

132 Chapter 7: Modules, Programs, and Configurations

If a program, say Prog, wishes to create a copy of itself, it can say:

copy: POINTER TO FRAME [Prog]:

copy +- NEW Prog:

7.8.2. How the loader binds inleifaces

Each instance of an atomic module or of a configuration may export some interfaces. To make
these exported interfaces available for importation by other instances, the loader maintains a single,
simple global table of all the exported interfaces. If any duplicates are created as the result of a
NEW, they are merged into the already existing interface records as if a THEN (sec. 7.7.5) had been
done.

The moral here is that complicated binding to hide interfaces, etc. must be done using the binder,
and only the simplest, most straightforward forms should be used at loading time.

7.8.3. STARTing, STOPping, and RESTARTing module instances

The START operation suspends the execution of the program or procedure executing it and transfers
control to a new, uninitialized instance of an atomic module. Additionally, if the program instance
being started requires parameters, they are supplied as part of the START. Similarly, if the program
being started is specified to return results (more details below), then the START operation may appear
in a RightSide context, and the returned value is the value of the operation. Its syntax is

StartStmt :: = START CallI . . .

StartExpr :: = START CallI . . .

The variable following the word START must represent a global frame pointer or program variable;
i.e., its type must conform to some POINTER TO FRAME type or PROGRAM type. Here are some
examples of its use:

START proglnst:
START ExporledProg [5 + j]:
x +- START progWilhResulllfirstArg: a, secondArg: b); --keyword parameter list

When a program is started, it first executes code to �~�n�i�t�i�a�I�i�z�e� any static variables that were declared
with initialization expressions. The initializations are done in the order in which the variables were
declared in the program. Also, they may call both local and imported procedures (since descriptors
for all imported procedures are filled in as part of the NEW operation - sec. 7.7.1).

After all initialization expressions are complete, the mainline statements of the program commence
executing. Control can then return to the caller (the program or procedure which initiated the

. START) in one of two ways: the started program may STOP or it may RETURN with results (however,
it cannot use both).

A program that executes a STOP can be RESTARTed later. RESTART is distinct from START primarily
because it cannot pass parameters as START can. If a program does not return results, it either by an
explicit use of STOP or by running off the end of the program.

If a program declares (in its ModuleHeader) that it returns results, it uses RETURN statements just
as does a procedure (and it cannot use STOP). A R.ETURN from a program does not deallocate its
global frame. The syntax for REST ART and STOP is

RestartStmt

StopStmt

.. -.. -

Mesa Language Manual

RESTART Variable I ...
STOP I ...

133

lbe Variable following RESTART must be a pointer to the frame for a program instance or a
program variable, just as for START. A program that RETURNS results or has run off the end cannot
be REsTARTed. Attempting to do so will result in a mn time error.

A module instance can also be STARTed "automatically". If a call is made on a procedure in an
instance that has not yet been started, a start trap occurs. If the module does not take parameters
when started, then it is started by the Mesa start-trap handler. When it STOPS or RETURNS, the trap

. handler completes the procedure call that was in progress when the trap occurred. (See the next
section for further discussion of the start trap for configurations.)

Warning: A module must be STARTed either explicitly or implicitly before any attempt is made to
access its variables through a POINTER TO FRAME.

7.8.4. Loading and starting configurations

By using system routines, one can also make instances of configurations that are more than simple.
atomic modules. A non-atomic configuration cannot be STARTed (what would it mean to start
one?), but its CONTROL module can (if it has one). Basically, the CONTROL module acts as the
representative for the whole configuration (since a C/Mesa configuration description does not
contain executable Mesa statements). Thus, a program that STARTS the CONTROL module for a
configuration has essentially STARTed the configuration. If the order of starting some of the
instances in a configuration is important or if they take arguments when started. its CONTROL module
should START them explicitly.

The . start trap works for configurations as well as for atomic modules. If a start trap occurs for a
module M in configuration C with control module eM. then the trap handler automatically starts eM
rather than M. If the handler discovers, however. that eM has already been started, it will start M
(since eM would have started AI if it had intended to). In fact, if the handler starts eM but still
finds M unstarted when eM STOPS. it will start M itself before finally returning from the trap. Then
the procedure call that caused the trap will be allowed to go through.

Fine points:

If an attempt is made to REST ART a program which has not been staned, a START trap will occur and then
the REST ART will proceed.

Other forms of START and STOP statements are used to catch signals. This is discussed in Chapter 8, but the
forms look roughly as follows:

START somelnstance [Componentlist ! CatchPhrase 1
STOP [! CatchPhrase 1

134

CHAPTER 8.

SIGNALLING AND SIGNAL DATA TYPES

Signals are used to indicate when exceptional conditions arise in the course of execution, and they
provide an orderly means of dealing with those conditions, at low cost if none are generated (and
they almost never are). For example, it is common in most languages to write a storage allocatOl: so
that, if asked for a block whose size is too large, it returns a null (or otherwise invalid) pointer value.
Any program which calls the allocator then embeds the call in an IF statement, and checks the return
value to make sure that the request was satisfied. What that procedure then does is a very local
decision.

In Mesa, one would write the allocator as if it a/ways returned a valid pointer to an allocated block,
and calls to it would simply assign the returned value to a suitable pointer, without checking whether
or not the allocation worked. If the caller needs to gain control when the allocator fails, the
programmer attaches a CatchPhrase to the call: then if the allocator generates the signal
Block TooLarge, and the caller has indicated that it wants to catch that signal, it will.

This· way of handling exceptions has two important properties, one for the human reader of the
program, and one for its execution efficiency:

Anyone reading a program with a call on the allocator can see immediately that an
exceptional condition can arise (by the catch phrase on the call or nearby): he then knows
that this is an unusual event and can read on with the normal program flow: IF statements
do not have this characteristic of distinguishing one branch from the other.

When the program is executing, the code to check the v.alue returned by the allocator on
every call is not present and therefore takes no space or execution time. Instead, if a signal
is generated, there is more overhead to get to the catch phrase than a simple transfer; but
since it happens infrequently, the overall efficiency is much higher than checking each call
with an IF statement.

Signals work over many levels of procedure call, and it is possible for a signal to be generated by
one procedure and be handled by another procedure much higher up in the call chain. We later
discuss the mechanisms by which this is done; until then, examples show signals being caught by the
caller of the procedure which generated the signal.

8.1. Declaring and generating SIGNALS and ERRORS

In its simplest form, a signal is just a name for some exceptional condition. Often, parameters are
passed along with the signal to help a catch phrase which handles it in determining what went
wrong. It is also possible to recover from a signal and allow the routine which generated it to
continue on its merry way. This is done by a catch phrase returning a result; the program which
generated the signal receives this result as if it had called a normal procedure instead of a signal.

Mesa Language Manual 135

'nlcrcforc. from the type vicwpoint. signals correspond vcry c10scly to proccdures; in fact. the type
constmctor for declaring signals is just a variation of the onc for proccdures:

SignalTC .. - SignalOrError ParameterList RETURNS ResultList I
SignalOrError ParameterList I
SignalOrError RETURNS ResultList I
SignalO rErro r

SignalOrError :: = SIGNAL I ERROR

For example. the signal BlockTooLarge might be defined to carry along with it two parameters. a
Zone within which the allocator was trying to get a block. and the number of words needed to fill
the current request. The catch phrase that handle~ the signal is expected to send back (Le., return) an
array descriptor for a block of storage to be added to the zone. the declaration of BlockTooLarge
would look like

BlockTooLarge: SIGNAL[Z: Zone, needed: CARDINAL]
RETURNs[newStorage: DESCRIPTOR FOR ARRAY OF CARDINAL];

A signal variable contains a unique name at mn time; which is a code identifying an actual signal,
just as a procedure variable must be assigned an actual procedure before it can be used. If a
procedure is imported from an interface (sec. 7.4), any signals that it generates directly are probably
contained in the same interface. Imported signals are bound by the same mechanisms as procedures.
In addition, one may have signal variables which can be assigned any signal value of a compatible
type.

The signal analog of an actual procedure is obtained by initializing a signal variable using the syntax
"= CODE" in place of "= BEGIN ... END" for procedures. This causes the signal to be initialized to
contain a unique value. The following syntax describes tlle initialization for an actual signal:

Initialization :: = = CODE I ...

A signal is generated by using it in a SignalCall as shown in tlle syntax below:

Statement :: = SignalCall I ...

SignalCall

ErrorCall

.. -.. -

.. -.. -
SIGNAL Call I ErrorCall

RETURN WITH ERROR Calli
ERROR Calli
ERROR .. special error

Call is defined in section 5.4, and the called Expression must have some signal type in tllis case.
A SignalCall can be used as an Expression as well as· a Statement. For example,

newblock ... SIGNAL Block TooLarge[zone, n];

Thus, generating a signal or error looks just like a procedure call, except for the additional word,
ERROR or SIGNAL.

Fine point:

Although it is not recommended. the keywords SIGNAL and ERROR may be omitted (except in the RETURN
WITH ERROR construct). This makes the Signal look exactly like a procedure call. ...
Initialization by SIGNAL = CODE produces a unique value that contains. in part. the global frame index of the
module containing the initialization. There are two points worth making. If one creates a copy of the module
with the NEW statement. signals raised ·by the two .copies will be different. If the signal is declared and
initialized in a procedure. recursive calls of the procedure will not generate different signal values.

136 Chapter 8: Signalling and SIGNAL Data Types

If a signal is declared as an ERROR, it must be generated by an Erro rCal!. If, however, it is
declared as a SIGNAL, it can be generated by any SignalCall, including an ErrorCali. The
difference between the two is that a catch phrase may not RESUME a signal generated by an
ErrorCall (sec. 8.2.5).

Except for a slight difference in the way the error is started (sec. 8.2.3), the RETURN WITH ERROR

construct behaves like the ERROR statement. Its primary use is in monitor ENTRY procedures
(chapter 10).

The "special error" in the above syntax is used to indicate that something has gone wrong, without
giving any iridication of the cause; the statement

ERROR;

generates a system-defined error. It is provided to cover those "impossible" cases which should
never occur in correct programs but which it is always best to check for (such as falling out of a
loop that should never terminate normally, or arriving at the ENDCASE of a SELECT statement that
claims to handle all the cases). It can only be caught using the ANY option in a catch phrase (sec.
8.2.3). It is customarily handled by the debugger.

8.1.1 ERROR i nexpressions

When an ERROR is declared to return values, this is purely for syntactic convenience, since one of
the principal features of an ERROR is that it does not "return". The reason for doing this it to allow
the ERROR to stand in an expression context considered invalid or impossible. Such declarations of
returned values are not necessary; if an expression has an ERROR type (or SIGNAL type raised as an
error) and returns no value, then that expression can be used wherever an expression of any type is
required. For example:

Color: TYPE = {red. orange. yellow. green. blue, violet};
c: Color;
button: [0 .. 2);

button ... SELECT c FROM

red => 0,
yellow => 1,
blue => 2,
ENDCASE = > ERROR;

In the example, the only valid colors for buttons are red. yellow. and blue. Any other value results in
an error (in this case, the unnamed system error). Such constructs allow an inexpensive way to get
to the debugger in those "impossible" cases that arise from program errors.

A fine point:

If the ERROR type is defined to return a value, any use of that expression must be type correct with respect to
the "returned" value.

8.2. Control of generated signals

Any program which needs to handle signals must anticipate that need by providing catch phrases for
the various signals that might be generated. During execution, certain of these catch phrases will be
enabled at different times to handle signals. Loosely speaking, when a signal S is generated, the

Mesa Language Manual 137

procedures in the call hierarchy at that time will be given a chance to catch the signal, in a last-in­
first-out order. Each such procedure P, if it has an enabled catch phrase, is given the signal S in
turn, until one of them stops the signal from propagating any further (by mechanisms which are
explained below). P may decide to reject S (in which case the next procedure in the call hierarchy
will be considered), or P may decide to handle S by taking control and attempting to recover from
the signal.

8.2.1. Preparing to catch signals: catch phrases

A catch phrase has the following form:

CatchTail .. - Catch I

Catch
CatchSeries

ANY = > Statement
ExpressionList => Statement

CatchTail1
Catch; CatchSeries

The expressions in the ExpressionList (semantically restricted to a list of variables) must evaluate
to the names of signals (unless otherwise stated, we use signal to stand for both ERROR and SIGNAL).

The special identifier ANY will match any signal (sec. 8.2.3). Note that if ANY occurs, it must be last.

A catch phrase is written as part of an argument list, just after the last argument and before the right
bracket. Catch phrases may appear iIi a procedure call, SignalCall, NEW, START, RESTART, STOP,

JOIN, FORK, or WAIT (but not in a RESUME or RETURN). A catch phrase may also be appended to the
BEGIN of a block or the DO of a loop statement by means of an EnableClause. The applicable
syntax for a call and for a block or loop statement is

Call .. - Variable [ComponentList ! CatchSeries] I

Block

Variable [! CatchSeries] I

BEGIN
OpenClause
EnableClause
DeclarationSeries
StatementSe ries
ExitsClause
END

-- (from Section 4.4)

EnableClause .. - empty I
ENABLE Catchltem : I
ENABLE BEGIN CatchSeries END; I
ENABLE BEGIN CatchSeries : END;

Note that the EnableClause is always followed by a semi-colon, and BEGIN ... END must be used if
there is more than one Catch in an EnableClause.

The main difference between the two kinds of catch phrases (ENABLE and !) is the scope of their
influence. A catch phrase on a Call is only enabled during that call. A catch phrase at the
beginning of a compound or loop statement is enabled as long as control is in that block; it can
catch a signal resulting from any call in the block (or generated in the block).

To clarify the scope of influence of ENABLE clauses, the following two diagrams are reproduced from
chapter 4. The scope of each phrase extends over others with greater indentation.

138 Chapter 8: Signalling and SIGNAL Data Types

BEGIN
OpenClause

EnableClause

END

Decla rationSe ries
StatementSe ries

ExitsClause

LoopCont rot
DO
OpenClause

EnableClause
StatementSe ries

LoopExitsClause
ENOLOOP

Note that catch phrases enabled in the EnableClause of a Block or LoopStmt are not in force
in the ExitsClause or LoopExitsClause.

Fine point:

Procedures declared in the DeclarationSeries (of any enclosed Block) do not inherit the catch phrases in the
EnabteClause (this is not shown by the diagrams).

8.2.2. The scope of variables in catch phrases

Catch phrases are called to handle signals (the exact mechanisms are discussed in the next section).
The naming environment. that exists when a catch phrase is called (in order of innermost to
outermost scope) includes any parameters passed with that signal (these are declared as part of a
signal's definition), and any variables to which the procedure or program activation containing the
catch phrase has access.

If a Catch has more than one label (or the label ANY), where the types of those labels are not
identical. then the signal's arguments are not accessible in the Statement chosen by that Catch.

If, however. there is exactly one type for the signals named in a Catch's ExpressionList, then the
signal's arguments are accessible in the statement following "= >". The names used are the
parameters given in the signal's declaration. just as for procedures. For example. a catch phrase for
signal BlockTooLarge (defined earlier) might be used in a section of code such as:

-- in StorageDeJs
BlockTooLarge: SIGNAL [z: Zone. needed: CARDINAL]

RETURNs[newStorage: DESCRIPTOR FOR ARRAY OF CARDINAL];
GetAloreStorage: PROCEDURE [z: Zone, 11: CARDINAL]

RETURNS [DESCRIPTOR FOR ARRAY OF CARDINAL];

-- in a user program
p: POINTER TO Account;

p +- Allocate[SlZE[Account] !
BlockTooLarge => RESUME[GetMoreStorage[z. neededj]J;

The names z and needed in the catch phrase refer to the parameters passed along with the signal
from Allocate (see sec. 8.2.5 for a discussion of RESUME).

Mesa Language Manual 139

8.2.3. Catching signals

When a signal is generated, what really happens is that the signal code, and a descriptor for the
actual arguments of the signal, are passed to a Mesa run-time procedure named 5,'ignaller, Signaller's
definition is

Signaller: PROCEDURE[S: SignalCode. 111: Message]:

Here s identifies the signal being generated. and 111 contains its arguments. (Actually, different
procedures are used to distinguish between SIGNAL, ERROR, and RETURN WITH ERROR.)

