
The Dorado:
A H igh·Performance
Personal Computer

Three Papers

SRI INTERt · ATIONAL

COMPUTER SCIENCE LIT. eTR.

The Dorado:
A High-Performance Personal Computer

Three Papers

CSL-81-1 January 1981

ABSTRACT

This report reproduces three papers on the Dorado personal computer. Each has been, or
will be, published in a journal or proceedings.

A Processor for a High-Performance Personal Computer, by Butler W.
Lampson and Kenneth A. Pier. Appeared in Proc. 7th Symposium on Computer
Architecture, SigArch/lEEE, La Saule, May 1980, 146-160.

An Instruction Fetch Unit for a High-Performance Personal Computer, by
Butler W. Lampson, Gene A. McDaniel, and Severo M. Ornstein. Submitted for
publication.

The Memory System of a High·Performance Personal Computer, by Douglas
W. Clark, Butler W. Lampson, and Kenneth A. Pier. A revised version will appear in
IEEE Transactions on Computers.

The first paper describes the Dorado's micro-programmed processor, and also gives an
overview of its history and physical construction. The second discusses the instruction fetch
unit, which prepares program instructions for execution, and the third deals with the cache,
map and main storage of the Dorado's memory system.

@ Copyright 1981 by Xerox Corporation.

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road I Palo Alto I California 94304

A Processorfora
High-Performance Personal Computer

by Butler WI Lampson and Kenneth AI Pier

January 1981

ABSTRACT

This paper describes the design goals, microarchitecture, and implementation of the
microprogrammed processor for a compact high performance personal computer. This
machine supports a range of high level language environments and high bandwidth I/O
devices. It also has a cache, a memory map, main storage, and an instruction fetch unit;
these are described in other papers. The processor can be shared among 16 microcoded
tasks, performing microcode context switches on demand with essentially no overhead.
Gonditional branches are done without any lookahead or delay. Microinstructions are fairly
tightly encoded, and use an interesting variant on control field sharing. The processor
implements a large number of internal registers, hardware stacks, a cyclic shifter/masker,
and an arithmetic-logic unit, together with external data' paths for instruction fetching,
memory interface, and I/O, in a compact, pipelined organization.

The machine has a 60 ns microcycle, and can execute a simple macroinstruction in one
cycle: the I/O bandwidth is 530 megabits/sec. The entire machine, including disk, display
and network interfaces, is implemented with approximately 3000 MSI components, mostly ECl
10K; the processor is about 35% of this. In addition there are up to 4 storage modules; each
with about 300 16K or 64K RAMS and 200 MSI components, for a maximum of 8 megabytes.
The total volume, including power and cooling, is about .14 m3 (4.5 ft3). A number of
machines are currently running.

A version of this paper appeared in Proc. 7th Symposium on Computer Architecture,
SigArch/IEEE, La Baule, May 1980,146-160.

CR CATEGORIES

6.34,6.21

KEY WORDS AND PHRASES

architecture, controller, emulation, input/output, microprogram, pipeline, processor,

@) Copyright 1981 by Xerox Corporation. XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road I Palo Alto I California 94304

2 A PROCESSOR FOR A HIGH-PERFOIUdA!liCE PERSOSAL COMPUTER

1. Introduction

The machine described in this paper, called the Dorado, was designed by and for the Computer
Science Laboratory (CSL) of the Xerox Palo Alto Research Center. CSL has approximately forty
people doing research in most areas of computer science, including VLSI design, communications,
programming systems, graphics and imaging, office automation, artificial intelligence, computational
linguistics, and analysis of algorithms. There is a heavy emphasis on building usable prototype
systems, and many such systems, both hardware and software, have been developed over the last
seven years. Most are part of a personal computing environment which is loosely coupled to other
such environments, and to service facilities for storage and printing, by a high bandwidth
communication network [8].

The Dorado provides the hardware base for the next generation of system research in CSL. Earlier
machines have limitations on virtual address size, reuI memory size, memory bandwidth, and
processor speed that severely hamper our work. The size and speed of the Dorado minimize these
limitations.

The paper has six sections. We begin by sketching the history of the machine's development (§ 2).
Then we discuss the design goals for the Dorado (§ 3), and explain how these goals and the
available technology detennine the high level processor architecture (§ 4). Next, we present the
most important details of the processor architecture (§ 5) and some interesting aspects of the
implementation (§ 6). A final section describes the machine's perfonnance (§ 7).

2. History

The Dorado is a descendant of a small personal computer called the Alto, which was designed and
built as an experimental machine in CSL during 1973 [8]. The Alto was a fairly simple machine, but
it had several features which turned out to be important:

• a microprogrammed processor that is efficiently shared among all the device controllers as
well as the virtual machine interpreter;

• a fairly high resolution display system that uses a full bitmap stored in the Alto main
memory;

• a device for pointing at images on the display;

• an interface to a high bandwidth communication network.

The microarchitecture allows all the device controllers to share the full power of the processor,
rather than having independent access to the memory. As a result, controllers can be small and yet
the 1/0 interface provided to programs can be powerful. This concept of processor sharing is
fundamental to the Dorado as well, and is more fully explained in § 4.

Although there are now many hundreds of Altos at work within Xerox and elsewhere, and they
formed the hardware base for CSL until mid-1980, it was clear by 1976 that a large and rapidly
increasing amount of effort was going into surmounting the Alto's limitations of space and speed,
rather than trying out research ideas in experimental systems. CSL therefore began to design a new
machine aimed at relieving these burdens. During 1976 and 1977, design work on the Dorado
proceeded in CSL and the System Development Depanment. Requirements and contributions from
parts of Xerox outside of CSL affected the design considerably, as did the tendency toward
grandiosity well known in second systems. The memory bandwidth and processor throughput were
substantially increased.

In 1977, implementation of the laboratory prototype for the Dorado began. The prototype
packaging and a design automation system had already been implemented. and were used for
constructing and debugging Dorado Model O. A small team of people worked steadily on all
aspects of the Dorado system until summer of 1978, when the prototype successfully ran all the
Alto software. During the summer and fall of 1978 we used the lessons learned in debugging and

SEC. 2 HISTORY 3

microcoding the Model 0, together with the significant improvements in memory technology since
the Model 0 design was frozen, to redesign and reimplement nearly every section of the Dorado.
We fixed some serious design errors and a number of annoyances to the microcoder, substantially
expanded all the memories of the machine, and speeded up the basic cycle time. Dorado Model 1
came up in the spring of 1979.

During the next year several copies of this machine were built in the stitch weld technology used for
the prototypes. Stitchwelding worked very well for prototypes, but is too expensive for even
modest quantities. Its major advantages are packaging density and signal propagation characteristics
very similar to those of the production technology, very rap1d turnaround during development
(three days for a complete 300-chip board, a few hours for a modest change), and complete
compatibility with our design automation system.

At the same time, the design was transferred to multiwire circuit boards; the Manhattan wire
routing and lower impedance of this technology slowed the machine down by about 15%. Dorados
are now assembled with very little in-house labor, since boards and backpanels are manufactured
and loaded by subcontractors. We do 100% continuity testing of the boards both before and after
they are loaded with components and soldered. Checkout of an assembled machine is still non
trivial, but is a fairly predictable operation done entirely by technicians.

3. Goals

This section of the paper describes the overall design goals for the Dorado. The high level
architecture of the processor, described in the next section, follows from these goals and the
characteristics of the available technology.

The Dorado is intended to be a powerful but personal computing system. It supports a single user
within a programming system which may extend from the microinstruction level to a fully
integrated programming environment for a high-level language; programming at all levels must be
relatively easy. The machine must be physically small and quiet enough to occupy space near its
users in an office or laboratory setting, and cheap enough to be acquired in considerable numbers.
These constraints on size, noise, and cost have a major effect on the design.

In order for the Dorado to quickly become useful in the existing CSL environment, it had to be
compatible with the Alto software base. High-performance Alto emulation is not a requirement,
however; since the existing software is also obsolescent and due to be replaced, the Dorado only
needs to run it somewhat faster than the Alto can.

Instead, the Dorado is optimized for the execution of languages that are compiled into a stream of
byte codes; .. this execution is called emulation. Such byte code compilers exist for Mesa [3, 6J,
Interlisp [2, 7] and Smalltalk [4]. An instruction fetch unit (IFU) in the Dorado fetches bytes from
such a stream, decodes them a~ instructions and operands, and provides the necessary control and
data information to the processor; it is described in another paper [5]. Further support for this goal
comes from a very fast microcycle, and a microinstruction powerful enough to allow interpretation
of a simple macroinstruction in a single microinstruction. There is also a cache which has a latency
of two cycles, and can deliver a word every cycle. The goal of fast execution affects the choices of
implementation technology, microstore organization, and pipeline organization. It also mandates a
number of specific features, for example, stacks built with high speed memory, and hardware base
registers for addressing software contexts.

Another major goal for the Dorado is to support high-bandwidth input/output In particular, color
monitors, raster scanned primers, and high speed communications are all part of the research
activities within CSL; one of these devices typically has a bandwidth of 20 to 400 megabits/second.
Fast devices should not slow down the emulator too much, even though the two functions compete
for many of the same resources. Relatively slow devices must also be supported, without tying up
the high bandwidth I/O system. These considerations clearly suggest that I/O activity and emulation
should proceed in parallel as much as possible. Also, it must be possible to integrate as yet

4 A PROCESSOR FOR A HIGH-PERFORMANCE PERSONAL COMPUTER

undefined device controllers into the Dorado system in a relatively straightforward way. The
memory system supports these requirements by allowing cache accesses and main storage references
to proceed in parallel, and by fully segmented pipelining which allows a cache reference to start in
every cycle, and a storage reference to start in every storage cycle; this system is described in
another paper [1].

Any system for experimental research should provide adequate resources at many levels. For the
processor, this means plenty of high speed internal storage as well as ample speed. Hardware
support for handling arbitrary bit strings, both large and small. is also necessary.

4. High level architecture

We now proceed to consider the major design decision!) which shaped the Dorado processor. For
the most part these were guided by the goals set out above, the available implementation
technology, and our past experience. In this section we stay at a high level, reserving the details of
the architecture for the nexL

The Dorado fits into a very compact package, illustrated in Figure 1a; Figure 1b is a high-level
block diagram. Circuits are mounted on large, high density logic boards (288 16-pin DIP logic
packages plus 144 8-pin SIP resistor packages per board). The boards slide horizontally into zero
insertion-force connectors mounted in dual backpanels ("sidepanels"); they are .625 inches apart.
This density makes it possible to reconcile the goals of size and capability. Certain sacrifices are
made, however. For example, it is not possible to access every signal with a scope probe for
debugging and maintenance. We make up for this by providing sophisticated debugging facilities,
diagnostics, and the ability to incrementally assemble and test a Dorado from the bottom up.

The entire machine, including disk, display and network interfaces, is implemented with
approximately 3000 MSI components, mostly EeL 10K; the processor is about 35% of this. In
addition there are up to 4 storage modules, each with about 300 16K or 64K RAMS and 200 MSI
components, for a maximum of 8 megabytes. The total volume, including power and cooling, is
about .14 m3 (4.5 ft3); this is without any enclosing cabinet, however, and the open machine is quite
noisy. Including an 80 megabyte removable disk, it requires about 2.5 Kw of AC power.

Most data paths are sixteen bits wide. The relatively small busses, registers, data paths, and
memories which result help to keep the machine compact Packaging, however, is not the only
consideration. CSL has a large class of applications where doubling the data path width increases
performance only a little, because some of the bits contain type codes, flags or whatever which must
be examined before an entire datum can be processed. Speed dictates a heavily pipelined structure
in any case, and this parallelism in the time domain tends to compensate for the lack of parallelism
in the space domain. Keeping the machine physically small also improves the speed, since physical
distance accounts for a considerable fraction of the basic cycle time. Finally, performance is often
limited by the cache hit rate, which cannot be improved, and may be reduced, by wider data paths
(if the number of bits in the cache is fixed).

. Rather than putting processing capability in each 1/0 controller and using a shared bus or a switch
to access the memory, the Dorado shares the processor among all the 1/0 devices and the emulator.
This fundamental concept of the architecture, which motivates much of the processor design. was
first tried in the Alto. It works for two main reasons.

• First, unless a system has both multiple memory busses (i.e., multi-ported memories) and
multiple memory modules which can cycle independently, the main factor governing
processor throughput is memory contention. Put simply, when 1/0 interfaces make memory
references, the emulator ends up waiting for the memory. In this situation the processor
might as well be working for the 1/0 device.

SEC. 4

I/O
I/O
I/O
I/O
I/O

Disolav controller
Disk/Ethernet controller

Storaoe
Storaoe
Storaoe
Storaop.

15,5 in Storaoe
Storaae
Storaoe
Storaae

Cache data error correction
Pioe man and storaoe control

Memorvaddressina
Instruction fAtch unit
Processor hiah byte
Processor low byte

Control section
Microinstruction memorY

Baseboard

Power Supplies

-5 Vx250A
10.5 in -2 V x 75 A

+5 V x 70 A
+12 V x 25 A

HIGH LEVEL ARCHITECTl.JRE

.L

.S25 in

T
t-il<:-------- 15 in.

-5 Volt

Side
Panel
Wiring

Airplenum

Board Area

288 16-pin DIPs (logic)
and

144 a-pin SIPs (terminators)
per board

5

Side
Panel 13in.
Wiring

3.5 in.

LB-------~1
Front View +5 Volt Top View + 12 Volt

Figure 1 a: Dorado chassis

Instruction
~

Fetch Unit

I
Slow input/output 265 MBits/sec 265 MBits/sec

16 bits/60 ns Processor 16 bits/SO ns Cache

8K-32K I--
120 ns access

bytes

I KeybOardll DisPlay] I Disk 1 I Ethernet 1
530 MBits/sec
256 bits/480 ns Storage

Fast input/output 1. 7 us access 512K·16M bytes

Figure 1 b Dorado block diagram.

6 A PROCESSOR FOR A HIGH-PERFORMANCE PERSONAL COMPlITER

• Second, when the processor is available to each device, complex device interfaces can be
implemented with relatively little dedicated hardware, since most of the control does not
have to be duplicated in each interface. For low bandwidth devices, the force of this
argument is reduced by the availability of LSI controller chips, but for data rates above one
megabit/second no such chips exist as yet

Of course, to make this sharing feasible, switching the processor must be nearly free of overhead,
and devices must be able to make quick use of the processor resources available to them.

Many design decisions are based on the need for speed. Raw circuit speed is a beginning. Thus,
the Dorado is implemented using the fastest commercially available technology which has a
reasonable level of integration and is not too hard to package. In 1976, the obvious choice was the
ECL 10K family of circuits; probably it still is. Secondly, the processor is organized around two
pipelines. One allows a microinstruction to be started in each cycle, though it takes three cycle to
complete execution. Another allows a processor context switch in each cycle, though it takes two
cycles to occur. Thirdly, independent busses communicate with the memory, IFU, and 1/0 systems,
so that the processor can both control and service them with minimal overhead.

Finally, the design makes the processor both accessible and flexible for users at the microcode level,
so that when new needs arise for fast primitives, they can easily be met by new microcode. In
particular, the hardware eliminates constraints on microcode operations and sequencing often found
in less powerful designs, e.g., delay in the delivery of intennediate results to registers or in
calculating and using branch conditions, or pipeline delays that require padding of microinstruction
sequences without useful work. We also included an ample supply of resources: 256 general
registers, four hardware stacks, a fast barrel shifter, and fully writeable microstore, to make the
Dorado reasonably easy to microcode.

5. Low level architecture

This section describes in some detail the key ideas of the architecture. Implementation techniques
and details are for the most part deferred to the next section; readers may want to jump ahead to
see the application of these ideas in the processor. Along with each key idea is a reference to the
places in the processor where it is used.

5.1 Tasks

There are 16 priority levels associated with microcode execution. These levels are called microlasks,
or simply tasks. Each task is nonnally associated with some hardware and microcode which
together implement a device controller. The tasks have a fixed priority, from task 0 (lowest) to task
15 (highest). Device hardware can request that the processor be switched to the associated task;
such a wakeup request will be honored when no requests of higher priority are outstanding. The set
of wakeup requests is arbitrated within the processor, and a task switch from one task to another
occurs on demand, typically every ten or twenty microcyc1es when a high-speed device is running.

When a device acquires the processor (that is, the processor is running at the requested priority
level and executing the microcode for that taSk), the device will presumably receive service from its
microcode. Eventually the microcode will block, thus relinquishing the processor to lower priority
tasks until it next requires service. While a given task is running, it has the exclusive attention of
the processor. This arrangment is similar in many ways to a conventional priority interrupt system.
An important difference is that the tasks are like coroutines or processes, rather than subroutines:
when a task is awakened, it continues execution at the point where it blocked. rather than restarting
at a fixed point. This ability to capture pan of the state in the program counter is very powerful.

Task 0 is not associated with a device controller; its microcode implements the emulators currently
resident in the Dorado. Task 0 requests service from the processor at all times, but with the lowest
priority.

SEC.S LOW LEVEL ARCHlTECfURE 7

5.2 Task scheduling

Whenever resources (in this case, the processor) are multiplexed. context switching must only
happen when the state being temporarily abandoned can be restored In most multiplexed
microcoded systems, this requires the microcode itself to explicitly poll for requests, save and
restore state, and initiate context switches. A certain amount of overhead results. Furthennore,
the presence of a cache introduces large and unpredictable delays in the execution of microcode
(because of misses). A polling system would leave the processor idle during these delays, even
though the work of another task can usually proceed in parallel. To avoid these costs, the Dorado
does task switching on demand of a higher priority device, much like a conventional interrupt
system. That is, if a lower priority task is executing and a higher priority device requests a wakeup,
the lower priority task will be preempted; the higher priority device will be serviced without the
consent or even the knowledge of the currently active task. The polling overhead is absorbed by
the hardware, which also becomes responsible for resuming a preempted task once the processor is
relinquished by the higher priority device.

A controller will continue to request a wakeup until notified by the processor that it is about to
receive service; it then removes the request, unless it needs more than one unit of service. When
the microcode is done, it executes an operation called Block which releases the processor. The
effect is that requesting service is done explicitly by device controllers, but scheduling of a given
task is invisible to the microcode (and. nearly invisible to the device hardware).

5.3 Task specific state

In order to allow the immediate task switching described above, the processor must be able to save
and restore state within one microcyc1e. This is accomplished by keeping the vital state information
throughout the processor not in a single rank of registers but in task specific registers. These are
actually implemented with high speed memory that is addressed by a task number. Examples of
task specific registers are the microcode program counter, the branch condition register, the
microcode subroutine link register, the memory data register, and a temporary storage register for
each task. The number of the task which will execute in the next microcycle is broadcast
throughout the processor and used to address the task specific registers. Thus, data can be fetChed
from the high speed task specific memories and be available for use in the next cycle.

Not all registers are task specific. For example, COUNT and Q are nonnally used only by task O.
However, they can be used by other tasks if their contents are explicitly saved and restored.

5.4 Pipelining

There are two distinct pipelines in the Dorado processor. The main one fetches and executes
microinstructions. The other handles task switching, arbitrates wakeup requests and broadcasts the
next task number to the rest of the Dorado. Each· structure is synchronous, and there is no waiting
between stages.

The instruction pipeline, illustrated in Figure 2, requires three cycles (divided into six half cycles) to
completely execute a microinstruction. The first cycle is used to fetch it from microstore (time 1.2 to
10>. The result of the fetch is loaded into the microinstruction register MIR at 10, The second cycle
is split; in the first half, operand fetches (as dictated by the contents of MIR) are performed and the
results latched at 11 in two registers (A and B) which form inputs to the next stage. In the second
half cycle, the AlU oper~tion is begun. It is completed in the first half cycle of cycle three, and the
result is latched in register RESt:LT (at (3), The second half of cycle three (13 to 14) is used to load
results from RESULT into operand registers.

t·2

.....

8 A PROCESSOR FOR A HIGH·PERFORMANCE PERSONAL COMPUTER

1·1 to
I

roo-

Fetch from M

Instruction memory 1 ~.;a
R

......
first c cle y ,

Instruction Pipeline

t 1

,....
operand

... A r-~

t2

I

operand
fetch I- modification

... B ~~
......

second c cle y)k

Timing Overlap

13 t4

,....
R
e result

~ s ~:.. store u
I
t -third c I ... , yce

T·2 - T·' -TO -T1 -T2 -T3-T4

-W
a
k
e
U
p

-

T·2 -T·1 -TO -T1-T2--T3--T4
T·2-T·1-TO-T1-T2-T3--T4

T·2 - T·1 -TO--T1-T2-T3 -T4
T·2 - T·' -TO--T1 -T2 -T3 -T4

T·2 - T·1 -TO -T1 -T2 -T3 -T4

Figure 2: Instruction pipeline and timing overlap

to t 1 t2 t3
I

Best fetch Next task specific state
Next ~.;a

fetch ~ TPC fetch Next microinstruction
Next arbitrate

~~ TPC ~ Switch requests

Next
Task 1'"'" broadcast Next task

'""- first c cle y second c cle y

Figure 3: Task arbitration pipeline

~

~

tOot
figure 2

Current
State

Current
Task

The figure also shows how the pipeline overlapping is achieved. A new microinstruction begins at
every cycle time. The operand registers are used in the first half cycle of every cycle to fetch
operands for the current instruction (during '0 - ,.). The second half of every cycle is used to store
results for the previous instruction (during '3 - tJ.
Figure 3 shows ~e task arbitration pipeline. This pipeline is two stages long, and also requires one
cycle per stage. At the beginning of the pipeline (to>, wakeup requests from device controllers are
latched into the WAKECP register. During the first half cycle ('0 - 'I)' arbitration is perfonned and
the highest priority task detennined. During the second half cycle (,. - t2), the microprogram
address for the highest priority task is fetched from the task specific program counter TPC. The task
number. its TPC, and the command to switch tasks (if the highest priority task is higher than the
currently executing task) are loaded into registers at~. In the second pipe cycle, the TPC is used to
fetch the next microinstruction from the microstare, the entire processor uses the selected task

t4

SEC.S LOW LEVEL ARCHlTECfURE 9

number to fetch the appropriate task specific information, and device controllers are told which task
will have the processor next. Finally, at '. the task switch is complete, and the new task is in
control of the processor; this time corresponds to '0 of the first microinstruction executed by the
new task.

5.5 Microinstruction format

One of the key decisions made in the design of any microprogrammed processor is the format and
semantics of the microinstruction. The Dorado's demand for compactness and power are at odds in
this case. Compactness dictates that an essentially vertical structure be used, with encoded fields
specifying many functions in a few bits. The details of the microinstruction format appear in § 6.
The major features of interest here are the choice of successor instruction encoding, and the
specification of a large number of functions which may be executed by the processor.

In a classical microprogrammed processor, each instruction carries with it the address of its
successor, NEXTPC; this address is latched with the rest of the instruction, and then used directly to
address the microstore for fetching the next instruction. NEXTPC may be modified by state within
the processor during execution, but the basic idea is that enough bits must be present in each
microword to address the whole microstore. This results in a uniform structure for addressing, and
allows the next instruction fetch to proceed without any delay for decoding; it has the disadvantages
of increasing the size and cost (and reducing the speed) of the microstore. The lack of any
decoding time also makes it impossible to specify a subroutine return or other major change in
sequencing, and have it take effect immediately (branches can still use the scheme described below).

The alternative, used in the Dorado, is to divide the microstore into pages, use a few bits to specify
a next address within the current page, and have a type field which can specify branches, calls,
returns, transfers to another page, or whatever. At. the start of a microcycle, the processor decodes
the type field and accesses other information (such as the current page number or the return link)
to compute NEXTPC. In addition, some types cause side effects such as the loading the return link.
The net result is substantially fewer bits to control microsequencing than a horizontal scheme would
require (in the Dorado, 8 bits instead of about 16). The disadvantages are, of course, the cost and
time for decoding this field, and the additional complexity of an assembler which can fit
instructions onto pages appropriately.

Conditional branching is always a problem with pipelined instruction execution. Most designs use
one of the following two schemes, and tolerate its drawbacks. The first requires that a branch be
specified one (or more) instructions before it is taken. Although this simplifies and speeds up the
hardware, it imposes severe constraints on the microcode organization, and often forces extra
instructions to be executed. The second scheme detects the branch and inserts asynchronous delay
or an extra cycle to allow time for the new instruction to be fetched. This obviously slows down
the machine.

Conditional branching in the Dorado is handled by allowing one of eight branch conditions to
modify the low order bit of NEXTPC. This modification (Boolean or into the low order bit) takes
place about half way into the instruction fetch cycle. The microstore is organized so that this bit
does not change the chip address, but instead selects a different chip from a set of chips whose
outputs are tied directly together. Since access time from the chip select is considerably faster than
from the address, the late arriving branch condition does not increase the total cycle time. For this
to work, the assembler must place each false branch target at an even address, and the
corresponding true branch target at the next higher odd address. An annoying consequence is that
several conditional branches cannot have same target; when this case arises the target must be
duplicated. Everything has its price.

