prefix notation as
being equally or more important.

XEROX PARC, CSL-83-11, JUNE 1984

CEDAR: THE REPORT CARD 107

Inheritance/defaulting (e.g.. Smalltalk subclassing)

Inheritance/defaulting was one of the items in the original catalog of programming environment
capabilities [8]:

Languages that provide for programmer-controlled defaulting or inheritance reduce the
time and chance for error in the programming process by making it unnecessary to write
the same code or parameter values over and over again. The basic idea is that one should
be able to write programs in a way that only specifies how they differ from some
previously written program. Examples include default standard values for procedure
-arguments (how does this call differ from a "standard" call) variant records (how does
this particular record distinguish itself from the invariant part) and the Smalltalk subclass
concept ... Smalltalk seems to derive considerable benefit from [subclassing]. [8]

Nothing was done about subclassing in Cedar, probably for the same reasons that most of the
Lisp-related issues were not addressed: the majority of Cedar users and implementors had little or no
direct experience with Smalltalk, and hence did not place as high a value upon this capability as they
did on others of a more traditional Mesa flavor.T128 As a result, when a user wants a slight change or
enhancement to an existing facility in Cedar, and he is unable to persuade the implementor to make the
change. he simply steals the code, i.e., uses the existing program as a starting point and makes the desired
changes, thereby producing his own, personalized version of the software.

The reason this works as well as it does in the Cedar environment is because one of the goals of
the Mesa language is readability and maintainability by programmers other than the original implementor.
The type declarations and other redundant information that may have been burdensome for the original
implementor to specify when he was first constructing the program now pay great dividends. They
provide a form of documentation. effectively recording certain aspects of the implementor’s intent, and
making the program easier to understand. Furthermore, the automatic type checking assures the borrower
that when the program he has modified compiles successfully, he will not have to go through a lengthy
debugging process; he has a high degree of confidence that the program will run correctly, or if there
are errors, they will be localized in the area of his changes.

The disadvantage of this procedure is that when repairs or improvements are made to the original
software. they do not always find their way into the modified version, unless the borrower is diligent
about tracking changes. Sometimes he may be able to convince the original implementor that the
modifications he has made are indeed improvements, in which case the changes may be incorporated in
the original code. For example, guarded buttons (see Figure 11) were introduced into Cedar via this
path. However. the danger of the proliferation of multiple, renegade versions of standard system software
makes this procedure not a completely satisfactory substitute for subclassing.

$127 Our original strategy called for factoring the compiler into layers. For example, our plan for implementing an interpreter
called for using the compiler’s scanner and semantic analyzer. However, the intractibility of the compiler forced us to implement
the interpreter as a separate package.

+128 Also. providing support for subclassing in Cedar would have been a very difficult task.

XEROX PARC, CSL-83-11, JUNE 1984

108 THE CEDAR PROGRAMMING ENVIRONMENT

Polymorphism

The Cedar run-time type system allows programs to manipulate types in a fully general way.
However. such programs admit the possibility of errors that are not detected at compile time but instead
occur at run-time. and sometimes only under unusual circumstances. This runs counter to the Mesa
philosophy that it is better to locate faults statically: "Many faults can be identified in a single run of
the checker. rather than surfacing one at a time in debugging runs” and perhaps even more importantly.
"Correctness is a static property of the program text; it is hard to ensure that a program that relies
heavily on dynamic properties actually does what is intended" [11].

We had hoped to make types first-class citizens in Cedar; types would simply be values and could
be passed as arguments and returned as results. This would enable many operations that would otherwise
require run-time facilities to be expressed directly in the program text.

One area where the absence of polymorphism is most noticeable is in the treatment of lists in Cedar.
A list in Cedar is a REF to a structure consisting of two fields, first and rest (the Lisp CAR and CDR).
first contains the corresponding element of the list, and rest a REF to the rest of the list, i.e., its tail. If
a list consists of elements of a particular type, such as INTEGER, then the type of the list is LIST OF
INTEGER. If x is declared to be of type LIST OF INTEGER, the static type checking of the language
guarantees that x.first is of type INTEGER, and x.rest of type LIST OF INTEGER. For example, a procedure
that reverses a list of integers would be of type PROCEDURE[list: LIST OF INTEGER] RETURNS[LIST OF
INTEGER]. However, the absence of polymorphism means that the programmer also has to supply a
similar procedure for LIST OF REAL, LIST OF CARDINAL, LIST OF CHARACTER, etc. What is really desired
is a way of defining a procedure which takes the type of the elements of a list as one of its arguments,
e.g.. PROCEDURE][list: LIST OF T. type: T] RETURNS[LIST OF T].