Signaller proceeds to pass the signal and its argument record from one enabled catch phrase to the
next in an orderly fashion. The order, at the procedure level, follows the cunent call hierarchy,
from the most recently called procedure to least recently called, beginning with the procedure thdt
generated the signal itself. If the calkr of a procedure is the outermost block of code for a program,
the Signaller will follow its return link to continue propagating the signal (the return link points to
the frame that last STARTed the module (sec. 7.8».

If, in place of SIGNAL or ERROR, a RETURN WITH ERROR is used, the procedure that generated the
error is first deleted (after releasing the monitor lock, if it is an ENTRY procedure), and propagation
of the error begins with its caller.

As Signaller considers each frame, it looks to see whether that frame has any enabled catch phrases:
if so, Signaller calls the innermost catch phrase as if it were a procedure, passing it the Signa/Code
and Message. The innermost catch phrase is defined to be

either the one after ''I'' attached to the currently incomplete procedure call for that frame, or

the one following an ENABLE in the innermost enclosing block that contains that call.

Because signals can be propagated right through the call hierarchy, the programmer must consider
catching not only signals generated directly within any procedure that is called, but also any
generated indirectly as a result of calling that procedure. Indirect signals are those generated by
procedures called from within a procedure that you call, unless they are stopped before reaching
you.

When a catch phrase is called, it behaves like a SELECT statement: it compares the signal code passed
to it with each signal value in the ExpressionList of each Catch in the catch phrase. If the
signal code matches one of the signal values, control enters the statement following the "= >" for
that Catch: if not. the next Catch is tried. A Catch consisting of "ANY => Statement"
automatically matches any signal cod,e (and is the only way to catch the unnamed ERROR generated
by the standalone ERROR statement discussed in section 8.1).

Fine point:

The ANY catchall is intended primarily for use by the debugger, and should generally be avoided. It matches
any signal. including UNWIND and all system-defined signals that might indicate some catastrophic condition (a
double memory parity error, for example).

When a match is found, that Catch is said to have caught or accepted the signal. If no alternative
in a catch phrase accepts the signal, there may be another enabled catch phrase in some surrounding
block. If so. the first catch phrase s{!nds control to the second one so that it can inspect the signal.
and so on until the last enabled catch phrase in that routine has had a chance at the signal. If no
catch phrase in the routine accepts the signal, control returns to Signaller with a value indicating that
the signal was rejected, and Signaller propagates the signal to the next level in the call hierarchy. In
fact. all catch phrases are called by Signaller as if they were procedures of the following type:

140 Chapter 8: Signalling and SIGNAL Data Types

CatchPhrase: PROCEDURE[S: Signa/Code. 111: Message]
RETuRNs[{Reject. Ul.lwind. Resume}];

'Ine SELEcT-like statement associated with each Catch has an implicit Reject return as its ENDCASE:
hence, if control simply falls out of the statement, the signal is rejected.

Fine point:

If the same signal. /00, is enabled in seyeral nested calch phrases in a procedure. each is given a chance to
handle /00 if the inner ones reject the signal.

Signaller continues propagating the signal up the call chain until it is exhausted. i.e .• until the root of
the process has considered and rejected the signal. At that point. an uncaught signal has been
generated. and drastic action must be taken.

Mesa guarantees that all signals will ultimately be caught and reported by the Debugger to the user.
This is helpful in debugging because all the control context which existed when the signal was
generated is still around and can be inspected to investigate the problem.

The declaration of CatchPhrase above indicates three reasons for returning to Signaller. The first,
Reject. has already been discussed. The third, Resume, is discussed in section 8.2.5.

The second reason, Unwind, is used when a catch phrase has accepted a signal and is about to do
some form of unconditional jump into the body of the routine containing it (this is the only form of
"non-local goto" in Mesa). The jump may be generated by a GOTO statement (sec. 4.4), an EXIT or
LOOP (sec. 4.5), or a RETRY or CONTINUE (see below). as Immediately preceding such a jump. the
catch phrase returns to Signaller with result Unwind; it also indicates the frame containing the catch
phrase and the location for the jump. This causes Signaller to perform the following sequence of
actions:

(1) Beginning at the frame in which the original signal was generated (or its caller, if a
RETURN WITH ERROR was executed), it passes' the signal UNWIND to each frame. This signal
tells that activation that it is about to be destroyed and gives it a chance to clean up before
dying. Signaller then deallocates the frame and follows the same path. as it did for the
original signal to continue unwinding control. When it comes to the frame containing the
catch phrase, it stops.

(2) Signaller then arranges for the jump to take place. and simply does .a return to that
frame, destroying itself in the process.

Every Mesa program contains the pre-declared value

UNWIND: ERROR = CODE;

Fine points:

One cannot say RETURN in a catch phrase to return from the ~ncrosing procedure. This is an implementation
restriction that may be removed in the future, caused by the way in which a catch phrase is "called" like a
procedure itself.

The UNWIND sequence gives each activation that is to lose control a chance to make consistent any data
structures for which it is responsible. There are no constraints on the kinds of statements that it can use to do
this: procedure calls. loops, or whatever are all legal. ~ If. however, a catch for the UNWIND signal. such as,

ST ART N extPhase [! UNWIND = > GOTO BailOut};

decides itself to perform a control transfer that WQuid also initiate an UNWIND. this will override the Original
UNWIND. and Signaller will stop right there, as if the second UNWIND catch had been the originator of the
UNWIND.

Mesa Language Manual 141

8.2.4. RETRY and CONTINUE in catch phrases

Besides GOlO, EXIT, and LOOP, there are two other statements, RETRY and CONTINUE, which initiate
an UNWIND. These can only be used within catch phrases.

RETRY means "go back to the beginning of the statement to which this catch phrase belongs":
CONTINUE means "go to the statement following the one to which this catch phrase belongs" (what is
called Next-Statement in chapter 4).

For a catch phrase in a Call, the catch phrase "belongs" to the statement containing that Call.
Thus, if the signal NoAnswer is generated for the call below, the assignment statement is retried:

answer'" GelRepiy [Send ["What next?"] ! NoAnswer = > RETRY]:

On the other hand, if CONTINUE had been used instead, the statement after the assignment would be
executed next (and the assignment would not be performed). For example, suppose the procedure
ReadLine reads characters from a file up toa carriage return and appends them onto the string
buffer, If reading beyond the end of file raises the signal StreamE"or. the call .

ReadLine [! StreamError = > IF buffir.lenglh > 0 THEN CONTINUE]:

deals with the case of no carriage return after that last line in the file. If there is no such final line,
other chatch phrases higher on the call chain are given a chance to catch the signal.

For a catch phrase after ENABLE, there are two cases to consider, blocks and loops. In a block, the
catch phrase "belongs" to that statement; the next section shows an example. In a loop, the catch
phrase "belongs" to the body of the loop; and CONTINUE really means "go around the loop again."
The following two examples are equivalent:

UNTIL p=NIL
DO ENABLE TryList2 => BEGIN p ... /ist2; CONTINUE END;

ENDLooP:

UNTILp=NIL
DO

BEGIN ENABLE TryList2 = > BEGIN p ... /ist2; CONTINUE: END;

END;
ENDLooP;

In any case, recall that an Unwind is initiated prior to completion of a RETRY or CONTINUE.

If a procedure call in the Initialization clause of a declaration contains a catch phrase, this catch
phrase cannot contain RETRY or CONTINUE since it is in no well defined statement.

8.2.5. Resuming from a catch phrase: RESUME

The third alternative available to a catch phrase, after Reject and Unwind, is Resume. This option is
invoked by using the .RESUME statement to return values (or perhaps just control) from a catch
phrase to the routine which generated the signal. To that routine. it appears as if the signal call
were a procedure call that returns some results. The syntax for RESUME is just like that for RETURN:

Statement :: = ResumeStmt I RETRY I CONTINUE I ...
ResumeStmt :: = RESUME I

RESUME [ComponentList]

142 Chapter 8: Signalling and SIGNAL Data Types

When Signaller receives a Resume from a'catch phrase. it simply returns and passes the
accompanying results to the routine that originally called it (Le .. that generated the signal). If the
signal was generated by an ErrorCall and a catch phrase requests a Resume. Signaller simply
generates a signal itself(which results in a recursive call on Signaller): its declaration is

ResumeEn-or: PUBLIC ERROR:

Since it is an ERROR. one cannot legally RESUME it.

The ability to RESUME and return values gives the ability to deal with exceptional conditions in a
way that is quite inexpensive in the non-exceptional case. For example, consider the declaration

StringBoundsFault: SIGNAL [s: STRING] RETURNS [1/s: STRING]:

This signal allows the user to deal with the situation where characters are to be added to a string
that is already "full". Thus the call

Appel1dChar[str, c ! StringBoundsFault =>
BEGIN

ns ~ AllocateString [s.maxlength+ 10];
AppendString [11S, s];
FreeString[s);
RESuME[str ~ ns]:
END];

allocates a larger string and updates the local variable whenever the string is about to overflow. Of
course. the procedure AppendChar has to be written in such a way as to deal with the signal being
resumed with a new string value. This application of signals can cause errors if there are any
procedures between the signaller and the catcher that have their own idea about the location of the
string. One possible fix (if such situations are possible) is to have a second signal

StringMoved: SIGNAL [old new: STRING] = CODE;

that is raised by AppendChar after StringBoundsFault is resumed.

The presence or absence of the ComponentList depends on whether the signal caught is declared
to return values. In a Catch whose ExpressionList contains more than one signal, one can
RESUME only if all signals have equivalent types. For example:

ASig: TYPE = SIGNAL RETURNS [CARDINAL]:

sig1: ASig:
sig2: ASig;
sig3: SIGNAL RETURNS [CARDINAL]:

sig4: SIGNAL;

ENABLE

BEGIN

sig1, sig2 = > RESUME[3]:

sigl, sig3 =) RESUME[O];

sigl, sig4=) RESUMEr1]:

END;

8.3. Signals within signals *

--legal
-- legal
-- illegal

What happens if, in the course of handling a signal. firstSignal. a catch phrase (or some procedure
called by it) generates another signal, second Signal? Handling nested signal generation is almost
exactly like non-nested signal propagation. Generating the signal will call Signaller (recursively.
since . the instance of Signaller responsible for the first signal is still around). and it propagates the

Mesa Language Manual 143

new signal back through the call hierarchy by calling a second activation of Signaller, say
.. Signaller2", When in the course of doing this it encounters the previous activation of Signaller
("Signaller!"), then something different must be done.

If firs/Signal is not the same as secolldSignal, .)"ignaller2 propagates it right through Signaller!, and
all the activations beyond it are also given a chance to catch secolldSigllal,

On the other hand, if secolldSignai = firs/Signal, then all of the routines whose frames lie beyond
Signaller!, up to the frame containing the catch phrase called by Signallerl, have already had a
chance to handle firs/Signal, so they are not given it again. In order to skip around that section of
the call hierarchy, Signaller2 simply copies the appropriate state variables from Signallerl. Next.
Signaller2 skips over the frame containing the catch phrase (by following its return link), and
continues propagating secondSignal normally.

For the programmer, the main import of nested signals is that one needs to consider, when writing a
routine, not only what signals can be generated, directly or indirectly, by the called procedures, but
also those which can be generated by catch phrases in that procedure or even the catch phrases of
any calling procedures, also both directly or indirectly.

144

CHAPTER 9.

PORTS AND CONTROL STRUCTURES *

Mesa has, in addition to procedures, another mechanism by which programs may transfer control.
This mechanism is called a PORT; PORTS allow separate modules or procedures to act as coroutines.
When one calls a procedure and it returns, the procedure is finished: if the same operation is neeqed
again, another call will create a new activation of it to perform that action. However, when a
coroutine returns control, it does not finish and disappear. Calling it again only resumes it from
where it left off. The advantage of a this scheme is that the coroutine may keep some of its state
from call to call encoded in its program counter: i.e., if it is at a certain place in its code, then that
place does not need to be encoded somehow and saved as a variable in· order to decide how to
proceed when next called.

Actually, as described later, PORTS are normally used in pairs, just like electrical plugs and sockets,
one for each side of the connection. If two coroutines A and B are connected, what is seen by A as
a call to B appears to B as a return from A, and vice-versa. Thus, both A and B regard the other as
a facility to be called to accomplish some processing task. For instance, if ReadFile is a coroutine
for reading characters from a file which are then given, one at a time, to another coroutine, its view
is that it reads characters from the file and calls the other coroutine to process them (in some
unspecified way). WrileFile, on the other hand, a coroutine for writing characters into a file, would
caU a coroutine to get the next character to be written. Together these two coroutines could make a
file copying program.

A coroutine needs to be· able to send arguments and to receive results. The language facilities for
doing this closely mirror procedure parameter and result lists. For example, a PORT over which
ReadFile could send a character would be declared by ReadFile as

Out: PORT[ch: CHARACTER];

The port over which WriteFile receives a character, and which could be connected to ReadFile's Out
PORT, is declared as

111: PORT RETURNS[CHARACTER]:

There is only one other consequential difference between procedures and coroutines. A procedure
can be called at any time because a new activation is created, which will always consume the
arguments sent to it as soon as it begins. However, if two coroutines like ReadFile and WriteFile
communicate, in order for the transfer of control and arguments to go smoothly, WriteFile must be
prepared to receive a character when ReadFile sends it Coroutines are not parallel processes, and
one has to be started before the other, so it is guaranteed that the first attempt at transferring control
between ReadFile and WriteFile will not work smoothly. Fortunately, Mesa provides a mechanism
for starting a whole set of interconnected coroutines to get them past this start-up transient (sec. 9.2).
The most important property of the meChanism is that the coroutines themselves need never be
concerned about the startup transient -- they are written as if it never happens.

Mesa Language Manual

9.1. Syntax and an example of PORTS

The syntax for declaring a port is the following:

PortTC .. -
PORT ParameterList ReturnsClause I
RESPONDING PORT ParameterList ReturnsClause

145

The ParameterList and Retu rnsClause may both be empty, just as for procedures.
RESPONDING PORTS are covered in section 9.3. 'Ibe syntax for making a call on a port is exactly the
same as for calls on procedures (both as statements and functions).

The following pair of program modules implement the coroutines ReadFile and WriteFile described
earlier; they use the ports Out and In, respectively:

DIRECTORY
FileDefs: FROM "filedefs" USING [

NUL, FileHandle. FileAccess. Open File. ReadChar. EndOjFile. CloseFile];

ReadFile: PROGRAM[name: STRING] IMPORTS FileDefs =
BEGIN OPEN FileDefs;
Out: PORT[ch: CHARACTER]:
input: FileHandle;
input ... OpenFile[name: name, access: FileAccess[ReadJ];
STOP;
UNTIL EndOjFil€{input]

DO
Ou~ReadChQ1i:inpu/]]; -- PORT call: send a character from the file
ENDLOOP;

Close File[input]:
Ou~NUL]; -- send a null character to indicate end-of-file
END.

DIRECTORY
FileDefs: FROM "filedefs" USING [

NUL. FileHandle. FileAccess. OpenFile. WriteChar, CloseFile];

WriteFile: PROGRAM[name: STRING] IMPORTS FileDefs =
BEGIN OPEN FileDefs:
In: PORT RETURNS[ch: CHARACTER];
char: CHARACTER:
output: File Handle:
output ... OpenFile[name: name, access: FileAccess[New]];
STOP;
DO -- until In sends a NUL

char ... IIlD;
IF char = NUL THEN EXIT;
WriteChar[output, char];
ENDLOOP;

C loseFile[output];
END.

-- PORT call: get a character
-- check for end of stream

-- write the character into the file

ReadFile first initializes its variables and opens the input file (with Read access). When it is
restarted. it loops, reading characters from the file and sending them over its Out PORT until it
reaches the end of the input file; then it sends a single NUL character. If it regains control, it
simply returns. .

146 Chapter 9: Ports and Control Structures

WriteFile, after creating and opening a new output file, loops, reading characters from the port III
and writing them to the output. If it receives a NUL character, it closes the output file and returns.
Thus, if ReadFile and WriteFile's ports were connected so that they were working together as
coroutines. ReadFile would never regain- control after sending the NUL character.

