
• ~ •
\ ~

\ \
\
\

GOAL-DIRECTED
PROGRAM TRANSFORMATION
BY BEN WEGBRIET

CSL-75-8 SEPTEMBER 1975

Program development often proceeds by transforming simple, clear programs into
complex, involuted, but more efficient ones. This paper examines ways this process
can be rendered more systematic. We show how analysis of program performance,
partial evaluation of functions, and abstraction of recursive function definitions from
recurring subgoals can be combined to yield many global transformations in a
methodical fashion. Examples are drawn from compiler optimization, list processing,
very high level languages, and APL execution.

KEY WORDS AND PHRASES

program transformation, program analysis, partial evaluation, optimizing
transformations. compiler optimization, analysis of programs, execution analysis,
simplification, generalization, evaluation in context, very high level language, list
processing, Lisp, APL.

CR CATEGORIES:

4.12, 4.22, 4.6. 5.24, 5.25

XEROX
PALO AL TO RESEARCH CENTER
3333 COYOTE HILL ROAD I PALO ALTO I CALIFORNIA 94304

1. INTRODUCTION

Optimizing transformations provide a means for converting a clear, well­

articulated but inefficient program into one with equivalent results but better

performance characteristics. Certain optimizing transformations have been used for

some years in the compilers for algebraic languages. A 1972 survey by Cocke and

Allen [3] lists and classifies approximately twenty such transformations.

Languages in which the built-in operations act on composite objects such as

arrays (e.g., APL [16]). sets (e.g., SETL [21]), or relations (e.g., VERS [12]) give rise

to the need for additional classes of optimizing transformations. There are three

reasons for this. (I) The substantial gulf which separates language from underlying

machine makes it possible for the programmer inadvertently to write simple programs

for which unoptimized execution yields poor performance. (2) The pervasive use of

composite objects often makes such programs the most natural expression: easiest to

write, debug, and modify. (3) Much of the appeal of these la:1guagcs is due precisely

to the decoupling of expression from implementation. For these reasons, the potential

payoff from an appropriate set of optimizing transformations for these languages is

substantial.

This paper shows how the process of program transformation can be rendered

systematic. Our thesis, in brief, is that program transformation can be made goal­

directed. It is possible to analyze programs so as to obtain expressions for their

execution performance and the complexity of their output. Based on discrepancies

between these, performance goals are established. These goals are used to direct the

process of program transformation--which is carried out by local simplification,

partial evaluation of recursive functions, abstraction of new recursive function

definitions from recurring subgoals, and generalization of expressions as required to

obtain compatible subgoals. Thus, high-level goals or intentions are used to guide and

give coherence to the operations of local activities. We expand. on this brief

description below.

2

Our intention in this paper is three-fold. (I) We show how this approach

provides a framework in which many of the optimizing compiler transformations can

be placed and systematized. In this framework, related transformations not commonly

implemented in optimizing compilers are seen to have a natural place. (2) We show

how many of the optimizing transformations for very high level languages [2] can be

obtained in a straightforward way from the program. Thus, these techniques may find

a role in the future processors of such very high level languages. (3) We hope to

make a small step in identifying and explicating techniques by which those software­

engineers who must be concerned with efficiency can carry out their design in a

systematic fashion. Considerable attention has been given in recent years to the

systematic development of well-structured programs, formalizing the practices of

outstanding programmers. Comparable attention should, perhaps, be paid to the

fundamental techniques which underlie the systematic development of high­

performance programs.

2. BASIC IDEAS

One means for transforming a program into an equivalent one with better

performance relies on program analysis to single out the appropriate portions of the

program to be rewritten. By program analysis, we mean the derivation of closed-form

algebraic expressions which describe execution behavior. These expressions specify the

program's computation cost (e.g., execution time, amount of storage used, number of

110 requests) and the program's output characteristics (e.g., size of the result, textual

source of allocated storage comprising the result, probability of the result satisfying a

given predicate) as a function of input characteristics [23].

Using program analysis techniques, our transformation approach proceeds as

follows: (I) Obtain some idea of the minimum computation cost required to produce

the input/output mapping being realized by the program. (2) Analyze the program to

determine its computation cost, and relate components of the cost to specific segments

of the program text. (3) Find those program segments whose computation costs are

3

not accounted for in the estimates of minimum cost. These segments are potential

sources of computational waste and are therefore designated as targets for

simplification. (4) If the targets so designated contain multiple possibilities for

simplification, focus attention on the program segments having the greatest analyzed

cost: Insofar as the program can be transformed to realize a significant performance

improvement, it must be by simplifying these segments.

The central idea we wish to present is that this approach can be rendered

systematic and thus has a place in programming methodology as well as serving as a

basis for mechanical program transformation.

2.1. NOTATION

Several of our example programs will be written in a syntactic variant of Lisp,

using the following notation:

• The empty list is denoted by nil.

Cons(x,y) constructs a list in which the first element is x and y is the list of all

elements except the first.

• H, read as "Head", is a prefix operator which extracts the first element from a

non-empty list; to avoid parenthesis clutter, the argument to H is not

parenthesized, e.g. 1-1 Cons(x,y) = x.

• T, read as "Tail", is a prefix operator which extracts all elements except the first

from a non-empty list; T Cons(x,y) = y.

• Null(x) is defined as x=nil.

• Conditional expressions are written as

if p 1 then e 1 else if p2 then e2 ... else en

• Function definitions are written as

/name (parameter 1, ... ,parameter k) <= definingform

2.2. EXAMPLE--CONCATENATION OF THREE LISTS

Given the following definition of Append,

A(x,y) <= if Null(x) then y else Cons(Hx, A(Tx,y))

consider appending x to y to z by the expression A(A(x,y), z).

Analysis:

4

Program analysis shows that the execution cost is proportional to 2"1xl+IYI where lxl is

the length of the list x. It is useful to differentiate between the inner and outer calls

on Append. Let these be denoted by A 1. and A2 and let the associated calls on Cons

be Cons 1 and Cons2. Then program analysis shows that A 1 (A 2(x,y), z) executes lxl

calls on Cons2 and lxl+IYI calls on Cons 1. Analysis of the output of A 1(A2(x,y): z)

shows that its length is lxl+lyl+lzl. Differentiating the source of the Cons-cells which

comprise the output, analysis shows that lxl+lyl calls come from Cons 1 and that lzl

calls come from the input z. Comparing the execution costs (internal work) to the

output (accountable work), it is seen that the lxl calls on Cons2 represent wasted

effort. These calls are being executed internally but cannot be accounted for in the

output. The task of transformation is to rewrite the program so as to remove the calls

on Cons2. We refer to Cons2 as the target for simplification.

