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Papers on lnterlisp·D 

INTRODUCTION 

lnterlisp-D is an implementation of the Interlisp programming system [Teitelman et al., 78] for 
the Xerox D-series of personal computers. It is a complete, upward compatible extension of 
the original implementation of Interlisp for the DEC PDP-10 (hereafter, lnterlisp-10) which 
supports all of the Interlisp system software and all but the explicitly machine dependent 
application programs which were developed for lnterlisp-10. 

The principal areas of extension reflect the fact that lnterlisp-D operates in a personal 
machine computing environment. Thus, many new facilities have been added to take 
advantage of the interactive graphics and communication facilities available on these 
machines [XEOS, 82]. As a result (and also in the interests of future transportability), many 
facilities that previous implementations have obtained from their host machine operating 
systems have been implemented within Lisp as part of lnterlisp-D. Thus, lnter:lisp-D is also, 
in effect, a dramatic extension "downwards" of the Interlisp Virtual Machine Specification 
[Moore, 76]. Unfortunately, there does not yet exist a formal document like [Moore, 76] 
describing this simpler, more environment independent, kernel. 

This report contains five papers which motivate and describe the lnterlisp-D system. It is the 
third (and a major) revision of the original Papers on lnterlisp-0 report. As the lnterlisp-D 
system has become more widely used and formally supported, two of the original papers 
(The lnterlisp-0 110 system and The lnterlisp-0 display facilities) have been superceded by 
documentation [XEOS, 82, 83]. In their place, two papers have been included on the 
historical development of Interlisp and the style of exploratory programming that it is 
designed to support. Of the other three papers, which appeared in the previous edition of 
this report, two were presented at the 1980 Lisp Conference and are reprinted here, with 
slight changes, so as to make them more widely available. The other, which appeared in 
SIGART Newsletter, provides a more recent report on the system's status and probable 
future development. The papers are: 

Environments for exploratory programming (Jan 83) 
Describes and motivates the style of programming which the Interlisp environment was 
designed to support. 

The Interlisp programming environment (Nov 80) 
Describes the common Interlisp environment, its history as of late 1980, and some of 
the reasons why it developed the way it did. 

lnterlisp-0: Overview and status (Jun 80) 

Describes the lnterlisp-D implementation, its goals and techniques, and our subsequent 
reflections thereon. 

lnterlisp-0: Further steps in the flight from time-sharing (Jun 81) 

A status report and description of ongoing and planned extensions, as of June 1981. 

Local optimization in a compiler for stack based Lisp machines (Jun 80) 

Describes the optimizations used during compilation of Lisp into the special purpose 
Lisp instruction set and their observed effectiveness. 
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As documented in the Overview and status paper, the implementation of lnterlisp-0 has been 
a major effort, both in terms of the time taken and the number of people who have 
contributed. The integration of Interlisp's programming support tools into the personal 
computing environment has been and continues to be a design task of similar magnitude. 
Our hope is that these papers provide both a clear description of its motivation, a snapshot 
of its current state, and some useful ideas for other implementors of integrated programming 
environments, both for Lisp and for other languages. 
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Environments for exploratory programming 

8. A. Sheil 

An oil company needs a system to monitor and control the increasingly complex and 
frequently changing equipment used to operate an oil well. A electronic circuit designer 
plans to augment a circuit layout program to incorporate a variety of vaguely stated "design 
rules". A newspaper wants a page layout system to assist editors in balancing the 
interlocking constraints that govern the placement of stories and advertisments. A 
government agency envisions a personal workstation that would provide a single, integrated 
interface to a variety of large, evolving data base systems. 

Applications like these are forcing the commercial deployment of a radically new kind of 
programming system. First developed to support research in artificial intelligence and 
interactive graphics, these new tools and techniques are based on the notion of exploratory 

programming, the conscious intertwining of system design and implementation. Fueled by 
dramatic changes in the cost of computing, such exploratory programming environments 

have become, virtually overnight, a commercial reality. No fewer than four such systems 
were displayed at NCC '82 and their numbers are likely to increase rapidly as their power 
and range of application become more widely appreciated. 

EXPLORATION AND IMPLEMENTATION 

Despite the diversity of subject matter, a common thread runs through our example 
applications. They are, of course, all large, complex programs whose implementations will 
require significant resources. Their more interesting similarity, however, is that it is 
extremely difficult to give complete specifications for any of them. The reasons range from 
sheer complexity (the circuit designer can't anticipate all the ways in which all the potential 
design rules might interact), through continually changing requirements (the equipment in 
the oil rig changes, as do the information bases that the government department is required 
to consult), to the subtle human factors issues which determine the effectiveness of an 
interactive graphics interface. 

Whatever the cause, a large programming project with uncertain or changing specifications 
is a particularly deadly combination for conventional programming techniques. Virtually all of 
modern programming methodology is predicated on the assumption that a programming 
project is fundamentally a problem of implementation, rather than design. The design is 
supposed to be decided on first, based on specifications provided by the client; the 
implementation follows. This dichotomy is so important that it is standard practice to 
recognize that a client may have only a partial understanding of his needs, so that extensive 
consultations may be required to ensure a complete specification with which the client will 
remain happy. This dialogue ensures a fixed specification which will form a stable base for 
an implementation. 

The vast bulk of existing programming practice and technology, such as structured design 

methodology, is designed to ensure that the implementation does, in fact, follow the 

A version of this paper is to appear in Datamation. February 1983. 
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specification in a controlled fashion, rather than wander off in some unpredictable direction. 
And for good reason. Modern programming methodology is a significant achievement that 
has played a major role in preventing the kind of implementation disasters that often befell 
large programming projects in the 1960s. 

The implementation disasters of the 1960s, however, are slowly being succeeded by the 
design disasters of the 1980s. The projects described above simply will not yield to 
conventional methods. Any attempt to obtain an exact specification from the client is bound 
to fail because, as we have seen, the client does not know and cannot anticipate exactly 
what is required. Indeed, the most striking thing about these examples is that the clients' 
statements of their problems are really aspirations, rather than specifications. And since the 
client has no experience in which to ground these aspirations, it is only by exploring the 
properties of some putative solutions that the client will find out what is really needed. No 
amount of interrogation of the client or paper exercises will answer these questions; one just 
has to try some designs to see what. works. 

The consequences of approaching problems like these as routine implementation exercises 
are dramatic. First, the implementation team begins by pushing for an exact specification. 
How long the client resists this coercion depends on how well he really understands the 
limits of his own understanding of the problem. Sooner or later, however, with more or less 
ill-feeling, the client accepts a specification and the implementation team goes to work. The 
implementors take the specification, partition it, define a module structure that reflects this 
partitioning, freeze the interfaces between them, and repeat this process until the problem 
has been divided into a large number of small, easily understood and easily implementable 
pieces. Control over the implementation process is achieved by the imposition of structure 
which is then enforced by a variety of management practices and programming tools. 

Since the specification, and thus the module structuring, is considered fixed, one of the most 
effective methods for enforcing it is the use of redundant descriptions and consistency 
checking. Thus the importance of techniques such as interface descriptions and static type 
checking, which require multiple statements of various aspects of the design in the program 
text in order to allow mechanical consistency checks to ensure that each piece of the 
system remains consistent with the rest. In a well executed conventional implementation 
project, a great deal of internal rigidity is built into the system in this way in the interests of 
ensuring its orderly development. 

The problems emerge, usually at system acceptance time, when the client requests, not just 
superficial, but radical changes, either as a result of examining the system, or for some 
completely exogenous reason. From the point of view of conventional programming 
practice, this indicates a failure at specification time. The software engineer should have 
been more persistent in obtaining a fuller description of the problem, in involving all the 
effected parties, etc.. And this is often true. Many ordinary implementation exercises are 
brought to ruin by insufficient attention having been paid to getting the consequences of the 
specification fully agreed to. But that's not the problem here. The oil company didn't know 
about the new piece of equipment whose behavior is very different from the existing 
equipment on which the specification was based. No one knew that the layout editors would 
complain that it doesn't "feel right" now that they can no longer physically handle the copy 
(even in retrospect, it's unclear why they feel that way and what to do about it). Etc., etc .. 
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etc.. Neither would any amount of speculation by either client or software engineer have 
helped. Rather, it would just have prompted an already nervous client to demand whole 
dimensions of flexibility that would not in fact be needed, leaving the system just as 
unprepared for the ones thai eventually turned out to matter. 

Whatever the cause, the implementation team has to rework the system to satisfy a new, and 
significantly different, specification. That puts them in a situation that conventional 
programming methodology simply refuses to acknowledge (except as something to avoid). 
As a result, their programming tools and methods are suddenly of limited effectiveness, if not 
actually counterproductive. The redundant descriptions and imposed structure that were so 
effective in constraining the program to follow the old specification have lost none of their 
efficacy - they still constrain the program to follow the old specification. And they're difficult 
to change. The whole point of redundancy is to protect the design from a single 
(unintentional) change. But it's equally well protected against a single intentional change. 
Thus, all the changes have to be made all over the place. (And, since this should never 
happen, there's no methodology to guide or programming tools to assist this process.) Of 
course, if the change is small (as it "should" be), there is no particular problem. But if it is 
large, so that it cuts across the module structure, the implementation team finds- that they 
literally have to fight their way out of their previous design. 

Still no major problem, if that's the end of the matter. But it rarely is. The new system will 
suggest yet another change. And so on. And on. After a few iterations of this, not only are 
the client and the implementation team not on speaking terms, but the repeated assaults on 
the module structure have likely left it looking like spaghetti. It still gets in the way (firewalls 
are just as impenetrable if laid out at random as they are when laid out straight), but has 
long ceased to be of any use to anyone except to· remind them of the sorry history. 
Increasingly, it is actively subverted (enter LOOPHOLES, UNSPECs, etc.) by programmers whose 
patience is running thin. Even were the design suddenly to stabilize (unlikely in the present 
atmosphere), all the seeds have now been sown for an implementation disaster as well. 

