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ABSTRACT 

This report reproduces three papers on the Dorado personal computer. Each has been, or 
will be, published in a journal or proceedings. 

A Processor for a High-Performance Personal Computer, by Butler W. 
Lampson and Kenneth A. Pier. Appeared in Proc. 7th Symposium on Computer 
Architecture, SigArch/lEEE, La Saule, May 1980, 146-160. 

An Instruction Fetch Unit for a High-Performance Personal Computer, by 
Butler W. Lampson, Gene A. McDaniel, and Severo M. Ornstein. Submitted for 
publication. 

The Memory System of a High·Performance Personal Computer, by Douglas 
W. Clark, Butler W. Lampson, and Kenneth A. Pier. A revised version will appear in 
IEEE Transactions on Computers. 

The first paper describes the Dorado's micro-programmed processor, and also gives an 
overview of its history and physical construction. The second discusses the instruction fetch 
unit, which prepares program instructions for execution, and the third deals with the cache, 
map and main storage of the Dorado's memory system. 
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A Processorfora 
High-Performance Personal Computer 

by Butler WI Lampson and Kenneth AI Pier 

January 1981 

ABSTRACT 

This paper describes the design goals, microarchitecture, and implementation of the 
microprogrammed processor for a compact high performance personal computer. This 
machine supports a range of high level language environments and high bandwidth I/O 
devices. It also has a cache, a memory map, main storage, and an instruction fetch unit; 
these are described in other papers. The processor can be shared among 16 microcoded 
tasks, performing microcode context switches on demand with essentially no overhead. 
Gonditional branches are done without any lookahead or delay. Microinstructions are fairly 
tightly encoded, and use an interesting variant on control field sharing. The processor 
implements a large number of internal registers, hardware stacks, a cyclic shifter/masker, 
and an arithmetic-logic unit, together with external data' paths for instruction fetching, 
memory interface, and I/O, in a compact, pipelined organization. 

The machine has a 60 ns microcycle, and can execute a simple macroinstruction in one 
cycle: the I/O bandwidth is 530 megabits/sec. The entire machine, including disk, display 
and network interfaces, is implemented with approximately 3000 MSI components, mostly ECl 
10K; the processor is about 35% of this. In addition there are up to 4 storage modules; each 
with about 300 16K or 64K RAMS and 200 MSI components, for a maximum of 8 megabytes. 
The total volume, including power and cooling, is about .14 m3 (4.5 ft3). A number of 
machines are currently running. 

A version of this paper appeared in Proc. 7th Symposium on Computer Architecture, 
SigArch/IEEE, La Baule, May 1980,146-160. 
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1. Introduction 

The machine described in this paper, called the Dorado, was designed by and for the Computer 
Science Laboratory (CSL) of the Xerox Palo Alto Research Center. CSL has approximately forty 
people doing research in most areas of computer science, including VLSI design, communications, 
programming systems, graphics and imaging, office automation, artificial intelligence, computational 
linguistics, and analysis of algorithms. There is a heavy emphasis on building usable prototype 
systems, and many such systems, both hardware and software, have been developed over the last 
seven years. Most are part of a personal computing environment which is loosely coupled to other 
such environments, and to service facilities for storage and printing, by a high bandwidth 
communication network [8]. 

The Dorado provides the hardware base for the next generation of system research in CSL. Earlier 
machines have limitations on virtual address size, reuI memory size, memory bandwidth, and 
processor speed that severely hamper our work. The size and speed of the Dorado minimize these 
limitations. 

The paper has six sections. We begin by sketching the history of the machine's development (§ 2). 
Then we discuss the design goals for the Dorado (§ 3), and explain how these goals and the 
available technology detennine the high level processor architecture (§ 4). Next, we present the 
most important details of the processor architecture (§ 5) and some interesting aspects of the 
implementation (§ 6). A final section describes the machine's perfonnance (§ 7). 

2. History 

The Dorado is a descendant of a small personal computer called the Alto, which was designed and 
built as an experimental machine in CSL during 1973 [8]. The Alto was a fairly simple machine, but 
it had several features which turned out to be important: 

• a microprogrammed processor that is efficiently shared among all the device controllers as 
well as the virtual machine interpreter; 

• a fairly high resolution display system that uses a full bitmap stored in the Alto main 
memory; 

• a device for pointing at images on the display; 

• an interface to a high bandwidth communication network. 

The microarchitecture allows all the device controllers to share the full power of the processor, 
rather than having independent access to the memory. As a result, controllers can be small and yet 
the 1/0 interface provided to programs can be powerful. This concept of processor sharing is 
fundamental to the Dorado as well, and is more fully explained in § 4. 

Although there are now many hundreds of Altos at work within Xerox and elsewhere, and they 
formed the hardware base for CSL until mid-1980, it was clear by 1976 that a large and rapidly 
increasing amount of effort was going into surmounting the Alto's limitations of space and speed, 
rather than trying out research ideas in experimental systems. CSL therefore began to design a new 
machine aimed at relieving these burdens. During 1976 and 1977, design work on the Dorado 
proceeded in CSL and the System Development Depanment. Requirements and contributions from 
parts of Xerox outside of CSL affected the design considerably, as did the tendency toward 
grandiosity well known in second systems. The memory bandwidth and processor throughput were 
substantially increased. 

In 1977, implementation of the laboratory prototype for the Dorado began. The prototype 
packaging and a design automation system had already been implemented. and were used for 
constructing and debugging Dorado Model O. A small team of people worked steadily on all 
aspects of the Dorado system until summer of 1978, when the prototype successfully ran all the 
Alto software. During the summer and fall of 1978 we used the lessons learned in debugging and 
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microcoding the Model 0, together with the significant improvements in memory technology since 
the Model 0 design was frozen, to redesign and reimplement nearly every section of the Dorado. 
We fixed some serious design errors and a number of annoyances to the microcoder, substantially 
expanded all the memories of the machine, and speeded up the basic cycle time. Dorado Model 1 
came up in the spring of 1979. 

During the next year several copies of this machine were built in the stitch weld technology used for 
the prototypes. Stitchwelding worked very well for prototypes, but is too expensive for even 
modest quantities. Its major advantages are packaging density and signal propagation characteristics 
very similar to those of the production technology, very rap1d turnaround during development 
(three days for a complete 300-chip board, a few hours for a modest change), and complete 
compatibility with our design automation system. 

At the same time, the design was transferred to multiwire circuit boards; the Manhattan wire 
routing and lower impedance of this technology slowed the machine down by about 15%. Dorados 
are now assembled with very little in-house labor, since boards and backpanels are manufactured 
and loaded by subcontractors. We do 100% continuity testing of the boards both before and after 
they are loaded with components and soldered. Checkout of an assembled machine is still non
trivial, but is a fairly predictable operation done entirely by technicians. 

3. Goals 

This section of the paper describes the overall design goals for the Dorado. The high level 
architecture of the processor, described in the next section, follows from these goals and the 
characteristics of the available technology. 

The Dorado is intended to be a powerful but personal computing system. It supports a single user 
within a programming system which may extend from the microinstruction level to a fully 
integrated programming environment for a high-level language; programming at all levels must be 
relatively easy. The machine must be physically small and quiet enough to occupy space near its 
users in an office or laboratory setting, and cheap enough to be acquired in considerable numbers. 
These constraints on size, noise, and cost have a major effect on the design. 

In order for the Dorado to quickly become useful in the existing CSL environment, it had to be 
compatible with the Alto software base. High-performance Alto emulation is not a requirement, 
however; since the existing software is also obsolescent and due to be replaced, the Dorado only 
needs to run it somewhat faster than the Alto can. 

Instead, the Dorado is optimized for the execution of languages that are compiled into a stream of 
byte codes; .. this execution is called emulation. Such byte code compilers exist for Mesa [3, 6J, 
Interlisp [2, 7] and Smalltalk [4]. An instruction fetch unit (IFU) in the Dorado fetches bytes from 
such a stream, decodes them a~ instructions and operands, and provides the necessary control and 
data information to the processor; it is described in another paper [5]. Further support for this goal 
comes from a very fast microcycle, and a microinstruction powerful enough to allow interpretation 
of a simple macroinstruction in a single microinstruction. There is also a cache which has a latency 
of two cycles, and can deliver a word every cycle. The goal of fast execution affects the choices of 
implementation technology, microstore organization, and pipeline organization. It also mandates a 
number of specific features, for example, stacks built with high speed memory, and hardware base 
registers for addressing software contexts. 

Another major goal for the Dorado is to support high-bandwidth input/output In particular, color 
monitors, raster scanned primers, and high speed communications are all part of the research 
activities within CSL; one of these devices typically has a bandwidth of 20 to 400 megabits/second. 
Fast devices should not slow down the emulator too much, even though the two functions compete 
for many of the same resources. Relatively slow devices must also be supported, without tying up 
the high bandwidth I/O system. These considerations clearly suggest that I/O activity and emulation 
should proceed in parallel as much as possible. Also, it must be possible to integrate as yet 
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undefined device controllers into the Dorado system in a relatively straightforward way. The 
memory system supports these requirements by allowing cache accesses and main storage references 
to proceed in parallel, and by fully segmented pipelining which allows a cache reference to start in 
every cycle, and a storage reference to start in every storage cycle; this system is described in 
another paper [1]. 

Any system for experimental research should provide adequate resources at many levels. For the 
processor, this means plenty of high speed internal storage as well as ample speed. Hardware 
support for handling arbitrary bit strings, both large and small. is also necessary. 

4. High level architecture 

We now proceed to consider the major design decision!) which shaped the Dorado processor. For 
the most part these were guided by the goals set out above, the available implementation 
technology, and our past experience. In this section we stay at a high level, reserving the details of 
the architecture for the nexL 

The Dorado fits into a very compact package, illustrated in Figure 1a; Figure 1b is a high-level 
block diagram. Circuits are mounted on large, high density logic boards (288 16-pin DIP logic 
packages plus 144 8-pin SIP resistor packages per board). The boards slide horizontally into zero
insertion-force connectors mounted in dual backpanels ("sidepanels"); they are .625 inches apart. 
This density makes it possible to reconcile the goals of size and capability. Certain sacrifices are 
made, however. For example, it is not possible to access every signal with a scope probe for 
debugging and maintenance. We make up for this by providing sophisticated debugging facilities, 
diagnostics, and the ability to incrementally assemble and test a Dorado from the bottom up. 

The entire machine, including disk, display and network interfaces, is implemented with 
approximately 3000 MSI components, mostly EeL 10K; the processor is about 35% of this. In 
addition there are up to 4 storage modules, each with about 300 16K or 64K RAMS and 200 MSI 
components, for a maximum of 8 megabytes. The total volume, including power and cooling, is 
about .14 m3 (4.5 ft3); this is without any enclosing cabinet, however, and the open machine is quite 
noisy. Including an 80 megabyte removable disk, it requires about 2.5 Kw of AC power. 

Most data paths are sixteen bits wide. The relatively small busses, registers, data paths, and 
memories which result help to keep the machine compact Packaging, however, is not the only 
consideration. CSL has a large class of applications where doubling the data path width increases 
performance only a little, because some of the bits contain type codes, flags or whatever which must 
be examined before an entire datum can be processed. Speed dictates a heavily pipelined structure 
in any case, and this parallelism in the time domain tends to compensate for the lack of parallelism 
in the space domain. Keeping the machine physically small also improves the speed, since physical 
distance accounts for a considerable fraction of the basic cycle time. Finally, performance is often 
limited by the cache hit rate, which cannot be improved, and may be reduced, by wider data paths 
(if the number of bits in the cache is fixed). 

. Rather than putting processing capability in each 1/0 controller and using a shared bus or a switch 
to access the memory, the Dorado shares the processor among all the 1/0 devices and the emulator. 
This fundamental concept of the architecture, which motivates much of the processor design. was 
first tried in the Alto. It works for two main reasons. 

• First, unless a system has both multiple memory busses (i.e., multi-ported memories) and 
multiple memory modules which can cycle independently, the main factor governing 
processor throughput is memory contention. Put simply, when 1/0 interfaces make memory 
references, the emulator ends up waiting for the memory. In this situation the processor 
might as well be working for the 1/0 device. 
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• Second, when the processor is available to each device, complex device interfaces can be 
implemented with relatively little dedicated hardware, since most of the control does not 
have to be duplicated in each interface. For low bandwidth devices, the force of this 
argument is reduced by the availability of LSI controller chips, but for data rates above one 
megabit/second no such chips exist as yet 

Of course, to make this sharing feasible, switching the processor must be nearly free of overhead, 
and devices must be able to make quick use of the processor resources available to them. 

Many design decisions are based on the need for speed. Raw circuit speed is a beginning. Thus, 
the Dorado is implemented using the fastest commercially available technology which has a 
reasonable level of integration and is not too hard to package. In 1976, the obvious choice was the 
ECL 10K family of circuits; probably it still is. Secondly, the processor is organized around two 
pipelines. One allows a microinstruction to be started in each cycle, though it takes three cycle to 
complete execution. Another allows a processor context switch in each cycle, though it takes two 
cycles to occur. Thirdly, independent busses communicate with the memory, IFU, and 1/0 systems, 
so that the processor can both control and service them with minimal overhead. 

Finally, the design makes the processor both accessible and flexible for users at the microcode level, 
so that when new needs arise for fast primitives, they can easily be met by new microcode. In 
particular, the hardware eliminates constraints on microcode operations and sequencing often found 
in less powerful designs, e.g., delay in the delivery of intennediate results to registers or in 
calculating and using branch conditions, or pipeline delays that require padding of microinstruction 
sequences without useful work. We also included an ample supply of resources: 256 general 
registers, four hardware stacks, a fast barrel shifter, and fully writeable microstore, to make the 
Dorado reasonably easy to microcode. 

5. Low level architecture 

This section describes in some detail the key ideas of the architecture. Implementation techniques 
and details are for the most part deferred to the next section; readers may want to jump ahead to 
see the application of these ideas in the processor. Along with each key idea is a reference to the 
places in the processor where it is used. 

5.1 Tasks 

There are 16 priority levels associated with microcode execution. These levels are called microlasks, 
or simply tasks. Each task is nonnally associated with some hardware and microcode which 
together implement a device controller. The tasks have a fixed priority, from task 0 (lowest) to task 
15 (highest). Device hardware can request that the processor be switched to the associated task; 
such a wakeup request will be honored when no requests of higher priority are outstanding. The set 
of wakeup requests is arbitrated within the processor, and a task switch from one task to another 
occurs on demand, typically every ten or twenty microcyc1es when a high-speed device is running. 

When a device acquires the processor (that is, the processor is running at the requested priority 
level and executing the microcode for that taSk), the device will presumably receive service from its 
microcode. Eventually the microcode will block, thus relinquishing the processor to lower priority 
tasks until it next requires service. While a given task is running, it has the exclusive attention of 
the processor. This arrangment is similar in many ways to a conventional priority interrupt system. 
An important difference is that the tasks are like coroutines or processes, rather than subroutines: 
when a task is awakened, it continues execution at the point where it blocked. rather than restarting 
at a fixed point. This ability to capture pan of the state in the program counter is very powerful. 

Task 0 is not associated with a device controller; its microcode implements the emulators currently 
resident in the Dorado. Task 0 requests service from the processor at all times, but with the lowest 
priority. 
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5.2 Task scheduling 

Whenever resources (in this case, the processor) are multiplexed. context switching must only 
happen when the state being temporarily abandoned can be restored In most multiplexed 
microcoded systems, this requires the microcode itself to explicitly poll for requests, save and 
restore state, and initiate context switches. A certain amount of overhead results. Furthennore, 
the presence of a cache introduces large and unpredictable delays in the execution of microcode 
(because of misses). A polling system would leave the processor idle during these delays, even 
though the work of another task can usually proceed in parallel. To avoid these costs, the Dorado 
does task switching on demand of a higher priority device, much like a conventional interrupt 
system. That is, if a lower priority task is executing and a higher priority device requests a wakeup, 
the lower priority task will be preempted; the higher priority device will be serviced without the 
consent or even the knowledge of the currently active task. The polling overhead is absorbed by 
the hardware, which also becomes responsible for resuming a preempted task once the processor is 
relinquished by the higher priority device. 

A controller will continue to request a wakeup until notified by the processor that it is about to 
receive service; it then removes the request, unless it needs more than one unit of service. When 
the microcode is done, it executes an operation called Block which releases the processor. The 
effect is that requesting service is done explicitly by device controllers, but scheduling of a given 
task is invisible to the microcode (and. nearly invisible to the device hardware). 

5.3 Task specific state 

In order to allow the immediate task switching described above, the processor must be able to save 
and restore state within one microcyc1e. This is accomplished by keeping the vital state information 
throughout the processor not in a single rank of registers but in task specific registers. These are 
actually implemented with high speed memory that is addressed by a task number. Examples of 
task specific registers are the microcode program counter, the branch condition register, the 
microcode subroutine link register, the memory data register, and a temporary storage register for 
each task. The number of the task which will execute in the next microcycle is broadcast 
throughout the processor and used to address the task specific registers. Thus, data can be fetChed 
from the high speed task specific memories and be available for use in the next cycle. 

Not all registers are task specific. For example, COUNT and Q are nonnally used only by task O. 
However, they can be used by other tasks if their contents are explicitly saved and restored. 

5.4 Pipelining 

There are two distinct pipelines in the Dorado processor. The main one fetches and executes 
microinstructions. The other handles task switching, arbitrates wakeup requests and broadcasts the 
next task number to the rest of the Dorado. Each· structure is synchronous, and there is no waiting 
between stages. 

The instruction pipeline, illustrated in Figure 2, requires three cycles (divided into six half cycles) to 
completely execute a microinstruction. The first cycle is used to fetch it from microstore (time 1.2 to 
10>. The result of the fetch is loaded into the microinstruction register MIR at 10, The second cycle 
is split; in the first half, operand fetches (as dictated by the contents of MIR) are performed and the 
results latched at 11 in two registers (A and B) which form inputs to the next stage. In the second 
half cycle, the AlU oper~tion is begun. It is completed in the first half cycle of cycle three, and the 
result is latched in register RESt:LT (at (3), The second half of cycle three (13 to 14) is used to load 
results from RESULT into operand registers. 
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The figure also shows how the pipeline overlapping is achieved. A new microinstruction begins at 
every cycle time. The operand registers are used in the first half cycle of every cycle to fetch 
operands for the current instruction (during '0 - ,.). The second half of every cycle is used to store 
results for the previous instruction (during '3 - tJ. 
Figure 3 shows ~e task arbitration pipeline. This pipeline is two stages long, and also requires one 
cycle per stage. At the beginning of the pipeline (to>, wakeup requests from device controllers are 
latched into the WAKECP register. During the first half cycle ('0 - 'I)' arbitration is perfonned and 
the highest priority task detennined. During the second half cycle (,. - t2), the microprogram 
address for the highest priority task is fetched from the task specific program counter TPC. The task 
number. its TPC, and the command to switch tasks (if the highest priority task is higher than the 
currently executing task) are loaded into registers at~. In the second pipe cycle, the TPC is used to 
fetch the next microinstruction from the microstare, the entire processor uses the selected task 

t4 
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number to fetch the appropriate task specific information, and device controllers are told which task 
will have the processor next. Finally, at '. the task switch is complete, and the new task is in 
control of the processor; this time corresponds to '0 of the first microinstruction executed by the 
new task. 

5.5 Microinstruction format 

One of the key decisions made in the design of any microprogrammed processor is the format and 
semantics of the microinstruction. The Dorado's demand for compactness and power are at odds in 
this case. Compactness dictates that an essentially vertical structure be used, with encoded fields 
specifying many functions in a few bits. The details of the microinstruction format appear in § 6. 
The major features of interest here are the choice of successor instruction encoding, and the 
specification of a large number of functions which may be executed by the processor. 

In a classical microprogrammed processor, each instruction carries with it the address of its 
successor, NEXTPC; this address is latched with the rest of the instruction, and then used directly to 
address the microstore for fetching the next instruction. NEXTPC may be modified by state within 
the processor during execution, but the basic idea is that enough bits must be present in each 
microword to address the whole microstore. This results in a uniform structure for addressing, and 
allows the next instruction fetch to proceed without any delay for decoding; it has the disadvantages 
of increasing the size and cost (and reducing the speed) of the microstore. The lack of any 
decoding time also makes it impossible to specify a subroutine return or other major change in 
sequencing, and have it take effect immediately (branches can still use the scheme described below). 

The alternative, used in the Dorado, is to divide the microstore into pages, use a few bits to specify 
a next address within the current page, and have a type field which can specify branches, calls, 
returns, transfers to another page, or whatever. At. the start of a microcycle, the processor decodes 
the type field and accesses other information (such as the current page number or the return link) 
to compute NEXTPC. In addition, some types cause side effects such as the loading the return link. 
The net result is substantially fewer bits to control microsequencing than a horizontal scheme would 
require (in the Dorado, 8 bits instead of about 16). The disadvantages are, of course, the cost and 
time for decoding this field, and the additional complexity of an assembler which can fit 
instructions onto pages appropriately. 

Conditional branching is always a problem with pipelined instruction execution. Most designs use 
one of the following two schemes, and tolerate its drawbacks. The first requires that a branch be 
specified one (or more) instructions before it is taken. Although this simplifies and speeds up the 
hardware, it imposes severe constraints on the microcode organization, and often forces extra 
instructions to be executed. The second scheme detects the branch and inserts asynchronous delay 
or an extra cycle to allow time for the new instruction to be fetched. This obviously slows down 
the machine. 

Conditional branching in the Dorado is handled by allowing one of eight branch conditions to 
modify the low order bit of NEXTPC. This modification (Boolean or into the low order bit) takes 
place about half way into the instruction fetch cycle. The microstore is organized so that this bit 
does not change the chip address, but instead selects a different chip from a set of chips whose 
outputs are tied directly together. Since access time from the chip select is considerably faster than 
from the address, the late arriving branch condition does not increase the total cycle time. For this 
to work, the assembler must place each false branch target at an even address, and the 
corresponding true branch target at the next higher odd address. An annoying consequence is that 
several conditional branches cannot have same target; when this case arises the target must be 
duplicated. Everything has its price. 