9,2. Creating and starting coroutines

To set up the abO\e two programs as coroutines. their respective POftS must be connected. and then
they must be started individually, with the start-up transient handled, This is usually done by
another. controlling program like the following:

DIRECTORY
TrapDejs:
IODejs:
ReadFile:
WriLeFile:

FROM "trapdefs" USING [PortFaull],
FROM "iodefs" USING {ReadLine, WriLeString] ,
FROM "readfile",
FROM "writefile";

CopyMaker. PROGRAM IMPORTS IODejs, reader: ReadFile, writer. WriteFile =
BEGIN OPEN IODejs;
input: STRING +- [256];
output: STRING +- [256];
-- first ask the user for the names of the input and output files
WriteString["Name of input file: "]; ReadLine[inpuL];
WriteString["Name of output file: "]; ReadLim{oUlpUl];
-- create and initialize instances of ReadFileand WriteFile;
ST ART reade7finput];
START writer[output];
-- connect their ports and then restart them to get them synchronized
CONNECT writer. In TO reader. Out:
CONNECT reader.Oul TO wriLer.In;
RESTART wriler[! TrapDejs.PortFault => CONTINUE];
RESTART readel{ ! TrapDe/s.PortFault => ERROR];
END.

Logically, CopyMaker is a very simple program. However, it must know how to start ReadFile and
WriteFile and how to connect their ports (and it must handle the signal PortFault -- see below).
This is typical of the use of PORTS: the coroutines themselves do not know (nor should they care)
exactly which other program(s) they are connected to; each PORT is viewed as a virtual facility to be
called to perform some task. such as providing the next input or taking an output.

CopyMaker first requests the names for the input file to be copied and the output file to which it
should be copied. The names are read into the string variables input and output. Then an instance
of ReadFi/e is made and initialized. Similarly. an instance of WriteFile is created and STARTed.
When the NEWS are performed, pointers to the instances are stored (into reader and writer above).

After both instances have been created and initialized, CopyAfaker performs the operations to get
them past the startup transient. First it connects writer.In (Le., WriteFile's In PORT) to reader. Out:
this simply amounts to storing a pointer in writer.ln to the PORT reader.Out. Then it connects
reader. Out to wriler.In.

Fine point:

The STARTs must be performed before the ports are connected. In general, it is not legal to access a module's
variables before it has been started (and the variables have been initialized). Calls to procedures are allowed.
however: they are handled by the start trap mechanism (sec. 7.8.3).

Mesa Language Manual 147

Once the CONNECTS are done, all that remains is to get the two coroutines synchronized. First.
WrileFile is REsTARTed: it makes a port call on III to get the first character to be written into the
file.

'TIle port call almost works because In is connected to another port. But. since ReadFile is not
waiting for control to return over its Oul port, it doesn't quite work. This fact is detected because a
part of the underlying representation of Out indicates that no instance is pending on it (Le., waiting
to receive control via OU/). This results in a trap, which is quickly converted into the ERROR
PortFault. CopyMaker clearly anticipated this as part of the normal startup transient (as evidenced
by the presence of the catch phrase on the START statement). The CONTINUE in that catch phrase
means: "forget about this signal and continue execution at the next statement in Copy Maker."

The next action taken by CopyMaker is to RESTART ReadFile. ReadFile reads the first charact~r
from the input file and attempts a port call on Out. passing the character as its argument. This is
the end oj startup transients: this port call works. It works because WriteFile was left pending on In
when it attempted to call it, even though that call did not go through completely. Since WriteFile is
pending on In, it resumes. stores the argument in char, and proceeds. From now on, port calls
between ReadFile and WriteFile will go smoothly, with no further intervention by CopyMaker.
(Moreover, a port call is more efficient than a procedure call because no frames are allocated and
deallocated in the process).

When there are no more characters in the input file, ReadFile sends a final NUL character which
causes WriteFile to close the output file and to return. This returns control to CopyMaker, who, in
this example, also returns. .

The above description skipped one or two important details of the startup process and port calls.
The next section corrects those omissions and discusses the underlying representation of ports.

9.2.1. The CONNECT statement

The first CONNECT statement in CopyMaker is equivalent to the following (illegal) assignment:

wriler.ln.link +- @reader.Out;

This assignment is illegal because. at the language level, a PORT does not look like a record with a
link component. Nevertheless, the code produced by the compiler for the CONNECT statement in
CopyMaker performs exactly this assignment (the compiler is allowed to treat PORTS in terms of their
underlying representations, without regard to type' - it implements type checking). Note that
CONNECT is not a symmetric operation: it only connects in one direction.

The syntax for CONNECT is the following:
ConnectStmt :: = CONNECT expression TO expression

These expressions must both be valid leftSides. The first expression must conform to some PORT
type, and the second may conform to either a PORT or a PROCEDURE type (see sec. 9.2.2 for a
discussion of pons connected to procedures).

The types of the two expressions must be port-compatible. To be port-compatible, the result list of
one must be compatible (see definition in sec. 5.2) with the parameter list of the other, and vice
versa. This basically says that the first port sends what the second expects to receive. and the second
sends what the first expects to receive.

Fine point:

In the present compiler. the CONNECT statement is not implemented

148 Chapter 9: Ports and Controt Structures

9:1.1. tow-level actions during a PORT call

A PORT is represented as a record with two components, one of which is a pointer to another PORT,

and one of which points to a frame (the frame which is pending on that PORT). Its. definition is:

Pon: TYPE = MACHINE DEPENDENT RECORD

[
frame: POINTER TO Frame, -- internal view of a frame
link: SELECT OVERLAID * FROM

Ilull => [value: NullControlLink],
port = > [porrDesc: POINTER TO Port},
procedure = > [procDesc: ProcedureDescriptor),
ENDCASE

We will not discuss the internal fonnat of the types Frame. ProcedureDescriptor, or Nul/ControlLink
here. The first two are the underlying representations for a frame and a procedure value,
respectively. The last is just a special value which is used to initiate a trap if the port is used
without having been connected first.

The variant part of a Port distinguishes three cases (how these cases are identified is a function of
the. underlying implementation). The null case is how a Port which has not been connected is
represented; it is what causes a trap if a call on the port is made before it is connected (this is called
a linkage fault). If the Pori is connected to another Port (the normal case), then the port variant
holds.

Procedure calls, port calls, anq returns are all examples of control transfers: each suspends the
execution of one activation and transfers control to another. They also perform other actions, such
as creating or destroyiIlg frames, etc. Every control transfer from one activation to another has a
source control link and a destination control link. By control link we mean a procedure value, a
pointer to a port, or a pointer to a frame.

All the high level control transfers in Mesa are built from one common, low-level mechanism called
XFER, which effects the transfer from a source to a destination. In fact. it is possible to bind any
form of control link. to any other; thus, if the program uses a port, it could be bound to a
procedure, and calls on the port would actually result in calls on the proc.edure. A RETURN from the
procedure would cause control to come back in through the port Similarly, a procedure value could
contain a pointer to a port, in which case calls on that "procedure" would actually result in a port
transfer via the destination port to the coroutine pending on it.

The common part of a Port record is used when control is returning over a PORT. When a coroutine
does a pan call and is suspended, a pointer to its frame is assigned to the frame component of that
port. Then, when control returns over that port (usually because of a port call on the pan to which
it is connected), the frame field is used to locate the instance which is to be resumed.

The value contained in the frame component may indicate that it is null. If so. a cOlltrol fault trap
will be generated should a transfer using that port ever occur. This condition can arise for two
different reasons:

(1) Due to startup transients. the instance which would normally be pending on that port is not.

(2) There is a genuine error in the way that a configuration of coroutines has been constructed,
and control is attempting to "loop back" into a coroutine. The simplest example of this
situation is the following: consider a coroutine A with two pons, pI and p2. If pI were
connected to pI, then a port call on pI would clearly result in a. control fault when pI was
reached in the call, since A cannot be pending on both pI and p2 simultaneously.

Mesa Language Manual 149

The action taken on a control fault during a port call is described in the next section.

There is one last important detail about a port call: as part of the action of returning to a port, its
link is set to point at the source port if the return is actually part of a port call. 'Ibis constitutes an
indirect return link. However, if the return is from a procedure to which the port is bound, then the
link field is not changed. This is so that the procedure value in the port is not destroyed: thus.
future calls on that port will always result in' new activations of that procedure.

Storing an indirect return link in the link field of a destination port means that the next port call on
it will cause control to return via the port from which control most recently arrived. Using this, one
can write coroutines that may be invoked by more than one coroutine connected to a given port:
control will always return to the last coroutine which sent control over that port. For instance, the
coroutine WriteFile above could be given its input stream of characters from many sources. If the
system procedures ReadLine and WriteString both had ports connected to the port In in an instance
of WriteFile, then everything typed to the user and typed by him would be recorded in a typescript
of his interactions with the system.

9.2.3. Control faults and linkage faults

When a control or a linkage fault occurs, Mesa changes the trap into the ERROR PortFault or
LinkageFault, respectively. These signals are part of a Mesa system interface TrapDejs and should
be imported from there by any program, such as CopyMaker, which configures coroutines. In
TrapDeJs they are defined as follows:

PortFault. LinkageFault: ERROR;

Generally, programs should not handle the LinkageFault signal; ports should be properly connected
before they are used. We include it here only for completeness (the fine point at the end of this
section discusses LinkageFaults further).

These signals. unlike most other signals, are not passed initially to the instance which caused the
fault (call it the culprit), but rather are given first to its owner: the frame to which the culprit's
return link points. This is so that the owner may catch the signal and cause an UNWIND without the
culprit's frame being destroyed as it would normally be. In the previous example. CopyMaker is the
owner and ReadFile and WriteFile are possible culprits.

Note: if the owner does not catch the PortFault or the LinkageFault signal. it may possibly be
unwound itself. This would leave the culprit's return link pointing to an invalid address. because the
owner's frame would have been freed.

The standard action taken by the owner when receiving a PortFault while starting a coroutine is to
press on and start the other members of the configuration. CopyMaker follows this pattern; when it
starts the instance of WriteFile and a control fault is generated, it simply exits the catch phrase for
PortFault and starts the instance of ReadFile. This is the recommended way to start configurations of
coroutines.

Fine point:

If the source port in a port call is unbound (i.e.. not connected), a LinkageFault ERROR is generated. This
cannot be handled in the same manner as a control fault. If the catcher of this Signal causes an UNWIND.
there will be no way to restart the activation which caused the linkage fault: it will be pending on a port, and
REST ARTing it will cause an error. This difficulty makes starting coroutines before connecting their ports an
ill-advised thing to do. It is much !>etter to do the CONNECTs first. and then start each activation.

150 Chapter 9: Ports and Control Structures

9.2.4. Saving argum~nts during faults

When a port call faults, the instance which attempted the call is left pending on the source port
before the trap is changed into the PortFault or LinkageFault signal. This is done by a Mesa
procedure called the FaultHandler. which is caned in response to the trap. In the case of starting
wriJer above. this procedure did the following:

(1) It set the instance of WriteFile to be pending on its In port (the trap process provides
information about which instance caused the trap. and what the source port was):

(2) By some low-level control mechanisms. it invoked the Signaller (sec. 8.2) as if from the
owner of writer and simultaneously did a RETURN. Thus, that activation of FaultHandler
disappeared and the Signaller was invoked as a single action.

Later, when reader called Out, control returned to writer via In, which continued normally because it
was pending on Ill. To writer it appeared as if the first port call worked correctly.

Reader's call on Out passed an argument along with control. If CopyMaker had started reader first,
what would have happened to that argument? Given the above description of FaultHandler. the
argument would have been lost: there were no provisions for buffering or saving arguments.

To handle this, the FaultHandler buffers any arguments passed over a port on which a fault occurs.
Instead of performing action (2) above, it actually does the following:

(2') It buffers the arguments for the port call. makes it appear that it (the FaultHandler itself) is
pending on the source port, then calls Signaller. but without destroying itself in doing so.

For the following discussion, assume that the startup sequence in CopyMaker had been written as
follows (the order of starting reader and writer has been inverted):

-- connect their ports and .then restart them to get them synchronized
CONNECT reader.Out TO writer. In;
CONNECT writer. In TO reader.Out;
RESTART reader{ ! TrapDefs.PortFault = > CONTINUE);
RESTART writet{ ! TrapDefs.PortFault => ERROR);
END.

The re,oised version of FaultHandler would then do the following when writer was RESTARTed and
tried its first call on In:

The instance of FaultHandler which· had left itself pending on Out would have been
resumed instead of reader. Faul/Handler would then have set reader.Out.frame so that reader
was again pending on it. Finally, it would have transferred control back through writer.ln
along with the arguments it had saved from the original call, destroying itself in the process.

The only remaining question is: "How does the FauItHandler know whether or not arguments
should be buffered?" This question is not trivial: for example, if every instance of FaultHandler
buffered arguments for every trapped port call. including those for ports like In, extra "ghost" port
calls would occur during startup. FaultHandler determines whether or not to save arguments by
inspecting information left by the compiler in the object code of every poncall. This decision Is
made by the compiler on the following basis:

Arguments should only be buffered for a port which is nol a RESPONDING PORT and which
does have a non-empty Parameierlist.

The next section discusses RESPONDING PORTs.

Mesa Language Manual 151

9.3. RESPONDING PORTS *

The nonnal analogy between a port and a procedure in tenns of passing arguments and receiving
results breaks down in one case. If a port is used both for sending arguments and for receiving
results. it might do so for either of the following two reasons:

It sends arguments to be processed. and the returned results of the port call indicate how
they were handled (this closely mirrors procedures).

It receives data to be processed. and, having done so responds by sending results of the
processing back over the same port (there is no procedure analog of this).

The second case can not be distinguished from the first by usage in a program because the actions of
sending and receiving over a pan are intrinsically intertwined with the notation for a Call. Thus, it
would 110t be possible to detennine whether Both Ways was a nonnal or a responding port by
looking at the following (partial) module:

Both Ways: PORT[S: STRING] RETURNS[t: STRING];
aString: STRING;
bString: STRING;

aString ~ BothWays[bString];

To resolve this difficulty, the programmer may declare a port to be RESPONDING. For example,

InOut: RESPONDING PORT[response: {okay, error}] RETURNS[input: STRING];

The module using InOu/ responds with either okay or notOkay to each string it has received

If InOut faults the first time it is used. the Faul/Handler will not buffer the response value for that
call. Since InOut must, for type confonnance, be connected to a port such as

OulIn: PORT[oulput: STRING] RETURNs[response: {okay, error}],

both initial argument lists (the response for the first call on InOul, and the output of the first call on
OutIn) cannot be buffered. The keyword RESPONDING indicates which initial argument list should
be discarded (/nOut's initial response, in this case). For similar reasons, a responding port may not
be connected to a procedure, and two responding ports may not be connected together.

Fine point:

In the current compiler. RESPONDING PORTs are not implemented

152

CHAPTER 10.

PROCESSES AND CONCURRENCY

Mesa provides language support for concurrent execution of multiple processes. This allows
programs that are inherently parallel in nature to be clearly expressed. The language also provides
facilities for synchronizing such processes by means of entry to monitors and waiting on condition
variables. .

The next section discusses the forking and joining of concurrent process. Later sections deal with
monitors, how their locks are specified, and how they are entered and exited. Condition variables
are discussed. along with their associated operations.

10.1. Concurrent execution, FORK and JOIN.

The FORK and JOIN statements allow parallel execution of two procedures. Their use also requires
the new data type PROCESS. Since the Mesa process facilities provide considerable flexibility. it is
easiest to understand them by first looking at a simple example.

10.1.1. A process example

Consider an application with a front-end routine providing interactive composition and editing of
input lines: .