PROGRAMMING AS EXPLORATION 

The alternative to this kind of predictable disaster is not to abandon structured design for 
programming projects which are, or which can be made, well-defined. That would be a 
tremendous step backwards. Instead. we should recognize that some applications are. best 
thought of as design problems, rather than implementation projects. These problems require 
programming systems which allow the design to emerge from experimentation with the 
program, so that design and program develop together. Environments in which this is 
possible were first developed in artificial intelligence and computer graphics, two research 
areas which are particularly prone to specification instability. 

At first sight, artificial intelligence might seem to be an unlikely source of programming 
methodology. However, constructing programs, in particular, programs which carry out 
some intelligent activity, is central to artificial intelligence. Since almost any intelligent 
activity is likely to be poorly understood (once something becomes well understood we 
usually no longer consider it "intelligent"), the artificial intelligence programmer invariably 
has to restructure his program many, many times before it becomes reasonably proficient. In 
addition, Since intelligent activities are complex. the programs tend to be very large. yet they 



f •. .. 
Xerox 1108 lnterlisp-D system 

An exploratory programming system designed to be installed in the user's office. Processor, main memory 
(1 .5 MBytes), rigid and flexible local disks, and Ethernet connection are all contained in the processor cabinet 
at lower right. The "mouse" pointing device, which moves a cursor image over the display according to 
sensed horizontal motion across the table, can be seen to the right of the keyboard, in front of the display. 

Photo: Ken Beckman 
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are invariably built by very small teams (often a single researcher). Consequently, they are 
usually at or beyond the manageable limits of complexity for their implementors. In 
response, a variety of programming environments based on the Lisp programming language 
have evolved to aid in the development of these large, rapidly changing systems. 

The rapidly developing area of interactive graphics has encountered similar problems. 
Fueled by the rapid drop in the cost of computers capable of supporting interactive graphics, 
there has been an equally rapid development of applications which make heavy use of 
interactive graphics in their user interfaces. Not only was the design of such interfaces 
almost completely virgin territory as little as ten years ago, but even now, when there are a 
variety of known techniques (e.g., menus, windows, etc.) for exploiting this power, it is still 
very difficult to determine how easy it will be to use a proposed user interface and how well 
it will match the user's needs and expectations in particular situations. Consequently, 
complex interactive interfaces usually require extensive empirical testing to determine 
whether they are really effective and considerable redesign to make them so. While 
interface design has always required some amount of tuning, the vastly increased range of 
possibilities available in a full graphics system has made the design space unmanageably 
large to explore without extensive experimentation. In response, a variety of systems, of 
which Smalltalk is the most well known, have been developed to facilitate this 
experimentation by providing a wide range of built in graphical abstractions and methods of 
modifying and combining them together into new forms. 

EXPLORATORY PROGRAMMING SYSTEMS 

In contrast to conventional programming technology, which restrains the programmer in the 
interests of orderly development, exploratory programming systems must amplify the 
programmer in the interests of maximizing his effectiveness. Exploration in the realm of 
programming can require small numbers of programmers to make essentially arbitrary 
transformations to very large amounts of code. Such programmers need programming 
power tools of considerable capacity or they will simply be buried in detail. So, like an 
amplifier, their programming system must magnify their necessarily limited energy and 
minimize extraneous activities that would otherwise compete for their attention. 

One source of such power is the use of interactive graphics. Exploratory programming 
systems have capitalized on recent developments in personal computing with extraordinary 
speed. Consider, for example, the Xerox 1108 lnterlisp-D system shown on the facing page. 
The large format display and "mouse" pointing device allow very high bandwidth 
communication with the user. Exploratory programming environments have been quick to 
seize on the power of this combination to provide novel programming tools, as we shall see. 

In addition to programming tools, these personal machine environments allow the standard 
features of a professional workstation, such as text editing, file management and electronic 
mail, to be provided within the programming environment itself. Not only are these facilities 
just as effective in enhancing the productivity of programmers as they are for other 
professionals, but their integration into the programming environment allows them to be used 
at any time during programming. Thus, a programmer who has encountered a bug can send 
a message reporting it while remaining within the debugger, perhaps including in the 
message some information, like a backtrace, obtained from the dynamic context. 
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Another apparent source of power is to build the important abstract operations and objects 
of some given application area directly into the exploratory environment. All programming 
systems do this to a certain extent; some have remarkably rich structures for certain 
domains, for example, the graphics abstractions embedded within Smalltalk. If the 
abstractions are well chosen, this approach can yield a powerful environment for exploration 
within the chosen area, because the programmer can operate entirely in substantively 
meaningful abstractions, taking advantage of the considerable amount of implementation and 
design effort that they represent. , 

The limitations of this approach, however, are clear. Substantive abstractions are 
necessarily effective only within a particular topic area. Even for a given area, there is 
generally more than one productive way to partition it. Embedding one set of abstractions 
into the programming system encourages developments that "fit" within that view of the 
world at the expense of others. Further, if one enlarges one's area of activity even slightly, a 
set of abstractions that was once very effective may become much less so. In that situation, 
un.less there are effective mechanisms for reshaping the built in abstractions to suit the 
changed domain, users are apt to persist with them, at the cost of distorting their programs. 
Embedded abstractions, useful though they are, by themselves enable only exploration in the 

small, confined within the safe borders where the abstractions are known to be effective. 
For exploration in the large, a more general source of programming power is needed. 

Of. course, the exact mechanisms which different exploratory systems propose as essential 
sources of programming power vary widely, and these differences are hotly debated within 
their respective communities. Nevertheless, despite strong surface differences, the systems 
share some unusual characteristics at both the language and environment level. 

Languages 

The key property of the programming languages used in exploratory programming systems is 
their emphasis on minimizing and deferring the constraints placed on the programmer, in the 
interests of minimizing and deferring the cost of making large scale program changes. Thus, 
not only are the conventional structuring mechanisms based on redundancy not used, but 
the languages make extensive use of late binding, i.e., allowing the programmer to defer 
commitments as long as possible. 

The clearest example is that exploratory environments invariably provide dynamic storage 
allocation with automatic reclamation (garbage collection). To do otherwise imposes an 
intolerable burden on the programmer to keep track of all the paths through his program that 
might access a particular piece of storage to ensure that none of them access or release it 
prematurely (and that someone does release it eventually!). This can only be done either by 
careful isolation of storage management or with considerable administrative effort. Both are 
incompatible with rapid, unplanned development, so neither is acceptable. Storage 
management must be provided by the environment itself. 

Other examples of late binding include the dynamic typing of variables (associating data type 
information with a variable at run-time, rather than in the program text) and the dynamic 

binding of procedures. The freedom to defer deciding the type o.f a value until run-time is 
important because it allows the programmer to experiment with the type structure itself. 
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Usually, the first few drafts of an exploratory program implement most data structures in 

general, inefficient structures such as linked lists, discriminated (when necessary) on the 
basis of their contents. As experience with the application evolves, the critical distinctions 
which determine the type structure are themselves determined by experimentation, and may 

be among the last, rather than the first, decisions to evolve. Dynamic typing makes it easy 

for the programmer to write code which keeps these decisions as tacit as possible. 

The dynamic binding of procedures is more than a simple load-time linkage. It allows the 

programmer to change dynamically the subprocedures invoked by a given piece of code, 
simply by changing the run-time context. The simplest form of this is to allow procedures to 
be used as arguments or as the value of variables. More sophisticated mechanisms allow 
procedure values to be computed or even encapsulated inside the data values on which they 
are to operate. This packaging of data and procedures into a single object, known as 
"object oriented programming", is a very powerful technique. For example, it provides an 

elegant, modular solution to the problem of generic procedures (i.e., every data object can 
be thought of as providing its own definition for common actions, such as printing, which 
can be invoked in a standard way by other procedures). For these reasons, object oriented 
programming is a widely used technique in exploratory programming, and actually .forms the 

basic programming construct of the Smalltalk language. 

The dynamic binding of procedures can be taken one step further when procedures are 

represented as data structures which can be effectively manipulated by other programs. 
While this is of course possible to a limited extent by reading and writing the text of program 
source files, it is of much greater significance in systems that define an explicit 

representation for programs as syntax trees or their equivalent. This, coupled with the 
interpreter or incremental compiler provided by most exploratory programming systems, is an 

extraordinarily powerful tool. Its most dramatic application is in programs that construct 
other programs that they later invoke. This technique is often used in artificial intelligence in 

situations where the range of possible behaviors is too large to encode efficiently as data 
structures but can easily be expressed as combinations of procedure fragments. An 

example might be a system which "understands" instructions given in natural language by 
analyzing each input as it is received, building a program which captures its "meaning", and 

then evaluating that program to achieve the requested effect. 

Aside from such specialized applications, effective methods for mechanically manipulating 
procedures enable two other significant developments. The first is the technique of program 
development by writing interpreters for special purpose languages. Once again, this is a 

basic technique of artificial intelligence that has much wider applicability. The key idea is 
that one develops an application by designing a special language in which the application is 
relatively easy to state. Like any notation, such a language provides a concise 

representation which suppresses common or uninteresting features in favor of whatever the 

designer decides is more important. A simple example is the use of notations like context 
free grammars (BNF) to "meta-program" the parsers for programming languages. Similar 

techniques can be used to describe, among other things, user interfaces, transaction 

sequences, and data transformations. Application development in this framework is a 
dialectic process of designing the application language and developing an interpreter for it, 

since both the language and the interpreter will evolve during development. The simplest 
way of doing this is to evolve the application language out of the base provided by the 
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development language. Simply by allowing the application language interpreter to call the 
development language interpreter. expressions from the development language can be used 
wherever the application language currently has insufficient power. As one's understanding 
of the problem develops, the application language becomes increasingly powerful and the 
need to escape into the development language becomes less important. 

