
Trellis Data Compression 

by Lawrence Colm Stewart 



Trellis Data Compression 

by Lawrence Colm Stewart 

CSL-81·7 JUNE 1981 

Abstract: See page iii. 

This report reproduces a dissertation submitted to the Department of Electrical Engineering 

and the Committee on Graduate Studies of Stanford University in partial fulfillment of the 

requirements for the degree of Doctor of Philosophy. 

CR Categories: 3.24, 3.81, 5.6. 

Key words and phrases: trellis encoding, tree encoding, information theory, data 

compression, speech compression. 

XEROX 
PALO ALTO RESEARCH CENTER 
3333 Coyote Hill Road I Palo Alto I California 94304 



© Copyright 1981 

by 

Lawrence Calm Stewart 

11 



ABSTRACT 

Tree and trellis data compression systems have traditionally been designed by using 

a tree or trellis search algorithm to improve the performance of traditional coding 

systems such as adaptive delta modulation or predictive quantization. Recent work 

in the area of vector quantization has suggested the possibility of designing new tree 

and trellis codes which are well matched to particular sources. The main design 

procedure iterates on a long training sequence to improve the performance of an 

initial trellis decoder. An additional procedure, given a trellis decoder, can produce 

a decoder of longer constraint length which performs at least as well. Combined, 

these algorithms provide a complete design procedure for trellis encoding data 

compression systems. 

For random sources, many existing data compression systems can be readily 

improved and performance close to the rate-distortion bound can be obtained. In 

the applications area of speech compression, tree and trellis codes designed with 

these algorithms permit the construction of low rate speech waveform coders, low 

rate residual excited linear predictive coders (RELP), and a new kind of hybrid tree 

coder which provides good quality speech at rates below 7000 bits per second. 

lll 



ACKNOWLEDGEMENTS 

I wish to thank my advisor, Professor Robert M. Gray, for his direction and 

excellent guidance and the faculty and students of the Stanford Information Systems 

Laboratory for their encouragement and interest. My thanks also go to my parents 

for their many years of patience and support. My special thanks go to the staff 

of the Xerox Palo Alto Research Center, whose wonderful tools made this work 

possible. 

Support for this work was provided by the National Science Foundation grad­

uate fellowship program, by Joint Services Electronics Program contract number 

DAAG-0047, by U.S. Army Research Office contract number DAAG29-80-K-0073, 

and by the Xerox Corporation. 

lV 



TABLE OF CONTENTS 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

2. 

3. 

4. 

1.1 

1.2 

1.3 

1.4 

1.5 

Discrete time source coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

Tree and trellis systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

Tree and trellis encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

Decoder implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

Thesis outline ...................................... 10 

Code Design Algorithms .................................. 11 

2.1 Block code design algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

2.2 Trellis code design algorithm ........................... 13 

2.3 Extension ......................................... 21 

Coding Random Sources . . . . . . . . . . ........................ 26 

3.1 Operational considerations ............................ 26 

3.2 Selection of initial decoders ............................ 33 

3.3 Performance on random sources ......................... 40 

3.4 The effects of code structure ........................... 44 

Coding Speech Sources ................................... 56 

4.1 Existing systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

4.2 Speech coding system ................................ 60 

4.3 Speech waveform trellis codes ...•...................... 64 

4.4 LPC and vector quantization ......... ~ ................. 69 

4.5 LPC with trellis encoded residuals ....................... 73 

4.6 Hybrid tree codes .................................... 80 

5. Summary ............................................. 93 

Appendices 

A. Symbology ........................................ 94 

B. Tree and trellis search algorithms ........................ 96 

C. Random number generators ........................... 101 

D. Speech Data ...................................... 102 

References ................................................. 103 

v 



LIST OF FIGURES 

1.1 Communications system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

1.2 Tree diagram for a sliding block code . . . . . . . . . . . . . . . . . . . . . 3 

1.3 Data compression system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

1.4 Trellis diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

1.5 Constraint-length 3 trellis decoder . . . . . . . . . . . . . . . . . . . . . . . 6 

1.6 First order filter decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

1.7 Trellis decoder implementation . . . . . . . . . . . . . . . . . . . . . . . . . 9 

1.8 Finite-state machine decoder ........................... 10 

2.1 Predictive quantization decoder ......................... 16 

2.2 Truncated predictive quantization decoder ................. 16 

2.3 Fake process decoder ................................. 17 

3.1 M,L vs. Viterbi Algorithm code design .................... 28 

3.2 Performance vs. training sequence length .................. 30 

3.3 Random initial decoders .............................. 35 

3.4 Plagiarized initial decoders ............................ 38 

3.5 Performance for memoryless sources ..................... 41 

3.6 Performance for first order sources . . . . . . . . . . . ............ 42 

3.7 Constraint-length 3 ternary trellis ....................... 45 

3.8 Alternative shift register code structures . . . . . . ............ 46 

3.9 Shift register graph .................................. 47 

3.10 Synchronizable five state decoder ........................ 49 

3.11 Non-synchronizable four state decoder .................... 50 

3.12 Delta modulation decoder ............................. 51 

3.13 Random finite-state machine ........................... 53 

3.14 Eight node minimum path length graphs .................. 54 

4.1 Spectrum of speech coding techniques .................... 57 

4.2 Original speech waveform ............................. 61 

4.3 Alternative speech code structures . . . . . . . . . . . ............ 63 

4.4 Alternative table-lookup structures ...................... 64 

Vl 



4.5 Speech waveform trellis encoding system .................. 66 

4.6 Speech waveform trellis encoding performance .............. 68 

4. 7 Linear predictive coding system . . . . . . . . . . . . . . . . . . . . . .... 70 

4.8 Vector quantization of LPC ............................ 71 

4. 9 Ladder form filter structures . . . . . . . . . . . . . . . . . . . . . . . .... 72 

4.10 Speech residual waveform ............................. 74 

4.11 Trellis RELP encoding system .......................... 75 

4.12 Trellis RELP encoding performance ...................... 77 

4.13 Gain-modified trellis RELP performance .................. 81 

4.14 Trellis RELP waveforms .............................. 82 

4.15 Hybrid tree encoding system ........................... 83 

4.16 Hybrid tree encoding performance ....................... 85 

4.17 Adaptive predictive coding system . . . . . . . . . . . . . . . . . . . .... 86 

4.18 Gain-modified hybrid tree encoding performance ............. 91 

4.19 Hybrid tr~e encoding performance comparisons . . . . . . . . . . .... 92 

B.1 Trellis section for a shift register decoder . . . . . . . . . . . . . . .... 97 

vu 



LIST OF TABLES 

3.1 Viterbi Algorithm code design .......................... 27 

3.2 M,L Algorithm code design ............................ 28 

3.3 M,L Algorithm encoding .............................. 28 

3.4 Effect of training sequence length ........................ 30 

3.5 Effect of segmenting the training sequence ................. 32 

3.6 Random initial codes ................................ 34 

3. 7 Truncated predictive quantization decoders ................ 38 

3.8 Extension design, autoregressive source ................... 39 

3. 9 Extension design, memoryless source ..................... 39 

3.10 Gauss-Markov sources, length 5 ......................... 43 

3.11 Gauss-Markov sources, length 6 ......................... 43 

3.12 Rate 2/2 code performance ............................ 46 

3.13 Random finite-state decoders ........................... 53 

3.14 Minimum average path decoders ........................ 55 

4.1 Codebook size·vs. constraint length ...................... 65 

4.2 Speech waveform trellis codes .......................... 67 

4.3 Speech residual trellis codes ............................ 76 

4.4 Gain-modified trellis RELP ............................ 80 

4.5 Trellis RELP waveform reproduction ..................... 82 

4.6 Hybrid tree codes ................................... 84 

4. 7 Trellis RELP waveform reproduction, extended ............. 89 

4.8 Gain weighted hybrid tree codes ........................ 90 

Vlll 



1. INTRODUCTION 

Data compression, or source coding, systems provide mechanisms for transferring 

data from an information source to an information receiver in the presence of 

constraints on the amount of information which may be transferred or on the rate 

at which it may be transmitted. As might be expected, such systems have a large 

variety of applications, from communicating speech over low rate digital channels 

to storing computer data files on a disk memory of limited size. 

The overall problem of communications can be broken into two parts, as 

illustrated by the traditional communications system model of Figure 1.1 [13]: 

what aspects of the information coming from the source should be transmitted, 

and how should they be transmitted? The theory of channel coding, encompassing 

the channel itself as well as the channel encoder and decoder, addresses the latter 

problem, while data compression addresses the former. Whereas channel coding 

seeks to transmit information in an error free -manner over a noisy channel, source 

coding assumes an error free channel and seeks to select appropriate information for 

transmission by removing redundant or less important aspects of the information 

from the source. 

1.1 Discrete Time Source Coding 

This thesis is primarily concerned with a particular problem in the area of data 

compression: the encoding of discrete time waveforms - sampled data sources -

for transmission in order to achieve the maximum possible fideiity of reproduction 

~ubject to a limited rate of information transfer. More specifically, this thesis 

describes and applies new algorithms for the design of tree and trellis encoding 

data compression systems. , 

Discrete time source coding systems are sometimes divided into two categories: 

block codes and sliding block codes. A block code accepts a fixed number of 

samples, or symbols) Jrom the source, ,and releases a fixed number of symbols to 

the communications channel. The encoding process proceeds independently on each 

block. A sliding block code works in an incremental fashion. For each step, the 

encoder accepts a single symbol from the source and releases a single symbol to 

the channel. The sliding block encoder may retain some internal state information; 

thus the encoding may not be independent from symbol to symbol. The existence 

of good block codes has been known since the 1950's [75],[76], but the existence 

of good sliding block codes was not fully established until the 1970's [20],[38],[45]. 

1 



Source .. Source .. Channel 
r Encoder r 

Encoder 

t t 
Data Error 

,~ 

Compresion Correction Channel 

l l 
Destination 

...._ Source ..._ Channel .... 
~ 

Decoder 
..... 

Decoder 
-..-

Figure 1.1 Communications system 

Unfortunately these papers offer only existence proofs without describing ways of 

actually constructing good codes. 

For sliding block codes, it is an oversimplification to state that the encoder 

accepts and releases a single symbol at each step. A sliding block code may deal with 

larger fixed blocks or with v:ariable length groups of symbols. The key difference 

between the block and sliding block concepts is that the block encoding proceeds 

independently from block to block, while the sliding block encoding does not. A 

sliding block system which accepts multiple symbols may be considered to operate 

on single symbols from a vector valued source (a supersource). Further, a sliding 

block system that considers the indefinite (possibly infinite) past sequence of source 

symbols is well defined. 

The tree and trellis codes discussed in this thesis are members of the sliding 

block class. 

1.2 Tree and Trellis Systems 

Consider the problem of encoding a source sequence { x3} into a channel sequence 

{ Uj} with the ultimate aim of producing a reproduction sequence {y3·} at the decoder 

output. Viewed from the decoder, the particular output sequence generated is a 

consequence of receiving a particular one of all the possible channel sequences. The 

particular channel sequence received up to a time j can only be extended in a certain 

number of ways, depending on the number of possible values of a channel symbol. 

Similarly, a given decoder output sequence up to time j can only be extended in a 

2 

i· 
I 



F( ... 0111) 

F( ... 011) 

F( ... 0110) 

F( ... 01) 

F( ... 0101) 

~ F( ... 010) 

1 F( ... 0100) 

F( ... O) 

F( ... 0011) 

0 F( ... 001) 

~ 

F( ... 0010) 

F( ... 00) 

F( ... 0001) 

F( ... 000) 

F( ... 0000) 

Figure 1.2 Tree diagram for a one bit per symbol sliding block code. 
Because the channel symbols have two possible values, the tree branches 
two ways whenever a symbol is received from the channel. The arguments 
of the decoder function F represent the past sequence of channel symbols. 

fixed number of ways. This association of output sequences with channel sequences 

gives rise to a tree structure (Figure 1.2) in which the levels of the tree - points of 

successive branching - occur at each time a symbol arrives from the channel. The 

various alternatives represented by the different branches from a node are associated 

with the particular value of the symbol received. The decoder outputs are simply 

the labels on the tree branches. The sequence of channel symbols, or the path 

3 



x(j) 
..... Search 

Algorithm 

Viterbi Algorithm 
M, L Algorithm 

x(j) -- source sequence 
u(j) -- channel sequence 

uO) 
..... 

y(j) -- reproduction sequence 

Figure 1.3 Data Compression System 

..... 
(possibly) 
Nonlinear 

Filter 

DeltaMod Decoder 
Adpcm Decoder 

Fake Process Decoder 

y(j) 
... 

map, steers the decoder through the tree, producing an output sequence. If the 

decoder is deterministic, initialized in a known state, then the encoder can predict 

what the decoder will do for each channel sequence the encoder might select. The 

tree structure of the decoder, combined with its predictable behavior, leads to a 

description of tree coding systems as shown in Figure 1.3. A tree system just consists 

of a linear or non-linear filter as the decoder, matched to a tree search algorithm as 

the encoder. 

The decoder is an arbitrary device for transforming the channel sequence { u3·} 

into the reproduction sequence {y3-}. Depending on the alphabet of the channel 

symbols, the decoder might be implemented as a linear time-invariant digital filter, 

but usually at least some nonlinear components will be necessary to translate the 

channel symbols into a suitable alphabet. For example, a delta modulation decoder 

usually consists of a transformation from a binary channel alphabet to the numbers 

+ 1 and -1 followed by a simple digital filter. 

The process of encoding is accomplished by the tree search algorithm. By ex­

perimenting with a local copy of the decoder, the search algorithm can examine the 

consequences of transmitting various channel sequences and select the best available 

encoding. In such systems, "best" is defined by a single-symbol (additive) distortion 

measure. The overall distortion between the source and reproduction sequences is 

the sum of the distortions between the individual source and reproduction symbols. 

The tree encoder seeks to transmit the channel sequence which will produce the 

lowest possible overall distortion. 

When the decoder of a tree coding system contains a finite amount of state 

4 



State 
00 

01 

10 

Figure 1.4 

T+1 T+2 T+3 

Trellis for a one bit per symbol length 3 decoder 

information, the code tree formed by mapping the input-output behavior of the 

decoder assumes a more compact form. Since the decoder can be in only one of a 
finite number of states, the possible decoder outputs are only those which would 

result from receipt of each of the possible channel symbols while the decoder is in 

each of its possible states. 'rhis interpretation gives the code tree a folded tree, 
or trellis, structure in which the tree paths are now drawn as transitions between 

decoder states. The paths leaving a particular state may later merge as they reach an 

identical decoder state by different routes. In fact, digital decoder implementations 

always contain only a finite amount of state information, but even as few as 20 bits 

of internal memory would give the decoder over a million states! For this reason, a 

trellis decoder will usually be so identified only when the number of decoder states 

is fairly small - perhaps a few thousand. 

A typical code trellis is shown in Figure 1.4. The word trellis is used because 

the merged code structure closely resembles a garden trellis. Only four sections of 

the trellis are shown; the structure is actually replicated indefinitely to the right 

and to the left. The trellis of Figure 1.4 is generated by the one bit per symbol 

constraint-length 3 decoder shown in Figure 1.5. (Constraint length is an historical 

5 



u(j) 
1 2 3 

y(j) 
F() 

Figure 1.5 Constraint-length 3 trellis decoder 

term from convolutional channel coding. It refers to the length of a shift register 

such as the one in the figure.) During operation of this decoder, bits from the 

channel are entered into a three bit shift register. As each bit is entered, the decoder 

output is generated by a function of the current and two previous channel bits - in 

the most general case, this function might be a table of eight values. This trellis has 

four states because only the contents of the two leftmost shift register stages are 

involved in determining the action of the decoder for the next input. The rightmost 

bit is shifted out when the new channel bit arrives. As an example, if the trellis 

decoder is in state 00 at time T and a 1 bit arrives from the channel, the decoder 

would move to state 10 and produce the output F(lOO). 

The encoder of a tree or trellis source encoding system may be implemented 

by a search algorithm. Because many effective encoding algorithms are known, 

the more difficult part of the design of a tree or trellis coding system lies in the 

design of the decoder. (We will often speak of a "tree code" or a "trellis code" 

when, in fact, a tree or trellis decoder is meant.) Decoders may be drawn from 

any of the traditional waveform coding techniques, such as delta modulation or 

predictive quantization. Systems using such plagiarized decoders achieve improved 

performance solely by use of a search algorithm rather than their traditional en­

coders. In the literature, various other methods for selecting decoders have been 

proposed. For speech sources, for example, attempts have been made at the design 

of tree decoders based on predictive quantizers which match the average correla­

tion properties of speech [17]. Variational methods have been proposed to improve 

decoders based on predictive quantizers and Linde and Gray have used the notion of 

a fake process and theoretical ideas based on a measure of the similarity of random 

processes to suggest decoders [10],[55]. While most of the codes based on traditional 

6 



From 
Channel 

{+1,-1} 

8 bit memory 

Reproduction 

(constant) 

Figure 1.6 First order autoregressive filter decoder utilizing 8 bit arith-
metic. (This decoder might be used in a predictive quantization system.) 

systems incorporate structures similar to recursive digital filters and thus have such 

a large number of states that they generate tree codes, several investigators have 

used decoders incorporating either transversal digital filter approximations of recur­

sive filters or decoders originally based on finite impulse response models [8],[52],[82]. 

These decoders have a relatively small number of states and therefore a trellis struc­

ture. 

Even when a decoder incorporates feedback, such as when a recursive filter is 

used, if the internal structure of the decoder is purely digital (and sufficiently small), 

the code may still be considered to have a trellis structure, with the logarithm of 

the number of states equal to the sum of the number of bits of storage in the 

decoder. Thus a first order autoregressive filter using a delay element with eight 

bits of precision can have only 256 states (Figure 1.6). In a one bit per symbol 

system, an eighth order (constraint-length 9) transversal filter decoder also has only 

256 states. (Again, one of the bits is shifted out before the new channel symbol is 

shifted in, so it need not be actually stored.) 

1.3 Tree and Trellis Encoding 

A rich variety of algorithms are known that address the problem of tree and trellis 

encoding, or tree and trellis search. The simplest approach is to select the current 

channel symbol solely on the basis of the current source symbol. This technique 

is known as single path search and is represented by the traditional encoders of 

systems like delta modulation - if the input is rising send a 1, otherwise send a 

0. More complicated encoding algorithms, multiple path search, delay the sequence 

7 



of source symbols in order to "look into the future" and examine the longer range 

consequences of various encodings. In these encoders a succession of source symbols 

is matched against several possible channel sequences in a search for the encoding 
with minimum average distortion as determined by the given distortion measure. 

The study of tree search algorithms has been of interest since the earliest 
work on convolutional channel coding. The Viterbi Algorithm [25],[80} is optimum 

for searching the trellis structures associated with finite-state decoders, but has 
computational cost exponential in the constraint length of the code. This large 

expense stems from the fact that the Viterbi Algorithm performs an exhaustive 
search of the code trellis. Of the non-optimal algorithms, some, such as the Fano 

[44, sec. 10.4] and stack [6) algorithms, are derived from problems of decoding 
error correcting codes. Other algorithms have been designed specifically for the tree 
source encoding problem. Of this group, the M,L Algorithm [46} is a breadth-first 
tree search. Others, such as the single stack algorithm [26) and the 2-cycle algorithm 

[9], are classed as depth-first or metric-first (distortion-first) types [4],[5). 

The key difficulty with tree encoding systems is that the number of potential 
paths grows exponentially as the search algorithm delays for a longer time in order 
to look deeper into the code tree. In one way or another, the various tree search 
algorithms seek to overcome this difficulty. They either give up performance in 
trade for efficient operation.·or take special advantage of particular decoder (tree) 

structures. 

Two search algorithms are used in this thesis, the Viterbi Algorithm and the 
M,L algorithm; their operation is briefly discussed in Appendix B. Both algorithms 

have fixed encoding delay and bounded search effort. Some other available algo­

rithms run faster on the average, but require a variable amount of encoding delay 
or have a variable running time - with consequent buffering problems. The Viterbi 

Algorithm is optimal, but is suitable only for trellis codes because it takes advantage 
of their finite-state structure. The M,L Algorithm, although not optimal, can be 

used both for tree codes and for trellis codes. 

1.4 Decoder Implementation 

The decoder examples of section 1.2 are instructive. Because ,we are considering a 
digital communications channel, and the channel symbols take on only a few values 

- two, in the case of one bit per symbol systems - the decoders for quite complex tree 
or trellis codes can have very simple structures. A first order predictive quantization 
decoder, such as the recursive filter described earlier, might be implemented by 

8 

I· 
I 



Traditional Digital Filter Structure (FIR filter) 

Input {-1. 11 

(from 
channel) 

-1 
z 

-1 

z 
-1 -1 -1 

z z z 

Shift Register Implementation (constraint-length 9) 

Input {o. 11 
~ J I J J J J J I ] (nine bit shift register) ~ 

(from 
channel) 

512x8 

ROM 

Figure 1. 7 Trellis decoder implementation 

Output 
(to DI A) 

Output 
(to D/ A) 

a multiplier, a register, and an adder. In the case of the constraint-length nine 

transversal filter, rather than use any of the traditional transversal linear digital 

filter structures, the decoder may be simply implemented by a 9 bit shift register 

driving a 512 word read-only memory (Figure 1.7). All the complexities of the filter 

tap weights, multipliers, and adders are replaced by the read-only memory acting as 

a lookup table or codebook. The codebook output might be used to directly drive 

a digital to analog converter. In the case of a 256 state decoder, the most general 

trellis decoder structure possible could be implemented, as in Figure 1.8, by using 

two read-only memories. One of the memories provides the decoder output function, 

while the other provides a next-state function, implementing a general finite-state 

machine. The first order recursive filter of Figure 1.6, for example, could utilize 

such a structure in place of the multiplier, register, and adder. 

Although most of the work reported by this thesis uses trellis decoders imple-

9 



Input 
Output .. Output - ... 
ROM _j_ (from .... 

.L 78 
-,... 

channel) 
__.... 

(to DI A) 
78 .... 

512x8 

State 

Next 
Latch 

....... --.... 
State .... 

.L ROM r' 

........ 

'a ,,.. 
512x8 

Figure 1.8 General finite-state machine decoder 

mented by a shift register driving a codebook memory, section 3.4 will return to 

the question of alternative d~coder structures. 

1.5 Thesis Outline 

In Chapter 1, we have described the general idea of source coding, or data compres­

sion, and its specialization in the form of tree and trellis codes. Chapter 2 presents 

the central algorithms and ideas of the thesis, including an iterative fixed point 

algorithm for improving a given trellis decoder and an algorithm for extending the 

constraint length of a given shift register trellis decoder. In chapter 3, these algo­

rithms are tested against the standard Gaussian and Gauss-Markov sources and 

the results compared against both traditional trellis coding schemes and against 

the theoretical rate-distortion performance bounds. Additional material is intro­

duced to explore alternative decoder structures and ways of providing the "given" 

initial decoder required by the design algorithm. Chapter 4 turns to the problem 

of speech coding. The design algorithms developed in the previous chapters are 

used to construct trellis codes for the original speech waveform, for residual excited 

linear predictive coding systems, and for a new kind of hybrid tree code which in­

corporates an internal trellis code. Appendices present some additional information 

on notation, on the Viterbi and M,L encoding algorithms, and on the production 

of random numbers for computer aided code design. 

10 

'' 
' 
I 



2. CODE DESIGN ALGORITHMS 

This chapter describes new algorithms for the design of trellis source codes. The 

first section introduces the subject by describing an associated algorithm, originally 

due to Lloyd in 1957, for the design of block source codes. The application of this 

original idea to trellis codes is due to a suggestion by Linde and Gray in 1979. 

Section 2.2 describes the trellis code design algorithm which, given an initial code 

and a training sequence, returns an improved code. Finally, section 2.3 adds to the 

facilities for a complete design system for trellis codes by describing an algorithm 

for extending the constraint length of a given trellis code. This chapter touches 

only briefly on the initial conditions required for the use of these algorithms. These 

operational considerations, as well as questions of performance, are deferred until 

Chapter 3. For reference purposes, Appendix A contains a compilation of all the 

notation used in this chapter. 

2.1 Block Code Design Algorithm 

As a first step towards the description of the trellis code design method, we first 

establish some terminology a~d basic ideas by describing an algorithm for the design 

of block codes, or vector quantizers, based on a long training sequence of symbols 

from a source. This algorithm is a multi-dimensional version of a quantizer design 

method of Lloyd [56] and is more completely reported by Linde et al. [53J. 

