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Abstract 

The main subject of this paper is the detailed description of a mechanical theorem prover for use 
in program verification, following the approach used successfully in the simplifier/theorem-prover 
of the Stanford Pascal Verifier: algorithms are developed for theorem-proving in various logical 
theories, then the algorithms are combined to produce a theorem- prover for the "combination" of 
the theories. The algorithms described in this paper are refinements of those used in coding the 
Stanford Verifier. 

More precisely, algorithms are described for determining the satisfiability of conjunctions of 
literals (i.e., atomic formulas or negations thereof) in the following theories: the theory of the real 
numbers under +, -, <, and :::; ; the theory of Lisp list structure under car, cdr, cons, atom, 
and =; the theory of uninterpreted function ;,ymbols under =, and the theory of arrays under 
operations for accessing and updating elements. A general method for combining such algorithms 
is described and applied to them to produce a single program that determines the satisfiability of 
conjunctions of literals containing any of the above functions and predicates. 

A second subject of the paper is the problem of combining these "special-purpose" theorem­
proving techniques with the two "general-purpose" techniques of matching (or resolution) and 
induction. Several examples are worked through that suggest that matching in the data structure 
of the special- purpose algorithms is a viable alternative to matching using ordinary list structure, 
but the details of an appropriate matcher are not considered. Inductive proofs are considered in 
more detail: formal semantics are described for a logical system that extends first-order logic with 
non-deterministic partial recursive function definitions, and an appropriate induction rule is defined 
and proved to be valid. The rule seems to be suited to the methods of Boyer and Moore; if so, their 
successful heuristics for proving theorems about total functions can be used with the new rule to 
prove theorems about partial functions. This is an important extension, since the specifications 
for programs that manipulate linked data structures are most naturally written using partial (and 
perhaps non-deterministic) recursive function definitions. An example is given of the use of the 
system in verifying the correctness of a "destructive" list reversal program. 

Finally, this paper addresses the question of the role of program verification in contemporary 
programming enviornments. It is argued that there are immediate applications for program 
verification is establishing invariants that are of practical value to a compiler. A programming 
language is outlined that uses verifiable invariants in place of type declarations, thereby allowing 
both a higher level of consistency checking than that performed by compilers for conventional hard­
typed languages, and also the flexible data structures that are ruled out by Ft.rict type systems. 
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Preface 

This paper is a slightly revised version of my Ph.D. thesis. I have rearranged the material to put 
the tedious parts as near to the end as possible, and included a few new results and discussions (in 
particular, in sections 4, 8, and 11). I also changed the semantics of the formal system in order to 
correct errors in the induction rule; thus section 20 is now correct. 

Judging from the requests I have received for "a tape of the simplifier", there is a demand in 
the research community for a good mechanical theorem prover. Instead of preparing a distributable 
binary program, I have worked on concise descriptions of the algorithms, so that those who want 
them can implement them easily. Sections 6 through 13 include a cook-book style guide to the 
parts of the theorem-prover that I understand well and recommend as worth copying. 

This work was influenced by the ECL programming project at Harvard, the Pascal Verification 
project at Stanford, the Analysis of Algorithms group at Stanford, the programming methodology 
prevalent at the Xerox Palo Alto Research Center, and by the research of Bob Boyer and J Moore. 
So if the results are not perfectly harmonious, you can see why. 

I particularly want to acknowledge the contributions of Derek Oppen, who collaborated with 
me on some of this research, and of Bob Tarjan, my thesis advisor, who contributed a valuable 
algorithmic point of view. 

I am grateful for the careful criticism of the manuscript offered by Jim Horning, Dick Karp, 
Don Knuth, Derek Oppen, Wolf Polak, and Bob Tarjan. I have had helpful discussions about this 
material with Bob Boyer, Steve German, J Moore, Bill Scherlis, and Dan Sleator. 

Don Knuth's TEX and METAFONT typesetting and type design systems became available 
just when I needed them, so that the preparation of this manuscript became a facinating, and in 
the main enjoyable, lesson in computer typography. I have used several of Knuth's typesetting 
conventions. 

This research was supported by the Fannie and John Hertz Foundation and by the Xerox 
Corporation. 
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1. Introduction 

The introduction decribes the goals of this research, defends these goals against criticism that has 
been made of program verification, summarizes the results of the paper, and gives some examples 
t11at illustrate tlie value of verification in compilation, the kinds of theorems that a verifier must 
prove-mechanically, and the notation that will be used in the rest of the paper. 

1. Goals 

Programming systems that include mechanical verification as part of the compilation process will 
make programs more efficient, reliable, and flexible-if they can ever be made practical. The main 
reason such systems have not yet progressed beyond the experimental stage is that they depend 
on mechanical theorem provers, which have been too slow and unreliable. The goal of the research 
described in this paper is the construction of a mechanical theorem prover that is fast and reliable 
for the class of problems encountered in program verification. 

If program verification fulfills its greatest potential, future programmers will write programs 
that are as reliable as their specifications, and write specifications in so clear a language that they 
are self-evidently correct. However, research in the last decade has revealed formidable obstacles in 
the path to this goal, and whether it can ever be reached is a subject of debate. Many people have 
concluded that verification methods have no immediate practical value in typical software projects, 
but this conclusion is probably wrong: There is immediate potential for verification methods in 
establishing invariants that, while not strong enough to show the total correctness of the program, 
are still of great practical value in compilation. 

An invariant is a statement that is invariantly true at some point during program execution, 
for example "whenever the procedure qsort is entered, l will be less than r," or "if the if statement 
at line 1405 succeeds, then rlink(p) ~ nil," or "when the GOSUB returns, i will be between 1 
and n." A program verifier's business is to verify the invariants suggested to it by the programmer 
and compiler, and perhaps to ferret some out by itself in the process. 

If appropriate invariants have been established, a compiler can safely dispense with runtime 
checks on array selections and pointer dereferences, can safely produce code that returns records 
to the free list instead of waiting for a garbage collector to do so, can simplify polymorphic or 
otherwise generalized module bodies into the appropriate instance required by the program at 
hand, and can generally provide greater reliability and flexibility without sacrificing the speed of 
the compiled program. 

It is illuminating to view these compilation-related invariants as generalized type declarations. 
Conventional type declarations can be viewed as invariants; for example, to declare that p has 
the type procedure( a : array[l, 10] of integer) is (more or less) to declare that at entry to the body 
of p, it is invariantly true that a is an array of ten integers. A compiler for a cimventional hard­
typed language checks that procedure and module interfaces respect the type system; in other 
words the compiler verifies that the declared invariants really are invariants. The restrictions and 
complications in existing type systems are introduced to facilitate this verification, and could be 
removed if more sophisticated verification methods were used. For example, suppose we are writing 
a procedure p whose argument is an array of integers, ai, •.. , an, and that we do not known in 
advance, but will instead assume the existence of a 0th element ao that contains the number n. 
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Using a programming system based on a mechanical theorem-prover, we could label the entry of 
the procedure with the invariant: 

array(a) /\ lob(a) = 0 /\ hib(a) ~ 0 /\ hib(a) = a(O) 

where array is a predicate that is true of arrays, and lob(a) and hib(a) are the low and high bounds 
of the array a, respectively. A verifying compiler would refuse to compile a program until it had 
verified that the entry condition was satisfied at every call to p, and that only valid compon~nts of 
a were accessed in the body of p. For realistic programs, such a verification requires only simple 
reasoning about inequalities, using automatic techniques that are well-understood and efficient. 

Of course, one could add to Pascal or Algol a particular type to handle this problem, though 
some care must be taken to prevent the program from changing a(O). We might call the type 
"arbitrarily long but not dynamically variable array of integers." In this way many programming 
languages have acquired an elaborate collection of types, whose rules of use are intricate and error­
prone. PL/I, for example, uses several different types for string variables. The invariants verified by 
a mechanical theorem prover can provide more precise specifications for procedures and modules, 
using a type structure that is simple, powerful, and general. 

Thus the invariants of a program range from the trivial ("at line 6, the type of x is integer") 
to the very difficult ("at line 32767, the output file is a valid compiled image of the input file"). 
Existing compilers check the trivial ones; experimental verifiers grapple with the most difficult 
ones; between these extremes there is a class of invariants, rich by comparison to conventional type 
systems, that could be managed by a practical verifying compiler. Section 4 contains a sketch of 
such a type system, and some example programs that use it. 

The basic verification problem is to determine whether a program P meets given entry and exit 
specifications F and G, in the sense that if F is true when P is started, G is invariantly true when P 
finishes. If P is a large program, it will be composed of smaller pieces, each of which will be specified 
with its own entry and exit invariants. P will be verified under the assumption that the pieces 
work correctly, and the pieces will be verified separately. By repeating this process, the general 
verification problem is reduced to the problem of verifying that some elementary construct of the 
programming language meets given entry or exit conditions. If the programming language has an 
appropriate semantic defintion, it will be possible to answer such questions directly (assuming a 
mechanical theorem prover is available). For example, it might be a semantic rule that P(x) is true 
at exit from x +- t if and only if P( t) is true at entry. Such rules for relating predicates before 
and after execution of some programming language construct are called predicate transformation 
semantics for the construct. Program verification, at least as it is now known, cannot be performed 
on languages that lack predicate tr an sf ormation semantics. 

Most languages were designed with no consideration for verifiability, and as a consequence it 
is infeasible to give them predicate transformation semantics. (Their state transformations depend 
on so many obscure properties of the state that the corresponding predicate transformations are 
unmanagable.) To obtain the benefits of program verification, it is necessary to plan for them 
during language design. This is a controversial subject, since many people fear that languages with 
suitably regular semantics will be unequal to the tasks of real-world programming, or in any case 
unsuited to the tastes of most programmers. On the opposing side, a number of languages have 
been proposed, or outlined, with very regular semantics (see for example references [19, 36}) that 
are (arguably) adequate for general-purpose programming. This paper, while primarily concerned 
with mechanical theorem-proving, continues this line of research by using a new language for its 
examples. As a certain amount of discussion of the semantics of the language used for examples 
is inevitable in any case, outlining a new language is not too much of a digression. 
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In summary, the main goal of this research is to develop and refine mechanical theorem-proving 
techniques, and a secondary goal is to outline a programming language and verifying compiler that 
take advantage of the techniques. · 

2. Defense of program verification 

There are mountainous obstacles to program verification, and many people say flatly, "it will never 
work." Before summarizing the results of this paper in section 3, let us consider several objections 
that are frequently raised against program verification, some of them spurious, others serious. 

The first objection that we will consider is based on theoretical results. Many logical theories 
can be shown to be undecidable, or to be decidable only by algorithms with super-exponential time 
bounds. These results are sometimes construed as obstacles to mechanical theorem-proving, but 
to do so is to underestimate their scope: such lower bounds apply not only to machine proofs, but 
to any proofs. For example, [23] proves that there are true statements of length n about geometry 
whose shortest proofs have length 2°Cn); thus there is a theorem of geometry that can be squeezed 
on a page, although any of its proofs would more than fill the universe with fine print. Whether 
we use pencil and paper or electronic computers, such theorems are secure forever from our attack; 
but this is irrelevant to the question of whether mechanical theorem provers can find the proofs 
that mathematicians find. It is also demonstrably difficult to find a winning move in an arbitrary 
position in the game of checkers (in the precise sense that the problem is P-space complete on an 
n by n board), but, as anybody who has seen the construction in the proof [25] will agree, it would 
be mistaken to inf er from this that computers cannot play checkers. 

The second objection is based on the difficulty of specifying a program. To verify mechanically 
that a program has some property, the property must be defined in a formal language. Thus the 
important question arises: can the formal specification of the desired properties of a program be any 
simpler than the program itself? For example, the APL statement x +- in, which sets x to the value 
(1, 2, ... , n), is as simple as any formal specification for it; and at the other extreme, the formal 
specification of all the properties that are desired of some operating system, compiler or editor 
might be as formidable as the listing of a program that has the properties. These examples show 
that it is naive to talk without qualification about verifying the "correctness" of a program; the 
best that can be done is to verify that one complicated object (the program) is "consistent," in some 
complicated technical sense, with another complicated object (the set of specifications). Thus---the 
objection goes-verification does not lead to reliability, but instead multiplies the possibilities for 
error. 

One answer to this question is that adding redundancy makes it more likely that errors will 
show up as inconsistencies. A more forceful answer is that the result of a computation can be 
more clearly specified in a language designed for such specifications than in a language designed 
for describing computations themselves, because specification languages are not required to be 
efficiently executable (or even executable at all). Many programming languages sacrifice some 
efficiency for power, clarity, and ease of expression; but even languages (like APL) that go a long 
way in this direction do not approach the concise and powerful notation common in mathematical 
discourse. If all concern for efficiency is abandoned, complicated programs become simpler; if in 
addition the language they are written in is designed for clarity only, they become simpler still. 

It is a surprisingly difficult task to design a specification language, and those of most verifiers 
are rather cumbersome. Designers of programming languages may think that all their problems· 
would vanish if efficiency w~re no longer required; but it is still a challenge to find a harmonious 
language that is expressive but not baroque. The expressiveness of the specification language is a 
critical factor in program verification; perhaps this has not received the emphasis that it deserves. 
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The third objection is a practical one; it goes something like this: Since everyone knows that 
errors are omnipresent, the attempt to verify a program will either never succeed, or succeed only 
erroneously. There is a lot of truth in this objection. There may be errors in the specifications, in 
the verifier, in the operating system, in the hardware; substitute zero for oh in a few key places 
and a bank's new verified accounting system will set everyone's balance to zero. Foolish people 
advertise program verification along these lines: "Think what peace of mind you will have when 
the verifier finally says 'verified,' and you can relax in the mathematical certainty that no errors 
remain." 

The answer to the objection is that the purpose of verification is not to produce peace of mind, 
but to find bugs in programs. A verifier would indeed be useless if failed verifications did not point 
the way to bugs in the program; but in fact they do. The value of a verifier is in no way contingent 
on its being bug-free. As it is prudent to assume that there are bugs in everything, the message 
at the successful exit of program verifiers should be changed from "Verified" to "Sorry, can• t 
find any more errors." 

In fact, "bug-catcher" is a better name than "verifier" for the kind of system aimed at in this 
paper. Most compilers provide a crude kind of bug-catching in that they check that the usage of a 
variable is consistent with its type (and to achieve this they use an unpleasantly rigid type system). 
Section 4 describes a more expressive type system that can be handled with the aid of a verifier, 
allowing the system to catch many more errors at compile time than a traditional compiler could 
ever hope to. 

The last objection that we will consider is the main one raised by Richard De Millo, Richard 
Lipton, and Alan Perlis in their article [18]. They summarize their argument as follows: "The aim 
of program verification, an attempt to make programming more mathematics-like, is to increase 
dramatically one's confidence in the correct functioning of a piece of software, and the device that 
verifiers use to achieve this goal is a long chain of formal, deductive logic. In mathematics, the 
aim is to increase one's confidence in the correctness of a theorem, and it's true that one of the 
devices mathematicians could in theory use to achieve this goal is a long chain of formal logic. But 
in fact they don't .... We believe that, in the end, it is a social process that determines whether 
mathematicians feel confident about a theorem-and we believe that, because no comparable social 
process can take place among program verifiers, program verification is bound to fail." 

Briefly, the article argues that program verifications are to programming as "imaginary formal 
demonstrations" are to mathematics: they have no role in practice. The authors quote Poincare: 
" ... if it requires twenty-seven equations to establish that 1 is a number, how many will it require 
to demonstrate a real theorem?" They write "The Principia Mathematica was the crowning 
achievement of the formalists. It was also the deathblow for the formalist view. . . . Russell 
failed, in three enormous, taxing volumes, to get beyond the elementary iacts of arithmetic." 
Formal methods (the authors declare) are important only in theory; in practice mathematicians 
use informal methods suitable for human social interaction. 

It is true that we have more confidence in long-standing theorems than in new results, and 
that the social process accounts for this. But instead of focusing on a theorem after it is published, 
or in its formative stages when it may be the subject of excited talk and blackboard discussions, 
consider the crucial stage during which the theorem is transformed from an intuitive idea, perhaps 
supported by diagrams or vague scribbles, into the quasi-formal language that is required by 
scientific journals. This is usually done alone, since it is hard to get anyone to read your error-filled 
drafts; many mistakes are found in this stage (in fact some results simply evaporate); and it is in 
this stage that a mathematican, alone with a thick sheaf of definitions and formulas, relies most 
heavily on formal methods. Since this stage is the one most nearly analogous to the coding of a 
program, we can expect formal methods to be valuable in coding. 
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In other words, this objection is based on a questionable view of the role of formal methods 
in mathematics and computer programming. Since the whole thrust of this paper is towards 
formal methods, we will consider the objection carefully. Let us consider three problems, one from 
analysis, one from topology, and one from computer programming: 

• Determine the area bounded by the x-axis, by the line x = 1, and by the parabola y = x2 • 

• Show that a simple closed curve divides the plane into two regions. 

• Show that if two circularly-linked lists of records are "spliced" by exchanging any link in 
one list with any link in the other list, the result is a circular list containing all records of 
the original two lists. 

The first two problems are much more managable than the third, because of the availability of 
appropriate formal methods. Thus there are standard formal definitions for the notions of area and 
of connected region, but it is not obvious how to state the third problem formally. The solutions 
to the first two problems can also be presented formally: for the first, we have 

f 1 x2 dx = x311 = 1/3; 
lo 3 o 

for the second problem, let /3( G) be the betti number of the group G, l an injection of 8 1 into 8 2 , 

and Ill the range off. Then the number of components of the complement of I/I is 

/3(Ho(8 2 - Ill))= 1 + /3(Ho(8 2 - Ill))= 1+/3(H1(8 1))=1 + /J(Z) = 2. 

By contrast, the third problem requires drawing a picture, which is no proof at all, or an 
inductive proof that runs several pages. Surely this is not because of the inherent difficulty of the 
problem, but rather because appropriate formal methods have not been developed. It is instructive 
to remember how difficult the first two problems are to solve from first principles; before the 
development of symbolic algebra and calculus, Archimedes gave a long geometric construction 
for the "quadrature of the parabola"; before the development of algebraic topology, the Jordan 
Theorem was proved by elementary methods, but the proof is notoriously long and tricky. 

These examples show that a question like "is the Jordan Theorem within the range of a 
mechanical theorem-prover" is nonsense. It depends on what formal methods the machine is armed 
with. Perlis et al. assume that a mechanical theorem-prover must start with primitive notions 
and construct a "foundational" formal proof, in a language like set theory; but this is not true. 
Such foundational demonstrations are relevant only when formal symbolic methods are themselves 
the objects of study, as in Hilbert's program or Whitehead and Russell's work. But outside of the 
fotmdations of mathematics, formal symbolic methods are used in practical reasoning, as the above 
examples showed. MACSYMA is an example of a program which does formal manipulation in a 
practical formal domain. 

The case for formal methods is summarized by Hilbert [27), pp. 441-2: "It is an error to 
believe that rigor in the proof is the enemy of simplicity. On the contrary we find it confirmed by 
numerous examples that the rigorous method is at the same time the simpler and the more easily 
comprehended. The very effort for rigor forces us to find out simpler methods for proof. It also 
frequently leads the way to methods which are more capable of development than the old methods 
of less rigor .... I think that wherever, from the side of the theory of knowledge or in geometry, or 
from the theories of natural or physical sciences, mathematical ideas come up, the problem arises 
for mathematical science to investigate the principles underlying these ideas and so to establish 
them upon a simple and complete system of axioms, that the exactness of the new ideas and their 
applicability to deduction shall be in no respect inferior to those of the old arithmetical concepts." 
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It is a tough challenge to build a system in which we can reason about programs with the 
exactness and deductive ease with which we reason about arithmetic. The results in this paper are 
offered as a step toward this goal. 

3. Summary of results 

Most of the results in this paper are algorithms for mechanical theorem-proving in the conventional 
first-order predicate calculus with equality. These results are presented first, since they do not 
depend on any non-standard logical systems. For reasons described later in this section, the 
predicate calculus is not expressive enough to describe programs that manipulate linked data 
structures. Therefore, in section 16 we extend the predicate calculus with recursive function 
definitions. We defer the semantic definition of the programming language used in the examples 
until section 17, since its semantics are related to those of recursive functions, and because this 
masses the formal technical parts of the paper toward the end where they are out of the casual 
reader's way. Thus, some of the notations used in the first sections of the paper precede their 
formal definitions; we give informal definitions for them in section 4. The last few sections of 
the paper discuss the mechanical theorem proving problem in the presence of recursive function 
definitions. 

The algorithms for theorem-proving in the conventional predicate calculus, described in sec­
tions 5 to 14, are essentially those used by the Stanford Pascal.Verifier [56] to reason about con­
junctions of literals. This part of the Verifier's theorem prover was implemented by Derek Oppen 
and the author. Essentially, the theorem-prover's data stucture is shared by several cooperating 
"satisfiability procedures." A satisfiability procedure for a logical theory is a program that solves 
the "satisfiability problem" for the theory. The satisfiability problem for a theory is the problem of 
determining the satisfiability of a conjunction of literals (signed atomic formulas) from the theory. 

The satisfiability problem is to be distinguished from the decision problem, in which quantified 
statements are allowed. The problem of proving an arbitrary quantifier-free formula F in a theory 
can be reduced to the satisfiability problem; for example, A /\ B :) C is valid if and only if 
A /\ B /\ .., C is unsatisfiable. If the boolean structure of F is complicated, this reduction may 
produce exponentially many instances of the satisfiability problem. If we excude such formulas 
(since no practical way to handle them is known), then the complexity of the satisfiability problem 
for a theory is a good measure of how difficult it is to reason mechanically in the theory. 

The theorem-prover for the Stanford Pascal Verifier contains satisfiability procedures for four 
logical theories: the theory R of the real numbers under addition, the theory c of equality with 
uninterpreted function symbols, the theory L of Lisp list structure, and the theory A of arrays. 
These theories are defined in section 5; here we briefly describe their satisfiability problems. 

The satisfiability problem for R is equivalent to the linear programming problem. Khachian 
[29] describes a polynomial-time algorithm for this problem, but the algorithm has not been tested 
in practice. The satisfiability procedure for R is based on the simplex algorithm, which takes 
exponential time in the worst case, but is fast in practice. An example of a conjunction that it 
will prove inconsistent is 

y > 2x + 1 /\ y > 1 - x /\ y < 0. 

In general, the simplex algorithm will determine the satisfiability over the reals of any conjunction 
of linear inequalities or equalities. Although almost all theorem provers used in program verification 
have special routines for arithmetic formulas, the simplex algorithm has rarely been used, possibly 
because most implementations of the algorithm are designed to handle large problems arising in 
operations research, and such implementations are not suitable for mechanical theorem proving. 
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The implementation of the simplex algorithm is described in section 6. The theorem prover uses 
heuristics for formulas containing non-linear inequalities and integer-restricted variables, but these 
will not be described. 

The satisfiability programs for the theories c, L, and A are all based on the "congruence 
closure" algorithm. Section 6 describes the congruence closure problem and its relation to mechani­
cal theorem proving. Section 7 describes a satisfiability procedure for c based on a simple O(n2) 

congruence closure algorithm. A faster algorithm is destribed by Downey, Sethi, and Tarjan [20]. 
Sections 9 and 10 describe the satisfiability procedures for L and A. 

An example of a valid formula in the theory c of equality with uninterpreted function symbols 
is x = y :::> f(x) = f(y). A more interesting example is 

g(g(g(x))) = x A g(g(g(g(g(x))))) = x :::> g(x) = x. 

The theory L is essentially the theory of ordered pairs under the Lisp functions for constructing 
them and selecting their components. These functions are defined as follows: cons(x, y) is the 
ordered pair (x, y); car(z) and cdr(z) are the first and second components respectively of the ordered 
pair z; and atom{z) is true if and only if z is not an ordered pair. An example of a theorem in this 
theory is 

.., atom(x) A .., atom(y) A car(x) = car(y) A cdr{x) = cdr(y) :::> x = y. 

The time and space costs of the satisfiability procedures for c and L are dominated by the 
congruence closure algorithm. Thus, using various versions of the algorithm described by Downey, 
Sethi, and Tarjan [20], these satisfiability problems can be solved in O(n log n) average time and 
0( n) space, or 0( n log2 n) worst-case time and 0( n) space, or 0( n log n) worst-case time and 0( n 2 ) 

space. 
Finally, the theorem prover contains a satisfiability procedure for the theory of arrays under 

operations for updating and selecting elements. Essentially, the literals handled by this satisfiability 
procedure are equalities and negated equalities between terms containing "array selections" like v(i) 
as well as "updated arrays" like v <:>, where v <:> denotes the array each of whose components is 
equal to the corresponding component of v except for the ith component, which is equal to e. 
That is, v (~) is the array to which v is tr an sf ormed by the assignment v( i) +- e. An example of a 
statement valid in this theory is 

a(!) = b(!) A a(x) ~ b(x) :::> x = i. 

The satisfiability problem for A was first solved by Kaplan [28]. The results vf Downey and Sethi 
[21] show that the problem is NP-hard. Section 10 describes an algorithm for this satisfiability 
problem that is simpler than Kaplan's. It follows from the results in section 10 that the problem 
is NP-complete. 

The formulas that the theorem prover must prove usually do not fall within any of these 
naturally-defined theories-they involve "mixed" terms containing functions and predicates from 
several theories. Satisfiability procedures have been found for some theories with "mixed" terms: 
[53] gives a satisfiability procedure for Presburger arithmetic with uninterpreted function symbols, 
and [57] for Presburger arithmetic with arrays and uninterpreted function symbols. Section 5 
describes a general method for combining satisfiability procedures for two theories into a single 
satisfiability procedure for their combination, which contains the functions and predicates of both 
theories. This method was described previously in Nelson and Oppen [44]. The method is used in 
the Stanford Pascal Verifier to combine the four satisfiability procedures mentioned above. 



8 INTRODUCTION 

The conventional predicate calculus is not expressive enough to reason about programs that 
manipulate linked data structures. A good solution to this problem is to add partial recursive func­
tion definitions to the specification language. This makes it possible to formalize, in a precise but 
intelligible way, many specifications that are difficult or impossible to formalize in the specification 
lang_uages of existing automatic verifiers. Section 16 gives gives a formal semantic definition for an 
extension of the predicate calculus that allows partial recursive function definitions. 

This paper makes only a small start on the problem of reasoning mechanically about partial 
recursive functions. Although most specifications are easy to state, the formal verification that 
a program meets its specification is likely to be long and complicated. Section 19 describes how 
to modify the data structure used by the satisfiability procedures in order to accomodate partial 
recursive functions. Section 20 describes an induction rule for the system. This rule is based on the 
induction rule described by Boyer and Moore [7], in the hope that their highly successful heuristics 
for constructing induction arguments in a system based on total recursive functions can be used 
for the system described in section 16. 

Here is an example illustrating the importance of recursive functions in specifying programs 
that manipulate pointers. Consider formalizing the statement that a is a list linked by the field l 
that terminates in nil; that is, of formalizing the statement: 

a= nil or l(a) =nil or l(l(a)) = nil or · · ·· (1) 

(Ignore whatever specifications are required about the types of the nodes or the other fields in the 
nodes.) No formula H of the first-order predicate calculus with function symbols and equality is 
equivalent to (1). For if H entails (1), the infinite conjunction 

H A a~ nil A l(a) ~ nil A l(l(a)) ~nil A (2) 

is unsatisfiable. By the compactness of first-order logic, some finite subconjunction of (2) is 
unsatisfiable; so H entails some finite sub-disjunction of (1), which means that H is much too 
strong. 

Using a time-honored form of definition, the valid lists could singled out as follows: 

(a) nil is a valid list. 
(b) if l(x) is a valid list, then x is a valid list. 
(c) nothing is a valid list unless it is because of (a) and (b). (3) 

(There is a tendency to write the converse of (b), erroneously associating l with the successor 
fucction on the natural numbers. Instead l is analogous to the predecessor function, although .of 
course l need not be one-to-one.) Points (a) and (b) are easily stated in the predicate calculus, 
but some extension is needed to formalize the "extremal clause" (c). The specification language 
extends the predicate calculus by allowing recursive function definitions. To formalize (1), we make 
the recursive definition 

Function validlist(x) = [ x = nil :::} true; validlist(l(x)) D· (4) 

Then we express (1) by stating that the computation specified by the term validlist(a) terminates 
with the result true. (The notation on the right means, "if x = nil then true else validlist(l(x))" .) 
Obviously if x is a valid list because of (a) and (b ), then the computation of validlist(x) terminates 
with true, since the two branches in the function definition correspond precisely to (a) and (b). 
Furthermore if validlist(x) is evaluated in any standard way, it will loop unless x is a valid list 
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because of (a) and (b). Thus recursive definitions can be used to formalize definitions containing 
extremal clauses. A particular evaluation rule is defined in section 16. 

The objection may be raised that recursive definitions are essentially programs, and if they are 
allowed in the specification language, then the specifications may become as hard to understand as 
the programs themselves. But the whole point of a specification language is to introduce powerful 
forms of expression. There is no protection from badly· written specifications; any language 
expressive enough to describe specifications for interesting programs contains formulas that are 
hard to understand. The more powerful the specification language is, the more likely it will be 
that a program can be specified simply. To formalize the predicate "n is equal to the factorial 
of m" in the first-order theory of the natural numbers requires a hideous formula; its recursive 
definition is simple and natural. 

4. Notation and examples 

This section consists of several examples whose purposes are to introduce some notation and to 
illustrate the potential uses of mechanical verification in compilation. 

The first example is a program that implements the union and find operations for maintaining 
an equivalence relation on a set of n items, using a simple algorithm, which requires a single 
array a(l), ... , a(n) whose values are integers in the range [O, n]. The invariant maintained by 
the algorithm is that for any i in [1, n}, the sequence i, a(i), a(a(i)), ... contains O, and that the 
call find(i) returns the last value in this sequence before 0, and finally that two items i and j 
are equivalent if and only if find( i) = find(j). Under these assumptions, the identity relation can 
be represented by making a(i) = 0 for all i. Furthermore, the equivalence classes represented 
by find( i) and find(j) can be merged by assigning a( find( i)) - find(j). Here is a program that 
implements these operations, together with some specifications for the program: 

Declare (V' i) 1 < i < n ~ 0 < a( i) S n. 

Procedure find(i) - IT a(i) = 0 ==} i; find(a(i)) n. 
Procedure union(i,j) = 

IT i - find(i); 
j - find(j); 
i = i ==} IT Il; 

a(i) - ill· 

Entering find, i S i S n. 
Exiting find, 1 < V S n. 
Entering union, 1 < i S n /\ 1 S j < n. 

The code above contains two procedure definitions and three kinds of specifications. We explain 
the meaning of each construct in turn. 

A procedure definition associates an executable statement and a list of formal parameters 
with a function symbol, in the usual way. Thus the first procedure definition above associates 
with the function symbol find the list containing the single formal parameter i, and the executable 
statement IT a(i) = 0 ==} i; find(a(i)) ]. Once a procedure is defined it may be called in the usual 
way. 

There are five kinds of statements, each of which returns some value (as well as possibly 
producing side effects): A variable is considered a statement, whose execution returns the value of 
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the variable. An expression v +- S, where v is a variable and 5 is a statement, is a statement; its 
effect is to bind v to the value produced by executing S. An expression like a(i) +- x is allowed 
as an abbreviation for the assignment statement a +- a(~); see section 3 for the definition of this 
notation. An expression of the form with Vt = s1, ... , Vn = Sn do S, where the vi are variables 
and 5 and the Si are statements, is a statement; its effect is to execute s1, ... , Sn in turn, producing 
values ui, ... , Un, then to bind each Vi to ui, then to execute 5, producing a value u, then to 
restore the original bindings of v1 ••• Vm and finally to return u. 

An expression j(s1, ... , sn), where J is a function symbol and the Si are statements, is a 
statement. If J is a "built-in function", execution of the statement proceeds with the execution 
of St through sn in order, producing values u 1 through Uni then the built-in function is applied 
to these val~es an,d -~he re~ult is returned. Otherwise J will have been defined as a procedure with 
formal parameters vi, ~ •• -, ·vn and body 5; in this case the effect of the statement is identical to 
that of with v1 = si, ... , vn = Sn do S. (This implies that all parameters are passed by value.) 

The fifth kind of statement is a "conditional statement" of the form [ C 1; ... C n D, where each 
Ci is a command; a command is either a statement or an expression of the form P ::::} 5, where P 
and S are statements. To execute a conditional statement, the commands are executed in order, 
except that a command of the form P ::::} 5 is an "exit conditional": if P is true when the exit 
conditional is reached, then S is executed and the rest of the conditional statement is skipped; 
if P is not true, then S is ignored and execution continues with the next command. Of course, 
P is executed to determine its truth value. Here is an example of a conditional statement and 
equivalent flowchart: 

[ P ::::} A; 

S; 

Q ::::} [ C; DB; 

ED; 

As special cases we have the conventional conditional expression 

with the meaning "if Pt then E1 else if P2 then E2 else ... if P n then En else En+1,'' and 
the ordinary block [ S 1; ... ; Sn D where no Si contains ::::} , which is equivalent to the Algol 
begin 5t; ... ; Sn end. This notation is used in the ECL programming system [61). 

There are no iteration primitives; all loops must be created by recursion. Note that the 
definitions above imply that the scoping of variables is dynamic, as in Lisp. This concludes the 
description of the imperative features of the language. 

The declarative features of the language differ from conventional declarations just as one 
would expect in a language designed to be compiled with the aid of a mechanical theorem-prover: 
declarations are expressed in a formal logical language, and are not confined to listing the types 
of variables, but may declare any invariant that is expressible in the logical language. It is 
not necessary in this informal introduction to discuss the semantics of the logical language; as 
declarative notation is more standardized than imperative notation, we can use functions and 
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predicates on numbers, boolean connectives and quantifiers without ambiguity. In section 16 the 
logic is defined precisely. 

To avoid confusing our declarations with those of conventional programming languages, we 
will call them specifications. A specification may be associated with the point of entry or point of 
exit of any procedure; the syntax for such specifications is shown in the union-find program above. 
The specification 

Entering find, 1 S i S n 

declares that whenever the body of find is entered (note that this is after the formal parameter is 
bound), i is between 1 and n. Exit specifications are similar, but when describing the exit from a 
procedure it is desirable to be able to refer to the value returned by the procedure, so we make the 
convention that in an exit specification, the symbol V refers to the returned value. Thus the exit 
specification of find declares that the value returned by the procedure is between 1 and n. The 
third and final way of declaring a specification is with the keyword "Declare", as at the top of the 
example; this construct declares that the specification is true at every entry and every exit to or 
from any procedure. 

We will use the word module to denote a set of procedure definitions and specifications; thus 
the union-find example above is the listing of a module. We say that an entry (or exit) from a 
procedure is valid if the context at entry (or exit) satisfies all specifications associated with the 
entry (or exit). A module is consistent if any valid entry to any procedure of the module leads to 
a computation in which there are no invalid entries or exits. (We do not require that a valid entry 
lead to a terminating computation.) 

The union-find module is consistent. Consider, for example, a valid entry to find, and suppose 
that a( i) -:/::. 0, so that the recursive call is reached. Then the recursive entry will be valid, since 
we know that 0 S a( i) < n and that a( i) -:/::. 0 from which it follows that 1 S a( i) S n. Similarly, 
one may verify every other "path" in the program from entry to entry or from entry to exit (the 
path we have just checked is in fact the most difficult); it follows by induction that the module is 
consistent. 