Our initial plan was to extend the Cedar language and modify the compiler, and we generated some
proposals for doing this. However, as mentioned earlier, the Cedar-Mesa compiler proved to be intractable
to any but very straightforward, localized modifications. The extensions necessary to include types as
values definitely did not fall into this category. We therefore decided to postpone any further incremental
changes to the compiler, and instead to design a generalized version of the Cedar language called
PolyCedar which would incorporate a number of the ideas found in languages like Russell [4]. However,
such a project requires a substantial effort that we have not yet been able to mount.

Document Editing. Editor Integrated with Language System

The original EPE report stated:

Editing is just one function of a language system, carried out using a particular
sublanguage. As such, it should be integrated with the rest of the language system in
that: (1) the user doing editing can call on arbitrary programs to compute commands or
data needed for the editing process, including the ability to pass selections from the thing
being edited to the computation as arguments; (2) any program can call on the editor as
a package. The latter seems very useful and relatively easy to achieve. We agree the
former is also valuable, but there is disagreement over whether it is merely valuable or
extremely important. [8]

Cedar users in general agree that Tioga has been an outstanding success both as a text and program
editor. when viewed as a package invoked by the user. However, Tioga has not achieved the degree of
integration we aspired to in the original EPE report. Many operations that the user can perform on a
document cannot be conveniently performed by a program. Although there is a program interface to the
Tioga editor. it requires for most of its operations that the implicit argument be the current selection.
Thus. programs cannot operate on documents directly and invisibly, but must effectively simulate the
actions of a user moving the selection around, and obtain the results of these operations by examining
the current selection after the operations complete. As a result, there is considerable extraneous (from

XEROX PARC, CSL-83-11, JUNE 1984

CEDAR: THE REPORT CARD 109

the user’s standpoint) screen activity while such an operation is being performed, e.g., selections changing,
viewers scrolling, etc., and furthermore, the user cannot be performing at the same time any operations
that affect the display, such as clicking the mouse or typing characters. Both of these factors tend to limit
the utility of using Tioga as a callable package to perform editing operations.

What Next?

There is no good objective way to evaluate a programming environment, no way of certifying that
it "works." There are no solutions only choices. The previous section discussed. some of the things we
decided not to pursue in Cedar, and the shortcomings that resulted. This section briefly lists some tasks
that. in the author’s opinion, might prove fruitful to attack next.

Access to on-line documentation (Helpsys)

Good on-line documentation, both for reference and for learning, can greatly reduce the
need for time spent studying an enormous manual, can provide instant cross-linking of
related subjects in a way that hardcopy cannot, and can use one’s current context to
implicitly locate relevant material. Interlisp’s Helpsys facility is unique in these respects.
However, creating and maintaining such documentation is a tremendous amount of work,
even if the process is partly automated. [8]

No work has been done yet in Cedar on providing convenient access to on-line documentation of
the type available in Interlisp or Smalltalk. In fact, Cedar suffers from a lack of adequate documentation
in general. Even where material is documented, it -is often hard to find due to lack of coherent
organization: users have to know where to look. Providing good documentation for Cedar will be one of
the highest priority items on our agenda of things to do next.

Masterscope

Masterscope is an interactive program for analyzing and cross-referencing user programs in Interlisp.
We recognized the importance and utility of such a facility for Cedar, and envisioned that it would be
one of the principal clients of the Cedar data-base facility. However, due to various priorities and limited
resources. nothing has been done about Masterscope yet, a shortfall that Cedar users often bemoan. For
example, when the author polled the Cedar community for examples of definitions of new Viewer
Classes. one user responded: "Here's one where 1 could really use a ‘global’ Masterscope... I've
implemented so many viewer classes I'll probably forget some, and it would be very tedious to examine
all my code by hand."