An N-level k-dimensional quantizer is a function, f, that assigns to each 

input vector, x = (x0 , ... , Xk_i), a reproduction vector, x', drawn from' a finite 

reproduction alphabet, A = {Yi, i = 0, ... , N - 1}. The quantizer is completely 

described by the reproduction alphabet together with a partition, S = {Si, i = 

0, ... , N - 1}, of the input vector space into the disjoint sets Si = { x3 I f(xj) = 
Yi} of input vectors mapping into the ith reproduction vector. From this description 

and from the discussion of block codes in Chapter 1, we see that a vector quantizer 

is just a block source code. The encoding operation corresponds to the translation 

of the source vector x into the index of the reproduction vector - encode(x) = i 
- while decoding corresponds to looking up and producing the reproduction vector 

associated with that index - decode( i) = Yi. 

Usually the fidelity of reproduction, and hence the desirability of selecting a 

particular reproduction vector, is governed by a non-negative distortion measure 

d(x, x'). Many distortion measures have been proposed for various applications, but 

11 



perhaps the best known is the squared-error measure 

k-1 

d(x, x') = I: (xi - x~)2 • 
i=O 

Given a distortion measure, a reasonable approach to the selection of a partition is 

to map each source vector into the reproduction vector giving minimum distortion. 

Thus 

with some tie breaking rule. As ties are generally low probability events, nearly any 

rule will do, such as assigning the sample to the partition cell with the lower index. 

The initial conditions for the design algorithm are N, the desired number of 

reproduction vectors, A0 , an initial quantizer, and {xj : j = 0, ... , n - 1 }, a long 

training sequence of symbols from the source. The algorithm consists of the iterative 

execution of two steps: finding the best encoding of the training sequence for a 

given set of reproduction vectors, and finding the best set of reproduction vectors 

for the given encoding. In order to avoid some set-theoretic difficulties, in what 

follows we change the definition of a partition slightly so that Si contains the time 

indices of those elements of the training sequence which are encoded by reproduction 
vector Yi, rather than the source vectors themselves. S is now a partition of {j : 
J. = 0, ... , n - 1} and the encoding function f returns the index of the minimum 

distortion reproduction vector f(x) = i. 

Find Partition: Given Am, the reproduc~ion alphabet of generation m, find 

the minimum distortion partition sm = P(Am), by assigning each element of the 

training sequence to the minimum distortion reproduction vector: 

f(x) = i: d(x,yi) < d(x,yj),for all j 

with some tie breaking rule. 

Find Reproduction Alphabet: Given a partition sm = P(Am), find the mini­

mum distortion reproduction alphabet for generation m + 1 

by setting y;n+ 1 , the ith reproduction vector of the new alphabet, to the value 

giving the minimum average distortion over the training sequence vectors indexed 

by elements of Si. This value will be the generalized centroid, or center of gravity 

12 

I' 
I 



under the distortion measure, of those training sequence values which were quantized 

to the value y:n. 
In the case of the mean-square-error distortion measure, this center of gravity 

calculation is just the sample average over a partition: 

... m+l 1 ~ ... 
Yi = JJSr:nJJ L- x;. 

i jES'(' 

In Euclidian space, the average of a set of vectors is just the term by term average. 

Repeated application of these steps must result in decreasing sample average 

distortion over the training sequence. Since the average distortion is non-negative 

and decreasing, it must eventually reach a limit [50). Although the limit may not be 

the global optimum, it is at least a local optimum. The algorithm may be stopped 

either when a fixed point is reached (when no changes occur in the reproduction 

vectors or partitions), or when the reduction in average distortion per iteration falls 

below some threshold. 

If the vector source {xi} is ergodic and stationary, the sample average distortion 

over the training sequence will be a valid estimate of the expected distortion over 

data from outside the training sequence. In this case, a quantizer designed by this 

algorithm will also work well on data from outside the training sequence. However, 

convergence of the design algorithm itself does not depend on either stationarity or 

ergodicity. 

2.2 Trellis Code Design Algorithm 

As will become clear, the trellis code design algorithm depends only on a table­

lookup implementation of the trellis decoder. In spite of this fact, we present 

here a detailed description of a shift register decoder. Nearly all of the algorithm 

applications discussed later use the shift register and its description here may 

provide a useful focal point for the design algorithm description below. 

A shift register trellis code of constraint-length (register length) k for a q-ary 

channel has N = qk reproduction symbols (codewords) and R = q(k-l) states. We 

number the channel symbols from 0 to q - 1, the codewords from 0 to N - 1, and 

the states from 0 to R - 1. We adopt the conventions that channel symbols are 

shifted into the least significant end of the shift register and that the contents of 

the register are interpreted as the index of the output codeword. In this model, the 

codewords are associated with transitions between decoder states rather than with 

13 



the states themselves - they are branch labels of the code trellis. Suppose symbol 

u arrives at the decoder input from the communications channel when the decoder 

is in state r. The output of the decoder will be codeword qr + u and the decoder 

will move to state qr+ u (mod qk-·t ). The modulus operation strips off the 'oldest' 

symbol in the register. With these procedures for operating the decoder, a shift 

trellis code is completely described by q, the cardinality of the channel, and by the 

contents of the codebook. 

The trellis code design algorithm seeks to fill in the contents of the codebook. 

2.2.1 The basic algorithm 

Suppose that we have a trellis decoder, a single symbol additive distortion measure, 

and an optimal encoding (search) algorithm such as the Viterbi Algorithm which 

will find the trellis encoding of a source sequence which gives the lowest sample 

average distortion. The trellis decoder itself will consist of a k symbol shift register 

whose contents are interpreted as an index into a table of reproduction symbols (the 

codebook). This is just the organization described above and shown in Figure 1.6. 

Each time a symbol arrives from the channel and is shifted into the-register, the 

new register contents are used to select a codeword from the table. The codeword 

selected becomes the output of the decoder. The symbols of the channel sequence, 

or path map, chosen by the encoding algorithm are thus associated first with the 

sequence of source symbols, then with a sequence of decoder states, and finally with 

the reproduction sequence of codewords. It is this final association that is of the 

most interest; it can be used as the partition function in a trellis adaptation of the 

block quantizer design algorithm. 

The initial conditions for the design algorithm are a table driven finite-state 

decoder with initial codebook c0 (such as the shift register decoder described above), 

a single symbol additive distortion measure (such as squared-error), and {xJ-}, a long 

training sequence of symbols from some source. The algorithm consists of two key 

steps: finding the best encoding of the training sequence for a given codebook, and 

finding the best codebook for the given encoding. Executed alternately, these steps 

provide an iterative design algorithm for improving the initial trellis code. 

Find Encoding: Given cm, the trellis codebook for generation m, find the 

minimum average distortion encoding of the source sequence { Xj} by using an 

optimal encoding algorithm. This encoding induces the partition sm = P( cm). 
The elements of cell s;:i, the partition cell corresponding to codeword yrzi, are the 

14 



time indices of those elements of the training sequence which were reproduced by 

codeword Yi. 

Find Codebook: Given the partition for generation m, sm = P(Cm), find the 

minimum distortion codebook for generation m + 1: 

where y;'1+ 1 , the ith reproduction symbol for generation m + 1, is the value giving 

the minimum average distortion over those elements of the training sequence indexed 

by Si. This value will be the center of gravity, or centroid, under the distortion 

measure of those training sequence values which were encoded by codeword Yi. The 

encoding function - the trellis search - does not necessarily map a source symbol 

into the minimum distortion codeword, but maps the entire training sequence into 

the minimum average distortion sequence of codewords. 

Each iteration of this procedure can only result in decreasing, or at least non­

increasing, average distortion. Since the encoder is free to choose the same path 

sequence on successive iterations, a bound is placed on the distortion resulting from 

encoding with the updated codebook. Because the encoding algorithm is optimal, 

the new encoding can result in distortion no worse than the distortion due to using 

the old path with the new codewords - which, in turn, is at least as good as the 

distortion for the previous iteration. (In fact, if the same path is chosen twice, 

the algorithm has reached a fixed point and will proceed no further. The reader is 

referred to [57] for a general discussion of fixed point optimization algorithms.) 

In the block quantizer algorithm, the partition function we chose was the 

minimum-distortion function, which mapped each training sequence sample into 

the reproduction vector giving the lowest distortion for that source vector. This 

function was applied independently to each block (vector) from the source so that 

source vectors with the same value would always be mapped to the same partition 

cell. In the trellis case, the partition function does not necessarily map each training 

sequence sample to the lowest distortion codeword, rather it maps the entire training 

sequence to the reproduction sequence giving the lowest average distortion subject to 

the constraints of the trellis and codebook. This function is no less well defined, but 

at different times it may map the same value source symbol into different partition 

cells. 

2.2.2 Meeting the initial conditions 

The initial requirements of the trellis code algorithm are a suitable distortion mea­

sure, a training sequence, and an initial decoder. Selecting an appropriate distortion 

15 



uO) 

Figure 2.1 

u(j) 

Figure 2.2 

Predictor 

-1 z 
Delay 

Predictive quantization decoder 

1 2 k 

y{j) 

Truncated predictive quantization decoder 

b 

measure depends on the ultimate application of the data compression system and 

is beyond the scope of the design algorithm. The required characteristics of the 

training sequence are of some interest and will be addressed in section 3.1. The 

most important initial requirement is for a table-lookup decoder with some initial 

codebook C0 • We mention here several ways in which initial decoders may be 

obtained. The selection of initial decoders will be more thoroughly explored in 

section 2.3 and in Chapter 3. 

Plagiarized decoders: One of the most appealing ways to choose an initial 

decoder is simply to use the decoder from a good existing data compression system 

such as predictive quantization, but to implement it by a table-lookup decoder and 

to use it in a trellis coding context. Since the decoder for the usual predictive 

quantizer (Figure 2.1) involves a recursive filter and thus has a tree, rather than 

a trellis, structure we must first transform the recursive filter into a transversal 

equivalent. Of the several methods for accomplishing this transformation, the 

16 



u(j) 
1 2 k 

Scramble 

Scrambling Function 
Inverse Distribution 

t "\.) 
y(j) 

Figure 2.3 Inverse distribution fake process decoder. The shift register 
contents are interpreted as a fraction in {0,1). This value drives a [O, 1) i-+ 

[O, 1) scrambling function, which in turn drives the inverse distribution 
function 1-1 . 

simplest is to truncate the impulse response, which gives the truncated predictive 

quantization decoder of Figure 2.2. Once a finite-state decoder is obtained, it is a 

simple matter to implement it by a table of codewords indexed by the contents of 

the shift register. Other traditional data compression systems have similar kinds of 

transformations into the trellis code framework. The use of plagiarized decoders to 

generate initial codebooks for the design algorithm is discussed in section 3.2.2. 

Fake process decoders: Linde and Gray [52], [54], [55] have proposed that when 

a trellis decoder is driven by a random channel sequence (e.g. coin tosses), the 

statistics of the decoder output should be close, in a certain sense, to the statistics 

of the source under consideration. They propose the generalized Ornstein distance 

[42] for this purpose. In the case of known source statistics, this approach leads 

to (among others) the so-called Inverse-Distribution decoder of Figure 2.3. Once 

again, it is straightforward to implement the scrambling function and the function 

1-1 by a table of codewords. The hybrid tree codes discussed in Section 4.5 are 

essentially fake process decoders. 

Random decoders: The theoretical approaches to tree and trellis source coding 

systems have used random coding arguments, especially in the case of memoryless 

sources [38], [ 45]. While these arguments, that a randomly selected code will tend 

to be a good one, apply, at least in theory, only to long constraint lengths, it is 

not unreasonable to suspect that an initial codebook whose entries are randomly 

selected according to an appropriate distribution might work fairly well. Initial 

codes of this type are used several times in Chapter 3. 

17 



2.2.3 Termination conditions 

One difficulty with iterative algorithms is deciding when to stop - or when to give 

up. As part of the encoding portion of the design algorithm, a sample average 

distortion may be obtained for each iteration m 

n-1 

~ m = n-1 L,: d(xj, Xj), 
j=O 

where Xj is the reproduction of xJ .. This is simply the average per-symbol distortion 

over the training sequence. We know that this distortion is non-negative and non­

increasing with each iteration, so it is a natural value to use in a termination test. 

One approach is to stop when the distortion reaches a predetermined threshold, 

but there is a danger that the algorithm may reach a fixed point before attaining 

a particular distortion. A better approach is to set a threshold on the change in 

the sample average distortion, that is, terminate the algorithm when the change in 

distortion falls below a certain threshold 

The selected value of E may have any non-negative value, including 0, since the 

algorithm will reach a fixed point within a finite number of iterations. (A proof 

appears later in this section.) 

2.2.4 Detailed trellis code design algorithm 

(0) Initialization: Given a distortion threshold E > 0, a q-ary noiseless channel, an 

R state decoder, an initial codebook c0 with cardinality llC0 11 = N = qR, and a 

training sequence {xj} = {xj : j = 0, ... , n - 1}, set m = 0. 

(1) Given cm = {Yi : i = 0, ... , N - 1}, the codebook for generation 

m, find the minimum distortion trellis encoding { xJ· : j = 0, ... , n - 1} of the 

training sequence { Xj }. This encoding induces a partition on the training sequence 

P(cm,{xj}) ={Si : i = 0, ... ,N -1} with Si= {j: Xj =Yi}. Each set 

Si contains the time indices of those elements of the training sequence which were 

encoded by codeword Yi. 

(2) Compute the average distortion 

18 



The last expression causes difficulties if there are any empty partition cells. If 

llSill = 0, then that partition cell simply does not contribute to the distortion. 

(3) If at least one full iteration has been completed ( m > 0) and the decrease 

in distortion has fallen below the threshold E, 

then halt with cm as the final codebook. Otherwise continue with step ( 4). 

( 4) Find the optimal codebook cm+i for generation m + 1 as 

c7n+ 1 = C(P(C1'n, {x3·})) 

with 
Cm+l _ { m+l . · _ 0 N l} - Yi . i - , ... , -

and 

jES"(' 

Each new codeword has the value which minimizes the average distortion over 

its partition cell. Each codeword in generation m + 1 will be the centroid of 

those elements of the training sequence which were encoded by the corresponding 

codeword of generation m. If a particular partition cell is empty, the last equation 

is indeterminate and some rule must be adopted to cover this eventuality. Section 

2.2.4.1 contains some approaches to handling empty partition cells. 

(5) Replace m by m + 1 and go to step (1). 

2.2.4.1 Codebook update for mean-square-error 

If the distortion measure is squared-error, d(x, x') = (x - x') 2 , then the step (3) 

centroid computation for the updated codewords is particularly simple: 

m+l 1 "'""' 
Yi = llS"!'-11 L..J Xj. 

i jES'(' 

This expression does run into difficulties when a partition cell is empty. One way 

to handle this situation is simply to retain the old codeword, y;n+1 = Yi, but if it 

is a poor value, it may never be used and the associated partition cell may remain 

empty on the next iteration. Another approach is y;n+ 1 = I:j g Xj - set the 

codeword to the centroid of the entire training sequence. The goal of the method 

selected must be to select a value that will be used by the next pass of the encoder. 

Once the partition cell is no longer empty, the design algorithm will take care of 

adjusting the exact value of the associated codeword. 

19 



2.2.4.2 Distortion computation 

As noted in step (2), there are alternative formulations of the sample average 

distortion. One, 
n-1 

!:::,. m = n -l L d( x j, x j) 
j=O 

may be computed "on the fly" as each encoded symbol is released to the channel 

by the encoding algorithm. The second form 

operates in a batch fashion by separately considering each partition of the training 

sequence and computing that portion of the total distortion resulting from the use 

of codeword Yi. A variation of this formula: 

in which Yi has been replaced by y;r1+ 1 , may also be of interest. This last value 

is the distortion arising from use of the path sequence from generation m with the 

codebook from generation m + 1 - the old encoding with the new codebook. This 

figure is an upper bound for !:::,. m+ 1 : 

!:::,. m >!:::,.ml>!:::,. m+l. 

These alternative computations each have a place. The first form occurs naturally 

as part of encoding algorithms such as the M,L Algorithm, which maintain several 

possible paths and select the one with minimum average distortion. The second 

form occurs naturally as part of the computation of the new codebook cm+i in 

step ( 4), and the third form provides additional information about the progress of 

the overall design algorithm. The distortion arising from use of the old path with 

the new codebook should be below that for the old codebook, but not as low as that 

obtained for a new encoding with the new codebook. 

2.2.4.3 Proof of algorithm termination 

Let us consider the consequences of setting E = 0 in the termination test. Can the 

design algorithm iterate forever? Such an event would require an infinite sequence of 

20 



codebooks whose associated optimal encodings give constantly decreasing distortion. 

Since we assume a finite training sequence (of length n), a finite codebook, llCll = 
N, and a finite q-ary channel, there can only N qn ways to encode the training 

sequence. (The number may actually be smaller than this if we do not permit 

an arbitrary encoding of the first source symbol.) If, as is usually the case, the 

centroid computation proceeds in a fashion independent of the time ordering of 
the samples, then there can only be N qn possible codebooks. An infinite sequence 

cannot happen. This argument remains valid in the presence of empty partition 

cells provided a deterministic rule is applied in such cases. 

2.3 Extension 

Earlier, we described several methods for generating an initial decoder for the trellis 

code design algorithm. In this section, we describe a method, given a shift register 

decoder of constraint-length k, of constructing a decoder based on a shift register of 

length k + 1. Our method will have the advantage of constructing a decoder with 

sample average distortion over the training sequence at least as low as that of the 

starting (shorter) decoder. We call this method extension, because the general idea 

is to create the new decoder, with a longer constraint length, by extending the shift 

register of the starting decoder by adding an additional stage. 

2.3.1 Notation 

It will be helpful if we adopt some additional notation for the special case of shift 

register decoders. The most important fact about shift register decoders is that at 

any time j, the contents of the decoder shift register form a base q representation of 

the index in the decoder codebook of the output codeword. In particular, if x3· =Yi 

then 
k-1 

i = L Uj-pq'P. 

p=O 

Let a represent a string of base-q digits of length la!. Concatenation will be 

represented by juxtaposition - Oa is a string with a leading 0 and length !al+ 1. If 
the length of a string is important, it may be specified by superscript: lakl = k. Let 

(a)q be the digit string a interpreted as an integer in base q. Usually, the radix will 

be clear from context and we will write simply (a). Finally, if . .. v_ 1vov 1 ••• is a 

sequence of digits, let vj be the digit string composed of the k digits beginning 

with Vj-(k-l) and ending with Vj· In this final case, since the q-ary channel 
sequence { Uj} may be thought of as being composed of base-q digits, we have uj = 

21 



u;-(k-l)· .. u;-1 u; as the decoder shift register contents at time .j and ( u~)q as the 
codebook index of the decoder output at time j. 

Since we will be considering codebooks for shift register decoders of different 
constraint lengths, it will be convenient both to index codewords by base-q num­

bers (strings) representing the contents of the decoder shift register and to index 
codebooks by their constraint lengths: 

2.3.2 Initial decoder 

Given a q-ary channel, and a shift register decoder (refer to Figures 1.5 and 1.6) 

of length k and codebook Ck, we have llCll = qk. We begin with codebook Ck, 

containing codewords {Ya : !al = k} and we wish to select codewords {y~ : I.Bl = 
k + 1} for the extended codebook Ck+l· 

2.3.3 Extension algorithm 

Set 

YI - y' - - y' - y . Oa - la - · · · - (q-l)cr - a • lal=k. 

This method produces the codebook Ck+l by duplicating the contents of codebook 
Ck q times. The new decoder has an additional shift register stage added at the left 
end of the original register, represented by the leading digit of the codeword index 

,8. Because of the way that the codebook is duplicated, the symbol held in the new 

register stage is a "don't care" .symbol and has no effect on the decoder output. The 
path sequence chosen by the encoder for the codebook Ck is still available for the 

new codebook Ck+1 1 and, if used, would produce exactly the same distortion with 
the new codebook as with the old. The encoding of a source sequence with the old 
codebook therefore represents an upper bound on the distortion generated by an 
optimal encoding of the same sequence with the new codebook. 

In fact, the situation is not that optimistic. Since the old and new decoders 

produce identical reproduction sequences when driven by identical path sequences, 
the old and new codebooks are in effect identical and their distortions will be exactly 

the same - the distortion of the old codebook is not only an upper bound to the 

distortion of the new, it is a lower bound as well. The benefit of the extension 

method lies not in encoding with the new codebook Ck+i itself, but in using Ck+l as 
an initial codebook for the trellis code improvement algorithm. To explore this idea, 

22 



let us first examine the encoding and update steps (1) and (4) of the improvement 

algorithm in the context of a shift register decoder. 

(1) Given C,;1 = {y: : lal = k }, the constraint-length k codebook for 

generation m, find the minimum distortion trellis encoding { xJ· : J. = 0, ... , n - 1} 

of the training sequence. 

The encoding of the training sequence was described earlier by the sequence 

{ x j} of decoder outputs, but it can also be described by the sequence { uJ} of channel 

symbols - the path sequence. Ignoring end effects, { xJ·} can certainly be generated 

from {uJ} - this is just the job of the decoder. 

Given the codebook, this encoding induces a partition on the training sequence 

P(Ck, {xi}) consisting of the partition cells (sets) {s:: lal = k}. We haves:= 

{J' : uJ =a}. The index-sets: contains the time indices of those moments when 

the contents of the decoder shift register was a, or alternatively, the time indices 

of those elements of the training sequence which were encoded by codeword y:. 
Suppose that the optimal encoding of the training sequence using the codebook 

ck has resulted in the path sequence { Uj}. If we now extend ck, producing C2+ 1 

as a new initial decoder for the improvement algorithm, the optimal encoding in 

step (1) of the algorithm will once again be { Uj }. 

Now examine the relationship of the cells of the old partition P ( C,;1, { x j}) 
generated by encoding { Xf} with decoder C,;1 to the cells of the new partition 

P( C2+1, { Xj}) generated by encoding { Xj} with decoder C2+i · The path sequence 

{ Uf} will be the same in each case, so we have 

q-1 

LJ S~a = s;;i. 
v=O 

The partition cells of P( C2+1, { Xj}) are non-overlapping subsets of the partition 

cells of P( c;;i' { Xj} ). P( C2+1' { XJ}) is a refinement of the original partition. 

Now let us turn to the update step of the trellis code algorithm, specialized to 

the first iteration after the code has been extended. 

( 4) Find the extended codebook Cl+i for generation 1 as 

with 

Y1 = Y: 2::: d(xj,Y) < L d(xJ,y'),for ally'. 
J·Esg JESg 

23 



Each new codeword y~ is the centroid of those elements Xj of the training 

sequence such that u7+ 1 = /3 = va. The elements of S~a are just the values j 

such that j Es;- and U1·-k = v. 

2.3.4 Combined extension and update 

As we have just seen, the initial encoding of the training sequence with the extended 

codebook e2+1 is the same as the final encoding with codebook er. We can now 

take advantage of this fact by modifying the extension method to omit the initial 

encoding with the extended codebook: 

eg+1 = {y~: l/31=k+1, :L d(xj,y~) < :L d(xj,y'),ror ally'}. 

2.3.5 Code design using extension 

The theory of trellis codes includes a proof that good codes exist - at least in the 

limit of long constraint length. Unfortunately the theory does not say how to build 

such codes. The extension idea offers a method of constructing long trellis codes 

which perform at least as well as their shorter ancestors. The shorter codes referred 

to might be generated in a number of ways, but the extension idea offers a method 

of constructing a long constraint-length trellis code entirely from scratch: 

(1) Design an initial cod~book e~ by :finding a good q-level quantizer for the 

training sequence. This may be accomplished by use of the block code design 

algorithm, as this initial codebook is just a block-length 1 block code with q 

codewords. Parenthetically, we note that for constraint-length 1, the block and 

trellis design algorithms are identical. 

(2) Given ez, an initial code of a certain constraint length, use the trellis code 

design algorithm to improve it. The extent of this procedure will be governed by 

the value of f in the trellis code algorithm. 

(3) If the constraint-length k is sufficiently large, or the distortion provided by 

er sufficiently low, then halt. 

(4) Use the extension algorithm to produce the codebook e2+ 1 from er and 

then return to step (2). 

24 



2.3.6 Example 

The above procedure can be easily illustrated by considering its application to a 

hypothetical one bit per symbol (q = 2) system using squared error distortion. 