Programming tools 

The second result of having procedures be easily manipulated by other procedures is that it 
becomes easy to write program manipulation subsystems. This in turn has two key 
consequences. First, the exploratory programming language itself can grow. The 
remarkable longevity of Lisp in the artificial intelligence community is in large part due to the 
language having been repeatedly extended to include modern programming language syntax 
and constructions. The vast majority of these extensions were accomplished by defining 
source to source transformations which converted the new constructions into more 
conventional Lisp expressions. The ease with which this can be done allows each user, and 
even each project, to extend the language to capture the idioms that are found to be locally 

useful. 

Second, the accessibility of procedures to mechanical manipulation facilitates the 
development of programming support tools. All exploratory programming environments 
boast a dazzling profusion of programming tools. To some extent, this is a virtue of 
necessity, as the flexibility necessary for exploration has been gained at considerable 
sacrifice in the ability to impose structure. That loss of structure could easily result in a 
comensurate loss of control by the programmer. The programming tools of the exploratory 
programming environment enable the programmer to reimpose the control that would be 
provided by structure in conventional practice. 

Programming tools achieve their effectiveness in two quite different ways. Some tools are 
simply effective viewers into the user's program and its state. Such tools permit one to find 
information quickly, display it effectively, and modify it easily. A wide variety of tools of this 
form can be seen in the two lnterlisp-D screen images on page 11, including data value 
inspectors (which allow a user to look at and modify the internal structure of an object), 
editors for code and data objects, and a variety of break and tracing packages. Especially 
when coupled with a high bandwidth display, such viewers are very effective programming 

tools. 

The other type of programming tool is knowledge based. Viewer based tools, such as a 
program text editor, can operate effectively with a very limited "understanding" of the 
material with which they deal. By contrast, knowledge based tools must know a significant 
amount about the content of a user's program and the context in which it operates. Even a 
very shallow analysis of a set of programs (e.g., which programs call which other ones) can 
support a variety of effective programming tools. A program browser allows a programmer 
to track the various dependencies between different parts of a program by presenting easy 
to read summaries which can be further expanded interactively. Deeper analysis allows 
more sophisticated facilities. The Interlisp program analyser (Masterscope) has a sufficiently 
detailed knowledge of Lisp programs that it can provide a complete static analysis of an 
arbitrary Lisp program. A wide variety of tools have been constructed which use the 
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database provided by this analysis to answer complex queries (which may require significant 
reasoning, such as computing the transitive closure of some property), to make systematic 
changes under program control (such as making some transformation wherever a specified 
set of properties hold), or to check for a variety of inconsistent usage errors. 

Finally, integrated tools provide yet another level of power. The Interlisp system "notices" 
whenever a program fragment is changed (by the editor, or by redefinition). The program 
analyser is then informed that any existing analysis is invalid, so that incorrect answers are 
not given on the basis of old information. The same mechanism is used to notify the 
program management subsystem (and eventually the user, at session end) that the 
corresponding file needs to be updated. In addition, the system will remember the previous 
state of the program, so that at any subsequent time the programmer can undo the change 
and retreat (in which case, of course, all the dependent changes and notifications will also 
be undone). This level of cooperation between tools not only provides immense power to 
the programmer, but it relieves him of a level of detail that he would otherwise have to 
manage himself. The result is that more attention can be paid to exploring the design. 

Contraction 

A key, but often neglected, component of an exploratory programming system is a set of 
facilities for program contraction. The development of a true exploratory program is "design 
limited", so that is where the effort has to go. Consequently, the program is often both 
inefficient and inelegant when it first achieves functional acceptability. If the exploration is 
an end in itself, this might be of limited concern. However, it is more often the case that a 
program developed in an exploratory fashion must eventually be used in some real situation. 
Sometimes, the time required to reimplement (using the prototype program as a 
specification) is prohibitive. Other times, the choice of an exploratory system was made to 
allow for expected future upheaval, so it is essential to preserve design flexibility. In either 
event, it is necessary to be able to take the functionally adequate program and transform it 
into a program whose efficiency is comparable to the best program one could have written, 
in any language, had only one known what one was doing when one started. 

The importance of being able to make this post hoc optimization cannot be overemphasized. 
Without it, one's exploratory programs will always be considered "toys"; the pressure to 
abandon the exploratory environment and start implementing in a "real" one will be 
overwhelming; and, once that move is made (and it is always made too soon), exploration 
will come to an end. The requirement for efficient implementation places two burdens on an 
exploratory programming system. First, the architecture has to permit efficient 
implementations. Thus, for example, the obligatory automatic storage manager must either 
be so efficient that it imposes negligible overhead, or it must allow the user to circumvent it 
(e.g., to allocate storage statically) when and where the design has stabilized enough to 
make this optimization possible. 

Second, as the performance engineering of a large system is almost as difficult as its initial 
construction, the environment must provide performance engineering tools. just like it 
provides design tools. These include good instrumentation. a first class optimizing compiler, 
program manipulation tools (including, at the very least. full functionality compiler macros), 
and the ability to add declarative information where necessary to guide the program 

[Continued on page 12] 



10 Papers on lnterlisp·D 

The two screen images at right show some of the exploratory programming tools provided in 
the lnterlisp-D environment. The screen is divided into several rectangular areas or 
windows, each of which provides a view onto some data or process and which can be 
reshaped and repositioned at will by the user. When they overlap, the occluded portion of 
the lower window is automatically saved, so that it can be restored when the overlapping 
window is removed. Since the display is bitmapped, each window can contain an arbitrary 
mixture of text, lines, curves. and half-tone and solid area images. 

In the typescript window (upper left), the user has defined a program F (factorial} and has 
then immediately run it, giving an input of 4 and getting a result of 24. Next, he queries the 
state of his files, finding that one file has been changed (previously) and one function (F) has 
been defined but not associated with any file yet. The user sets the value of DRAWBETWEEN to 
O in command 74, and the system notes tnat this is a change and adds DRAWBETWEEN to the 
set of "changed objects" that might need to be saved. 

Then, the user runs the program EDITTREE, giving it a parse tree for the sentence "My uncle's 
story about the war will bore you to tears". This opens up the big window on the right in 
which the sentence diagram is drawn. Using the mouse, the user starts to move the NP 

node on the left (which is inverted to show that it is being moved). While the move is taking 
place, the user interrupts the tree editor, which suspends the computation and causes three 
"break" windows to appear on top of the lower edge of the typescript. The smallest window 
shows the dynamic state of the computation, which has been broken inside a subprogram 
called FOLLOW/CURSOR. The "FOLLOW/CURSOR Frame" window to the right shows the value of 
the local variables bound by FOLLOW/CURSOR. One of them has been selected (and so 
appears inverted) and in response, its value has been shown in more detail in the window at 
the lower left of the screen. The user has marked one of the component values as 
suspicious by drawing on it using the mouse. In addition, he has asked to examine the 
contents of the BITMAP component, which has opened up a bitmap edit window to the right. 
This shows an enlarged copy of the actual NP image that is being moved by the tree editor. 

Inside the largest break window, the user has asked some questions about FOLLOW/CURSOR, 

and queried the value of DRAWBETWEEN (now 66). The SHOW PATHS command brought up the 
horizontal tree diagram on the left, which shows which subprograms call each other. starting 
at FOLLOW/CURSOR. Each node in the call tree produced by the SHOW PATHS command is an 
active element which will respond to the user's selecting it with the mouse. In the second 
image, the user has selected the SHOWNODE subprogram, which has caused its code to be 
retrieved from the file (<usP>DEMO>LATTICER) on the remote file server (PHYLUM) where it was 
stored and displayed in the "Browser printout window" which has been opened at middle 
right. User programs and extended Lisp forms (/ike for and do) are highlighted by system 
generated font changes. By selecting nodes in the SHOW PATHS window, the user could also 
have edited or obtained a summary description of any of the subprograms. 

Instead, the user has asked (in the break typescript window) to edit wherever anyone calls 
the DRAWBETWEEN program (which draws lines between two specified points). This request 
causes the system to consult its (dynamically maintained) database of information about user 
programs, wherein it finds that the subprogram SHOWLINK calls DRAWBETWEEN. It therefore 
loads the code for SHOWLINK into an edit window which appears under the "Browser print out 
window". The system then automatically finds and underlines the first (and only) calf on 
DRAWBETWEEN. On the previous line. DRAWBETWEEN is used as a variable (the one the user set 
and interrogated earlier). The system, however, knows that this is not a subprogram calf, so 
it has been skipped. If the user makes any change to SHOWLINK in the editor. not only will 
the change take effect immediately, but SHOWLINK will be marked as needing to be updated 
in its file and the information about it in the program database will be updated. This, in turn. 
will cause the SHOW PATHS window to be repainted, as its display may no longer be valid. 
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transformation. Note that, usually, performance engineering takes place not as a single 
"post functionality optimization phase", but as a continuous activity throughout the 
development, as different parts of the system reach design stability and are observed to be 
performance critical. This is the method of "progressive constraint", the incremental 
addition of constraints as and when they are discovered and found important, and is a key 
methodology for exploratory development. 

Both of these concerns can be most clearly seen in the various Lisp based systems. While, 
like all exploratory environments, they are often used to write code very quickly without any 
concern for efficiency, they are also used to write artificial intelligence programs whose 
applications to real problems are very large computations. Thus, the ability to make these 
programs efficient has long been of concern, because without it they would never be run on 
any interesting problems. More recently, the architectures of the new, personal lisp 
machines like the 1108 have enabled fast techniques for many of the operations that are 
relatively slow in a traditional implementation. Systems like lnterlisp-0, which is implemented 
entirely in lisp, including all of the performance critical system code such as the operating 
system, display software, device handlers, etc., show the level of efficiency which is now 
possible within an exploratory language. 

PROSPECTS 

The increasing importance of applications which are very poorly understood, both by their 
clients and by their would-be implementors, will make exploratory development a key 
technique for the 1980s. Radical changes in the cost of computing power have already 
made exploratory development systems cost effective vehicles for the delivery of application 
systems in many areas. As recently as five years ago, the tools and language features we 
have discussed required the computational power of a large mainframe (-$SOOK). Two 
years ago, equivalent facilities became available on a personal machine for -$100K. A year 
later, -$SOK. Now, a full scale exploratory development system can be had for -$25K. For 
many applications, the incremental cost has become so small over that required to support 
conventional technology that the benefits of exploratory development (and redevelopment!) 
are now decisive. 

