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Most current approaches to mechanical program verification transform a program and its 

specifications into first order formulas and try to prove these formulas valid. Since the first 

order predicate calculus is not decidable, such approaches are inherently limited. This paper 

proposes an alternative approach to program verification: Correctness proofs are 

constructively established by proof justifications written in an algorithmic notation. These 

proof justifications are written as part of the program, along with the executable 

instructions and correctness specifications. A notation is presented in which instructions, 

specifications, and justifications are neatly interwoven. The justifications establish the 

connection between the instructions and specifications: they document the reasoning on 

which the correctness is based. Programs so written may be verified by proving the truth of 

quantifier-free logical formulas. 

KEY WORDS 

program verification, proving programs correct, proof justifications, constructive program 

verification 

CR CATEGORIES 

4.19, 4.22, 5.21, 5.24 

XEROX 
PALO AL TO RESEARCH CENTER 
3333 COYOTE HILL ROAD I PALO ALTO I CALIFORNIA 94304 



1. INTRODUCTION 

Most research in mechanical program verification has approached the problem by 

seeking ways in which to transform a program and its specifications into logical formulas 

and trying to prove these formulas valid. Pioneering studies developing this approach 

include [2], [ 4], [5], and [7]. The specification language is typically a first order theory. 

The formulas to be proved also belong to the theory. It is well known that there is no 

decision procedure for the first order predicate calculus. Thus, this approach is necessarily 

limited - a mechanical program verifier cannot guarantee that in finite time it will verify 

each correct program and reject each incorrect one. 

These observations may be given substance by exammmg contemporary verification 

systems. The theorem provets employed tend to flounder on large or complex programs. 

Because of this, the most recent verification systems rely on assistance from the 

programmer, either as interactive guidance [1], [3], [10] or as a file of axioms to use in the 

proof [9]. 

Most verification systems use the method of inductive assertions [2], or some related 

induction rule [8]. The induction rule is used to form verification conditions as the formulas 

to be proved. Such induction rules create a second problem: Even if the program is correct 

with respect to its input-output specifications and all the internal specifications are correct, 

the verification conditions may not be valid if the specifications are too weak [11]. Writing 

specifications which are strong enough to make the verification succeed is therefore the 

responsibility of the programmer. Experience to date indicates this is difficult. We 

conjecture that the difficulty is partly caused by the absence of an explicit link between the 

specifications and executable instructions. 

This paper proposes an alternative approach. If a correctness specification is difficult 

to establish, it is desirable to justify its proof. We suggest that proof justifications should be 

written in an algorithmic notation and that these justifications should be written as part of their 

programs, along with executable instructions and correctness specifications. We propose 

some notation for this purpose that we have found convenient to use and aesthetically 

pleasing. For example, in this notation, a while loop includes a specification and a 

justification, in addition to the usual loop test and body. The specification may be an 

inductive assertion; it documents the values computed. The justification establishes how the 

correctness proof is to proceed; it documents the connection between the instructions and 

the specification. Taking the justification as a directive, it is readily. decided whether the 

instructions, specifications, and justifications agree. Just as with other language constructs, 

justifications often have a regular structure. Default rules are adopted so that the most 

common cases need not be written - an omitted justification invokes the default. The body 

of this paper amplifies this cryptic sketch. 
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This approach has a potential weakness, since it requires the programmer to write 

additional text. Our observations have indicated that the additional work is either small or 

well-spent: In simple cases, justifications can be defaulted. Where justifications cannot be 

defaulted, the clarity they add is ample recompense for the effort expended. 

We believe that justifications are a useful tool in understanding programs - their 

design, refinement, and modification. Our thesis is prescriptive: programs should contain 

their justifications. 

2. JUSTIFYING.UNIVERSALLY QUANTIFIED ASSERTIONS 

We introduce proof justifications with a small example. As inductive assertions are the 

most familiar kind of correctness specifications, we use them throughout; a similar 

development could be given for other kinds of specifications. The inductive assertion 

method reduces program correctness to correctness of a finite set of finite paths. A program 

path starts with an initial assertion, continues with executable instructions, and terminates 

with a final assertion. There are well-known algorithms for mapping a path into its 

verification condition. 

We use several notations to write compact assertions: Closed intervals are written [i:f]; 

kE[i:f] means i:=;k<f; (VkE[i:f], P(k)) means (Vk) i <k::;f-+P(k). The pair {, } is used 

interchangably with begin, end as delimiters. 

Consider the fallowing path 

assert (VjE[l:J-1], D[j]<A[I]) A 

(Vr,sE[l:M], r::;s-+D[rJ::;D[s]) A 

(ViE[l:I-1], \fmE[l:M], D[m]:it:A[i]); 

if A[I]<D[J] then It-I+l; 

assert (\fi'E[l:I-1], \fm'E[l:M], D[m']:it:A[i']) 

The final assertion is a logical consequence of the initial assertion and the intervening 

statement. This may be demonstrated as follows: 

(I) Suppose A[I]2:::D[J], so the final value of I is the same as the initial value of I; then the 

final assertion is a consequence of the third initial assertion. 

(II) Suppose that A[I]<D[J], so the final value of I is the initial value of I plus 1; let I' 

denote the final value of I. Consider some fixed i' and m' such that i'E[l:I'-1] and m'E[l:M]. 

II.A) If i' lies in the closed interval 1 to I'-2 then the final assertion is a consequence 

of the third initial assertion, choosing i and m to be i' and m' respectively. 
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II.B) If i' is I'-1 then there are two further cases: 

II.B.1) If m' lies in the interval 1 to J-1, the first initial assertion can be 

used, taking j to be m' 

II.B.2) If m' lies in the interval J to M, use the program test A[I]<D[J] and 

choose r and s of the second initial assumption to be J and m' respectively. 

This demonstration is clearly sound. It may be stated in general terms as follows: To 

prove that a universally quantified assertion (Vk') P(k') is a logical consequence of a 

universally quantified assertion (Vk) Q(k), it suffices to show that for each value of k' 

there is some value of k such that P(k') follows from Q(k). If the assertion to be proved has 

the form (Vk'E[i:f], P(k')), it suffices to show that for each k' in the interval [i:f] there is 

some choice for k which makes the formula true. 