Another tradeoff occurs in the mechanism for controlling the functions of the processor at each
microcycle. The Dorado encodes most of its operations (other than register selection, ALU
operations, storing results, and memory references) in an eight bit function field called FF. This is

10 A PROCESSOR FOR A HIGH-PERFORMANCE PERSONAL COMPUTER

quickly decoded at the beginning of every microinstruction execution cycle (during 'o-'I>, and is
used to invoke all of the less frequently used operations that the processor can do: controlling the
110 busses, reading and setting state in the memory and lFU. extracting an arbitrary field from a
word, reading and loading most registers, non-standard carry and shift operations. and loading
values into small registers. FF can also serve as an eight bit constant or as part of a full microstore
address. This encoding saves many bits in the microinstruction, at the expense of allowing only one
FF-specified operation to be done in each cycle, even though the data paths exist for doing many
such operations in parallel

5.6 Data bypassing

Recall that a microinstruction is initiated at the beginning of every cycle, but takes one cycle for
instrtmtion fetch and two cycles for execution. If an instruction uses a result generated by its
immediate predecessor, it needs to get that result from an operand register before the predecessor
has actually delivered the result to that register. Rather than forbidding such use of results, or
delaying execution until the register has been loaded, we solved this problem with a technique
called bypassing. The hardware detects that an operand specified in the current instruction is
actually the result of the previous instruction. Rather than obtaining the operand from the usual
source in a RAM, the processor takes it directly from the input to the RA.:'1, which is the result of the
previous instruction. Figure 4 illustrates the scheme. This costs extra hardware for multiplexors and
bypass detection logic, but the result is much smaller and faster microcode in many common cases.
In the Model 0 Dorado, we omitted bypassing logic in a few places, and required the microcoder to
avoid these cases. The· result was a number of subtle bugs and a significant loss of performance.

r--
R
e
s
u

,

I
t -

5.7 M.emory delays

bypass path operand fe , tch
....

multiplexor switch ed it
Address =
ddress

result Current Operand
store Previous Result A

memory normal path

Figure 4: Bypassing example

Pipelining and bypassing are effective ways to reduce delay and increase throughput within the
processor. Interactions with the memory, however, pose different problems. Once a memory
reference has been made, there must be some way to tell when the memory system has delivered
the requested data. Two simple techniques are to wait a fixed (unfonunately. maximum) amount of
time before using the data, or to explicitly poll the memory system. Neither is satisfactory for a
high performance machine. First, the difference between the best case (cache hit) and the worst
(cache miss plus memory system resource contention) is more than an order of magnitude. Second,
useful work can often be performed by a given task before it uses the requested memory data.
Third, even if a given task must wait for memory data before it can proceed, higher priority tasks
may very well be able to do useful work in the meantime.

The Dorado manages this problem by making the··memory keep track of when data is ready, and
allowing the processor to keep executing instructions. Only instructions which use memory data or

SEeS WW LEVEL ARCHITECTURE 11

start memory references can be affected by the state of the memory. When such an instruction is
executed. the memory checks to see whether it can be allowed to proceed. If so, no action is taken.
But if the memory is busy, or the data being used is not ready, the memory responds by activating
the signal Hold. The effect of Hold is to stop any state changes specified by the current instruction.
However, all the clocks in the system keep running. This is important, because task switching must
not be inhibited during memory delays. In effect, Hold converts the currently executing instruction
into a "no operation, jump to self' instruction. If no task switch occurs, the instruction is executed
again, and a new calculation is made to see whether it can proceed. Meanwhile. the memory
pipeline is running. and sooner or later, the need for Hold will be gone as the pipeline progresses.

Note that if a task switch occurs while an instruction is held. the state is such that the held
instruction may simply be restarted when the lower priority task is resumed by the processor.
Cycles which would otherwise be dead time are consumed instead by higher priority tasks doing
useful work.

5.8 Separate external interfaces

If most macroinstructions (byte codes) are to execute in a small number of cycles, hardware must
be provided to make communication among processor, lFU, and memory very quick in the common
cases. The Dorado provides a number of data paths and control structures for this purpose,
detailed in the block diagrams, Figures 5 and 6. All the busses are a full word wide and can be
accessed in one cycle or less. The B input to the ALU is extended to the remainder of the Dorado
(except I/O devices, which have their own busses) for the transfer of status and control between the
processor and the other subsystems. The memory address bus is a copy of the A side ALU input
Memory data comes directly into the processor and is routed to a variety of destinations
simultaneously. to make such operations as field manipulations and indirect addressing fast. The
lFU can directly supply operand data to the processor, and any microinstruction can specify that it is
the last of a macroinstruction, in which case the successor address is supplied by the lFU. This
requires a microstore address bus and operand data bus directly from the lFU to the processor.

It is also desirable to make I/O transfers through the processor fast. To this end there is an I/O
address bus and an 1/0 data bus for direct access to I/O controllers. The data bus can transfer one
word per cycle. or 265 megabits/second. and both the memory reference and the I/O transfer can
be specified in a single instruction, so that it is possible to move a sequence of words between the
cache and a device at this rate. However. this subsystem is called the slow I/O system. There is
also a more direct memory access I/O subsystem, the fast 1/0 system; it allows data to move directly
between storage and I/O devices, in blocks of 16 words, without polluting the cache. Figure 1b
shows a display controller that uses both slow and fast I/O systems.

5.9 Constants

Notice that there is no source for 16 bit constants within the processor. Such constants are
necessary, panicularly in device controller microcode where they often are used as commands,
addresses or literal data. It would be possible to include a constant box, addressed perhaps with an
FF function, as a source for constants. However, such a box would have a limited size and.
experience tells us, would not hold enough constants to satisfy a growing world.

Fonunately, a large fraction of the constants used in microcoding are either small positive or small
negative (2's complement) integers, or sparsely populated bit vectors. with the propeny that one of
the two eight bit fields in the constant is all zeroes or all ones. Thus a useful subset of constants
can be specified using the eight bits of FF for one byte of the constant and two other bits to specify
the other byte value and position. Using this technique, most 16 bit constants can be specified in
one microinstruction. and any constant can be assembled in two microinstructions. (The "other"
two bits come from the BSeleel field in the microword).

12 A PROCESSOR FOR A HIGH-PERFOR.\fANCE PERSOXAL COMPUTER

RAddress ALUOP BSelect LoadControl ASelect Block FF NextControl

t ! ~ l
Link

ThisPC

CBr 0[14] IFUAd FF NextCtrl

{Instruction Decode}

ThisTaskNextPC

Priority Encoder
{StartCycle}

TPCAddr

SEC.S LOW LEVEL ARCHITECTURE 13

MemOata (MO)
d t f aa rom
memory

Base f==+- address to Regs Adder memory
IFU .. i B J • :1 'LMemBaseJ

-:
IOAddress ,

TIOA •

':
COUNT

" .
A .I

SHIFTCTL

~
.

,

FF small
constant

IFU
~I •
:1 ' RBase

RAddr •
to RESULT

"~ ~!
(copy of A)

const MemAd

j}= ~ RM 1= ~ R
MD

(also to R A ShiftCtl)

~ { Load }

control~: :1= {bypass} Q if
STACK

1\ R
also to RESULT

RaddrJ+ T Shifter
stackrl

pOinter
MQ.

jJ=r[~
R B

T* T T
(copies of B)

{ Load } Q

IOData control {bypass} const
I Q ~ ExternalB --,

shift 1 bit left or right II
FF FF ...

constant
B

RESULT'

Latches follow Registers
. from t2 to t3 load at 13

RAMs read
at \1 , load at t4

--0 register or memory

--{] latch

Latches follow
from 11 to t2

Data ready
shortly after t1

===t] multiplexor latch
{control}

__ -II multiplexor
{control}

Figure 6: Data section

=

..
to I/O , devices

~ {FF,mask}

ALUFM MemB ...

ALUFM
\It lOAd '

COUNT

SHIFTCTL

MD

ALU

ALU II ALU LSH 1

II ALU RSH 1

StackPtr

RBase

10Data

II
,

RESULT

to/from
devices
to/from
control,
memory,
IFU

Data ready
shortly before t3

main bus (A, B, RESUL T, MemData, IOData)
other 16 bit path
narrower data path

• task specific

14 A PROCESSOR FOR A HIGH-PERFOR.\.fANCE PERSONAL COMPlITER

6. Implementation

In this section we describe, at the block diagram le¥el, the actual implementation of the Dorado
processor. There is only space to cover the most interesting points and to illustrate the key ideas
from § 5.

6.1 Clocks

The D9rado has a fully synchronous clock system, with a clock tick every 30 nanoseconds. A cycle
consists of two successive clock ticks; it begins on an even tick, which is followed by an odd tick,
and completes coincident with the beginning of a new cycle on the next even tick. Even ticks may
be labeled with names like 1.2, to' t2, t4 to denote events within a microinstruction execution or a
pipeline, relative to some convenient origin. Odd ticks are similarly labeled 1.1' t1, t3'

6.2 The control section

The processor can be divided into two distinct sections, called control and data. The control section
fetches and broadcasts the microinstructions to the data section (and the remainder of the Dorado),
handles task switching, maintains a subroutine link, and regulates the clock system. It also has an
interface to a console and monitoring microcomputer which is used for initialization and debugging
of the Dorado. Figure S is a block diagram of the control section.

6.2.1 Task pipeline

The task pipeline consists of an assortment of registers and a priority encoder. All the registers are
loaded on even clocks. Wakeup requests are latched at to in WAKEUP, one bit per task; READY has
corresponding bits for preempted and explicitly readied tasks. The requests in WAKEUP and READY
compete. A task can be explicitly made ready by a microcode function. The priority encoder
produces the number of the highest priority task, which is loaded into BESTNEXITASK and also used
to read the TPC of this task into BEST:\EXTPC; these registers are the interface between the two
stages in this pipeline. The NEXT bus normally gets the larger of BESTNEXIT ASK and THIST ASK.
THISTASK is loaded from :i\EXT, and LASTTASK is loaded from THISTASK, as the pipeline progresses.

This method of priority scheduling means that once a task is initiated, it must explicitly relinquish
the processor before a lower priority task can run. A bit in the micro word, Block, is used to
indicate that NEXT should get BESTNEXTTASK unconditionally (unless the instruction is held).

Note that it takes a minimum of two cycles from the time a wakeup changes to the time this
change can affect the running task (one for the priority encoding, one to fetch the microinstruction).
This implies that a task must execute at least two microinstructions after its wakeup is removed
before it blocks; otherwise it will continue to run, since the effects of its wakeup will not have been
cleared from the pipe. The device cannot remove the wakeup until it knows that the task will run
(by seeing its number on NE.XT). Hence the earliest the wakeup can be removed is to of the first
instruction (NEXT has the task number in the previous cycle, and the wakeup is latched at to>; thus
the grain of processor allocation is two cycles for a task waking up after a Block.

Some trouble was taken to keep the grain small, for the following reason. Since the memory is
heavily pipelined and contains a cache which does not interact with high bandwidth I/O, the I/O
microcode often needs to execute only two instructions, in which a memory reference is started and
a count is decremented. The processor can tl1en be returned to another task. The maximum rate at
which storage references can be made is one every eight cycles (this is tl1e cycle time of the main
storage RA\1S). A two cycle grain thus allows the full memory bandwidth of 530 megabits/second
to be delivered to I/O devices using only 25% of the processor.

SEC. 6 IMPI.E.\fE?'I.'T A TION 15

A simpler design would require the microcode to explicitly notify its device when the wakeup
should be removed; it would then be unnecessary to broadcast ?'I."EXT to the devices. Since this
notification could not be done earlier than the first instruction, however, the grain would be three
cycles rather than two, and 37.5% of the processor would be needed to provide the full memory
bandwidth. Other simplifications in the implementation would result from making the pipeline
longer; in particular, squeezing the priority encoding and reading of TPC into one cycle is quite
difficult Again, however, this would increase the grain.

6.2.2 Fetching microinstructions

Refer to the right hand side of Figure 5. At to of every instruction, the microinstruction register
MIR is loaded from the outputs of 1M, the microinstruction memory, and the THISPC register is
loaded with LMADDRESS. The!\'EXTPC is quickly calculated based on the NeX1Controi field in MIR,
which encodes both the instruction type and some bits of NEXTPC; see Figure 7 for details. This
calculation produces THIST ASKNEXTPC, so called because if a task switch occurs it is not used as the
next IMADDRESS. Instead, the BESTNEXTPC computed in the task pipeline is used as IMADDRESS.

NextControl Instruction type ThisTaskNextPC

o 1 234 5 6 7 CPC = CurrentPC NC = NextControl

1 0 ADDRESS BITS Local Jump/Call

1 1 ADDRESS BITS Global Call

0 0 0 0 ADDRESS BITS Long Jump/Call

10 Conditional ADDRESS BITS BRANCH
OOOx CONDITION Jump/Call

0 1
RETURN

1 1 1 Return FUNCTION

0 0 1 NEXT 1 1 1 IFUJump NUMBER

0 0 0 1 x 1 1 1 undefined

Conditional Branch

NC[5;7] ~r- FF Branoh oondition

ALU .. 0
ALU<O

o 60
1 61
2 62
3 63
4 64
5 65
6 66

67

carry'
Count .. O (&Count~Count·1)
R<O
Rood
IOAtten' (non-emulator)
Overflow'

I I
CPC[2:9) NC[2:7] I Bit 15 is Isb

I I I I I I I I I I I I
2 3 4 5 6 7 8 9 10 11 12 13 14 15

IcPQ[2:3] II NC\2:7)
I I I 10 0 0 0 0 01

I I I.' I

2 3 4 5 6 7 8 9 10 11 12 13 14 15

ICP<T[2:3] II I
FF~O:7]

I I I I I
NC[4:7]
I I , I

2 3 4 5 6 7 8 9 10 11 12 13 14 15

I
CPC[2:9] INC[11 :2] I 0 INC~3:4] I R I

Risbranch
I I I I I I I oondition

2 3 4 5 6 7 8 9 10 11 12 13 14 15

I I I I I I
\ink~2:15~ I I I I I I

2 3 4 5 6 7 8 9 10 11 12 13 14 15

ICP<T[2:3] II I
IFUAdd r.ss[4: 13]

I I I I I I I INC~3:4]1
2 3 4 5 6 7 8 9 10 11 12 13 14 15

A long, local or conditional branch is a CALL if, before any modification by branch
conditions or dispatches, ThisTaskNextPC[12:15] .. 0; otherwise it is a jump.

Loaded into Link by Call, Return, or IFUJump

CPC[10:151 + 1
I I I ! I

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 7: Next address formation

16 A PROCESSOR FOR A HIGH-PERFORMA!\CE PERSO~AL COMPUTER

TPC is written with the previous value of THISTASKNEXTPC every cycle (at ~). and read for the task
in BESThEXTIASK every cycle as well. Thus. TPC is constantly recording the program counter value
for the current task, and also constantly preparing the value for the next task in case there is a task
switch.

6.2.3 Miscellaneous foatures

There is a task specific subroutine linkage register. LINK, shown in Figure 5, which is loaded with
the value in THISPC + 1 on every microcode call or return. Thus each task can have its own
microcoded coroutines. LI~K can also be loaded from a data bus, so that control can be sent to an
arbitrary computed address; this allows a microprogram to implement a stack of subroutine links,
for example. In addition to conditional branches. which select one of two NEXTPC values, there are
also eight-way and 256-way dispatches, which use a value on the B bus to select one of eight. or one
of 256 NEXTPC values.

Since the Dorado's microstore is writeable, there are data paths for reading and writing it Related
paths allow reading and writing TPC. These paths (through the register TPIMOl...'T) are folded into
already existing data paths in the control section and are somewhat tortuous. but they are used
infrequently and hence have been optimized for space. In addition, another computer (either a
separate microcomputer or an Alto) serves as the console processor for the Dorado; it is interfaced
via the CPREG and a very small number of control signals.

6.3 The data section

Figure 6 is a block diagram of the data section, which is organized around an arithmeticllogic unit
(ALe). It implements most of the registers accessible to the programmer and the microcode
functions for selecting operands, doing operations in the ALL' and shifter. and storing results. It also
calculates branch conditions. decodes !vlIR fields and broadcasts decoded signals to the rest of the
Dorado, supplies and accepts memory addresses and data, and supplies 1/0 data and addresses.

6.3.1 The microinstruction register

~IR (which actually belongs to the control section) is 34 bits wide and is partitioned into the
following fields:

RAddress
ALUOp
BSe/eCI
LoadControi
ASe/eCI
B/ock
FF
NeX1Controi

6.3.2 Busses

4 Addresses the register bank RM.
4 Selects the ALU operation or controls the shifter.
3 Selects the source for the B bus, including constants.
3 Controls loading of results into R~ and T.
3 Selects the source for the A bus, and starts memory references.
1 Blocks an 1/0 task, selects a stack operation for task O.
8 Catchall for specifying functions.
8 Specifies how to compute NEXTPC.

The major busses are A, B (ALV sources). RESL'LT, EXTER~ALB, !\1E\1ADDRESS, IOADDRESS, IODATA,
IFCDATA, and ME\1DATA .

The ALL' accepts two inputs (A and B) and produces one output (RESCLT). The input busses have a
variety of sources. as shown in the block diagram. RESL'LT usually gets the ALL' output. but it is
also sourced from many other places. including a one bit shift in eitller direction of the ALV output
A copy of A is used for ~1E~1ADDRESS: two copies of B are used for EXiER:\ALB and 10DATA.
MB1ADDRESS provides a sixteen bit displacement. which is added to a 28 bit base register in the
memory system to fonn a virtual addresses. EXiER~ALB is a copy of B which goes to the control,
memory. and IFC sections, and 10DATA is another copy which goes to the 1/0 system; the sources of

SEC. 6 IMPLEMENTATION 17

B can thus be sent to the entire processor. Both are bidirectional and can serve as a source for Bas
well. IOADDRESS is driven from a task specific register; it specifies the particular device and register
which should source or receive IODATA.

IFUDATA and MEMDATA allow the processor to receive data from the lFU and memory in parallel
with other data transfers. MEMDATA has the value of the memory word most recently fetched by
the current task; if the fetch is not complete, the processor is held when it tries to use MEMDATA.
lFUDATA has an operand of the current macroinstruction; as each operand is used, the lFU presents
the next one on lFUDATA.

6.3.3 Registers

Here is a list and brief description of registers seen by the microprogrammer. All are one word (16
bits) wide.
RM:

STACK:

T:

COUNT:

SHIFTCTL:

Q:

a bank of 256 general purpose registers; a register can be read onto A, B, or the
shifter, and loaded from RESULT under the control of LoadControl. Normally, the
same register is both read and loaded in a given microinstruction, but loading of a
different register can be specified by FF.

a memory addressed by the STACKPTR register. A word can be read or written,
and STACKPTR adjusted up or down, in one microinstruction. If STACK is used in a
microinstruction, it replaces any use of RM, and the RAddress field in the microword
tells how much to increment or decrement ST ACKPTR. The 256 word memory is
divided into four 64 word stacks, with independent underflow and overflow
checking.
a task specific register used for working storage; like RM, it can be read onto A, B,
or the shifter, and loaded from RESULT under the control of LoadControl..

a counter; it can be decremented and tested for zero in one microinstruction, using
only the NextControl or FF field. It is loaded from B or with small constants from
FF.

a register which controls the direction and amount of shifting and the width of left
and right masks; it is loaded from B or with values useful for field extraction from
FF.

a hardware aid for multiply and divide instructions; it can be read onto A or B, and
loaded from B, and is automatically shifted in useful ways during multiply and
divide step microinstructions.

The next group of registers vary in width. They are used as control or address registers, changed
dynamically but infrequently by microcode.
RBASE:

STACKPTR:

MEMBASE:

ALUF\f:

10ADDRESS:

R.M addressing requires eight bits. Four come from the RAddress field in the
microword, and the other four are supplied from RBASE. It is loaded from B or FF,
and can be read onto RESULT.

an eight bit register used as a stack pointer. Two bits of STACKPTR select a stack,
and the least significant six bits a word in the stack. The latter bits are
incremented or decremented under control of the RAddress field whenever a stack
operation is specified.

a five bit register which selects one of 32 base registers in the memory to be used
for virtual address calculation. It is loaded from FF field or from B, and can be
loaded from the IFU at the start of a macroinstruction.
a 16 word memory which maps the four-bit ALUOp field into the six bits required
to control the ALU.

a task specific register which drives the IOADDRESS bus, and is loaded by 1/0
microcode to specify a device address for subsequent Input and Output operations.
It may be loaded from B or FF.

18 A PROCESSOR FOR A HIGH-PERFORMA!'CE PERSONAL COMPUTER

6.3.4 The shifter

The Dorado has a 32 bit barrel shifter for handling bit-aligned data. It takes 32 bits of input from
R..\1and T, performs a left cycle of any number of bit positions, and places the result on A. The
ALU output may be masked during a shift instruction, either with zeroes or with data from
MEMDATA.

The shifter is controlled by the SHIFfCfL register. To perform a shift operation, SHIFfCfL is loaded
(in one of a variety of ways) with control information, and then one of a group of "shift and mask"
microoperations is executed.

6.4 Physical organization

Once the goal of a physically small but powerful machine was established, engineering design and
material lead times forced us to develop the Dorado package before the implementation was more
than partially completed, and the implementation then had to fit the package. The data section is
partitioned onto two boards, eight bits on each; the boards are about 70% identical. The control
section divides naturally into one board consisting of all the 1M chips (high speed lK x 1 bit ECL
RAMS) and their associated address drivers, and a second board with the task switch pipeline,
NEXTPC logic, and LINK register.

The sidepanel pins are distributed in clusters around the board edges to form the major busses.
The remaining edge pins are used for point to point connections between two specific boards. The
1/0 busses go uniformly to all the 1/0 slots, but all the other boards occupy fixed slots specifically
wired for their needs. Half the pins available on the sideplanes are grounded, but wire lengths are
not controlled except in the clock distribution system, and no twisted pair is used in the machine
except for distribution of one copy of the master clock to each board.

We were very concerned throughout the design of the Dorado to balance the pipelines so that no
one pipe stage is significantly longer than the others. Furthermore, we worked hard to make the
longest stage (which limits the speed of this fully synchronous machine) as shon as possible. The
longest stage in the processor, as one might have predicted, is the IMADDRESS calculation and
microinstruction fetch in the control slice. There is about a 50 nanosecond limit for reliable
operation in a stitchwelded machine, and 60 ns in a multiwired machine. There are pipe stages of
about the same length in the memory and lFU.

We also worked hard to get the most out of the available real estate, by hand tailoring the
integrated circuit layout and component usage, and by incremental1y adding function until nearly
the entire board was in use. We also found that performance could be significantly improved by
careful layout of critical paths for minimum loading and wiring delay. Although this was a very
labor intensive operation, we believe it pays off.

7. Peiformance

. Four emulators have been implemented for the Dorado, interpreting the BCPL, Lisp, Mesa and
Small talk instruction sets. A typical microinstruction sequence for a load or store instruction takes
only one or two microinstructions in Mesa (or BCPL), and five in Lisp. The Mesa opcode can send
a 16 bit word to or from memory in one microinstruction; Lisp deals with 32 bit items and keeps
its stack in memory, so two loads and two stores are done in a basic data transfer operation. More
complex operations (such as readlwrite field or array element) take five to ten microinstructions in
Mesa and ten to twenty in Lisp. Note that Lisp does runtime checking of parameters, while in
Mesa most checking is done at compile time. Function calls take about 50 microinstructions for
Mesa and 200 for Lisp.

The Dorado supports raster scan displays which are refreshed from a full bitmap in main memory;
this bitmap has one bit for each picture element (dot) on the screen, for a total of .5 -1 megabits

SEC. 7 PERFOR.\iANCE 19

(more for gray-scale or color pictures). A special operation called BitBlt (bit boundary block
transfer) makes it easier to create and update bitmaps; for more information about BitBlt consult [9].
where it is called RasterOp. BitBlt makes extensive use of the shifting/masking capabilities of the
processor, and attempts to prefetch data so that it will always be in the cache when needed.. The
Dorado's BitBlt can move display objects around in memory at 34 megabits/sec for simple cases like
erasing or scrolling a screen. More complex operations, where the result is a function of the source
object, the destination object and a filter, run at 24 megabits/sec.

I/o devices with transfer rates up to 10 megabits/sec are handled by the processor via the 10DATA
and 10ADDRESS busses. The microcode for the disk takes three cycles to transfer two words in this
way; thus the 10 megabit/sec disk consumes 5% of the processor. Higher bandwidth devices use
the fast I/O system, which does not interact with the cache. The fast I/O microcode for the display
takes only two instructions to transfer a 16 word block of data from memory to the device. This
can consume the available memory bandwidth for I/O (530 megabits/sec) using only one quarter of
the available microcycles (that is, two 110 instructions every eight cycles).

Recall that the JI.;'EXTPC scheme (§ 5.5 and § 6.2.2) imposes a rather complicated structure on the
microstore, because of the pages, the odd/even branch addresses, and the special subroutine call
locations We were concerned about the amount of micros tore which might be wasted by automatic
placement of instructions under all these constraints. In fact, however, the automatic placer can use
99.9% of the available memory when called upon to place an essentially full microstore.

Acknowledgements

The early design of the Dorado processor was done by Chuck Thacker and Don Charnley. The
data section was redesigned and debugged by Roger Bates and Ed Fiala. Peter Deutsch wrote the
microcode assembler and instruction placer, and Ed Fiala wrote the Dorado assembler macros, the
microprogram debugger. and the hardware manual. Willie-Sue Haugeland, Nori Suzuki, Bruce
Hom, Peter Deutsch, Ed Taft and Gene McDaniel are responsible for production and diagnostic
microcode.

References

1. Dark, D.W. et. af. The memory system of a high'perfonnance personal computer. Technical ReportcsL-81-1, Xerox Palo
Alto Research Center, January 1981. Revised version to appear in IEEE Transactions on Computers.

2. Deutsch, LP. Experience with a microprogrammed Interlisp system. Proc. II th Ann. Microprogramming Workshop. Pacific
Grove. Nov. 1979.

3. Geschke. C.M. et. af. Early experience with Mesa. Comm ACM 20.8. Aug 1977. 540-552
4. Ingalls, D.H. The Smalltalk· 76 programming system: Design and implementation. 5th ACM Symp. Principles oj

Programming Languages. Tucson, Jan 1978. 9-16.
5. Lampson, B.W. et. of. An instruction fetch unit for a high·perfonnance personal computer. Technical Report csL-81-1.