Implementing a Masterscope-like facility for Cedar would be considerably simplified if there were
a standard. program-manipulable representation of Cedar programs (see earlier discussion under "Easy
Use Of Programs as Data"). As is, before one could begin worrying about analyzing a Cedar program,
it would be necessary to implement a facility for parsing the text of a Cedar program into a structure
which was program manipulable.

Altering the Flow of Control from the Debugger

The ability to alter the flow of control from within the debugger would partially offset the lack of
support for fast turnaround for small program changes by allowing the user to simulate the effects of a
change by manually altering data and control from the debugger. In this way, the user would be able to
see whether the rest of his program would operate in the desired fashion if he made a particular change,
without having to make the change and start over.

The simplest form of such a facility is the ability to stop a program at the entry to a procedure,
execute the procedure, examine its return value(s), and specify different ones. We can do this now in

XEROX PARC, CSL-83-11, JUNE 1984

110 THE CEDAR PROGRAMMING ENVIRONMENT

Cedar, but only for certain cases. Even more useful would be the ability to stop at a breakpoint on the
entry to a procedure, execute the procedure, examine its values/effects, change its arguments, and try
again. Interlisp provides a more general capability which allows the user to unwind the stack back to an
arbitrary location from within the debugger. This is particularly useful when a problem is detected after
the fact. Such a facility would be similar to Mesa’s existing signal-handling mechanism, but requires
being able to generate signals and construct catch phrases at run-time. We believe that such an extension
to Cedar is straightforward, though non-trivial.

Recompiling Interfaces

One of the great strengths of the Mesa programming language is the explicit notion of an interface.
Separation of Mesa programs into interfaces and implementations of these interfaces enable implementors
and clients to work independently, and to make changes independently, as long as they respect the
interface. However, the present need for recompilations of a large number of files whenever a fundamental
interface is changed in any way is a weakness in Cedar. Not only does every program that depends on
the interface need to be recompiled. but if any other interfaces depend on the interface, they, and all of
their clients, must also be recompiled before the system is once again in a consistent state. The existence
of this ripple effect makes changing a basic interface a major undertaking requiring precise coordination.
As a result, there is considerable social pressure to freeze program interfaces in Cedar, often before we
have had sufficient opportunity to experiment with the interfaces.

One improvement that would significantly improve the situation would be to eliminate the need for |
recompilation when an interface is changed in an upwards compatible fashion. The two most common
examples of such a change are changes to the comments in an interface and the addition of new items
to an interface.

Because of the ready accessibility of all program sources in Cedar via the version map, interfaces
are often their own most frequently used documentation. "A Tour Through Cedar" illustrated how the
user could readily see not only the type declaration for any item in an interface, but also the comments
associated with the item. Since documentation often needs to be debugged as much as programs, we
would like to be able to modify or extend the comments in a fundamental interface without introducing
the large ripple effect that follows such a recompilation. Currently, Cedar uses as the version stamp for
an interface the date and time the interface was compiled. One proposal for allowing comments to be
changed is to compute the version stamp, based on the contents of the interface minus the comments.

A much more ambitious change would be to keep version stamps in an interface on an item by item
basis. In this case, programs would have to be recompiled only when the particular items that they
actually used from a given interface were changed. This would also allow, as a special case, the addition
of new items to an interface without affecting existing programs.

Inter-language communication

The section "Support for Wide Range of Binding Times" discussed the desirability of being able
initially to implement a program using late binding to defer various binding decisions in order to
minimize the constraints on the program, and thereby decrease its resistance to change, and then later
to bind these decisions earlier in the program to provide for increased efficiency and reliability. Perhaps
the first such decision that a programmer has to make is what programming language to use. The ultimate
in delayed binding would be to enable the programmer to change this decision for those parts of his
program that needed it. for example, initially writing an application in Lisp, and then optimizing those
parts that need it by recasting them in Mesa. This is an extremely important and challenging area for
future research.

