
• ~ •
\ ~'

\ \
\
\

CONSTRUCTIVE METHODS
IN PROGRAM VERIFICATION
BY BEN WEGBREIT

CSL-76-2 JULY 1976

Most current approaches to mechanical program verification transform a program and its

specifications into first order formulas and try to prove these formulas valid. Since the first

order predicate calculus is not decidable, such approaches are inherently limited. This paper

proposes an alternative approach to program verification: Correctness proofs are

constructively established by proof justifications written in an algorithmic notation. These

proof justifications are written as part of the program, along with the executable

instructions and correctness specifications. A notation is presented in which instructions,

specifications, and justifications are neatly interwoven. The justifications establish the

connection between the instructions and specifications: they document the reasoning on

which the correctness is based. Programs so written may be verified by proving the truth of

quantifier-free logical formulas.

KEY WORDS

program verification, proving programs correct, proof justifications, constructive program

verification

CR CATEGORIES

4.19, 4.22, 5.21, 5.24

XEROX
PALO AL TO RESEARCH CENTER
3333 COYOTE HILL ROAD I PALO ALTO I CALIFORNIA 94304

1. INTRODUCTION

Most research in mechanical program verification has approached the problem by

seeking ways in which to transform a program and its specifications into logical formulas

and trying to prove these formulas valid. Pioneering studies developing this approach

include [2], [4], [5], and [7]. The specification language is typically a first order theory.

The formulas to be proved also belong to the theory. It is well known that there is no

decision procedure for the first order predicate calculus. Thus, this approach is necessarily

limited - a mechanical program verifier cannot guarantee that in finite time it will verify

each correct program and reject each incorrect one.

These observations may be given substance by exammmg contemporary verification

systems. The theorem provets employed tend to flounder on large or complex programs.

Because of this, the most recent verification systems rely on assistance from the

programmer, either as interactive guidance [1], [3], [10] or as a file of axioms to use in the

proof [9].

Most verification systems use the method of inductive assertions [2], or some related

induction rule [8]. The induction rule is used to form verification conditions as the formulas

to be proved. Such induction rules create a second problem: Even if the program is correct

with respect to its input-output specifications and all the internal specifications are correct,

the verification conditions may not be valid if the specifications are too weak [11]. Writing

specifications which are strong enough to make the verification succeed is therefore the

responsibility of the programmer. Experience to date indicates this is difficult. We

conjecture that the difficulty is partly caused by the absence of an explicit link between the

specifications and executable instructions.

This paper proposes an alternative approach. If a correctness specification is difficult

to establish, it is desirable to justify its proof. We suggest that proof justifications should be

written in an algorithmic notation and that these justifications should be written as part of their

programs, along with executable instructions and correctness specifications. We propose

some notation for this purpose that we have found convenient to use and aesthetically

pleasing. For example, in this notation, a while loop includes a specification and a

justification, in addition to the usual loop test and body. The specification may be an

inductive assertion; it documents the values computed. The justification establishes how the

correctness proof is to proceed; it documents the connection between the instructions and

the specification. Taking the justification as a directive, it is readily. decided whether the

instructions, specifications, and justifications agree. Just as with other language constructs,

justifications often have a regular structure. Default rules are adopted so that the most

common cases need not be written - an omitted justification invokes the default. The body

of this paper amplifies this cryptic sketch.

2

This approach has a potential weakness, since it requires the programmer to write

additional text. Our observations have indicated that the additional work is either small or

well-spent: In simple cases, justifications can be defaulted. Where justifications cannot be

defaulted, the clarity they add is ample recompense for the effort expended.

We believe that justifications are a useful tool in understanding programs - their

design, refinement, and modification. Our thesis is prescriptive: programs should contain

their justifications.

2. JUSTIFYING.UNIVERSALLY QUANTIFIED ASSERTIONS

We introduce proof justifications with a small example. As inductive assertions are the

most familiar kind of correctness specifications, we use them throughout; a similar

development could be given for other kinds of specifications. The inductive assertion

method reduces program correctness to correctness of a finite set of finite paths. A program

path starts with an initial assertion, continues with executable instructions, and terminates

with a final assertion. There are well-known algorithms for mapping a path into its

verification condition.

We use several notations to write compact assertions: Closed intervals are written [i:f];

kE[i:f] means i:=;k<f; (VkE[i:f], P(k)) means (Vk) i <k::;f-+P(k). The pair {, } is used

interchangably with begin, end as delimiters.

Consider the fallowing path

assert (VjE[l:J-1], D[j]<A[I]) A

(Vr,sE[l:M], r::;s-+D[rJ::;D[s]) A

(ViE[l:I-1], \fmE[l:M], D[m]:it:A[i]);

if A[I]<D[J] then It-I+l;

assert (\fi'E[l:I-1], \fm'E[l:M], D[m']:it:A[i'])

The final assertion is a logical consequence of the initial assertion and the intervening

statement. This may be demonstrated as follows:

(I) Suppose A[I]2:::D[J], so the final value of I is the same as the initial value of I; then the

final assertion is a consequence of the third initial assertion.

(II) Suppose that A[I]<D[J], so the final value of I is the initial value of I plus 1; let I'

denote the final value of I. Consider some fixed i' and m' such that i'E[l:I'-1] and m'E[l:M].

II.A) If i' lies in the closed interval 1 to I'-2 then the final assertion is a consequence

of the third initial assertion, choosing i and m to be i' and m' respectively.

3

II.B) If i' is I'-1 then there are two further cases:

II.B.1) If m' lies in the interval 1 to J-1, the first initial assertion can be

used, taking j to be m'

II.B.2) If m' lies in the interval J to M, use the program test A[I]<D[J] and

choose r and s of the second initial assumption to be J and m' respectively.

This demonstration is clearly sound. It may be stated in general terms as follows: To

prove that a universally quantified assertion (Vk') P(k') is a logical consequence of a

universally quantified assertion (Vk) Q(k), it suffices to show that for each value of k'

there is some value of k such that P(k') follows from Q(k). If the assertion to be proved has

the form (Vk'E[i:f], P(k')), it suffices to show that for each k' in the interval [i:f] there is

some choice for k which makes the formula true.

