
























































































































































































































































































132 Chapter 7: Modules, Programs, and Configurations 

If a program, say Prog, wishes to create a copy of itself, it can say: 

copy: POINTER TO FRAME [Prog]: 

copy +- NEW Prog: 

7.8.2. How the loader binds inleifaces 

Each instance of an atomic module or of a configuration may export some interfaces. To make 
these exported interfaces available for importation by other instances, the loader maintains a single, 
simple global table of all the exported interfaces. If any duplicates are created as the result of a 
NEW, they are merged into the already existing interface records as if a THEN (sec. 7.7.5) had been 
done. 

The moral here is that complicated binding to hide interfaces, etc. must be done using the binder, 
and only the simplest, most straightforward forms should be used at loading time. 

7.8.3. STARTing, STOPping, and RESTARTing module instances 

The START operation suspends the execution of the program or procedure executing it and transfers 
control to a new, uninitialized instance of an atomic module. Additionally, if the program instance 
being started requires parameters, they are supplied as part of the START. Similarly, if the program 
being started is specified to return results (more details below), then the START operation may appear 
in a RightSide context, and the returned value is the value of the operation. Its syntax is 

StartStmt :: = START CallI . . . 

StartExpr :: = START CallI . . . 

The variable following the word START must represent a global frame pointer or program variable; 
i.e., its type must conform to some POINTER TO FRAME type or PROGRAM type. Here are some 
examples of its use: 

START proglnst: 
START ExporledProg [5 + j]: 
x +- START progWilhResulllfirstArg: a, secondArg: b); --keyword parameter list 

When a program is started, it first executes code to �~�n�i�t�i�a�I�i�z�e� any static variables that were declared 
with initialization expressions. The initializations are done in the order in which the variables were 
declared in the program. Also, they may call both local and imported procedures (since descriptors 
for all imported procedures are filled in as part of the NEW operation - sec. 7.7.1). 

After all initialization expressions are complete, the mainline statements of the program commence 
executing. Control can then return to the caller (the program or procedure which initiated the 

. START) in one of two ways: the started program may STOP or it may RETURN with results (however, 
it cannot use both). 

A program that executes a STOP can be RESTARTed later. RESTART is distinct from START primarily 
because it cannot pass parameters as START can. If a program does not return results, it either by an 
explicit use of STOP or by running off the end of the program. 

If a program declares (in its ModuleHeader) that it returns results, it uses RETURN statements just 
as does a procedure (and it cannot use STOP). A R.ETURN from a program does not deallocate its 
global frame. The syntax for REST ART and STOP is 



RestartStmt 

StopStmt 

.. -.. -
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RESTART Variable I ... 
STOP I ... 
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lbe Variable following RESTART must be a pointer to the frame for a program instance or a 
program variable, just as for START. A program that RETURNS results or has run off the end cannot 
be REsTARTed. Attempting to do so will result in a mn time error. 

A module instance can also be STARTed "automatically". If a call is made on a procedure in an 
instance that has not yet been started, a start trap occurs. If the module does not take parameters 
when started, then it is started by the Mesa start-trap handler. When it STOPS or RETURNS, the trap 

. handler completes the procedure call that was in progress when the trap occurred. (See the next 
section for further discussion of the start trap for configurations.) 

Warning: A module must be STARTed either explicitly or implicitly before any attempt is made to 
access its variables through a POINTER TO FRAME. 

7.8.4. Loading and starting configurations 

By using system routines, one can also make instances of configurations that are more than simple. 
atomic modules. A non-atomic configuration cannot be STARTed (what would it mean to start 
one?), but its CONTROL module can (if it has one). Basically, the CONTROL module acts as the 
representative for the whole configuration (since a C/Mesa configuration description does not 
contain executable Mesa statements). Thus, a program that STARTS the CONTROL module for a 
configuration has essentially STARTed the configuration. If the order of starting some of the 
instances in a configuration is important or if they take arguments when started. its CONTROL module 
should START them explicitly. 

The . start trap works for configurations as well as for atomic modules. If a start trap occurs for a 
module M in configuration C with control module eM. then the trap handler automatically starts eM 
rather than M. If the handler discovers, however. that eM has already been started, it will start M 
(since eM would have started AI if it had intended to). In fact, if the handler starts eM but still 
finds M unstarted when eM STOPS. it will start M itself before finally returning from the trap. Then 
the procedure call that caused the trap will be allowed to go through. 

Fine points: 

If an attempt is made to REST ART a program which has not been staned, a START trap will occur and then 
the REST ART will proceed. 

Other forms of START and STOP statements are used to catch signals. This is discussed in Chapter 8, but the 
forms look roughly as follows: 

START somelnstance [Componentlist ! CatchPhrase 1 
STOP [! CatchPhrase 1 
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CHAPTER 8. 

SIGNALLING AND SIGNAL DATA TYPES 

Signals are used to indicate when exceptional conditions arise in the course of execution, and they 
provide an orderly means of dealing with those conditions, at low cost if none are generated (and 
they almost never are). For example, it is common in most languages to write a storage allocatOl: so 
that, if asked for a block whose size is too large, it returns a null (or otherwise invalid) pointer value. 
Any program which calls the allocator then embeds the call in an IF statement, and checks the return 
value to make sure that the request was satisfied. What that procedure then does is a very local 
decision. 

In Mesa, one would write the allocator as if it a/ways returned a valid pointer to an allocated block, 
and calls to it would simply assign the returned value to a suitable pointer, without checking whether 
or not the allocation worked. If the caller needs to gain control when the allocator fails, the 
programmer attaches a CatchPhrase to the call: then if the allocator generates the signal 
Block TooLarge, and the caller has indicated that it wants to catch that signal, it will. 

This· way of handling exceptions has two important properties, one for the human reader of the 
program, and one for its execution efficiency: 

Anyone reading a program with a call on the allocator can see immediately that an 
exceptional condition can arise (by the catch phrase on the call or nearby): he then knows 
that this is an unusual event and can read on with the normal program flow: IF statements 
do not have this characteristic of distinguishing one branch from the other. 

When the program is executing, the code to check the v.alue returned by the allocator on 
every call is not present and therefore takes no space or execution time. Instead, if a signal 
is generated, there is more overhead to get to the catch phrase than a simple transfer; but 
since it happens infrequently, the overall efficiency is much higher than checking each call 
with an IF statement. 

Signals work over many levels of procedure call, and it is possible for a signal to be generated by 
one procedure and be handled by another procedure much higher up in the call chain. We later 
discuss the mechanisms by which this is done; until then, examples show signals being caught by the 
caller of the procedure which generated the signal. 

8.1. Declaring and generating SIGNALS and ERRORS 

In its simplest form, a signal is just a name for some exceptional condition. Often, parameters are 
passed along with the signal to help a catch phrase which handles it in determining what went 
wrong. It is also possible to recover from a signal and allow the routine which generated it to 
continue on its merry way. This is done by a catch phrase returning a result; the program which 
generated the signal receives this result as if it had called a normal procedure instead of a signal. 



Mesa Language Manual 135 

'nlcrcforc. from the type vicwpoint. signals correspond vcry c10scly to proccdures; in fact. the type 
constmctor for declaring signals is just a variation of the onc for proccdures: 

SignalTC .. - SignalOrError ParameterList RETURNS ResultList I 
SignalOrError ParameterList I 
SignalOrError RETURNS ResultList I 
SignalO rErro r 

SignalOrError :: = SIGNAL I ERROR 

For example. the signal BlockTooLarge might be defined to carry along with it two parameters. a 
Zone within which the allocator was trying to get a block. and the number of words needed to fill 
the current request. The catch phrase that handle~ the signal is expected to send back (Le., return) an 
array descriptor for a block of storage to be added to the zone. the declaration of BlockTooLarge 
would look like 

BlockTooLarge: SIGNAL[Z: Zone, needed: CARDINAL] 
RETURNs[newStorage: DESCRIPTOR FOR ARRAY OF CARDINAL]; 

A signal variable contains a unique name at mn time; which is a code identifying an actual signal, 
just as a procedure variable must be assigned an actual procedure before it can be used. If a 
procedure is imported from an interface (sec. 7.4), any signals that it generates directly are probably 
contained in the same interface. Imported signals are bound by the same mechanisms as procedures. 
In addition, one may have signal variables which can be assigned any signal value of a compatible 
type. 

The signal analog of an actual procedure is obtained by initializing a signal variable using the syntax 
"= CODE" in place of "= BEGIN ... END" for procedures. This causes the signal to be initialized to 
contain a unique value. The following syntax describes tlle initialization for an actual signal: 

Initialization :: = = CODE I ... 

A signal is generated by using it in a SignalCall as shown in tlle syntax below: 

Statement :: = SignalCall I ... 

SignalCall 

ErrorCall 

.. -.. -

.. -.. -
SIGNAL Call I ErrorCall 

RETURN WITH ERROR Calli 
ERROR Calli 
ERROR .. special error 

Call is defined in section 5.4, and the called Expression must have some signal type in tllis case. 
A SignalCall can be used as an Expression as well as· a Statement. For example, 

newblock ... SIGNAL Block TooLarge[zone, n]; 

Thus, generating a signal or error looks just like a procedure call, except for the additional word, 
ERROR or SIGNAL. 

Fine point: 

Although it is not recommended. the keywords SIGNAL and ERROR may be omitted (except in the RETURN 
WITH ERROR construct). This makes the Signal look exactly like a procedure call. ... 
Initialization by SIGNAL = CODE produces a unique value that contains. in part. the global frame index of the 
module containing the initialization. There are two points worth making. If one creates a copy of the module 
with the NEW statement. signals raised ·by the two .copies will be different. If the signal is declared and 
initialized in a procedure. recursive calls of the procedure will not generate different signal values. 
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If a signal is declared as an ERROR, it must be generated by an Erro rCal!. If, however, it is 
declared as a SIGNAL, it can be generated by any SignalCall, including an ErrorCali. The 
difference between the two is that a catch phrase may not RESUME a signal generated by an 
ErrorCall (sec. 8.2.5). 

Except for a slight difference in the way the error is started (sec. 8.2.3), the RETURN WITH ERROR 

construct behaves like the ERROR statement. Its primary use is in monitor ENTRY procedures 
(chapter 10). 

The "special error" in the above syntax is used to indicate that something has gone wrong, without 
giving any iridication of the cause; the statement 

ERROR; 

generates a system-defined error. It is provided to cover those "impossible" cases which should 
never occur in correct programs but which it is always best to check for (such as falling out of a 
loop that should never terminate normally, or arriving at the ENDCASE of a SELECT statement that 
claims to handle all the cases). It can only be caught using the ANY option in a catch phrase (sec. 
8.2.3). It is customarily handled by the debugger. 

8.1.1 ERROR i nexpressions 

When an ERROR is declared to return values, this is purely for syntactic convenience, since one of 
the principal features of an ERROR is that it does not "return". The reason for doing this it to allow 
the ERROR to stand in an expression context considered invalid or impossible. Such declarations of 
returned values are not necessary; if an expression has an ERROR type (or SIGNAL type raised as an 
error) and returns no value, then that expression can be used wherever an expression of any type is 
required. For example: 

Color: TYPE = {red. orange. yellow. green. blue, violet}; 
c: Color; 
button: [0 .. 2); 

button ... SELECT c FROM 

red => 0, 
yellow => 1, 
blue => 2, 
ENDCASE = > ERROR; 

In the example, the only valid colors for buttons are red. yellow. and blue. Any other value results in 
an error (in this case, the unnamed system error). Such constructs allow an inexpensive way to get 
to the debugger in those "impossible" cases that arise from program errors. 

A fine point: 

If the ERROR type is defined to return a value, any use of that expression must be type correct with respect to 
the "returned" value. 

8.2. Control of generated signals 

Any program which needs to handle signals must anticipate that need by providing catch phrases for 
the various signals that might be generated. During execution, certain of these catch phrases will be 
enabled at different times to handle signals. Loosely speaking, when a signal S is generated, the 
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procedures in the call hierarchy at that time will be given a chance to catch the signal, in a last-in­
first-out order. Each such procedure P, if it has an enabled catch phrase, is given the signal S in 
turn, until one of them stops the signal from propagating any further (by mechanisms which are 
explained below). P may decide to reject S (in which case the next procedure in the call hierarchy 
will be considered), or P may decide to handle S by taking control and attempting to recover from 
the signal. 

8.2.1. Preparing to catch signals: catch phrases 

A catch phrase has the following form: 

CatchTail .. - Catch I 

Catch 
CatchSeries 

ANY = > Statement 
ExpressionList => Statement 

CatchTail1 
Catch; CatchSeries 

The expressions in the ExpressionList (semantically restricted to a list of variables) must evaluate 
to the names of signals (unless otherwise stated, we use signal to stand for both ERROR and SIGNAL). 

The special identifier ANY will match any signal (sec. 8.2.3). Note that if ANY occurs, it must be last. 

A catch phrase is written as part of an argument list, just after the last argument and before the right 
bracket. Catch phrases may appear iIi a procedure call, SignalCall, NEW, START, RESTART, STOP, 

JOIN, FORK, or WAIT (but not in a RESUME or RETURN). A catch phrase may also be appended to the 
BEGIN of a block or the DO of a loop statement by means of an EnableClause. The applicable 
syntax for a call and for a block or loop statement is 

Call .. - Variable [ComponentList ! CatchSeries] I 

Block 

Variable [! CatchSeries] I 

BEGIN 
OpenClause 
EnableClause 
DeclarationSeries 
StatementSe ries 
ExitsClause 
END 

-- (from Section 4.4) 

EnableClause .. - empty I 
ENABLE Catchltem : I 
ENABLE BEGIN CatchSeries END; I 
ENABLE BEGIN CatchSeries : END; 

Note that the EnableClause is always followed by a semi-colon, and BEGIN ... END must be used if 
there is more than one Catch in an EnableClause. 

The main difference between the two kinds of catch phrases (ENABLE and !) is the scope of their 
influence. A catch phrase on a Call is only enabled during that call. A catch phrase at the 
beginning of a compound or loop statement is enabled as long as control is in that block; it can 
catch a signal resulting from any call in the block (or generated in the block). 

To clarify the scope of influence of ENABLE clauses, the following two diagrams are reproduced from 
chapter 4. The scope of each phrase extends over others with greater indentation. 
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BEGIN 
OpenClause 

EnableClause 

END 

Decla rationSe ries 
StatementSe ries 

ExitsClause 

LoopCont rot 
DO 
OpenClause 

EnableClause 
StatementSe ries 

LoopExitsClause 
ENOLOOP 

Note that catch phrases enabled in the EnableClause of a Block or LoopStmt are not in force 
in the ExitsClause or LoopExitsClause. 

Fine point: 

Procedures declared in the DeclarationSeries (of any enclosed Block) do not inherit the catch phrases in the 
EnabteClause (this is not shown by the diagrams). 

8.2.2. The scope of variables in catch phrases 

Catch phrases are called to handle signals (the exact mechanisms are discussed in the next section). 
The naming environment. that exists when a catch phrase is called (in order of innermost to 
outermost scope) includes any parameters passed with that signal (these are declared as part of a 
signal's definition), and any variables to which the procedure or program activation containing the 
catch phrase has access. 

If a Catch has more than one label (or the label ANY), where the types of those labels are not 
identical. then the signal's arguments are not accessible in the Statement chosen by that Catch. 

If, however. there is exactly one type for the signals named in a Catch's ExpressionList, then the 
signal's arguments are accessible in the statement following "= >". The names used are the 
parameters given in the signal's declaration. just as for procedures. For example. a catch phrase for 
signal BlockTooLarge (defined earlier) might be used in a section of code such as: 

-- in StorageDeJs 
BlockTooLarge: SIGNAL [z: Zone. needed: CARDINAL] 

RETURNs[newStorage: DESCRIPTOR FOR ARRAY OF CARDINAL]; 
GetAloreStorage: PROCEDURE [z: Zone, 11: CARDINAL] 

RETURNS [DESCRIPTOR FOR ARRAY OF CARDINAL]; 

-- in a user program 
p: POINTER TO Account; 

p +- Allocate[SlZE[Account] ! 
BlockTooLarge => RESUME[GetMoreStorage[z. neededj]J; 

The names z and needed in the catch phrase refer to the parameters passed along with the signal 
from Allocate (see sec. 8.2.5 for a discussion of RESUME). 
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8.2.3. Catching signals 

When a signal is generated, what really happens is that the signal code, and a descriptor for the 
actual arguments of the signal, are passed to a Mesa run-time procedure named 5,'ignaller, Signaller's 
definition is 

Signaller: PROCEDURE[S: SignalCode. 111: Message]: 

Here s identifies the signal being generated. and 111 contains its arguments. (Actually, different 
procedures are used to distinguish between SIGNAL, ERROR, and RETURN WITH ERROR.) 