There are close relations between the definition of the logical semantics of the specification 
language, the definition of the predicate transformation semantics of the programming language, 
and the definition of consistency; these definitions are all givin formally in sections 16 and 17. 

If our only interest in a program were to verify it, then we could end our discussion of semantics 
with the definition of consistency. But in fact our main interest in a program is our ability to run 
it, and the predicate transformation semantics do not by themselves say what happens when a 
program is run, since the predicates are uninterpreted. To define a working programming system, 
we need to choose a class of finitary values that will be represented in the run-time environment of 
a program, and to agree that certain predicate symbols denote certain predicates on this class. This 
choice, which we may loosely call the choice of a type structure, has as much effect on the character 
of the language as the choice of its predicate-transformation semantics; for example languages like 
Lisp, APL or SETL could be defined by choosing the class of symbolic expressions, of sets, or of 
matrices. (It is important to note that the way we have defined things, the predicate-transformation 
associated with a statement of our language does not depend on the "types" of the values in the 
statement; this factoring helps keep the semantics manageable.) 

It is beyond the scope of this paper to give a precise definition for any type structure, but we 
will briefly outline one possible structure, in order to give a few examples of the kind of program 
that one would write for a verifying compiler. 

We postulate the existence of a compiler conversant with integers, floating-point numbers, 
characters, boolean values, arrays, and record-pointers, and we reserve the predicate symbols int, 
char, real, bool, array, recptr as names for the appropriate predicates. If a is an array, lob(a) 
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and hib(a) are the lower and upper bounds, respectively, for a's index set, which we assume to 
be an interval of integers. If p is a record-pointer, we write field(!, p) to denote that f is a valid 
field selector for the record pointed to by p. (Field selectors are values, not constants; perhaps 
the compiler represents them as byte offsets. No predicate symbol is reserved for recognizing field­
selectors, because no use for one is immediately apparent.) By avoiding the two types pointer and 
record, and combining them into one type record-·pointer, we lose very little flexibility in practice, 
and gain simplicity in notation (cf. Lisp and Algol W). 

Conventional type declarations are effected by using these predicates in entry specifications; 
for example the type declaration in the Algol procedure "p(x : int)" can be mimicked by the 
declaration "Entering p, int(x)." The rich specification language allows interfaces to be described 
more precisely; for example, 

Entering p, array(a) /\ lob(a) = 0 A hib(a) > 0 A hib(a) = a(O) 

declares that when entering p, a is an array whose high bound is stored in its first element, which 
is indexed by 0. 

To describe linked record structures precisely is a challenge to the specification language (see 
sections 15 and 16), but it is not difficult to describe the number and general nature of the fields 
and links after the manner of a conventional type system. For example, consider specifying the 
interface to a procedure that inserts a record r into an ordered list a, l(a), l(l(a)), ... , of records, 
where the keys of the records are integers contained in the field k. We want to use the procedure 
on different types of records at different times, but we assume that k and l are global constants 
and that any time the procedure is entered, a is the first record of an appropriate list. (We do not 
assume that all the records in the list headed by a have the same structure; only that they each 
have integers stored in the field whose offset is k, and that they each have links to appropriate 
records stored in the field whose offset isl.) If we can define in the specification language a predicate 
node that is the weakest ~redicate that satisfies the axiom: 

(V x) node(x) A x 'I:- nil :::> 
field(k, x) /\ int(k(x)) /\ field(/, x) A node(l(x)). 

(I.e., "if x is any node, then either it is nil, or it is a pointer to a record for which k and l are 
valid field selectors, and k(x) is an integer and l(x) is a node) then we can formulate the entry 
specification of our procedure as 

Entering insert, node(a) A node(r). 

(Instead of requiring that r be a node, we probably would just require that it have an integer k 
field and any recordpointer for its l field, since we do not care what l(r) points to.) 

One way to "define" the predicate node is to simply assume that it satisfies the axiom above. 
This is what we will do for now, although the specification language is capable of more precise 
definitions. 

We introduce the abbreviation 
Field f : P --+- Q 

for 
Declare (Vx) P(x) Ax 'I:- nil :::> field(f,x) A a(f(x)). 

Thus the axiomatic definition of node above could be written: 
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Field k : node -+ int. 
Field l : node -+ node. 

We also introduce the abbreviation 

Array A: [I, h]-+ Q. 

Declare array(A) A lob(A) = I A hib(A) = h A (V x) Q(A(x)). 
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(The compiler will not allow a program to access non-existent array elements, so it does no harm 
to assume that Q holds for these non-existent elements.) 

In both of the above abbreviations, we allow Q to be an expression for the form [a, b], in which 
case Q(x) should be understood to mean int(x) A a :=; x < b. 

Every value x in the universe has a size size(x); this might be the number of bits or bytes or 
words required to represent the value; its exact meaning concerns no one but the implementor of 
the compiler. We assume, though, that all characters have the same size, as do all floating-point 
numbers, all (that is, both) booleans, and all record-pointers. (The size of any record-pointer is 
size(nil).) Different integers may have different sizes, but we assume that if n is positive, and 
lml ::; n, then size(m) ::; size(n). 

Every array a has a component size csize(a), and if pis a record-pointer and f is a field of 
p, then this field has a size fsize(f, p). We assume that the size of an array is the product of its 
component size by the number of its elements. 

We use the notation (f1 : v1 , •.• ,J,,,, : vn] to denote a record pointer to a record with fields 
f 1, ••• , f ,,,,, such that the value in the ith field is vi, and the size of the ith field is size( vi)· This 
notation is allowed to appear in programs. Subsequently, the compiler will not allow the program 
to store a value into a field of the record unless it fits there, so a programmer who intends to store 
objects of varying sizes in a field of a record must create the record with a sufficiently bulky value 
in the appropriate field. 

We use the notation [a, b] : v to denote an array whose lower and upper bounds are a and b 
respectively, whose component size is size( v ), and all of whose values are v; the notation is allowed 
in programs; and the compiler will not store a value in an array if the value's size exceeds the 
component size of the array. 

To illustrate these conventions, here is a module which defines a predicate string together with 
a function concat that operates on any two objects that satisfy the string predicate. An object is 
a string if it is a pointer to a record that includes the two fields strlen and strdata, the first of 
which is an integer, the second of which is an array of characters whose length is determined by 
the strlen field: 

Field strlen : string -+ [O, 32767). 
Field strdata : string -+ array. 
Declare (V' x) string(x) :::> Array strdata(x) : [1, strlen(x)] -+char. 

Procedure concat(x, y) = 
with xylen = strlen(x) + strlen(y), xy =nil do 

[ xy +- [strlen : 32767, strdata : [1, xylen] : " "]; 
xylen > 32767 => error(); 
strlen(xy) +- xylen; 
fillin(O, x, 1); 
fillin(strlen(x), y, 1); 
xyD. 
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Procedure fillin(o// set, source, i) = 
[ i > strlen(source) :::} [ D; 

strdata(xJ!J(offset + i) +- strdata(source)(i); 
fillin(off set, source, i + 1) D· 

Entering eoneat, string(x) A string(y). 

Entering fillin, 1 < i < strlen(source) + 1 A 
strlen(xy) ~-off set> strlen(source). 

The concatenation procedure simply allocates an appropriate record and fills it in. We assume 
that " " denotes the character code for a space. Notice that there is wasted work in initializing 
the strdata field to contain blanks; there are several ways of avoiding this, including using a kind 
of reverse flow analysis to determine that the blanks are going to be overwritten. We want the 
strdata offset to be constant for all strings, so we make all strlen fields the same size; here we choose 
sillle(32767), which on a byte-oriented machine will be two bytes. The error check is necessary, since 
otherwise the compiler would not be able to verify that xylen will fit in the field of the record, and 
would refuse to cQmpile the program. 



2. Satisfiability Procedures 

Sections 5 through 14 discuss theorem-proving by satisfi.ability procedures or "special-purpose 
provers". First a method of combining satisfi.ability procedures is described, then satisfi.ability 
procedures for e, L, and A are described, all three based on a "congruence closure algorithm", and 
then a satisfiability procedure for R is described based on the simplex algorithm. The satisfi.ability 
procedures for L and A are derived methodically, following a procedure similar to the Bendix-Knuth 
algorithm. Finally, in sectio11 14, the matcl1ing problem is discussed briefly. 

5. Combining satisfiability procedures by equality-sharing 

Let R be the set { +, -, <, :::; , =, ¥:-, O, 1} of the common arithmetic constants, functions, 
and predicates, excluding multiplication; and let E be the set { =, ¥:-, f, g, ... }, containing many 
"uninterpreted functions" taking various numbers of arguments. Consider the problem of deter­
mining the satisfiability over the reals of a conjunction of literals (that is, signed atomic formulas) 
containing only variables and the symbols in R U E. This problem is important in mechanical 
verification, where the formulas that arise often contain both arithmetic and non-arithmetic func­
tions. A typical instance of the problem is to determine the satisfiability of 

f{f(x) --· f(y)) ¥- f(z) /\ x :::; y /\ y + z < x /\ z ~ 0. (1) 

This conjunction is unsatisfiable, since the three inequalities imply that x = y and z = O, hence 
the disequality is equivalent to f(O) ¥- f(O). 

In general, the satisfi.ability problem for a set of functions, predicates and constants is the 
problem of determining the satisfiability of a conjunction of literals containing {besides variables) 
only functions, predicates and constants in the set. (The satisfiability problem is to be distinguished 
from the decision problem, in which quantified statements are allowed.) The satisfiability problem 
for RUE is unusual because it allows "mixed" terms containing functions and predicates from two 
"natural" theories (the theory of the real numbers and the theory of equality with uninterpreted 
function symbols) that intuitively have nothing to do with one another. The separate satisfiability 
problems for R and E were solved long ago-the first by Fourier, the second by Ackermann. But 
the combined problem was not considered until recently, when it became important in program 
verification. A solution to the satisfiability problem for R U E was first given by Shostak [53]; 
another solution for a larger class of functions has been given by Suzuki and Jefferson [57]. 

This section describes a general method for "factoring" the satisfiability problem for SUT into 
the two satisfiability problems for Sand T, given certain conditions on S and T. The method gives 
practical solutions to many satisfiability problems that are important in practice, including that 
for RUE. This material represents joint work with Derek Oppen, and was described previously 
in [44]. 

Strictly speaking, the satisfiability problem is not defined for a set of functions and predicates, 
but for the theory of these functions and predicates under some axiomatization. For the purposes 
of this section, an informal definition of a theory is sufficient. The formal definition of a theory is 
in section 16; the formal proof of correctness of the algorithm described in this section is delayed 
till section 18, though this section contains an informal proof. 
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Informally, a theory is determined by a set of function symbols, which will be called the free 
functions of the theory, together with a set of axioms constraining the interpretation of the function 
symbols. The axioms are written in the first··order predicate calculus with function symbols and 
equality; thus any theory "gets equality for free." We regard a constant as a special case of a 
function symbol. We now describe the theories L, A, R, and e. 

Let L be the theory of Lisp list structure with the three axioms 

(Vxyuv) car(cons(x,y)) = x A cdr(cons(x,y)) = y 

(Vz) atom(z) {::} (Vxy) z rf cons(x,y) 

atom( nil) 

These axioms imply that z = cons( car(z), cdr(z)) whenever z is non-atomic, since in this case 
z = cons( u, v) for some u and v (by the second axiom), and it follows from the first axiom that 
u = car(z) and v = cdr(z). Notice that these axioms do not imply cdr(x) rf x; the axiomatization 
allows "circular" structure. The free functions of L are car, cdr, cons, atom, and nil. 

We must introduce some notational conventions for the theory of arrays, since we want to use 
notation like a(x), where a is a variable instead of a function symbol, and like a<:>, but neither 
of these are legal in the usual syntax of first-order logic. Thus we adopt the following convention: 
If t and u are terms, the expression t ( u) is an abbreviation for the term select( t, u ). This causes 
no ambiguity, since the term t cannot be confused with a function symbol. We also adopt the 
convention that an expression of the form a(!), where a, e, and i are terms, is an abbreviation for 
the term store( a, i, e). 

With these conventions, let .A be the theory with the free functions store and select and the 
two axioms: 

(Vxae) a<:>(x) = e 
(Vxyea)x"rfy:) a<~>(y)=a(y) 

These axioms express the obvious properties of store and select. 
Let R be the theory of the real numbers under addition, whose free functions are +, -, <, 

and the numerals. We also define the theory Z of the reals under addition with the additional 
predicate int recognizing integers, and Rx and Z x that are like R and Z respectively except that 
they include multiplication. For axiomatizations of these theories, see [26] or [59]. A satisfiability 
procedure for R is given in section 12. Unfortunately no satisfactory satisfiability procedures are 
known for Z, R x , or Z x , though Z can be handled reasonably well using heuristics. 

It is convenient to define the theory c of equality with uninterpreted function symbols, whose 
theorems, like x = y :) f(x) = f(y), are valid because of the properties of equality. It is not 
necessary for c to have any axioms, since the semantics of equality are built into the system. We 
want all uninterpreted function symbols to be free functions of c. In the context of this paper an 
"uninterpreted" function symbol is one that is not a free function of Z x, L, or A, so we define c 
to be the theory with no axioms and whose free functions are all function symbols except +, -, 
X, <, /, the numerals, int, cons, car, cdr, atom, nil, store, or select. 

If S is a theory, then a term, literal, or formula will be called an S-term, $-literal or $-formula, 
respectively, if all function symbols appearing in it are free functions of S. For example, x = y 
and x < y + 1 are !<.-literals but x ::::;; car(y) is not. 

The satisfiability problem for a theory S is the problem of determining the satisfiability in S 
of conjunctions of S-literals. This makes the earlier notion of a satisfiability problem precise. The 
general quantifier-free decision problem for S can be reduced to the satisfiability problem, since a 
formula is satisfiable if and only if one of the disjuncts of its disjunctive normal form is satisfiable. 
A satisfiability procedure for S is an algorithm that solves the satisfiability problem for S. 
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If S and T are two theories with no common free functions, their combination is the theory 
with all the axioms and recursive function definitions of 'S and of T. Given satisfiability procedures 
for S and T, this section describes a method for constructing a satisfiability procedure for the 
combination of S and T. 

The method works only for theories with no common free functions. For example, it cannot 
be used to combine satisfiability procedures for R. x and Z into a satisfiability procedure for Z x. 
(Which is as it should be, since the satisfiability problems for R. x and Z are recursive, but that 
for Z x is not.) 

We begin with an example illustrating how the method determines that the conjunction (1) 
is unsatisfiable. Assume that we have satisfiability procedures for R. and c. We will use the same 
names "R." and "€" for the satisfiability procedures that we use for the theories themselves. 

The first step is to construct two conjunctions Fe and FR such that Fe is a conjunction 
of €-literals, FR is a conjunction of R.-literals, and Fe /\ FR is satisfiable if and only if (1) is. 
This is achieved by introducing new variables to represent terms of the wrong "type", and adding 
equalities defining these new variables. Thus, the first literal is made into an €-literal by replacing 
the term r(x)-f(y) with the new symbol gi, and the equality g1 = r(x)- f(y) is added to "define" 
Yi· The new equality is then made into an R.-literal by replacing the €-terms f(x) and r(y) by the 
variables Y2 and g3 , which are defined by €-literals. The result is: 

FR. 

x:::;; y 
y+z<x 
z~O 
g2 - Ya= U1 

Fe 

r(gi) =I=- f(z) 
f(x) = U2 
f(y) = g3 

These two conjunctions are given to R and c. Each of the conjunctions is satisfiable by itself, so 
there must be interaction between R. and c to detect the unsatisfiability. The interaction takes 
a particular, restricted form: each satisfiability procedure is required to deduce and propagate to 
the other satisfiability procedure all equalities between variables entailed by the conjunction it is 
considering. For example, if the conjunction FR contained the literals a s band b s a, R. would 
be required to deduce and propagate the consequence a = b. 

In the example, Fe does not entail any equalities between variables, but FR entails x = y. 
(It also entails z = 0, but 0 is not a variable, so this equality is not propagated.) R. therefore 
propagates x = y. Given this equality, c deduces and propagates that g2 = g3 • This enables R. 
to deduce and propagate z = g1 , which enables c to detect the contradiction. 

The method illustrated by this example works for any conjunctions FR and Fe. Obviously, 
if one of the conjunctions FR or F c becomes unsatisfiable as a result of equality propagation, the 
original conjunction must be unsatisfiable. It is a consequence of the results below that the converse 
holds as well: if the original conjunction FR /\ F c is unsatisfiable, then one of the conjunctions 
FR and F c will become unsatisfiable as a result of propagations of equalities between variables. 

The method will not work as described to combine c with a satisfiability procedure Z for the 
theory of the reals and integers. Suppose, for example, that the conjunctions are 

Fz 
int(x) 
l<x 
x<2 
a=l 
b=2 

Fe 
f(x) =j=. f(a) 
f(x) =I=- f(b) 
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Then F z /\ Fe is unsatisfiable, but neither F z nor Fe entail any equalities between variables. 
The problem is that F z entails the disjunction a= x V b = x, and each case is unsatisfiable. To 
handle this problem, the procedure must do case-splitting in certain circumstances. 

A formula F is non-convex in a theory T if there exist 2n variables, X1, 911 .•• , Xn, 9n 1 n > 1, 
such that in T, F implies the disjunction 

(2) 

but for no proper subset S of { 1, 2, ... , n} does F imply the disjunction 

V(xs = 9•)· 
iES 

In this case, (2) is a split entailed by F. If no such disjunction exists, F is convex. Note that any 
unsatisfiable formula is convex. 

That is, a formula is non-convex if it entails a "proper" disjunction of equalities between 
variables. When one of the conjunctions in the procedure above becomes non-convex, it is necessary 
to do a case-split; that is, to "guess" which of the eqv.alities is true, saving the current state so that if 
the guess is wrong then the state can be restored and another guess tried. This is a straightforward 
non-deterministic procedure that can be implemented with an extra stack for backtracking. For 
example, suppose that we are trying to determine the satisfiability of the conjunction of the literals 
int(x), 0 < x, x ~ 1, a= 0, b = 1, f(x) = a, f(a) = b, and r(b) = b. They are divided into two 
conj unctions: 

Fz 
int(x) 
O<x 
x<l 
a=O 
b=1 

Fe 
r(x) =a 
f(a) =.fl 
t'(b} = b 

There are no .equalities to propagate, but F z is non-convex: it implies the split x = a V x = 
b. Suppose that the ease x = a is considered first. The procedure puts the triple (5, 3, x,b) 
on a separate stack, so that it ean later return to the state in which there are 5 literals in Z's 
conjunction, 3 literals in e's conjunction, and in this state consider the ease x = b. It considers the 
case x =a by adding this equality to both conjunctions. Given x =a, e deduces and propagates 
a = b, and R detects the inconsistency. At this point the conjunctions are 

f z 
int{x) 
O<z 
z<l 
a=O 
b=1 
:r:=a 
11.=b 

Ft 
f'(x) =a 
r(a) = b 
f{b) = b 
z=a 

Since the first guess resulted in an unsatisfiable conjunction, the entry (5, 3, x, b) is popped from the 
stack, conjuncts are removed from F z and Fe in a last-in first-out manner until the conjunctions 
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have 5 and 3 literals respectively, and then the x = b case is tried. That is, the following state is 
created: 

Fz 
int(x) 
0 $; x 
x < 1 
a=O 
b=l 
x=b 

Ft 
r(x) =a 
f(a) = b 
f(b) = b 
x=b 

But c again propagates a = b, so this case is also found to be unsatisfiable. Since there are no 
more cases to consider, the original conjunction has been shown unsatisfiable. 

The following algorithm specifies this process precisely. The algorithm uses two stacks to hold 
the literals and one stack to hold the untried c.:.ses. The size of a stack is the number of entries in 
it. 

Algorithm E (Equality Sharing Procedure). Given two stacks S1 and S2 such that the entries in 
S1 are S-literals, the entries in S2 are T-literals, where S and T are theories with no common 
free functions, this algorithm determines the satisfiability in the combination of S and T of the 
conjunction of all literals in S1 and S2 • The correctness of the algorithm's answer depends on the 
assumptions that neither S nor T have infinitely many free variables, and that S and T are both 
"stably infinite"; see the correctness proof in section 18 for definitions of these conditions. The 
algorithm uses another stack T whose entries are lists of the form (ni, n2, u1, v1, ... , Uk, vk), where 
n 1 and n2 are integers, k > 0, and the Ui and Vi are variables. 

E1. [Initialize T.] Make T the empty stack. 

E2. [Unsatisfiable?] For i = 1, 2, if the conjunction of the literals in Si is unsatisfiable, then go 
to step E6. 

E3. [Propagate equalities.] For i = 1, 2, if the conjunction of literals in Si entails some equality 
u = v between variables that is not entailed by Sa-i, then push the equality u = v on the 
stack Sa-i and go to step E2. 

E4. [Case split necessary?] For i = 1, 2, if the conjunction of literals in Si is non-convex, then 
let u1 = v1 V ... V uk = vk be a split entailed by Si, ni the size of S1, and n2 the size of 
S2. Push the entry (n1, n2, u2, v2, ... , uk, vk) onto the stack T, push the equality u1 = vi onto 
both S1 and S2, and go to step E2. 

E5. [Satisfiable.] Halt with the answer "satisfiable". 

E6. [Try next case.] If the stack Tis empty, then the algorithm halts with result "unsatisfiable"; 
else let the top entry on T be (ni, n 2 , ui, vi, ... , uk, vk)· For i = 1, 2, pop Si as many times 
as necessary in order to reduce its size to ni. Push u1 = vi on both S1 and S2. If k = 1 then 
pop T, else replace the top entry of T with (ni, n2, u2, v2, ... , Uk, vk)· Go to step. E2. I 

The procedure always halts, since there can be no more than n - 1 non-redundant equalities 
among n variables. It is not difficult to prove that the procedure is correct when it answers 
"unsatisfiable". To guarantee that it is correct when it answers "satisfiable" requires the 
technical conditions that the two theories be "stably infinite" and have only finitely many free 
variables. These conditions will not be defined until we prove the correctness of the algorithm in 
section 18; here we make some observations about the use of the algorithm. 

To implement this algorithm efficiently, the satisfiability procedures for S and T must have 
several properties. They must be incremental and resettable; that is, it must be possible to add 
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and remove literals from the conjunctions without restarting.the procedures. The procedures must 
also detect the equalities and splits entailed by the conjunctions. In theory, any satisfiability 
procedure can be used to find the equalities and splits, simply by testing each of the finitely many 
equalities and splits to see if it is entailed. In practice, we construct our satisfiability procedures 
from algorithms that find the equalities and splits for free, or at very little extra cost. 

Here is good news: if Fis a conjunction of €-literals, R-literals, or L-literals, then Fis convex. 
Therefore, case-splitting is never caused by these satisfiability procedures. It is easy to see that 
this is the case for R: the solution set of a conjunction of linear inequalities is a convex set; the 
solution set of a disjunction of equalities is a finite union of hyperplanes; and a convex set cannot 
be contained in a finite union of hyperplanes unless it is contained in one of them. 

Satisfiability procedures for c and L, and proofs that conjunctions of c -literals and L-literals 
are convex, are described in sections 6 and 9. As described, these satisfiability procedures take 
time 0( n 2 ) to process a sequence of instructions of the form "assume the literal ... " and "remove 
the last-assumed literal", where to assume a literal the procedure determines the satisfiability of 
the resulting conjunction and propagates any equalities that are entailed, and n is the length of 
the sequence of instructions in characters. The time bounds can be reduced to O(n log n) by using 
a different algorithm. 

(The claims above that conjunctions of £-literals are convex and can be processed in O(n log2 n) 
time are subject to the caveat that atom may be used only as a predicate, not as a boolean function 
embedded in terms.) 

The satisfiability procedure for R is based on the simplex algorithm; it is described in section 
12. In the worst case the simplex algorithm takes exponential time. Khachian [29] has discovered 
a polynomial-time linear programming algorithm, which could be used in R, but it is unlikely to 
be as fast as the simplex algorithm in practice. 

The satisfiability problem for conjunctions of A-literals is NP-complete. The algorithm for A 
is described in section 10. 

It is lucky that c, R, and L do not require case-splitting, because most theories do. For 
example, in the theory Rx, x X y = 0 /\ z = 0 implies x = z V y = z. We have already seen 
that Z causes case-splitting. (Notice that, since it is only necessary to propagate equalities between 
variables, not between variables and constants, conjunctions such as int(z) /\ 1 ~ z ~ 100 will 
not cause hundred-way splits-unless each of the numbers 1, ... , 100 is constrained equal to a 
variable!) The theory of sets is non-convex; for example, {a, b, c} n { d, e, !} ':/= {} forces a nine-way 
case split. It is also true, unfortunately, that the theory A can in the worst case cause quadratically 
many splits (see section 10). 

We now turn to the problem of proving that Algorithm Eis correct if it returns "satisfiable". 
The rigorous proof is deferred until section 18. Here we consider a more informal argument, which, 
although it will not stand up to close scrutiny, conveys clearly why the algorithm is correct. 

The residue of a formula F is the strongest boolean combination of equalities between variables 
entailed by F. Here are several examples of residues: 

Formula 

x = f(a) /\ y = f(b) 

x < y /\ y < x 

x + y -- a ·-· b > 0 
x = v<!)U) 
x = v<:>u) /\ y = v(j) 

Residue 

a=b :::> x=y 

x=y 

..., (x =a /\ y = b) /\ ..., (x = b /\ y =a) 

i=j :::> x=e 

IT i = i =? x = e; x = y n 
As another example, here are the residues of the formulas FE and FR from the first example in 
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Hesidue of FR.: 
Hesidue of F £: 

x = Y /\ (g2 = g3 ::::> Y1 = z) 
( x = Y ::::> Y2 = Ya) /\ gi -:/:- z 

21 

Obviously these residues are inconsistent. The reason Algorithm E works is that the residues are 
always inconsistent if the conjunctions of literals are: 

Fact. Let S and T be two theories satisfying the conditions required by Algoritl1m E. Let F be 
a conjunction of S-literals, G a conjunction of T -literals. Tlien the conjunction of F and G is 
satisfiable if and only if the conjunction of their residues is satisfiable. I 

For theories that do not contain recursive function definitions, this fact may be proved using 
Craig's interpolation lemma [15], which is proved in many standard textbooks on logic; for example 
[51]. For theories that do contain recursive function definitions, the fact is a consequence of 
arguments given in section 18. Assuming the fact, we can prove the correctness of Algorithm E: 

Let F be the residue of the conjunction of literals in 8 1 and G the residue of the conjunction of 
literals in 8 2 at the moment that step ES returns "satisfiable." By the above fact, the step will 
be justified if we can prove tqat F /\ G is satisfiable. Let V be the set of all variables appearing 
in either F or G, E the set of equalities u = v such that u and v are in V and F ::::> u = v, 
(equivalently, G ::::> u = v), and D the set of equalities u = v such that u and v are in V but 
F ;L> u = v (equivalently, G ;L> u = v ). Let W be any interpretation that satisfies every equality 
in E and no equality in D. (Since F and G are just boolean combinations of equalities between 
variables, an interpretation for them can be specified by giving the equalities it satisfies.) We claim 
W satisfies F and G. Suppose it does not satisfy, say, F. Then F entails the disjunction of all the 
equalities in D. If D is empty, then F is unsatisfiable, which is impossible since step E2 was passed. 
If D contains a single equality, then F entails the equality, so the equality would be in E, not D. 
If D contains more than one equality, then F is non-convex, which is impossible, since step E4 was 
passed. Thus, W does satisfy F and G, so step ES is correct. I 

6. The theory c and the congruence closure problem 

The problem of writing a satisfiability procedure for e is essentially that of determining whether 
one equality is a consequence of several other equalities; for example, whether f(f(a, b), b) =a is a 
consequence of f(a, b) = a; or, less obviously, whether f(a) = a is a consequence of f(f(f(a))) = a 
and f(f(f(f(f(a))))) = a. In 1954, Ackermann [1] showed that the problem was decidable, but did 
not give a practical algorithm. The prob!em appears to have been ignored for the next twenty-four 
years. In 1976 and 1977, several people attacked the problem, from quite different points of view. 
Downey, Sethi and Tarjan [20] viewed the problem as a variation of the common subexpression 
problem, Kozen [35] as the word problem in finitely presented algebras, Shostak [52] and Nelson 
and Oppen [43] as the decision problem for the quantifier-free theory of equality. 

All these problems reduce to the problem of constructing the "congruence closure" of a relation 
on a graph, which is defined below. The satisfiability procedures for the theories e, L, and A are 
all based on the congruence-closure algorithm. In fact, the algorithm's data structure can be used 
to represent entry and exit assertions, axioms and lemmas, function definitions, and the values of 
variables during symbolic execution, much as list structure is used in conventional systems. 

Downey, Sethi and Tarjan [20] describe a congruence-closure algorithm that yields satisfiability 
procedures fore and L that run in average time O(nlogn), or worst case time O(nlog2 n) (or 
worst-case time O(n log n) at the cost of using O(n2 ) space.) 
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This section describes the congruence closure problem and its relation to the satisfiability 
problem for c. The material in this section is based on previous joint work with Derek Oppen, 
which was reported in [43}. 

Let R be an equivalence relation on some set of terms {in particular, Risa set of ordered pairs 
whose components are terms). If (t, u) ER, we say that t is related by R to u. By the domain of 
R we mean the set of terms t such that R contains the pair ( t, u) for some term u. We assume 
that the domain of R contains every subterm of any of its terms. Two terms are congruent under 
R if they are of the forms j(t1, ... , tn) and j(ui, ... , un), and if ti is related by R to ui for each 
i from 1 to n. (This term was coined by Downey and Sethi [21).) R is closed under congruences 
if any two terms t and u that are congruent under R and both in the domain of R are related by 
R. The congruence closure of a relation R is the smallest equivalence relation containing R that 
is closed under congruences. (The "smallest" relation is the one containing the fewest pairs, that 
is, the finest relation.) 

For example, let R be the equivalence relation 

{(a, b), (b, a), (a, a), (b, b), (f(a), f(a)), (f(b), f(b))}. 

Then R is not closed under congruences, since the terms f(a) and f(b) of the domain of R are 
congruent under R but not equivalent under R. If these two terms are merged in R (that is, if R is 
replaced by the smallest equivalence relation that contains Rand the pair (f(a), f(b)), the resulting 
relation is congruence-closed and thus is the congruence closure of R. 

A set of terms can be represented by a labelled directed acyclic graph, and as the nomenclature 
for directed graphs is often more convenient than that for equivalence relations on terms, we make 
the following definition: If R is an equivalence relation whose domain is the set of terms V, the 
Equality graph or E-graph associated with R is the tuple (V, E, >-., R) where 

• Eis an ordered set of directed edges over V; for each term j(t1, ... tn) in V, E contains 
n edges pointing from the term to the terms ti, ... , tn, ordered so that the ith of these 
edges points at ti. These are the only edges in E. 

•A labels each term in V with either a function symbol or a variable; >-.(f(t 1, ... tn)) isj, 
while >-.( v) = v for any variable v. 

With these definitions, (V,E, >-.)is a labelled directed graph. The elements of V may accurately 
be called either vertices or terms, since they are vertices of a graph and terms of a formal system. 
In naming the elements of V, we use "meta" variables like v when emphasizing the term structure, 
and normal italic variables like v when emphasizing the graph structure. For a vertex v, let 6(v) 
be its outdegree, that is, the number of edges leaving v. For 1 ::;; i ::;; 6(v), let v[i] denote the ith 
successor of v, that is, the vertex pointed to by the ith edge leaving v. 

One effect of these definitions is that the congruence closure of R is determined by the graph 
structure of the E-graph associated with R, since two vertices u and v are congruent if and only if 
>-.(u) = >-.(v), 6(u) = 6(v), and (u[1~],v[i]) ER for all i such that 1::;; i::;; 8(u). As far as computing 
the congruence-closure goes, we may ignore the internal structure of vertices and view the problem 
as being defined on any labelled directed graph; but in describing the connection of the problem 
to mechanical theorem-proving, it is convenient to require that the vertex set actually be a set of 
terms, whose structure is reflected by the edges and labels. 

It is laborious to list all pairs in an equivalence relation, so we ordinarily represent an equiv­
alence relation on terms by a picture of its associated E-graph, and connect the related vertices 
of the graph with dotted lines, omitting redundant lines. For example, let R be the smallest 
equivalence relation whose domain is the term f(f(a, b), b) together with all its subterms, and which 
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includes the pair (f(a, b), a). Then R is represented by the E-graph (1). Each of the four vertices 
v1 to v4 of the graph is really a term, though we have drawn them as circles containing their 
labels. The vertices v1 and v2 are congruent under R, so the congruence closure of R must include 
the pairs { v2, v3) and (vi, v2), as shown in (2). In fact, the finest equivalence relation containing 
these pairs, namely the equivalence relation with associated partition { { v1, v2 , v3}, { v4 } }, is closed 
under congruences and is therefore the congruence closure of R. Notice that this computation is 
analogous to the deduction of f(f(a, b), b) =a from f(a, b) =a by the substitutivity of equality. 

(1) (2) 

v., 
As a second example, let R be the smallest equivalence relation whose domain contains 

f(f(f(f(f(a))))) and all its subterms and which contains the pairs (f(f(f(f(f(a))))), a) and (f(f(f(a))), a). 
The associated E-graph is shown in (3). Let R' be the congruence closure of R. Vertices v2 and Vs 
are congruent under R, so ( v2, vs) ER'. Since R' is closed under congruences, (vi, v4) ER'. The 
pairs (vi, v4) and (vi, vs) are both in R', so ( v4, vs) E R'. Hence, ( v3, vs) E R'. ( 4) shows the pairs 
we have found; notice that all six vertices are equivalent in the congruence closure. Essentially, we 
have proved that f(f(f(a))) =a and f(f(f(f(f(a))))) =a together imply f(a) =a. (Thus a congruence 
closure algorithm can be used to compute greatest common divisors!) 

f 
VJ 

. . . . 
v2 . . . v2 . . . . . . . . . VJ . 

(3) . (4) . . . . . . . . . . . 
v., 

. . . . . .. . . : ,' .. . . . . . . . . . . . . . . . . 
v5 

. . . . .. 
1'.5 

. . . . .. . . . . . . . . . . . ,.· ·:·' 

v6 v6 

That the quantifier-free decision problem for the theory of equality with uninterpreted function 
symbols can be reduced ·to the problem of computing congruence closures was proved first by 
Shostak [52], and independently by Kozen [35] and by Nelson and Oppen [43]. The notation in 
the following proof is based on [43]. 