Another tradeoff occurs in the mechanism for controlling the functions of the processor at each 
microcycle. The Dorado encodes most of its operations (other than register selection, ALU 
operations, storing results, and memory references) in an eight bit function field called FF. This is 
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quickly decoded at the beginning of every microinstruction execution cycle (during 'o-'I>, and is 
used to invoke all of the less frequently used operations that the processor can do: controlling the 
110 busses, reading and setting state in the memory and lFU. extracting an arbitrary field from a 
word, reading and loading most registers, non-standard carry and shift operations. and loading 
values into small registers. FF can also serve as an eight bit constant or as part of a full microstore 
address. This encoding saves many bits in the microinstruction, at the expense of allowing only one 
FF-specified operation to be done in each cycle, even though the data paths exist for doing many 
such operations in parallel 

5.6 Data bypassing 

Recall that a microinstruction is initiated at the beginning of every cycle, but takes one cycle for 
instrtmtion fetch and two cycles for execution. If an instruction uses a result generated by its 
immediate predecessor, it needs to get that result from an operand register before the predecessor 
has actually delivered the result to that register. Rather than forbidding such use of results, or 
delaying execution until the register has been loaded, we solved this problem with a technique 
called bypassing. The hardware detects that an operand specified in the current instruction is 
actually the result of the previous instruction. Rather than obtaining the operand from the usual 
source in a RAM, the processor takes it directly from the input to the RA.:'1, which is the result of the 
previous instruction. Figure 4 illustrates the scheme. This costs extra hardware for multiplexors and 
bypass detection logic, but the result is much smaller and faster microcode in many common cases. 
In the Model 0 Dorado, we omitted bypassing logic in a few places, and required the microcoder to 
avoid these cases. The· result was a number of subtle bugs and a significant loss of performance. 
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5.7 M.emory delays 

bypass path operand fe , tch 
.... 

multiplexor switch ed it 
Address = 
ddress 

result Current Operand 
store Previous Result A 

memory normal path 

Figure 4: Bypassing example 

Pipelining and bypassing are effective ways to reduce delay and increase throughput within the 
processor. Interactions with the memory, however, pose different problems. Once a memory 
reference has been made, there must be some way to tell when the memory system has delivered 
the requested data. Two simple techniques are to wait a fixed (unfonunately. maximum) amount of 
time before using the data, or to explicitly poll the memory system. Neither is satisfactory for a 
high performance machine. First, the difference between the best case (cache hit) and the worst 
(cache miss plus memory system resource contention) is more than an order of magnitude. Second, 
useful work can often be performed by a given task before it uses the requested memory data. 
Third, even if a given task must wait for memory data before it can proceed, higher priority tasks 
may very well be able to do useful work in the meantime. 

The Dorado manages this problem by making the··memory keep track of when data is ready, and 
allowing the processor to keep executing instructions. Only instructions which use memory data or 
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start memory references can be affected by the state of the memory. When such an instruction is 
executed. the memory checks to see whether it can be allowed to proceed. If so, no action is taken. 
But if the memory is busy, or the data being used is not ready, the memory responds by activating 
the signal Hold. The effect of Hold is to stop any state changes specified by the current instruction. 
However, all the clocks in the system keep running. This is important, because task switching must 
not be inhibited during memory delays. In effect, Hold converts the currently executing instruction 
into a "no operation, jump to self' instruction. If no task switch occurs, the instruction is executed 
again, and a new calculation is made to see whether it can proceed. Meanwhile. the memory 
pipeline is running. and sooner or later, the need for Hold will be gone as the pipeline progresses. 

Note that if a task switch occurs while an instruction is held. the state is such that the held 
instruction may simply be restarted when the lower priority task is resumed by the processor. 
Cycles which would otherwise be dead time are consumed instead by higher priority tasks doing 
useful work. 

5.8 Separate external interfaces 

If most macroinstructions (byte codes) are to execute in a small number of cycles, hardware must 
be provided to make communication among processor, lFU, and memory very quick in the common 
cases. The Dorado provides a number of data paths and control structures for this purpose, 
detailed in the block diagrams, Figures 5 and 6. All the busses are a full word wide and can be 
accessed in one cycle or less. The B input to the ALU is extended to the remainder of the Dorado 
(except I/O devices, which have their own busses) for the transfer of status and control between the 
processor and the other subsystems. The memory address bus is a copy of the A side ALU input 
Memory data comes directly into the processor and is routed to a variety of destinations 
simultaneously. to make such operations as field manipulations and indirect addressing fast. The 
lFU can directly supply operand data to the processor, and any microinstruction can specify that it is 
the last of a macroinstruction, in which case the successor address is supplied by the lFU. This 
requires a microstore address bus and operand data bus directly from the lFU to the processor. 

It is also desirable to make I/O transfers through the processor fast. To this end there is an I/O 
address bus and an 1/0 data bus for direct access to I/O controllers. The data bus can transfer one 
word per cycle. or 265 megabits/second. and both the memory reference and the I/O transfer can 
be specified in a single instruction, so that it is possible to move a sequence of words between the 
cache and a device at this rate. However. this subsystem is called the slow I/O system. There is 
also a more direct memory access I/O subsystem, the fast 1/0 system; it allows data to move directly 
between storage and I/O devices, in blocks of 16 words, without polluting the cache. Figure 1b 
shows a display controller that uses both slow and fast I/O systems. 

5.9 Constants 

Notice that there is no source for 16 bit constants within the processor. Such constants are 
necessary, panicularly in device controller microcode where they often are used as commands, 
addresses or literal data. It would be possible to include a constant box, addressed perhaps with an 
FF function, as a source for constants. However, such a box would have a limited size and. 
experience tells us, would not hold enough constants to satisfy a growing world. 

Fonunately, a large fraction of the constants used in microcoding are either small positive or small 
negative (2's complement) integers, or sparsely populated bit vectors. with the propeny that one of 
the two eight bit fields in the constant is all zeroes or all ones. Thus a useful subset of constants 
can be specified using the eight bits of FF for one byte of the constant and two other bits to specify 
the other byte value and position. Using this technique, most 16 bit constants can be specified in 
one microinstruction. and any constant can be assembled in two microinstructions. (The "other" 
two bits come from the BSeleel field in the microword). 
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6. Implementation 

In this section we describe, at the block diagram le¥el, the actual implementation of the Dorado 
processor. There is only space to cover the most interesting points and to illustrate the key ideas 
from § 5. 

6.1 Clocks 

The D9rado has a fully synchronous clock system, with a clock tick every 30 nanoseconds. A cycle 
consists of two successive clock ticks; it begins on an even tick, which is followed by an odd tick, 
and completes coincident with the beginning of a new cycle on the next even tick. Even ticks may 
be labeled with names like 1.2, to' t2, t4 to denote events within a microinstruction execution or a 
pipeline, relative to some convenient origin. Odd ticks are similarly labeled 1.1' t1, t3' 

6.2 The control section 

The processor can be divided into two distinct sections, called control and data. The control section 
fetches and broadcasts the microinstructions to the data section (and the remainder of the Dorado), 
handles task switching, maintains a subroutine link, and regulates the clock system. It also has an 
interface to a console and monitoring microcomputer which is used for initialization and debugging 
of the Dorado. Figure S is a block diagram of the control section. 

6.2.1 Task pipeline 

The task pipeline consists of an assortment of registers and a priority encoder. All the registers are 
loaded on even clocks. Wakeup requests are latched at to in WAKEUP, one bit per task; READY has 
corresponding bits for preempted and explicitly readied tasks. The requests in WAKEUP and READY 
compete. A task can be explicitly made ready by a microcode function. The priority encoder 
produces the number of the highest priority task, which is loaded into BESTNEXITASK and also used 
to read the TPC of this task into BEST:\EXTPC; these registers are the interface between the two 
stages in this pipeline. The NEXT bus normally gets the larger of BESTNEXIT ASK and THIST ASK. 
THISTASK is loaded from :i\EXT, and LASTTASK is loaded from THISTASK, as the pipeline progresses. 

This method of priority scheduling means that once a task is initiated, it must explicitly relinquish 
the processor before a lower priority task can run. A bit in the micro word, Block, is used to 
indicate that NEXT should get BESTNEXTTASK unconditionally (unless the instruction is held). 

Note that it takes a minimum of two cycles from the time a wakeup changes to the time this 
change can affect the running task (one for the priority encoding, one to fetch the microinstruction). 
This implies that a task must execute at least two microinstructions after its wakeup is removed 
before it blocks; otherwise it will continue to run, since the effects of its wakeup will not have been 
cleared from the pipe. The device cannot remove the wakeup until it knows that the task will run 
(by seeing its number on NE.XT). Hence the earliest the wakeup can be removed is to of the first 
instruction (NEXT has the task number in the previous cycle, and the wakeup is latched at to>; thus 
the grain of processor allocation is two cycles for a task waking up after a Block. 

Some trouble was taken to keep the grain small, for the following reason. Since the memory is 
heavily pipelined and contains a cache which does not interact with high bandwidth I/O, the I/O 
microcode often needs to execute only two instructions, in which a memory reference is started and 
a count is decremented. The processor can tl1en be returned to another task. The maximum rate at 
which storage references can be made is one every eight cycles (this is tl1e cycle time of the main 
storage RA\1S). A two cycle grain thus allows the full memory bandwidth of 530 megabits/second 
to be delivered to I/O devices using only 25% of the processor. 
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A simpler design would require the microcode to explicitly notify its device when the wakeup 
should be removed; it would then be unnecessary to broadcast ?'I."EXT to the devices. Since this 
notification could not be done earlier than the first instruction, however, the grain would be three 
cycles rather than two, and 37.5% of the processor would be needed to provide the full memory 
bandwidth. Other simplifications in the implementation would result from making the pipeline 
longer; in particular, squeezing the priority encoding and reading of TPC into one cycle is quite 
difficult Again, however, this would increase the grain. 

6.2.2 Fetching microinstructions 

Refer to the right hand side of Figure 5. At to of every instruction, the microinstruction register 
MIR is loaded from the outputs of 1M, the microinstruction memory, and the THISPC register is 
loaded with LMADDRESS. The!\'EXTPC is quickly calculated based on the NeX1Controi field in MIR, 
which encodes both the instruction type and some bits of NEXTPC; see Figure 7 for details. This 
calculation produces THIST ASKNEXTPC, so called because if a task switch occurs it is not used as the 
next IMADDRESS. Instead, the BESTNEXTPC computed in the task pipeline is used as IMADDRESS. 

NextControl Instruction type ThisTaskNextPC 
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1 1 ADDRESS BITS Global Call 
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16 A PROCESSOR FOR A HIGH-PERFORMA!\CE PERSO~AL COMPUTER 

TPC is written with the previous value of THISTASKNEXTPC every cycle (at ~). and read for the task 
in BESThEXTIASK every cycle as well. Thus. TPC is constantly recording the program counter value 
for the current task, and also constantly preparing the value for the next task in case there is a task 
switch. 

6.2.3 Miscellaneous foatures 

There is a task specific subroutine linkage register. LINK, shown in Figure 5, which is loaded with 
the value in THISPC + 1 on every microcode call or return. Thus each task can have its own 
microcoded coroutines. LI~K can also be loaded from a data bus, so that control can be sent to an 
arbitrary computed address; this allows a microprogram to implement a stack of subroutine links, 
for example. In addition to conditional branches. which select one of two NEXTPC values, there are 
also eight-way and 256-way dispatches, which use a value on the B bus to select one of eight. or one 
of 256 NEXTPC values. 

Since the Dorado's microstore is writeable, there are data paths for reading and writing it Related 
paths allow reading and writing TPC. These paths (through the register TPIMOl...'T) are folded into 
already existing data paths in the control section and are somewhat tortuous. but they are used 
infrequently and hence have been optimized for space. In addition, another computer (either a 
separate microcomputer or an Alto) serves as the console processor for the Dorado; it is interfaced 
via the CPREG and a very small number of control signals. 

6.3 The data section 

Figure 6 is a block diagram of the data section, which is organized around an arithmeticllogic unit 
(ALe). It implements most of the registers accessible to the programmer and the microcode 
functions for selecting operands, doing operations in the ALL' and shifter. and storing results. It also 
calculates branch conditions. decodes !vlIR fields and broadcasts decoded signals to the rest of the 
Dorado, supplies and accepts memory addresses and data, and supplies 1/0 data and addresses. 

6.3.1 The microinstruction register 

~IR (which actually belongs to the control section) is 34 bits wide and is partitioned into the 
following fields: 

RAddress 
ALUOp 
BSe/eCI 
LoadControi 
ASe/eCI 
B/ock 
FF 
NeX1Controi 

6.3.2 Busses 

4 Addresses the register bank RM. 
4 Selects the ALU operation or controls the shifter. 
3 Selects the source for the B bus, including constants. 
3 Controls loading of results into R~ and T. 
3 Selects the source for the A bus, and starts memory references. 
1 Blocks an 1/0 task, selects a stack operation for task O. 
8 Catchall for specifying functions. 
8 Specifies how to compute NEXTPC. 

The major busses are A, B (ALV sources). RESL'LT, EXTER~ALB, !\1E\1ADDRESS, IOADDRESS, IODATA, 
IFCDATA, and ME\1DATA . 

The ALL' accepts two inputs (A and B) and produces one output (RESCLT). The input busses have a 
variety of sources. as shown in the block diagram. RESL'LT usually gets the ALL' output. but it is 
also sourced from many other places. including a one bit shift in eitller direction of the ALV output 
A copy of A is used for ~1E~1ADDRESS: two copies of B are used for EXiER:\ALB and 10DATA. 
MB1ADDRESS provides a sixteen bit displacement. which is added to a 28 bit base register in the 
memory system to fonn a virtual addresses. EXiER~ALB is a copy of B which goes to the control, 
memory. and IFC sections, and 10DATA is another copy which goes to the 1/0 system; the sources of 
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B can thus be sent to the entire processor. Both are bidirectional and can serve as a source for Bas 
well. IOADDRESS is driven from a task specific register; it specifies the particular device and register 
which should source or receive IODATA. 

IFUDATA and MEMDATA allow the processor to receive data from the lFU and memory in parallel 
with other data transfers. MEMDATA has the value of the memory word most recently fetched by 
the current task; if the fetch is not complete, the processor is held when it tries to use MEMDATA. 
lFUDATA has an operand of the current macroinstruction; as each operand is used, the lFU presents 
the next one on lFUDATA. 

6.3.3 Registers 

Here is a list and brief description of registers seen by the microprogrammer. All are one word (16 
bits) wide. 
RM: 

STACK: 

T: 

COUNT: 

SHIFTCTL: 

Q: 

a bank of 256 general purpose registers; a register can be read onto A, B, or the 
shifter, and loaded from RESULT under the control of LoadControl. Normally, the 
same register is both read and loaded in a given microinstruction, but loading of a 
different register can be specified by FF. 

a memory addressed by the STACKPTR register. A word can be read or written, 
and STACKPTR adjusted up or down, in one microinstruction. If STACK is used in a 
microinstruction, it replaces any use of RM, and the RAddress field in the microword 
tells how much to increment or decrement ST ACKPTR. The 256 word memory is 
divided into four 64 word stacks, with independent underflow and overflow 
checking. 
a task specific register used for working storage; like RM, it can be read onto A, B, 
or the shifter, and loaded from RESULT under the control of LoadControl.. 

a counter; it can be decremented and tested for zero in one microinstruction, using 
only the NextControl or FF field. It is loaded from B or with small constants from 
FF. 

a register which controls the direction and amount of shifting and the width of left 
and right masks; it is loaded from B or with values useful for field extraction from 
FF. 

a hardware aid for multiply and divide instructions; it can be read onto A or B, and 
loaded from B, and is automatically shifted in useful ways during multiply and 
divide step microinstructions. 

The next group of registers vary in width. They are used as control or address registers, changed 
dynamically but infrequently by microcode. 
RBASE: 

STACKPTR: 

MEMBASE: 

ALUF\f: 

10ADDRESS: 

R.M addressing requires eight bits. Four come from the RAddress field in the 
microword, and the other four are supplied from RBASE. It is loaded from B or FF, 
and can be read onto RESULT. 

an eight bit register used as a stack pointer. Two bits of STACKPTR select a stack, 
and the least significant six bits a word in the stack. The latter bits are 
incremented or decremented under control of the RAddress field whenever a stack 
operation is specified. 

a five bit register which selects one of 32 base registers in the memory to be used 
for virtual address calculation. It is loaded from FF field or from B, and can be 
loaded from the IFU at the start of a macroinstruction. 
a 16 word memory which maps the four-bit ALUOp field into the six bits required 
to control the ALU. 

a task specific register which drives the IOADDRESS bus, and is loaded by 1/0 
microcode to specify a device address for subsequent Input and Output operations. 
It may be loaded from B or FF. 
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6.3.4 The shifter 

The Dorado has a 32 bit barrel shifter for handling bit-aligned data. It takes 32 bits of input from 
R..\1and T, performs a left cycle of any number of bit positions, and places the result on A. The 
ALU output may be masked during a shift instruction, either with zeroes or with data from 
MEMDATA. 

The shifter is controlled by the SHIFfCfL register. To perform a shift operation, SHIFfCfL is loaded 
(in one of a variety of ways) with control information, and then one of a group of "shift and mask" 
microoperations is executed. 

6.4 Physical organization 

Once the goal of a physically small but powerful machine was established, engineering design and 
material lead times forced us to develop the Dorado package before the implementation was more 
than partially completed, and the implementation then had to fit the package. The data section is 
partitioned onto two boards, eight bits on each; the boards are about 70% identical. The control 
section divides naturally into one board consisting of all the 1M chips (high speed lK x 1 bit ECL 
RAMS) and their associated address drivers, and a second board with the task switch pipeline, 
NEXTPC logic, and LINK register. 

The sidepanel pins are distributed in clusters around the board edges to form the major busses. 
The remaining edge pins are used for point to point connections between two specific boards. The 
1/0 busses go uniformly to all the 1/0 slots, but all the other boards occupy fixed slots specifically 
wired for their needs. Half the pins available on the sideplanes are grounded, but wire lengths are 
not controlled except in the clock distribution system, and no twisted pair is used in the machine 
except for distribution of one copy of the master clock to each board. 

We were very concerned throughout the design of the Dorado to balance the pipelines so that no 
one pipe stage is significantly longer than the others. Furthermore, we worked hard to make the 
longest stage (which limits the speed of this fully synchronous machine) as shon as possible. The 
longest stage in the processor, as one might have predicted, is the IMADDRESS calculation and 
microinstruction fetch in the control slice. There is about a 50 nanosecond limit for reliable 
operation in a stitchwelded machine, and 60 ns in a multiwired machine. There are pipe stages of 
about the same length in the memory and lFU. 

We also worked hard to get the most out of the available real estate, by hand tailoring the 
integrated circuit layout and component usage, and by incremental1y adding function until nearly 
the entire board was in use. We also found that performance could be significantly improved by 
careful layout of critical paths for minimum loading and wiring delay. Although this was a very 
labor intensive operation, we believe it pays off. 

7. Peiformance 

. Four emulators have been implemented for the Dorado, interpreting the BCPL, Lisp, Mesa and 
Small talk instruction sets. A typical microinstruction sequence for a load or store instruction takes 
only one or two microinstructions in Mesa (or BCPL), and five in Lisp. The Mesa opcode can send 
a 16 bit word to or from memory in one microinstruction; Lisp deals with 32 bit items and keeps 
its stack in memory, so two loads and two stores are done in a basic data transfer operation. More 
complex operations (such as readlwrite field or array element) take five to ten microinstructions in 
Mesa and ten to twenty in Lisp. Note that Lisp does runtime checking of parameters, while in 
Mesa most checking is done at compile time. Function calls take about 50 microinstructions for 
Mesa and 200 for Lisp. 

The Dorado supports raster scan displays which are refreshed from a full bitmap in main memory; 
this bitmap has one bit for each picture element (dot) on the screen, for a total of .5 -1 megabits 
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(more for gray-scale or color pictures). A special operation called BitBlt (bit boundary block 
transfer) makes it easier to create and update bitmaps; for more information about BitBlt consult [9]. 
where it is called RasterOp. BitBlt makes extensive use of the shifting/masking capabilities of the 
processor, and attempts to prefetch data so that it will always be in the cache when needed.. The 
Dorado's BitBlt can move display objects around in memory at 34 megabits/sec for simple cases like 
erasing or scrolling a screen. More complex operations, where the result is a function of the source 
object, the destination object and a filter, run at 24 megabits/sec. 

I/o devices with transfer rates up to 10 megabits/sec are handled by the processor via the 10DATA 
and 10ADDRESS busses. The microcode for the disk takes three cycles to transfer two words in this 
way; thus the 10 megabit/sec disk consumes 5% of the processor. Higher bandwidth devices use 
the fast I/O system, which does not interact with the cache. The fast I/O microcode for the display 
takes only two instructions to transfer a 16 word block of data from memory to the device. This 
can consume the available memory bandwidth for I/O (530 megabits/sec) using only one quarter of 
the available microcycles (that is, two 110 instructions every eight cycles). 

Recall that the JI.;'EXTPC scheme (§ 5.5 and § 6.2.2) imposes a rather complicated structure on the 
microstore, because of the pages, the odd/even branch addresses, and the special subroutine call 
locations We were concerned about the amount of micros tore which might be wasted by automatic 
placement of instructions under all these constraints. In fact, however, the automatic placer can use 
99.9% of the available memory when called upon to place an essentially full microstore. 

Acknowledgements 

The early design of the Dorado processor was done by Chuck Thacker and Don Charnley. The 
data section was redesigned and debugged by Roger Bates and Ed Fiala. Peter Deutsch wrote the 
microcode assembler and instruction placer, and Ed Fiala wrote the Dorado assembler macros, the 
microprogram debugger. and the hardware manual. Willie-Sue Haugeland, Nori Suzuki, Bruce 
Hom, Peter Deutsch, Ed Taft and Gene McDaniel are responsible for production and diagnostic 
microcode. 

References 

1. Dark, D.W. et. af. The memory system of a high'perfonnance personal computer. Technical ReportcsL-81-1, Xerox Palo 
Alto Research Center, January 1981. Revised version to appear in IEEE Transactions on Computers. 

2. Deutsch, LP. Experience with a microprogrammed Interlisp system. Proc. II th Ann. Microprogramming Workshop. Pacific 
Grove. Nov. 1979. 

3. Geschke. C.M. et. af. Early experience with Mesa. Comm ACM 20.8. Aug 1977. 540-552 
4. Ingalls, D.H. The Smalltalk· 76 programming system: Design and implementation. 5th ACM Symp. Principles oj 

Programming Languages. Tucson, Jan 1978. 9-16. 
5. Lampson, B.W. et. of. An instruction fetch unit for a high·perfonnance personal computer. Technical Report csL-81-1. 

Xerox Palo Alto Research Center. Jan. 1981. Submitted for publication. 
6. Mitchell, J .G. et. of. AI esa Language M anuaf, Technical Repon CSL-79- 3, Xerox Palo Alto Research Center, Apri1l979. 
7. Teitelman, W. Interlisp Reference ,\.fanual, Xerox Palo Alto Research Center, Oct 1978. 
8. Thacker. c.P. et. of. Alto: A personal computer. In Computer Structures: Readings and Examples, 2nd edition. Sieworek, 

Bell and ~ewell, eds., McGraw· Hill, 1981. Also in Technical Report csv79-11, Xerox Palo Alto Research Center, August 
1979. 

9. Newman, W.M. and Sproull, R.F. PrinCiples of Interactive Computer Graphics, 2nd ed. McGraw-Hill. 1979. 



20 A PROCESSOR FOR A HIGH-PERFORMAl'\CE PERSONAL COMPUfER 



An Instruction Fetch Unit for a 
High-Performance Personal Computer 

by Butler W. Lampson, Gene A. McDaniel and Severo M. Ornstein 

January 1981 

ABSTRACT 

The instruction fetch unit (lFU) of the Dorado personal computer speeds up the emulation of 
instructions by pre-fetching, decoding, and preparing later instructions in parallel with the 
execution of earlier· ones, It dispatches the machine's microcoded processor to the proper 
starting address for each instruction, and passes the instruction's fields to the processor on 
demand. A writeable decoding memory allows the IFU to be specialized to a particular 
instruction set, as long as the instructions are an integral number of bytes long. There are 
implementations of specialized instruction sets for the Mesa, Lisp, and Smalltalk languages. 
The IFU is implemented with a six-stage pipeline, and can decode an instruction every 60 ns. 
Under favorable conditions the Dorado can execute instructions at this peak rate (16 mips), 
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1. Introduction 

This paper describes the instruction fetch unit (IFU) for the Dorado, a powerful personal computer 
designed to meet the needs of computing researchers at the Xerox Palo Alto Research Center. 
These people work in many areas of computer science: programming environments, automated 
office systems, electronic filing and communication, page composition and computer graphics, VLSI 
design aids, distributed computing, etc. There is heavy emphasis on building working prototypes. 
The Dorado preserves the important properties of an earlier personal computer, the Alto [B), while 
removing the space and speed bottlenecks imposed by that machine's 1973 design. The history, 
design goals, and general characteristics of the Dorado are discussed in a companion paper [8], 
which also describes its microprogrammed processor. A second paper [1] describes the memory 
system. 