ReadLine: PROCEDURE [s: STRING] RETURNS [CARDINAL] =
BEGIN

c: CHARACTER;

s.length ... 0;
DO

c'" ReadCha7{];
IF ControlCharacterfc] THEN DoAction[c]
ELSE AppendChar[s,c];
IF c = CR THEN RETURN [s.length];
ENDLOOP;

END;

The call

n ... ReadLine[buffer];

will collect a line of user type-in up to a CR and put it in some string named buffer. Of course. the
caller cannot get anything else accomplished during the type-in of the line. If there is anything else
that needs doing. it can be done concurrently with the type-in by forking to ReadLine instead of
calling it:

Mesa Language Manual 153

P'" FORK ReadLin£ibuffer):

<concurrent computation)

11 ... JOIN p:

This allows the statements labeled <concurrent computation) to proceed in parallel with user typing
(clearly, the concurrent computation should not reference the string buffer). The FORK construct
spawns a new process whose result type matches that of ReadLine. (ReadLine is referred to as the
"root procedure" of the new process.)

p: PROCESS RETURNS [CARDINAL):

Later, the results are retrieved by the JOIN statement, which also deletes the spawned process.
Obviously, this must not occur until both processes are ready (Le. have reached the JOIN and the
RETURN, respectively); this rendevous is synchronized automatically by the process facility ..

Note that the types of the arguments and results of ReadLine are always checked at compile time,
whether it is called or forked.

The one major difference between calling a procedure and forking to it is in the handling of signals;
see section 10.5.l for details. .

/0.1.2. Process language constructs

The declaration of a PROCESS is similar to the declaration of a PROCEDURE, except that only the
return record is specified. The syntax is formally specified as follows:

TypeConstructor .. - ... I ProcessTC

ProcessTC

Retu rnsClause

ResultList

.. -

.. -.. -
PROCESS ReturnsClause

empty I RETURNS ResultList

FieldList

-- from sec. 5.l.

-- from sec. 5.1.

Suppose that f is a procedure and p a process. In order to fork f and assign the resulting process to
p, the Retu rnClause of f and that of p must be compatible, as described in sec 5.2.

The syntax for the FORK and JOIN statements is straightforward:

Statement .. - ... I JoinCall

Expression .. - ... I ForkCall1 JoinCall

ForkCall .. - FORK Call

JoinCall .. - JOIN Call .. -
Call .. - (see sections 5.4 and 8.2.1) .. -

The ForkCall always returns a value (of type PROCESS) and thus a FORK cannot stand alone as a
statement. Unlike a procedure call, which returns a RECORD, the value of the FORK cannot be
discarded by writing an empty extractor. The action specified by the FORK is to spawn a process
parallel to the current one, and to begin it executing the named. procedure.

154 Chapter 10: Processes and Concurrency

The JoinCali appears as either a statement or an expression, depending upon whether or not the
process being joined has an empty ReturnsClause. It has the following meaning: When the
forked procedure has executed a RETURN alld the JOIN is executed (in either order).

the returning process is deleted. and

the joining process receives the results. and continues execution.

A catch phrase can be attached to either a FORK or JOIN by specifying it in the Call. Note,
nowever. that such a catch phrase does not catch signals incurred during the execution of the
procedure: see section 10.5.1 for further details. . "

There are several other important similarities with normal procedure calls which are worth noting:

The types of all arguments and results are checked at compile time.

There is no intrinsic rule against multiple activations (calls and/or forks) of the same
procedure coexisting at once. Of course. it is always possible to write procedures which will
work incorrectly if used in this way, but the mechanism itself does not prohibit such use.

One expected pattern of usage of the above mechanism is to place a matching FORK/JOIN pair at the
beginning and end of a single textual unit (Le. procedure. compound statement, etc.) so that the
computation within the textual unit occurs in parallel with that of the spawned process. This style is
encouraged, but is not mandatory; in fact, the matching FORK and JOIN need not even be done by
the same process. Care must be taken. of course, to insure that each spawned process is joined only
once, since the result of joining an already deleted process is undefined. Note that the spawned
process always begins and ends its life in the same textual unit (Le. the target procedure of the
FORK).

While many processes will" tend to follow the FORK/JOIN paradigm. there will be others whose role is
better cast as continuing provision of services. rather than one-time calculation of results. Such a
"detached" process is never joined. If its lifetime is bounded at all, its deletion is a private matter,
since it involves neither synchronization nor delivery of results. No language features are required
for this operation: see the runtime dOCumentation for the description of the system procedure
provided for detaching a process.

10.2. Monitors

Generally, when two or more processes are cooperating, they "need to interact in more complicated
ways than simply forking and joining. Some more general mechanism is needed to allow orderly,
synchronized interaction among processes. The interprocess synchronization mechanism provided in
Mesa is a variant of monitors adapted from the work of Hoare, Brinch Hansen, and Dijkstra. The
underlying view is that interaction among processes always reduces to carefully synchronized access
to shared data. and that a proper vehicle for this interaction is one which unifies:

- the synchronization

- the shared data

- the body of" code which performs the accesses

The Mesa monitor facility allows considerable flexibility in its use. Before getting into the details,
let us first look at a slightly over-simplified description of the mechanism and a simple example.
The remainder of this section deals with the basics of monitors (more complex uses are described in
section 10.4); WAIT and NOTIFY are described in section 10.3.

Mesa Language Manual 155

10.2.1. All ol'el1'iell' of monitors

A monitor is a module instance. It thus has its own data in its global frame, and its own procedures
for accessing that data. Some of the procedures are public. allowing calls into the monitor from
outside. Obviously, conflicts could arise if two processes were executing in the same monitor at the
same time. To prevent this, a monitor lock is used for mutual exclusion (Le. to insure that only one
process may be in each monitor at anyone time). A call into a monitor (to an entry procedure)
implicitly acquires its lock (waiting if necessary). and returning from the monitor releases it. The
monitor lock serves to guarantee the integrity of the global data, which is expressed as the monitor
invariant -- i.e an assertion defining what constitutes a "good state" of the data for that panicular
monitor. It is the responsibility of every entry procedure to restore the monitor invariant before
returning, for the benefit of the next process entering the monitor.

Things are complicated slightly by the possibility that one process may enter the monitor and find
that the monitor data, while in a good state, nevenheless indicates that that process cannot continue
until some other process enters the monitor and improves the situation. The WAIT operation allows
the first process to release the monitor lock and await the desired condition. The WAIT is perfomied
on a condition variable, which is associated by agreement with the actual condition needed. When
another process makes that condition true, it will perform a NOTIFY on the. condition variable, and
the waiting process will continue from where it left off (after reacquiring the lock, of course.)

For example, consider a fixed block storage allocator providing two entry procedures: Allocate and
Free. A caller of Allocate may find the free storage exhausted and be obliged to wait until some
caller of Free returns a block of storage.

Storage Allocator. MONITOR =
BEGIN
StorageAvailable: CONDITION;
FreeList: POINTER;

Allocate: ENTRY PROCEDURE RETURNS [p: POINTER] =
BEGIN
WHILE FreeList = NIL DO

WAIT StorageAvailable
ENDLOOP;

p'" FreeList; FreeList ... p.llex,;
END;

Free: ENTRY PROCEDURE [p: POINTER] =
BEGIN
p.llext ... FreeList; FreeList ... p;
NOTIFY StorageAvailable
END;

END.

Note that it is clearly undesirable for two asynchonous processes to be executing in the
StorageAllocator at the same time. The use of entry procedures for Allocate and Free assures
mutual exclusion. The monitor lock is released while WAITing in Allocate in order to allow Free to
be called (this also allows other processes to call Allocate as well, leading to several processes
waiting on the queue for StorageAvailable).

156 Chapter 10: Processes and Concurrency

10.2.2. Monitor locks

The most basic component of a monitor is its monitor lock. A monitor lock is a predefined type,
which can be thought of as a small record:

MONITORLOCK: TYPE = PRIVATE RECORD [locked: BOOLEAN. queue: Queue];

The monitor lock is private; its fields are never accessed explicitly by the Mesa programmer.
Instead, it is used implicitly to synchronize entry into the monitor code, thereby authorizing access
to the monitor data (and in some cases, other resources, such as 110 devices, etc.) The next .~ection
describes several kinds of monitors which can be constructed from this basic mechanism. In all of
these, the idea is the same: during entry to a monitor, it is necessary to acquire the monitor lock by:

l. waiting (in the queue) until: locked = FALSE,

2. setting: locked 4- TRUE.

10.2.3. Declaring monitor modules, ENTRY and INTERNAL procedures

In addition to a collection of data and an associated lock, a monitor contains a set of procedures that
do operations on the data. Monitor modules are declared much like program or definitions modules;
for example:

M: MONITOR [arguments] =
BEGIN

END.

The procedures in a monitor module are of three kinds:

Entry procedures

Internal procedures

External procedures

Every monitor has one or more entry procedures; these acquire the monitor lock when called, and
are declared as: c

P: ENTRY PROCEDURE [arguments] = ...

The entry procedures will usually comprise the set of public procedures visible to clients of the
monitor module. (There are some situations in which this is not the case; see external procedures,
below). The usual Mesa default rules for PUBLIC and PRIVATE procedures apply.

Many monitors will also have intemal procedures: common routines shared among the several entry
procedures. These execute with the monitor lock held, and may thus freely access the monitor data
(including condition variables) as necessary. Internal procedures should be private, since direct calls
to them from outside the monitor would bypass the acquisition of the lock (for monitors
implemented as multiple modules, this is not quite right; see section 10.4, below). internal
procedures can be called only from an entry procedure or another internal procedure. They are
declared as follows:

Q: INTERNAL PROCEDURE [arguments} = ...

Mesa Language Manual 157

'Il1e attributes ENTRY or INTERNAL may be specified on a procedure only in a monitor module.
Section lO.2.4 describes how one declares an interface for a monitor.

Some monitor modules may wish to have external procedures. These are declared as normal non­
monitor procedures: .

R: PROCEDURE [arguments] = ...

Such procedures are logically outside the monitor, but are declared within the same module for
reasons of logical packaging. For example. a public external procedure might do some preliminary
processing and then make repeated calls into, the monitor proper (via a private entry procedure)
before returning to its client. Being outside the monitor, an external procedure must not reference
any monitor data (including condition variables), nor call any internal procedures. The compiler
checks for calls to internal procedures and usage of the condition variable operations (WAIT, NOTIFY,

etc.) within external procedures, but does not check for accesses to monitor data.

A fine point:

Actually, unchanging read-only global variables may be accessed by external procedures: it is changeable monitor
data that is strictly off-limits.

Generally speaking, a chain of procedure calls involving a monitor module has the general form:

Client procedure -- outside module

'" External procedure(s) -- inside module but outside monitor

'" Entry procedure -- inside monitor

'" Internal procedure(s) -- inside monitor

Any deviation from this pattern is likely to be a mistake. A useful technique to avoid bugs and
increase the readibility of a monitor module is to structure the source text in the corresponding
order:

M: MONITOR =
BEGIN

<External procedures)
<Entry procedures)
<Internal procedures)
<Initialization (main-body) code)
END.

10.2.4. Interfaces to monitors

In Mesa, the attributes ENTRY and INTERNAL are associated with a procedure's body, not with its
type. Thus they cannot be specified in a DEFINITIONS module. Typically, internal procedures are not
exported anyway, although they may be for a multi-module monitor (see section 10.4.4). In fact, the
compiler will issue a warning when the combination PUBLIC INTERNAL occurs.

From the client side of an interface, a monitor appears to be a normal program module, hence the
keywords MONITOR and ENTRY do not appear. For example, a monitor M with entry procedures P
and Q might appear as:

158

AI Deft: DEFINITIONS =
BEGIN

Chapter 10: Processes and Concurrency

AI: PROGRAM [arguments]:
P. Q: PROCEDURE [arguments] RETURNS [results]:

END.

10.2.5. Interactions of processes and monitors

One interaction should be noted between the process spawning and monitor mechanisms as defined
so far. If a process executing within a monitor forked to an internal procedure of the same monitor,
the result would be two processes inside the monitor at the same time. which is the exact situation
that monitors are supposed to avoid. The following rule is therefore enforced:

A FORK may have as its target any procedure except an internal procedure of a moni~or.

A fine point:

In the case of a multi-module monitor (see section 10.4.4) calls to other monitor procedures through an interface
cannot be checked for the INTERNAL attribute, since this information is not available in the interface (see
section 10.2.4).

10.3. Condition Variables

Condition variables are declared as:

c: CONDITION:

The content of a condition variable is private to the process mechanism; condition variables may be
accessed only via the operations defined below. It is important to note that it is the condition
variable which is the basic construct; a condition (Le. the contents of a condition variable) should not
itself be thought of as a meaningful object; it may not be assigned to a condition variable, passed as
a parameter, etc.

10.3.1. Wait. noti/)'. and broadcast

A process executing in a monitor may find some condition of the monitor data which forces it to
wait until another process enters the monitor and improves the situation. This can' be accomplished
using a condition variable. and the three basic operations: WAIT, NOTIFY, and BROADCAST. defined by
the following syntax:

Statement

WaitStmt

NotifyStmt

.. -.. -

.. -.. -

... I WaitStmt I NotifyStmt

WAIT Variable OptCatchPhrase

NOTIFY Variable I BROADCAST Variable

A condition variable c is always associated with some Boolean expression describing a desired state
of the monitor data, yielding the general pattern:

Process waiting for condition:

WHILE -BooleanExpression DO

WAIT C

ENDLOOP;

Mesa Language Manual 159

Process making condition tme:

make BooleanExp ression true; -- i.e. as side effect of modifying global data
NOTIFY c:

Consider the storage allocator example from section 10.2.1. In this case. the desired
BooleanExpression is "FreeList # NIL". "111ere are several important points regarding WAIT and
NOTIFY. some of which arc illustrated by that example:

WAIT always releases the lock while waiting. in order to allow entry by other processes.
including the process which will do the NOTIFY (e.g. Allocate must not lock out the caller of
Free while waiting. or a deadlock will result). Thus, the. programmer is always obliged to
restore the monitor invariant (return the monitor data to a "good state") before doing a
WAIT.

NOTIFY, on the other hand. retains the lock, and may thus be invoked without restoring the
invariant; the monitor data may be left in in an arbitrary state, so long as the invariant is
restored before the next time the lock is released (by exiting an entry procedure, for
example).

A NOTIFY directed to a condition variable on which no one is waiting is simply discarded.
M9reover, the built-in test for this case is more efficient than any explicit test that the
programmer could make to avoid doing the extra NOTIFY. (Thus, in the example above, Free
always does a NOTIFY, without attempting to determine if it was actually needed.)

Each WAIT must be embedded in a loop checking the corresponding condition. (E.g.
Allocate, upon being notified of the StorageAvailable condition, still loops back and tests
again to insure that the freelist is actually non-empty.) This rechecking is necessary because
the condition, even if true when the NOTIFY is done, may become false again by the time the
awakened process gets to run. (Even though the freelist is always non-empty when Free
does its NOTIFY, a third process could have called Allocate and emptied the freelist before
the waiting process got a chance to inspect it.)

Given that a process awakening from a WAIT must be careful to recheck its desired
condition, the process doing the NOTIFY can be somewhat more casual about insuring that
the condition is actually true when it does the NOTIFY. This leads to the notion of a covering
condition variable, which is notified whenever the condition desired by the waiting process is
likely to be true: this approach is useful if the expected cost of false alarms (i.e. extra
wakeups that test the condition and wait again) is lower than the cost of having the notifier
always know precisely what the waiter is waiting for.

The last two points are somewhat subtle, but quite important: condition variables in Mesa act as
suggestions that their associated Boolean expressions are likely to be true and should therefore be
rechecked. They do not guarantee that a process, upon awakening from a WAIT, will necessarily find
the condition it expects. The programmer should never write code which implicitly assumes the
truth of some condition simply because a NOTIFY has occurred.

It is often the case that the user will wish to notify all processes waiting on a condition variable.
This can be done using:

BROADCAST c;

This operation can be used when several of the waiting processes should run, or when some waiting
process should run, but not necessarily the head of the queue.