In the paragraph above, we described the choices in English. Alternatively, we might

use an algorithmic notation to express our choices. If k and k' are quantified variables, we

write k+-k' to mean that Ii' is fixed and k is chosen to be k'. We call this an instantiation of k.

Using this notation, the choices to establish the above proof can be written

if A[I]:2:D[J] V i'E[l:I-2] then {i+-i', m+-m'}

elseif m'E[l:J-1] then j+-m'

else {r+-J, s+-m'}

This is a proof justification. ~

To make clear how the instantiations are used in the proof, it is sometimes helpful to

display the body of the instantiated formula following the instantiation. For example, the

instantiation r+-J, s+-m' may be expanded to r+-J, s+-m': D[J]<D[m'], where the colon may be

read as "so that". The instantiated formula D[J]<D[m'] following the colon adds no new

information. However, the programmer and subsequent readers may find it helpful. Its use

is a matter of taste. Similarly, redundant tests may be added to make explicit the

conditions for each justification case, e.g. if P then E else F may be expanded to if P then

E elseif ~P then F. Using these expanded forms, the above justification may be written

if A[I]:2:D[J] V i'E[l:I-2] then {i+-i', m+-m': D[m']:~A[i']}

elseif i'=l-1 /\. m'E[l:J-1] then j+-m': D[m']<A[I'-1]

elseif i'=I-1 /\. m'E[J:M] then {r+-J, s+-m': D[J]<D[m']}

An assertion may be annotated by using a justification, i.e.

assert <assertion> using <justification>

4

A justification which annotates an assertion is used to prove verifications conditions for

paths which terminate with that assertion. Often, a justification instantiates quantified

variables of the initial assertion of a path; to avoid name clashes, we adopt the convention

that no quantified variable name is repeated in a procedure.

The justified program may be written

assert (VjE[l:J-1], D[j]<A[I]) /\

(Vr,sE[l:M], r~s~D[r]<D[s]) /\

(ViE[l:I-1], VmE[l:M], D[m]:;t:A[i]);

if A[I]<D[J] then I+-1+1;

assert (Vi'E[l:l-1], Vm'E[l:M], D[m'l;t:A[i'])

using if A[I]2::D[J] V i'E[l:l-2] then {i+-i', m+-m': D[m']:;t:A[i']}

elseif i'=l-1 /\ m'E[l:J-1] then j+-m': D[m']<A[I-1]

elseif i'=l-1 /\ m'E[J:M] then {r+-J, s+-m': D[J]<D[m']}

Given this program, one may check its correctness by considering each case specified by

the justification. Each case is a quantifier-free formula which is simple to prove. To

complete the proof, it suffices to check that the specified cases cover all ways in which the

variables i' and m' can be instantiated.

correspondingly simple.

Verifying correctness mechanically is

As above, the cases of a justification typically correspond to conditions of the program.

Because of this, it is often convenient to intermix the parts of a justification with the

program conditions to which they -correspond. We prefix such justifications with the

keyword use. A justification appearing on a program path is to be used in proving

verification conditions generated by that path. With these conventions, the program may be

written

assert (VjE[l:J-1], D[j]<A[I]) /\

(Vr,sE[l:M], r~s~D[r]<D[s]) /\

(ViE[l:l-1], VmE[l:M], D[m]:;t:A[i]);

if A[I]<D[J] then

begin I+-I+l;

use if i'E[l:I-2] then {it-i', m+-m': D[m'l;t:A[i']}

end

elseif i'=l-1 /\ m'E[l:J-1] then j+-m': D[m']<A[I-1]

elseif i'=I-1 /\ m'E(J:M] then {r+-J, s+-m': D[J]<D[m']}

else use {i+-i', m+-m': D[m']:;t:A[i']};

assert (Vi'E[l:I-1], Vm'E[l:M], D[m']:;t:A[i'])

5

The using clause is empty here. It's information has been distributed into the if

statement. That statement has been changed from an if-then, to an if-then-else, where

the else clause has no executable instructions - only a justification.

It should be stressed that the quantifier instantiations i+-i' and m+-m' have a rather

different interpretation from the increment instruction I+-1+1. The instantiations i+-i' and

m+-m' are proof justifications. They state that their path can be proved by choosing i and m

in (ViE[l:I-1], VmE[l:M], D[m]:;t:A[i]) to be i' and m', obtaining (i'E[l:I-1] /\ m'E[l:M] -+

D[m]:;t:A[i]); no other use need be made of (ViE[l:l-1], VmE[l:M], D[m]:;t:A[i]).

Overloading the binary connective 11 +-" with this new interpretation seems fitting, for it

suggests a constructive approach to proofs - an approach we find well-suited to verifying

programs.

Concerning mechanical verification, we regard the justifications as essential, not merely

helpful hints. If needed justifications are missing or wrong, we require a verification system

to report the inconsistency but we do not expect it to debug the justifications. In

particular, this implies that such a verifier may reject an otherwise correct program if the

justifications are wrong. We noted in the introduction that mechanical program verifiers

already suffer from a form of incompleteness: if the assertions are too weak, a correct

program with correct assertions will yield an invalid verification condition and may

therefore be rejected. The present approach introduces a related incompleteness in regard to

justification.

3. JUSTIFICATIONS

In the preceding example, a justification assigns values to quantified variables of the

initial assertion, as functions of given values for quantified variables in the final assertion.

This occurs because the quantified variables were bound in universally quantified formulas

at the outermost level of both assertions. Had the variables been existentially quantified,

the roles of final and initial assertions would have been exchanged: a justification would

then assign values to quantified variables of the final assertion as a function of given values

in the initial assertion.

For example, consider the following straight-line fragment taken from a search loop

which finds a zero element in the array B

assert (3eE[I:N], B[e]=O);

if B[l]=O then N +-I else I +-I+ 1;

assert (3e'E[I:N], B[e']=O)

6

The verification conditions constructed by the inductive assertion method are

(3eE[I:N], B[e]=O) /\ B[I]=O - (3e'E[I:I], B[e']=O)

(3eE[I:N], B[e]=O) /\ B[I}~O - (3e'E[I+l:N], B[e']=O)

The first may be established by choosing e' to be I. The second may be established as

follows: Let e be given, so that B[e]=O is an assumption. If e=I, then the assumption B[I]::;t:O

leads to a contradiction in the hypothesis of the verification condition, so the verification

condition is true. Otherwise, eE[I+l:N] so we may choose e' to be e.