In the paragraph above, we described the choices in English. Alternatively, we might 

use an algorithmic notation to express our choices. If k and k' are quantified variables, we 

write k+-k' to mean that Ii' is fixed and k is chosen to be k'. We call this an instantiation of k. 

Using this notation, the choices to establish the above proof can be written 

if A[I]:2:D[J] V i'E[l:I-2] then {i+-i', m+-m'} 

elseif m'E[l:J-1] then j+-m' 

else {r+-J, s+-m'} 

This is a proof justification. ~ 

To make clear how the instantiations are used in the proof, it is sometimes helpful to 

display the body of the instantiated formula following the instantiation. For example, the 

instantiation r+-J, s+-m' may be expanded to r+-J, s+-m': D[J]<D[m'], where the colon may be 

read as "so that". The instantiated formula D[J]<D[m'] following the colon adds no new 

information. However, the programmer and subsequent readers may find it helpful. Its use 

is a matter of taste. Similarly, redundant tests may be added to make explicit the 

conditions for each justification case, e.g. if P then E else F may be expanded to if P then 

E elseif ~P then F. Using these expanded forms, the above justification may be written 

if A[I]:2:D[J] V i'E[l:I-2] then {i+-i', m+-m': D[m']:~A[i']} 

elseif i'=l-1 /\. m'E[l:J-1] then j+-m': D[m']<A[I'-1] 

elseif i'=I-1 /\. m'E[J:M] then {r+-J, s+-m': D[J]<D[m']} 

An assertion may be annotated by using a justification, i.e. 

assert <assertion> using <justification> 
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A justification which annotates an assertion is used to prove verifications conditions for 

paths which terminate with that assertion. Often, a justification instantiates quantified 

variables of the initial assertion of a path; to avoid name clashes, we adopt the convention 

that no quantified variable name is repeated in a procedure. 

The justified program may be written 

assert (VjE[l:J-1], D[j]<A[I]) /\ 

(Vr,sE[l:M], r~s~D[r]<D[s]) /\ 

(ViE[l:I-1], VmE[l:M], D[m]:;t:A[i]); 

if A[I]<D[J] then I+-1+1; 

assert (Vi'E[l:l-1], Vm'E[l:M], D[m'l;t:A[i']) 

using if A[I]2::D[J] V i'E[l:l-2] then {i+-i', m+-m': D[m']:;t:A[i']} 

elseif i'=l-1 /\ m'E[l:J-1] then j+-m': D[m']<A[I-1] 

elseif i'=l-1 /\ m'E[J:M] then {r+-J, s+-m': D[J]<D[m']} 

Given this program, one may check its correctness by considering each case specified by 

the justification. Each case is a quantifier-free formula which is simple to prove. To 

complete the proof, it suffices to check that the specified cases cover all ways in which the 

variables i' and m' can be instantiated. 

correspondingly simple. 

Verifying correctness mechanically is 

As above, the cases of a justification typically correspond to conditions of the program. 

Because of this, it is often convenient to intermix the parts of a justification with the 

program conditions to which they -correspond. We prefix such justifications with the 

keyword use. A justification appearing on a program path is to be used in proving 

verification conditions generated by that path. With these conventions, the program may be 

written 

assert (VjE[l:J-1], D[j]<A[I]) /\ 

(Vr,sE[l:M], r~s~D[r]<D[s]) /\ 

(ViE[l:l-1], VmE[l:M], D[m]:;t:A[i]); 

if A[I]<D[J] then 

begin I+-I+l; 

use if i'E[l:I-2] then {it-i', m+-m': D[m'l;t:A[i']} 

end 

elseif i'=l-1 /\ m'E[l:J-1] then j+-m': D[m']<A[I-1] 

elseif i'=I-1 /\ m'E(J:M] then {r+-J, s+-m': D[J]<D[m']} 

else use {i+-i', m+-m': D[m']:;t:A[i']}; 

assert (Vi'E[l:I-1], Vm'E[l:M], D[m']:;t:A[i']) 
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The using clause is empty here. It's information has been distributed into the if 

statement. That statement has been changed from an if-then, to an if-then-else, where 

the else clause has no executable instructions - only a justification. 

It should be stressed that the quantifier instantiations i+-i' and m+-m' have a rather 

different interpretation from the increment instruction I+-1+1. The instantiations i+-i' and 

m+-m' are proof justifications. They state that their path can be proved by choosing i and m 

in (ViE[l:I-1], VmE[l:M], D[m]:;t:A[i]) to be i' and m', obtaining (i'E[l:I-1] /\ m'E[l:M] -+ 

D[m]:;t:A[i]); no other use need be made of (ViE[l:l-1], VmE[l:M], D[m]:;t:A[i]). 

Overloading the binary connective 11 +-" with this new interpretation seems fitting, for it 

suggests a constructive approach to proofs - an approach we find well-suited to verifying 

programs. 

Concerning mechanical verification, we regard the justifications as essential, not merely 

helpful hints. If needed justifications are missing or wrong, we require a verification system 

to report the inconsistency but we do not expect it to debug the justifications. In 

particular, this implies that such a verifier may reject an otherwise correct program if the 

justifications are wrong. We noted in the introduction that mechanical program verifiers 

already suffer from a form of incompleteness: if the assertions are too weak, a correct 

program with correct assertions will yield an invalid verification condition and may 

therefore be rejected. The present approach introduces a related incompleteness in regard to 

justification. 

3. JUSTIFICATIONS 

In the preceding example, a justification assigns values to quantified variables of the 

initial assertion, as functions of given values for quantified variables in the final assertion. 

This occurs because the quantified variables were bound in universally quantified formulas 

at the outermost level of both assertions. Had the variables been existentially quantified, 

the roles of final and initial assertions would have been exchanged: a justification would 

then assign values to quantified variables of the final assertion as a function of given values 

in the initial assertion. 