Xerox Palo Alto Research Center. Jan. 1981. Submitted for publication.
6. Mitchell, J .G. et. of. AI esa Language M anuaf, Technical Repon CSL-79- 3, Xerox Palo Alto Research Center, Apri1l979.
7. Teitelman, W. Interlisp Reference ,\.fanual, Xerox Palo Alto Research Center, Oct 1978.
8. Thacker. c.P. et. of. Alto: A personal computer. In Computer Structures: Readings and Examples, 2nd edition. Sieworek,

Bell and ~ewell, eds., McGraw· Hill, 1981. Also in Technical Report csv79-11, Xerox Palo Alto Research Center, August
1979.

9. Newman, W.M. and Sproull, R.F. PrinCiples of Interactive Computer Graphics, 2nd ed. McGraw-Hill. 1979.

20 A PROCESSOR FOR A HIGH-PERFORMAl'\CE PERSONAL COMPUfER

An Instruction Fetch Unit for a
High-Performance Personal Computer

by Butler W. Lampson, Gene A. McDaniel and Severo M. Ornstein

January 1981

ABSTRACT

The instruction fetch unit (lFU) of the Dorado personal computer speeds up the emulation of
instructions by pre-fetching, decoding, and preparing later instructions in parallel with the
execution of earlier· ones, It dispatches the machine's microcoded processor to the proper
starting address for each instruction, and passes the instruction's fields to the processor on
demand. A writeable decoding memory allows the IFU to be specialized to a particular
instruction set, as long as the instructions are an integral number of bytes long. There are
implementations of specialized instruction sets for the Mesa, Lisp, and Smalltalk languages.
The IFU is implemented with a six-stage pipeline, and can decode an instruction every 60 ns.
Under favorable conditions the Dorado can execute instructions at this peak rate (16 mips),

This paper has been submitted for publication.

CR CATEGORIES

6.34,6.21

KEY WORDS AND PHRASES

cache, emulation, instruction fetch, microcode, pipelinei

@ Copyright 1981 by Xerox Corporation.

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road I Palo Alto I California 94304

22 AN INSTRUCTION FETCH ill-lT FOR A HlGH-PERFOR.\{ANCE PERSO!'\AL CO!dPUTER

1. Introduction

This paper describes the instruction fetch unit (IFU) for the Dorado, a powerful personal computer
designed to meet the needs of computing researchers at the Xerox Palo Alto Research Center.
These people work in many areas of computer science: programming environments, automated
office systems, electronic filing and communication, page composition and computer graphics, VLSI
design aids, distributed computing, etc. There is heavy emphasis on building working prototypes.
The Dorado preserves the important properties of an earlier personal computer, the Alto [B), while
removing the space and speed bottlenecks imposed by that machine's 1973 design. The history,
design goals, and general characteristics of the Dorado are discussed in a companion paper [8],
which also describes its microprogrammed processor. A second paper [1] describes the memory
system.

The Dorado is built out of ECL 10K circuits. It has 16-bit data paths, 28 bit virtual addresses, 4K-
16K words of high-speed cache memory, writeable microcode, and an I/O bandwidth of 530
Mbits/sec. Figure 1 shows a block diagram of the machine. The microcoded processor can execute
a microinstruction every 60 ns. An instruction of some high level language is performed by
executing a suitable succession of these microinstructions; this process is called emulation.

Instruction
Fetch Unit ro-

I
Slow input! output 265 MBits/sec 265 MBits/sec

Cache 16 bits/60 ns 16 bits/60 ns Processor ~

I I I 120 ns access 8K·32K
bytes

I Keyboardl l DispJayJ l Disk J I Ethernet I
530 MBits/sec

I 256 bits/480 ns Storage

Fast input! output 1.7 us access 512K·16M bytes

Figure 1: Dorado block diagram

The purpose of the IFU is to speed up emulation by pre-fetching, decoding, and preparing later
instructions in parallel with the execution of earlier ones. It dispatches the machine's microcoded
processor to the proper starting address for each instruction, supplies the processor with an
assortment of other useful information derived from the instruction, and passes the instruction's
various fields to the processor on demand. A writeable decoding memory allows the IFU to be
specialized to a particular instruction set; there is room for four of these, each with 256 instructions.

There are implementations of specialized instruction sets for the Mesa [9], Lisp [12], and Smallta1k
[5] languages. as well as an Alto [13] emulator. The IFlJ can decode an instruction every 60 ns, and
under favorable conditions the Dorado can execute instructions at this peak rate (16 MIPS).

Following this introduction, we discuss the problem of ins~:ruction execution in general terms and
outline the space of possible solutions (§ 2). We then describe the architecture of the Dorado's lFU
(§ 3) and its interactions with the processor which actually executes the instructions (§ 4); the reader
who likes to see concrete details might wish to read these sections in parallel with § 2. The next
section deals with the internals of the IFU, describing how to program it and the details of its
pipelined implementation (§ 5). A final section tells how large and how fast it is, and gives some
information about the effectheness of its various mechanisms for improving performance (§ 6).

SEC. 2 TIlE PROBLEM 23

2. The problem

It has long been recognized that the algorithm for executing an object program can be most easily
described by another program, called an interpreter, which treats both the instructions and the data
of the object program as its own data. The simplest microprogrammed computers actually do
execution in just this way; the microinstructions can specify only general-purpose data manipula
tions, and all the knowledge about the instructions being emulated is expressed in the micro
program.

We illustrate this point with the following fragment of an emulator for a stack-based instruction set
The fragment includes the basic instruction fetch operation and code for two instructions:
PushConstant, which pushes the next instruction byte onto the stack, and PushLoca/Var, which pushes
the contents of the local variable addressed by the next byte (relative to a pointer in the register
locaLData). The notation is self-explanatory for the most part. Microinstructions are separated by
semicolons, and parallel operations in the same microinstruction by commas. This code uses no
special-purpose operations, except that we have compressed the details of the stack manipulation
into a Push operation.

Registers: PC, localData, opoode. temp

GetInstruction:
Fetch[pc);
PC "'pc+l;
if interruptPending then goto processInterrupt
opcode ... memoryData;
goto opcode;

PushConstant:
Fetch[pc);
pC'" pc+1;
Push[memoryData). goto OetInstruction;

PushLoca1Var:
Fetch[pc);

PC'" pc+l;
temp'" memoryData;
temp .. temp + localData;
Fetch[temp);
Push[memoryData), goto GetInstruction;

-- Top of the microcode instruction emulation loop.
-- Start a memory fetch from address in PC; data arrives later .
•• Increment PC register for next instruction.

-- Use the memory data we previously fetched
-- The opcode value is the starting microcode address.

- Dispatch address for the PushConstant instruction.
-- PC points to the next instruction byte.
-- Increment PC register for next instruction.

.. Dispatch address for the PushLocalVar instruction.
-- Fetch the next instruction byte. which is the index in the local data for the

variable to be pushed.

-- Now temp is the address of the local variable.

In order to make this emulator run faster (given a fixed time for each prumttve operation,
presumably established by circuit speeds), it is necessary to do more of the operations concurrently.
One possibility is to enhance the processor, so that it can do several operations in a single micro
instruction. For instance, the first two microinstructions might be replaced by

Fetch[pc), PC .. PC + 1; -. Start a memory fetch from address in PC; data arrives later. Increment PC
for next instruction.

This approach is fine as far as it goes, but it is limited to combining independent operations. A
Fetch and the following retrieval of data, for example, cannot be combined without making the
microinstruction slower, since the memory takes time to respond.

A second approach is to make several copies of the entire processor, and let them work on several
instructions at once. With n copies, this would run n times as fast if. there were no synchronization
problems; it would also be very simple to implement (though perhaps not cheap). Unfortunately, a
program written in a conventional language and encoded into a conventional instruction set
typically has a great deal of interaction between the successive instructions. For instance, consider
the instruction sequence PushConstanl, PushLocalVar, Add. We see from the microcode above that all
three instructions need to reference the stack; this is contention for the same resource.
Furthermore, the Add instruction needs the contents of the stack after both the previous instructions
are finished; this is not only contention. but dependency of one instruction on the results of another.

24 Al' INSTRUCTION FETCH UNIT FOR A HlGH-PERFORMAl'CE PERSONAL COMPUTER

In spite of these problems. this approach can be made to work, especially for numeric
computations, and in conjunction with a sympathetic compiler. Indeed. it is used in high
performance machines such as the CDC 6600 [14] and 7600, the IBM 360/91 [161, the MUS [41 and
the Cray-1 [10]; typically only part of the processor is duplicated. often into specialized devices
called jUnctional units. However, with 1977 technology this approach is too expensive for a
personal machine, and hence was not considered for the Dorado.

A third possibility (often combined with the second) is to pipeline the execution of an instruction by
dividing it into parts, each one to be performed by a separate processor or stage. Different stages
can operate concurrently on successive instructions. In this example, we might have one stage for
fetching the instruction (GetInstruction), and another for executing it (PushConstant and PushLoca/Var).
Successive instructions can then execute as follows (where each line represents a "major cycle").

GetInstr.uctu,n(l]
Execute{l] Getlnstruction(2]

Execute(2) Getlnstruction[3]
Execute(3) Getl nstlUCtion(4]

Each instruction spends the same amount of time executing as before,... but the throughput is
doubled.

2.1 About pipelines

An ideal pipeline has no communication between the stages except when work is passed from one
stage to its successor. The unit of work which is passed between stages is called an item. The
crucial problems in designing a pipeline are:

hand-off of items from one stage to the next;

buffering of items within a stage;

contention among stages for resources (a form of communication);

dependency of one stage on the activity of another (also a form of communication).
Particularly troublesome is backward dependency, in which an early stage depends on the
results of a later one (e.g., a conditional branch);

irregularity in the flow of items through the pipe. This can arise from variations in the rate
of:

proceSSing items in the different stages (e.g., memory fetches may be slow, or
variable in rate, or both);
input (e.g., fetch requests to a memory pipe);
output (e.g., decoded instructions from an IFU pipe).

The main performance parameters of a pipeline are:

throughput or bandwidth - the rate at which items are processed to completion when there
are no dependencies (let t be the time to complete one item);

latency - the time for one item to traverse the entire pipeline when it is otherwise empty
(let I be the latency);

elasticity - the ability of the pipe to deliver results at full bandwidth in spite of
irregularity. More buffering means more elasticity, more bits of storage in the pipe, and
perhaps more latency.

A synchronous, unifoml pipeline is one in which each stage takes the same amount of time. With n
stages we have 1= nt, where I is the time of each stage. With many small stages, t can be made
small and the throughput high, at the expense of the latency. The only absolute limit to this
process is the cost of synchronization between stages (which is a lower bound on t; in a
synchronous pipeline this is the time to pass through a register).

SEC. 2 TIIEPROBLEM 2S

The minimum time to do the smallest indivisible piece of work (e.g., to read from an internal RAM)
tends to be a practical limit also. This limit can be evaded, however (at some cost). by making n
copies of the hardware. assigning the work to them in round-robin fashion, and selecting the results
by the same round-robin rule. If a single stage has I=S, such a duplicated stage has t=sln plus the
time for multiplexing the results. When this method is used, the copies are usually called functional
units.

Usually the main goal is to maximize the throughput; in the absence of dependencies latency is
unimportant. As dependencies increase, however, latency becomes more important. To see why
this is true, consider the backward dependency caused by a conditional branch. Strictly speaking,
when a branch instruction is encountered, fetching cannot proceed until the result of the branch is
known. When it is, the target instruction of the branch must traverse the pipe before any more
instructions can be completed. If w is the fraction of branch instructions, the average completion
time will be t+wl. Thus if 1=51 (a five stage uniform pipe), a w of 20% will halve the throughput
In this example, of course, it is sensible to make a guess and follow one path, so that w is the
fraction of instructions for which a wrong guess is made; note that w= 20% is fairly accurate
prediction. Following a guessed path is easy because there are no forward dependencies (program
state is never changed by instruction fetching). so that a wrong path can be abandoned with no ill
effects. However, no such shortcut is possible in the case of the Add instruction mentioned earlier,
because it isn't practical to guess the result of the PushLoca/Var.

2.2 Pipelining instruction execution

Let us now see how to apply these ideas to instruction execution. Following many earlier designs
(e.g., [4, 16]), we can divide this task into four stages:

instruction fetching and preparation;

operand preparation: address calculation, fetching and reformatting;

computation;

result storage.

Each of these in tum may be divided into sub-stages. We observe that in any conventional
architecture there are many dependencies among the last three stages, because results are constantly
being stored into memory or register locations from which operands are fetched. Furthermore, if
every store operation is regarded as a dependency, there could never be much concurrency. Hence
it is necessary to compare the address of each location modified by a store with all the addresses
referenced by earlier stages. Even these dependencies are common enough to be painful; hence
provision is usually made in such a pipeline for modifying the actions of earlier stages when
operands are changed by stores. As a result of all this, pipelining the last three stages of instruction
is a complex and expensive business. A fast multi-port cache inside the processor makes the
problem much easier, but is not feasible with this technology. An interesting but untried idea is to
impose programming restrictions which forbid harmful dependencies; if all the code is generated by
compilers this is quite feasible.

. Hardly any of these problems arise. however, in separating instruction fetching from the rest If we
assume that execution cannot modify the code being executed. there are no dependencies except
those arising from branches. If this assumption is unacceptable, then checks must be made for such
modifications, but since they are rare in practice. the checks can be at a very coarse grain, and fairly
drastic resetting actions can be taken. The absence of forward dependencies means that instruction

. fetching activities can be abandoned without any communication to other parts of the machine.

The function of an instruction fetching and preparation stage or IF11, then, is to hand off to the rest
of the machine the relevant infomlation for each instruction, conveniently formatted for later use.
Whether the rest of the machine is a single microcoded processor, an operand preparation stage in a
pipeline, or a collection of functional units which can operate concurrently is unimportant to the
1Ft.:, except as it affects the meaning of "conveniently formatted." We will call this part of the
machine the execution unit or EL', and will not be much concerned with its internal structure.

26 AN I1'\STRUCfIO!\ FETCH UNIT FOR A HIGH-PERFOR.\1ANCE PERSONAL COMPUTER

The EU demands instructions from the lFU at an irregular rate, depending on how fast it is able to
absorb the previous ones. A simple machine must completely process an instruction before
demanding the next one. In a machine with multiple functional units, on the other hand, the first
stage in the EU waits until the basic resources required by the instruction {adders, result registers,
etc.} are available, and then hands it off to a functional unit for execution. Beyond this point the
operation cannot be described by a single pipeline, and complete execution of the instruction may
be long delayed, but even in this complicated situation the lFU still sees the EU as a single consumer
of instructions, and is unaware of the concurrency which lies beyond.

Under this umbrella definition for an lFU, a lot can be sheltered. To illustrate the wayan lFU can
accommodate specific language features, we draw an example from Smalltalk [5]. In this language,
the basic executable operation is applying a function f (called a method) to an object 0: j(o, .•.).
The address of the code for the function is not determined solely by the static program, but
depends on a property of the object called its class. There are many implementation techniques for
finding the class and then the function from the object. One possibility is to represent a class as a
hash table which maps function names (previously converted by a compiler into numbers) into code
addresses, and to store the address of this table in the first word of the object. The rather complex
operation of obtaining the hash table address and searching the table for the code address
associated with f, is in the proper domain of an IFU, and removes a significant amount of
computation from the processor. No such specialization is present in the Dorado's lFU, however.

2.3 Pipelining instruction fetches

For the sake of definiteness, we will assume henceforth that

the smallest addressable unit in the code is a byte;

the memory delivers data in units cal1ed words, which are larger than bytes;

an instruction (and its addresses, immediate operands, and other fields) may occupy one or
more bytes, and the first byte determines its essential properties (leng~ number of fields,
etc.).

Matters are somewhat simplified if the addresssable unit is the unit delivered by the memory or if
instructions are all the same length, and somewhat complicated if instructions may be any number
of bits long. However, these variations are inessential and distracting.

The operation of instruction fetching divides naturally into four stages:

Generating addresses of instruction words in the code, typically by sequentially advancing a
program counter, one memory word at a time.

Fetching data from the code at these addresses. This requires interactions with the
machine's memory in general, although recently used code may be cached within the IFU.
Such a cache looks much like main memory to the rest of the lFU.

Decoding instructions to determine their length and internal structure, and perhaps whether
they are branches which the lFU should execute. Decoding changes the representation of
the instruction, from one which is compact and convenient for the compiler, to one which
is convenient for the EU and lFU.

Fonnatting the fields of each instruction (addresses, immediate operands, register numbers,
mode control fields, or whatever) for the convenience of the EU; e.g., extracting fields onto
the EU'S data busses.

Buffering may be introduced between any pair of these stages, either the minimum of one item
required to separate the stages, or a larger amount to increase the elasticity. Note that an item must
be a word early in the pipe (at the interface to the memory), must be an instruction late in the pipe
(at the interface to the EU), and may need to be a byte in the middle.

There are three sources of irregularity (see § 2.1) in the pipeline, even when no wrong branches are
taken:

SEC. 2 TIlE PROBLEM 27

The instruction length is irregular, as noted in the previous paragraph; hence a uniform
flow of instructions to the EU implies an irregular flow of bytes into the decoder, and vice
versa.

The memory takes an irregular amount of time to fetch data; if it contains a cache, the
amount of time may vary by more than an order of magnitude.

The EU demands instructions at an irregular rate.

These considerations imply that considerable elasticity is needed in order to meet the EU'S demands
without introducing delays.

2.4 Hand-ojJto the EU

From the lFU's viewpoint, handing-off an instruction to the EU is a simple producer-consumer
relationship. The ED demands a new instruction. If one is ready, the IFU delivers it as a pile of
suitably formatted bits, and forgets about the instruction. Otherwise the lFU notifies the EU that it
is not ready; in this case the ED will presumably repeat the request until it is satisfied. Thus at this
level of abstraction, hand-off is a synchronized transfer of one data item (a decoded instruction)
from one process (the lFU) to another (the EU).

Usually the data in the decoded instruction can be divided into two parts: information about what
to do, and parameters. If the EU is a microprogrammed processor, for example, what to do can
conveniently be encoded as the address of a microinstruction to which control should go (a dispatch
address), and indeed this is done in the Dorado. Since microinstructions can contain immediate
constants, and in general can do arbitrary computations, it is possible in principle to encode all the
information in the instruction into a microinstruction address; thus the instructions PushConstant(3)
and PushConstant(4356) could send control to different microinstructions. In fact, however, micro
instructions are expensive, and it is impractical to have more than a few hundred, or at most a few
thousand of them. Hence we want to use the same microcode for as many instructions as possible,
representing the differences in parameters which are treated as data by the microcode. These
parameters are presented to the ED on some set of data busses; § 4 has several examples.

Half of the IFU-ED synchronization can also be encoded in the dispatch address: when the IFU is
not ready, it can dispatch the EU to a special NotReady location. Here the microcode can do any
background processing it might have, and then repeat the demand for another instruction. The
same method can be used to communicate other exceptional conditions to the ED, such as a page
fault encountered in fetching an instruction, or an interrupt signal from an r/o device. The
Dorado's IFU uses this method (see § 3.4).

Measurements of typical programs [7, 11] reveal that most of the instructions executed are simple.
and hence can be handled quickly by the EU. As a result, it is imponant to keep the cost of hand
off low, since otherwise it can easily dominate the execution time for such instructions. As the EU
gets faster, this point gets more imponant; there are many instructions which the Dorado. for
instance, can execute in one cycle, so that one cycle of hand-off overhead would be 50%. This
point is discussed further in § 3 and 4.

2.5 Autonomy

Perhaps the most important parameter in the design of an lFU is the extent to which it functions
independently of the execution unit, which is the master in their relationship. At one extreme we
can have an 1Ft..; which is entirely independent of the ED after it is initialized with a code address (it
might also receive information about the outcome of branches): this initialization would only occur
on a process switch. complex procedure call, or indexed or indirect jump. At the other extreme is'
an 1Ft..; which simply buffers one word of code and delivers successive bytes to the El':; when the
buffer is empty, the 1Ft..; dispatches the EC to a piece of microcode which fetches another memory
word's woITh of code into the buffer. The first IFC must decode instruction lengths. follow jumps,
and provide the program counter for each instruction to the EC (e.g., so that it can be saved as a

28 AN IN'STRUcnON FErCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER

return link). The second leaves all these functions to the EU, except perhaps for keeping track of
which byte of the word it is delivering. One might think that the second lFU cannot help
performance much, but in fact when working with a microcoded ED it can probably provide half
the performance improvement of the first one, at one-tehth the cost in hardware. The reason can
be seen by examining the interpreter fragment at the beginning of § 2; half a dozen micro
instructions are typically consumed in the clumsy GetInslruclion operation, and things get worse
when instructions do not coincide with memory words.

When deciding what trade-offs to make, one important parameter is the speed of the EU. It is
pointless to be able to execute most instructions in one or two cycles, if several cycles are consumed
in GelInstruction. Hence a fast EU must have an autonomous lFU. An important special case is the
speed of the memory relative to the microinstruction time. If several microinstructions can be
executed in the time required to fetch the next instruction from memory, the processor can use this
time to hold the lFU'S hand, or to perform the GetInsllUCtion itself. On the Dorado, the cache
ensures that memory data arrives almost immediately, so there is no free time for handholding.

An autonomous lFU must do more than simply transforming instructions into a convenient form for
the EU. There are two natural ways in which its internaL operation may be affected by the instruc
tion stream: decoding instruction lengths, and following branches. Any lFU which handles more
than one instruction without processor intervention must calculate instruction lengths. Following
branches is desirable because it avoids the cost of a start-up latency at every branch instruction
(typically every fifth instruction is a branch). However, it does introduce potential complications
because a conditional branch must be processed without accurate information (perhaps without any
information) about the actual value of the condition; indeed, often this value is not determined
until the processor has executed the preceding instruction. A straightforward design decides
whether to branch based on the opcode alone, and the processor restarts the IFU at the correct
address if the decision turns out to be wrong.

The branch decision may be based on other historical information. The S-l [17], for instance, keeps
in its instruction cache one bit for each instruction, which records whether the instruction branched
last time it was executed. This small amount of partial history reduces the fraction of incorrect
branch decisions to 5% [Forest Baskett, personal communication]. The MUS [4] remembers the
addresses of the last eight instructions which branched; such a small history leaves 35% of the
branches predicted wrongly. but the scheme allows the prediction to be made before the instruction
is fetched. More elaborate designs [16] follow both branch paths. discarding the wrong one when
the processor makes the branch decision. Each path may of course encounter further branches.
which in turn may be followed both ways until the capacity of the lFU is exhausted. If each path is
truly followed in parallel, then following n paths will in general require n times as much hardware
and n times as much memory bandwidth as following one path. Alternatively. part or all of the
lFU'S resources may be multiplexed between paths to reduce this cost at the expense of bandwidth.

2.6 Buffering

As we saw in § 2.2, a pipeline with any irregularities must have buffering to provide elasticity, or its
performance at each instant will approximate the performance of the slowest stage at that instant;

. this maximizing of the worst performance is highly undesirable. From the enumeration in § 2.3 of
irregularities in the lFU. we can see that to serve the EU smoothly, there should be a buffer between
the EtJ and any sources of irregularity, as shown in Figure 2. Similarly, to receive words from the
irregular memory, there should be a buffer between the memory and any sources of irregularity.
Because of the irregularity caused by variable length instructions, a single buffer cannot serve both
functions. Note that additional regular stages (some are shown in the figure) have no effect one
way or the other.

SEC. 2

pipe stage

single-item
buffer

mUlti-item
buffer

regular

irregular
outputs

compensating
buffer

regutar

irregutar
throughput

regular

compensating
buffer

irregular
inputs

lHEPROBLEM

Figure 2: Sources of irregularity in an IFU pipeline

29

The cost of introducing a buffer (in the ECL 10K MSI technology) is the RAM storage to implement
it. a multiplexor to bypass it when it is empty. and its control; see Figure 6 for details. The bypass
ensures that the buffer does not increase the latency. In addition, there is typically a very minor
performance penalty: when the pipe is reset, any external resources (the memory in the case of the
IFV) which have been used to fill the buffers are wasted. If some other processor could make
better use of the resources, something has been lost

30 AN INSTRUcnON FETCH UNIT FOR A HIGH-PERFOR.\1ANCE PERSONAL COMPUfER

3. Architecture of the Dorado IFU

We now tum from our discussion of general principles to the actual IFU of the Dorado. Its
structure follows from the principles of the previous section, though we must admit that the design
in fact proceeded less from general principles than from the goal of delivering one decoded
instruction per microcycle. This performance requirement dictates an autonomous lFU, and it also
requires careful attention to the details of lFU-EU hand-off. In the Dorado the EU is a microcoded
processor with a number of data paths, and a pipelined implementation which allows it to execute a
microinstruction every 60 ns; in order to remind the reader of this implementation, we use the word
"processor" to denote the Dorado's EU. The processor does not have any significant concurrency
visible to the microprogram, however. In particular, all the work done in a given cycle is specified
directly by the microinstruction executed in that cycle, although memory references are done by an
autonomous unit which in fact is shared with the IFU; see Figure 1.

The processor gives the lFU an initial program counter (PC), and subsequently receives a sequence
of decoded instructions, which are from sequential bytes except where the lFU has followed a
branch. This sequence continues until the processor resets the lFU with another pc, unless a fault
or interrupt is detected.~ For each instruction the lFU supplies a microcode dispatch address (into
which NotReady and all utiler exceptions are encoded), some bits of initial state for the processor, a
sequence of field data values, and the PC value for the first byte of the instruction. The uses made
of this information are described in § 4.