A formula is satisfiable if there exists an interpretation satisfying it (see section 16 for the 
formal semantics of the logic, which for the purposes of this section is the classical first-order 
logic with equality). An interpretation '1i with universe U is a map that assigns to each variable 
v an element '1i(v) of U, and to each n-ary function symbol J a map '1i({) from un to U. An 
interpretation extends over terms in the obvious way. We also define a partial interpretation, 
which differs from an interpretation in that it may be undefined on some variables, and in that the 
map it associates with an n-ary function symbol may be undefined on some n-tuples in un. Thus 
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if w is a partial interpretation, w( t) will generally be undefined for some terms t. 
Let G = (V, E, >.., R) be an E-graph such that R is closed under congruences, and for each 

vertex v of G, let v* be some cannonical representative of the equivalence class of v under R; for 
example v* might be the lexicographically smallest of the vertices equivalent to v. We define a 
partial interpretation W 0 , whose universe is the set of cannonical representatives of equivalence 
classes of R, as follows. If v is a variable, W 0 is defined on v if and only if v E V, and in this case 
W a( v) is v *. If f is a function symbol, W a (f) is defined on ( v 1 *, ... , v n *) if and only if there exists 
a vertex v EV labelledj such that v[i]* =vi* for 1 Si Sn, and in this case 1¥a(f)(v1*, ... , vn*) 
is v*. (Notice that W a(f) is well defined, because if two vertices satisfy this condition, they are 
congruent, hence equivalent.) In this way we associate a partial interpretation We with every 
E-graph G. (Technically we should write We, to reflect the fact that the partial interpretation 
depends not only on the E-graph but also on the projection function *, but it rarely matters which 
cannonical representative is chosen.) 

It is trivial to show by induction that if t E V, then Wa(t) is t*. In general, if w0 (t) is 
defined, we say that G represents t, and that the equivalence class Wc(t) contains a representative 
for t. The set of terms represented may be larger than the set of terms that are vertices; for 
example the graph for an equivalence relation that relates f(x) to x will represent all terms of the 
form f(f(· · ·f(x)· · ·)). 

Theorem E. Let E be a conjunction of equalities, D a conjunction of disequalities, G = (V, E, >.., R') 
an E-graph where Vis the set of terms appearing in E or D, R is the set of pairs (t, u) such that 
t = u occurs in E, and R' is the congruence closure of R regarded as a relation on V. Then 
there exists an interpretation satisfying E and D if and only if, for each conjunct t =/:- u of 0, 
Wa(t) =/:- Wa(u). 
Proof. To prove the "ir' part, let W be any interpretation (not a partial interpretation) that 
extends W 0 . Then w satisfies both D and E. To prove the "only if" part, we must show that 
any interpretation satisfying E satisfies all equalities satisfied by W 0 ; this can be done by a 
straightforward induction on the number of merges performed in constructing the congruence 
closure R' from R. I 

This justifies a simple satisfiability procedure for c: given a conjunction of equalities and 
disequalities, let R be the smallest congruence-closed relation whose domain is the set of all terms 
occuring in the conjunction, and which contains the pair ( t, u) for each equality t = u in the 
conjunction. Then the conjunction is satisfible if and only if R contains no pair of terms that are 
asserted not equal by the conjunction. The next section describes this algorithm more precisely, 
and in particular describes how to make it incremental. 

It follows from Theorem E that c is convex, since if a conjunction of literals C entails a 
disjunction of equalities Ei V ... V En, then C /\ •E1 /\ . . . /\ •En i"1 unsatisfiable, so by 
Theorem E, one of the disequalities is violated by the E-graph representing the conjunction of the 
equalities in C; let this disequality be •Ei, then C entails Ei; hence C is convex. (If the disequality 
violated is a conjunct of C, then C is unsatisfiable, hence convex.) 

Notice that this solution to the satisfiability problem for c finds the equalities between variables 
entailed by the conjunction, as required by the Equality Sharing Procedure of section 5, since 
the equality u = v is entiailed if and only if u and v are in the same equivalence class after the 
congruence closure is constructed. 

7. A congruence-closure algorithm 

This section describes a congruence closure algorithm in considerable detail, for the benefit of 
readers who want to implement the algorithm. Other readers may wish to just skim the section. 
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The congruence closure algorithm to be described is not the asymptotically fastest but it may 
be a good choice in practice. Fix a labelled directed graph G = (V, E). The algorithm represents 
G by a set of linked record structures that will be called E-nodes. Each E-node contains nine fields: 
the ecar, ecdr, root, pred, samecar, samecdr, size, eqclass, and back fields. 

The ecar and ecdr fields are used to represent the graph structure of G, using a version of the 
standard representation of oriented trees by binary trees. For example, the E-graph of section 6, 
figure (1) would be represented by the following linked structrue: 

v' 
1 

(1) 

f' a' b' eni/ 

(A diagonal slash through a field means that it contains nil.) It is worth paying attention to the 
details of this representation, since the algorithm depends on some of its properties that may not 
be immediately obvious. 

We make two assumptions about the graph G: no vertex with outdegree zero has the same 
label as a vertex with positive outdegree, and there is at most one vertex of outdegree zero with 
a given label. These restrictions are certainly satisfied in our application, where all vertices with 
the same label have the same outdegr~e, and there is only one vertex for each variable. There is 
one E-node for each edge, label, and vertex with positive outdegree, and one other distinguished 
E-node called enil. If x is an edge, label, or vertex with positive outdegree, we write x' to denote 
the E-node that corresponds to it. If vis a vertex of G with outdegree zero, then there is no E-node 
corresponding to it, but we write v' to mean the E-node corresponding to the label of v. Both enil 
and the nodes corresponding to the labels of G are called atomic E-nodes; these have the property 
that their ecar and ecdr fields are nil. Let v be a vertex of G with positive outdegree, ).. the label 
of v, and e the first edge leaving v. Then the ecar field of v' points at >-.' and the ecdr field of v' 
points at e'. For each edge e of G, the ecar field of e' points at v', where v is the vertex to which 
e points; the ecdr field of e' points at enil if e is the last edge leaving its source vertex; otherwise 
the ecdr field of e' points at f', where f is the next edge after e leaving the source of e. 

(Actually, the program would not create the upper-right node in (1), using in its place the node 
in the middle right, to which it is congruent. But it is simpler to describe the reduction without 
worrying about this optimization.) 

Vertices of outdegree zero are treated specially in order to save space. If they were represented 
according to the rule used for the other vertices, the structure (1) would be replaced by the structure 
shown in (2). 

We call two E-nodes a and b congruent under a relation R on the set of E-nodes if a and b 
are non-atomic, ecar(a) is related by R to ecar(b), and ecdr(a) is related by R to ecdr(b). The 
congruence closure of a relation on the set of E-nodes is defined in the obvious way. It is easy to 
show that u and v are equivalent in the congruence closure of R = { (ui, v1), ... , (up, vp)} if and 
only if u' and v' are equivalent in the congruence closure of R' = { (u~, v~), ... , (u~, v~) }. 

We call an E-node a vertex node if it is v' for some vertex v in G, an edge node if it is e' for 
some edge e of G, and a label node if it is neither a vertex node, an edge node, nor enil. If a is 
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Y.' J 

(2) 

a vertex node or a label node, then a =tf ecdr(b) for all nodes b; if a is an edge node or enil, then 
a 'I= ecar(b), for all nodes b. This is a useful fact, especially in light of the following lemma. 

Lemma 1. If ui, v11 ••• , 'Un1 Vn is any set of vertices of G, then each equivalence class of the 
congruence closure of R = { (ui, vi), ... , (u~, v~)} is either a singleton, or consists entirely of 
vertex nodes or entirely of edge nodes. 

Proof. Let a be a label node or enil; then {a} is an equivalence class of the smallest equivalence 
relation containing R, since a does not represent any vertex of G. But a will never become 
congruent to any other node during the construction of the congruence closure of of R, since a is 
an atomic node. Hence {a} is an equivalence class of the congruence closure of R. 

Each equivalence class of the smallest equivalence relation containing R that is not a singleton 
consists entirely of vertex nodes; so it suffices to prove that in constructing the congruence closure, 
no vertex node will ever become congruent to an edge node. But this is obvious, since the ecar of 
a non-atomic vertex node is a label node, while the ecar of an edge node is a vertex node. I 

Notice that if the expression g(a) were a term, then a graph that represented it along with 
f(g, a) would have a vertex node equivalent to an edge node. We avoid this problem by regarding 
g(a) as an abbreviation for select(g, a). 

The root, eqclass, and size fields are used to represent an equivalence relation on the nodes. 
The root field of the node a points at the canonical representative of the equivalence class of a, 
and the equivalence class is circularly linked by the eqclass fields. We will assume that union is 
applied only to canonical representatives (which will hereafter be called root nodes). Here is the 
code for union: 

Procedure union(u, v) = 
rr reroot{u, v, u); 

size(v) +- size(v) + size(u); 
( eqclass( u ), eqclass( v )) +- ( eqclass( v ), eqclass( u )) D; 

Procedure reroot{u, newroot. done)= 
rr root( 'U) +- newroot; 

eqctass(u) =done ::::} rr D; 
reroot(eqclass(u), newroot, done) D; 

Make roots of nodes in u's class be 11 

Set size of v. Now splice class lists: 

The size field is the size of a node's equivalence class. The code below will call union(u, v) 
only when u's equivalence class is smaller than v's; the worst-case cost of n calls to union under 
this scheme is O(nlogn). 
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Let Q be any equivalence class and S the set of all nodes b such that the ecar of bis in Q. Then 
the nodes in S are circularly linked by their samecar fields. The samecdr field is used similarly. 
Thus two nodes are congruent if they are in the same samecar circle and the same samecdr circle. 

A node bis a predecessor of an equivalence class Q if either ecar(b) E Q or ecdr(b) E Q. If Q 
has no predecessors, then pred(a) = nil, where a is the canonical representative of Q; otherwise 
pred(a) points at some predecessor of Q. Naturally, we assume that nil is not equal to any E-node. 

Given a vertex node or label node a, it follows from Lemma 1 that we can find all predecessors 
of a 's equivalence class by following the pred field of root( a) and then following the samecar 
fields around in a circle. To find the predecessors of an equivalence class of edge-nodes, or of the 
equivalence class containing enil, follow the pred field of the root of the class and then follow the 
samecdr fields. 

This scheme uses three pointer fields per node to represent the predecessors of equivalence 
classes. If the root of each equivalence class contained a pointer to a list of its predecessors, then 
each non-atomic node would appear in two lists, and the lists would have two pointers per entry, 
so five pointers per node would be required. 

Suppose Qi and Q2 are equivalence classes of vertex nodes and that the nodes a and bare 
made congruent by merging Qi and Q 2 • Then the ecar fields of a and b must point at nodes in 
Qi and Q2 (not necessarily respectively), and the ecdr fields of a and b must point at equivalent 
nodes. Therefore, we can find all such pairs a, b as follows: For each predecessor a of Qi, store 
in root(ecdr(a)) a backpointer to a. Then, for each predecessor b of Q2 , if root(ecdr(b)) contains 
a backpointer, then b is congruent to the node pointed to by the backpointer. After finding 
all congruent pairs it is necessary to traverse the predecessors of Qi again to remove all the 
backpointers. 

The following procedure mergepair takes two nodes, combines their equivalence classes with 
union, finds all new congruent pairs of vertices, and adds each such pair to the list mergelist: 

Procedure mergepair(u, v) = 
[ (u, v) - (root(u), root(v)); 

u = v =* [ D; 
[ size(u) > size(v) =} (u, v) +- (v, u) D; Now v has the larger class. 
union(u, v); Now vis the new root. 
[ undo(u); undo( merge) D; See comments below. 
pred( u) = nil =} [ D; If u or v has no predecessors, 
pred(v) =nil =} pred(v) - pred(u); done, else prepare for loops. 
with link= samecar, other= ecdr do u a vertex node - predecessors linked by samecar 

[ [ root(ecdr(pred(u))) = u =} (link, other) - (samecdr, ecar) D; else by samecdr. 
markpred(pred(u), pred(u)); Mark predecessors of u. 
checkpred(pred(v),pred(v)); Check predecessors of v. 
unmarkpred(pred( u ), pred( u )); Unmark. Finally, spice predecessor lists: 
( link(pred( u)), link(pred( v))) - (link(pred( v )), link(pred( u ))) DD; 

The procedure does nothing if u and v are already equivalent. Otherwise, it combines the 
equivalence classes with union and lets v be the new root. The significance of undo will be explained 
later. If u has no predecessors, there are no new congruent pairs and all predecessors of the new 
class are predecessors of the new root v. If u has predecessors and v does not, then there are no 
new congruent pairs, but the predecessor field of the new root v must be changed to point into the 
ring of predecessors of u. If both u and v have predecessors, three loops are used to find any new 
congruent pairs. There are two versions of each of these loops, one version where the link field is 
the samecar field and the "other" successor of the predecessors is pointed at by the ecdr field, and 
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one version where the link field is samecdr and the other successor is the ecar. The conditional 
in the middle of mergepair determines whether u is a vertex node or an edge node and sets link 
and other to the appropriate field selectors. (Note that the formal system described in section 4 
allows "variable field selectors".) The three loops markpred, checkpred, and unmarkpred use link 
and other to find the new congruent pairs. Finally, the circular predecessor lists of u and v are 
spliced. 

Here is the code for the three loops: 

Procedure markpred(v, done)= 
R back(other(v)) +- v; 

link(v) =done ::::} RD; 
markpred{link(v), done) D; 

Procedure checkpred( v, done) = 
RR back(other(v)) =/:nil ::::} 

mergelist +- cons(cons(v, back(other(v))), mergelist) D; 
link(v) =done ::::} R ]; 
checkpred{link(v), done) D; 

Procedure unmarkpred( v, done) = 
R back(other(v)) +-nil; 

link(v) =done ::::} R ]; 
unmarkpred(link(v), done)]; 

(The space for the back fields-one pointer per node-can be reduced to one bit per node, plus 
space for an auxiliary stack. The bit i~ cleared to represent a back field that is nil; if the bit is set, 
then the pred field contains the value of the back field and the true pred field is on the auxiliary 
stack. The procedure unmarkpred restores the pred fields while it clears the bits.) 

The actual congruence closure is comp11ted by the procedure mergeloop, which removes pairs 
from mergelist and merges them with mergepair, continuing until mergelist is empty, at which 
time the equivalence relation must be closed under congruences: 

Procedure merge(u, v) = 
R mergelist +- cons( cons(u, v), mergelist); mergeloop() ]. 

Procedure mergeloop() = 
with p = nil do 

R mergelist = nil ::::} R ]; 
(p, mergelist) +- (car(mergelist), cdr(mergelist)); 
mergepair(car(p), cdr(p)); 
mergeloop() ]; 

If the original graph G has m edges, then there are O(m) E-nodes. The number of calls to 
union is O(m); the worst-case cost for the three loops is O(m), so the cost of the whole algorithm 
is O(m2). 

Congruence closure algorithms may be classified according to how they find the new congruent 
pairs given the lists of predecessors of the two equivalence classes being combined. The most 
obvious method is a double loop over all pairs of predecessors, with cost O(ab), where a and bare 
the lengths of the predecessor lists. Interestingly enough, an O(m2) algorithm can be obtained 
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using this double loop. (See Nelson and Oppen [43].) The program above finds the new congruent 
pairs in O(a + b) time. Another way to find the pairs in 0( a+ b) time is by lexicograpically sorting 
the predecessor lists. By using lexicographic sorting and not reducing the problem to the binary 
case, an O(nm) algorithm can be constructed, but it would probably be slower in practice than 
the method described here, because of the overhead of the lexicographic sorting. In the algorithm 
of Downey, Sethi and Tarjan [20], each node a is kept in a hash table or binary tree under the key 
(root(ecar(a)), root(ecdr(a))). When merging two equivalence classes, only the predecessors in the 
shorter list need to be rehashed; thus the cost of finding new congruent pairs is min( a, b) accesses 
to the hash table or binary tree. The average time for O(m) merges using their algorithm with a 
hash table is 0( m log m ); the worst case time using a balanced tree is 0( m log2 m ); the worst case 
time using a "trie" is 0( m log m ), but the trie requires 0( m 2) storage. 

The algorithm of Downey, Sethi, and Tarjan has been implemented by the author in an 
experimental verifier and by Derek Oppen in the Stanford Pascal Verifier. The experimental 
verifier never became stable enough to support meaningful experiments. In the Pascal verifier, the 
0( m log m) algorithm was slightly slower than the 0( m 2 ) algorithm on the ten or fifteen problems 
on which it was tried. Since the structure of the graph depends on many volatile factors, such as 
the matching algorithm (see section 14) and the interface with the arithmetic routines (see section 
13), it is not yet clear what variation of the congruence-·closure algorithm is the best choice. 

The worst case for the algorithm described here is O(m2 ), but if most of the merges are 
"balanced", in the sense that the two classes being combined have approximately the same number 
of predecessors, then the total time required will be 0( m log m ). The average behaviors of several 
algorithms for maintaining an equivalence relation under the union operation, assuming various 
distributions for the merges, have been computed by Doyle and Rivest [22], Andrew Yao [63], 
and Knuth and Schonhage [33]. These results do not apply to the congruence closure algorithm, 
because postulating a distribution for the merges that come "from the outside" does not determine, 
in any obvious way, the distribution of merges that are performed by the algorithm. For example, 
suppose that the distribution of the calls to union from the outside is that analyzed by Doyle 
and Rivest, in which the probability that two classes are merged is independent of their sizes. 
This distribution tends to make nai've algorithms look good, because it leads to lots of balanced 
merges-in fact, it is not difficult to show that if all the merges obeyed this distribution, the average 
case of the algorithm described here would be O(n log n). Unfortunately, even if the merges from 
the outside obeyed this distribution, presumably a large class would be more likely to be merged 
by the congruence closure algorithm than a small class. If we assume that the probability that two 
classes are merged is proportional to the product of their cardinalities, then the results of Knuth 
and Schonhage [33] show that the average time of the algorithm becomes O(n2). 

The procedure mergepair provides a11 incremental congruence-closure algorithm, but to obtain 
an incremental satisfiability procedure for c, it is necessary to handle disequalities incrementally. 
Given a disequality t -:/:- u, we must add structure to the graph so that if the nodes representing t 

and u ever become equivalent, the program will detect it. 
The obvious way to do this is to store with the root of each equivalence class a circular list 

of nodes that are forbidden to join the class. Given two root nodes a and b that are to be made 
"unmergeable", we add, say, a to the list associated with b. Whenever two roots u and v are 
merged, we check if u is the root of anything in v's list, or if v is the root of anything in u's list; 
if so, the context is unsatisfiable; otherwise we splice the two lists. 

The worst case cost of this scheme is O(n2 ) (where n is now the total length of the input 
conjunction, including equalities and disequalities), and it is not very good in practice, either (at 
least for the formal system described in this paper), because the list of things that are forbidden to 
join the equivalence class of true is likely to become very long. A reasonable scheme in practice is 
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to forbid the merge of a and b by adding a to b's list if b's list is shorter than a's, otherwise adding 
b to a's list. This method still has worst-case cost O(n2 ). To hold the worst-case to O(n log n), 
forbid the merge of a and b by adding a to b's list and adding b to a's list. Then to test if the 
merge of u and v violates any disequalities, it it only necessary to seart:h the shorter of u's list 
and v's list. That the cost of this method is O(n log n) follows from the fact that every time a 
list is traversed, it is as least doubled in size. The cost of two pointer fields per disequality is very 
reasonable, so this method is probably best in practice. 

We will describe the modifications to the program above explicitly. The procedure forbidmerge 
takes two E-nodes and makes them "unmergeable"; it sets the variable inconsistent if the two 
nodes are already equivalent. The new version of mergepair will set inconsistent if the requested 
merge has been forbidden. We assume that E-nodes contain the field forbid, which is either nil, 
or points at a circular list of nodes with the two fields enode and link. We assume the existence 
of a list avail of available nodes of this form. Here is the code for rorbidmerge: 

Procedure forhidmerge(u, v) =: 
IT (u, v) +- (root(u), root(v)); 

u = v => inconsistent +- true; 
addforbid(u, v); 
addforbid( v, u ); 
IT undo(u); undo(f orbidmerge) DD· 

Procedure addrorbid(u, v) = 
with temp= nil do 

IT avail = nil => error(); 
(temp, avail)+- (avail, link( avail)); 
(enode(temp), link( temp)) +- (v, temp); 
for bid( u) = nil => forbid( u) +- temp; 
(link(f orbid(u)), link( temp))+- (link(temp), link(forbid(u))) D-

The procedure merge pair is modified by adding the fallowing code fragment just before the call 
union(u, v) (note that this call will make v the new root); the fragment checks that the merge has not 
been forbidden, and arranges that the forbid-list of the new root v will contain the concatenation 
of the old lists for u and v: 

IT for bid( u) = nil => [ D; 
forbid(v) =nil => f orbid(v) +- f orbid(u); 
checkforbid(f orbid(u), f orbid(u), f orbid(v), forbid(v)) => inconsistent+- true; 
(link(f orbid(u)), link(f orbid(v))) +- (link(f orbid(v)), link(f orbid(u)) D; 

inconsistent => [ D; 

where the procedure checkforbid is defined by: 

Procedure checkrorbid(p, endp, q, endq) = 
[ eroot(enode(p)) = v V eroot(enode(q)) = u => true; 

link(p) = endp V link(q) = endq => false; 
checkforbid{link{p), endp, link(q), endq) D· 

The calls to the function undo record the changes made to the E-graph so as to make it 
possible to mark the state of the data structure and later return to the marked state by "undoing" 
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the merges performed since the mark. Notice that such a facility is required by the equality sharing 
procedure of section 5, since in step E6 the procedure pops the stack of assumed literals, which is 
equivalent to undoing the effect of the last call to mergepair or forbidmerge. The function undo 
does nothing but push its argument on a stack: 

Procedure undo(x) = 
IT undoptr = hib(undostack) => error(); 

undoptr t- undoptr + 1; 
undostack(undoptr) - x n. 

The procedures mergepair and forbidmerge each push two entries on undostack, one of which 
is a pointer to an E-node, the other of which is a conventional mark (either merge or forbid, which 
are assumed to be distinct values) whose purpose is to distinguish the entries made by the two 
procedures. To save the state of the data structure, call undo(push); that is, push the conventional 
mark push on stack. (We assume push is distinct from merge and for bid.) To restore the last 
saved state, call the function pop, which removes and processes entries on the stack until it gets to 
an entry push, when it stops. It processes merge entries and forbid entries by undoing the effect 
of the corresponding procedures. Here is the code: 

Procedure pop()= 
with temp= undostack(undoptr) do 

IT undoptr t- undoptr - 1; 
temp= push => IT Il; 
temp = merge => 

IT undomerge(undostack(undoptr)); undoptr t- undoptr -1; pop(} Il; 
temp= forbid => 

IT undoforbid(undostack(undoptr)); undoptr - undoptr - 1; pop() Il n. 
where the procedures undomerge and undoforbid are defined by: 

Procedure undomerge(u): 
IT v t- root(u); 

size(v) t- size(v) - size(u); 
(eqclass(u), eqclass(v)) t- (eqclass(v), eqclass(u)); 
reroot(u, u, u); 
IT f orbid(u) =nil => IT Il 

forbid(u) = forbid(v) => forbid(v) t- nil 
(link(f orbid(u)), link(f orbid(v))) t-

(link(! or bid( v )), link(! or bid( u))) Il; 
pred(u) =nil => IT Il; 
pred(u) = pred(v) => pred(v) t- nil; 

Now u and v are as at end of merge. 
Restore v's old size. 
Undo splice. 
Reset root pointers in u's class. 
Do nothing if u had no forbidlist. 
If v had empty forbidlist, restore it. 
Else unsplice. 

Exit if u had no predecessors. 
Exit if v had no predecessors. 

link t- IT u = root(ecar(pred(u))) => samecar; samecdr Il; 
(link(pred(u)), link(pred(v))) - (link(pred(v)), link(pred(u))) n. 

Else unsplice. 

Procedure undoforbid(u) = 
with v = enode(forbid(u)) do IT un<loa<l<lforbi<l(u); un<loaddforbid(v) n. 

Procedure undoaddf orbid( u) = 
with temp= f orbid(u) do 

IT link( temp)= temp => (avail, f orbid(u), link( temp)) t- (f orbid(u), nil, avail); 
(avail, link( temp), link(link(temp))) - (link( temp), link(link(temp)), avail) n. 
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Note that undostack contains both pointer entries and "tag" entries that presumably are 
integers from some ennumerated type. In later sections, we will place groups of entries on the undo 
stack that consist of several different pointers and integer counters, followed by a distinguished 
tag to indicate the type of the group. This is similar to a typical control stack that contains 
different kinds of records of different sizes, but is such that the type of the top record can always 
be determined by some tag field. This would be illegal in a typical hard-typed language, but 
using the approach described in section 4, it is easy to attach mechanically verifiable invariants 
that establish to the compiler that the program uses the type system consistently. This is a good 
example of a situation where program verification can liberate the programmer from excessively 
rigid type systems, without compromising reliability. 

The algorithm used for union is particularly "undoable", which is one of the reasons it was 
chosen. The algorithm analysed by Tarjan [58] is faster in the worst case, but it uses incremental 
path compression, which is difficult to undo. One form of incremental path compression which can 
be undone reasonably efficiently is "path-halving", in which the path x, r(x), r(r(x)) from a node x 
to its root is split into the two paths x, r(r(x)), r(r(r(r(x)))), ... , and r(x), r(r(r(x))), r(r(r(r(r(x))))), 
... , by replacing each link that used to go from a node n to r(n) by a link going from n to r(r(n)): 

oUUUUU 
becomes 

o~ 
This operation can be undone by "zipping" the two paths together again. 

8. A method for finding satisfiability procedures 

Before describing the satisfiability procedures for L and A, we illustrate the method used to derive 
the procedures by applying it to the problem of discovering a satisfiability procedure for the simple 
theory with the two axioms: 

(\f x y) 
(\f x y) 

car(cons(x, y)) = x 

cdr(cons(x, y)) = y 

(1) 
(2) 

Recall that in section 6 we associated a partial interpretation W a with each E-graph G. We 
must define what it means for a partial interpretation to "satisfy" a formula. If F is a quantifier­
free formula and w is a partial interpretation such that w( t) is defined for all terms t appearing 
in F, then the truth value of F may be defined in w in the obvious way. We say that a partial 
interpretation w satisfies a formula F if (a) Fis quantifier-free, w is defined on every term appearing 
in F, and the truth-value of F in w is true, or (b) F is of the form (\f x) G, and for all u in the 
universe of w, G is satisfied by W (~), or ( c) F is of the form (3 x) G, and there exists a value u in 
the universe of w such that G is satisfied by w (~). If W happens to be total, then this definition 
agrees with the conventional definition of what it means for an interpretation to satisfy a formula. 
(This definition only works for "prenex" formulas in which all quantifiers are on the outside; this 
will be sufficient for our purposes.) 
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Given an E-graph G, it is straightforward to check whether the partial interpretation \lf G 

satisfies (1) and (2), because, for example, \lf o violates (i.e. fails to satisfy) axiom (1) if and only 
if one of its equivalence classes contains a representative for a term of the form ear(cons(t, u)), but 
does not contain a representative for t. An equivalence class contains a representative for a term of 
the form ear( cons( t, u)) if and only if it contains a vertex labelled car whose successor's equivalence 
class contains a vertex labelled cons; this condition is easy to test. Thus, our problem would be 
solved if the following assumption were true: 

Optimistic Assumption. Let G be an E-graph such that \lf o satisfies (1) and (2). Then there 
exists an interpretation \If that extends \If G and satisfies (1) and (2). I 

If this assumption were true, we could determine the satisfiability of a conjunction E /\ D, 
where E is a conjunction of equalities and D is a conjunction of disequalities, by contructing an 
E-graph representing all terms occuring in E and D; merging as required to satisfy E, (1), and (2); 
and testing whether the resulting partial interpretation satisfies D. 

There is a systematic method for testing the truth of assumptions like the one above: test 
whether the partial interpretation can be extended over a slightly larger E-graph without violating 
(1) or (2); if so, the extention can be repeated indefinitely, and the assumption will be proved. For 
example, let G be an E-graph such that \lf o satisfies {1) and (2), u and v vertices of G, and let G' 
be formed from G by adding a vertex w labelled cons with successors u and v: 

G 
v 

If w is congruent to some vertex of G, then the "extension" was a no-op, and \If G' certainly satisfies 
(1) and (2). But if w is not congruent to an existing vertex, then w will represent no term of the 
form ear(cons(t, u)) or cdr(cons(t, u)), hence \lfo, will satisfy (1) and (2). So far so good. 

Again let \lf 0 satisfy (1) and (2), and consider extending G to G' by adding a vertex v labelled 
ear over an existing vertex u. This creates a representative for a new instance of (1) for every 

!vertex in u's equivalence class labelled cons; and these are the only new instances of (1) or (2). 
Here is an illustration of the case where there are two vertices equivalent to u labelled cons: 

In order to make the interpretation \If a, satisfy (1), we must merge v with both w1 and w2. If 
these two vertices are already equivalent .in G, there is no problem; but if they are not, this merge 
prevents \lfo, from being an extension of '1To, since the terms w1 and w2 are interpreted differently 
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by 'Ila, but identically by Wai. Thus, our optimistic assumption is false; we have found a graph 
with no contradictions of (1) or (2} that cannot be extended as required. But this "obstruction" 
will be avoided if we require that '11 G satisfy: 

('v' x y u v) cons(x, y) = cons(u, v) :::> x = u. (3) 

Similarly, considering extentions by cdr, we require that G satisfy: 

('v' x y u v) cons(x, y) = cons(u, v) :::> y = v. (4) 

Thus we try: 

Revised Assumption. Let G be an E-graph such that 'Ila satisfies (1), (2), (3), and (4). Then 
there exists an interpretation '11 that extends 'Ila and satisfies (1), (2), (3), and (4). I 

This assumption turns out to be true, as the reader can verify by showing that G can be 
extended with a vertex labelled car or. cdr over any existing vertex, or by a vertex labelled cons 
over any existing pair of vertices, without merging any existing equivalence classes, and without 
introducing any violations of (1), {2), (3), or (4). That this suffices to prove the assumption is 
demonstrated formally at the end of this section. 

The revised assumption justifies a simple satisfiability procedure for the theory axiomatized 
by (1) and (2): To determine if a conjunction E /\ D is satisfiable in this theory, where E is a 
conjunction of equalities and D is a conjunction of disequalities, construct an E-graph representing 
all terms in E and D and merge as necessary to satisfy E, (1),. (2), (3), and {4). The conjunction is 
satisfiable if and only if no disequality in D is contradicted by these merges. 

If the revised assumption were false, the E-graph which proved it false would provide a new 
formula to add to the list (1), (2), (3), and (4); thus we get a sequence of sharper and sharper 
assumptions; if the sequence is finite, we will have found a satisfiability procedure. (Unfortunately, 
the method usually diverges; as described below.) 

This method is similar to the Bendix-Knuth procedure (see [32]) for "completing" a set of 
rewrite rules. The Bendix-Knuth procedure shows that (1) and (2) constitute a complete set of 
rewrite rules by themselves. Thus, developing a complete set of rewrite rules does not suffice to 
give a satisfiability procedure. The Bendix-Knuth procedure would not help to prove the theorem 

cons(x, y) = cons(u, v) :::> x = u. 

It would be interesting to investigate the relation between the method of the section, the Bendix­
Knuth procedure, and the various techniques for extending resolution theorem-proving to handle 
equality. 

The method described above works on the axioms (1) and (2), but on most theories, even 
simple ones, the method fails. For example, if it is applied the axioms of A, starting with: 

a (~)(i) = e 

i =1=. j :::> a (~)(j) = a(j) 

it produces in the first "round" 

a(~) = b(f> :::> e = f • • 
a<:> = b(;' /\ k f:.i /\ k =I= j :::> a(k} = b(k) 
k =I= i /\ k =I= j :::> aC:>(k) = a<~>(k} 

(5} 
(6} 

(7} 
(8) 
(9) 
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and in subsequent rounds it becomes clear that the procedure will run endlessly, as it elaborates 
(8) into such useless conditions as 

It is, unfortunately, possible for a graph to contradict (10) without contradicting any of (5) through 
(9). Notice, however, that if the graph contained representatives for the terms b(}>(k), c<';'>(k), 
and a(k) then the equality b(k) = c(k) of (10) would be forced by four instantiations of (6). This 
suggests that we require of the graphs not only that their associated partial interpretations satisfy 
some set of formulas, but also that they "have enough vertices", in some sense. In fact, the 
satisfiability procedure described in section 10 for A introduces vertices labelled select and then 
looks for violations of (5) and (6); because of the added vertices it is not necessary to check (7) 
through (9) or any of the other formulas that the method would produce. 

Similarly, the procedure seems to diverge if it is applied to the full set of axioms for L, but by 
introducing vertices labelled car and cdr over vertices labelled cons, a simple satisfiability procedure 
can be obtained. 

The satisfibility procedures for L and A were discovered by applying the above method by 
hand and observing what vertices should be added to the graph to make the extension step work. 
It is not clear how this process can be mechanized. 

The following lemma justifies the method outlined in this section: 

Lemma X. Let F be a formula, G0 an E-graph such that Wa0 satisfies F, and suppose that for any 
E-graph G such that Wa satisfies F, for any function symbol J, and for any terms t1, ... , tn that 
are represented in G, where n is the arity of J, there exists an E-graph G' such that Wai extends 
Wa, Wai satisfies F, and Wa1(f)(t 1 , ••• , tn) is defined. Then Fis satisfiable. 

Proof. Let T be the set of all terms t such that every variable appearing in t appears in F. 
Well-order T in any way such that a term is preceded by all its subterms. Construct G i, G2, ... 
by the following rule: Let ti, for i = O, 1, ... , be the first term in the well-ordering that is not 
represented in Gi. Let Gi+i be an E-graph that represents ti, satisfies F, and is such that Wa,+ 1 

extends w a;; that such a graph exists follows from the condition of the theorem. The union of 
a chain of functions, each of which extends the previous one, is itself a function; let W be the 
union of the w a;. By construction, w(f) is total for all function symbols J. Thus w fails to be an 
interpretation only in that it is still undefined on variables that do not appear in F; let w' have the 
same universe as w and extend w by interpreting variables not appearing in F arbitrarily. Then 
w' is an interpretation that satisfies F; hence F is satisfiable. I 

9. The satisfiability procedure for L 
The theory L may be axiomatized as follows: 

(\fxy) car(cons(x,y)) = x 

(\fxy) cdr(cons(x,y)) = y 

(\f x)(3 y z) •atom(x) ::) x = cons(y, z) 
(\fxy) •atom(cons(x,y)) 

atom( nil) 

The satisfiability procedure for L rests on the following theorem: 

(1) 
(2) 
(3) 
(4) 
(5) 
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Theorem L. Let E be a conjunction of equalities, D a conjunction of disequalities, Go an E-graph 
that represents every term appearing in E or D, and suppose that W Go satisfies E, D, (1), {2}, {3}, 
{4), and (5), and that every vertex of Go labelled eons has predecessors labelled ear and edr. Then 
E /\. D is satisfiable in the theory L. 

Proof. Let 9 be the class of E-graphs that satisfy the conditions of the theorem. We show that for 
any GE g, for any function symbol J, and for any n vertices v1, ... , Vn of G, where n is the arity 
of J, there exists an E-graph G' E 9 such that w G' extends W a and G' represents j( vi, ... , vn)· 
This suffices to prove the theorem, given Lemma X. 

It is trivial to show that the extension if possible if J is nil or if J is not a free function of L. 
Thus it suffices to prove the extension is possible for the function symbols ear, edr, and eons. 

Let v be a vertex of G such that G does not represent the term ear( v ). Let G' be formed from 
G by adding a new vertex ear( v) in its own equivalence class: 

Then w G' obviously satisfies (2), (3), ( 4), and (5). Since we are assuming that vertices labelled 
eons have predecessors labelled ear, and that ear( v) is not represented in G, it follows that v is not 
equivalent to any vertex labelled eons, therefore every term of the form ear(eons(t, u)) represented 
in G' is already represented in G; thus We• satisfies (1), because We does. Hence G' E g. 