For example, consider the following straight-line fragment taken from a search loop 

which finds a zero element in the array B 

assert (3eE[I:N], B[e]=O); 

if B[l]=O then N +-I else I +-I+ 1; 

assert (3e'E[I:N], B[e']=O) 
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The verification conditions constructed by the inductive assertion method are 

(3eE[I:N], B[e]=O) /\ B[I]=O - (3e'E[I:I], B[e']=O) 

(3eE[I:N], B[e]=O) /\ B[I}~O - (3e'E[I+l:N], B[e']=O) 

The first may be established by choosing e' to be I. The second may be established as 

follows: Let e be given, so that B[e]=O is an assumption. If e=I, then the assumption B[I]::;t:O 

leads to a contradiction in the hypothesis of the verification condition, so the verification 

condition is true. Otherwise, eE[I+l:N] so we may choose e' to be e. 

We wish to formalize this by a justification. ICB[I]=O, we have e'+-I. Next, suppose 

B[I]:;t:Q, For the case eE[I+l:N], we write e' ... e. The case e=I requires no instantiation of e': it 

suffices to construct the verification condition with e replaced by I and its truth follows 

without further reasoning about quantifiers. We adopt the convention that cases which can 

be proved without instantiation require no justification. Thus, the program with its 

justifications is 

assert (3eE[I:N], B[e]=O); 

if B[l]=O then {N+-1; use e' ... I} else {l+-I+l; use if eE[I:N] then e'+-e} 

assert (3e'E[I:N], B[e']=O) 

In proving an existentially quantified final assertion from an existentially quantified 

initial assertion, the instantiation made in the justification behaves somewhat like a normal 

assignment. The following interpretation can be given: Imagine control passing through 

the initial assertion where an oracle selects the value of the existentially quantified 

variable e; next, the justification expression is executed which computes a value for the 

existentially quantified variable e' of the final assertion; control then reaches the final 

assertion which must be true using the computed value for e'. This sort of description is 

not natural when proving a universally quantified final assertion from a universally 

quantified initial assertion. The choice of values for universally quantified variables goes 

counter to the execution flow. 

Position in the formula determines whether a quantified variable is fixed or subject to 

instantiation and, in the case of instantiated variables, on which fixed variables they may 

depend. Instantiating variables as functions of other variables can be viewed as supplying 

the Skolem functions of mathematical logic. A general statement of the positional rules may 

be found in any standard work on logic. The following scheme summarizes the cases 

discussed thus far. 

(Vp)P(p) /\ {3q)Q(q) - (Vr)R(r) /\ (3s)S(s) 
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The variables q and r are to be fixed; p and s are to be chosen as functions of q and r. 

It is convenient to use the construction if P then Q else R in logical formulas as an 

abbreviation for (P-Q) /\ (-P-R). When this construction appears in assertions and P is 

quantified, use of the quantified variables in justifications is described by special rules. 

These rules are illustrated by the following example 

assert (ViE[l:l-1], C(i]:;t:Key) /\ L=O; 

if C[I]=Key then L+-1; 

assert if (VjE[l:I], C[j]:;t:Key) then L=O else L=I; 

To understand how j is used in justifications, consider the verification conditions. The 

case C[l]=Key, is 

(ViE[l:l-1], C[i]:;t:Key) /\ L=O /\ C[l]=Key -

if (VjE[l:I], C[j]:;t:Key) then l=O else l=I 

which may be established by proving 

(ViE[l:l-1], C[i]:;t:Key) /\ L=O /\ C[I]=Key - (3jE[l:I], C[j]=Key) 

The variable j is to be instantiated; a correct justification is j+-1. The verification condition 

for the case C[I]:;t:Key simplifies to 

(ViE[l:l-1], C[i]:;t:Key) /\ L=O /\ C[I]:;t:Key - (VjE[l:I], C[j]:;t:Key) 

The variable j is to be fixed and i is to be instantiated as a function of j; a correct 

justification is if jE[l:l-1] then i+-j. The program with justifications is 

assert (ViE[l:l-1], C[i]:;t:Key) /\ L=O; 

if C[I]=Key then {L+-1; use j+-1} else use if jE[l:l-1] then i+-j; 

assert if (VjE[l:I], C[j]:;t:Key) then L=O else L=I; 

The quantified variable j is fixed in one justification and is instantiated in the other. In 

each case, the justification produces a quantifier-free formula. 

The situation may be summarized: Suppose a final assertion contains a conjunct if 
(Vj)P(j) then Q else R. A justification, j+-E, which instantiates j dictates that the proof 

proceed by showing -P(E)t\R. A justification, i+-F(j), which takes j as fixed dictates that 

the proof proceed by showing that P(j)/\Q. 
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In all cases, the treatment of justifications preserves a critical property: There is an 

algorithm which maps a path (i.e. initial assertion, instructions, and final assertion) 

annotated with justifications into a quantifier-free formula F such that if F is true then the 

path is correct. 

4. FORMULA LABELS 

One goal of proof justifications is to allow writing programs whose proofs are clear. To 

aid readability, we introduce some additional, optional notation: 

(1) A formula in an assertion can be labeled. For example, 

assert L<U /\ SrtA:(Vi,jE[L:U], iSj -+ A[i]<A[j]); 

The formula label SrtA is a name for the second conjunct of this assertion. A well-chosen 

name may help convey the intent of a formula. Formula labels obey the normal 

block-structured scope rules and, subject to these rules, a formula label is unique within a 

scope. 

(2) A justification which instantiates quantified variables can prefix the instantiation by 

the label of the formula in which the variables are bound. For example, the justification 

h-k, j~M can be written as SrtA(i~k, j~M). Since formula labels are unique in a scope, such 

a form identifies the formula being used. The similarity to a function call is intentional. 

(3) A justification which establishes a formula labeled with <formula label> can be prefixed 

with the form prove <formula label> by, and the keyword use can then be omitted. Using 

this device to identify the formula proved by each justification may be helpful when the 

final assertion contains several formulas. 