Transformation:

To remove a Cons, we can apply the local simplification rules

H Cons(a,P) -+ a

T Cons(a,P) -+ {3

To obtain an opportunity to apply these, we expand the definition of Append to the

point where H and T appearing in the program can be applied to Cons2. Start with:

(2.1) A I (A2(x,y), z)

Expand A2(x,y), i.e., replace the call by an instantiated body, resulting in:

A 1 (if Null(x) then y else Cons2(Hx, A2(Tx,y)), z)

Distribute the conditional, i.e., bring the conditional expression from the argument

position to outside the call on A 1. so that A 1 is applied to the result of each

conditional clause. This yields:

if Null(x) then A 1(y,z) else A 1(Cons2(Hx, A2(Tx,y)), z)

5

Expand the second call on A 1 and then simplify. We call this partial evaluation, and

the steps in this case are as follows: Consider A 1(Cons2(Hx. A2(Tx,y)), z). Let y

denote Cons2(Hx, A2(Tx,y)), so we are considering A 1 {y,z). Expanding A 1 results in

if Null(y) then z else Cons 1(Hy, A 1(Ty,z)). Since y is not Null, it follows that

A 1 (y ,z) = Cons 1 (Hy, A 1 {Ty ,z)). Further, we can apply the local simplification rules

for Cons to y, so that Hy -+ Hx and Ty -+ A2(Tx,y). Thus, we have removed one

instance of Cons2--a step toward our goal. We have A 1(y,z) = Cons 1(Hx,

A 1(A 2(Tx,y), z)). Thus, (2.1) has been partially evaluated to yield:

Because one Cons2 is absent, the evaluation of (2.2) requires, in the case of a non­

Null x, one fewer Cons2 than the evaluation of (2.1). Thus, (2.2) is a slightly

improved way of computing (2.1).

Whenever we are confronted with evaluating an expression of the form (2.1). it is

desirable to use (2.2) in its place. Observe that the form (2.1) appears as a

subexpression of (2.2) with the substitution of Tx for x, i.e., as A 1 (A 2(Tx,y), z). We

have identified a subproblem, A 1 (A 2(Tx,y), z) which is identical in form to a more

global problem, A 1 (A 2(x,y), z). We call this identification subgoal abstraction and

use it to define a new recursive function in which the performance improvement of

(2.2) is systematically achieved. We introduce F(x,y,z) to stand for A 1(A 2(x,y), z).

Then (2.1) and (2.2) become

(2.1 ') F(x,y,z)

(2.2') if Null(x) then A 1(y,z) else Cons 1(Hx, F(Tx,y,z))

Ignoring subscripts, we have

F(x,y.z) <= if Null{x) then A(y,z) else Cons(Hx, F(Tx,y,z))

as an executable definition of F. Since the above derivation preserves correctness, it

follows that A(A(x,y), z) = F(x,y,z). Analysis shows that the execution cost for F is

linear in lxl+IYI and, in particular, the number of Cons executed is lxl+lyl. Thus, the

goal has been attained.

6

2.3. FURTHER EXAMPLES

Some additional examples will illustrate that this approach can yield interesting

results. We show the problem, analysis, and final program--omitting derivations.

2.3.1 The following program compares two arrays B[l:n] and C[l:n] and sets

the Boolean variable same to true if they are pairwise equal

j+-0; same+-true;

while j#n do U+-j+I; same+- same/\ B[j]:C(j])

return same

Analysis shows that this requires n steps and that the result is a Boolean scalar. It is

therefore possible that the scalar could be computed in fewer steps. The entire loop is

the target for simplification. The /\ operator has the local simplification rule

x /\ y -+ if x then y else false

which avoids computing y when the value of x determines the result. We write the

above loop as a recursive function, and apply our transformation method· using the

local simplification rule. We obtain a new function which, when put into iterative

form, is

j+-0; same+-true;

while j#n /\ same do U+-j+ I; same +- B[j]=C[j]);

return same;

This requires n steps in the worst case and I step in the best. case. If the probability

that B[j]=C[j] is {J, program analysis shows that the average number of steps is (1-

pn)l(l-{J). Observe that this is bounded from above by min(n, I /(1-p)).

7

2.3.2 The following APL 1 "one-liner" has the value I if n is prime and 0

otherwise: 2==+/0=(rn)ln. (Reading from right to left, this may be rendered as:

Consider n and the sequence 1,2, ... ,n; obtain the remainders after dividing the elements

of the sequence into n: find the elements with 0 remainder: count their occurrences;

and test the count to see if it is 2. If so, then n is prime.) Analysis shows that this

constructs three temporary arrays each of length n, but that the output is a single

scalar. Transformation takes place in three stages each of which eliminates one

unneeded array. The final result is 2=H(l,n) where

H(k,n) <= if k>n then 0

else if (n mod k)=O then l+H(k+l,n)

else H(k+l,n)

which constructs no temporary arrays: It simply counts the number of times the

remainder of n divided by k is 0, for k from I to n.

3. TECHNIQUES

The preceding derivations employ three techniques: program analysis, partial

evaluation, and subgoal abstraction. These activities may be roughly characterized as:

analyzing the program's resource expenditure and output to find appropriate targets for

simplification: rewriting portions of the program to realize a performance

improvement on the first execution of the program's loops: recognizing subproblems

and using these to form recursive programs such that the performance improvement is

In the interest of brevity, we explain APL only to the extent required for

understanding the examples. The original definition by Iverson is given in [16]; a

description of the APL system may be found in [19]. Our notation for APL

expressions differs from the APL system's in that we use lower case letters for

variable names.

8

attained on every execution of the program's loops. We now examine these in greater

detail.

3.1. PROGRAM ANALYSIS

Program analysis obtains closed-form expressions which describe execution

behavior as a function of input characteristics, e.g., worst-case execution time as a

function of the input-length. A system which automatically carries out program

analysis for simple programs is discussed in [23]. Techniques, implementation issues,

and limitations are discussed there. In the interest of brevity, we confine our

discussion here to outlining the sorts of analysis which can be produced in this way.

Analysis is carried out for three cases--best, worst, and average (under some

assumptions about input distributions). It is useful to write the closed-form

expressions describing execution cost in a partially factored form, separating out the

dependence on input characteristics from the dependence on machine implementation.

For example, the execution time of Append is written as c0 +c 1 ·n where n is the length

of the first argument to Append and c0 ,c 1 are implementatfon constants. The

implementation constants are written as linear arithmetic expressions of the form r 1 ·p1

+ ... + rk·pk where the ri's are rational numbers and the pk's denote costs of executing

primitive operations. For the case of Append,

c = fncall + 2·vref + null
0

c 1 = car + cdr + cons + 1·vref + fncal/

The lower case spelling of a primitive operation stands for that operation; fncal/

denotes the action required to invoke a non-primitive operation; vref denotes access to

a variable.