3.1 Byte codes

The lFU'S interpretation of the code is based on a definite model of how instructions are encoded.
Although this model is not specialized to the details of a particular instruction set, good
performance depends on adherence to certain rules. The IFU deals only with instructions encoded
as variable length byte sequences - byte codes [3, 11]. Variable length instructions provide code
compaction. since frequent instructions can be small. There is also a performance payoff in cache
and virtual memory systems, since the compaction enhances locality and thus reduces cache misses
and page faulting. Our experience has shown that byte codes provide a flexible format for different
languages without favoring a particular one. The choice of eight bits as the grain is a compromise
among optimum encoding, the desire to keep code addresses short, and simplicity of the hardware.
A larger grain is highly undesirable, both because more than half the instructions can fit into one
byte, and because table lookup as a decoding technique is not feasible for units much larger than
eight bits. A finer grain improves code compactness somewhat at the expense of more complex
length calculation and word disassembly.

The first byte of each instruction, called the opcode, is decoded by full table lookup. It may be
followed by as many as two optional data bytes (known as alpha and beta respectively) that are
passed to the processor with only slight reformatting. Of course the processor is free to interpret
these bytes as it wishes, but the IFU can only do complex decoding operations on the opcode byte.
The limitation to three byte instructions reduces hardware complexity at a considerable cost in
speed for longer instructions; bytes after the third must be fetched explicitly by the processor,
which also must restart the IFU at the proper poinL

3.2 The decoding able

The IFU decodes an instruction by looking up its first byte in a 1024 word RAM called the decoding
table. The additional two bits of address corne from an instruction-set register. The 27-bit contents
of the tabie describe the instruction in sufficient detail for the IFU and the processor to do their
jobs, and the opcode byte itself is not passed to the processor. Thus the table lookup does most of
the transformation of the instruction; it also governs some minor transformations of the data bytes
such as sign extension.

This method of instruction decoding has a number of advantages. It makes the decoder completely
programmable in a very simple and economical way. It also allows any substructure of the opcode

SEC. 3 ARCHITEcruRE OF THE DORADO IFU 31

(e.g., register or mode fields) to be extracted with complete flexibility. Indeed. it is not necessary
for such fields to exist explicitly. If single-byte PushConSlant instructions for values 0-4 are desired,
any five opcode values can be assigned for this purpose, and the table can produce the values 0-4.
Furthermore, no sharp distinction is needed between "control" and "data" in the instruction
encoding. since both control information and data values are produced by the same table lookup.

Of course nothing is perfect. This scheme may fail when an instruction has many small fields,
especially if they cross byte boundaries. The PDP-ll and Nova instruction sets are interesting
borderline cases: it works quite well to look up the first byte and use the result to select either a
second lookup in an alternate table lookup, or treatment of the next byte as data. A convenient
way to describe this is to have the first byte specify either a two byte instruction, or a one byte
instruction which switches the "instruction set" temporarily for decoding the next byte.

This facility of modifying the instruction set register on the fly is not implemented in the Dorado,
since it is not very useful for the instruction sets we actually use. It is simple, however, and could
easily be added; the only delicate point is that the instruction set register must be saved on an
exception, or else exceptions must be prohibited before instructions which are decoded with an
alternate table. Currently only the processor can change the instruction set, and it normally does so
only when switching from one language to another. This facility is used in the Interlisp implemen
tation, for example, since the nucleus of this system is written in BCPL and compiled into a different
instruction set than the one used for Lisp.

Multiple decoding tables have other uses. In fact, the lFU can be viewed as a rather general byte
stream processor. For example, consider the problem of generating halftone values for a grey scale
image: The task is to transform a sequence of grey pixels (Pg bits each, at a resolution of rg
pixels/inch), into a sequence of binary pixels (one bit each, at a resolution of rb pixels/inch). Both
sets of pixels are packed into words, 16/Pg per word and 16 per word respectively. Thus as each
binary pixel is generated, it is necessary to keep track of whether a new binary word must be
started (once every 16 binary pixels), and whether a new grey pixel is needed (once every r/rg
binary pixels); in the latter case, a new grey word may be needed. Typical algorithms use a single
scan-line buffer containing an error value which must be compensated at each binary pixel. The
IFU can be used to fetch values from this buffer in parallel with the processor. Special pseudo
opcode values can be used to mark the points which require one or more of the special actions
above. The decoding table will dispatch the processor to the special code for these functions
without any processor overhead. A trial implementation using this idea was about twice as fast as
one without the lFU.

3.3 Pipeline stages and buffering

Figure 3 shows the pipeline stages in the lFU. An item varies in size, but all stages except one
operate in a single 60 ns cycle. For the most part all state is held in the buffers between the stages,
which themselves are purely functional or combinatorial.

At the beginning of the pipe, pc. values are generated and put on the memory address bus
. (ADDRESS). and the corresponding 16-bit words are returned from the memory (ME:\10RY), at a peak

rate of one per cycle. If there are no cache misses and no collisions with the processor, the memory
can accept an address in every cycle and return data words at the same rate two cycles later. Thus
under these ideal conditions the memory is not irregular. A double-rate (30 ns) stage (BYTES)
delivers bytes to the decoder (DECODE). which car. accept one opcode byte and one operand byte in
a single cycle, though it requires a full cycle to process an instruction. This arrangement allows
two' byte instructions to pass through the pipe at the rate of one per cycle; longer instructions
require two cycles, but are rare. Because DECODE requires a full cycle, the peak rate for one byte
instructions is still one per cycle. Note that the processor cannot demand instructions faster than
this anyway.

32 AN INSTRUcnON FErCH UNIT FOR A HIGH~PERFORMANCE PERSONAL COMPUTER

pipe stage regular

single-item Item-word
buffer

irregular
outputs

two-item item.word
buffer

regular

double-rate
item.byte

irregular
throughput

item .. instructIOn

irregular
inputs

item .. in&1ruction

Figure 3: Pipeline stages in the Dorado IFU

From DECODE on, an item is an instruction; one of these items is held in a buffer from which it is
handed off to the processor (DISPATCH). It turns out that the processor proper requires some of the
decoded instruction before it executes the first microinstruction (the dispatch address and other
initial state; see § 4.2), but consumes the field data later, one byte at a time. The physical IFU also
contains a logical extension of the processor (EXECUTE), which holds this deferred information and
doles it out on demand.

SEC. 3 ARCHITECTURE OF THE DORADO lFU 33

There are two words of buffering after MEMORY, but there is no other buffering except for the
minimum single item between stages, contrary to the arguments of § 2.6. This design was adopted
partly to save space, and partly because we did not fully understand the issues in maintaining peak
bandwidth. Fortunately the peak bandwidth of the lFU is substantially greater than what the
processor is likely to demand for more than a very short interval (see § 6), so that not much useful
throughput is lost because of the inadequate buffering.

3.4 Exceptions

Exception conditions are handled by extending the space of values stored in an item and handed
off from one stage to the next, rather than by establishing separate communication paths. Thus, for
example, a page fault from the memory is indicated by a status bit returned along with the data
word; the resulting "page fault value" is propagated through the pipe and decoded into a page fault
dispatch addres~ which is handed to the processor like any ordinary instruction. Each exception has
its own dispatch address. Interrupts cause a slight complication. The lFU accepts a signal called
Reschedule which means "cause an interrupt;" this signal is actually generated by 1/0 microcode in
the processor, but it could come from separate hardware. The next item leaving DECODE is
modified to have a reschedule dispatch address. The microcode at this address examines registers to
find out what interrupt condition has occurred. Since the reschedule item replaces one of the
instructions in the code, it has a PC value, which is the address of the next instruction to be
executed. After the interrupt has been dealt with, the IFU will be restarted at that point

The exceptions may be divided into three classes:

1) the lFU has not (yet) finished decoding the next instruction, and hence is not ready to
respond to a processor demand;

2) it is necessary to do something different (to handle an interrupt or a page fault);

3) there has been a hardware problem - it is not wise to proceed.

Since more than one exception condition may obtain at a time, they are arranged in a fixed priority
order. Exceptions are communicated only by a dispatch; hence, all exceptions having to do with a
particular opcode must be detected before it is handed off. Thus all the bytes of an instruction
must have been fetched from memory and be available within the IFU before it is handed off.

3.5 Contention and dependencies

There is no contention for resources within the IFU. and the only contention with the rest of the
Dorado is for access to the memory. The IFU shares with the processor a single address bus to the
Dorado's cache, but has its own bus for retrieving data. The processor has highest priority for the
address bus, which can handle one request per cycle. Thus under worst-case conditions the lFU can
be locked out completely; eventually, of course, the processor will demand an instruction which is
not ready and stop using the bus. Actual address bus conflicts are not a major factor (see § 6.3).

Although ideally the MEMORY stage is regular, in fact collisions with the processor can happen;
these irregularities are partially compensated by the two words of buffering after MEMORY. In
addition cache misses, though very rare, cost about 30 cycles when they do occur.

There is only one dependency on the rest of the execution pipeline: starting the lFU at a new PC.
Since no attempt is made to detect modifications of code being executed, or to execute branches
which depend on the values of variables, the only IFl'-processor communication is hand-off
synchronization and resetting of the PC, and these are also the only communication between the lFU
stages. The 1Ft.: is completely reset when it gets a new PC; no attempt is made to follow more than
one branch path, or to cache information about the code within the lFU. The shortage of buffering
makes the implementation of synchronization rather tricky; see § 5 .

The IFU takes complete responsibility for keeping track of the PC. Every item in the pipe carries its
PC value with it, so that when an instruction is delivered to the processor, the PC is delivered at the

34 AN INSTRUCfION FETCH L~IT FOR A HIGH-PERFORMANCE PERSONAL COMPUfER

same time. The processor actually has access to all the infonnation needed to maintain its own PC,
but the time required to do this in microcode would be prohibitive (at least one cycle per
instruction).

The lFU can also follow branches, provided they are pc-relative, have displacements specified
entirely in the instruction, and are encoded in certain limited ways. These restrictions ensure that
only infonnation from the code (plus the current PC value) is needed to compute the branch
address, so that no external dependencies are introduced. It would be possible to handle absolute
as well as pc-relative branches, but this did not seem useful, since none of the target instruction sets
use absolute branches. The decoding table specifies for each opcode whether it branches and how
to obtain the displacement. On a branch, DECODE resets the earlier stages of the pipe and passes
the branch PC back to ADDRESS. The branch instruction is also passed on to the processor. If it is
actually a conditional branch which should not have been taken, the processor will reset the lFU to
continue with the next instruction; the work done in following the branch is wasted. If the branch
is likely not to be taken, then the decoding table should be set up so that it is treated as an
ordinary instruction by the IFU, and if the branch is taken after all, the processor will reset the lFU
to continue with the branch path; in this case the worle done in following the sequential path is
wasted. Even unconditional jumps are pased on to the processor, partly to avoid another case in
the IFU, and partly to prevent infinite loops in the lFU without any processor intervention.

4. lFu-processor hand-off

With a microcoded execution unit like the Dorado's processor, efficient emulation depends on
smooth interaction between the IFU and the processor, and on the right kind of concurrency in the
processor itself. These considerations are less critical in a low-performance machine, where many
microcycles are used to execute each instruction, and the loss of a few is not disastrous. A high
performance machine. however, executes many instructions in one or two microcyc1es. Adding one
or two more cycles because of a poorly chosen interface with the IFU, or because a very common
pair of operations cannot be expressed in a single microinstruction, slows the emulator down by 50-
200%. The common operations are not very complex, and require only a modest amount of
hardware for an efficient implementation. The examples in this section illustrate these points.

Good performance depends on two things:

An adequate set of data busses, so that it is physically possible to perform the frequent
combinations of independent data transfers in a single cycle. We shall be mainly concerned
with the busses which connect the lFU and the processor, rather than with the internal
details of the latter. These are summarized in Figure 4.

A microinstruction encoding which makes it possible to specify these transfers in a single
microinstruction. A horizontal encoding does this automatically; a vertical one requires
greater care to ensure that all the important combinations can still be specified.

We shall use the term folding for the combination of several independent operations in a single
microinstruction. Usually folding is done by the microprogrammer, who surveys the operations to
be done and the resources of the processor, and arranges the operations in the fewest possible
number of microinstructions.

B

SEC. 4

IFU

ADDRESS

I "
• • •

IT
BYTES

I
• • •

I
DISPATCH

::::=..J I
I I

I

• (EXECUTE

Dispatch
address ,r

Reg- ,.m-
base base IFUData
r ,r '"

Processor

• == •
~Reg. I • ==

isters I

:=
~Reg. 1·-

isters I
II

====== 16-bit bus

---- Narrower bus

II
A

8

r--

ALU

'---

II

IFU-PROCESSOR HAND-OFF 3S

Memory

Memory address

Memory data

J8
IFU

memory
data

.-
• • • = ~I--II---I

....~

II

MEMORY
output
buffer

Figure 4: Busses between the IFU and the processor/memory

36 AN I~STRUcnOS FErCH UNIT FOR A HIGH-PERFORMANCE PERSOl'AL COW>UTER

4.1 How the processor sees the lFU

The processor has four main operations for dealing with the IFU. Two are extremely frequent

IFUJump: The address of the next microinstruction is taken from the lFU; a ten bit bus passes the
dispatch address to the processor's control section. In addition, parts of the processor state are
initialized from the lFU, and other parts are initialized to standard values (see § 4.2). lFUJump
causes the lFU to hand off an instruction to the processor if it has one ready. Otherwise the lFU
dispatches the processor to the NOlReady location. The microcode may issue another lFUJump at that
point, in which case the processor wi11loop at NozReady until the lFU has prepared the next instruc
tion. An IITJump is coded in the branch control field of the microinstruction, and hence can be
done concurrently with any data manipulation operation.

IFCData: The IF0 delivers the next field datum on the lFUData bus. which is nine bits wide (eight
data bits plus a sign). Successive IRiData's during emulation of an instruction produce a fixed
sequence of values determined by the decoding table entry for the opcode. and chosen from:

a small constant N in the decoding table entry;
the alpha byte, possibly sign extended;
either half of the alpha byte;
the beta byte;
the instruction length.

lFUData is usually delivered to the A bus, one of the processor's two main input busses, from which
it can be sent through the ALU, or used as a displacement in a memory reference. In this case it is
encoded in the microinstruction field which controls the contents of this bus, and hence can be
done concurrently with all the other operations of the processor. IFUData can also be delivered to B,
the other main input bus, from which it can be shifted, stored, sent to the other ALU input, or
output. This operation is encoded in the special function field, where it excludes a large number of
relatively infrequent operations as well as immediate constants and long jumps, all of which also use
this field. For the details of the processor and its microinstructions, see [8].

The other two IFU-related operations are less frequent, and are also coded in the special function
field of the microinstruction:

pc: The IFU delivers the pc for the currently executing instruction to the B bus.

PC": resets the IFU and supplies a new pc value from the B bus. The IFU immediately starts
fetching instructions from the location addressed by the new PC.

In addition there are a number of operations that support initialization and testing of the hardware.

Strictly speaking, the lFUDala and PC operations. do not interact with the IFU. All the information
the 1Ft; has about the instruction is handed off at the lFUJump, including the field data and the PC
(about 40 bits). However, these bits are physically stored with the lFU, and sent to the processor
busses incrementally, in order to reduce the width of the busses needed (to 9 bits, plus a 16 bit bus
multiplexed with many other functions). From the microprogrammer's viewpoint, therefore, the
description we have given is natural.

We illustrate the use of these operations with some examples. First, here is the actual microcode
for the PushConsttml instruction introduced in § 2.

PushConstantB}1e=
PuSh[IFUDat.al; 1FUIump; -- Reduced from 9 microinstructions to I!

To push a 16. bit constant, we need a three byte instruction; alpha contains the left eight bits of the
constant and beta the right eight bits.

SEC. 4 IFU-PROCESSOR HAI\TO-OFF 37

PushConstantWord:
-- put alpha into the left half of temp temp ~ LeftShift[IFUData, 8];

Push[t.emp or IFUData), IFUJump; -- or in beta, push the result on the stack, and dispatch to the next instruction

Notice that the first microinstruction uses the lFU to acquire data from the code stream. Then the
second microinstruction simultaneously retrieves the second data byte and dispatches to the next
instruction. These examples illustrate several points.

Any number of microinstructions can be executed to emulate an instruction. i.e., between
IFUJumpS.

Within an instruction. any number of lFUDala requests are possible; see Table 3 for a
summary of the data delivered to successive requests.

lFUJump and IFUData may be done concurrently. The lFUData will reference the current
instruction's data, and then the IFUJump will dispatch the processor to the first microinstruc
tion of the next instruction (or to NotReady).

Suppose analysis of programs indicates that the most common PushConstant instruction pushes the
constant O. Suppose further that I is the next most common constant. and 2 the next beyond that,
and that all other constants occur much less frequently. A lot of code space can probably be saved
by dedicating three one-byte opcodes to the most frequent PushConstant instructions, and using a
two-byte instruction for the less frequent cases, as in the PushConstantByte example above, where the
opcode byte designates a PushConstantByte opcode and alpha specifies the constant. A third opcode,
PushConstantWord, provides for 16-bit constants, and still others are possible.

Pursuing this idea, we define five instructions to push constants onto the stack: PushCO, PushCl,
PushC2, PushCB, PushCW. Any five distinct values can be assigned for the opcode bytes of these
instructions, since the meaning of an opcode is completely defined by its decoding table entry. The
entries for these instructions are as follows: (N is a constant encoded in the opcode, Length is the
instruction length in bytes, and Dispatch is the microcode dispatch address; for details, see § 5.4).
Opcode

PushCO
PushC1
PushC2
PushCB
PushCW

Partial decoding table contents

Dispatch~PushC, N~O, Length+-1
Dispatch .. PushC, N "'1, Length +-1
Dispatch'" PushC, N'" 2, Length +-1
Dispatch'" PushC, Length ... 2
Dispatch'" PushCW ord, Length 3

-- Remarks

-- push 0 onto the stack
-- push 1 onto the stack
-- push 2 onto the stack
-- push alpha onto the stack
-- push the concatenation of alpha and beta onto the stack

Here is the microcode to implement these instructions; we have seen it before:
PushC: -- PushCO/112, (ifuData=N), PushCB, (ifuData=alpha)

Push[IFUData], IFUJump;

PushCWord: -- PushCW,
temp ~ Lshift[IFUData, 8]; -- (IFUData=alpha here)
Push[t.emp or lFUData], IFUJump; . -- (IFUData= beta here)

Observe that the same, single line of microcode (at the label PushC) implements four different
opcodes, for both one and two byte instructions. Only PushConstantWord requires two separate
microinstructions.

4.2 Initializing state

A standard method for reducing the size and increasing the usefulness of an instruction is to
parameterize it For example, we may consider an instruction with a base register field to be
parameterized by that register: the "meaning" of the instruction depends on the contents of the
register. Thus the same instruction can perform different functions, and also perhaps can get by
with a smaller address field. This idea is also applicable to microcode, and is used in the Dorado.
For example, there are 32 memory base registers. A microinstruction referencing memory does not
specify one of these explicitly; instead, there is a MemBase register, loadable by the microcode,
which tells which base register to use. Provided the choice of register changes infrequently, this is
an economical scheme.

38 AN INSTRUCTION FETCH Ul\IT FOR A HIGH-PERFOR.\1A~CE PERSONAL COMPUfER

For emulation it presents some problems, however. Consider the microcode to push a local
variable; the address of the variable is given by the alpha byte plus the contents of the base register
/ocaJData, whose number is /ocaiDataRegNo:

PushLoca1Var:
MemBase .. localDataRegNo; _. Make memory references relative to the local data
Fetch[IFUData]; -- Use contents ofpc+ 1 as offset
Push[memoryData], IFUJump; -- Push variable onto stack, begin next instruction

This takes three cycles, one of which does nothing but initialize MemBase. The point is clear: such
parametric state should be set from the IFU at the start of an instruction, using information in the
decoding table. This is in fact done on the Dorado. The decoding table entry for PushLocalVar
specifies /ocaiDala as the initial value for MemBase, and the microcode becomes:

PushVar:
Fetch[IFUData1;
Push[memoryData),IFUJump;

- IFU initializes MemBase to the local data
-- Push variable onto stack, begin next instruction

One microinstruction is saved. Furthermore, the same microcode can be used for a PushG/oba/Var
instruction, with a decoder entry which specifies the same dispatch address, but g/oba/Data as the
initial value of MemBase. Thus there are two ways in which parameterization saves space over
specifying everything in the microinstruction: each microinstruction can be shorter, and fewer are
needed. The need for initialization, however, makes the idea somewhat less attractive, since it
complicates both the IFU and the EU, and increases the size of the decoding table.

A major reduction in the size of the decoding table can be had by using the opcode itself as the
dispatch address. This has a substantial cost in microcode, since typically the number of distinct
dispatch addresses is about one-third of the 256 opcodes. If this price is paid and parameterization
eliminated, however, the lFU can be considerably simplified, since not only the decoding table space
is saved, but also the buffers and busses needed to hand off the parameters to the processor, and
the parameterization mechanism in the processor itself. On the Dorado, the advantages of
parameterization were judged to be worth the price, but the decision is a fairly close one. The
current memory base register and the current group of processor registers are parameters of the
microinstruction which are initialized from the lFU. The IFU also supplies the dispatch address at
the same time. The remainder of the information in the decoding table describes the data fields
and instruction length; it is buffered in EXECUfE and passed to the processor on demand

4.3 Fonvarding

Earlier we mentioned folding of independent operations into the same microinstruction as an
important technique for speeding up a microprogram. Often, however, we would like to fold the
emulation of two successive instructions, deferring some of the work required to finish emulation of
one instruction into the execution of its successor, where we hope for unused resources. This
cannot be done in the usual way, since we have no a priori information about what instruction
comes next However, there is a simple trick (due to Ed Fiala) which makes it possible in many
common cases.

We define for an entire instruction set a small number n of cleanup actions which may be forwarded
to the next instruction for completion; on the Dorado up to four are possible, but one must usually
be the null action. For each dispatch address we had before, we now define n separate ones, one
for each cleanup action. TIms if there were D addresses to which an IFUJump might dispatch, there
are now nD. At each one, there must be microcode to do the proper cleanup action in addition to
the work required to emulate the current instruction. The choice of cleanup action is specified by
the microcode for the previous instruction; to make this convenient, the Dorado actually has four
kinds of IFCJump operations (written IFCJump[i] for i=O, 1, 2, 3), instead of the one described
above. The two bits thus supplied are oRed with the dispatch address supplied by the IFU to
determine the microinstruction to which control should go. To avoid any assumptions about which
pairS of successive instructions can occur, all instructions in the same instruction set must use the
same cleanup actions and must be prepared to handle all the cleanup actions. In spite of this
limitation, measurements show that forwarding saves about 8% of the execution time in straight-line
code (see § 6.4); since the cost is very small, this is a bargain.

SEC. 4 lFU-PROCESSOR HAND-OFF 39

We illustrate this feature by modifying the implementation of PushLocalVar given above, to show
how one instruction's memory fetch operation can be finished by its successor, reducing the cost of
a PushLocalVar from two microinstructions to one. We use two cleanup actions. One is null (action
0), but the other (action 2) finds the top of the stack not on the hardware stack but in the
memoryData register. Thus, any instruction can leave the top of stack in memory Data and do an
IFUJump(2]. Now the microcode looks like this:

PushLoca1Var[O):
Fetch[IFUData).IFUJump[2);

PushLoca1Var(2):

-- this entry point assumes normal stack, and leaves top of stack in
memoryData.

Push[memoryData), Fetch[IFUData). lFUJump[2); -- this entry point assumes top of stack is in memoryData and leaves it there.

In both cases, the microcode executes IFUJump(2] , since: the top of stack is left in the memoryData
register, rather than on the stack as it should be. In the case of PushLocalVa!{2], the previous instruc·
tion has done the same thing. Thus, the microcode at this entry point must move that data into the
stack at the same time it makes the memory reference for the next stack value. The reader can see
that successive Push instructions will do the right thing. Of course there is a payoff only because
the first microinstruction of PushLoca/Va!{O] is not using all the resources of the processor.

It is instructive to look at the code for Add with this forwarding convention:

Add[O):
temp" PopO; - this entry point assumes and leaves normal stack
StackTop .. StackTop + temp. lFUJump[O);

Add[2]:
StackT op .. StackT op + memory Data, lFUJump[O]; -- this entry point assumes top of stack is in memoryData, leaves normal

stack.

This example shows that the folding enabled by forwarding can actually eliminate data transfers
which are necessary in the unfolded code. At Adaf2] the second operand of the Add is not put on
the stack and then taken off again, but is sent directly to the adder. The common data bus of the
360/9l [15J obtains similar, but more sweeping, effects at considerably greater cost It is also
possible to do a cleanup after a NOlReady dispatch; this allows some useful work to be done in an
otherwise wasted cycle.

4.4 Conditional branches

We conclude our discussion of lFU-processor interactions, and give another example of forwarding,
with the example of a conditional branch instruction. Suppose that there is a BranchNotZero
instruction that takes the branch if the current top of the stack is not zero. Assume that its
decoding table entry tells the IFU to follow the branch, and specifies the instruction length as the
first IfUData value. Straightforward microcode for the instruction is:

BranchNotZero:
if stack = 0 then goto InsFromIFUData, Pop;
IFUJump;

InsFromIFUData:
temp "PC + IFUData;
pc" temp;
IFUJump;

-- IFU jumps come here. IFU assumed resu1t#O.
-- Test result in this microinstruction.
-- Result was non-zero, lFU did right thing.

-. Result was zero. Do the instruction at PC + IFUData.
-- PC should be PC+ Instruction length.
-. Redirect the IFU
-- This will be dispatched to No/Ready, where the code \\'illioop until the lFU

refills starting at the new location.