The following path from a binary search shows how this notation is used 

assert L :::;u /\ 
SrtA:(Vi,jE[L:U], i <j -+ A[iJsA[j]) /\ 

KeylnLtoU:(3kE[L:U], A[k]=Key); 

M~(L+U)/2; 

if A[M]<Key then 

begin L~M+l; 

prove KeylnNewLtoU by k'~k, SrtA(i~k, j~M):ksM-+A[k]5A[M]; 

end 
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else 

begin U+-M; 

prove KeylnNewLtoU by if" k:5M then k'+-k 

else k'+-M, SrtA(i+-M, j+-k):M <k-+A[M]<A[k]; 

end; 

prove StillSrtA by SrtA(i+-i', j+-j'); 

assert L<U /\ 

StillSrtA:('Vi',j'E[L:U], i'<j' -+ A[i']::;A[j']) /\ 

KeylnNewLtoU:(3k'E[L:U], A[k']=Key); 

The second and third formulas in the initial assertion are labeled - SrtA and KeylnLtoU. 

Also, two formulas in the final assertion are labeled - StillSrtA and KeylnNewLtoU. There 

are three justifications, each beginning with prove. The first, prove KeylnNewLtoU by 

k'+-k, SrtA(i+-k, j+-M), may be read as follows: to prove KeylnNewLtoU, choose k' to be k; 

choose i and j of SrtA to be k and M. Observe how A being sorted is used to show that k' so 

chosen lies between the new L and U. The second justfication is similar: If k <M, then 

prove KeylnNewLtoU by choosing k' to be k; if M<k then prove KeylnNewLtoU by choosing 

k' to be M and instantiating SrtA with i+-M and j+-k. The third justification proves 

StillSrtA by instantiating SrtA. 

Formula labels are optional and redundant. So far as a mechanical verifier is 

concerned, prove KeyinNewLtoU by k'+-k, SrtA(i+-k, j+-M) is a redundant statement of use 

k'+-k, i+-k, j+-M. The programmer and subsequent readers may prefer the longer form. 

In addition to its use of formula labels, this example merits attention for it illustrates 

three commonly occuring properties of program proofs: 

(1) Proof cases refine the cases tested by executable instructions. The refinements may not 

be mainfest from the instructions and assertions. 

(2) Instantiations may be neither manifest nor obvious. 

(3) Finding the correct cases and instantiations from the instructions and assertions may 

require a search by either a reader or a mechanical verifier. Justifications make this search 

unnecesssary. 

5. JUSTIFYING LOOP INVARIANTS 

Justifying the correctness of a loop invariant is a special case of showing that an 

assertion is a logical consequence of a preceding assertion and the intervening executable 

instructions. Since the assertions at the beginning and end of a loop path are the same, the 

argument often has a stereotyped structure and it is then possible to default part of the 

justification. 
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For simplicity, we treat one-entrance-one-exit while loops. These are written as 

<while statement> maintain <assertion> while <Boolean test> do <statement> 

By convention, the <assertion> is to hold the first time that control enters the loop, and just 

before the <Boolean test> is executed. In particular, the <assertion> is to hold on loops that 

are executed zero times. A justification of the <assertion> must establish: (i) that it follows 

from the preceding invariants, and (ii) that it remains true as control flows around the 

loop. As (i) has been addressed by the preceding section, we deal with (ii). 

The following example takes two sorted arrays A[l:N] and D[l:M], and yields a third 

array C such that C[i]=A[i] if A[i] does not appear in D and C[i]=-1 otherwise. Because the 

arrays are sorted, this can be done in linear time with simple sequential file processing 

techniques. 

I+-1; J+-1: 

maintain SrtA:(Vp,qE[l:N], psq-A[p]:5A[q]) /\ 

SrtD:(Vr,sE[l:M], r<s-D[rJsD[s]) /\ 

CRule:(ViE[l:l-1], if DNA:(VmE[l:M], D[m]:;t:A[i]) then C[i]=A[i] else C[i]=-1) /\ 

SmallDs:(VjE[l:J-1], D[j]<A[I]) /\ 

IE[l:N+l] /\ JE[l:M] /\ A[N]<D[M] 

while IsN 

do if A[l]<D[J] then 

begin C[I]+-A[I]; l+-I+l end 

elseif A[I]=D[J] then 

begin C[I]+- -1; l+-I+l end 

elseif J <M then J +-J + 1 

The executable instructions are simple; the invariant on which the correctness rests is 

longer; SrtA and SrtD state that A and D are sorted. CRule is the output specification with 

the array size N replaced by its inductive counterpart 1-1. SmallDs states that each element 

in the sub-array D[l:J-1] is less than the element A[I] which is next to be processed. The 

next two conjuncts give the ranges of I and J. The final conjunct insures termination. 

An informal demonstration that these formulas are invariant goes as follows: SrtA and 

SrtD remain true because A and D are never changed. To establish CRule and SmallDs, 

consider the cases tested by the code: 

(1) If A[l]<D[J] then CRule requires we show that A[I] does not appear in D. SmallDs 

insures that A[I] does not appear in D[l:J-1]; the test A[l]<D[J] together with D being 

sorted, insures that A[I] does not appear in D[J:M]. SmallDs requires we show that each 
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element of D[l:J-1] is smaller than A[I'] where I' is the new value of I. This follows 

because each element is smaller than A[I], I' is I+l, and A is sorted so that A[IJ::s;A[I+l]. 

(2) If A[I]=D[J] then A[I] appears in D, so setting C[I] to -1 is correct. 

(3) If neither (1) nor (2) applies, then A[I]>D[J]. If J<M then J can be incremented 

leaving SmallDs invariant. 

To formalize this demonstration, we first examine the verification conditions that 

would result from the inductive assertion method. Consider, for simplicity, showing only 

that SmallDs:(\fjE[l:J-1], D[j]<A[I]) remains true in the case A[I]>D[J]. 