160 Chapter 10: Processes and Concurrency

Consider a variation of the StdingeAllocalor example:

StorageAllocator. MONITOR =
BEGIN
SlorageAvailable: CONDITION;

Allocate: ENTRY PROCEDURE [size: CARDINAL] RETURNS [p: POINTER] =
BEGIN
UNTIL <storage chunk of size words is available> DO

WAIT StorageAvailable
ENDLOOP;

p +- <remove chunk of size words>;
END;

Free: ENTRY PROCEDURE [p: POINTER, size: CARDINAL] =
BEGIN

<put back storage chunk of size words>

BROADCAST StorageAvailable
ENO;

END.

In this example, there maybe several processes waiting on the queue of StorageAvailable, each with
a different size requirement. It is not sufficient to simply NOTIFY the head of the queue, since that
process may not be satisfied with the newly available storage while another waiting process might be.
This is a case in which BROADCAST is needed instead of NOTIFY.

An important rule of thumb: it is always correct to use a BROADCAST. NOTIFY should be used instead
of BROADCAST if both of the following conditions hold:

It is expected that there will typically be several processes waiting in the condition variable
queue (making it expensive to notify all of them with a BROADCAST), and

It is known that the process at the head of the condition variable queue will always be the
right one to respond to the situation (making the multiple notification unnecessary);

, If both of these conditions are'met, a NOTIFY is sufficient, and may represent a significant efficiency
improvement over a BROADCAST. The allocator example in section 10.2.1 is a situation in which
NOTIFY is preferrable to BROADCAST.

As described above. the condition variable mechanism, and the programs using it, are intended to be
robust in the face of "extra" NOTlFYS. The next section explores the opposite problem: "missing"
NOTlFYS.

A fine point:

When a program WAITs, it releases the monitor lock. When it returns from the wai~. it reacquires the lock.
The address of the condition variable has to be calculated twice. If this address is obtained by a complicated
expression, there is a subtle restriction. The address calculation cannot do a WAIT in the same process. In
other words, consider the procedure

Mesa Language Manual

CondProc: PROCEDURE RETURNS [POINTER TO CONDITION];

If a program contains the statement

WAIT CondProcOt

then the execution of CondProc cannot WAIT.

10.3.2. Timeouts

161

One potential problem with waiting on a condition variable is the possibility that one may wait "too
long." There. are several ways this could happen, including:

- Hardware error (e.g. "lost interrupt")

- Software error (e.g. failure to do a NOTIFY)

- Communication error (e.g. lost packet)

To handle such situations, waits on condition variables are allowed to time out. This is done by
associating a timeout interval with each condition variable, which limits the delay that a process can
experience on a given WAIT operation. If no NOTIFY has arrived within this time interval, one will be
generated autOmatically. The Mesa language does not currently have a facility for setting the
timeout field of a CONDITION variable. See the runtime documentation for the description of the
system procedure provided· for this operation.

The waiting process will perceive this event as a normal NOTIFY. (Some programs may wish to
distinguish timeouts from normal NOTIFYS; this requires checking the time as well as the desired
condition on each iteration of the loop.)

No facility is provided to time out waits for monitor locks. This is because there would be, in
general, no way to recover from such a timeout.

10.4. More about Monitors

The next few sections deal with the full generality of monitor locks and monitors.

1004.1. The LOCKS clause

Normally, a monitor's data comprises its global variables, protected by the special global variable
LOCK:

LOCK: MONITORLOCK;

This implicit variable is declared automatically in the global frame of any module whose heading is
of the form:

AI: MONITOR [arguments]
IMPORTS

EXPORTS •.• =

In such a monitor it is generally not necessary to mention LOCK explicitly at all. For more general
use of the monitor mechanism, it is necessary to declare at the beginning of the monitOr module
exactly which MONITORLOCK is to be acquired by entry procedures. This declaration appears as pan
of the program type constructor that is at the head of the module. The syntax is as follows:

162 Chapter 10: Processes and Concurrency

ProgramTC :: = ... I MONITOR ParameterList ReturnsClause LocksClause

LocksClause :: = empty I LOCKS Expression I
LOCKS Expression USING identifier: TypeSpecification

If the LocksClause is empty. entry to the monitor is controlled by the distinguished variable
LOCK (automatically supplied by the compiler). Otherwise. the LO'cksClause must designate a
variable of type MONITOR LOCK. a record containing a distinguished lock field (see section 10.4.2). or a
pointer that can be dereferenced (perhaps several times) to yield one of the preceding. If a
LocksClause is present. the compiler does not generate the variable LOCK.

If the USING clause is absent, the lock is located by evaluating the LOCKS expression in the context of
the monitor's main body; Le .. the monitor's parameters. imports, and global variables are visible, as
are any identifiers made accessible by a global OPEN. Evaluation occurs upon entry to, and again
upon exit from. the entry procedures (and for any WAITS in entry or internal procedures). The
location of the designated lock can thus be affected by assignments within the procedure to variables
in the LOCKS expression. To avoid disaster, it is essential that each reevaluation yield a designator pf
the same MONITORLOCK. This case is described further in section 10.4.4.

If the USING clause is present, the lock is located in the following way: every entry or internal
procedure must have a parameter with the same identifier and a compatible type as that specified in
the USING clause. The occurrences of that identifier in the LOCKS clause are bound to that
procedure parameter in every entry procedure (and internal procedure doing a WAIT). The same care
is necessary with respect to reevaluation; to emphasize this, the distinguished argument is treated as
a read-only value within the body of the procedure. See section 10.4.5 for further details.

10.4.2. Monitored records

For situations in which the monitor data cannot simply be the global variables of the monitor
module, a monitored record can be used:

r: MONITORED RECORi) [x: lNTEGER, ••.];

A monitored record is a normal Mesa record, except that it contains an automatically declared field
of type MONITORLOCK. As usual. the monitor lock is used implicitly to synchronize entry into the
monitor code, which may then access the other fields in the monitored record. The fields of the
monitored record must not be accessed except from within a monitor which first acquires its lock.
In analogy with the global variable case, the monitor lock field in a monitored record is given the
special name LOCK; generally. it need not be referred to explicitly (except during initialization; see
section 10.6). .

A fine point:

A more general form of monitor lock declaration is discussed in section 10.4.6

CAL"TIOX: If a monitored record is to be passed around (e.g. as an argument to a procedure) this
. should always be done by reference using a POINTER TO MONITORED RECORD. Copying a monitored
record (e.g. passing it by value) will generally lead to chaos.

10.4.3. MoniLors and module instances

Even when all the procedures of a monitor are in one module, it is not quite correct to think of the
module and the monitor as identical. For one thing, a monitor module, like an ordinary program
module, may have several instances. In the most straightforward case, each instance constitutes a

Mesa Language Manual 163

separate monitor. More generally, through the use of monitored records, the number of monitors
may be larger or smaller than the number of instances of the corresponding module(s). The crucial
observation is that in all cases:

There is a one-to-aile corre5pondence between monitors and monitor locks.

The generalization of monitors through the use of monitored records tends to follow one of two
patterns:

Multi-module monitors. in which several module instances implement a single monitor.

Object monitors, in which a single module instance implements several monitors.

A fine point:

These two patterns are not mutually exclusive: multi-module object monitors are possible, and may occasionally
prove necessary.

10.4.4. Multi-module monitors

In implementing a monitor, the most obvious approach is to package all the data and procedures of
the monitor within a single module instance (if there are multiple instances of such a module, they
constitute separate monitors and share nothing except code.) While this will doubtless be the most
common technique, the monitor may grow too large to be treated as a single module.

Typically, this leads to multiple modules. In this case the mechanics of constructing the monitor are
changed somewhat. There must be a central location that contains the monitor lock for the monitor
implemented by the multiple modules. This can be done either by using a MONITORED RECORD or
by choosing one of the modules to be the "root" of the monitor. Consider the following example:

BigMonRoot: MONITOR IMPORTS ... EXPORTS ..• =
BEGIN

monitorDatumI: .. .
monitorDatum2: .. .

pI: PUBLIC ENTRY PROCEDURE ...

END.

BigA/onA: MONITOR

LOCKS root -- could equivalently say root. LOCK
IMPORTS root: BigAfonRoot .. . EXPORTS ••• SHARES BigMollRoot =
BEGIN

p2: PUBLIC ENTRY PROCEDURE ••.

X 4- root.monitorDatuml; -- access the protected data of the monitor

END.

BigMonB: MONITOR

LOCKS root
IMPORTS root: BigMonRoot . .. EXPORTS ... SHARES BigMollRoot =
BEGIN OPEN root;

p3: PUBLIC ENTRY PROCEDURE ...

164 Chapter 10: Processes and Concurrency

moniforDatum2 +- ••• : -- access the protected data via an OPEN

END.

The monitor BigMo1l is implemented by three modules. The modules BigMonA an'd BigMolIB have
a LOCKS clause to specify the location of the monitor lock: in this case, the distinguished variable
LOCK in BigMonRoof. When any of the entry procedures pI. p2, or p3 is called, this lock is
acquired (waiting if necessary), and is released upon returning. The reader can verify that no two
independent processes can be in the monitor at the same time.

Note that since the LOCK field is private in BigMonRoof. the modules BigMonA and BigMonB
must SHARE BigMonRoot. Another way to accomplish access to the lock would be to specify a
PUBLIC GlobalAccess (sec. 7.5) for BigMonRoot.

Another means of implementing multi-module monitors is by means of a' MONITORED RECORD. Use
of OPEN allows the fields of the record to be referenced without qualification. Such a monitor is
written .as:

MonilorData: TYPE = MONITORED RECORD [x: INTEGER, •••];

MonA: MONITOR [pm: POINTER TO MonitorData]

LOCKS pm
IMPORTS •••

EXPORTS ••• =
BEGIN OPEN pm;
P: ENTRY PROCEDURE [•••] =

BEGIN

x+- x+ 1; -- access to a monitor variable

END;

END.

The LOCKS clause in the heading of this module (and each other module of this monitor) leads to a
MONITORED RECORD. Of course, in all such multi-module monitors, the LOCKS clause will involve
one or more levels of indirection (POINTER TO MONITORED RECORD, etc.) since passing a monitor lock
by value is not meaningful. As usual, Mesa will provide one or more levels of automatic
dereferencing as needed.

More generally, the target of the LOCKS clause can evaluate to a MONITORLOCK (Le. the example
above is equivalent to writing "LOCKS pm. LOCK").

CAL"TIO:\": The meaning of the target expression of the LOCKS clause must not change between the
call to the entry procedure and the subsequent return (Le. in the above example, cHanging pm would
invariably be an error) since this would lead to a different monitor lock being released than was
acquired, resulting in total chaos.

There are a few other issues regarding multi-module monitors which arise any time a tightly coup~d
piece of Mesa code must be split into multiple module instances and then spliced back together. For
example:

If the lock is in a MONITORED RECORD. the monitor data will probably need to be in the
record also. While the global variables of such a multi-module monitor are covered by the

Mesa Language Manual 165

monitor lock, they do no1 constitute monitor data in the nonnal sense of the term. since they
are not unifonnly visible to all the module instances.

Making the internal procedures of a multi-module monitor PRIVATE will not work if one
module wishes to call an internal procedure in another module. (Such a call is perfectly
acceptable so long as the caller already holds the monitor lock). Instead, a second interface
(hidden from the clients) is needed as part of the "glue" holding the monitor together. Note
however, that Mesa cannot currently check that the procedure being called through the
interface is an internal one (see section 10.2.4).

A fine point:

The compiler will complain about the PUBLIC INTERNAL procedures, but this is just a warning.

1004.5. Object monitors

Some applications deal with o~jects. implemented, say, as records named by pointers. Often it is
necessary to insure that operations on these objects are atomic, i.e., once the operation has begun,
the object will not be otherwise referenced until the operation is finished. If a module instance
provides operations on some class of objects, the simplest way of guaranteeing such atomicity is to
make the module instance a monitor. This is logically correct, but if a high degree of concurrency is
expected, it may create a bottleneck: it will serialize the operations on all objects in the class, rather
than on each of them individually. If this problem is deemed serious, it can be solved by
implementing the objects as monitored records, thus effectively creating a separate monitor for each
object. A single module instance can implement the operations on all the objects as entry
procedures, each taking as a parameter the object to be locked. The locking of the parameter is
specified in the module heading via a LocksClause with a USING clause. For example:

ObjectRecord: TYPE = MONITORED RECORD [. . .];

ObjectHandle: TYPE POINTER TO ObjectRecord:

ObjectManager. MONITOR [arguments]
LOCKS object USING object: ObjectHandle
IMPORTS

EXPORTS .

BEGIN

Operation: PUBLIC ENTRY PROCEDURE [object: ObjectHandle, ...] =
BEGIN

END;

END.

Note that the argument of USING is evaluated in the scope of the arguments to the entry procedures,
rather than the global scope of the module. In order for this to make sense, each entry procedure,
and each internal procedure that does a WAIT, must have an argument which matches exactly the
name and type specified in the USING subclause. All other components of the argument of LOCKS

are evaluated in the global scope, as usual.

As with the simpler form of LOCKS clause, the target may be a more complicated expression and/or
may evaluate to a monitor lock rather than a monitored record. For example:

LOCKS p.q.LOCK USING p: POINTER TO ComplexRecord ...

166 Chapter 10: Processes and Concurrency

CALTIO'i: Again, the meaning of the target expression of the LOCKS clause musl nol change between
the call to the entry procedure and the subsequent return. (I.e. in the above example, changing p or
p.q would almost surely be an error.)

CALTIO'i: It is important to note that global variables of object monitors are very dangerous: they
are 1/01 covered by a monitor lock, and thus do //01 constitute monitor data. If used at alL they must
be set only at module initialization time and mllst be read-only thereafter.

10.4.6. Explicil declaration of monilor locks

It is possible to declare monitor locks explicitly:

myLock: MON ITOR LOCK;

The normal cases of monitors and monitored records are essentially stylized uses of this facility via
the automatic declaration of LOCK, and should cover all but the most obscure situations. f.or
example, explicit delarations are useful in defining MACHINE DEPENDENT monitored records. (Note
that the LOCKS clause becomes mandatory when an explicitly declared monitor lock is used.) More
generally, explicit declarations allow the programmer to declare records with several monitor locks,
declare locks in local frames, and so on; this flexibility can lead to a wide variety of subtle bugs,
hence use of the standard constructs whenever possible is strongly advised.

/0.4.7 Inline ENTRY procedures

The syntax for definitions modules allows the specification of a LOCKS clause. This is to allow inline
ENTRY PROCEDURES to be declared in the interface. In order for this to make sense, the monitor
lock must be an interface variable, or the procedures must deal with an object style monitor. No
special restrictions (other than those that apply to all INLINE bodies) need be met when declaring
inline ENTRY PROCEDURES within the program module of a monitor.

10.5. Signals

/0.5./. Signals and processes

Each process has its own call stack, down which signals propagate.. If the signaller scans to the
bottom of the stack and finds no catch phrase, the signal is propagated to the debugger. The
important point to note is that forking to a procedure is different from calling it. in that the forking
creates a gap across which signals cannot propagate. This implies that in practice, one cannot
casually fork to any arbitrary procedure. The only suitable targets for forks are procedures which
catch any signals they incur, and which never generate any signals of their own ..

/0.5.2. Signals and monitors

Signals require special attention within the body of an entry procedure. A signal raised with the
monitor lock held will propagate without releasing the lock and possibly invoke arbitrary
computations. For errors,' this can be avoided by using the RETURN WITH ERROR construct.

RETURN WITH ERROR NoSuchObjeCI:

Recall from Chapter 8 that this statement has the effect of removing the currently executing .frame
from the call chain before issuing the ERROR. If the statement appears within an entry procedure:

Mesa Language Manual 167

the monitor lock is released before the error is started as well. Naturally, the monitor invariant must
be restored before this operation is performed.

For example, consider the following program segment:

Failure: ERROR [kind: CARDINAL] = CODE;

Proc: ENTRY PROCEDURE [...] RETURNS [ct c2: CHARACTER]

BEGIN

ENABLE UNWIND = > .

IF cond} THEN ERROR Failure[l];
IF cond2 THEN RETURN WITH ERROR Failure[2]:

END;

Execution of the construct ERROR Failure[l] raises a signal that propagates until some catch phr~se
specifies an exit. At that time, unwinding begins; the catch phrase for UNWIND in Proc is executed
and then Proc's frame is destroyed. Within an entry procedure such as Proc, the lock is held until
the unwind (and thus through unpredictable computation performed by catch phrases).