One consequence of this revolutionary change in the cost-effectiveness of exploratory 
systems is that our notion of "exploratory problem" is going to change. Exploratory 
programming was developed originally in contexts where change was the dominant factor. 
There is, however, clearly a spectrum of specification instability. Traditionally, the cost of 
exploratory programming systems, both in terms of the computing power required and the 
run-time inefficiencies incurred, confined their use to only the most volatile applications. 
Thus, the spectrum was arbitrarily dichotomized into "exploratory" (very few) and "standard" 
(the vast majority). Unfortunately, the reality is that unexpected change is far more common 
in· "standard" applications than we have been willing to admit. Conventional programming 
techniques strive to preserve a stability that is only too often a fiction. Since exploratory 
programming systems provide tools that are better adapted to this uncertainty, many 
applications, such as office information systems, which are now being treated as "standard" 
but which in fact seem to require moderate levels of ongoing experimentation, may turn out 
to be more effectively developed in an exploratory environment. 
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We can also expect to see a slow infusion of exploratory development techniques into 
conventional practice. Many of the programming tools of an exploratory programming 
system (in particular, the information gathering and viewing tools) do not depend on the 
more exploratory attributes of either language or environment and could thus be adapted to 
support programming in conventional languages like FORTRAN and COBOL. Along with these 
tools will come the seeds of the exploratory perspective on language and system design, 
which will gradually be incorporated into existing programming languages and systems, 
loosening some of the bonds with which these systems so needlessly restrict the 
programmer. 

To those accustomed to the precise, structured methods of conventional system 
development, exploratory development techniques may seem messy, inelegant and . 
unsatisfying. But it's a question of congruence: Precision and inflexibility may be just as 
disfunctional in novel, uncertain situations as procrastination and vacillation are in familiar, 
well-defined ones. Those who admire the massive, rigid bone structures of dinosaurs should 
remember that jellyfish still enjoy their very secure ecological niche. 
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The Interlisp programming environment 

Warren Teitelman and Larry Masinter 

Abstract 

Interlisp is a programming environment based on the Lisp programming language. It has 
been used to develop and implement a wide variety of large application systems. primarily in 
the area of artificial intelligence. It is used by more than 300 researchers at 20 different sites 
in the us and abroad. 

Interlisp provides an extensive set of user facilities, including syntax extension, uniform error 
handling, automatic error correction, an integrated structure-based editor, a sophisticated 
debugger, a compiler, and a filing system. This article describes the environment, the 
facilities available in it, and some of the reasons why Interlisp has developed as it has. 

OVERVIEW 

Interlisp is a programming environment based on the Lisp programming language. It is 
widely used within the artificial intelligence community, where it has been used to develop a 
variety of large application systems, including the Mycin system for infectious disease 
diagnosis [Shortliffe, 76], the Boyer-Moore theorem prover [Boyer and Moore, 79], and the 
BBN speech understanding system [Wolf and Woods, 80], etc .. 

Interlisp supports this type of application development [Charniak et al., 80] with an extensive 
set of user facilities. including syntax extension, uniform error handling, automatic error 
correction, an integrated structure-based editor, a sophisticated debugger, a compiler, and a 
filing system. Its most popular implementation is lnterlisp-10, which runs under both the 
Tenex and Tops-20 operating systems for the DEC PDP-10 family. lnterlisp-10 has 
approximately 300 users at 20 different sites (mostly universities) in the us and abroad and is 
an extremely well documented and maintained system. 

From its inception, the focus of the Interlisp project has been not so much on the 
programming language as on the programming environment. An early paper on Interlisp 
[Teitelman, 69] states, 

In normal usage, the word "environment" refers to the aggregate of social and 
cultural conditions that influence the life of an individual. The programmer's 
environment influences, and to a large extent determines, what sort of problems he 
can (and will want to) tackle, how far he can go, and how fast. If the environment 
is cooperative and helpful (the anthropomorphism is deliberate), the programmer 
can be more ambitious and productive. If not, he will spend most of his time and 
energy fighting a system that at times seems bent on frustrating his best efforts. 

The environmental considerations were greatly influenced by the perceived user community 
and the style of programming in that community: first, typical Lisp users were engaged in 
experimental rather than production programming; second, they were willing to expend 
computer resources to improve human productivity; third, we believed users would prefer 
sophisticated tools, even at the expense of simplicity. 

Copyright 1981 IEEE. Reprinted with permission from Computer, 14:4 (April 1981), pp. 25-34. 



16 Papers on lnterlisp-0 

EXPERIMENTAL PROGRAMMING AND STRUCTURED GROWTH 

The original architects of the Interlisp system were interested in large artificial intelligence 
application programs. Examples of such programs are theorem provers, sophisticated game­
playing programs, and speech and other pattern recognition systems. These programs are 
characterized by the fact that they often cannot be completely specified in advance because 
the problems - to say nothing of their solutions - are simply not well enough understood. 
Instead, a program must evolve as a series of experiments, in which the results of each step 
suggest the direction of the next. During its evolution, a program may undergo drastic 
revisions as the problem is better understood. One goal of Interlisp was to support this style 
of program development, which Erik Sandewall has termed structural growth: 

An initial program with a pure and simple structure is written, tested, and then 
allowed to grow by increasing the ambition of its modules. The process continues 
recursively as each module is rewritten. The principle applies not only to 
input/output routines but also to the. flexibility of the data handled by the program, 
sophistication of deduction, the number and versatility of the services provided by 
the system, etc. The growth can occur both 'horizontally' through the addition of 
more facilities, and 'vertically' through a deepening of existing facilities and making 
them more powerful in some sense. [Sandewall, 78] 

Sandewall's excellent survey article [Sandewall, 78] gives an overview of existing 
programming methodology in the Lisp environment, emphasizing methods for interactive 
program development. It includes a comprehensive description and analysis of current Lisp 
programming environments in general, and Interlisp and Maclisp in particular. 

COMPUTER COSTS v. PEOPLE COSTS 

The second major influence in Interlisp's development was a willingness to "let the machine 
do it." We were willing to expend computer resources to save people resources because 
computer costs were expected to continue to drop. This perspective sometimes led to tools 
which were ahead of their time with respect to the available computer resources. 

The Advanced Research Projects Administration of the Department of Defense sponsored 
much of the early work on Interlisp. Their willingness to make Interlisp available at a number 
of sites on the Arpanet justified and motivated the extra effort it took to turn a research 
project into a real system. These Arpanet sites also provided an active and creative user 
community from which we obtained many valuable suggestions and much-needed feedback. 

INTERLISP WAS FOR EXPERTS 

The incremental, evolutionary way in which Interlisp developed was not especially conducive 
to simple interfaces. It was inappropriate to spend a lot of time and effort trying to design 
the right interface to a new, experimental capability whose utility had not yet been proven. 
Would the users like automatic error correction? Was the programmer's assistant really a 
good idea? The inherent complexity of the interactions among some of the more 
sophisticated tools, such as Masterscope, ow1M, and the programmer's assistant, made it 
very difficult to provide simple interfaces. In many cases, unification and simplification came 
only after considerable experience. 
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Further complexity stemmed from the commitment to accommodate a wide variety of 
programming styles and to enable the tools to be tailored for many applications. Given a 
choice of sophistication and generality of tools or simplicity of design, we chose the former, 
under the assumption that the system was primarily for expert programmers. As a result, 
mastery of all of the facilities of Interlisp has become quite difficult and initial learning time 
fairly long. We accept this as part of the price for the system's power and productivity. 

BACKGROUND 

Programming environments have been built for a number of languages, on top of a number 
of operating systems, and for a variety of user communities. Each of these factors can 
influence the path taken in the development of a programming environment. In the case of 
Interlisp, the Lisp language itself and the sociological factors in effect during its early 
development were both important. 

The Lisp Language 

The lisp language is conducive to the development of sophisticated programming tools 
because it is easy to write programs that manipulate other programs. The core syntax for 
the lisp language is simple, and Lisp programs are naturally represented in simple Lisp data 
structures in a way that reflects the structure of the program. Since Lisp requires no 
declarations, programs can be built up incrementally; this is more difficult in declarative 
languages. This means that Lisp supports the structured growth style of program building. 

Early Sociology of Interlisp 

One unusual historical aspect of the development of Interlisp is that from the very beginning 
those interested in programming environments were in a position to strongly influence the 
development of the language system. We were not constrained to live within the language 
and operating system we were given, as is usually the case. Most of the additions or 
extensions to the underlying Lisp language performed under the Interlisp project were in 
response to perceived environmental needs. For example, Interlisp permits accessing the 
control stack at an unusually detailed level. Capabilities such as this were added to Interlisp 
to enable development of sophisticated and intelligent debugging facilities. SimUarly, uniform 
error handling was added to the lisp base in order to permit experimentation with automatic 
error correction. 

SOME REPRESENTATIVE FACILITIES 

File Package 

Interactive program development consists alternately of testing program parts and editing 
them to correct errors discovered during the tests and/or to extend the program. Interlisp, 
unlike many other interactive programming systems. supports both testing and editing 
operations. The user talks exclusively to the Interlisp system during the interactive session. 
During this process, the primary copy of the program (the copy that is changed during 
editing operations) resides in the programming system as a data structure; editing is 
performed by modifying this data structure. For this reason. Interlisp is called a residential 
system [Sandewall, 78]. 
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In a residential system, one must be able to take procedures represented by data structures 
and print them on text files in an input-compatible format for use as backup, to transport 
programs from one environment to another, and to provide hard-copy listings. The Interlisp 
file package is a set of functions, conventions, and interfaces with other system packages 
which facilitate this by automating the bookkeeping necessary to maintain a large system 
consisting of many source files and their compiled counterparts. The file package removes 
from the user the burden of keeping track of where things are and what things have 
changed. For example, the file package keeps track of which file contains each datum, e.g., 
a function definition or record declaration. In many cases, it automatically retrieves the 
necessary datum, if it is not already in the user's working environment. The file package 
also keeps track of which files have been in some way modified and need to be dumped, 
which files have been dumped but still need to be recompiled, etc.. [Teitelman et al .. 78) 
Once the user agrees to operate in the residential mode, it becomes possible to design and 
implement such powerful tools as DWIM and Masterscope to assist in program development. 
The file package makes this mode attractive to the user. 