XEROX PARC, CSL-83-11, JUNE 1984

CEDAR: THE REPORT CARD 111

Conclusion

Today, in the fall of 1983, Cedar is a reality and, by common consent, one of the most
advanced programming environments in the world. Visitors from other laboratories are
envious of Cedar’s emphasis on visual interaction; of its support for concurrent tasks; of
its sophisticated debugging facilities. Above all, the environment does indeed make it
possible for a researcher to design and implement an experimental computer system and
get it used and tested in a remarkably short period of time. For instance, various
programmers using the Cedar environment have in the last few months been able to
build and test two experimental systems for handling electronic mail, one for computer
storage of voice messages, one for producing raster images, several for VLSI design.
They all report favorably on the ease with which they could knock together real,
functioning systems.

The Cedar project is, however, still far from complete. ... There are still many problems
to be solved, and we have not yet succeeded in meeting all of our goals. We need even
more memory, both real and virtual. We need a more flexible type system. We do not
yet have integrated access to databases. We want better ways of manipulating information
from source programs. We need much faster turnaround for program changes than we
have yet been able to achieve. And as Cedar begins dramatically to increase our ability
to build complicated systems, we have come to feel the need for better tools to describe
and control them. [6]

The Cedar project has been an unusual one from several standpoints. To the author’s knowledge, in
no other case have the goals of an environment been so clearly stated, even before the first line of code
been written, and in very few cases have these goals been so ambitious. The successes of Cedar, how
much effort was actually required to achieve them, the shortfalls of Cedar, why they occurred and the
effect they had on the resulting environment, all have much to teach us about the design and
implementation of large programming environments, an area of endeavor that is becoming increasingly
more important as the plummetting price of computer hardware makes powerful personal workstations
increasingly accessible to programmers.

XEROX PARC, CSL-83-11, JUNE 1984

APPENDIX 1 113

Appendix 1: Catalogue of Programming Environment Capabilities

The following list of desirable capabilities for a programming environment was compiled by the first
Experimental Programming Environment Working Group. The complete results of their findings are
contained in [7].

Virtual machine/programming language
Large virtual address space (> 24 bits)
Direct addressing for files
Well-integrated access to large, robust data bases
Memory management-object/page swapping
Object management—garbage collection, reference counting.
Some support for interrupts
Adequate exceptional condition handling
User access to the machine’s capability for packed data
Program-manipulable representation of programs

Run-time availability of all information derivable from source program (e.g.. names,
types. scopes)

Statically checked type system

Self-typing data (a /a Lisp and Smalltalk), run-time type system
Encapsulation/protection mechanisms (scopes, classes, import/export rules)
Abstraction mechanisms; explicit notion of "interface"
Non-hierarchical control (coroutines, backtracking)

Adequate run-time efficiency

Inter-language communication

Uniform screen management

Inheritance/defaulting -

Ability to extend language (e.g.. operator overloading)

Ability to create fully integrated local sublanguages

User access to the machine’s capability for multi-precision arithmetic
Good facilities for processes, monitors, interrupts

Simple unambiguous syntax

Control over importation of names

User packages as "first-class" citizens

Closures

Full-scale inter-language communication

XEROX PARC, CSL-83-11, JUNE 1984

THE CEDAR PROGRAMMING ENVIRONMENT

User microprogramming
Clean data and control-trapping mechanisms

"Good" exceptional condition handling

Tools
Fast turnaround for minor program changes (less than 5 seconds)
Compiler/interpreter available with low overhead at run time
Cross-reference/annotation capability
Prettyprinter
Consistent compilation
Version Control
Librarian, program-oriented filing system (including Browser)
Source-language debugger
Dynamic measurement facilities
Checkpoint, establishing a protected environment
History and undoing
Editor integrated with language system
More optimizing compiler if user willing to bind more tightly-with full compatibility
Aids for incremental development (stubs, outstanding task list)
Regreésion testing system .
Random testing aids
(high capability) Masterscope
Access to on-line documentation (Helpsys)
Static analyzers; verifier, performance predictor
Packages
Text objects and images
Line objects and images
Scanned (bitmap) objects and images
Formatted document files
More elaborate screen management
Remote file storage
Small data base manager
Message transmission system
Remote procedure call