The Dorado is built out of ECL 10K circuits. It has 16-bit data paths, 28 bit virtual addresses, 4K-
16K words of high-speed cache memory, writeable microcode, and an I/O bandwidth of 530 
Mbits/sec. Figure 1 shows a block diagram of the machine. The microcoded processor can execute 
a microinstruction every 60 ns. An instruction of some high level language is performed by 
executing a suitable succession of these microinstructions; this process is called emulation. 

Instruction 
Fetch Unit ro-

I 
Slow input! output 265 MBits/sec 265 MBits/sec 

Cache 16 bits/60 ns 16 bits/60 ns Processor ~ 

I I I 120 ns access 8K·32K 
bytes 

I Keyboardl l DispJayJ l Disk J I Ethernet I 
530 MBits/sec 

I 256 bits/480 ns Storage 

Fast input! output 1.7 us access 512K·16M bytes 

Figure 1: Dorado block diagram 

The purpose of the IFU is to speed up emulation by pre-fetching, decoding, and preparing later 
instructions in parallel with the execution of earlier ones. It dispatches the machine's microcoded 
processor to the proper starting address for each instruction, supplies the processor with an 
assortment of other useful information derived from the instruction, and passes the instruction's 
various fields to the processor on demand. A writeable decoding memory allows the IFU to be 
specialized to a particular instruction set; there is room for four of these, each with 256 instructions. 

There are implementations of specialized instruction sets for the Mesa [9], Lisp [12], and Smallta1k 
[5] languages. as well as an Alto [13] emulator. The IFlJ can decode an instruction every 60 ns, and 
under favorable conditions the Dorado can execute instructions at this peak rate (16 MIPS). 

Following this introduction, we discuss the problem of ins~:ruction execution in general terms and 
outline the space of possible solutions (§ 2). We then describe the architecture of the Dorado's lFU 
(§ 3) and its interactions with the processor which actually executes the instructions (§ 4); the reader 
who likes to see concrete details might wish to read these sections in parallel with § 2. The next 
section deals with the internals of the IFU, describing how to program it and the details of its 
pipelined implementation (§ 5). A final section tells how large and how fast it is, and gives some 
information about the effectheness of its various mechanisms for improving performance (§ 6). 
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2. The problem 

It has long been recognized that the algorithm for executing an object program can be most easily 
described by another program, called an interpreter, which treats both the instructions and the data 
of the object program as its own data. The simplest microprogrammed computers actually do 
execution in just this way; the microinstructions can specify only general-purpose data manipula
tions, and all the knowledge about the instructions being emulated is expressed in the micro
program. 

We illustrate this point with the following fragment of an emulator for a stack-based instruction set 
The fragment includes the basic instruction fetch operation and code for two instructions: 
PushConstant, which pushes the next instruction byte onto the stack, and PushLoca/Var, which pushes 
the contents of the local variable addressed by the next byte (relative to a pointer in the register 
locaLData). The notation is self-explanatory for the most part. Microinstructions are separated by 
semicolons, and parallel operations in the same microinstruction by commas. This code uses no 
special-purpose operations, except that we have compressed the details of the stack manipulation 
into a Push operation. 

Registers: PC, localData, opoode. temp 

GetInstruction: 
Fetch[pc); 
PC "'pc+l; 
if interruptPending then goto processInterrupt 
opcode ... memoryData; 
goto opcode; 

PushConstant: 
Fetch[pc); 
pC'" pc+1; 
Push[memoryData). goto OetInstruction; 

PushLoca1Var: 
Fetch[pc); 

PC'" pc+l; 
temp'" memoryData; 
temp .. temp + localData; 
Fetch[temp); 
Push[memoryData), goto GetInstruction; 

-- Top of the microcode instruction emulation loop. 
-- Start a memory fetch from address in PC; data arrives later . 
•• Increment PC register for next instruction. 

-- Use the memory data we previously fetched 
-- The opcode value is the starting microcode address. 

- Dispatch address for the PushConstant instruction. 
-- PC points to the next instruction byte. 
-- Increment PC register for next instruction. 

.. Dispatch address for the PushLocalVar instruction. 
-- Fetch the next instruction byte. which is the index in the local data for the 

variable to be pushed. 

-- Now temp is the address of the local variable. 

In order to make this emulator run faster (given a fixed time for each prumttve operation, 
presumably established by circuit speeds), it is necessary to do more of the operations concurrently. 
One possibility is to enhance the processor, so that it can do several operations in a single micro
instruction. For instance, the first two microinstructions might be replaced by 

Fetch[pc), PC .. PC + 1; -. Start a memory fetch from address in PC; data arrives later. Increment PC 
for next instruction. 

This approach is fine as far as it goes, but it is limited to combining independent operations. A 
Fetch and the following retrieval of data, for example, cannot be combined without making the 
microinstruction slower, since the memory takes time to respond. 

A second approach is to make several copies of the entire processor, and let them work on several 
instructions at once. With n copies, this would run n times as fast if. there were no synchronization 
problems; it would also be very simple to implement (though perhaps not cheap). Unfortunately, a 
program written in a conventional language and encoded into a conventional instruction set 
typically has a great deal of interaction between the successive instructions. For instance, consider 
the instruction sequence PushConstanl, PushLocalVar, Add. We see from the microcode above that all 
three instructions need to reference the stack; this is contention for the same resource. 
Furthermore, the Add instruction needs the contents of the stack after both the previous instructions 
are finished; this is not only contention. but dependency of one instruction on the results of another. 
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In spite of these problems. this approach can be made to work, especially for numeric 
computations, and in conjunction with a sympathetic compiler. Indeed. it is used in high
performance machines such as the CDC 6600 [14] and 7600, the IBM 360/91 [161, the MUS [41 and 
the Cray-1 [10]; typically only part of the processor is duplicated. often into specialized devices 
called jUnctional units. However, with 1977 technology this approach is too expensive for a 
personal machine, and hence was not considered for the Dorado. 

A third possibility (often combined with the second) is to pipeline the execution of an instruction by 
dividing it into parts, each one to be performed by a separate processor or stage. Different stages 
can operate concurrently on successive instructions. In this example, we might have one stage for 
fetching the instruction (GetInstruction), and another for executing it (PushConstant and PushLoca/Var). 
Successive instructions can then execute as follows (where each line represents a "major cycle"). 

GetInstr.uctu,n(l] 
Execute{l] Getlnstruction(2] 

Execute(2) Getlnstruction[3] 
Execute(3) Getl nstlUCtion(4] 

Each instruction spends the same amount of time executing as before,... but the throughput is 
doubled. 

2.1 About pipelines 

An ideal pipeline has no communication between the stages except when work is passed from one 
stage to its successor. The unit of work which is passed between stages is called an item. The 
crucial problems in designing a pipeline are: 

hand-off of items from one stage to the next; 

buffering of items within a stage; 

contention among stages for resources (a form of communication); 

dependency of one stage on the activity of another (also a form of communication). 
Particularly troublesome is backward dependency, in which an early stage depends on the 
results of a later one (e.g., a conditional branch); 

irregularity in the flow of items through the pipe. This can arise from variations in the rate 
of: 

proceSSing items in the different stages (e.g., memory fetches may be slow, or 
variable in rate, or both); 
input (e.g., fetch requests to a memory pipe); 
output (e.g., decoded instructions from an IFU pipe). 

The main performance parameters of a pipeline are: 

throughput or bandwidth - the rate at which items are processed to completion when there 
are no dependencies (let t be the time to complete one item); 

latency - the time for one item to traverse the entire pipeline when it is otherwise empty 
(let I be the latency); 

elasticity - the ability of the pipe to deliver results at full bandwidth in spite of 
irregularity. More buffering means more elasticity, more bits of storage in the pipe, and 
perhaps more latency. 

A synchronous, unifoml pipeline is one in which each stage takes the same amount of time. With n 
stages we have 1= nt, where I is the time of each stage. With many small stages, t can be made 
small and the throughput high, at the expense of the latency. The only absolute limit to this 
process is the cost of synchronization between stages (which is a lower bound on t; in a 
synchronous pipeline this is the time to pass through a register). 
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The minimum time to do the smallest indivisible piece of work (e.g., to read from an internal RAM) 
tends to be a practical limit also. This limit can be evaded, however (at some cost). by making n 
copies of the hardware. assigning the work to them in round-robin fashion, and selecting the results 
by the same round-robin rule. If a single stage has I=S, such a duplicated stage has t=sln plus the 
time for multiplexing the results. When this method is used, the copies are usually called functional 
units. 

Usually the main goal is to maximize the throughput; in the absence of dependencies latency is 
unimportant. As dependencies increase, however, latency becomes more important. To see why 
this is true, consider the backward dependency caused by a conditional branch. Strictly speaking, 
when a branch instruction is encountered, fetching cannot proceed until the result of the branch is 
known. When it is, the target instruction of the branch must traverse the pipe before any more 
instructions can be completed. If w is the fraction of branch instructions, the average completion 
time will be t+wl. Thus if 1=51 (a five stage uniform pipe), a w of 20% will halve the throughput 
In this example, of course, it is sensible to make a guess and follow one path, so that w is the 
fraction of instructions for which a wrong guess is made; note that w= 20% is fairly accurate 
prediction. Following a guessed path is easy because there are no forward dependencies (program 
state is never changed by instruction fetching). so that a wrong path can be abandoned with no ill 
effects. However, no such shortcut is possible in the case of the Add instruction mentioned earlier, 
because it isn't practical to guess the result of the PushLoca/Var. 

2.2 Pipelining instruction execution 

Let us now see how to apply these ideas to instruction execution. Following many earlier designs 
(e.g., [4, 16]), we can divide this task into four stages: 

instruction fetching and preparation; 

operand preparation: address calculation, fetching and reformatting; 

computation; 

result storage. 

Each of these in tum may be divided into sub-stages. We observe that in any conventional 
architecture there are many dependencies among the last three stages, because results are constantly 
being stored into memory or register locations from which operands are fetched. Furthermore, if 
every store operation is regarded as a dependency, there could never be much concurrency. Hence 
it is necessary to compare the address of each location modified by a store with all the addresses 
referenced by earlier stages. Even these dependencies are common enough to be painful; hence 
provision is usually made in such a pipeline for modifying the actions of earlier stages when 
operands are changed by stores. As a result of all this, pipelining the last three stages of instruction 
is a complex and expensive business. A fast multi-port cache inside the processor makes the 
problem much easier, but is not feasible with this technology. An interesting but untried idea is to 
impose programming restrictions which forbid harmful dependencies; if all the code is generated by 
compilers this is quite feasible. 

. Hardly any of these problems arise. however, in separating instruction fetching from the rest If we 
assume that execution cannot modify the code being executed. there are no dependencies except 
those arising from branches. If this assumption is unacceptable, then checks must be made for such 
modifications, but since they are rare in practice. the checks can be at a very coarse grain, and fairly 
drastic resetting actions can be taken. The absence of forward dependencies means that instruction 

. fetching activities can be abandoned without any communication to other parts of the machine. 

The function of an instruction fetching and preparation stage or IF11, then, is to hand off to the rest 
of the machine the relevant infomlation for each instruction, conveniently formatted for later use. 
Whether the rest of the machine is a single microcoded processor, an operand preparation stage in a 
pipeline, or a collection of functional units which can operate concurrently is unimportant to the 
1Ft.:, except as it affects the meaning of "conveniently formatted." We will call this part of the 
machine the execution unit or EL', and will not be much concerned with its internal structure. 
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The EU demands instructions from the lFU at an irregular rate, depending on how fast it is able to 
absorb the previous ones. A simple machine must completely process an instruction before 
demanding the next one. In a machine with multiple functional units, on the other hand, the first 
stage in the EU waits until the basic resources required by the instruction {adders, result registers, 
etc.} are available, and then hands it off to a functional unit for execution. Beyond this point the 
operation cannot be described by a single pipeline, and complete execution of the instruction may 
be long delayed, but even in this complicated situation the lFU still sees the EU as a single consumer 
of instructions, and is unaware of the concurrency which lies beyond. 

Under this umbrella definition for an lFU, a lot can be sheltered. To illustrate the wayan lFU can 
accommodate specific language features, we draw an example from Smalltalk [5]. In this language, 
the basic executable operation is applying a function f (called a method) to an object 0: j(o, .•. ). 
The address of the code for the function is not determined solely by the static program, but 
depends on a property of the object called its class. There are many implementation techniques for 
finding the class and then the function from the object. One possibility is to represent a class as a 
hash table which maps function names (previously converted by a compiler into numbers) into code 
addresses, and to store the address of this table in the first word of the object. The rather complex 
operation of obtaining the hash table address and searching the table for the code address 
associated with f, is in the proper domain of an IFU, and removes a significant amount of 
computation from the processor. No such specialization is present in the Dorado's lFU, however. 

2.3 Pipelining instruction fetches 

For the sake of definiteness, we will assume henceforth that 

the smallest addressable unit in the code is a byte; 

the memory delivers data in units cal1ed words, which are larger than bytes; 

an instruction (and its addresses, immediate operands, and other fields) may occupy one or 
more bytes, and the first byte determines its essential properties (leng~ number of fields, 
etc.). 

Matters are somewhat simplified if the addresssable unit is the unit delivered by the memory or if 
instructions are all the same length, and somewhat complicated if instructions may be any number 
of bits long. However, these variations are inessential and distracting. 

The operation of instruction fetching divides naturally into four stages: 

Generating addresses of instruction words in the code, typically by sequentially advancing a 
program counter, one memory word at a time. 

Fetching data from the code at these addresses. This requires interactions with the 
machine's memory in general, although recently used code may be cached within the IFU. 
Such a cache looks much like main memory to the rest of the lFU. 

Decoding instructions to determine their length and internal structure, and perhaps whether 
they are branches which the lFU should execute. Decoding changes the representation of 
the instruction, from one which is compact and convenient for the compiler, to one which 
is convenient for the EU and lFU. 

Fonnatting the fields of each instruction (addresses, immediate operands, register numbers, 
mode control fields, or whatever) for the convenience of the EU; e.g., extracting fields onto 
the EU'S data busses. 

Buffering may be introduced between any pair of these stages, either the minimum of one item 
required to separate the stages, or a larger amount to increase the elasticity. Note that an item must 
be a word early in the pipe (at the interface to the memory), must be an instruction late in the pipe 
(at the interface to the EU), and may need to be a byte in the middle. 

There are three sources of irregularity (see § 2.1) in the pipeline, even when no wrong branches are 
taken: 
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The instruction length is irregular, as noted in the previous paragraph; hence a uniform 
flow of instructions to the EU implies an irregular flow of bytes into the decoder, and vice 
versa. 

The memory takes an irregular amount of time to fetch data; if it contains a cache, the 
amount of time may vary by more than an order of magnitude. 

The EU demands instructions at an irregular rate. 

These considerations imply that considerable elasticity is needed in order to meet the EU'S demands 
without introducing delays. 

2.4 Hand-ojJto the EU 

From the lFU's viewpoint, handing-off an instruction to the EU is a simple producer-consumer 
relationship. The ED demands a new instruction. If one is ready, the IFU delivers it as a pile of 
suitably formatted bits, and forgets about the instruction. Otherwise the lFU notifies the EU that it 
is not ready; in this case the ED will presumably repeat the request until it is satisfied. Thus at this 
level of abstraction, hand-off is a synchronized transfer of one data item (a decoded instruction) 
from one process (the lFU) to another (the EU). 

Usually the data in the decoded instruction can be divided into two parts: information about what 
to do, and parameters. If the EU is a microprogrammed processor, for example, what to do can 
conveniently be encoded as the address of a microinstruction to which control should go (a dispatch 
address), and indeed this is done in the Dorado. Since microinstructions can contain immediate 
constants, and in general can do arbitrary computations, it is possible in principle to encode all the 
information in the instruction into a microinstruction address; thus the instructions PushConstant(3) 
and PushConstant(4356) could send control to different microinstructions. In fact, however, micro
instructions are expensive, and it is impractical to have more than a few hundred, or at most a few 
thousand of them. Hence we want to use the same microcode for as many instructions as possible, 
representing the differences in parameters which are treated as data by the microcode. These 
parameters are presented to the ED on some set of data busses; § 4 has several examples. 

Half of the IFU-ED synchronization can also be encoded in the dispatch address: when the IFU is 
not ready, it can dispatch the EU to a special NotReady location. Here the microcode can do any 
background processing it might have, and then repeat the demand for another instruction. The 
same method can be used to communicate other exceptional conditions to the ED, such as a page 
fault encountered in fetching an instruction, or an interrupt signal from an r/o device. The 
Dorado's IFU uses this method (see § 3.4). 

Measurements of typical programs [7, 11] reveal that most of the instructions executed are simple. 
and hence can be handled quickly by the EU. As a result, it is imponant to keep the cost of hand
off low, since otherwise it can easily dominate the execution time for such instructions. As the EU 
gets faster, this point gets more imponant; there are many instructions which the Dorado. for 
instance, can execute in one cycle, so that one cycle of hand-off overhead would be 50%. This 
point is discussed further in § 3 and 4. 

2.5 Autonomy 

Perhaps the most important parameter in the design of an lFU is the extent to which it functions 
independently of the execution unit, which is the master in their relationship. At one extreme we 
can have an 1Ft..; which is entirely independent of the ED after it is initialized with a code address (it 
might also receive information about the outcome of branches): this initialization would only occur 
on a process switch. complex procedure call, or indexed or indirect jump. At the other extreme is' 
an 1Ft..; which simply buffers one word of code and delivers successive bytes to the El':; when the 
buffer is empty, the 1Ft..; dispatches the EC to a piece of microcode which fetches another memory 
word's woITh of code into the buffer. The first IFC must decode instruction lengths. follow jumps, 
and provide the program counter for each instruction to the EC (e.g., so that it can be saved as a 
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return link). The second leaves all these functions to the EU, except perhaps for keeping track of 
which byte of the word it is delivering. One might think that the second lFU cannot help 
performance much, but in fact when working with a microcoded ED it can probably provide half 
the performance improvement of the first one, at one-tehth the cost in hardware. The reason can 
be seen by examining the interpreter fragment at the beginning of § 2; half a dozen micro
instructions are typically consumed in the clumsy GetInslruclion operation, and things get worse 
when instructions do not coincide with memory words. 

When deciding what trade-offs to make, one important parameter is the speed of the EU. It is 
pointless to be able to execute most instructions in one or two cycles, if several cycles are consumed 
in GelInstruction. Hence a fast EU must have an autonomous lFU. An important special case is the 
speed of the memory relative to the microinstruction time. If several microinstructions can be 
executed in the time required to fetch the next instruction from memory, the processor can use this 
time to hold the lFU'S hand, or to perform the GetInsllUCtion itself. On the Dorado, the cache 
ensures that memory data arrives almost immediately, so there is no free time for handholding. 

An autonomous lFU must do more than simply transforming instructions into a convenient form for 
the EU. There are two natural ways in which its internaL operation may be affected by the instruc
tion stream: decoding instruction lengths, and following branches. Any lFU which handles more 
than one instruction without processor intervention must calculate instruction lengths. Following 
branches is desirable because it avoids the cost of a start-up latency at every branch instruction 
(typically every fifth instruction is a branch). However, it does introduce potential complications 
because a conditional branch must be processed without accurate information (perhaps without any 
information) about the actual value of the condition; indeed, often this value is not determined 
until the processor has executed the preceding instruction. A straightforward design decides 
whether to branch based on the opcode alone, and the processor restarts the IFU at the correct 
address if the decision turns out to be wrong. 

The branch decision may be based on other historical information. The S-l [17], for instance, keeps 
in its instruction cache one bit for each instruction, which records whether the instruction branched 
last time it was executed. This small amount of partial history reduces the fraction of incorrect 
branch decisions to 5% [Forest Baskett, personal communication]. The MUS [4] remembers the 
addresses of the last eight instructions which branched; such a small history leaves 35% of the 
branches predicted wrongly. but the scheme allows the prediction to be made before the instruction 
is fetched. More elaborate designs [16] follow both branch paths. discarding the wrong one when 
the processor makes the branch decision. Each path may of course encounter further branches. 
which in turn may be followed both ways until the capacity of the lFU is exhausted. If each path is 
truly followed in parallel, then following n paths will in general require n times as much hardware 
and n times as much memory bandwidth as following one path. Alternatively. part or all of the 
lFU'S resources may be multiplexed between paths to reduce this cost at the expense of bandwidth. 

2.6 Buffering 

As we saw in § 2.2, a pipeline with any irregularities must have buffering to provide elasticity, or its 
performance at each instant will approximate the performance of the slowest stage at that instant; 

. this maximizing of the worst performance is highly undesirable. From the enumeration in § 2.3 of 
irregularities in the lFU. we can see that to serve the EU smoothly, there should be a buffer between 
the EtJ and any sources of irregularity, as shown in Figure 2. Similarly, to receive words from the 
irregular memory, there should be a buffer between the memory and any sources of irregularity. 
Because of the irregularity caused by variable length instructions, a single buffer cannot serve both 
functions. Note that additional regular stages (some are shown in the figure) have no effect one 
way or the other. 
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The cost of introducing a buffer (in the ECL 10K MSI technology) is the RAM storage to implement 
it. a multiplexor to bypass it when it is empty. and its control; see Figure 6 for details. The bypass 
ensures that the buffer does not increase the latency. In addition, there is typically a very minor 
performance penalty: when the pipe is reset, any external resources (the memory in the case of the 
IFV) which have been used to fill the buffers are wasted. If some other processor could make 
better use of the resources, something has been lost 
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3. Architecture of the Dorado IFU 

We now tum from our discussion of general principles to the actual IFU of the Dorado. Its 
structure follows from the principles of the previous section, though we must admit that the design 
in fact proceeded less from general principles than from the goal of delivering one decoded 
instruction per microcycle. This performance requirement dictates an autonomous lFU, and it also 
requires careful attention to the details of lFU-EU hand-off. In the Dorado the EU is a microcoded 
processor with a number of data paths, and a pipelined implementation which allows it to execute a 
microinstruction every 60 ns; in order to remind the reader of this implementation, we use the word 
"processor" to denote the Dorado's EU. The processor does not have any significant concurrency 
visible to the microprogram, however. In particular, all the work done in a given cycle is specified 
directly by the microinstruction executed in that cycle, although memory references are done by an 
autonomous unit which in fact is shared with the IFU; see Figure 1. 

The processor gives the lFU an initial program counter (PC), and subsequently receives a sequence 
of decoded instructions, which are from sequential bytes except where the lFU has followed a 
branch. This sequence continues until the processor resets the lFU with another pc, unless a fault 
or interrupt is detected.~ For each instruction the lFU supplies a microcode dispatch address (into 
which NotReady and all utiler exceptions are encoded), some bits of initial state for the processor, a 
sequence of field data values, and the PC value for the first byte of the instruction. The uses made 
of this information are described in § 4. 