Signaller proceeds to pass the signal and its argument record from one enabled catch phrase to the 
next in an orderly fashion. The order, at the procedure level, follows the cunent call hierarchy, 
from the most recently called procedure to least recently called, beginning with the procedure thdt 
generated the signal itself. If the calkr of a procedure is the outermost block of code for a program, 
the Signaller will follow its return link to continue propagating the signal (the return link points to 
the frame that last STARTed the module (sec. 7.8». 

If, in place of SIGNAL or ERROR, a RETURN WITH ERROR is used, the procedure that generated the 
error is first deleted (after releasing the monitor lock, if it is an ENTRY procedure), and propagation 
of the error begins with its caller. 

As Signaller considers each frame, it looks to see whether that frame has any enabled catch phrases: 
if so, Signaller calls the innermost catch phrase as if it were a procedure, passing it the Signa/Code 
and Message. The innermost catch phrase is defined to be 

either the one after ''I'' attached to the currently incomplete procedure call for that frame, or 

the one following an ENABLE in the innermost enclosing block that contains that call. 

Because signals can be propagated right through the call hierarchy, the programmer must consider 
catching not only signals generated directly within any procedure that is called, but also any 
generated indirectly as a result of calling that procedure. Indirect signals are those generated by 
procedures called from within a procedure that you call, unless they are stopped before reaching 
you. 

When a catch phrase is called, it behaves like a SELECT statement: it compares the signal code passed 
to it with each signal value in the ExpressionList of each Catch in the catch phrase. If the 
signal code matches one of the signal values, control enters the statement following the "= >" for 
that Catch: if not. the next Catch is tried. A Catch consisting of "ANY => Statement" 
automatically matches any signal cod,e (and is the only way to catch the unnamed ERROR generated 
by the standalone ERROR statement discussed in section 8.1). 

Fine point: 

The ANY catchall is intended primarily for use by the debugger, and should generally be avoided. It matches 
any signal. including UNWIND and all system-defined signals that might indicate some catastrophic condition (a 
double memory parity error, for example). 

When a match is found, that Catch is said to have caught or accepted the signal. If no alternative 
in a catch phrase accepts the signal, there may be another enabled catch phrase in some surrounding 
block. If so. the first catch phrase s{!nds control to the second one so that it can inspect the signal. 
and so on until the last enabled catch phrase in that routine has had a chance at the signal. If no 
catch phrase in the routine accepts the signal, control returns to Signaller with a value indicating that 
the signal was rejected, and Signaller propagates the signal to the next level in the call hierarchy. In 
fact. all catch phrases are called by Signaller as if they were procedures of the following type: 
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CatchPhrase: PROCEDURE[S: Signa/Code. 111: Message] 
RETuRNs[{Reject. Ul.lwind. Resume}]; 

'Ine SELEcT-like statement associated with each Catch has an implicit Reject return as its ENDCASE: 
hence, if control simply falls out of the statement, the signal is rejected. 

Fine point: 

If the same signal. /00, is enabled in seyeral nested calch phrases in a procedure. each is given a chance to 
handle /00 if the inner ones reject the signal. 

Signaller continues propagating the signal up the call chain until it is exhausted. i.e .• until the root of 
the process has considered and rejected the signal. At that point. an uncaught signal has been 
generated. and drastic action must be taken. 

Mesa guarantees that all signals will ultimately be caught and reported by the Debugger to the user. 
This is helpful in debugging because all the control context which existed when the signal was 
generated is still around and can be inspected to investigate the problem. 

The declaration of CatchPhrase above indicates three reasons for returning to Signaller. The first, 
Reject. has already been discussed. The third, Resume, is discussed in section 8.2.5. 

The second reason, Unwind, is used when a catch phrase has accepted a signal and is about to do 
some form of unconditional jump into the body of the routine containing it (this is the only form of 
"non-local goto" in Mesa). The jump may be generated by a GOTO statement (sec. 4.4), an EXIT or 
LOOP (sec. 4.5), or a RETRY or CONTINUE (see below). as Immediately preceding such a jump. the 
catch phrase returns to Signaller with result Unwind; it also indicates the frame containing the catch 
phrase and the location for the jump. This causes Signaller to perform the following sequence of 
actions: 

(1) Beginning at the frame in which the original signal was generated (or its caller, if a 
RETURN WITH ERROR was executed), it passes' the signal UNWIND to each frame. This signal 
tells that activation that it is about to be destroyed and gives it a chance to clean up before 
dying. Signaller then deallocates the frame and follows the same path. as it did for the 
original signal to continue unwinding control. When it comes to the frame containing the 
catch phrase, it stops. 

(2) Signaller then arranges for the jump to take place. and simply does .a return to that 
frame, destroying itself in the process. 

Every Mesa program contains the pre-declared value 

UNWIND: ERROR = CODE; 

Fine points: 

One cannot say RETURN in a catch phrase to return from the ~ncrosing procedure. This is an implementation 
restriction that may be removed in the future, caused by the way in which a catch phrase is "called" like a 
procedure itself. 

The UNWIND sequence gives each activation that is to lose control a chance to make consistent any data 
structures for which it is responsible. There are no constraints on the kinds of statements that it can use to do 
this: procedure calls. loops, or whatever are all legal. ~ If. however, a catch for the UNWIND signal. such as, 

ST ART N extPhase [ ! UNWIND = > GOTO BailOut}; 

decides itself to perform a control transfer that WQuid also initiate an UNWIND. this will override the Original 
UNWIND. and Signaller will stop right there, as if the second UNWIND catch had been the originator of the 
UNWIND. 
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8.2.4. RETRY and CONTINUE in catch phrases 

Besides GOlO, EXIT, and LOOP, there are two other statements, RETRY and CONTINUE, which initiate 
an UNWIND. These can only be used within catch phrases. 

RETRY means "go back to the beginning of the statement to which this catch phrase belongs": 
CONTINUE means "go to the statement following the one to which this catch phrase belongs" (what is 
called Next-Statement in chapter 4). 

For a catch phrase in a Call, the catch phrase "belongs" to the statement containing that Call. 
Thus, if the signal NoAnswer is generated for the call below, the assignment statement is retried: 

answer'" GelRepiy [Send ["What next?"] ! NoAnswer = > RETRY]: 

On the other hand, if CONTINUE had been used instead, the statement after the assignment would be 
executed next (and the assignment would not be performed). For example, suppose the procedure 
ReadLine reads characters from a file up toa carriage return and appends them onto the string 
buffer, If reading beyond the end of file raises the signal StreamE"or. the call . 

ReadLine [ ! StreamError = > IF buffir.lenglh > 0 THEN CONTINUE]: 

deals with the case of no carriage return after that last line in the file. If there is no such final line, 
other chatch phrases higher on the call chain are given a chance to catch the signal. 

For a catch phrase after ENABLE, there are two cases to consider, blocks and loops. In a block, the 
catch phrase "belongs" to that statement; the next section shows an example. In a loop, the catch 
phrase "belongs" to the body of the loop; and CONTINUE really means "go around the loop again." 
The following two examples are equivalent: 

UNTIL p=NIL 
DO ENABLE TryList2 => BEGIN p ... /ist2; CONTINUE END; 

ENDLooP: 

UNTILp=NIL 
DO 

BEGIN ENABLE TryList2 = > BEGIN p ... /ist2; CONTINUE: END; 

END; 
ENDLooP; 

In any case, recall that an Unwind is initiated prior to completion of a RETRY or CONTINUE. 

If a procedure call in the Initialization clause of a declaration contains a catch phrase, this catch 
phrase cannot contain RETRY or CONTINUE since it is in no well defined statement. 

8.2.5. Resuming from a catch phrase: RESUME 

The third alternative available to a catch phrase, after Reject and Unwind, is Resume. This option is 
invoked by using the .RESUME statement to return values (or perhaps just control) from a catch 
phrase to the routine which generated the signal. To that routine. it appears as if the signal call 
were a procedure call that returns some results. The syntax for RESUME is just like that for RETURN: 

Statement :: = ResumeStmt I RETRY I CONTINUE I ... 
ResumeStmt :: = RESUME I 

RESUME [ ComponentList ] 
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When Signaller receives a Resume from a'catch phrase. it simply returns and passes the 
accompanying results to the routine that originally called it (Le .. that generated the signal). If the 
signal was generated by an ErrorCall and a catch phrase requests a Resume. Signaller simply 
generates a signal itself(which results in a recursive call on Signaller): its declaration is 

ResumeEn-or: PUBLIC ERROR: 

Since it is an ERROR. one cannot legally RESUME it. 

The ability to RESUME and return values gives the ability to deal with exceptional conditions in a 
way that is quite inexpensive in the non-exceptional case. For example, consider the declaration 

StringBoundsFault: SIGNAL [s: STRING] RETURNS [1/s: STRING]: 

This signal allows the user to deal with the situation where characters are to be added to a string 
that is already "full". Thus the call 

Appel1dChar[str, c ! StringBoundsFault => 
BEGIN 

ns ~ AllocateString [s.maxlength+ 10]; 
AppendString [11S, s]; 
FreeString[s); 
RESuME[str ~ ns]: 
END]; 

allocates a larger string and updates the local variable whenever the string is about to overflow. Of 
course. the procedure AppendChar has to be written in such a way as to deal with the signal being 
resumed with a new string value. This application of signals can cause errors if there are any 
procedures between the signaller and the catcher that have their own idea about the location of the 
string. One possible fix (if such situations are possible) is to have a second signal 

StringMoved: SIGNAL [old new: STRING] = CODE; 

that is raised by AppendChar after StringBoundsFault is resumed. 

The presence or absence of the ComponentList depends on whether the signal caught is declared 
to return values. In a Catch whose ExpressionList contains more than one signal, one can 
RESUME only if all signals have equivalent types. For example: 

ASig: TYPE = SIGNAL RETURNS [CARDINAL]: 

sig1: ASig: 
sig2: ASig; 
sig3: SIGNAL RETURNS [CARDINAL]: 

sig4: SIGNAL; 

ENABLE 

BEGIN 

sig1, sig2 = > RESUME[3]: 

sigl, sig3 =) RESUME[O]; 

sigl, sig4=) RESUMEr1]: 

END; 

8.3. Signals within signals * 

--legal 
-- legal 
-- illegal 

What happens if, in the course of handling a signal. firstSignal. a catch phrase (or some procedure 
called by it) generates another signal, second Signal? Handling nested signal generation is almost 
exactly like non-nested signal propagation. Generating the signal will call Signaller (recursively. 
since . the instance of Signaller responsible for the first signal is still around). and it propagates the 



Mesa Language Manual 143 

new signal back through the call hierarchy by calling a second activation of Signaller, say 
.. Signaller2", When in the course of doing this it encounters the previous activation of Signaller 
("Signaller!"), then something different must be done. 

If firs/Signal is not the same as secolldSignal, .)"ignaller2 propagates it right through Signaller!, and 
all the activations beyond it are also given a chance to catch secolldSigllal, 

On the other hand, if secolldSignai = firs/Signal, then all of the routines whose frames lie beyond 
Signaller!, up to the frame containing the catch phrase called by Signallerl, have already had a 
chance to handle firs/Signal, so they are not given it again. In order to skip around that section of 
the call hierarchy, Signaller2 simply copies the appropriate state variables from Signallerl. Next. 
Signaller2 skips over the frame containing the catch phrase (by following its return link), and 
continues propagating secondSignal normally. 

For the programmer, the main import of nested signals is that one needs to consider, when writing a 
routine, not only what signals can be generated, directly or indirectly, by the called procedures, but 
also those which can be generated by catch phrases in that procedure or even the catch phrases of 
any calling procedures, also both directly or indirectly. 
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CHAPTER 9. 

PORTS AND CONTROL STRUCTURES * 

Mesa has, in addition to procedures, another mechanism by which programs may transfer control. 
This mechanism is called a PORT; PORTS allow separate modules or procedures to act as coroutines. 
When one calls a procedure and it returns, the procedure is finished: if the same operation is neeqed 
again, another call will create a new activation of it to perform that action. However, when a 
coroutine returns control, it does not finish and disappear. Calling it again only resumes it from 
where it left off. The advantage of a this scheme is that the coroutine may keep some of its state 
from call to call encoded in its program counter: i.e., if it is at a certain place in its code, then that 
place does not need to be encoded somehow and saved as a variable in· order to decide how to 
proceed when next called. 

Actually, as described later, PORTS are normally used in pairs, just like electrical plugs and sockets, 
one for each side of the connection. If two coroutines A and B are connected, what is seen by A as 
a call to B appears to B as a return from A, and vice-versa. Thus, both A and B regard the other as 
a facility to be called to accomplish some processing task. For instance, if ReadFile is a coroutine 
for reading characters from a file which are then given, one at a time, to another coroutine, its view 
is that it reads characters from the file and calls the other coroutine to process them (in some 
unspecified way). WrileFile, on the other hand, a coroutine for writing characters into a file, would 
caU a coroutine to get the next character to be written. Together these two coroutines could make a 
file copying program. 

A coroutine needs to be· able to send arguments and to receive results. The language facilities for 
doing this closely mirror procedure parameter and result lists. For example, a PORT over which 
ReadFile could send a character would be declared by ReadFile as 

Out: PORT[ch: CHARACTER]; 

The port over which WriteFile receives a character, and which could be connected to ReadFile's Out 
PORT, is declared as 

111: PORT RETURNS[CHARACTER]: 

There is only one other consequential difference between procedures and coroutines. A procedure 
can be called at any time because a new activation is created, which will always consume the 
arguments sent to it as soon as it begins. However, if two coroutines like ReadFile and WriteFile 
communicate, in order for the transfer of control and arguments to go smoothly, WriteFile must be 
prepared to receive a character when ReadFile sends it Coroutines are not parallel processes, and 
one has to be started before the other, so it is guaranteed that the first attempt at transferring control 
between ReadFile and WriteFile will not work smoothly. Fortunately, Mesa provides a mechanism 
for starting a whole set of interconnected coroutines to get them past this start-up transient (sec. 9.2). 
The most important property of the meChanism is that the coroutines themselves need never be 
concerned about the startup transient -- they are written as if it never happens. 
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9.1. Syntax and an example of PORTS 

The syntax for declaring a port is the following: 

PortTC .. -
PORT ParameterList ReturnsClause I 
RESPONDING PORT ParameterList ReturnsClause 
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The ParameterList and Retu rnsClause may both be empty, just as for procedures. 
RESPONDING PORTS are covered in section 9.3. 'Ibe syntax for making a call on a port is exactly the 
same as for calls on procedures (both as statements and functions). 

The following pair of program modules implement the coroutines ReadFile and WriteFile described 
earlier; they use the ports Out and In, respectively: 

DIRECTORY 
FileDefs: FROM "filedefs" USING [ 

NUL, FileHandle. FileAccess. Open File. ReadChar. EndOjFile. CloseFile]; 

ReadFile: PROGRAM[name: STRING] IMPORTS FileDefs = 
BEGIN OPEN FileDefs; 
Out: PORT[ch: CHARACTER]: 
input: FileHandle; 
input ... OpenFile[name: name, access: FileAccess[ReadJ]; 
STOP; 
UNTIL EndOjFil€{input] 

DO 
Ou~ReadChQ1i:inpu/]]; -- PORT call: send a character from the file 
ENDLOOP; 

Close File[ input]: 
Ou~NUL]; -- send a null character to indicate end-of-file 
END. 

DIRECTORY 
FileDefs: FROM "filedefs" USING [ 

NUL. FileHandle. FileAccess. OpenFile. WriteChar, CloseFile]; 

WriteFile: PROGRAM[name: STRING] IMPORTS FileDefs = 
BEGIN OPEN FileDefs: 
In: PORT RETURNS[ch: CHARACTER]; 
char: CHARACTER: 
output: File Handle: 
output ... OpenFile[name: name, access: FileAccess[New]]; 
STOP; 
DO -- until In sends a NUL 

char ... IIlD; 
IF char = NUL THEN EXIT; 
WriteChar[output, char]; 
ENDLOOP; 

C loseFile[ output]; 
END. 

-- PORT call: get a character 
-- check for end of stream 

-- write the character into the file 

ReadFile first initializes its variables and opens the input file (with Read access). When it is 
restarted. it loops, reading characters from the file and sending them over its Out PORT until it 
reaches the end of the input file; then it sends a single NUL character. If it regains control, it 
simply returns. . 
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WriteFile, after creating and opening a new output file, loops, reading characters from the port III 
and writing them to the output. If it receives a NUL character, it closes the output file and returns. 
Thus, if ReadFile and WriteFile's ports were connected so that they were working together as 
coroutines. ReadFile would never regain- control after sending the NUL character. 