Let the initial codebook for the constraint-length 1 decoder include codewords 

-1 and + 1. The trellis code design algorithm for this constraint length reduces to 

the block code design algorithm and simply selects a locally optimal two level scalar 

quantizer for the training sequence. Assuming for the moment that the mean of the 

training data is 0, the optimum partition for the final constraint-length 1 decoder 

collects all the samples in the training sequence with positive values in one partition 

cell and all the samples with negative values in the other. In keeping with earlier 

notation we have 

and 

where we have chosen to break ties by assigning the associated sample to the first 

partition. The two codeword values will be the means, respectively, of the positive 

and negative training sequence samples. The first extension of this decoder - to 

constraint-length 2 - contain.s four codewords. The original partition is refined in a 

very intuitive way: the partition cell containing the positive valued samples of the 

training data is divided into two cells containing respectively the positive samples 

which were preceded in the training data by other positive samples, and those which 

were not. 

and 

S10 = {i I xj ~o, xj-1 < o} 

are the two subcells created from S0 where we have used binary notation for the 

partition cell indices. 

As the decoder is further extended, it is no longer quite so easy to describe 

the contents of a particular cell, but in each case the extended codebook contains 

pairs of partition cells, each pair of which form a two cell refinement of one of the 

partition cells of the shorter code. 

25 



3. CODING RANDOM SOURCES 

Source coding of truly random sources is perhaps less interesting for its practi­

cal applications than for the insights and understanding that may be gained. Well 

developed theoretical bounds on performance of codes for random sources and the 

existence of "competition" in the form of traditional coding systems give the prob­

lem of the data compression of random sources great value during the development 

of new coding systems. In the sections below, random sources are used to obtain 

an initial evaluation of the code design algorithms of the previous chapter, to study 

the problem of seeding the algorithm with an initial decoder, to compare the per­

formance of the new codes with more traditional systems, and to investigate the 

effects of alternative trellis decoder structures. 

3.1 Operational Considerations 

The basic trellis code design algorithm guarantees only two things: it will even­

tually halt, and the average distortion obtained over the training data will be non.­

increasing with each successive iteration. These guarantees are of considerable 

theoretical interest, but the algorithm would be of little practical value if it either 

usually failed to produce significantly improved codes or converged very slowly. (A 

reasonable interpretation of slow convergence would be that the algorithm is simply 

unable to obtain much improvement.) In practice, it turns out that convergence is 

almost always extremely rapid. - a few iterations usually suffice - and significant 

code performance improvements are usually obtained. (This sort of behavior is quite 

typical of fixed point algorithms [53].) 

The three sections below address several practical concerns: code performance 

improvement, encoding algorithm and training sequence requirements, applicability 

of codes designed using a particular training sequence to other sequences, and 

algorithm rate of convergence. 

3.1.1 Effects of the encoding algorithm 

In discussing the history of tree and trellis coding, we mentioned that a wide 

variety of encoding algorithms - tree and trellis search algorithms - are known. 

Chapter 2, in discussing the details of the trellis code design algorithm, stated that 

an optimal encoding algorithm must be used in order to ensure that the training 

algorithm will converge. While such an algorithm exists - the Viterbi Algorithm -

both the space and time costs of using it grow linearly with decoder codebook size 

or exponentially with the code constraint length. Since, for some sources, trellis 

26 



Table 3.1 
Viterbi Algorithm design 

iteration 1 2 3 4 5 6 
encoding mse 0.317 0.308 0.303 0.299 0.296 0.294 

new codebook mse 0.311 0.305 0.301 0.297 0.294 0.293 

codes of long constraint length may be required to achieve performance close to the 

theoretical limits, it is important to discover whether, in practice, the use of an 

optimal encoding algorithm is necessary. Use of a faster but suboptimal encoding 

algorithm would offer substantial savings both in the code design phase and in later 

operation of the code. 

The experiments described below employ both the optimal Viterbi Algorithm 

and the suboptimal M,L Algorithm in the trellis encoding phase of the code im­

provement algorithm. The operation of these search algorithms is described in 

Appendix B. Briefly, the Viterbi Algorithm takes advantage of the trellis structure 

of a finite-state decoder to produce an optimal encoding. It is essentially a form of 

dynamic programming. The M,L algorithm is a breadth first tree search, suitable 

for use as an encoder either for tree codes or for trellis codes. The M,L name 

is used because the algorithm maintains a fixed encoding delay of L symbols and 

simultaneously considers M potential encoding paths. 

The Viterbi Algorithm and M,L Algorithms were each used to design constraint­

length 6, one bit per symbol trellis codes for the memoryless Gaussian source with 

squared error distortion. The initial codebook for each experiment was populated 

with values taken from the .A/(0, 0.75) source - Gaussian, with 0 mean and 0.75 

variance [13, eq. 4.3.35]. (Methods for the selection of random initial decoders will 

be discussed in section 3.2.1.) The training sequence consisted of 12,000 .A/(O, 1) 

samples. 

Table 3.1 presents the per symbol squared error as a function of the training 

algorithm iteration when using the Viterbi optimal encoding algorithm. In addition, 

the per symbol squared errors resulting from using the "old" encodings with the 

updated codebooks are shown (.6. mi from section 2.3.4.2). As expected, use of 

the new codebook with the old encoding (old path sequence) provides improved 

performance over the old codebook, but on the next iteration, a new encoding is 

able to do still better. On a different sequence of 12,000 .A/(O, 1) samples, outside 

the training sequence, the codebook from the sixth iteration achieved 0.305 average 

squared error. 

Table 3.2 presents the per symbol squared error as a function of the training 

27 



mse 

.380 

.360 

.340 

.320 

.300 

Iteration 

Figure 3.1 

1 2 3 

Intermediate points are the 
results of codebook update 

4 5 

M,L Algorithm vs Viterbi Algorithm code design 

Table 3.2 
M,L Algorithm design with M = 8 and L = 15 

iteration 1 2 3 4 

6 

5 6 
encoding mse 0.370 0.350 0.339 0.336 0.332 0.324 

new codebook mse 0.356 0.342 0.333 0.331 0.327 0.320 

Table 3.3 
M,L Algorithm encoding outside training sequence 

L 15 15 15 15 31 31 31 31 
M 4 8 12 16 4 8 12 16 

M,L codebook mse 0.368 . 0.337 0.331 0.328 0.366 0.329 0.319 0.314 
VA codebook mse 0.402 0.353 0.340 0.336 0.400 0.342 0.328 0.319 

algorithm iteration when using the M,L Algorithm. As before, the average squared 

error resulting from using the old path sequences with the updated codebooks are 

also shown. For the design portion of the experiment, the encoding algorithm was set 

up with M = 8 and L = 15. One of the most interesting results of this experiment 

is that the average squared error of the new encoding of the fourth iteration actually 

increased from that of the updated codebook of the third iteration: .6. 4 > .6. 3'. The 

suboptimal encoding algorithm was unable to find the best path through the trellis, 

but nevertheless, the code performance continues to improve. 

Figure 3.1 combines the data contained in the two tables. Comparing the 

results of these two code design experiments, the key observations are that both 

28 

i 
1· 

1· 



encoding algorithms obtained most of their improvement in three to four iterations, 

but that the Viterbi Algorithm achieved better performance. In compensation, the 

M,L Algorithm runs much faster than the Viterbi Algorithm. 

Table 3.3 outlines the performance of the M,L Algorithm on data outside the 

training sequence for various values of M and L. As expected, greater search effort 

(M) and greater search depth (L) contribute to improved performance. In addition, 

Table 3.3 presents performance results for the M,L Algorithm used for encoding 

with the decoder designed with the Viterbi Algorithm; the results are uniformly 

· inferior. The code design algorithm has adapted the decoder codebook not only 

for the characteristics of the source, but for the characteristics of the encoding 

algorithm as well. One interpretation of these results is that the same encoding 

algorithm must be used during the design of a trellis decoder as will later be used 

in actual operation. 

3.1.2 Training sequence length requirements 

In this section, we investigate the connection between code performance on data 

inside the training sequence and code performance on data outside of the training 

sequence. The practicability of the code design methods hinges on the assumption 

that a code which works well on the sequence used for its design (the training 

sequence) will also work well ·on other sequences from the same source. This should 

be true if the source is ergodic, - if the time average statistics of a particular sequence 

are similar to the ensemble average statistics of the source. The training sequence 

must be typical of sequences from the source. 

In addition to the typicality requirement, we should expect a connection be­

tween the length of the training sequence and the relative performance of the code 
on other sequences .. If the training sequence is short we should expect that code per­

formance inside the training sequence will be considerably better than performance 

outside. The design algorithm will fit the code to the short-term random charac­

teristics of the training sequence itself rather than to the statistical characteristics 

of the source. As the length of the training sequence grows, code performance inside 

the training sequence should drop, while performance outside rises. In each case, 

we expect the performance to converge to some value characteristic of the source, 

rather than characteristic of a particular sequence from the source. Quite precise 

results along these lines are known for the block code design algorithm [40] but not, 
as yet, for the trellis case. 

Table 3.4 presents some results of code designs for a one bit per symbol con­

straint-length 6 shift register decoder. Figure 3.2 displays the same data in graphical 

29 



mse 

.340 

.320 

.300 

.280 

Table 3.4 
Eifect of training sequence length 

Table entries are mean squared error 

Initial codebook distortion 0.353 
Length Inside Outside 

1,000 0.280 0.330 
2,000 0.296 0.325 
3,000 0.299 0.319 
4,000 0.305 0.320 
5,000 0.307 0.316 
7 ,000 0.310 0.318 

10,000 0.311 0.318 
15,000 0.311 0.315 
20,000 0.313 0.314 
25,000 0.314 0.312 
30,000 0.314 0.313 
35,000 0.314 0.313 
40,000 0.314 0.314 

Outside the training data 

Inside the training data 

Data Length 10,000 20,000 30,000 40,000 

Figure 3.2 Code performance inside and outside the training sequence for 
a 64 codeword code as a function of training sequence length 

form. The data summarizes thirteen experiments, with the training sequence varied 

in length from 1000 symbols up to 40,000 symbols. Each code design was tested 

on a separate sequence of 10,000 symbols drawn from the same source as the 

training sequence. The source was Gauss-Markov, or first order autoregressive, 

30 



with correlation coefficient 0.6. The Viterbi Algorithm was used as the encoder, 

operating on blocks of 1000 symbols and using the squared-error distortion measure. 

In each case the training algorithm was run for 5 iterations; in each case the change 

in distortion from the fourth to fifth iteration was less than one-half percent: E = 

0.005. The initial codebook used was simply a table of 64 values consecutively 

drawn from the same Gauss-Markov source (but see section 3.2.1). 

Table 3.4 and Figure 3.2 present average per-symbol squared error against the 

length of the training sequence. Although there are some non-monotonicities, the 

arguments of the previous paragraph are largely borne out. When the training 

sequence is too short, the code becomes overspecialized to the peculiarities of the 

training sequence - performance on the training sequence is better than it probably 

should be while performance outside the training sequence is worse than it should 

be. As the training sequence becomes longer, code performance on the training data 

becomes worse while performance outside improves, both approaching what one 

might call the proper performance for a code of this structure and size. Judging from 

these results for memoryless random sources, the training sequence must contain 

70 - 100 times as many samples as the trellis code has codewords before the code 

performance outside the training sequence becomes close to code performance inside 

the training sequence. Similar results for the block code design case are shown in 

[53, Fig. 5]. 

In any of this discussion, we avoid the claim that the design algorithm is 

producing the best possible 64 codeword one bit per symbol code. However, the 

algorithm has produced codes with performance greatly improved over the 0.353 

average distortion of the initial codebook, and as convergence to the vicinity of 

0.314 average distortion indicates, the codes have been constructed to capitalize on 

some properties of the Gauss-Markov 0.6 source - although we may not be able to 

determine exactly which ones. 

3.1.3 Segmentation 

One of the major problems with iterative fixed point optimization procedures such 

as the trellis code design algorithm is that while convergence is guaranteed, that 

convergence is only to a local optimum [57]. Another problem with the trellis code 

design method is that nothing is said about the rate of convergence. In all cases 

tried, a few iterations seem sufficient, but this is little evidence that pathological 

cases of slow convergence do not exist. 

By breaking the available training data into several smaller segments and train­

ing on them sequentially, it may be possible both to avoid local minima and to obtain 

31 



Table 3.5 
Effect of segmenting the training sequence 

Table entries are mean squared error 

Initial codebook distortion: 0.328 
Length Segments Inside Outside 
12,000 1 0.310 0.316 
6,000 2 0.298 0.311 
4,000 3 0.296 0.314 
3,000 4 0.292 0.307 
2,000 6 0.290 0.309 
l,000 12 0.284 0.309 

faster convergence. The segmentation procedure divides the training sequence into 
several shorter segments. The initial codebook is iteratively improved by using the 
design algorithm on the first training sequence segment. This improved codebook 

. is then used as the initial codebook for the design algorithm on the second train­

ing sequence segment, and so on. There are several heuristic arguments why such a 
procedure might be effective. With a short training sequence, relatively few samples 

fall into each of the design algorithm's partition cells. Minor differences in the path 
sequence selected by the encoding algorithm, which result in the redistribution of 
a small number of training sequence samples among the partition cells, cause rela­

tively larger movements of the codeword values because there are only a few par­
ticipants in the centroid computations which produce the new codewords. These 

relatively larger movements of the codeword values may result in faster convergence 
of the codebook in a manner somewhat analagous to the use of a large adaptation 

constant in a gradient algorithm. In addition, since one would expect the centroid 
of a partition cell based on a short training sequence to have a higher variance than 
the centroid based on a longer training sequence, use of the short sequence results 

in noisy estimates of the "correct" values. These estimates may be sufficiently noisy 
to jog the algorithm loose from a local optimum and permit further improvement. 

In order to test these ideas, several one bit per symbol code designs were 
completed using the same initial codebook, the same training sequence, and the 
same number of design algorithm iterations, but varying degrees of segmentation. 

In all, six designs were made, all using the same 12,000 sample sequence drawn 

from the independent .A/(0, 1) Gaussian source. The initial decoder was a constraint­

length 6 shift register decoder with the codebook populated with samples from the 
independent .A/(0, 0.75) source. In all cases, the design algorithm was run for three 
iterations on each segment. Table 3.5 presents the results of these experiments. 

32 

i 
I! 

I' 



The first column presents the length of a segment, the second presents the number 

of segments. In each case the product of the number of segments and the segment 

length is 12,000. The third column presents the per symbol average squared error 

of the final codebook on the last segment of the training sequence and the last 

column presents the per symbol squared error achieved using the final codebook on 

a separate test sequence of 6,000 JJ(O, 1) samples. 

As can be seen from these results, segmentation produces a slight improvement, 

provided that the segments are not too small. In the light of the previous section, 

this effect can be understood. As the segments become too short, the ratio of training 

sequence length to codebook size becomes too small and the designed code no longer 

fully applies to data outside the training sequence. These results suggest that an 

operational approach to using the design algorithm would be to first train on several 

fairly short sequences, and then refine the code on somewhat longer sequences. This 

technique has elements in common with the k-means technique of MacQueen [59]. 

3.2 Selection of Initial Decoders 

We now return to the question of selecting a trellis decoder to use as an initial 

guess for the improvement algorithm. Section 2.2.2 described some alternative 

methods of constructing initial decoders. In each case - plagiarized decoders, fake 

process decoders, and random decoders - the question arises of whether the training 

algorithm can in fact improve on existing codes of a certain type and whether 

the improvements then apply to data outside the training sequence. Section 2.3 

described a method of constructing a longer constraint length decoder from a shorter 

one by extension, but the method guarantees only the construction of a decoder no 

worse than its shorter ancestor. Lacking additional theory, in order to test the merit 

of the various methods of constructing initial decoders and in order to establish 

whether or not the extension technique actually produces improved decoders, we 

must turn to experiment. 

3.2.1 Random decoders 

The tests described in this section were designed to accomplish two goals. First, 

we wished to test the idea that one way to seed the training algorithm would be to 

populate an initial codebook with codewords drawn from an appropriate probability 

distribution - in other words, to select a random initial code. Second, we wished to 

look into the problem of local optima. Similar performance of codes derived from 

disparate initial codebooks would at least provide some confidence that the design 

33 



Table 3.6 
Random initial codes for the Gaussian IID source 

Table entries are mean squared error 

length 2 ( 4 codewords) length 3 (8 codewords) 
initial best outside initial best outside 
0.475 0.361 0.363 0.442 0.340 0.341 
0.576 0.363 0.365 0.435 0.335 0.336 
0.480 0.361 0.363 0.412 0.320 0.321 
0.506 0.362 0.364 0.541 0.349 0.352 

length 4 ( 16 codewords) length 5 (32 codewords) 
initial best outside initial best outside 
0.421 0.343 0.348 0.383 0.322 0.322 
0.369 0.323 0.319 0.388 0.321 0.320 
0.382 0.337 0.334 0.364 0.320 0.322 
0.367 0.315 0.315 0.356 0.318 0.320 

length 6 ( 64 codewords) length 7 (128 codewords) 
initial best outside init1.al best outside 
0.343 0.308 0.310 0.328 0.298 0.308 
0.349 0.307 0.309 0.325 0.298 0.307 
0.362 0.309 0.312 0.344 0.299 0.302 
0.342 0.307 0.312 0.325 0.300 0.305 

length 8 (256 codewords) length 9 (512 codewords) 
initial best outside initial best outside 
0.314 0.289 0.303 0.310 0.281 0.296 
0.325 0.292 0.303 0.309 0.278 0.294 
0.320 0.292 0.302 0.308 0.279 0.297 
0.322 0.289 0.300 0.310 0.278 0.297 

length 10 ( 1024 codewords) 
initial best outside 
0.307 0.265 0.293 
0.308 0.267 0.294 

algorithm does not usually terminate in a local optimum which has significantly 

inferior performance. As detailed below, these tests provided some other information 

as well, including more evidence for the "ergodic assumption" of section 3.1.2. 

From theory [13, Ch. 4] we know that the reproduction values of a data 
compression system should have_ a distribution yielding the appropriate distortion­

rate function. In the case of the memoryless unit-variance Gaussian source encoded 

34 

I' 



mse 

.400 
Best random initial code 

.380 

.360 

.340 

.320 

.300 Best trained code 

.280 

.260 Rate-Distortion Bound 

2 
4 

3 
8 

4 
16 

5 
32 

Constraint length & codebook size 

6 
64 

7 
128 

8 9 10 
256 512 1024 

Figure 3.3 Random and trained codes for the Gaussian IID source 

at rate 1 bit per symbol, this distribution is .A/(0, 0.75), as was used in section 

3.1. l. Since we would eventually like to use the trellis cgde design algorithm for 

sources with an unknown distribution, we may not be able to calculate the best 

R-D distribution for the initial codebook. For this reason, we repeat the approach 

of [53] and use codewords drawn from the distribution of the source. When the 

source distribution is unknown, it may be estimated by a histogram of the training 

sequence or by selecting samples at random from the training sequence. If the 

distortion achieved is sufficiently low, the R-D distribution will approach the source 

distribution. 

The random decoder experiments consisted of using the trellis design algorithm 

on shift register based initial decoders with constraint-lengths varying from two to 

ten - from four codewords to 1024 codewords - to design one bit per symbol trellis 

encoding systems for memoryless Gaussian noise. Except at constraint-length ten, 

four random initial codebooks were tested at each constraint length. The codewords 

for the initial codebooks were drawn from the memoryless .A/(0, 1) Gaussian source. 

The training algorithm used the Viterbi search algorithm with block length 100 

and the squared-error distortion measure for five iterations on 200 blocks (20,000 

symbols) from the source and then another five iterations on a different 20,000 

symbol sequence from the same source - two segments of 20,000 symbols. The 

resulting codebooks were then tested on a third 20,000 symbol sequence. 

35 



All performance entries in Table 3.6 express per symbol average squared er­

ror. For comparison, the rate-distortion limit for one bit per symbol encoding of 

white gaussian noise is 0.25 average per-symbol squared error and the optimal one 

dimensional quantizer gives 0.36 average squared error. The columns labelled Initial 

present the average squared error of the initial random codebooks measured inside 

the training sequence. The columns labelled Best present the highest performance 

of the codebooks after training, but still measured inside the training sequence. 

The columns labelled Outside present the performance of the trained codebooks 

outside the training sequence. The same data are presented in Figure 3.3. For each 

constraint length, the performance outside the training sequence of the best and 

worst codes tested are shown, together with the performance inside the training 

sequence of the best random initial code. 

Pearlman [23],[70] reports squared error performance of 0.303 and 0.301 for 

length 9 and 10 decoders, respectively, designed using a new theory for source 

coding with constrained alphabets. These results are very close to the results of 

Table 3.6. Pearlman's decoders use only 4 discrete codeword values, but a fairly 

complex function is used to map the decoder register contents to the four codewords. 

For short constraint lengths, the different randomly selected initial codebooks 

shown in Table 3.6 provide substantially different performance, both before and 

after training. For longer constraint lengths, the effects of different initial codebooks 

on both initial and ultimate performance become slight. The latter effect provides 

some confidence that these codes are not often trapped in significantly inferior local 

optima, since one would expect the performance of distinct local optima to differ. 

As the codebook size g~ows, the random initial codes work quite well by 

themselves, but the training procedure is still able to produce improved performance 

and that improvement applies outside the training sequence as well as inside. This 

effect argues that, at least for memoryless sources, random selection of initial 

codebooks is a worthwhile idea. The tendency for large random codebooks to 

work well without training is also in support of the theoretical result that, given a 

sufficiently large code, most random codebooks will be good ones [38]. We expect 

that in the limit of large constraint length, the training algorithm would not be able 

to obtain significant performance improvements over random codes. 

As the ratio of training sequence length to codebook size declines, code perfor­

mance inside the training sequence draws ahead of performance outside. The code 

apparently becomes specialized to the peculiarities of the training sequence rather 

than to the overall characteristics of the source. In these tests, the disparity in 

36 



performance inside and outside the training sequence becomes clear as the ratio of 

training sequence length to codebook size falls below about 200 to 1. This result is 

in good agreement with the results presented in section 3.1.2. 

The random initial decoders described above are a special case of the Linde­

Gray fake process decoders [52],[54],[55]. One of the fake process models (Figure 

2.3) consists of interpreting the decoder shift register contents as a binary fraction 

in [O, 1), which drives a scrambling function which in turn drives a function having 

the inverse distribution of the source. A little reflection shows that a table-lookup 

decoder populated by random values drawn from the distribution of the source is 

entirely equivalent. 

3.2.3 Plagiarized decoders 

Given any initial trellis decoder, the design algorithm will return one which performs 

at least a~ w'ell; ope appealing approach to the selection of initial decoders is to use 

trellis decoders from traditional systems. One example of a successful traditional 
coding system is the predictive quantizer, shown in Figure 2.1. The predictive 

quantizer is most often used with highly correlated sources. Since the predictive 

quantizer potentially contains a great deal of state information, it forms a tree 
code and is not directly suitable for use with the trellis code design algorithm. kl 

approach taken by previous workers [8],[52] is to transform the infinite impulse 

response predictive quantization decoding filter into a finite impulse response filter 

by truncating the impulse response. This method produces the Truncated Predictive 

Quantization Decoder (TPQD) of Figure 2.2. When used with a trellis search 

algorithm as the encoder, the TPQD system can outperform ordinary predictive 

quantization. In this section, the trellis code design algorithm is used together with 
an initial TPQD de_coder to produce an improved trellis code for sources with high 

correlation. 

Using TPQD decoders as the initial guess decoders for the design algorithm, 
one bit per symbol codes of constraint-length 1 through 6 were designed for the 

Gauss-Markov source with correlation 0.9, using squared error distortion. Training 

and test sequences were each 12,000 sample long and the Viterbi Algorithm was 

used for encoding. Table 3. 7 presents the average squared error performance of 

the original TPQD decoders and the trained decoders both inside and outside the 

training sequence for code constraint-lengths from 1 through 6. Figure 3.4 displays 

the results outside the training sequence only. In each case, the design algorithm 

was able to significantly improve the code although the improvement obtained is 

reduced at long constraint lengths. 