3.1 Byte codes 

The lFU'S interpretation of the code is based on a definite model of how instructions are encoded. 
Although this model is not specialized to the details of a particular instruction set, good 
performance depends on adherence to certain rules. The IFU deals only with instructions encoded 
as variable length byte sequences - byte codes [3, 11]. Variable length instructions provide code 
compaction. since frequent instructions can be small. There is also a performance payoff in cache 
and virtual memory systems, since the compaction enhances locality and thus reduces cache misses 
and page faulting. Our experience has shown that byte codes provide a flexible format for different 
languages without favoring a particular one. The choice of eight bits as the grain is a compromise 
among optimum encoding, the desire to keep code addresses short, and simplicity of the hardware. 
A larger grain is highly undesirable, both because more than half the instructions can fit into one 
byte, and because table lookup as a decoding technique is not feasible for units much larger than 
eight bits. A finer grain improves code compactness somewhat at the expense of more complex 
length calculation and word disassembly. 

The first byte of each instruction, called the opcode, is decoded by full table lookup. It may be 
followed by as many as two optional data bytes (known as alpha and beta respectively) that are 
passed to the processor with only slight reformatting. Of course the processor is free to interpret 
these bytes as it wishes, but the IFU can only do complex decoding operations on the opcode byte. 
The limitation to three byte instructions reduces hardware complexity at a considerable cost in 
speed for longer instructions; bytes after the third must be fetched explicitly by the processor, 
which also must restart the IFU at the proper poinL 

3.2 The decoding able 

The IFU decodes an instruction by looking up its first byte in a 1024 word RAM called the decoding 
table. The additional two bits of address corne from an instruction-set register. The 27-bit contents 
of the tabie describe the instruction in sufficient detail for the IFU and the processor to do their 
jobs, and the opcode byte itself is not passed to the processor. Thus the table lookup does most of 
the transformation of the instruction; it also governs some minor transformations of the data bytes 
such as sign extension. 

This method of instruction decoding has a number of advantages. It makes the decoder completely 
programmable in a very simple and economical way. It also allows any substructure of the opcode 
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(e.g., register or mode fields) to be extracted with complete flexibility. Indeed. it is not necessary 
for such fields to exist explicitly. If single-byte PushConSlant instructions for values 0-4 are desired, 
any five opcode values can be assigned for this purpose, and the table can produce the values 0-4. 
Furthermore, no sharp distinction is needed between "control" and "data" in the instruction 
encoding. since both control information and data values are produced by the same table lookup. 

Of course nothing is perfect. This scheme may fail when an instruction has many small fields, 
especially if they cross byte boundaries. The PDP-ll and Nova instruction sets are interesting 
borderline cases: it works quite well to look up the first byte and use the result to select either a 
second lookup in an alternate table lookup, or treatment of the next byte as data. A convenient 
way to describe this is to have the first byte specify either a two byte instruction, or a one byte 
instruction which switches the "instruction set" temporarily for decoding the next byte. 

This facility of modifying the instruction set register on the fly is not implemented in the Dorado, 
since it is not very useful for the instruction sets we actually use. It is simple, however, and could 
easily be added; the only delicate point is that the instruction set register must be saved on an 
exception, or else exceptions must be prohibited before instructions which are decoded with an 
alternate table. Currently only the processor can change the instruction set, and it normally does so 
only when switching from one language to another. This facility is used in the Interlisp implemen
tation, for example, since the nucleus of this system is written in BCPL and compiled into a different 
instruction set than the one used for Lisp. 

Multiple decoding tables have other uses. In fact, the lFU can be viewed as a rather general byte
stream processor. For example, consider the problem of generating halftone values for a grey scale 
image: The task is to transform a sequence of grey pixels (Pg bits each, at a resolution of rg 
pixels/inch), into a sequence of binary pixels (one bit each, at a resolution of rb pixels/inch). Both 
sets of pixels are packed into words, 16/Pg per word and 16 per word respectively. Thus as each 
binary pixel is generated, it is necessary to keep track of whether a new binary word must be 
started (once every 16 binary pixels), and whether a new grey pixel is needed (once every r/rg 
binary pixels); in the latter case, a new grey word may be needed. Typical algorithms use a single 
scan-line buffer containing an error value which must be compensated at each binary pixel. The 
IFU can be used to fetch values from this buffer in parallel with the processor. Special pseudo
opcode values can be used to mark the points which require one or more of the special actions 
above. The decoding table will dispatch the processor to the special code for these functions 
without any processor overhead. A trial implementation using this idea was about twice as fast as 
one without the lFU. 

3.3 Pipeline stages and buffering 

Figure 3 shows the pipeline stages in the lFU. An item varies in size, but all stages except one 
operate in a single 60 ns cycle. For the most part all state is held in the buffers between the stages, 
which themselves are purely functional or combinatorial. 

At the beginning of the pipe, pc. values are generated and put on the memory address bus 
. (ADDRESS). and the corresponding 16-bit words are returned from the memory (ME:\10RY), at a peak 

rate of one per cycle. If there are no cache misses and no collisions with the processor, the memory 
can accept an address in every cycle and return data words at the same rate two cycles later. Thus 
under these ideal conditions the memory is not irregular. A double-rate (30 ns) stage (BYTES) 
delivers bytes to the decoder (DECODE). which car. accept one opcode byte and one operand byte in 
a single cycle, though it requires a full cycle to process an instruction. This arrangement allows 
two' byte instructions to pass through the pipe at the rate of one per cycle; longer instructions 
require two cycles, but are rare. Because DECODE requires a full cycle, the peak rate for one byte 
instructions is still one per cycle. Note that the processor cannot demand instructions faster than 
this anyway. 



32 AN INSTRUcnON FErCH UNIT FOR A HIGH~PERFORMANCE PERSONAL COMPUTER 

pipe stage regular 

single-item Item-word 
buffer 

irregular 
outputs 

two-item item.word 
buffer 

regular 

double-rate 
item.byte 

irregular 
throughput 

item .. instructIOn 

irregular 
inputs 

item .. in&1ruction 

Figure 3: Pipeline stages in the Dorado IFU 

From DECODE on, an item is an instruction; one of these items is held in a buffer from which it is 
handed off to the processor (DISPATCH). It turns out that the processor proper requires some of the 
decoded instruction before it executes the first microinstruction (the dispatch address and other 
initial state; see § 4.2), but consumes the field data later, one byte at a time. The physical IFU also 
contains a logical extension of the processor (EXECUTE), which holds this deferred information and 
doles it out on demand. 
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There are two words of buffering after MEMORY, but there is no other buffering except for the 
minimum single item between stages, contrary to the arguments of § 2.6. This design was adopted 
partly to save space, and partly because we did not fully understand the issues in maintaining peak 
bandwidth. Fortunately the peak bandwidth of the lFU is substantially greater than what the 
processor is likely to demand for more than a very short interval (see § 6), so that not much useful 
throughput is lost because of the inadequate buffering. 

3.4 Exceptions 

Exception conditions are handled by extending the space of values stored in an item and handed 
off from one stage to the next, rather than by establishing separate communication paths. Thus, for 
example, a page fault from the memory is indicated by a status bit returned along with the data 
word; the resulting "page fault value" is propagated through the pipe and decoded into a page fault 
dispatch addres~ which is handed to the processor like any ordinary instruction. Each exception has 
its own dispatch address. Interrupts cause a slight complication. The lFU accepts a signal called 
Reschedule which means "cause an interrupt;" this signal is actually generated by 1/0 microcode in 
the processor, but it could come from separate hardware. The next item leaving DECODE is 
modified to have a reschedule dispatch address. The microcode at this address examines registers to 
find out what interrupt condition has occurred. Since the reschedule item replaces one of the 
instructions in the code, it has a PC value, which is the address of the next instruction to be 
executed. After the interrupt has been dealt with, the IFU will be restarted at that point 

The exceptions may be divided into three classes: 

1) the lFU has not (yet) finished decoding the next instruction, and hence is not ready to 
respond to a processor demand; 

2) it is necessary to do something different (to handle an interrupt or a page fault); 

3) there has been a hardware problem - it is not wise to proceed. 

Since more than one exception condition may obtain at a time, they are arranged in a fixed priority 
order. Exceptions are communicated only by a dispatch; hence, all exceptions having to do with a 
particular opcode must be detected before it is handed off. Thus all the bytes of an instruction 
must have been fetched from memory and be available within the IFU before it is handed off. 

3.5 Contention and dependencies 

There is no contention for resources within the IFU. and the only contention with the rest of the 
Dorado is for access to the memory. The IFU shares with the processor a single address bus to the 
Dorado's cache, but has its own bus for retrieving data. The processor has highest priority for the 
address bus, which can handle one request per cycle. Thus under worst-case conditions the lFU can 
be locked out completely; eventually, of course, the processor will demand an instruction which is 
not ready and stop using the bus. Actual address bus conflicts are not a major factor (see § 6.3). 

Although ideally the MEMORY stage is regular, in fact collisions with the processor can happen; 
these irregularities are partially compensated by the two words of buffering after MEMORY. In 
addition cache misses, though very rare, cost about 30 cycles when they do occur. 

There is only one dependency on the rest of the execution pipeline: starting the lFU at a new PC. 
Since no attempt is made to detect modifications of code being executed, or to execute branches 
which depend on the values of variables, the only IFl'-processor communication is hand-off 
synchronization and resetting of the PC, and these are also the only communication between the lFU 
stages. The 1Ft.: is completely reset when it gets a new PC; no attempt is made to follow more than 
one branch path, or to cache information about the code within the lFU. The shortage of buffering 
makes the implementation of synchronization rather tricky; see § 5 . 

The IFU takes complete responsibility for keeping track of the PC. Every item in the pipe carries its 
PC value with it, so that when an instruction is delivered to the processor, the PC is delivered at the 
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same time. The processor actually has access to all the infonnation needed to maintain its own PC, 
but the time required to do this in microcode would be prohibitive (at least one cycle per 
instruction). 

The lFU can also follow branches, provided they are pc-relative, have displacements specified 
entirely in the instruction, and are encoded in certain limited ways. These restrictions ensure that 
only infonnation from the code (plus the current PC value) is needed to compute the branch 
address, so that no external dependencies are introduced. It would be possible to handle absolute 
as well as pc-relative branches, but this did not seem useful, since none of the target instruction sets 
use absolute branches. The decoding table specifies for each opcode whether it branches and how 
to obtain the displacement. On a branch, DECODE resets the earlier stages of the pipe and passes 
the branch PC back to ADDRESS. The branch instruction is also passed on to the processor. If it is 
actually a conditional branch which should not have been taken, the processor will reset the lFU to 
continue with the next instruction; the work done in following the branch is wasted. If the branch 
is likely not to be taken, then the decoding table should be set up so that it is treated as an 
ordinary instruction by the IFU, and if the branch is taken after all, the processor will reset the lFU 
to continue with the branch path; in this case the worle done in following the sequential path is 
wasted. Even unconditional jumps are pased on to the processor, partly to avoid another case in 
the IFU, and partly to prevent infinite loops in the lFU without any processor intervention. 

4. lFu-processor hand-off 

With a microcoded execution unit like the Dorado's processor, efficient emulation depends on 
smooth interaction between the IFU and the processor, and on the right kind of concurrency in the 
processor itself. These considerations are less critical in a low-performance machine, where many 
microcycles are used to execute each instruction, and the loss of a few is not disastrous. A high
performance machine. however, executes many instructions in one or two microcyc1es. Adding one 
or two more cycles because of a poorly chosen interface with the IFU, or because a very common 
pair of operations cannot be expressed in a single microinstruction, slows the emulator down by 50-
200%. The common operations are not very complex, and require only a modest amount of 
hardware for an efficient implementation. The examples in this section illustrate these points. 

Good performance depends on two things: 

An adequate set of data busses, so that it is physically possible to perform the frequent 
combinations of independent data transfers in a single cycle. We shall be mainly concerned 
with the busses which connect the lFU and the processor, rather than with the internal 
details of the latter. These are summarized in Figure 4. 

A microinstruction encoding which makes it possible to specify these transfers in a single 
microinstruction. A horizontal encoding does this automatically; a vertical one requires 
greater care to ensure that all the important combinations can still be specified. 

We shall use the term folding for the combination of several independent operations in a single 
microinstruction. Usually folding is done by the microprogrammer, who surveys the operations to 
be done and the resources of the processor, and arranges the operations in the fewest possible 
number of microinstructions. 
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4.1 How the processor sees the lFU 

The processor has four main operations for dealing with the IFU. Two are extremely frequent 

IFUJump: The address of the next microinstruction is taken from the lFU; a ten bit bus passes the 
dispatch address to the processor's control section. In addition, parts of the processor state are 
initialized from the lFU, and other parts are initialized to standard values (see § 4.2). lFUJump 
causes the lFU to hand off an instruction to the processor if it has one ready. Otherwise the lFU 
dispatches the processor to the NOlReady location. The microcode may issue another lFUJump at that 
point, in which case the processor wi11loop at NozReady until the lFU has prepared the next instruc
tion. An IITJump is coded in the branch control field of the microinstruction, and hence can be 
done concurrently with any data manipulation operation. 

IFCData: The IF0 delivers the next field datum on the lFUData bus. which is nine bits wide (eight 
data bits plus a sign). Successive IRiData's during emulation of an instruction produce a fixed 
sequence of values determined by the decoding table entry for the opcode. and chosen from: 

a small constant N in the decoding table entry; 
the alpha byte, possibly sign extended; 
either half of the alpha byte; 
the beta byte; 
the instruction length. 

lFUData is usually delivered to the A bus, one of the processor's two main input busses, from which 
it can be sent through the ALU, or used as a displacement in a memory reference. In this case it is 
encoded in the microinstruction field which controls the contents of this bus, and hence can be 
done concurrently with all the other operations of the processor. IFUData can also be delivered to B, 
the other main input bus, from which it can be shifted, stored, sent to the other ALU input, or 
output. This operation is encoded in the special function field, where it excludes a large number of 
relatively infrequent operations as well as immediate constants and long jumps, all of which also use 
this field. For the details of the processor and its microinstructions, see [8]. 

The other two IFU-related operations are less frequent, and are also coded in the special function 
field of the microinstruction: 

pc: The IFU delivers the pc for the currently executing instruction to the B bus. 

PC": resets the IFU and supplies a new pc value from the B bus. The IFU immediately starts 
fetching instructions from the location addressed by the new PC. 

In addition there are a number of operations that support initialization and testing of the hardware. 

Strictly speaking, the lFUDala and PC operations. do not interact with the IFU. All the information 
the 1Ft; has about the instruction is handed off at the lFUJump, including the field data and the PC 
(about 40 bits). However, these bits are physically stored with the lFU, and sent to the processor 
busses incrementally, in order to reduce the width of the busses needed (to 9 bits, plus a 16 bit bus 
multiplexed with many other functions). From the microprogrammer's viewpoint, therefore, the 
description we have given is natural. 

We illustrate the use of these operations with some examples. First, here is the actual microcode 
for the PushConsttml instruction introduced in § 2. 

PushConstantB}1e= 
PuSh[IFUDat.al; 1FUIump; -- Reduced from 9 microinstructions to I! 

To push a 16. bit constant, we need a three byte instruction; alpha contains the left eight bits of the 
constant and beta the right eight bits. 
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PushConstantWord: 
-- put alpha into the left half of temp temp ~ LeftShift[IFUData, 8]; 

Push[t.emp or IFUData), IFUJump; -- or in beta, push the result on the stack, and dispatch to the next instruction 

Notice that the first microinstruction uses the lFU to acquire data from the code stream. Then the 
second microinstruction simultaneously retrieves the second data byte and dispatches to the next 
instruction. These examples illustrate several points. 

Any number of microinstructions can be executed to emulate an instruction. i.e., between 
IFUJumpS. 

Within an instruction. any number of lFUDala requests are possible; see Table 3 for a 
summary of the data delivered to successive requests. 

lFUJump and IFUData may be done concurrently. The lFUData will reference the current 
instruction's data, and then the IFUJump will dispatch the processor to the first microinstruc
tion of the next instruction (or to NotReady). 

Suppose analysis of programs indicates that the most common PushConstant instruction pushes the 
constant O. Suppose further that I is the next most common constant. and 2 the next beyond that, 
and that all other constants occur much less frequently. A lot of code space can probably be saved 
by dedicating three one-byte opcodes to the most frequent PushConstant instructions, and using a 
two-byte instruction for the less frequent cases, as in the PushConstantByte example above, where the 
opcode byte designates a PushConstantByte opcode and alpha specifies the constant. A third opcode, 
PushConstantWord, provides for 16-bit constants, and still others are possible. 

Pursuing this idea, we define five instructions to push constants onto the stack: PushCO, PushCl, 
PushC2, PushCB, PushCW. Any five distinct values can be assigned for the opcode bytes of these 
instructions, since the meaning of an opcode is completely defined by its decoding table entry. The 
entries for these instructions are as follows: (N is a constant encoded in the opcode, Length is the 
instruction length in bytes, and Dispatch is the microcode dispatch address; for details, see § 5.4). 
Opcode 

PushCO 
PushC1 
PushC2 
PushCB 
PushCW 

Partial decoding table contents 

Dispatch~PushC, N~O, Length+-1 
Dispatch .. PushC, N "'1, Length +-1 
Dispatch'" PushC, N'" 2, Length +-1 
Dispatch'" PushC, Length ... 2 
Dispatch'" PushCW ord, Length .... 3 

-- Remarks 

-- push 0 onto the stack 
-- push 1 onto the stack 
-- push 2 onto the stack 
-- push alpha onto the stack 
-- push the concatenation of alpha and beta onto the stack 

Here is the microcode to implement these instructions; we have seen it before: 
PushC: -- PushCO/112, (ifuData=N), PushCB, (ifuData=alpha) 

Push[IFUData], IFUJump; 

PushCWord: -- PushCW, 
temp ~ Lshift[IFUData, 8]; -- (IFUData=alpha here) 
Push[t.emp or lFUData], IFUJump; . -- (IFUData= beta here) 

Observe that the same, single line of microcode (at the label PushC) implements four different 
opcodes, for both one and two byte instructions. Only PushConstantWord requires two separate 
microinstructions. 

4.2 Initializing state 

A standard method for reducing the size and increasing the usefulness of an instruction is to 
parameterize it For example, we may consider an instruction with a base register field to be 
parameterized by that register: the "meaning" of the instruction depends on the contents of the 
register. Thus the same instruction can perform different functions, and also perhaps can get by 
with a smaller address field. This idea is also applicable to microcode, and is used in the Dorado. 
For example, there are 32 memory base registers. A microinstruction referencing memory does not 
specify one of these explicitly; instead, there is a MemBase register, loadable by the microcode, 
which tells which base register to use. Provided the choice of register changes infrequently, this is 
an economical scheme. 
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For emulation it presents some problems, however. Consider the microcode to push a local 
variable; the address of the variable is given by the alpha byte plus the contents of the base register 
/ocaJData, whose number is /ocaiDataRegNo: 

PushLoca1Var: 
MemBase .. localDataRegNo; _. Make memory references relative to the local data 
Fetch[IFUData]; -- Use contents ofpc+ 1 as offset 
Push[memoryData], IFUJump; -- Push variable onto stack, begin next instruction 

This takes three cycles, one of which does nothing but initialize MemBase. The point is clear: such 
parametric state should be set from the IFU at the start of an instruction, using information in the 
decoding table. This is in fact done on the Dorado. The decoding table entry for PushLocalVar 
specifies /ocaiDala as the initial value for MemBase, and the microcode becomes: 

PushVar: 
Fetch[IFUData1; 
Push[memoryData),IFUJump; 

- IFU initializes MemBase to the local data 
-- Push variable onto stack, begin next instruction 

One microinstruction is saved. Furthermore, the same microcode can be used for a PushG/oba/Var 
instruction, with a decoder entry which specifies the same dispatch address, but g/oba/Data as the 
initial value of MemBase. Thus there are two ways in which parameterization saves space over 
specifying everything in the microinstruction: each microinstruction can be shorter, and fewer are 
needed. The need for initialization, however, makes the idea somewhat less attractive, since it 
complicates both the IFU and the EU, and increases the size of the decoding table. 

A major reduction in the size of the decoding table can be had by using the opcode itself as the 
dispatch address. This has a substantial cost in microcode, since typically the number of distinct 
dispatch addresses is about one-third of the 256 opcodes. If this price is paid and parameterization 
eliminated, however, the lFU can be considerably simplified, since not only the decoding table space 
is saved, but also the buffers and busses needed to hand off the parameters to the processor, and 
the parameterization mechanism in the processor itself. On the Dorado, the advantages of 
parameterization were judged to be worth the price, but the decision is a fairly close one. The 
current memory base register and the current group of processor registers are parameters of the 
microinstruction which are initialized from the lFU. The IFU also supplies the dispatch address at 
the same time. The remainder of the information in the decoding table describes the data fields 
and instruction length; it is buffered in EXECUfE and passed to the processor on demand 

4.3 Fonvarding 

Earlier we mentioned folding of independent operations into the same microinstruction as an 
important technique for speeding up a microprogram. Often, however, we would like to fold the 
emulation of two successive instructions, deferring some of the work required to finish emulation of 
one instruction into the execution of its successor, where we hope for unused resources. This 
cannot be done in the usual way, since we have no a priori information about what instruction 
comes next However, there is a simple trick (due to Ed Fiala) which makes it possible in many 
common cases. 

We define for an entire instruction set a small number n of cleanup actions which may be forwarded 
to the next instruction for completion; on the Dorado up to four are possible, but one must usually 
be the null action. For each dispatch address we had before, we now define n separate ones, one 
for each cleanup action. TIms if there were D addresses to which an IFUJump might dispatch, there 
are now nD. At each one, there must be microcode to do the proper cleanup action in addition to 
the work required to emulate the current instruction. The choice of cleanup action is specified by 
the microcode for the previous instruction; to make this convenient, the Dorado actually has four 
kinds of IFCJump operations (written IFCJump[i] for i=O, 1, 2, 3), instead of the one described 
above. The two bits thus supplied are oRed with the dispatch address supplied by the IFU to 
determine the microinstruction to which control should go. To avoid any assumptions about which 
pairS of successive instructions can occur, all instructions in the same instruction set must use the 
same cleanup actions and must be prepared to handle all the cleanup actions. In spite of this 
limitation, measurements show that forwarding saves about 8% of the execution time in straight-line 
code (see § 6.4); since the cost is very small, this is a bargain. 
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We illustrate this feature by modifying the implementation of PushLocalVar given above, to show 
how one instruction's memory fetch operation can be finished by its successor, reducing the cost of 
a PushLocalVar from two microinstructions to one. We use two cleanup actions. One is null (action 
0), but the other (action 2) finds the top of the stack not on the hardware stack but in the 
memoryData register. Thus, any instruction can leave the top of stack in memory Data and do an 
IFUJump(2]. Now the microcode looks like this: 

PushLoca1Var[O): 
Fetch[IFUData).IFUJump[2); 

PushLoca1Var(2): 

-- this entry point assumes normal stack, and leaves top of stack in 
memoryData. 