When analysis is used for the purpose of directing program transformations, it is

usefUI to distinguish the source of a primitive operation based on the defining

function in which it appears. Thus, cons A denotes those Cons-cells created by the

execution of the Cons operation textually inside Append (c.f., the definition of

Append, Section 2.2). To do this, we distinguish the symbolic "costs" of elementary

9

operations based on their textual position: a Cons textually inside function A is

treated, for the purpose of analysis, as if it were distinct from a Cons textually inside

function B. In the case where a defined function, F, appears more than once in the

expression to be transformed, it is useful, for the purpose of analysis, to treat each

occurrence of F in the expression as if it were a distinct function. Suppose F is

recursive and the expression is F(G(x), F(y, z)). This is treated as if it were

F 1 (G(x), F 2(y, z)). All calls to F from F 1 (and from functions called by F 1) are

treated as calls on FI" Similarly, F2 is treated as calling F2 recursively. A function

call "within" the inner F is therefore labeled fnca/l F . Thus, we can distinguish the

cost of executing the inner F from the cost of elecuting the outer F (once its

arguments have been evaluated).

This representation of execution was chosen for its generality. From it, we can

obtain the answer to specific questions by assigning appropriate values to the primitive

operation symbols. For example, to obtain total execution time on a given machine,

let each primitive symbol stand for the execution time of the corresponding operation.

To obtain the total number of Cons cells created, let cons. (for all i) be I and let the
I

other elementary operation symbols be 0. In analogous fashion, we may obtain the

number of fnca/fs (function calls) out of a specific function, or the computation time

spent within a specific group of functions.

Several other sorts of analysis are also of interest. One class is output analysis,

e.g .. determining the length of a function's output if an array or list, or its range if a

scalar. Jn the case of list length, it is useful to distinguish the textual source of Cons­

cells which occur in the output, e.g. an output list might be of length lxl, but this is

more usefully expressed as l'consR + (lxl-l)'consA. Such expressions are obtained by

computing the output list length as a polynomial, in a way similar to the execution

cost analysis. Another class of analysis is concerned with internal operations, e.g., the

probability of a Boolean-valued procedure returning the value true; such analysis is

required as auxiliary data in computing computation cost. These are obtained, and the

results are expressed using methods similar to those for execution cost

The results of analysis are employed in two ways. The first method exploits

10

discrepancies between the coinplexity of a program's output and the computation cost

of obtaining that output. Such discrepancies represent wasted work and the

corresponding program components are therefore targets for simplification. When this

singles out a specific portion of the program, it provides a sharp criterion.

In some cases, this may not be specific enough; to further narrow the target, a

second method is employed. This consists of hypothesizing plausible goals on the

basis of current performance and using the results of analysis to determine the

program components causing discrepancies between these goals and the computation

cost. For example, if a program runs in n2 steps, a plausible goal is n steps and the

target for simplification is narrowed to those sub-regions responsible for the. n2

behavior. If the goal of n steps is attained, then a second, more stringent, goal will be

tried, i.e., fewer steps in the best case. Thus, at each step, the plausible goal is taken

to be the next significant performance level. This selects as the target for

simpl1fication those program components which must be simplified if that

performance level can be attained by our transformation method. We stop when the

computation cost is commensurate with the complexity of the generated output, or

· when transformations fail to attain a goal.

3.2. PARTIAL EVALUATION

Partial evaluation consists of rewriting portions of a function to exploit

knowledge of its arguments. In the simplest case, a partial evaluator takes a function

P of n formal parameters x1, ... ,xn along with values a 1, ... ,ak for the first k actual

arguments and constructs a new function P' such that P'(bk+i·····bn) = P(a 1, ... ,ak'

bk+ l' ... ,bn) for all sets of bj" That is, P' is a variant of P, specialized to the case

where the first k parameters are known constants. To the extent that P' is a

simplified version of P, its computation cost is smaller.

Here we employ an extension of this idea: Rather than knowing the actual values

of certain formal parameters, we know the function which constructs them. Let

Q 1, ... ,Qk be defined functions (of one argument, for simplicity). Our partial evaluator

will typically take an expression such as P(Q 1(y 1), ... ,Qk(yk), yk+l'····Yn) along with the

definitions of Ql' ... ,Qk and construct a new function P' such that P'(b1 , ... ,bk'

11

bk+ l' ... ,bn) = P(Q 1(b 1), .•. ,Qk(bk), bk+ l' ... ,bn). That is, P' is a variant of P, specialized

to the case where the first k parameters are known to be computed by Q 1, ••• ,Qk. To

the extent that P' combines the computations of the first k arguments with each other

and with the execution of P, P' runs faster than the sequential execution of Q 1, ... ,Qk

followed by P.

It is useful to distinguish four facets of partial evaluation: expanding function

definitions, distributing conditionals, simplifying, and evaluating in context.

Expansion replaces a function call by a suitably instantiated copy of the function

definition. If P has formal parameters x 1 xn, then the complete expansion of

P(Q 1(Y 1) •... ,Qk(yk). yk+l' .. .,yn) is obtained as follows:

(i) Let R. be the result of instantiating the body of Q. with argument y., for
I I I

i= I , ... ,k.

(ii) In the body of P, substitute R. for x. (i=l, ... ,k) and y. for x. (j=k+l, ... ,n).
I I J J

It is undesirable to carry out an expansion of all defined functions (even to one

level). since this blows up the program size and makes difficult the recognition of

recurring subexpressions needed for subgoal abstraction. Instead, we adopt the

following method: defined functions are expanded only if they can be reduced to

constants or so far as necessary to expose the target for simplification to local

simplification rules. This resolves into three expansion criteria:

(El) The function call which contains the target is expanded.

(E2) The surrounding function is expanded as necessary to obtain surrounding

context for the local simplification rule.

(E3) If all the arguments (and free variables) of a function call are constant then

the function call is expanded.

12

Thus, to eliminate a Cons by the local simplification rule H Cons(a,/3) -+ a_, we

expand the function call which contains that Cons (criterion EI) and also expand the

surrounding function call so as to obtain an H operation which may be applied to the

Cons (criterion E2).