Similarly, we can extend the graph with a vertex labelled edr. 
Let v be a vertex of G such that G does not represent the term atom( v), and let G' be formed 

from G by adding a vertex u labelled atom over the vertex v. If the equivalence class of v contains 
a vertex labelled eons, then inspection reveals that W G' satisfies (1) through (5). If the equivalence 
class of v contains no vertex labelled eons, then to satisfy {3) we merge u with the vertex for true 
(adding a vertex for true if necessary); let this merge be performed on G'. Since u is not congruent 
to any existing vertex, this merge adds a term to an existing equivalence class without merging 
any existing classes, thus the cannonical representative of the augmented class can be preserved, 
so that w0 , extends We. Inspection reveals that Wa' also satisfies (1), (2), (4), and (5). 

Finally, let G' be formed from G by adding a vertex u labelled eons over the two vertices v1 
and v2 ; and simultaneously adding vertices w1 and w2, labelled ear and edr respectively, over u; 
and merging w1 with v1 and w2 with v2: 

G 

Inspection reveals that Wai satisfies (1) through (5). This completes the proof of the theorem. I 
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Corollary. Let C be a conjunction of atomic formulas each of which has one of the forms t = u, 
t =/= u, atom( t) = true, or atom( t) =/= true, for some term t or terms t and u that are composed 
of variables and tlie function symbols car, cdr, cons, and nil. Then C is convex. 

Proof. Construct an E-graph G as follows: initialize G to be the E-graph associated with the 
identity relation on the set of terms appearing in C. For each conjunct t = u of C, merge t and 
u in G. For each vertex cons( t, u) of G add the vertices car( cons( t, u )) and cdr( cons( t, u )) to G 
(if they do not already exist) and merge them with the vertices t and u. Now W a satisfies the 
equality conjuncts of C (including the conjuncts atom( t ), which are abbreviations for equalities 
involving true); if Wa fails to satisfy some disequality conjunct of G (note that conjuncts •atom(t) 
are disequalities involving true), then C is unsatisfiable, hence convex. Suppose to the contrary 
that C is satisfiable, and that C entails a disjunction v1 = w1 V ... V v11 = w11 of equalities 
between variables. Then C /\ vi =/= w1 ••• /\ Vn =/= w11 is unsatisfiable. The E-graph G' obtained 
by adjoining vertices for the v; and Wi to G must therefore fail to satisfy the conditions of Theorem 
L; inspection reveals that W G' must violate one of the disequalities v, =/= w,; hence C entails v, = 
w;. Thus C is convex. I 

Thus, a conjunction of L-literals is convex, provided that atom is used only as a predicate. If 
occurrences of atom are embedded in terms or equated to terms other than true, conjunctions of 
L-literals may be non-convex; for example, the conjunction 

x = cons(ear(y), cdr(y)) /\ z = atom(y) /\ w =true 

entails the split x = y V z = w. In fact, if atom is allowed to be embedded in terms, the 
satisfiability problem for L becomes NP-complete. To see this, note that 

x is atomic or y is atomic or z is non-atomic 

is equivalent to 
not (xis non-atomic and y is non-atomic and z is atomic) 

whose satisfiability is equivalent to that of 

f(cons(car(x), cdr(x)), cons(car(y), cdr(y)), atom(z)) =/= f(x, y, true). 

Thus, the 3-CNF satisfiability problem can be reduced to the satisfiability problem for L, if atom 
is allowed embedded in terms. Algorithm L below is fast in the case that atom is used only as a 
predicate, and correct (but not necessarily fast) for the general case. 

The satisfiability procedure for L uses the procedures merge and forbidmerge of section 7 
to assert equalities and disequalities in an E-graph. We require that the procedure mergepair be 
modified to set the global variable inconsistent if the requested merge would cause the E-graph 
to violate axiom (4); that is, if the merge would create a pattern in which some vertex atom(t) is 
equivalent to true, and t is equivalent to some vertex labelled cons. The necessary modifications 
am described at the end of this section. 

Algorithm L (Satisfiability procedure for L). Let E be a conjunction of equalities that includes 
atom(nil) = true, and let D be a conjunction of disequalities; this algorithm determines whether 
E /\ D is satisfiable in the theory L. Let G be the E-graph associated with the identity relation 
on the set of terms appearing in E and D, together with the term true; let a(l), a(2), ... , a(n) be 
the list of those vertices of G labelled atom, and let S be an empty stack. Let i = 1. During the 
execution of the algorithm, the entries on S will be triples of the form ( v, i', G'), where G' is an 
E-graph, i' is an integer between 1 and n, and v is a vertex of G' labelled atom. 
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L 1. [Satisfy E and D.] For each conjunct t = u of E, merge the vertex t with the vertex u. For 
each disequality t =I= u of D, forbid the merge of t and u. If inconsistent is set by any of 
these actions, answer "unsatisfiable". 

L2. [Add vertices over cons nodes.] For each vertex cons( ti, t 2) of G, add to G the two vertices 
car( cons( ti, t 2)) and cdr(cons(tlJ t 2 )) (if they are not already present), and merge them with 
the vertices t 1 and t 2 respectively. If inconsistent is set by any of these actions, answer 
"unsatisfiable". 

L3. [Guess next atom.] If i > n, answer "satisfiable", otherwise set v +- a(i), i +- i + 1; v 
will be of the form atom( t ). If v is equivalent to true, or if t is equivalent to some vertex 
labelled cons, then repeat this step. Otherwise push ( t, i, G) on S and merge v with true. If 
now inconsistent is true, go to step L4; otherwise repeat this step. 

L4. [Current context inconsistent.] Pop an entry (t, i', G') from S, set i +- i', G +- G', and 
inconsistent +- false. Find or create a vertex for cons( car( t ), cdr( t)) and merge it with t. If 
now inconsistent is false, go to step L3. If inconsistent is true, then repeat this step unless 
Sis empty, in which case answer "unsatisfiable". I 

The correctness of the algorithm is proved by establishing that at entry to step L3 we have 
the following invariants: 

I. The conjunction E /\ D is satisfiable if and only if either (a) there exists an interpretation 
\JI that extends \JI a and satisfies E /\ D, or (b) there exists an interpretation \JI and an 
entry (t, i', G') on the stack S such that \JI extends \Jla, and \J!a(atom(t)) =I= '1f a(true). 

II. If atom(t) is a vertex of G (of G' for some stack entry (t', i', G')), and atom(t) is not 
equivalent to true, and t is not equivalent to any vertex labelled cons, then atom( t) appears 
in a(i), a(i + 1), ... , a(n) (in a(i'), a(i' + 1), ... , a(n)). 

III. If (t, i', G') is an entry on the stack S, then i ~ i', and furthermore i 11 > i1 for any entry 
(t', i", G") that is less deep in the stack than (t, i', G'). 

It is not difficult to prove that these invariants hold, and that they establish the correctness of 
the algorithm. For example, when (t, i, G) is pushed on Sand vis merged with true, the invariant 
is preserved because in any interpretation atom( t) is either true or not true. That the algorithm 
is correct when it answers satisfiable follows from Theorem L. (Note that invariant II says that 
every potential violation of axiom (3) appears in the list a(i), ... , a(n), so if i > n, then the graph 
satisfies (3). By construction it satisfies (1 ), (2), (5), E, and D, and since inconsistent is false, it 
also satisfies (4).) 

This algorithm may take exponential time in the worst case, but if the only occurrences of the 
function symbol atom are in literals of the form atom( t) = true or atom( t) =/= true, then the stack 
never has more than one entry on it, and the time for the algorithm is dominated by the time for 
the congruence closure computation. 

Of course, the "undo" mechanism described in section 7 is used to save and restore the state 
of the E-graph; it would be too slow to follow the algorithm literally and copy the whole graph 
onto a stack. The same stack (namely undostack) can be used to save i and t as well as the list 
of operations required to restore the E-graph. The command "push ( t, i, G) on S" of step L3 is 
implemented by calling undo( t ), undo( i), and undo(push), thus pushing t and i on the undo stack 
immediately beneath the conventional mark push. The code for pop is :modified to restore t and 
i to the values on the stack after it gets to the conventional mark. We also reset inconsistent in 
pop; so the effect of the call pop() is exactly that of the first sentence of step L4. 
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It remains to describe the modifications necessary to make merge detect violations of (4). 
(Readers who are uninterested in implementation details may wish to skip the rest of the section.) 
These require seven bits in each E-node; the seven one-bit fields are the hasatom field, which is 
set in the root of each equivalence class containing a vertex labelled atom; the hascons field, set 
in the root of each equivalence class containing a vertex labelled cons; the hastrue field, set in the 
root of the equivalence class containing the vertex true; the atomic field, set in the root of each 
equivalence class that has been asserted atomic, in the sense that it has a predecessor labelled atom 
that is equivalent to true; and the resetatomic, resethascons, and resethasatom fields, which are 
included to facilitate "undoing" operations on the data structure. 

After calling union(u, v) (thereby merging the equivalence classes of u and v and making v the 
new root), the new version of merge updates the atomic and hascons fields of v by ORing in the 
values of the corresponding fields of u. If this results in both fields being set, the procedure sets 
inconsistent and exits. Also, if either field of v was changed from false to true by this merge, a 
one-bit reset field in v is set, so that when this merge is "undone", the appropriate field of v can 
be cleared. Here is the fragment of code to be added: 

ff atomic(u) /\ •atomic(v) => (atomic(v), resetatomic(u)) +-(true, true) D; 
ff hascons(u) /\ •hascons(v) => (hascons( v), resethascons(u)) +- (true, true) D; 
hascons(v) /\ atomic(v) => inconsistent+- true; 

To undo these operations, we add to the procedure undomerge the following fragment, after 
it has undone the call to union (or at any convenient place): 

ffresetatomic(u) => (atomic(v),resetatomic(u)) +- (false,false)D; 
[ resethascons( u) => ( hascons( v ), resethascons( u)) +- (false, false )D; 

It is also necessary, whenever an equivalence class is merged with true, to find each vertex 
in the class of the form atom( t) and set the atomic bit in the root node for t. By keeping, for 
each equivalence class, a circular list of the vertices labeled atom in that class, this can be done 
efficiently; here we suggest keeping one bit to say if there are any vertices labeled atom, and 
traversing the class to find them if necessary. This adds a factor of n to the worst case of the 
algorithm, but is likely to be satisfactory in practice, since the equivalence class of a vertex atom( t) 
that has not yet been merged with true is likely to be small (in fact it is likely to be a singleton). 
Here is the required code, which should be added to the procedure merge next to the previous 
addition: 

ff has atom( u) /\ hast rue( v) => findatoms( u, u ); 
has atom( v) /\ hastrue( u) => findatoms( v, v) D; 

inconsistent => ff D; 
ff hastrue(u) => hastrue(v) +-true D; 
ff hasatom(u) /\ •hasatom(v) => (hasatom(v), resetatom(u)) +-(true, true) D; 

where the procedure findatoms is defined by: 

Procedure findatoms(p, endp) = 
ff [ ecar(p) = atomnode => 

with y = eroot(ecar(ecdr(p))) do 
[ atomic(y) => [ D; 

hascons(y) => inconsistent +- true; 
atomic(y) +-true; 
ff undo(y); undo( atomic) DD D; 

inconsistent V eqlink(p) = endp => [ D; 
fi.ndatoms( eq l ink(p), endp) D. 
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(We assume that atomnode is the E-node representing the function symbol atom.) 
It is easy to undo these operations. The pop procedure must recognize a new token (atomic), 

which signifies that the next object on the stack is a pointer to an E-node whose atomic field 
should be cleared. The hasatom field is restored just as the hascons and atomic fields are. The 
hastrue field is easier to restore: since true can be a member of only one equivalence class at once, 
the following fragment, added to undomerge, suffices: 

n hastrue(u) => hastrue(v) - raise D· 
Instead of explicitly representing the conjunct atom(nil) = true, as implied by Algorithm 

L, the procedure that converts terms into E-nodes just sets the atomic bit in the vertex node 
representing nil(). 

10. The satisfiability procedure for A 
The satisfiability problem for A was first solved by Kaplan [28). Downey and Sethi [21] considered 
the special case of determining whether two A-terms are equivalent, and showed that this problem 
was NP-complete. Hence the general problem is NP-hard. A careful analysis of Kaplan's algorithm 
would probably show that the general problem is in NP, but the algorithm is complicated, and 
apparently no such analysis has been performed. The algorithm below is simpler, and shows that 
the problem is in NP. 

Recall that the theory A has the two axioms: 

(Vaie) a<:>(i) = e 
(\faije) i ;6- j :) a<:>(j) = a(j) 

(1) 
(2) 

where the notation abbreviates terms involving the function symbols store and select as described 
in section 5. 

The satisfiability procedure for A rests on the following theorem: 

Theorem A. Let E be a conjunction of equalities, D a conjunction of disequalities, Gan E-graph 
such that "Illa satisfies E, D, (1), and (2), and suppose that: 

(3) G represents a<~>(i) whenever G represents a<~>. 

(4) G represents a(j) whenever G represents a<~>(j) and "llla(i) is different than "llla(j). 

(5) G represents a<~>(j) whenever G represents both a<~> and a(j), and Wa(i) is different than 
"llla(j). 

Then E /\ D is satisfiable in the theory A. 
Proof. Conditions (3), (4) and (5) are summarized by the following diagram, in which the dotted 
nodes are required to exist whenever the solid nodes exist: 

not equivalent not equivalent 
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Because Wa is required to satisfy (1) and (2), the nodes labelled select will be equivalent in (b) 
and (c); and in (a), the select node will be equivalent to the third successor of the store node. The 
diagram is imprecise in that it ignores the equivalence relation; an instance of the solid part of (b) 
need not be a select node whose first successor is a store node; it is enough that its first successor 
be equivalent to some store node. 

The proof of the theorem is similar to the proof of Theorem L. Let g be the class of E-graphs 
that satisfy the conditions of the theorem. We show that for any G E g, for any function symbol 
J, and for any n vertices vi, ... , Vn of G, where n is the arity of j, there exists an E-graph G' E g 
such that \[! G' extends \[!a and G' contains a representative for J ( v 1 , ••• , v n)· The theorem then 
follows from Lemma X. The proof of extension is trivial for all function symbols except store and 
select. 

To add a node labelled store. Let u, v, and w be vertices such that G does not represent the 
term store( u, v, w). Let {ti, ... , t n} be the set of vertices of G that are labelled select, have first 
successors that are equivalent to u, and have second successors that are not equivalent to v. To 
construct G', add to G the vertex store(u, v, w); add the vertex seleet(store(u, v, w), v)) and merge 
it with w; and for each ti, add the vertex select(store(u, v, w), ti[2]) and merge it with ti. Here is 
a diagram showing the additions to the graph: 

Inspection shows that Wai satisfies (1) through (5) and extends Wa. 

To add a node labelled select. Let u and v be two vertices of G such that G does not represent 
the term select( u, v ). We will add the vertex select( u, v) and additional vertices labelled select in 
order to maintain (1) through (5). 

Let U be the smallest set of vertices of G such that (a) u E U; (b) if x E U, x is labelled 
store, x[2] is not equivalent to v, then x[l] EU; (c) if x[l] EU, xis labelled store, and x[2] is not 
equivalent to v, then x EU; (d) if x EU and y is equivalent to x, then y EU. 

For any u' E U, G has no vertex representing select( u', v); for if such a vertex existed, then by 
repeated application of (4) and (5) we would find a vertex for select(u, v), which we are assuming 
does not exist. 

Let G' be obtained from G by adding a vertex for select(u', v), for each u' EU, and merging 
all the resulting vertices, as shown here: 
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By the remark above, all the vertices merged are new ones, so '11 G' is an extension of '11 G· Inspection 
shows that '1101 satisfies (1) to (5). 

This completes the proof of Theorem A. I 

The satisfiability procedure for A uses a modified version of the procedure merge of section 7. 
The new merge detects any patterns that appear in the E-graph that may require a case-split, and 
enters the patterns in a global array b, which is regarded as a potentially infinite list of pairs of 
vertices; the current value of which is b(l), b(l + 1), ... , b(r). To add a pair (u, v) to b, merge sets 
r <---- r + 1; b(r) <---- (u, v). We assume that whenever two equivalence classes Qi and Q 2 are merged, 
the procedure merge 

• adds to the list ball pairs (u, v) such that >-.(u) =store, >-.(v) =select, and either u E Q1 

and v[l] E Q2, or u E Q2 and v[l] E Qi. 

• adds to the list ball pairs (u, v) such that >-.(u) =store, >-.(v) =select, and either u[l] E Qi 
and v[l] E Q2, or u[l] E Q2 and v[l) E Qi. 

In other words, b keeps track of potential violations of ( 4) and (5). The required modifications 
to merge are similar to those described in the last section, and will not be described in detail. A 
double loop can be used to find all the pairs. By using six bits in each enode to keep track. of which 
equivalence classes contain vertices labelled store or vertices that are first successors of vertices 
labelled store or select, the double loop can be avoided whenever it would find no pairs. 

Algorithm A (The Satisfiability Procedure for A). Given a conjunction of equalities E and a 
conjunction of disequalities D, this algorithm determines whether E /\ Dis satisfiable in the theory 
A. The algorithm uses an E-graph G, which is initialized to represent the identity relation on the 
set of terms appearing in E and D; the global array b described above, together with its indices 
l and r; and a stack S, initially empty, which during the execution of the algorithm will contain 
tuples of the form (u, v, l', r', G'), where u and v are vertices of G', G' is an E-graph, and l' and r' 
are integers. Initially l is 1 and b(l), ... , b(r) is the list of pairs (u, v) of vertices of G such that 
>..(u) =store, >..(v) =select, and either u = v[l] or u[l] = v[l). 

A 1. [Satisfy E and D .) For each conjunct t = u of E, merge the vertex t with the vertex u. For 
each disequality t f:. u of D, forbid the merge of t and u. If inconsistent is set by any of 
these actions, answer "unsatisfiable". 
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A2. (Add select vertices.] For each vertex store(u, v, w) of G, add the vertex select(store(u, v, w), v) 
and merge it with w. If inconsistent is set by any of these actions, answer "unsatisfiable". 

A3. [Perform a split.] If l > r, answer "satisfiable," else let (u, v) be b(l) and set l +- l + 1. 
If v(2] is equivalent to u[2], repeat this step; else push (u, v, l, r, G) on S and merge u[2] with 
v[2]. If now inconsistent is set, go to step A4, else repeat this step. 

A4. (Try next case.] Pop an entry (u, v, l', r', G') from S and set l +- l', r +- r', G +- G', 
and unsatisfiable +- false. If u is equivalent to v[l], let w be a vertex that represents 
select(u[l], v[2]), else let w be a vertex to represent select(u, v[2]). In either case, create w if it 
is not already present. Merge w with v. If now inconsistent is false, go to step A3, else if S 
is empty, answer "unsatisfiable," else repeat this step. I 

The correctness of this algorithm follows from Theorem A in essentially the same way that 
the correctness of Algorithm L follows from Theorem L. Note that just before restoring r +- r' in 
step A4, the entries b(r' + 1), b(r' + 2), ... b(r) are irrelevant. If b is represented as a linked list, 
which is a reasonable choice, then the storage for these entries should be returned to the ava,liable 
list at that point. 

Each vertex labelled select added in step A4 has for its successors two vertices in the original 
graph; this is easy to prove by induction and inspection of (b) and (c) above. It follows from this 
that in the worst case, the algorithm requires O(n2 ) space and 2°Cn2

) time, where n is the length 
of the original conjunction in characters. 

It is not clear whether this algorithm takes 2°Cn2
) time. To see what can happen, consider 

applying it to the conjunction 

The array on the left of the equality differs from a at ii, i2, ... , in. But these n indices cannot 
all be distinct, since the array on the right of the equality differs from a at no more than n - 1 
places. Thus the conjunction entails v i3 = i1c. 

j~k 

Thus the theory A is badly non-convex; a conjunction of length n may cause a split with 0(n2 ) 

branches. However, Algorithm A will stop at the first satisfiable branch, so it will discover the 
satisfiability of the above conjunction rapidly. It would cost 2°<n 2

) time if each branch were 
unsatisfiable; for example if the conjuncts b(i3) =/:- b(i1c) were included for all j and k with 1 ~ j < 
k < n. But then the length of the conjunction becomes n2 • 

It would be useful to have a satisfiability procedure for the theory obtained by adding to A 
the additional axiom 

(\fa b) a=/:- b :::> (3 x) a(x) =/:- b(x). 

11. An algorithm for finding disjunctive normal forms 

Before going on to the satisfiability procedure for R, which uses data structures that are very 
different from the E-graph, we will in this section describe an algorithm that extends the material 
in the last five sections in three ways: The algorithm combines the satisfiability procedures for e, 
L, and A; it determines a "simplest form" for its input instead of just determining if its input is 
satisfiable, and its input is an arbitrary formula instead of a conjunction of literals. 
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It is dear. that to combine the satisfiability procedures for €, L, and A all we have to do is 
perform the operations of Algorithms L and A together in one algorithm; it is not necessary to 
propagate equalities from one procedure to the other, because both procedures represent equalities 
in the E-graph, so an equality discovered by one procedure will automatically be available to the 
other. 

Since the algorithms for L and A have already introduced case splitting, it will not be difficult 
to handle explicit disjunctions in the input formula: such disjunctions can be handled by entries 
on the same stack used to handle the splits demanded by L and A. 

The "simple form" produced by Algorithm D of this section is a version of "disjunctive 
normal form." A disjunctive normal form for a formula F is a formula G that is a disjunction 
of conjunctions of literals, such that F is equivalent to G and each disjunct of G is satisfiable. 
Thus F is satisfiable if and only if G is not the empty disjunction; the disjuncts of (j describe the 
satisfying contexts of F. To find such a formula G requires no substantial change in approach: 
both Algorithm L and Algorithm A essentially search for a satisfying context for the input; the 
new algorithm searches in the same way, but instead of halting with the answer "satisfiable" when 
it finds a satisfying context, it outputs the conjunction representing the context and continues 
searching for other satisfying contexts. 

For example, consider the formula 

J(f(f(f(f(f(x)))))) = x /\ (/(f(f(f(x)))) = x V J(f(f(x))) = x). 

By case-splitting in the obvious way, the algorithm finds two E-graphs that satisfy the formula; the 
first E-graph is constructed by merging f 6 (x) with x and f 4 (x) with x; the second is constructed 
by merging f 6 (x) with x and / 3(x) with x. By using a method described at the end of this section 
for simplifying conjunctions of equalities, it is possible to simplify these two contexts and compute 
the disjunctive normal form f(f(x)) = x V J(f(f(x))) = x. 

We assume the existence of a procedure add( t, G) that adds a representative for the term t to 
the E-graph G, if one is not already present, and that has the following properties: The addition 
is "undoable", in the sense that calling pop will remove all vertices added by add. Also, for each 
vertex cons(u, v) created, add also creates vertices car(cons(u, v)) and cdr(cons(u, v)), and merges 
them with u and v respectively. Similarly, for each vertex store( u, v, w) created, add also creates the 
vertex select(store(u, v, w), v) and merges it with v. (Notice that neither of these merges can create 
any inconsistency, since new vertices are just being added to old equivalence classes.) Finally, we 
assume that each vertex labelled atom created by add is added to the global list a (in the sense of 
section 9}, and that for each vertex v labelled select created by add, a pair ( v, w) is added to the 
global list b (in the sense of section 10} for each w labelled store that is either equivalent to v[l], 
or is such that w[l) is equivalent to v[l). 

Algorithm D (Find Disjunctive Normal Form). Given a conjunction f 1 /\ ••• /\ Fn of quantifier­
free formulas, this algorithm finds all essentially different E-graphs G such that '11 a satisfies the 
conjunction. By using methods described at the end of the section, the graphs discovered by the 
algorithm can be turned back into simple conjunctions of literals; thus a disjunctive normal form 
can be constructed for the original conjunction. We assume that the only boolean connectives 
appearing in the input are /\ and •;this entails no loss of generality, since the other connectives 
can be defined in terms of these. The algorithm uses the queue a(al), ... , a(ar) that is identical to 
the queue a(i), ... , a(n) of Algorithm E, the queue b(bl), ... , b(br) that is identical to the queue b(l), 
... , b(r) of Algorithm A, and the queue c(cl), ... , c(cr), whose entries are pairs ( G, flag) where G 
is a formula (actually a subformula of the input conjunction), and flag is either true or false. Such 
an entry represents an assumption that G has the truth-value of flag. Initially, cl = 1, er = n, 
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and c(i) =(Fi, true) for 1 < i < n. The algorithm also uses a stack S, whose entries are tuples of 
the form (X, al', ar', bl', br', cl', er', G'), where X is either one of the conventional marks amark or 
bmark, or else is a formula; G' is an E-graph; and the other six components are integers. Finally, 
the algorithm uses the global E-graph G, which initially is the empty E-graph. The queues a and 
b are initially empty; that is, al = bl = 1, ar = br = 0. 

01. [Get next conjunct.] If cl > er, go to D3. Otherwise, set ( G, flag) t-- c(cl), cl t-- cl+ 1, and 
go on to D2. 

02. [Process conjunct.] If G is of the form --iG', set G +- G', flag t-- --iflag, and repeat this 
step. If G is of the form G1 /\ G2 and flag = true, set er +- er+ 1, e(cr) t-- ( G2, true), 
G t-- Gi, and repeat this step. If G is of the form G1 /\ G2 and flag = false, push the 
entry (G 2 ,al,ar,bl,br,cl,cr,G) on S, set Gt-- G1 , and repeat this step. Otherwise G will be 
an atomic formula u = v; call add(u, G), add(v, G). If flag= true, call merge(u, v), else call 
forbidmerge( u, v ). If inconsistent is set, go to D5; else go to Dl. 

03. [Atom split.] If al > ar, go to D4, else set v t-- a(al), al +- al+ 1; v will be of the form 
atom( t ). If v is equivalent to true, or if t is equivalent to some vertex labelled cons, then 
repeat this step. Otherwise, push (amark, al - 1, ar, bl, br, cl, er, G) on S and merge v with 
true. If now inconsistent is true, go to D5, else repeat this step. 

04. [Store split.] If bl > br, output the current E-graph and go to D5. Otherwise set ( u, v) t-- b(bl) 
and bl+- bl+ 1. If v[2] is equivalent to u[2], repeat this step; else push (bmark, al, ar, bl - 1, 
br, cl, er, G) on S and merge v[2] with u[2]. If now inconsistent is set, go to D5, else repeat 
this step. 

05. [Backtrack.] If Sis empty, the algorithm halts. Otherwise, pop an entry (X,al',ar',bl',br', 
cl', er', G') from Sand set al..-- al', art-- ar', bl+- bl', br t-- br', cl t-- cl', er+- er', and G ..­
G'. If Xis a formula, then set Gt-- X, flag..-- false, and go to step D2. If X = amark, then 
a(al) will be of the form atom(t); call add(cons(car(t),cdr(t)), merge cons(car(t),cdr(t)) with 
t, and then if inconsistent is true, repeat this step, else set al t-- al+ 1 and go to D3. Finally, 
if X = bmark, b(bl) will be a pair (u, v). If u is equivalent to v[l], call add(select(u[l], v[2])) 
and merge select(u[l], v[2]) with v; else call add(select(u, v[2])) and merge select(u, v[2]) with v. 
In either case, if inconsistent is set, repeat this step, else set bl +- bl + 1 and go to D4. I 

The proof that each E-graph output by the algorithm satisfies the input conjunction is 
straightforward. It is not difficult to formalize the notion of a minimal satisfying E-graph as one 
whose vertex set and equivalence relation are both as small as possible, and to show that in fact 
the algorithm finds all minimal satisfying E-graphs. (Of course, the algorithm may find the same 
graph more than once; for example, if the input conjunction is P V P.) 

It is straightforward to incorporate other satisfiability procedures into the algorithm above. 
The algorithm provides a general framework for theorem-proving with resettable data structures. 
Section 13 describes the modifications necessary to incorporate the satisfiability procedure for R. 

When this algorithm is used in program verification, the conjunction f 1 /\ . • • A Fn 
represents all the assumptions made by the symbolic evaluator on its path to some program point, 
together with the negation of some invariant that is to be proved to hold at that point. (The 
stack S contains additional entries that allow the symbolic evaluator to retrace its steps and try 
other paths through the program.) Thus the outputting of the E-graph in step D4 corresponds 
to a failure to verify some invariant. By associating with the conjuncts Fi the entities to which 
they correspond (namely entry assumptions, program branch points, or negated assumptions), the 
verifier can output a coherent account of where it failed and what potential counterexample context 
is troubling it. (Of course, one or more steps can be added between D4 and DS that bring more 
powerful theorem-proving methods to bear, such as matching or automatic induction.) 



46 SATISFIABILITY PROCEDURES 

It is very important in practice to put off case splits when possible. For example, suppose that 
the input conjunction is 

(a V b) /\ (c V d) /\ (e V J) /\ g /\ -,g. 

The algorithm as described V\<ould consider eight cases, each of which would of course turn out to 
be unsatisfiable. It is easy to change the algorithm so that it asserts all literals before it processes 
any disjunctions: step D2 must save disjunctions on another global queue instead of doing the split, 
and an additional step can perform the saved splits after all atomic conjuncts have been asserted. 

It is possible to work even harder to avoid case-splits, for example, consider the conjunction 

(a1 V bi) /\ ... /\ (an V bn) A (c :) d) A (d :) e) A (e :) -,c) A c. (1) 

After asserting the lone literal, c, it is necessary to choose one of n + 3 case splits. However, one 
of these case splits (namely c :) d, which is the case split -ic V d), is illusionary in that one 
of its branches ( •c) is immediately unsatisfiable. If this is detected, a new literal is discovered 
that can be asserted, namely d, then sir:µilarly e is discovered to be true, and then a contradiction 
is detected. This suggests the following strategy: before doing any case splits, check that every 
case split we are faced with is in fact "proper", in the sense that none of its branches will lead 
to immediate inconsistency. This strategy can be applied to the splits required by A and L as 
well as those required by explicit disjunctions. Unfortunately the obvious implementation of this 
rule is expensive, since the only way to be sure that a branch is not manifestly inconsistent is to 
assert the branch and test inconsistent, and this test will have to be repeated whenever a new 
assertion is made. Thus it would take a complete pass through (1) to ferret out each new literal. 
The possibilities for more sophisticated implementations are unclear. (In special cases, we can do 
much better; for example, see [3] for a linear-time algorithm for the 2-CNF satisfiability problem 
that is relevant to this problem.) 

We now turn to the problem of converting an E-graph into the conjunction of literals that 
it represents. The heart of this is the following combinatorial problem: Given an E-graph G = 
(V, E, >-., R), where R is congruence-closed, find a set R' of pairs of vertices {( ui, vi), ... , (uk, vk)}, 
such that the congruence closure of R' is R, and such that k is as small as possible. We define 
the height of a vertex of an E-graph as follows: the height of a variable is zero, and the height of 
j(ti, ... , tn) is one greater that the height of the tallest of ti, ... , tn. Note that the height of a 
vertex is independent of the equivalence relation. 

Lemma M. Let G = (V,E,>-.,R) be an E-graph such that R is congruence-closed, Q 11 ••• , Qq 
the equivalence classes of R, and for 1 < i < q let Qi,lJ Qi,21 ••• , Qi,ki be the partition of Q, 
into congruence classes. (Two vertices are in the same congruence class if they are congruent.) For 
1 ~ i < q, 1 < j ~ k;,, Jet v;,,i be a vertex in Q;,d whose height is less than or equal to the height 
of any other vertex in Q.;,,3. Let R' be the rela.tion 

{( V1,i, V1,2), ( V1,2, V1,3), ..• ' ( v1,k1 -1' v1,k1 ), 
{v2,i, v2,2), (v2,2, v2,3),. •., (v2,k2 -11 v2,k:J, 

Then the congruence closure of R' is R, and no relation with fewer pairs than R' has this property. 

Proof. We prove that for all n, two vertices v and w each of height less than or equal to n are 
equivalent in R only if they are equivalent in R', by induction on n. 
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Base case. If u and w each have height 0, then they are variables, and no vertex is congruent 
to either of them. Therefore the congruence classes containing them are singletons. If they are 
both in the same Qi, it follows that u = Vi,J and w = Vi,j' for some j, j'; hence they are equivalent 
in R'. 

Induction step. Let u and w be vertices whose heights do not exceed n, and which are both 
contained in Qi. Let vi,J be congruent to u in R, and vi,j' congruent to w in R. Since the height 
of Vi,J does not exceed the height of u, the successors of Vi.J have height strictly less than n, as 
do the successors of u. From the induction hypothesis and the fact that u is congruent to vi,J in 
R, it follows that corresponding successors of Vi,J and u are equivalent in the congruence closure 
of R'; hence u is equivalent to Vi,J in the congruence closure of R'. Similarly w is equivalent to 
vi,J' in the congruence closure of R'. Since vi,J and vi,J' are obviously equivalent in the congruence 
closure of R', the induction step is complete. 

It remains to prove that R' contains the minimum number of pairs. This follows immediately 
from the following fact: Let R" be any equivalence relation such that if any two vertices u and v are 
equivalent in R", they are equivalent in R, and if any two vertices u and v are congruent in R, they 
are equivalent in R". (Such a relation is obtained from R by breaking up the equivalence classes 
of R into blocks that preserve the congruence classes of R.) Then R" is closed under congruences. 
This is trivial: if u and v are congruent under R", their corresponding successors are equivalent 
under R", hence under R, hence u and v are congruent under R, hence equivalent under R". It 
follows from this fact that any set of pairs whose congruence closure is R must include a "spanning 
tree" connecting all the congruence classes in each equivalence class, hence must contain as many 
pairs as R'. I 

(It makes sense to talk above the congruence closure of a relation on a labelled cyclic graph, 
and in fact the algorithm of section 7 works for this case. But Lemma M is false for cyclic graphs; 
for example, if G consists of just the two vertices u and v, both with outdegree 1 and with the 
same label, and if u[l] = v, v[l] = u, and u and v are equivalent, then the single equivalence class 
consists of a single congruence class, so Lemma M would say that no merges were necessary to 
produce this graph, which is false since the identity relation is congruence-closed on the graph. It 
would be interesting to find a counterpart for Lemma M for graphs that were not acyclic.) 

Having found a minimal set of pairs whose congruence-closure is the given relation, it is 
necessary to choose a terms representing the vertices in order to produce a conjunction of equalities, 
and it is natural to want to choose the simplest such term. A straightforward dynamic programming 
algorithm will, in one bottom-up pass, compute a term tQ for each equivalence class Q, such that 
Q contains a representative for t Q but not for any smaller term. Having performed this algorithm, 
we can convert a pair (vi,J, vi,k) of the relation R' of Lemma Minto an equality conjunct as follows: 
if Vi,J is a variable, let t = Vi,J; if Vi,j is of the form j ( t 1 , .•. , t n), let Q( i) be the equivalence class 
of t ii for 1 ::; i ::; n, and let t be the term j ( t Q(i), • .. , t Q(n))· Similarly form u from Vi,k· Then 
t = u may be taken as the equality conjunct corresponding to the pair (vi.i, Vi,k)· In this way a 
minimal conjunction of equalities between minimal-sized terms is obtained that can be used in the 
output of the simplifier. 