Push[memoryData), Fetch[IFUData). lFUJump[2); -- this entry point assumes top of stack is in memoryData and leaves it there. 

In both cases, the microcode executes IFUJump(2] , since: the top of stack is left in the memoryData 
register, rather than on the stack as it should be. In the case of PushLocalVa!{2], the previous instruc· 
tion has done the same thing. Thus, the microcode at this entry point must move that data into the 
stack at the same time it makes the memory reference for the next stack value. The reader can see 
that successive Push instructions will do the right thing. Of course there is a payoff only because 
the first microinstruction of PushLoca/Va!{O] is not using all the resources of the processor. 

It is instructive to look at the code for Add with this forwarding convention: 

Add[O): 
temp" PopO; - this entry point assumes and leaves normal stack 
StackTop .. StackTop + temp. lFUJump[O); 

Add[2]: 
StackT op .. StackT op + memory Data, lFUJump[O]; -- this entry point assumes top of stack is in memoryData, leaves normal 

stack. 

This example shows that the folding enabled by forwarding can actually eliminate data transfers 
which are necessary in the unfolded code. At Adaf2] the second operand of the Add is not put on 
the stack and then taken off again, but is sent directly to the adder. The common data bus of the 
360/9l [15J obtains similar, but more sweeping, effects at considerably greater cost It is also 
possible to do a cleanup after a NOlReady dispatch; this allows some useful work to be done in an 
otherwise wasted cycle. 

4.4 Conditional branches 

We conclude our discussion of lFU-processor interactions, and give another example of forwarding, 
with the example of a conditional branch instruction. Suppose that there is a BranchNotZero 
instruction that takes the branch if the current top of the stack is not zero. Assume that its 
decoding table entry tells the IFU to follow the branch, and specifies the instruction length as the 
first IfUData value. Straightforward microcode for the instruction is: 

BranchNotZero: 
if stack = 0 then goto InsFromIFUData, Pop; 
IFUJump; 

InsFromIFUData: 
temp "PC + IFUData; 
pc" temp; 
IFUJump; 

-- IFU jumps come here. IFU assumed resu1t#O. 
-- Test result in this microinstruction. 
-- Result was non-zero, lFU did right thing. 

-. Result was zero. Do the instruction at PC + IFUData. 
-- PC should be PC+ Instruction length. 
-. Redirect the IFU 
-- This will be dispatched to No/Ready, where the code \\'illioop until the lFU 

refills starting at the new location. 

The most likely case (the top of the stack non-zero) simply makes the test specified by the 
instruction and does an IFCJump (two cycles). If the value is zero (the IFU took the wrong path). 
the microcode computes the correct value for the new PC and redirects the IFU accordingly (four 
cycles. plus the IFC'S latency of five cycles; guessing wrong is painful). If we think that 
BranchNotZero wiII usually faii to take the branch, we can program the decoding table to treat it as 
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an ordinary instruction and deliver the branch displacement as lFUData, and reverse the sense of the 
test 

A slight modification of the forwarding trick allows further improvement. We introduce a cleanup 
action (say action 1) to do the job of InsFromIFCData above (it must be action 1 or 3, since a 
successful test in the Dorado ors a 1 into the next microinstruction address). Now we write the 
microcode (including for completeness the action 2 of § 4.3): 

BranchNotZero[O): 
T$[stack=O}. Pop. IFUJump[O}: 

BranchNotZero[2): 
Test(memoryData=O). IFUl1.Imp[O); 

Everylnstruction[l): 
temp "PC+IFUData; 
PC" temp: 
IFUJump[01; 

_. IFU jumps come here. Expect result#O. 
- Test result in this microinstruction; if the test sua:eeds. we do IFUJum.p[l~ 

-- Branch was wrong. Do the instruction at PC + IFUData. 

... Reclirect the IFU 
-- This will be clispatched to NotReody. where the code will loop until the IPU 

refllis starting at the new location. 

Now a branch which was predicted correctly takes only one microinstruction. For this to work, the 
processor must keep the lFU from advancing to the next instruction if there is a successful test in 
the IFUJump cycle. Otherwise, the J>C and lFUDala of the branch instruction would be lost, and the 
cleanup action could not do its job. Note that the first line at EverylnstlUction(1] must be repeated 
for each distinct dispatch address; all these can jump to a common second line, however. 

5. Implementation 

In this section we describe the implementation of the Dorado lFU in some detail. The primary 
focus of attention is the pipeline structure, discussed within the framework established in § 2 and § 
3.3, but in addition we give (in § 5.4) the format of the decoding table, which defines how the lFU 
can be specialized to the needs of a particular instruction set. Figure 3 gives the big picture of the 
pipeline. Table 1 summarizes the characteristics of each stage; succeeding subsections discuss each 
row of the table in turn. The first· row gives the properties of an ideal stage. and the rest of the 
table describes departures from this ideal. This information is expanded in the remainder of this 
section; the reader may wish to use the table to compare the behavior of the different stages. 

The entire pipe is synchronous, running on a two-phase clock which defines a 60 ns cycle; some 
parts of the pipe use both phases and hence are clocked every 30 ns. An "ideal" stage is described 
by the first line of the table. There is a buffer following each stage which can hold one item 
(b= I), and may be empty (represented by an empty flag); this is also the input buffer for the next 
stage. The stage takes an item from its input buffer every cycle (tinput= 1) and delivers an item to 
its output buffer every cycle (toutput= 1); the item taken is the one delivered (/= 1). The buffer is 
loaded on the clock edge which defines the end of one cycle and the start of the next. The stage 
handles an item if and only if there is space in the output buffer for the output at the end of the 
cycle; hence if the entire pipe is full and an item is taken by the processor, every stage will process 
an item in that cycle. This means that information about available buffer space must propagate all 
the way through the pipe in one cycle. Furthermore, this propagation cannot start until it is known 
that the processor is accepting the item, and it must take account of the various irregularities which 
allow a stage to accept an item without delivering one or vice versa. Thus, the pipe has global 
control. Note that a stage delivers an output item whether or not its input buffer is empty; if it is. 
the special empty item is delivered. Thus the space bookkeeping is done entirely by counting empty 
items. 

Implementing global control within the available time turned out to be hard. It was considered 
crucial because of the minimal buffering between stages. The alternative. much easier approach is 
local control: deliver an item to the buffer only if there is space for it there at the start of the cycle. 
This decouples the different stages completely within a cycle, but it means that if the pipe is full 
(best case) and the processor suddenly starts to demand one instruction per cycle (worst case), the 
pipe can only deliver at half this rate, even though each stage is capable of running at the full rate; 
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Stage Size Input Output Reset Remarks 

"ideal" t= 1; takes one t=l= 1; delivers one Clears buffer All state is in the buffer 
item if output item ifbuffer will to empty on after the stage. 
is possible be empty; b= 1 PC'" ... 

ADDRESS word No input Not if paused, MAR and jump; Pass PC by incrementing; 
contention, or mem also accepts a source, hence has 
busy; OK ifspace in newPcvalue state (pc). 
any later buffer. 

MEMORY word Internal f> 2; output is and jump; Must enforce FIFO; 
complications unconditional; b=2 discards out- not really part ofIFU; 

put of fetches has state of 0-2 
in progress fetches in progress 

BYTES byte t=.5 t=I=.5 and jump Break byte feature. 

DECODE instr t> .5: rate de- only Recycling to vary rate; 
pends on ins- splits beta byte; encodes 
truction length exceptions; does jumps. 

DISPATCH instr On lFUJump only NotReady is default delay; 
IFGHold is panic delay. 

EXECuTE byte On lFUData No output buffer Reset unnecessary 

Table 1: Summary of the pipeline stages 

ADDRESS buffer 4 

MEMORY buffer 3 

BYTES buffer 

DECODE buffer 

processor has 

2 

4 

3 

2 

1 

4 

3 

2 

4 5 

4 

3 4 

3 

2 3 

6 

5 

5 

4 

Figure Sa: Cogging with local control and one item buffering 

ADDRESS buffer 7,8 7,8 7,8 7,8 -,8 -,9 -,10 -,11 

MEMORY buffer 5,6 5,6 5,6 -,6 -,7 -,8 -,9 -,10 

BYTES buffer 3,4 3,4 -,4 -,5 -,6 -,7 -,8 -,9 

DECODE buffer 1,2 -,2 -,3 -,4 -,5 -,6 -,7 -,8 

processor has 1 2 3 4 5 6 7 

Figure 5b: Smooth operation with local control and two item buffering 
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Figure Sa illustrates this cogging. Figure 5b shows that with two items of buffering after each stage, 
local control does not cause cogging. The Dorado has small buffers and global control partly 
because buffers are fairly costly in components (see below), and partly because this issue was not 
fully understood during the design. Note that it is easy to implement global control over a group 
of consecutive stages which have no irregularities, since every stage can safely advance if there is 
room in the buffer of the last stage. In this IFU, alas, there are no two consecutive regular stages. 

Unfortunately, the cost of buffering is not linear in the number of items. A two item buffer costs 
more than three times as much as a one item buffer; this is because the latter is simply a register, 
while the former requires two registers plus a multiplexor to bypass the second register when the 
buffer is empty, as shown in Figure 6. Without the bypass a larger buffer increases the latency of 
the pipe, which is highly undesirable since it slows down every jump which the IFU doesn't predict 
successfully. Once the cost of bypassing is paid, however, a multi-item buffer costs only a little 
more, since a RAM can be used in place of the second register. Although there are no such buffers 
in the Dorado, it is interesting to see how they are made. 

one item 
no bypass 

two items 
with bypass 

Ad ~---"" 
RAM 

I Count 

Oaempty 
carry- full 

10-_ ..... _..... Read in ha/f-cycle when data is delivered 
Write in the other half-cyc/e 

many items 
with RAM and bypass 

¥ Multiplexor 

Register 

tt Multiplexorl 
register 

Figure 6: One, two and many item buffers with bypassing 

The RAM requires two counters to act as read and write pointers, and a third to keep track of the 
number of items in the buffer. In addition, it must be effectively two-ported, sinCe in a single cycle 
it is necessary to write one item and read an earlier one. In the Dorado two-port RAMS are used in 
many.places; since no such part is available, they are implemented by running an ordinary RAM at 
twice the machine cycle (both 16x4and 2S6x4 RA~1S are available which can be read or written in 

. 10 ns). and using a multiplexor to supply the read address in one half-cycle and the write address in 
the other. Figure 6 shows this arrangement in a slightly simplified form. 

A normal stage has no state which changes as instructions are executed; all the state is represented 
in the items as they are stored in the inter-stage buffers. As a consequence, resetting the pipe is 
done simply by filling all the buffers with empty items. 

Every item carries with it a PC, which is the address in the code from which its first byte was 
fetched. It is the IFC'S handling of jumps which makes this necessary; otherwise it would suffice to 
remember the initial PC at the end of the pipe, and to increment it by the instruction length as each 
instruction goes by. Since no jumps can be executed between the ADDRESS and BYTES states, this 
method is in fact used there. It is especially convenient because BYTES handles one byte at a time, 
so that the PC can be held in a counter which is incremented once per item; later in the pipe an 
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adder would be needed to handle the variable instruction lengths, and it would cost about four 
times as much. 

Every item also carries a status field, which is used to represent various values that do not 
correspond to ordinary instructions: empty, page fault, memory error. These are converted into 
unique dispatch addresses when the item is passed to the processor, as discussed in § 3.4. 

5.1. ADDRESS stage 

This stage generates the addresses of memory words which contain the successive bytes of code. 
Unlike the other stages, it has no ordinary input, but instead contains a PC which it increments by 
two (there are two bytes per memory word) for each successive reference. The PC can also take on 
a pause value which prevents any further memory references until the processor resupplies ADDRESS 
with an ordinary PC value. This pause state plays the same role for ADDRESS that an empty input 
buffer plays for the other stages; hence it is entered whenever this stage is reset. That happens 
either because of a processor Reset operation (which resets the entire lFU pipe, and is not done 
during normal execution), or because of a Pause signal from DECODE. Correspondingly, a new PC 
can be supplied either by a processor PC~ operation, or by a Jump signal from DECODE when it sees 
a jump instruction. Any of these operations resets the pipe between ADDRESS and DECODE; the 
processor operations reset the later stages also. 

ADDRESS makes a memory reference if the memory is willing to accept the reference; this 
corresponds to finding space in the buffer between ADDRESS and MEMORY, although the 
implementation is quite different because the memory is not physically part of the lFU. In addition, 
ADDRESS contends with the processor for the memory address bus; since the lFU has lowest priority, 
it waits until this bus is not being used by the processor. Finally, it is necessary to worry about 
space for the resulting memory word: the memory, unlike ordinary lFU stages, delivers its result 
unconditionally, and hence must not be started unless there is a place to put the result. ADDRESS 
surveys the buffering in the rest of the pipe, and waits until there are at least two free bytes 
guaranteed; it isn't necessary for these bytes to be in the MEMORY output buffer, since data in that 
buffer will advance into later buffers before the memory delivers the data. It is, however, necessary 
to make the most pessimistic assumptions about instruction length and processor demands. On this 
basis, there are seven bytes of buffering altogether: four after ME,\10RY, two after BYTES, and one 
after DECODE. 

5.2 MEMORY stage 

This stage has several peculiarities. Some arise from the fact that most of it is not logically or 
physically a part of the In;, but instead is shared with the processor and 1/0 system. As we saw in 
the previous section, the memory delivers results unconditionally, rather than waiting for buffer 
space to be available; ADDRESS allows for this in starting MEMORY. Furthermore, the memory has 
considerable internal state and cannot be reset, so additional logic is required to discard items which 
are inside the memory when the stage is reset. 

Other problems arise from the fact that the memory's latency is more than one cycle; in fact, it 
ranges from two to about 30 cycles (the latter when there is a cache miss). To maintain full 
bandwidth, the lFU must therefore have more than one item in the ME,\10RY stage at a time; since 
1= 2 when the cache hits, and this is the normal case, there is provision for up to two items in 
ME\10RY. A basic principle of pipeline stages is that items emerge in the order they are supplied. 
A stage with fixed latency, or one which holds only one item, does this automatically, but MEMORY 
has neither of these properties. Furthermore, its basic function is random access, with no sequential 
relationship between successive references. Hence if one reference misses and the next one hits, the 
memory is happy to deliver the second result first. To prevent this from happening, the lFU 
notifies the memory that it has a reference outstanding when it makes the second one, and the 
memory rejects the second reference unless the first one is about to complete. 
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The irregularity of the memory also demands more than one word of buffering for its output, and 
in fact two are provided. They are physically packaged with the cache data memory, as is the 
BYTES stage multiplexing required to produce individual bytes. As a result, a one-byte bus suffices 
to deliver memory data to the IFU. 

5.3 BYTES stage 

This is a very simple stage, which consists only of the multiplexors just mentioned. It does, 
however, run twice as fast as the other stages, so that it can deliver two-byte instructions at the full 
rate of one per cycle. This means that the multiplexors must look at both words of the MEMORY 
output buffer, which runs only at the normal rate. 

BYTES also includes a provision for replacing the first byte coming from memory with a byte taken 
from a substitute register within the stage. This feature makes it convenient to proceed after a 
breakpoint without removing the one-byte breakpoint instruction from the code; instead the opcode 
byte displaced by the breakpoint is loaded into the substitute register (by the microcode) and 
substituted for the break instruction. Since the substitution is done only once, the break is executed 
normally when control returns to it. The substitute register is also a convenient way to address the 
decoding table for loading and testing it 

5.4 DECODE stage 

The main complications in this stage are the decoding table, the variable number of bytes required 
to make up an instruction, the encoding of exceptions, and the execution of jumps. 

The decoding table is implemented with lkxl RAMS, which provide room for four instruction sets 
with 256 opcodes each. It takes about two-thirds of a cycle to read these RAMs, with consequences 
which are described below. The form of an entry is outlined in Table 2; parity is also stored. Most 
of this information is· passed on directly to the DECODE buffer. The last three fields, however, 
affect the IFC'S handling of subsequent instructions. 

Name Size 

Dispatch lO 
MemBase 3 
RBase 1 

SplitAlpha 1 
N 4 
Sign 1 

Length 2 
Jump 1 

Pause 1 

Function 

The starting microcode address for the instruction 
Selects one of eight memory base registers. 
Selects one of two processor register groups. 

Split the first data byte into two four-bit data items. 
Encoded constant 
Extend sign of the first datum provided to the processor. 

The length of the instruction; also supplied as a datum. 
Indicates a jump; DECODE computes a new PC from PC plus N (if length= 1) 
or alpha (if length = 2). 
Indicates that ADDRESS should be reset 

Table 2: Fields of a decoding table entry. 

The instruction length determines the treament of both this and later instructions; the fact that it 
isn't known until late in the DECODE cycle causes serious problems. A simple implementation of 
DECODE addresses the decoding table directly from the input buffer. If the instruction turns out to 
be one byte long, it is delivered to the output buffer in the normal way. If it is longer, the decoded 
output is latched and additional bytes are taken from BYTES until the complete instruction is in 
DECODE ready to be delivered; see Figure 7a. Unfortunately, the length must be known before the 
middle of the cycle to handle two-byte instructions at full speed. Figure 7 b shows how this 
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problem can be attacked by introducing a sub-stage within DECODE; unfortunately, this delays the 
reading of the decode table by half a cycle, so that its output is not available together with the 
alpha byte. To solve the problem it is necessary to provide a second output buffer for BYrES. and 
to feed back its contents into the main buffer if the instruction turns out to be only one byte long, 
as in Figure 7 c. Some care must be taken to keep the PCs straight. This ugly backward 
dependency seems to be an unavoidable consequence of the variable-width items. 

In fact, a three-byte instruction is not handled exactly as shown in Figure 7. Since the bandwidth 
of BYTES prevents it from being done in one cycle anyway, space is saved by breaking it into two 
sub-instructions, each two bytes long; for this purpose a dummy opcode byte is supplied between 
alpha and beta. Each sub-instruction is treated as an instruction item. The second one contains 
beta and is slightly special: DECODE ignores its dummy opcode byte and treats it as a two-byte 
instruction, and DISPATCH passes it on to EXECCTE after the alpha byte has been delivered. 

from BYTES stage 

D d o Ad 
eco 109 

RAM 

r-----"------., BYTES 
instruction byte output 

L..-_.....;..,~......;.:~ buffer 

DECODE 
output 
buffer 

Figure 7a: Simple implementation of DECODE 

from BYTES stage 

,,. t 
-~ . BYTES 

I instruction bytel output I buffer 

Decod0 Ad ~ 109 
RAM 

J, 
I decoded opcode 

from BYTES stage 

DecodingAd 

RAM 

r-----"------, BYTES 
instruction byte output 

'-----,-......::.....-1 buffer 

Sub-stage 

Figure 7b: Substage implementation of DECODE 

,~ 

I alpha buffer I 

" 
alpha 

" 
beta I 

DECODE 
output 
buffer 

Figure 7c: Recycling implementation of DECODE 
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DECODE replaces the dispatch address from the table with an exception address if necessary. In 
order to obey the rule that exceptions must all be captured in the dispatch address. the exception 
values of all the instruction bytes are merged into its computation. For three-byte instructions. this 
requires looking back into BYTES for the state of the beta byte_ If any of the bytes is empty, 
DECODE keeps the partial instruction item when it delivers an empty item with a NotReady dispatch 
into its output buffer. If a Reschedule is pending, it is treated like any other exception, by 
converting the dispatch address of the next instruction item into Reschedule. Thus there is always a 
meaningful PC associated with the exception. 

If the Jump field is set, DECODE computes a new program counter by adding an offset to the PC of 
the instruction. This offset comes from the alpha byte if there is one. otherwise from N and 
SplitAlpha; it is sign-extended if Sign is true. The new PC is sent back to ADDRESS. as described in § 
5.1, where Pause is also explained. Jump instructions in which the displacement is not encoded in 
this way cannot be executed by the lFU. but must be handled by the processor. 

5.5 DISPATCH stage 

The interesting work of this stage is done by the processor, which takes the dispatch address. 
together with the state initialization discussed in § 4.2, from the DECODE output buffer when it 
executes an lFUJump. Because empty is encoded into a NotReady dispatch, the processor takes no 
account of whether the buffer is empty. There are some ugly cases, however, in which DECODE is 
unable to encode an exception quickly enough. In these cases DISPATCH asserts a signal called Hold 
which causes the processor to skip an instruction cycle; this mechanism is rather expensive to 
implement, and is present only because it was essential for synchronization between the processor 
and the memory [1]. Once implemented, however, it is quite cheap for the IFU to use. The 
NotReady dispatch is still preferable. because it gives the microcode an opportunity to do some 
useful work while waiting. 

5.6. EXECUTE stage 

This stage implements the IFUData function; as we have already seen, it is logically part of the 
processor. The sequence of data items delivered in response to IFUData is controlled by Jump. 
Length, N, and SplitA/pha according to Table 3; in addition, alpha is sign-extended if Sign is true. 
EXEClJTE also provides the processor with the value of the PC in response to a different function. 

Jump Length N SpUtA/pha IFUData 

Yes Length. ••. 

No 1 No Length, ••• 
No 1 Yes N. Length, ••. 

No 2 No No alpha, Length, • • • 
No 2 No Yes alphaHigh, alphaLOw, Length, ••• 
No 2 Yes No N. alpha, Length, ••• 
No 2 Yes Yes N, alphaHigh, alphaLow, Length, _ •• 

No 3 No No alpha, beta. Length, • • • 
No 3 No Yes alphaHigh, alphaLow. beta, Length, • • • 
No 3 Yes No N, alpha, beta, Length, • • • 
No 3 Yes Yes N, alphaHigh, alphaLow. beta. Length, ••• 

Table 3: Data items provided to IFUData 
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6. Performance 

The value of an instruction fetch unit depends on the fraction of total emulation time that it saves 
(over doing instruction fetching entirely in microcode). This in tum clearly depends on the amount 
of time spent in executng each instruction. For a language like Smalltalk-76 [5], a typical 
instruction requires 30-40 cycles for emulation, so that the half-dozen cycles saved by the lFU are 
not very significant. At the other extreme, an implementation language like Mesa [9, 11] is 
compiled into instructions which can often be executed in a single cycle; except for function calls 
and block transfers, no Mesa instruction requires more than half a dozen cycles. For this reason, 
we give perfonnance data only for the Mesa emulator. 

The measurements reported were made on the execution of the Mesa compiler, translating a 
program of moderate size; data from a variety of other programs is very similar. All the operating 
system functions provided in this single-user system are included. Disk. wait time is excluded, since 
it would tend to bias the statistics. Some adjustments to the raw data have been made to remove 
artifacts caused by compatibility with an old Mesa instruction set. Time spent in the procedure call 
and return instructions (about 15%) has been excluded; these instructions take about 10 times as 
long to execute as ordinary instructions, and hence put very little demand on the lFU. 

The Dorado has a pair of counters which can record events at any rate up to one per machine 
cycle. Together with supporting microcode, these counters provide sufficient precision that overflow 
requires days of execution. It is possible to count a variety of interesting events; some are 
pennanently connected, and others can be accessed through a set of multiplexors which provide 
access to several thousand signals in the machine, independently of nonnal microprogram execution. 

6.1 Performance limits 

The maximum perfonnance that the lFU can deliver is limited by certain aspects of its 
implementation; these limitations are intrinsic, and do not depend on the microcode of the 
emulator or on the program being executed. The consequences of a particular limitation, of course, 
depend on how frequently it is encountered in actual execution. 