The most likely case (the top of the stack non-zero) simply makes the test specified by the
instruction and does an IFCJump (two cycles). If the value is zero (the IFU took the wrong path).
the microcode computes the correct value for the new PC and redirects the IFU accordingly (four
cycles. plus the IFC'S latency of five cycles; guessing wrong is painful). If we think that
BranchNotZero wiII usually faii to take the branch, we can program the decoding table to treat it as

40 AN INSTRUCTION FErCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUfER

an ordinary instruction and deliver the branch displacement as lFUData, and reverse the sense of the
test

A slight modification of the forwarding trick allows further improvement. We introduce a cleanup
action (say action 1) to do the job of InsFromIFCData above (it must be action 1 or 3, since a
successful test in the Dorado ors a 1 into the next microinstruction address). Now we write the
microcode (including for completeness the action 2 of § 4.3):

BranchNotZero[O):
T$[stack=O}. Pop. IFUJump[O}:

BranchNotZero[2):
Test(memoryData=O). IFUl1.Imp[O);

Everylnstruction[l):
temp "PC+IFUData;
PC" temp:
IFUJump[01;

_. IFU jumps come here. Expect result#O.
- Test result in this microinstruction; if the test sua:eeds. we do IFUJum.p[l~

-- Branch was wrong. Do the instruction at PC + IFUData.

... Reclirect the IFU
-- This will be clispatched to NotReody. where the code will loop until the IPU

refllis starting at the new location.

Now a branch which was predicted correctly takes only one microinstruction. For this to work, the
processor must keep the lFU from advancing to the next instruction if there is a successful test in
the IFUJump cycle. Otherwise, the J>C and lFUDala of the branch instruction would be lost, and the
cleanup action could not do its job. Note that the first line at EverylnstlUction(1] must be repeated
for each distinct dispatch address; all these can jump to a common second line, however.

5. Implementation

In this section we describe the implementation of the Dorado lFU in some detail. The primary
focus of attention is the pipeline structure, discussed within the framework established in § 2 and §
3.3, but in addition we give (in § 5.4) the format of the decoding table, which defines how the lFU
can be specialized to the needs of a particular instruction set. Figure 3 gives the big picture of the
pipeline. Table 1 summarizes the characteristics of each stage; succeeding subsections discuss each
row of the table in turn. The first· row gives the properties of an ideal stage. and the rest of the
table describes departures from this ideal. This information is expanded in the remainder of this
section; the reader may wish to use the table to compare the behavior of the different stages.

The entire pipe is synchronous, running on a two-phase clock which defines a 60 ns cycle; some
parts of the pipe use both phases and hence are clocked every 30 ns. An "ideal" stage is described
by the first line of the table. There is a buffer following each stage which can hold one item
(b= I), and may be empty (represented by an empty flag); this is also the input buffer for the next
stage. The stage takes an item from its input buffer every cycle (tinput= 1) and delivers an item to
its output buffer every cycle (toutput= 1); the item taken is the one delivered (/= 1). The buffer is
loaded on the clock edge which defines the end of one cycle and the start of the next. The stage
handles an item if and only if there is space in the output buffer for the output at the end of the
cycle; hence if the entire pipe is full and an item is taken by the processor, every stage will process
an item in that cycle. This means that information about available buffer space must propagate all
the way through the pipe in one cycle. Furthermore, this propagation cannot start until it is known
that the processor is accepting the item, and it must take account of the various irregularities which
allow a stage to accept an item without delivering one or vice versa. Thus, the pipe has global
control. Note that a stage delivers an output item whether or not its input buffer is empty; if it is.
the special empty item is delivered. Thus the space bookkeeping is done entirely by counting empty
items.

Implementing global control within the available time turned out to be hard. It was considered
crucial because of the minimal buffering between stages. The alternative. much easier approach is
local control: deliver an item to the buffer only if there is space for it there at the start of the cycle.
This decouples the different stages completely within a cycle, but it means that if the pipe is full
(best case) and the processor suddenly starts to demand one instruction per cycle (worst case), the
pipe can only deliver at half this rate, even though each stage is capable of running at the full rate;

SEC. 5 IMPLEMEI\!"f AnON 41

Stage Size Input Output Reset Remarks

"ideal" t= 1; takes one t=l= 1; delivers one Clears buffer All state is in the buffer
item if output item ifbuffer will to empty on after the stage.
is possible be empty; b= 1 PC'" ...

ADDRESS word No input Not if paused, MAR and jump; Pass PC by incrementing;
contention, or mem also accepts a source, hence has
busy; OK ifspace in newPcvalue state (pc).
any later buffer.

MEMORY word Internal f> 2; output is and jump; Must enforce FIFO;
complications unconditional; b=2 discards out- not really part ofIFU;

put of fetches has state of 0-2
in progress fetches in progress

BYTES byte t=.5 t=I=.5 and jump Break byte feature.

DECODE instr t> .5: rate de- only Recycling to vary rate;
pends on ins- splits beta byte; encodes
truction length exceptions; does jumps.

DISPATCH instr On lFUJump only NotReady is default delay;
IFGHold is panic delay.

EXECuTE byte On lFUData No output buffer Reset unnecessary

Table 1: Summary of the pipeline stages

ADDRESS buffer 4

MEMORY buffer 3

BYTES buffer

DECODE buffer

processor has

2

4

3

2

1

4

3

2

4 5

4

3 4

3

2 3

6

5

5

4

Figure Sa: Cogging with local control and one item buffering

ADDRESS buffer 7,8 7,8 7,8 7,8 -,8 -,9 -,10 -,11

MEMORY buffer 5,6 5,6 5,6 -,6 -,7 -,8 -,9 -,10

BYTES buffer 3,4 3,4 -,4 -,5 -,6 -,7 -,8 -,9

DECODE buffer 1,2 -,2 -,3 -,4 -,5 -,6 -,7 -,8

processor has 1 2 3 4 5 6 7

Figure 5b: Smooth operation with local control and two item buffering

42 AN INSTRUcrION FETCH UNIT FOR A HIGH-PERFORMANCE PERSO~AL COMPUfER

Figure Sa illustrates this cogging. Figure 5b shows that with two items of buffering after each stage,
local control does not cause cogging. The Dorado has small buffers and global control partly
because buffers are fairly costly in components (see below), and partly because this issue was not
fully understood during the design. Note that it is easy to implement global control over a group
of consecutive stages which have no irregularities, since every stage can safely advance if there is
room in the buffer of the last stage. In this IFU, alas, there are no two consecutive regular stages.

Unfortunately, the cost of buffering is not linear in the number of items. A two item buffer costs
more than three times as much as a one item buffer; this is because the latter is simply a register,
while the former requires two registers plus a multiplexor to bypass the second register when the
buffer is empty, as shown in Figure 6. Without the bypass a larger buffer increases the latency of
the pipe, which is highly undesirable since it slows down every jump which the IFU doesn't predict
successfully. Once the cost of bypassing is paid, however, a multi-item buffer costs only a little
more, since a RAM can be used in place of the second register. Although there are no such buffers
in the Dorado, it is interesting to see how they are made.

one item
no bypass

two items
with bypass

Ad ~---""
RAM

I Count

Oaempty
carry- full

10-_ _..... Read in ha/f-cycle when data is delivered
Write in the other half-cyc/e

many items
with RAM and bypass

¥ Multiplexor

Register

tt Multiplexorl
register

Figure 6: One, two and many item buffers with bypassing

The RAM requires two counters to act as read and write pointers, and a third to keep track of the
number of items in the buffer. In addition, it must be effectively two-ported, sinCe in a single cycle
it is necessary to write one item and read an earlier one. In the Dorado two-port RAMS are used in
many.places; since no such part is available, they are implemented by running an ordinary RAM at
twice the machine cycle (both 16x4and 2S6x4 RA~1S are available which can be read or written in

. 10 ns). and using a multiplexor to supply the read address in one half-cycle and the write address in
the other. Figure 6 shows this arrangement in a slightly simplified form.

A normal stage has no state which changes as instructions are executed; all the state is represented
in the items as they are stored in the inter-stage buffers. As a consequence, resetting the pipe is
done simply by filling all the buffers with empty items.

Every item carries with it a PC, which is the address in the code from which its first byte was
fetched. It is the IFC'S handling of jumps which makes this necessary; otherwise it would suffice to
remember the initial PC at the end of the pipe, and to increment it by the instruction length as each
instruction goes by. Since no jumps can be executed between the ADDRESS and BYTES states, this
method is in fact used there. It is especially convenient because BYTES handles one byte at a time,
so that the PC can be held in a counter which is incremented once per item; later in the pipe an

SEC.S IMPLEMEI\TA TION 43

adder would be needed to handle the variable instruction lengths, and it would cost about four
times as much.

Every item also carries a status field, which is used to represent various values that do not
correspond to ordinary instructions: empty, page fault, memory error. These are converted into
unique dispatch addresses when the item is passed to the processor, as discussed in § 3.4.

5.1. ADDRESS stage

This stage generates the addresses of memory words which contain the successive bytes of code.
Unlike the other stages, it has no ordinary input, but instead contains a PC which it increments by
two (there are two bytes per memory word) for each successive reference. The PC can also take on
a pause value which prevents any further memory references until the processor resupplies ADDRESS
with an ordinary PC value. This pause state plays the same role for ADDRESS that an empty input
buffer plays for the other stages; hence it is entered whenever this stage is reset. That happens
either because of a processor Reset operation (which resets the entire lFU pipe, and is not done
during normal execution), or because of a Pause signal from DECODE. Correspondingly, a new PC
can be supplied either by a processor PC~ operation, or by a Jump signal from DECODE when it sees
a jump instruction. Any of these operations resets the pipe between ADDRESS and DECODE; the
processor operations reset the later stages also.

ADDRESS makes a memory reference if the memory is willing to accept the reference; this
corresponds to finding space in the buffer between ADDRESS and MEMORY, although the
implementation is quite different because the memory is not physically part of the lFU. In addition,
ADDRESS contends with the processor for the memory address bus; since the lFU has lowest priority,
it waits until this bus is not being used by the processor. Finally, it is necessary to worry about
space for the resulting memory word: the memory, unlike ordinary lFU stages, delivers its result
unconditionally, and hence must not be started unless there is a place to put the result. ADDRESS
surveys the buffering in the rest of the pipe, and waits until there are at least two free bytes
guaranteed; it isn't necessary for these bytes to be in the MEMORY output buffer, since data in that
buffer will advance into later buffers before the memory delivers the data. It is, however, necessary
to make the most pessimistic assumptions about instruction length and processor demands. On this
basis, there are seven bytes of buffering altogether: four after ME,\10RY, two after BYTES, and one
after DECODE.

5.2 MEMORY stage

This stage has several peculiarities. Some arise from the fact that most of it is not logically or
physically a part of the In;, but instead is shared with the processor and 1/0 system. As we saw in
the previous section, the memory delivers results unconditionally, rather than waiting for buffer
space to be available; ADDRESS allows for this in starting MEMORY. Furthermore, the memory has
considerable internal state and cannot be reset, so additional logic is required to discard items which
are inside the memory when the stage is reset.

Other problems arise from the fact that the memory's latency is more than one cycle; in fact, it
ranges from two to about 30 cycles (the latter when there is a cache miss). To maintain full
bandwidth, the lFU must therefore have more than one item in the ME,\10RY stage at a time; since
1= 2 when the cache hits, and this is the normal case, there is provision for up to two items in
ME\10RY. A basic principle of pipeline stages is that items emerge in the order they are supplied.
A stage with fixed latency, or one which holds only one item, does this automatically, but MEMORY
has neither of these properties. Furthermore, its basic function is random access, with no sequential
relationship between successive references. Hence if one reference misses and the next one hits, the
memory is happy to deliver the second result first. To prevent this from happening, the lFU
notifies the memory that it has a reference outstanding when it makes the second one, and the
memory rejects the second reference unless the first one is about to complete.

44 AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFOR.\1.ANCE PERSONAL COMPUTER

The irregularity of the memory also demands more than one word of buffering for its output, and
in fact two are provided. They are physically packaged with the cache data memory, as is the
BYTES stage multiplexing required to produce individual bytes. As a result, a one-byte bus suffices
to deliver memory data to the IFU.

5.3 BYTES stage

This is a very simple stage, which consists only of the multiplexors just mentioned. It does,
however, run twice as fast as the other stages, so that it can deliver two-byte instructions at the full
rate of one per cycle. This means that the multiplexors must look at both words of the MEMORY
output buffer, which runs only at the normal rate.

BYTES also includes a provision for replacing the first byte coming from memory with a byte taken
from a substitute register within the stage. This feature makes it convenient to proceed after a
breakpoint without removing the one-byte breakpoint instruction from the code; instead the opcode
byte displaced by the breakpoint is loaded into the substitute register (by the microcode) and
substituted for the break instruction. Since the substitution is done only once, the break is executed
normally when control returns to it. The substitute register is also a convenient way to address the
decoding table for loading and testing it

5.4 DECODE stage

The main complications in this stage are the decoding table, the variable number of bytes required
to make up an instruction, the encoding of exceptions, and the execution of jumps.

The decoding table is implemented with lkxl RAMS, which provide room for four instruction sets
with 256 opcodes each. It takes about two-thirds of a cycle to read these RAMs, with consequences
which are described below. The form of an entry is outlined in Table 2; parity is also stored. Most
of this information is· passed on directly to the DECODE buffer. The last three fields, however,
affect the IFC'S handling of subsequent instructions.

Name Size

Dispatch lO
MemBase 3
RBase 1

SplitAlpha 1
N 4
Sign 1

Length 2
Jump 1

Pause 1

Function

The starting microcode address for the instruction
Selects one of eight memory base registers.
Selects one of two processor register groups.

Split the first data byte into two four-bit data items.
Encoded constant
Extend sign of the first datum provided to the processor.

The length of the instruction; also supplied as a datum.
Indicates a jump; DECODE computes a new PC from PC plus N (if length= 1)
or alpha (if length = 2).
Indicates that ADDRESS should be reset

Table 2: Fields of a decoding table entry.

The instruction length determines the treament of both this and later instructions; the fact that it
isn't known until late in the DECODE cycle causes serious problems. A simple implementation of
DECODE addresses the decoding table directly from the input buffer. If the instruction turns out to
be one byte long, it is delivered to the output buffer in the normal way. If it is longer, the decoded
output is latched and additional bytes are taken from BYTES until the complete instruction is in
DECODE ready to be delivered; see Figure 7a. Unfortunately, the length must be known before the
middle of the cycle to handle two-byte instructions at full speed. Figure 7 b shows how this

SECoS IMPLEMENTATION 4S

problem can be attacked by introducing a sub-stage within DECODE; unfortunately, this delays the
reading of the decode table by half a cycle, so that its output is not available together with the
alpha byte. To solve the problem it is necessary to provide a second output buffer for BYrES. and
to feed back its contents into the main buffer if the instruction turns out to be only one byte long,
as in Figure 7 c. Some care must be taken to keep the PCs straight. This ugly backward
dependency seems to be an unavoidable consequence of the variable-width items.

In fact, a three-byte instruction is not handled exactly as shown in Figure 7. Since the bandwidth
of BYTES prevents it from being done in one cycle anyway, space is saved by breaking it into two
sub-instructions, each two bytes long; for this purpose a dummy opcode byte is supplied between
alpha and beta. Each sub-instruction is treated as an instruction item. The second one contains
beta and is slightly special: DECODE ignores its dummy opcode byte and treats it as a two-byte
instruction, and DISPATCH passes it on to EXECCTE after the alpha byte has been delivered.

from BYTES stage

D d o Ad
eco 109

RAM

r-----"------., BYTES
instruction byte output

L..-_.....;..,~......;.:~ buffer

DECODE
output
buffer

Figure 7a: Simple implementation of DECODE

from BYTES stage

,,. t
-~ . BYTES

I instruction bytel output I buffer

Decod0 Ad ~ 109
RAM

J,
I decoded opcode

from BYTES stage

DecodingAd

RAM

r-----"------, BYTES
instruction byte output

'-----,-......::.....-1 buffer

Sub-stage

Figure 7b: Substage implementation of DECODE

,~

I alpha buffer I

"
alpha

"
beta I

DECODE
output
buffer

Figure 7c: Recycling implementation of DECODE

46 AN INSTRUcnON FEfOi Ul\1T FOR A HIGH-PERFOR...\{ANCE PERSONAL COMPUTER

DECODE replaces the dispatch address from the table with an exception address if necessary. In
order to obey the rule that exceptions must all be captured in the dispatch address. the exception
values of all the instruction bytes are merged into its computation. For three-byte instructions. this
requires looking back into BYTES for the state of the beta byte_ If any of the bytes is empty,
DECODE keeps the partial instruction item when it delivers an empty item with a NotReady dispatch
into its output buffer. If a Reschedule is pending, it is treated like any other exception, by
converting the dispatch address of the next instruction item into Reschedule. Thus there is always a
meaningful PC associated with the exception.

If the Jump field is set, DECODE computes a new program counter by adding an offset to the PC of
the instruction. This offset comes from the alpha byte if there is one. otherwise from N and
SplitAlpha; it is sign-extended if Sign is true. The new PC is sent back to ADDRESS. as described in §
5.1, where Pause is also explained. Jump instructions in which the displacement is not encoded in
this way cannot be executed by the lFU. but must be handled by the processor.

5.5 DISPATCH stage

The interesting work of this stage is done by the processor, which takes the dispatch address.
together with the state initialization discussed in § 4.2, from the DECODE output buffer when it
executes an lFUJump. Because empty is encoded into a NotReady dispatch, the processor takes no
account of whether the buffer is empty. There are some ugly cases, however, in which DECODE is
unable to encode an exception quickly enough. In these cases DISPATCH asserts a signal called Hold
which causes the processor to skip an instruction cycle; this mechanism is rather expensive to
implement, and is present only because it was essential for synchronization between the processor
and the memory [1]. Once implemented, however, it is quite cheap for the IFU to use. The
NotReady dispatch is still preferable. because it gives the microcode an opportunity to do some
useful work while waiting.

5.6. EXECUTE stage

This stage implements the IFUData function; as we have already seen, it is logically part of the
processor. The sequence of data items delivered in response to IFUData is controlled by Jump.
Length, N, and SplitA/pha according to Table 3; in addition, alpha is sign-extended if Sign is true.
EXEClJTE also provides the processor with the value of the PC in response to a different function.

Jump Length N SpUtA/pha IFUData

Yes Length. ••.

No 1 No Length, •••
No 1 Yes N. Length, ••.

No 2 No No alpha, Length, • • •
No 2 No Yes alphaHigh, alphaLOw, Length, •••
No 2 Yes No N. alpha, Length, •••
No 2 Yes Yes N, alphaHigh, alphaLow, Length, _ ••

No 3 No No alpha, beta. Length, • • •
No 3 No Yes alphaHigh, alphaLow. beta, Length, • • •
No 3 Yes No N, alpha, beta, Length, • • •
No 3 Yes Yes N, alphaHigh, alphaLow. beta. Length, •••

Table 3: Data items provided to IFUData

SEC. 6 PERFOR..\{ANCE 47

6. Performance

The value of an instruction fetch unit depends on the fraction of total emulation time that it saves
(over doing instruction fetching entirely in microcode). This in tum clearly depends on the amount
of time spent in executng each instruction. For a language like Smalltalk-76 [5], a typical
instruction requires 30-40 cycles for emulation, so that the half-dozen cycles saved by the lFU are
not very significant. At the other extreme, an implementation language like Mesa [9, 11] is
compiled into instructions which can often be executed in a single cycle; except for function calls
and block transfers, no Mesa instruction requires more than half a dozen cycles. For this reason,
we give perfonnance data only for the Mesa emulator.

The measurements reported were made on the execution of the Mesa compiler, translating a
program of moderate size; data from a variety of other programs is very similar. All the operating
system functions provided in this single-user system are included. Disk. wait time is excluded, since
it would tend to bias the statistics. Some adjustments to the raw data have been made to remove
artifacts caused by compatibility with an old Mesa instruction set. Time spent in the procedure call
and return instructions (about 15%) has been excluded; these instructions take about 10 times as
long to execute as ordinary instructions, and hence put very little demand on the lFU.

The Dorado has a pair of counters which can record events at any rate up to one per machine
cycle. Together with supporting microcode, these counters provide sufficient precision that overflow
requires days of execution. It is possible to count a variety of interesting events; some are
pennanently connected, and others can be accessed through a set of multiplexors which provide
access to several thousand signals in the machine, independently of nonnal microprogram execution.

6.1 Performance limits

The maximum perfonnance that the lFU can deliver is limited by certain aspects of its
implementation; these limitations are intrinsic, and do not depend on the microcode of the
emulator or on the program being executed. The consequences of a particular limitation, of course,
depend on how frequently it is encountered in actual execution.

Latency: after the microcode supplies the IFU with a new PC value, an lFUJump will go to NotReady
until the fifth following cycle (in a few cases, until the sixth cycle). Thus there are at least five
cycles of latency before the first microinstruction of the new instruction can be executed. Of
course, it may be possible to do useful work in these cycles. This latency is quite important, since
every instruction for which the lFU cannot compute the next PC wilJ pay it; these are wrongly
guessed conditional branches, indexed branches, subroutine calls and returns, and a few others of
negligible importance.

A branch correctly executed by the lFU causes a three-cycle gap in the pipeline. Hence if the
processor spends one cycle executing it and each of its two predecessors, it will see three NotReady
cycles on the next lFUJump. Additional time spent in any of these three instructions, however, will
reduce this latency, so it is much less important than the other.

Bandwidth: In addition to these minimum latencies, the lFU is also limited in its maximum
throughput by memory bandwidth and its limited buffering. A stream of one-byte instructions can
be handled at one per cycle, even with some processor references to memory. A stream of two-byte
instructions, however (which would consume all the memory bandwidth if handled at full speed).
results in 33% No/Ready even if the processor makes no memory references. The reason is that the
IFU cannot mak.e a reference in every cycle, because its buffering is insufficient to absorb
irregularity in the processor's demand for instructions. As we shall see, these limitations are of
small practical importance.

48 AN INSTRUcnON FEfOI UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER

6.2 NotReady dispatches

Our measurements show that the average instruction takes 3.1 cycles to execute (including all lFU
delays). Jumps are 26% of all instructions, and incorrectly predicted jumps (40% of all conditional
jumps) are 10%. The average non-jump instruction takes 2.5 cycles.

The performance of the lFU must be judged primarily on the frequency with which it fails to satisfy
the processor's demand for an instruction, i.e., the frequency of NotReady dispatches. It is
instructive to separate these by their causes:

latency,

cache misses by the IFU,

dearth of memory bandwidth,

insufficient buffering in the IFU.

The first dominates with 16% of all cycles. which is not surprising in view of the large number of
incorrectly predicted jumps. Note that since these NotReody cycles are predictable, unlike all the
others, they can be used to do any background tasks which may be around.

Although the IFU'S hit rate is 99.7%, the 25 cycle cost of a miss means that 2.5% of all cycles are
NotReody dispatches from this cause. This is computed as follows: one cycle in three is a dispatch,
and .3% of these must wait for a miss to complete. The average wait is near the maximum,
unfortunately, since most misses are caused by resetting the lFU'S pc, This yields 33% of .3%, or .1%,
times 25, or 2.5%.

The other causes of NotReody account for only 1%. This is also predictable, since more than half
the instructions are one byte, and the average instruction makes only one memory reference in three
cycles. Thus the average memory bandwidth available to the lFU is two words, or three
instructions, per instruction processed, or about three times what is needed. Furthermore, straight
line instructions are demanded at less than half the peak rate on the average, and jumps are so
frequent that when the first instruction after a jump is dispatched, the pipe usually contains half the
instructions that will be executed before the next jump.

6.3 Memory bandwidth

As we have seen, there is no shortage of memory bandwidth, in spite of the narrow data path
between the processor and the lFU. Measurements show that the processor obtains a word from the
memory in 16% of the cycles, and the IFU obtains a word in 32% of the cycles. Thus data is
supplied by the memory in about half the cycles. The processor actually shuts out the lFU by
making its own reference about 20% of the time, since some of its references are rejected by the
memory and must be retried. The IFU makes a reference for each word transferred, and makes
unsuccessful references during its misses. for a total of 35%. There is no memory reference about
45% of the time.

6.4 Forwarding

The forwarding trick saves a cycle in about 25% of the straight-line instructions, and hence speeds
up straight-line execution by 8%. Jumps take longer and benefit less, so the speed-up within a
procedure is 5%. Like the lFU itself, forwarding pays off only when instructions are executed very
quickly, since it can save at most one cycle per instruction.

SEC. 6 PERFORMANCE 49

6.5 Size

A Dorado board can hold 288 standard 16-pin chips. The IRJ occupies about 85% of a board;
these 240 chips are devoted to the various stages as shown in Table 4.

Function

ADDRESS-BYTES
DECODE
DISPATCH
EXECUfE
Processor interface
Cocks
Testing

Chips

40
86
24
18
27
18
27

17
35
10
8

11
8

11

Table 4: Size of various parts of the IFU

In addition. about 25 chips on another board are part of MEMORY and BYTES. The early stages are
mostly devoted to handling several PC values. DECODE is large because of the decoding table (27
RAM chips) and its address drivers and data registers. as well as the branch address calculation.

Table 5 shows the amount of microcode in the various emulators, and in some functions common
to all of them. In addition. each emulator uses one quarter of the decode table. Of course they are
not all resident at once.

System Words

Mesa 1300
Smalltalk 1150
Lisp 1500
Alto BCPL 700
I/O 1000
Floating point 300
Bit block transfer 270

Acknowledgements

Comments

Disk, keyboard, regular and color display. Ethernet
IEEE standard; there is no special hardware support

Table 5: Size of various emulators

The preliminary design of the Dorado lFU was done by Tom Chang, Butler Lampson and Chuck
Thacker. Final design and checkout were done by Will Crowther and the authors. Ed Fiala
reviewed the design, did the microassembler and debugger software. and wrote the manual. The
emulators mentioned were written by Peter Deutsch, Willie-Sue Haugeland, Nori Suzuki and Ed
Taft.