(Vp,qE[l:N], p::s;q-+A[p]sA[q]) /\ ('ltr,sE[l:M], r::;s-+D[r]SD[s]) /\ 

(\fiE[l:I-1], if (VmE[l:M], D[m]::;:A[i]) then C[i]=A[i] else C[i]=-1) /\ 

(\fjE(l:J-1], D[j]<A[I]) /\ IE[l:N+l] /\ JE[l:M] /\ A[I]2:::D[J] /\ A[N]<D[M] /\ 

A[I]:=;:D[J] --+ 

(VjE[l:J], D[j]<A[I]) 

To prove this, let j in the conclusion be fixed. If that j lies in the interval [l:J-1], choose j 

of the assumption to be that l· If that j is J, then the assumptions A[I]> D[J] and 

A[I};e D[J] imply A[I]> D[j]. 

In this description, it is vital to distinguish the j of the conclusion from the j of the 

assumption. For formulas of this class, we write j.f. to mean the j of the conclusion and use j 

without suffix to mean the j of the assumption. The expression j.f. may be read as "j at the 

path end". Further, we can use the convention, introduced in the preceding section, that if a 

formula can be proved without quantification then no explicit justification need be written, 

so that the proof of D[J]<A[I] does not need to be justified. Thus, the formal justification 

is: if j+E[l:J-1] then j+-j.f.. 

We are now prepared to introduce default justifications. Universally quantified loop 

invariants often have justifications similar to the one above, i.e. for the sub-range 

unaffected by the ith loop iteration, one proves P(j.f.) by using P(j). We adopt this as the 

default: Whenever a sub-range of a universally quantified loop invariant P(j) occurs on the 

i-th and i+ 1st iteration and the quantified variable j is not explicitly instantiated by a 

justification, then the choice j+- j + will be made. 

Using this default rule and the convention that proofs which proceed without 

quantification need no justification, the above verification condition requires no explicit 

justification. This situation is not uncommon. For example, the justification for 

SrtA:(\fp,qE[l:N], pSq-+A[p]sA[q]) /\ SrtD:(\fr,sE[l:N], r<s-+D[r]<D[s]), is p+-p.f.; q+-q.f.; 

r+-r.f.; s+-s.f.. As this is the default instantiation, it can be omitted. 
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We next treat a proof which partially defaults. Consider showing that 

SmallDs:(Vj+E[l:J-1], D[j+]<A[U]) in the case A[I]<D[J], so the value of I at the path end, 

U, is 1+1. By assumption, A is sorted, i.e. SrtA:(Vp,qE[l:N], p<q-+A[p]sA[q]). Choose p 

to be U-1 and q to be U, giving the assumption A[U-l]<A[U], i.e. A[I]<A[U]. The 

default instantiation j+-j.t., establishes D[j+]<A[I]. Thus, D[j+]<A[U.]. 

Consider showing that CRule:(ViE[l:l-1], if DNA:(VmE[l:M], D[m]:;i!:A[i]) then 

C[i]=A[i] else C[i]=-1) is an invariant in the case A[I]<D[J]. Let U denote the value of I at 

the path end. Suppose i+E[l:U-2]. This is covered by choosing i+-i+, which is the default. 

The remaining case is i+=U-1. In section 2, we showed that (Vm+E[l:M], D[m+]:;t:A[U-1]) 

using a justification which may be written 

if i+=U-1 then 

if m+E[l:J-1] then SmallDs(j+-m.t.): D[m+]<A[U-1] 

elseif m+E[J:M] th.en SrtD(r+-J, s+-m+): D[J]sD[m+] 

We adopt the convention that an ordinary variable such as I appearing in a justification is 

interpreted as denoting the value of that variable at the point where the justification is 

written. If the above justification is placed in the program after I is incremented, then I 

has its final value and I can be used in place of H with no cha·nge in meaning. 

Only one other case requires an explicit justification. Suppose A[I]=D[J]. Since C[I] is 

set to -1, CRule requires that we prove (3m+E[l:M], D[m+]=A[I]). The justification is 

m.t.+-J, which may be written DNA(m++-J). 

The program with its justifications is 

l+-1; J+-1: 

maintain SrtA:(Vp,qE[l:N], psq-+A[p]sA[q]) A 
SrtD:(Vr,sE[l:M], r<s-+D[rJsD[s]) A 
CRule:(ViE[l:l-1], if DNA:('v'mE[l:M], D[m]:;t:A[i]) then C[i]=A[i] else C[i]=-1) /\ 

SmallDs:(VjE[l:J-1], D[j]<A[I]) A 
IE[l:N+l] A JE[l:M] A A[N]<D[M] 

while I<N 

do if A[I]<D[J] then 

begin C[I]+-A[I]; l+-1+1; 

prove SmallDs by SrtA(p+-1-1, q+-1): A[I-l]sA[I]; 

prove CRule by if i+=l-1 then 

end 

if m+E[l:J-1] then SmallDs(j+-m.t.): D[m+]<A[I-1] 

elseif m+E[J:M] then SrtD(r+-J, s+-m+ ): D[J]sD[m+] 
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elseif A[I]=D[J] then 

begin C[I].- -1; I.-I+l; 

prove CRule by if i+=I-1 then DNA(m+ ... J) 

end 

elseif J <M then J ... J + 1 

The overall proof structure may be seen by inspection: SmallDs is proved using SrtA; CRule 

is proved using SmallDs and SrtD. 

To conclude the discussion of loops, we observe that for statements constitute a 

particularly regular class. The typical for statement has the form 

maintain 'v'iE[L:I-1], P(i) for I from L to U do S(I) 

The invariant specifies that P(i) has been achieved for each i in the subrange [L:I-1] that 

has been processed. Each iteration establishes P(I) and leaves undisturbed P(i) for 

iE[L:I-1]. The default justifications match this typical for loop exactly and justifications are 

unnecessary. Where for loops do not have this form and justifications are needed, their 

appearance is useful documentation - indicating an irregular situation. 

6. DEFINITIONS AND LEMMAS 

Programs and their proofs may be sharpened by introducing definitions to articulate 

important abstractions. As an example, we discuss part of the fast string searching 

algorithm of [6]. It takes a pattern P[l:M] and a text string T[l:N] and finds the first 

place in T where P matches - in linear time. To express the correctness specification, it is 

convenient to define the predicate Match. We define new predicates with the form 

predicate <p1·edicate name>( <formal parameters>): <assertion>; 

We define what it means for the substring P[l:m] to Match T ending at position s 

predicate Match(P,m,T,s; j): m<s /\ ('v'jE[l:m-1], P[j]=T[s-m+j]); 

Parameters following the semicolon are optional. If present, they give local names to bound 

variables for use in justifications, as explained below. 