Typically, a function expanded in this way contains conditional expressions, e.g.,

controlling recursion. Suppose such an expanded function occurs as the argument to

an outer function, say F. We then have an expression such as

F(a, if p 1 then e 1 else if p2 then e2 ... else en, y)

where a. the conditional expression, and y are the first, second, and third arguments to

F. Distributing the conditional consists of bringing the conditional tests out of the

argument position to the surrounding scope. This yields a conditional expression in

which F is applied to the result of each conditional clause:

if p 1 then F(a,e 1,y) else if p2 then F(a,e2.r) else ... F(a,en,y)

This creates new, specialized function calls--F(a,e 1,y), F(a,e2,y), ... ,F(a,en,y). Because

they are specialized, their further partial evaluation may lead to simplifications.

To illustrate the steps of partial evaluation, we return to the example of Section

2.2 and consider A 1(A2(x,y), z). Since the Cons in A2 is chosen as the target for

simplification, A2 is selected for expansion by criterion El. From the definition of

A2, we obtain:

A1(if Null(x) then y else Cons2(Hx. A2(Tx,y)), z)

Distributing the conditionals, we obtain

if Null(x) then A1(y,z) else A 1(Cons2(Hx, A2(Tx,y)), z)

The target for simplification, Cons2, is now in an argument position. Expansion

criterion E2 selects the surrounding function, A 1, for expansion. Thus, A1(Cons2(Hx,

A2(Tx,y)), z) is expanded into

if Null(Cons2(Hx, A2(Tx,y))) then z

else Cons 1(H Cons2(Hx, A2(Tx,y)), A1(T Cons2(Hx, A2(Tx,y)), z))

which is ripe for simplification.

13

In regard to simplification, we take the following operational point of view. Let

lal be the cost2 of computing expression a. Then expression 6 is simpler than

expression a if 161 < lal for some assignment of values to variables and 181 S lal for

all assignments of values to variables. By this criteria, the following are

simplifications:

P 1 /\ P2 -+ if p 1 then p2 else false

H Cons(e 1,e2)-+ e1
Null(Cons(e 1,e2))-+ false

if false then .e 1 else e2 -+ e2

if p then e else e -+ e

Applying these sorts of local simplification rules to the above expression results in

Cons 1(Hx, A 1(A2(Tx,y), z))

Thus, the partial evaluation of A 1(A 2(x,y), z) yields if Null(x) then A 1(y,z) else

Cons 1(Hx, A 1(A 2(Tx,y), z)). We denote this as

A 1(A2(x,y), z) = if Null(x) then A 1(y,z)

else Cons 1(Hx, A 1(A2(Tx,y),z))

That is, a = 8 means that a can be partially evaluated to yield 8 and, thus, if the

computation a terminates then the computation 8 terminates and yields the same

answer.

An additional facet of partial evaluation, not illustrated by the above example, is

evaluation in context. This consists of using information derived from conditional

expressions to assist in local simplification. Evaluation in context arises when an

expression embedded within a conditional is selected for expansion--all the predicates

2 There should be no confusion between lal to denote the cost of computing the

expression a and lxl to denote the length of the list x. Context and the argument

type will indicate which is intended.

14

on test branches leading to that expression are known to be true. Consider, for

example, the expression b=M(b,y) where M computes the maximum of the set {b}Uy,

as follows:

M(b,y) <= if Null(y) then b else if b<Hy then M(Hy,Ty) else M(b,Ty)

Expanding M(b,y) in b=M(b,y) and simplifying yields

if Null(y) then true else if b<Hy then b=M(Hy,Ty) else b=M{b,Ty)

where b=b has been simplified to true. Next, we expand the expression b=M(Hy,Ty).

In so doing, we can use results of the tests leading to this point, so we know:

-Null(y) /\ b<Hy. We call these tests context conditions for the expansion of

b=M(Hy,Ty). Expanding this in context yields

if Null(y) then false

else if Hy<HTy then b=M(HTy,ITy)

else b=M(Hy,ITy)

This follows because value of the first conditional expression, b:Hy, can be simplified

to false in the context b<Hy.

To express the use of context conditions rn partial evaluation, we extend the

above notation and write

a {in context p} ~ o
Similarly, we extend the definition of simpler to include context conditions: o is

simpler than a in context p if lol<lal for some assignment of values to variables

which satisfies p and lol::5:1al for all assignments of values to variables which satisfy p.

3.3. SUBGOAL ABSTRACTION

Subgoal abstraction consists of identifying subproblems which are identical in

form to more global problems and using this identification to construct the definitions

of recursive functions. Suppose that

a ~ if p then e else f(fi)

when a and f3 are expressions and r is an expression involving {3. Suppose that there

15

is some substitution 3 e which carries a into {3. i.e., a0=/J. We say that a is the goal,

{J is the subgoal, and f3 is a substitution instance of a. Rewriting the above,

a = if p then e else r(a8).

Let ~ be the set of variables in a. Let F(O be defined by

(3.1) F(O <= if p then e else r(F(~S))

It follows that a = F(~). That is, if the computation a terminates then the

computation F(O terminates and their values are equal.

The reason for introducing such a definition is to obtain a performance

improvement. Hence, we construct such a definition F and use it to compute a only

when F is computationally simpler than a. If lal ~ lif p then e else f(/3)1 for all

assignments of values to variables, then lal ~ IF(~)I; if also lal > lif p then e else f({J)I

for some assignment of values to variables, then lal > IF(OI for that assignment; thus,

F(O is simpler than a. In the general case, comparing the costs of a with "if p then e

else f(/3)" is carried out by analyzing the computational costs of the latter e'xpression.

Since some of its constituents have been previously analyzed and since the analysis

technique reuses the analysis of constituents when dealing with a larger expression in

which they are contained, such analysis is generally easier than the original analysis of

a.

In a commonly occurring case, a cost comparison can be carried out more

directly. To explain this, it is necessary to first clarify the relation between partial

evaluation and computation cost. If a = o, then o must terminate whenever a

terminates, but there is no assurance that o's cost is less than a's. In obtaining o from

3
The following usages are standard in formal logic. A substitution is a set of the

form {e./v.li=l, ... ,n} where the v. are non-repeating variables and the e. are
1 1 1 1

expressions. Let e be a substitution and a an expression. Then ae is the

expression obtained from a by simultaneously replacing each occurrence of "i by

e ..
I

16

a, two counterposing phenomena are at work: (I) Local simplification tends to make

o simpler than a. Thus if a contains "if p' then e' else e"' and this is simplified to e',

then o will be simpler by the cost of p' plus the cost of an if. (2) Duplicating actual

arguments when expanding functions tends to make o more costly than a when the

arguments are complex expressions and must be executed more than once. Thus, if a

contains F(Cons(G(x)+ I, x)) and if F is expanded and simplified to "if P(G(x)) then

G(x)+2 else Cons(x, G(x))" then o will be more costly since it executes G(x) twice in

the expanded body of F rather than once as the argument to F.4 Because the combined

effect of these two phenomena may be complex, the relation of a to o is determined,

in the most general case, by analyzing o.