We wish to formalize this by a justification. ICB[I]=O, we have e'+-I. Next, suppose

B[I]:;t:Q, For the case eE[I+l:N], we write e' ... e. The case e=I requires no instantiation of e': it

suffices to construct the verification condition with e replaced by I and its truth follows

without further reasoning about quantifiers. We adopt the convention that cases which can

be proved without instantiation require no justification. Thus, the program with its

justifications is

assert (3eE[I:N], B[e]=O);

if B[l]=O then {N+-1; use e' ... I} else {l+-I+l; use if eE[I:N] then e'+-e}

assert (3e'E[I:N], B[e']=O)

In proving an existentially quantified final assertion from an existentially quantified

initial assertion, the instantiation made in the justification behaves somewhat like a normal

assignment. The following interpretation can be given: Imagine control passing through

the initial assertion where an oracle selects the value of the existentially quantified

variable e; next, the justification expression is executed which computes a value for the

existentially quantified variable e' of the final assertion; control then reaches the final

assertion which must be true using the computed value for e'. This sort of description is

not natural when proving a universally quantified final assertion from a universally

quantified initial assertion. The choice of values for universally quantified variables goes

counter to the execution flow.

Position in the formula determines whether a quantified variable is fixed or subject to

instantiation and, in the case of instantiated variables, on which fixed variables they may

depend. Instantiating variables as functions of other variables can be viewed as supplying

the Skolem functions of mathematical logic. A general statement of the positional rules may

be found in any standard work on logic. The following scheme summarizes the cases

discussed thus far.

(Vp)P(p) /\ {3q)Q(q) - (Vr)R(r) /\ (3s)S(s)

7

The variables q and r are to be fixed; p and s are to be chosen as functions of q and r.

It is convenient to use the construction if P then Q else R in logical formulas as an

abbreviation for (P-Q) /\ (-P-R). When this construction appears in assertions and P is

quantified, use of the quantified variables in justifications is described by special rules.

These rules are illustrated by the following example

assert (ViE[l:l-1], C(i]:;t:Key) /\ L=O;

if C[I]=Key then L+-1;

assert if (VjE[l:I], C[j]:;t:Key) then L=O else L=I;

To understand how j is used in justifications, consider the verification conditions. The

case C[l]=Key, is

(ViE[l:l-1], C[i]:;t:Key) /\ L=O /\ C[l]=Key -

if (VjE[l:I], C[j]:;t:Key) then l=O else l=I

which may be established by proving

(ViE[l:l-1], C[i]:;t:Key) /\ L=O /\ C[I]=Key - (3jE[l:I], C[j]=Key)

The variable j is to be instantiated; a correct justification is j+-1. The verification condition

for the case C[I]:;t:Key simplifies to

(ViE[l:l-1], C[i]:;t:Key) /\ L=O /\ C[I]:;t:Key - (VjE[l:I], C[j]:;t:Key)

The variable j is to be fixed and i is to be instantiated as a function of j; a correct

justification is if jE[l:l-1] then i+-j. The program with justifications is

assert (ViE[l:l-1], C[i]:;t:Key) /\ L=O;

if C[I]=Key then {L+-1; use j+-1} else use if jE[l:l-1] then i+-j;

assert if (VjE[l:I], C[j]:;t:Key) then L=O else L=I;

The quantified variable j is fixed in one justification and is instantiated in the other. In

each case, the justification produces a quantifier-free formula.

The situation may be summarized: Suppose a final assertion contains a conjunct if
(Vj)P(j) then Q else R. A justification, j+-E, which instantiates j dictates that the proof

proceed by showing -P(E)t\R. A justification, i+-F(j), which takes j as fixed dictates that

the proof proceed by showing that P(j)/\Q.

8

In all cases, the treatment of justifications preserves a critical property: There is an

algorithm which maps a path (i.e. initial assertion, instructions, and final assertion)

annotated with justifications into a quantifier-free formula F such that if F is true then the

path is correct.

4. FORMULA LABELS

One goal of proof justifications is to allow writing programs whose proofs are clear. To

aid readability, we introduce some additional, optional notation:

(1) A formula in an assertion can be labeled. For example,

assert L<U /\ SrtA:(Vi,jE[L:U], iSj -+ A[i]<A[j]);

The formula label SrtA is a name for the second conjunct of this assertion. A well-chosen

name may help convey the intent of a formula. Formula labels obey the normal

block-structured scope rules and, subject to these rules, a formula label is unique within a

scope.

(2) A justification which instantiates quantified variables can prefix the instantiation by

the label of the formula in which the variables are bound. For example, the justification

h-k, j~M can be written as SrtA(i~k, j~M). Since formula labels are unique in a scope, such

a form identifies the formula being used. The similarity to a function call is intentional.

(3) A justification which establishes a formula labeled with <formula label> can be prefixed

with the form prove <formula label> by, and the keyword use can then be omitted. Using

this device to identify the formula proved by each justification may be helpful when the

final assertion contains several formulas.

The following path from a binary search shows how this notation is used

assert L :::;u /\
SrtA:(Vi,jE[L:U], i <j -+ A[iJsA[j]) /\

KeylnLtoU:(3kE[L:U], A[k]=Key);

M~(L+U)/2;

if A[M]<Key then

begin L~M+l;

prove KeylnNewLtoU by k'~k, SrtA(i~k, j~M):ksM-+A[k]5A[M];

end

9

else

begin U+-M;

prove KeylnNewLtoU by if" k:5M then k'+-k

else k'+-M, SrtA(i+-M, j+-k):M <k-+A[M]<A[k];

end;

prove StillSrtA by SrtA(i+-i', j+-j');

assert L<U /\

StillSrtA:('Vi',j'E[L:U], i'<j' -+ A[i']::;A[j']) /\

KeylnNewLtoU:(3k'E[L:U], A[k']=Key);

The second and third formulas in the initial assertion are labeled - SrtA and KeylnLtoU.