9,2. Creating and starting coroutines 

To set up the abO\e two programs as coroutines. their respective POftS must be connected. and then 
they must be started individually, with the start-up transient handled, This is usually done by 
another. controlling program like the following: 

DIRECTORY 
TrapDejs: 
IODejs: 
ReadFile: 
WriLeFile: 

FROM "trapdefs" USING [PortFaull], 
FROM "iodefs" USING {ReadLine, WriLeString] , 
FROM "readfile", 
FROM "writefile"; 

CopyMaker. PROGRAM IMPORTS IODejs, reader: ReadFile, writer. WriteFile = 
BEGIN OPEN IODejs; 
input: STRING +- [256]; 
output: STRING +- [256]; 
-- first ask the user for the names of the input and output files 
WriteString["Name of input file: "]; ReadLine[inpuL]; 
WriteString["Name of output file: "]; ReadLim{oUlpUl]; 
-- create and initialize instances of ReadFileand WriteFile; 
ST ART reade7finput]; 
START writer[output]; 
-- connect their ports and then restart them to get them synchronized 
CONNECT writer. In TO reader. Out: 
CONNECT reader.Oul TO wriLer.In; 
RESTART wriler[ ! TrapDejs.PortFault => CONTINUE]; 
RESTART readel{ ! TrapDe/s.PortFault => ERROR]; 
END. 

Logically, CopyMaker is a very simple program. However, it must know how to start ReadFile and 
WriteFile and how to connect their ports (and it must handle the signal PortFault -- see below). 
This is typical of the use of PORTS: the coroutines themselves do not know (nor should they care) 
exactly which other program(s) they are connected to; each PORT is viewed as a virtual facility to be 
called to perform some task. such as providing the next input or taking an output. 

CopyMaker first requests the names for the input file to be copied and the output file to which it 
should be copied. The names are read into the string variables input and output. Then an instance 
of ReadFi/e is made and initialized. Similarly. an instance of WriteFile is created and STARTed. 
When the NEWS are performed, pointers to the instances are stored (into reader and writer above). 

After both instances have been created and initialized, CopyAfaker performs the operations to get 
them past the startup transient. First it connects writer.In (Le., WriteFile's In PORT) to reader. Out: 
this simply amounts to storing a pointer in writer.ln to the PORT reader.Out. Then it connects 
reader. Out to wriler.In. 

Fine point: 

The STARTs must be performed before the ports are connected. In general, it is not legal to access a module's 
variables before it has been started (and the variables have been initialized). Calls to procedures are allowed. 
however: they are handled by the start trap mechanism (sec. 7.8.3). 
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Once the CONNECTS are done, all that remains is to get the two coroutines synchronized. First. 
WrileFile is REsTARTed: it makes a port call on III to get the first character to be written into the 
file. 

'TIle port call almost works because In is connected to another port. But. since ReadFile is not 
waiting for control to return over its Oul port, it doesn't quite work. This fact is detected because a 
part of the underlying representation of Out indicates that no instance is pending on it (Le., waiting 
to receive control via OU/). This results in a trap, which is quickly converted into the ERROR 
PortFault. CopyMaker clearly anticipated this as part of the normal startup transient (as evidenced 
by the presence of the catch phrase on the START statement). The CONTINUE in that catch phrase 
means: "forget about this signal and continue execution at the next statement in Copy Maker." 

The next action taken by CopyMaker is to RESTART ReadFile. ReadFile reads the first charact~r 
from the input file and attempts a port call on Out. passing the character as its argument. This is 
the end oj startup transients: this port call works. It works because WriteFile was left pending on In 
when it attempted to call it, even though that call did not go through completely. Since WriteFile is 
pending on In, it resumes. stores the argument in char, and proceeds. From now on, port calls 
between ReadFile and WriteFile will go smoothly, with no further intervention by CopyMaker. 
(Moreover, a port call is more efficient than a procedure call because no frames are allocated and 
deallocated in the process). 

When there are no more characters in the input file, ReadFile sends a final NUL character which 
causes WriteFile to close the output file and to return. This returns control to CopyMaker, who, in 
this example, also returns. . 

The above description skipped one or two important details of the startup process and port calls. 
The next section corrects those omissions and discusses the underlying representation of ports. 

9.2.1. The CONNECT statement 

The first CONNECT statement in CopyMaker is equivalent to the following (illegal) assignment: 

wriler.ln.link +- @reader.Out; 

This assignment is illegal because. at the language level, a PORT does not look like a record with a 
link component. Nevertheless, the code produced by the compiler for the CONNECT statement in 
CopyMaker performs exactly this assignment (the compiler is allowed to treat PORTS in terms of their 
underlying representations, without regard to type' - it implements type checking). Note that 
CONNECT is not a symmetric operation: it only connects in one direction. 

The syntax for CONNECT is the following: 
ConnectStmt :: = CONNECT expression TO expression 

These expressions must both be valid leftSides. The first expression must conform to some PORT 
type, and the second may conform to either a PORT or a PROCEDURE type (see sec. 9.2.2 for a 
discussion of pons connected to procedures). 

The types of the two expressions must be port-compatible. To be port-compatible, the result list of 
one must be compatible (see definition in sec. 5.2) with the parameter list of the other, and vice 
versa. This basically says that the first port sends what the second expects to receive. and the second 
sends what the first expects to receive. 

Fine point: 

In the present compiler. the CONNECT statement is not implemented 
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9:1.1. tow-level actions during a PORT call 

A PORT is represented as a record with two components, one of which is a pointer to another PORT, 

and one of which points to a frame (the frame which is pending on that PORT). Its. definition is: 

Pon: TYPE = MACHINE DEPENDENT RECORD 

[ 
frame: POINTER TO Frame, -- internal view of a frame 
link: SELECT OVERLAID * FROM 

Ilull => [value: NullControlLink], 
port = > [porrDesc: POINTER TO Port}, 
procedure = > [procDesc: ProcedureDescriptor), 
ENDCASE 

We will not discuss the internal fonnat of the types Frame. ProcedureDescriptor, or Nul/ControlLink 
here. The first two are the underlying representations for a frame and a procedure value, 
respectively. The last is just a special value which is used to initiate a trap if the port is used 
without having been connected first. 

The variant part of a Port distinguishes three cases (how these cases are identified is a function of 
the. underlying implementation). The null case is how a Port which has not been connected is 
represented; it is what causes a trap if a call on the port is made before it is connected (this is called 
a linkage fault). If the Pori is connected to another Port (the normal case), then the port variant 
holds. 

Procedure calls, port calls, anq returns are all examples of control transfers: each suspends the 
execution of one activation and transfers control to another. They also perform other actions, such 
as creating or destroyiIlg frames, etc. Every control transfer from one activation to another has a 
source control link and a destination control link. By control link we mean a procedure value, a 
pointer to a port, or a pointer to a frame. 

All the high level control transfers in Mesa are built from one common, low-level mechanism called 
XFER, which effects the transfer from a source to a destination. In fact. it is possible to bind any 
form of control link. to any other; thus, if the program uses a port, it could be bound to a 
procedure, and calls on the port would actually result in calls on the proc.edure. A RETURN from the 
procedure would cause control to come back in through the port Similarly, a procedure value could 
contain a pointer to a port, in which case calls on that "procedure" would actually result in a port 
transfer via the destination port to the coroutine pending on it. 

The common part of a Port record is used when control is returning over a PORT. When a coroutine 
does a pan call and is suspended, a pointer to its frame is assigned to the frame component of that 
port. Then, when control returns over that port (usually because of a port call on the pan to which 
it is connected), the frame field is used to locate the instance which is to be resumed. 

The value contained in the frame component may indicate that it is null. If so. a cOlltrol fault trap 
will be generated should a transfer using that port ever occur. This condition can arise for two 
different reasons: 

(1) Due to startup transients. the instance which would normally be pending on that port is not. 

(2) There is a genuine error in the way that a configuration of coroutines has been constructed, 
and control is attempting to "loop back" into a coroutine. The simplest example of this 
situation is the following: consider a coroutine A with two pons, pI and p2. If pI were 
connected to pI, then a port call on pI would clearly result in a. control fault when pI was 
reached in the call, since A cannot be pending on both pI and p2 simultaneously. 
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The action taken on a control fault during a port call is described in the next section. 

There is one last important detail about a port call: as part of the action of returning to a port, its 
link is set to point at the source port if the return is actually part of a port call. 'Ibis constitutes an 
indirect return link. However, if the return is from a procedure to which the port is bound, then the 
link field is not changed. This is so that the procedure value in the port is not destroyed: thus. 
future calls on that port will always result in' new activations of that procedure. 

Storing an indirect return link in the link field of a destination port means that the next port call on 
it will cause control to return via the port from which control most recently arrived. Using this, one 
can write coroutines that may be invoked by more than one coroutine connected to a given port: 
control will always return to the last coroutine which sent control over that port. For instance, the 
coroutine WriteFile above could be given its input stream of characters from many sources. If the 
system procedures ReadLine and WriteString both had ports connected to the port In in an instance 
of WriteFile, then everything typed to the user and typed by him would be recorded in a typescript 
of his interactions with the system. 

9.2.3. Control faults and linkage faults 

When a control or a linkage fault occurs, Mesa changes the trap into the ERROR PortFault or 
LinkageFault, respectively. These signals are part of a Mesa system interface TrapDejs and should 
be imported from there by any program, such as CopyMaker, which configures coroutines. In 
TrapDeJs they are defined as follows: 

PortFault. LinkageFault: ERROR; 

Generally, programs should not handle the LinkageFault signal; ports should be properly connected 
before they are used. We include it here only for completeness (the fine point at the end of this 
section discusses LinkageFaults further). 

These signals. unlike most other signals, are not passed initially to the instance which caused the 
fault (call it the culprit), but rather are given first to its owner: the frame to which the culprit's 
return link points. This is so that the owner may catch the signal and cause an UNWIND without the 
culprit's frame being destroyed as it would normally be. In the previous example. CopyMaker is the 
owner and ReadFile and WriteFile are possible culprits. 

Note: if the owner does not catch the PortFault or the LinkageFault signal. it may possibly be 
unwound itself. This would leave the culprit's return link pointing to an invalid address. because the 
owner's frame would have been freed. 

The standard action taken by the owner when receiving a PortFault while starting a coroutine is to 
press on and start the other members of the configuration. CopyMaker follows this pattern; when it 
starts the instance of WriteFile and a control fault is generated, it simply exits the catch phrase for 
PortFault and starts the instance of ReadFile. This is the recommended way to start configurations of 
coroutines. 

Fine point: 

If the source port in a port call is unbound (i.e.. not connected), a LinkageFault ERROR is generated. This 
cannot be handled in the same manner as a control fault. If the catcher of this Signal causes an UNWIND. 
there will be no way to restart the activation which caused the linkage fault: it will be pending on a port, and 
REST ARTing it will cause an error. This difficulty makes starting coroutines before connecting their ports an 
ill-advised thing to do. It is much !>etter to do the CONNECTs first. and then start each activation. 
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9.2.4. Saving argum~nts during faults 

When a port call faults, the instance which attempted the call is left pending on the source port 
before the trap is changed into the PortFault or LinkageFault signal. This is done by a Mesa 
procedure called the FaultHandler. which is caned in response to the trap. In the case of starting 
wriJer above. this procedure did the following: 

(1) It set the instance of WriteFile to be pending on its In port (the trap process provides 
information about which instance caused the trap. and what the source port was): 

(2) By some low-level control mechanisms. it invoked the Signaller (sec. 8.2) as if from the 
owner of writer and simultaneously did a RETURN. Thus, that activation of FaultHandler 
disappeared and the Signaller was invoked as a single action. 

Later, when reader called Out, control returned to writer via In, which continued normally because it 
was pending on Ill. To writer it appeared as if the first port call worked correctly. 

Reader's call on Out passed an argument along with control. If CopyMaker had started reader first, 
what would have happened to that argument? Given the above description of FaultHandler. the 
argument would have been lost: there were no provisions for buffering or saving arguments. 

To handle this, the FaultHandler buffers any arguments passed over a port on which a fault occurs. 
Instead of performing action (2) above, it actually does the following: 

(2') It buffers the arguments for the port call. makes it appear that it (the FaultHandler itself) is 
pending on the source port, then calls Signaller. but without destroying itself in doing so. 

For the following discussion, assume that the startup sequence in CopyMaker had been written as 
follows (the order of starting reader and writer has been inverted): 

-- connect their ports and .then restart them to get them synchronized 
CONNECT reader.Out TO writer. In; 
CONNECT writer. In TO reader.Out; 
RESTART reader{ ! TrapDefs.PortFault = > CONTINUE); 
RESTART writet{ ! TrapDefs.PortFault => ERROR); 
END. 

The re,oised version of FaultHandler would then do the following when writer was RESTARTed and 
tried its first call on In: 

The instance of FaultHandler which· had left itself pending on Out would have been 
resumed instead of reader. Faul/Handler would then have set reader.Out.frame so that reader 
was again pending on it. Finally, it would have transferred control back through writer.ln 
along with the arguments it had saved from the original call, destroying itself in the process. 

The only remaining question is: "How does the FauItHandler know whether or not arguments 
should be buffered?" This question is not trivial: for example, if every instance of FaultHandler 
buffered arguments for every trapped port call. including those for ports like In, extra "ghost" port 
calls would occur during startup. FaultHandler determines whether or not to save arguments by 
inspecting information left by the compiler in the object code of every poncall. This decision Is 
made by the compiler on the following basis: 

Arguments should only be buffered for a port which is nol a RESPONDING PORT and which 
does have a non-empty Parameierlist. 

The next section discusses RESPONDING PORTs. 
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9.3. RESPONDING PORTS * 

The nonnal analogy between a port and a procedure in tenns of passing arguments and receiving 
results breaks down in one case. If a port is used both for sending arguments and for receiving 
results. it might do so for either of the following two reasons: 

It sends arguments to be processed. and the returned results of the port call indicate how 
they were handled (this closely mirrors procedures). 

It receives data to be processed. and, having done so responds by sending results of the 
processing back over the same port (there is no procedure analog of this). 

The second case can not be distinguished from the first by usage in a program because the actions of 
sending and receiving over a pan are intrinsically intertwined with the notation for a Call. Thus, it 
would 110t be possible to detennine whether Both Ways was a nonnal or a responding port by 
looking at the following (partial) module: 

Both Ways: PORT[S: STRING] RETURNS[t: STRING]; 
aString: STRING; 
bString: STRING; 

aString ~ BothWays[bString]; 

To resolve this difficulty, the programmer may declare a port to be RESPONDING. For example, 

InOut: RESPONDING PORT[response: {okay, error}] RETURNS[input: STRING]; 

The module using InOu/ responds with either okay or notOkay to each string it has received 

If InOut faults the first time it is used. the Faul/Handler will not buffer the response value for that 
call. Since InOut must, for type confonnance, be connected to a port such as 

OulIn: PORT[oulput: STRING] RETURNs[response: {okay, error}], 

both initial argument lists (the response for the first call on InOul, and the output of the first call on 
OutIn) cannot be buffered. The keyword RESPONDING indicates which initial argument list should 
be discarded (/nOut's initial response, in this case). For similar reasons, a responding port may not 
be connected to a procedure, and two responding ports may not be connected together. 

Fine point: 

In the current compiler. RESPONDING PORTs are not implemented 
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CHAPTER 10. 

PROCESSES AND CONCURRENCY 

Mesa provides language support for concurrent execution of multiple processes. This allows 
programs that are inherently parallel in nature to be clearly expressed. The language also provides 
facilities for synchronizing such processes by means of entry to monitors and waiting on condition 
variables. . 

The next section discusses the forking and joining of concurrent process. Later sections deal with 
monitors, how their locks are specified, and how they are entered and exited. Condition variables 
are discussed. along with their associated operations. 

10.1. Concurrent execution, FORK and JOIN. 

The FORK and JOIN statements allow parallel execution of two procedures. Their use also requires 
the new data type PROCESS. Since the Mesa process facilities provide considerable flexibility. it is 
easiest to understand them by first looking at a simple example. 

10.1.1. A process example 

Consider an application with a front-end routine providing interactive composition and editing of 
input lines: . 

ReadLine: PROCEDURE [s: STRING] RETURNS [CARDINAL] = 
BEGIN 

c: CHARACTER; 

s.length ... 0; 
DO 

c'" ReadCha7{]; 
IF ControlCharacterfc] THEN DoAction[c] 
ELSE AppendChar[s,c]; 
IF c = CR THEN RETURN [s.length]; 
ENDLOOP; 

END; 

The call 

n ... ReadLine[buffer]; 

will collect a line of user type-in up to a CR and put it in some string named buffer. Of course. the 
caller cannot get anything else accomplished during the type-in of the line. If there is anything else 
that needs doing. it can be done concurrently with the type-in by forking to ReadLine instead of 
calling it: 
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P'" FORK ReadLin£ibuffer): 

<concurrent computation) 

11 ... JOIN p: 

This allows the statements labeled <concurrent computation) to proceed in parallel with user typing 
(clearly, the concurrent computation should not reference the string buffer). The FORK construct 
spawns a new process whose result type matches that of ReadLine. (ReadLine is referred to as the 
"root procedure" of the new process.) 

p: PROCESS RETURNS [CARDINAL): 

Later, the results are retrieved by the JOIN statement, which also deletes the spawned process. 
Obviously, this must not occur until both processes are ready (Le. have reached the JOIN and the 
RETURN, respectively); this rendevous is synchronized automatically by the process facility .. 