Event logging

XEROX PARC, CSL-83-11, JUNE 1984

APPENDIX 1

Background processing

Generalized cache

Document editing

Forms

Menus and other standard user interfaces

History lists

User access to full bandwidth of disk

(English) dictionary service

Teleconferencing

Audio

User access to full bandwidth of networks
Other

Adequate reference documentation

"Efficient" interface for experts

Uniformity in command interface

"Self-teaching" interface for beginners

Good introductory documentation

XEROX PARC, CSL-83-11, JUNE 1984

116 THE CEDAR PROGRAMMING ENVIRONMENT

Appendix 2: Prioritized Catalogue of Programming Environment Capabilities
The following is the same list that appears in Appendix 1, sorted by the priorities assigned to each
capability by the EPE Working Group.
Priority A
Object management-garbage collection, reference counting.
Statically checked type system
Memory management-object/page swapping
Abstraction mechanisms; explicit notion of "interface"
Fast turnaround for minor program changes (less than 5 seconds)
Adequate run-time efficiency
Large virtual address space (> 24 bits)
Priority B
Encapsulation/protection mechanisms (scopes, classes, import/export rules)
Well-integrated access to large, robust data bases
Self-typing data (a la Lisp and Smalltalk), run-time type system
Consistent compilation '
Version Control
Source-language debugger
Text objects and images
Uniform screen management
User access to the machine’s capability for packed data

Run-time availability of all information derivable from source program (e.g.. names,
types. scopes)

Priority C
Direct addressing for files
Some support for interrupts
Compiler/interpreter available with low overhead at run time
Adequate reference documentation
Librarian, program-oriented filing system (including Browser)
Program-manipulable representation of programs
Dynamic measurement facilities
Scanned (bitmap) objects and images
Formatted document files
"Efficient” interface for experts

Line objects and images

XEROX PARC, CSL-83-11, JUNE 1984

APPENDIX 2 117

Remote file storage

Priority D
Inter-language communication
History and undoing
Non-hierarchical control (coroutines, backtracking)
Ability to extend language (e.g., operator overloading)
Ability to create fully integrated local sublanguages
Closures
Checkpoint, establishing a protected environment
Inheritance/defaulting
Cross-reference/annotation capability
Prettyprinter
Menus and other standard user interfaces
Document editing
Adequate exceptional condition handling
Editor integrated with language system
Remote procedure call
More optimizing compiler if user willing to bind more tightly-with full compatibility
Access to on-line documentation (Helpsys)
Message transmission system
Event logging
Generalized cache
Forms

Uniformity in command interface

XEROX PARC, CSL-83-11, JUNE 1984

REFERENCES 119

References

(1]

2]
B3]
[4]
5]
(6]
(7]

[8]
]
(10]
[11]
[12]
(13]

(4]
(15]

(16]
(7]

[18]
[19]
[20]

(21]
[22]
[23]
[24]

Andrew D. Birrell, Roy Levin, Roger M. Needham, and Michael D. Schroeder. "Grapevine: An
Exercise in Distributed Computing,” Communications of the ACM, Volume 25, Number 4, April
1982, pp 260-274.

Andrew D. Birrell, and Bruce Jay Nelson. "Implementing Remote Procedure Calls," CSL-83-7,
October, 1983 (also in Transactions on Computer Systems, Volume 2, Number 1, February, 1984).
D.G. Bobrow, and M. Stefik, "The Loops Manual," Knowledge Systems Area, Xerox PARC
1983.

H. Boehm, A. Demers and J. Donahue, "An Informal Description of Russell,” Technical Report
TR80-430, Computer Science Department, Cornell University, 1980.

R. G. G. Cattell, "Design and Implementation of a Relationship-Entity-Datum Data Model,"
Xerox Palo Alto Research Center Report CSL-83-4. May, 1983.

Cedar Implementors, "The CSL Cedar Project,” Update, Xerox Palo Alto Research Center
Technical Information Center, January 4, 1984.

Douglas W. Clark, Butler W. Lampson, and Kenneth A. Pier, "The Memory System of a
High-Performance Personal Computer,” Xerox Palo Alto Research Center Report CSL-81-1.
January, 1981 (also in /EEE Transactions on Computers, Vol. C-30, No. 10, pp. 715-733, October,
1981).