Instead of performing a dynamic programming computation, it is possible (and simple) to 
incrementally keep track of the minimum-height vertex in each equivalence class, using two extra 
fields in each E-node (one to hold the height of the node, the other to point from the root of a 
class to the shortest node in the class). This method is not guaranteed to produce minimum-sized 
conjuncts, however, and it may actually be slower than the first method, since it substitutes work 
in mergepair and undo merge for work performed only when a satisfying context is found. 

Of course, it is necessary to find the disequalities that belong in the conjunction, too. A pass 
through the list c(l), c(2), ... , c(cr) will find all atomic formulas that have been asserted false, and 
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it is straightforward to prune them to a minimal set, since a disequality is redundant only if it is 
equivalent, given the current equivalence relation, to some other disequality. 

Finally, we must deal with the fact that some of the merges represent instances of the axioms 
of L and JI, and should not produce equality conjuncts in the simplified output. For example, 
suppose some equivalence class Q contains congruence classes C 1 , C2, C3 , and C4 • Ordinarily we 
would include three equalities in the output, to link up the four congruence classes, but if, say, C1 

contains a vertex u and C2 contains a vertex v such that u and v were merged to satisfy an axiom 
of A or L, (in the sense that u = car(c.ons(v, w)) or u = select(store(a, i, v), i) or the like) then 
including an equality between u and v in the output would produce a conjunction one of whose 
equality conjuncts is a consequence of the axioms of A and L. Therefore, in this case, C1 and C2 

may be treated as a single congruence class, and only two equalities need be included to link up 
Q. There are only three kinds of merges to worry about, namely when a vertex labelled car, cdr, 
or select is constructed and merged with a vertex below it; it is not difficult to keep track of these 
merges and prevent them from appearing in the output. 

As mentioned above, Algorithm D may find the same satifying context more than once. More 
generally, it may find two contexts, one of which subsumes the other, and it is expensive to check 
for this. It seems to be very difficult to compute or even define any workable cannonical form for 
formulas with equality. For example, the formula 

(i = O A p(O)) V p(i) 

is equivalent to p(i), but it is hard to imagine how to perform the simplification mechanically. 

12. The satisfiability procedure for R 
The satisfiability problem for R is essentially the problem of verifying that one linear inequality is a 
consequence of several other linear inequalities-for example, that x > 0 is a consequence of x ~ z 
and x ~ -z, or that y < 2x+ 1 is a consequence ofy < x and y > -x. This is equivalent to the 
general linear programming problem, but (at least according to the conventional view) the instances 
of the problem arising in verification work differ significantly from those arising in operations 
research, so verification researchers have designed many new methods, and modified traditional 
linear programming methods, to handle the cases they encounter in practice. For example, Pratt 
[48] reports that most of the inequalities encountered in verification work are of the form x < y + k 
(where x and y are variables and k is a constant); the solution of sets of inequalities of this form 
is equivalent to the problem of detecting negative cycles in weighted directed graphs. Shostak [54) 
generalizes Pratt's method to allow inequalities of the form ax+ by ::; k (or ax+ by < k) where 
x and y are variables and a, b, and k are numerals. The author [45] and Aspvall and Shiloach [4) 
also describe algorithms for the case considered by Shostak. Some theorem provers have used the 
Fourier-Motzkin elimination method for the general case, some have used the Sup-Inf method of 
Bledsoe (see Bledsoe [6] and Shostak [55]), and some have used heuristic methods (see Deutsch [17) 
and King [30]). None of these methods has been entirely satisfisfactory. 

(The corresponding satisfiability problem for non-linear inequalities is even harder; it boils 
down to determining whether a multivariate polynomial has a real root. The problem is obviously 
NP-·hard; presumably it it NP-complete, but no easy proof suggests itself. The lack of results 
on this satisfiability problem is surprising considering the amount of attension received by the 
corresponding decision problem-see for example [12, 13, 26, 50, 62]. Practical methods are as scarce 
as theoretical results; Facinating difficultites also arise when integer variables are allowed; though 
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the integer linear inequalities that arise in program verification can be handled quite satisfactorily 
by heuristics. The satisfiability problem for non-linear integer inequalities is unsolvable [41].) 

This section describes a satisfiability program for R that is based on the simplex algorithm 
[16]. The program is incremental; that is, it accepts linear inequalities one by one, maintains a 
representation for the conjunction of those it has received, and sets a flag whenever the conjunction 
becomes unsatisfiable. It also detects the equalities between variables that are consequences of the 
inequalities it has received; for example, if it were given x :::; y and y :::; x, it would "propagate" 
the equality x = y. Finally, the program is resettable; that is, the last inequality "asserted" to 
the program can be removed, and the program will restore the data structure to the state it was 
in before the last inequality was asserted. It is as though there is a stack where inequalities can be 
pushed or popped; the program represents the conjunction of the inequalities in the stack. 

Almost all descriptions of the simplex algorithm emphasize the optimization problem instead 
of the satisfiability problem, and the variables are usually restricted to be non-negative. There are 
standard methods for reducing the satisfiability problem for R to the canonical linear programming 
optimization problem with non-negative variables, but if these methods are applied blindly they 
increase the size of the problem by unnecessarily introducing many extra variables. Thus the 
treatment below differs from the standard treatment of the simplex algorithm in that we are 
interested in the satisfiability problem instead of the optimization problem, our variables are not 
restricted to be non-negative, and the program must be incremental, resettable, and must propagate 
equalities. Any of these differences taken by itself is minor, but their combined effect is sufficiently 
significant that it seems unfair to refer the reader to reference works on linear programming 
that describe the algorithm from a very different point of view. Therefore, the algorithm will 
be described "from scratch", as it appears in our application. 

We will assume that all the inequalities are of the form L 2 0, where Lis an affine combination 
of variables. This assumption can be made without loss of generality, since the equality L = M 
can be represented as the conjunction of the two inequalities L - M 2 0 and M - L 2 O; the 
strict inequality L > M can be represented as the conjunction of L - M > 0 and L -- M =/: O; 
and disequalities like L =/: M can be represented in the E-graph. (The actual program does not use 
these reductions; it accepts equalities and strict inequalities directly. But all the important ideas 
in the program areHlustrated by inequalities of the form L 2 0. The handling of the other cases 
will be sketched at the end of this section.) 

The data structure used by the program will be called a tableau. A tableau consists of 
two one-dimensional arrays of variables, x(l), x(2), ... and y(l), y(2), ... ; one one-dimensional 
array of rational numbers, c(l), c(2), ... ; one two-dimensional array of rational numbers a(l, 1), 
a(l, 2), ... , a(2, 1), ... ; one set of variables, R; and three integers n, m, and dcol. The arrays 
are all regarded as potentially infinite; but at any moment x(j), y(i), a(i,j), and c(i) are relevant 
only for 1 < i < n, 1 :::; j :::; m. Furthermore, the variables in R will always be a sub.set of 
{ x(l), ... , x(m), y(l), ... , y(n)}. The variables in R will be called restricted; the other variables 
unrestricted. We will use subscripts to specify components of the arrays; we write aij for a( i, j). 
(In some places below this may be confusing; remember that the expression "xi'' does not denote 
a fixed variable but an element of a dynamically varying array ofvariables.) 

The tableau will be displayed in the fallowing format: 

au (1) 

Yn 
where the variables Xi and Yi are superscripted with the sign > if they are restricted. The value 
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of dcol is always between 0 and m; to indicate its value, a small triangle will be drawn between 
column dcol and column dcol + 1. 

For example, here is a typical tableau in which dcol is zero: 

1vm~ 

r~ I --~ 
The tableau (2) represents the five constraints: 

-1 
-3 

x 

2 0 
0 --1 

m>O n>O y>O 
y=m-n+2x 

l=-m-3n-1. 

(2) 

We will assume for awhile that dcol is zero, since the important ideas in the program are 
illustrated by this case. Under this assumption, the tableau (1) represents the n row constraints: 

i = 1, 2, ... , n 

as well as a sign constraint v > 0 for each restricted variable v. The variables x1, ••• , Xm are the 
column variables; the variables y11 ••• , Yn are the row variables, Xi is the owner of column i, y1 

the owner of row i. The column c11 •.. , Cn is the constant column. The tableau will always have 
the property that the variables X11 ••• , Xm 1 y11 ••• , Yn are distinct. 

We identify points in Rn+m with assignments of values to the variables of the tableau (1) 
by choosing some ordering of its variables. To be definite, let ( v1 , ••• , vn+m) be the variables 
of (1) listed in alphabetical order; then the point (r11 ... , rn+m) E Rn+m will be identified with 
the assignment that makes each v,; equal to r,;. A point satisfies the tableau if the corresponding 
assignment satisfies all the constraints of the tableau. The solution set of the tableau is the set of 
points that satisfy it. If the solution set is not empty, the solution flat of the tableau is the smallest 
affine set containing the solution set. The sample point of the tableau (1) is the point obtained by 
setting each column variable Xi to zero, and each row variable Yi to Ci· Obviously the sample point 
satisfies all the row constraints of the tableau, but it may violate the sign constraints of some of 
the row variables. A tableau is feasible if its sample point satisfies all its sign constraints. 

For example, the solution set of 

0 
-1 

1 
1 

is a square; its solution flat is a two dimensional affine subspace of R 4 , and its sample point is 
x = y = O, a = b = 1. 

The satisfiability problem for R is equivalent to the problem of determining whether a tableau 
has a solution, since a constraint like x + y > 0 can be represented by introducing a new variable 
v, making v the owner of a row representing x + y (thus creating a row constraint v = x + y), 
and then restricting v. Of course, the actual program does not generate named variables, but it is 
convenient to imagine that it does. 

Let T be a feasible tableau and y a row variable of T. Then y is manifestly maximized in T if 
every non-zero entry in y's row (outside of the constant column) is negative, and lies in a column 
owned by a restricted variable. For example, l is manifestly maximized in 



12. THE SATISFIABILITY PROCEDURE FOR R 51 

IVm:?! n:?! x 

rl 1 -1 2 0 (3) 
-1 -3 0 -1 

If a variable is manifestly maximized in T, then its maximum value over the solution set of 
the T is the constant entry in its row. For example, the maximum value of l over the solution set 
of (3) is -1, since, over the solution set of T, l = -m - 3n - 1 and m and n are non-negative. 

Let T be a feasible tableau and x a column variable of T. Then xis manifestly unbounded in 
T if every negative entry in the column owned by xis in a row owned by an unrestricted variable. 

For example, x is manifestly unbounded in 

1v x u:?: 

l:?! 1 1 0 
y -1 -1 1 (4) 
z --1 --·2 --·1 
m:?: 0 1 2 

Obviously if xis manifestly unbounded in T, then the solution set for T contains points where 
x takes on arbitrarily large values. For example, ( 4) is satisfied by its sample point x = u = l = O, 
y = 1, z = -1, m = 2; if we move this point by increasing x, leaving u zero, and determining l, 
y, z, and m as required by the row constraints, then no matter how far we move the point neither 
l nor m will become negative: m will stay 2 and l will always be equal to x. 

The pivot operation transforms a tableau into another with the same solution set. A tableau 
is pivoted by choosing a pivot row and a pivot column such that the entry in the pivot row and 
column is not zero, transforming the arrays a;,3 and Ci by the rule 

Any Any 
Pivot Other Pivot Other 

Column Column Column Column 

Pivot a b Pivot 1/a ---b/a 
Row 

-+ 
Row 

Any 
Other c d 

Any 
Other c/a d-bc/a 

Row Row 

and finally exchanging the owners of the pivot row and pivot column. For example, 

is transformed by pivoting l and x into 

x 

1/2 
1 

-1 
3 

y 

-1/2 
0 

1/2 
4 

(5) 

(6) 

The pivot operation amounts to solving the equation corresponding to the pivot row for the 
variable owning the pivot column, and then eliminating the column variable in terms of the row 
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variable in each row equation. For example, (5) is transformed into (6) by rewriting x = 21+y-·1 
as l = x/2 - y/2 + 1/2, and then using this equation to rewrite m = 2l + y + 3 as m = x + 4. 
Using this fact it is easy to check that the pivot operation preserves the solution set of the tableau. 

Here is the fact on which the simplex algorithm is based: If T is a tableau that is satisfied by 
its sample point, and v is any variable of T, then T may be transformed by a sequence of pivot 
operations into a tableau T' in which v is either manifestly unbounded or manifestly maximized. 
Any of several simple rules will generate an appropriate sequence of pivots; no backtracking is 
needed. All of the commonly-used rules have. been shown to require exponentially many pivots in 
the worst case, but in practice the worst case does not arise. A satisfactory rule is to choose any 
pivot that increases the sample value of v and produces a feasible tableau. 

For example, consider the inequalities 

They are satisfiable if and only if there is a point in the solution set of the following tableau at 
which c is non-negative: 

a~ 

b~ 

c 

1 -1 1 
1 1 3 

-1 0 -4 

(7) 

Notice that c has not yet been restricted. It is technically convenient to deal only with feasible 
tableaux; so the restriction will not be added unless it is determined that it is consistent to do so. 

Our goal is to tr an sf orm (7) into a tableau in which c is manifestly maximized or manifestly 
unbounded. We restrict our attention to pivots that increase the sample value of c and produce a 
feasible tableau. Only one pivot for {7} satisfies these restrictions: the pivot of x and a; This pivot 
produces the tableau: 

1v a:o?: y 

x 1 1 -1 (8} 
b~ 1 2 2 
c -1 -1 -3 

Since c is neither manifestly maximized nor manifestly unbounded, we continue pivoting. Again 
there is only one reasonable pivot, the pivot of y and b, which produces: 

1v a:o?: b~ 

x 1/2 1/2 -2 (9) 
y -1/2 1/2 -1 
c --1/2 --1/2 -2 

Now c is manifestly maximized at -2, so the original inequalities are unsatisfiable. (Notice that 
xis manifestly minimized, in an obvious sense, in (9); if we had known that the inequalities would 
be unsatisfiable we could have avoided adding the row for c, and instead minimized x directly.) 



12. THE SATISFIABILITY PROCEDURE FOR R 53 

c=O x=O 

y=O (A) 

Figure (A) shows the solution flat of (9), which is a two-dimensional affine subset of R 5 • The 
hyperplanes x = O, y = O, a = O, b = O, and c = 0 intersect the solution flat in five lines. 
If T' is any tableau produced from (9) by a sequence of pivots, then the sample point of T' is 
the intersection of the two lines in the diagram that correspond to the column variables of T'. 
Fu thermo re, for each intersection point there is such a tableau T'. If T' and T" are two such 
tableaux, then T' can be obtained from T" (if we ignore the order of the rows and columns of 
T") in a single pivot if and only if the points corresponding to T' and T" both lie on one of the 
lines-the line where the common column variable of T' and T" is zero. 

The solution set of (9) is the quarter-plane to the right of the lines a = 0 and b = 0. The 
sequence of pivots above moved the sample point first left and then down and to the left, till the 
extreme point of the solution set in the direction of increasing c was reached. This example should 
make it intuitively clear that a sequep.ce of pivots in the direction of increasing y will lead to a 
tableau in which y is either manifestly maximized or manifestly unbounded. 

Let us now consider how the pivots are chosen. This is described in every book on linear 
programming, but generally under the assumption that all variables are restricted, so it is necessary 
to make a few simple modifications to handle the unrestricted variables. 

If we are trying to increase the value of the row variable x, then pivoting the row variable 
y with the column variable z will help if the sample value of z is increased and x has a positive 
"correlation" with z, or if z is decreased and x has a negative correlation with z. Since the sample 
value of a column variable is zero and it is illegal to make a restricted variable negative, the column 
owned by z is a potential place to pivot if either (a) The entry in z's column and x's row is positive, 
or (b) the entry in z's column and x's row is negative, and z is an unrestricted variable. The 
fir~t step in finding a pivot is to choose a column satifying either (a) or (b). Notice that if no such 
column exists, then x is manifestly maximized. 

The rule for choosing the pivot row depends on whether (a) or {b) holds. Suppose that (a) 
holds; then we are trying to raise the value of z in order to raise the value of x. We will raise 
z as much as we can without making the constant entry in any restricted row negative. If row i 
is owned by a restricted variable, and z owns column j, then z can be raised to -ci/aij before 
the value of the owner of row i becomes zero. Note that we are assuming ci is non-negative (since 
the tableau is satisfied by its sample point) and that aij is negative, so --ci/ aij is nonnegative 
as it should be. This leads to the pivot rule: If there are any rows owned by restricted variables 
with negative entries in the pivot column, choose from these rows that row i such that -ci/ aij is 
smallest; and pivot in that row. 

If the pivot column was chosen to satisfy {b) instead of (a), the choice of the pivot row is 
essentially the same, but since z is being lowered instead of raised, it is the restricted rows with 
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positive entries in z's column that pose restrictions. 

Algorithm F (Find a pivot). Find a pivot that increases the sample value of Yi· If Yi is manifestly 
maximized, return (0, 0). Otherwise return a pair of indices (i',j') such that pivoting at (i',j') will 
increase the sample value Yi· 
F1. [Find pivot column.] If there is some column j such that x; is not restricted and ai; is non-zero, 

then set j' +- j, sgn +- a;.;, and go to step F2. Otherwise,ir'there is some column j such that 
· a1; is positive, set j' +- j, sgn +- +i, and go to step F2. Otherwise return (0, 0). 

F2. [Initialize champ and score.] (If sgn > 0, find a piyot in column j' to raise the sample value 
of x,.,; if sgn < O, find a pivot in column j to lower the sample value of x31.) Set champ+- i, 
score+- oo. 

F3. [Find pivot row.] For each row i' such that i' -:/:- i, the owner of row i' is restricted, and 
sgn X ai'i' < 0, if lc,,;1/ai'i'I <score, then set champ+- i', score+- lc;.1/ai'i'I· 

F4. [Return answer.] Return (i',j'). I 

(If the final value of score is zero, the pivot does not increase yi; in this case any ties should 
be broken by one of the rules that avoid "cycling~for a discussion of such rules, see any textbook 
on linear programming.) 

Two observations about this algorithm will be useful later. 
First, if the algorithm returns a pivot ( i', j') such that i' = i, then xi' can be moved indefinitely 

in the direction required to increase Yih without violating any sign constraints. Obviously then, 
there are points in the solution set of the tableau where Yi' takes on arbitrarily large values. In 
fact it is easy to show that in this case, Yi' will become manifestly unbounded after pivoting at 
( ., "') i 'J . 

Second, given a feasible tableau T and a column variable x; of T such that the column owned 
by x; is not identically zero, then there is a pivot a;.; in column j such that after pivoting at ai;, 
the sample point of the resulting tableau satisfies every sign constraint except possibly the sign 
constraint associated with y.;,. (yi is the variable that used to be x;.) For, if there is a positive 
entry in the column; then set sgn +- +i and apply steps F2, F3, and F4 to the column; if there 
is no positive entry; then there must be a negative entry; apply steps 2, 3, and 4 with sgn = --1. 

We now consider how to determine the equalities that need to be propagated. A tableau 
is minimal if it is satisfiable and the dimension of its solution fiat is equal to the number of its 
columns. An example of a non-minimal tableau is: 

y-:t!: I -1 o 

The solution set (hence also the solution fiat) of this tableau is the single point x = y = O. 

Lemma 1. Let u and v be any two variables of a minimal tableau. Then the equality u = v is 
satisfied by every solution of the tableau if and only if either (a) u and v are both row variables, 
and the rows they own are identical; or (b) u owns a row, v owns a column, and every entry in 
the row owned by u is zero except the entry in v 's column, which is 1; or vice-versa. 

Proof. Let Hi, for i from 1 to n, be the hyperplane which is the solution set of the ith row 
constraint. These hyperplanes are in general position, since the row variables are distinct. Thus 
the intersection of the H.;, ism-dimensional, and therefore must be the solution fiat. The hyperplane 
u = v is affine, so it is satisfied at every point in the solution set if and only if it is satisfied at 
every point in the solution fiat. In other words, u = v is true at every point in the solution set 
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if and only if u = v is a consequence of the row constraints. But u = v is a consequence of the 
row constraints if and only if the expression u - v is a linear combination of the n expressions 
!Ji - ai 1x 1 - · · • - aimX= - ci, for i from 1 to n. Obviously this cannot happen if three or more of 
the coefficients in the linear combination are non-zero, since then three or more y's will appear in 
the combination. If the linear combination has two non-zero coefficients, the only way the result 
can be u - v is if (a) holds. If the linear combination has one non-zero coefficient, the only way 
the result can be u - v is if (b) holds. I 

This lemma shows that it is straightforward to propagate equalities if the tableau is minimal. 
It is therefore desirable to keep the tableau minimal. This is where dcol comes in. 

When we are propagating equalities it will be convenient to have a variable whose value is 
known to be zero, Therefore, we will assume that every tableau contains an identically zero row 
owned by the distinguished variable Z. 

Consider the constraints: 

x ::; 1, y ::; 1, x + y > 2. 

These are satisfiable if and only if there is a point in the solution set of the following tableau where 
c is non-negative: 

1v x y 

z 0 0 0 
a<e -1 0 1 
b<!: 0 -1 1 
c 1 1 ---2 

We maximize c as before. The first pivot will either be of a and x or of b and y; suppose it is of a 
and x. The result is: 

1v a<e y 

z 0 0 0 
x -1 0 1 
b<!: 0 -1 1 
c -1 1 -1 

Now the only reasonable pivot is of b and y, with result: 

1v a b 

z 0 0 0 
x -1 0 1 (10) 

y 0 -1 1 
c -1 -1 0 

Thus a sample point is found where c is non-negative, and the constraints are shown to be satisfiable. 
But if the restriction c ~ 0 is added to the tableau, it becomes non-minimal. This is obviously 
associated with the fact that c is manifestly maximized at zero. If c ~ O, it must be that c = 0. 
More important, it must be that a and b are zero, since if either of them were positive then c would 
be negative. Thus the two "independent" variables of the tableau are fixed at zero, so the tableau 
is obviously non-minimal. 
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The most obvious way to proceed would be to propagate the equalities a= Z, b = Z, delete 
the columns owned by a and b, producing the minimal tableau 

z 
x 
y 
c 

0 
1 
1 
0 

{11) 

and then search this tableau for entailed equalities in the manner suggested by lemma 1, thus 
propagating x = y and c = Z. 

The only trouble with minimizing the tableau in this way is that there is no easy way to 
"undo" the assertion that caused the columns to be deleted. Therefore, instead of deleting the 
columns, the satisfiability procedure regards them as "dead columns" and ignores th•Jm. Columns 
1, ... , dcol are the dead columns, the other columns are "live" columns. Instead of (11), (10) is 
transformed into 

a bv 

z 0 0 0 
x -1 0 1 
y 0 -1 1 
c -1 -1 0 

which for almost all purposes is regarded as the same as (11). In particular, after the two columns 
are "killed" in this way, the equalities x = y and c = Z are propagated, because the corresponding 
pairs of rows are equal if the entries in the dead columns are ignored. 

The preceding definitions in this section were all for the case dcol = O; they must be changed 
in an obvious way if dcol -=/:- 0. For example, the set of constraints represented by a tableau must 
be extended to include x1 = 0, ... , x dcol = O; a tableau is minimal if the dimension of its solution 
flat is the number of its live columns, etc. A pivot may not be chosen in a dead column, but the 
entries in the dead columns are updated during pivoting in the usual way. Thus columns can be 
"revived" simply by decrementing dcol. 

We will now describe the two basic algorithms of the satisfiability procedure. Algorithm A 
I 

adds rows and/or columns to the tableau in the obvious way, and Algorithm R restricts variables of 
the tableau to be non-negative. Both algorithms make entries on the global list undolist, in order 
tha.t the changes they make to the tableau can be undone. The entries on the undolist contain the 
constant tag values Al, Rl, and R2. 

Algorithm A (Add a row to the tableau). Let l be the formal affine sum k0 + k1 v1 + · · · + kpvp, 
where the vi are variables and the ki are rationals. This algorithm looks for a variable of the 
tableau that is equal to l at every point satisfying the tableau. If such a variable exists, it is 
returned. Otherwise a new row is added to represent l, a new variable is created to own the row, 
and the new variable is returned. 

A 1. [Add empty row.] Set n +- n + 1, let 9 be a variable that appears nowhere in the tableau, 
make 9 the owner of row n, make row n identically zero, and set en +- ko. 

A2. [Add new columns.] For i from 1 to p, if Vi is not a variable of the current tableau, set 
m +- m + 1, make Vi the owner of column m, make column m identically zero, and put an 
entry (Al, v) on undolist. 
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A3. [Compute entries in new row.] For i from 1 to p, if v, owns a live column, let j be the index 
of the column and set anj +- a.,,,;+ ki; otherwise Vi owns some row of T; let it be row i' and 
do the following: set en +- c.,,, + kici'' and for j from 1 to m, set a.,,,3 +- a.,,,3 + kiai'i· 

A4. [Is row trivial?] If c.,,, is zero and there exists a j such that every entry in row n is zero except 
for anj, which is 1, then set n +- n - 1 and return the owner of column j. 

AS. [Is row really new?] If row n is identical to row i, for some i =/:- n, then set n +- n - 1 and 
return the owner of row i. 

A6. [Return owner of new row.] Add an entry (Al, 9) to undolist and return the variable 9. I 

For example, if Algorithm A is applied to the formal linear sum 0 + lx then it will return x, 
adding a new column owned by x if necessary. 

Algorithm R. (Restrict a tableau variable). Given a variable v of the current tableau, this algorithm 
determines whether it is consistent to make v restricted. If so, it restricts v, makes the resulting 
tableau minimal, and propagates equalities if necessary. 

R1. [Is the restriction trivially redundant?] If v is already restricted, or if v owns a dead column, 
return satisfiable. 

R2. [Guarantee that v owns a row.] If v owns a column, choose a pivot that brings v into a row 
and produces a tableau that is satisfied by its sample point, and perform the pivot. (This is 
always possible, as remarked after Algorithm F above.) 

R3. [Determine sign of maximum of v.] Let i be the index of the row owned by v. If c, is 
positive, add v to R (that is, make v restricted), put an ent~y (Rl, v) on undolist, and return 
satisfiable. Otherwise, use Algorithm F to find a pivot to increase the value of v; let (i',j') 
be the result. If (i',j') = (0, 0), go to step R4. If i' = i, add v to R, put an entry (Rl, v) on 
undolist, and return satisfiable. Otherwise pivot at ( i', j') and repeat this step. 

R4. [Maximum negative?] (At this point v is manifestly maximized and its value is not positive.) 
If Ci < 0, return unsatisfiable. 

R5. [Minimize tableau.] Now the tableau is satisfiable but non-minimal; we make it minimal and 
propagate equalities. Put an entry (R2, dcol) on undolist. For j +- dcol + 1, dcol + 2, ... , m, 
if aij is non-zero, then do the following: propagate an equality between x; and Z, exchange 
column j with column dcol + 1, and set dcol +- dcol + 1. 

R6. [Propagate equalities.] For each j, k such that 1 < j < k < n, if row j and row k are 
identical, ignoring the dead columns, then propagate an equality between the owners of row j 
and row k. For each j, 1 ~ j < n, if row j has only a single non-zero entry outside the dead 
columns, and the entry is in column k, which is not the constant column, and the non-zero 
entry is one, then propagate an equality between the owner of row j and the owner of column 
k. I 

If we were only concerned with satisfiability and did not need to propagate equalities, then 
step R2 would be unnecessary-when a column variable is restricted, it cannot make the context 
inconsistent, since the variable is zero at the sample point. 

It is very easy to "undo" these operations on the tableau. To save a state, put a conventional 
mark on undolist. To return to the last marked state, go down the list of pairs until the most 
recent mark is reached; for each pair (Rl, v), v will be a restricted variable; make it unrestricted; 
for each pair (R2, d), set dcol +- d; for each pair (Al, v), if v owns a row of T, delete the row; if v 
owns a column of T, pivot v into a row and delete the row, unless the column is identically zero, 
in which case delete the column. 
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To assert an equality v = 0, where v is a variable of the tableau, we would like to pivot 
·the variable into a column and kill the column. But this strategy may not be valid, since if the 
hyperplane v = 0 does not intersect the relative interior of the solution set of the tableau, then the 
assertion lowers the dimension of the solution set by more than one. To detect this situation we 
pivot in order to determine the sign of the smallest and largest values of v. If these are negative 
and positive respectively, then it is all right to pivot v into a column and kill the column. If both 
are negative, or both are positive, then the assertion is inconsistent. If both the maximum and 
minimum of v are zero, the assertion is redundant. (This will never happen in a minimal tableau 
unless v owns an empty row or a dead column.) The two cases that remain are similar; suppose 
for example that v's maximum is zero and its minimum negative. Then in pivoting to maximize v, 
a tableau will be reached where v is manifestly maximized at zero. At this point we can perform 
steps R5 and R6, just as if the assertion had been v > 0. 

For an example of an equality constraint, suppose that the tableau represents the contraints 
0 < x < 1, 0 < y S 1, and 0 S z S 1, that the sample point is the origen, and that the equality 
x + y + z = 3/2 is added. Then one of the variables (say x) will be pivoted into a row and given 
the value 1, then one of the other variables (say y) will be pivoted into a row. It is feasible to pivot 
y with the slack variable that represents y < 1, and thereby raise the value of y to 1; of x + y + z 
to 2. Since this is larger than necessary to satisfy the new equality contraint, we exchange y with 
the slack variable of the new contraint, and thereby raise y to 1/2. Thus we have pivoted along one 
edge of the solution set, then half way along another, to reach the hexagon sliced out of the cube 
by the new equality contraint. The slack for the equality constraint now owns a column, which 
can be swapped into the region for dead columns and ignored until it is necessary to "undo" the 
equality contraint. To undo the constraint, it suffices to pivot in any feasible place in the column, 
thereby making the slack own a row, and then to delete the row. 

The program actually represents restrictions of the form v < O, v > O, and v < 0 directly, 
using obvious modifications of the algorithms above. Also, a bit is set in a header node if it 
is restricted to have an integral value; thus strict inequalities between integers can be handled 
correctly. 

The entries aij are represented using the linked structure described in Knuth (34], pp. 299--302. 
The rows are linked from right to left; the columns from bottom to top; entries that are zero are not 
represented. The matrix is usually sparse, so this saves both time and space. The one-dimensional 
arrays x and y do not contain variables, but record structures which serve as header nodes for the 
row and column lists. These record structures also contain pointers at enodes if they represent real 
variables or arithmetic terms; if they just represent "slack variables," the pointer is nil. 

The sparse matrix representation speeds up the execution of step AS and step R6. To check 
if a row is equal to some other row, traverse some column in which the row has a non-zero entry; 
usually the column list will have very few entries compared to the number of rows. In step R6, it 
is often the case that only one column is killed; in this case only rows with a non-zero entry in the 
column have changed. Thus only these rows need to be checked against the other rows. 

13. An example with c and J<. 

Algorithm D of section 11 can be modified to incorporate the satisfiability procedure for !<.; 
essentially by propagating equalities between the E-graph and the simplicial tableau as in Algorithm 
E of section 5. We will not describe the modification in detail, but consider one example: Suppose 
that Algorithm D is applied to the conjunction: 

f(f(x)-f(y)) ~ f(z) /\ (z = f(x) -f(y) V z > 0) /\ x < y /\ y + z < x. 
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This is a slight variation of the example in section 5: if the z 2 0 case of the disjunction is 
considered, we have the unsatisfiable conjunction from that section; if the z = f(x) - f(y) case is 
considered, the conjunction is obviously unsatisfiable. 

The first execution of step Dl creates E-nodes for the terms f(f(x)-f(y)) and f(z), and forbids 
the merge of the two nodes. The procedure that creates an E-node to represent a term will, if the 
term contains free functions of R, add one or more rows to the simplicial tableau and establish 
links between the E-graph and the tableau; thus after the disequality f(f(x)- f(y)) :;if f(z) has been 
asserted, the data structures are as follows: 

(1) 

Here is an expanation of (1). The E-graph contains vertices that represent the terms r(x), f(y), 
and f(x) -- f(y) in the obvious way. We could proceed as in section 5 by "labelling" these terms 
with variables g1 , g 2 , and ga and representing the equality ga = gi - g2 in the tableau. But it 
is awkward and somewhat inefficient to introduce new variables. Instead, we will use no variables 
as headers in the simplex tableau at all; the headers will be record structures that point at (and 
are pointed at by) E-nodes. The record structures are represented in the figure by squares with 
numbers in them; the numbers have no significance but that of distinct labels. The superscripts on 
the E-nodes for f(x) and f(y) indicate that these nodes contain pointers at the tableau header nodes 
[I] and rn. The tableau header nodes also contain backpointers to the E-nodes, although these are 
not indicated explicitly in the figure. To create an E-node for the term f(x) --- f(y), Algorithm A 
was applied to the formal linear sum 1 . [I] - 1 . rn; the algorithm created and returned the new 
tableau header node @]. This header node was associated with the E-node for f(x) - f(y). The 
rest of Figure 9 represents the disequality f(f(x) - f(y)) :;if f(z) in the obvious way. (A dotted line 
labelled with :;if represents a disequality or forbidden merge.) 

When step Dl is repeated, it considers the disjunction z 2 0 V z = f(x) - f(y). We will 
assume that the modifications described in section 11 have been made, so that the theorem prover 
puts off case splits as long as possible. Thus this disjunction is saved away, and step Dl is repeated 
a third time. 

This time the conjunct to be processed is x S y, which is an abbreviation for (x S y) =true. 
E-nodes are created for true and for x < y, and then the nodes are merged. Just as an equivalence 
class being merged with the equivalence class of true is scanned for vertices labelled atom (see 
section 9), so is it scanned for vertices labelled <, >, S, or 2. In our example, when the vertex 
for x s y is merged with true, tableau header nodes m and IIl are created and associated with x 
and y, a "slack variable" is created to represerit y -- x, and the slack variable is restricted. Here is 
the state of the data structure just before Algorithm R is applied to restrict the new slack variable: 
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~I 1 -1 

Algorithm R performs one pivot, changing the matrix (2) into: 

1vm [!] [i] o~ 

m I 1 --1 
ill 1 1 

(2) 
--1 1 

(3) 

The next assertion is y + z < x. When the E-node labelled + is created to represent y + z, 
tableau header nodes[!! and III are created, representing z and y + z respectively. (Note that y is 
already represented by ill.) When the node for y + z < xis merged with true, a "slack variable" is 
created to represent x-y-z and is then restricted. Just before it is restricted, the data structure 
looks like this: 

lvm [!] [i] o~ [!] 

m 1 -1 

----- --------C!V ill 1 1 (4) 

[fl 1 1 1 

D --1 ---1 

Note that the row owned by III was obtained by copying the row owned by @:] and adding 1 
to the copy in the column owned by @:]. When the new slack is restricted, it is pivoted with [!! to 
produce: 

lvm [!] m o~ o~ 

[[] 1 -1 

ill 1 1 (5) 

[fl 1 -1 
@:] --1 -·l 
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At this point Algorithm D considers the split f{x) --· f(y) = z V z ~ 0. An entry is made 
on undostack to save the current state; then f(x) - f(y) = z is asserted. Since E-nodes exist 
for f(x) - f(y) and for z, these two nodes are merged. Since both of the E-nodes are associated 
with tableau header nodes, the program recognizes that it is necessary to propagate an equality 
to R, namely [!] = [!]. But for efficiency's sake, the E-graph is closed under congruences before 
any work is done in the simplicial tableau. Thus, the equality [1] = [!] is saved on a list (it is 
similar to mergelist, so let us call it rmergelist), and the graph is closed under congruences. This 
immediately sets inconsistent, since the merge of f(z) and f(f(x) - f(y)) has been forbidden. Thus 
mergelist and rmergelist are reset to nil, and pop returns to consider the case z ~ 0. 