Note that the types of the arguments and results of ReadLine are always checked at compile time, 
whether it is called or forked. 

The one major difference between calling a procedure and forking to it is in the handling of signals; 
see section 10.5.l for details. . 

/0.1.2. Process language constructs 

The declaration of a PROCESS is similar to the declaration of a PROCEDURE, except that only the 
return record is specified. The syntax is formally specified as follows: 

TypeConstructor .. - ... I ProcessTC 

ProcessTC 

Retu rnsClause 

ResultList 

.. -

.. -.. -
PROCESS ReturnsClause 

empty I RETURNS ResultList 

FieldList 

-- from sec. 5.l. 

-- from sec. 5.1. 

Suppose that f is a procedure and p a process. In order to fork f and assign the resulting process to 
p, the Retu rnClause of f and that of p must be compatible, as described in sec 5.2. 

The syntax for the FORK and JOIN statements is straightforward: 

Statement .. - ... I JoinCall 

Expression .. - ... I ForkCall1 JoinCall 

ForkCall .. - FORK Call 

JoinCall .. - JOIN Call .. -
Call .. - (see sections 5.4 and 8.2.1) .. -

The ForkCall always returns a value (of type PROCESS) and thus a FORK cannot stand alone as a 
statement. Unlike a procedure call, which returns a RECORD, the value of the FORK cannot be 
discarded by writing an empty extractor. The action specified by the FORK is to spawn a process 
parallel to the current one, and to begin it executing the named. procedure. 
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The JoinCali appears as either a statement or an expression, depending upon whether or not the 
process being joined has an empty ReturnsClause. It has the following meaning: When the 
forked procedure has executed a RETURN alld the JOIN is executed (in either order). 

the returning process is deleted. and 

the joining process receives the results. and continues execution. 

A catch phrase can be attached to either a FORK or JOIN by specifying it in the Call. Note, 
nowever. that such a catch phrase does not catch signals incurred during the execution of the 
procedure: see section 10.5.1 for further details. . " 

There are several other important similarities with normal procedure calls which are worth noting: 

The types of all arguments and results are checked at compile time. 

There is no intrinsic rule against multiple activations (calls and/or forks) of the same 
procedure coexisting at once. Of course. it is always possible to write procedures which will 
work incorrectly if used in this way, but the mechanism itself does not prohibit such use. 

One expected pattern of usage of the above mechanism is to place a matching FORK/JOIN pair at the 
beginning and end of a single textual unit (Le. procedure. compound statement, etc.) so that the 
computation within the textual unit occurs in parallel with that of the spawned process. This style is 
encouraged, but is not mandatory; in fact, the matching FORK and JOIN need not even be done by 
the same process. Care must be taken. of course, to insure that each spawned process is joined only 
once, since the result of joining an already deleted process is undefined. Note that the spawned 
process always begins and ends its life in the same textual unit (Le. the target procedure of the 
FORK). 

While many processes will" tend to follow the FORK/JOIN paradigm. there will be others whose role is 
better cast as continuing provision of services. rather than one-time calculation of results. Such a 
"detached" process is never joined. If its lifetime is bounded at all, its deletion is a private matter, 
since it involves neither synchronization nor delivery of results. No language features are required 
for this operation: see the runtime dOCumentation for the description of the system procedure 
provided for detaching a process. 

10.2. Monitors 

Generally, when two or more processes are cooperating, they "need to interact in more complicated 
ways than simply forking and joining. Some more general mechanism is needed to allow orderly, 
synchronized interaction among processes. The interprocess synchronization mechanism provided in 
Mesa is a variant of monitors adapted from the work of Hoare, Brinch Hansen, and Dijkstra. The 
underlying view is that interaction among processes always reduces to carefully synchronized access 
to shared data. and that a proper vehicle for this interaction is one which unifies: 

- the synchronization 

- the shared data 

- the body of" code which performs the accesses 

The Mesa monitor facility allows considerable flexibility in its use. Before getting into the details, 
let us first look at a slightly over-simplified description of the mechanism and a simple example. 
The remainder of this section deals with the basics of monitors (more complex uses are described in 
section 10.4); WAIT and NOTIFY are described in section 10.3. 
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10.2.1. All ol'el1'iell' of monitors 

A monitor is a module instance. It thus has its own data in its global frame, and its own procedures 
for accessing that data. Some of the procedures are public. allowing calls into the monitor from 
outside. Obviously, conflicts could arise if two processes were executing in the same monitor at the 
same time. To prevent this, a monitor lock is used for mutual exclusion (Le. to insure that only one 
process may be in each monitor at anyone time). A call into a monitor (to an entry procedure) 
implicitly acquires its lock (waiting if necessary). and returning from the monitor releases it. The 
monitor lock serves to guarantee the integrity of the global data, which is expressed as the monitor 
invariant -- i.e an assertion defining what constitutes a "good state" of the data for that panicular 
monitor. It is the responsibility of every entry procedure to restore the monitor invariant before 
returning, for the benefit of the next process entering the monitor. 

Things are complicated slightly by the possibility that one process may enter the monitor and find 
that the monitor data, while in a good state, nevenheless indicates that that process cannot continue 
until some other process enters the monitor and improves the situation. The WAIT operation allows 
the first process to release the monitor lock and await the desired condition. The WAIT is perfomied 
on a condition variable, which is associated by agreement with the actual condition needed. When 
another process makes that condition true, it will perform a NOTIFY on the. condition variable, and 
the waiting process will continue from where it left off (after reacquiring the lock, of course.) 

For example, consider a fixed block storage allocator providing two entry procedures: Allocate and 
Free. A caller of Allocate may find the free storage exhausted and be obliged to wait until some 
caller of Free returns a block of storage. 

Storage Allocator. MONITOR = 
BEGIN 
StorageAvailable: CONDITION; 
FreeList: POINTER; 

Allocate: ENTRY PROCEDURE RETURNS [p: POINTER] = 
BEGIN 
WHILE FreeList = NIL DO 

WAIT StorageAvailable 
ENDLOOP; 

p'" FreeList; FreeList ... p.llex,; 
END; 

Free: ENTRY PROCEDURE [p: POINTER] = 
BEGIN 
p.llext ... FreeList; FreeList ... p; 
NOTIFY StorageAvailable 
END; 

END. 

Note that it is clearly undesirable for two asynchonous processes to be executing in the 
StorageAllocator at the same time. The use of entry procedures for Allocate and Free assures 
mutual exclusion. The monitor lock is released while WAITing in Allocate in order to allow Free to 
be called (this also allows other processes to call Allocate as well, leading to several processes 
waiting on the queue for StorageAvailable). 



156 Chapter 10: Processes and Concurrency 

10.2.2. Monitor locks 

The most basic component of a monitor is its monitor lock. A monitor lock is a predefined type, 
which can be thought of as a small record: 

MONITORLOCK: TYPE = PRIVATE RECORD [locked: BOOLEAN. queue: Queue]; 

The monitor lock is private; its fields are never accessed explicitly by the Mesa programmer. 
Instead, it is used implicitly to synchronize entry into the monitor code, thereby authorizing access 
to the monitor data (and in some cases, other resources, such as 110 devices, etc.) The next .~ection 
describes several kinds of monitors which can be constructed from this basic mechanism. In all of 
these, the idea is the same: during entry to a monitor, it is necessary to acquire the monitor lock by: 

l. waiting (in the queue) until: locked = FALSE, 

2. setting: locked 4- TRUE. 

10.2.3. Declaring monitor modules, ENTRY and INTERNAL procedures 

In addition to a collection of data and an associated lock, a monitor contains a set of procedures that 
do operations on the data. Monitor modules are declared much like program or definitions modules; 
for example: 

M: MONITOR [arguments] = 
BEGIN 

END. 

The procedures in a monitor module are of three kinds: 

Entry procedures 

Internal procedures 

External procedures 

Every monitor has one or more entry procedures; these acquire the monitor lock when called, and 
are declared as: c 

P: ENTRY PROCEDURE [arguments] = ... 

The entry procedures will usually comprise the set of public procedures visible to clients of the 
monitor module. (There are some situations in which this is not the case; see external procedures, 
below). The usual Mesa default rules for PUBLIC and PRIVATE procedures apply. 

Many monitors will also have intemal procedures: common routines shared among the several entry 
procedures. These execute with the monitor lock held, and may thus freely access the monitor data 
(including condition variables) as necessary. Internal procedures should be private, since direct calls 
to them from outside the monitor would bypass the acquisition of the lock (for monitors 
implemented as multiple modules, this is not quite right; see section 10.4, below). internal 
procedures can be called only from an entry procedure or another internal procedure. They are 
declared as follows: 

Q: INTERNAL PROCEDURE [arguments} = ... 



Mesa Language Manual 157 

'Il1e attributes ENTRY or INTERNAL may be specified on a procedure only in a monitor module. 
Section lO.2.4 describes how one declares an interface for a monitor. 

Some monitor modules may wish to have external procedures. These are declared as normal non­
monitor procedures: . 

R: PROCEDURE [arguments] = ... 

Such procedures are logically outside the monitor, but are declared within the same module for 
reasons of logical packaging. For example. a public external procedure might do some preliminary 
processing and then make repeated calls into, the monitor proper (via a private entry procedure) 
before returning to its client. Being outside the monitor, an external procedure must not reference 
any monitor data (including condition variables), nor call any internal procedures. The compiler 
checks for calls to internal procedures and usage of the condition variable operations (WAIT, NOTIFY, 

etc.) within external procedures, but does not check for accesses to monitor data. 

A fine point: 

Actually, unchanging read-only global variables may be accessed by external procedures: it is changeable monitor 
data that is strictly off-limits. 

Generally speaking, a chain of procedure calls involving a monitor module has the general form: 

Client procedure -- outside module 

'" External procedure(s) -- inside module but outside monitor 

'" Entry procedure -- inside monitor 

'" Internal procedure(s) -- inside monitor 

Any deviation from this pattern is likely to be a mistake. A useful technique to avoid bugs and 
increase the readibility of a monitor module is to structure the source text in the corresponding 
order: 

M: MONITOR = 
BEGIN 

<External procedures) 
<Entry procedures) 
<Internal procedures) 
<Initialization (main-body) code) 
END. 

10.2.4. Interfaces to monitors 

In Mesa, the attributes ENTRY and INTERNAL are associated with a procedure's body, not with its 
type. Thus they cannot be specified in a DEFINITIONS module. Typically, internal procedures are not 
exported anyway, although they may be for a multi-module monitor (see section 10.4.4). In fact, the 
compiler will issue a warning when the combination PUBLIC INTERNAL occurs. 

From the client side of an interface, a monitor appears to be a normal program module, hence the 
keywords MONITOR and ENTRY do not appear. For example, a monitor M with entry procedures P 
and Q might appear as: 
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AI Deft: DEFINITIONS = 
BEGIN 
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AI: PROGRAM [arguments]: 
P. Q: PROCEDURE [arguments] RETURNS [results]: 

END. 

10.2.5. Interactions of processes and monitors 

One interaction should be noted between the process spawning and monitor mechanisms as defined 
so far. If a process executing within a monitor forked to an internal procedure of the same monitor, 
the result would be two processes inside the monitor at the same time. which is the exact situation 
that monitors are supposed to avoid. The following rule is therefore enforced: 

A FORK may have as its target any procedure except an internal procedure of a moni~or. 

A fine point: 

In the case of a multi-module monitor (see section 10.4.4) calls to other monitor procedures through an interface 
cannot be checked for the INTERNAL attribute, since this information is not available in the interface (see 
section 10.2.4). 

10.3. Condition Variables 

Condition variables are declared as: 

c: CONDITION: 

The content of a condition variable is private to the process mechanism; condition variables may be 
accessed only via the operations defined below. It is important to note that it is the condition 
variable which is the basic construct; a condition (Le. the contents of a condition variable) should not 
itself be thought of as a meaningful object; it may not be assigned to a condition variable, passed as 
a parameter, etc. 

10.3.1. Wait. noti/)'. and broadcast 

A process executing in a monitor may find some condition of the monitor data which forces it to 
wait until another process enters the monitor and improves the situation. This can' be accomplished 
using a condition variable. and the three basic operations: WAIT, NOTIFY, and BROADCAST. defined by 
the following syntax: 

Statement 

WaitStmt 

NotifyStmt 

.. -.. -

.. -.. -

... I WaitStmt I NotifyStmt 

WAIT Variable OptCatchPhrase 

NOTIFY Variable I BROADCAST Variable 

A condition variable c is always associated with some Boolean expression describing a desired state 
of the monitor data, yielding the general pattern: 

Process waiting for condition: 

WHILE -BooleanExpression DO 

WAIT C 

ENDLOOP; 



Mesa Language Manual 159 

Process making condition tme: 

make BooleanExp ression true; -- i.e. as side effect of modifying global data 
NOTIFY c: 

Consider the storage allocator example from section 10.2.1. In this case. the desired 
BooleanExpression is "FreeList # NIL". "111ere are several important points regarding WAIT and 
NOTIFY. some of which arc illustrated by that example: 

WAIT always releases the lock while waiting. in order to allow entry by other processes. 
including the process which will do the NOTIFY (e.g. Allocate must not lock out the caller of 
Free while waiting. or a deadlock will result). Thus, the. programmer is always obliged to 
restore the monitor invariant (return the monitor data to a "good state") before doing a 
WAIT. 

NOTIFY, on the other hand. retains the lock, and may thus be invoked without restoring the 
invariant; the monitor data may be left in in an arbitrary state, so long as the invariant is 
restored before the next time the lock is released (by exiting an entry procedure, for 
example). 

A NOTIFY directed to a condition variable on which no one is waiting is simply discarded. 
M9reover, the built-in test for this case is more efficient than any explicit test that the 
programmer could make to avoid doing the extra NOTIFY. (Thus, in the example above, Free 
always does a NOTIFY, without attempting to determine if it was actually needed.) 

Each WAIT must be embedded in a loop checking the corresponding condition. (E.g. 
Allocate, upon being notified of the StorageAvailable condition, still loops back and tests 
again to insure that the freelist is actually non-empty.) This rechecking is necessary because 
the condition, even if true when the NOTIFY is done, may become false again by the time the 
awakened process gets to run. (Even though the freelist is always non-empty when Free 
does its NOTIFY, a third process could have called Allocate and emptied the freelist before 
the waiting process got a chance to inspect it.) 

Given that a process awakening from a WAIT must be careful to recheck its desired 
condition, the process doing the NOTIFY can be somewhat more casual about insuring that 
the condition is actually true when it does the NOTIFY. This leads to the notion of a covering 
condition variable, which is notified whenever the condition desired by the waiting process is 
likely to be true: this approach is useful if the expected cost of false alarms (i.e. extra 
wakeups that test the condition and wait again) is lower than the cost of having the notifier 
always know precisely what the waiter is waiting for. 

The last two points are somewhat subtle, but quite important: condition variables in Mesa act as 
suggestions that their associated Boolean expressions are likely to be true and should therefore be 
rechecked. They do not guarantee that a process, upon awakening from a WAIT, will necessarily find 
the condition it expects. The programmer should never write code which implicitly assumes the 
truth of some condition simply because a NOTIFY has occurred. 

It is often the case that the user will wish to notify all processes waiting on a condition variable. 
This can be done using: 

BROADCAST c; 

This operation can be used when several of the waiting processes should run, or when some waiting 
process should run, but not necessarily the head of the queue. 
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Consider a variation of the StdingeAllocalor example: 

StorageAllocator. MONITOR = 
BEGIN 
SlorageAvailable: CONDITION; 

Allocate: ENTRY PROCEDURE [size: CARDINAL] RETURNS [p: POINTER] = 
BEGIN 
UNTIL <storage chunk of size words is available> DO 

WAIT StorageAvailable 
ENDLOOP; 

p +- <remove chunk of size words>; 
END; 

Free: ENTRY PROCEDURE [p: POINTER, size: CARDINAL] = 
BEGIN 

<put back storage chunk of size words> 

BROADCAST StorageAvailable 
ENO; 

END. 

In this example, there maybe several processes waiting on the queue of StorageAvailable, each with 
a different size requirement. It is not sufficient to simply NOTIFY the head of the queue, since that 
process may not be satisfied with the newly available storage while another waiting process might be. 
This is a case in which BROADCAST is needed instead of NOTIFY. 