37 



mse 
.500 

.400 

.300 

.200 

.100 

Constraint Length 
Codewords 

Original TPQD Decoder 

Trained TPQD Decoder 

1 
2 

2 
4 

3 
8 

4 
16 

5 
32 

6 
64 

Figure 3.4 
source 

Original and trained TPQD decoders for the 0.9 Gauss-Markov 

Table 3.7 
Truncated Predictive Quantization Decoder 

Table entries are mean squared error 

constraint length 1 2 3 4 5 
number of codewords 2 4 8 16 32 

TPQD inside 0.521 0.289 0.179 0.125 0.100 
trained inside 0.364 0.207 0.135 0.102 0.086 

TPQD outside 0.533 0.298 0.181 0.124 0.096 
trained outside 0.360 0.202 0.129 0.097 0.081 

3.2.3 Extension derived decoders 

6 
64 

0.087 
0.078 
0.083 
0.074 

In section 2.3, the extension algorithm was introduced; by adding a stage to an 

existing shift register decoder, the extension method converts an existing decoder 

into a new decoder with constraint length one greater but that has performance at 

least as good as the shorter initial decoder. This section reports the successful use 

of extension to design decoders for a source with memory but the essential failure 

of the technique when used to design decoders for a memoryless source. 

Two experiments were performed with the objective of designing one bit 'per 

symbol constraint-length 6 trellis decoders. The sources involved were the inde­

pendent Gaussian source ()l(O, 1)) and the first order Gauss-Markov source with 

correlation 0.9. The full extension design procedure was described in sections 2.3.5 

38 



Table 3.8 
Extension design for the 0.9 autoregressive source 

constraint length 1 2 3 4 5 6 
number of codewords 2 4 8 16 32 64 

mse inside 0.364 0.206 0.135 0.099 0.083 0.075 
mse outside 0.360 0.203 0.129 0.094 0.079 0.071 

Table 3.9 
Extension design for the memoryless source 

constraint length 1 2 3 4 5 6 
number of codewords 2 4 8 16 32 64 

mse inside 0.362 0.361 0.358 0.352 0.342 0.332 
mse outside 0.366 0.365 0.362 0.356 0.353 0.347 

and 2.3.6. 

The same design procedure was followed for both sources. The training se­

quences for each source were 10,000 samples in length. The initial constraint-length 

1 decoder contained codewords + 1 and -1 - equivalent to a two level scalar quan­

tizer. The trellis code design algorithm, employing the Viterbi Algorithm as the 

encoder, was used for five i~erations to improve this initial code. The improved 

constraint-length 1 code was then extended and the the result used as an initial 

guess for the constraint-length 2 decoder. The design algorithm was used for five 

iterations at each constraint-length from 1 up to 6, producing a final decoder with 

64 codewords. The end result of this procedure was the design of decoders of 

constraint-lengths 1 through 6 for each source. For each source, as a check, the 

final decoder of each constraint length was used to encode a separate test sequence 

of 10,000 symbols from the appropriate source 

The results of the experiments are summarized in Tables 3.8 and 3.9. Each table 

contains a column for each constraint-length from 1 to 6 and rows for constraint 

length, number of codewords, performance of the final codebook inside the training 

sequence, and performance of the final codebook on the separate test sequence. The 

rate-distortion limits for one bit per symbol encoding are 0.25 for the memoryless 

Gaussian source and 0.047 for the 0.9 autoregressive Gauss-Markov source. All 

performance figures are average squared error. 

Turning first to the autoregressive case, the extension method provided good 

results. With each increase in constraint length, the codes obtain significant im­

provement. Comparing Table 3.8 with Table 3.7, the extension method produced 

39 



codes which, for a given constraint length, outperform those derived from the trun­

cated predictive quantization decoder - in an entirely automatic fashion. Unlike the 

plagiarized decoders, extension operates only on the training data supplied, using 

no additional information about the characteristics of the source. In the case of the 

random, plagiarized, and fake process decoders, the selection of the initial codebook 

must incorporate either external information about the source or the histogram of 

the training data must be· used to estimate the source distribution. 

In the case of memoryless sources, the situation is different. As can be seen from 

Table 3.9, the extension procedure produced codes of long constraint length which 

are little better than the shorter codes. The random initial decoders of section 3.2.1 

are much better. However, this result should not be entirely unexpected. When a 

trellis decoder is extended, two codewords are formed where one existed before, and 

the values of the two codewords are the centroids of a refinement of the partition 

cell associated with the single original codeword. When the source is memoryless, 

the expected value of the centroid of an arbitrary subset of the training sequence 

samples in a particular partition cell is the same as the centroid of all the samples 

in that partition cell. The centroid conditioned on previous decoder states is the 

same as the unconditioned centroid. Statistical fluctuations in the centroids, which 

cause the two new codewords to differ, do result in some improvement with further 

training but, overall, the application of extension to memoryless sources must be 

judged a failure. 

3.2.4 Conclusions 

In view of the results of experiments on random initial decoders, on plagiarized 

decoders, and on extension derived decoders, we can now state a tentative opera­

tional procedure for selecting initial decoders for the improvement algorithm. If the 

source is thought to have at least some memory, extension should work quite well, 

if the source is memoryless, then random initial decoders will tend to be superior. 

In any event, use of a plagiarized initial decoder can provide a baseline performance 

figure that other methods must meet. 

3.3 Performance on Random Sources 

The Gaussian IID and Gauss-Markov (autoregressive) sources are the yardsticks of 

source coding. Because their rate-distortion functions are well known, these sources 

are often used for comparing the performance of new source coding systems both 

against the performance of existing systems and against the theoretical bounds. 

40 

I' 
I 



mse 

.380 

.360 

.340 

.320 

Scrambling function fake process decoder 

.300 Trained random decoder 

.280 

.260 

2 
4 

Rate-distortion bound 

3 
8 

4 
16 

5 
32 

6 
64 

Constraint length & number of codewords 

7 
128 

8 
256 

9 
512 

Figure 3.5 Performance of Fake Process codes and trained random codes 
on the memoryless Gaussian source 

In this section, trellis· codes designed by the iterative algorithm of Chapter 2 are 

compared with the earlier fake process trellis codes of Linde-Gray, with some recent 

results by other researchers, and with the rate distortion limits. 

3.3.1 Rate distortion functions 

A first order Gauss-Markov source {x1} is the output of a first order digital filter 

driven by Gaussian IID symbols: 

lal < 1. 

where w is distributed J./(0, a 2). The Gaussian IID source is just the special case with 

a= 0. For cr 2 = 1 and sufficiently small distortion, the rate-distortion function for 

this source with squared error distortion is 

R(D) = ~ 1 1 - a 2 
2 g D ' 

where D is the average squared error and R is the information rate in bits per 

symbol. The distortion constraint is met at rates of 1 bit per symbol and above for 

a < 1. The distortion-rate function is 

D(R) = 1- a2 
22R 

41 



mse 

.200 

.150 

.100 

.050 

a .60 

Original TPQD decoders 

Extension Decoders 
{trained TPQD decoders 

indistinguishable) 

.65 .70 .75 .80 .85 

length 5 

.90 .95 

Figure 3.6 Performance of TPQD codes and Extension codes on first order 
Gauss-Markov sources 

3.3.2 Memoryless Gaussian 

Figure 3.5 displays the best results of the random initial decoder tests of section 

3.2.1 together with the rate distortion bound, the best one bit scalar quantizer 

(the Lloyd-Max quantizer [66]}, and the performance of the Linde-Gray scrambling 

function decoder of Figure 2.3. As noted earlier, Pearlman [70) reports mean squared 

error results of 0.303 for a length 9 decoder. 

3.3.3 First order Gauss-Markov 

The results presented here extend the results of sections 3.2.3 and 3.2.4 to cover 

the range of first order Gauss-Markov sources with correlation coefficients between 

0.35 and 0.95. Tables 3.10 and 3.11 and Figure 3.6 contain performance data for 

one bit per symbol constraint-length 5 and 6 decoders of three varieties. The first 

group, the Original TPQD decoders, are truncated predictive quantization decoders 

designed according to [52] section 2.2.2. The second group, the Trained TPQD 

decoders, consist of the same collection of decoders, but iteratively improved by the 

trellis code design algorithm. The third group, the Trained Extension decoders, are 

new decoders de'signed by the extension method from an initial scalar quantizer with 

outputs +1 and -1. The columns bin Tables 3.10 and 3.11 present the scale factor 
constant shown in Figure 2.3, selected according to [52, Table 2.1]. All performance 

figures are per-symbol squared error. The results tend to confirm those of section 

42 

. ' 

I 



Table 3.10 
Gauss Markov sources, Constraint Length 5 

Table entries are mean squared error 

Original Trained Trained 
a b TPQD TPQD Extension D(R) 

0.35 0.850 0.312 0.294 0.293 0.219 
0.40 0.830 0.296 0.278 0.277 0.210 
0.45 0.820 0.280 0.262 0.259 0.119 
0.50 0.800 0.263 0.244 0.241 0.188 
0.55 0.825 0.242 0.225 0.223 0.174 
0.60 0.850 0.222 0.206 0.204 0.160 
0.65 0.875 0.200 0.185 0.185 0.144 
0.70 0.900 0.178 0.163 0.163 0.128 
0.75 0.875 0.155 0.143 0.142 0.109 
0.80 0.850 0.135 0.122 0.121 0.090 
0.85 0.900 0.112 0.100 0.099 0.069 
0.90 0.950 0.092 0.080 0.079 0.048 
0.95 1.500 0.078 0.059 0.060 0.024 

Table 3.11 
Gauss Markov sources, Constraint Length 6 

Table entries are mean squared error 

Original Trained Trained 
a b TPQD TPQD Extension D(R) 

0.35 0.850 0.312 0.294 0.292 0.219 
0.40 0.830 0.296 0.278 0.277 0.210 
0.45 0.820 0.280 0.261 0.259 0.119 
0.50 0.800 0.263 0.243 0.241 0.188 
0.55 0.825 0.242 0.225 0.222 0.174 
0.60 0.850 0.221 0.205 0.202 0.160 
0.65 0.875 0.199 0.184 0.181 0.144 
0.70 0.900 0.177 0.162 0.161 0.128 
0.75 0.875 0.152 0.141 0.139 0.109 
0.80 0.850 0.129 0.118 0.117 0.090 
0.85 0.900 0.105 0.094 0.094 0.069 
0.90 0.950 0.082 0.072 0.071 0.048 
0.95 1.500 0.073 0.048 0.049 0.024 

3.2.3 - the extension and the trained TPQD decoders work about the same and 

represent an improvement over the untrained TPQD decoders. Linde [52] notes that 

performance of the TPQD decoders tends to tail off for high correlations. We note 

that this effect seems less pronounced for the trained decoders. Current research 

43 



results of Gray for one bit per symbol block codes designed using the block code 

design algorithm yield results comparable to those reported here. For a = 0.85, a 

128 codeword block code has been designed which yields an average distoriton of 

0.101. For a= 0.90, an average distortion of 0.073 has been obtained [41]. 

3.4 The Effects of Code Structure 

In Chapter 1, trellis decoders with a general finite-state machine structure were 

mentioned. One example was a finite precision arithmetic representation of a 

predictive quantization decoder. However, all example decoders we have actually 

examined have used the traditional shift register structure. While theoretical results 

for trellis codes [38] show that shift register decoders are su:Hicient to construct 

systems which operate close to the rate-distortion bounds, other code structures 

might offer better performance for equivalent complexity. 

In this section, we begin by describing some classes of decoder structures, and 

by introducing some terminology from graph theory. A bound is developed on the 

number of possible decoder structures. These structures are categorized by their 

synchronization properties and by their response to channel errors. We then turn to 

the results of some tests on random sources which indicate that, at least for certain 

sources, alternative code structures perform better than shift registers. We do not 

specifically address the problem of finding the best finite-state code structure, but 

only attempt to demonstrate that the shift register may not always be best. 

3.4.1 Alternative shift register structures 

The mathematical description of the shift register trellis decoder in section 2.2 was 

generalized for a q-ary channel. In the case that q = 2, this is the familiar binary 

channel and binary shift register. The associated trellis was shown in Figure 1.4. It 

is equally possible to construct systems with q ':I 2. For example, Figure 3.7 shows 

a q = 3 trellis corresponding to a three stage ternary shift register. 

However, q is not the only variable. It is also possible to interpret n-tuples 

from the source as single symbols. In the case of the binary channel, a system 

accepting symbol pairs from the source might be considered either as a rate 1/2 

bit per symbol system or as a rate 1 system operating on a two dimensional vector 

source. This concept introduces systems which are in a sense intermediate between 

block and sliding block codes. Figure 3.8 a) shows a degenerate trellis structure 

with one decoder state and two codewords, a and b. This code is identical to a 

length 1 block code or to a scalar quantizer. Similarly, Figure 3.8 b) shows a 2 

44 



State 
00 

01 

02 

10 

11 

12 

20 

21 

22 

Figure 3.7 

T T+1 

Constraint-length 3 ternary trellis 

T+2 

bit per symbol 1-state trellis code for the two dimensional vector source. The four 

codewords of this system, each a vector of length 2, are aa, bb, cc, and dd. This 

system is identical to a length 2 block code. In general, such codes consist of a 

collection of block codes connected by a trellis in such a way that the particular 

block code used to encode the source vector starting at a certain time is selected 

by the previous codeword sequence. We will describe such coding systems as "rate 

m/n", where m is the channel rate per source vector and n is the vector length. 

Interpreted as a fraction, m/n is also the channel rate per source symbol. 

The trellis code design algorithm was used to construct a rate 2/2 code for the 

memoryless Gaussian source. The code operates at an overall rate of one bit per 

symbol but in fact encodes successive symbol pairs from the source and produces 

outputs for a q = 4 channel. The decoder contained 64 codeword pairs, for a 

45 



a) 

a 

b) 

Figure 3.8 

a a a 

aa aa 

bb bb 

cc cc 

dd dd 

-Alternative one bit per symbol code structures 

Table 3.12 
Rate 2/2 code with random initial codebooks 

Table entries are mean squared error 

length 3 ( 64 codeword pairs) 
initial best outside 
0.350 0.307 0.313 
0.369 0.307 0.310 
0.345 0.307 0.309 
0.365 0.306 0.312 

constraint length of three source vectors or channel symbols or six source samples. 

Except for these differences, the design procedure was identical to that for the codes 

described in section 3.2.1, so the performance results shown in Table 3.12 should be 

compared with those of Table 3.6. 

Since symbol pairs from the source are encoded, the codebook for the rate 2/2 

code is twice as large as that for the rate 1 code of equivalent constraint length. 

For this reason, comparisons are difficult, but the performance obtained is similar 

to the performance found for rate 1 codes of equivalent constraint length. 

3.4.2 Graph representations of trellis decoders 

In order to preserve generality, we can allow a trellis decoder to incorporate an 
arbitrary finite-state machine, using the following notation. 

A finite-state machine is a five-tuple [V, W, Z, v, ~], where V - {Vi I z -

46 

i 
I! 
I 

I" 



state 10 state 01 

Decoder outputs (y) are 

attached to state transitions 

Figure 3.9 Graph for a constraint-length 3 one bit per symbol shift register 
decoder 

0, ... , q - 1} is the input (channel) alphabet, Z is the output alphabet, W = { Wi I 
i = 0, ... , R - 1} is the set of states, 11 : W X V 1-+ W is the next-state function, 

and ~ : W X V 1-+ Z is the output function [15, Ch. 3]. 

Using this notation, an R-state trellis decoder designed for a q-ary channel with 

channel sequence { Uj} and output sequence { x j} will consist of an R-state finite­

state machine with state variable r, a time-invariant next-state function rj+l = 
v(rJ·, uJ·), and a time-invariant output function xJ· = ~(rj, uJ·). The function 11, given 

the current decoder state and the current channel symbol, produces the succeeding 

decoder state. The function ~, given the same information, produces the decoder 

output. Without loss of generality, we can use a table-lookup implementation of 

the output function ~ consisting of a codebook Y = {yi, i = 0, ... , N - 1} and 

a specialized version of the output function ~' which produces the codebook index 

of the decoder output rather than the codeword itself. The codebook must have 

cardinality llYll = N = qR. We will use ~(rj,uj) = X(qr;+u;) or ~'(rJ·,uj) = 
(qr j + u j) as the decoding function, although there are other candidate functions 

distinguished only up to a permutation of the codebook contents. Use of a lookup­

table decoder implementation is required if the trellis code design algorithm is to 

be used. 

A trellis decoder or a finite-state machine may be described by a directed 

graph. Figure 3.9 is a graph representation of a constraint-length three shift register 

decoder for a binary channel. The graph has exactly two arcs leaving each state, 

corresponding to the possible values of a binary channel symbol. Such graphs are 

called uniform out-degree. (The graph of Figure 3.9 is also uniform in-degree since 

47 



exactly two arcs enter each state.) When a channel symbol arrives, the decoder 

traverses an arc from its current state to a new state and produces the output 

symbol associated with that transition. In the general case of an R-state trellis 
decoder for a q-ary channel, the decoder may be represented as an R-node uniform 

out-degree q graph together with an output codebook and the fixed output index 
function(. 

It is also possible to construct a graph and then to interpret it as a trellis 

decoder, but some restrictions must be placed on the acceptable graphs. We have 

already established that a graph representing a decoder for a q-ary channel must be 
uniform out-degree q. The graph for a decoder should also be strongly connected -

there must be at least one path through the graph from every node (state) to every 
other node [2]. If this is not the case, then either the decoder contains unattainable 

states and might as well not include them, or the decoder contains states that are 
possible to reach, but from which it is not possible to return. The uniform in-degree 
property possessed by shift register decoders is not itself a requirement for a general 

trellis decoder, but it makes implementation of the Viterbi Algorithm simpler. For 
that reason, all the graphs we will examine will possess this property. 

Consider the R-state decoder for a q-ary channel mentioned above. The number 
of possible structures such a decoder could have is certainly bounded above by the 
number of uniform out-degree q graphs of R nodes. Since the destination of each arc 
in such a graph is unconstrained, this quantity is ( Rq)R. If we require trellis decoders 

to be uniform in-degree for easier implementation of the Viterbi encoding algorithm, 
then the bound reduces to (R!)q. (A uniform in-degree 1, uniform out-degree 1 graph 
is just a permutation. (R!)q represents q independent overlaid permutations.) Since 

the entries in the decoder codebook may be permuted, the number of topologically 
distinct decoder structures is further reduced by a factor of R! to (R!)q-l. For 
binary channels, q · 2 and this value is just R!. Unfortunately, R! is too large to 

consider an exhaustive search for the best decoder structure in other than trivial 

cases. 

3.4.3 Channel errors and synchronization 

Although source codes (data compression codes) are designed for use with noiseless 
channels, their behavior in the presence of channel errors is often of considerable 
interest. The literature on DPCM and the various sorts of adaptive PCM contain 

lengthly discussions of this topic [27],[78]. While we take the position that a noiseless 
channel can be provided through appropriate use of channel coding, trellis codes are 
certainly not exempt from noise considerations. The possible finite-state decoder 

48 



0 

Figure 3.10 

0 

0 

Five State Decoder 

Sync.sequence= 00000 

Branches labelled with corres­

ponding channel symbol 

Synchronizable five state decoder 

structures may be divided into three categories, based on their response to channel 

errors and on the ways in which the encoder and decoder can be resynchronized 

after an error. 

The first category is represented by the shift register decoder. While an 

erroneous channel symbol may result in an error in the output of such a decoder, 

the decoder will return to the desired output sequence as soon as the channel error 

has been shifted out of the decoder register. The property of interest is that the 

state of the decoder depends only on a fixed, finite, number of previous channel 

symbols limited by the constraint length of the decoder. These codes are intuitively 

sliding block; their output sequences are generated by a finite-length sliding window 

on the channel sequence [38]. 

The second category of decoders, while lacking the finite window property, can 

still be resynchronized after an error. A code of this class is characterized by the 

existence of a synchronization sequence. The occurrence of a particular finite length 

channel sequence will place the decoder in a certain state, regardless of the previous 

state of the decoder. This class of structure is illustrated by the graph of Figure 

3.10. While the state of this decoder (graph) may depend on the indefinite past of 

the channel sequence, after a sequence of five 0 symbols is received the decoder will 

be in state 0 - wherever it started. 

The final category of decoder both lacks a synchronization sequence and de­

pends on the indefinite past. Figure 3.11 contains an example. This class of decoder 

can still be synchronized, but only by adding an external device which independently 

49 



Four State Decoder 

0 

0 

Figure 3.11 
exists 

Four state decoder for which no synchronization sequence 

watches the channel for a synchronization sequence. When the sequence is detected, 
the decoder is directly set to a certain state. Since the synchronization sequence 
may occur at random in the output of the trellis encoder, some method such as the 

bit-stuffing technique used by the SDLC protocol [21] must be used to eliminate 

unwanted occurrences of the synchronization sequence. Although bit-stuffing and 
similar procedures permit synchronization, they introduce a variable transmission 

rate by altering the channel sequence in a data dependent way. 

3.4.4 Examples of finite-state decoders 

This chapter concludes with the experimental evaluation of several non-shift register 
decoders. The first, a delta modulation decoder, offers improved performance for 
some sources, the others provide performance roughly equivalent to that of a shift 

register decoder. 

3.4.4.1 Delta modulation decoders 

Figure 3.12 shows both a trellis and a graph for a 6 state delta modulation decoder. 
The trellis and graph transitions are labelled with the output codewords. The 
"codewords" of a delta modulation decoder are equally spaced values within the 

range of the decoder. The structure of the delta modulation trellis differs from the 

usual shift register trellis (Figure 1.4), but its operation is easy to understand. The 
arrival of a 1 from the channel causes the decoder to "step-up", and the arrival of a 
0 causes the decoder to "step-down". The top and bottom trap states act as limits, 

preventing the decoder output from leaving a certain range. Delta modulation 
decoders are not usually specified with these upper and lower limits, but analog 
implementations are in fact limited by available power supply voltages and digital 

50 

i' 



Trellis Representation Graph Representation 
+3 

+2 

+1 

0 

·1 

·2 

T-1 TimeT T +1 .3 

Figure 3.12 Six state delta modulation decoder 

implementations are limited by the size of the state accumulator. Another viewpoint 

is that the inclusion of the trap states corresponds to the truncation applied to the 

TPQD decoders. The delta modulation structure is a member of the second category 

of decoders. While the state of the delta modulation decoder may depend on the 

indefinite past, sequences of_.six 1 's or six O's act as synchronization sequences by 

placing the decoder in, respectively, the top or bottom states. 

Since the step-up, step-down nature of the delta modulation structure makes 

slowly changing sequences of outputs easier to produce than rapidly changing se­

quences of outputs, decoders with a delta modulation structure should be able 

to outperform decoders based on the more uniformly interconnected shift register 

structure when used to encode sources with high positive correlation. In order to 

investigate this idea, the Viterbi search algorithm was used to test both 32 codeword 

(constraint-length 5) shift register decoders and 32 codeword delta modulation 

decoders on several sequences of 10,000 samples from the first order Gauss-Markov 

source Xj = 0.9Xj-l + w,., driven by J/(0, 1) noise. All tests were at rate one bit 

per symbol. The best step size for the initial delta modulation codebook was found 

by experiment to be about 0.9, giving a decoder with outputs ranging from -7 to 

+ 7. The shift register decoder was designed by the extension method. 

With a single path search encoder (a traditional delta modulation encoder), the 

initial delta modulation code achieved an average squared error of 0.110. With a 
search algorithm for encoding, this initial code achieved performance in the range 

0.076 - 0.072. After five training iterations, the delta modulation code performed 

51 



very sightly better, in the range 0.074 - 0.072 on data outside the training sequence. 

The shift register code, designed by extension, achieved performance in the range 

0.081 - 0.079. 

3.4.4.2 Random finite-state decoders 

In the previous section, we argued that a decoder finite-state machine with good 

local connectivity would be well matched to the slowly changing sequences typical 

of highly correlated sources. Memoryless sources, such as the IID Gaussian source, 

lie at the opposite end of the spectrum from the highly correlated sources. 

In the case of memoryless sources, there is no obvious way to assign connections 

within the decoder finite-state machine. In this section, we report the results of 

performance tests on decoders with random structure as well as random initial 

codebooks. All these tests encoded white gaussian noise at a rate of one bit 

per symbol, using 256 state (512 codeword) decoders. One group of decoders 

incorporated the shift register structure with initial random codebooks selected from 
the probability distribution JJ(O, 1). (These initial codebooks are similar to those 

reported in sections 3.2.1 and 3.3.1.) The second group of decoders incorporated 

more general finite-state machines with random internal structure, together with the 
same set of initial codebooks. Each test consisted of training the initial codebook 

for three iterations on each of two sequences of 20,000 N(O, 1) Gaussian samples 

using the M, L Algorithm with squared-error distortion, M = 20, and L = 31. 