The history of the file package is instructive, as it is a paradigm for the development of user 
facilities that has frequently been followed in Interlisp. The file package was not designed in 
a coherent, integrated way; nobody sat down and said, "We need a file package." Instead, 
it evolved gradually. Originally, there was only a very limited facility for symbolically saving . 
the state at the end of a session in a form that could be loaded into a Lisp system to restore 
that state: the PRETTYDEF function. This took as its arguments a list of function names, a list 
of variable names, and a file name. PRETTYDEF wrote ("prettyprinted") the definitions of the 
named functions and the values of the named variables onto the indicated file. PRETTYDEF 

was soon extended to take a set of commands, which could indicate not only the functions 
and variables to be saved, but properties on property lists, values in arrays, definitions of 
new editor commands, and record declarations, among others. Finally, PRETTYDEF was 
extended to allow the user to augment this simple command language by defining his own 
filing commands (usually in terms of existing ones). 

Concurrently, as the contents of source files became more complicated, the ability to 
interrogate files as to their contents (e.g., which file contained a particular datum and what 
functions were contained in a particular file) became more important. This required that the 
system be able to enumerate all of the user's source files, which was accomplished by 
adding the file to a global list so it would be noticed when it was first loaded or dumped. 

The significant breakthrough occurred with the emergence (probably through some user 
saying, "Wouldn't it be nice if...") of the idea of having the system notice when a datum was 
changed, e.g., defined for the first time, edited, redefined, or reset, and associate this fact 
with the file containing the datum. This enhancement was relatively straightforward since the 
ability to decompose and interpret the commands that described the contents of a particular 
file was already available. It was implemented by a function that took the name of a datum 
and its type (function, variable, record definition, etc.) and marked the datum as changed 
and therefore in need of dumping. This function, MARKASCHANGED, determined which file(s) 
contained the changed datum and associated with that file the name of the object that had 
changed. Calls to MARKASCHANGED were then inserted wherever the Interlisp system changed 
objects - the editor, the DEFINE function, the facility for (re)declaring records, and DWIM 

(which can modify a function by making a spelling correction or some other transformation). 
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With this change, the file package assumed a degree of autonomy, often operating 
automatically and behind the scenes. Furthermore, since it was no longer a function that the 
user called, but included "tendrils" into many parts of the system, we began to think of it as 
a package. In this light, a number of extensions became apparent. For example, the 
CLEANUP function provided the capability to enumerate all of the user's files and write out 
those containing objects that had changed. Next, an automatic warning was added to 
CLEANUP, in case an object not associated with any file changed or was newly defined. Then 
a filing capability was added, which enabled the user to add a datum to a file by 
automatically modifying the commands for that file. Finally, CLEANUP was extended to ask 
about untiled objects and to allow the user to specify where they should go. 

By this point, the Interlisp user did not have to worry about maintaining his source files, save 
for occasionally calling CLEANUP. The file package had become smart with respect to its 
built-in commands, but if a user defined a new type of command, the file package would not 
necessarily be able to support operations such as adding an object of that type to a file, 
deleting or renaming an object, or obtaining the "definition" of an object of a particular type 
from a file. The user was placed in the position of having to choose between using an 
automatic facility that did just what he wanted - provided he stuck to a predefined class of 
file objects - or extending this facility to print out his own types of file objects, which meant 
returning to manual bookkeeping of symbolic files. 

Thus, the next extension to the file package identified and exposed its primitive operations 
and allowed the user to define or change these operations. This resulted in a more 
complicated interface to the file package than that used by most, but it enabled builders of 
systems within Interlisp to enjoy the same privileges of defining file package operations that 
the original implementors enjoyed. In fact, we were able to express the semantics of all of 
the built-in file package commands and types in terms of the above interface. We thus 
eliminated all distinction between built-in operations and those defined by the user (a good 
test of the completeness of this lower-level interface) and permitted the user to redefine the 
way these operations are performed. 

The file package supports the abstraction that the user is truly manipulating his program as 
data and that the file is merely one particular external representation of a collection of 
program pieces. During the session, the user manipulates the pieces with a variety of tools, 
occasionally saving what he has done by calling CLEANUP. The user can also operate in a 
mode where programs are treated as residing in a data base, i.e., the external file system, 
with a variety of sophisticated retrieval tools at his disposal. 

Note the evolution of the file package. It started as an isolated facility that was explicitly 
invoked by the user to perform a particular and limited action. More and more capabilities 
were added, increasing the range of applicability of the tool. At the same time, the tool was 
integrated into the system to produce a semi-autonomous configuration in which the tool is 
invoked automatically in a number of contexts. Finally, the utility of the tool became so great 
that a form of user extensibility, to adapt the tool to accommodate unforeseen situations, 
became imperative. 

The file package also illustrates one of the principal design criteria of the Interlisp system, 
the accommodation of a wide range of styles and applications. The user is not forced to 



20 Papers on lnterlisp-D 

choose among using a facility that is powerful and attractive but forces adherence to its 
prescribed conventions, abandoning the tool, or even creating a personal, renegade version 
whenever he needs a capability the tool does not provide. In other words, if a particular tool 
handles 95 percent of the user's applications correctly, he should be able to extend the tool 
in a prescribed and "blessed" manner to accommodate the remaining five percent without 
undue effort. 

Masterscope 

As the size of systems built within Interlisp grew larger and larger, it became increasingly 
difficult for a user to predict the effect of a proposed change. It was also growing difficult to 
effect a pervasive change, for example, to change the calling convention of a low-level 
procedure and be sure that all of the relevant places in programs would be found and 
modified. Masterscope is an interactive subsystem for analyzing and cross-referencing user 
programs that addresses this problem. It contains facilities for analyzing user programs to 
determine which functions are called, how and where variables are bound, set, or 
referenced, which functions use particular record declarations, etc. 

Masterscope maintains a data base of the results of the analyses it performs. The user can 
interrogate the data base explicitly (e.g., WHO USES FOO FREELY), or have Masterscope call the 
editor on all functions that contain expressions that satisfy certain relations (EDIT WHERE ANY 

FUNCTION USES THE RECORD DICTENTRY). 

Masterscope, like the file package, has its roots in an extremely simple program. Called 
PrintStructure, this program analyzed function definitions and printed out the tree structure 
of their calls. It was first extended to include the names of the arguments for each function 
it analyzed, and then to include more information about variable usage within each function. 
However, as PrintStructure presented more and more information about larger and more 
complicated program configurations, it became increasingly difficult for the user to extract 
particular information from this massive output. It became clear that the user wanted access 
to specific information rather than a complete listing. This led to the idea of separating the 
analysis of the program from the interrogation of the data base. 

The next stage was integration with the other parts of the system. As in the case of the file 
package, the utility of Masterscope increased greatly when the burden of remembering what 
had changed, and therefore needed re-analysis, was lifted from the user and carried out 
automatically behind the scenes. The next phase of the evolution of Masterscope was to 
permit the user to extend Masterscope's built-in information on analysis of special Lisp 
forms, such as PROG, SETO, and LAMBDA expressions. This was accomplished through the 
use of Masterscope "templates," which are essentially patterns for evaluation of functions. 
Finally, all built-in information was removed from Masterscope and replaced by templates. 
both to test the completeness of the interface and to expose this information to users so 
they could change it. 

DWIM 

One of the most impressive features in the Interlisp system is the DWIM (Do What 
I Mean) facility, which is invoked when the basic system detects an error and 
which attempts to guess what the user might have intended. [Sandewall, 78] 
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The most visible part of DWIM [Teitelman, 72a] is the spelling corrector, which is invoked from 
many places in the system, including the file package, Lisp editor, and the Lisp interpreter 
itself. When an unrecognized file package command, edit command, Lisp function, etc., is 
encountered, the spelling corrector is invoked. The spelling corrector attempts to find the 
closest match within a list of relevant items. If an edit command is misspelled, for example, 
the list of valid edit commands is searched; if the name of a function is misspelled, the 
corrector scans a list of the functions the user has recently been working with. If the 
spelling correction is successful, the cause of the error is also repaired, so subsequent 
corrections will not be necessary. For example, when DWIM corrects a user's misspelled 
function name in one of his programs, it actually modifies the user's program to contain the 
correct spelling (and notifies the file package of the change). 

Although most users think of ow1M as a single identifiable package, it embodies a pervasive 
philosophy of user interface design: at the user interface level, system facilities should make 
reasonable interpretations when given unrecognized input. Spelling correction is only one 
example of such an interpretation. Depending on how far off the input is, a facility might 
make the transformation silently and automatically, without seeking user approval. For 
example, a function expecting a list of items will normally interpret an argument that is a 
single atom as a list made up of that single atom. In this case, the package in question 
probably would not even indicate to the user that it had made this correction, and in fact the 
user might view the package as expecting either a list or an atom. Similarly, the style of 
interface used throughout Interlisp allows the user to omit various parameters and have 
these default to reasonable values, such as "the last thing this package operated upon." 

DWIM is an embodiment of the idea that the user is interacting with an agent who attempts to 
interpret the user's request for contextual information. Since we want the user to feel that 
he is conversing with the system, he should not be stopped and forced to correct himself or 
give additional information in situations where the correction or information is obvious. 

The Iterative Expression 

The various forms of the Interlisp iterative expression permit the user to specify complicated 
loops in a straightforward and visible manner. In one sense, the iterative expression 
represents a language extension, but by its design, implementation, and in particular its 
extensibility, it more naturally falls into the same category as other Interlisp tools. 