An important rule of thumb: it is always correct to use a BROADCAST. NOTIFY should be used instead 
of BROADCAST if both of the following conditions hold: 

It is expected that there will typically be several processes waiting in the condition variable 
queue (making it expensive to notify all of them with a BROADCAST), and 

It is known that the process at the head of the condition variable queue will always be the 
right one to respond to the situation (making the multiple notification unnecessary); 

, If both of these conditions are'met, a NOTIFY is sufficient, and may represent a significant efficiency 
improvement over a BROADCAST. The allocator example in section 10.2.1 is a situation in which 
NOTIFY is preferrable to BROADCAST. 

As described above. the condition variable mechanism, and the programs using it, are intended to be 
robust in the face of "extra" NOTlFYS. The next section explores the opposite problem: "missing" 
NOTlFYS. 

A fine point: 

When a program WAITs, it releases the monitor lock. When it returns from the wai~. it reacquires the lock. 
The address of the condition variable has to be calculated twice. If this address is obtained by a complicated 
expression, there is a subtle restriction. The address calculation cannot do a WAIT in the same process. In 
other words, consider the procedure 
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CondProc: PROCEDURE RETURNS [POINTER TO CONDITION]; 

If a program contains the statement 

WAIT CondProcOt 

then the execution of CondProc cannot WAIT. 

10.3.2. Timeouts 

161 

One potential problem with waiting on a condition variable is the possibility that one may wait "too 
long." There. are several ways this could happen, including: 

- Hardware error (e.g. "lost interrupt") 

- Software error (e.g. failure to do a NOTIFY) 

- Communication error (e.g. lost packet) 

To handle such situations, waits on condition variables are allowed to time out. This is done by 
associating a timeout interval with each condition variable, which limits the delay that a process can 
experience on a given WAIT operation. If no NOTIFY has arrived within this time interval, one will be 
generated autOmatically. The Mesa language does not currently have a facility for setting the 
timeout field of a CONDITION variable. See the runtime documentation for the description of the 
system procedure provided· for this operation. 

The waiting process will perceive this event as a normal NOTIFY. (Some programs may wish to 
distinguish timeouts from normal NOTIFYS; this requires checking the time as well as the desired 
condition on each iteration of the loop.) 

No facility is provided to time out waits for monitor locks. This is because there would be, in 
general, no way to recover from such a timeout. 

10.4. More about Monitors 

The next few sections deal with the full generality of monitor locks and monitors. 

1004.1. The LOCKS clause 

Normally, a monitor's data comprises its global variables, protected by the special global variable 
LOCK: 

LOCK: MONITORLOCK; 

This implicit variable is declared automatically in the global frame of any module whose heading is 
of the form: 

AI: MONITOR [arguments] 
IMPORTS 

EXPORTS •.• = 

In such a monitor it is generally not necessary to mention LOCK explicitly at all. For more general 
use of the monitor mechanism, it is necessary to declare at the beginning of the monitOr module 
exactly which MONITORLOCK is to be acquired by entry procedures. This declaration appears as pan 
of the program type constructor that is at the head of the module. The syntax is as follows: 
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ProgramTC :: = ... I MONITOR ParameterList ReturnsClause LocksClause 

LocksClause :: = empty I LOCKS Expression I 
LOCKS Expression USING identifier: TypeSpecification 

If the LocksClause is empty. entry to the monitor is controlled by the distinguished variable 
LOCK (automatically supplied by the compiler). Otherwise. the LO'cksClause must designate a 
variable of type MONITOR LOCK. a record containing a distinguished lock field (see section 10.4.2). or a 
pointer that can be dereferenced (perhaps several times) to yield one of the preceding. If a 
LocksClause is present. the compiler does not generate the variable LOCK. 

If the USING clause is absent, the lock is located by evaluating the LOCKS expression in the context of 
the monitor's main body; Le .. the monitor's parameters. imports, and global variables are visible, as 
are any identifiers made accessible by a global OPEN. Evaluation occurs upon entry to, and again 
upon exit from. the entry procedures (and for any WAITS in entry or internal procedures). The 
location of the designated lock can thus be affected by assignments within the procedure to variables 
in the LOCKS expression. To avoid disaster, it is essential that each reevaluation yield a designator pf 
the same MONITORLOCK. This case is described further in section 10.4.4. 

If the USING clause is present, the lock is located in the following way: every entry or internal 
procedure must have a parameter with the same identifier and a compatible type as that specified in 
the USING clause. The occurrences of that identifier in the LOCKS clause are bound to that 
procedure parameter in every entry procedure (and internal procedure doing a WAIT). The same care 
is necessary with respect to reevaluation; to emphasize this, the distinguished argument is treated as 
a read-only value within the body of the procedure. See section 10.4.5 for further details. 

10.4.2. Monitored records 

For situations in which the monitor data cannot simply be the global variables of the monitor 
module, a monitored record can be used: 

r: MONITORED RECORi) [x: lNTEGER, ••. ]; 

A monitored record is a normal Mesa record, except that it contains an automatically declared field 
of type MONITORLOCK. As usual. the monitor lock is used implicitly to synchronize entry into the 
monitor code, which may then access the other fields in the monitored record. The fields of the 
monitored record must not be accessed except from within a monitor which first acquires its lock. 
In analogy with the global variable case, the monitor lock field in a monitored record is given the 
special name LOCK; generally. it need not be referred to explicitly (except during initialization; see 
section 10.6). . 

A fine point: 

A more general form of monitor lock declaration is discussed in section 10.4.6 

CAL"TIOX: If a monitored record is to be passed around (e.g. as an argument to a procedure) this 
. should always be done by reference using a POINTER TO MONITORED RECORD. Copying a monitored 
record (e.g. passing it by value) will generally lead to chaos. 

10.4.3. MoniLors and module instances 

Even when all the procedures of a monitor are in one module, it is not quite correct to think of the 
module and the monitor as identical. For one thing, a monitor module, like an ordinary program 
module, may have several instances. In the most straightforward case, each instance constitutes a 
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separate monitor. More generally, through the use of monitored records, the number of monitors 
may be larger or smaller than the number of instances of the corresponding module(s). The crucial 
observation is that in all cases: 

There is a one-to-aile corre5pondence between monitors and monitor locks. 

The generalization of monitors through the use of monitored records tends to follow one of two 
patterns: 

Multi-module monitors. in which several module instances implement a single monitor. 

Object monitors, in which a single module instance implements several monitors. 

A fine point: 

These two patterns are not mutually exclusive: multi-module object monitors are possible, and may occasionally 
prove necessary. 

10.4.4. Multi-module monitors 

In implementing a monitor, the most obvious approach is to package all the data and procedures of 
the monitor within a single module instance (if there are multiple instances of such a module, they 
constitute separate monitors and share nothing except code.) While this will doubtless be the most 
common technique, the monitor may grow too large to be treated as a single module. 

Typically, this leads to multiple modules. In this case the mechanics of constructing the monitor are 
changed somewhat. There must be a central location that contains the monitor lock for the monitor 
implemented by the multiple modules. This can be done either by using a MONITORED RECORD or 
by choosing one of the modules to be the "root" of the monitor. Consider the following example: 

BigMonRoot: MONITOR IMPORTS ... EXPORTS ..• = 
BEGIN 

monitorDatumI: .. . 
monitorDatum2: .. . 

pI: PUBLIC ENTRY PROCEDURE ... 

END. 

BigA/onA: MONITOR 

LOCKS root -- could equivalently say root. LOCK 
IMPORTS root: BigAfonRoot .. . EXPORTS ••• SHARES BigMollRoot = 
BEGIN 

p2: PUBLIC ENTRY PROCEDURE ••. 

X 4- root.monitorDatuml; -- access the protected data of the monitor 

END. 

BigMonB: MONITOR 

LOCKS root 
IMPORTS root: BigMonRoot . .. EXPORTS ... SHARES BigMollRoot = 
BEGIN OPEN root; 

p3: PUBLIC ENTRY PROCEDURE ... 
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moniforDatum2 +- ••• : -- access the protected data via an OPEN 

END. 

The monitor BigMo1l is implemented by three modules. The modules BigMonA an'd BigMolIB have 
a LOCKS clause to specify the location of the monitor lock: in this case, the distinguished variable 
LOCK in BigMonRoof. When any of the entry procedures pI. p2, or p3 is called, this lock is 
acquired (waiting if necessary), and is released upon returning. The reader can verify that no two 
independent processes can be in the monitor at the same time. 

Note that since the LOCK field is private in BigMonRoof. the modules BigMonA and BigMonB 
must SHARE BigMonRoot. Another way to accomplish access to the lock would be to specify a 
PUBLIC GlobalAccess (sec. 7.5) for BigMonRoot. 

Another means of implementing multi-module monitors is by means of a' MONITORED RECORD. Use 
of OPEN allows the fields of the record to be referenced without qualification. Such a monitor is 
written .as: 

MonilorData: TYPE = MONITORED RECORD [x: INTEGER, ••• ]; 

MonA: MONITOR [pm: POINTER TO MonitorData] 

LOCKS pm 
IMPORTS ••• 

EXPORTS ••• = 
BEGIN OPEN pm; 
P: ENTRY PROCEDURE [ ••• ] = 

BEGIN 

x+- x+ 1; -- access to a monitor variable 

END; 

END. 

The LOCKS clause in the heading of this module (and each other module of this monitor) leads to a 
MONITORED RECORD. Of course, in all such multi-module monitors, the LOCKS clause will involve 
one or more levels of indirection (POINTER TO MONITORED RECORD, etc.) since passing a monitor lock 
by value is not meaningful. As usual, Mesa will provide one or more levels of automatic 
dereferencing as needed. 

More generally, the target of the LOCKS clause can evaluate to a MONITORLOCK (Le. the example 
above is equivalent to writing "LOCKS pm. LOCK"). 

CAL"TIO:\": The meaning of the target expression of the LOCKS clause must not change between the 
call to the entry procedure and the subsequent return (Le. in the above example, cHanging pm would 
invariably be an error) since this would lead to a different monitor lock being released than was 
acquired, resulting in total chaos. 

There are a few other issues regarding multi-module monitors which arise any time a tightly coup~d 
piece of Mesa code must be split into multiple module instances and then spliced back together. For 
example: 

If the lock is in a MONITORED RECORD. the monitor data will probably need to be in the 
record also. While the global variables of such a multi-module monitor are covered by the 
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monitor lock, they do no1 constitute monitor data in the nonnal sense of the term. since they 
are not unifonnly visible to all the module instances. 

Making the internal procedures of a multi-module monitor PRIVATE will not work if one 
module wishes to call an internal procedure in another module. (Such a call is perfectly 
acceptable so long as the caller already holds the monitor lock). Instead, a second interface 
(hidden from the clients) is needed as part of the "glue" holding the monitor together. Note 
however, that Mesa cannot currently check that the procedure being called through the 
interface is an internal one (see section 10.2.4). 

A fine point: 

The compiler will complain about the PUBLIC INTERNAL procedures, but this is just a warning. 

1004.5. Object monitors 

Some applications deal with o~jects. implemented, say, as records named by pointers. Often it is 
necessary to insure that operations on these objects are atomic, i.e., once the operation has begun, 
the object will not be otherwise referenced until the operation is finished. If a module instance 
provides operations on some class of objects, the simplest way of guaranteeing such atomicity is to 
make the module instance a monitor. This is logically correct, but if a high degree of concurrency is 
expected, it may create a bottleneck: it will serialize the operations on all objects in the class, rather 
than on each of them individually. If this problem is deemed serious, it can be solved by 
implementing the objects as monitored records, thus effectively creating a separate monitor for each 
object. A single module instance can implement the operations on all the objects as entry 
procedures, each taking as a parameter the object to be locked. The locking of the parameter is 
specified in the module heading via a LocksClause with a USING clause. For example: 

ObjectRecord: TYPE = MONITORED RECORD [ . . . ]; 

ObjectHandle: TYPE POINTER TO ObjectRecord: 

ObjectManager. MONITOR [arguments] 
LOCKS object USING object: ObjectHandle 
IMPORTS 

EXPORTS . 

BEGIN 

Operation: PUBLIC ENTRY PROCEDURE [object: ObjectHandle, ... ] = 
BEGIN 

END; 

END. 

Note that the argument of USING is evaluated in the scope of the arguments to the entry procedures, 
rather than the global scope of the module. In order for this to make sense, each entry procedure, 
and each internal procedure that does a WAIT, must have an argument which matches exactly the 
name and type specified in the USING subclause. All other components of the argument of LOCKS 

are evaluated in the global scope, as usual. 

As with the simpler form of LOCKS clause, the target may be a more complicated expression and/or 
may evaluate to a monitor lock rather than a monitored record. For example: 

LOCKS p.q.LOCK USING p: POINTER TO ComplexRecord ... 
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CALTIO'i: Again, the meaning of the target expression of the LOCKS clause musl nol change between 
the call to the entry procedure and the subsequent return. (I.e. in the above example, changing p or 
p.q would almost surely be an error.) 

CALTIO'i: It is important to note that global variables of object monitors are very dangerous: they 
are 1/01 covered by a monitor lock, and thus do //01 constitute monitor data. If used at alL they must 
be set only at module initialization time and mllst be read-only thereafter. 

10.4.6. Explicil declaration of monilor locks 

It is possible to declare monitor locks explicitly: 

myLock: MON ITOR LOCK; 

The normal cases of monitors and monitored records are essentially stylized uses of this facility via 
the automatic declaration of LOCK, and should cover all but the most obscure situations. f.or 
example, explicit delarations are useful in defining MACHINE DEPENDENT monitored records. (Note 
that the LOCKS clause becomes mandatory when an explicitly declared monitor lock is used.) More 
generally, explicit declarations allow the programmer to declare records with several monitor locks, 
declare locks in local frames, and so on; this flexibility can lead to a wide variety of subtle bugs, 
hence use of the standard constructs whenever possible is strongly advised. 

/0.4.7 Inline ENTRY procedures 

The syntax for definitions modules allows the specification of a LOCKS clause. This is to allow inline 
ENTRY PROCEDURES to be declared in the interface. In order for this to make sense, the monitor 
lock must be an interface variable, or the procedures must deal with an object style monitor. No 
special restrictions (other than those that apply to all INLINE bodies) need be met when declaring 
inline ENTRY PROCEDURES within the program module of a monitor. 

10.5. Signals 

/0.5./. Signals and processes 

Each process has its own call stack, down which signals propagate.. If the signaller scans to the 
bottom of the stack and finds no catch phrase, the signal is propagated to the debugger. The 
important point to note is that forking to a procedure is different from calling it. in that the forking 
creates a gap across which signals cannot propagate. This implies that in practice, one cannot 
casually fork to any arbitrary procedure. The only suitable targets for forks are procedures which 
catch any signals they incur, and which never generate any signals of their own .. 

/0.5.2. Signals and monitors 

Signals require special attention within the body of an entry procedure. A signal raised with the 
monitor lock held will propagate without releasing the lock and possibly invoke arbitrary 
computations. For errors,' this can be avoided by using the RETURN WITH ERROR construct. 

RETURN WITH ERROR NoSuchObjeCI: 

Recall from Chapter 8 that this statement has the effect of removing the currently executing .frame 
from the call chain before issuing the ERROR. If the statement appears within an entry procedure: 
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the monitor lock is released before the error is started as well. Naturally, the monitor invariant must 
be restored before this operation is performed. 

For example, consider the following program segment: 

Failure: ERROR [kind: CARDINAL] = CODE; 

Proc: ENTRY PROCEDURE [ ... ] RETURNS [ct c2: CHARACTER] 

BEGIN 

ENABLE UNWIND = > . 

IF cond} THEN ERROR Failure[l]; 
IF cond2 THEN RETURN WITH ERROR Failure[2]: 

END; 

Execution of the construct ERROR Failure[l] raises a signal that propagates until some catch phr~se 
specifies an exit. At that time, unwinding begins; the catch phrase for UNWIND in Proc is executed 
and then Proc's frame is destroyed. Within an entry procedure such as Proc, the lock is held until 
the unwind (and thus through unpredictable computation performed by catch phrases). 

Execution of the construct RETURN WITH ERROR Failure[2] releases the monitor lock and destroys the 
frame of Proc before propagation of the signal begins. Note that the argument list in this construct 
is determined by the declaration of Failure (not by Proc's RETURNS clause). The catch phrase for 
UNWIND is not executed in this case. The signal Failure is actually raised by the system, after which 
Failure propagates as an ordinary error (beginning with Proc's caller), 

When the RETURN WITH ERROR construct is used from within an internal procedure, the monitor lock 
is not released; RETURN WITH ERROR will release the monitor lock in precisely those cases that 
RETURN will. 