Also, two formulas in the final assertion are labeled - StillSrtA and KeylnNewLtoU. There

are three justifications, each beginning with prove. The first, prove KeylnNewLtoU by

k'+-k, SrtA(i+-k, j+-M), may be read as follows: to prove KeylnNewLtoU, choose k' to be k;

choose i and j of SrtA to be k and M. Observe how A being sorted is used to show that k' so

chosen lies between the new L and U. The second justfication is similar: If k <M, then

prove KeylnNewLtoU by choosing k' to be k; if M<k then prove KeylnNewLtoU by choosing

k' to be M and instantiating SrtA with i+-M and j+-k. The third justification proves

StillSrtA by instantiating SrtA.

Formula labels are optional and redundant. So far as a mechanical verifier is

concerned, prove KeyinNewLtoU by k'+-k, SrtA(i+-k, j+-M) is a redundant statement of use

k'+-k, i+-k, j+-M. The programmer and subsequent readers may prefer the longer form.

In addition to its use of formula labels, this example merits attention for it illustrates

three commonly occuring properties of program proofs:

(1) Proof cases refine the cases tested by executable instructions. The refinements may not

be mainfest from the instructions and assertions.

(2) Instantiations may be neither manifest nor obvious.

(3) Finding the correct cases and instantiations from the instructions and assertions may

require a search by either a reader or a mechanical verifier. Justifications make this search

unnecesssary.

5. JUSTIFYING LOOP INVARIANTS

Justifying the correctness of a loop invariant is a special case of showing that an

assertion is a logical consequence of a preceding assertion and the intervening executable

instructions. Since the assertions at the beginning and end of a loop path are the same, the

argument often has a stereotyped structure and it is then possible to default part of the

justification.

10

For simplicity, we treat one-entrance-one-exit while loops. These are written as

<while statement> maintain <assertion> while <Boolean test> do <statement>

By convention, the <assertion> is to hold the first time that control enters the loop, and just

before the <Boolean test> is executed. In particular, the <assertion> is to hold on loops that

are executed zero times. A justification of the <assertion> must establish: (i) that it follows

from the preceding invariants, and (ii) that it remains true as control flows around the

loop. As (i) has been addressed by the preceding section, we deal with (ii).

The following example takes two sorted arrays A[l:N] and D[l:M], and yields a third

array C such that C[i]=A[i] if A[i] does not appear in D and C[i]=-1 otherwise. Because the

arrays are sorted, this can be done in linear time with simple sequential file processing

techniques.

I+-1; J+-1:

maintain SrtA:(Vp,qE[l:N], psq-A[p]:5A[q]) /\

SrtD:(Vr,sE[l:M], r<s-D[rJsD[s]) /\

CRule:(ViE[l:l-1], if DNA:(VmE[l:M], D[m]:;t:A[i]) then C[i]=A[i] else C[i]=-1) /\

SmallDs:(VjE[l:J-1], D[j]<A[I]) /\

IE[l:N+l] /\ JE[l:M] /\ A[N]<D[M]

while IsN

do if A[l]<D[J] then

begin C[I]+-A[I]; l+-I+l end

elseif A[I]=D[J] then

begin C[I]+- -1; l+-I+l end

elseif J <M then J +-J + 1

The executable instructions are simple; the invariant on which the correctness rests is

longer; SrtA and SrtD state that A and D are sorted. CRule is the output specification with

the array size N replaced by its inductive counterpart 1-1. SmallDs states that each element

in the sub-array D[l:J-1] is less than the element A[I] which is next to be processed. The

next two conjuncts give the ranges of I and J. The final conjunct insures termination.

An informal demonstration that these formulas are invariant goes as follows: SrtA and

SrtD remain true because A and D are never changed. To establish CRule and SmallDs,

consider the cases tested by the code:

(1) If A[l]<D[J] then CRule requires we show that A[I] does not appear in D. SmallDs

insures that A[I] does not appear in D[l:J-1]; the test A[l]<D[J] together with D being

sorted, insures that A[I] does not appear in D[J:M]. SmallDs requires we show that each

11

element of D[l:J-1] is smaller than A[I'] where I' is the new value of I. This follows

because each element is smaller than A[I], I' is I+l, and A is sorted so that A[IJ::s;A[I+l].

(2) If A[I]=D[J] then A[I] appears in D, so setting C[I] to -1 is correct.

(3) If neither (1) nor (2) applies, then A[I]>D[J]. If J<M then J can be incremented

leaving SmallDs invariant.

To formalize this demonstration, we first examine the verification conditions that

would result from the inductive assertion method. Consider, for simplicity, showing only

that SmallDs:(\fjE[l:J-1], D[j]<A[I]) remains true in the case A[I]>D[J].

(Vp,qE[l:N], p::s;q-+A[p]sA[q]) /\ ('ltr,sE[l:M], r::;s-+D[r]SD[s]) /\

(\fiE[l:I-1], if (VmE[l:M], D[m]::;:A[i]) then C[i]=A[i] else C[i]=-1) /\

(\fjE(l:J-1], D[j]<A[I]) /\ IE[l:N+l] /\ JE[l:M] /\ A[I]2:::D[J] /\ A[N]<D[M] /\

A[I]:=;:D[J] --+

(VjE[l:J], D[j]<A[I])

To prove this, let j in the conclusion be fixed. If that j lies in the interval [l:J-1], choose j

of the assumption to be that l· If that j is J, then the assumptions A[I]> D[J] and

A[I};e D[J] imply A[I]> D[j].

In this description, it is vital to distinguish the j of the conclusion from the j of the

assumption. For formulas of this class, we write j.f. to mean the j of the conclusion and use j

without suffix to mean the j of the assumption. The expression j.f. may be read as "j at the

path end". Further, we can use the convention, introduced in the preceding section, that if a

formula can be proved without quantification then no explicit justification need be written,

so that the proof of D[J]<A[I] does not need to be justified. Thus, the formal justification

is: if j+E[l:J-1] then j+-j.f..