Often. however. the second phenomenon does not occur. After local

simplification, the arguments to an expanded function appear at most once on each

execution path through the expanded portion of the function body. In such cases, the

cost of o differs from the cost of a only insofar as local simplifications may have

taken place. If there have, in fact, been any simplifications, then o is necessarily

simpler than a. If a new function F is defined as specified in (3.1), then F is known

to be a better way of computing the same result than a computes.

It is important to appreciate that the goal for subgoal abstraction need not be the

original top-level problem. In general, the goal a will be some subexpression which

arises in the course of partial evaluation, and the subgoal f3 will be the matching

4 It should be pointed out that there are evaluation techniques [22] which defer

evaluation of arguments until they are needed and store the result so an argument

is evaluated at most once. However, such techniques require that the argument be

used in the body exactly as it appears as an actual parameter. In partial

evaluation, we wish to carry out simplifications, e.g., H(Cons(G(x)+ I, x))-1 -+

G(x), so that such techniques are not directly applicable. More recent studies

[14] show promise of being extendable to such situations, but additional research

seems required to clarify the relation between def erred evaluation, local

simplification, and function expansion.

17

subexpression. Let p be the context condition for the evaluation of a. The criteria

for subgoal abstraction are:

(SA I) a {in context p} !::::: .6.(JJ)

(SA2) there is a substitution 8 such that a8=fJ

(SA3) .6.(JJ) is simpler than a in context p

(SA4) p8 is true at the points in .6. where f3 appears

The last of these criteria may require further explanation: In order for a subgoal f3 to

be identical in form to a goal a, the context.conditions used in partially evaluating a

must be true at each appearance of f3 in .6.. We refer to this as checking the context

conditions.

An example will illustrate the importance of these considerations. Let M be the

maximum of {c}Uy defined

M(c,y) <= if Null(y) then c else if c<Hy then M(Hy,Ty) else M(c,Ty)

Evaluation in context shows that

b=M(c,y) {in context b<c} ::::::

if Null(y) then false else if c<Hy then b=M(Hy,Ty) else b=M(c,Ty)

We match b:M(Hy,Ty) against b=M(c,y) with the substitution 8={Hy/c, Ty/y}.

Checking the context condition b<c under the substitution 8 requires showing that

b<Hy at the expression b=M(Hy,Ty) which is true since b<c /\ c<Hy implies b<Hy.

Similarly, we match b:M(c,Ty) against b=M(c,y) with the substitution {Ty/y}; the

context condition, b<c, is easy to check since it is unchanged by this substitution.

Thus, subgoal abstraction can be carried out. We let F(b,c,y) stand for b=M(c,y) {in

context b<c} meaning that F is defined only when its first argument is less than its

second. We have

F(b,c,y) <= if Null(y) then false

else if c<Hy then F(b,Hy,Ty)

else F(b,c,Ty)

18

Simplifying this, F(b,c,y) ::::: false since the only way F can terminate is by returning

false. Thus b=M(c,y) {in context b<c} ::::: false. This may be read as b<c :::>

b~maximum({c}Uy). Stated as a theorem, this is unremarkable. However, in program

optimization, one does not have explicit statements of desirable theorems as input.

That the transformation method obtains this directly from the expression and

definitions is of interest.

3.4. GENERALIZATION

A somewhat subtle point in subgoal abstraction is the way in which argument

positions are generalized. We first consider the generalization of constant arguments.

Consider an expression of the form F(O, G(x,y)) and suppose that the target for

simplification is inside G, so that G is to be expanded followed by a partial

evaluation of F. It would not be desirable to uniformly replace all constants by new

individual variables--here, replacing 0 by some new z.--since F might be simplified in
I

its partial evaluation in the case that its first argument is known to be 0. An extreme

case would be where F(O, G(x,y)) is partially evaluated to a constant. On the other

hand, there are cases in which matching is blocked by the presence of· different

constants in the same argument position of a goal expression and a subgoal. For

example, partial evaluation of F(O, G(x,y)) might lead to an expression in which F(Hx,

G(Tx,Ty)) appears. Hx cannot be matched against 0, so subgoal abstraction is

inhibited.

When a match fails because of the presence of a constant in the goal,

generalization is employed: Argument positions which are constant in the goal and

different in the subgoal are replaced by new individual variables. Then the

generalized goal expression is partially evaluated. If the result is similar to the

previous result, the match will succeed. For example, suppose F(O, G(x,y)) is

generalized to F(z 1• G(x,y)) and that partial evaluation of this leads to an expression

in which F(z 1 +Hx, G(Tx,Ty)) appears. The match is successful with the substitution

{z1+Hxlz 1, Tx/x, Ty/y}.

A similar situation is caused by the multiple appearance of an individual variable

in a goal expression. Consider, for example, E(l(k,n), k), where the variable k appears

19

twice. It would be undesirable to adopt the uniform policy of generalizing this to

E(l(z 1,n), z2) and then attempting to optimize this, for it might be the case that

E(l(z 1,n), z2) has a simple partial evaluation and subgoal abstraction for z 1=z2 but not

otherwise. It would be equally undesirable to accept only subgoal matches of the form

E(l(e 1,e2). e 1) since it might be the case that no such subgoals occur. Suppose, for

example, that the first "near match" in the partial evaluation of E(l(k,n), k) was the

subexpression E(l(k+ l ,n), k) and that all subsequent near matches had the form

E(l(k+j,n). k) for j=2,3,... We adopt the same solution here as for constants: The

matching process constructs a list of substitutions. If a match fails because the

substitutions for a variable are incompatible, i.e., e 1 /x and e/x where e 1 :f:e2, then _the

conflicting appearances of the variable in the goal expression are generalized to

distinct individual variables.

In summary, the strategy for generalization is to delay so doing until required by

subgoal abstraction, to generalize as dictated by the match, and then to determine the

effect of this generalizatfon by repeating the partial evaluation.

An example will show the importance of generalization and how generalization

interacts with evaluation in context. Consider, for example, the Fibonacci function.

F(n) <= if n=O V n= I then I else F(n-1)+F(n-2)

Analysis shows that F(n) takes exponential time. We start with the right hand side of

the definition.

if n=O V n= 1 then I else F(n-1)+F(n-2)

Analysis shows that the cost of F(n-1) is the largest component, so it is selected for

partial evaluation. Expansion uses the context condition n:f:O /\ n:f: I. After

distributing conditionals and simplifying, the result is

if n=O V n=I then 1 else if n=2 then 2 else 2'F(n-2)+F(n-3)

Taking F(n-1)+F(n-2) as the goal and 2'F(n-2)+F(n-3) as the subgoal, we attempt to

match. This fails, since the constant 2 does not match the implicit constant l

in rF(n-1). We generalize the goal to k'F(n-1)+F(n-2). Partially evaluating

k'F(n-l)+F(n-2) {in context n:f:O /\ n:f: I} we get

if n=2 then k+ I else (k+ I)'F(n-2)+k'F(n-3)

Again, the match fails due to a constant argument in the goal and again we generalize.