Another important issue regarding signals is the handling of UNWINDS; any entry procedure that may 
experience an UNWIND must catch it and clean up the monitor data (restore the monitor invariant): 

P: ENTRY PROCEDURE [ •.. ] = 
BEGIN ENABLE UNWIND = > BEGIN <restore invariant> END; 

END; 

At the end of the UNWIND catchphrase, the compiler will append code to release the monitor lock 
before the frame is unwound. It is important to note that a monitor always has at least one cleanup 
task to perform when catching an UNWIND signal: the monitor lock must be released. To this end, the 
programmer should be sure to place an enable-clause on the body of every entry procedure that 
might evoke an UNWIND (directly or indirectly). If the monitor invariant is already satisfied. no 
further cleanup need be specified. but the null catch-phrase must be written so that the compiler will 
generate the code to unlock the monitor: 

BEGIN ENABLE UNWIND = > NULL; 

This should be omitted only when it js certain that no UNWINDS can occur. 

Another point is that signals caught by the OptCatchPhrase of a WAIT operation should be 
thought of as occurring after reacquisition of the monitor lock. Thus. like all other monitor code, 



168 Chapter 10: Processes and Concurrency 

catch phrases within a monitor are always executed with the monitor lock held. 

10.6. Initialization 

When a new monitor comes into existence. its monitor data will generally need to be set to some 
appropriate initial values: in particular. the monitor lock and any condition variables must be 
initialized. As usual. Mesa takes responsibility for initializing the simple common cases: for the cases 
not handled automatically, it is the responsibility of the programmer to provide appropriate 
initialization code, and to arrange that it be executed at the proper time. The two types of 
i'nitialization apply in the following situations: 

Monitor data in global variables can be initialized using the normal Mesa initial value 
constructs in declarations. Monitor locks and condition variables in the global frame will 
also be initialized automatically (although in this case, the programmer does not write any 
explicit initial value in the declaration). 

Monitor data in records must be initialized by the programmer. System procedures must be 
used to initialize the monitor lock and condition variables. See the runtime documentation 
for the descriptions of appropriate procedures. 

A tine point: 

If a variable containing a record is declared in a frame, it is normally possible to initialize it in the 
declaration (i.e. using a constructor as the initial value): however, this does not apply if the record 
contains monitor locks or condition variables, which must be initialized via calls to system procedures. 

Since initialization code modifies the monitor data, it must have exclusive access to it The 
programmer should insure this by arranging that the monitor not be called by its client processes 
until it is ready for use. 



APPENDIX A. Pronouncing Mesa 

'me following suggestions may be helpful in reading Mesa programs: 

For 

=> 

n: T 

tn·field 

pt 

@x 

[a..b] 
[a.. b) 
(a..b] 
(a..b) 
FORi+-j.k ... 

f[x. y; z] 

Read 

chooses 
gets 
n is a T 
tn'S field 

p's referent 
address of x 
(the interval) a through b 
(the interval) a up to b 
(the interval) above a through b 
(the interval) above a up to b 
for i getting first j, thereafter k 
f of x. y and z 
enabling 
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We leave as an exercise forthe reader the following statement, attributed to Oscar Hammerstein II. 

i +- weary AND Sick[trying]; 
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APPENDIX B. Programming COD\'entions 

The Mesa compiler only uses blanks. TABS. and carriage returns as separators for basic lexi~al units 
such as identifiers: extra ones do not hurt. Furthermore. it allows you to write identifiers in any 
combination of upper and lower case letters: the identifiers Alpha. ALPHA. alpha and AlphA are 
all legal (but different) Mesa identifiers. It is recommended that you adhere to a standard set of 
conventions for constructing identifiers and laying out programs. The recQmmended conventions are 
summarized below. . 

B.1. Names 

Most identifiers should be written in lower case, except that the first letter of each new "word" in 
the identifier should be capitalized. Thus. 

line 
firstLine 
firstLinePos 

This convention makes it easy to read identifiers wnich are made up of several words. (Note that 
Mesa does not allow spaces in identifiers.) 

Capitalize the first letter of type identifiers, procedure names, signal names, and module names. 

The following convention for constructing names has been used successfully to reflect their types: 

Choose a short (2-3 character) tag for each "basic type" you use: e.g., In for Line and co for Coordinate. You 
can use the tag as the type name, or not as you prefer. If you do, capitalize it 

Use the following prefixes. to construct tags for "derived" types (most of them reflect the intended use of some 
underlying type). 

p - pointer: pLn = pointer to a line 

i-index: iLn = index in an array of lines. 

1 - length 

n - number of items (total or count) 

Whether to use a prefix or to invent a new type tag. is a matter of judgment: depending on whether it is 
better to emphasize the relationship of this type to another. or to emphasize its individuality. 

If you need only one name of a given type in a scope, use the tag as its name: 

In : Ln: 
pLn : POINTER TO Ln. 

If you need several names. append mOdifiers to the tag (avoid· simple numbers like 1. 2,etc.): 

lnOld. InNew, InBuffer: Ln. 

The advantages of this scheme are three-fold: 

B.2. LayOUt 

the reader spends less time looking up the types .of identifierS: 

the writer spends less time· thinking up names: . 

if you have forgotten a name, there is a good ·chance. yOU· will b(!. able· to guess it .correctly if you 
know .. the tag vocabulary. . 

Write statements one per line, unless several simple statements which together per/orm a single 
jUnction will fit on one line. 

Indent the labels of a SELECT (induding the EfliOCAse) one level, and the statements a second level 
(unless a .statementwiU fit on the same line with the label).·· 
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Indent one level for the statement following a THEN or ELSE (unless it fits on the same line). Put 
THEN on the same line with IF, and don't indent ELSE with respect to IF. If the statement following 
ELSE is another IF, write both on the same line. 

Indent one level for each compound BEGIN-END, DO-ENDLOOP, or bracket pair in a record declaration. 

When the rules for IF and SELECT call for indenting a statement, do not indent an extra level for a 
BEGIN. 

It is fine to put a compound statement or loop on a single line if it will fit. 

If a statement won't fit on a single line, indent the continuation line(s) by two spaces. 

Among other things, these rules have the propeny that they allow a program to be easily convened 
to a form in which the bracketing is implied by the indentation.· 

B.3. Spaces 

The following rules for spaces should be broken when necessary, but are a good general guide: 

A space after a comma, semicolon, or colon, and none before 

No spaces inside brackets or parentheses 

No spaces around single-character operations: * - etc., except for ... 
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APPENDIX C. Alto/Mesa Machine Dependencies 

This appendix contains a number of machine-dependent constants and definitions for the Alto 
implementation of Mesa. 

C.l. Numeric limits 

On the Alto, the numeric limits are the following: 

FIRST[INTEGER] = - 32768 = - 215 and has internal representation 
LAST[INTEGER] = 32767 = 215 _1 and has internal representation 
LAST[CARDINAL] = 65535 = 216 _1 and has internal representation 
FIRST[LONG INTEGER] = - 2147483648 = - 231 

LAST[LONG INTEGER] = 2147483647 = 231_1 
LAST[LONG CARDINAL] = 4294967295 = 232_1 

C.2. AltoDefs 

100000B 
077777B 
177777B 

. A module similar to the one below is a part of the Alto/Mesa system and defines several useful 
constants. 

A/toDets: DEFINITIONS = 
BEGI.N 

word/ength: INTEGER = 16; •• Alto word length (bits) 
maxword: CARDINAL = 1777778; .. N.8. negative as 16 bit integer 
max/nteger: INTEGER = 0777n8; .. maximum positive number 

char/ength: INTEGER = 8; .. Alto character size (bits) 
maxcharcode: INTEGER = 3778; 
BYTE: TYPE = [O .. maxcharcode]; 
BytesPerWord. CharsPerWord: INTEGER = word/engthlcharlength; 
LogBytesPerWord. LogCharsPerWord: INTEGER = 1; 

PageSize: INTEGER = 256; •. Alto page size (words) 
LogPageSize: INTEGER = 8; 
BytesPerPage. CharsPerPage: INTEGER = PageSize*CharsPerWord; 
LogByt.esPerpage. LogCharsPerPage: INTEGER = LogPageSize + LogCharsPerWord; 

VML.lmit: CARDINAL = 1777778; .• maximum Alto VM address 
Address: TYPE = [O .. VMLimit]; 

MaxVMPage: INTEGER = 255; .. maximum Alto VM page number 
MaxFilePage: CARDINAl = 0777778; 

PageNumber: TYPE = [O .. MaxFilePage]; 
PageCount: TYPE = [O .. MaxVMPage + 1]; 

END. 
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('.3. ASCII character set alld ordering of character values 

The following list gives the characters of the ASCII character set in increasing order, accompanied 
by their literal representations. Control characters are represented as tao In addition, a number of 
special characters such as SP (space), DEL (rubout) are denoted by their generally accepted names. 

Octal Character Octal Character 
Value Name(s) Value Name(s) 

OOOC l'CL lOOC '@ 
OOIC 'tA IOIC 'A 
002C 'tB I02C 'B 
003C 'tC I03C 'C 
004C 'tD 104C ~D 
OOSC 'tE 10SC 'E 
006C 'tF 106C 'F 
007C 'to, BELL I07C '0 
OlOC 'tH, BS IlOC 'H 
0IlC 1'1 IlIC '1 
012C d, LF Il2C 'J 
OBC tK Il3C 'K 
0l4C tL Il4C 'L 
0ISC 'I'M, CR IlSC 'M 
0l6C 1'1'0 H6C 'N 
Ol7C 1'0 Il7C '0 
020C tP I20C 'P 
02lC tQ 12IC 'Q 
OllC tR IllC 'R 
023C tS 123C 'S 
024C tT 124C 'T 
025C tlJ 12SC 'U 
026C tV 126C 'V 
027C tW 127C 'W 
OJOC tX IJOC 'X 
03IC tY 13IC 'Y 
032C tZ 132C 'Z 
033C ESC 133C :, 
034C I34C 
03SC 13SC 'J 
036C I36C ''I' 
037C 137C ' .. 
O4OC ' , SPace I40C 
04IC '! I4IC 'a 
042C .. , 142C 'b 
043C '# I43C 'c 
1l44C 'S I44C 'd 
04SC '% I4SC 'e 
046C '& I46C 'f 
047C .. , a single quote 147C 'g 
OSOC '( ISOC 'h 
OSIC ') IS1C 'i 
OS2C '. .IS2C 1 OS3C '+ IS3C 
054C I54C 'I 
ossc , 

ISSC 'm 
056C I56C ·'n 
OS7C '/ IS7C '0 
O6OC '0 160C 'p 
061C 'I 16IC 'q 
062C '2 I62C 'r 
063C '3 163C 's 
064C '4 I64C 't 
06SC '5 165C 'u 
066C '6 I66C 'v 
067C 7 I67C 'w 
070C '8 170C 'x onc '9 17lC 'y 
072C " 172C 'z 
073C " 173C '{ 
074C '( 174C { 075C = 175C 
076C ') 176C 
077C '1 mc DEL 
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. CA. Alto/Mesa STRING procedures 

A module similar to the one below is a part of the Alto/Mesa system and defines useful procedures 
provided by the system for operating on strings. See the system documentation for its exact fonn. 

DIRECTORY AltoDefs: FROM "altodefs"; 

StringDefs: DEFINITIONS = 
BEGIN 

-- COM P I L E . TIM E CON S TAN T SAN 0 T Y PES 

SubString Descriptor: TYPE = RECORD [ 
base: STRING, 
offset, length: CARDINAL); 

SubString: TYPE = POINTER TO SubStringDescriptor; 

-- I N T E R F ACE I T EMS 

Overflow: SIGNAL; 
InvalidNumber: SIGNAL; 
StringBoundsFault: SIGNAL [s: STRING) RETURNS [ns: STRING); 

WordsForString: PROCEDURE [nchars: CARDINAL) RETURNS [CARDINAL); 

AppendChar: PROCEDURE [s: STRING, c: CHARACTER); 
AppendString: PROCEDURE [to. from: STRING); 
EqualString, Equa/Strings: PROCEDURE [s1, s2: STRING) RETURNS [BOOLEAN); 
EquivalentString. EquivalentStrings: PROCEDURE [s1, s2: STRING) RETURNS [BOOLEAN); 

AppendSubString: PROCEDURE[to: STRING, from: SubString); 
EqualSubString. Equa/SubStrings: PROCEDURE [s1. s2: SubString) RETURNS [BOOLEAN]; 
EquivalentSubString. Equiva/entSubStrings: PROCEDURE [s1. s2: SubString] RETURNS [BooLEAN1; 
DeleteSubString: PROCEDURE Is: SubString); 
UpperCase. LowerCase: PROCEDURE [CHARACTER) RETURNS [CHARACTER); 
StringToDecima/: PROCEDURE [STRING) RETURNS [INTEGER); 
StringToOcta/: PROCEDURE [STRING] RETURNS [UNSPECIFIED); 
StringToNumber: PROCEDURE [s: STRING. radix: CARDINAL) RETURNS [UNSPECIFIED); 
StringToLongNumber: PROCEDURE Is: STR1NG. radix: CARDINAL) RETURNS [LONG UNSPECIFIED); 
AppendDecima/: PROCEDURE [s: STRING, n:INTEGER); 
AppendOctat: PROCEDURE [s: STRING, n: UNSPECIFIED); 
AppendNumber: PROCEDURE [s: STRING. n: UNSPECIFIED. radix: CARDINAL); 
AppendLongDecimal: PROCEDURE [s: STRING, n: LONG INTEGER); 
AppendLongNumber: PROCEDURE [s: STRING. n: LONG UNSPECIFIED, radix: CARDINAL}; 

END. 
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APPENDIX D. Binder Extensions 

The Alto implementation of the Mesa binder provides two extensions for controlling the space 
occupied by Mesa programs at runtime. These are specified with the CPacking and Clinks 
clauses (section 7.7). 

D.I. Code packing 

It is possible to pack together the code for several modules into a single segment. 'Ibis is useful for 
two reasons: 

Since the code is allocated an integral number of pages, there is some wasted space in the 
last page ("breakage"). If several modules are combined into a single segment, the breakage 
is amortized over all the modules, and there is less waste on the average. 

All the modules will be brought into and out of memory together, as a unit; a referenc~ to 
any module in the pack will cause all the code to be brought in. Modules which are tightly 
coupled dynamically are good candidates for packing (for example, resident code should 
probably always be packed). 

Of course, it is possible to "over pack" a configuration; the segments might become so large that 
there will never be room in memory for more than one of them at a time (this should remind you of 
an overlay system). Packing is a tradeoff, and should be used with caution. 

D.l.l. Syntax 

The segments are specified at the beginning of the configuration by giving a list of the modules 
which comprise each one. Any number of PACK statements may appear. The scope of the packing 
specification is the whole configuration, and not subconfigurations or individual module instances, 
because there is at most one copy of a module's code in any configuration. 

Config Desc ription 
:: = Directory CPacking Configuration. 

CPacking .. - empty I CPackSeries j 

CPackList 

CPackSeries 

PACK IdList 

CPackList I CPackSeriesj CPackList 

Each PackList defines a single segment; the code for all the modules in the IdList will be packed 
into it. The identifiers in the IdList must refer to modules in the configuration. and not to module 
instances: it is the code and not the global frames that are being packed (the frames are always 
packed when they are allocated by the loader). 

It is illegal to specify the same module in more than one PackList. Even though there may be 
multiple instances of the module (i.e., multiple global frames) in the configuration, the code is 
shared by all of them, and therefore can only appear in one pack. 

Finally, it is perfectly fine to reach inside a previously bound configuration that is being instantiated 
and single out some or all of its modules for packing. Of course, you must know something about 
the structure of that configuration in order to do this. 
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D.I.2. RestriC/lolTS 

Obviously, the PACK statements apply only if the code is being moved to the output file: otherwise. 
the pack lists are ignored (and no warning message is given). This allows the programmer to debug 
the configuration without shuffling the code from tile to file. thereby sa,"ing time. When making the 
final version, the packing can be effected Vlith a binder switch. without having to modify the source 
of the configuration description. 

Once some modules have been packed together, they cannot be taken apart and repacked with other 
modules later on, when they are bound into some other configuration. 

Fine point: 

If a previously bound configuration contains a pack, referencing any module of the pack gets the whole thing. 
So it is possible to pack a module and a pack together. or even to pack two packs. It is never possible to 
unpack a pack. 

In general, code packing should be specified only to the extent that no unpacking will ever 'be 
desired. Once the packing is done, it can't be undone, unless you start over with the individual 
modules. 

D.2. External links 

In previous Mesa systems, links to the externals referenced by a program (imported procedures, 
signals, errors, frames, and programs) were always stored in the module's global frame. This allows 
each instance of a module to be bound differently, and it allows binding to be done at runtime 
Mthout modification of the module's code segment. However, it has two drawbacks: 

The links are only referenced by the module'S code, and are therefore not needed when the 
code is swapped out Hence, the links logically belong in the code segment. 

If two instances of a module are bound identically (the usual case), the links must be stored 
twice. 

I 

Fine Point: 

To determine the amount of space required for external links, see the compiler's typescript file. Each 
link occupies one word. 

The Mesa binder optionally places links in the code segment. This option is enabled by constructs 
in the configuration language, and is further controlled by binder and loader switches. 