SO AN INSTRUCfION FErCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUfER

References

1 Oark, D. W. eL al. The memory system of a high performance personal computer. Technical Report csL-81-1, Xerox Palo
Alto Research Center, January 1981 Revised version to appear in IEEE Transactions on Computen.

2. Connors, W.D. eL al. The IBM 3033: An inside look. Datamation, May 1979. 198-n8.
3. Deutsch, LP. A Lisp machine with very compact programs. Proc Jrd InL Joint Con] Arti/iciol Intelligence. Stanford, 1973.

687-703.
4. Ibbett, R.N. and Capon, P.e. The development of the Mu5 computer system. Comm. ACM 21,1, Jan.1978,13-24.
5. Ingalls, D.H. The Smalltalk-76 programming system: Design and implementation. 5th.4.CM Symp. Principles 01

Programming Langw:zges, Tucson, Jan. 1978.9-16.
6. Intel Corp. Mcs-86 User's Manual, Feb. 1979.
7. Knuth, D.E. An empirical study of Fortran programs. Software- Practice and Experience 1.1971.105-133.
8. Lampson, B.W. and Pier, K.A. A processor for a high performance personal computer. Proc 7th InL Symp. Computer

Architecture, SigArch/lEEE, La Baule, May 1980, 146-160. Also in Technical Report CSL-81-1, Xerox Palo Alto Researcll
Center, Jan. 1981.

9. Mitchell, J.O. eL al. Mesa Language Manual Technical Report CSL-79-3, Xerox Palo Alto Research Center. April 1979.
10. Russell, R.M. TheCRAy-l computer system. Comm . .4.CM 21,1, Jan. 1978, 63-72.
11. Tanenbaum, A.S. Implications of structured programming for machine architecture. Comm . .4.CM 21, 3, March 1978, 237-

246.
U. Teitelman, W. Interlisp Reftrence Manual. Xerox Palo Alto Research Center, Oct. 1978.
13. Thacker, C.P, eL al. Alto: A personal computer. In ComputerSrructures: Readings and Examples, 2nd edition, Sieworek,

Bell and Newell, eds., McGraw-Hill, 1981. Also in Technical Report CSL-79-11, Xerox Palo Alto Research Center, August
1979.

14. Thornton, J.E. The Control Data 6600, Scott, Foresman & Co., New York. 1970.
15. Tomasulo, R.M. An efficient algorithm for exploiting multiple arithmetic units, IBM J. R&D 11.1. Jan. 1967. 25-33.
16. Anderson, D. W. eL aL The System/36O Model 91: Machine philosophy and instruction handling. IBM J. R&D 11. 8, Jan.

1967,8-24.
17. Widdoes, L C. The S-l project: Developing high performance digital computers. Proc. IEEE Com peon, San Francisco, Feb.

1980,282-291.

The Memory System of a
High-Performance Personal Computer

by Douglas W, Clark1, Butler W, lampson, and Kenneth A, Pier

January 1981

ABSTRACT

The memory system of the Dorado, a compact high-performance personal computer, has
very high 1/0 bandwidth, a large paged virtual memory, a cache, and heavily pipelined
control; this paper discusses all of these in detail, Relatively low-speed 1/0 devices transfer
single words to or from the cache; fast devices, such as a color video display, transfer
directly to or from main storage while the processor uses the cache. Virtual addresses are
used in the cache and for all 1/0 transfers. The memory is controlled by a seven-stage
pipeline, which can deliver a peak main-storage bandwidth of 530 million bits per second to
service fast 1/0 devices and cache misses. Interesting problems of synchronization and
scheduling in this pipeline are discussed, The paper concludes with some performance
measurements that show, among other things, that the cache hit rate is over 99 percent.

A revised version of this paper will appear in IEEE Transactions on Computers.

CR CATEGORIES

6.34,6.21.

KEY WORDS AND PHRASES

bandwidth, cache, latency, memory, pipeline, scheduling, storage, synchronization. virtual
memory.

1. Present address: Digital Equipment Corporation. Tewksbury, Mass. 01876.

@) Copyright 1981 by Xerox Corporation. XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road I Palo Alto I California 94304

52 THE MEMORY SYSTEM OF A ::IGH-PERFORMANCE PERSONAL COMPUTER

1. Introduction

This paper describes the memory system of the Dorado, a high-performance compact personal
computer. This section explains the design goals for the Dorado, sketches its overall architecture.
and describes the organization of the memory system. Later sections discuss in detail the cache (§
2), the main storage (§ 3), interactions between the two (§ 4), and synchronization of the various
parallel activities in the system (§ 5). The paper concludes with a description of the physical
implementation (§ 6), and some performance measurements (§ 7).

1.1 Goals

A high-performance successor to the Alto computer [18], the Dorado is intended to provide the
hardware base for the next generation of computer system research at the Xerox Palo Alto Research
Center. The Dorado is a powerful but personal computing system supporting a single user within a
programming system that extends from the microinstruction level to an integrated programming
environment for a high-level language. It is physically small and quiet enough to occupy space near
its users in an office or laboratory setting, and inexpensive enough to be acquired in considerable
numbers. These constraints on size, noise, and cost have had a major effect on the design.

The Dorado is designed to rapidly execute programs compiled into a stream of byte codes [16]; the
microcode that does this is called an emulator. Byte code compilers and emulators exist for Mesa
[6, 13], Interlisp [4, 17], and Smalltalk [7]. An instruction fetch unit (IFU) in the Dorado fetches
bytes from such a stream, decodes them as instructions and operands, and provides the necessary
control and data information to the emulator microcode in the processor; it is described in another
paper [9]. Further support for fast execution comes from a very fast microcyc1e, and a
microinstruction set powerful enough to allow interpretation of a simple byte code in a single
microcyc1e; these are described in a paper on the Dorado processor [10]. There is also a cache [2,
11] which has a latency of two cycles, and which can deliver a 16-bit word every cycle.

Another major goal is to support high-bandwidth input/output. In particular, color monitors, raster
scanned printers, and high speed communications are all part of the computer research activities;
these devices typically have bandwidths of 20 to 400 million bits per second. Fast devices must not
excessively degrade program execution, even though the two functions compete for many of the
same resources. Relatively slow devices, such as a keyboard or an Ethernet interface [12], must also
be supported cheaply, without tying up the high-bandwidth I/O system. These considerations
clearly suggest that I/O activity and program execution should proceed in parallel as much as
possible. The memory system therefore allows parallel execution of cache accesses and main storage
references. Its pipeline is folly segmented: a cache reference can start in every microinstruction
cycle, and a main storage reference can start in every main storage cycle.

1.2 Gross structure of the Dorado

Figure 1 is a simplified block diagram of the Dorado. Aside from I/O, the machine consists of the
processor, the IFlJ, and the memory system, which in turn contains a cache, a hardware virtual-to
real address map, and main storage. Both the processor and the IFlJ can make memory references
and transfer data to and from the memory through the cache. Slow, or low-bandwidth I/O devices
communicate with the processor, which in tum transfers their data to and from the cache. Fast, or
high-bandwidth devices communicate directly with storage, bypassing the cache most of the time.

For the most part, data is handled sixteen bits at a time. The relatively narrow busses, registers,
data paths, and memories which result from this choice help to keep the machine compact. This is
especially important for the memory, which has a large number of busses. Packaging, however. is
not the only consideration. Speed dictates a heavily pipelined structure in any case, and this
parallelism in the time domain tends to compensate for the lack of parallelism in the space domain.
Keeping the machine physically small also improves the speed, since physical distance (i.e., wire
length) accounts for a considerable fraction of the basic cycle time. Finally, performance is often
limited by the cache hit rate, which cannot be improved, and may be reduced, by wider data paths
(if the number of bits in the cache is fixed).

SEC.! 11lo'TRODUCfION S3

Instruction
Fetch Unit r--

J
Slow input/ output 265 MBits/sec 265 MBits/sec

Cache 16 bits/60 ns Processor 16 bits/60 ns
8K-32K I-

120 ns access
bytes

! Keyboard! I Display I ! DiSk! ! Ethernet J
530 MBits/sec

Storage 256 bits/480 ns

Fast input/output 1.7 us access 512K-16M bytes

Figure 1: Dorado block diagram

Rather than putting processing capability in each I/O controller and using a shared bus or a switch
to access the memory, the Dorado shares the processor among all the I/O devices and the emulator.
This idea, originally triea in the TX-2 computer [5] and also used in the Alto [18], works for two
main reasons. First, unless a system has both multiple memory busses (Le., multi-ported memories)
and multiple memory modules that can cycle independently, the main factor governing processor
throughput is memory contention. Put simply, when I/O devices make memory references. the
emulator ends up waiting for the memory. In this situation the processor might as well be working
for the I/O device. Second, complex device interfaces can be implemented with relatively little
dedicated hardware, since the full power of the processor is available to each device.

This processor sharing is accomplished with 16 hardware-scheduled microcode processes, called
tasks. Tasks have fixed priority. Most tasks serve a single I/O device, which raises a request line
when it wants service from its task. Hardware schedules the processor so as to serve the highest
priority request; control can switch from one task to another on every microinstruction, without any
cost in time. When no device is requesting service. the lowest priority task runs and does high-level
language emulation. To eliminate the time cost of multiplexing the processor among the tasks in
this way, a number of the machine's working registers are task-specific. i.e., there is a copy for each

. task. The implementation typically involves a single physical register, and a 16-element memory
which is addressed by the current task number and whose output is held in the register.

Many design decisions were based on the need for speed. Raw circuit speed certainly comes first
Thus, the Dorado is implemented using the fastest commercially available technology that has a
reasonable level of integration and is not too hard to package. When our design was started in
1976, the obvious choice was the EeL (Emitter-Coupled Logic) 10K family of integrated circuits.
These circuits make it possible for the Dorado to execute a microinstruction in 60 ns; this is the
basic cycle time of the machine. Second, there are several pipelines, and they are generally able to
start a new operation every cycle. The memory, for instance, has two pipelines, the processor two,
the instruction fetch unit another. Third. there are many independent busses: eight in the memory,
half a dozen in the processor, three in the IFV. These busses increase bandwidth and simplify
scheduling, as will be seen in later sections of the paper.

1.3 Memory architecture

The paged virtual memory of the Dorado is designed to accommodate evolving memory chip
technology in both the address map and main storage. Possible configurations range from the
current 22-bit virtual address with 16K 256-word pages and up to one million words of storage
(using 16K chips in both map and storage) to the ultimate 28-bit virtual address with 256K 1024-
word pages and 16 million words of storage (using 256K chips). All address busses are wired for
their maximum size, so that configuration changes can be made with chip replacement only.

54 THE MEMORY SYSTE.\i OF A HIGH-PERFORMAJI'CE PERSOJl'AL COMPUTER

Memory references specify a 16 or 28 bit displacement, and one of 32 base registers of 28 bits; the
vinual address is the sum of the displacement and the base. Vinual address translation, or mapping,
is implemented by table lookup in a dedicated memory. Main storage is the permanent home of
data stored by the memory system. The storage is necessarily slow (i.e., it has long latency, which
means that it takes a long time to respond to a request), because of its implementation in cheap but
slow dynamic MOS RAMS (random access memories). To make up for being slow, storage is big,
and it also has high bandwidth, which is more important than latency for sequential references. In
addition, there is a cache which services non-sequential references with high speed (low latency),
but is inferior to main storage in its other parameters. The relative values of these parameters are
shQwn in Table 1.

Latency'1
Bandwidth
Capacity

Cache

15
1
1

Storage

1
2

250

Table 1: Parameters of the cache relative to storage

With one exception (the lFU), all memory references are initiated by the processor, which thus acts
as a multiplexor controlling access to the memory (see § 1.2 and [10]), and is the sole source of
addresses. Once staned, however, a reference proceeds independently of the processor. Each one
carries with it the number of its originating task, which serves to identify the source or sink of any
data transfer associated with the reference. The actual transfer may take place much later, and
each source or sink must be continually ready to deliver or accept data on demand. It is possible
for a task to have several references outstanding, but order is preserved within each type of
reference, so that the task number plus some careful hardware bookkeeping is sufficient to match
up data with references.

Table 2 lists the types of memory references executable by microcode. Figure 2, a picture of the
memory system's main data paths, should clarify the sources and destinations of data transferred by
these references (parts of Figure 2 will be explained in more detail later). All references, including
fast 1/0 references, specify vinual, not real addresses. Although a microinstruction actually specifies
a displacement and a base register which together form the virtual address, for convenience we will
suppress this fact and write, for example, Fetch(a) to mean a fetch from vinual address a.

A Felch from the cache delivers data to a register called FetchReg, from which it can be retrieved at
any later time; since FetchReg is task-specific, separate tasks can make their cache references
independently. An I/ORead reference delivers a 16-word block of data from storage to the
FastOutBus (by way of the error corrector, as shown in Figure 2), tagged with the identity of the
requesting task; the associated output device is expected to monitor this bus and grab the data
when it appears. Similarly, the processor can Store one word of data into the cache, or do an
r/OWrite reference which demands a block of data from an input device and sends it to storage (by
way of the check-bit generator). There is also a Pre/etch reference, which brings a block into the
cache. Fetch, Store and Pre/etch are called cache references. There are special references to flush
data from the cache and to allow a map entries to be read and written; these will be discussed later.

The instruction fetch unit is the only device that can make a reference independently of the
processor. It uses a single base register, and is treated almost exactly like a processor cache fetch,
except that the IFU has its own set of registers for receiving memory data (see [9] for details). In
general we ignore IFU references from now on, since they add little complexity to the memory
system.

SEC. 1

Reference

Fetch(a)

Store(d, a)

I10Reml...a)

I/OWrite(a)

Prefetcli..a)

Flush(a)

MapReml...a)

MapWrite(d, a)

DummyRej(a)

Task

any task

any task

110 task only

110 task only

any task

emulator only

emulator only

emulator only

any task

Il'o'TRODUcnON ss

Effect

fetches one word of data from virtual address a in the cache
and delivers it to FetchReg register

stores data word d at virtual address a in the cache

reads block at virtual address a in storage and delivers it to a
fast output device

takes a block from a fast input device and writes it at virtual
address a in storage

forces the block at virtual address a into the cache

removes from the cache (re-writing to storage if necessary)
the block at virtual address a

reads the map entry addressed by virtual address a

writes d into the map entry addressed by virtual address a

makes a pseudo-reference guaranteed not to reference storage
or alter the cache (useful for diagnostics)

Table 2: Memory-reference instructions available to microcode

A cache reference usually hits; i.e., it finds the referenced word in the cache. If it misses (does not
find the word), a main storage operation must be done to bring the block containing the requested
word into the cache. In addition, I/O references always do storage operations. There are two kinds
of storage operations, read and write,· and we will generally use these words only for storage
operations in order to distinguish them from the references made by the processor. The former
transfers a block out of storage to the cache or I/O system; the latter transfers a block into storage
from the cache or I/O system.

104 ImplementationJor high performance

Two major forms of concurrency make it possible to implement the memory system's functions with
high performance:

Physical: the cache (8K-32K bytes) and the main storage (.5M-32M bytes) are almost
independent. Normally, programs execute from the cache, and fast I/O devices transfer to
and from the storage. Of course, there must be some coupling when a program refers to
data that is not in the cache, or when I/O touches data that is; this is the subject of § 4.

Temporal: both cache and storage are implemented by fully segmented pipelines. Each can
accept a new operation once per cycle of the memory involved: every machine cycle (60 ns)
for the cache, and every eight machine cycles (480 ns) for the storage.

To support this concurrency, the memory has independent busses for cache and main storage
addressing (2), data into and out of the cache (2) and main storage (2), and fast input and output
(2). The data busses, but not the address busses, are visible in Figure 2. It is possible for all eight
busses to be active in a single cycle, and under peak load the average utilization is about 75%. In
general, there are enough busses that an operation never has to wait for a bus; thus the problems of
concurrently scheduling complex operations that share many resources are simplitied by reducing
the number of shared resources to the unavoidable minimum of the storage devices themselves.

56 THE ME.\10RY SYSTEM OF A HIGH-PERFOR..\1Al'CE PERSONAL COMPUTER

to

I

~

IFU

Cache Data Paths

I
from Processor

t
StoreReg

,. Jf ,
CacheD

(Cache Data)

b·

~r

FetchReg

t
to Processor

word·at-a-time,
16-bit-wide path

====~
block-at·a·time,
16-bit-wide path

word or block path

II II

Y multiplexor

Figure 2: Data Paths

I
Sto rage Data Paths

Fast Input Device

FastinBus

EcGen
(Check· bit Generator)

WriteBus

Main
Storage

ReadBus

EcCor
(Error Corrector)

FastOutBus

Fast Output Device

I

SEC.l INTRODUcnON 57

All busses are 16 bits wide; blocks of data are transferred to and from storage at the rate of 16 bits
every half cycle (30 ns). This means that 256 bits can be transferred in 8 cycles or 480 ns., which is
somewhat more than the 375 ns cycle time of the RAM chips that implement main storage. Thus a
block size of 256 bits provides a fairly good match between bus and chip bandwidths; it is also a
comfortable unit to store in the cache. The narrow busses increase the latency of a storage transfer
somewhat, but they have little effect on the bandwidth. A few hundred nanoseconds of latency is
of little importance either for sequential 1/0 transfers or for delivery of data to a properly
functioning cache.

Various measures are taken to maximize the performance of the cache. Data stored there is not
written back to main storage until the cache space is needed for some other purpose (the write-back
rather than the more common write-through discipline [I, 14]); this make it possible to use memory
locations much like registers in an interpreted instruction set, without incurring the penalty of main
storage accesses. Virtual rather than real addresses are stored in the cache, so that the speed of
memory mapping does not affect the speed of cache references. (Translation buffers [15, 20] are
another way to accomplish this.) This would create problems if there were multiple address spaces.
Although these problems can be solved, in a single-user environment with a single address space
they do not even need to be considered.

Another important technique for speeding up data manipulation in general, and cache references in
particular, is called bypassing. Bypassing is one of the speed-up techniques used in the Common
Data Bus of the IBM 360/91 [19]. Sequences of instructions having the form

(1) register" computationl
(2) computation2 involving the register

are very common. Usually the execution of the first instruction takes more than one cycle and is
pipelined. As a result, however, the register is not loaded at the end of the first cycle, and
therefore is not ready at the beginning of the second instruction. The idea of bypassing is to avoid
waiting for the register to be loaded, by routing the results of the first computation directly to the
inputs of the second one. The effective latency of the cache is thus reduced from two cycles to one
in many cases (see § 2.3).

The implementation of the Dorado memory reflects a balance among competing demands:

for simplicity, so that it can be made to work initially, and maintained when components
fail;

for speed, so that the performance will be well-matched to the rest of the machine;

for space, since cost and packaging considerations limit the number of components and
edgepins that can be used.

None of these demands is absolute, but all have thresholds that are costly to cross. In the Dorado
we set a somewhat arbitrary speed requirement for the whole machine, and generally tried to save
space by adding complexity, pushing ever closer to the simplicity threshold. Although many of the
complications in the memory system are unavoidable consequences of the speed requirements, some
of them could have been eliminated by adding hardware.

2. The cache

The memory system is organized into two kinds of building blocks: pipeline stages. which provide
the control (their names are in SMALL CAPITALS). and resources, which provide the data paths and
memories. Figure 3 shows the various stages and their arrangement into two pipelines. One,
consisting of the ADDRESS and HITDATA stages. handles cache references and is the subject of this
section; the othcr, containing MAP, WRITETR, STORAGE, READTRI and READTR2, takes care of
storage references and is dealt with in § 3 and 4. References start out eithcr in PROC, the processor,
or in the IFU.

58 THE MEM.ORY SYSTEM OF A HIGH-PERFORMANCE PERSONAL COMPUTER

I
Cache pipeline

Misses.
Il0rets,
Victim writes.

1/0 writes
Victim writes

i

Storage pipeline
I

Figure 3: Cache and Storage Pipelines

The cache pipeline's two resources, CacheA and CacheD, correspond roughly to its two stages,
although each is also used by other stages in the storage pipeline. CacheA stores addresses and
associated flags, and contains the comparators which decide whether a given address is currently in
the cache. CacheD stores cache data. Figure 4 shows the data paths and memories of these
resources. The numbers on the left side of the figure indicate the time at which a reference reaches
each point in the pipeline, relative to the start of the microinstruction making the reference.

Every reference is first handled by the ADDRESS stage, whether or not it involves a cache data
transfer. The stage calculates the virtual address and checks to see whether the associated data is in
the cache. If it is (a hit), and the reference is a Fetch or Store, ADDRESS starts HITDATA, which is
responsible for the one-word data transfer. On a cache reference that misses, and on any I/O
reference, ADDRESS starts MAP as described in § 3.

HITDATA obtains the cache address of the word being referenced from ADDRESS, sends this address
to CacheD, which stores the cache data, and either fetches a word into the FetchReg register of the
task that made the reference, or stores the data delivered by the processor via the StoreReg register.

2.1 Cache addressing

Each reference begins by adding the contents of a base register to a displacement provided by the
processor (or lIT). A task-specific register holds a 5-bit pointer to a task's current base register.
These pointers, as well as the base registers themselves, can be changed by microcode.

Nonnally the displacement is 16 bits, but by using both its busses the processor can supply a full
28-bit displacement. The resulting sum is the virtual address for the reference. It is divided into a
16-bit key, an 8-bit row number, and a 4-bit word number; figure 4 illustrates. This division
reflects the physical structure of the cache, which consists of 256 rows, each capable of holding four
independent 16-word blocks of data, one in each of four colum1ls. A given address detennines a
row (based on its 8 row bits), and it must appear in some column of that row if it is in the cache at
all. for each row, CacheA stores the keys of the four blocks currently in that row, together with
four flag bits for each block. The Dorado cache is therefore set-associative [3]; rows correspond to
sets and columns to the elements of a set

I

Time

Ons

30

60

90

120

150

SEC. 2

CacheA

CacheD

Processor
Bbus

16

Cache
data

I
2 banks

o

Virtual
address

Processor
A bus

16

Base
registers

32 x 28 bits

THE CACHE 59

5

Column 0 Column 1 Column 2 Column 3 V NIl
Cache

addresses
256roYis

2 column

Cache flags

vacant NEXT
VICTIM VICTIM

4 columns

Figure 4: Data paths in the cache

Given this organization, it is simple to determine whether an address is in the cache. Its row bits
are used to select a row, and the four keys stored there are compared with the given address. If
one of them matches, there is a hit and the address has been located in the cache. The number of
the column that matched, together with the row bits, identifies the block completely, and the four
word bits of the address select one of the 16 words within that block. If no key matches. there is a

60 THE MEMORY SYSTEM OF A HIGH-PERFORMANCE PERSONAL COMPUTER

miss: the address is not present in the cache. During normal operation. it is not possible for more
than one column to match. The entire matching process can be seen in Figure 4, between 60 and
90 ns after the stan of the reference. The cache address latched at 90 contains the row, word and
column; these 14 bits address a single word in CacheD. Of course, only the top 16 key bits of the
address need be matched. since the row bits are used to select the row, and all the words of a block
are present or absent together.

Four flag bits are stored with each cache entry to keep track of its status. We defer discussion of
these flags until § 4.

22 Cache data

The CacheD resource stores the data for the blocks whose addresses appear in CacheA; closely
associated with it are the StoreReg and task-specific FetchReg registers which allow the processor to
deliver and retrieve its data independently of the memory system's detailed timing. CacheD is quite
simple, and would consist of nothing but a 16K by 16 bit memory were it not for the bandwidth of
the storage. To keep up with storage the cache must be able to accept a word every half cycle (30
ns.). Since its memory chips cannot cycle this fast, CacheD is organized in two banks which run a
half-cycle out of phase when transferring data to or from the storage. On a hit, however. both
banks are cycled together and CacheD behaves like an 8K by 32 bit memory. A multiplexor selects
the proper half to deliver into FetchReg. All this is shown in Figure 4.

Figure 4 does not, however, show how FetchReg is made task-specific. In fact, there is a 16-word
memory FetchRegRAM in addition to the register shown. The register holds the data value for the
currently executing task. When a Fetch reference completes, the word from CacheD is always
loaded into the RAM entry for the task that made the reference; it is also loaded into FetchReg if
that task is the one currently running. Whenever the processor switches tasks, the FetchRegRAM
entry for the new task is read out and loaded into FetchReg. Matters are further complicated by
the bypassing scheme described in the next subsection.

StoreReg is not task-specific. The reason for this choice and the problem it causes are explained in
§ 5.1.

2.3 Cache pipeUning

From the beginning of a cache reference, it takes two and a half cycles before the data is ready in
FetchReg, even if it hits and there are no delays. However, because of the latches in the pipeline
(some of which are omitted from Figure 4), a new reference can be started every cycle, and if there
are no misses the pipeline will never clog up, but will continue to deliver a word every 60 ns. This
works because nothing in later stages of the pipeline affects anything that happens in an earlier
stage.

The exception to this principle is delivery of data to the processor itself. When the processor uses
data that has been fetched, it depends on the later stages of the pipeline. In general this

. dependency is unavoidable, but in the case of the cache the bypassing technique described in § 1.4
is used to reduce the latency. A cache reference logically delivers its data to the FetchReg register
at the end of the cycle following the reference cycle (actually halfway through the second cycle, at
150 in Figure 4). Often the data is then sent to a register in the processor, with a (microcode)
sequence such as

(1) Felch(address)
(2) register +- FetchReg
(3) computation involving register.

The register is not actually loaded until cycle (3); hence the data, which is ready in the middle of
cycle (3), arrives in time, and instruction (2) does not have to wait. The data is supplied to the
computation in cycle (3) by bypassing. The effective latency of the cache is thus only one cycle in
this situation.