An iterative expression in Interlisp consists of a sequence of operators, indicated by 
keywords, followed by one or more operands; many different operators can be combined in 
the same iterative statement. For example, (for X in L sum X) iterates the variable X over the 
elements of the list L, returning the sum of each value seen. The iterative expression could 
be further embellished by including "when (GREATERP x 30)" to only sum elements greater 
than 30, or "while (LESSP $VAL 50)" to terminate the iteration when the sum exceeds 50. 
Other operators can be used to specify different ranges. For example, iteration can take 
place over a range of numbers instead of over the elements of a list, e.g., (for I from 1 to 10 
... ). Operators can also specify the value returned by the iterative expression. For example, 
(for X in L collect (ADD1 X)) would return a new list, consisting of the elements in L, each 
incremented by 1. 
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The iterative expression currently understands approximately two dozen operators. 
Furthermore, new iterative operators can be defined simply. One group, experimenting with 
a relational data base system, provided access to that data base merely by defining a new 
iterative operator called "matching." This matching operator can be used in conjunction with 
all of the other iterative constructs. as in "(for Records matching (PAYMENT (> 30) •) sum 
Record:3)," which would find all payment records in the data base and sum their third 
component. Such language extensions are quite difficult in most programming languages. 

Programmer's Assistant 

The central idea of the programmer's assistant is that the user is not talking to a passive 
executive that merely responds to each input and waits for the next, but is addressing an 
active intermediary [Teitelman, 72b]. The programmer's assistant records, in a data structure 
called the history list, the user's input, a description of the side effects of the operation, 
[Teitelman et al., 78] and the result of the operation. 

The programmer's assistant also responds to commands that manipulate the history list. For 
example, the REDO command allows the user to repeat a particular operation or sequence of 
operations; the FIX command allows the user to invoke the Interlisp editor on the specified 
events and then to re-execute the modified operations; the USE command performs a 
substitution before re-executing a specified event (e.g., USE PRINT FOR READ); the UNDO 

command cancels the effect of the specified operations. In addition to the obvious use of 
recovering information lost through typing errors, UNDO is often used to selectively flip back 
and forth between two states. For example, the user might make some changes to his 
program and/or data structures, run an experiment, undo the changes, rerun the 
experiment, undo the undo, and so on. 

The various replay commands, such as REDO and FIX, permit the user to construct complex 
console operations out of simpler ones, in much the same fashion as programs are 
constructed. That is, simple operations can be first checked and then combined into large 
ones. The system always remembers what the programmer has typed, so that keyboard 
input can be reused in response to an afterthought. 

The programmer's assistant has been implemented for use in contexts besides the handling 
of inputs to the Lisp "listen" loop. For example, the Interlisp editor also uses the 
programmer's assistant for storing operations on the history list and thereby provides ail the 
history commands for use in an editing session. Similarly, user programs can take 
advantage of the history facility. A system for natural language queries of a data base of 
lunar rock samples provides one example of how this facility can be used. After a 
complicated query regarding the percentage of cobalt in a sample, a user could say USE 

MANAGANESE FOR COBALT to repeat the query with a different parameter. 

WHAT MAKES INTERLISP UNIQUE? 

The Interlisp programming environment has been characterized as friendly, cooperative, and 
forgiving. While these qualities are desirable, ·they are not unique to Interlisp. The two 
attributes that set it apart are the degree to which the system is integrated and the degree to 
which facilities in the environment can be tailored. modified. or extended. 
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Integration 

Interlisp is not merely a collection of independent programming tools, but an integrated 
system. By integration, we mean that there need not be any explicit context switch when 
switching between tasks or programming tools, in switching, for example, from debugging to 
editing to interrogating Masterscope about the program. Thus, having called the editor from 
inside the debugger, the user can examine the current run-time state from within the editor 
or ask Masterscope a question without losing the context of the editing session. Also, the 
various facilities themselves can use each other in important ways, since they all coexist in 
the same address space. For example, the editor can directly invoke DWIM, or Masterscope 
commands can be used to drive the editor. The integration of facilities increases their 
power. 

Integrated programming tools such as these are not feasible without a large virtual address 
space. Where the size of the programming environment is constrained, it is unreasonable to 
have a large variety of resident tools that can all interact with the user's run-time 
environment and with each other. lnterlisp-10's large virtual address space of 256K 36-bit 
words (large, at least for the early 1970's) made it possible to add new features to the 
programming environment without trying to squeeze them into a small amount of space or 
worrying about leaving enough space for the user. 

Extensibility 

Most programming environments, even when they provide a variety of tools, support only a 
narrow range of programming styles. In the development of Interlisp, we have tried to · 
accommodate a variety of programming styles. 

The most straightforward way of allowing users to modify or tailor system tools to their own 
applications is simply to make sources available and allow the users to edit and modify tools 
as they wish. A benefit of this approach is that it absolves the system designers of 
responsibility for unforeseen bugs or incompatibilities. ("The manufacturer's warranty is void 
if this panel is removed.") Of course, this kind of extensibility isn't really defensible, as it 
discourages all but the most intrepid of users. If a creative user does manage to extend a 
system capability, he must then worry about tracking improvements and bug fixes in this tool 
and be constantly aware of changes to the system, which could introduce incompatibilities 
with respect to his modifications. 

Extensions and modifications were provided in a variety of ways. Capabilities that have 
associated command languages lend themselves quite naturally to extensibility, because new 
commands can be defined in terms of existing ones. Almost all Interlisp packages (e.g., the 
file package, the editor, the debugger and programmer's assistant) support such extensions 
via substitution macros, which associate a template (composed of existing commands) with 
the new command. The arguments to the new command are then substituted for those of 
the template's as appropriate. In addition, most facilities support computed macros. A 
computed macro is basically a Lisp expression, evaluated to produce a new list of operators, 
commands, or expressions. For example, a computed edit macro produces a list of edit 
commands, but a computed file package macro produces a list of file package commands. 



24 Papers on tnterlisp-0 

However, many extensions are not expressible in terms of macros because they are triggered 
not by the appearance of a particular token, but by the existence of a more general 
condition. Interlisp provides for such extensions by allowing the user to specify a function to 
be called upon any object/expression/command that the particular facility does not 
recognize. This function is responsible for selecting from among the various conditions that 
might pertain and deciding whether or not it recognizes a particular case. If it does, it takes 
the appropriate action. Typical applications of such functions are implementation of infix 
edit commands and specification of the compilation of a class of expressions. such as the 
iterative expression. 

For example, the ow1M facility. which corrects spelling errors encountered while running, is 
implemented via an extension to the Lisp interpreter of this form, called FAULTEVAL. 

Whenever the Interlisp interpreter encounters an expression for which it is going to generate 
an error, such as an undefined function or variable, the interpreter instead calls FAULTEVAL. 

Originally, FAULTEVAL merely printed an error message. ow1M was implemented by redefining 
FAUL TEVAL to try to correct the spelling of the undefined function or variable, according to 
names defined in the context in which the error occurred. 

One might suppose that a facility as basic as correction of program errors would have been 
implemented by modifying the Lisp interpreter - especially since a fair amount of knowledge 
about the interpreter's state was required in order to be able to continue a computation after 
an error correction. The fact that this is not the case illustrates a basic tenet of the Interlisp 
design philosophy, which holds that the implementation of enabling capabilities is a top 
priority. When owtM was first being implemented, the· interpreter did not call FAUL TEVAL, and 
there was no way to trap all DWIM errors. Instead of trying to implement ow1M directly, we 
tried to find the enabling capability that would make it possible for a user to implement DWIM. 

This capability was provided by having the interpreter call FAULTEVAL, which was then used to 
implement DWIM. 

The enabling capability was then available for other applications, as well. It has allowed 
users to experiment with building their own tools and extending system capabilities in ways 
we did not foresee. For example, one application program redefined FAULTEVAL to send error 
messages not to the user but instead to the implementor of the application, via computer 
mail. 

Finally, because we realized that some users just might not like a particular facility, we made 
it easy for them to "turn off" any automatic facility in the system. This made the use of the 
programming tool a deliberate choice of the user and provided a powerful force for quality 
control: if the feature didn't help as much as it got in the way, people would turn it off. 

The support of a wide variety of programming styles and settings of parameters has some 
drawbacks. Interlisp has an overabundance of user-setable parameters, to the point where 
new users are sometimes overwhelmed by the number of choices. In addition, it is 
necessary to ensure that the system will work correctly for every possible setting of the 
various system parameters. For example, the Masterscope facility normally relies on DWIM to 
perform some of its transformations, so we had to take care that Masterscope would 
continue to work, even if the user disabled ow1M. 
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A BRIEF HISTORY OF INTERLISP 

Interlisp began with an implementation of the Lisp programming language for the PDP-1 at 
Bolt, Beranek and Newman in 1966, followed in 1967 by 940 Lisp, an upward compatible 
implementation for the SDS-940 computer. 940 Lisp was the first Lisp system to demonstrate 
the feasibility of using software paging techniques and a large virtual memory in conjunction 
with a list-processing system [Bobrow and Murphy, 67]. 940 Lisp was patterned after the 
Lisp 1.5 implementation for crss at MIT, with several new facilities added to take advantage 
of its timeshared, on-line environment. 

The SDS-940 computer was soon outgrown, and in 1970 BBN-Lisp, an upward compatible 
version of the system for the PDP-10, was implemented for the Tenex operating system. 
With the hardware paging and 256K of virtual memory provided by Tenex, it was practical to 
provide more extensive and sophisticated user support facilities, and a library of such 
facilities began to evolve. In 1972, the name of the system was changed to Interlisp, and its 
development became a joint effort of the Xerox Palo Alto Research Center and Bolt, Beranek 
and Newman. The next few years saw a period of rapid growth and development at the 
language and system levels and at user support facilities, notably in the record package, the 
file package, and Masterscope. This growth was paralleled by the increase in the size and 
diversity of the Interlisp user community. 