We are now prepared to introduce default justifications. Universally quantified loop

invariants often have justifications similar to the one above, i.e. for the sub-range

unaffected by the ith loop iteration, one proves P(j.f.) by using P(j). We adopt this as the

default: Whenever a sub-range of a universally quantified loop invariant P(j) occurs on the

i-th and i+ 1st iteration and the quantified variable j is not explicitly instantiated by a

justification, then the choice j+- j + will be made.

Using this default rule and the convention that proofs which proceed without

quantification need no justification, the above verification condition requires no explicit

justification. This situation is not uncommon. For example, the justification for

SrtA:(\fp,qE[l:N], pSq-+A[p]sA[q]) /\ SrtD:(\fr,sE[l:N], r<s-+D[r]<D[s]), is p+-p.f.; q+-q.f.;

r+-r.f.; s+-s.f.. As this is the default instantiation, it can be omitted.

12

We next treat a proof which partially defaults. Consider showing that

SmallDs:(Vj+E[l:J-1], D[j+]<A[U]) in the case A[I]<D[J], so the value of I at the path end,

U, is 1+1. By assumption, A is sorted, i.e. SrtA:(Vp,qE[l:N], p<q-+A[p]sA[q]). Choose p

to be U-1 and q to be U, giving the assumption A[U-l]<A[U], i.e. A[I]<A[U]. The

default instantiation j+-j.t., establishes D[j+]<A[I]. Thus, D[j+]<A[U.].

Consider showing that CRule:(ViE[l:l-1], if DNA:(VmE[l:M], D[m]:;i!:A[i]) then

C[i]=A[i] else C[i]=-1) is an invariant in the case A[I]<D[J]. Let U denote the value of I at

the path end. Suppose i+E[l:U-2]. This is covered by choosing i+-i+, which is the default.

The remaining case is i+=U-1. In section 2, we showed that (Vm+E[l:M], D[m+]:;t:A[U-1])

using a justification which may be written

if i+=U-1 then

if m+E[l:J-1] then SmallDs(j+-m.t.): D[m+]<A[U-1]

elseif m+E[J:M] th.en SrtD(r+-J, s+-m+): D[J]sD[m+]

We adopt the convention that an ordinary variable such as I appearing in a justification is

interpreted as denoting the value of that variable at the point where the justification is

written. If the above justification is placed in the program after I is incremented, then I

has its final value and I can be used in place of H with no cha·nge in meaning.

Only one other case requires an explicit justification. Suppose A[I]=D[J]. Since C[I] is

set to -1, CRule requires that we prove (3m+E[l:M], D[m+]=A[I]). The justification is

m.t.+-J, which may be written DNA(m++-J).

The program with its justifications is

l+-1; J+-1:

maintain SrtA:(Vp,qE[l:N], psq-+A[p]sA[q]) A
SrtD:(Vr,sE[l:M], r<s-+D[rJsD[s]) A
CRule:(ViE[l:l-1], if DNA:('v'mE[l:M], D[m]:;t:A[i]) then C[i]=A[i] else C[i]=-1) /\

SmallDs:(VjE[l:J-1], D[j]<A[I]) A
IE[l:N+l] A JE[l:M] A A[N]<D[M]

while I<N

do if A[I]<D[J] then

begin C[I]+-A[I]; l+-1+1;

prove SmallDs by SrtA(p+-1-1, q+-1): A[I-l]sA[I];

prove CRule by if i+=l-1 then

end

if m+E[l:J-1] then SmallDs(j+-m.t.): D[m+]<A[I-1]

elseif m+E[J:M] then SrtD(r+-J, s+-m+): D[J]sD[m+]

13

elseif A[I]=D[J] then

begin C[I].- -1; I.-I+l;

prove CRule by if i+=I-1 then DNA(m+ ... J)

end

elseif J <M then J ... J + 1

The overall proof structure may be seen by inspection: SmallDs is proved using SrtA; CRule

is proved using SmallDs and SrtD.

To conclude the discussion of loops, we observe that for statements constitute a

particularly regular class. The typical for statement has the form

maintain 'v'iE[L:I-1], P(i) for I from L to U do S(I)

The invariant specifies that P(i) has been achieved for each i in the subrange [L:I-1] that

has been processed. Each iteration establishes P(I) and leaves undisturbed P(i) for

iE[L:I-1]. The default justifications match this typical for loop exactly and justifications are

unnecessary. Where for loops do not have this form and justifications are needed, their

appearance is useful documentation - indicating an irregular situation.

6. DEFINITIONS AND LEMMAS

Programs and their proofs may be sharpened by introducing definitions to articulate

important abstractions. As an example, we discuss part of the fast string searching

algorithm of [6]. It takes a pattern P[l:M] and a text string T[l:N] and finds the first

place in T where P matches - in linear time. To express the correctness specification, it is

convenient to define the predicate Match. We define new predicates with the form

predicate <p1·edicate name>(<formal parameters>): <assertion>;

We define what it means for the substring P[l:m] to Match T ending at position s

predicate Match(P,m,T,s; j): m<s /\ ('v'jE[l:m-1], P[j]=T[s-m+j]);

Parameters following the semicolon are optional. If present, they give local names to bound

variables for use in justifications, as explained below.

The algorithm uses two integer variables J and K to index P and T respectively. These

indices are initialized to 1 so initially, Match(P,J,T,K) is vacuously true. Throughout the

search, the invariant Match(P,J,T,K) is maintained. If J ever reaches M+l, a complete

14

match for P in T has been found. (A complete specification would additionally require that

the match so found is the leftmost complete match. In the interest of brevity, we defer this

part of the specification and its justification to the appendix.)

The linear search time is attained by first processing the pattern P to construct a table

L of longest initial matches. For each mE[l:M], L[m] is the longest initial substring of P

which matches a proper tail of P[l:m]. More precisely, L is constructed so that

LSpec:(VmE[l:M],

L[m]E[O:m-1] /\ Match(P,L[in],P,m) /\ (ViE[L[m]+l:m-1], -Match(P,i,P,m)))

Since L and P are never changed, this remains invariant.