Execution of the construct RETURN WITH ERROR Failure[2] releases the monitor lock and destroys the
frame of Proc before propagation of the signal begins. Note that the argument list in this construct
is determined by the declaration of Failure (not by Proc's RETURNS clause). The catch phrase for
UNWIND is not executed in this case. The signal Failure is actually raised by the system, after which
Failure propagates as an ordinary error (beginning with Proc's caller),

When the RETURN WITH ERROR construct is used from within an internal procedure, the monitor lock
is not released; RETURN WITH ERROR will release the monitor lock in precisely those cases that
RETURN will.

Another important issue regarding signals is the handling of UNWINDS; any entry procedure that may
experience an UNWIND must catch it and clean up the monitor data (restore the monitor invariant):

P: ENTRY PROCEDURE [•..] =
BEGIN ENABLE UNWIND = > BEGIN <restore invariant> END;

END;

At the end of the UNWIND catchphrase, the compiler will append code to release the monitor lock
before the frame is unwound. It is important to note that a monitor always has at least one cleanup
task to perform when catching an UNWIND signal: the monitor lock must be released. To this end, the
programmer should be sure to place an enable-clause on the body of every entry procedure that
might evoke an UNWIND (directly or indirectly). If the monitor invariant is already satisfied. no
further cleanup need be specified. but the null catch-phrase must be written so that the compiler will
generate the code to unlock the monitor:

BEGIN ENABLE UNWIND = > NULL;

This should be omitted only when it js certain that no UNWINDS can occur.

Another point is that signals caught by the OptCatchPhrase of a WAIT operation should be
thought of as occurring after reacquisition of the monitor lock. Thus. like all other monitor code,

168 Chapter 10: Processes and Concurrency

catch phrases within a monitor are always executed with the monitor lock held.

10.6. Initialization

When a new monitor comes into existence. its monitor data will generally need to be set to some
appropriate initial values: in particular. the monitor lock and any condition variables must be
initialized. As usual. Mesa takes responsibility for initializing the simple common cases: for the cases
not handled automatically, it is the responsibility of the programmer to provide appropriate
initialization code, and to arrange that it be executed at the proper time. The two types of
i'nitialization apply in the following situations:

Monitor data in global variables can be initialized using the normal Mesa initial value
constructs in declarations. Monitor locks and condition variables in the global frame will
also be initialized automatically (although in this case, the programmer does not write any
explicit initial value in the declaration).

Monitor data in records must be initialized by the programmer. System procedures must be
used to initialize the monitor lock and condition variables. See the runtime documentation
for the descriptions of appropriate procedures.

A tine point:

If a variable containing a record is declared in a frame, it is normally possible to initialize it in the
declaration (i.e. using a constructor as the initial value): however, this does not apply if the record
contains monitor locks or condition variables, which must be initialized via calls to system procedures.

Since initialization code modifies the monitor data, it must have exclusive access to it The
programmer should insure this by arranging that the monitor not be called by its client processes
until it is ready for use.

APPENDIX A. Pronouncing Mesa

'me following suggestions may be helpful in reading Mesa programs:

For

=>

n: T

tn·field

pt

@x

[a..b]
[a.. b)
(a..b]
(a..b)
FORi+-j.k ...

f[x. y; z]

Read

chooses
gets
n is a T
tn'S field

p's referent
address of x
(the interval) a through b
(the interval) a up to b
(the interval) above a through b
(the interval) above a up to b
for i getting first j, thereafter k
f of x. y and z
enabling

169

We leave as an exercise forthe reader the following statement, attributed to Oscar Hammerstein II.

i +- weary AND Sick[trying];

170

APPENDIX B. Programming COD\'entions

The Mesa compiler only uses blanks. TABS. and carriage returns as separators for basic lexi~al units
such as identifiers: extra ones do not hurt. Furthermore. it allows you to write identifiers in any
combination of upper and lower case letters: the identifiers Alpha. ALPHA. alpha and AlphA are
all legal (but different) Mesa identifiers. It is recommended that you adhere to a standard set of
conventions for constructing identifiers and laying out programs. The recQmmended conventions are
summarized below. .

B.1. Names

Most identifiers should be written in lower case, except that the first letter of each new "word" in
the identifier should be capitalized. Thus.

line
firstLine
firstLinePos

This convention makes it easy to read identifiers wnich are made up of several words. (Note that
Mesa does not allow spaces in identifiers.)

Capitalize the first letter of type identifiers, procedure names, signal names, and module names.

The following convention for constructing names has been used successfully to reflect their types:

Choose a short (2-3 character) tag for each "basic type" you use: e.g., In for Line and co for Coordinate. You
can use the tag as the type name, or not as you prefer. If you do, capitalize it

Use the following prefixes. to construct tags for "derived" types (most of them reflect the intended use of some
underlying type).

p - pointer: pLn = pointer to a line

i-index: iLn = index in an array of lines.

1 - length

n - number of items (total or count)

Whether to use a prefix or to invent a new type tag. is a matter of judgment: depending on whether it is
better to emphasize the relationship of this type to another. or to emphasize its individuality.

If you need only one name of a given type in a scope, use the tag as its name:

In : Ln:
pLn : POINTER TO Ln.

If you need several names. append mOdifiers to the tag (avoid· simple numbers like 1. 2,etc.):

lnOld. InNew, InBuffer: Ln.

The advantages of this scheme are three-fold:

B.2. LayOUt

the reader spends less time looking up the types .of identifierS:

the writer spends less time· thinking up names: .

if you have forgotten a name, there is a good ·chance. yOU· will b(!. able· to guess it .correctly if you
know .. the tag vocabulary. .

Write statements one per line, unless several simple statements which together per/orm a single
jUnction will fit on one line.

Indent the labels of a SELECT (induding the EfliOCAse) one level, and the statements a second level
(unless a .statementwiU fit on the same line with the label).··

Appendix B: Programming Conventions 171

Indent one level for the statement following a THEN or ELSE (unless it fits on the same line). Put
THEN on the same line with IF, and don't indent ELSE with respect to IF. If the statement following
ELSE is another IF, write both on the same line.

Indent one level for each compound BEGIN-END, DO-ENDLOOP, or bracket pair in a record declaration.

When the rules for IF and SELECT call for indenting a statement, do not indent an extra level for a
BEGIN.

It is fine to put a compound statement or loop on a single line if it will fit.

If a statement won't fit on a single line, indent the continuation line(s) by two spaces.

Among other things, these rules have the propeny that they allow a program to be easily convened
to a form in which the bracketing is implied by the indentation.·

B.3. Spaces

The following rules for spaces should be broken when necessary, but are a good general guide:

A space after a comma, semicolon, or colon, and none before

No spaces inside brackets or parentheses

No spaces around single-character operations: * - etc., except for ...

172

APPENDIX C. Alto/Mesa Machine Dependencies

This appendix contains a number of machine-dependent constants and definitions for the Alto
implementation of Mesa.

C.l. Numeric limits

On the Alto, the numeric limits are the following:

FIRST[INTEGER] = - 32768 = - 215 and has internal representation
LAST[INTEGER] = 32767 = 215 _1 and has internal representation
LAST[CARDINAL] = 65535 = 216 _1 and has internal representation
FIRST[LONG INTEGER] = - 2147483648 = - 231

LAST[LONG INTEGER] = 2147483647 = 231_1
LAST[LONG CARDINAL] = 4294967295 = 232_1

C.2. AltoDefs

100000B
077777B
177777B

. A module similar to the one below is a part of the Alto/Mesa system and defines several useful
constants.

A/toDets: DEFINITIONS =
BEGI.N

word/ength: INTEGER = 16; •• Alto word length (bits)
maxword: CARDINAL = 1777778; .. N.8. negative as 16 bit integer
max/nteger: INTEGER = 0777n8; .. maximum positive number

char/ength: INTEGER = 8; .. Alto character size (bits)
maxcharcode: INTEGER = 3778;
BYTE: TYPE = [O .. maxcharcode];
BytesPerWord. CharsPerWord: INTEGER = word/engthlcharlength;
LogBytesPerWord. LogCharsPerWord: INTEGER = 1;

PageSize: INTEGER = 256; •. Alto page size (words)
LogPageSize: INTEGER = 8;
BytesPerPage. CharsPerPage: INTEGER = PageSize*CharsPerWord;
LogByt.esPerpage. LogCharsPerPage: INTEGER = LogPageSize + LogCharsPerWord;

VML.lmit: CARDINAL = 1777778; .• maximum Alto VM address
Address: TYPE = [O .. VMLimit];

MaxVMPage: INTEGER = 255; .. maximum Alto VM page number
MaxFilePage: CARDINAl = 0777778;

PageNumber: TYPE = [O .. MaxFilePage];
PageCount: TYPE = [O .. MaxVMPage + 1];

END.

Appendix C: Alto/Mesa Machine Dependencies 173

('.3. ASCII character set alld ordering of character values

The following list gives the characters of the ASCII character set in increasing order, accompanied
by their literal representations. Control characters are represented as tao In addition, a number of
special characters such as SP (space), DEL (rubout) are denoted by their generally accepted names.

Octal Character Octal Character
Value Name(s) Value Name(s)

OOOC l'CL lOOC '@
OOIC 'tA IOIC 'A
002C 'tB I02C 'B
003C 'tC I03C 'C
004C 'tD 104C ~D
OOSC 'tE 10SC 'E
006C 'tF 106C 'F
007C 'to, BELL I07C '0
OlOC 'tH, BS IlOC 'H
0IlC 1'1 IlIC '1
012C d, LF Il2C 'J
OBC tK Il3C 'K
0l4C tL Il4C 'L
0ISC 'I'M, CR IlSC 'M
0l6C 1'1'0 H6C 'N
Ol7C 1'0 Il7C '0
020C tP I20C 'P
02lC tQ 12IC 'Q
OllC tR IllC 'R
023C tS 123C 'S
024C tT 124C 'T
025C tlJ 12SC 'U
026C tV 126C 'V
027C tW 127C 'W
OJOC tX IJOC 'X
03IC tY 13IC 'Y
032C tZ 132C 'Z
033C ESC 133C :,
034C I34C
03SC 13SC 'J
036C I36C ''I'
037C 137C ' ..
O4OC ' , SPace I40C
04IC '! I4IC 'a
042C .. , 142C 'b
043C '# I43C 'c
1l44C 'S I44C 'd
04SC '% I4SC 'e
046C '& I46C 'f
047C .. , a single quote 147C 'g
OSOC '(ISOC 'h
OSIC ') IS1C 'i
OS2C '. .IS2C 1 OS3C '+ IS3C
054C I54C 'I
ossc ,

ISSC 'm
056C I56C ·'n
OS7C '/ IS7C '0
O6OC '0 160C 'p
061C 'I 16IC 'q
062C '2 I62C 'r
063C '3 163C 's
064C '4 I64C 't
06SC '5 165C 'u
066C '6 I66C 'v
067C 7 I67C 'w
070C '8 170C 'x onc '9 17lC 'y
072C " 172C 'z
073C " 173C '{
074C '(174C { 075C = 175C
076C ') 176C
077C '1 mc DEL

174 Appendix C: Alto/Mesa Machine Dependencies

. CA. Alto/Mesa STRING procedures

A module similar to the one below is a part of the Alto/Mesa system and defines useful procedures
provided by the system for operating on strings. See the system documentation for its exact fonn.

DIRECTORY AltoDefs: FROM "altodefs";

StringDefs: DEFINITIONS =
BEGIN

-- COM P I L E . TIM E CON S TAN T SAN 0 T Y PES

SubString Descriptor: TYPE = RECORD [
base: STRING,
offset, length: CARDINAL);

SubString: TYPE = POINTER TO SubStringDescriptor;

-- I N T E R F ACE I T EMS

Overflow: SIGNAL;
InvalidNumber: SIGNAL;
StringBoundsFault: SIGNAL [s: STRING) RETURNS [ns: STRING);

WordsForString: PROCEDURE [nchars: CARDINAL) RETURNS [CARDINAL);

AppendChar: PROCEDURE [s: STRING, c: CHARACTER);
AppendString: PROCEDURE [to. from: STRING);
EqualString, Equa/Strings: PROCEDURE [s1, s2: STRING) RETURNS [BOOLEAN);
EquivalentString. EquivalentStrings: PROCEDURE [s1, s2: STRING) RETURNS [BOOLEAN);

AppendSubString: PROCEDURE[to: STRING, from: SubString);
EqualSubString. Equa/SubStrings: PROCEDURE [s1. s2: SubString) RETURNS [BOOLEAN];
EquivalentSubString. Equiva/entSubStrings: PROCEDURE [s1. s2: SubString] RETURNS [BooLEAN1;
DeleteSubString: PROCEDURE Is: SubString);
UpperCase. LowerCase: PROCEDURE [CHARACTER) RETURNS [CHARACTER);
StringToDecima/: PROCEDURE [STRING) RETURNS [INTEGER);
StringToOcta/: PROCEDURE [STRING] RETURNS [UNSPECIFIED);
StringToNumber: PROCEDURE [s: STRING. radix: CARDINAL) RETURNS [UNSPECIFIED);
StringToLongNumber: PROCEDURE Is: STR1NG. radix: CARDINAL) RETURNS [LONG UNSPECIFIED);
AppendDecima/: PROCEDURE [s: STRING, n:INTEGER);
AppendOctat: PROCEDURE [s: STRING, n: UNSPECIFIED);
AppendNumber: PROCEDURE [s: STRING. n: UNSPECIFIED. radix: CARDINAL);
AppendLongDecimal: PROCEDURE [s: STRING, n: LONG INTEGER);
AppendLongNumber: PROCEDURE [s: STRING. n: LONG UNSPECIFIED, radix: CARDINAL};

END.

175

APPENDIX D. Binder Extensions

The Alto implementation of the Mesa binder provides two extensions for controlling the space
occupied by Mesa programs at runtime. These are specified with the CPacking and Clinks
clauses (section 7.7).

D.I. Code packing

It is possible to pack together the code for several modules into a single segment. 'Ibis is useful for
two reasons:

Since the code is allocated an integral number of pages, there is some wasted space in the
last page ("breakage"). If several modules are combined into a single segment, the breakage
is amortized over all the modules, and there is less waste on the average.

All the modules will be brought into and out of memory together, as a unit; a referenc~ to
any module in the pack will cause all the code to be brought in. Modules which are tightly
coupled dynamically are good candidates for packing (for example, resident code should
probably always be packed).

Of course, it is possible to "over pack" a configuration; the segments might become so large that
there will never be room in memory for more than one of them at a time (this should remind you of
an overlay system). Packing is a tradeoff, and should be used with caution.

D.l.l. Syntax

The segments are specified at the beginning of the configuration by giving a list of the modules
which comprise each one. Any number of PACK statements may appear. The scope of the packing
specification is the whole configuration, and not subconfigurations or individual module instances,
because there is at most one copy of a module's code in any configuration.

Config Desc ription
:: = Directory CPacking Configuration.

CPacking .. - empty I CPackSeries j

CPackList

CPackSeries

PACK IdList

CPackList I CPackSeriesj CPackList

Each PackList defines a single segment; the code for all the modules in the IdList will be packed
into it. The identifiers in the IdList must refer to modules in the configuration. and not to module
instances: it is the code and not the global frames that are being packed (the frames are always
packed when they are allocated by the loader).

It is illegal to specify the same module in more than one PackList. Even though there may be
multiple instances of the module (i.e., multiple global frames) in the configuration, the code is
shared by all of them, and therefore can only appear in one pack.

Finally, it is perfectly fine to reach inside a previously bound configuration that is being instantiated
and single out some or all of its modules for packing. Of course, you must know something about
the structure of that configuration in order to do this.

176 Appendix 0: Binder Extensions

D.I.2. RestriC/lolTS

Obviously, the PACK statements apply only if the code is being moved to the output file: otherwise.
the pack lists are ignored (and no warning message is given). This allows the programmer to debug
the configuration without shuffling the code from tile to file. thereby sa,"ing time. When making the
final version, the packing can be effected Vlith a binder switch. without having to modify the source
of the configuration description.