20

Taking k"F(n-1) + fF(n-2) {in context n1=0 /\ mq} as the goal and partially

evaluating, we get

if n=2 then k+j else (k+j)"F(n-2)+k"F(n-3)

The match is now successful with the substitution {k+j/k, k/j, n-1 /n}. Under this

substitution, the context conditions are true at the calls on F, so we can carry out

subgoal abstraction. Let G(kj,n) stand for k"F(n-l)+j'F(n-2) {in context n1=0 /\ n1=1}.

Then define

G(k,j,n) <= if n=2 then k+j else G(k+j, k, n-1)

Thus, we have that F(n) can be computed as

ifn=OV n=I then I elseG(l,l,n)

which executes in linear time.

4. FURTHER EXAMPLES

In this section, we present three examples to illustrate particular points of interest

Each example is labeled with the points it illustrates. We confine our exposition to a

statement of the original program, the key points of the processing, and the result.

Omitted steps are either straightforward, or repetitions of points illustrated elsewhere.

4.1. TREATMENT OF WHILE LOOPS, SPECIAL-PURPOSE LOCAL

SIMPLIFICATION RULES, EVALUATION IN CONTEXT, CHECKING

CONTEXT CONDITIONS IN SUBGOAL ABSTRACTION

Consider the while loop

(4.1) while P do if Q then R else S

where the value of Q is unaffected by R and S, i.e., the test is taken in the same

d . . h . I st . . h . th L t b f h . bl irect1on on t e 1+ 1teralton as on t e t . et .., e a vector o t e varta es

appearing in P,Q,R, or S. ft turns out that processing is simplified if such iterative

programs are converted to functional form, viz. F(O. where

(4.2) F(O <= if -P~ then ~ else if Q~ then FR~ else F~

21

provided that P and Q have no side effects. Let the number of times the loop is

executed be n. The contribution of Q to the computation cost is IQl"n. Suppose

analysis shows this is large so that Q becomes the target for simplification. Since the

value of Q is unchanged by S and R; we have two special-purpose local simplification

rules.

(4.3) QR~ -+ Q~ and Q~ -+ Q~

Transformation proceeds as follows: Start with (4.2) and expand the functions which

contain the target for simplification--the inner calls on F.

F(O :::< if -P~ then ~

else if Q~ then

(if -PR~ then R~ else if QR~ then FRR~ else FSRO

else (if -P~ then S~ else if Q~ then FRS~ else FS~)

We now proceed to evaluate in context and apply local simplification rules. Using

(4.3), QR~=true in the context ~=true while Q~=false in the context ~=false. Thus

F(O :::< if -P~ then ~

else if Q~ then

(if -PR~ then R~ else FRRO

else (if -PS~ then S~ else FS~)

Comparing this to (4.2), we have

FR~ {in context QO :::< if -PR~ then R~ else FRR~

FS~ {in context -QO :::< if -PS~ then S~ else FS~

We can match FRR~ against FR~ with the substitution 8={RVO. For the match to

succeed, it is also necessary to check that the context conditions of the goal, FR~. are

also true for the subgoal, FRR~. Here. this requires checking that the context

condition, Q~. is true after the substitution 8 at the point where FRR~ is invoked.

22

Since (Q08=QR~. this is manifestly true. Matching FS~ against F~ is similar.

Letting F (0 and F (0 stand for FR~ and F~ respectively, we have the following r s
definitions:

F (0 <= if -P~ then ~ else F R~ r r
F (0 <= if -P~ then ~ else F ~ s s

Substituting these into (4.2) and converting to iterative form, the final result is:

if P then {if Q

then (R; while P do R)

else (S; while P do S)}

The contribution of Q to the computation cost has been reduced from n"IQI to IQI. so

the goal has been attained. The transformation of (4.1) to this form is generally

termed loop unswilching [3] in compiler optimization. That this is a straightforward

application of the general transformation method is of interest. The utility of

carrying out the derivation in functional form should be apparent.

4.2. SUCCESSIVE TRANSFORMATIONS WITH INCREASINGLY STRINGENT

PERFORMANCE GOALS, THEOREM PROVING TO ENABLE A LOCAL

SIMPLIFICATION RULE

We use the following definitions for set membership, M, and set union, U, where

sets are represented as non-repeating lists:

M(b,y) <= if Null(y) then false else if b=Hy then true else M(b,Ty)

U(x,y) <= if Null(x) then y

else if M(Hx,y) then U(Tx,y)

else Cons(Hx, U(Tx,y))

Consider the expression M(b, U(x,y)), i.e., bExUy in more conventional notation.

Analysis shows that this has a best case time proportional to lxl. and a worst-case time

23

of lxrlyl. using lxl Cons-cells. The result is a Boolean. Thus, the elimination of the

Cons-cells is taken as the goal; in particular, the Cons in U is the target for

simplification. We start with M(b, U(x,y)), expand the function call U which contains

the target for simplification, distribute the conditional, and partially evaluate the

third invocation of M--the only one which simplifies. The result is

if Null(x) then M(b,y)

else if M(Hx,y) then M(b, U(Tx,y))

else if b=Hx then true

else M(b, U(Tx,y))

We have found a subgoal: M(b, U(Tx,y)) in its two occurrences can be matched

against the original expression M(b, U(x,y)). This allows definition of a function

F(b,x,y) to stand for M(b, U(x,y))

F(b,x,y) <= if Null(x) then M(b,y)

else if M(Hx,y) then F(b,Tx,y)

else if b=Hx then true

else F(b,Tx,y)

Analysis shows this has a best-case time of lxl and a worst-case time of lxl'lyl but now

uses no Cons-cells. Our first goal has been attained.

This can be carried one important step further. The worst-case factor of IYI is

due to the expression M(Hx,y): This becomes the next target for simplification. We

have the local simplification rule

if p then e else e -+ e

This could be employed to eliminate M(Hx,y) if we could exchange the order of the

second and third clauses of the conditional. Such an exchange is legal so long as the

value of the program is not affected, i.e.,

if p 1 then e 1 else if p2 then e2 else e3 =
if p2 then e2 else if p1 then e 1 else e3

provided that if p 1 is true then p2 terminates and

P1 /\ P2 :J el =e2

24

That is, when both predicates apply the values produced are identical. To eliminate

M(Hx,y), we must prove

M(Hx,y) /\ b=Hx :J F(b,Tx,y)=true

This is a simple theorem and, in fact, has been proved using the program verifier

described in [6]. Thus, we have

F(b,x,y) <= if Null(x) then M(b,y) else if b=Hx then true else F(b,Tx,y)

which has constant time in the best case and time lxl+IYI in the worst case, thus

attaining the second goal. Note that the final program is equivalent to "if bex then

true else bey", as expected.