At each step of the search, there are two cases. If P[J]=T[K], then J and K are each

incremented by 1, maintaining the invariant Match(P,J,T,K). The program fragment is

assert Match(P,J,T,K;jl) /\

LSpec:('VmE[l:M], ,

L[m]E[O:m-1] /\ Match(P,L[m],P,m) /\ (ViE[L[m]+l:m-1], -Match(P,i,P,m)));

if P[J]=T[K] then {J~J+l; K~K+l};

assert Match(P,J,T,K;j2) using if j2E[l:J-2] then jl~j2;

This shows how the optional parameters to Match are used: The final assertion is

Match(P,J,T,K). As Match contains a universally quantified formula of the form

('VjE[l:J-1], Q(j)), we show how to prove Q(j) for each jE[l:J-1] - using a justification.

The justification must refer to the quantified variable j in two occurrences of Match. We

give j two distinct local names by supplying the optional parameters in these two

occurrences.

The other case is P[J]:;t:T[K]. J is set to L[J], so the new value of J indexes the longest

preceding partial match. This also maintains the invariant Match(P,J,T,K). The program

fragment with justifications is

assert Match(P,J,T,K;jl) /\

LSpec:(VmE[l:M],

L[m]E[O:m-1] /\ Match(P,L[m],P,m;j2) /\ ('ViE[L[m]+l:m-1], -Match(P,m,P,i)));

if P[J]:;t:T[K] then

begin use jl~J-L[J]+j3: J :$K /\ P[J-L[J]+j3]=T[K-L[J]+j3];

use m~J, j2~j3: L[J]:$J /\ P[j3]=P[J-L[J]+j3];

J~L[J]

end

15

assert Match(P,J,T,K;j3): J ~K /\ (\:fj3E[l:J-1], P[j3]=T[K-J+j3])

As before, optional parameters to Match in the assertions are used in the justification. The

formulas following the colons show the results of the instantiations.

Although the proof is correct, it can be improved. Because it appeals too directly to

definitions, it obscures a simple argument: Match is a transitive relation, so if P[l:L[J]]

matches P at J and P [l:J] matches T at K then P[l:L[J]] matches T at K. A better proof

would first establish, as a lemma, that Match is a transitive relation and then use this

property in the main proof.

To introduce a lemma, we write

lemma <lemma name>(<formal parameters>): <assertion>;

As elsewhere, the <assertion> may include a justification. The <assertion> is a formula to be

proved, using the justification if one is present. The transitivity result for Match may be

stated and proved:

lemma TransMatch(A,x,B,y,C,z):

Match(A,x,B,y;jl) /\. Match(B,y,C,z;j2) -+ Match(A,x,C,z;j3)

using jl+-j3, j2+-y-x+j3;

Using a separate lemma has two benefits: (i) a general result is obtained; (ii) only relevant

assumptions need be considered when checking its truth. Since optional parameters to

predicates serve only to aid the justifications, a lemma which is shown valid with optional

parameters is valid if the optional parameters are deleted. Thus, this lemma establishes

(\:f A,x,B,y,C,z) Match(A,x,B,y) /\. Match(B,y,C,z) -+ Match(A,x,C,z).

A valid formula such as this may be added to the assumption of a verification condition

with any choice for the universally quantified variables A,x,B,y,C,z. It is convenient to

invoke lemmas by name and describe the instantiations by actual parameters to the lemma

invocation. For example, the above fragment may be rewritten

assert Match(P,J,T,K) /\

LSpec:(\:f mE[l:M],

L[m]E[O:m-1] /\ Match(P,L[m],P,m) /\ (ViE[L[m]+l:m-1], -Match(P,m,P,i)));

if P[J]:;t:T[K] then

begin use LSpec(m+-J): Match(P,L[J],P,J);

use TransMatch(P,L[J],P,J,T,K):

Match(P,L(J],P,J) /\. Match(P,J,T,K) -+ Match(P,L[J],T,K);

16

J4-L[J]

end;

assert Match(P,J,T,K)

Here, the role of transitivity is clear. Using a lemma in this way articulates an important

property of Match and sharpens the argument.

7. OTHER FUNCTIONALS

We have shown how justifications can be used to obtain quantifier-free verification

conditions from assertions with quantified formulas. In the context of program verification,

it is enlightening to regard the quantifiers V and 3 as merely two members of a collection of

built-in functionals which may appear in assertions. Other functionals in the collection

are: theleast, sum, product, and cardinality. The quantifiers and these other functionals are

similar in that they take a formula or term as a parameter and apply that parameter to some

set of values.

Like the quantifiers, these other functionals can make theorem proving difficult. As

with the quantifiers, we use justifications to map verification conditions with functionals

into simpler theorems whose truth implies the original verification conditions. The form of

justifications depends on the functional. The meaning of simpler also depends on the

functional: for the quantifiers, simpler means quantifier-free; for other functionals, simpler

usually means that the new theorems can be proved by treating any remaining occurrences

of functionals as atomic terms. This is best explained with an example.

The functional cardinality is representative. We write <C(jE[i:f], P(j)) to denote the

cardinality of the set {j I jE[i:f] /\ P(j)}. The following may be said of <C:

(Rl) <C(j E[i:f], P(j)) = 0, if i)f

(R2) <C{jE[i:f], P(j)) = (if P(j) then 1 else O), if i=f

(R3) <C(jE[i:f], P(j)) =

<C(jE[i:r-1], P(j)) + (C(j E[r:s], P(j)) + <C(j E[s+ l:f], P(j)), if i<r<s<f

(R4) <C(jE[i:f], P(j)) ~ <C(jE[i:f], Q(j)), if (VjE[i:f], P(j)-+Q(j))

A verifier in which <C is built-in and which suitably treats equality and inequality can use

Rl and R2 as reduction rules, invoking them automatically. · It is difficult, however, to

invoke R3 automatically. Like the universally quantified formula (VsE[i:f], P(s)), R3 can

be instantiated for any s in the range. Knowing when to invoke R3 and choosing the right

values for s and r is not a mechanical process. Justifications seem appropriate.