In 1974, Interlisp was implemented for the Xerox Alto, an experimental microprogrammed 
minicomputer [Thacker et al., 79]. AltoLisp introduced the idea of providing a microcoded 
target language for Lisp compilations, which modelled the basic operations of Lisp more 
closely than could a general-purpose instruction set [Deutsch, 73a]. Altolisp also served as 
a model and departure point for lnterlisp-0 [Burton et al., 80] the implementation of Interlisp 
for the Dolphin and Dorado Xerox personal computers [Lampson and Pier, 80], the 
successors to the Alto. lnterlisp-D now supports a large user community within Xerox Palo 
Alto Research Center. 

Evolution of Interlisp 

The origins of Interlisp at Bolt, Beranek and Newman were fortuitous. There was neither an 
existing Lisp implementation for the available hardware nor a user community, so it was 
necessary to start from scratch. Along with the necessity of starting from scratch came the 
freedom to develop the environment. We were free to experiment with various ideas and 
facilities, discard those that did not work out, and learn from mistakes in the process. We 
approached the problem of building the programming environment with the same paradigm 
with which we approached the programs being developed in that environment - ·as an 
ongoing research problem, not something that had to be right the first time or even finished 
at all. New capabilities were often introduced without a thorough design or a complete 
understanding of the underlying abstractions. Furthermore, "hooks" into the system were 
provided at many different levels in order to encourage users to augment system packages 
or experiment with their own. Many of the now-permanent facilities of the Interlisp system 
evolved from tools designed by individual users to augment their own working environments. 

The result was a somewhat chaotic growth pattern and a style sometimes characterized as 
baroque. Interlisp was not designed. it evolved - but this was the right approach. As 
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. Sandewall . [Sandewall, 78] points out, "The task of designing interactive programming 
systems is hard because there is no way to avoid complexity in such systems.... The only 
applicable research method is to accumulate experience by implementing a system, 
synthesize the experience, think for a while, and start over." Had we been required to 
convince a disinterested third party of the need for certain enabling facilities in the language 
or operating system in order to perform experiments - whose exact shape and ultimate 
payoff were unknown - many of the more successful innovations would not exist. The value 
of a number of these innovations, including history, UNDO, and spelling correction, is now 
well recognized and accepted, and many new programming environments are being built 
with these facilities in mind. 

The ability of individual users to augment system tools at a variety of levels, as well as quick 
responses to suggestions for extensions that users could not perform themselves, 
contributed greatly to the enthusiasm and energy of the Interlisp community. These factors 
played a large part in the growth and success of the system over the last decade. 

Of course, as Interlisp matured and the user community grew, we were occasionally 
restricted in some areas of experimentation by a concern for backwards compatibility and 
the fact that the system was being used to get "real work" done. But enough flexibility had 
been built in to permit experimentation without performing major low-level changes. 
Furthermore, Interlisp attracted users who appreciated its flexibility and enjoyed 
experimentation with avant-garde facilities. Thus, when planned evolution led to some 
incompatibilities and consequent retrofitting, our user community was understanding and 
supportive. 

FUTURE DIRECTIONS 

Interlisp and personal computing 

Interlisp evolved in a timeshared, hard-copy terminal world, and vestiges of this heritage have 
carried over into implementation for personal computers. In the future, we expect to see 
increasing exploitation of the personal nature of the computing environment. For example, 
there is a significant difference between performing an lnterlisp-1 O operation on a lightly 
loaded timeshared system and one that is heavily loaded. If the former takes 50 
milliseconds, the latter might take as long as five seconds of real time, especially if the 
computation involves a large working set, as is often the case with the more sophisticated 
facilities of Interlisp. This makes the probability high that portions of the working set will be 
swapped out before the computation completes, and therefore must be swapped back in 
again, adding to the delay. 

This real-time difference is especially relevant when dealing with interactive tools. A system 
can afford to spend 50 milliseconds trying to find out what a user means, because the extra 
50 milliseconds is insignificant compared to the overhead of interacting with the user. But a 
system that spends five seconds to perform a spelling correction is often not acceptable, 
because in most situations the user would prefer to retype the correct input rather than wait. 
In such a case, the tool not only fails to add to the interactive quality of the system for this 
particular user, but since the user is competing with others for the same resource, namely 
machine cycles, its very attempt to be helpful causes response time - and hence the 
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interactive quality of the system - to degrade for other users. To quote Sandewall, "When 
this facility [ow1M] is presented to new users, it is not uncommon for them to use it for a 
trivial typing error that could easily be corrected using the character-delete key. However, 
the user relies on ow1M for the correction, which at periods of peak computer load may take 
considerable time.... As computer systems become more and more heavily loaded, more of 
the advanced features in interactive programming systems are canceled." [Sandewall, 78]. 

The entire situation changes in the personal computing environment. It is no longer 
necessary to justify the use of a particular tool by a single user in terms of the overall 
productivity of the community, since there is no longer any competition for cycles. It even 
becomes reasonable to devise tools that operate continually in a background mode while the 
user is thinking, such as an incremental garbage collector or programs that update a 
Masterscope data base. Personal computing is thus a qualitative change in the 
programming environment, because the machine is working continually for a single user. 

Integration of the display 

A significant addition to Interlisp in the new generation of personal computers, such as 
lnterlisp-D, is the availability and integration of very high-resolution and high-bandwidth 
displays. Because of the high-output bandwidth of the display and the increased input 
bandwidth arising from the use of pointing devices, a number of trade-offs change 
significantly. The capabilities affect, for example, something as elementary as how much 
information to present to the user when an error occurs; the utility of on-line documentation 
assistance also increases. Complicated sequences of commands for specifying location, 
down to a particular frame on the stack, a particular expression in a program, etc., are 
obviated by the ability to display the data structure and have the user point at the 
appropriate place. Similarly, the choice between short, easily typed, but esoteric command 
or function names as opposed to those that are longer, more self-explanatory, but more 
difficult to type becomes academic when operations can be invoked via menus. 

These are examples of how a high-resolution display can facilitate essentially the same 
operations found in the hard-copy domain. Perhaps more interesting are the modes of 
operation enabled by the display that are unlike those of the hard-copy world. Dlisp was an 
early experimental system that explored some of these techniques in Interlisp [Teitelman, 77]. 
In Dlisp, the user sees his programming environment through a collection of display 
windows, each of which corresponds to a different task or context. The user can manipulate 
the windows, or the contents of a particular window, by a combination of keyboard inputs 
and pointing operations. The technique of using different windows for different tasks makes 
it easy for the user to manage several simultaneous tasks and contexts, e.g., defining 
programs, testing programs, editing, asking the system for assistance, and sending and 
receiving messages. It also facilitates switching back and forth between these tasks. 

Finally, we have not (at the time of writing, November 1980, Ed.) really begun to explore the 
use of graphics - textures, line drawings, scanned images, even color - as a tool for 
program development. For example. the system might present storage in a continually 
adjusting bargraph, or display a complicated data structure as a network of nodes and 
directed arcs. perhaps even allowing the user to edit this representation directly. This is a 
rich area for development in the future. 
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Abstract 

lnterlisp-D: Overview and Status 

Richard R. Burton, Larry M. Masinter, Alan Bell, Daniel G. Bobrow, 
Willie Sue Haugeland, Ronald M. Kaplan and B. A. Sheil 

lnterlisp-D is an implementation of the Interlisp programming system on the Dolphin and 
Dorado, two large personal computers. It evolved from Altolisp, an implementation on a less 
powerful machine. This paper describes the current status of lnterlisp-D and discusses some 
of the issues that arose during its implementation. The techniques that helped us improve 
the performance included transferring much of the kernel software into Lisp, intensive use of 
performance measurement tools to determine the areas of worst performance, and use of the 
Interlisp programming environment to allow rapid and widespread improvements to the 
system code. The paper lists some areas in which performance was critical and offers some 
observations on how our experience might be useful to other implementations of Interlisp. 

BACKGROUND 

Interlisp is a dialect of Lisp whose most striking feature is a very extensive set of user 
facilities including syntax extension, error correction, and type declarations [T eitelman et al., 

78]. It has been in wide use on a variety of time shared machines over the past ten years. 

Alto Lisp 

In 197 4, an implementation of Interlisp for the Alto, a small personal computer, was begun at 
Xerox PARC by Peter Deutsch and Willie Sue Haugeland [Deutsch, 1973]. This Altolisp 
implementation introduced the idea of providing a microcoded target language for Lisp 
compilations which modelled the basic operations of Lisp more closely than a general 
purpose instruction set. A similar instruction set was also implemented for Maxc, a 
microprogrammed machine running the TENEX operating system [Fiala, 1978]. 

The design of Altolisp is presented in [Deutsch, 1978]. Its characteristics include a very 
large address space (24 bits); deep binding; CDR encoding [Bobrow & Clark, 1979]; 
transaction garbage collection [Deutsch & Bobrow, 1976]; and an extensive kernel 
implemented in a mix of microcode and Bcpl. Although AltoLisp was completed and several 
large Interlisp programs were run on it, its performance was never satisfactory, due 
principally to the limited amount of main memory and the lack of support in the processor 
architecture for either virtual memory management or byte code decoding. lnterlisp-D is the 
result of transferring Altolisp to an environment with neither of these limitations. 

lnterlisp-0 

The Dorado [Lampson & Pier, 1980] is a large, fast, microcodable personal machine with 16-
bit data paths. It has a large main memory ( -1 megabyte) and hardware support for both 
instruction decoding and virtual memory management. The Dolphin is a similar, but smaller 
and less powerful, machine. 