Once some modules have been packed together, they cannot be taken apart and repacked with other
modules later on, when they are bound into some other configuration.

Fine point:

If a previously bound configuration contains a pack, referencing any module of the pack gets the whole thing.
So it is possible to pack a module and a pack together. or even to pack two packs. It is never possible to
unpack a pack.

In general, code packing should be specified only to the extent that no unpacking will ever 'be
desired. Once the packing is done, it can't be undone, unless you start over with the individual
modules.

D.2. External links

In previous Mesa systems, links to the externals referenced by a program (imported procedures,
signals, errors, frames, and programs) were always stored in the module's global frame. This allows
each instance of a module to be bound differently, and it allows binding to be done at runtime
Mthout modification of the module's code segment. However, it has two drawbacks:

The links are only referenced by the module'S code, and are therefore not needed when the
code is swapped out Hence, the links logically belong in the code segment.

If two instances of a module are bound identically (the usual case), the links must be stored
twice.

I

Fine Point:

To determine the amount of space required for external links, see the compiler's typescript file. Each
link occupies one word.

The Mesa binder optionally places links in the code segment. This option is enabled by constructs
in the configuration language, and is further controlled by binder and loader switches.

D.2.1. Syntax

For each component of a configuration, the link location is specified using the LINKS construct
defined below. The default is frame links.

CLinks :: = empty t LINKS : CODE I LINKS: FRAME

A link specification can optionally be attached to each instantiation of a module, overriding the
current default, so that the link location can be different for each • instailc-e.

CRightSide ::= ftem lItem 11 CUnks Iltem { ldList] CLinks

Appendix D: Binder Extensions 177

Alternately, the link option can be specified in the configuration header. This merely changes the
default option for the configuration: it will apply to all components (including nested configurations)
unless it is explicitly overridden.

CHead :: = CONFIGURATION Clinks Imports CExports ControlClause

"Illis construction works much like the PUBLIC / PRIVATE options in Mesa, and it nests in the same
way. A link option attached to a configuration changes the default for all components within it, but
that default can be overriden for a particular module (or nested configuration) by specifying a
different link option.

D. 2. 2. Restrictions

This scheme has the consequence that, if a module with code links has multiple instances, each
instance must be bound the same.

As with code packing, the code links option takes effect only when the code is being moved to "the
output file. At this point, the binder will make room for the links as it copies the code if any
module sharing that code has requested code links. Again, this allows a programmer to debug
without the expense of moving the code (using frame links), and then to effect the code links option
with a binder switch, without changing the source of the configuration description.

Fine point:

Once space for code links has been added to a configuration, it cannot be undone by a later binding. On the
other hand. space for code links can always be added to a (previously bound) configuration, even if it did not
specify code links in its description.

Using code links has one drawback: it slows down the binding and loading process, as the code must
be swapped in and rewritten. The binder must make room in the code segment for the links, as
described above. And because the loader resolves imports of previously loaded modules, as well as
the imports of the module being loaded, it may have to swap in (and perhaps update and swapout)
the code segment for every module in the system.

Because of the overhead involved, the loader will not automatically attempt to use code links, even if
the space is available in the ,code segment. A loader switch must be used to effect this option.

Documentation of binder and loader switches in in the Mesa User's Handbook.

178

APPENDIX E. l\1esa Rescned Words

Listed below are all of the Mesa reserved words. Words marked with an astrisk are predeclared
rather than reserved. Predeclared identifiers can be redefined (but seldom should be).

ABS
ALL
AND
ANY
ARRAY
BASE
BEGIN
BOOLEAN
BROADCAST
CARDINAL
CHARACTER
CODE
COMPUTED
CONDITION­
CONTINUE
DECREASING
DEFINITIONS
DEPENDENT
DESCRIPTOR
DIRECTORY
DO
ELSE
ENABLE
END
ENDCASE
ENDLooP
ENTRY
ERROR
EXIT
EXITS
EXPORTS
FALSE­
FINISHED
FIRST
FOR
FORK
FRAME
FROM
GO

. GOTO
IF
IMPORTS
IN
INlINE
INTEGER
INTERNAL
JOIN
LAST
LENGTH
LOCKS
LONG
LOOP
LOOPHOLE
MACHINE
MAX
MIN

MOD
MONITOR
MONITORED
MONITOR LOCK •
NEW
NIL·
NOT
NOTIFY
NULL
OF
OPEN
OR
ORDERED
OVERLAID
PACKED
POINTER
PORT
PRIVATE
PROCEDURE
PROCESS
PROGRAM
PUBLIC
READONLY
REAL*
RECORD
RELATIVE
REPEAT
RESTART
RESUME
RETRY
RETURN
RETURNS
SELECT
SHARES
SIGNAL
SIZE
START
STATE
STOP
STRING
StringBocly*
THEN
THROUGH
TO
TRANSFER
TRUE*
TYPE
UNSPECIFIED*
UNTIL
UNWIND*
USING
WAIT
WHILE
WITH
WORD'"

179

APPENDIX F. Collected Grammar

"1l1e Mesa grammar in this section is a collected version of the grammar distributed throughout the
body of the Manual. There are some differences, primarily due to the Manual's grammar being
distorted for purposes of exposition. This one is intended to be internally consistent.

"1l1e grammar is divided into four parts. corresponding to the syntax for Compilation Unit.
TypeSpecification, Statement, and Expression. These four parts refer to each other and
occasionally use syntax nIles from other parts (such as LeftSide, which is used in an assignment
statement but defined under Expression). Where such cross references occur. a comment has been
added to indicate which part to refer to. Other than this. each part is self-contained. and the
productions within a part have been ordered alphabetically by their names. except that the
productions for CompiiationUnit. TypeSpecification, etc.· head their respective sections.

Compilation Unit .. -.. -

Directory .. -
Expo rtsList .. -
FileName .. -
GlobalAccess .. -
IdList .. -
Impo rtsList .. -
IncludeList .. -

Inte rfaceltem .. -
Ime rf aceLis t .. -
ModuleBody .. -
ModuleHead .. -
ModuleParams .. -
ShareList .. -
UsingClause .. -

Directory
identifier: ModuleHead = GlobalAccess
ModuleBody

empty 1 DIRECTORY IncludeList;
empty 1 EXPORTS IdList

st ringLite ral
Access .. in TypeSpecification

identifier IldList , identifier

empty 1 IMPORTS InterfaceList
identifier: FROM FileName UsingClause 1
IncludeList , identifier: FROM FileName UsingClause

identifier I identifier: identifier

Interfaceltem IlnterfaceList , Interfaceltem

Block. .. in Statement

ProgramTC ImportsList ExportsList ShareList I
DefinitionTC ImportsList Sha reList

empty 1 [NamedFieldList 1 -- in TypeSpecification
empty 1 SHARES IdList

empty 1 USING [IdList 1

TypeSpecification .. --
Access .. -
Adjective .. -
ArrayTC .. -
BaseOption .. -
ByteList .. -
CommonPart .. -
ConstantList .. -
DefaultOption .. -
DefaultSpecification :: =

DefinitionTC

PredefinedType
Typeldentifier I
TypeConst ructo r

empty 1 PUBLIC 1 PRIVATE
identifier

PackingOption ARRAY IndexType OF TypeSpecification

empty 1 BASE

Expression I ByteList ,Expression

empty 1 NamedFieldList ,

Expression 1 Constant List , Expression

empty I+- DefaultSpecification

empty I
Expression 1
NULLI
Expression 1 NULL
DEFINITIONS 1
DEFINITIONS LocksClause

180

DescriptorTC .. -

ElementType .. -
EnumerationTC .. -
FieldList .. -
IndexType .. -
InlineOption .. -
Inst ructionSeries :: =
Interval

LocksClause .. -

LongTC .. -
MachineCode .. -
MachineDependent :: =
Monito red Option .. -
NamedFieldList .. -

Optionallnterval .. -
Ordered .. -
PackingOption .. -
Pa ramete rList .. -
PointerTail .. -

PointerTC .. -
PortTC .. -
PredefinedType .. -

P rocedu reBod y .. -
ProcedureTC .. -
ProcessTC .. -
ProgramTC .. -

ReadOnlyOption .. -
RecordTC .. -
RelativeTC .. -
Retu rnsClause .. -
SignalOrError .. -
SignalTC .. -
SubrangeTC .. -
Tag .. -

TagType .. -
TypeConstructor .. -

Typeldentifier .. -

Appendix F: Collected Grammar

DESCRIPTOR FOR ReadOnlyOption TypeSpecification 1
DESCRIPTOR FOR ReadOnlyOption Packing Option ARRAY OF TypeSpecification

INTEGER I CARDINAL 1 CHARACTER 1 BOOLEAN 1
EnumerationTC 1 SubrangeTC

{ldList}
[UnnamedFieldList 11 [NamedFieldList 1
ElementType I Typeldentifier

empty IINLINE

'empty I ByteList I ByteList; InstructionSeries

[Expression •• Expression 11
[Expression •• Expression) 1
(Expression •• Expression l'
(Expression .. Expression)

empty,
LOCKS Expression,
LOCKS Expression USING identifier: TypeSpecification

LONG TypeSpecification
MACHINE CODE BEGIN InstructionSeries END .. not described in this manual

empty, MACHINE DEPENDENT

empty, MONITORED
IdList : Access TypeSpecification DefaultOption,
NamedFieldList, IdList : Access TypeSpeci.fication DefaultOption

empty , Interval
empty , ORDERED

empty , PACKED

empty I FieldList

empty I
TO ReadOnlyOption TypeSpecification I
TO FRAME [identifier 1
Ordered BaseOption POINTER Optionallnterval POinterTail

PORT ParameterList ReturnsClause,
RESPONDING PORT ParameterList ReturnsClause

INTEGER I CARDINAL I LONG INTEGER 1
REAL, BOOLEAN, CHARACTER, STRING,
MONITOR LOCK , CONDITION,
UNSPECIFIED, WORD
InlineOption Block .. Block in Statement

PROCEDURE ParameterList ReturnsClause

PROCESS Retu rnsClause
PROGRAM Pa rameterList Retu rnsClause ,
MONITOR ParameterList ReturnsClause LocksClause

empty, READONL Y
MonitoredOption MachineDependent RECORD [VariantFieldList 1
Typeldentifier RELATIVE TypeSpecification ,
Typeldentifier RELATIVE LONG TypeSpecification

empty , RETURNS FieldList
SIGNAL , ERROR

SignalOrError ParameterList Retu rnsClause

Inte rval, Typeldentifier Interval
identifier: Access TagType ,
COMPUTED TagType 1
OVERLAID TagType

TypeSpecification ,*
DescriptorTC 1 A rrayTC, EnumerationTC ,LongTC,
Pointe rTC , PQrtTC , Procedu reTC I ProcessTC I
RecordTC, RelativeTC, SignalTC, SubrangeTC

identifier,
identifier. identifier I

Unnamed Field List :: =

Variant

VariantFieldList

Va riantList

Va riantPart

Statement

AdjectiveList

Assignation

AssignmentStmt .. -

Block

Call

Catch
Catch Item

CatchSeries
ChoiceSeries

CompoundStmt

ConditionTest

ContinueStmt
Decla ration

.. -

.. -

.. -

.. -

.. -

DeclarationSeries :: =
Direction
ElseClause

EnableClause

Appendix F: Collected Grammar

Adjective Typeldentifier

TypeSpecification I
UnnamedFieldList , TypeSpecification

IdList =) [VariantFieldList 1 , I
IdList =) NULL,

CommonPart identifier: Access VariantPart I
VariantPart I
NamedFieldList I
UnnamedFieldList I
empty

Variant I VariantList Variant
SELECT Tag FROM
VariantList
ENDCASE

.. -.. -
AssignmentStmt I Block I Calli
ContinueStmt I ExitStmt I GotoStmt IlfStmt I
JoinCaU I LoopCloseStmt I ., JoinCall in Expression
LoopStmt I Notify I NullStmt I
ResumeStmt I RetryStmt I ReturnStmt I SelectStmt I
SignalCa.ll1 StartCali1 RestartStmt I
StopStmt IWaitStmt

Adjective I AdjectiveList , Adjective .. in TypeSpe.cification

FOR identifier'" Expression, Expression

LeftSide .. RightSide I .. LeftSide, RightSide in Exp ression
Extractor'" RightSide

BEGIN
OpenClause
EnableClause
Dec la rationSe ries
StatementSe ries
ExitsClause
END

Variablel ··in Expression
Va ria ble [ComponentList] I .. Componentlist in Exp ression
Variable [ComponentList! CatchSeries]
Variable [! CatchSeries]

ExpressionList = > Statement .. Expressionlist in Expression

Catch I ANY = > Statement

Catch Item I Catch ;CatchSeries
AdjectiveList = > Statement; I
ChoiceSeries AdjectiveList = > Statement;
BEGIN
Body
ExitsClause
END

empty I WHILE Expression I UNTIL Expression
CONTINUE

IdList:
Access ··Access in TypeSpecification

181

ReadOnlyOption EntryOption
TypeSpecification
Initialization; I

.. ReadOnlyOption in TypeSpecification

IdList : Access TYPE = Access TypeSpecification ;
empty I DeclarationSeries Declaration

empty I DECREASING

empty I ELSE Statement

ENABLE Catch Item ; I
ENABLE BEGIN CatchSeries END; I

182

EniryOplion
ErrorCali
ExitsClause
ExitSeries

ExitStmt
Ext ractitem
Extractor

FinalStmtChoice
FinishedExit

GotoStmt
IfStmt
InitExpr·

Initialization
Iteration

..... ~

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

Ite rativeCont rol
KeywordExtract •. -
KeywordExtractList :: =

Label

LabelList·

Leftltem
LoopCloseStmt
LoopControl
LoopExits
LoopExitsClause
LoopRange
LoopStmt

NotifyStmt

NullStmt
OpenClause
Openltem

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

OpenList

OptCatchPhrase .. -
PositionalExtractList :: =

Repetition .. -
RestartStmt .. -
ResumeStmt .. -
RetryStmt .. -
ReturnStmt .. -

Appendix F: Collected Grammar

ENABLE BEGIN CatchSe ries ; END; I
empty

empty I ENTRY
ERROR Call J ERROR
empty I EXITS I EXITS ExitSe ries I EXITS Ex itSe ries ;
LabelList = > Statement I
ExitSeries ; LabelList = > Statement
EXIT

empty, LeftSide
[KeywordExtractList] ,
[PositionalExtractList]
empty , = > Statement
FINISHED = > Statement,
FINISHED = > Statement;
GOTO Labell GO TO Label
IF Expression THEN Statement ElseClause

Expression I
Procedure Body I .. in TypeSpecification
MachineCode I .. in TypeSpecitication
[Expression} I .. for STRING initialization
CODE .. for SIGNAL initialization

empty,+- InitExpr' = InitExpr
FOR identifier Direction IN LoopRange
empty, Repetition ,Iteration, Assignation
identifier: Extractltem
KeywordExtract,
KeywordExtractList , KeywordExtract

identifier

La be! , LabelList I Label

Expression
LOOP
IterativeControl ConditionTest
ExitSeries , ExitSeries ; , FinishedExit, ExitSeries ; FinishedExit
empty, REPEAT LoopExits

SubrangeTC, Typeldentifier' BOOLEAN I CHARACTER
LoopCont rol
DO
OpenClause
DeclarationSeries
EnableClause
StatementSe ries
LoopExitsClause
ENDLooP
NOTIFY Variable,
BROADCAST Variable
NULL
empty I OPEN OpenList ;
Expression' identifier: Expression

Open Item I OpenList , Open Item

emptyl [! CatchSeries]
Extractltem,
Positional Ext ractList , Extractltem

THROUGH Subrange .. in Expression
RESTART Variable OptCatchPhrase .. Variable in Expression

RESUMEl
RESUME Component List] .. ComponentList in Expression
RETRY
RETURN,

SelectStmt
Select

Select Va riant

SignalCall

StartCall
StatementSeries __ -

StmtChoiceSeries :: =

StopStmt .. -
Tagltem .. -
Test .. -
TestList .. -
WaitStmt .. -

Expression

AddingOp

AssignmentExpr .. -
BuiltinCall

ChoiceList .. -

Component .. -
ComponentList .. -
Conjunction .. -
Constructor .. -
Disjunction .. -
Exp rChoiceList .. -