4.3. GENERALIZATION, DECOMPOSITION OF COMPLEX EXPRESSIONS

This example has its origin in the processing of APL. We use several APL

operators which may be unfamiliar to the reader. For ease of exposition, we restrict

usage to scalar and vector arguments and assume that all vectors are conformable as

required; thus, their definitions are simplified:

LO

x,y

+\y

x/y

"""Y

the vector 1,2, ... ,n

the concatenation of x with y

the com press ion of y by x, i.e., selects those elements y i such that

x.= I and forms a new vector of the selected elements.
I

the negation of y; the i-th element of the result is I if y i is 0 and

0 if y. is not 0.
I

25

xly the mod operation. If x is a scalar and y a vector, the result is a

vector of elements (y. mod x).
I

A/y

The other binary operations on scalars are extended in the same

way.

the and-reduction of y, i.e., the logical-and of all elements of y.

To simplify the discussion and carry it out in the same framework as the other

examples, we treat APL vectors as if they were lists. Thus in is treated as l(n,1) where

I is the function defined:

l(n,k) <= if k>n then nil else Cons(k, l(n,k+I))

The storage expenditure for Ln is therefore n Cons-cells, which is isomorphic--under

our representation--to a vector of n elements as expended in an actual APL

implementation.

Suppose y is an array of l's and O's. The following expression. suggested by Alan

Perlis, tests whether all sequences of I's are of even length: I\ /-21(-y ,0)/ + \y ,0. This

may be read, from right to left as: consider the vector y concatenated with a 0; form

a vector of partial sums; select from that vector all elements whose corresponding

element in the vector (y,0) is O; take the remainders of that vector when divided by 2;

construct a vector whose i-th element is 1 or 0 as the i-th remainder is 0 or 1; form

the logical-and of all elements. That logical-and will be true if and only if all

sequences of l's in y are of even length. This constructs seven temporary arrays and

makes eight passes over y and the temporaries.

In our Lisp notation, this is written as

(4.4) R(N(E(C(N(A(y,Cons(O,nil))),S(O, A(y,Cons(O,nil)))))))

where

A(x,y) <= if Null(x) then y else Cons(Hx, A(Tx,y))

S(k,y) <= if Null(y) then nil else Cons(k+Hy, S(k+Hy,Ty))

N(y) <= if Null(y) then nil else Cons(Not(Hy), N(Ty))

C(x,y) <= if Null(x) then nil

else if Hx=O then C(Tx,Ty)

else Cons(Hy, C(Tx,Ty))

E(x) <= if Null(x) then nil else Cons(Hx mod 2, E(Tx))

R(x) <= if Null(x) then true else if Hx=O then false else R(Tx)

26

Optimization proceeds from the inside out: transforming argument expressions,

substituting the transformed arguments in place of the original ones, and using these

in transforming enclosing operations. We begin with S(O, A(y,Cons(O,nil))), which

corresponds to + \y,0. Analysis shows that this computation takes 2(1yl+ I) Cons-cells,

that the length of the output is IYI+ I, and that the cells constituting the output come

from S. The executions of Cons in A are being wasted. These become the target for

simplification.

Taking S(O, A(y, Cons(O,nil))), expanding A and partially evaluating S, results in

an expression containing S(Hy, A(Ty, Cons(O,nil))). The first occurrence of 0 in the

goal must correspond to Hy in the subgoal, so the match fails. Generalization of the

first argument position to a new individual variable k is required. Observe that the

second occurrence of 0 in the goal matches a 0 in the subgoal, so this is unaffected by

generalization. After generalization, the new expression under consideration is S(k,

A(y, Cons(O,nil))).

Expanding A. partially evaluating S, and abstracting on a subgoal, results in

S(k, A(y, Cons(O,nil))) = F(k,y) where F is defined:

F(k,y) <= if Null(y) then Cons(k,nil) else Cons(k+Hy, F(k+Hy,Ty))

This requires IYI+ I calls of Cons to yield a result of lyl+ I new cells so the goal has

been attained.

Next, F(O,y) is substituted for S(O, A(y, Cons(O,nil))) in (4.4) and the

decomposition process is repeated. The second expression for optimization is N(A(y,

Cons(O,nil))). Again, analysis shows that the executions of Cons in A are being Jost.

Transformation yields G(y), where

G(y) <=if Null(y) then Cons(l,nil) else Cons(Not(Hy), G(Ty))

27

Next, the expression C(G(y), F(O,y)) is considered. Analysis shows that the executions

of Cons in both G and F are being lost. Transformation yields H(O,y), where

H(k,y) <= if Null(y) then Cons(k,nil)

else if HytO then H(k+Hy Ty)

else Cons(k+Hy, H(k+Hy, Ty))

Successive steps consider E(H(O,y)), then N of that result, and then R of that result.

In all, the optimization process is carried out six times. The final program is J(O,y),

where

J(k,y) <= if Null(y) /\ k mod UO then false

else if Null(y) then true

else if HytO then J(k+Hy, Ty)

else if k mod UO then false

else J(k,Ty)

which constructs no temporary arrays and makes, at most, a single pass over y. This

may be directly transformed to the iterative program:

k+-0;

while -Null(y) do

{if HytO then (k+-k+Hy; y+-Ty)

else if k mod UO then return false

else y+-Ty};

if k mod UO then return false else return true

28

5. CONCLUSION

5. 1. RELATION TO OTHER WORK

Mechanical program analysis is discussed in [23]. An interactive system which

provides assistance to the analyst-user in estimating program efficiency is discussed in

[IO]. A number of partial evaluators have been implemented for various purposes

[8, 17,20]. A good survey of partial evaluators and their applications may be found in

[5]. Program transformations which preserve correctness with respect to given

assertions are discussed in [13]. The notion of loop expansion followed by

abstraction to obtain a computational advantage is discussed in [15], in the context of

generating efficient code for machines with parallel operation capabilities. More

recently, [7] and [18] have employed the idea that a recursive function call can be

formed when, in the course of working on a problem, a subgoal is generated that is

identical in form to the top-level goal. The use of transformations--"beating" and

"drag-along"--to optimize the execution of APL programs is discussed in [I]. Further

studies in the optimized interpretation of APL expressions are presented in [4].