When an E-node is created for a numeral, a row must be added to the simplicial tableau to 
represent the corresponding number. Thus when the term z ~ 0 is added to the E-graph, a node@] 
is added to represent zero. There is already a header node for z, so@] is the only new header node. 
When z > 0 is asserted, Algorithm A is used to create a slack variable for z - O; it returns the 
existing header node [!]. This is all right, since any header node can be restricted. Thus, Algorithm 
R is applied to restrict node [!] in the following position: 

lvrn m [!] o:?! o:?! 
[!] 1 -·1 
[!) 1 1 (6) 
[!] 1 -1 
l!J -1 -1 
@] 

But node I!] is manifestly maximized in this tableau, so Algorithm R kills the columns owned 
by the two slack variables by swapping them to the left and incrementing dcol, thus producing the 
following tableau: 

o:?! o:?! vi!] m [] 

[!] -1 1 
[!) 1 1 (7) 
[!] -1 1 
[!] -1 -1 
@] 

The last step of Algorithm R then scans the rows of the matrix and detects the equalities 
[!]=ill=[!] and [!] = @]. These are propagated to e, which uses ill= ill to deduce f(x) = f(y), 
and propagates the deduction to R in the form [] = m. (The three equalities ill= [I], [!] = [I], 
and[!]=@] cause two merges in the E-graph, but the merges do not lead to any congruences.) 

So, finally, here is an example showing how R handles the propagated equalities that it receives. 
To assert[]= ~, R constructs a slack that represents either[]- m or m- [], and "kills" the 
slack. In this case there is already a node {namely [!]) representing [] - § so if we are lucky 
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enough to form the difference this way, no new nodes will be created. Let us suppose> though, that 
we are unlucky and create a slack for I!) - [!]; then before the new slack is killed, the matrix looks 
like this: 

o~ o~ v[!J 00 rn 
l!l -1 1 
00 1 1 

(8) I!) -1 1 
l!l -1 -1 
@ 

0 1 -1 

The new node is pivoted with node [!], and then its column is killed by swapping it with the column 
owned by[!! and incrementing dcol. The result is: 

o~ o~ O~l!I [!} 

l!l -1 
l!1 1 1 
I!) -1 1 (9) 

l!l -1 -1 
[!I 
rn -1 1 

This causes R to propagate @) = @] and [I = l!J. The first of these equalities allows the 
congruence closure algorithm to deduce r(z) = r(r(x) -- r(y)}, and so the formula is found to be 
unsatisfiable. 

14. Matching 

The matching problem is outside the scope of this paper, but it would be misleading to ignore 
it, so this section gives an overview of the problem. It will be convenient to introduce the 
matching problem by describing the correctness verification of a sorting program, thus illustrating 
the symbolic evaluator, matcher, and satisfiability procedures all in action together. 

The matcher's job is to choose instances of definitions, lemmas, and axioms that will make a 
given proof succeed. This is equivalent to the problem of guiding a resolution theorem-prover or 
using a set of rewrite rules; no satisfactory solution is known, though many approaches have been 
tried. The point of this section is not to advertise any particular new heuristics for the problem, 
but only to illustrate the differences between matching against ordinary list structure and matching 
against the E-graph and simplex tableau. Most heuristics that have been used for matching with 
ordinary list structure can be transferred to the matching problem with the new data structures. 

The E-graph helps to solve the problem of unification in the presence of equalities. For ex­
ample, if it is assumed that g(a) =band g(b) =a, then p(a, a) can be proved from ('v' x) p(g(g(x)), x) 
by instantiating x to a. But an ordinary matching algorithm would not consider p(a, a) an instance 
of p(g(g(x)), x). Even if the goal had been p(g(g(a)), a) instead of p(a, a), many systems would use 
the two equalities to simplify it to p(a, a) before resorting to matching, and the match would never 
be found. This is not a problem if an E-graph is used, because the congruence closure algorithm 
does not "use" an equality a = b by choosing one of a and b to replace all occurences of the other; 
it simply "notes" the equality and does no replacement. The matcher does not match p(g(g(x)), x) 
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against the list structure for p( a, a), but against the congruence-closure algorithm's data structure 
for p(a, a). The match does not fail when g(g(x)) is found to coincide with a, because the a in 
the data structure is equivalent to g(b). Matching with the congruence closure algorithm's data 
structure is more expensive than matching with list-structure, but the advantages are worth the 
cost. 

We begin with a fairly long example that illustrates the interaction between the matcher and 
the satisfiability procedures: the partial verification of a sorting program. The two most important 
things to verify about a sorting program are that its output is ordered, and that its output is a 
permutation of its input. In this section we verify only the first of these properties; the second can 
be handled by the techniques described in sections 15 and 16. 

The procedure call selection-sort( a, n) sorts the numbers a(l), a(2), ... , a(n) by finding the 
smallest and exchanging it with a(l), then finding the second smallest and exchanging it with a(2), 
and so forth. Here is the program: 

Procedure selection-sort( a, n) = sortloop(l). 

Procedure sortloop(i) = 
[ i > n :::::} [ D; 

with j = minloop(i, a(i), i + 1) 
do (a(i), a(j)) +- (a(j), a(i)); 

sortloop(i + 1) D· 

Procedure minloop(mindex, minval, k) = 
[k > n:::::} mindex; 

a(k) < minval :::::} minloop(k, a(k), k + 1); 
minloop(mindex, minval, k + 1) D· 

We will use the notation 

Predicate P(xi, ... , Xn) = F 

to abbreviate 

aortloop(i) sorts a(i) ... a(n): 
Nothing to sort? Then return. 
j gets index of least of a(i) ... a(n). 
Exchange a(i) and a{j). 

mindex is index of minimum 
minval is value of minimum 
a(k) ... a(n) are untested 

Declare (V xi, ... , Xn) (P(xi, ... , Xn) {:::} F) 

This can be taken as an axiomatic definition of P. Without going into details, we remark that 
there are simple conditions (amounting essentially to the requirement that P not occur in F) that 
guarantee that the definition is eliminable and that the "axiom" introduces no inconsistency. 

To specify that the program sorts the numbers, we define the predicate 

Predicate ordered( a, n) = 
(Vi j) int( i) A int(j) A l < i < j ::; n ::J a( i) < a(j). 

We wish to prove that the program meets the following specifications: 

Entering selection-sort, int(n). 

Exiting selection-sort, ordered( a, n ). 
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Ideally, the system would be able to prove this without assistance, but the theorem proving 
methods we are describing are not powerful enough. To help the system along, we describe what 
is true at the entry and exit points of minloop and sortloop. 

When entering sortloop, the values a(l), a(2), ... , a(i -1) are ordered, and furthermore they 
are all smaller than any of the values a(i), a(i + 1), ... , a(n). To specify this, we define another 
predicate: 

Predicate leftordered(a, i, n) = 
(V j k) int(;') /\ int(k) /\ 1 < j < i A j < k < n ::) a(j) < a(k). 

Now specifications for sortloop can be written: 

Entering sortloop; leftordered(a, i - 1, n) A int(i) A int(n) /\ i > 1. 

Exiting sortloop, ordered(a, n). 

When entering minloop, minval is the minimum of the values a(i), a(i+l), ... , a(k-1), and 
mindex is the index of minval in the sequence a. To specify this, we define another predicate: 

Predicate lowerbound(x, a, m, n) = (V k) int(k) A m < k < n ::> x < a(k). 

Notice that lowerbound does not prohibit x from being strictly smaller than all of a(m), ..• , 
a(n), because the entry specification for minloop explicitly states that minval = a(mindex): 

Entering minloop, 
lowerbound(minval, a, i, k -1) /\ minval = a(mindex) /\ int(k) 
/\ int(mindex) /\ i < k < n + 1 /\ i < mindex < n A int(n). 

The value returned by minloop is the index of the smallest of a(i), a(i + 1), ... , a(n)~ Recall 
that by convention, the symbol V appearing in a procedure's exit specification denotes the value 
returned by the procedure. Thus the exit specification of minloop is 

Exiting minloop, lowerbound(a(V), a, i,n) /\ i < V ~ n /\ int('V). 

It is annoying to have to include in the specifications the trivial facts that i, j, k and V are 
integers and the obvious inequalities between them, but they are required for the verification to 
succeed. There are techniques for adding such conjuncts to invariants automatically; for example, 
see Wegbreit [60] and Cousot and Halbwachs [14]. 

To prove that a procedure meets its specifications, the theorem prover's data structures are 
initialized to represent the procedure's entry specifications, then the procedure body is symbolically 
evaluated. The symbolic evaluator directs the theorem prover to make assumptions reflecting 
the path taken through the program. When the symbolic evaluator comes to the exit of the 
procedure, or an entry to another procedure, it directs the theorem prover to prove the appropriate 
specifications. 

For example, to verify sortloop, the theorem prover's data structure is initialized to represent 
the conjunction of the following literals: 

int(n) 
int(i) 
i > 1 
leftordered(a, i - 1, n) 
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The theorem prover's data structure is a stack of literals that grows and shrinks as symbolic 
evaluation proceeds. (It is the data structure c(l), ... , c(cr) of Algorithm D of section 11.) The 
symbolic evaluation of the body of sortloop first tries the i ;;::: n branch of the statement by adding 
i > n to the theorem prover's conjunction and symbolically evaluating the no-op [ D· Now it 
must prove the exit specification ordered( a, n); what actually happens is that the theorem prover 
assumes -, ordered( a, n), and then tries to show that what it has assumed is inconsistent. The 
assumption stack at this point is: 

int(n) 
int(i) 
i > 1 
leftordered(a, i - 1, n) 
i > n 
-, ordered( a, n) 

Algorithm D cannot show the inconsistency of this conjunction, since the inconsistency depends 
on the definitions of leftordered and ordered. The theorem prover uses the definition of ordered 
first (in general it uses the definitions of negated predicates in the way about to be described): 
Since ordered is defined to be true if a certain clause is true for all i and J, and we have assumed 
ordered( a, n) is false, there must be some particular i 0 and Jo for which it fails. Thus the theorem 
prover adds conjuncts to produce the following stack: 

int(n) 
int(i) 
i > 1 
leftordered(a, i --· 1, n) 
i > n 
.:., ordered( a, n) 
int(i0) 

int(jo) 
1 < io <Jo< n 
a(io) > a(Jo) 

(The conjunct -, ordered( a, n) is not removed from the stack, but it is flagged as "used", so 
that the last step will not be uselessly repeated with ii, Ji, etc.) The theorem prover next uses the 
definition of leftordered, as follows. Since leftordered(a, i - 1, n) is true, the body of the predicate 
definition is known to be true for all J and k. The matcher looks for instantiations of J and k that 
arf' helpful. In this case, the right choice is to instantiate the J and k from leftordered's definition 
to i 0 and Jo respectively. Thus we get: 

int(n) 
int(i) 
i > 1 
leftordered(a, i - 1, n) 
i > n 
-, ordered( a, n) 
int(io) 
int(jo) 
1 < io <Jo< n 
a(io) > a(jo) 
(int(io) A int(jo) A 1 < io < i A io <Jo < n :J a(io) :::; a(jo)) 
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Finally, we have a set of facts which Algorithm D can show are inconsistent, so the verifi.cation 
of this exit succeeds. {The only condition in the antecedant of the last line that is not manifest 
is io < i, but this follows from i ~ n and io < io < n.) The symbolic evaluator now returns to 
consider the possibility that the test i ~ n failed. All of the facts added to the theorem prover's 
stack since then are removed, and i < n is added, producing: 

int{n) 
int(i} 
i>t 
leftordered( a, i -1, n) 
i<n 

Now the theorem prover must prove the entry specifications for minloop, given that mindex, 
minval, and k are bound to i, a(i) and i + 1 respectively. The negations of the conjuncts of 
the entry specification for minloop are added one at a time to the stack; each must be shown 
inconsistent. After the negation of the first conjunct is added, the stack contains: 

int(n) 
int(i) 
i > 1 
left.ordered{ a, i - 1, n) 
i < n 
.., lowerbound( a( i), a, i, i) 

(Note that we have used the simplification i + 1 - 1 = i. The symbolic evaluator would 
not acutally perform this simplification, but it makes our displays simpler, and the substitution 
of i + 1 - 1 for i will not slow down Algorithm D by any appreciable amount.) The last formula 
implies that some ko exists contradicting the universal quantifier in the definition of lowerbound, 
so the stack becomes: 

int(n) 
int(i) 
i>t 
leftordered(a,i--1,n) 
i<n 
..., lowerbound{a(i}, a, i, 1) 
int(ko) 
i<ke<i 
a(i) > a(ka) 

which is trivially inconsistent (R finds i = k0 , e finds a(i) = a(k0 ), and R finds the inconsistency). 
Thus the last four lines are popped, and the negation of the next conjunct of the entry specification 
for minloop is added, namely a{i) ":F a(i). It is trivially inconsistent, as are all the remaining entry 
specifications; so the verification of the .entry to minloop succeeds. It is therefore valid to assume 
the exit specification for minloop, since minloop will be verified separately. The variable V in the 
exit specification may be replaced with the variable j, since the result of the call is assigned to j. 
Thus we have: 
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int(n) 
int(i) 
i ~ 1 
leftordered(a, i -1, n) 
i < n 
lowerbound(a(j), a, i, n) 
i<j<n 
int(j) 

67 

The assignment a+-- aa.'§) ~']> is then executed symbolically, and the conjuncts of the entry 
specification for the recursive cah to sortloop are proved one by one. They are all trivial except 
the one that says that the array has the left-ordered property. In order to prove this specification, 
the theorem prover must deduce a contradiction from the assumptions: 

int(n) 
int(i) 
i>l 
leftordered(a, i - 1, n) 
i < n 
lowerbound(a(j), a, i, n) 
i<j<n 
int(j) 

I ft d d( (i) (;) . ) 
..., e or ere a a.(;) a.(i) , i, n 

As usual, the definition of the negated predicate is used to produce: 

int(n) 
int(i) 
i>l 
leftordered(a, i- 1, n) 
i < n 
lowerbound(a(j), a, i, n) 
i<j<n 
int(j) 

0 (;) ..., leftordered( a a.~) a.(i), i, n) 
int(jo) 
int(ko) 
l<jo<i 
io < ko < n 

(i) (;) . (i) (;) 
a a.(i) a.(i) (Jo) > a a.(j) a.(i) (ko) 

Whenever the theorem prover is faced with a term of the form a(~) (j), it considers both the 
case where i = j and the term is equal to e, and the case where i ~ j and the term is equal to a(j), 
as described in section 10. Thus the last formula above causes eight cases to be considered; each 
case"' is handled easily by the techniques that have already been illustrated. For example, if jo and 
ko are distinct from both i and }, then a contradiction is created by an obvious instantiation of 
the conjunct leftordered(a, i - 1, n)-if every pair of elements in an array satisfy the left-ordered 
predicate, and two elements are swapped, the pairs that do not contain either of the swapped 
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elements will still satisfy the left-ordered property. If Jo = i, then ko ;;=:: i, and an obvious 
instantiation of lowerbound completes the proof. If k0 = i, then io < i, and again an obvious 
instantiation of leftordered completes the proof. 

After verifying the entry specifications to sortloop, the exit specification may be assumed. 
· Finally the symbolic evaluator has come to the end of the procedure, so it must prove the exit 

specification. But the exit specification has just been ·assumed! So the verification obviously 
succeeds. (This situation arises whenever a loop is created by "tail-recursion", so to save work the 
program checks for tail· recursion explicitly.) 

The verifications that minloop and selection-sort meet their specifications are similar. 

The part of the above proof whose mechanization offers the greatest challenge is the matching, 
and therefore the matching problem has received a tremendous amount of attension. Some people 
even suggest that instead of using satisfiability procedures, a matcher or resolution theorem-prover 
be turned loose with the axioms for R., L, and A. Unfortunately, no really satisfactory solution 
to the matching problem has been found, so the approach of this paper has been to find efficient 
satisfiability procedures. This is not to suggest that matching will not be necessary in almost every 
proof; it will be. There are a multitude of heuristics for choosing matches and deciding when to 
give up; any of them can be used in conjunction with Algorithm D, but they must be modified 
slightly to use the E-graph's data structure instead of list structure. So, in the remainder of this 
section, we will look at two examples of matching in the E-graph. They are minor variations of 
examples in Boyer and Moore [7], pages 111 and 107; it is instructive to compare their approach 
with ours. 

We will assume that the quantified formula of which the matcher is choosing an instance has 
the form ('v' xi ... Xn) F, where F is a clause, that is, a disjunction of literals. The more general 
problem where arbitrary quantifier prefixes occur and arbitrary boolean structure is allowed in F 
can be reduced to this case by introducing "Skolem functions" to replace existentially quantified 
variables. 

Recall that a substitution 0 on x 11 ••• , Xn is a map that assigns to each variable Xi a term 
Xi 0. If F is a quantifier-free formula and 0 is a substitution on x11 ••• , Xn, then F 0 denotes the 
formula obtained by simultaneously substituting x-1 0 for each Xi in F. 

The matcher looks for instances of universally quantified formulas that are "close" to the set 
of terms that are represented in the current E- graph. The exact definition of "close" depends on 
the heuristics being used; the definition that we will assume for the examples in this section is the 
following: Given the formula ('v'x1 ... Xn) F and a substitution 0 on xi, .•. , Xn, the instance F 0 is 
close to a given E-graph if for each xi, there is some term t that occurs in F and properly contains 
Xi, such that t 0 is represented in the E-graph. In our application F will be a clause Li V ... V Ln; 
to add the instance F 0 means to assume the unquantified formula Li 0 V .•. V Ln 0. In general, 
this is a proper disjunction that will cause a case-split, but in the special case that all but one of 
the L; 0 are contradicted by the E-graph, the L-i 0 that is not contradicted can be asserted. (If all 
the Li 0 are contradicted, the context has been shown inconsistent.) If it happens for some i that 
-, Li 0 is contradicted by the E-graph, then the instance is subsumed; such instances are ignored. 

To illustrate matching in the E-graph, it suffices to .use this crude algorithm: repeatedly add 
to the graph all non-subsumed close instances of quantified formulas, giving priority to those that 
do not cause case-splits. In practice we would first add those instances that create the fewest new 
nodes. 

Example 1. Suppose that we have assumed or previously proved: 

Axiom 1: ('v' x) q(x) :::> l(p(x), x). 
Axiom 2: ('v' x y) q(y) :::> l(x, s(x, y)). 
Axiom 3: ('v'xyz) l(x,y) A l(y,z) :::> l(x,z). 
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and from these we want to prove 

Lemma 1: q(a) /\ q(b) ::J I(p(a), s(a, b)). 

When Algorithm D is applied to the negation of Lemma 1, it constructs the E-graph (1). 

There are no close matches for axiom 3 in the graph (1). If, for example, x and z were 
instantiated to p(a) and s(a, b) respectively, in order to satisfy the definition of "close" for x and z, 
then, since there are no terms of the form l(t, s(a, b)) or l(p(a), t) represented in the ground graph, 
there is no way to instantiate y that satisfies the definition. 

To find a close match for axiom 2, x must be instantiated to a term that is a first argument 
of s. Thus there is only one close match for axiom 2, that in which x and y are instantiated to a 
and b respectively. This match does not cause a split, since q(b) = true is explicitly represented in 
the graph. Thus, after this match is added, the graph becomes as shown in (2). 

There are two close matches for axiom 1 in this graph; one is relevant to the proof and one 
is not. Neither of them cause splits. We will only add the one that is relevant to the proof; the 
result is shown in (3). 

Now there is a unique close match for axiom 3: the match obtained by substituting p(a) for x, 
a for y, and s(a, b) for z. Assuming this instance of axiom 3 causes a contradiction and completes 
the proof. 

Formulas like axiom 3 present a classic difficulty to matchers using "backwards chaining" 
stategies, because of the variable y that appears in the "hypothesis" of the axiom but not in the 
"conclusion". The heuristic definition of a close match used here does what is usually the right 
thing with the transitivity axiom: it uses the axiom as soon as there are compatible instances of 
any two of the three literals. 

Example 2. Suppose that we have assumed or previously proved: 

Axiom 1: (V x y) v(n(x), y) = v(x, y). 
Axiom 2: (V x) p(n(x)). 
Axiom 3: (Vxy) •t(x,y) /\ p(x) :) f(x,y) -:;6 nil. 
Axiom 4: (V x y) p(x) /\ r(x, y) -:;6 nil ::J -, v(x, f(x, y)). 

and from these assumptions we try to prove: 

Lemma 1: v(a, f(n(a), nil)) :) t(n(a), nil). 

When Algorithm Dis applied to the negation of the lemma, it constructs the E--graph (4). 
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There is only one close match in this graph for axiom 1: that in which a and f(n(a), nil) are 
substituted for x and y respectively. (This is a daring match, since intuitively it uses axiom 1 
"backwards.") The graph after the match is added is shown in (5). Suppose that axiom 2 is 
considered by the matcher next. The only close match for this axiom is obtained by instantiating 
x to a; after adding this match we get the graph (6). Now the graph contains a "perfect" match 
for axiom 3, namely -it(n(a),nil) /\ p(n(a)) :J f(n(a),nil) =/:-nil. This instance is a clause, not a 
single literal, but the graph has enough information to contradict every literal in the clause except 
the last; therefore this last literal can be assumed in the graph, as shown in figure (7). Now there is 
a perfect match for axiom 4, namely p{n(a)) /\ f(n(a), nil)=/:- nil :J -iv(n(a), f(n(a), nil)). All of the 
likrals of this instance are directly contradicted in the graph, so finding this instance completes 
the proof of the lemma. 

The conventional top-down matching algorithm can be adapted to the E-graph, but its worst­
case behavior becomes exponential. In fact, Kozen [35] has shown that the problem of determining 
whether a node of an E-graph is an instance of a pattern is NP-·complete. This is the price that 
must be paid for dealing squarely with equality. Experiance with the Stanford Pascal Verifier 
suggests that the extra cost of matching in the E-graph is justified by the improved results. 
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Many program specifications of practical importance cannot be formulated in classical first-order 
logic. Therefore, in sections 15 through 20, we discuss the extention of first-order logic by partial 
recursive function definitions, and the inductive theorem-proving techniques that are required to 
deal with them. 

15. Examples 

It is more difficult to verify invariants of programs that manipulate linked data structures than 
to verify invariants of programs that use only sequential data structures. Some people think the 
difficulty arises from assignments to dereferenced pointers, since to an-1lyse the effect of such an 
assignment, one must determine which pointers have identical referents. But this is no more 
difficult than dealing with array assignments-in fact, the assignment a(;:' +--- x may be viewed 
either as changing the pth field of the array a, or the a field of the record pointed to by p; its 
predicate transformation semantics are the same in the two cases. A sharp distinction between 
pointers and other indices is required by Algol-like languages in order to make them compilable 
without a theorem-prover, but to a verifier pointers and array indices are essentially the same. 
The satisfiability procedure for the theory of arrays described in section 10 can be viewed as a 
satisfiability procedure for a theory of pointers, if one chooses. 

Why then is it more difficult to verify invariants of programs that manipulate linked structures? 
The answer is in the nature of the invariants. A typical invariant for a sequential structure is 
universally quantified over some range of indices; for example, a typical invariant about an array 
a(l), ... , a(n) might be (Vi) 1 ::; i ::; j :::=> a(i) < x. Such invariants are first-order statements 
that can be verified by matching together with arithmetic reasoning. But a typical invariant about 
a linked structure concerns a sequence of values connected by link fields; for example an invariant 
might be "the sequence a, l(a), l(l(a)), ... , contains nil." As mentioned in section 3, the class of 
such invariants is not compact, hence first-order methods of definition and inference are inadequate 
to deal with them. Thus, we cannot expect to verify such invariants without a formal system that 
supports inductive definitions and proofs. Sections 15 through 20 describe such a system. 

Of course, induction is needed for other things besides verifying linked list programs, and 
several systems supporting induction have been designed and implemented. The system of Boyer 
and Moore [7] has the most impressive mechanical theorem-prover. Unfortunately, their system 
prohibits partial recursive function definitions, which, as we will see, are very useful in describing 
the invariants of programs that manipulate linked data structures. Thus our goal is to extend the 
work of Boyer and Moore to handle partial recursive functions. 

This section contains two examples of the us0 of partial recursive functions in verifying 
properties of programs that manipulate linked data structures. The first example is a correctness 
verification for a program that reverses a linked list. It is perryaps a rather pointless verification, 
since the specifications are not significantly simpler than the program, but it was chosen to illustrate 
the most important diff crences between theorem proving with partial functions and theorem­
proving with total functions. The second example is the specification of the trace-and-mark phase 
of a garbage collector; it illustrates the use of non-determinism. 
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The list reversal program uses three variables a, b, and l. The variable l is a function of one 
argument that represents the link fields: l(n) is the record pointed to by the link field of the record 
n (unless it is the constant nil, which marks the end of the list); assignments to l(n) change the 
contents of the link field of n. The program destructively reverses the list a and makes b point to 
the new first element. Here are informal specifications for the program: 

When entering rev, the sequence a, l(a), l(l(a)), ... , contains nil. Also, a= a0 and l = 10• 

When exiting rev, the original sequence ao, lo(ao), lo(l0(ao)), ... , (until nil), is the reverse 
of the sequence b, l(b), l(l(b)), ... , (until nil). 

The only global variables changed by rev are a, b, and l. 

"Until nil" is short for "up to but not including the first nil." The use of the phrase implies 
the unstated specification that the given list contain nil. 

The program is written as two procedures: 

Procedure rev() = [ b +- nil; revloop() D; 

Procedure revloop() = [a= nil ::::} [ D; (b, a, l(a)) +-(a, l(a), b); revloop() D· 

Here is an illustration of the general step of revloop: 

In .this illustration, the right field of a node n contains an arrow pointing to the node l(n); the left 
field contains data values that do not concern us. Notice that the specifications require that the 
list be reversed "destructively", since they ref er to the sequence of cells and not to the sequence of 
data values. 

Here are the specifications for revloop: 

When entering revloop, the sequence a0 , l0(a0 ), ••• , (until nil) is the concatenation of the 
reverse of the sequence b, l(b), ... (until nil) with the sequence a, l(a), ... , (until nil). 
Furthermore, the latter two sequences have no common elements. 

When exiting revloop, the sequence a0 , l0(a0 ), l0 (l0 (ao)), ... , (until nil), is the reverse of 
the sequence b, l(b), l(l(b)), ... , (until nil). 

Finite sequences will be regarded formally as nests of ordered pairs; for example (a, (b, (c, nil))) 
is regarded as the sequence of a, b, and c. The Lisp functions car, cdr, and cons will be used for 
operating on ordered pairs. The constant nil represents the empty sequence. Using this convention 
we define a recursive function sequence such that sequence(x, !) returns the sequence :i:, f(x), 
!(!( :i; )), ••• , (until nil): 

Function sequence(p, /) = [ p = nil ::::} nil; cons(p, sequence(f(p), /)) D· 
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We also define the function reverse that returns the concatenation of the reversal of its first 
argument with its second argument: 

Function reverse(x,y) =Rx= nil:::} y; reverse(cdr(x),cons(car(x),y))D. 

For example, reverse((x,(y,nil)},(u,(v,nil))) = (y,(x,(u,(v,nil)))). Note that the reversal of the 
sequence s is given by reverse(s, nil). 

Finally, we define the function reach; reach(x, y, f) returns true or false according to whether 
the sequence x, f(x), J(!(x)), ... contains an occurence of y before it contains an occurence of nil: 

Function reach(x, y, f) = Rx= y :::} true; x = nil :::} false; reach(!(x), y, f) D· 

Notice that the x = y test is made before the x = nil test, so reach(x, nil,/) will evaluate to true 
if and only if the sequence x, f(x), J(f(x)), ... contains an occurence of nil. 

Formally, reach is regarded as a function, not a predicate-true and false are ordinary con­
stants. But the term reach( a, b, c) will be used to abbreviate the formula reach( a, b, c) =true if 
the context makes it clear that a formula, not a term, is required. 

The computations specified by these recursive definitions do not always terminate. If a and 
b are terms, "a halts" means the evaluation of a terminates; "a loops" means the evaluation of a 
does not terminate; a :::::::'. b means that a and b either both loop, or both halt with the same value; 
and a = b means that a and b both halt with the same value. Thus, if a is a term that loops, 
a = a is false, and a -:/:- a is true. Of course, these definitions only make sense with respect to a 
fixed evaluation rule. The formal definition of the evaluation rule is in section 16; for now it is 
enough to say that it is conventional call-by-value evaluation. Thus if a loops, so do Ra :::} 1; 1 D 
and 0 X a. 

To formalize the entry specification for revloop we define the predicate disjoint: 

Predicate disjoint(x, y, /) = ('v' z) reach{x, z, f) /\ reach(y, z, f) :) z = nil. 

These functions and predicate are sufficient to formalize the specifications of rev and rev loop. 
The specifications for rev are: 

Entering rev, a = a 0 /\ l = 10 /\ reach{ a, nil, l). 
Exiting rev, reverse(sequence(b, l), nil)= sequence(a0 , l0). 

Because of the convention that a = b is false if either a or b loop, the exit specification implies 
that the applications of sequence halt; notice that this corresponds with the understanding that 
the use of the phrase "until nil" implies an occurence of nil. 

The entry specification for rev loop is 

Entering revloop, 
reverse(sequence(b, l), sequence{ a, l)) = sequence(a0 , 10 ) /\ disjoint( a, b, l). 

When Peter Deutsch saw this formula, he immediately pointed out (to the author's surprise) 
that the second conjunct of the formula is a consequent of the first. For any common element of 
sequence( a, l) and sequence(b, l) would appear twice in reverse(sequence(b, l), sequence( a, l)). But if 
the sequence ao, lo(ao), ... has a repeated element before it has an occurence of nil, then it has no 
occurence of nil at all, in which case sequence( ao, lo) loops and the first conjunct of the formula is 
false. However, the proof that the procedures meet their specifications is simpler if the redundant 
conjunct is included. 
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The exit specification for revloop is the same as the exit specification of rev: 

Exiting revloop, reverse(sequence(b, l), nil) = sequence(a0 , 10 ). 

Let us now follow the symbolic evaluator along one interesting path that starts at the top of 
rev. At entry to rev, we assume: 

a= a0 

l =lo 
reaeh(a, nil, l) 

Then b is assigned nil, and the entry assertion for revloop must be proved. There are two 
conjuncts to prove, the most interesting of which is the first. To prove the first conjunct, its 
negation is assumed: 

a= a0 

l =lo 
reach( a, nil, l) 
reverse( sequence( nil, l), sequenee(a, l)) =/= sequence(a0, lo) 

The essential reason that these assumptions are inconsistent is shown by the simple derivation: 

reverse(sequenee(nil, l), sequence( a, l)) 
~ reverse( nil, sequence( a, l)) 
~ sequenee(a, l) 
~ sequence(ao, lo). 

The matcher essentially performs this derivation, using the definitions of sequence and reverse. 
But the derivation is not yet a proof: notice the use of "~" instead of "=." If all the terms in 
the derivation chain loop, then the disequality will be satisfied, since an equality is defined to be 
false if both sides loop. To complete the proof we need to show that one of the four terms in the 
derivation halts, from which it will follow that they all halt. That sequence( a, l) halts is an obvious 
consequence of reach( a, nil, l), but it is not clear how to make the inference mechanically. This 
fact, although _obvious, is not a consequence of any finite number of instances of the definitions of 
sequence and reach, so it cannot be proved by the matcher; it can only be proved by an induction 
argument. The system will not attempt any inductive proofs in the middle of symbolic evaluation; 
any facts that are needed in a verification and that require inductive proofs must be formulated 
explicitly as lemmas. Thus for the current example, the file given to the verifier must contain the 
following lemma: 

Lemma 1: (V x f) : reach(x, nil, f) {::::} sequence(x, f) halts. 

(The {::::} could be changed to :::> as far as the current path goes, but the other direction is 
needed later on.) Since reach( a, nil, l) is in the antecedent, the matcher deduces from this lemma 
that sequence( a, l) halts, which completes the derivation above. 

The system's induction rule is described in section 20. We illustrate it by describing the 
inductive proof of lemma 1: Consider this half of the lemma: 

(V x f) : reach( x, nil, /) ::) sequence( x, f) halts. 
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It is trivially true if reach(x, nil, f) loops, so we may assume that the evaluation of this term 
halts, and prove the formula by induction on the depth of recursion reached in the evaluation. 
If there are no recursive calls in the evaluation of reach(x, nil, f), then x = nil, so sequence(x, !) 
halts. If there is a recursive call, then x =/:- nil, the recursive call is reach(!( x), nil,/), and the call 
must return true. Therefore, by induction, we have that sequence(f(x), f) halts. But if x =/:- nil, 
sequence(x, !) '.'.:::::'. cons(x, sequence(f(x), J)); a call to cons will halt if both arguments do, so the 
proof is complete. 

The proof of the other half of lemma 1, 

sequence(x, J) halts :J reach(x, nil,/), 

is similar, but the induction is on the depth of recursion of sequence(x, f), since this is the term 
that must halt in order for the formula to be true. Of course, it happens that these two functions 
recurse in essentially the same way, so the two inductions are identical. 

Four other lemmas are required in the verification of the list reversal program. Here is the 
actual input to the experimental verifier on this example: 

Function sequence(p, !) - IT p = nil :::::} nil; cons(p, sequence(f(p), !)) Il. 
Function reverse(x, y) = IT x = nil :::::} y; reverse( cdr(x), cons( car(x), y)) Il· 
Function reach(x,y,/) = ITx = y:::::} true; x =nil:::::} false; reach(f(x),y,f)Il. 

Predicate disjoint(x, y, J) = (\f z): reach(x, z, f) /\ reach(y, z, f) :J z =nil. 

Entering rev, a = a0 /\ l = l0 /\ reach( a, nil, l). 
Exiting rev, reverse(sequence(b, l), nil) = sequence(ao, lo). 
rev changes a, b, l. 

Procedure rev() _ IT b +- nil; revloop() Il· 
Entering revloop, 

reverse( sequence(b, l), sequence( a, l)) = sequence( ao, lo) /\ disjoint( a, b, l). 
Exiting revloop, reverse( sequence(b, l), nil) = sequence( a0 , lo). 
revloop changes a, b, l. 

Procedure revloop() = IT a= nil :::::} IT Il; (b, a, l(a)) +-(a, l(a), b); revloop() Il· 
Lemma 1: (\f x f) : reach(x, nil, f) {:::::} sequence(x, f) halts. 

Lemma 2: (\f x y f e) : • reach( x, y, !) :J sequence( x, f (~)) '.'.:::::'. sequence( x, !). 
Lemma 3: (\fxyf): reach(x,y,f) /\ y =/:-nil :J reach(x,f(y),/). 

Lemma 4: (\f x f) : reach(x, nil. f) /\ x =/:-nil :J -, reach(f(x), x, f). 
Lemma 5: (\fxyzfe): •reach(x,y,f) :J reach(x,z,f(~)) '.'.:::::'. reach(x,z,f). 