D.2.1. Syntax 

For each component of a configuration, the link location is specified using the LINKS construct 
defined below. The default is frame links. 

CLinks :: = empty t LINKS : CODE I LINKS: FRAME 

A link specification can optionally be attached to each instantiation of a module, overriding the 
current default, so that the link location can be different for each • instailc-e. 

CRightSide ::= ftem lItem 11 CUnks Iltem { ldList ] CLinks 



Appendix D: Binder Extensions 177 

Alternately, the link option can be specified in the configuration header. This merely changes the 
default option for the configuration: it will apply to all components (including nested configurations) 
unless it is explicitly overridden. 

CHead :: = CONFIGURATION Clinks Imports CExports ControlClause 

"Illis construction works much like the PUBLIC / PRIVATE options in Mesa, and it nests in the same 
way. A link option attached to a configuration changes the default for all components within it, but 
that default can be overriden for a particular module (or nested configuration) by specifying a 
different link option. 

D. 2. 2. Restrictions 

This scheme has the consequence that, if a module with code links has multiple instances, each 
instance must be bound the same. 

As with code packing, the code links option takes effect only when the code is being moved to "the 
output file. At this point, the binder will make room for the links as it copies the code if any 
module sharing that code has requested code links. Again, this allows a programmer to debug 
without the expense of moving the code (using frame links), and then to effect the code links option 
with a binder switch, without changing the source of the configuration description. 

Fine point: 

Once space for code links has been added to a configuration, it cannot be undone by a later binding. On the 
other hand. space for code links can always be added to a (previously bound) configuration, even if it did not 
specify code links in its description. 

Using code links has one drawback: it slows down the binding and loading process, as the code must 
be swapped in and rewritten. The binder must make room in the code segment for the links, as 
described above. And because the loader resolves imports of previously loaded modules, as well as 
the imports of the module being loaded, it may have to swap in (and perhaps update and swapout) 
the code segment for every module in the system. 

Because of the overhead involved, the loader will not automatically attempt to use code links, even if 
the space is available in the ,code segment. A loader switch must be used to effect this option. 

Documentation of binder and loader switches in in the Mesa User's Handbook. 
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APPENDIX E. l\1esa Rescned Words 

Listed below are all of the Mesa reserved words. Words marked with an astrisk are predeclared 
rather than reserved. Predeclared identifiers can be redefined (but seldom should be). 

ABS 
ALL 
AND 
ANY 
ARRAY 
BASE 
BEGIN 
BOOLEAN 
BROADCAST 
CARDINAL 
CHARACTER 
CODE 
COMPUTED 
CONDITION­
CONTINUE 
DECREASING 
DEFINITIONS 
DEPENDENT 
DESCRIPTOR 
DIRECTORY 
DO 
ELSE 
ENABLE 
END 
ENDCASE 
ENDLooP 
ENTRY 
ERROR 
EXIT 
EXITS 
EXPORTS 
FALSE­
FINISHED 
FIRST 
FOR 
FORK 
FRAME 
FROM 
GO 

. GOTO 
IF 
IMPORTS 
IN 
INlINE 
INTEGER 
INTERNAL 
JOIN 
LAST 
LENGTH 
LOCKS 
LONG 
LOOP 
LOOPHOLE 
MACHINE 
MAX 
MIN 

MOD 
MONITOR 
MONITORED 
MONITOR LOCK • 
NEW 
NIL· 
NOT 
NOTIFY 
NULL 
OF 
OPEN 
OR 
ORDERED 
OVERLAID 
PACKED 
POINTER 
PORT 
PRIVATE 
PROCEDURE 
PROCESS 
PROGRAM 
PUBLIC 
READONLY 
REAL* 
RECORD 
RELATIVE 
REPEAT 
RESTART 
RESUME 
RETRY 
RETURN 
RETURNS 
SELECT 
SHARES 
SIGNAL 
SIZE 
START 
STATE 
STOP 
STRING 
StringBocly* 
THEN 
THROUGH 
TO 
TRANSFER 
TRUE* 
TYPE 
UNSPECIFIED* 
UNTIL 
UNWIND* 
USING 
WAIT 
WHILE 
WITH 
WORD'" 
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APPENDIX F. Collected Grammar 

"1l1e Mesa grammar in this section is a collected version of the grammar distributed throughout the 
body of the Manual. There are some differences, primarily due to the Manual's grammar being 
distorted for purposes of exposition. This one is intended to be internally consistent. 

"1l1e grammar is divided into four parts. corresponding to the syntax for Compilation Unit. 
TypeSpecification, Statement, and Expression. These four parts refer to each other and 
occasionally use syntax nIles from other parts (such as LeftSide, which is used in an assignment 
statement but defined under Expression). Where such cross references occur. a comment has been 
added to indicate which part to refer to. Other than this. each part is self-contained. and the 
productions within a part have been ordered alphabetically by their names. except that the 
productions for CompiiationUnit. TypeSpecification, etc.· head their respective sections. 

Compilation Unit .. -.. -

Directory .. -
Expo rtsList .. -
FileName .. -
GlobalAccess .. -
IdList .. -
Impo rtsList .. -
IncludeList .. -

Inte rfaceltem .. -
Ime rf aceLis t .. -
ModuleBody .. -
ModuleHead .. -
ModuleParams .. -
ShareList .. -
UsingClause .. -

Directory 
identifier: ModuleHead = GlobalAccess 
ModuleBody 

empty 1 DIRECTORY IncludeList; 
empty 1 EXPORTS IdList 

st ringLite ral 
Access .. in TypeSpecification 

identifier IldList , identifier 

empty 1 IMPORTS InterfaceList 
identifier: FROM FileName UsingClause 1 
IncludeList , identifier: FROM FileName UsingClause 

identifier I identifier: identifier 

Interfaceltem IlnterfaceList , Interfaceltem 

Block. .. in Statement 

ProgramTC ImportsList ExportsList ShareList I 
DefinitionTC ImportsList Sha reList 

empty 1 [NamedFieldList 1 -- in TypeSpecification 
empty 1 SHARES IdList 

empty 1 USING [ IdList 1 

TypeSpecification .. --
Access .. -
Adjective .. -
ArrayTC .. -
BaseOption .. -
ByteList .. -
CommonPart .. -
ConstantList .. -
DefaultOption .. -
DefaultSpecification :: = 

DefinitionTC 

PredefinedType 
Typeldentifier I 
TypeConst ructo r 

empty 1 PUBLIC 1 PRIVATE 
identifier 

PackingOption ARRAY IndexType OF TypeSpecification 

empty 1 BASE 

Expression I ByteList ,Expression 

empty 1 NamedFieldList , 

Expression 1 Constant List , Expression 

empty I+- DefaultSpecification 

empty I 
Expression 1 
NULLI 
Expression 1 NULL 
DEFINITIONS 1 
DEFINITIONS LocksClause 
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DescriptorTC .. -

ElementType .. -
EnumerationTC .. -
FieldList .. -
IndexType .. -
InlineOption .. -
Inst ructionSeries :: = 
Interval 

LocksClause .. -

LongTC .. -
MachineCode .. -
MachineDependent :: = 
Monito red Option .. -
NamedFieldList .. -

Optionallnterval .. -
Ordered .. -
PackingOption .. -
Pa ramete rList .. -
PointerTail .. -

PointerTC .. -
PortTC .. -
PredefinedType .. -

P rocedu reBod y .. -
ProcedureTC .. -
ProcessTC .. -
ProgramTC .. -

ReadOnlyOption .. -
RecordTC .. -
RelativeTC .. -
Retu rnsClause .. -
SignalOrError .. -
SignalTC .. -
SubrangeTC .. -
Tag .. -

TagType .. -
TypeConstructor .. -

Typeldentifier .. -

Appendix F: Collected Grammar 

DESCRIPTOR FOR ReadOnlyOption TypeSpecification 1 
DESCRIPTOR FOR ReadOnlyOption Packing Option ARRAY OF TypeSpecification 

INTEGER I CARDINAL 1 CHARACTER 1 BOOLEAN 1 
EnumerationTC 1 SubrangeTC 

{ldList} 
[ UnnamedFieldList 11 [NamedFieldList 1 
ElementType I Typeldentifier 

empty IINLINE 

'empty I ByteList I ByteList; InstructionSeries 

[Expression •• Expression 11 
[Expression •• Expression) 1 
(Expression •• Expression l' 
(Expression .. Expression) 

empty, 
LOCKS Expression, 
LOCKS Expression USING identifier: TypeSpecification 

LONG TypeSpecification 
MACHINE CODE BEGIN InstructionSeries END .. not described in this manual 

empty, MACHINE DEPENDENT 

empty, MONITORED 
IdList : Access TypeSpecification DefaultOption, 
NamedFieldList, IdList : Access TypeSpeci.fication DefaultOption 

empty , Interval 
empty , ORDERED 

empty , PACKED 

empty I FieldList 

empty I 
TO ReadOnlyOption TypeSpecification I 
TO FRAME [ identifier 1 
Ordered BaseOption POINTER Optionallnterval POinterTail 

PORT ParameterList ReturnsClause, 
RESPONDING PORT ParameterList ReturnsClause 

INTEGER I CARDINAL I LONG INTEGER 1 
REAL, BOOLEAN, CHARACTER, STRING, 
MONITOR LOCK , CONDITION, 
UNSPECIFIED, WORD 
InlineOption Block .. Block in Statement 

PROCEDURE ParameterList ReturnsClause 

PROCESS Retu rnsClause 
PROGRAM Pa rameterList Retu rnsClause , 
MONITOR ParameterList ReturnsClause LocksClause 

empty, READONL Y 
MonitoredOption MachineDependent RECORD [VariantFieldList 1 
Typeldentifier RELATIVE TypeSpecification , 
Typeldentifier RELATIVE LONG TypeSpecification 

empty , RETURNS FieldList 
SIGNAL , ERROR 

SignalOrError ParameterList Retu rnsClause 

Inte rval, Typeldentifier Interval 
identifier: Access TagType , 
COMPUTED TagType 1 
OVERLAID TagType 

TypeSpecification ,* 
DescriptorTC 1 A rrayTC, EnumerationTC ,LongTC, 
Pointe rTC , PQrtTC , Procedu reTC I ProcessTC I 
RecordTC, RelativeTC, SignalTC, SubrangeTC 

identifier, 
identifier. identifier I 



Unnamed Field List :: = 

Variant 

VariantFieldList 

Va riantList 

Va riantPart 

Statement 

AdjectiveList 

Assignation 

AssignmentStmt .. -

Block 

Call 

Catch 
Catch Item 

CatchSeries 
ChoiceSeries 

CompoundStmt 

ConditionTest 

ContinueStmt 
Decla ration 

.. -

.. -

.. -

.. -

.. -

DeclarationSeries :: = 
Direction 
ElseClause 

EnableClause 

Appendix F: Collected Grammar 

Adjective Typeldentifier 

TypeSpecification I 
UnnamedFieldList , TypeSpecification 

IdList =) [VariantFieldList 1 , I 
IdList =) NULL, 

CommonPart identifier: Access VariantPart I 
VariantPart I 
NamedFieldList I 
UnnamedFieldList I 
empty 

Variant I VariantList Variant 
SELECT Tag FROM 
VariantList 
ENDCASE 

.. -.. -
AssignmentStmt I Block I Calli 
ContinueStmt I ExitStmt I GotoStmt IlfStmt I 
JoinCaU I LoopCloseStmt I ., JoinCall in Expression 
LoopStmt I Notify I NullStmt I 
ResumeStmt I RetryStmt I ReturnStmt I SelectStmt I 
SignalCa.ll1 StartCali1 RestartStmt I 
StopStmt IWaitStmt 

Adjective I AdjectiveList , Adjective .. in TypeSpe.cification 

FOR identifier'" Expression, Expression 

LeftSide .. RightSide I .. LeftSide, RightSide in Exp ression 
Extractor'" RightSide 

BEGIN 
OpenClause 
EnableClause 
Dec la rationSe ries 
StatementSe ries 
ExitsClause 
END 

Variablel ··in Expression 
Va ria ble [ ComponentList ] I .. Componentlist in Exp ression 
Variable [ComponentList! CatchSeries] 
Variable [! CatchSeries] 

ExpressionList = > Statement .. Expressionlist in Expression 

Catch I ANY = > Statement 

Catch Item I Catch ;CatchSeries 
AdjectiveList = > Statement; I 
ChoiceSeries AdjectiveList = > Statement; 
BEGIN 
Body 
ExitsClause 
END 

empty I WHILE Expression I UNTIL Expression 
CONTINUE 

IdList: 
Access ··Access in TypeSpecification 

181 

ReadOnlyOption EntryOption 
TypeSpecification 
Initialization; I 

.. ReadOnlyOption in TypeSpecification 

IdList : Access TYPE = Access TypeSpecification ; 
empty I DeclarationSeries Declaration 

empty I DECREASING 

empty I ELSE Statement 

ENABLE Catch Item ; I 
ENABLE BEGIN CatchSeries END; I 
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EniryOplion 
ErrorCali 
ExitsClause 
ExitSeries 

ExitStmt 
Ext ractitem 
Extractor 

FinalStmtChoice 
FinishedExit 

GotoStmt 
IfStmt 
InitExpr· 

Initialization 
Iteration 

..... ~ 

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

Ite rativeCont rol 
KeywordExtract •. -
KeywordExtractList :: = 

Label 

LabelList· 

Leftltem 
LoopCloseStmt 
LoopControl 
LoopExits 
LoopExitsClause 
LoopRange 
LoopStmt 

NotifyStmt 

NullStmt 
OpenClause 
Openltem 

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

OpenList 

OptCatchPhrase .. -
PositionalExtractList :: = 

Repetition .. -
RestartStmt .. -
ResumeStmt .. -
RetryStmt .. -
ReturnStmt .. -

Appendix F: Collected Grammar 

ENABLE BEGIN CatchSe ries ; END; I 
empty 

empty I ENTRY 
ERROR Call J ERROR 
empty I EXITS I EXITS ExitSe ries I EXITS Ex itSe ries ; 
LabelList = > Statement I 
ExitSeries ; LabelList = > Statement 
EXIT 

empty, LeftSide 
[ KeywordExtractList] , 
[ PositionalExtractList ] 
empty , = > Statement 
FINISHED = > Statement, 
FINISHED = > Statement; 
GOTO Labell GO TO Label 
IF Expression THEN Statement ElseClause 

Expression I 
Procedure Body I .. in TypeSpecification 
MachineCode I .. in TypeSpecitication 
[Expression} I .. for STRING initialization 
CODE .. for SIGNAL initialization 

empty,+- InitExpr' = InitExpr 
FOR identifier Direction IN LoopRange 
empty, Repetition ,Iteration, Assignation 
identifier: Extractltem 
KeywordExtract, 
KeywordExtractList , KeywordExtract 

identifier 

La be! , LabelList I Label 

Expression 
LOOP 
IterativeControl ConditionTest 
ExitSeries , ExitSeries ; , FinishedExit, ExitSeries ; FinishedExit 
empty, REPEAT LoopExits 

SubrangeTC, Typeldentifier' BOOLEAN I CHARACTER 
LoopCont rol 
DO 
OpenClause 
DeclarationSeries 
EnableClause 
StatementSe ries 
LoopExitsClause 
ENDLooP 
NOTIFY Variable, 
BROADCAST Variable 
NULL 
empty I OPEN OpenList ; 
Expression' identifier: Expression 

Open Item I OpenList , Open Item 

emptyl [! CatchSeries] 
Extractltem, 
Positional Ext ractList , Extractltem 

THROUGH Subrange .. in Expression 
RESTART Variable OptCatchPhrase .. Variable in Expression 

RESUMEl 
RESUME Component List ] .. ComponentList in Expression 
RETRY 
RETURN, 



SelectStmt 
Select 

Select Va riant 

SignalCall 

StartCall 
StatementSeries __ -

StmtChoiceSeries :: = 

StopStmt .. -
Tagltem .. -
Test .. -
TestList .. -
WaitStmt .. -

Expression 

AddingOp 

AssignmentExpr .. -
BuiltinCall 

ChoiceList .. -

Component .. -
ComponentList .. -
Conjunction .. -
Constructor .. -
Disjunction .. -
Exp rChoiceList .. -

Exp ressionList .. -
Factor .. -
ForkCall .. -
FunctionCall .. -
IfExpr .. -
IndexedAccess .. -
Indi rectAccess .. -
JoinCall .. -

Appendix F: Collected Grammar 

RETURN [ComponentList ]1-- ComponentList in Expression 
RETURN WITH ERROR Call 

Select I SelectVariant 
SELECT Leftltem FROM 
StmtChoiceSe ries 
ENDCASE FinalStmtChoice 
WITH Open Item SELECT Tagltem FROM 
ChoiceSerie~ 
ENDCASE FinalStmtChoice 