The resulting trained codebooks were then tested on a third sequence of 20,000 

samples. 

In order to assure that .the random finite-state machines were all strongly 
connected, a somewhat constrained structure was used. First, a connection was 

assigned from each state r to state r + 1.(mod 256), linking all the states into a ring 

or Hamiltonian cycle [47]. Second, a connection was assigned from state 0 to state 

0, and third, a random permutation of 255 elements was selected and used to assign 

an additional connection from each of the remaining 255 states. This procedure 

produced a uniform in-degree 2 out-degree 2 finite-state machine which is strongly 

connected and which possesses a synchronization sequence, but which also contains 
a good deal of random structure. Figure 3.13 shows a 16 state version of this type 

of decoder structure. 

Table 3.13 shows the results of this series of tests. For each type of decoder, 

and for the eight different initial codebooks, the initial performance, performance 

after training but within the training sequence, and the performance after training 

52 

' i. 
I' 

I" 



15 

14 

13 

12 

11 10 9 8 

Figure 3.13 Sixteen state random finite-state machine 

Table 3.13 
Random finite-state decoders 

Table entries are mean squared error 

Shift register FSM Random FSM 
initial best outside · initial best outside 
0.328 0.302 0.308 0.329 0.303 0.315 
0.329 0.300 0.312 0.334 0.303 0.313 
0.327 0.296 0.310 0.322 0.302 0.315 
0.331 0.302 0.311 0.330 0.304 0.313 
0.329 0.305 0.312 0.333 0.303 0.314 
0.332 0.304 0.311 0.330 0.305 0.315 
0.346 0.303 0.312 0.339 0.305 0.313 
0.337 0.300 0.313 0.334 0.303 0.312 

and outside the training sequence are listed. The average performance levels of 
the random finite-state machines are generally slightly less than those of the shift 
register decoders. 

53 



0 0 

6 3 

4 4 

Graph A Graph B 

Shift Register 

0 3 0 3 

7 4 7 4 

GraphC Graph D 

Figure 3.14 Eight node minimum average path length graphs 

3.4.4.3 Tightly connected decoders 

In the previous section, we approached the problem of designing finite-state machine 
decoders for memoryless sources by selecting a random finite-state machine. In this 
section, we argue that a decoder finite-state machine with good connectivity to both 

local and distant states should be well matched to the jumpy sequences typical of 
uncorrelated sources. 

In a uniform out-degree two graph, initialized to a certain state, it should be 
possible to reach distinct states a and b in one step. In one more step, four more 

distinct states: c, d, e, and f should be accessible, and so on. If this structure were 
independent of the initial state, then the graph would be as highly connected as 

possible. In particular, the number of state transitions required to reach state i 

54 

I 

I· 

i· 
! 



Table 3.14 
Minimum average path length decoders 

Table entries are mean squared error 

Random Shift Graph Graph Graph Graph 
Codebook Register A B c D 

1 0.331 0.322 0.337 0.354 0.348 
2 0.336 0.335 0.340 0.350 0.348 
3 0.324 0.354 0.348 0.355 0.357 
4 0.315 0.338 0.342 0.352 0.356 
5 0.341 0.328 0.328 0.344 0.331 
6 0.328 0.334 0.335 0.333 0.323 
7 0.341 0.325 0.335 0.334 0.349 
8 0.335 0.329 0.339 0.350 0.333 

from state j, averaged over all i and j, should be a minimum. In the special case 

of eight state decoders, the minimum possible average path length is two - two 

states reachable in one step, four more states in two steps, and the final two states 

requiring three steps. In contrast, the eight state (three bit) shift register has an 

average path length of 2.25. 

An exhaustive search was conducted for such minimum average path length 

graphs of eight states, with the intent of comparing their performance to that of the 

eight state shift register. Only uniform in-degree 2, uniform out-degree 2 graphs 

were considered. The search discovered four topologically distinct graphs, which 

are shown, along with the shift register graph, in Figure 3.14. Each decoder was 

trained for five iterations on a 10,000 sample IID Gaussian sequence, then tested 

on a different 10,000 sample sequence from the same source. This sequence of 

tests was repeated eight times, with different initial codebooks. The eight random 

codebooks were drawn from a .A/(0, 0.75) Gaussian source. The results of these tests 

are shown in Table 3.14, which shows the per symbol squared error achieved outside 

the training sequence. 

3.4.5 Conclusions 

At least for the problem of encoding a highly correlated source, an alternative 

decoder structure - delta modulation - was able to outperform a decoder based 

on the shift register. While we have no constructive method of selecting finite­

state machines that are well matched to particular sources - but see [14],[22], and 

[84] - this experience provides evidence supporting the idea that traditional coding 

schemes may provide a fruitful source not only of initial codebooks, but of decoder 

structures as. well. 

55 



4. CODING SPEECH SOURCES 

Chapter 2 presented the basic components of the trellis code design algorithms, 

and Chapter 3, in the context of coding random sources, examined some of the 

many operational considerations of using the algorithms to design real systems. In 

this chapter, we turn to the problem of designing tree and trellis encoding systems 

for speech. Following some historical review and general information on distortion 

measures, the three main sections of the chapter discuss trellis codes for the original 

speech waveform, trellis codes for the residual signal of linear predictive coding 

systems, and a tree encoding system using a hybrid decoder for the speech waveform. 

The results of the hybrid tree codes have been very encouraging, as these codes can 

provide good quality speech at rates of one bit per sample through an automatic 

design procedure. 

4.1 Existing Systems 

The literature on speech coding is vast, but some good surveys are [16], [24] arid 

[27]. For the lower rate speech codes, [30] and [62] are good places to start. Section 

4.1.3 will add some further discussion of existing tree and trellis codes for speech 

and section 4.3 provides some additional information on work with linear predictive 

coding (LPC) and LPC derived systems. 

4.1.1 Spectrum of speech compression 

Figure 4.1 shows a partial listing of speech compression techniques in rough cor­

respondence to their associated data rates. The coding methods shown may be 

grouped into two general classes. Above about one bit per sample, most coding 

systems seek to reproduce the original speech waveform. Below this rate, most 

systems seek to produce a signal that sounds like the original speech, although the 

waveform produced may not be at all similar. These systems represent attempts to 

reduce the data rate required for communications by taking advantage of various 

characteristics of speech. The waveform codes consist mainly of linear and nonlinear 

quantizers and their predictive and adaptive variations. The non-linear quantiza­

tion schemes, for example, recognize that speech has a wide dynamic range and 

provide quantization levels placed to handle with equal fidelity both small signals 

and larger ones. An equivalent linear quantizer would need many more levels to 

achieve the same results. The predictive and adaptive coders use knowledge of the 

recent history of a speech waveform to reduce the dynamic range which must be 

quantized. 

56 

1'" 

I 



Figure 4.1 

64 kb/s 

32 kb/s 

16 kb/s 

8kb/s 

4kb/s 

2kb/s 

1 kb/s 

0 

Pulse Code Modulation (PCM) 
Log PCM 

Delta Modulation 
Delta PCM (DPCM) 
Variable Slope Delta Modulation 
Adaptive Delta Modulation 
Adaptive DPCM 
Tree & Trellis Coding (2 bits I symbol) 
Adaptive Transform Coding 
Adaptive Predictive Coding 

Tree & Trellis Coding (1 bit I symbol) 

Conventional LPC 
Channel Vocoder 

Formant Vocoder 
Vector Quantized LPC 

Channel bit rates for various speech coding techniques 

The lower rate speech coding systems, represented in Figure 4.1 by linear 

predictive coding systems and by the channel and formant vocoders are fundamen­

tally different. They operate by constructing a model of a segment of speech 

and then transmitting information about the model. At the receiver, the model 

is reconstructed and driven by a locally produced driving process to recreate the 

original speech sounds. These systems can successfully avoid encoding the exact 

waveform since the ear is insensitive to many of its details. These systems are usually 

referred to as speech or process coders to distinguish them from the waveform coders. 

57 



4.1.2 Distortion measures for speech coding 

Both the trellis code design algorithm and the actual process of encoding a sequence 

with a tree or trellis encoder require a single symbol additive distortion measure. In 

previous sections, either the distortion measure has been left in its general functional 

form d(x, y) or a squared error distortion measure has been used. When coding 

speech, at best the proper distortion measure is a matter of some debate. At 

worst, it is claimed that a subjective listening test is the only method holding any 

validity. If the algorithms discussed earlier are to be used for speech at all, the later 

position is untenable. Because our purpose in attempting to code speech is more 

to demonstrate at least some practical application for tree and trellis coding than 

necessarily to produce the best possible speech coding system, we can to a degree 

sidestep this question. We adopt the following positions: that the squared error 
distortion measure is at least roughly correlated with perceived speech quality, and 

that variations of the squared error measure may yield somewhat better results. In 

spite of these positions, we acknowledge that the perception of the listener must be 
the ultimate judge. 

In order to provide a basis for the discussion of the variations of squared error, 

we first briefly describe some of the existing distortion measures for speech and their 

associated arguments (35],[39J. It is generally accepted that :fidelity of the short term 

spectra of the reproduced speech signal is of great importance [24]. While tree and 

trellis coders operate in the time domain, connections can be made between the time 

domain distortion measures - which operate on the difference between the original 

speech waveform and the reproduction - and the spectrum of the error signal. 

Minimization of average squared error in the time domain corresponds in the 
frequency domain to the production of a uniform error spectrum since the distortion 

measure places equal emphasis on error signal energy at all frequencies. However, 

this may not be entirely appropriate. The long term power spectrum of speech is 

not fiat, but rather falls off with increasing frequency [58],[69]. In addition, there 

is an auditory property called masking: the hearing process tends to ignore noise 

in frequency bands containing considerable speech energy, but is more sensitive to 

noise in regions of the audible spectrum containing little speech energy. Variations of 

the squared error distortion measure can take both of these properties into account. 

The time invariant approach, taken by encoding systems utilizing fixed prediction, 

is to apply a fixed frequency weighting to the error signal, so that high frequency 

portions of the error signal are suppressed more than low frequency portions. A time 

varying approach is taken by most encoding systems utilizing adaptive prediction. 

58 



In such systems, the spectrum of incoming speech is whitened by a linear filter, 

and coding based on squared error distortion is applied to minimize the power of 

the resulting residual signal. At the decoder, the driving process representing the 

residuals is passed through the inverse spectral shaping filter. If the prediction filter 

is time varying, then the noise (error) power spectra tend to the same form as the 

short term speech spectra, thus taking advantage of the masking effect. 

One additional auditory property, although not as pronounced or as well ac­

cepted as the frequency sensitivities discussed above, is that the ear seems to be less 

sensitive to noise during low amplitude speech segments than during high amplitude 

segments. Rather than maintain a uniform signal to noise ratio for all amplitudes, 

it may be desirable to expend relatively more effort to achieve high SNR during 

speech segments of higher amplitude. 

While the trellis codes discussed in this chapter all use a form of the squared 

error distortion measure, various modifications are introduced. Section 4.2 describes 

a frequency weighted error measure for multiple path searched codes and section 

4.4 describes a gain weighted squared error measure. Section 4.5, in discussing the 

hybrid tree codes, returns to squared error, but describes some possible modifications 

both to the code design algorithm and to the distortion measure which may be 

fruitful avenues for future research. 

4.1.3 Previous tree and trellis codes for speech 

The use of tree and trellis techniques for speech coding has quite a long history [19). 
Most of the early work was in the area we have called plagiarized decoders - the 

application of a tree search algorithm to the encoding problem in a standard coding 

system. In the literature, this technique is usually ref erred to as delayed decision 

[12),[32),[77),[86]. By using a tree encoder, which delays the encoding process by 

a number of samples in order to observe the consequences of particular encodings, 

delayed decision systems are able to achieve improved performance. The general 

concensus has been that such methods can yield improvements in signal to noise 

ratio, but that the improvements are not usually audible [28). A second class of ap­

proaches to tree coding of speech has been the design of tree decoders based on short 

or long term correlation functions of speech [7),[17),[43),[58],[65),[69],[82),[83). In 

these systems, finite or infinite impulse response digital filters are used as decoders, 

with the intent of matching the spectral properties of speech or of populating the 

code tree with values having a desired distribution. These approaches have a good 

deal in common with the fake process ideas of Linde and Gray. Systems both with 

fixed and with adaptive decoders have been built [61),[63],[81). More recently, a 

59 



third approach has been the use of an optimization algorithm to improve an initial 
decoder [10]. The technique uses a variational approach and a training sequence to 

adapt the tap weights of a transversal filter. This approach is similar in spirit to 
the techniques of this thesis, but considers only linear decoder structures. 

4.2 Speech Coding System 

The codes designed in this chapter are for actual speech. This section describes the 

source data, design algorithm parameters, and other constant factors used later in 
the chapter. 

4.2.1 Speech data 

Roughly one hundred seconds of digital speech data were available, consisting of 
640,000 samples of speech sampled at 6500 Hz using a 12 bit linear PCM encoding. 

The speech data were made available by Signal Technology, Inc. of Santa Barbara, 
California. Since the residual excited and hybrid coding systems discussed in 
sections 4.5 and 4.6 are associated with linear predictive coding techniques, we will 

also refer to the speech data as broken into 5000 LPC frames of 128 samples each 
- corresponding to a rate of about 50 frames per second. The speech data include 

segments from five different male speakers. While the speech segments were not 
phonetically balanced or otherwise selected, they were carefully recorded in a low 

noise environment and with good gain control. 

Of the available data, the code design efforts discussed later used two segments 

of 600 frames or about 12 seconds each. The first segment used was "Okay, um, I 

could talk about a trip, ah, that, ah, I made quite a few years ago across Canada. 

It was just marvelous. ah." Thi~ segment was used as the training sequence for the 
trellis code design algorithm. The second segment, by a different speaker, was "My, 
ah, most recent extended travel, I guess, was the trip I made to Sweden. I went to 

Stockholm and to Gunnar Fant's lab." This segment was used as a test sequence, 
to check the performance of designed decoders on different data. 

Figure 4.2 shows the waveform for slightly less than 1/4 second of speech from 

the training data. Each line contains 384 samples, or the equivalent of 3 LPC 
frames. Segments representative of both voiced and unvoiced speech are shown. 

4.2.2 Encoding algorithm and design parameters 

While the results of section 3.1.1 indicate that the optimal Viterbi encoding algo­
rithm holds a considerable performance advantage over the M,L Algorithm, the costs 

60 

I 

! 



Figure 4.2 Original speech waveform (12 bit linear PCM). The figure 
contains 384 speech samples per line. The sampling rate was 6500 Hz. 
The third line is characteristic of unvoiced speech, the others are more 
typical of voiced speech. 

of using the Viterbi Algorithm grow exponentially with the constraint length of the 

decoder. While a very expensive encoding algorithm could be tolerated during the 

design of a trellis code - since the design is done off line and need not be completed 

in real time - section 3.1.1 also notes that a trellis code designed using one encoding 

algorithm may not work well when used with another algorithm. Table 3.3 indicates 

that the design algorithm adjusts the codebook not only to the characteristics of 

61 



the training sequence, but to the characteristics of the encoding algorithm as well. 

In view of these results, the speech coding systems discussed in this chapter all use 

the M,L Algorithm for both code design and for code testing outside the training 

sequence. In all cases, the algorithm parameters were set to M = 20 and L = 31. 

The search algorithm thus maintained 20 path sequences as possible encodings, and 

incorporated an encoding delay of 31 symbols. It is widely held [28),[77) that less 

intensive search is fully adequate to achieve most of the benefits of delayed decision 

encoding, but the primary purpose of the work described here is the design of speech 

codes, rather than a search for the most efficient encoding algorithm. (Indeed, other 

encoding algorithms, such as the depth or metric first types [4), are usually less 

expensive even than the M,L Algorithm.) 

To facilitate comparison. of the codes described later, all code designs were 

made using the same initial codebooks and the .same design algorithm parameters. 

All the codes discussed are shift register codes designed using extension from small 

initial codebooks. At each constraint length, the design algorithm was run for six 

iterations or until the change in signal to noise ratio measured in decibels fell below 

one percent. Section 4.2.4 will describe the initial codebooks. 

4.2.3 Code structures 

Each of the speech coding systems described in this chapter - waveform coding, 

RELP coding, and hybrid coding - includes a trellis code. In each case trellis 

decoders were designed for a variety of constraint lengths and for data rates of 

1/2 bit per speech sample, 1 bit per sample, and 2 bits per sample. At rate 1 bit 

per sample, both the rate 1/1 and rate 2/2 code types described in section 3.4.1 

were tested. Because of this variety, the relationships among code rate, constraint 

length, and codebook size become quite complex. Figures 4.3 and 4.4 and Table 4.1 

are included here both to try and organize this complexity and for later reference. 

Figure 4.3 is essentially the same as Figure 3.11. It shows the trellis structures for 

degenerate (one state) decoders of each of the types used in the speech coding work. 

Since these constraint length 1 trellis structures have only one state, - they do not 

remember any information - they are equivalent to block codes. Figure 4.4 shows 

schematic diagrams of longer constraint length codes of each type. The codes of 

Figure 4.4 a) and b ), operating at 1/2 bit per sample (or per source symbol) and 1 bit 

per sample, respectively, accept one bit from the channel and produce a codeword 

composed either of two reproduction values in the case of the 1/2 bit per sample 

code, or of one reproduction value. The codes of Figure 4.4 c) and d), operating 

at 1 and 2 bits per source symbol, accept two bits at a time from the channel and 

62 I 

1. 



a) 1 /2 code·· 1 /2 bit/sample, 2 way branching, 2 samples/branch 

aa aa 

bb bb 

b) 1 /1 code ·· 1 bit/sample, 2 way branching, 1 sample/branch 

a a a a 

b b b 

c) 2/2 code ·· 1 bit/sample, 4 way branching, 2 samples/branch 
aa aa 

bb bb 

cc cc 

dd dd 

d) 2/1 code·· 2 bits/sample, 4 way branching, 1 sample/branch 
a 

Figure 4.3 Alternative code structures for shift register decoders. All 
codes shown are for the degenerate constraint-length 1 case. 

produce codewords composed either of two or of one reproduction symbol. Table 

4.1 relates these code types in terms of their codebook sizes and constraint lengths 

measured in both source samples and channel symbols. The first column of the 

table, N, is the number of reproduction values in the codebook - the size of the 

codebook measured in samples. The second column, lg N, is the base two logarithm 

of this number. (In the rest of thi~ chapter, different codes will be compared for 

equivalent N.) The columns labelled kc refer to code constraint lengths measured in 

channel symbols (which may consist of either one or two bits), the columns labelled 

ks refer to code constraint lengths measured in speech samples, and the columns 

labelled Ne refer to the number of codewords (where a codeword may consist of 

either one or two reproduction values). 

63 



a) 1/2 code b) 1/1 code 
1 /2 bit/sample 1 bit/sample 

l ) 
y 

0 aa 
1 bb 
2 cc 

l ) YL[J b 
c 

c) 2/2 code d) 2/1 code 
1 bit/sample 2 bits/sample 

--io 1l1 ol1 olo ol --io 1l1 oj1 olo ol 

o aa 
1 bb 
2 cc 

l 

Notes: 1) a. b, c, etc. indicate symbols composed of one sample 

aa, bb, cc, etc. indicate symbols composed of two samples 

2) 1 /2 and 1 /1 codes use channel symbols of one bit each 

212 and 2/1 codes use channel symbols of two bits each 

J YL[J b 
c 

Figure 4.4 Shift register and table-lookup representations for alternative 
shift register code structures 

4.2.4 Initial codebooks 

The initial codebook selected for the extension method is not too critical, since the 

constraint length 1 design is equivalent to the block code case. All the code design 

experiments described later used the same initial codebooks: 

Rate 1/2, 2 codewords: {(le-4,-7e-4),(4e-4,-4e-4)} 

Rate 1/1, 2 codewords: {le-3,-le-3} 

Rate 2/2, 4 codewords: {{le-5,le-5),(-le-5,-le-5),(le-5,-le-5),(-le-5,le-5)} 

Rate 2/1, 4 codewords: {le-4,-7e-4,4e-4,-4e-4}. 

4.3 Speech Waveform Trellis Codes 

The most straightforward way to apply trellis encoding to speech is simply to build 

64 

I" 

I 



Table 4.1 
Codebook size vs. constraint length 

1/2 code 1/1 code 
N lgN kc ks Ne kc ks Ne 
2 1 1 1 2 
4 2 1 2 2 2 2 4 
8 ·3 2 4 8 3 3 8 

16 4 3 6 8 4 4 16 
32 5 4 8 16 5 5 32 
64 6 5 10 32 6 6 64 

128 7 6 12 64 7 7 128 
256 8 7 14 128 8 8 256 
512 9 8 16 256 9 9 512 

1024 10 9 18 512 10 10 1024 
2048 11 10 20 1024 11 11 2048 
4096 12 11 22 2048 12 12 4096 

2/2 code 2/1 code 
N lgN kc ks Ne kc ks Ne 
2 1 
4 2 1 1 4 
8 3 1 2 4 

16 4 2 2 16 
32 5 2 4 16 
64 6 3 3 64 

128 7 3 6 64 
256 8 4 4 256 
512 9 4 8 256 

1024 10 5 5 1024 
2048 11 5 10 1024 

a trellis decoder for the original speech waveform. A block diagram of this system 

is shown in Figure 4.5. The trellis decoders used were all designed by extension, 

using the codebook design algorithm. As described in the previous section, systems 

operating at 1/2 bit per speech sample, 1 bit per speech sample and 2 bits per 

speech sample were constructed. At rate 1 bit per sample, both the 1/1 and 2/2 

trellis code variants were tried. Since the original speech data were sampled at 6500 

Hertz, 3250 bits/second were required for the rate 1/2 code, 6500 bits/second were 

required for each of the rate 1 codes, and 13,000 bits/second were required for the 

2 bits per sample code. 

65 



ENCODER 

Speech Trellis Binary 
--"" Search ... 

Algorithm Channel 

• ,, 
copy of 
decoder 

DECODER 

...... ... 

Shift Register 

l Codeword 
Lookup 

..------- Reconstructed 
Trellis Speech .. 

Codebook 

Figure 4.5 Speech waveform trellis encoding system 

4.3.1 Speech codes using mean squared error 

Trellis coding of speech waveforms has been tried before, particularly plagiarized 

decoders and multiple path searched linear filters [10},[17],[29]. The work of Ander­

son and Law [10], mention'ed in section 4.1, is interesting because it represents a 

variational approach to the design of lin.ear trellis decoders. The class of table­

lookup constraint-length k shift register trellis decoders, such as are created by 

the trellis code design algorithm, includes as a special case the class of all linear 

time invariant finite impulse response digital filters with impulse response duration 

less than k. In principle, even if the extension method should fail to produce 

good decoders, any of the previously used decoders could only be improved by the 

algorithm. 

Assuming that the M,L Algorithm, or another algorithm whose complexity does 

not depend on code constraint length, is used as the encoder in a trellis system, 

the chief implementation cost of a sufficiently large decoder lies almost entirely in 

the table-lookup codebook. For this reason, we take the position that the proper 

comparison between competitive codes should be made between codes of equal 

codebook size, rather than between codes of equal constraint length. This situation 

in particular arises with the 1/1 and 2/2 trellis codes, both of which operate at one 

bit per speech sample. 

66 

I 

. ! 

I" 



, Table 4.2 
Speech waveform trellis codes 

Table entries in dB SNR 

1/2 Code 1/1 Code 2/2 Code 2/1 Code 
lgN Inside Outside Inside Outside Inside Outside Inside Outside 

1 1.96 1.85 2.12 2.06 
2 2.57, 2.28 2.91 2.74 6.04 6.30 
3 3.28 3.23 3.29 3.01 4.81 4.93 
4 5.28 4.75 6.70 6.41 9.44 9.50 
5 6.20 5.30 8.23 7.35 7.50 7.09 
6 7.00 5.69 9.08 7.98 12.45 12.30 
7 7.73 6.07 9.56 8.29 9.38 8.39 
8 8.35 6.27 10.16 8.67 14.25 13.40 
9 9.06 6.09 10.83 8.74 10.77 8.96 
10 9.64 5.86 11.10 8.78 15.97 13.47 
11 9.93 5.41 12.05 8.54 12.17 8.70 

Table 4.2 contains signal to noise ratios in dB for the various speech waveform 

trellis codes designed. Figures are included both for the training data itself (Inside), 
and for the test sequence (Outside). Figure 4.6 presents the same information. 