(It is obviously unacceptable to require so much labor just to verify that such a simple program 
meets such simple specifications. But the methods of this section can be improved.) 

For the benefit of readers who are interested in following through the example to see why the 
other lemmas are required, we now consider the only other nontrivial path through the program; 
the path from the top of revloop to the recursive call. Other readers should skip to the last example 
in this section. 

We will no longer give a stack of literals to represent the theorem prover's data structure, but 
describe the argument informally. The assignment l( a) +- b is equivalent to l +- l (:), so to prove 
that the recursive entry to revloop satisfies the entry specification, the system assumes 

reverse(sequence(b, l), sequence( a, l)) = sequence(a0 , l0 ) /\ a=/:- nil (1) 
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and 
disjoint{ a, b, l} 

and from the assumptions deduces 

reverse(seql:ence(a, 1<:'}, sequence{l(a), l<:>)) = sequence(a0 , lo} 

and 
disjoint( b, l( a), l <:> ). 

It will be proved below that the following two formulas are consequences of (1} and (2): 

sequence( b, l <:>) = sequence( b, l) 

sequence( l( a), l <:>) __.:_ sequence( l( a), l). 

(2) 

{3) 

(4) 

(5) 

(6) 

(It is illuminating to look at figure 1 to see what these formulas mean, namely, that the assignments 
to link fields have no effect outside of the immediate locality. Similar facts are required in almost 
all verifications involving linked data structures.) Given (5) and (6), it is easy to prove (3): 

reverse(sequence(a, z<:>), sequence(l(a), l(:>) 
~ reverse(cons(a, sequence(l<:>(a), z<:»), sequence(l(a), z<:>)) 
~ reverse(sequence(b, 1<:>), cons( a, sequence(l(a), z<:>m 
~ reverse(sequence(b, l), cons( a, sequence( I( a), l))) 
~ reverse(sequence(b, l), sequence( a, l)) 
= sequence(ao, lo). 

It remains to prove (4), (5), and (6). Three more lemmas are required. 

Lemma 2: (Vxyfe): -ireach(x,y,/)::) sequence(x,J<;>) ~ sequence(x,/). 

That is, if y cannot be reached from x, changing /(y) does not affect sequence(x, /). Notice that 
the lemma would be false if the "~" were changed to "=", since the antecedent does not imply 
that the applications of sequence halt. This lemma suffices to prove (5): a is not nil, and obviously 
reach( a, a, l) is true; if reaeh(b, a, l) were also true, (2) would be c_ontradicted. Since a cannot be 
reached from b, lemma 2 implies sequence(b, l <:>) ~ sequence(b, l). The term on the right must 
halt, since it appears in (1); this proves (5). 

Lemma 4: (V x f) : reach(x, nil,!) A x ~nil ::) .., reach(f(x), x, !). 

That is, if nil can be reached from x, then x is non-circular. This lemma suffices to prove (6). By 
lemma 1 and (1), reach( a, nil, l) is true, and a ~ nil, so by lemma 4, it is impossible to reach a 
from l(a); thus (6) follows by lemma 2 . 

. Lemma 5: (Vxyzfe): -ireach(x,y,f) ::) reach(x,z,J<;>) ~ reach(x,z,/). 

That is, if y cannot be reached from x, changing /(y) does not affect what can be reached from x. 
This lemma suffices to prove (4). Suppose (4) is false; then a z exists such that 

z ~nil A reach(b,z,t<:>J A reach(l(a),z,lC:>J. 
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It has already been shown that a cannot be reached by following l-links either from l(a) or from b; 
thus lemma 5 implies 

z -:j:. nil/\ reach(b,z,l) /\ reach(l(a),z,l). 

Since a -:j:. nil, reaeh(l(a), z, l) implies reach( a, z, l); this contradicts disjoint( a, b, l), and completes 
the verification of the path. 

The proofs of lemmas 2 and 5 are almost identical to the proof of lemma 1, and will not be 
described. The proof of lemma 4 is a bit more interesting; it is in order to prove lemma 4 that 
lemma 3 is required. To prove 

reaeh(x, nil,!) /\ x -:j:. nil :::> .., reaeh(f(x), x, /) 

the system uses induction on the depth of recursion of reaeh(x, nil,/). The base case has the 
condition x = nil, in which case the formula is vacuously true. The induction step is 

x -:j:. nil /\ reach(x, nil,/) 
/\ (reaeh(f(x), nil,/) /\ f(x) -:j:. nil :::> .., reach(f(f(x)), /(x), J)) 

:::> .., reaeh(f(x), x, /). 

Since x -:j:. nil, the first formula on the second line unfolds to reaeh(f(x), nil,!). Since the 
consequent of the whole formula is true if f(x) =nil, it may be assumed that f(x) -:j:. nil; thus the 
antecedent of the implication on the first line is true, and the formula simplifies to: 

x -:j:. nil /\ f(x) -:j:. nil /\ reaeh(f(x), nil,!) /\ .., reaeh(f(/(x)), f(x), /) 
:::> .., reaeh(/(x), x, !). 

This is obvious, since if, contrary to the consequent, x could be reached from /(x), then since 
neither of these are nil, f(x) could be reached from J(f(x)). But to prove this requires another 
lemma, called lemma 3 above: 

Lemma 3: (V x y f) : reaeh(x, y, f) /\ y -:j:. nil :::> reach(x, f(y), /). 

The proof of lemma 3 is by the obvious induction. It must be placed before lemma 4 in the file 
that is given to the experimental verifier, since it is used in the proof of lemma 4. 

It would, of course, be a great step forward to find mechanical techniques that discover the 
lemmas required in the proof of the paths through the program, so that a programmer would 
not. have to figure out the five lemmas that are needed. Boyer and Moore [7,8,9] and Aubin [5) 
describe heuristics for strengthening a conjecture in order to make it provable by induction. These 
heuristics could probably be used to generate lemma 1 automatically from the path that required 
it, or lemma 3 from the induction step for lemma 4; but they strengthen a formula into a single 
lemma, not into a set of lemmas, so they are not able to discover the four lemmas needed to prove 
the path through revloop. 

It would be possible to include a satisfiability procedure for the theory of reach. However, 
reach is not as fundamental as equality, numbers or ordered pairs, and it would not be worthwhile 
to include a satisfiability procedure for reach it unless turned out to be useful for many programs. 

Another possible approach to this problem is mentioned in section 20. 

Although first-order logic extended with partial recursive functions is very expressive, a 
considerable gain in expressive power is obtained by allowing nondeterministic partial recursive 
functions. The form of nondeterminism we consider is the following: we write A \/ B to mean the 
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"dovetailed or of A and 13," that is, the result of evaluating both terms at once, working on them 
alternately, and returning true if either of the two returns true. Used in a logical formula {such 
as an entry or exit specification), A'\/ l3 is equivalent to A V B, but they have different meanings 
inside a recursive function definition. We have not yet discussed formally what A V B means inside 
a recursive function definition; as we shall see in section 16, it means to evaluate A, returning true 
if A returns true; and otherwise to evaluate B and return the result. Thus in a recursive function 
definition, A V 13 loops whenever A does, while A '\/ 13 halts whenever either A or 13 halts with 
true. 

As an illustration of the use of '\/, we will give formal specifications for a garbage-collection 
marking algorithm. The algorithm operates on a set of nodes each of which contains four fields; 
the link fields a and b, which are assumed to point at other nodes; the one-bit atom field, which 
is set if the node represents an "atom", that is, a node whose a and b fields are to be ignored; and 
the one-bit gc field, which is initially clear for all nodes. The formal specifications state that the 
procedure mark sets the gc field in all nodes that can be reached from root (a global constant) by 
foil owing a and b fields through nodes whose atom field is not set. The specifications include a 
non-deterministic recursive definition of the predicate reachable: 

Function reachable(x, y, atom, a, b) a 
[x = y ~true; 

atom(x) ~ false; 
reachable(a(x), y, atom, a, b) '\/ reachable(b(x), y, atom, a, b) D; 

Predicate gczero(gc) a ('v' x) gc(x) =false; 

Predicate gcreach(gc, atom, a, b) = ('v' x) gc(x) {:::} reachable( root, x, atom, a, b); 

Entering mark, a= ao /\ b = bo /\ atom= atomo /\ gczero(gc); 

Exiting mark, a = a0 /\ b = b0 /\ atom = atom0 /\ gcreach(gc, atom, a, b); 

The recursive definition for reachable might be paraphrased: (a) xis reachable from x, (b) 
if xis not an atom, and y is reachable from a(x) or from b(x), then y is reachable from x, and (c) 
nothing is reachable from x unless it is because of (a) and {b). 

The procedure mark modifies the list structure temporarily. To require that the modifications 
be temporary, the entry specification labels the original values of a, b, and atom as a0 , b0 , and 
atom0 and the exit specification specifies that their final values equal their original values. 

One might try to replace the definition of reachable in the example above by the three axioms: 

Axiom 1: ('v' x atom ab) reachable(x, x, atom, a, b). 

Axiom 2: ('v' x y atom ab) 
•atom(x) /\ reachable(a(x), y, atom, a, b) :::> reachable(x, y, atom, a, b). 

Axiom 3: ('v' x y atom ab) 
.., atom(x) /\ reachable(b(x), y, atom, a, b) :::> reachable(x, y, atom, a, b). 

These axioms state obvious properties of the intuitive predicate reachable, so to assume them 
introduces no appreciable danger of error. But they are not sufficient to define the intuitive 
predicate, since it is consistent with them to assume that anything is reachable from anything. 
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Using them alone it would not be possible to prove that the marking algorithm marked everything 
reachable. 

16. Formal semantics for the specification language 

The last fifteen sections have used recursive procedures, assignment statements, variables over 
functions, pointers, and arrays, predicates defined by quantification and recursion, inductive proofs, 
non-determinism, numbers, and logical formulas as specifications for programs. These notions have 
been treated formally before, most of them in several ways. But, except for numbers and predi­
cates defined by quantification, the notions do not have widely-accepted standard formalizations. 
Therefore, sections 16 and 17 are necessary to define them precisely. 

We will use techniques from many sources. The basic method of defining specifications for 
programs is due to Floyd [24]. The definition of the semantics of recursive functions is based on 
the definition in Kleene [31], but is more in the style of McCarthy [39]. 

The main problem in defining the semantics of the specification language is deciding what to 
do about the recursive definitions. There are several ways to deal with them. 

The lambda calculus of Church, for which models have been constructed by Dana Scott [49), 
assigns semantics to recursive definitions in such a way that the recursive functions become values; 
for example a variable can have a recursive function as a value. The system defined here does not 
have this generality. 

Given a first order theory T and a set of recursive function definitions R, Robert Cartwright 
and John McCarthy [11) extend T to a theory T' by adding the function symbols defined in Rand 
the constant _L_, and construct a set S of induction schemes, such that the theorems provable in T' 
by using induction schemes in S are true in some standard model in which the recursive functions 
are evaluated by some evaluation rule and i. is the value of a function application that loops. 
They describe the construction for several different evaluation rules. 

In the "formalism of recursive functions" of Kleene [31), a syntactic characterization of a 
halting computation is given, and t = u is taken to denote that both terms t and u halt with the 
same value. Thus the semantics of recursive functions are defined directly instead of modeled in 
first-order logic, with the result that = behaves differently than conventional equality. Kleene's 
method will be used here, but his definitions will be generalized to allow recursive functions to 
compute with values from an arbitrary first-order theory, instead of with the natural numbers 
only. 

The syntax of the specification language is that of the classical first-order calculus of function 
symbols, with equality as the only predicate. 

More precisely, a variable (of the formal system) is a sequence of one or more lower-·case italic 
letters, possibly containing hyphens, and possibly primed or subscripted with a numeral, such as 
xs or tax-rate. A function symbol is a sequence of lower-case bold letters, possibly containing 
hyphens, such as nil or if-then-else. Each function symbol has an associated arity, which is a non­
negative integer. The function symbols are divided into two groups, the recursive function symbols 
and the non-recursive function symbols. (No typographical convention distinguishes recursive from 
non-recursive function symbols, or indicates a function symbol's arity-we will make appropriate 
assumptions about individual function symbols as we use them.) A term is defined as follows: (a) 
a variable is a term; (b) an expression of the form j( ti, ... , tn), where J is an n-ary function 
symbol and the t's are terms, is a term; (c) nothing is a term unless it is because of (a) and (b). 
The empty parentheses that follow 0-ary function symbols will usually be dropped; thus nil() will 
be written nil if the context makes it clear that a term, not a function symbol, is intended. An 
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atomic formula is an expression of the form t = u, where t and u are terms. A formula is defined 
by: (a) an atomic formula is a formula; (b) an expression of one of the forms (f /\ Ci), ..., F, or 
(V x) F, where F and (j are formulas and x is a variable, is a formula; (c) nothing is a formula 
unless it is because of (a) and (b). (We will -often omit the parentheses from (F /\ G), and use 
other informal notation, such as a ~ b < c for a < b /\ b < c.) 

The letters a, b, ... , A, B, ... will be used as "meta-variables" ranging over expressions of 
the formal system. 

Expressions involving V , ::) , {::} , and 3 are as usual regarded as abbreviations for equivalent 
formulas involving only /\, ..., , and V. For example, F V (j is an abbreviation for ..., (• F /\ ..., Ci). 
Furthermore, if a term t is used where a formula is expected, it is an abbreviation for the formula 
t = true; thus functions can be used as though they were predicates. 

A recursive function definition is an expression of the form 

where J is an n-ary recursive function symbol, the x's are distinct variables, and B is a term, the 
body of the recursive function. (Free variables are not prohibited in B, although we will have no 
use for such free variables in this paper.) It may seem odd that the body of the definition is an 
ordinary term, since in most recursive function definitions the body will be a conditional expression. 
Conditional expressions involving [, => , and D are regarded as abbreviations for equivalent terms 
involving the function symbol if-then-else, in the obvious way: the conditional expression 

is an abbreviation for the term 

if-then-else(pi, ei, if-theli-else(p2, e2, ... , if-then-else(pn, en, en+1)· · ·)). 

(A conditional statement like [A; B D also abbreviates a term, as defined in section 17, but it would 
be nonsense to include such a term in a recursive function definition.) 

The symbols /\ , V , ..., , and ::) may appear in terms, where they are regarded as abbreviations 
for terms involving if-then-else, according to the following rules: 

A /\ B abbreviates if-then-else(A, 8, false) 
AVB abbreviates if-then-else(A, true, 8) 
•A abbreviates if-then-else(A, false, true) 
A ::) 8 abbreviates if-then-else(A, B, true) 
A {::} 8 abbreviates if-then-else(A, B,..., B). 

(Obvious assumptions about the arity of common function symbols will not be mentioned 
explicitly; thus if-then-else is 3-ary and true and false are 0-ary.) 

Finally, an expression of the form a= b, if used where a term is expected (such as in the body 
of a recursive definition), is an abbreviation for the term equal( a, b ); and the expression A rt B is 
an abbreviation for dovetail(A, B). The arithmetic infix operators and predicates are also regarded 
as abbreviations for function symbols, but we will not list them here. 

According to these conventions, the nonsensical function definition 

p(x, y) = [ x = nil => nil; x -:I:- y => nil; x /\ y D 

is an abbreviation for 
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p(x,y) = 
if-then-else( equal( x, nil), 

nil, 
if-then-else(if-then-else(equal(x, y), false, true), 

nil, 
if-then-else(x, y, false))). 

81 

Thus the meaning of many symbols depends on their context. Used as a formula, the 
expression a = b V c is an abbreviation for a = b V c = true; used as a term, it abbreviates 
if-then-else( equal( a, b), true, c). This allows conventional notation to be used throughout while 
preserving the important technical distinction between terms and formulas. 

Interpretations are defined in the conventional way: an interpretation 'Ill with universe U is a 
map that assigns to each variable x an element w(x) of U and to each n-ary non-recursive function 
symbol j a map w(j): un-+ U, such that 'Ill( true)():;/; w(false)(), and 'lt(equal)(u, v) ='Ill( true)() 
if and only if u = v. (Since true is 0-ary, w(true) is a mapping from u0 to U, so we must write 
w(true)(), not w(true), to denote the element of u representing truth.) 

(It is unacceptable to use non-finitary definitions (like the one above) in the foundations of a 
programming system, but like most mathematics students, the author was addicted to set theory 
in college. Presumably with more care one could justify the theorems in sections 19 and 20 by 
purely finitary methods.) 

In the definition of the semantics of the conventional predicate calculus, the next step is to 
extend interpretations over terms in the natural way. It is not so simple in this system. When a 
term t contains recursive functions, the most natural choice for '11( t) is the result of evaluating t 
by some evaluation rule, which must be defined. We will use an ordinary call-by-value evaluation 
rule, although other rules might be chosen instead. 

Instead of defining an evaluation algorithm, it is technically convenient to define a syntactic 
object (called an evaluation tree) that is a record of a complete evaluation, like a sequence of 
Turing machine instantaneous descriptions. Then the statement "the term t halts when evaluated 
in the interpretation 'Ill using a set of recursive definitions R" can be formalized "there exists an 
evaluation tree for t, under 'Ill and R." 

The notation a<~> used previously for arrays and linked structures will be used hereafter for 
functions in general. In particular, 'Ill (~) is the interpretation that differs from 'Ill only at the variable 
v, which it maps to u. In an evaluation tree the interpretation 'Ill defines the non-recursive functions 
and also serves as a "name-value stack" for the evaluator; the stack resulting from W by binding 
the variable v to the value u E U is 'Ill (~) • 

If 'Ill is an interpretation and R is a set of recursive definitions such that no function symbol is 
defined twice in R, then (w, R) is a context. An evaluation tree for a given term in a given context 
with a certain result is defined as follows: (a) if (w, R) is a context and t is a term, then the 
tuple ( t, u, T11 ••• , Tn.) is an evaluation tree for t in (w, R) with result u if any of the following five 
conditions hold: 

• t is a variable, n = 0, and u = w(t); 

(I.e., to evaluate a variable, return its value in the current context.) 

• t is of the form if-then-else(p, a, b), n = 2, T1 is an evaluation tree for pin (w, R), and one 
of the following two conditions holds: (2a} the result of T1 is w(true)( }, T2 is an evaluation 
tree for a in ('11,R}, and u is the result of T2; or (2b) the result of T1 is not w(true)(), T2 

is an evaluation tree for b in (w, R), and u is the result of T2; 
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(I.e., to evaluate if-then-else(p, a, b ), evaluate p. If the result is w(true)(), return the result 
of evaluating a, else return the result of evaluating b.) 

• t is of the form dovetail( a, b), n = 2, and either (3a) Ti and T2 are evaluation trees for 
a and b respectively, neither have result w(true)(), and u = w(false)(); or (b) either Ti is 
an evaluation tree for .i in ('11, R) with result w(true)(), or T2 is an evaluation tree for bin 
('11, R) with result w{true)(), and in either case, u = w(true)(); 

(I.e., to evaluate a \/ b, evaluate a and b separately, working on them alternately; return 
true if either returns true, return false if both return non-true values.) 

• t is of the form j( ti, ... , tn), J is not if-then-else or dovetail, J is non-recursive, each '.Ii is 
an evaluation tree for t-1 in (w, R), and, letting u1 be the result of T,, u = w(f)(ui, ... , un); 

(I.e., to evaluate a non-recursive function application, evaluate the arguments and apply the 
function.) 

• t is of the form j(t1, ... , tn_i), J is recursively defined in R by an expression of the form 
j(xi, ... ,Xn-1) = 13, each T.: for 1 ~ i < n is an evaluation tree for ti in ('11,R), Tn is an 
evaluation tree for l3 in (w C~!) · · · C~:=:>, R), where each u, is the result of T1, and u is the 
result of Tn; 

(I.e., to evaluate a recursive function application, evaluate the arguments, then return the 
result of evaluating the body of the function definition in the context obtained from the 
current context by binding the function's formal parameters to the actual argument values.) 

and (b) nothing is an evaluation tree unless it is because of (a). 

The effect of {b) is to require that all evaluation trees be finite. If t loops, it has no evaluation 
tree. 

In a context in which R is understood, and it is known that t has an evaluation tree in ('11, R), 
we write '11( t) to denote the (necessarily unique) result of an evaluation tree for t in ('11, R). 

If F is a formula and {'11, R) is a context, then F is true under ('11, R), or equivalently ('11, R) 
satisfies F, if and only if one of the following holds: 

• F is an atomic formula t = u and there exist evaluation trees for t and u in (w, R) that 
have identical results. 

• F is of the form ., G and G is not true in ('1', R). 

• F is of the form G /\ H and both G and H are true in ('11, R). 

• F is of the form {V x) G and for all u E U, G is true in ('1' (~), R). 

An expression of the form t halts, where t is a term, is an abbreviation for the formula t = t. 
Similarly, t loops is an abbreviation fort::/; t, and t ~ u for {t loops /\ u loops) V (t = u). 

Notice that the statement "The formula F is true" is different from the statement "The term t 
evaluates to true". Perhaps the reader thinks that this is clumsy, and that the formal system could 
be made more elegant by unifying the notions off ormula and term, of being true and of evaluating 
to true, of the atomic formula a = b and the term equal( a, b ), and the other mirror-image pairs. 
But there is a serious obstacle to this plan. Notice that the definition of truth does not need an 
extremal clause, being justified by "structural induction" on the size of the formula, nor could 
it have one since the clause for negations is impredicative (see Kleene [31]). On the other hand 
the definition of an evaluation tree required an extremal clause, since the size of the tree is not 
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bounded by the size of the term. Thus one definition will never suffice to define both the semantics 
of "not" and the semantics of evaluation. 

Here are some example formulas to illustrate these definitions. 
The formula p(f(x)) ~ f(x) halts is true in all contexts, because an evaluation tree for p(f(x)) 

contains one for f(x). 
The formula (V x) x halts is true in all contexts. Indeed, let W be any interpretation, R any set 

of recursive functions; then (x, w(x)) is an evaluation tree for x in (w, R). This may seem unnatural 
to those who are used to adding an "undefined" element to the universe to represent the value of 
looping computations, but from a programmer's point of view it is natural that the evaluator halt 
on variables. Remember that (V x) gives a way of saying something about each value u in the 
universe, not about each term x. 

The last example shows that it is not valid to instantiate a universally quantified variable to an 
arbitrary term, since although "(V x) x halts" is valid, there are terms that loop in some contexts. 
But the following fact is not difficult to prove: if (V x) F is true in (w, R), and t is any term, then 
t halts ::) F; is true in (w, R), where F; is the result of substituting t for all free occurences of x 
in F. 

A theory is a pair (A, R) where A is a set of formulas, the axioms of the theory, and R is a set 
of recursive function definitions such that no function is defined twice in R. A formula F is valid in 
a theory (A, R) if for any interpretation W and any set R' of recursive definitions such that R ~ R', 
no function is defined twice in R', and (w,R') satisfies every axiom in A, (w,R') satisfies F. A 
formula is satisfiable in a theory if its negation is not valid in the theory. For example, suppose 
that f is a recursive function symbol. Then f( x) loops, although true in any context (w, { } ), is 
not valid in the theory ({ }, {}),since for any interpretation '11, f(x) loops is false in the context 
(w,{f(v) = v}). Thus f(x) halts is satisfiable in the theory ({ },{}).But f(x) loops is valid in 
both of the theories ( { }, { f(x) = f(x)}) and ( { (\f x) f(x) loops}, { }). 

A model for a theory (A, R) is an interpretation W such that every formula A E A is true in 
(w, R). If (A, R) is a theory and F is a formula, we write A, R f- F if, for every model W of (A, R), 
Fis true in (w, R). 

If neither the formula F nor any of the formulas in the set A contain if-then-else, \/, or any 
recursive function symbols, then F is valid in (A, { } ) if and only if F is entailed by A in classical 
first-order logic. In this sense the system is a conservative extension of the first-order predicate 
calculus. 

We now illustrate the definitions above by considering the problem of axiomatizing the theory 
Z of the reals and integers under addition. It is staightforward to axiomatize the theory R. of the 
reals under addition, essentially by writing down the axioms for a transaltion-independent total 
order on a commutative group. But no formula is equivalent in R. to the infinite disjunction x = 
0 V x = 1 V x = 2 V .... Thus the natural numbers cannot be given a first-order definition. 
But the natural numbers can be singled out by the recursive function nn, defined by: 

nn(x) = [ x = 0 =} true; nn(x - l)D. 

Notice that if nn returns anything at all, it returns true, but that it will loop if its argument is not 
a natural number. Thus the atomic formula nn(x), (which is an abbreviation for nn(x) =true), is 
true if and only if xis a natural number. The formula--, nn(x) (that is, --, (nn(x) =true)), is true if 
and only if x is not a natural number. It would be a mistake to write nn(x) =false-this equality 
is not true in any context, since if nn halts, it does not return false. 

Similarly, the axiomatization given for L in section 5 allows "circular" structure. To state 
that an object is "non-circular" and "finite" under the car and cdr functions requires a recursive 
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function definition; for example: 

noneircular(z) = ff atom(z) => true; noncircular(ear(z)) A noneireular(edr(z)) D· 

Thus the finite binary trees can be recursively selected out of the more general circular and infinite 
structures allowed by the first-order axiomatization, just as the natural numbers are selected out 
of the reals. 

This method of defining the non-circular binary trees and the natural numbers comes to the 
same thing as defining them with some template for inductive definition, as in Boyer and Moore's 
system [7]. The advantage of definition by recursive selection is that we can easily define the finite 
circular lists, the directed acylic graphs, and many other useful data structures that are difficult 
to define with inductive templates. 

A point worth noting about the specification language is that an expression like "t halts" 
makes sense only in a formula, not in a recursive function definition. For example, suppose that t 
has been recursively defined, and the definition 

g(x) = ff f(x) halts => x; g(x + 1) D 

is made with the intention of defining g so that g(O) finds the first· natural number for which t 
halts. The definition fails, since it is an abbreviation for 

g(x) = if-then-else(equal(f(x), f(x)), x, g(x + 1)), 

and therefore g loops whenever f does. To make the required definition, it is first necessary to 
define a non-recursive function rhalts that recognizes the values on which r halts: 

Predicate rhalts( x) = f( x) halts. 

Now g can test Chalts. 
In particular, if a recursive definition tests nn(x), the false branch of the test will .:iever be 

taken! For this reason we add to the theory Z the definition 

Predicate int( i) = nn( i) V nn( --i). 

Recursive definitions should always use int, never nn. 
These considerations make it obvious that the valid formulas of the system are not contained 

in any finite level of the arithmetic hierarchy (see Kleene [31]). or course, this also follows. from 
the fact that the system has the natural numbers and quantification. 

A final point about the specification language: note that the dovetail operator \/ cannot 
be replaced by an auxilliary predicate definition, although its effect ia essentially to introduce a 
"logician's or" into a term. Consider, for example, the definition of the predicate r(x, y) which is to 
be true if and only if y is equal to f(g(g( •.. (x) .•. ))), for any sequence of applications of the functions 
f and g. The obvious definition works fine: 

r(x, y) = ff x = y => true; r(f(x), y) \/ r(g(x), y) D· 

Here is another attempted definition: 

Function r(x, y) = x = y V rr(x, y). 
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Predicate rr(x, y) = r(f(x), y) V r(g(x), y). 

The V in the definition of rr is the "logician's or", but the definition fails. It would be consistent 
with this definition to make rr(x, y) identically true; then r(x, y) would as a consequence be 
identically true also, thus rr so interpreted would satisfy its definition. The problem is that 
predicate definitions do not have an implicit extremal clause, so "overly liberal" interpretations 
must always be reckoned with. 

17. Formal semantics for the programming language 

The programming language is expression-oriented rather than statement-oriented; the execution of 
a program fragment is similar to the evaluation of an expression, but different in that it may cause 
side effects. The syntax of program fragments is almost the same as the syntax of terms, with the 
difference that programs may have embedded assignment st.atemeut.s. More precisely, a statement 
is either a variable, an expression of the form j( S 1, ... , Sn) where J is an n-ary function symbol 
and Si, ... , Sn are statements, or an expression of the form x - S, where xis a variable and S 
is a statement, or an expression of the form with v1 =Si, ... , Vn =Sn do S, where the Vi are 
variables and the Si are statements. 

There is no syntactic provision for blocks like [ S 1; S 2; S 3 D; this block is viewed as an 
abbreviation for the statement do( S 1, do( S2, S3)). (The 2-ary function symbol do will be defined 
to evaluate its arguments in order and return the value of the second argument. Presumably the 
first argument causes side effects. This do is not related to the do that occurs as syntactic sugar 
in the with statement.) Similarly, [ S1; P => E; S2; S3 D is an abbreviation for 

do( 51, if-then-else(P, E, do( S2, 5 3))). 

Also, the statement [ D, which is used as a no-op, is an abbreviation for the statement nothing; 
nothing is an ordinary constant symbol, about which the system contains no axioms, so it behaves 
as a completely arbitrary value. 

The general rules for converting informal statements involving [, => , and D into the formal 
statements they abbreviate are: (a) IT D is an abbreviation for nothing; (b) IT s n, where 5 is 
a statement, is an abbreviation for S; (c) [ 5 => A; 5 1; ... ; Sn D is an abbreviation for 
if-then-else(5,A,[S1; ... ; SnD);and (d)[S; 51; ... ; SnD,whereSisnotoftheformP => Q, 

is an abbreviation for do( 5, [ 51; ... ; Sn Il). 
The formal syntax allows only variables on the left of assignments; an assignment like l(x) +- y 

is regarded as an abbreviation for l +- l <:>. 
Notice that every term is a statement. The notational conventions for A, V, ~ , -, , {::}, 

equal, store, and select that were defined for terms will also be used for statements. 
A procedure definition is an expression of the form 

j(xi, ... ,xn) = B 

where J is an n-ary function symbol, xi, ... , Xn are distinct variables, and B is a statement. Notice 
that every recursive function definition is also a procedure definition. 

The formal model for statement execution is similar to the formal model for term evaluation. 
An obje~t, called an execution tree, is defined that represents a trace of the execution of a 
statement. The node of the tree that represents the execution of a statement S is labelled with 
two interpretations, one for the context at entry to S, the other for the context at exit from 5. 

The precise definition of an execution tree is as follows: (a) If Tis an execution tree for the 
statement 5 in the entry context (w, R) with result value u and result interpretation <I>, then Tis 
a sequence (w, 5, <I>, u, Ti, ... , Tn) such that one of the following seven conditions hold: 



86 RECURSION AND INDUCTION 

• 5 is a variable, n = 0, u = w( 5), and <1> = 'W; 

(I.e., to "execute"a variable, return its value.) 

• 5 is of the form do(5i,5 2 ), n = 2, Ti is an execution tree for 5 1 in (w,R), T2 is an 
execution tree for 52 in (w', R), where w' is the result interpretation of T1, and u and <]> 

are the result value and interpretation of T2; 

(I.e., to execute do( Si, 5 2 ), execute 5 11 then execute 5 2, then return the second result.) 

• S is of the form if-then-else(p, a, b), n = 2, Ti is an execution tree for p in (w, R), and, 
letting u' and w' be the result value and result interpretation of Ti, one of the following 
two cases holds: (3a) u' = w(true)( ), T2 is an execution tree for a in (w', R), and u and 
<1> are the result value and interpretation of T2 ; or (3b) u' =/:- w(true)(), T2 is an execution 
tree for bin (w',R), and u a'fld <1> are the result value and interpretation of T2; 

(I.e., to execute if-then-else(p, a, b ), execilte p; if the result is true, then return the result of 
executing a, else return the result of executing b.) 

• S is of the form x +- 5 1, n = 1, Ti is an execution tree for 5' in {w, R), and <1> = 'W'~J, 
where w' and u' are the result interpretation and result value of Ti. 

(I.e., to execute an assignment statement, execute the expression on tlrn right, rebind the 
variable on the left to the value of the expression on right, and return anything.) 

• 5 is of the form j( 51, •.. , Sn), j is not if-then-else or do, j is non-recursive, and, if w0 = 'W 
and, for 1 ~ i ~ n, Wi and Ui are the result interpretation and result value of Ti, then each 
Ti is an execution tree for Si in (wi--11R), <1> = Wn, and u = w(f)(u1, ••• ,un); 

(I.e., to execute the application of a non-recursive function, compute the values of the 
arguments, going from left to right, then return the value of the function applied to the 
argument values.) 

• 5 is of the form with Xi = Si, ... , Xn-i = Sn-i do 5', and, if Wo = w and, for 
1 < i < n, 'Iii and ui are the result interpretation and result value of Ti, then each 
Ti, 1 ~ i < n, is an execution tree for Si in (wi-li R), Tn is an execution tree for S' in 
(w n-l <~:> · · · <~:=:', R), u is the result value of Tn, and, letting w' be the result interpretation 
of Tn <]> = 'W' (x1) • • • (Xn-1) • 

1 "1n-1(xi) "1n-1(Xn-1)' 

(I.e., to execute a with statement, compute the initial values, working from left to right, 
bind the local variables, execute the body of the statement, and finally restore the old values 
of the local variables.) 

• 5 is of the form j( Si, ... , Sn_i), j is defined in R by j(xi, ... , Xn-1) = B, and, if Wo = W 
and, for 1 ~ i < n, 'W,: and Ui are the result interpretation and result value of T,:, then 
each T;,, 1 ~ i < n, is an execution tree for Si in (wi-1' R), Tn is an execution tree 
for B in (w n-i <~:> · · · <~:::::.:>, R), u is the result value of Tn, and, letting w' be the result 
. t t t• f T <]> w' (x1) (Xn-1) tn erpre a lOn 0 n1 = q,,._ 1 (xi) ... '11n-t(Xn-i); 

(I.e., to execute a procedure call, compute the values of the arguments, going from left to 
right; bind the locals to the argument values; execute the body of the procedure; and rebind 
the locals before returning the value of the body.) 

and (b) anything is an execution tree unless it is barred from being one by (a). 
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The effect of (b) is to allow infinite execution trees. (At least, that is the intended meaning. 
If the ordinary form of extremal clause makes sense, then (b) must make sense too.) Infinite 
execution trees are allowed in order to make specifications about non-terminating computations. 
For example, suppose the procedure p loops forever, calling q (which halts) each time around the 
loop. Then the statement that q's entry invariant is true for each call can be expressed by saying 
that q's entry invariant is true in the context of certain nodes on a certain infinite branch of the 
execution tree for the call to p. 

Notice that no special interpretation is given to dovetail in the above definition; the effect of 
this is to bar procedures from using 'i/, or from calling functions that use it. This is a reasonable 
restriction from a programmer's point of view. 

By regarding finite sequences as nests of ordered pairs and interpretations as arrays, so that 
'11(x) is modeled by select(w, x), it is possible to define terms, formulas, and evaluation trees in 
the specification language itself, using simple recursive function definitions. On the other hand, it 
is obviously impossible to write a recursive iunction xtree that returns true if its argument is an 
execution tree, because an infinite tree cannot be examined in a finite number of steps. But it is 
possible to write a recursive function notxtree that returns true if its argument is not an execution 
tree. One way is to make notxtree do a breath-first search of its argument, looking for a violation 
of one of the above rules. If it ever finds a violation, it returns true. If it searches its entire 
argument without finding a violation, it returns raise. If its argument is an infinite execution tree, 
it will loop, but then an atomic formula containing the call will be untrue, as desired. Another 
way, avoiding the bookkeeping of the breadth-first search, is to use 'i/ to guess which branch of 
the tree violates the rules. Either way, the predicate definition Predicate xtree(x) =.., notxtree(x) 
can be used to obtain a positive predicate. 