The algorithm uses two integer variables J and K to index P and T respectively. These 

indices are initialized to 1 so initially, Match(P,J,T,K) is vacuously true. Throughout the 

search, the invariant Match(P,J,T,K) is maintained. If J ever reaches M+l, a complete 
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match for P in T has been found. (A complete specification would additionally require that 

the match so found is the leftmost complete match. In the interest of brevity, we defer this 

part of the specification and its justification to the appendix.) 

The linear search time is attained by first processing the pattern P to construct a table 

L of longest initial matches. For each mE[l:M], L[m] is the longest initial substring of P 

which matches a proper tail of P[l:m]. More precisely, L is constructed so that 

LSpec:(VmE[l:M], 

L[m]E[O:m-1] /\ Match(P,L[in],P,m) /\ (ViE[L[m]+l:m-1], -Match(P,i,P,m))) 

Since L and P are never changed, this remains invariant. 

At each step of the search, there are two cases. If P[J]=T[K], then J and K are each 

incremented by 1, maintaining the invariant Match(P,J,T,K). The program fragment is 

assert Match(P,J,T,K;jl) /\ 

LSpec:('VmE[l:M], , 

L[m]E[O:m-1] /\ Match(P,L[m],P,m) /\ (ViE[L[m]+l:m-1], -Match(P,i,P,m))); 

if P[J]=T[K] then {J~J+l; K~K+l}; 

assert Match(P,J,T,K;j2) using if j2E[l:J-2] then jl~j2; 

This shows how the optional parameters to Match are used: The final assertion is 

Match(P,J,T,K). As Match contains a universally quantified formula of the form 

('VjE[l:J-1], Q(j)), we show how to prove Q(j) for each jE[l:J-1] - using a justification. 

The justification must refer to the quantified variable j in two occurrences of Match. We 

give j two distinct local names by supplying the optional parameters in these two 

occurrences. 

The other case is P[J]:;t:T[K]. J is set to L[J], so the new value of J indexes the longest 

preceding partial match. This also maintains the invariant Match(P,J,T,K). The program 

fragment with justifications is 

assert Match(P,J,T,K;jl) /\ 

LSpec:(VmE[l:M], 

L[m]E[O:m-1] /\ Match(P,L[m],P,m;j2) /\ ('ViE[L[m]+l:m-1], -Match(P,m,P,i))); 

if P[J]:;t:T[K] then 

begin use jl~J-L[J]+j3: J :$K /\ P[J-L[J]+j3]=T[K-L[J]+j3]; 

use m~J, j2~j3: L[J]:$J /\ P[j3]=P[J-L[J]+j3]; 

J~L[J] 

end 
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assert Match(P,J,T,K;j3): J ~K /\ (\:fj3E[l:J-1], P[j3]=T[K-J+j3]) 

As before, optional parameters to Match in the assertions are used in the justification. The 

formulas following the colons show the results of the instantiations. 

Although the proof is correct, it can be improved. Because it appeals too directly to 

definitions, it obscures a simple argument: Match is a transitive relation, so if P[l:L[J]] 

matches P at J and P [l:J] matches T at K then P[l:L[J]] matches T at K. A better proof 

would first establish, as a lemma, that Match is a transitive relation and then use this 

property in the main proof. 

To introduce a lemma, we write 

lemma <lemma name>(<formal parameters>): <assertion>; 

As elsewhere, the <assertion> may include a justification. The <assertion> is a formula to be 

proved, using the justification if one is present. The transitivity result for Match may be 

stated and proved: 

lemma TransMatch(A,x,B,y,C,z): 

Match(A,x,B,y;jl) /\. Match(B,y,C,z;j2) -+ Match(A,x,C,z;j3) 

using jl+-j3, j2+-y-x+j3; 

Using a separate lemma has two benefits: (i) a general result is obtained; (ii) only relevant 

assumptions need be considered when checking its truth. Since optional parameters to 

predicates serve only to aid the justifications, a lemma which is shown valid with optional 

parameters is valid if the optional parameters are deleted. Thus, this lemma establishes 

(\:f A,x,B,y,C,z) Match(A,x,B,y) /\. Match(B,y,C,z) -+ Match(A,x,C,z). 

A valid formula such as this may be added to the assumption of a verification condition 

with any choice for the universally quantified variables A,x,B,y,C,z. It is convenient to 

invoke lemmas by name and describe the instantiations by actual parameters to the lemma 

invocation. For example, the above fragment may be rewritten 

assert Match(P,J,T,K) /\ 

LSpec:(\:f mE[l:M], 

L[m]E[O:m-1] /\ Match(P,L[m],P,m) /\ (ViE[L[m]+l:m-1], -Match(P,m,P,i))); 

if P[J]:;t:T[K] then 

begin use LSpec(m+-J): Match(P,L[J],P,J); 

use TransMatch(P,L[J],P,J,T,K): 

Match(P,L(J],P,J) /\. Match(P,J,T,K) -+ Match(P,L[J],T,K); 
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J4-L[J] 

end; 

assert Match(P,J,T,K) 

Here, the role of transitivity is clear. Using a lemma in this way articulates an important 

property of Match and sharpens the argument. 

7. OTHER FUNCTIONALS 

We have shown how justifications can be used to obtain quantifier-free verification 

conditions from assertions with quantified formulas. In the context of program verification, 

it is enlightening to regard the quantifiers V and 3 as merely two members of a collection of 

built-in functionals which may appear in assertions. Other functionals in the collection 

are: theleast, sum, product, and cardinality. The quantifiers and these other functionals are 

similar in that they take a formula or term as a parameter and apply that parameter to some 

set of values. 