Both the table and figure present their information as a function of the base two 

logarithm of the size of the associated codebook. This value is equivalent to the 

number of address bits required by a memory implementing the codebook. The 

results for the 1/1 code and the 2/2 code are particularly interesting because they 

both represent the same overall bit rate. As is obvious from Figure 4.6, the 1/1 and 

2/2 codes produce equivalent results for equivalent codebook size, although such 

codes have different constraint lengths. 

Only the available training data, the amount of memory available to the code 

design computer program, and the amount of time one is willing to spend really limit 

the constraint lengths of these kinds of decoders. As can be seen from the decrease 

in performance of both the rate 1/2 code and the rate 1 codes for large codebooks 

outside the training sequence, probably the 76,800 sample training sequence is of 

insufficient length for the design of codebooks with more than about 512 codewords. 

Audibly, as might be expected, the 3250 bit per second system is very noisy, 

although it is intelligible. The rate 1 systems are an improvement, although still 

quite noisy, and the rate 2 systems, at 13,000 bits per second are still sufficiently 

noisy to be classed as "communications quality" - not up to the standards of long 

distance telephony. The reproduced speech contains only the kind of quantization 

noise typical of other waveform coding systems, it does not contain the speech 

related artifacts typical of of LPC or other speech coders. 

67 



dB 
SNR 

14 

12 

10 

8 

6 

4 

2 
g 
a 
b 

h 
g 

e 
c 

a 

f 
d 

b 

lg N 1 2 3 4 5 6 7 8 9 10 11 

Figure 4.6 Speech waveform trellis code performance. Curves a and b 
are for the 1/2 code {1/2 bit per sample) inside and outside the training 
sequence, respectively. Curves c and d are for the 1/1 code, curves e and 
fare for the 2/2 code (both 1 bit per sample), and curves g and h are for 
the 2/1 code {2 bits per speech sample). 

4.3.2 Frequency weighted error measures 

While no attempts have yet been made, the directi?ns to take in trying to im­

prove the performance of trellis encoding systems operating on the original speech 

waveform are fairly clear. The existence of auditory masking is well understood, so 

the replacement of the squared error distortion measure used above by one which 

to a greater degree matches the frequency sensitivity of the ear is an obvious step. 

Use of a frequency weighted squared error measure by a tree or trellis encoding 

algorithm is straightforward, but its effect on the code design algorithm is not. 

68 

I: 



Wilson has incorporated frequency weighted squared error measures in a pla­

giarized decoder tree coding system by using a: short length finite impulse response 

filter to weight the error sequences associated with possible encodings of the source 

[82],[83]. Associated with each path sequence in the code tree there is an error 
sequence composed of the differences between the decoder output sequence along 

that path and the sequence of source samples. By accumulating the sum of the 
squares of values of the filtered error sequence, a frequency weighted estimate is 
made of the error signal power along the path. These estimates are then used by 

the encoding algorithm as a basis for retaining or discarding the potential encodings. 
The estimate is not entirely accurate because it ignores effects that the last step 

in the path may have on the encoding of future samples - but this effect is little 
different than in the single symbol distortion measure case, as none of the efficient 
tree search algorithms look infinitely far ahead. 

The effect that the use of such a weighted error measure might have on the 
trellis code design algorithm is more difficult to understand. The codebook update 

step of the algorithm (section 2.2.4) requires that the new codeword for a particular 
codebook entry have the value minimizing the distortion over those samples of the 
training sequence which were encoded by the corresponding old codeword. When 

the distortion measure is not a single symbol distortion measure, this minimization 
is no longer straightforward. It is true that the centroid of a sequence of values is 

independent of any normalized frequency weighting, since the centroid (for squared 
error at least) is just the Fourier transform of the sequence evaluated at zero 
frequency. However, the elements of a partition cell of the design algorithm are 

not sequentially drawn from the training sequence. It may be possible to perform a 
frequency weighted version of the update algorithm, but as yet no method is known. 

It is entirely possible to design a trellis code using a frequency weighted error 

measure, but use the simple average for codeword update. If the frequency weighting 
is not too non-uniform, the results should be quite similar. In any event, frequency 

weighting during eventual operation of a trellis waveform code may produce better 
perceptual results. 

4.4 Linear Predictive Coding and Vector Quantization 

Linear predictive coding of speech by systems such as the one shown in Figure 

4.7 has been very successful [60],[62],[71]. The basic principle of the method is 

a decomposition of the speech signal into an excitation function, e.g., the vocal 
cords, and an all-pole linear fi.lter model of the vocal tract. LPC systems operate 

by breaking up the speech signal into segments or frames, estimating the filter and 

69 



ENCODER 

Voiced I -

Speech Unvoiced Pitch __.. A(z)/g _.. _.. 
.... .... 

Pitch v I UV 
.... 

A~ Extraction 

~· Parameter 
_.. LPC parameter - .. Quantization _.. 
-....-

extraction 
--.- --.-

s 

DECODER 

r+ Pulse source 
1-- Synthesiz (voiced} 

Pitch speech 
_.. g/A(z) _ .. 

v /uv 
- ... --.-

ed 

4 Noise Source A~ 

(unvoiced) 1--

LPC parameters 

Figure 4. 7 Traditional Linear Predictive Coding (LPG) system for speech 

excitation parameters for each frame, and transmitting quantized versions of the 
parameters to the decoder, which uses them to operate a synthesizer. The length 
of a speech segment, typically 10 to 50 milliseconds, is chosen so that the model 

parameters remain fairly constant over the segment. While there are many methods 
for estimating the filter parameters, in one way or another all seek to minimize the 
power of the error or residual signal [37}. The speech residuals, the result of passing 

the original speech waveform through the LPC analysis filter A(z) or A(z)/u, play 
a role in the various methods for estimating the exitation function and, in some 

systems, are themselves quantized and transmitted. 

The parameters transmitted by an LPC system include the average power u, 

of the residual signal over the frame (the gain), the parameters describing the filter 

l/A(z) {the model), whether the frame contains voiced or unvoiced speech (v/uv), 
and, if voiced, the pitch. (Since the selection of the filter affects the power of the 
residuals, LPC filters are usually restricted, so that the polynomial representation 

is monic - a0 = 1.) There are many equivalent ways to describe the filter, including 

70 

I' 



filter 1 

A(z)/g 

filter 2 

A(z)/g 

Speech filter 3 
Select 

g/A(z) 
A(z)/g Smallest 

• 
• 
• 

filter N 

A(z)/g 

Figure 4.8 Vector quantization of LPG 

the speech autocorrelation coefficients (the r's), the filter prediction coefficients (the 
a's), and the reflection coefficients of a ladder form filter implementation (the k's). 

The reflection coefficients are of particular interest, because lkil < 1 are necessary 
and sufficient conditions that ~he filter 1/A(z) be stable. 

There has been much work done on the best way to encode the LPC parameters 

for transmission [34],[36]. Recent research into applications of the block quantizer 

design algorithm have led to vector quantization methods of encoding the gain 
and model parameters simultaneously [18],[85],[73]. This method is illustrated by 
Figure 4.8. During the design phase of the vector quantizer, a finite collection 

{ o-if~(z), i = 1, ... , N} of gain/model combinations typical of speech are selected 
by using the block code design algorithm together with a distortion measure between 
the waveform segment and the filter coefficients. During operation, for each frame a 

parallel test of each filter is made in search for the one giving the minimum residual 

energy. The index of the filter is then transmitted. This approach also avoids debate 
about the most appropriate filter representation, as the coefficients can be stored 
to arbitrary precision at the receiver. While maintaining a fixed rate constraint on 

71 



Analysis ladder -- A(z) 
x(j) e(j) 

rO) 

Synthesis ladder -- 1 / A(z) 
e(j) y(j) 

r{j) 

x(j) ·· original speech 

y(j) · · synthesized speech 

rO) ·· backwards prediction error 

e{j) ··forwards prediction error (residuals) 

Figure 4.9 Ladder form analysis and synthesis filters for LPG systems 

transmission of the gain and model parameters, the vector quantization approach 

offers a means of avoiding the introduction of unknown distortions in the filter which 

might occur through independent quantization of the parameters. 

Because the original speech signal is broken into frames which are independently 

analyzed, much attention has been paid to ensuring a smooth transition across 

frame boundaries where the coefficients may change. Two approaches are to filter 

the coefficients, or to interpolate them in step with the pitch pulses of voiced speech. 

In the event a ladder form or lattice filter (Figure 4.9) is used at the synthesizer, 

another approach is to reduce the filter to a first order predictor at frame boundaries 

when the coefficients change, and then build up the order of the lattice filter stage by 

stage until the desired order is reached. This procedure avoids the non-stationarities 

in the filter output which might occur if the reflection coefficients were changed 

without consideration of the contents of the filter delay elements [51]. 

Historically, the most difficult part of LPC encoding has been the estimation 

of the exitation parameters, which determine whether a speech frame is voiced or 

unvoiced and, if voiced, determine the pitch. While there are a plethora of methods, 

72 

i, 

I· 
I 



such as peak picking, cepstral analysis, and likelihood ratios [62],[67],[68] none are 

completely satisfactory. Part of the difficulty is that there are some speech sounds, 

the voiced fricatives, like 'v', that are partly voiced and partly unvoiced, and part 

is due to the desire that a speech coding system continue to operate in a reasonable 

manner in the presence of non-speech background noise. 

In response to the problems of estimating the excitation part of the LPC 

decomposition, several systems have been proposed which avoid the issue by en­

coding and transmitting either the actual LPC residual signal or some associated 

signal. Adaptive predictive coding (APC), the voice excited vocoder (VEV), and 

Residual excited LPC (RELP) systems all fall into this category [11],[12],[33],[79]. 
The major difficulty in each of these systems lies in the encoding of the spectrally 

flat residual signal while retaining a low transmission rate. A typical method used 

is to bandlimit the residuals to perhaps 1000 Hz and then to use some form of 

adaptive PCM to transmit the resulting signal. At the receiver, a nonlinearity is 

used to restore some energy to frequency regions above 1000 Hz and the resulting 

signal is used to excite a standard LPC synthesis filter. Tree and trellis encoding 

offers the potential of transmitting the residual signal at low rates without resorting 

to these downsampling and spectral extension techniques. 

Section 4.5 will discuss the application of trellis encoding to RELP systems, 
and section 4.6 will describe a hybrid coding system which combines characteristics 

of APC and universal coding. 

4.5 LPC with Trellis Encoded Residuals 

Transmission of a coded form of the LPC residuals, combined with the model 
or model and gain portions of an LPC system, should have several advantages. 

First, since standard LPC systems quite successfully use either white noise or an 

impulse train as excitation for the synthesis filter, it is evident that errors in the 

details of the residual waveform or synthesizer driving process may not result in 

much perceptual deterioration of the speech at the synthesizer output. Second, 

because the LPC model filter 1/ A(z) applies a frequency weighting according to 

the short-term spectral characteristics of speech, residual coding takes advantage 

of the auditory masking effect. If the residual coding technique results in a white 

error spectrum, then, at the synthesizer output, the spectrum of the error signal 

will match the spectrum of the speech signal. Finally, coding of the actual residuals 

should tend to reduce the effects of failures of the voiced/unvoiced model and the 

effects of background noise. Since a residual excited system depends less on the 

73 



Figure 4.10 Speech residuals generated by passing the original speech 
waveform through the filter A(z)/a. This figure shows the same section 
of data as does Figure 4.2. Each line contains 384 samples, or 3 LPG 
frames. 

accuracy of the voice excitation model used by LPC, it should be able to better 
handle non-speech sounds. 

The appearance of speech residuals differs greatly from that of the original 
waveform. F!,gure 4.10 shows the 12 frames of LPC residuals corresponding to the 

segment of speech shown in Figure 4.2. 

74 



ENCODER 

Speech Residuals 
..... A(z)/g -,.. 

~ 

_... LPC codeword ... 
. selection 

DECODER 
Encoded 

'd res1 ua s Trellis _.. 
.... Decoder .... 

A~ 

Trellis 
codebook 

LPC codewords 

Encoded 

Trellis 
res1 ua 

_... ..... 
'd Is 

...... 
Search 

...... 

LPC codewords 
_.. ( 450 bis) .... 

g/A(z) 

A~ 

LPC 
codebook 

... 

Synthesized 
speech 

_.. .... 

Figure 4.11 Trellis encoding of speech residuals - Trellis RELP 

4.5.1 RELP coding results 

In order to investigate the applicability of trellis coding methods to RELP systems, 

trellis decoders operating at 1/2 bit per residual sample (one bit for every two 

residual samples), 1 bit per sample, and 2 bits per sample were designed using 

the methods described in section 4.2. Figure 4.11 contains a block diagram of 

these systems. For these experiments, a vector quantized LPC system was used, 

operating with a codebook of 512 tenth order filters for a rate of 9 bits per LPC 

frame or about 450 bits per second. The LPC system supplied a combined gain and 

model, a/A(z), so that the residual signal, generated by passing the original speech 

through the filter A(z)/u, was normalized by the LPC gain. In order to avoid filter 

state difficulties, a ladder form LPC filter implementation was used with reduction 

to order 1 at frame boundaries. This technique does result in a transient in the 

residual signal at frame boundaries, due to the poor matching of the prediction 

75 



Table 4.3 
Speech residual trellis codes 

Table entries in dB SNR for the residuals 

1/2 Code 1/1 Code 2/2 Code 2/1 Code 
lgN Inside Outside Inside Outside Inside Outside Inside Outside 

1 1.14 1.24 2.89 2.94 
2 1.30 1.40 3.12 3.12 6.82 7.13 
3 1.77 1.74 3.39 3.48 3.13 3.13 
4 2.02 2.00 3.82 3.94 8.01 8.24 
5 2.26 2.23 4.15 4.27 3.76 3.87 
6 2.57 2.52 4.45 4.59 8.71 8.91 
7 2.76 2.71 4.74 4.85 4.43 4.50 
8 2.94 2.77 4.96 4.98 9.54 9.47 
9 3.13 2.77 5.16 5.02 5.06 4.92 
10 3.33 2.74 5.42 5.05 10.31 9.76 
11 3.73 2.72 5.72 5.03 5.82 5.07 

filter to the actual speech, but since the filter coefficients were not interpolated 

during the course of each frame, the prediction fit would tend to vary anyway. The 

LPC filter set was designed by G. Rebolledo using the block code design algorithm 

and the Itakura-Saito distortion measure [39],[72],[73]. 

Using 450 bits per second of side information for the gain and model parameters 

combined with an original sampling rate of 6500 Hz, trellis RELP speech coding 

systems were produced operating at 3700 bps, 6950 bps, and 13,450 bps for the rate 

1/2, 1, and 2 bits per symbol cases. 

As in the case of the waveform coding experiments, the trellis decoders were 

designed using the extension method, starting from constraint-length 1 decoders. 

The distortion measure used was the simple squared error measure. Table 4.3 and 

Figure 4.12 contain the signal to noise ratios in decibels achieved for the various 

encodings of the residual signal, both inside and outside the training data. Since 

the residuals are produced from the speech waveform by a filter that produces a 

generally flat spectrum, the signal to noise ratios obtained are below those for the 

original speech waveform codes of the previous section. They are perhaps better 

compared with the rate distortion limits for white Gaussian noise of 3 dB at 1/2 

bit per symbol, 6 dB at 1 bit/symbol and 12 dB at 2 bits per symbol. (Of course 

the residuals are not white, as they still contain the speech pitch pulses and other 

information not modelled by the LPC filters.) 

It may be somewhat surprising that the extension method of trellis code design 

should work on speech residuals. As was remarked in section 3.2.3, the extension 

76 



dB 
SNR 

10 

8 

6 

4 

2 

lg N 1 

h 
g 

2 3 4 5 6 7 8 9 10 

g 

h 

11 

Figure 4.12 Trellis RELP code performance. Figures are decibels signal-
to-noise ratio for the residuals. Curves a and b are for the 1/2 code inside 
and outside the training sequence, respectively. Curves c and d are for 
the 1/1 code, curves e and fare for the 2/2 code, and curves g and h are 
for the 2/1 code. 

method does not work very well for memoryless sources and the LPC analysis filter 

A(z)/a acts to remove correlation from the speech waveform. There are several 
possible answers: first, the all-pole model of speech presumed by LPC does not 
adequately represent the memory inherent in the speech signal, second, use of 
the vector quantized LPC system supplies filters which do not exactly match the 

correlation due to the all-pole model, and third, the presence of pitch pulses in 

the residual signal provides some non-uniformities which may aid the trellis design 
algorithm in designing the decoder. 

4.5.2 Gain normalized residuals 

Many signals of interest, including speech, have a wide dynamic range - their short 

term power varies widely. In speech, this effect arises for two reasons. First, from 

77 



moment to moment, the general envelope of the speech signal rises and falls as the 

voice becomes louder or softer. Second, the driving process for voiced speech is of 

generally higher energy than the driving process for unvoiced speech. In traditional 
waveform coding systems, wide dynamic range is dealt with by such means as 
companding or log PCM, and at lower rates by adaptive step size in predictive 

coders [27]. In LPC systems, dynamic range effects are absorbed by the inclusion 
of the gain term u. 

The speech waveform trellis coding systems described in section 4.3 took no 

special efforts to handle a wide dynamic range. As a result, system performance 
was compromised by the requirement that paths through the trellis exist which 
were suitable both for waveform segments of small amplitude and for segments of 

relatively larger amplitude. In order to avoid this difficulty in the design of trellis 

codes for the speech residuals, the residuals were generated from the original speech 
by the combined gain and model LPC filter A(z)/u rather than by the spectral 
flattening filter A(z) alone. Use of these gain normalized residuals allows the design 
algorithm to adapt the trellis code for a signal of fairly narrow dynamic range. 

Use of the gain normalized residuals has an interaction with use of the mean 

squared error distortion measure. When mean squared error is used to encode the 

unnormalized residuals, the encoding algorithm places relatively more emphasis on 
reducing large errors than on reducing small ones. Since large errors are more likely 

to occur in regions of large signal amplitude, we see that mean squared error matches 
the notion that the ear is more sensitive to noise at higher amplitude levels than at 
low. Squared error used as a distortion measure for residuals thus takes advantage of 

both the auditory masking effect and the amplitude sensitivity effect. On the other 
hand, when mean squared error is used to encode the gain normalized residuals, 
equal emphasis is placed on errors in (ultimately) high amplitude speech segments 

and on errors in low amplitude segments. While gain normalization may permit the 

decoder to handle a smaller dynamic range, modifications to the distortion measure 
may also be in order. The simplest way to change the distortion measure is to 
incorporate the gain term: 

d(x, y) = u2(x - y)2 • 

This formulation restores the original squared error distortion on the unnormalized 

residuals while retaining the benefits of code design for a narrow dynamic range. 
Since there is some argument about the exact nature of the ear's sensitivity to signal 
to noise ratio as a function of amplitude and since u represents the power of the 

residuals, rather than that of the original speech, we point out that any function of 

the gain, say f(u), can replace the u2 term. 

78 

' 
1· 
I 



A tree search encoder, rather than sequentially selecting the minimum distor­

tion path symbol (single path search), looks ahead down several tree paths to a 

depth of several symbols, and selects the one having minimum average distortion. 

The possible encodings of a particular symbol are played off against the possible 

encodings of the preceding and succeeding symbols in order to choose one which is 

best overall. It is generally impossible to tell how far the effects of encoding a par­

ticular symbol in a certain way will propagate, but usually the effects are localized. 

As a rule of thumb, the encodings of symbols separated by much more than the 

constraint length of the decoder are unlikely to interact. This effect has an interest­

ing interaction with the gain-modified distortion measures just discussed. Since the 

gain term, supplied by the LPC machinery, remains constant during the duration of 

a speech frame and since the frames are considerably longer (128 samples) than any 

constraint length used, we see that the addition of the gain term to the distortion 

measure has essentially no effect on the encoding process during the course of a 

frame. It is only at frame boundaries where the gain changes that the additional 

term has effect. Consider the case wherein a frame with little speech energy (small 

u) follows a frame containing relatively more speech energy. As the encoding algo­

rithm considers the samples within (more or less) a constraint length of the frame 

boundary, the gain-modified distortion measure will instruct it to devote relatively 

more effort to closely following the residual waveform on the large u side of the 

boundary than on the small u side. 

Utilization of the gain-modified distortion measure u2(x - y) 2 also requires 

modifications to the code design algorithm. Recall that the codeword update portion 

of the algorithm consists of setting the updated version of a particular codeword 

to the value minimizing the distortion over the training sequence samples in the 

corresponding partition cell: · 

For mean squared error, this centroid computation reduces to the arithmetic mean: 

For the gain-modified squared error measure, the corresponding modification to the 

centroid computation is straightforward: 

79 



Table 4.4 
Gain-modified Trellis RELP 

Table entries in dB Signal-to-Distortion (arbitrary scale) 

1/2 Code 1/1 Code 2/2 Code 2/1 Code 
lgN Inside Outside Inside Outside Inside Outside Inside Outside 

1 1.36 -1.22 2.66 0.03 
2 1.38 -1.22 2.79 0.14 6.90 4.59 
3 1.88 -0.55 3.16 0.70 2.98 0.31 
4 3.10 0.38 4.86 2.43 8.64 6.19 
5 3.85 1.02 5.65 2.99 4.60 2.00 
6 4.44 1.29 6.08 3.42 9.84 7.29 
7 4.96 1.48 6.58 3.69 6.18 3.29 
8 5.39 1.53 7.09 3.76 11.14 8.02 
9 5.80 1.53 7.48 3.77 7.36 3.69 
10 6.29 1.56 8.15 3.86 12.52 8.35 
11 6.94 1.45 8.78 3.76 8.62 3.85 

where <Jj is the gain associated with the LPC frame containing sample j. Not only 

does the modified distortion measure place more emphasis on encoding samples from 

high amplitude frames, but the code design algorithm now places more emphasis on 

adjusting the codewords to produce good results in the high gain frames. In spite 

of these complications, the original goal of using the gain normalized residuals is 

still met. The trellis codebook contains values appropriate for a signal with a fairly 

narrow dynamic range. 

A sequence of code design experiments using the modified distortion measure 

and design algorithm were run, with somewhat encouraging results. Table 4.4 and 

Figure 4.13 contain ratios of signal power to distortion in decibels for the gain­

modified tests. Since the distortion measure is unusual, these values cannot be 

directly compared with the previous RELP results, but the general trends of code 

performance are of some interest. While the characteristics of the resulting speech 

are very similar to those of the original RELP coded speech, the modified encodings 

are of better perceptual quality. 

4.6 Hybrid Tree Codes 

Reproduction of the original speech waveform is not a goal of standard LPC, nor 

is it a goal of the traditional residual excited LPC systems. It is well known that 

the ear is insensitive to phase information and LPC makes the further assumption 

that the ear is actually sensitive only to the short term spectrum of speech and to 

some aspects of the excitation process. By modelling the excitation process as a 

80 



dB 
SNR 

12 

10 

8 

6 

4 

2 

lg N 

g 

h 

c 

a 

d 

1 

g 

2 3 4 5 6 7 8 9 10 11 

Figure 4.13 Gain-modified trellis RELP code performance. Figures are 
decibels signal-to-distortion for the residuals, using an arbitrary scale. 
Curves a and b are for the 1/2 code, inside and outside the training 
sequence, respectively. Curves c and d are for the 1/1 code, curves e and 
f are for the 2/2 code, and curves g and h are for the 2/1 code. 

a 

pulse train or noise source, LPC abandons the original waveform while retaining 
those characteristics of the signal thought to be important. The residual excited 
systems try to encode the actual residual signal, but, by using techniques such 

as downsampling and nonlinearities at the receiver, also lose track of the original 
waveform. The trellis coded RELP systems discussed in the previous section were 
no exception - the rate-constrained residual signal is reproduced according to the 

trellis code distortion measure without regard to the eventual waveform after the 
receiver passes the decoded residuals through the LPC synthesis filter u /A( z). It 

was with some surprise, therefore, that we learned that output waveform of the 
RELP system was in fact quite close to that of the original speech signal. Figure 

4.14 contains three short waveform plots: the original speech, the trellis RELP 1 

bit/symbol speech, and the difference between them. The signal to noise ratios for 
the waveforms produced by the various RELP systems are shown in Table 4.5. 