SIGNAL Calli ErrorCall 
START Call 

empty I Statement I 
Statement; StatementSeries 

TestList = > Statement; I 
StmtChoiceSeries TestList = > Statement; 
STOP OptCatchPhrase 

empty I Expression 
Expression I RelationTaii --RelationTaii in Expression 

Test I TestList , Test 

WAIT Variable OptCatchPhrase 

.. -.. -
AssignmentExpr I Disjunction I ForkCalillfExpr I 
JoinCall1 NewExpr I SelectExpr I 
SignalCali1 --SignaICall in Statement 
StartCall --StartCall in Statement 

+1-
LeftSide" RightSide 

MIN [ExpressionList 11 MAX [ExpressionList 11 ABS [Expression 11 
LENGTH [Expression 11 BASE [Expression 11 
TypeOp [TypeSpecification ] I 
DESCRIPTOR [Expression 11 
DESCRIPTOR [Expression, Expression] I 
DESCRIPTOR [Expression, Expression, TypeSpecification 1 
AdjectiveList = > Expression, I -- AdjectiveList in Statement 
ChoiceList AdjectiveList = > Expression, 

empty I Expression I NULL 
Keywo rdComponentList I PositionalComponentList 

Negation I Conjunction AND Negation 
OptionalTypeld [ ComponentList 1 

Conjunction I Disjunction OR Conjunction 

TestList = > Expression, I -- TestList in Statement 
ExprChoiceList TestList = > Expression, 

Expression I ExpressionList , Expressi.on 

- Primary I Primary 

FORK Call 

BuiltinCall1 Call -- Call in Statement 
IF Expression THEN Expression ELSE Expression 
(Expression) [Expression 1 I Variable [Expression 1 
(Expression) t I Variable t 

JOIN Call 

KeywordComponent :: = identifier: Component 

KeywordComponentList :: = KeywordComponent I 
KeywordComponentList, KeywordComponent 

183 
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LeftSide 

Lite raJ .. -

MultiplyingOp .. -
Negat.ion .. -
NewExpr .. -
Not .. -

AppendixF: Collected Grammar 

identifier I Calli .. Call in Statement 
IndexedAccess I QuaJifiedAccess IlndirectAccess I 
LOOPHOLE [ Exp ression ] I 
LOOPHOLE [Expression, TypeSpecification] 

numericLiteral1 .. all defined outside the grammar 
stringLiteral1 
cha racte rLite ral 

*I/IMOO 

Relation I Not Relation 
NEW Variable OptCatchPhrase 

-INOT 
OptionalTypeld .. - empty I Typeldentifier .. in TypeSpecification 

PositionalComponentList :: = Component I 

Primary 

Product 

QualifiedAccess .. -

Relation 
RelationalOp 
RelationTaii 

RightSide 
SelectExpr 
SelectExprSimple :: = 

SelectExprVariant :: = 

Subrange .. -

Sum .. -
TypeOp .. -
Variable .. -

PositionalComponentList , Component 

Variable I Literal I (Expression) I FunctionCali1 
Constructor I ALL [Expression) I @ LeftSide I identifier {Expression] 
Factor I Product MultiplyingOp Factor 

(E'xpression) • identifier I Variable. identifier 

Sum I Sum RelationTaii 

# I = I < 1<= J) I )= 
RelationalOp Sum I Not RelationalOp Sum I 
IN SubRange I Not IN Subrange 
Expression 
SelectExprSimple J SelectExprVariant 
SELECT Leftltem FROM .. Leftltem in Statement 
Exp rChoiceList 
ENDCASE =) Expression 

WITH Openltem SELECT Tagltem FROM .. Open Item, Tagltem inStatement 
ChoiceList 
ENDCASE =) Expression 
SubrangeTC I .. in TypeSpecification 
Typeldentifier .. in TypeSpecification 

Product I Sum AddingOp Product 
SIZE I FIRST I LAST 
LeftSide 
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In this index, bold face page numbers 
indicate where the primary, defining 
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numbers designate further examples. 

* 
+ 

/ 
.. -.. -

137, 138, 140 
83 

9 
12,94,95 
12 

12 
2,5,6 

34, 104, 106-7 
12 

2 
5-6,53,57,136,137 

= > 54, 56, 94, 96, 136, 138, 140 
~ 29,42,44,147 
o 125,130 
t 42 
~ 5,17,63,76,130 
ABS 5,12 
Access 94,104,117-20 
activation 72, 137 
actual procedure 68, 74, 78 
actual tag 94,97.99 
AddingOperator 12 
adjective 96 
adjectives 92, 97 
aggregate type 22 
aligned 29,42, 69 
ALL 30 
AlternateName 
ANY 136, 138-9 
argument 72, 72 
arguments 67, 144 
arguments buffered 
array 22, 27-8 

60, 98 

150 

constructor 
descriptor 

28,30 
85,87 

ARRAY 27-8, 29 
ASSignation 63,63 
assignment 6; 51 

expression 52 
AssignmentExpr 11,17 
AssignmentStmt 7, 51 
automatic dereferencing 44 
B 8 
balancing 45, 47 
BASE 29,41,43-4,86,87,88,90-1 
base type 25 

BCD ]03,123 
BEGIN 57, 136 
Binary Configuration Description 
binding 101, 103, 123-4, 132 
blank 6 
block 57 
Block 57.57.73,137,140 
BNF 2 
BOOLEAN 7-8,16,22.24,53 
bound variant 97 
bound variant type 93, 95, 96 
bounds 64 
BROADCAST 

BuildinCall 
built-in type 
C 9 

159,160-1 
12,12 

7 

C/Mesa 103, 120, 125 
call 67 
Call 12, 71, 137, 140 
CallStmt 71 
CARDINAL 7,7,10,22,26-7,49 
Catch 134, 136, 137-9 
catch phrase 136, 139, 150, 154 
CHARACTER 7,9,15,22 
characterLiteral 9 
client 120 

module 123 
CODE 

coercion 
colon 
comma 

125,135,141 
46. 73 

6 
56,94 

5,6 
92 

comment 
common part 
CommonPart 118 . 
compatible 70 
compilation order 110 
CompilationUnit 104 
compile-time 84, 104, 105 

constant 18, 30,53 
completely bound variant 
component 27,31,125 
component type 27 
components 97 
ComponentType 29 
COMPUTED 94, 100 

100 

computed tag 93,95,97,100 
CONDITION 155, 158, 161 
condition variable 155 
ConditionTest 62,63 
configuration 123 
Configuration 125 
CONFIGURATION 125,126 

185 

103, 123 

Configuration Description 103,123-4 
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configuration prototype 125 
conform 7, 10, 72 
conforming 69 
ConJunction 16 
CONNECT 146,147,150 
constant 18 
constructed data type 20 
constructor 35, 93 
Constructor 30,35 
CONTINUE 140,141, 146. 150 
cONTROL 103, 125 
control fault 149 

link 148 
transfer 148 
variable 64 

ControlVariable 63.63 
coroutine 144 
covering condition variable 
CR 6,141 
D 8 
Debugger 
declaration 
Decla ration 

136,139 
68 

19 
Decl.arationSeries 
DECREASlNG 63-4 
default Access 120 
default field 112 
default field values .36 

57 

160 

default-named interfaces 127-8 
DefaultOption 37 
DefaultSpecification 37 
defining occurance lOS 
DEFINITIONS· 78.104.105-6,110.117,120 
definitions module 101 
DESCRIPTOR 29,85-6,87,91 
detached process 154 
determination of representation .49 
Digit 2 
DIRECTORY 78, 104-5, 106, 126 
discrimination 98, 100 
Disjunction 11, 16 
DO 5,62,136 
element type 22 
ElementType 22, 25 
elided 30 
elided component 35 
elides 36 
ELSE 5,52,76 
empty 3,30 
empty 

constructor 
extractor 
interval 

72 
39 

16,29 

Index 

ENABLE 137, 138, 140-1 
EnableClause 57 
END 57,76 
ENOCASE 54,56,77,94,99 
ENDLOOP 5,62,64 
ENTRY 155, 156 
entry procedure 155 
enumerated type 22 
enumeration 21, 94 
equality 6 
equivalent 10 
ERROR 135,136,141,149 
ERROR, unnamed 136 
ErrorCall 135 
exceptional conditions 134 
EXIT '65,66,139, 141 
ExitsClause 57,57,137 
expansion 80 
explicit 

component 35 
naming 126-7 
qualification 109 

export 102, U7, 126 
record 102 

EXPORTS 78,103-4,117,121,124-5,126, 
127 

Exp ression 11, 51 
ExpressionList 12 
ex ternal procedure 157 
extractor 38,128 
Extractor 51 
Factor 12 
FALSE 8,24 
FaultHandler 150,151 
field list 32 
FieldDesc ription 118 
Fieldlist 31, 32 
FINISHED 65,66,141 
FIRST 24,26 
floating-point 10 
fonts 1 
FOR 63,64 
forcible termination 65, 66 
FORK 136, 152"3, 153, 154 
foonation rules 2 
frame 57, 148 
FRAME 104,116,125,132,146 
free conformance 48, 70 
FROM 104.146 
FunctionCall 12 
fundamental operation 6,20,41,69 
.GCD 4 
Globa.Access 117,120 



GOTO 57.58-9,64,66, l39 
home module 117 
identifier 21 

constant 23, 94 
list 6 

identifier 5,127 
IdList 3.6 
IF 5.52.76 

ex pression 53 
statement 52 

lfStmt 52 
implementing 121 
implementor 120 
implicit qualification 99 
import 101 
imports 126 . 
IMPORTS 78. 102-4, 115, 124-5, 126, 127 
IN 15,47,55,63 
include 105 
Includelist 104 
indefinite index type 
index type 27 
indexed reference 
IndexedReference 

27 

IndexType 29, 85 
inequality 6 
inherent 

representation 
type 45 

86 

29 

49 

initialization 18, 68, 84. 135 
Initialization 19,33 
inline 69. 73, 80 
INLINE 80,113-4 
InlineOption . 73 
instance 115, 124 
INTEGER 7, 7, 10,22,26-7,49 
interface 101, 120, 125. 135, 158 

element 110 
record 115, 116, 127 
type 115, 116 
variable 110,111-2,113-4 

INTERNAL 157, 165 
internal procedure 158 
interval 15. 63 
Interval 15 
Ite ration 63,63 
lterativeControl 63 
JOIN 136, 152-3, 153, 154 
jump table 55 
keyword 39 

constructor 31. 35. 35. 74 
ex tractor 74 
name 35 

Label 58 

Index 187 

Labels 58 
LAST 24, 26 
LeftSide 7, 29, 38,42,45, 51 
length 82 
LENGTH 29,86,87 
lengthening 43 
lexical units 6 
link 124 
LinkageFault 148. 149,150 

. LINKS 125, 125 
literal 18 
Literal 12 
loader 132 
loading 123 
local string literal . 84 
local variable 68 
LOCK 161 
LOCKS 162,164,166 
LocksClause 162, 165 
LONG 14,43,87,92 

CARDINAL 7,9-10 
INTEGER 7.9-10 
POINTER 43 
STRING 85 

long numeric type 9 
LOOP 65, l39 
loop control 61 
loop statement 61 
LoopCloseStatement 65 
LoopCont rol 62 
LoopExitsClause 64 
LOOPHOLE 47 
LoopRange 63. 64 
lower bound 16 
lower-case 5 
MACHINE DEPENDENT 33, 94, 95, 166 
MACHINE DEPENDENT RECORD 29 
MAX 12.47 
maxlength 82, 83 
MIN 12,47 
MOD 5 
module 61.68, 101 
ModuleBody 104 
monitor 154. 155 

initialization 168 
lock 155 

MONITOR 156, 162 
MONITORED RECORD 162.163-4 
MONITORLOCK 156, 162. 166 
Multi-module monitor 163 
multiple statements 6 
MultiplyingOperator 12 
name reference 108 
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name scope 34, 108 
NamedFieldList 32, 118 
Negation 16 
nested configurations 130 

procedure 78 
signals 142 

NEW 116. 131-2. 136. 146 
Next-Statement 51, 55. 62 
NIL 43, 44. 76 
non-interface 

element 110 
type 101 

non-local variable 68 
non-privileged 117 
NOTIFY 155, 157, 159. 160-1 
NULL 56,94 
number 8 
numeric 

literal 8 
operators 12 
type 7.26 

object 
file 103 
module 101 

Object monitor 165 
objects 165 
OctalDigit 2 
omISSIon 36 
OPEN 59. 106, 108-9 
open 

clause 98, 107 
item 99 

Open Clause 57,61 
operator 12 

precedence 17 
ORDERED 41,43 
ordered type 22 
OVERLAID 94.100,148 
overlaid tag 95 
PACK 125 
packed 69 
PACKED 29,85.87 
parameter 67.134 

record 67 
pending 147. 149-50 
phrase class 2 
PLUS 125,130 
pointer 22,39 

arithmetic 43 
POINTER 41, 43-4. 88 
POINTER TO FRAME 104. 116 
PORT 144-5, 146. 148, 151 
port-compatible 148 
PonFault 147.149,150 

Index 

positional constructor 35. 36 
precedence 12.52,54 
PredefinedType 19 
Primary 12 
PRIVATE 104,112-3,117-20 
privileged 117 
procedure 67 

body 68 
calls 71 
descriptor 148 
type 69 
value. 70, 148 
variable 74. 110 

PROCEDURE 69, 76. 148 
ProcedureBody 73 
process 166 
PROCESS 153,153 
Product 12 
PROGRAM 104,115,117,120,132,145-6 
program 101 

prototype 116, 125 
variable 116 

PUBLIC 76. 103-4, 113. 117, 117, 118-9, 121 
qualification 34, 60, 106 
qualified reference 31, 108 
qualifier 74 
Queue 156 
range 

assenion 27 
error 25 

readonly 40 
READONLY 41,111 
REAL 7,10,10,46 
recompiling 109 
record 31 

constructor 31,35 
single-component 73 

. RECORD 32.76,94,95 
recursive 72 

substitution 3 
reentrant . 72 
reference type 39 
Reject 139 
relational operators 15 
RELATIVE 43,88,90-1 
relative 

array descriptor 89,91-2 
pointer 88, 89 

relocation 88 
REPEAT 64.141 
Repetition 63 
reserved words 2. 5 
.RESPONDING 145. 151 
RESTART 116.132-3.136.146-7, 150 



Index 

result 67. l35. i44 
record 73 

Resume 139 
RESUME l36. l36. l38. 140. 141 
ResumeError 141 
RETRY 140. 141 
RETURN 69. 72. 74. 132. 136. 148 
return link l38.149 
RETURN WITH ERROR 135. 138. l39. 166-7 
RETURNS 69. 76 
RightSide '7.51 
scalar type 22 
scale factor 8 
scope ,74.79.99.108.137 
SELECT 54,54,56, 77, 93-6, 98, 99-100 141. 

148 ' 
SELECT expressions 56 
SelectExp r 56 
SelectStmt 54 
self-contained 124 
Se,ries ,3 
SHARES 104, 117, 120 
short numeric type 9 
SIGNAL 59,135,136;141 
SignalCal1 135 
Signaller 138, 139. 142, 150 
signals 134 ' 

actual 135 
catching 138 
nested 142 

signed number 7 
single-component record 73 
SIZE 34,76 
SP 141 
space 6 
START 83,116,124,132,133,136.138,144 

146-7 ' 
start trap 111, 133. 147 
startup transient 144, 147 
statement 51 
Statement 51 
StatementSe ries 57 
static variable 124 
StmtSeries 3 
STOP 124. 132-3, 136 
STRING 7,82,83 
string literal 83 
String Body 82, 87 
strongly typed 4 
subrange 21 

type 22.24 
Sum 12 
syntax notation 2 

TAB 6.141 
tag 93 
Tag 118 
target 

representation 49 
type 45 

TC 21 
terminate 

conditionally 62 
forcibly 65 
normally 63 

text 82 
THEN 5,52.76,125,130 
THROUGH 63 
time stamp 109 
timeout 161 
TRUE 8,24 
TYPE 20,21 
type 

constructor 7 
conversion 46 
determination 45 

type-correct 45 
TypeConst ructo r 21 
TypeDeclaration 20 
Typeldentifier 21,96,107 
Type5pecification 21,90 
unbound variant 93 
unique type 91 
Unnamed FieldList 31 
unqualified 61 
unsigned number 7.43 
UNSPECIFIED 19, 43 
UNTIL 5,62,140 
Unwind 139 
UNWIND 139, 140, 149-50, 167 
upper bound 16 
upper-case 5 
user-defined type 7 
USING 78,106,109,162,165-6 
Variable 12 
variant 

part 92.93,97.148 
record 92 

VariantFieldList 118 
VariantPart 118 
virtual interface record 102 
voided component 35 
voids 36 
WAIT 136,155.157,159,160-1,166,168 
WHILE 62 . 
WITH 98 
WORD 19 
XFER 148 

189 