Like the quantifiers, these other functionals can make theorem proving difficult. As 

with the quantifiers, we use justifications to map verification conditions with functionals 

into simpler theorems whose truth implies the original verification conditions. The form of 

justifications depends on the functional. The meaning of simpler also depends on the 

functional: for the quantifiers, simpler means quantifier-free; for other functionals, simpler 

usually means that the new theorems can be proved by treating any remaining occurrences 

of functionals as atomic terms. This is best explained with an example. 

The functional cardinality is representative. We write <C(jE[i:f], P(j)) to denote the 

cardinality of the set {j I jE[i:f] /\ P(j)}. The following may be said of <C: 

(Rl) <C(j E[i:f], P(j)) = 0, if i)f 

(R2) <C{jE[i:f], P(j)) = (if P(j) then 1 else O), if i=f 

(R3) <C(jE[i:f], P(j)) = 

<C(jE[i:r-1], P(j)) + (C(j E[r:s], P(j)) + <C(j E[s+ l:f], P(j)), if i<r<s<f 

(R4) <C(jE[i:f], P(j)) ~ <C(jE[i:f], Q(j)), if (VjE[i:f], P(j)-+Q(j)) 

A verifier in which <C is built-in and which suitably treats equality and inequality can use 

Rl and R2 as reduction rules, invoking them automatically. · It is difficult, however, to 

invoke R3 automatically. Like the universally quantified formula (VsE[i:f], P(s)), R3 can 

be instantiated for any s in the range. Knowing when to invoke R3 and choosing the right 

values for s and r is not a mechanical process. Justifications seem appropriate. 
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One may regard R3 (and R4) as built-in lemmas whose truth is assumed. 

lemma SplitC(j,i,f,r,s,P): 

isr<ssf -+ 

<C(jE[i:f],P(j)) = <C(jE[i:r-1] ,P(j)) + <C(jE[r:s], P(j)) + <C(jE[s+l:f], P(j)); 

lemma OrderedC(j,i,f ,P ,Q): 

(VjE[i:f], P(j)-+Q(j)) -+ <C(jE[i:f], P(j)) < <C(jE[i:f], Q(j)); 

Thus, these rules may be invoked with the same syntax and with the same interpretation as 

lemmas in the preceding section. For example, 

using SplitC(k,1,N,L-1,L,A[k]sO) 

use OrderedC(k,2,M,A[k]=O,B[k]<k): 

('t/kE[2:M], A[k]=O-+ B[k]<k) -+ <C(kE[2:M], A[k]=O) < <C(kE[2:M], B[k]<k) 

Note that some formal parameters are predicate letters, i.e. the lemmas are second-order 

formulas. Since they will be used only when explicitly invoked with actual parameters, 

their instances will be first-order formulas. 

Invoking these rules instantiates the rule body and adds it to the verification 

condition. As always, the occurence of an ordinary variable in a justification refers to the 

current value of that variable. For example, 

assert LE[l:N] /\ <C(jE[l:N], B[j]=O) ~ K; 

if B[L]>2 then 

begin use Spli tC(j, 1,N ,L,L,B[j]=O); 

B[L}-B[M]-B[N]; 

use Spli tC(n, 1,N ,L,L,B[n]=O); 

end; 

assert <C(nE[l:N], B[n]=O) > K; 

The invocation SplitC(j,1,N,L,L,B[j]=O) refers to the initial value of B. The invocation after 

the assignment, i.e. SplitC(n,1,N,L,L,B[n]=O), refers to the final value of B. Using these 

justifications, the verification condition simplifies to 

<C(jE[l:L-1], B[j]=O)+(if B[L]=O then 1 else O)+<C(jE[L+l:N], B[j]=O) ~ K /\ B[L]>2 -+ 

<C(jE[l:L-1], B[j]=O)+(if B[M]=B[N] then 1 else O)+<C(jE[L+l:N], B[j]=O) > K 

This may be proved _by treating <C(jE[l:L-1], B[j]=O) and <C(jE[L+l:N], B[j]=O) as atomic 
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terms, i.e. as new variables x and y, obtaining the formula 

x+(if B[L]=O then 1 else O)+y > K /\ B[L]>2 -

x+(if B[M]=B[N] then 1 else O)+y ~ K 

Further concern with the meaning of <C is unnecessary. 

8. PROOFS WHICH NEED NO JUSTIFICATION 

In general, proof justifications are necessary. There are, however, certain classes of 

theorems for which a suitably fast decision procedure is known. For such classes, 

justifications are not necessary. It is important to understand these classes, in order to put 

justifications, into proper perspective. Universally quantified Presburger arithmetic is one 

such classs: there is no need to annotate 3*I<B[J] /\ B[J]<K+l - 3*I<K+l with a 

justification using the transitivity of less-than. However, other well-defined classes having 

a decision procedure are less widely appreciated. Such classes deserve attention and should be 

exploited. 

A fundamental result is found in [8]. It may be stated informally: If F is a recursively 

defined total function, V is a formula which contains a single appearance of F, and V specifies 

F uniquely, then subgoal induction can be used to construct another formula V' free of F such 

that V:=V'. This provides a way of eliminating function letters from verification 

conditions. Using it, we may obtain a formula for which a decision procedure is known. 

Any formula which, by inspection, may be seen to have this property needs no justification. 

As an example, we treat the functional Sum. For the purposes of an induction proof, it 

may be defined by the recursive procedure 

procedure Sum(i,n,E): if i>n then 0 else E(n)+Sum(i,n-1,E); 

Consider the theorem 
3 4 3 2 

n>O - Sum(l, n, (.hj)j ) = n /4 + n /2 + n /4 

This might appear difficult to establish automatically. However, inspection of its form 

reveals that the above result applies. One may apply the rule of subgoal induction to the 

definition of Sum and mechanically construct the equivalent theorem 

4 3 2 
( n>O /\ l>n - 0 = n /4+n /2+n /4 ) /\ 

4 3 2 3 4 3 2 
( n>O /\ l~n /\ z= (n-1) /4+(n-1) /2+{n-1) /4 - n +z = n /4+n /2+n /4 ) 
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in confidence that proof of the new theorem is merely a matter of tedious algebraic 

manipulation. The form of the original theorem insures that no creativity will be required. 