Consider the procedure definition and specifications: 

Procedure foo() = ff foo( ); foo() Il· 
Entering foo, x = y. 
Exiting foo, false. 

These specifications and definition are consistent, since if x = y is true at some top-level call to 
foo, then as long as the program runs, x = y will be true at every entry to foo, and raise will 
be true at every exit from Coo. Now let T be an execution tree for the term foo() in the context 
('11, R), where R contains the definition of foo above. Because foo calls itself twice, T is essentially 
an infinite binary tree; the looping computation corresponds to the left-most branch. The entry 
contexts of the nodes on the left-most branch are all '11, but the exit contexts of the nodes on the 
left-most branch are arbitrary, so long as they are all the same. Thus the entry contexts for the 
calls to Coo that are not on the left-most branch need not satisfy x = y. 

This example shows that it is necessary to distinguish the "accessible" parts of an execution 
tree, that is, the parts of the tree that correspond to states that would be reached in an actual 
computation. If Tis an execution tree, then (a) Tis accessible from T, (b) if ('11, S, ~' u, Ti, ... , Tn) 
is accessible from T, and Ti is finite for 1 < i < k, then Tk is accessible from T; and (c) nothing 
is accessible from T unless it is because of (a) and (b). The accessible part of an execution tree is 
sort of an execution sequence. It is the only part of the tree that is of interest, but it is easier to 
define the whole tree first and then single out the left-most infinite branch than to do both in a 
single definition. 

We are finally ready to describe the experimental verifer precisely. The experimental verifier 
reads a file containing a sequence of function, procedure, and predicate definitions, entry and exit 
specifications, axioms, and lemmas and determines whether the file is consistent or not. Essentially, 
the file is consistent if every lemma is a consequence of the axioms and definitions, and any call 
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to a procedure in a context that satisfies its entry specification will result in a computation that 
never violates any specifications. To make this definition precise, we describe the simple algorithm 
that the experimental verifier executes. 

Algorithm V. (Verify a file). This algorithm determines whether a program meets its specifications. 
V1. [Get file name.) Prompt the user for the name of a file to verify, read the file name, and open 

the file. 
V2. [Initialize.] Initialize the variables L and R' to be empty sets. (These variables represent 

the set of lemmas and the set of procedure definitions, respectively.) Initialize E and X to 
be functions such that for all function symbols p1 E(p) = X(p) = true. (These variables 
represent the entry and exit specifications; the default specifications for a procedure are true.) 
Initialize A to be the union of the sets of axioms for Z x, L, and A; initialize R to be the set 
containing only the recursive definition of nn. (These variables represent the set of axioms and 
the set of recursive function definitions.) Read the file opened in step Vl, which (like all files) 
contains a sequence of expressions separated by periods. For each expression, perform one of 
the following actions: 

• [Axiom?] If the expression is of the form Axiom n: F, where n is a numeral and F is a 
formula, then add F to A. 

• [Predicate?} If the expression is of the form Predicate P(x1, ... , Xn) = B, where X1J ... , Xn 

are distinct variables, Pis a non-recursive function symbol, and P does not appear in B and 
has not appeared previously in the file, then add the formula (V X1J ... , Xn) P(xi, ... , Xn) {::::} 
B to A. 

• [Lemma?) If the expression is of the form Lemma n: F, where n is a numeral and F is a 
formula, then add F to L. 

• [Function?} If the expression is of the form Function D, where D is a recursive function 
definition, then add D to both R and R'. (D is added to both sets because a recursive 
function may appear in both programs and specifications.) 

• [Procedure?) If the expression is of the form Procedure D, where Dis a procedure definition, 
then add D to R'. 

• [Entry specification?] If the expression is of the form Entering P, F, where F is a formula 
and P is a function symbol, then set E(P) +- F. 

• [Exit specification?} If the expression is of the form Exiting P, F, where F is a formula and 
P is a function symbol, then set X(P) +- F. 

• [Error?} If none of the other cases apply to the expression, then give an error message and 
halt. 

V3. [Consistent?} (The end of the file has been reached without syntactic error.) If, for every 
model '11 of (A, R), the following two conditions hold: 

• Each formula F E L is true in ('11, R); 

• For each procedure p defined in R' with locals x11 ... , Xn 1 if E(p) is true in ('11, R), T is an 
execution tree for p(xi, ... , xn) in (w,R'), 

{ <I>,q( ti, .. ., tm), <I>', '1.1. 1 Ti, ... 1 T m+1) 

is a subtree of T such .that Tm+i is accessible from T, and q is defined in R', then E(q) is 
true in (<I>",R), where <I>" is the entry context for Tm+b and if Tm+i is finite, then X(q) 
is true in (<I>' (1.') R)· " ' , 
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then print "Sorry. Can't find any more errors." Otherwise print a message indicating 
which lemma or program fragment violates these conditions and why. I 

That is, the verification succeeds if every lemma is a consequence of the axioms and definitions, 
and any call to a procedure in a context that satisfies its entry specification will result in a 
computation that never violates any entry or exit specifications. (Recall that V is the variable 
denoting a procedure's returned value in its exit specification.) 

18. Correctness of Algorithm E 

Now that we have the formal definition of the semantics of the specification language, we can prove 
that Algorithm E of section 5 is valid for theories that contain partial recursive function definitions. 

Here is an example of a pair of theories for which Algorithm E fails: let S be the theory with 
no recursive function definitions and the single axiom 

(3 a b) ('v' x) x = a V x = b, 

and let T be the theory with no recursive function definitions and the single axiom 

(3 ab c) a ~ b /\ a ~ c /\ b ~ c. 

These two theories have no free functions, hence they have no common free functions. Start 
Algorithm E with these two theories and two empty stacks 8 1 and 8 2 • The empty conjunction is 
satisfiable in both S and T, there are no equalities to propagate, no splits to do, so the algorithm 
incorrectly returns "satisfiable". This example motivates the following definitions. 

A theory is satisfiable if it has a model. A theory (A, R) is stably infinite if for all quantifier-free 
formulas F, (AU { F }, R) has an infinite model if it has any model at all. Note that any theory 
that has no finite models is stably infinite; therefore R is stably infinite. It is not difficult to prove 
that c, L, and A are stably infinite. 

This explains the first restriction on S and T required by Algorithm E. The second restriction 
is that the theories contain only finitely many "free variables". A free variable of a theory is a free 
variable of some axiom or recursive function definition of the theory. A free variable of a recursive 
function definition is a variable that occurs in the body of the definition but not in the list of locals. 
None of the theories Z, L, and A have free variables. c has one free variable, x. 

To see that this restriction is necessary, consider the theory S with all of the axioms and 
recursive function definitions of Z, as well as the axioms x 0 = O, x1 = 1, . . . . That is, S labels 
every natural number with a variable. Let T be the theory with no recursive function definitions, 
and the axioms x ~ x0 , x ~ x1 , •••• Using these two theories, start Algorithm E with 82 empty 
and 8 1 containing the single literal nn(x); it will incorrectly return "satisfiable". 

The correctness of Algorithm E is intuitively a consequence of Craig's interpolation lemma, 
but Craig's proof of this lemma (as well as all the proofs in the literature that the author has found) 
are proof-theoretic, and therefore invalid for theories that contain recursive function definitions, 
where not all true statements are provable. Therefore, we must either give a model-theoretic proof 
of Craig's lemma or do without it. It turns out to be just as easy to give a direct model-theoretic 
proof of the correctness of Algorithm E. The proof is a long but straightforward "cut-and-paste" 
argument on interpretations. 

If A is a term or formula and R is a set of recursive definitions, the function symbols that are 
relevant to A via R are defined as follows: (a) if j occurs in A, j is relevant to A via R; (b) if 
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9 is a function symbol defined in R that is relevant to A via R, and J occurs in the definition of 
9, then J is relevant to A via R, and (c) nothing is relevant to A via R unless it is because of (a) 
and (b). A variable v is relevant to A via R if v occurs free either in A or in the definition of some 
recursive function J that is relevant to A via R. 

The contexts (w 11 Ri) and (w 2,R2 ) are compatible for A, where A is a term or a formula, if 
(a) \11 1 and \11 2 have the same universe; and (b) if J is a recursive function symbol relevant to A 
via Ri, then J is relevant to A via R 3-i, and the definitions for J in R;, and R3-i are identical; 
and (c) \If 1 and \11 2 agree at every variable or non-recursive function symbol that is relevant to A 
via Rl or R2. 

We now check formally that if (w,R) and (w',R') are compatible for a formula F, then Fis 
true in (w, R) if and only if F is true in (w', R'). The proofs are straightforward inductions. 

Lemma 1. Let t be a term, (w, R) and (w', R') compatible contexts for t, n an integer, and u an 
element of the common universe of llt and w'. Then there exists an evaluation tree fort in ('11, R) 
with result u and height n if and only if there exists an evaluation tree for t in (w', R') with result 
u and height n. 

Proof. The proof is a trivial induction on n. Only one case of the argument will be given, that in 
which t is the application j(ti, ... , tm.) of a recursive function J. This function must be defined 
by some expression j(xi, ... , xm.) = B in both R and R' (or else it is defined in neither and t 
has no evaluation tree in either (w, R) or (w', R')). Suppose there is an evaluation tree for t in 
(w, R) with result u and height n. The tree is an expression of the form (w, t, u, Ti, ... , T m+d 
where, for 1 s i s m, T;, is an evaluation tree for ti in (w, R), with result, say, ui, and Tm+i 
is an evaluation tree for 8 in (w <~:> · · · <~:>, R) with result u. The maximum of the heights of Ti, 
... , Tm.+1 is n - 1, so it follows by induction that there exist evaluation trees Ti, ... , T~+u 
such that T~ is an evaluation tree for ti in (w', R') with result u;,, for 1 < i s m, and T~+1 is 

an evaluation tree for 8 in ('If'<~:>· · · <~:>, R) with result u, where the maximum of the heights of 

T l T' • 1 (F (•T• (x1) (xm) R) d ('M (x1) (xm) R) t • l t 
1 , ••• , m.+ 1 is n- . or 'Ji' "'i ···'Um, an 'Ji' "'i ···'Um, cer a1ny agree a xi, ... , 

Xm, and by assumption at all other variables appearing in 8.) Thus (w', t, u, Ti, ... , T~+1 ) is an 
evaluation tree for t in (w', R') with height n and result u. I 

Lemma 2. Let F be a formula and let (w, R) and (w', R') be contexts compatible for F, with 
common universe U. Then Fis true in (w,R) if and only if Fis true in (w',R'). 

Proof. The proof is an obvious induction argument on the size of F. If F is an atomic formula 
t = u, the previous lemma says that there exist evaluation trees for t and u with the same result 
in (\Jr, R) if and only if there exist such trees in (w', R'). U F is of the form -, G or of the form 
Ci /\ H, the induction argument is trivial. If F is of the form (Vx)li, F is true in (w, R) if and only 
if for all u E U, li is true in (w (~), R); that is if and only if for all u E U, li is true in ('If'(~), R'), 
(since \If (~) and w' (~) must agree at x and by assumption they agree at every free variable of Ci); 
that is, if and only if F is true in (w', R'). I' 

The reference in Algorithm E to the satisfiability or non-convexity of "the conjunction of 
literals in 8 1" (or 82 ) should of course be taken to mean the satisfiability or convexity of the 
conjunction in the theory S (or T). To be precise, we define a theory (A, R) to be convex if it 
entails no disjunction u1 = v1 V ... V Uk = vk for k > 1 unless it entails one of the equalities· 
u;, = v;,. Thus a formula F is convex in a theory (A, R) if and only if the theory (AU { F }, R) is 
convex. 

It a theory has an infinite model, it is easy to prove that it has a denumerably infinite model, 
since the interpretation can be pulled back to the set of terms in the obvious way. 

We are now ready to prove the correctness of Algorithm E. 
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Theorem 1. (Algorithm E is correct.) Let (A, R) and (B, S) be satisfiable theories such that 
neitlier (A, R) nor (B, S) contain infinitely many free variables, both (A, R) and (B, S) are stably 
infinite and convex, no free function of (A, R) is a free function of (B, S), and finally, for any two 
variables x and 91 either both (A, R) and (B, S) entail x = 9 or neither do. Then (AU B, R US} 
is satisfiable. 

Before proving the theorem let us see why it justifies the algorithm. Let Ft and F2 be the 
conjunctions of literals in the stacks 8t and 82, respectively, at the moment step ES returns 
"satisfiable". Let the theories S and T be (At, Rt) and (A2 , R 2 ). Then the conditions of 
theorem 1 are satisfied for the theories (At U {Ft }, Rt) and (A2 U { F2 }, R2), so the theorem 
implies that (A1 UA2 U { F1, F2 },R1 UR2} has a model; that is, that F1 /\ F2 is satisfiable in the 
combination of S and T. 

Proof of Theorem 1. Let v1, ... , Vn be the free variables of (A, R) and (B, S). Partition the set 
{ v1, ... , Vn} into {Qi, ... , Qk} by putting vi and vi into the same equivalence class if and only if 
A,R I- vi= vi. (Equivalently, if B,8 I- Vi= v1.) Let Wi be some variable in Qi, for i between 
1 and k. Let F be the conjunction 

A (w; ~ w,.). 
t:=;i<j:=;k 

(IC k < 2, F is the constant true.) Now suppose that (AU { F }, R) has no model. Then k ~ 2 and 

A,RI-

If k > 2, this contradicts the assumption that (A, R) is convex. If k = 2, this contradicts the fact 
that Wt and w2 are in different equivalence classes. Thus (AU { F }, R) does have a model; let it 
be 'II with universe U. Since (A, R} is stably infinite, we may assume that the cardinality of U is 
the cardinality of the set of integers, w. A similar argument shows that (BU { F }, S) has a model 
'II' with universe U' with cardinality w. 

Let o: : U - U' be a bijection such that (a) o:(w(true()) = w'(true()); (b) o:(w(false()) = 
w'(false()); and (c) o:(w(vi)) = w'(v1 ) if and only if vi and v1 are in the same Qp, for some 
1 ~ p ~ k. That an o: exists satisfying (c) follows from the fact that the contexts satisfy F-the 
interpretations make two variables equal only if they are forced to. 

We now define an interpretation <P and prove it is a model for (AU B, R U 8). The universe 
of <P is U. For a variable v, <P( v) = 'II( v ). For a free function f of (A, R), <P(f) = w(f). For a free 
function J of (B, S), <P(f)(ui, ... , ui) is o:-1(w'(f)(o:(ut), ... , o:(ui))). On function symbols that are 
not free functions of either theory, 'II is arbitrary. 

It is now easy to show that for each formula A in A, (w, R) and (<P, RU 8) are compatible 
for A: (A, R) and (B, 8) have no common free functions, therefore any function J relevant to A via 
RU S is relevant to A via R, hence any such J is a free function of (A, R), and therefore <P and 'II 
agree on J. It follows that ( <P, RU 8) satisfies every formula in A. 

To show that (<P, RU S) satisfies every formula in B, consider the interpretation '11'-which 
by assumption satisfies (B, 8)-as it is mapped by o:-1 onto the universe U. To be precise, let 
the interpretation 'II" with universe Ube defined by w"(v) = a-1(w'(v)), for any variable v; and 
w"(f)(ui, ... 'Un) = o:-1(w'(f)(a(ut), ... ' a(un)), for any function symbol J. This interpretation 
w" differs from w' only by a renaming of the elements of the universe, so 'II" must also be a model of 
(B, 8). But the definitions of 'II" and <P agree for free functions of (B, S), so (w", S) and (<P, RU S) 
are compatible for every formula B in B. This proves that (<P, RU 8) satisfies every formula in 
AU B, which proves the theorem. I 
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19. Recursive functions in the E-graph 

The satisfiability procedure for E described in section 6 must be generalized to allow recursive 
functions, since if f is a recursive function symbol, x = y /\ f(x) ::/= f(y) is satisfied by a context 
in which f(x) loops. Here is an example illustrating how recursive functions can be handled by 
a simple generalization of the method used for non-recursive functions. Suppose that r and s 
are recursive function symbols and f is a non-recursive function symbol. Figures (2), {3), and ( 4) 
illustrate the mechanical proof of the formula 

r(s(a)) '.:::::'. b /\ s(a) '.:::::'. s(b) :J f(s(a)} = f(s(b)). (1) 

First a graph is constructed representing the set of terms appearing in (1). Each vertex of the 
graph contains a one-bit field that is set if the term represented by the vertex is known to halt. 
Initially, in (2), the halt-bit is set only in the vertices representing a and b. Equivalence classes 
in the graph represent equivalence classes of '.:::::'., not of =. To "assume" the literal t '.:::::'. u, the 
equivalence class of the representatives of t and u are merged. To assume the literal t = u, the 
equivalence classes are merged and the halt bits of all vertices in the resulting class are set. The 
other cases in which halt bits are set will be illustrated by this example. When the vertex for r(s(a)) 
is merged with that for b, the halt bit of the former vertex is set, since it has become equivalent to 
a vertex whose halt bit is set. (The formula r( s( a)) '.:::::'. b is a silly one chosen only for this example; 
it would be more reasonable to write r( s( a)) = b, since variables always halt.) Since a term loops 
if any of its subterms loop, we can set the halt bits of all successors of any vertex whose halt bit 
is set; thus we may now set the halt bit of the vertex representing s(a). Since an application of a 
non-recursive function halts if all its arguments halt, we can set the halt bit of a vertex labelled 
with a non-recursive function if all its successors have their halt bits set, thus after setting the 
halt bit of s(a) we can set the halt bit of f(s(a)). Figure (3) shows the state of the graph after 
r( s( a)) '.:::::'. b is assumed. When s( a) '.:::::'. s( b) is assumed, the halt bit of s( b) is set, since this vertex 
becomes equivalent to another whose halt bit is set. Figure (4) shows the state of the graph after 
s(a) '.:::::'. s(b) is assumed; notice that the graph explicitly represents the fact that f(s(a)) and f(s(b)) 
halt with the same value. 

. . . 

\'.:.:·.· 

Let G = (V,E,>..,R) be an E-graph and Ha subset of V. (H represents the vertices whose 
halt bits are set.) Then His closed with respect to G if (a) u EH and (u, v) ER imply v EH, 
(b) u EH and v a successor of u imply v EH, (c) if >..(v) is a non-recursive function symbol and 
all successors of v are in H, then vis in H, (d) if >..(v) is a variable, then v EH. If H C V, the 
closure of H is the smallest closed super-set of H. 

Theorem H. Let S be a finite set otpositive literals (that is, of equalities between terms), T a 
finite set of negative literals (that is, of disequalities between terms) that contains true ::/= false, 
and suppose that no literal in S or T contains any occurence of if-then-else or dovetail. Let G = 
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(V,E,>-.,R) be the E-graph corresponding to the set of terms appearing in Sand T, where R is 
the congruence closure of{(t,u) It= u ES} and H the closure with respect to G of{t,u It= 
u E S}. Tlien there exists a context satisfying all the literals in S and T if and only if for every 
t rf u in T, either (t, u) ~ R, or t ~ H. 

Proof. It is straightforward to prove the "only ir' part. To prove the "ir' part, we construct a 
context satisfying the literals in S and T. Let the recursive function symbols appearing in literals 
in S and T be Ji, ... J k· Choose distinct non-recursive function symbols Li, ... , L1c, Fi, ... , 
F k that do not appear in any literal in S or T, such that for each i from 1 to k, the arity of Li 
and Fi is equal to the arity of fi· We define an interpretation 'II with universe U, where U is the 
partition of the vertices of G corresponding to R, by the rules: (a) For a variable v, '11( v) is the 
equivalence class of any vertex of G labelled with v, if one exists; otherwise 'll(v) is arbitrary. (b) 
For an n-ary non-recursive function symbol 9 that is not one of the L;. or Fi, '11(9)(Qi, ... , Qn) is 
the equivalence class of any vertex v labelled 9 such that v[i} E Qi, for 1 < i ::; n, if such a vertex 
exists; otherwise w(9)(Qi, ... , Qn) is arbitrary. (c) '1'(L1)(Qi, ... , Qk) is w(true)() if G contains a 
vertex v labelled ft. such that v[i] E Q;. for 1 ::; i < k and v ~ H; w{Li){Q1, ... , Qk) is 'll(false)() 
otherwise. (d) '11(Fi)(Q11 ••• , Qk) is the equivalence class of any vertex v labeled fi such that 
v[i] E Qi, 1 < i < k, if such a vertex exists; otherwise w(Fi)(Qi, ... , Qk) is arbitrary. 

The effect of these definitions is that L;. recognizes those argument tuples on which Ji is 
supposed to loop, and Fi is a non-recursive function that agrees with fi wherever fi halts. Now 
let D be the set containing, for each Ji, the recursive definition 

fi(X11 ... 1 Xn) = [Li{ Xi, ••• , Xn) :::} fi(Xi, .. ·, Xn)i F;.(xi, ... , Xn) D 

where n is the arity of J;. and xi, ... , Xn are any n distinct variables. Thus fi loops wherever it is 
supposed to, and halts with the right value wherever it is supposed to halt. It is now straightforward 
to show that for every term t appearing in S or T, there is an evaluation tree for t in ('11,D) if 
and only if t E H; and if there is an evaluation tree, then its result is the equivalence class of t. 
Thus every formula in either S or T is satisfied by the context ('11, S). I 

The theorem would be true for infinite sets S and T as well, so long as there were enough 
non-recursive function symbols left over to serve as the L's and F's. 

The theorem gives a procedure for determining the satisfiability of conjunctions of literals of 
the form t = u or t oj:. u. It is trivial to modify it to handle literals of the form t ~ u, but if 
literals of the form •t ~ u are allowed, the problem becomes NP-complete. The theorem prover 
must do a three-way case split when it is is given such a literal; the cases are t loops, u loops, and 
t halts A u halts A t rf u. 

It is straightforward to modify Algorithm D of section 11 to maintain halt bits. The halt bits 
are set in every atomic E-node except the label nodes for recursive function&. Whenever the halt 
bit is set in a vertex node N, it must be set in ecar(ecdr(N)), ecar(ecdr(ecdr(N))), and so on. (But 
not in ecar(N), which may be a label node for a recursive function.) Whenever the halt bits are 
set in ecar(N) and ecdr(N), the halt bit must be set in N. When merge finds that its arguments 
have been asserted unequal, it does not signal a contradiction unless the halt bit of one of the 
two equivalence classes has been set. Therefore, it is possible that setting a halt bit produces an 
inconsistency, and this must be checked for. 

20. An induction rule 

The purpose of this section is to show that the heuristic methods of Boyer and Moore [7] can be 
used to find inductive proofs of the validity of theorems in the system defined in Section 16. This is 
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not obvious, since Boyer and Moore consider only total functions, while we must deal with partial 
functions. Also, the dovetail operator '\/ must be reckoned with. 

The first step in proving a formula by induction mechanically is to choose an "induction 
scheme"; this is essentially a list that contains, for each case of the induction argument, the 
condition and list of induction hypotheses for the case. 

An induction scheme (or simply a scheme) on the distinct variables x1, ••• , Xk is a set of pairs 
{ {P 1, 81), ... , (Pm' Sm)}, where each Pi is a formula and each Si is a set of substitutions on xi, 

••• , Xk. We denote a substitution 0 on xi, ••. , Xk by the expression (x1, ... , Xk)-+ (x1 0, ... , Xk 0), 
sometimes omitting the parentheses if k = 1. Each pair in an induction scheme represents a case 
of an induction argument; Pi represents the assumptions for the case, and each substitution in S;, 
represents an "inductive hypothesis". The cases for which Si is empty are the "base cases" of the 
argument. For example, the scheme 

{ (x = 0, { }), (x ~ 0, x-+ x - 1)} 

should be viewed intuitively as notation for a proof rule of the form: prove some formula F by first 
proving F under the assumption x = 0, with no inductive hypotheses, and then proving F under 
the assumption x ~ 0 and the inductive hypothesis F!_ 1. (Technically the second component of 
the second pair in the above scheme should be written { x -+ x - 1 }, but we will drop the braces 
when the set is a singleton.) 

Given a formula F to be proved by induction, we must come up with a scheme E such that 
to prove F by the induction scheme E is both sound and possible. The first step is to define the 
"height" of a scheme in a context. 

We define the notion of a height-bound for a scheme E on x 1, .•• , Xk in a context {w, R), as 
follows. (a) Let E = {(Pi,Si), ... ,(Pm,S'Tn)},.a.nd suppose that Pi is true in (w,R). Let Si be 

Suppose that there is an evaluation tree for each aii in (w, R), with result, say, Uij· Suppose that, 
for 1 < i ~ l, ni is a height-bound for E in 

Then 1 +maxi ni is a height-bound for E in (w, R). (If l = 0, this condition is vacuously satisfied, 
and' the empty maximum is taken to be zero.) (b) Nothing is a height-bound unless it is because 
of (a). 

If a scheme has no height-bounds in a context, its height in the context is oo; otherwise its 
height is the minimum of all its height-bounds. 

For example, consider the following scheme E: 

{ (x = 0, { } ), (true, x -+ x + 3), (true, x-+ x - 5) }. 

Let (w,R) be a standard model for Z such that w(x) = 1. Then the height of E in (w,R) is 6, 
because it takes five steps to get to 0 from 1 by adding 3's and subtracting 5's (e.g. 1, 4, 7, 2, 5, 0). 
One way of viewing the height of a scheme is to imagine the scheme as a Dijkstra-style do construct 
executed in such a way as to reach an empty set of substitutions as fast as possible. However, this 
intuition must be modified in case some of the Si contain more than 1 substitution--in this case, 
the maximum heights of the "branches" must be computed. 

To prove that a formula F is valid in a theory (A, R), it suffices to prove that (AU {..., F }, R) 
has no models. To prove by induction that the given theory has no models, we proceed in two 
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steps. First, we construct a scheme E such that if (A U {..., F } , R) has any models at all, it has 
a model w such that E has finite height in ('11, R). Then we prove by induction on the supposed 
height of E that no such model exists. 

We illustrate this technique with an example. Let A and R be the axioms and recursive 
function definitions of Z; that is, let Z be (A,R). To prove that nn(x) :::> x ~ 0 is valid in Z, we 
show that (AU { nn(x) /\ x < 0 }, R) has no models. Informally, it is clear that if '11 is a model for 
this theory, then the scheme E = {(x = 0, { }), (x =/:- 0, x--.. x-1)} has finite height in ('11,R), 
because nn(x) must halt in ('11,R). We show by induction on the supposed height n of E in ('11,R) 
that no such model exists. If n = 1, then x = 0 must be true in ('11, R), but this contradicts the 
fact that x < 0 is true in ('11, R). If n > 0, then x =/:- 0 must be true in ('11, R), and E has height 

n..-1 in ('11 'll(~~~-l), R). By induction, '11 'll(~~-l) is not a model for (AU { nn(x) /\ x < 0 }, R). Thus 

one of the formulas nn(x) or x < 0 is false in ('11 'll(~~~l), R); hence one of the formulas nn(x - 1) 
or x - 1 < 0 is false in (w, R). Thus we conclude that '11 is a model for 

(AU { nn(x) /\ x < 0 /\ x =/:- 0 /\ ..., (nn(x - 1) /\ x - 1 < O)}, R). 

Both the formulas nn(x) /\ x =;!:. 0 ::> nn(x - 1) and x < 0 ::> x - 1 < 0 can be proved without 
induction, so the proof is complete. 

The technique illustrated by the example generalizes in an obvious way to give a proof of the 
following lemma: 

Lemma A. Let F be a formula, E the induction scheme {(Pi, 8 1), •.• , (P mi Sm.)} on xi, ••• , x1C1 

and ('11,R) a context in which E has finite height and in which the following formula is true: 

(1) 

Then F is true in ( '11, R): 

Proof. The proof is a straightforward induction on the height of E in ('11, R). If this height is one, 
then for some i, Pi is true in ('11, R) and S;, is empty. Since the empty conjunction is true, 

is true in ( '11, R), hence, since ( 1) is true, so is F. 
Suppose the lemma is true whenever the height of E is less than n, and suppose the height of 

E in ('11, R) is exactly n and that (1) is true in ('11, R). Then there is an i such that Pi is true, and 
furthermore, for each 0 E Si, w(x3 0) is defined (and equal to, say, u3) for each 1 ~ j ~ k, and 
n -- 1 is a height-bound for E in ('11 (xi)·· .(xk) R) Obviously (1) is true in ('11 (xi)•·· (xk) R) so it 

Ut Uk I • Ut Uk I l 

follows from the induction hypothesis that F is true in ('11 (~~) • • • <~:>, R). It is easy to deduce from 
this, using induction on k and structural induction on F, that F 0 is true in ('11,R). Hence 

is true in ('11,R), hence, since (1) is true, so is F. I 
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The lemma shows how to "use" a scheme on a formula, but how is a sound scheme discovered? 
The example above suggested the answer: the formula f will contain recursive function applications 
that must halt in order for F to be non-vacuous, and from these a scheme E can be constructed 
that must have finite height in any context in which F is non-vacuous. 

Let R be a set of recursive function definitions. A scheme E fits a term t for R if, for any 
interpretation 'II such that there exists an evaluation tree T for t in ('II, R), there exists a case 
(P, {01, ... , On}) of E such that Pis true in ('II, R) and for each Oi, there exists a proper subtree of 
T that is an evaluation tree for t with entry interpretation w' that satisfies w'(x;) = w(x3 O,). (In 
particular, w(x3 O.,;) must be defined for each 1 < j < k, 1 < i ~ n.) 

In other words, E fits t if any evaluation of t will "follow" one of the cases of E in the sense 
that it will lead to recursive evaluations of t in contexts that reflect the substitutions of the case. 

Lemma B. If E fits t for R, then E has finite height in any context (w, R) in which t halts. 

Proof. The proof is a straightforward induction on the height of an evaluation tree for t. Let the 
lemma be true whenever the evaluation tree for t has height less than n, and let T be an evaluation 
tree for t in ('11,R) with height n. Since E fits t, there is a case (P, {01 , ••• , Om}) of E such that 
P is true in ('II, R) and for each O.,;, there exists a proper subtree of T that is an execution tree for 
t with entry interpretation 'II' that satisfies w'(x;) = w(x; O,). If m = O, then the height of E in 
(w, R) is zero; otherwise the height is at most one greater than the maximum of the heights of E 
in the various contexts (w',R); by the induction hypothesis, these are all finite. I 

Given a set R of recursive function definitions that contains the definition j(xi, ... , XA;) = B, 
it is not difficult to construct an induction scheme E on xi, ••• , XA; that fits B for R, essentially 
by symbolically evaluating B, constructing one case for every branch of the symbolic evaluation; 
the case has one substitution for every recursive call on the branch. For example, if R contains 
the definition 

f'(x) = [p(x) ::::} true; f(a(x)) ::::} raise; f'(b(x))D 

then the following scheme is easily seen to fit the body of f: 

{ (p(x}, { } ), (p(x)=!= true, x-+ a(x)), (p(x) =!=true A f(a(x))=!= true, x-+ b(x))}. 

(We write a=!= b as an abbreviation for a halts A b halts /\ a -:/: b.) Notice that in contexts in 
which p( x) loops, none of. the conditions of this scheme are true, but it has never been assumed 
that the conditions of a scheme were such that one was true in every context. If none of the 
conditions of the scheme are true in a context, then there is no evaluation tree for the body of t 
in the context. 

As another example, the scheme associated with 

f'(x, y) = [ x = y ::::} true; f'(a(x}, y) '\/ f(b(x), y) n 
is 

{ (x = y, { } ), (x =/:- y, (x, y) -+ (a(x}, y)), (x =/:- y, (x, y) -+ (b(x), y)) }. 

Notice that the'\/ operator leads to multiple cases with the same condition; it would be very wrong 
to combine these into one case! 

Finally, the scheme associated with 

r(x) = [ x > 100 => x -10; C(C(x + 11)) D 

is 
{(x < 100, { }), (x > 100, { x-+ x + 11, x-+ C(x + 11)})}. 
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Lemmas A and B justify a simple induction rule: to prove a formula F in the theory (A, R) 
by induction, look for an application of a recursive function in F such that (a) the arguments of 
the application are distinct variables, and (b) if the application loops, then F is vacuously true. 
Lemma B then shows how to construct a scheme E such that F is vacuously true in those contexts 
in which E has infinite height. Lemma A then shows how to prove that the formula is true in 
those contexts in which E has finite height. (If the arguments of the recursive function application 
are not distinct variables, it may still be possible to derive an induction scheme from the term, by 
using the notions of "changeables" and "unchangeables" from [6].) 

This simple induction rule is sufficient to justify the inductive proofs in the examples in section 
15. On the other hand, the rule is not satisfactory, since, as Boyer and Moore have shown, the 
induction scheme required to prove a conjecture is often a "combination" of the schemes associated 
with the various recursive functions appearing in the conjecture. The remainder of this section 
assumes the reader is familiar with the methods described in [7] for manipulating induction schemes 
and proving the totality of functions, and sketches how these methods might be adapted to the 
current system. 

Suppose the theory Z is extended with the function definition 

half(x) = [ x = 0 =} O; x = 1 =} O; 1 + half(x - 2) D, 
and that we then try to prove the theorem: 

Dn(x) ::) half(x) < x. (1) 

By Lemma B, we are justified in using the recursion scheme for Dn, but this scheme is no help in 
proving (1). To prove (1) it is essential to use the recursion scheme suggested by the term half(x). 
But Lemma B does not justify using this scheme, since it is not obvious that (1) is true when half(x) 
loops. To get around this difficulty, it is necessary to show that the scheme for DD "justifies" the 
scheme for half, in the sense that the latter has finite height in any context in which the former does. 
Presumably, this can be done by using the same "transitivity" techniques that Boyer and Moore 
use to prove at definition time that half is total over their system's domain. Similar examples can 
be given in which the correct scheme is justified as a "lexicographic combination" of two schemes 
that are justified by Lemma B-for example consider proving: 

DD(x) /\ nn(y) ::) ack(x, y) halts 

where ack is Ackerman's function as Boyer and Moore define it. 
Thus, the main difference in allowing partial functions appears to be that the definition-time 

analysis of the Boyer and Moore system must be performed when induction schemes are formulated. 
Out of all the schemes "suggested" by the terms in the conjecture, some will be known to be sound 
because of Lemma B and some will not. After justifying as many of the latter schemes as possible, 
using transitive extensions and lexicographic combinations, a set of valid schemes is obtained. 
These can then be heuristicaliy manipulated to produce the final scheme. 

There are other possible approaches to automating induction. For example, Harry Lewis [37] 
proves that the equivalence problem for program schemata with non-intersecting loops is decidable. 
If this result could be generalized to allow the schemata to make equality tests, it would essentially 
give a satisfiability procedure for the theory of all linear recursive function definitions, where a 
recursive function definition j(x 1 , ••• , xn) =Bis linear if there is only one occurrence of a recursive 
function symbol in B. Such a satisfiability procedure would be enormously useful; for example, a 
verifier equipped with such a procedure would be able to verify the list reversal program of section 
15 without the aid of the five lemmas, since the functions reach and sequence are both linear. But 
it appears to be difficult to generalize Lewis' result. 
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