17

One may regard R3 (and R4) as built-in lemmas whose truth is assumed.

lemma SplitC(j,i,f,r,s,P):

isr<ssf -+

<C(jE[i:f],P(j)) = <C(jE[i:r-1] ,P(j)) + <C(jE[r:s], P(j)) + <C(jE[s+l:f], P(j));

lemma OrderedC(j,i,f ,P ,Q):

(VjE[i:f], P(j)-+Q(j)) -+ <C(jE[i:f], P(j)) < <C(jE[i:f], Q(j));

Thus, these rules may be invoked with the same syntax and with the same interpretation as

lemmas in the preceding section. For example,

using SplitC(k,1,N,L-1,L,A[k]sO)

use OrderedC(k,2,M,A[k]=O,B[k]<k):

('t/kE[2:M], A[k]=O-+ B[k]<k) -+ <C(kE[2:M], A[k]=O) < <C(kE[2:M], B[k]<k)

Note that some formal parameters are predicate letters, i.e. the lemmas are second-order

formulas. Since they will be used only when explicitly invoked with actual parameters,

their instances will be first-order formulas.

Invoking these rules instantiates the rule body and adds it to the verification

condition. As always, the occurence of an ordinary variable in a justification refers to the

current value of that variable. For example,

assert LE[l:N] /\ <C(jE[l:N], B[j]=O) ~ K;

if B[L]>2 then

begin use Spli tC(j, 1,N ,L,L,B[j]=O);

B[L}-B[M]-B[N];

use Spli tC(n, 1,N ,L,L,B[n]=O);

end;

assert <C(nE[l:N], B[n]=O) > K;

The invocation SplitC(j,1,N,L,L,B[j]=O) refers to the initial value of B. The invocation after

the assignment, i.e. SplitC(n,1,N,L,L,B[n]=O), refers to the final value of B. Using these

justifications, the verification condition simplifies to

<C(jE[l:L-1], B[j]=O)+(if B[L]=O then 1 else O)+<C(jE[L+l:N], B[j]=O) ~ K /\ B[L]>2 -+

<C(jE[l:L-1], B[j]=O)+(if B[M]=B[N] then 1 else O)+<C(jE[L+l:N], B[j]=O) > K

This may be proved _by treating <C(jE[l:L-1], B[j]=O) and <C(jE[L+l:N], B[j]=O) as atomic

18

terms, i.e. as new variables x and y, obtaining the formula

x+(if B[L]=O then 1 else O)+y > K /\ B[L]>2 -

x+(if B[M]=B[N] then 1 else O)+y ~ K

Further concern with the meaning of <C is unnecessary.

8. PROOFS WHICH NEED NO JUSTIFICATION

In general, proof justifications are necessary. There are, however, certain classes of

theorems for which a suitably fast decision procedure is known. For such classes,

justifications are not necessary. It is important to understand these classes, in order to put

justifications, into proper perspective. Universally quantified Presburger arithmetic is one

such classs: there is no need to annotate 3*I<B[J] /\ B[J]<K+l - 3*I<K+l with a

justification using the transitivity of less-than. However, other well-defined classes having

a decision procedure are less widely appreciated. Such classes deserve attention and should be

exploited.

A fundamental result is found in [8]. It may be stated informally: If F is a recursively

defined total function, V is a formula which contains a single appearance of F, and V specifies

F uniquely, then subgoal induction can be used to construct another formula V' free of F such

that V:=V'. This provides a way of eliminating function letters from verification

conditions. Using it, we may obtain a formula for which a decision procedure is known.

Any formula which, by inspection, may be seen to have this property needs no justification.

As an example, we treat the functional Sum. For the purposes of an induction proof, it

may be defined by the recursive procedure

procedure Sum(i,n,E): if i>n then 0 else E(n)+Sum(i,n-1,E);

Consider the theorem
3 4 3 2

n>O - Sum(l, n, (.hj)j) = n /4 + n /2 + n /4

This might appear difficult to establish automatically. However, inspection of its form

reveals that the above result applies. One may apply the rule of subgoal induction to the

definition of Sum and mechanically construct the equivalent theorem

4 3 2
(n>O /\ l>n - 0 = n /4+n /2+n /4) /\

4 3 2 3 4 3 2
(n>O /\ l~n /\ z= (n-1) /4+(n-1) /2+{n-1) /4 - n +z = n /4+n /2+n /4)

19

in confidence that proof of the new theorem is merely a matter of tedious algebraic

manipulation. The form of the original theorem insures that no creativity will be required.

9. CONCLUSION

It has been our aim to show that proof justifications should be an integral part of their

programs. There are three reasons for this. The first reason comes from mathematical

logic: There is no decision procedure for first order predicate calculus. Without

justifications, a mechanical program verifier cannot guarantee that in finite time it will

verify each correct program and reject each incorrect one.

The second reason comes from software engineering practice. Programs must be read

and understood by programmers who did not write the code, e.g. co-workers who later

modify it for changed needs. When quantified assertions must be proved by making the

right instantiations, it may be difficult for a reader to understand the chain of reasoning

which establishes a verification condition. Justifications are good documentation for

anyone who wishes to understand why a program works.

The third reason comes from programming methodology. The preceding considerations

regarding other programmers apply in part to the original programmer. When assertions

involve quantification, it may be difficult for him to be confident that the assertions he

supplies are complete. If they are not, mechanical verification may fail even though the

program is correct. As long as the proof process is not articulated, constructing the right

assertions will be regarded as mysterious and error-prone. By providing a notation in which

proofs can be justified with precision and rigor, we hope to replace this attitude with the

understanding that verification can be made systematic. and lucid.

10. ACKNOWLEDGMENTS

I am indebted to Dan Bobrow, Peter Deutsch, Jim Morris, Lyle Ramshaw and Nori

Suzuki for constructive criticism of these ideas and their exposition in this paper.

20

REFERENCES

1. Deutsch, L. P. An Interactive Program Verifier, Ph. D. Thesis, U. of Calif., Berkeley, Ca.,
1973.

2. Floyd, R. W. Assigning Meanings to Programs, in Mathematical Aspects of Computer Science,
J. T. Schwartz (Ed.), AMS, (1967), pp. 19-32.