Latency: after the microcode supplies the IFU with a new PC value, an lFUJump will go to NotReady 
until the fifth following cycle (in a few cases, until the sixth cycle). Thus there are at least five 
cycles of latency before the first microinstruction of the new instruction can be executed. Of 
course, it may be possible to do useful work in these cycles. This latency is quite important, since 
every instruction for which the lFU cannot compute the next PC wilJ pay it; these are wrongly 
guessed conditional branches, indexed branches, subroutine calls and returns, and a few others of 
negligible importance. 

A branch correctly executed by the lFU causes a three-cycle gap in the pipeline. Hence if the 
processor spends one cycle executing it and each of its two predecessors, it will see three NotReady 
cycles on the next lFUJump. Additional time spent in any of these three instructions, however, will 
reduce this latency, so it is much less important than the other. 

Bandwidth: In addition to these minimum latencies, the lFU is also limited in its maximum 
throughput by memory bandwidth and its limited buffering. A stream of one-byte instructions can 
be handled at one per cycle, even with some processor references to memory. A stream of two-byte 
instructions, however (which would consume all the memory bandwidth if handled at full speed). 
results in 33% No/Ready even if the processor makes no memory references. The reason is that the 
IFU cannot mak.e a reference in every cycle, because its buffering is insufficient to absorb 
irregularity in the processor's demand for instructions. As we shall see, these limitations are of 
small practical importance. 
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6.2 NotReady dispatches 

Our measurements show that the average instruction takes 3.1 cycles to execute (including all lFU 
delays). Jumps are 26% of all instructions, and incorrectly predicted jumps (40% of all conditional 
jumps) are 10%. The average non-jump instruction takes 2.5 cycles. 

The performance of the lFU must be judged primarily on the frequency with which it fails to satisfy 
the processor's demand for an instruction, i.e., the frequency of NotReady dispatches. It is 
instructive to separate these by their causes: 

latency, 

cache misses by the IFU, 

dearth of memory bandwidth, 

insufficient buffering in the IFU. 

The first dominates with 16% of all cycles. which is not surprising in view of the large number of 
incorrectly predicted jumps. Note that since these NotReody cycles are predictable, unlike all the 
others, they can be used to do any background tasks which may be around. 

Although the IFU'S hit rate is 99.7%, the 25 cycle cost of a miss means that 2.5% of all cycles are 
NotReody dispatches from this cause. This is computed as follows: one cycle in three is a dispatch, 
and .3% of these must wait for a miss to complete. The average wait is near the maximum, 
unfortunately, since most misses are caused by resetting the lFU'S pc, This yields 33% of .3%, or .1%, 
times 25, or 2.5%. 

The other causes of NotReody account for only 1%. This is also predictable, since more than half 
the instructions are one byte, and the average instruction makes only one memory reference in three 
cycles. Thus the average memory bandwidth available to the lFU is two words, or three 
instructions, per instruction processed, or about three times what is needed. Furthermore, straight
line instructions are demanded at less than half the peak rate on the average, and jumps are so 
frequent that when the first instruction after a jump is dispatched, the pipe usually contains half the 
instructions that will be executed before the next jump. 

6.3 Memory bandwidth 

As we have seen, there is no shortage of memory bandwidth, in spite of the narrow data path 
between the processor and the lFU. Measurements show that the processor obtains a word from the 
memory in 16% of the cycles, and the IFU obtains a word in 32% of the cycles. Thus data is 
supplied by the memory in about half the cycles. The processor actually shuts out the lFU by 
making its own reference about 20% of the time, since some of its references are rejected by the 
memory and must be retried. The IFU makes a reference for each word transferred, and makes 
unsuccessful references during its misses. for a total of 35%. There is no memory reference about 
45% of the time. 

6.4 Forwarding 

The forwarding trick saves a cycle in about 25% of the straight-line instructions, and hence speeds 
up straight-line execution by 8%. Jumps take longer and benefit less, so the speed-up within a 
procedure is 5%. Like the lFU itself, forwarding pays off only when instructions are executed very 
quickly, since it can save at most one cycle per instruction. 
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6.5 Size 

A Dorado board can hold 288 standard 16-pin chips. The IRJ occupies about 85% of a board; 
these 240 chips are devoted to the various stages as shown in Table 4. 

Function 

ADDRESS-BYTES 
DECODE 
DISPATCH 
EXECUfE 
Processor interface 
Cocks 
Testing 

Chips 

40 
86 
24 
18 
27 
18 
27 

17 
35 
10 
8 

11 
8 

11 

Table 4: Size of various parts of the IFU 

In addition. about 25 chips on another board are part of MEMORY and BYTES. The early stages are 
mostly devoted to handling several PC values. DECODE is large because of the decoding table (27 
RAM chips) and its address drivers and data registers. as well as the branch address calculation. 

Table 5 shows the amount of microcode in the various emulators, and in some functions common 
to all of them. In addition. each emulator uses one quarter of the decode table. Of course they are 
not all resident at once. 

System Words 

Mesa 1300 
Smalltalk 1150 
Lisp 1500 
Alto BCPL 700 
I/O 1000 
Floating point 300 
Bit block transfer 270 

Acknowledgements 

Comments 

Disk, keyboard, regular and color display. Ethernet 
IEEE standard; there is no special hardware support 

Table 5: Size of various emulators 

The preliminary design of the Dorado lFU was done by Tom Chang, Butler Lampson and Chuck 
Thacker. Final design and checkout were done by Will Crowther and the authors. Ed Fiala 
reviewed the design, did the microassembler and debugger software. and wrote the manual. The 
emulators mentioned were written by Peter Deutsch, Willie-Sue Haugeland, Nori Suzuki and Ed 
Taft. 
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1. Introduction 

This paper describes the memory system of the Dorado, a high-performance compact personal 
computer. This section explains the design goals for the Dorado, sketches its overall architecture. 
and describes the organization of the memory system. Later sections discuss in detail the cache (§ 
2), the main storage (§ 3), interactions between the two (§ 4), and synchronization of the various 
parallel activities in the system (§ 5). The paper concludes with a description of the physical 
implementation (§ 6), and some performance measurements (§ 7). 

1.1 Goals 

A high-performance successor to the Alto computer [18], the Dorado is intended to provide the 
hardware base for the next generation of computer system research at the Xerox Palo Alto Research 
Center. The Dorado is a powerful but personal computing system supporting a single user within a 
programming system that extends from the microinstruction level to an integrated programming 
environment for a high-level language. It is physically small and quiet enough to occupy space near 
its users in an office or laboratory setting, and inexpensive enough to be acquired in considerable 
numbers. These constraints on size, noise, and cost have had a major effect on the design. 

The Dorado is designed to rapidly execute programs compiled into a stream of byte codes [16]; the 
microcode that does this is called an emulator. Byte code compilers and emulators exist for Mesa 
[6, 13], Interlisp [4, 17], and Smalltalk [7]. An instruction fetch unit (IFU) in the Dorado fetches 
bytes from such a stream, decodes them as instructions and operands, and provides the necessary 
control and data information to the emulator microcode in the processor; it is described in another 
paper [9]. Further support for fast execution comes from a very fast microcyc1e, and a 
microinstruction set powerful enough to allow interpretation of a simple byte code in a single 
microcyc1e; these are described in a paper on the Dorado processor [10]. There is also a cache [2, 
11] which has a latency of two cycles, and which can deliver a 16-bit word every cycle. 

Another major goal is to support high-bandwidth input/output. In particular, color monitors, raster 
scanned printers, and high speed communications are all part of the computer research activities; 
these devices typically have bandwidths of 20 to 400 million bits per second. Fast devices must not 
excessively degrade program execution, even though the two functions compete for many of the 
same resources. Relatively slow devices, such as a keyboard or an Ethernet interface [12], must also 
be supported cheaply, without tying up the high-bandwidth I/O system. These considerations 
clearly suggest that I/O activity and program execution should proceed in parallel as much as 
possible. The memory system therefore allows parallel execution of cache accesses and main storage 
references. Its pipeline is folly segmented: a cache reference can start in every microinstruction 
cycle, and a main storage reference can start in every main storage cycle. 

1.2 Gross structure of the Dorado 

Figure 1 is a simplified block diagram of the Dorado. Aside from I/O, the machine consists of the 
processor, the IFlJ, and the memory system, which in turn contains a cache, a hardware virtual-to
real address map, and main storage. Both the processor and the IFlJ can make memory references 
and transfer data to and from the memory through the cache. Slow, or low-bandwidth I/O devices 
communicate with the processor, which in tum transfers their data to and from the cache. Fast, or 
high-bandwidth devices communicate directly with storage, bypassing the cache most of the time. 

For the most part, data is handled sixteen bits at a time. The relatively narrow busses, registers, 
data paths, and memories which result from this choice help to keep the machine compact. This is 
especially important for the memory, which has a large number of busses. Packaging, however. is 
not the only consideration. Speed dictates a heavily pipelined structure in any case, and this 
parallelism in the time domain tends to compensate for the lack of parallelism in the space domain. 
Keeping the machine physically small also improves the speed, since physical distance (i.e., wire 
length) accounts for a considerable fraction of the basic cycle time. Finally, performance is often 
limited by the cache hit rate, which cannot be improved, and may be reduced, by wider data paths 
(if the number of bits in the cache is fixed). 
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Figure 1: Dorado block diagram 

Rather than putting processing capability in each I/O controller and using a shared bus or a switch 
to access the memory, the Dorado shares the processor among all the I/O devices and the emulator. 
This idea, originally triea in the TX-2 computer [5] and also used in the Alto [18], works for two 
main reasons. First, unless a system has both multiple memory busses (Le., multi-ported memories) 
and multiple memory modules that can cycle independently, the main factor governing processor 
throughput is memory contention. Put simply, when I/O devices make memory references. the 
emulator ends up waiting for the memory. In this situation the processor might as well be working 
for the I/O device. Second, complex device interfaces can be implemented with relatively little 
dedicated hardware, since the full power of the processor is available to each device. 

This processor sharing is accomplished with 16 hardware-scheduled microcode processes, called 
tasks. Tasks have fixed priority. Most tasks serve a single I/O device, which raises a request line 
when it wants service from its task. Hardware schedules the processor so as to serve the highest 
priority request; control can switch from one task to another on every microinstruction, without any 
cost in time. When no device is requesting service. the lowest priority task runs and does high-level 
language emulation. To eliminate the time cost of multiplexing the processor among the tasks in 
this way, a number of the machine's working registers are task-specific. i.e., there is a copy for each 

. task. The implementation typically involves a single physical register, and a 16-element memory 
which is addressed by the current task number and whose output is held in the register. 

Many design decisions were based on the need for speed. Raw circuit speed certainly comes first 
Thus, the Dorado is implemented using the fastest commercially available technology that has a 
reasonable level of integration and is not too hard to package. When our design was started in 
1976, the obvious choice was the EeL (Emitter-Coupled Logic) 10K family of integrated circuits. 
These circuits make it possible for the Dorado to execute a microinstruction in 60 ns; this is the 
basic cycle time of the machine. Second, there are several pipelines, and they are generally able to 
start a new operation every cycle. The memory, for instance, has two pipelines, the processor two, 
the instruction fetch unit another. Third. there are many independent busses: eight in the memory, 
half a dozen in the processor, three in the IFV. These busses increase bandwidth and simplify 
scheduling, as will be seen in later sections of the paper. 

1.3 Memory architecture 

The paged virtual memory of the Dorado is designed to accommodate evolving memory chip 
technology in both the address map and main storage. Possible configurations range from the 
current 22-bit virtual address with 16K 256-word pages and up to one million words of storage 
(using 16K chips in both map and storage) to the ultimate 28-bit virtual address with 256K 1024-
word pages and 16 million words of storage (using 256K chips). All address busses are wired for 
their maximum size, so that configuration changes can be made with chip replacement only. 
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Memory references specify a 16 or 28 bit displacement, and one of 32 base registers of 28 bits; the 
vinual address is the sum of the displacement and the base. Vinual address translation, or mapping, 
is implemented by table lookup in a dedicated memory. Main storage is the permanent home of 
data stored by the memory system. The storage is necessarily slow (i.e., it has long latency, which 
means that it takes a long time to respond to a request), because of its implementation in cheap but 
slow dynamic MOS RAMS (random access memories). To make up for being slow, storage is big, 
and it also has high bandwidth, which is more important than latency for sequential references. In 
addition, there is a cache which services non-sequential references with high speed (low latency), 
but is inferior to main storage in its other parameters. The relative values of these parameters are 
shQwn in Table 1. 

Latency'1 
Bandwidth 
Capacity 

Cache 

15 
1 
1 

Storage 

1 
2 

250 

Table 1: Parameters of the cache relative to storage 

With one exception (the lFU), all memory references are initiated by the processor, which thus acts 
as a multiplexor controlling access to the memory (see § 1.2 and [10]), and is the sole source of 
addresses. Once staned, however, a reference proceeds independently of the processor. Each one 
carries with it the number of its originating task, which serves to identify the source or sink of any 
data transfer associated with the reference. The actual transfer may take place much later, and 
each source or sink must be continually ready to deliver or accept data on demand. It is possible 
for a task to have several references outstanding, but order is preserved within each type of 
reference, so that the task number plus some careful hardware bookkeeping is sufficient to match 
up data with references. 

Table 2 lists the types of memory references executable by microcode. Figure 2, a picture of the 
memory system's main data paths, should clarify the sources and destinations of data transferred by 
these references (parts of Figure 2 will be explained in more detail later). All references, including 
fast 1/0 references, specify vinual, not real addresses. Although a microinstruction actually specifies 
a displacement and a base register which together form the virtual address, for convenience we will 
suppress this fact and write, for example, Fetch(a) to mean a fetch from vinual address a. 

A Felch from the cache delivers data to a register called FetchReg, from which it can be retrieved at 
any later time; since FetchReg is task-specific, separate tasks can make their cache references 
independently. An I/ORead reference delivers a 16-word block of data from storage to the 
FastOutBus (by way of the error corrector, as shown in Figure 2), tagged with the identity of the 
requesting task; the associated output device is expected to monitor this bus and grab the data 
when it appears. Similarly, the processor can Store one word of data into the cache, or do an 
r/OWrite reference which demands a block of data from an input device and sends it to storage (by 
way of the check-bit generator). There is also a Pre/etch reference, which brings a block into the 
cache. Fetch, Store and Pre/etch are called cache references. There are special references to flush 
data from the cache and to allow a map entries to be read and written; these will be discussed later. 

The instruction fetch unit is the only device that can make a reference independently of the 
processor. It uses a single base register, and is treated almost exactly like a processor cache fetch, 
except that the IFU has its own set of registers for receiving memory data (see [9] for details). In 
general we ignore IFU references from now on, since they add little complexity to the memory 
system. 
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Effect 

fetches one word of data from virtual address a in the cache 
and delivers it to FetchReg register 

stores data word d at virtual address a in the cache 

reads block at virtual address a in storage and delivers it to a 
fast output device 

takes a block from a fast input device and writes it at virtual 
address a in storage 

forces the block at virtual address a into the cache 

removes from the cache (re-writing to storage if necessary) 
the block at virtual address a 

reads the map entry addressed by virtual address a 

writes d into the map entry addressed by virtual address a 

makes a pseudo-reference guaranteed not to reference storage 
or alter the cache (useful for diagnostics) 

Table 2: Memory-reference instructions available to microcode 

A cache reference usually hits; i.e., it finds the referenced word in the cache. If it misses (does not 
find the word), a main storage operation must be done to bring the block containing the requested 
word into the cache. In addition, I/O references always do storage operations. There are two kinds 
of storage operations, read and write,· and we will generally use these words only for storage 
operations in order to distinguish them from the references made by the processor. The former 
transfers a block out of storage to the cache or I/O system; the latter transfers a block into storage 
from the cache or I/O system. 

104 ImplementationJor high performance 

Two major forms of concurrency make it possible to implement the memory system's functions with 
high performance: 

Physical: the cache (8K-32K bytes) and the main storage (.5M-32M bytes) are almost 
independent. Normally, programs execute from the cache, and fast I/O devices transfer to 
and from the storage. Of course, there must be some coupling when a program refers to 
data that is not in the cache, or when I/O touches data that is; this is the subject of § 4. 

Temporal: both cache and storage are implemented by fully segmented pipelines. Each can 
accept a new operation once per cycle of the memory involved: every machine cycle (60 ns) 
for the cache, and every eight machine cycles (480 ns) for the storage. 

To support this concurrency, the memory has independent busses for cache and main storage 
addressing (2), data into and out of the cache (2) and main storage (2), and fast input and output 
(2). The data busses, but not the address busses, are visible in Figure 2. It is possible for all eight 
busses to be active in a single cycle, and under peak load the average utilization is about 75%. In 
general, there are enough busses that an operation never has to wait for a bus; thus the problems of 
concurrently scheduling complex operations that share many resources are simplitied by reducing 
the number of shared resources to the unavoidable minimum of the storage devices themselves. 
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All busses are 16 bits wide; blocks of data are transferred to and from storage at the rate of 16 bits 
every half cycle (30 ns). This means that 256 bits can be transferred in 8 cycles or 480 ns., which is 
somewhat more than the 375 ns cycle time of the RAM chips that implement main storage. Thus a 
block size of 256 bits provides a fairly good match between bus and chip bandwidths; it is also a 
comfortable unit to store in the cache. The narrow busses increase the latency of a storage transfer 
somewhat, but they have little effect on the bandwidth. A few hundred nanoseconds of latency is 
of little importance either for sequential 1/0 transfers or for delivery of data to a properly 
functioning cache. 

Various measures are taken to maximize the performance of the cache. Data stored there is not 
written back to main storage until the cache space is needed for some other purpose (the write-back 
rather than the more common write-through discipline [I, 14]); this make it possible to use memory 
locations much like registers in an interpreted instruction set, without incurring the penalty of main 
storage accesses. Virtual rather than real addresses are stored in the cache, so that the speed of 
memory mapping does not affect the speed of cache references. (Translation buffers [15, 20] are 
another way to accomplish this.) This would create problems if there were multiple address spaces. 
Although these problems can be solved, in a single-user environment with a single address space 
they do not even need to be considered. 

Another important technique for speeding up data manipulation in general, and cache references in 
particular, is called bypassing. Bypassing is one of the speed-up techniques used in the Common 
Data Bus of the IBM 360/91 [19]. Sequences of instructions having the form 

(1) register" computationl 
(2) computation2 involving the register 

are very common. Usually the execution of the first instruction takes more than one cycle and is 
pipelined. As a result, however, the register is not loaded at the end of the first cycle, and 
therefore is not ready at the beginning of the second instruction. The idea of bypassing is to avoid 
waiting for the register to be loaded, by routing the results of the first computation directly to the 
inputs of the second one. The effective latency of the cache is thus reduced from two cycles to one 
in many cases (see § 2.3). 

The implementation of the Dorado memory reflects a balance among competing demands: 

for simplicity, so that it can be made to work initially, and maintained when components 
fail; 

for speed, so that the performance will be well-matched to the rest of the machine; 

for space, since cost and packaging considerations limit the number of components and 
edgepins that can be used. 

None of these demands is absolute, but all have thresholds that are costly to cross. In the Dorado 
we set a somewhat arbitrary speed requirement for the whole machine, and generally tried to save 
space by adding complexity, pushing ever closer to the simplicity threshold. Although many of the 
complications in the memory system are unavoidable consequences of the speed requirements, some 
of them could have been eliminated by adding hardware. 

2. The cache 

The memory system is organized into two kinds of building blocks: pipeline stages. which provide 
the control (their names are in SMALL CAPITALS). and resources, which provide the data paths and 
memories. Figure 3 shows the various stages and their arrangement into two pipelines. One, 
consisting of the ADDRESS and HITDATA stages. handles cache references and is the subject of this 
section; the othcr, containing MAP, WRITETR, STORAGE, READTRI and READTR2, takes care of 
storage references and is dealt with in § 3 and 4. References start out eithcr in PROC, the processor, 
or in the IFU. 
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Figure 3: Cache and Storage Pipelines 

The cache pipeline's two resources, CacheA and CacheD, correspond roughly to its two stages, 
although each is also used by other stages in the storage pipeline. CacheA stores addresses and 
associated flags, and contains the comparators which decide whether a given address is currently in 
the cache. CacheD stores cache data. Figure 4 shows the data paths and memories of these 
resources. The numbers on the left side of the figure indicate the time at which a reference reaches 
each point in the pipeline, relative to the start of the microinstruction making the reference. 

Every reference is first handled by the ADDRESS stage, whether or not it involves a cache data 
transfer. The stage calculates the virtual address and checks to see whether the associated data is in 
the cache. If it is (a hit), and the reference is a Fetch or Store, ADDRESS starts HITDATA, which is 
responsible for the one-word data transfer. On a cache reference that misses, and on any I/O 
reference, ADDRESS starts MAP as described in § 3. 

HITDATA obtains the cache address of the word being referenced from ADDRESS, sends this address 
to CacheD, which stores the cache data, and either fetches a word into the FetchReg register of the 
task that made the reference, or stores the data delivered by the processor via the StoreReg register. 

2.1 Cache addressing 

Each reference begins by adding the contents of a base register to a displacement provided by the 
processor (or lIT). A task-specific register holds a 5-bit pointer to a task's current base register. 
These pointers, as well as the base registers themselves, can be changed by microcode. 

Nonnally the displacement is 16 bits, but by using both its busses the processor can supply a full 
28-bit displacement. The resulting sum is the virtual address for the reference. It is divided into a 
16-bit key, an 8-bit row number, and a 4-bit word number; figure 4 illustrates. This division 
reflects the physical structure of the cache, which consists of 256 rows, each capable of holding four 
independent 16-word blocks of data, one in each of four colum1ls. A given address detennines a 
row (based on its 8 row bits), and it must appear in some column of that row if it is in the cache at 
all. for each row, CacheA stores the keys of the four blocks currently in that row, together with 
four flag bits for each block. The Dorado cache is therefore set-associative [3]; rows correspond to 
sets and columns to the elements of a set 

I 
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Figure 4: Data paths in the cache 

Given this organization, it is simple to determine whether an address is in the cache. Its row bits 
are used to select a row, and the four keys stored there are compared with the given address. If 
one of them matches, there is a hit and the address has been located in the cache. The number of 
the column that matched, together with the row bits, identifies the block completely, and the four 
word bits of the address select one of the 16 words within that block. If no key matches. there is a 



60 THE MEMORY SYSTEM OF A HIGH-PERFORMANCE PERSONAL COMPUTER 

miss: the address is not present in the cache. During normal operation. it is not possible for more 
than one column to match. The entire matching process can be seen in Figure 4, between 60 and 
90 ns after the stan of the reference. The cache address latched at 90 contains the row, word and 
column; these 14 bits address a single word in CacheD. Of course, only the top 16 key bits of the 
address need be matched. since the row bits are used to select the row, and all the words of a block 
are present or absent together. 

Four flag bits are stored with each cache entry to keep track of its status. We defer discussion of 
these flags until § 4. 