L. Peter Deutsch and Edward A. Taft, "Requirements for an Experimental Programming
Environment," Xerox Palo Alto Research Center Report CSL-80-10. June, 1980.

L. Peter Deutsch and Daniel G. Bobrow, "An Efficient, Incremental, Automatic Garbage
Collector,” Communications of the ACM, Volume 19, Number 7, July, 1976.

Adele Goldberg and Dave Robson, Smalltalk-80: The Language and its Implementation,
Addison-Wesley, 1983.

J. J. Horning, editor, "Report from Second Programming Environment Working Group," Internal
Memo, December 13, 1978.

J. J. Horning, "Cedar Language Overview," Internal Memo, 1983.

D. H. Ingalls, "The Smalltalk-76 Programming System: Design and Implementation,” Proceedings
of the 5th Annual ACM Symposium on Principles of Programing Languages, January 1978, pp
9-16. .

Interlisp Reference Manual, Xerox Corporation, revised October, 1983.

Butler W. Lampson and Kenneth A. Pier, "A Processor for a High-Performance Personal
Computer," Xerox Palo Alto Research Center Report CSL-81-1. January, 1981 (also in Proceedings
of Seventh Symposium on Computer Architecture, SigArch/1EEE, La Baule, May 1980, pp. 146-160).

Butler W. Lampson, "Hints for Computer System Design," ACM Symposium on Operating System
Principles, October, 1983.

Larry Masinter, "Global Program Analysis in an Interactive Environment,” Xerox Palo Alto
Research Center Report SSL-80-1, January, 1980.

John Maxwell, "The Cedar Spy," Internal Memo, 1983.

Scott McGregor "The Viewers Window Package," Internal Memo, 1983.

James G. Mitchell, William Maybury, and Richard Sweet. "Mesa Language Manual." Version 5.0.
Xerox Palo Alto Research Center Report CSL-79-3, April 1979.

James Morris, "The Cedar Project," Internal Memo, March 31, 1980.
Bill Paxton, "The Tioga Editor," Internal Memo, 1983.
Lyle Ramshaw, "The Briefing Blurb," Internal Memo, 1983.

David Redell, et. al., "Pilot: An Operating System for a Personal Computer"”, Communications of
the Association for Computing Machinery, Vol. 23, No. 2, February, 1980.

XEROX PARC, CSL-83-11, JUNE 1984

120

[25]
126]
[27]
[28]
[29]

(301
[31]

132]

33]

THE CEDAR PROGRAMMING ENVIRONMENT

Erik Sandewall, "Programming in an Interactive Environment: the 'Lisp’ Experience,"” Computing
Surveys, Vol. 10, No. 1, March 1978.

Eric Emerson Schmidt, "Controlling Large Software Development In a Districtubed Environment,"
Xerox Palo Alto Research Center Report CSL-82-7, December, 1982.

Beau Sheil, "Environments for Exploratory Programming," Datamation, Vol. 29. No. 2, February,
1983, pp 131-144.

M. Stefik, D.G. Bobrow, S. Mittal, and L. Conway, "Knowledge Programming in Loops: Report
on an Experimental Course," AAAI Magazine, Vol. 4, No. 3, Fall 1983.

Warren - Teitelman, "A Display Oriented Programmers Assistant,” Proceedings of the Fifth
International Joint Conference on Aritifical Intelligence, August, 1977 .

Warren Teitelman, The Interlisp Reference Manual, revised 1978, Xerox Palo Alto Research Center.
Warren Teitelman and Larry Masinter, "The Interlisp Programmmg Experience," Computer, Vol.
14, No. 4, April 1981, pp 25-33.

C. P. Thacker, E. M. McCreight, B. W. Lampson, R. F. Sprouil, D. R. Boggs, "Alto: A Personal
Computer,” CSL-79-11. August, 1979 (also in Computer Structures: Readings and Examples,
second edition, by Siewiorek, Bell and Newell).

John Warnock and Douglas K. Wyatt, "A Device Independent Graphics Imaging Model for Use
with Raster Devices," Computer Graphics, Volume 16, Number 3, July, 1982.

XEROX PARC, CSL-83-11, JUNE 1984