Exp ressionList .. -
Factor .. -
ForkCall .. -
FunctionCall .. -
IfExpr .. -
IndexedAccess .. -
Indi rectAccess .. -
JoinCall .. -

Appendix F: Collected Grammar

RETURN [ComponentList]1-- ComponentList in Expression
RETURN WITH ERROR Call

Select I SelectVariant
SELECT Leftltem FROM
StmtChoiceSe ries
ENDCASE FinalStmtChoice
WITH Open Item SELECT Tagltem FROM
ChoiceSerie~
ENDCASE FinalStmtChoice

SIGNAL Calli ErrorCall
START Call

empty I Statement I
Statement; StatementSeries

TestList = > Statement; I
StmtChoiceSeries TestList = > Statement;
STOP OptCatchPhrase

empty I Expression
Expression I RelationTaii --RelationTaii in Expression

Test I TestList , Test

WAIT Variable OptCatchPhrase

.. -.. -
AssignmentExpr I Disjunction I ForkCalillfExpr I
JoinCall1 NewExpr I SelectExpr I
SignalCali1 --SignaICall in Statement
StartCall --StartCall in Statement

+1-
LeftSide" RightSide

MIN [ExpressionList 11 MAX [ExpressionList 11 ABS [Expression 11
LENGTH [Expression 11 BASE [Expression 11
TypeOp [TypeSpecification] I
DESCRIPTOR [Expression 11
DESCRIPTOR [Expression, Expression] I
DESCRIPTOR [Expression, Expression, TypeSpecification 1
AdjectiveList = > Expression, I -- AdjectiveList in Statement
ChoiceList AdjectiveList = > Expression,

empty I Expression I NULL
Keywo rdComponentList I PositionalComponentList

Negation I Conjunction AND Negation
OptionalTypeld [ComponentList 1

Conjunction I Disjunction OR Conjunction

TestList = > Expression, I -- TestList in Statement
ExprChoiceList TestList = > Expression,

Expression I ExpressionList , Expressi.on

- Primary I Primary

FORK Call

BuiltinCall1 Call -- Call in Statement
IF Expression THEN Expression ELSE Expression
(Expression) [Expression 1 I Variable [Expression 1
(Expression) t I Variable t

JOIN Call

KeywordComponent :: = identifier: Component

KeywordComponentList :: = KeywordComponent I
KeywordComponentList, KeywordComponent

183

\

184

LeftSide

Lite raJ .. -

MultiplyingOp .. -
Negat.ion .. -
NewExpr .. -
Not .. -

AppendixF: Collected Grammar

identifier I Calli .. Call in Statement
IndexedAccess I QuaJifiedAccess IlndirectAccess I
LOOPHOLE [Exp ression] I
LOOPHOLE [Expression, TypeSpecification]

numericLiteral1 .. all defined outside the grammar
stringLiteral1
cha racte rLite ral

*I/IMOO

Relation I Not Relation
NEW Variable OptCatchPhrase

-INOT
OptionalTypeld .. - empty I Typeldentifier .. in TypeSpecification

PositionalComponentList :: = Component I

Primary

Product

QualifiedAccess .. -

Relation
RelationalOp
RelationTaii

RightSide
SelectExpr
SelectExprSimple :: =

SelectExprVariant :: =

Subrange .. -

Sum .. -
TypeOp .. -
Variable .. -

PositionalComponentList , Component

Variable I Literal I (Expression) I FunctionCali1
Constructor I ALL [Expression) I @ LeftSide I identifier {Expression]
Factor I Product MultiplyingOp Factor

(E'xpression) • identifier I Variable. identifier

Sum I Sum RelationTaii

I = I < 1<= J) I)=
RelationalOp Sum I Not RelationalOp Sum I
IN SubRange I Not IN Subrange
Expression
SelectExprSimple J SelectExprVariant
SELECT Leftltem FROM .. Leftltem in Statement
Exp rChoiceList
ENDCASE =) Expression

WITH Openltem SELECT Tagltem FROM .. Open Item, Tagltem inStatement
ChoiceList
ENDCASE =) Expression
SubrangeTC I .. in TypeSpecification
Typeldentifier .. in TypeSpecification

Product I Sum AddingOp Product
SIZE I FIRST I LAST
LeftSide

INDEX

In this index, bold face page numbers
indicate where the primary, defining
information can be found: plain page
numbers designate further examples.

*
+

/
.. -.. -

137, 138, 140
83

9
12,94,95
12

12
2,5,6

34, 104, 106-7
12

2
5-6,53,57,136,137

= > 54, 56, 94, 96, 136, 138, 140
~ 29,42,44,147
o 125,130
t 42
~ 5,17,63,76,130
ABS 5,12
Access 94,104,117-20
activation 72, 137
actual procedure 68, 74, 78
actual tag 94,97.99
AddingOperator 12
adjective 96
adjectives 92, 97
aggregate type 22
aligned 29,42, 69
ALL 30
AlternateName
ANY 136, 138-9
argument 72, 72
arguments 67, 144
arguments buffered
array 22, 27-8

60, 98

150

constructor
descriptor

28,30
85,87

ARRAY 27-8, 29
ASSignation 63,63
assignment 6; 51

expression 52
AssignmentExpr 11,17
AssignmentStmt 7, 51
automatic dereferencing 44
B 8
balancing 45, 47
BASE 29,41,43-4,86,87,88,90-1
base type 25

BCD]03,123
BEGIN 57, 136
Binary Configuration Description
binding 101, 103, 123-4, 132
blank 6
block 57
Block 57.57.73,137,140
BNF 2
BOOLEAN 7-8,16,22.24,53
bound variant 97
bound variant type 93, 95, 96
bounds 64
BROADCAST

BuildinCall
built-in type
C 9

159,160-1
12,12

7

C/Mesa 103, 120, 125
call 67
Call 12, 71, 137, 140
CallStmt 71
CARDINAL 7,7,10,22,26-7,49
Catch 134, 136, 137-9
catch phrase 136, 139, 150, 154
CHARACTER 7,9,15,22
characterLiteral 9
client 120

module 123
CODE

coercion
colon
comma

125,135,141
46. 73

6
56,94

5,6
92

comment
common part
CommonPart 118 .
compatible 70
compilation order 110
CompilationUnit 104
compile-time 84, 104, 105

constant 18, 30,53
completely bound variant
component 27,31,125
component type 27
components 97
ComponentType 29
COMPUTED 94, 100

100

computed tag 93,95,97,100
CONDITION 155, 158, 161
condition variable 155
ConditionTest 62,63
configuration 123
Configuration 125
CONFIGURATION 125,126

185

103, 123

Configuration Description 103,123-4

186

configuration prototype 125
conform 7, 10, 72
conforming 69
ConJunction 16
CONNECT 146,147,150
constant 18
constructed data type 20
constructor 35, 93
Constructor 30,35
CONTINUE 140,141, 146. 150
cONTROL 103, 125
control fault 149

link 148
transfer 148
variable 64

ControlVariable 63.63
coroutine 144
covering condition variable
CR 6,141
D 8
Debugger
declaration
Decla ration

136,139
68

19
Decl.arationSeries
DECREASlNG 63-4
default Access 120
default field 112
default field values .36

57

160

default-named interfaces 127-8
DefaultOption 37
DefaultSpecification 37
defining occurance lOS
DEFINITIONS· 78.104.105-6,110.117,120
definitions module 101
DESCRIPTOR 29,85-6,87,91
detached process 154
determination of representation .49
Digit 2
DIRECTORY 78, 104-5, 106, 126
discrimination 98, 100
Disjunction 11, 16
DO 5,62,136
element type 22
ElementType 22, 25
elided 30
elided component 35
elides 36
ELSE 5,52,76
empty 3,30
empty

constructor
extractor
interval

72
39

16,29

Index

ENABLE 137, 138, 140-1
EnableClause 57
END 57,76
ENOCASE 54,56,77,94,99
ENDLOOP 5,62,64
ENTRY 155, 156
entry procedure 155
enumerated type 22
enumeration 21, 94
equality 6
equivalent 10
ERROR 135,136,141,149
ERROR, unnamed 136
ErrorCall 135
exceptional conditions 134
EXIT '65,66,139, 141
ExitsClause 57,57,137
expansion 80
explicit

component 35
naming 126-7
qualification 109

export 102, U7, 126
record 102

EXPORTS 78,103-4,117,121,124-5,126,
127

Exp ression 11, 51
ExpressionList 12
ex ternal procedure 157
extractor 38,128
Extractor 51
Factor 12
FALSE 8,24
FaultHandler 150,151
field list 32
FieldDesc ription 118
Fieldlist 31, 32
FINISHED 65,66,141
FIRST 24,26
floating-point 10
fonts 1
FOR 63,64
forcible termination 65, 66
FORK 136, 152"3, 153, 154
foonation rules 2
frame 57, 148
FRAME 104,116,125,132,146
free conformance 48, 70
FROM 104.146
FunctionCall 12
fundamental operation 6,20,41,69
.GCD 4
Globa.Access 117,120

GOTO 57.58-9,64,66, l39
home module 117
identifier 21

constant 23, 94
list 6

identifier 5,127
IdList 3.6
IF 5.52.76

ex pression 53
statement 52

lfStmt 52
implementing 121
implementor 120
implicit qualification 99
import 101
imports 126 .
IMPORTS 78. 102-4, 115, 124-5, 126, 127
IN 15,47,55,63
include 105
Includelist 104
indefinite index type
index type 27
indexed reference
IndexedReference

27

IndexType 29, 85
inequality 6
inherent

representation
type 45

86

29

49

initialization 18, 68, 84. 135
Initialization 19,33
inline 69. 73, 80
INLINE 80,113-4
InlineOption . 73
instance 115, 124
INTEGER 7, 7, 10,22,26-7,49
interface 101, 120, 125. 135, 158

element 110
record 115, 116, 127
type 115, 116
variable 110,111-2,113-4

INTERNAL 157, 165
internal procedure 158
interval 15. 63
Interval 15
Ite ration 63,63
lterativeControl 63
JOIN 136, 152-3, 153, 154
jump table 55
keyword 39

constructor 31. 35. 35. 74
ex tractor 74
name 35

Label 58

Index 187

Labels 58
LAST 24, 26
LeftSide 7, 29, 38,42,45, 51
length 82
LENGTH 29,86,87
lengthening 43
lexical units 6
link 124
LinkageFault 148. 149,150

. LINKS 125, 125
literal 18
Literal 12
loader 132
loading 123
local string literal . 84
local variable 68
LOCK 161
LOCKS 162,164,166
LocksClause 162, 165
LONG 14,43,87,92

CARDINAL 7,9-10
INTEGER 7.9-10
POINTER 43
STRING 85

long numeric type 9
LOOP 65, l39
loop control 61
loop statement 61
LoopCloseStatement 65
LoopCont rol 62
LoopExitsClause 64
LOOPHOLE 47
LoopRange 63. 64
lower bound 16
lower-case 5
MACHINE DEPENDENT 33, 94, 95, 166
MACHINE DEPENDENT RECORD 29
MAX 12.47
maxlength 82, 83
MIN 12,47
MOD 5
module 61.68, 101
ModuleBody 104
monitor 154. 155

initialization 168
lock 155

MONITOR 156, 162
MONITORED RECORD 162.163-4
MONITORLOCK 156, 162. 166
Multi-module monitor 163
multiple statements 6
MultiplyingOperator 12
name reference 108

188

name scope 34, 108
NamedFieldList 32, 118
Negation 16
nested configurations 130

procedure 78
signals 142

NEW 116. 131-2. 136. 146
Next-Statement 51, 55. 62
NIL 43, 44. 76
non-interface

element 110
type 101

non-local variable 68
non-privileged 117
NOTIFY 155, 157, 159. 160-1
NULL 56,94
number 8
numeric

literal 8
operators 12
type 7.26

object
file 103
module 101

Object monitor 165
objects 165
OctalDigit 2
omISSIon 36
OPEN 59. 106, 108-9
open

clause 98, 107
item 99

Open Clause 57,61
operator 12

precedence 17
ORDERED 41,43
ordered type 22
OVERLAID 94.100,148
overlaid tag 95
PACK 125
packed 69
PACKED 29,85.87
parameter 67.134

record 67
pending 147. 149-50
phrase class 2
PLUS 125,130
pointer 22,39

arithmetic 43
POINTER 41, 43-4. 88
POINTER TO FRAME 104. 116
PORT 144-5, 146. 148, 151
port-compatible 148
PonFault 147.149,150

Index

positional constructor 35. 36
precedence 12.52,54
PredefinedType 19
Primary 12
PRIVATE 104,112-3,117-20
privileged 117
procedure 67

body 68
calls 71
descriptor 148
type 69
value. 70, 148
variable 74. 110

PROCEDURE 69, 76. 148
ProcedureBody 73
process 166
PROCESS 153,153
Product 12
PROGRAM 104,115,117,120,132,145-6
program 101

prototype 116, 125
variable 116

PUBLIC 76. 103-4, 113. 117, 117, 118-9, 121
qualification 34, 60, 106
qualified reference 31, 108
qualifier 74
Queue 156
range

assenion 27
error 25

readonly 40
READONLY 41,111
REAL 7,10,10,46
recompiling 109
record 31

constructor 31,35
single-component 73

. RECORD 32.76,94,95
recursive 72

substitution 3
reentrant . 72
reference type 39
Reject 139
relational operators 15
RELATIVE 43,88,90-1
relative

array descriptor 89,91-2
pointer 88, 89

relocation 88
REPEAT 64.141
Repetition 63
reserved words 2. 5
.RESPONDING 145. 151
RESTART 116.132-3.136.146-7, 150

Index

result 67. l35. i44
record 73

Resume 139
RESUME l36. l36. l38. 140. 141
ResumeError 141
RETRY 140. 141
RETURN 69. 72. 74. 132. 136. 148
return link l38.149
RETURN WITH ERROR 135. 138. l39. 166-7
RETURNS 69. 76
RightSide '7.51
scalar type 22
scale factor 8
scope ,74.79.99.108.137
SELECT 54,54,56, 77, 93-6, 98, 99-100 141.

148 '
SELECT expressions 56
SelectExp r 56
SelectStmt 54
self-contained 124
Se,ries ,3
SHARES 104, 117, 120
short numeric type 9
SIGNAL 59,135,136;141
SignalCal1 135
Signaller 138, 139. 142, 150
signals 134 '

actual 135
catching 138
nested 142

signed number 7
single-component record 73
SIZE 34,76
SP 141
space 6
START 83,116,124,132,133,136.138,144

146-7 '
start trap 111, 133. 147
startup transient 144, 147
statement 51
Statement 51
StatementSe ries 57
static variable 124
StmtSeries 3
STOP 124. 132-3, 136
STRING 7,82,83
string literal 83
String Body 82, 87
strongly typed 4
subrange 21

type 22.24
Sum 12
syntax notation 2

TAB 6.141
tag 93
Tag 118
target

representation 49
type 45

TC 21
terminate

conditionally 62
forcibly 65
normally 63

text 82
THEN 5,52.76,125,130
THROUGH 63
time stamp 109
timeout 161
TRUE 8,24
TYPE 20,21
type

constructor 7
conversion 46
determination 45

type-correct 45
TypeConst ructo r 21
TypeDeclaration 20
Typeldentifier 21,96,107
Type5pecification 21,90
unbound variant 93
unique type 91
Unnamed FieldList 31
unqualified 61
unsigned number 7.43
UNSPECIFIED 19, 43
UNTIL 5,62,140
Unwind 139
UNWIND 139, 140, 149-50, 167
upper bound 16
upper-case 5
user-defined type 7
USING 78,106,109,162,165-6
Variable 12
variant

part 92.93,97.148
record 92

VariantFieldList 118
VariantPart 118
virtual interface record 102
voided component 35
voids 36
WAIT 136,155.157,159,160-1,166,168
WHILE 62 .
WITH 98
WORD 19
XFER 148

189