22 Cache data 

The CacheD resource stores the data for the blocks whose addresses appear in CacheA; closely 
associated with it are the StoreReg and task-specific FetchReg registers which allow the processor to 
deliver and retrieve its data independently of the memory system's detailed timing. CacheD is quite 
simple, and would consist of nothing but a 16K by 16 bit memory were it not for the bandwidth of 
the storage. To keep up with storage the cache must be able to accept a word every half cycle (30 
ns.). Since its memory chips cannot cycle this fast, CacheD is organized in two banks which run a 
half-cycle out of phase when transferring data to or from the storage. On a hit, however. both 
banks are cycled together and CacheD behaves like an 8K by 32 bit memory. A multiplexor selects 
the proper half to deliver into FetchReg. All this is shown in Figure 4. 

Figure 4 does not, however, show how FetchReg is made task-specific. In fact, there is a 16-word 
memory FetchRegRAM in addition to the register shown. The register holds the data value for the 
currently executing task. When a Fetch reference completes, the word from CacheD is always 
loaded into the RAM entry for the task that made the reference; it is also loaded into FetchReg if 
that task is the one currently running. Whenever the processor switches tasks, the FetchRegRAM 
entry for the new task is read out and loaded into FetchReg. Matters are further complicated by 
the bypassing scheme described in the next subsection. 

StoreReg is not task-specific. The reason for this choice and the problem it causes are explained in 
§ 5.1. 

2.3 Cache pipeUning 

From the beginning of a cache reference, it takes two and a half cycles before the data is ready in 
FetchReg, even if it hits and there are no delays. However, because of the latches in the pipeline 
(some of which are omitted from Figure 4), a new reference can be started every cycle, and if there 
are no misses the pipeline will never clog up, but will continue to deliver a word every 60 ns. This 
works because nothing in later stages of the pipeline affects anything that happens in an earlier 
stage. 

The exception to this principle is delivery of data to the processor itself. When the processor uses 
data that has been fetched, it depends on the later stages of the pipeline. In general this 

. dependency is unavoidable, but in the case of the cache the bypassing technique described in § 1.4 
is used to reduce the latency. A cache reference logically delivers its data to the FetchReg register 
at the end of the cycle following the reference cycle (actually halfway through the second cycle, at 
150 in Figure 4). Often the data is then sent to a register in the processor, with a (microcode) 
sequence such as 

(1) Felch(address) 
(2) register +- FetchReg 
(3) computation involving register. 

The register is not actually loaded until cycle (3); hence the data, which is ready in the middle of 
cycle (3), arrives in time, and instruction (2) does not have to wait. The data is supplied to the 
computation in cycle (3) by bypassing. The effective latency of the cache is thus only one cycle in 
this situation. 



SEC. 2 

Unfortunately this sleight-of-hand does not always work. The sequence 

(1) Fetch(address) 
(2) computation involving FetchReg 
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actually needs the data during cycle (2), which will therefore have to wait for one cycle (see § 5.1). 
Data retrieved in cycle (1) would be the old value of FetchReg; this allows a sequence of fetches 

(1) Fetch(addressl) 
(2) registerl'" FetchReg, Felch(address2) 
(3) register2'" FetchReg, Felch(address3) 
(4) register3'" FetchReg, Fetch(address4) 

to proceed at full speed. 

3. The storage pipeline 

Cache misses and fast I/O references use the storage ponion of the pipeline, shown in Figure 3. In 
this section we first describe the operation of the individual pipeline stages. then explain how fast 
I/O references use them, and finally discuss how memory faults are handled. Using I/O references 
to expose the workings of the pipeline allows us to postpone until § 4 a close examination of the 
more complicated references involving both cache and storage. 

3.1 Pipeline stages 

Each of the pipeline stages is implemented by a simple finite-state automaton that can change state 
on every microinstruction cycle. Resources used by a stage are controlled by signals that its 
automaton produces. Each stage owns some resources, and some stages share resources with others. 
Control is passed from one stage to the next when the first produces a star! signal for the second; 
this signal forces the second automaton into its initial state. Necessary information about the 
reference type is also passed along when one stage starts another. 

3.1.1 The ADDRESS stage 

As we saw in § 2, the ADDRESS stage computes a reference's virtual address and looks it up in 
CacheA. If it hits, and is not I/OReati or I/OWrite, control is passed to HITDATA. Otherwise, control 
is passed to MAP, starting a storage cycle. In the simplest case a reference spends just one 
microinstruction cycle in ADDRESS, but it can be delayed for various reasons discussed in § 5. 

3.1.2 The MAP stage 

The MAP stage translates a virtual address into a real address by looking it up in a hardware table 
called the MapRA~f, and then starts the STORAGE stage. Figure 5 illustrates the straightforward 
conversion of a vinual page number into a real page number. The low-order bits are not mapped; 
they point to a single word on the page. 

Three flag bits are stored in Map RAM for each virtual page: 

ref, set automatically by any reference to the page; 

dirty, set automatically by any write into the page; 

writeProlecl, set by memory-management software (using the MapWrite reference). 

A virtual page not in use is marked as vacant by setting both writePrOlect and dirty, an otherwise 
nonsensical combination. A reference is aborted by the hardware if it touches a vacant page, 
attempts to write a write-protected page, or causes a parity error in the MapRA\!. All three kinds 
of map fault are passed down the pipeline to READTR2 for reporting; see § 3.1.5. 
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Figure 5: Virtual address to real address mapping. 
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MAP takes eight cycles to complete. MapRAM outputs are available for the STORAGE stage in the 
fifth cycle; the last three cycles are used to re-write the flags. 

MapRAM entries (including flags) are written by the MapWrite reference. They are read by the 
MapRead reference in a slightly devious way explained in § 3.3. 

3.1.3 The STORAGE stage 

The Dorado's main storage, a resource called StorageRA.~, is controlled by the STORAGE stage. 
STORAGE is started by MAP, which supplies the real storage address and the operation type - read or 
write. StorageRAM is organized into 16-word blocks, and the transfer of a block is called a 
transport. All references to storage involve an entire block. Transports into or out of the 
StorageRAM take place on word-sized busses called ReadBus and WriteBus. Block-sized shift 
registers called ReadReg and WriteReg lie between these busses and StorageRAM. When storage is 
read, an entire block (256 bits plus 32 error-correction bits) is loaded into ReadReg all at once, and 
then transported to the cache or to a fast output device by shifting words sequentially out of 
ReadReg at the rate of one word every half-cycle (30 ns.). On a write, the block is shifted a word 
at a time into WriteReg, and when .the transport is finished, the 288 storage chips involved in that 
block are written all at once. Figure 6 shows one bit-slice of WriteReg, StorageRAM, and ReadReg 
(neglecting the error correction bits); sixteen such bit-slices comprise one storage module. of which 
there can be up to four. Figure 2 puts Figure 6 in context 

WriteReg and ReadReg are not owned by STORAGE, and it is therefore possible to overlap 
consecutive storage operations. Furthermore, because tlle eight-cycle (480 ns) duration of a 
transport closely matches the 375 ns. cycle time of the 16K MOS RA~1 chips, it is possible to keep 
StorageR.-\~f busy most of the time. The resulting bandwidth is one block every eight cycles, or 530 
million bits per second. ReadReg is shared between STORAGE, which loads it, and READTRl/2. 
which shift it. Similarly. WriteReg is shared between WRITETR, which loads it, and STORAGE, 
which clocks the data into the RAM chips and releases it when their hold time has expired. 
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Each storage module has a capacity of 256K, 1M, or 4M 16-bit words, depending on whether 16K, 
64K, or (hypothetical) 256K RAM chips are used. The two high'order bits of the real address select 
the module (see Figure 5); modules do not run in parallel. A standard Hamming error-correcting 
code is used, capable of correcting single errors and detecting double errors in four-word groups. 
Eight check bits, therefore, are stored with each quadword; in what follows we will often ignore 
these bits. 

3.1.4 The WRITETR stage 

The WRITETR stage transports a block into WriteReg, either from CacheD or from an input device. 
It owns ECGen, the Hamming check bit generator, and WriteBus, and shares WriteReg with 
STORAGE. It is started by ADDRESS on every write, and synchronizes with STORAGE as explained in 
§ 5.3.1. It runs for eleven cycles on an I/O Write, and for twelve cycles on a cache write. As Figure 
3 shows, it starts no subsequent stages itself. 

3.1.5 the READTRI and READTR2 stages 

Once ReadReg is loaded by STORAGE, the block is ready for transport to CacheD or to a fast 
output device. Because it must pass through the error corrector EeCor, the first word appears on 
ReadBus three cycles before the first corrected word appears at the input to CacheD or on the 
FastOut bus (see Figure 2). Thus there are at least eleven cycles of activity related to read 
transport, and controlling the entire transport with a single stage would limit the rate at which read 
transports could be done to one every eleven cycles. No such limit is imposed by the data paths, 
since the error corrector is itself pipelined and does not require any wait between quadwords or 
blocks. To match the storage, bus, and error corrector bandwidths, read transport must be 
controlled by two eight'cycle stages in series; they are called READTRI and READTR2. 

In fact, these stages run on every storage operation, not just on reads. There are several reasons for 
this. First. READTR2 reports foults (page faults, map parity errors, error corrections) and wakes up 
the fault-handling microtask if necessary (see § 3.3); this must be done for a write as well as for a 
read. Second, hardware is saved by making all operations flow through the pipeline in the same 
way. Third. storage latency is in any case limited by the transport time and the StorageRAM's cycle 
time. Finishing a write sooner would not reduce the latency of a read, and nothing ever waits for a 
write to complete. 

On a read, STORAGE starts READTRI just as it paralleHoads ReadReg with a block to be 
transported. READTRI starts shifting words out of ReadReg and through the error corrector. On a 
write, READTRI is started at the same point. but no transport is done. READTRI starts READTR2, 
which shares with it responsibility for controlling the transport and the error corrector. READTR2 
reports faults (§ 3.3) and completes cache read operations either by delivering the requested word 
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into FetchReg (for a fetch), or by storing the contents of StoreReg into the newly-loaded block in 
the cache (for a store). 

3.2 Fast ]/0 reftrences 

We now look in detail at simple cases of the fast 1/0 references I/ORead and I/OWrlte. These 
references proceed almost independently of the cache, and are therefore easier to understand than 
fetch and store references, which may involve both the cache and storage. 

The reference I/ORea4.x) delivers a block of data from virtual location x to a fast output device. 
Figure 7 shows its progress through the memory system; time divisions on the horizontal axis 
correspond to microinstruction cycles (60 ns.). At the top is the flow of the reference through the 
pipeline; in the middle is a time line annotated with the major events of the reference; at the 
bottom is a block diagram of the resources used. The same time scale is used in all three Parts. so 
that a vertical section shows the stages, the major events, and the resources in use at a particular 
time. Most of the stages pass through eight states, labelled 0 through 7 in the figure. 

The I/ORead spends one cycle in the processor and then one in ADDRESS, during which x is 
computed and looked up in CacheA. We assume for the moment that x misses; what happens if it 
hits is the subject of § 4.4. ADDRESS starts MAP, passing it x. MAP translates x into the real address 
r, and starts STORAGE, passing it r; MAP then spends three more cycles rewriting the flags as 
appropriate and completing the MapRAM cycle (§ 3.1.2). STORAGE does a StorageRAM access and 
loads the 16-word block of data (together with its check bits) into ReadReg. It then starts READTRI 
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MAP r--I O-TI-1 -'-12""",r-"3-""-4 'T-"15-'1',-6 -r-'7-'" 

STORAGE 10111213141516171 
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-
Figure 7: An I/ORead reference 



SEC. 3 TIlE STORAGE PIPELINE 6S 

and completes the StorageRA!\{ cycle (§ 3.1.3). READTRI and READTR2 transport the data. control 
the error corrector, and deliver the data to FastOutBus (§ 3.1.5). Fault reporting, if necessary, is 
done by READTR2 as soon as the condition of the last quadword in the block is known (§ 3.3). 

It is clear from Figure 7 that an I/0Read can be started every eight machine cycles, since this is the 
longest period of activity of any stage. This would result in 530 million bits per second of 
bandwidth, the maximum supportable by the memory system. The inner loop of a fast 1/0 task can 
be written in two microinstructions, so if a new I/ORead is launched every eight cycles, one-fourth 
of the processor capacity will be used. Because ADDRESS is used for only one cycle per I/OReod, 
other tasks-notably the emulator-may continue to hit in the cache when the 1/0 task is not 
running. 

I/OWrite(x) writes into virtual location x a block of data delivered by a fast input device, together 
with appropriate Hamming code check bits. The data always goes to storage, never to the cache, 
but if address x happens to hit in the cache, the entry is invalidated by setting a flag (§ 4). Figure 
8 shows that an 1/0 Write proceeds through the pipeline very much like an I/ORead. The difference, 
of course, is that the WRITETR stage runs, and the READTRI and READTR2 stages, although they run, 
do not transport data. Note that the write transport, from FastInBus to WriteBus, proceeds in 
parallel with mapping. Once the block has been loaded into WriteReg, STORAGE issues a write 
signal to StorageRAM. All that remains is to run READTRI and READTR2, as explained above. If a 
map fault occurs during address translation, the write signal is blocked and the fault is passed along 
to be reported by READTR2. 
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Figure 8: An I/OWrite reference 
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Figure 8 shows a delay in the MAP stage's handling of I/O Write. MAP remains in state 3 for two 
extra cycles, which are labelled with asterisks, rather than state numbers, in Figure 8. This delay 
allows the write transpon to finish before the write signal is issued to StorageRAM. This 
synchronization and others are detailed in § 5. 

Because WRITETR takes eleven cycles to run, I/O Writes can only run at the rate of one every eleven 
cycles, yielding a maximum bandwidth for fast input devices of 390 million bits per second. At that 
rate, two of every eleven cycles would go to the I/O task's inner loop, consuming 18 percent of the 
processor capacity. But again, other tasks could hit in the cache in the remaining nine cycles. 

3.3 History andfault reporting 

There are two kinds of memory system faults: map and storage. A map fault is a MapRAM parity 
error, a reference to a page marked vacant, or a write operation to a write-protected page. A 
storage fault is either a single or a double error (within a quadword) detected during a read. In 
what follows we do not always distinguish between the two types. 

Consider how a page fault might be handled. MAP has read the MapRAM entry for a reference and 
found the vinual page marked vacant At this point there may be another reference in ADDRESS 
waiting for MAP, and one more in the processor waiting for ADDRESS. An earlier reference may be 
in READTRl, perhaps about to cause a storage fault. The processor is probably several instructions 
beyond the one that issued the faulting reference, perhaps in another task. What to do? It would 
be quite cumbersome at this point to halt the memory system, deal with the fault, and restart the 
memory system in such a way that the fault was transparent to the interrupted tasks. Instead, the 
Dorado allows the reference to complete, while blunting any destructive consequences it might 
have. A page fault, for example, forces the cache's vacant flag to be set when the read transport is 
done. At the very end of the pipeline READTR2 wakes up the Dorado's highest-priority microtask, 
the fault task, which must deal appropriately with the fault, perhaps with the help of memory
management software. 

Because the fault may be reponed well after it happened, a record of the reference must be kept 
which is complete enough that the fault task can son out what has happened. Furthermore, 
because later references in the pipeline may cause additional faults, this record must be able to 
encompass several faulting references. The necessary information associated with each reference, 
about 80 bits, is recorded in a 16-element memory called History. Table 3 gives the contents of 
History and shows which stage is responsible for writing each pan. History is managed as a ring 
buffer and is addressed by a 4-bit Storage Reference Number or SR~, which is passed along with 
the reference through the various pipeline stages. When a reference is passed to the MAP stage, a 
counter containing the next available SRK is incremented. A hit writes the address portion of 
History (useful for diagnostic purposes; see below), without incrementing the SRN counter. 

Entry 

Vinual address, reference type, task number, cache column 

Real page number, MapRAM flags, map fault 

Storage fault bit corrected (for single errors) 

Table 3: Contents of the History memory 

Written by 

ADDRESS 

MAP 

READTR2 

Two hardware registers accessible to the processor help the fault task interpret History: FaultCount 
is incremented every time a fault occurs; FirslFaul1 holds the SR:'\ of the first faulting reference. 
111e fault task is awakened whenever FaultCount is non-zero; it can read both registers and clear 
FaultCount in a single atomic operation. It then handles FaultCount faults, reading successive 
elements of History staning with History[FirstF ault}, and then yields control of the processor to the 
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. other tasks. If more faults have occurred in the meantime, FaultCount will have been incremented 
again and the fault task will be reawakened. 

The fault task does different things in response to the different types of fault. Single bit errors, 
which are corrected, are not reported at all unless a special control bit in the hardware is set. With 
this bit set, the fault task can collect statistics on failing storage chips; if too many failures are 
occurring, the bit can be cleared and the machine can continue to run. Double bit errors may be 
dealt with by re-trying the reference; a recurrence of the error must be reported to the operating 
system. which may stop using the failing memory. and may be able to reread the data from the disk 
if the page is not dirty, or determine which computation must be aborted. Page faults are the most 
likely reason to awaken the fault task, and together with write-protect faults are dealt with by 
yielding to memory-management software. MapRAM parity errors may disappear if the reference is 
re-tried; if they do not, the operating system can probably recover the necessary information. 

Microinstructions that read the various parts of History are provided, but only the emulator and the 
fault task may use them. These instructions use an alternate addressing path to History which does 
not interfere with the SRN addressing used by references in the pipeline. Reading base registers, 
the Map RAM, and CacheA can be done only by using these microinstructions. 

This brings us to a serious difficulty with treating History as a pure ring buffer. To read a 
MapRAM entry, for example, the emulator must first issue a reference to that entry (normally a 
MapRead), and then read the appropriate part of History when the reference completes; similarly, a 
DummyRef (see Table 3) is used to read a base register. But because other tasks may run and issue 
their own references between the start of the emulator's reference and its reading of History, the 
emulator cannot be sure that its History entry will remain valid. Sixteen references by I/O tasks, for 
example, will destroy it. 

To solve this problem, we designate History[O] as the emulator's "private" entry: MapReod, 
MapWrite, and DummyRefreferences use it, and it is excluded from the ring buffer. Because the 
fault task may want to make references of its own without disturbing History, another private entry 
is reserved for it. The ring buffer proper, then, is a 14-element memory used by all references 
except MapRead, MapWrile, and DummyRef in the emulator and fault task. For historical reasons, 
Felch, Slore and Flush references in the emulator and fault task also use the private entries; the tag 
mechanism (§ 4.1) ensures that the entries will not be reused too soon. 

In one case History is read, rather than written, by a pipeline stage. This happens during a read 
transport. when READTRI gets from History the cache address (row and column) it needs for writing 
the new data and the cache flags. This is done instead of piping this address along from ADDRESS 
to READTRl. 

4. Cache-storage interactions 

The preceding sections describe the normal case in which the cache and main storage function 
independently. Here we consider the relatively rare interactions between them. These can happen 
for a variety of reasons: 

Processor references that miss in the cache must fetch their data from storage. 

A dirty block in the cache must be re-written in storage when its entry is needed. 

Prefetch and flush operations explicitly transfer data between cache and storage. 

I/O references that hit in the cache must be handled correctly. 

Cache-storage interactions are aided by the four flag bits that are stored with each cache entry to 
keep track of its status (see Figure 4). The vacant flag indicates that an entry should never match; it 
is set by software during system initialization, and by hardware when the normal procedure for 
loading the cache fails, e.g., because of a page fault. The dirty flag is set when the data in the entry 
is different from the data in storage because the processor did a store; this means that the entry 
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must be written back to storage before it is used for another block. The writeProtected flag is a copy 
of the corresponding bit in the map. It causes a store into the block to miss and set vacant; the 
resulting storage reference reports a write-protect fault (§ 3.3). The beingLoaded flag is set for about 
15 cycles while the entry is in the course of being loaded from storage; whenever the ADDRESS 
stage attempts to examine an entry, it waits until the entry is not beingLoaded, to ensure that the 
entry and its contents are not used whIle in this ambiguous state. 

When a cache reference misses, the block being referenced must be brought into the cache. In 
order to make room for it, some other block in the row must be displaced; this unfortunate is 
called the victim. CacheA implements an approximate least-recently-used rule for selecting the 
victim. With each row, the current candidate for victim and the next candidate, called next victim, 
are kept The victim and next victim are the top two elements of an LRU stack for that row; 
keeping only these two is what makes the replacement rule only approximately LRD. On a miss, the 
next victim is promoted to be the new victim and a pseudo-random choice between the remaining 
two columns is promoted to be the new next victim. On each hit, the victim and next victim are 
updated in the obvious way, depending on whether they themselves were hit 

The flow of data in cache-storage interactions is shown in Figure 2. For example, a Fetch that 
misses will read an entire block from storage via the ReadBus, load the error-corrected block into 
CacheD, and then make a one-word reference as if it had hit 

What follows is a discussion of the four kinds of cache-storage interaction listed above. 

4.1 Clean miss 

When the processor or lFU references a word w that is not in the cache, and the location chosen as 
victim is vacant or holds data that is unchanged since it was read from storage (Le., its dirty flag is 
not set), a clean miss has occurred. The victim need not be written back, but a storage read must 
be done to load into the cache the block containing w. At the end of the read, w can be fetched 
from the cache. A clean miss is much like an I/ORead, which was discussed in the previous section. 
The chief difference is that the block from storage is sent not over the FastOutBus to an output 
device, but to the CacheD memory. Figure 9 illustrates a clean miss. 

All cache loads require a special cycle, controlled by READTRl, in which they get the correct cache 
address from History and write the cache flags for the entry being loaded; the data paths of 
CacheA are used to read this address and write the flags. This RThasA cycle takes priority over all 
other uses of CacheA and History, and can occur at any time with respect to ADDRESS, which also 
needs access to these resources. Thus all control signals sent from ADDRESS are inhibited by 
RThasA, and ADDRESS is forced to idle during this cycle. Figure 9 shows that the RThasA cycle 
occurs just before the first word of the new block is written into CaCheD. (For simplicity and 
clarity we will not show RThasA cycles in the figures that follow.) During RThasA, the beingLooded 
flag is cleared (it was set when the reference was in ADDRESS) and the writeProtected flag is copied 
from the writeProtected bit in MapRAM. As soon as the transport into CacheD is finished, the word 
reference that started the miss can be made, much as though it had hit in the first place. If the 
reference was a Fetch, the appropriate word is sent to FetchReg in the processor (and loaded into 

. FetchRegRAM); if a Store. the contents of StoreReg are stored into the new block in the cache. 

If the processor tries to use data it has fetched, it is prevented from proceeding, or held until the 
word reference has occurred (see § 5.1). Each fetch is assigned a sequence number called its tag. 
which is logically part of the reference; actually it is written into History. and read when needed by 
READTRI. Tags increase monotonically. The tag of the last Fetch started by each task is kept in 
StartedTag (it is written there when the reference is made). and the tag of the 13$t Felch completed 
by the memory is kept in DoneTag (it is written there as the Fetch is completed); these are task
specific registers. Since tags are assigned monotonically. and fetches always complete in order 
within a task, both registers increase monotonically. If Started Tag = DoneTag. all the fetches that 
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have been started are done, otherwise not; this condition is therefore sufficient to decide whether 
the processor should be held when it tries to use FetchReg. Because there is only one FetchReg 
register per task, it is not useful to start another Fetch until the preceding one is done and its word 
has been retrieved. The tags are therefore used to hold up a Fetch until the preceding one is done, 
and thus can be kept modulo 2, so that one bit suffices to represent a tag. Store references also use 
the tag mechanism, although this is not logically necessary. 