9. CONCLUSION 

It has been our aim to show that proof justifications should be an integral part of their 

programs. There are three reasons for this. The first reason comes from mathematical 

logic: There is no decision procedure for first order predicate calculus. Without 

justifications, a mechanical program verifier cannot guarantee that in finite time it will 

verify each correct program and reject each incorrect one. 

The second reason comes from software engineering practice. Programs must be read 

and understood by programmers who did not write the code, e.g. co-workers who later 

modify it for changed needs. When quantified assertions must be proved by making the 

right instantiations, it may be difficult for a reader to understand the chain of reasoning 

which establishes a verification condition. Justifications are good documentation for 

anyone who wishes to understand why a program works. 

The third reason comes from programming methodology. The preceding considerations 

regarding other programmers apply in part to the original programmer. When assertions 

involve quantification, it may be difficult for him to be confident that the assertions he 

supplies are complete. If they are not, mechanical verification may fail even though the 

program is correct. As long as the proof process is not articulated, constructing the right 

assertions will be regarded as mysterious and error-prone. By providing a notation in which 

proofs can be justified with precision and rigor, we hope to replace this attitude with the 

understanding that verification can be made systematic. and lucid. 
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APPENDIX: AN EXTENDED EXAMPLE 

The utility of proof justifications can best be appreciated by studying in depth a program 
which requires a subtle proof. We finish verifying the linear string searching algorithm [6] 
started in section 6. The algorithm is to find the leftmost position in the text T[l:N] which 
matches the pattern P[l:M]. Section 6 describes the method in some detail; a rereading of 

that section may be helpful. We defined 

predicate Match{P,m,T,s; j): m <s /\ ('VjE[l:m-1], P[j]=T[s-m+j]); 

We assume the pattern P has been processed to constructe a table L so that for each mE[l:M], 
L[m] is the longest initial substring of P which matches a proper tail of P[l:M], i.e. 

LSpec:('VmE[l:M], 
L[m]E[O:m-1] /\ Match{P,L[m],P,m) /\ ('ViE[L[m]+l:m-1], -Match{P,i,P,m))); 

To write the specifications compactly, we declare that LSpec is a global invariant, 
meaning that it holds throughout the scope and is implicitly added to each assertion. With 
this notation, the program is 

invariant LSpec:{'VmE[l:M], 
L[m]E[O:m-1] /\ Match{P,L[m],P,m) /\ ('ViE[L[m]+l:m-1], -Match{P,i,P,m))); 

J+-1; K+-1; 
maintain Match{P,J,T,K) /\ NotSeenl:{'VsE[M+l:M+K-J], -Match{P,M+l,T,s)) 

while J<M /\ K<N 
do begin 

maintain Match{P,J,T,K) /\ NotSeen2:{'VtE[M+l:M+K-J], -Match(P,M+l,T,t)) 
while J>O /\ P[J}t=T[K] 
do J+-L[J]; 

K+-K+l; J+-J+l 
end 

The outer loop advances J and K together, scanning forward in the pattern P and text T. The 
inner loop backs up J, via J+-L[J], whenever corresponding characters in P and T do not match. 

The correctness specification given in section 6 is augmented here by the requirement 
that ('VtE[M+l:M+K-J], -Match{P,M+l,T,t)) i.e., no complete match has been seen. The 
hardest part of the verification is showing that this is maintained in the case J>O /\ 
P[J]:;t:T[K]. Because the assignment J+-L[J] extends the interval [M+l:M+K-J], showing that 
the invariant is maintained requires a non-trivial argument. The reader may find it 
instructive to carry out the verification himself before reading further. 
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The justification we use depends on two lemmas. The first lemma states that if a pattern 
matches a text at some position then any initial subpattern matches the text at the 

corresponding position, i.e. 

lemma SubMatch(P,U,T,K,S): 
Match(P,U,T,K; jl) /\ s::;u -+ Match(P,S,T,K-U+S; j2) 
using jl+-j2; 

The second lemma states that if two patterns match a text at a common place, then the two 
patterns match each other, i.e. 

lemma Common(P,J,Q,X,T,K): 
Match(P,J,T,K; jl) /\ Match(Q,X,T,K; j2) /\ X::;J -+ Match(Q,X,P,J; j3) 
using jl+-J-X+j3, j2+-j3; 

The program fragment which uses the lemma is 

assert Match(P,J,T,K) /\ 
(V'tE[M+l:M+K-J], -Match(P,M+l,T,t; j)) /\ 
LSpec:(V'mE[l:M], 

L[m]E[O:m-1] /\ Match(P,L[m],P,m) /\ (V'iE[L[m]+l:m-1], -Match(P,i,P,m))); 
if J>O /\ P[J];t:T[K] then 

begin 
use if t'E[M+l:M+K-J] then {t+-t'; j'+-j} 

elseif t'=M+K-J+l then j'+-J 
elseif t'E[M+K-J+2: M+K-L[J]] then 

SubMatch(P,M+l,T,t',M+l-t'+K): 

J+-L[J]; 
end 

Match(P,M+l,T,t') /\ M+l-t'+K::;M+l -+ Match(P,M+l-t'+K,T,K), 
Common(P ,J ,P ,M + 1-t' + K,K): 

Match(P,J,T,K) /\ Match(P,M+l-t'+K,T,K) /\ M+l-t'+K::;J -+ 

Match(P,M+l-t'+K,P,J), 
LSpec(m+-J, i+-M+l-t'+K): 

-Match(P,M+l-t'+K,P,J); 

assert (V't'E[M+l:M+K-J], -Match(P,M+l,T,t'; j')) 

This may be read as: To show that (V't'E[M+l:M+K-J], -Match(P,M+l,T,t'; j')) consider 3. 
cases. 

(1) If t'E[M+l:M+K-J] use the second initial assertion and choose j' of the final assertion to 
be j. 
(2) If t'=M+K-J+l use the program test P[J]=T[K] by choosing j' to be J. 
(3) If t'E[M+K-J+2: M+K-L[J]] then invoke the lemmas SubMatch and Common to show that 

Match(P,M+l,T,t') leads to a contradiction, which proves -Match(P,M+l,T,t'). 
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