SEC. 2

Unfortunately this sleight-of-hand does not always work. The sequence

(1) Fetch(address)
(2) computation involving FetchReg

THECAOIE 61

actually needs the data during cycle (2), which will therefore have to wait for one cycle (see § 5.1).
Data retrieved in cycle (1) would be the old value of FetchReg; this allows a sequence of fetches

(1) Fetch(addressl)
(2) registerl'" FetchReg, Felch(address2)
(3) register2'" FetchReg, Felch(address3)
(4) register3'" FetchReg, Fetch(address4)

to proceed at full speed.

3. The storage pipeline

Cache misses and fast I/O references use the storage ponion of the pipeline, shown in Figure 3. In
this section we first describe the operation of the individual pipeline stages. then explain how fast
I/O references use them, and finally discuss how memory faults are handled. Using I/O references
to expose the workings of the pipeline allows us to postpone until § 4 a close examination of the
more complicated references involving both cache and storage.

3.1 Pipeline stages

Each of the pipeline stages is implemented by a simple finite-state automaton that can change state
on every microinstruction cycle. Resources used by a stage are controlled by signals that its
automaton produces. Each stage owns some resources, and some stages share resources with others.
Control is passed from one stage to the next when the first produces a star! signal for the second;
this signal forces the second automaton into its initial state. Necessary information about the
reference type is also passed along when one stage starts another.

3.1.1 The ADDRESS stage

As we saw in § 2, the ADDRESS stage computes a reference's virtual address and looks it up in
CacheA. If it hits, and is not I/OReati or I/OWrite, control is passed to HITDATA. Otherwise, control
is passed to MAP, starting a storage cycle. In the simplest case a reference spends just one
microinstruction cycle in ADDRESS, but it can be delayed for various reasons discussed in § 5.

3.1.2 The MAP stage

The MAP stage translates a virtual address into a real address by looking it up in a hardware table
called the MapRA~f, and then starts the STORAGE stage. Figure 5 illustrates the straightforward
conversion of a vinual page number into a real page number. The low-order bits are not mapped;
they point to a single word on the page.

Three flag bits are stored in Map RAM for each virtual page:

ref, set automatically by any reference to the page;

dirty, set automatically by any write into the page;

writeProlecl, set by memory-management software (using the MapWrite reference).

A virtual page not in use is marked as vacant by setting both writePrOlect and dirty, an otherwise
nonsensical combination. A reference is aborted by the hardware if it touches a vacant page,
attempts to write a write-protected page, or causes a parity error in the MapRA\!. All three kinds
of map fault are passed down the pipeline to READTR2 for reporting; see § 3.1.5.

62 THE MEMORY SYSTEM OF A HIGH-PERFORMANCE PERSONAL COMP1.ITER

VIRTUAL ADDRESS
26 BITS (22) VIRTUAL PAGE WORD ON PAGE

~~ W~

n(m) means that with current RAM chips,
the value is m; with future chips the value
will be n. for which the boards are wired.

REAL ADDRESS
24 BITS (20)

MODULE

REAL PAGE NUMBER FLAGS

Map RAM

256K(16K)

1& (12) ref WP dirty

STORAGE CHIP

ADDRESS

Figure 5: Virtual address to real address mapping.

WORD IN

BLOCK

MAP takes eight cycles to complete. MapRAM outputs are available for the STORAGE stage in the
fifth cycle; the last three cycles are used to re-write the flags.

MapRAM entries (including flags) are written by the MapWrite reference. They are read by the
MapRead reference in a slightly devious way explained in § 3.3.

3.1.3 The STORAGE stage

The Dorado's main storage, a resource called StorageRA.~, is controlled by the STORAGE stage.
STORAGE is started by MAP, which supplies the real storage address and the operation type - read or
write. StorageRAM is organized into 16-word blocks, and the transfer of a block is called a
transport. All references to storage involve an entire block. Transports into or out of the
StorageRAM take place on word-sized busses called ReadBus and WriteBus. Block-sized shift
registers called ReadReg and WriteReg lie between these busses and StorageRAM. When storage is
read, an entire block (256 bits plus 32 error-correction bits) is loaded into ReadReg all at once, and
then transported to the cache or to a fast output device by shifting words sequentially out of
ReadReg at the rate of one word every half-cycle (30 ns.). On a write, the block is shifted a word
at a time into WriteReg, and when .the transport is finished, the 288 storage chips involved in that
block are written all at once. Figure 6 shows one bit-slice of WriteReg, StorageRAM, and ReadReg
(neglecting the error correction bits); sixteen such bit-slices comprise one storage module. of which
there can be up to four. Figure 2 puts Figure 6 in context

WriteReg and ReadReg are not owned by STORAGE, and it is therefore possible to overlap
consecutive storage operations. Furthermore, because tlle eight-cycle (480 ns) duration of a
transport closely matches the 375 ns. cycle time of the 16K MOS RA~1 chips, it is possible to keep
StorageR.-\~f busy most of the time. The resulting bandwidth is one block every eight cycles, or 530
million bits per second. ReadReg is shared between STORAGE, which loads it, and READTRl/2.
which shift it. Similarly. WriteReg is shared between WRITETR, which loads it, and STORAGE,
which clocks the data into the RAM chips and releases it when their hold time has expired.

SEC. 3

WriteBus

Bit 0

See note on Figure 5.

mE STORAGE PIPELINE

StorageRAM
MOSRAMs

2561<. 64K (16K) by 1 bit

16 bit parallel· in. serial·out shift register

Figure 6: One bit·slice of StorageRAM and its data registers.

ReadBus

Bit 0

63

Each storage module has a capacity of 256K, 1M, or 4M 16-bit words, depending on whether 16K,
64K, or (hypothetical) 256K RAM chips are used. The two high'order bits of the real address select
the module (see Figure 5); modules do not run in parallel. A standard Hamming error-correcting
code is used, capable of correcting single errors and detecting double errors in four-word groups.
Eight check bits, therefore, are stored with each quadword; in what follows we will often ignore
these bits.

3.1.4 The WRITETR stage

The WRITETR stage transports a block into WriteReg, either from CacheD or from an input device.
It owns ECGen, the Hamming check bit generator, and WriteBus, and shares WriteReg with
STORAGE. It is started by ADDRESS on every write, and synchronizes with STORAGE as explained in
§ 5.3.1. It runs for eleven cycles on an I/O Write, and for twelve cycles on a cache write. As Figure
3 shows, it starts no subsequent stages itself.

3.1.5 the READTRI and READTR2 stages

Once ReadReg is loaded by STORAGE, the block is ready for transport to CacheD or to a fast
output device. Because it must pass through the error corrector EeCor, the first word appears on
ReadBus three cycles before the first corrected word appears at the input to CacheD or on the
FastOut bus (see Figure 2). Thus there are at least eleven cycles of activity related to read
transport, and controlling the entire transport with a single stage would limit the rate at which read
transports could be done to one every eleven cycles. No such limit is imposed by the data paths,
since the error corrector is itself pipelined and does not require any wait between quadwords or
blocks. To match the storage, bus, and error corrector bandwidths, read transport must be
controlled by two eight'cycle stages in series; they are called READTRI and READTR2.

In fact, these stages run on every storage operation, not just on reads. There are several reasons for
this. First. READTR2 reports foults (page faults, map parity errors, error corrections) and wakes up
the fault-handling microtask if necessary (see § 3.3); this must be done for a write as well as for a
read. Second, hardware is saved by making all operations flow through the pipeline in the same
way. Third. storage latency is in any case limited by the transport time and the StorageRAM's cycle
time. Finishing a write sooner would not reduce the latency of a read, and nothing ever waits for a
write to complete.

On a read, STORAGE starts READTRI just as it paralleHoads ReadReg with a block to be
transported. READTRI starts shifting words out of ReadReg and through the error corrector. On a
write, READTRI is started at the same point. but no transport is done. READTRI starts READTR2,
which shares with it responsibility for controlling the transport and the error corrector. READTR2
reports faults (§ 3.3) and completes cache read operations either by delivering the requested word

64 THE ME\10RY SYSTEM OF A HIGH-PERFORMANCE PERSONAL COMPUTER

into FetchReg (for a fetch), or by storing the contents of StoreReg into the newly-loaded block in
the cache (for a store).

3.2 Fast]/0 reftrences

We now look in detail at simple cases of the fast 1/0 references I/ORead and I/OWrlte. These
references proceed almost independently of the cache, and are therefore easier to understand than
fetch and store references, which may involve both the cache and storage.

The reference I/ORea4.x) delivers a block of data from virtual location x to a fast output device.
Figure 7 shows its progress through the memory system; time divisions on the horizontal axis
correspond to microinstruction cycles (60 ns.). At the top is the flow of the reference through the
pipeline; in the middle is a time line annotated with the major events of the reference; at the
bottom is a block diagram of the resources used. The same time scale is used in all three Parts. so
that a vertical section shows the stages, the major events, and the resources in use at a particular
time. Most of the stages pass through eight states, labelled 0 through 7 in the figure.

The I/ORead spends one cycle in the processor and then one in ADDRESS, during which x is
computed and looked up in CacheA. We assume for the moment that x misses; what happens if it
hits is the subject of § 4.4. ADDRESS starts MAP, passing it x. MAP translates x into the real address
r, and starts STORAGE, passing it r; MAP then spends three more cycles rewriting the flags as
appropriate and completing the MapRAM cycle (§ 3.1.2). STORAGE does a StorageRAM access and
loads the 16-word block of data (together with its check bits) into ReadReg. It then starts READTRI

PROC [B]
ADDRESS 0
MAP r--I O-TI-1 -'-12""",r-"3-""-4 'T-"15-'1',-6 -r-'7-'"

STORAGE 10111213141516171

READTR1 I 0 11 12 13 14 15 16 17 1

READTR2 I 0 11 12 13 14 15 16 17 I

time

block on ReadBus fault reporting

! ~1..-.--..\~_t--J7
v

check VA MapRAM Map StorageRAM data in
inCacheA read data out read Read Reg

error-corrected block on
FastOutBus

-
V Map- Storage- Read I I fast
~ '" ~ Reg output A RAM ,.

RAM , I EcCor I '
Read Bus FastOutBus device

-
Figure 7: An I/ORead reference

SEC. 3 TIlE STORAGE PIPELINE 6S

and completes the StorageRA!\{ cycle (§ 3.1.3). READTRI and READTR2 transport the data. control
the error corrector, and deliver the data to FastOutBus (§ 3.1.5). Fault reporting, if necessary, is
done by READTR2 as soon as the condition of the last quadword in the block is known (§ 3.3).

It is clear from Figure 7 that an I/0Read can be started every eight machine cycles, since this is the
longest period of activity of any stage. This would result in 530 million bits per second of
bandwidth, the maximum supportable by the memory system. The inner loop of a fast 1/0 task can
be written in two microinstructions, so if a new I/ORead is launched every eight cycles, one-fourth
of the processor capacity will be used. Because ADDRESS is used for only one cycle per I/OReod,
other tasks-notably the emulator-may continue to hit in the cache when the 1/0 task is not
running.

I/OWrite(x) writes into virtual location x a block of data delivered by a fast input device, together
with appropriate Hamming code check bits. The data always goes to storage, never to the cache,
but if address x happens to hit in the cache, the entry is invalidated by setting a flag (§ 4). Figure
8 shows that an 1/0 Write proceeds through the pipeline very much like an I/ORead. The difference,
of course, is that the WRITETR stage runs, and the READTRI and READTR2 stages, although they run,
do not transport data. Note that the write transport, from FastInBus to WriteBus, proceeds in
parallel with mapping. Once the block has been loaded into WriteReg, STORAGE issues a write
signal to StorageRAM. All that remains is to run READTRI and READTR2, as explained above. If a
map fault occurs during address translation, the write signal is blocked and the fault is passed along
to be reported by READTR2.

PROC ~
ADDRESS Iwi

WR ITETR Il-o""TI-1 12--,1r-3""T'-4 1 5--'Ir-s-r"17--r-1a-rI-9 -r"j,"""O I

MAP , 0 '1 12 13 I * I * 14 15 I S 17 I
STORAGE I 0 11 12 13 14 15 Is 17 1

READTR 1 1 0 11 12 13 14 15 Is 17 I
:lEADTR2 1 0 11 12 13 14 15 Is 17 I

block on block in
WriteBus WriteReg fault reporting

; \t + time I
t \ I t

check VA block on write signal
inCacheA FastlnBus to StorageRAM

fast I I
Input ,. I EcGen 1 ,. Write -
device FastlnBus WriteBus Reg

,,.
-
V
~

Map- Storage-
A RAM RAM

-

Figure 8: An I/OWrite reference

66 THE ME\10RY SYSTB1 OF A HIGH-PERFORMANCE PERSO~AL COMPUfER

Figure 8 shows a delay in the MAP stage's handling of I/O Write. MAP remains in state 3 for two
extra cycles, which are labelled with asterisks, rather than state numbers, in Figure 8. This delay
allows the write transpon to finish before the write signal is issued to StorageRAM. This
synchronization and others are detailed in § 5.

Because WRITETR takes eleven cycles to run, I/O Writes can only run at the rate of one every eleven
cycles, yielding a maximum bandwidth for fast input devices of 390 million bits per second. At that
rate, two of every eleven cycles would go to the I/O task's inner loop, consuming 18 percent of the
processor capacity. But again, other tasks could hit in the cache in the remaining nine cycles.

3.3 History andfault reporting

There are two kinds of memory system faults: map and storage. A map fault is a MapRAM parity
error, a reference to a page marked vacant, or a write operation to a write-protected page. A
storage fault is either a single or a double error (within a quadword) detected during a read. In
what follows we do not always distinguish between the two types.

Consider how a page fault might be handled. MAP has read the MapRAM entry for a reference and
found the vinual page marked vacant At this point there may be another reference in ADDRESS
waiting for MAP, and one more in the processor waiting for ADDRESS. An earlier reference may be
in READTRl, perhaps about to cause a storage fault. The processor is probably several instructions
beyond the one that issued the faulting reference, perhaps in another task. What to do? It would
be quite cumbersome at this point to halt the memory system, deal with the fault, and restart the
memory system in such a way that the fault was transparent to the interrupted tasks. Instead, the
Dorado allows the reference to complete, while blunting any destructive consequences it might
have. A page fault, for example, forces the cache's vacant flag to be set when the read transport is
done. At the very end of the pipeline READTR2 wakes up the Dorado's highest-priority microtask,
the fault task, which must deal appropriately with the fault, perhaps with the help of memory
management software.

Because the fault may be reponed well after it happened, a record of the reference must be kept
which is complete enough that the fault task can son out what has happened. Furthermore,
because later references in the pipeline may cause additional faults, this record must be able to
encompass several faulting references. The necessary information associated with each reference,
about 80 bits, is recorded in a 16-element memory called History. Table 3 gives the contents of
History and shows which stage is responsible for writing each pan. History is managed as a ring
buffer and is addressed by a 4-bit Storage Reference Number or SR~, which is passed along with
the reference through the various pipeline stages. When a reference is passed to the MAP stage, a
counter containing the next available SRK is incremented. A hit writes the address portion of
History (useful for diagnostic purposes; see below), without incrementing the SRN counter.

Entry

Vinual address, reference type, task number, cache column

Real page number, MapRAM flags, map fault

Storage fault bit corrected (for single errors)

Table 3: Contents of the History memory

Written by

ADDRESS

MAP

READTR2

Two hardware registers accessible to the processor help the fault task interpret History: FaultCount
is incremented every time a fault occurs; FirslFaul1 holds the SR:'\ of the first faulting reference.
111e fault task is awakened whenever FaultCount is non-zero; it can read both registers and clear
FaultCount in a single atomic operation. It then handles FaultCount faults, reading successive
elements of History staning with History[FirstF ault}, and then yields control of the processor to the

SEC. 3 TIlE STORAGE PIPELINE 67

. other tasks. If more faults have occurred in the meantime, FaultCount will have been incremented
again and the fault task will be reawakened.

The fault task does different things in response to the different types of fault. Single bit errors,
which are corrected, are not reported at all unless a special control bit in the hardware is set. With
this bit set, the fault task can collect statistics on failing storage chips; if too many failures are
occurring, the bit can be cleared and the machine can continue to run. Double bit errors may be
dealt with by re-trying the reference; a recurrence of the error must be reported to the operating
system. which may stop using the failing memory. and may be able to reread the data from the disk
if the page is not dirty, or determine which computation must be aborted. Page faults are the most
likely reason to awaken the fault task, and together with write-protect faults are dealt with by
yielding to memory-management software. MapRAM parity errors may disappear if the reference is
re-tried; if they do not, the operating system can probably recover the necessary information.

Microinstructions that read the various parts of History are provided, but only the emulator and the
fault task may use them. These instructions use an alternate addressing path to History which does
not interfere with the SRN addressing used by references in the pipeline. Reading base registers,
the Map RAM, and CacheA can be done only by using these microinstructions.

This brings us to a serious difficulty with treating History as a pure ring buffer. To read a
MapRAM entry, for example, the emulator must first issue a reference to that entry (normally a
MapRead), and then read the appropriate part of History when the reference completes; similarly, a
DummyRef (see Table 3) is used to read a base register. But because other tasks may run and issue
their own references between the start of the emulator's reference and its reading of History, the
emulator cannot be sure that its History entry will remain valid. Sixteen references by I/O tasks, for
example, will destroy it.

To solve this problem, we designate History[O] as the emulator's "private" entry: MapReod,
MapWrite, and DummyRefreferences use it, and it is excluded from the ring buffer. Because the
fault task may want to make references of its own without disturbing History, another private entry
is reserved for it. The ring buffer proper, then, is a 14-element memory used by all references
except MapRead, MapWrile, and DummyRef in the emulator and fault task. For historical reasons,
Felch, Slore and Flush references in the emulator and fault task also use the private entries; the tag
mechanism (§ 4.1) ensures that the entries will not be reused too soon.

In one case History is read, rather than written, by a pipeline stage. This happens during a read
transport. when READTRI gets from History the cache address (row and column) it needs for writing
the new data and the cache flags. This is done instead of piping this address along from ADDRESS
to READTRl.

4. Cache-storage interactions

The preceding sections describe the normal case in which the cache and main storage function
independently. Here we consider the relatively rare interactions between them. These can happen
for a variety of reasons:

Processor references that miss in the cache must fetch their data from storage.

A dirty block in the cache must be re-written in storage when its entry is needed.

Prefetch and flush operations explicitly transfer data between cache and storage.

I/O references that hit in the cache must be handled correctly.

Cache-storage interactions are aided by the four flag bits that are stored with each cache entry to
keep track of its status (see Figure 4). The vacant flag indicates that an entry should never match; it
is set by software during system initialization, and by hardware when the normal procedure for
loading the cache fails, e.g., because of a page fault. The dirty flag is set when the data in the entry
is different from the data in storage because the processor did a store; this means that the entry

68 THE MEMORY SYSTEM OF A HIGH-PERFORMANCE PERSONAL COMPUfER

must be written back to storage before it is used for another block. The writeProtected flag is a copy
of the corresponding bit in the map. It causes a store into the block to miss and set vacant; the
resulting storage reference reports a write-protect fault (§ 3.3). The beingLoaded flag is set for about
15 cycles while the entry is in the course of being loaded from storage; whenever the ADDRESS
stage attempts to examine an entry, it waits until the entry is not beingLoaded, to ensure that the
entry and its contents are not used whIle in this ambiguous state.

When a cache reference misses, the block being referenced must be brought into the cache. In
order to make room for it, some other block in the row must be displaced; this unfortunate is
called the victim. CacheA implements an approximate least-recently-used rule for selecting the
victim. With each row, the current candidate for victim and the next candidate, called next victim,
are kept The victim and next victim are the top two elements of an LRU stack for that row;
keeping only these two is what makes the replacement rule only approximately LRD. On a miss, the
next victim is promoted to be the new victim and a pseudo-random choice between the remaining
two columns is promoted to be the new next victim. On each hit, the victim and next victim are
updated in the obvious way, depending on whether they themselves were hit

The flow of data in cache-storage interactions is shown in Figure 2. For example, a Fetch that
misses will read an entire block from storage via the ReadBus, load the error-corrected block into
CacheD, and then make a one-word reference as if it had hit

What follows is a discussion of the four kinds of cache-storage interaction listed above.

4.1 Clean miss

When the processor or lFU references a word w that is not in the cache, and the location chosen as
victim is vacant or holds data that is unchanged since it was read from storage (Le., its dirty flag is
not set), a clean miss has occurred. The victim need not be written back, but a storage read must
be done to load into the cache the block containing w. At the end of the read, w can be fetched
from the cache. A clean miss is much like an I/ORead, which was discussed in the previous section.
The chief difference is that the block from storage is sent not over the FastOutBus to an output
device, but to the CacheD memory. Figure 9 illustrates a clean miss.

All cache loads require a special cycle, controlled by READTRl, in which they get the correct cache
address from History and write the cache flags for the entry being loaded; the data paths of
CacheA are used to read this address and write the flags. This RThasA cycle takes priority over all
other uses of CacheA and History, and can occur at any time with respect to ADDRESS, which also
needs access to these resources. Thus all control signals sent from ADDRESS are inhibited by
RThasA, and ADDRESS is forced to idle during this cycle. Figure 9 shows that the RThasA cycle
occurs just before the first word of the new block is written into CaCheD. (For simplicity and
clarity we will not show RThasA cycles in the figures that follow.) During RThasA, the beingLooded
flag is cleared (it was set when the reference was in ADDRESS) and the writeProtected flag is copied
from the writeProtected bit in MapRAM. As soon as the transport into CacheD is finished, the word
reference that started the miss can be made, much as though it had hit in the first place. If the
reference was a Fetch, the appropriate word is sent to FetchReg in the processor (and loaded into

. FetchRegRAM); if a Store. the contents of StoreReg are stored into the new block in the cache.

If the processor tries to use data it has fetched, it is prevented from proceeding, or held until the
word reference has occurred (see § 5.1). Each fetch is assigned a sequence number called its tag.
which is logically part of the reference; actually it is written into History. and read when needed by
READTRI. Tags increase monotonically. The tag of the last Fetch started by each task is kept in
StartedTag (it is written there when the reference is made). and the tag of the 13$t Felch completed
by the memory is kept in DoneTag (it is written there as the Fetch is completed); these are task
specific registers. Since tags are assigned monotonically. and fetches always complete in order
within a task, both registers increase monotonically. If Started Tag = DoneTag. all the fetches that

SEC. 4

PROC

ADDRESS

WRITETR

MAP

STORAGE

REAOTR1

READTR2

0123456

CACHE-STORAGE INTERACflONS

RThasA cycle
get CacheD address from History

write CacheA flags

Use of CacheD ~--~----~ [
who is using it Rn I RT2

why fetch loading II
I

wont
fetched

o 5 W ~ ro ~ ~
I

Figure 9: A clean miss

69

have been started are done, otherwise not; this condition is therefore sufficient to decide whether
the processor should be held when it tries to use FetchReg. Because there is only one FetchReg
register per task, it is not useful to start another Fetch until the preceding one is done and its word
has been retrieved. The tags are therefore used to hold up a Fetch until the preceding one is done,
and thus can be kept modulo 2, so that one bit suffices to represent a tag. Store references also use
the tag mechanism, although this is not logically necessary.

(Instead of a sequence number on each reference, we might have counted the outstanding
references for each task. This idea was rejected for the following rather subtle reason. In a single
machine cycle three accesses to the counter may be required: the currently running task must read
the counter to decide whether a reference is possible, and write back an incremented value; in
addition, READTR2 may need to write a decremented value for a different task as a reference
completes. Time allows only two references in a single cycle to the RAM in which such task-specific
information must be kept. The use of sequence numbers allows the processor to read both
StartedTag and DoneTag from separate RAMS, and then the processor and the memory to
independently write the RAMS; thus four references are made to two RAMS in one cycle, or two to
each.)

Other tasks may start references or use data freely while one task has a Fetch outstanding. Cache
hits, for example, will not be held up, except during the RThasA cycle and while CacheD is busy
with the transport. These and other inter-reference conflicts are discussed in more detail in § 5.
Furthermore, the same task may do other references, such as Pre/etches, which are not affected by
the tags. The 1Ft; has two FetchReg registers of its own, and can therefore have two fetches
outstanding. Hence it cannot use the standard tag mechanism, and instead implements this function
with special hardware of its own.

70 THE ME.\iORY SYSTE.\1 OF A HIGH-PERFORMANCE PERSONAL COMPUfER

4.2 Dirty miss

When a processor or IFU reference misses, and the victim has been changed by a store since
arriving in the cache, a dirty miss has occurred, and the victim must be re-written in storage. A
dirty miss gives rise to two storage operations: the write that re-writes the victim's dirty block from
cache to storage, and the read that loads CacheD with the new block from storage. The actual data
transports from and to the cache are done in this order (as they must be), but the storage
operations are done in reverse order, as illustrated by a fetch with dirty victim in Figure 10. The
figure shows that the victim reference spends eight cycles in ADDRESS waiting for the fetch to finish
with MAP (recall that the asterisks mean no change of state for the stage). During this time the
victim's transport is done by WRITEfR.

PROC

ADDRESS

WRITETR

MAP

STORAGE

READTR1

READTR2

CacheD
whO WRITETR RTl J RT2

why victim unloading fetch loading II
I

word
fetched

o 5 10 15 20 25 3) 35 40
I I I I I I I I I I I I I I I I I I II I I I 1·1 I I I I I I I I I I I I I I I I I

Figure 10: A dirty miss

There are several reasons for this arrangement. As we saw in § 3, data transport to and from
storage is not done in lockstep with the corresponding storage cycle; only the proper order of events
is enforced. The existence of ReadReg and WriteReg permits this. Furthermore, there is a 12-cyc1e
wait between the start of a read in ADDRESS and the latching of the data in ReadReg. These two
considerations allow us to interleave the read and victim write operations in the manner shown in
Figure 10. The read is started, and while it proceeds-during the 12-cycle window-the write
transport for the victim is done. The data read is latched in ReadReg, and then transported into
the cache while the victim data is written into storage.