(Instead of a sequence number on each reference, we might have counted the outstanding 
references for each task. This idea was rejected for the following rather subtle reason. In a single 
machine cycle three accesses to the counter may be required: the currently running task must read 
the counter to decide whether a reference is possible, and write back an incremented value; in 
addition, READTR2 may need to write a decremented value for a different task as a reference 
completes. Time allows only two references in a single cycle to the RAM in which such task-specific 
information must be kept. The use of sequence numbers allows the processor to read both 
StartedTag and DoneTag from separate RAMS, and then the processor and the memory to 
independently write the RAMS; thus four references are made to two RAMS in one cycle, or two to 
each.) 

Other tasks may start references or use data freely while one task has a Fetch outstanding. Cache 
hits, for example, will not be held up, except during the RThasA cycle and while CacheD is busy 
with the transport. These and other inter-reference conflicts are discussed in more detail in § 5. 
Furthermore, the same task may do other references, such as Pre/etches, which are not affected by 
the tags. The 1Ft; has two FetchReg registers of its own, and can therefore have two fetches 
outstanding. Hence it cannot use the standard tag mechanism, and instead implements this function 
with special hardware of its own. 
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4.2 Dirty miss 

When a processor or IFU reference misses, and the victim has been changed by a store since 
arriving in the cache, a dirty miss has occurred, and the victim must be re-written in storage. A 
dirty miss gives rise to two storage operations: the write that re-writes the victim's dirty block from 
cache to storage, and the read that loads CacheD with the new block from storage. The actual data 
transports from and to the cache are done in this order (as they must be), but the storage 
operations are done in reverse order, as illustrated by a fetch with dirty victim in Figure 10. The 
figure shows that the victim reference spends eight cycles in ADDRESS waiting for the fetch to finish 
with MAP (recall that the asterisks mean no change of state for the stage). During this time the 
victim's transport is done by WRITEfR. 
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Figure 10: A dirty miss 

There are several reasons for this arrangement. As we saw in § 3, data transport to and from 
storage is not done in lockstep with the corresponding storage cycle; only the proper order of events 
is enforced. The existence of ReadReg and WriteReg permits this. Furthermore, there is a 12-cyc1e 
wait between the start of a read in ADDRESS and the latching of the data in ReadReg. These two 
considerations allow us to interleave the read and victim write operations in the manner shown in 
Figure 10. The read is started, and while it proceeds-during the 12-cycle window-the write 
transport for the victim is done. The data read is latched in ReadReg, and then transported into 
the cache while the victim data is written into storage. 

Doing things this way means that the latency of a miss, from initiation of a fetch to arrival of the 
data. is the same regardless of whether the victim is dirty. The opposite order is worse for several 
reasons, notably because the delivery of the new data, which is what holds up the processor, would 
be delayed by twelve cycles. 

4.3 Prefttch andflush 

Pre/etch is just like Fetch, except that there is no word reference. Also, because it is treated strictly 
as a hint, map-fault reporting is suppressed and the tags are not involved, so later references are not 
delayed A Pre/etch that hits, therefore, finishes in ADDRESS without entering MAP. A Pre/etch that 
misses will load the referenced block into the cache, and cause a dirty victim write if necessary. 
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A Flush explicitly removes the block containing the addressed location from the cache. rewriting it 
in storage if it is dirty. Flush is used to remove a virtual page's blocks from the cache so that its 
MapRAM entry can be changed safely. If a Flush misses. nothing happens. If it hits. the hit 
location must be marked vacant, and if it is dirty. the block must be written to storage. To simplify 
the hardware implementation, this write operation is made to look like a victim write. A dirty Flush 
is converted into a FlushFelch reference, which is treated almost exactly like a Pre/etch. Thus, when 
a Flush in ADDRESS hits, three things happen: 

the victim for the selected row of CacheA is changed to point to the hit column; 

the vacant flag is set; 

if the dirty flag for that column is set, the Flush is convened into a FlushFetch. 

Proceeding like a Prefetch, this does a useless read (which is harmless because the vacant flag has 
been set), and then a write of the dirty victim. Figure 11 shows a dirty Flush. The FlushFetch 
spends two cycles in ADDRESS. instead of the usual one. because of an uninteresting implementation 
problem. 
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Figure 11: A dirty flush 

. 4.4 Dirty ]/oRead 

If an I/ORead reference hits in a column with dirty set, the data must come from the cache rather 
than from storage. This is made as similar as possible to a clean I/ORead. since otherwise the bus 
scheduling would be drastically different. Hence a full storage read is done, but at the last minute 
data from the cache is put on FastOutBus in place of the data coming from storage. which is 
ignored. Figure 12 illustrates a dirty I/ORead followed by two clean ones. Note that CacheD is 
active at the same time as for a standard read, but that it is unloaded rather than loaded. This 
simplifies the scheduling of CacheD. at the expense of tying up FastOutBus for one extra cycle. 
Since many operations use CacheD, but only I/oRead uses FastOutBus, this is a worthwhile 
simplification (see § 5.3.4). 
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dirty IIORead 

PROC 

ADDRESS 

WRITETR 

clean IIORead 1 clean IIORead 2 

c •• •• 

MAP 0 1 23456 

STORAGE 

READTR1 

READTR2 

CacheD 
who RT1 I RT2 

why dirty IIOrd unload 

FastOutBus 
who RT11 RT2 RT1 I RT2 RT1 I RT2 

why dirty IIOread clean IIOread 1 clean I/Oread 2 

Figure 12: A dirty I/ORead and two clean ones 

5. Traffic control 

Thus far we have considered memory operations only in isolation from each other. Because the 
system is pipelined, however, several different operations can be active at once. Measures must be 
taken to prevent concurrent references from interfering with each other, and to prevent new 
operations from starting if the system is not ready to accept them. In this section we discuss those 
measures. 

Table 4 lists the resources used by each pipeline stage in three categories: private resources, which 
are used only by one stage; handoff resources, which are passed from one stage to another in an 
orderly way guaranteed not to result in conflicts; and complex resources, which are shared among 
several stages in ways that may conflict with each other. These conflicts are resolved in three ways: 

If the memory system cannot accept a new reference from the processor, it rejects it, and 
notifies the processor by asserting the Hold signal. 

A reference, once started, waits in ADDRESS until its immediate resource requirements (i.e., 
those it needs in the very next cycle) can be met; it then proceeds to MAP or to HITDATA, 
as shown in Figure 3. 

All remaining conflicts are dealt with in a single state of the MAP stage. 

We will consider the three methods in tum. 
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PROC ADDRESS HITDATA MAP . WRITETR STORAGE READTRI READTR2 

Private 
Resources 

MapRAM WriteBus StorageRAM 
EcGen 

Handoff 
Resources 

Complex 
Resources 

5.1 Hold 

CacheA 
FetchReg 
StoreReg 

History History 

FastlnBus 

WriteReg WriteReg 

FetchReg 
StoreReg 
CacheD 

History 
CacheD 

Table 4: Pipeline resources 

ReadReg ReadReg 
ReadBus 
EcCor 
FastOutBus 

CacheA 

CacheD 
History 

ReadBus 
EcCor 
FastOutBus 

FetchReg 
StoreReg 
CacheD 
History 

Hold is the signal generated by the memory system in response t \ a processor request that cannot 
yet be satisfied Its effect is to convert the microinstruction conu.ining the request into a jump-to
self; one cycle is thus lost. As long as the same task is running in the processor and the condition 
causing Hold is still present, that instruction will be held repeatedly. However, the processor may 
switch to a higher priority task which can perhaps make more progress. 

There are four reasons for the memory system to generate Hold. 

Data requested before it is ready. Probably the most common type of Hold occurs after a 
Fetch, when the data is requested before it has arrived in FetchReg. For a hit that is not 
delayed in ADDRESS (see below), Hold only happens if the data is used early in the very 
next cycle (Le., if the instruction after the Fetch sends the data to the processor's ALU rather 
than just into a register). If the data is used late in the next cycle it bypasses FetchReg and 
comes directly from CacheD (§ 2.3); if it is used in any later cycle it comes from FetchReg. 
In either case there will be no Hold. If the Fetch misses, however, the matching FetchReg 
operation will be held (by the tag mechanism) until the missing block has been loaded into 
the cache, and the required word fetched into FetchReg. 

ADDRESS busy. A reference can be held up in ADDRESS for a variety of reasons, e.g., 
because it must proceed to MAP, and MAP is busy with a previous reference. Other reasons 
are discussed in § 5.2 below. Every reference needs to spend at least one cycle in ADDRESS, 
so new references will be held as long as ADDRESS is busy. A reference needs the data 
paths of CacheA in order to load its address into ADDRESS, and these are busy during the 
RThasA cycle discussed above (§ 4.1); hence a reference in the cycle before RThasA is held 

StoreReg busy. When a Store enters ADDRESS, the data supplied by the processor is loaded 
into StoreReg. If the Slore hits and there is no conflict for CacheD, StoreReg is written 
into CacheD in the next cycle, as Figure 4 shows. If it misses, StoreReg must be 
maintained until the missing block arrives in CacheD, and so new stores must be held 
during this time because StoreReg is not task-specific. Even on a hit, CacheD may be busy 
with another operation. Of course new stores by the same task would be held by the tag 
mechanism anyway, so StoreReg busy will only hold a Slore in other tasks. A task-specific 
StoreReg would have prevented this kind of Hold, but the hardware implementation was 
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too expensive to do this, and we observed that stores are rare compared to fetches in any 
case. 
History busy. As discussed in § 3.3, a reference uses various parts of the History memory at 
various times as it makes its way through the pipeline. Microinstructions for reading 
History are provided. and they must be held if they will conflict with any other use. 

The memory system must generate Hold for precisely the above reasons. It tums out. however, that 
there are several situations in which hardware or time can be saved if Hold is generated when it is 
not strictly needed. This was done only in cases that we expect to occur rarely, so the performance 
penalty should be small. An extra Hold has no logical effect. since it only converts the current 
microinstruction into a jump-to-self. One example of this situation is that a reference in the cycle 
after a miss is always held, even though it must be held only if the miss' victim is dirty or the map 
is busy; the reason is that the miss itself is detected barely in time to generate Ho/d, and there is no 
time for additional logic. Another example: uses of FetchReg are held while ADDRESS is busy, 
although they need not be, since they do not use it 

5.2 Waiting in ADDRESS 

A reference in ADDRESS normally proceeds either to HITDATA (in the case of a hit) or to MAP (for a 
miss, a victim write or an 1/0 reference) after one cycle. If HITDATA or MAP is busy, it will wait in 
ADDRESS, causing subsequent references to be held because ADDRESS is busy, as discussed above. 

HITDATA uses CacheD, and therefore cannot be started when CacheD is busy. A reference that hits 
must therefore wait in ADDRESS while CacheD is busy, i.e., during transports to and from storage, 
and during single-word transfers resulting from previous fetches and stores. Some additional 
hardware would have enabled a reference to be passed to HITDATA and wait there, instead of in 
ADDRESS, for CacheD to become free; ADDRESS would then be free to accept another reference. 
This performance improvement was judged not worth the requisite hardware. 

When MAP is busy with an earlier reference, a reference in ADDRESS will wait if it needs MAP. An 
example of this is shown in Figure 10, where the victim write waits while MAP handles the read. 
However, even if MAP is free, a write must wait in ADDRESS until it can start WRlTETR; since 
WRITETR always takes longer than MAP, there is no point in starting MAP first, and the 
implementation is simplified by the rule that starting MAP always frees ADDRESS. Figure 13 shows 
two back-to-back I/OWrites, the second of which waits one extra cycle in ADDRESS before starting 
both WRITETR and MAP. 

The last reason for waiting in ADDRESS has to do with the beingLoaded flag in the cache. If 
ADDRESS fmds that beingLooded is set anywhere in the row it touches, it waits until the flag is 
cleared (this is done by READTRI during the RThasA cycle). A better implementation would wait 
only if the flag is set in the column.in which it hits, but this was too slow and would also require 
special logic to ensure that an entry being loaded is not chosen as a victim. Of course it would be 
much. better to Hold a reference to a row being loaded before it ever gets into ADDRESS, but 
unfortunately the reference must be in ADDRESS to read the flags in the first place .. 

5.3 Waiting inMD 

The traffic control techniques discussed thus far, namely, Hold and waiting in ADDRESS, are not 
suffiCient to prevent all the conflicts shown in Table 4. In particular, neither deals with conflicts 
downstream in the pipeline. Such conflicts could be resolved by delaying a reference in ADDRESS 
until it was certain that no further conflicts with earlier references could occur. This is not a good 
idea because references that hit, which is to say most references, must be held when ADDRESS is 

. busy. If conflicts are resolved in MAP or later, hits can proceed unimpeded, since they do not use 
later sections of the pipeline. 
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At the other extreme, the rule could be that a stage waits only if it cannot acquire the resources it 
will need in the very next cycle. This would be quite feasible for our system, and the proper choice 
of priorities for the various stages can clearly prevent deadlock. However, each stage that may be 
forced to wait requires logic for detecting this situation, and the cost of this logic is significant 
Furthermore, in a long pipeline gathering all the information and calculating which stages can 
proceed can take a long time, especially since in general each stage's decision depends on the 
decision made by the next one in the pipe. 

For these reasons we adopted a different strategy in the Dorado. There is one point, early in the 
pipeline but after ADDRESS, at which all remaining conflicts are resolved. A reference is not 
allowed to proceed beyond that point without a guarantee that no conflicts with earlier references 
will occur; thus no later stage ever needs to wait. The point used for this purpose is state 3 of the 
MAP stage, written as MAP.3. No shared resources are used in states 0-3, and STORAGE is not started 
until state 4. Because there is just one wait state in the pipeline, the exact timing of resource 
demands by later stages is known and can be used to decide whether conflicts are possible. We 
now discuSS the details. 

5.3.1 STORAGE and WRITETR 

In a write operation, WRITEfR runs in parallel but not in lockstep with MAP; see, for example, 
Figure 10. Synchronization of the data transport with the storage reference itself is accomplished 
by two things. . 

MAPJ waits for WRITETR to signal that the transport is far enough along that the data will 
arrive at the StorageRAJ.\1 chips no later than the write signal generated by STORAGE. This 
condition must be met for correct functioning of the chips. Figure 13 shows MAP waiting 
during an 1/0 Write. 

WRITETR will wait in its next-to-Iast state for STORAGE to signal that the data hold time of 
the chips with respect to the write signal has elapsed; again, the chips will not work if the 
data in WriteReg is changed before this point. Figure 10 shows WRITETR waiting during a 
victim write. The wait shown in the figure is actually more conservative than it needs to 
be, since WRITETR does not change WriteReg immediately when it is started. 

PROC 

ADDRESS 

WRITETR 

w •• * •••••• 

~P 0 1 2 3 • • 4 5 6 

STORAGE 

READTR1 

READTR2 

Figure 13: Two IIOwrites 
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5.3.2 CacheD: consecutive cache loads 

Loading a block into CacheD takes 9 cycles, as explained in § 4.1, and a word reference takes one 
more. Therefore, although the pipeline stages proper are 8 cycles long, cache loads must be spaced 
either 9 or 10 cycles apart to avoid conflict in CacheD. After a Fetch or Store, the next cache load 
must wait for 10 cycles, since these references tie up CacheD for 10 cycles. After a Pre/etch, 
FlushFetch or dirty I/ORead, the next cache load must wait for 9 cycles. STORAGE sends MAP a 
signal that causes MAPJ to wait for one or two extra cycles, as appropriate. Figure 14 shows a Fetch 
followed by a Prefetch, followed by a Store, and illustrates how CacheD conflict is avoided by extra 
cycles spent in MAP.3 Note that the Pre/etch waits two extra cycles, while the Store only waits one 
extra. 
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READTR1 

READTR2 

CacheD 
who RT1 I 
why fetch 

RT2 RT1 I 
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prefetch 

I 
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loading store 

RT2 
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Figure 14: Cache load conflict for CacheD 

5.3.3 CacheD: load and unload 

The other source of conflict for CacheD is between loading it in a miss read and unloading it in a 
victim write. This conflict does not arise between a miss read and its own victim, because the 
victim is finished with CacheD before the read needs it; Figure 10 illustrates this. There is a 
potential conflict, however, between a miss read and the next reference's victim. CacheD is loaded 
quite late in a read, but unloaded quite early in a write, as the figure shows, so the pipeline by 
itself will not prevent a conflict. Instead, the following interlock is used. If a miss is followed by 
another miss with a dirty victim: 

ADDRESS waits to start WRITETR for the victim transport until the danger of CacheD 
conflict with the first miss is past. 

MAP.3 waits while processing the read for the second miss (not its victim write) until 
WRITETR has been started. This ensures that the second read will not get ahead of its 
victim write enough to cause a CacheD conflict. Actually, to save hardware we used the 
same signal to control both waits, which causes MAP.3 to wait two cycles longer than 
necessary, 
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Figure 15 shows a Store with clean victim followed by a Fetch with dirty victim and illustrates this 
interlock. ADDRESS waits until cycle 26 to start WRITETR. Also, the fetch waits in MAP.3 until the 
same cycle, thus spending 13 extra cycles there, which forces the fetch victim to spend 13 extra 
cycles in ADDRESS. The two-cycle gap in the use of CacheD shows that the fetch could have left 
MAP.3 in cycle 24. . 
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Figure 15: Cache load/unload conflict for CacheD 

5.3.4 FastOutBus conflicts 

The final reason for waiting in MAP.3 is a conflict over the FastOutBus, used by I/oRead references. 
A dirty I/ORead uses FastOutBus one cycle later than an ordinary I/ORead, so that it can use 
CacheD with the same timing as a cache load; see § 4.4. The potential FastOutBus conflict is 
prevented by delaying an I/ORead immediately after a dirty I/ORead by one extra cycle in MAP.3. 
Figure 12 illustrates this, and also shows how a clean I/oRead can start every eight cycles and 
encounter no delay. 

6. Physical implementation 

A primary design goal of the Dorado as a personal computer is compactness. The whole machine 
(except the storage) is implemented on a single type of logic board, which is 14 inches square, and 
can hold 288 16-pin integrated circuits and 144 8-pin packages containing terminating resistors. 

Boards slide into zero-insertion-force connectors mounted in two sideplanes, one on each side of the 
board, which have both bus wiring and interboard point-to-point wiring. Interboard spacing is 
0.625 inch, so that the chassis stack of twenty-four board slots is 15 inches high. The entire 
machine, including cooling and power, occupies about .14 m3 (4.5 ftl). There are 192 pins on each 
side of the board; 8 are used for power connections, and the remainder in pairs for grounds and 
signals. Thus 184 signals can enter or leave the board 
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Main storage boards are the same size as logic boards but are designed to hold an array of MOS 
RA\1S instead of random ECL logic. A pair of storage boards make up a module, which holds 512K 
bytes (Plus error correction) when populated with 16K RAMS, 2M bytes with 64K RAMS, or 8M 
bytes with (hypothetical) 256K RAMS. There is room for four modules, and space not used for 
storage modules can hold I/O boards. Within a module, one board stores all the words with even 
addresses, the other those with odd addresses. The boards are identical, and are differentiated by 
sideplane wiring. 

A standard Dorado contains, in addition to its storage boards, eleven logic boards, including disk, 
display, and network controllers. Extra board positions can hold additional I/O controllers. 1bree 
boards implement the memory system (in about 800 chips); they are called ADDRESS, PIPE, and 
DATA, names which reflect the functional partition of the system. ADDRESS contains the 
processor interface, base registers and virtual address computation, Cache A (implemented in 256 by 
4 RA1\1S) and its comparators, and the LRU computation. It also generates Hold, addresses DATA on 
hits, and sends storage references to PIPE. 

DATA houses CacheD, which is implemented with 1K by 1 or 4K by 1 ECL RAMs, and holds 8K or 
32K bytes respectively. DATA is also the source for FastOutBus and WriteBus, and the sink for 
FastlnBus and ReadBus, and it holds the Hamming code generator-checker-corrector. PIPE 
implements MapRAM, all of the pipeline stage automata (except ADDRESS and HITDATA) and their 
interlocks, and the fault reporting, destination bookkeeping, and refresh control for the MapRAM 
and StorageRAM chips.. The History memory is distributed across the boards: addresses on 
ADDRESS, control information on PIPE, and data errors on DATA. 

Although our several prototype Dorados can run at a 50 nanosecond microcyc1e, most of the 
machines run instead at 60 nanoseconds. This is due mainly to a change in board technology from 
a relatively expensive point-to-point wire-routing method to a cheaper Manhattan rout;i.ng method. 

7. Performance 

The memory system's performance is best characterized by two key quantities: the cache hit rate 
and the percentage of cycles lost due to Hold (§ 5.1). In fact, Hold by itself measures the cache hit 
rate indirectly, since misses usually cause many cycles of Hold. Also interesting are the frequencies 
of stores and of dirty victim writes, which affect performance by increasing the frequency of Hold 
and by consuming storage bandwidth. We measured these quantities with hardware event-counters, 
together with a small amount of microcode that runs very rarely and makes no memory references 
itself. The measurement process, therefore, perturbs the measured programs only trivially. 

We measured three Mesa programs: two VLSI design-automation programs, called Beads and Placer; 
and an implementation of Knuth's TEX [8]. All three were run for several minutes (several billion 
Dorado cycles). The cache size was 4K 16-bit words. 

Beads 
Placer 
TEX 

Percent of cycles: 
References Hold 

36.4 
42.9 
38.4 

8.14 
4.89 
6.33 

Percent of references: 
Hits Stores 

99.27 
99.82 
99.55 

10.5 
18.7 
15.2 

Table 5: Memory system performance 

Percent of misses: 
Dirty victims 

16.3 
65.5 
34.9 

Table 5 shows the results. The first column shows the percentage of cycles that contained cache 
references (by either the processor or the IFc), and the second, how many cycles were lost because 
they were held. Hold, happily, is fairly rare. The hit rates shown in column three are gratifyingly 
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large- all over 99 percent This is one reason that the number of held cycles is small: a miss can 
cause the processor to be held for about thirty cycles while a reference completes. In fact, the table 
shows that Hold and hit are inversely related over the programs measured. Beads has the lowest hit 
rate and the highest Hold rate; Placer has the highest hit rate and the lowest Hold rate. 

The percentage of Store references is interesting because stores eventually give rise to dirty victim 
write operations, which consume storage bandwidth and cause extra occurrences of Hold by tying up 
the ADDRESS section of the pipeline. Furthermore, one of the reasons that the StoreReg register 
was not made task-specific was the assumption that stores would be relatively rare (see the 
discussion of StoreReg in § 5.1). Table 5 shows that stores accounted for between 10 and 19 
percent of all references to the cache. 

Comparing the number of hits to the number of stores shows that the write-back discipline used in 
the cache was a good choice. Even if every miss had v. dirty victim, the number of victim writes 
would still be much less than under the write-through discipline, when every Store would cause a 
write. In fact, not all misses have dirty victims, as shown in the last column of the table. The 
percentage of misses with dirty victims varies widely from program to program. Placer, which had 
the highest frequency of stores and the lowest frequency of misses, naturally has the highest 
frequency of dirty victims. Beads, with the most misses but the fewest stores, has the lowest The 
last three columns of the table show that write operations would increase about a hundredfold if 
write-through were used instead of write-back. 
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