81 



a) Original Waveform 

b} 1 bit/sample RELP Waveform 

c) Difference Waveform 

Figure 4.14 a) Original speech b) Trellis RELP 1 bit/sample c) Dilf'erence 
waveform 

Table 4.5 
Trellis RELP reproduction of original speech waveform 

Table entries in dB SNR 

Code bit rate Inside Outside 
1/2 3,700 5.15 2.46 
1/1 6,950 6.64 4.25 
2/2 6,950 6.20 4.29 
2/1 13,450 9.94 8.50 

As a result of this observation - that the trellis RELP could reproduce the 

original waveform - we decided to test a composite decoder consisting of the u /A( z) 
LPC synthesis filter combined with a trellis decoder front-end. This ''Hybrid Tree 

82 



Speech D .. cess 
Tree 

nvmg pro 
. ~ _ .. ... Search ... 

• ,, 
copy of 

decoder .. 
LPCcode words 

...... LPC codeword ...... --...- --...-

ENCODER selection ( 450 b/s) 

Reconstructed 
D riving 

Trellis speech 
_.. g/ A(z) ...... ,, 

decoder 
--...-

process 

(from channel) • ~ri. 

Trellis LPC 
codebook codebook 

DECODER 
~ri. 

LPC codewords 

(from channel) 

Figure 4.15 Hybrid tree coding system 

Code" system is shown in Figure 4.15. It is interesting that the only difference 

between the RELP systems of the previous section and this new system is that the 

hybrid system seeks a channel sequence which will, at the decoder output, match the 

original speech waveform while the RELP system seeks a channel sequence which 

will, at the output of the trellis decoder, match the speech residuals. 

This hybrid encoding system has elements in common with adaptive predictive 

coding. Hybrid systems with very similar structures have been proposed and, with 

some variations, used by Matsuyama and Gray [65),[64] and independently by Adoul 

et al. [1]. These systems will be discussed in section 4.6.1. 

Table 4.6 and Figure 4.16 give performance data for hybrid tree encoding 

83 



Table 4.6 
Hybrid tree codes 

Table entries in dB SNR 

1/2 Code 1/1 Code 2/2 Code 2/1 Code 
lgN Inside Outside Inside Outside Inside Outside Inside Outside 

1 6.16 5.19 8.77 7.61 
2 4.97 4.28 6.83 5.72 16.62 14.44 
3 4.96 4.35 5.25 4.95 7.36 6.21 
4 6.50 4.92 6.68 6.60 17.29 16.16 
5 6.89 5.27 8.11 7.87 9.55 8.38 
6 7.48 5.74 9.58 9.01 18.35 16.65 
7 7.87 6.37 11.23 9.64 11.32 9.80 
8 8.41 6.51 11.90 9.97 19.15 17.01 
9 8.34 6.44 12.31 9.96 12.57 10.68 
10 8.70 6.50 12.43 10.11 19.54 17.45 
11 8.57 6.56 12.57 10.17 13.03 10.85 

systems operating at 1/2, 1, and 2 bits per sample for the driving process, plus 

450 bits per second for the LPC portion of the system. As before, the table entries 

represent signal to noise ratio in decibels using a squared error distortion measure. 

The combined channel rates for these codes are 3700, 6950, or 13,450 bits/second. 

Although these rates are the same as for the RELP system, the hybrid tree system 
produces considerably· better· perceptual quality. 

4.6.1 Hybrid tree code structure and performance 

The hybrid tree system has elements in common with traditional adaptive predictive 

coders [11],[12],[33]. Figure 4.17 shows an encoder and decoder for an adaptive 

predictive coding (APC) system. The decoder consists of a time varying predictor 

driven by a variable step size channel decoder. The standard APC encoder consists 

of these same elements inside a feedback loop. The APC system is thus a predictive 

quantization system with a variable predictor and a variable step size quantizer. 

More recent APC systems have incorporated delayed decision by replacing the APC 

encoder by a tree search algorithm and still more closely resemble the systems of 

[1] and [81]. 

Referring to figures 4.15 and 4.17, we see that the LPC filter portion of the 

hybrid tree decoder plays the role of the adaptive predictor of the APC system and 

that the variable step size channel decoder of the APC system has been replaced 

by a time invariant trellis decoder together with the LPC gain term u. As before, 

the LPC portion of the decoder consists of one of 512 tenth order filters, u if Ai( z), 

84 

1· 



dB g 
SNR 

18 
h 

g 
16 

14 
h 

e 
c 

12 

f 
10 .d 

8 d 

6 

4 

2 

lg N 1 2 3 4 5 6 7 8 9 10 11 

Figure 4.16 Hybrid tree code performance. Performance figures are in dB 
SNR for the original speech waveform. Curves a and b are for the 1/2 
code, inside and outside the training sequence, respectively. Curves c and 
d are for the 1/1 code, curves e and fare for the 2/2 code, and curves g 
and h are for the 2/1 code. 

a 

b 

selected by a vector quantizer. The filter selection is made independently on each 

frame of speech - 50 times per second. The trellis portion of the hybrid decoder is 

in fact the same decoder as was used in the RELP systems - it was designed using 

the trellis code design algorithm on the speech residuals from the training sequence. 

In the usual APC systems, the prediction filter is driven by a variable step size 

quantizer, which is not a particularly good model of speech residuals. In the hybrid 

tree coder, the trellis front end has been specifically designed to be a good mimic (or 

fake process) of residuals. Roughly speaking, the trellis decoder is chosen in such 

85 



Encoder ----1 Adaption 

Speech 
Quantizer 

1 I A(z) Predictor 

Adaption 

Binary 
Coder 

Driving 

Process 

Predictor parameters 

Decoder 
Delay Adaption 

Reconstructed Speech 
Binary 

~~--~~~~~~--
.Decoder Driving process 

Predictor 

Predictor parameters 

Figure 4.17 Adaptive predictive coding system 

a way that when driven by random coin tosses, it produces residual-like sequences. 

It makes good intuitive sense that if the driving process of an APC like system is 
"close" to residuals, then the overall system will perform better. 

It is less clear why the hybrid coder sounds b~tter than the RELP system. 
Because the hybrid coder uses the squared error distortion measure on the original 
waveform, it is not taking the same advantage of the auditory masking effect as 

RELP. However, the most evident artifact in the RELP speech is a growl-like sound 
at the LPC frame rate and no such artifact is audible in the output of the hybrid 

coder. This implies an interaction between the trellis encoding of the residuals and 
the time varying LPC synthesis filter that can be compensated in the hybrid system 

by placing both components under the control of the tree search. 

86 



In [65], a collection ·or hybrid decoders consisting of LPC filters with a fixed 

trellis front end are used for universal coding of a speech waveform. The system 

utilized 16 LPC filters designed by the block code design algorithm together with 

a fixed trellis decoder of the scrambling function fake process type. The 16 result­

ing tree decoders were searched in parallel to encode a frame of speech, and the 

path sequence for and decoder index of the decoder giving the lowest distortion 

transmitted to the receiver. This system differs from the hybrid system described 

in this section in two ways: only 16 LPC filters are used, rather than the much 

larger set of 512 filters considered here, and a fake process trellis decoder matched 

to a Laplacian distribution is used, rather than a trellis decoder designed explicitly 

for speech residuals. Matsuyama and Gray do suggest in [65) the use of a spectral 

distortion measure for filter selection to replace the parallel search of the universal 

coding technique and this approach is taken in [64]. The same encoding method 

is used in [1], although the decoders considered do not include a trellis component 

and the encoder is a single path search such as in standard APC. 

4.6.2 Major points of the hybrid code 

At this point, we can draw together several threads, and describe the overall struc­

ture of the hybrid tree code. First, the relatively poor performance of the trellis 

waveform coders of section 4.3, together with the observed waveform tracking ability 

of the "open loop" RELP systems, suggest that it is more advantageous to design 

a composite, or hybrid, decoder which takes advantage of a model of speech than 

either to encode the speech waveform directly or to implement separately the source 

model and driving process (residual) encoding. In the speech case, the source model 

takes the form of an all pole tiine varying filter which spectrally flattens the original 

speech signal to produce the residuals. In the systems we have built, the particular 

model used is an LPC vector quantizer, which on a frame by frame basis, selects 

the gain and filter combination from a finite set of such combinations according to 

a spectral distortion measure [18],[35]. The residual signal, although not itself used 

(or even generated) during normal operation of the system, is used during system 

design as training data for the trellis code design algorithm. The design algorithm 

is used to construct a trellis decoder front end for the hybrid decoder. The purpose 

of the trellis portion of the decoder is to translate the digital channel sequence into 

a discrete time process resembling speech residuals which then drives the LPC syn­

thesis filter. In actual operation, the time invariant trellis decoder together with the 

time varying source model serve as the code generator for a classic tree encoding 

system. 

87 



In a subjective comparison, the hybrid tree encoding system described in this 

section has, for a given channel rate, given speech quality significantly improved 

over that of the similar system of {64]. The system reported here differs from that 

of [64] by using a much larger set of LPC synthesis filters and by using the trellis 

code design algorithm for the design of the trellis portion of the hybrid decoder. 

4.6.3 Modifications of the hybrid tree codes 

Although we have claimed that the LPC model is used in the hybrid coding system 

as a whitening filter rather than as a vocal tract model, the fact that the constraint 

length extension method of trellis code design was successfully used on speech 

residuals suggests that the all-pole LPC model is not entirely adequate. If more 

accurate whitening filters are used in similar systems, the extension method may 

fail, as indeed it does for truly memoryless sources. In such a case, other methods 

of selecting initial trellis decoders should still work. Populating the initial codebook 

with values randomly drawn from the training sequence would be a good candidate. 

The idea for the preceding hybrid tree code design grew from the observation 

that coded residuals driving the LPC inverse filter actually did reproduce the 

original waveform (although the same decoder organization was used earlier, in [65]). 

The fidelity of the reproduced speech waveform and the perceptual quality of the 

speech were improved by using a tree search to close the loop around the composite 

decoder. Since the trellis front end and the LPC synthesis filter (and thus the entire 

decoder structure) are identical in the RELP and hybrid systems, it is evident that 

the differing results of the two systems are entirely due to the selection of a different 

path through the trellis part of the decoder. This should be viewed as a consequence 

of using a different distortion measure in the two cases. Rather than using either 

straight squared error on the residuals or a gain weighted measure, the hybrid code 

uses a fairly complicated time-varying frequency weighted measure on the residual 

signal - it observes the trellis decoder output sequence through the time-varying 

LPC synthesis filter. {This complicated frequency weighted error measure on the 

residuals is exactly equal to a mean squared error distortion measure on the original 

speech waveform.) 

However, it should be evident that there is a particular sequence which, at the 

input of the LPC inverse filter, will exactly reproduce the original speech waveform. 

This signal is just the residuals. The process of filtering original speech with the 

filter A(z)/u and then filtering the result with the inverse filter u/A(z) is a simple 

exercise. As we have seen, first encoding the residuals and then running them 

through the LPC synthesis filter does not work as well as the hybrid decoder. This 

88 



Table 4.7 
Trellis RELP reproduction of the original speech waveform 

Table entries in dB SNR 

Squared Error Gain-modified 
Code bit rate Inside Outside Inside Outside 

1/2 3,700 5.15 2.46 6.57 2.97 
1/1 6,950 6.64 4.25 7.92 4.86 
2/2 6,950 6.20 4.29 7.98 4.77 
2/1 13,450 9.94 8.50 11.14 8.81 

means only that the squared error measure used on the residuals is not the most 

appropriate error measure for speech. This fact is an indication that designing 

the trellis code portion of the hybrid decoder by using squared error on the speech 

residuals is also suboptimal. 

It may be possible to further improve the hybrid tree codes by changing the 

design procedure for the front end trellis decoder. 

One way to improve the design might be to view the LPC portion of the hybrid 

coder as a time varying distortion measure. This approach is the logical extension 

of the gain-weighted distortion measure discussed in section 4.5. This procedure 

would operate as follows: 

( 1) Encode the training sequence using a hybrid decoder consisting of the LPC 

back end and an initial guess for the trellis front end. 

(2) Use this encoding to generate a partition of the residuals. The updated 

trellis codewords would then be the centroids of the respective partition cells. 

The problem with this scheme is just that discussed in section 4.3 when fre­

quency weighted error measures were first considered. The centroid computation is 

no longer just the average of the values in the partition cell. While the centroid of 

a frequency weighted signal is the same as the centroid of the original signal, we 

wish to compute the centroid of widely separated samples of the frequency weighted 

sequence. The exact solution to this problem is unknown, but it may be that the 

arithmetic average, perhaps modified by the gain of the associated LPC frame, is 

sufficient to produce an improved trellis code. 

4.6.4 Gain weighted hybrid codes 

To check these ideas, another set of hybrid tree decoders were constructed by retain­

ing the LPC portion of the system but substituting the RELP trellis decoders de-

89 



Table 4.8 
Gain-modified hybrid tree codes 

Table entries in dB SNR 

1/2 Code 1/1 Code 2/2 Code 2/1 Code 
lgN Inside Outside Inside Outside Inside Outside Inside Outside 

1 6.23 5.01 8.71 7.07 
2 6.16 4.94 7.51 5.92 '17.20 14.98 
3 6.74 5.77 7.38 6.35 7.56 6.03 
4 7.96 6.14 10.35 9.16 18.32 16.92 
5 8.45 6.30 11.61 9.69 11.38 9.75 
6 8.71 6.68 12.31 10.32 19.04 17.39 
7 8.98 6.53 12.40 10.54 12.71 10.86 
8 9.25 6.77 13.06 11.05 19.52 17.75 
9 9.22 6.91 12.96 10.93 13.31 11.46 
10 9.41 6.92 13.28 11.00 20.16 18.01 
11 9.66 6.84 13.25 11.11 13.75 11.55 

signed using gain-weighted squared error for those designed using ordin("ry squared 

error. In support of this idea is the information shown in Table 4.7, which extends 
Table 4.5; use of the gain-modified RELP system produced higher signal to noise 
ratios for the eventual reconstructed waveforms. The results for the gain-modified 

hybrid tree codes are collected in Table 4.8 and Figure 4.18. The performance of 
the 2 bits per speech sample ·code outside the training sequence improved about 1/2 

dB, from 17.45 dB to 18.01 dB. At rate one bit per sample, both the 1/1 code and 
the 2/2 code improved by nearly one dB. At 1/2 bit per sample, performance is 

~gain slightly enhanced by the modification. 

Finally, Figure 4.19 combines some of the contents of Figures 4.16 and 4.18 in 
order to better display the differences wrought by using the gain-modified distortion 

measure in the design of the trellis front end. Figure 4.19 displays results from both 
types of hybrid codes, but outside the training sequence only. 

90 

I 

! 

• ! 



dB 
SNR 

18 h 
g 

16 

h 
14 

12 . f 

10 

c 
8 

d 
a. -----6 
b-

4 

2 

lg N 1 2 3 4 5 6 7 8 9 10 11 

Figure 4.18 Hybrid tree code performance using gain-modified trellis. 
Performance figures are in dB SNR for the original speech waveform. 
Curves a and b are for. the 1/2 code, inside and outside the training 
sequence, respectively. Curves c and d are for the 1/1 code, curves e and 
f are for the 2/2 code, and curves g and h are for the 2/1 code. 

91 

d 

a 

b 



dB 
SNR 

18 f 
e 

16 
.f 

14 e 

12 
.d 

10 .c 

8 c 
d 

6 
b 
a 

4 

2 

lg N 1 2 3 4 5 6 7 8 9 10 11 

Figure 4.19 Hybrid tree code performance. Comparison of squared error 
trellis and gain-modified trellis. Curves a and b are for the 1/2 codes 
outside the training sequence, for the squared error and modified trellises 
respectively. Curves c and d are for the 1/1 code, and curves e and f are 
for the 2/1 code. 

92 

b 
a 



5. SUMMARY 

This thesis has described a methodology for the automatic design of trellis encoding 

data compression systems for discrete time sources. The first algorithm involved 

in the system is an iterative procedure for improving a given trellis decoder. The 

algorithm uses the encoding of a training sequence of actual data from the source to 

select improved codewords for a table-lookup trellis decoder. The second algorithm, 

given a shift register trellis decoder, returns a decoder of longer constraint length 

which performs at least as well as the given decoder. These algorithms have been 

extensively tested on random sources, yielding both improvements to standard data 

compression systems and performance close to the theoretical bounds. 

In the applications area of speech coding, the trellis code design algorithms have 

been used to design three classes of low rate speech compression systems operating 

at 1/2, 1, and 2 bits per speech sample. The first, trellis encoding of the original 

speech waveform, provides intelligible, but noisy speech - this result is in agreement 

with those of other researchers. The second class of system, a residual excited 

linear predictive speech coder, uses 450 bits per second of side information in order 

to transmit the specification of a sequence of LPC synthesis filters to the decoder. 

This system offers quality improved over that of the waveform coder, but marred by 

some artifacts of the LPC block structure. The third class of speech coding system 

consists of a hydrid decoder together with a tree search encoder. In subjective 

listening tests, it offers good quality speech at a rate of 1 bit per sample. 

The problem of the design of trellis encoding systems, however, is by no means 

fully solved. Results for random sources indicate that in some cases the traditional 

shift register decoder for trellis systems is not optimal. At present, only heuristic 

methods are available to suggest alter~ative decoder structures but, given a finite­

state decoder structure, the iterative design algorithm referred to above is able to 

improve the associated output codebook. In addition, further study of the ways in 

which the design algorithms alter given trellis decoders for particular sources may 

offer improved insight into the operation of trellis encoding systems. 

In the speech coding area, this thesis has used the squared error distortion 

measure, which is felt by most researchers to be an inadequate measure of speech 

quality. More complex distortion measures can be used by tree and trellis encoders, 

but the incorporation of non single-symbol distortion measures into the code design 

algorithms remains an unsolved problem. 

93 



a 

b 

d(x, y) 
f (x) 

J 
k 

ki 

kc 

ks 
lga 
m 

m/n 
n 
q 

r 

u 
u~ 

3 

x 

{x3} 
y 

{Yi} 
Am 

A(z) 
1/ A(z) 
cm 
llCll 
D 
L 
M 
N 

A. SYMBOLOGY 

Gauss-Markov feedback coefficient 
scale factor of TPQD decoder 

distortion measure 

quantizer function (block quantizer) 
codeword index (subscript) 

time index (subscript) 
length of a shift register decoder (constraint length) 
reflection coefficient 
constraint length in channel symbols 

constraint length in source symbols 

base two logarithm of a 
iteration index (superscript) 
shift register code structure 

length of training sequence 
cardinality of communications channel 
finite-state machine state 

channel symbol 
length-k. string of channel symbols ending at time j 
training sequence symbol 

vector source symbol 

reproduction of x 
training sequence 
reproduction symbol (decoder output) 

codebook 
block quantizer codebook 
LPC analysis filter 

LPC synthesis filter 
trellis codebook 

cardinality of codebook C 
Distortion (of Rate-Distortion) 
M,L Algorithm search depth 
number of paths considered by M,L Algorithm 

codebook size 
codebook size in codewords 
partition 

Rate (of Rate-Distortion) 

94 



Si 

v 
[V, W, Z, v, ~] 
w 
x 
y 

z 
J1. 

c 
}.l(a,b) 
p 

E 

I/ 

(J 

partition cell 

channel alphabet 

finite-state machine description 

decoder state alphabet 

input alphabet 

finite-state machine output codebook 

decoder output alphabet 

block quantizer function 

codebook update function 

Gaussian distribution with mean a and variance b 

partition function 

string of base-q digits 

concatenated strings 

string of digits interpreted as a number in base-q 

string of digits of length k 
length of string a 

sample average distortion 

average distortion using updated codebook 

iteration limit 

next state function 

variance or LPC gain term 

output function 

output codebook index function 

95 



B. TREE AND TRELLIS SEARCH ALGORITHMS 

In this section, we will briefly discuss the operation of the Viterbi trellis search 
algorithm and the M,L Algorithm tree search algorithm [25),[46),[80). The Viterbi 
Algorithm, first developed for the problem of decoding convolutional channel codes, 

is a form of dynamic programming. The M,L Algorithm is best thought of as a 

breadth first tree search. There are many other algorithms for encoding tree or 
trellis codes. The reader is referred to the surveys [4] and [5] and to the original 

references for some of the algorithms [6],[9],[26],[44, sec. 10.4],[46]. 

B.1. The Viterbi Algorithm 

Because the encoding of a particular source symbol affects and is affected by the 
encodings of both past and future symbols, any optimal encoding algorithm such 
as the Viterbi Algorithm must necessarily inspect an entire sequence of source 
symbols before deciding on the encoding of any part of the sequence. This is 

usually impractical for continuously operating sources or in the presence of real-time 
encoding requirements, so often the source data is given an artificial block structure 

and the blocks encoded separately, although there may be special treatment of the 
block boundaries. Since the complexity of encoding grows only linearly with block 

length, the blocks may be quite long - perhaps several thousand symbols. 

The key to understanding the Viterbi Algorithm lies in the following observa­
tion: suppose that we are somewhere in the middle - time i - of encoding a source 

block. Since the code has a trellis structure, it must be that the path of the optimal 
encoding passes through a particular state at time j, although we may not know 
which one. The algorithm proceeds by remaining vague about the choice of encod­

ing until the end of the source block is reached, but at each time computing the 
distortions associated with paths ending in each possible state. Then, at the end 

of the block, the algorithm transmits the path which has accumulated the lowest 

distortion. 

With the aid of Figure B.l, we can easily describe the kernel of the Viterbi 
algorithm as specialized for a one bit per symbol system with distortion measure 

d(x, x'). Suppose we associate with each state i and time i a value Di(i) which 
represents the cumulative (up to time j) distortion associated with the best path 

which passes through state i at time J·. By inspection of Figure B.1 we see that 
there are only two ways to reach a certain state from preceding states, thus (for 

example) 

Do1U + 1) = min(DooU) + d(xj, Yoo1), D1o(J') + d(xj, Y101)) 

96 

I" 



state: 00 

state: 

state: 

state: 11 
timej 

Yooo 

input symbol x(j) 

00 

11 
time j + 1 

output 
codewords 

Figure B.1 Trellis section. for a 1 bit/symbol (q = 2) constraint length 3 
shift register decoder. Subscripts are the shift register contents associated 
with the selection of a particular codeword. 

where we have used base-2 subscripts for states and for decoder codebook indices. 

This expression provides a recurrence relation among the Di(j). The min operation 

selects the most desirable path along which to enter a state. The encoding of a 

length-n block proceeds as follows: 

(1) Start in some stater at time 0 by setting Dr(O) = 0 and Di(O) = oo; i =Fr. 

(2) Repeat step (2a) for j = 0, ... , n - 1. 

(2a) Given x1 , the source symbol for time J·, and Di(j) for all i, evaluate DiU + 
1) for all i. 

97 



(3) Select and transmit the path which ends in the state with the minimum 

value of Di(n). 

Step (3) is moderately tricky to implement. One way to do it is to store, for 

each state-time pair, information about whether the state was entered by the upper 

or lower path. When the end of the block is reached, it is a simple matter to 
follow these links back to the beginning of the block and then to run forward again, 

releasing path symbols to the channel. 

We mentioned that the Viterbi Algorithm's ability to select an optimal encoding · 

depends on its inspection of the entire source sequence before releasing any symbols 
to the communic;ations channel. In situations where this would cause excessive 

delay, the source sequence is often broken up into blocks which are then encoded 
independently. If blocking is done, the problem arises of specifying the state of the 
decoder at the beginning of a block. In this thesis, we have ignored this problem by 
setting the initial decoder state for a block to the final state of the previous block. 

This approach permits the decoder to operate without knowledge of the encoding 
algorithm but tends to introduce above average distortions near block boundaries 

- because the possible decoder states have been constrained. One perhaps better 
method is to set Di( 0) = 0 for all states i ·rather than for just one of them. This 

has the effect of leaving the specification of the initial state open until the algorithm 
has chosen the encoding for the entire block. Before the selected path sequence is 
released to the channel, the state number of the initial state can be transmitted. 

This procedure introduces some synchronization difficulties into the system, but 
avoids a distortion glitch at the beginning of each bloc;k. A similar effect may be 

obtained by slightly overlapping the blocks. 