Doing things this way means that the latency of a miss, from initiation of a fetch to arrival of the
data. is the same regardless of whether the victim is dirty. The opposite order is worse for several
reasons, notably because the delivery of the new data, which is what holds up the processor, would
be delayed by twelve cycles.

4.3 Prefttch andflush

Pre/etch is just like Fetch, except that there is no word reference. Also, because it is treated strictly
as a hint, map-fault reporting is suppressed and the tags are not involved, so later references are not
delayed A Pre/etch that hits, therefore, finishes in ADDRESS without entering MAP. A Pre/etch that
misses will load the referenced block into the cache, and cause a dirty victim write if necessary.

SEC. 4 CACHE-STORAGE INTERACTIONS 71

A Flush explicitly removes the block containing the addressed location from the cache. rewriting it
in storage if it is dirty. Flush is used to remove a virtual page's blocks from the cache so that its
MapRAM entry can be changed safely. If a Flush misses. nothing happens. If it hits. the hit
location must be marked vacant, and if it is dirty. the block must be written to storage. To simplify
the hardware implementation, this write operation is made to look like a victim write. A dirty Flush
is converted into a FlushFelch reference, which is treated almost exactly like a Pre/etch. Thus, when
a Flush in ADDRESS hits, three things happen:

the victim for the selected row of CacheA is changed to point to the hit column;

the vacant flag is set;

if the dirty flag for that column is set, the Flush is convened into a FlushFetch.

Proceeding like a Prefetch, this does a useless read (which is harmless because the vacant flag has
been set), and then a write of the dirty victim. Figure 11 shows a dirty Flush. The FlushFetch
spends two cycles in ADDRESS. instead of the usual one. because of an uninteresting implementation
problem.

flU~~Ush~:Fetch'S
PROC dir:tY victim

ADDRESS F fF. V. • • • • • •

WRITETR

MAP

STORAGE

READTR1

READTR2

CacheD
who WRITETR

1--____ _

RT1 I RT2

why victim unloading flush Fetch loading

This is ignored because
the vacant flag is set

o 5 ro ~ ro ~ 00 ~ ~
I II

Figure 11: A dirty flush

. 4.4 Dirty]/oRead

If an I/ORead reference hits in a column with dirty set, the data must come from the cache rather
than from storage. This is made as similar as possible to a clean I/ORead. since otherwise the bus
scheduling would be drastically different. Hence a full storage read is done, but at the last minute
data from the cache is put on FastOutBus in place of the data coming from storage. which is
ignored. Figure 12 illustrates a dirty I/ORead followed by two clean ones. Note that CacheD is
active at the same time as for a standard read, but that it is unloaded rather than loaded. This
simplifies the scheduling of CacheD. at the expense of tying up FastOutBus for one extra cycle.
Since many operations use CacheD, but only I/oRead uses FastOutBus, this is a worthwhile
simplification (see § 5.3.4).

72 THE ME.l\fORY SYSTE.\1 OF A HIGH-PERFORMANCE PERSONAL COMPUTER

dirty IIORead

PROC

ADDRESS

WRITETR

clean IIORead 1 clean IIORead 2

c •• ••

MAP 0 1 23456

STORAGE

READTR1

READTR2

CacheD
who RT1 I RT2

why dirty IIOrd unload

FastOutBus
who RT11 RT2 RT1 I RT2 RT1 I RT2

why dirty IIOread clean IIOread 1 clean I/Oread 2

Figure 12: A dirty I/ORead and two clean ones

5. Traffic control

Thus far we have considered memory operations only in isolation from each other. Because the
system is pipelined, however, several different operations can be active at once. Measures must be
taken to prevent concurrent references from interfering with each other, and to prevent new
operations from starting if the system is not ready to accept them. In this section we discuss those
measures.

Table 4 lists the resources used by each pipeline stage in three categories: private resources, which
are used only by one stage; handoff resources, which are passed from one stage to another in an
orderly way guaranteed not to result in conflicts; and complex resources, which are shared among
several stages in ways that may conflict with each other. These conflicts are resolved in three ways:

If the memory system cannot accept a new reference from the processor, it rejects it, and
notifies the processor by asserting the Hold signal.

A reference, once started, waits in ADDRESS until its immediate resource requirements (i.e.,
those it needs in the very next cycle) can be met; it then proceeds to MAP or to HITDATA,
as shown in Figure 3.

All remaining conflicts are dealt with in a single state of the MAP stage.

We will consider the three methods in tum.

SEeS JRAFFIC CONfROL 73

PROC ADDRESS HITDATA MAP . WRITETR STORAGE READTRI READTR2

Private
Resources

MapRAM WriteBus StorageRAM
EcGen

Handoff
Resources

Complex
Resources

5.1 Hold

CacheA
FetchReg
StoreReg

History History

FastlnBus

WriteReg WriteReg

FetchReg
StoreReg
CacheD

History
CacheD

Table 4: Pipeline resources

ReadReg ReadReg
ReadBus
EcCor
FastOutBus

CacheA

CacheD
History

ReadBus
EcCor
FastOutBus

FetchReg
StoreReg
CacheD
History

Hold is the signal generated by the memory system in response t \ a processor request that cannot
yet be satisfied Its effect is to convert the microinstruction conu.ining the request into a jump-to
self; one cycle is thus lost. As long as the same task is running in the processor and the condition
causing Hold is still present, that instruction will be held repeatedly. However, the processor may
switch to a higher priority task which can perhaps make more progress.

There are four reasons for the memory system to generate Hold.

Data requested before it is ready. Probably the most common type of Hold occurs after a
Fetch, when the data is requested before it has arrived in FetchReg. For a hit that is not
delayed in ADDRESS (see below), Hold only happens if the data is used early in the very
next cycle (Le., if the instruction after the Fetch sends the data to the processor's ALU rather
than just into a register). If the data is used late in the next cycle it bypasses FetchReg and
comes directly from CacheD (§ 2.3); if it is used in any later cycle it comes from FetchReg.
In either case there will be no Hold. If the Fetch misses, however, the matching FetchReg
operation will be held (by the tag mechanism) until the missing block has been loaded into
the cache, and the required word fetched into FetchReg.

ADDRESS busy. A reference can be held up in ADDRESS for a variety of reasons, e.g.,
because it must proceed to MAP, and MAP is busy with a previous reference. Other reasons
are discussed in § 5.2 below. Every reference needs to spend at least one cycle in ADDRESS,
so new references will be held as long as ADDRESS is busy. A reference needs the data
paths of CacheA in order to load its address into ADDRESS, and these are busy during the
RThasA cycle discussed above (§ 4.1); hence a reference in the cycle before RThasA is held

StoreReg busy. When a Store enters ADDRESS, the data supplied by the processor is loaded
into StoreReg. If the Slore hits and there is no conflict for CacheD, StoreReg is written
into CacheD in the next cycle, as Figure 4 shows. If it misses, StoreReg must be
maintained until the missing block arrives in CacheD, and so new stores must be held
during this time because StoreReg is not task-specific. Even on a hit, CacheD may be busy
with another operation. Of course new stores by the same task would be held by the tag
mechanism anyway, so StoreReg busy will only hold a Slore in other tasks. A task-specific
StoreReg would have prevented this kind of Hold, but the hardware implementation was

74 THE MEMORY SYSTEM OF A HIGH-PERFORMANCE PERSONAL COMPuTER

too expensive to do this, and we observed that stores are rare compared to fetches in any
case.
History busy. As discussed in § 3.3, a reference uses various parts of the History memory at
various times as it makes its way through the pipeline. Microinstructions for reading
History are provided. and they must be held if they will conflict with any other use.

The memory system must generate Hold for precisely the above reasons. It tums out. however, that
there are several situations in which hardware or time can be saved if Hold is generated when it is
not strictly needed. This was done only in cases that we expect to occur rarely, so the performance
penalty should be small. An extra Hold has no logical effect. since it only converts the current
microinstruction into a jump-to-self. One example of this situation is that a reference in the cycle
after a miss is always held, even though it must be held only if the miss' victim is dirty or the map
is busy; the reason is that the miss itself is detected barely in time to generate Ho/d, and there is no
time for additional logic. Another example: uses of FetchReg are held while ADDRESS is busy,
although they need not be, since they do not use it

5.2 Waiting in ADDRESS

A reference in ADDRESS normally proceeds either to HITDATA (in the case of a hit) or to MAP (for a
miss, a victim write or an 1/0 reference) after one cycle. If HITDATA or MAP is busy, it will wait in
ADDRESS, causing subsequent references to be held because ADDRESS is busy, as discussed above.

HITDATA uses CacheD, and therefore cannot be started when CacheD is busy. A reference that hits
must therefore wait in ADDRESS while CacheD is busy, i.e., during transports to and from storage,
and during single-word transfers resulting from previous fetches and stores. Some additional
hardware would have enabled a reference to be passed to HITDATA and wait there, instead of in
ADDRESS, for CacheD to become free; ADDRESS would then be free to accept another reference.
This performance improvement was judged not worth the requisite hardware.

When MAP is busy with an earlier reference, a reference in ADDRESS will wait if it needs MAP. An
example of this is shown in Figure 10, where the victim write waits while MAP handles the read.
However, even if MAP is free, a write must wait in ADDRESS until it can start WRlTETR; since
WRITETR always takes longer than MAP, there is no point in starting MAP first, and the
implementation is simplified by the rule that starting MAP always frees ADDRESS. Figure 13 shows
two back-to-back I/OWrites, the second of which waits one extra cycle in ADDRESS before starting
both WRITETR and MAP.

The last reason for waiting in ADDRESS has to do with the beingLoaded flag in the cache. If
ADDRESS fmds that beingLooded is set anywhere in the row it touches, it waits until the flag is
cleared (this is done by READTRI during the RThasA cycle). A better implementation would wait
only if the flag is set in the column.in which it hits, but this was too slow and would also require
special logic to ensure that an entry being loaded is not chosen as a victim. Of course it would be
much. better to Hold a reference to a row being loaded before it ever gets into ADDRESS, but
unfortunately the reference must be in ADDRESS to read the flags in the first place ..

5.3 Waiting inMD

The traffic control techniques discussed thus far, namely, Hold and waiting in ADDRESS, are not
suffiCient to prevent all the conflicts shown in Table 4. In particular, neither deals with conflicts
downstream in the pipeline. Such conflicts could be resolved by delaying a reference in ADDRESS
until it was certain that no further conflicts with earlier references could occur. This is not a good
idea because references that hit, which is to say most references, must be held when ADDRESS is

. busy. If conflicts are resolved in MAP or later, hits can proceed unimpeded, since they do not use
later sections of the pipeline.

SEC.S TRAFFIC CONTROL 75

At the other extreme, the rule could be that a stage waits only if it cannot acquire the resources it
will need in the very next cycle. This would be quite feasible for our system, and the proper choice
of priorities for the various stages can clearly prevent deadlock. However, each stage that may be
forced to wait requires logic for detecting this situation, and the cost of this logic is significant
Furthermore, in a long pipeline gathering all the information and calculating which stages can
proceed can take a long time, especially since in general each stage's decision depends on the
decision made by the next one in the pipe.

For these reasons we adopted a different strategy in the Dorado. There is one point, early in the
pipeline but after ADDRESS, at which all remaining conflicts are resolved. A reference is not
allowed to proceed beyond that point without a guarantee that no conflicts with earlier references
will occur; thus no later stage ever needs to wait. The point used for this purpose is state 3 of the
MAP stage, written as MAP.3. No shared resources are used in states 0-3, and STORAGE is not started
until state 4. Because there is just one wait state in the pipeline, the exact timing of resource
demands by later stages is known and can be used to decide whether conflicts are possible. We
now discuSS the details.

5.3.1 STORAGE and WRITETR

In a write operation, WRITEfR runs in parallel but not in lockstep with MAP; see, for example,
Figure 10. Synchronization of the data transport with the storage reference itself is accomplished
by two things. .

MAPJ waits for WRITETR to signal that the transport is far enough along that the data will
arrive at the StorageRAJ.\1 chips no later than the write signal generated by STORAGE. This
condition must be met for correct functioning of the chips. Figure 13 shows MAP waiting
during an 1/0 Write.

WRITETR will wait in its next-to-Iast state for STORAGE to signal that the data hold time of
the chips with respect to the write signal has elapsed; again, the chips will not work if the
data in WriteReg is changed before this point. Figure 10 shows WRITETR waiting during a
victim write. The wait shown in the figure is actually more conservative than it needs to
be, since WRITETR does not change WriteReg immediately when it is started.

PROC

ADDRESS

WRITETR

w •• * ••••••

~P 0 1 2 3 • • 4 5 6

STORAGE

READTR1

READTR2

Figure 13: Two IIOwrites

76 THE MEMORY SYSTEM OF A HIGH-PERFORMAKCE PERSONAL COMPUfER

5.3.2 CacheD: consecutive cache loads

Loading a block into CacheD takes 9 cycles, as explained in § 4.1, and a word reference takes one
more. Therefore, although the pipeline stages proper are 8 cycles long, cache loads must be spaced
either 9 or 10 cycles apart to avoid conflict in CacheD. After a Fetch or Store, the next cache load
must wait for 10 cycles, since these references tie up CacheD for 10 cycles. After a Pre/etch,
FlushFetch or dirty I/ORead, the next cache load must wait for 9 cycles. STORAGE sends MAP a
signal that causes MAPJ to wait for one or two extra cycles, as appropriate. Figure 14 shows a Fetch
followed by a Prefetch, followed by a Store, and illustrates how CacheD conflict is avoided by extra
cycles spent in MAP.3 Note that the Pre/etch waits two extra cycles, while the Store only waits one
extra.

PROC

ADDRESS

WRITETR

fetch orefetch store

...
MAP 0123456

STORAGE

READTR1

READTR2

CacheD
who RT1 I
why fetch

RT2 RT1 I
loading

"
prefetch

I
word

fetched

RT2 RT1 I
loading store

RT2

loading II
I

word
stored

o 5 10 15 20 25 3) 35 40 45
111 III I II

Figure 14: Cache load conflict for CacheD

5.3.3 CacheD: load and unload

The other source of conflict for CacheD is between loading it in a miss read and unloading it in a
victim write. This conflict does not arise between a miss read and its own victim, because the
victim is finished with CacheD before the read needs it; Figure 10 illustrates this. There is a
potential conflict, however, between a miss read and the next reference's victim. CacheD is loaded
quite late in a read, but unloaded quite early in a write, as the figure shows, so the pipeline by
itself will not prevent a conflict. Instead, the following interlock is used. If a miss is followed by
another miss with a dirty victim:

ADDRESS waits to start WRITETR for the victim transport until the danger of CacheD
conflict with the first miss is past.

MAP.3 waits while processing the read for the second miss (not its victim write) until
WRITETR has been started. This ensures that the second read will not get ahead of its
victim write enough to cause a CacheD conflict. Actually, to save hardware we used the
same signal to control both waits, which causes MAP.3 to wait two cycles longer than
necessary,

PROC

SEeS TRAFflC roNTllOL 77

Figure 15 shows a Store with clean victim followed by a Fetch with dirty victim and illustrates this
interlock. ADDRESS waits until cycle 26 to start WRITETR. Also, the fetch waits in MAP.3 until the
same cycle, thus spending 13 extra cycles there, which forces the fetch victim to spend 13 extra
cycles in ADDRESS. The two-cycle gap in the use of CacheD shows that the fetch could have left
MAP.3 in cycle 24. .

store fetch

ADDRESS

WRITETR

MAP

STORAGE

READTR1

READTR2

cacheD
RT1 I

why store

RT2

loading II
I

word
stored

WRITETR

victim unloading

RT1 I RT2

fetch loading I,
I

word
fetched

o 5 10 15 20 25 ao 35 40 45 50 55
I

Figure 15: Cache load/unload conflict for CacheD

5.3.4 FastOutBus conflicts

The final reason for waiting in MAP.3 is a conflict over the FastOutBus, used by I/oRead references.
A dirty I/ORead uses FastOutBus one cycle later than an ordinary I/ORead, so that it can use
CacheD with the same timing as a cache load; see § 4.4. The potential FastOutBus conflict is
prevented by delaying an I/ORead immediately after a dirty I/ORead by one extra cycle in MAP.3.
Figure 12 illustrates this, and also shows how a clean I/oRead can start every eight cycles and
encounter no delay.

6. Physical implementation

A primary design goal of the Dorado as a personal computer is compactness. The whole machine
(except the storage) is implemented on a single type of logic board, which is 14 inches square, and
can hold 288 16-pin integrated circuits and 144 8-pin packages containing terminating resistors.

Boards slide into zero-insertion-force connectors mounted in two sideplanes, one on each side of the
board, which have both bus wiring and interboard point-to-point wiring. Interboard spacing is
0.625 inch, so that the chassis stack of twenty-four board slots is 15 inches high. The entire
machine, including cooling and power, occupies about .14 m3 (4.5 ftl). There are 192 pins on each
side of the board; 8 are used for power connections, and the remainder in pairs for grounds and
signals. Thus 184 signals can enter or leave the board

78 TIlE MEJ\iORY SYSTEM OF A HIGH-PERFORMANCE PERSONAL COMPUTER

Main storage boards are the same size as logic boards but are designed to hold an array of MOS
RA\1S instead of random ECL logic. A pair of storage boards make up a module, which holds 512K
bytes (Plus error correction) when populated with 16K RAMS, 2M bytes with 64K RAMS, or 8M
bytes with (hypothetical) 256K RAMS. There is room for four modules, and space not used for
storage modules can hold I/O boards. Within a module, one board stores all the words with even
addresses, the other those with odd addresses. The boards are identical, and are differentiated by
sideplane wiring.

A standard Dorado contains, in addition to its storage boards, eleven logic boards, including disk,
display, and network controllers. Extra board positions can hold additional I/O controllers. 1bree
boards implement the memory system (in about 800 chips); they are called ADDRESS, PIPE, and
DATA, names which reflect the functional partition of the system. ADDRESS contains the
processor interface, base registers and virtual address computation, Cache A (implemented in 256 by
4 RA1\1S) and its comparators, and the LRU computation. It also generates Hold, addresses DATA on
hits, and sends storage references to PIPE.

DATA houses CacheD, which is implemented with 1K by 1 or 4K by 1 ECL RAMs, and holds 8K or
32K bytes respectively. DATA is also the source for FastOutBus and WriteBus, and the sink for
FastlnBus and ReadBus, and it holds the Hamming code generator-checker-corrector. PIPE
implements MapRAM, all of the pipeline stage automata (except ADDRESS and HITDATA) and their
interlocks, and the fault reporting, destination bookkeeping, and refresh control for the MapRAM
and StorageRAM chips.. The History memory is distributed across the boards: addresses on
ADDRESS, control information on PIPE, and data errors on DATA.

Although our several prototype Dorados can run at a 50 nanosecond microcyc1e, most of the
machines run instead at 60 nanoseconds. This is due mainly to a change in board technology from
a relatively expensive point-to-point wire-routing method to a cheaper Manhattan rout;i.ng method.

7. Performance

The memory system's performance is best characterized by two key quantities: the cache hit rate
and the percentage of cycles lost due to Hold (§ 5.1). In fact, Hold by itself measures the cache hit
rate indirectly, since misses usually cause many cycles of Hold. Also interesting are the frequencies
of stores and of dirty victim writes, which affect performance by increasing the frequency of Hold
and by consuming storage bandwidth. We measured these quantities with hardware event-counters,
together with a small amount of microcode that runs very rarely and makes no memory references
itself. The measurement process, therefore, perturbs the measured programs only trivially.

We measured three Mesa programs: two VLSI design-automation programs, called Beads and Placer;
and an implementation of Knuth's TEX [8]. All three were run for several minutes (several billion
Dorado cycles). The cache size was 4K 16-bit words.

Beads
Placer
TEX

Percent of cycles:
References Hold

36.4
42.9
38.4

8.14
4.89
6.33

Percent of references:
Hits Stores

99.27
99.82
99.55

10.5
18.7
15.2

Table 5: Memory system performance

Percent of misses:
Dirty victims

16.3
65.5
34.9

Table 5 shows the results. The first column shows the percentage of cycles that contained cache
references (by either the processor or the IFc), and the second, how many cycles were lost because
they were held. Hold, happily, is fairly rare. The hit rates shown in column three are gratifyingly

SEC. 7 PERFOR..\iANCE 79

large- all over 99 percent This is one reason that the number of held cycles is small: a miss can
cause the processor to be held for about thirty cycles while a reference completes. In fact, the table
shows that Hold and hit are inversely related over the programs measured. Beads has the lowest hit
rate and the highest Hold rate; Placer has the highest hit rate and the lowest Hold rate.

The percentage of Store references is interesting because stores eventually give rise to dirty victim
write operations, which consume storage bandwidth and cause extra occurrences of Hold by tying up
the ADDRESS section of the pipeline. Furthermore, one of the reasons that the StoreReg register
was not made task-specific was the assumption that stores would be relatively rare (see the
discussion of StoreReg in § 5.1). Table 5 shows that stores accounted for between 10 and 19
percent of all references to the cache.

Comparing the number of hits to the number of stores shows that the write-back discipline used in
the cache was a good choice. Even if every miss had v. dirty victim, the number of victim writes
would still be much less than under the write-through discipline, when every Store would cause a
write. In fact, not all misses have dirty victims, as shown in the last column of the table. The
percentage of misses with dirty victims varies widely from program to program. Placer, which had
the highest frequency of stores and the lowest frequency of misses, naturally has the highest
frequency of dirty victims. Beads, with the most misses but the fewest stores, has the lowest The
last three columns of the table show that write operations would increase about a hundredfold if
write-through were used instead of write-back.

Acknowledgements

The concept and structure of the Dorado memory system are due to Butler Lampson and Chuck
Thacker. Much of the design was brought to the register-transfer level by Lampson and Brian
Rosen. Final design, implementation, and debugging were done by the authors and Ed McCreight,
who was responsible for the main storage boards. Debugging software and microcode were written
by Ed Fiala, Willie-Sue Raugeland, and Gene McDaniel. Raugeland and McDaniel were also of
great help in collecting the statistics reported in § 7. Useful coments on earlier versions of this
paper were contributed by Forest Baskett, Gene McDaniel, Jim Morris, Tim Rentsch, and Chuck
Thacker.

References

1. Bell, J. et. al. An investigation of alternative cache organizations. IEEE Trans. ComputersC·23, 4, April 1974. 346-351

2. Bloom, L.. et. al. Considerations in the design of a computer with high logic-to-memory speed ratio. Proc. Gigacycle
Computing Systems, AlEE Special Pub. S-136, Jan. 1962, 53-63.

3. Conti, C.J. Concepts for buffer storage. IEEE Computer Group News 2, March 1969, 9-13.

4. Deutsch, L.P. Experience with a microprogrammed Interlisp system. Proc. llth Ann. Microprogramming Workshop, Pacific
Grove, Nov. 1979.

5. Forgie, J.W. The Lincoln TX-2 input-output system. Proc. Western Joint Computer Conference, Los Angeles, Feb. 1957,
156·160.

6. Geschke. CM. et. al. Early experience with Mesa.. Comm ACM 20, 8, Aug. 1977, 540-552

7. Ingalls, D.H. The Smalltalk-76 programming system: Design and implementation. 5th ACM Symp. Principles of
Programming Languages, Tucson, Jan. 1978,9-16.

8. Knuth, D.E. TEX and METAFONT: New Directions in Typesetting. American Math. Soc. and Digital Press, Bedford, Mass.,
1979.

9. Lampson, B. W. £1. al. An instruction fetch unit for a high-performance personal computer. Technical Report csL-81-1,
Xerox Palo Alto Research Center, Jan. 1981. Submitted for publication ..

10. Lampson, B. W., and Pier, K.A. A processor for a high performance personal computer. Proc. 7th Int. Symp. Computer
Architecture, SigArch/lEEE, La BauIe, May 1980, 146·160. Also in Technical Report csL·81·l, Xerox Palo Alto Research
Center, Jan. 1981.

11. Uptay, J.S. Structural aspects of the System/360 model 85. II. The cache. IBM Systems Journal 7, 1,1%8,15-21.

12. Metcalfe, R.M., and Boggs, D.R. Ethernet: distributed packet switching for local computer networks.' Comm ACM 19, 7,
July 1976,395-404.

80 mE MEMORY SYSTEM OF A HIGH-PERFOR1\1ANCE PERSONAL COMPlITER.

13. Mitchell. lG. et. a1. Mesa lAnguage Manual. Technical Report CSL-79-3, Xerox Palo Alto Research Center, April 1979.
14. Pohril., A. et a1. The coSt and performance tradeoffS ofbufTered memories. Proc. IEEE 63,8, Aug. 1975,1129-1135.
15. Schroeder. M.D. Performance of the GE-645 associative memory while Multics is in operation. Proc. ,fCN SigOps

Workshop on System Performance Evaluation, Harvard University. April 1971, 227-245.
16. Tanenbaum, A.S. Implications of structured programming for machine architecture. Comm. ,fCN 21, 3, March 1978, '1J7-

246.
17. Teitelman, W. InterlispReJerence Manual. Xerox Palo Alto Research Center, Oct. 1978.
18. Thacker. c.P. et. aI. Alto: A personal computer. In Computer Structures: Readings and Examples, 2nd edition, Sieworek,

Bell and Newell. eds., McGraw-Hill. 1981 Also in Technical Report CSL-79-11, Xerox Palo Alto Research Center, August
1979.

19. Tomasulo, RM. An efficient algorithm for exploiting multiple arithmetic units. IBM J. RtID 11,1, Jaal967. 25-33.
20. Wilkes, M. V. Slave memories and segmentation. IEEE Trans. Computers C' 20, 6, June 1971, 674-675.