The major contribution of this work is in the use of program analysis to direct

the transformation process. Using analysis and performance goals to select a target for

simplification, and then using this to direct the program expansion steps during partial

evaluation seems to be a natural and useful technique. Another contribution is the use

of context conditions in partial evaluation to establish enabling conditions for local

simplifications and, associated with this, the checking of context conditions in subgoal

abstraction. A third contribution is the treatment of generalization in subgoal

abstraction. Delaying generalization until required and then generalizing as dictated

by the match appears to be a promising approach.

5.2. PROSPECTS

While the techniques we have presented can yield some interesting results, it

would be a mistake to overestimate their capabilities. They are limited in effect to

the transformation of one program to a better one. Cases in which the input/output

mapping can be better realized by a radically different algorithm are beyond the scope

of this method. For example, we can see no way to transform a definition of bubble-

29

sort to a version of quick-sort. Where change of algorithm is required, program

synthesis [18] from input/output specifications appears to be a more natural way to

proceed--particularly, if such synthesis were guided by considerations derived from

mechanical program analysis (23].

Even within the province of these techniques, there are notable lacuna which

invite further investigation. As an example, consider a variation on Example 2.3.2; an

APL expression which counts the number of primes less than n is:

+12=+1[I]O=(rn)0 .1rn. (Read this from right to left as: Consider the n by n matrix

obtained by considering the remainders of all pairs of elements from the arrays

(1,2, ... ,n) and (1,2, ... ,n); test for equality of the remainders with 0 and form a new

matrix of the test results; sum the columns of the resulting matrix; test for equality of

the sums with 2; count the number of columns whose sum is exactly 2.) This

constructs two n by n temporary matrices and two vectors of length n. The result is a

scalar. Analysis and subsequent transformation yields M(n, I) where

M(n,k) <= if k>n then 0

else if H(l,n,k,2) then l+M(n,k+I)

else M(n,k+ I)

H(j,n,k,s) <= if j>n then s=O

else if k mod j=O then H(j+ 1,n,k,s-1)

else H(j+ l,n,k,s)

This achieves a considerable storage economy since it constructs no temporary matrices

or vectors. However, two defects remain. First, the function H(j,n,k,s) does not

terminate until j>n. which requires time n. Inspection shows that if s is ever negative

then H must be false. Thus, inserting a leading test, "if s<O then false", would leave

the input/output mapping unchanged but typically lead to a performance

improvement. Second, the test j>n can be sharpened to j>k, since k mod ji:O for j>k.

However, we can find no entirely satisfactory set of transformations that would lead

to these changes.

30

ACKNOWLEDGMENTS

My interest in the technique of partial evaluation coupled with subgoal abstraction was
stimulated by enjoyable discussions with Rod Burstall and John Darlington; these
discussions raised several of the questions answered in this work. Examples 2.3.1 and
4.1 are due essentially to Edsger Dijkstra who presented [11] the versions before and
after transformation as being "hard to compare"; the challenge afforded by these
examples was a motivating force in exploring the techniques presented here. Several
of the APL examples were provided by Alan Perlis; our ongoing discussions as to the
relative merits of transformations vs. his "ladder" evaluation techniques for APL have
been provocative and fruitful.

31

REFERENCES

I. Abrams, P. An APL Machine. SLAC-14, Stanford Linear Accelerator Center, Feb.
1970.

2. ACM Sigplan Symp. on Very High Level Languages. Sigplan Notices, 9, 4, April
1974.

3. Allen. F.E. and Cocke, J. A catalogue of opt1m1Z1ng transformations. In R.
Rustin (Ed.) Design and Optimization of Compilers. Prentice-Hall, 1972, 1-30.

4. Battarel, G. et al. Optimized interpretation of APL statements. In P. Gjerlov,
H.J. Helms. and J. Nielsen (Eds.) APL Congress 7 3, North-Holland, 1973, 49-57.

5. Beckman. L. et al. A partial evaluator and its use as a programming tool. Dept.
of Computer Sciences, Uppsala University, Sweden, Nov. 1974.

6. Boyer. R.S. and Moore, J.S. Proving theorems about Lisp functions. JACM, 22,
(Jan. 1975), 129-144.

7. Burstall, R.M. and Darlington, J. Some transformations for developing recursive
programs. Int. Conj. on Reliable Software, IEEE Computer Society, April 1975,
465-472.

8. Chang, C.L. and Lee, R. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, New York, 1973.

9. Cheatham, T.E. and Wegbreit, B. A laboratory for the study of automating
programming. AF/PS Conj. Proc .. Vol. 70 (Spring 1972). 11-21.

10. Cohen, J. and Zuckerman, C. Two languages for estimating program efficiency.
CACM, 17, 6 (June 1974), 301-308.

11. Dijkstra, E.W. Notes on structured programming. In O.J. Dahl, E.W. Dijkstra,
and C.A.R. Hoare (Eds.) Structured Programming, Academic Press, 1972, 1-82.

12. Earley, J. High level operations in automatic programming, in [2].

13. Gerhart, S.L. Correctness preserving program transformations. Second ACM
Symposium on Principles of Programming languages, Jan. 1975, 54-66.

14. Henderson, P. and Morris, J.H. A lazy evaluator. CSL, Xerox Palo Alto Research
Center, August 1975.

15. Holt, A.W. et al. Final report for the information system theory project. Applied
Data Research, Inc., New York, Feb. 1968.

16. Iverson, K.E. A Programming language. John Wiley and Sons, Inc., 1962.

17. Lombardi, L.A. and Raphael, B. Lisp as the language for an incremental
computer. In E.C. Berkeley and D.G. Bobrow (Eds.) The Programming language
LISP: Ifs Operation and Applications, MIT Press, Cambridge, 1964, 204-2 I 9.

32

18. Manna, Z. and Waldinger, R. Knowledge and reasoning in program synthesis.
Stanford Research Inst., Menlo Park, CA, Nov. 1974.

19. Pakin, S. APL/360 Reference Manual. Science Research Associates, Inc. 1968.

20. Sanderwalt, E.A. Programming tool for management of predicate-calculus­
oriented data bases. Proc. Second Int. Joint Conj. on Artificial lntel/igence,
British Computer Society, 1971.

21. Schwartz, J.T. Automatic and semiautomatic optimization of SETL, in [2].

22. Vuillemin, J. Correct and optimal implementations of recursion in a simple
programming language. JCSS, 9, 3 (Dec. 1974), 332-353.

23. Wegbreit, B. Mechanical program analysis. CACM, 18, 9 (Sept. 1975), 528-539.

f