The Viterbi Algorithm as described above requires a computation to be per­
formed for each possible decoder state as each source symbol is considered, thus the 

algorithm complexity grows linearly with the number of decoder states (exponential­
ly with the constraint-length of a shift register decoder) and linearly with the length 
of the sequence to be encoded. The required storage is also proportional to the 

number of decoder states and, subject to argument about the best data structure 
for storing the path information, at least proportional to the block length. 

B.2. M,L Algorithm. 

The M,L Algorithm, sometimes called the M Algorithm, is a breadth first tree 
search, determined by the fact that it examines all code tree branches at time j 

that it well ever examine before moving on to time j + 1. The algorithm is useful 

98 

1, 
i 

I' 
I 



with both tree and trellis codes, but does not distinguish between them. The M,L 

name derives from the fact that the algorithm maintains M potential paths through 

the code tree and searches to depth L. 

As a symbol arrives from the source at time j + L, the algorithm has already 

released to the channel all code symbols up to time j. M paths, all stemming from 

a common root in the code tree at time J. and extending to time j + L, are under 
consideration as possible encodings. The algorithm consists of four steps, executed 

in sequence for each source symbol. 

(1) Extend paths. With the arrival of a new source symbol, extend each path 

currently under consideration in each of the possible ways. In a one bit per symbol 

system the code tree branches two ways at each level, so each path would be 

extended in two ways. As part of this step, the algorithm calculates the distortions 

that would be incurred if any of the extended paths were actually to be used. 

(2) Release a channel symbol. Locate the path offering the minimum average 

distortion over the next L source symbols and release to the channel its first symbol. 

(There are other possible symbol release procedures, [29],[38], but they offer only 

minor differences.) 

(3) Discard unreachable paths. Discard all paths whose first symbol does not 

agree with the symbol just released. These paths can no longer be considered for 

further extension because they no longer stem from the common tree root. 

( 4) Retain the M best paths. If there are more than M paths remaining after 

step (3), recursively discard the highest distortion path until only M paths remain. 

The M,L Algorithm offers a fixed encoding delay of L symbols and fixed 

computational effort per symbol. The computational cost of the algorithm grows 

linearly with M and is generally little effected by the value of L. Storage costs are 

proportional to the product of M and L. While steps (2) and (4) above seem to 

require sorting the paths in order of their distortion, in fact it is only necessary to 

locate the best and M-th best paths. This simpler problem, known as a median or 

percentile search, is computable in linear time [49]. 

One major advantage of the M,L algorithm is the extent to which its level of 

performance may be varied by changing the values of M and L. While most of 

the benefits of a tree search may be obtained with modest values of M, perhaps 4 

to 10, larger values usually provide some additional performance [17],[82]. Values 

of L somewhat greater than the constraint length of the decoder seem generally 
sufficient. 

99 



We stated earlier that in the case of searching trees generated by finite-state 

decoders, the M,L Algorithm takes no advantage of the folded tree, or trellis, 

structure of the decoder. If the M,L Algorithm were used to exhaustively search 
a code tree, M would grow exponentially with L, independent of the decoder 
structure. The Viterbi Algorithm, by taking advantage of the trellis structure of 

finite-state decoders, is able to limit the number of paths considered to the number 
of states of the decoder - independent of search depth. 

This fact is not merely of interest in the limit of large M and L. Even for 

relatively modest search effort, if two or more of the paths under consideration 
by the M,L Algorithm rejoin one another (by teaching the same decoder state by 

different routes) they may both be further extended. This event will result in some 
duplicate computation and a reduction in the effective value of M. One way to 

avoid this kind of difficulty is to add a special test between steps (3) and ( 4) above. 

(3a) Check for duplicates. If there are any paths which terminate in the same 
decoder state, discard all but the best. 

This additional step has the effect of locating paths which separate in the 
code tree, but later rejoin one another by reaching an identical decoder state by 

different routes. As M becomes greater than the total number of decoder states, 
this modification will limit the number of retained paths to the number of decoder 

states. 

100 



C. RANDOM NUMBER GENERATORS 

Computer aided experiments with codes for random sources cannot be pursued 

without test data. Since true random numbers, perhaps obtained by measuring 

the periods between emission of particles by a substance undergoing radioactive 

decay, are difficult to obtain and cumbersome to store, recourse is usually made 

to "random" number generators. The use of such pseudorandom generators may 

provide some benefit, as the sequences obtained can be easily reproduced. An 

excellent discussion of these matters may be found in [48]. 

The experiments described in Chapter 3 of this thesis were conducted with the 

aid of the additive random number generator 

Yi = (Yi-55 - Yi-24) (mod 231 - 1). 

This generator is described in [7 4] and generates numbers uniformly distributed 

between 0 and 231 - 1. Although it requires a table of the previous 55 outputs, 

the generator is extremely fast, since it does not require any multiplications. On 

computers capable of 32-bit arithmetic, the modulus operation is also fast, requiring 

only a masking operation and, roughly half the time, a single subtraction. 

An alternative number generator, 

y3· = (1327217885yi_ 1 ) (mod 231 - 1), 

requiring less storage, but including a multiplication, was used for the construction 

of random initial decoders. This generator is of the classic linear congruential type 

and also produces numbers distributed uniformly between 0 and 231 - 1. 

Once uniform random numbers are obtained, there are various algorithms 

available for the production of numbers having other distributions. For the Gaussian 

sources used in Chapter 3, an extension of Forsythe's method was used - Algorithm 

FLS in [3]. This procedure is quite complex, but extremely fast. A simpler, but 

much slower method may be found in [31]. 

w; = J2 Jn 1 sin 2irY;+1 
Yi 

where w is distributed .A/(O, 1), and y is uniform in [O, 1). 

101 



D. SPEECH DATA 

Attached to this report is a soundsheet containing most of the speech results dis­
cussed in chapter 4. The soundsheet includes representatives of waveform trellis 

encoding, trellis RELP encoding, and hybrid tree encoding. Chapter 4 discussed al­

ternative trellis structures for use at one bit per speech sample; since the 1/1 and the 

2/2 code structures produce very similar results, only the 1/1 results are included 
here. Chapter 4 also discussed alternative versions of the RELP and hybrid encod­

ing systems using the modified distortion measure u( x-y )2• Since the modifications 

resulted in improved signal to noise ratios, the modified results are presented here. 

The first three bands include segments of the various encoding methods at 1/2 
bit per speech sample, 1 bit per speech sample, and 2 bits per speech sample. All 

these segments are from outside the training sequence. The fourth band includes 
the original speech data: first the test segment and then the training segment. 

Band 1: Waveform trellis encoding 

Segment Code type 

1 1/2 
2 1/1 
3 2/1 

Band 2: Trellis RELP encoding 

Bits/sample 

1/2 
1 
2 

Bits/ second 

3,250 
6,500 

13,000 

Bits/second entries include 450 bps LPC side information 

4 
5 
6 

1/2 
1/1 
2/1 

Band 3: Hybrid tree encoding· 

1/2 
1 
2 

3,700 
6,950 

13,450 

Bits/second entries include 450 bps LPC side information 

7 
8 
9 

1/2 
1/1 
2/1 

Band 4: Original PCM speech 

1/2 
1 
2 

Segment 10 is the original test sequence 
Segment 11 is the original training sequence 

10 
11 

102 

12 
12 

3,700 
6,950 

13,450 

78,000 
78,000 

II 
I 



REFERENCES 

[1] J.-P. Adoul, J. L. Debray, and D. Dalle: "Spectral Distance Measure Applied to 
the Design of DPCM Coders with L Predictors," Con[. Record 1980 IEEE Intl. 
Conf. on Acoustics, Speech, and Signal Processing, Denver, CO, pp. 512-515, 
April 1980. 

[2] A. Aho, J. Hopcroft, and J. Ullman: The Design and Analysis of Computer 
Algorithms, Addison-Wesley, Reading, MA 1976. 

(3) J. H. Ahrens and U. Dieter: "Extensions of Forsythe's Method for Random 
Sampling from the Normal Distribution," Mathematics of Computation, Vol. 
27, No. 124, pp. 927-937, October 1973. 

[4] J. B. Anderson: "Effectiveness of Sequential Tree Search Algorithms in Speech 
Digitization," Conf. Record, 1979 International Conference on Communications, 
Boston, MA, pp. 8.1.1-8.1.6, June 1979. 

[5] J.B. Anderson: "Recent Advances in Sequential Encoding of Analog Waveforms," 
Conf. Record 1978 National Telecommunications Conference, Birmingham, AL, 
pp. 19.4.1-19.4.5, December 1978. 

[6] J.B. Anderson: "A Stack Algorithm for Source Coding with a Fidelity Criterion," 
IEEE Trans. on Informatfon Theory, Vol. IT-20, No. 2, pp. 211-226, March 1974. 

(7] J. B. Anderson and J. B. Bodie: "Tree Encoding of Speech," IEEE Trans. on 
Information Theory, Vol. IT-21, No. 4, pp. 379-387, July 1975. 

[8] J. B. Anderson, C. W. P. Ho: "Architecture and Construction of a Hardware 
Sequential Encoder for Speech," IEEE Trans. on Communications, Vol. COM-25, 
No. 7, pp. 703-707, July 1977. 

[9] J. B. Anderson and F. Jelinek: "A 2-Cycle Algorithm for Source Coding with a 
Fidelity Criterion," IEEE Trans. on Information Theory, Vol. IT-19, No. 1, pp. 
77-92, January 1973. 

[10] J. B. Anderson and C. W. Law: "Real-Number Convolutional Codes for Speech­
Like Quasi-Stationary Sources," IEEE Trans. on Information Theory, Vol. IT-23, 
No. 6, pp. 778-782, November 1977. 

[11] B. S. Atal and M. R. Schroeder: "Adaptive Predictive Coding of Speech 
Signals," Bell. Syst. Tech. J., Vol. 45, No. 7, pp. 1973-1986, October 1970. 

[12] D. W. Becker and A. J. Viterbi: "Speech Digitization and Compression by 
Adaptive Predictive Coding with Delayed Decision," Con[. Record, 1975 IEEE 

103 



National Telecommunications Conf., pp. 46/18-46/23, New Orleans, LA 1975. 

[13] T. Berger: Rate Distortion Theory, A Mathematical Basis for Data 
Compression, Prentice-Hall, Englewood Cliffs, NJ 1971. 

[14] A. W. Biermann and J. A. Feldman: "On the Synthesis of Finite-State 
Machines," A.I. Memo No. 114, Computer Science Department, Stanford 
University, April 1970. 

[15] G. Birkhoff and T. C. Bartee: Modern Applied Algebra, McGraw-Hill, New 
York 1970. 

[16] B. A. Blesser: "Digitization of Audio," J. Audio Engineering Society, Vol. 26, 
No. 10, pp. 739-771, October 1978. 

[17] J.B. Bodie: "Multi-Path Tree Encoding for Analog Data Sources," Report CRL-
20, Communications Research Laboratory, McMaster University, Hamilton, 
Ontario, Canada. June 1974. 

[18) A. Buzo, A. H. Gray Jr., R. M. Gray, and J. D. Markel: "Speech Coding 
Based on Vector Quantization," IEEE ASSP, Vol. ASSP-28, No. 5, pp. 562-57 4, 
October 1980. 

[19] C. C. Cutler: "Delayed Encoding: Stabilizer for Adaptive Coders," IEEE Trans. 
Comm. Technology, Vol COM-19, No. 6, Dec. 1971, pp. 898-904. 

[20] C.R. Davis, M. E. Hellman: "On Tree Coding with a Fidelity Criterion," IEEE 
Trans. on Information Theory, Vol. IT-21, No. 5, pp. 373-378, July 1975. 

[21] R. A. Donnan and J. R. Kersey: "Synchronous Data Link Control: A 
Perspective," IBM Systems Journal, May 1974. 

[22) J. G. Dunham: "An Iterative Theory for Code Design," Submitted to IEEE 
Trans. on Information Theory, 1980. 

[23) W. A. Finamore and W. A. Pearlman: "Optimal Encoding of Discrete-Time 
Continuous-Amplitude Memoryless Sources with Finite Output Alphabets," 
IEEE Trans. on Information Theory, Vol. IT-26, No. 2, pp. 144-155, March 
1980. 

[24) J. L. Flanagan, M. R. Schroeder, B. S. Atal, R. E. Crochiere, N. S. Jayant, 
and J. M. Tribolet: "Speech Coding," IEEE Trans. on Communications, Vol. 
COM-27, No. 4, pp. 710-737, April 1979. 

[25) G. D. Forney, Jr.: "The Viterbi Algorithm," Proceedings of the IEEE, Vol. 61, 
No. 3, pp. 268-278, March 1973. 

[26] R. G. Gallager: "Tree Encoding for Symmetric Sources with a Distortion 

104 



Measure," IEEE Trans. on Information Theory, Vol. IT-20, No. 1, pp. 65-76, 
January 1974. 

[27] J. D. Gibson: "Adaptive Prediction in Speech Differential Encoding Systems," 
Proceedings of the IEEE, Vol. 68, No. 4 April 1980, pp. 488-525. 

[28] J. D. Gibson: "Tree Coding versus Differential Encoding of Speech," 1981 
International Conf. on Information Theory, Santa Monica, CA, February 1981. 

[29] J. D. Gibson and A. C. Goris: "Incremental and Variable-Length Tree Coding· 
of Speech," Conf. Record, 1979 International Conference on Communications, 
Boston, MA, 8.5.1-8.5.5, June 1979. 

[30] B. Gold and C. M. Rader: "The Channel Vocoder," IEEE Trans. on Audio and 
Electroacoustics, Vol. AU-15, No. 4, pp. 148-160, December 1967. 

[31] B. Gold and C. Rader: Digital Processing of Signals, McGraw-Hill, New York 
1969. 

[32] A. J. Goldberg: "Predictive Coding with Delayed Decision," Conf. Record, 1977 
IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Hartford, CT, pp. 
405-408, May 1977. 

[33] A. J. Goldberg: "A Real-Time Adaptive Predictive Coder using Small Comput­
ers," IEEE Trans. on Communications, Vol. COM-23, No. 12, pp. 1443-1451, 
December 1975. -· 

[34] A. H. Gray Jr., R. M. Gray, and J. D. Markel: "Comparison of Optimal 
Quantizations of Speech Reflection Coefficients," IEEE Trans. on Acoustics, 
Speech, and Signal Processing, Vol. ASSP-25, No. 1, pp. 9-23, February 1977. 

[35] A. H. Gray Jr. and J. D. Markel: "Distance Measures for Speech Processing," 
IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-24, No. 5, 
pp. 380-391, October 1976. 

[36] A. H. Gray Jr. and J. D. Markel: "Quantization and Bit Allocation in Speech 
Processing," IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. 
ASSP-24, No. 6, pp. 459-473, December 1976. 

[37] A. H. Gray and D. Y. Wong: "The Burg Algorithm for LPC Speech Analy­
sis/Synthesis," IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. 
ASSP-28, No. 6, pp. 609-615, December 1980. 

[38] R. M. Gray: "Time-Invariant Trellis Encoding of Ergodic Discrete-Time Sources 
with a Fidelity Criterion," IEEE Ttans. on Information Theory, Vol. IT-23, No. 
1, pp. 71-83, January 1977. 

[39] R. M. Gray, A. Buzo, A.H. Gray Jr., Y. Matsuyama: "Distortion Measures for 

105 



Speech Processing," IEEE Trans. on Acoustics, Speech, and Signal Processing, 
Vol. ASSP-28, No. 4, pp. 367-376, August 1980 . 

[40] R. M. Gray, J. C. Kieffer, and Y. Linde: "Locally Optimal Block Quantizer 
Design," Information and Control, Vol. 45, No. 2, pp. 178-198, May 1980. 

[41] R. M. Gray and Y. Linde: "Vector Quantization and Predictive Quantization for 
Gauss-Markov Sources," Submitted to IEEE Trans. on Communications, 1981. 

[42] R. M. Gray, D. L. Neuhoff, and D.S. Ornstein: "Nonblock Source Coding with 
a Fidelity Criteria," Annals of Probability, Vol. 3, pp. 478-491, April 1975. 

[43] N. S. Jayant and S. A. Christensen: "Tree-Encoding of Speech Using the (M, 
L)-Algorithm and Adaptive Quantization," IEEE Trans. on Communications, 
Vol. COM-26, No. 9, pp. 1376-1379, September 1978. 

[44] F. Jelinek: Probabilistic Information Theory, McGraw-Hill, New York 1968. 

[45] F. Jelinek: "Tree Encoding of Memoryless Discrete Time Sources with a Fidelity 
Criterion," IEEE Trans. Information Theory,- Vol. IT-5, No. 5, pp. 584-590, 
September 1969. 

[46] F. Jelinek and J. B. Anderson: "Instrumentable Tree Encoding of Information 
Sources," IEEE Trans. Information Theory, Vol. IT-17, No. 1, pp. 118-119, 
January 1971. 

[47] D. E. Knuth: The Art of Computer Programming, Vol. 1, Fundamental Algo­
rithms, Addison-Wesley, Reading, MA 1973. 

[48] D. E. Knuth: The Art of Computer Programming, Vol. 2, Seminumerical Algo­
rithms, Addison-Wesley, .Reading, MA 1973. 

[49] D. E. Knuth: The Art of Computer Programming, Vol. 3, Sorting and Searching, 
Addison-Wesley, Reading, MA 1973. 

[50] A. N. Kolmogorov and S. V. Fomin: Introductory Real Analysis, Dover Publi­
cations, New York 1970. 

[51] D. T. L. Lee: "Ladder Form Filters," Ph.D. Dissertation, Information Systems 
Laboratory, Stanford University, August 1980. 

[52] Y. Linde: "The Design of Tree and Trellis Data Compression Systems," Ph.D. 
Dissertation, Information Systems Laboratory, Stanford University, December 
1977. 

[53] Y. Linde, A. Buzo, R. M. Gray: "An Algorithm for Vector Quantizer Design," 

106 



IEEE Trans. on Communications, Vol. COM-28, No. 1, pp. 84-95, January 1980. 

[54] Y. Linde and R. M. Gray: "The Design of Tree and Trellis Data Compression 
Systems," Information Systems Laboratory Report, Stanford University, SEL 
Technical Report No. 6504-2, February 1978. 

[55] Y. Linde and R. M. Gray: "A Fake Process Approach to Data Compression," 
IEEE Trans. on Communications, Vol. COM-26, No. 6, pp. 840-847, June 1978. 

[56] S. P. Lloyd: "Least Squares Quantization in PCM's," Bell Telephone Labora­
tories Paper, Murray Hill, NJ, 1957. 

[57] D. G. Luenberger: Introduction to Linear and Nonlinear Programming, 
Addison-Wesley, Reading, MA 1973. 

[58] R. A. MacDonald: "Signal-to-Noise and Idle Channel Performance of 
Differential PCM Systems," Bell Sys. Tech. J., pp. 1123-1151, September 1966. 

[59] J. MacQueen: "Some Methods for Classification and Analysis of Multivariate 
Observations," Proc. Fifth Berkeley Symp. on Math. Statistics and Probability, 
Vol. 1, pp 281-296, 1967. 

[60] J. Makhoul: "Linear Prediction: A Tutorial Review," Proceedings of the IEEE, 
Vol. 63, No. 4, pp. 561-580, April 1975. 

[61] J. W. Mark: "Adaptive Trellis Encoding of Discrete-Time Sources with a 
Distortion Measure," IEEE Trans. on Communications, Vol. COM-25, No. 4, 
pp 408-417, April 1977. 

[62] J. D. Markel and A. H. Gray: Linear Prediction of Speech, Springer-Verlag, 
New York 1976. 

[63] Y. Matsuyama: "Process Distortion Measures and Signal Processing," 1981 
International Conf. on Information Theory, Santa Monica, CA, February 1981. 

[64] Y. Matsuyama: "Speech Compression Systems Using a Set of Inverse Filters," 
Ph. D. Dissertation, Information Systems Laboratory, Stanford University, 
August 1978. 

[65] Y. Matsuyama and R. M. Gray: "Universal Tree Coding for Speech," IEEE 
Trans. on Information Theory, Vol. IT-27, No. 1, pp. 31-40, January 1981. 

[66] J. Max: "Quantizing for Minimum Distortion," IRE Trans. on Information 
Theory, Vol. IT-6, No. 2, pp. 7-12, March 1960. 

[67] M. Morf and D. T. L. Lee: "Fast Algorithms for Speech Modeling," Technical 
Report, Information Systems Laboratory No. M308-1, Stanford University, 

107 



December 1978. 

[68] A. M. Noll: "Cepstrum Pitch Determination," J. Acoustic Soc. Amer., Vol. 41, 
pp. 293-309, February 1967. 

[69] J. B. O'Neal, Jr. and R. W. Stroh: "Differential PCM for Speech and Data 
Signals," IEEE Trans. on Communications, Vol. COM-20, No. 10, pp. 900-912, 
October 1972. 

[70) W. A. Pearlman: "A Sliding Block Code for Small User Alphabets with 
Performance near the Rate-Distortion Limit," 1981 International Conf. on 
Information Theory, Santa Monica, CA, February 1981. 

[71 J L. R. Rabiner and R. W. Schaf er: Digital Processing of Speech Signals, Prentice­
Hall, Englewood Cliffs, NJ 1978. 

[72] G. Rebolledo: ''Vector Quantization Applied to Speech Coding," 1981 
International Conf. on Information Theory, Santa Monica, CA, February 1981. 

[73] G. Rebolledo: ''Vector Quantization Applied to Speech Coding," Ph. D. 
Dissertation, Information Systems Laboratory, Stanford University, June 1981. 

[74] J. Reiser: "The Analysis of Additive Random Number Generators," Stanford 
University Report, STAN-CS-77-601, March 1977. 

[75] C . .E. Shannon:· "Codiilg Theorems for a Discrete Source with a Fidelity 
Criterion," IRE National Convention Record, part 4, pp. 142-163, 1959. 

[76] C. E. Shannon: "A Mathematical Theory of Communication," Bell. Syst. Tech. 
J., Vol. 27, pp. 379-423, July 1948 and pp. 623-656, October 1948. 

[77) J. Uddenfeldt and L. H. Zetterberg: "Algorithms for Delayed Encoding in Delta 
Modulation with Speech-Like Signals," IEEE Trans. on Communications, Vol. 
COM-24, No. 6, pp. 652-658, June 1976. 

[78] Chong Kwan Un and Hwang Soo Lee: "A Comparative Study of Adaptive 
Delta Modulation Systems," Conf. Record, 1979 International Conference on 
Communications, Boston, MA, pp. 8.6.1-8.6.5, June 1979. 

[79] Chong Kwan Un and D. Thomas Magill: "The Residual-Excited Linear 
Prediction Vocoder with Transmission Rate Below 9.6 kbits/s," IEEE Trans. 
on Communications, Vol. COM-23, No. 12, pp. 1466-1474, December 1975. 

[80] A. J. Viterbi and J. K. Omura: "Trellis Encoding of Memoryless Discrete-Time 
Sources with a Fidelity Criterion," IEEE Trans. on Information Theory, Vol. 
IT-20, No. 3, pp. 325-332, May 1974. 

[81] S. G. Wilson: "Adaptive Tree Encoding of Discrete-Time Sources with Speech 

108 

·i 



Applications," Conf. Record, 1978 IEEE National Telecommunications Conf., 
Birmingham, AL, pp. 19.5.1-19.5.5, December 1978. 

[82] S. G. \Vilson: "Adaptive Tree Encoding of Speech at Low Bit Rates with 
\Veighted Error Criteria," Communication Systems Laboratory Report, Univer­
sity of Virginia, No. UVA/526171/EE78/101, November 1978. 

[83] S. G. Wilson and S. Husain: "Adaptive Tree Encoding of Speech at 8000 bits/s 
with a Frequency Weighted Error Criterion," IEEE Trans. on Communications, 
Vol. COM-27, No. 1, pp. 165-170, January 1979. 

[84] H. S. Witsenhausen: "On the Structure of Real Time Source Coders," Bell Syst. 
Tech. J., Vol. 58, No. 6, pp. 1437-1451, July 1979. 

[85] D. Y. Wong, F. B. Juang, and A.H. Gray: "An 800 bps Speech Compression 
System Based on Vector Quantization," 1981 International Conf. on Information 
Theory, Santa Monica, CA, February 1981. 

[86] L. H. Zetterberg and J. Uddenfeldt: "Adaptive Delta Modulation with Delayed 
Decision," IEEE Trans. on Communications, Vol. COM-22, No. 9, pp. 1195-1198, 
September 197 4. 

109 