3. Good, D. I. London, R. L. and Bledsoe, W. W. An interactive program verification system,
IEEE Transactions on Software Engineering, Vol. SE-1, No. 1 (March 1975) pp. 59-67.

4. Hoare, C. A. R. Procedures and Parameters: An Axiomatic Approach, in Symposium on
Semantics of Algorithmic Languages, E. Engler (Ed.), Springer-Verlag, 1970, pp. 102-116.

5. King, J. C. A Program Verifier, Ph. D. Thesis, Carnegie-Mellon U., Pittsburgh, Pa., 1969.

6. Knuth, D. E., Morris, J. H., and Pratt, V. R. Fast Pattern Matching in Strings, CS 440,
Computer Science Dept., Stanford U., Aug. 1974.

7. Manna, Z. The Correctness of Programs, JCSS, 3 (1969), pp. 119-127.

8. Morris, J. H. and Wegbreit, B. Subgoal Induction, to appear in CACM.

9. Suzuki, N. Verifying Programs by Algebraic and Logical Reduction, Int. Conf. on Reliable
Software, Los Angeles, Ca. (April 1975) pp. 473-481.

10. Topor, R. W. Interactive Program Verification Using Virtual Programs, Ph. D. Thesis,
University of Edinburgh, 1975.

11. Wegbreit, B. The Synthesis of Loop Predicates, CACM, Vol. 17, No. 2 (Feb. 1974), pp.
102-112.

21

APPENDIX: AN EXTENDED EXAMPLE

The utility of proof justifications can best be appreciated by studying in depth a program
which requires a subtle proof. We finish verifying the linear string searching algorithm [6]
started in section 6. The algorithm is to find the leftmost position in the text T[l:N] which
matches the pattern P[l:M]. Section 6 describes the method in some detail; a rereading of

that section may be helpful. We defined

predicate Match{P,m,T,s; j): m <s /\ ('VjE[l:m-1], P[j]=T[s-m+j]);

We assume the pattern P has been processed to constructe a table L so that for each mE[l:M],
L[m] is the longest initial substring of P which matches a proper tail of P[l:M], i.e.

LSpec:('VmE[l:M],
L[m]E[O:m-1] /\ Match{P,L[m],P,m) /\ ('ViE[L[m]+l:m-1], -Match{P,i,P,m)));

To write the specifications compactly, we declare that LSpec is a global invariant,
meaning that it holds throughout the scope and is implicitly added to each assertion. With
this notation, the program is

invariant LSpec:{'VmE[l:M],
L[m]E[O:m-1] /\ Match{P,L[m],P,m) /\ ('ViE[L[m]+l:m-1], -Match{P,i,P,m)));

J+-1; K+-1;
maintain Match{P,J,T,K) /\ NotSeenl:{'VsE[M+l:M+K-J], -Match{P,M+l,T,s))

while J<M /\ K<N
do begin

maintain Match{P,J,T,K) /\ NotSeen2:{'VtE[M+l:M+K-J], -Match(P,M+l,T,t))
while J>O /\ P[J}t=T[K]
do J+-L[J];

K+-K+l; J+-J+l
end

The outer loop advances J and K together, scanning forward in the pattern P and text T. The
inner loop backs up J, via J+-L[J], whenever corresponding characters in P and T do not match.

The correctness specification given in section 6 is augmented here by the requirement
that ('VtE[M+l:M+K-J], -Match{P,M+l,T,t)) i.e., no complete match has been seen. The
hardest part of the verification is showing that this is maintained in the case J>O /\
P[J]:;t:T[K]. Because the assignment J+-L[J] extends the interval [M+l:M+K-J], showing that
the invariant is maintained requires a non-trivial argument. The reader may find it
instructive to carry out the verification himself before reading further.

22

The justification we use depends on two lemmas. The first lemma states that if a pattern
matches a text at some position then any initial subpattern matches the text at the

corresponding position, i.e.

lemma SubMatch(P,U,T,K,S):
Match(P,U,T,K; jl) /\ s::;u -+ Match(P,S,T,K-U+S; j2)
using jl+-j2;

The second lemma states that if two patterns match a text at a common place, then the two
patterns match each other, i.e.

lemma Common(P,J,Q,X,T,K):
Match(P,J,T,K; jl) /\ Match(Q,X,T,K; j2) /\ X::;J -+ Match(Q,X,P,J; j3)
using jl+-J-X+j3, j2+-j3;

The program fragment which uses the lemma is

assert Match(P,J,T,K) /\
(V'tE[M+l:M+K-J], -Match(P,M+l,T,t; j)) /\
LSpec:(V'mE[l:M],

L[m]E[O:m-1] /\ Match(P,L[m],P,m) /\ (V'iE[L[m]+l:m-1], -Match(P,i,P,m)));
if J>O /\ P[J];t:T[K] then

begin
use if t'E[M+l:M+K-J] then {t+-t'; j'+-j}

elseif t'=M+K-J+l then j'+-J
elseif t'E[M+K-J+2: M+K-L[J]] then

SubMatch(P,M+l,T,t',M+l-t'+K):

J+-L[J];
end

Match(P,M+l,T,t') /\ M+l-t'+K::;M+l -+ Match(P,M+l-t'+K,T,K),
Common(P ,J ,P ,M + 1-t' + K,K):

Match(P,J,T,K) /\ Match(P,M+l-t'+K,T,K) /\ M+l-t'+K::;J -+

Match(P,M+l-t'+K,P,J),
LSpec(m+-J, i+-M+l-t'+K):

-Match(P,M+l-t'+K,P,J);

assert (V't'E[M+l:M+K-J], -Match(P,M+l,T,t'; j'))

This may be read as: To show that (V't'E[M+l:M+K-J], -Match(P,M+l,T,t'; j')) consider 3.
cases.

(1) If t'E[M+l:M+K-J] use the second initial assertion and choose j' of the final assertion to
be j.
(2) If t'=M+K-J+l use the program test P[J]=T[K] by choosing j' to be J.
(3) If t'E[M+K-J+2: M+K-L[J]] then invoke the lemmas SubMatch and Common to show that

Match(P,M+l,T,t') leads to a contradiction, which proves -Match(P,M+l,T,t').

23