A revised version of a paper originally presented at the 1980 Lisp Conference. Stanford. Ca. 
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Both machines have microcode to emulate the Alto, so the initial transfer of the running 
Altolisp system to them was straightforward. Although the microcode to interpret the Lisp 
instruction set needed to be rewritten, the Bcpl runtime support system was transported with 
only minor changes. However, initial performance was far worse than would be expected 
from a simple consideration of machine features. We expected Dorado lnterlisp-D to 
dominate lnterlisp-1 O running on a single user DEC KA· 10, but in fact, some computations 
took 10 to 100 times longer. Our primary goal, then, became to improve the performance of 
the existing system. First, careful measurements were taken of the system doing a variety of 
tasks. Functions which took inordinate amounts of time were examined in detail. Additional 
microcode was written, and major portions of the Lisp code were redone. 

The most surprising thing to us was that we obtained considerable performance 
improvements by moving large parts of the system from Bcpl into Lisp. This allowed us to 
use a number of programming tools in the Interlisp system, and allowed us to put more 
structure into the layers of the system's kernel. lnterlisp-D is now supporting a large user 
community. While speed ratios vary widely across different classes of computation, it 
appears that Dorado lnterlisp-D runs more than five times faster than lnterlisp-10 on a single· 
user DEC KA-10. [In August 1980, Ed.] 

THE "LISPIFICATION" OF INTERLISP·O 

Much of the Interlisp system is written in Lisp itself, resting on a kernel not defined in Lisp. 
The Interlisp virtual machine specification [Moore, 1976] attempted to identify a set of kernel 
facilities which would support the full Interlisp system. This was done by carefully 
documenting those parts of the PDP-1 O Interlisp system that were written in assembly 
language or imported from the operating system. This specification is quite large. Altolisp 
reduced this kernel by implementing some of the VM facilities in Lisp; lnterfisp-D 
accelerated this development. In addition to improving the transportability of the 
implementation, the move also improved performance, gave the implementors access to 
more a more powerful implementation language and programming tools, and limited the 
breadth of expertise required of system implementors. 

Efficiency 

Programs written in a higher level language are often fess efficient than equivalent assembly 
language programs, because they cannot exploit known invariances and optimizations which 
would violate the strict semantics of the target language. Moving code from Lisp into the 
kernel has been a traditional way of improving the performance of Lisp systems. Substantial 
sections of the PDP-1 O implementation of Interlisp, for example, are in machine code for this 
reason. When a large proportion of Aftolisp was moved from Bcpl into Lisp in order to 
improve memory utilization and aid modification. the speed of the system decreased by 
nearly a factor of three [Deutsch, 1978]. Thus, to improve lnterlisp-D performance, we first 
looked for Lisp-coded sections of the system that could be incoPporated into the Bcpf kernel. 
However, we soon discovered that the poor performance was due more to the design of the 
algorithms in the kernel than to the language in which they were implemented. Since we did 
not wish to carry out a large-scale redesign in the limited Bcpl programming environment. we 
decided to go in the other direction: we would move code out of the extended Bcpl kernel 
and into Lisp so that we would be better able to change the algorithms. Specific targets for 
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replacement were large sections of the Bcpl kernel with known performance problems whose 
functionality could easily be expressed in Lisp; one of the major areas was the 1/0 system. 

Language power and tools 

A primary reason for implementing the bulk of a programming system in itself is that one 
obtains the advantage of programming in a (presumably) more expressive and powerful 
language. In addition, we felt that the major modifications and tuning that would be 
necessary to provide adequate performance would be far more tractable in Interlisp. In 
Interlisp we had both a first rate programming environment and instrumentation tools, and 
we had no other system implementation language which had either. Our subsequent 
experience has sustained this view. 

Linguistic uniformity 

An important sociological benefit of having a programming system described in the language 
it implements is that the system's implementors and users share the same culture. Users can 
inspect the system code, comment on it, adapt it for their own purposes, and sometimes 
even change it. This involves the users of the system in its design and maintenance in a 
way that would not be possible if system construction took place in a different language 
culture. Specifically, the availability of the system source code allows the system to grow 
and adapt much more rapidly than environments in which a formal documentation phase is a 
prerequisite to the development and distribution of new facilities. In turn, the users can 
explore the behavior of the system "all the way to the edges", as there are no sharp 
language barriers. The value of this linguistic uniformity has been confirmed by its 
successful use in other language cultures. such as Smalltalk [Goldberg, 1980]. 

An example: the 10 system 

A high level language 1/0 system consists of both low level device handlers and device 
independent sequential and random access. In most Interlisp implementations, the entire 1/0 
system, up to and including the functions defined in the virtual machine, is provided by the 
host operating system. In lnterlisp-D, all of the logical 1/0 system and a substantial 
proportion of the device dependent code is written in Lisp. The logical 1/0 system 
implements the l'-1terlisp user program 1/0 facilities and the underlying operations in terms of 
which these are implemented. These include sequential and random access operations (i.e., 
read and write a byte, query end of file, reposition file pointer, etc.), buffer management 
(both for system only and directly user accessible buffers) and a device independent 
treatment of file properties. The logical level is in turn implemented in terms of the notion of 
an 1/0 device, which provides a standard set of low level, device dependent functions, such 
as those to read and write a page, create and delete files, etc. Thus, the addition of a new 
device is simply a matter of writing a new set of these functions [Kaplan et al., 1980]. 

IMPLEMENTATION TECHNIQUES 

Measurements 

In tuning the performance of a program, it is crucial to be able to determine exactly where 
time is being spent. With a large body of code and limited manpower. it is not possible to 
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"optimize everything." Our performance measurement system has proved invaluable in 
tracking down specific (and unforeseen) problems. 

The measurement system was originally developed for Altolisp by Deutsch and Haugeland. It 
operates in two stages. First, the computation of interest is run with event logging enabled. 
This produces a (very large) file of log events, which is later analyzed. The log events are 
put out by both the microcode and the run time support system and include time-stamped 
events for function call and return, entry and exit from the Bcpl routines, 1/0 activity, and 
other events of interest. Alternatively, the microcode can also collect counts of opcode 
frequencies and a frequency sample of the microcode PC. 

Statistics gathering can be enabled at any time that Lisp is running. One can decide 
spontaneously to take measurements whenever performance unexpectedly degrades. 
Comparison of these measurements with those taken during a similar run that exhibited 
normal performance can be used to identify the source of intermittent performance 
problems. This technique was used, for example, to track down an intermittent slowdown in 
the code that handled stack frame overflow. 

The analysis phase reads the log file and computes summary statistics from it. From call 
and return events, the time spent in individual functions can be computed, either including or 
excluding the time spent in the functions called by them. The accumulated times (including 
the times spent by called functions) locate the higher level functions which are the root of a 
large amount of time and which may be a candidates for redesign. The individual time 
(excluding called functions' times) are useful for, isolating what improvement can be 
expected from optimizing or microcoding the body of that function. 

Function performance data is presented in tables which show the number of times each 
function was called and the time spent in each function. For example: 

Function #ofCalls Time %ofT ime Pe rCa 11 
NTHCHC 1977 236702 10.6 119 
\HT.FIND 1729 168492 7.6 97 
LIT LEN 2111 131708 5.9 61 
LITBASE 2141 118902 5.3 56 

Tables such as this isolate very accurately those functions which are worth rewriting as well 
as identifying those which are not. In this example, NTHCHC, Nhich calls both LITLEN and 
LITBASE, is an obvious candidate. In another run we discovered that 15 percent of the time 
was being spent adding one to a counter which had overflowed the small number range. 
This prompted a redesign of the large number arithmetic. 

Additional controls on the analysis routines allow more specific questions to be answered. 
The analysis can be restricted to that part of the computation within any particular function. 
For example, only that part of the computation that takes place within READ can be analysed. 
The analysis can also be limited to a set of functions, in which case only these functions will 
appear in the table of results. Any time spent in a function not in the set will be charged to 
the closest bounding function that is. 
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The analysis routines extract from the log file useful information besides performance data. 
For example, the dynamic calling behavior is captured in the log, so one frequently useful 
technique is to list which functions have called (and been called by) other functions, and 
even how many arguments they were passed. The flexibility of the analysis routines 
combined with the wealth of information collected during the logging stage allows a given 
computation to be examined from many points of view. 

Initialization 

There are several areas that cause fundamental problems for the implementation of a 
language system in itself: memory management (which requires that the memory manager 
itself will not cause memory faults), stack overflow recovery (where the stack manager must 
itself have some stack), and initializat!on. Initialization is difficult because the initialization 
program must operate when the system is not in a well formed state. The problem in 
initialization can be characterized by the question: "If the compiled code reader is itself 
compiled code, who will read it in?" 

Several methods of doing initialization suggest themselves. For example, the image can be 
initialized by a program written in some other language. This is the solution adopted in 
Altolisp. Alternatively, if the interpreter is written in some other language, the compiled 
code reader can be run interpretively to read itself in. However, both of these solutions 
require a substantial amount of non-Lisp code either for storage allocation or for 
interpretation. 

We adopted still another solution. The compiled code reader was modified to load code into 
an environment other than that in which it is running. The primitive functions that the loader 
uses to manipulate the environment (e.g., fetch and store into specified virtual memory 
locations) are replaced by functions that manipulate another memory image stored as a file. 
To begin with, an empty memory image file is created and then the "indirect" version of the 
compiled code reader is used to load the compiled files that constitute the lowest level of the 
system into this empty image. We thus avoid the potential problem of maintaining two 
different programs with knowledge of system data structures. 

An appropriate programming environment 

One of the advantages of writing most of the kernel in Lisp is that Interlisp provides a very 
powerful programming environment. Its attributes that we found particularly useful were: 

Language features: The advantages of "data-less" or data-structure-independent 
programming have long been known: more readable code, fewer bugs, the ability to change 
data structures without having to make major source program modifications. The Interlisp 
record package and data type facility encourages this good practice by providing a uniform 
and efficient way of creating, accessing and storing data symbolically, i.e., fields of data 
structures are referred to by name. Because the lnterlisp-D implementation allows a large 
number of data types. we have felt free to give system data structures (such as file-handles, 
page buffers. read tables) their own data types. In addition, records could be overlaid on 
structures not under Lisp's control (e.g., the leader page of a disk file or the format of a 
network packet) to provide the same uniform access. 



34 Papers on lnterlisp·D 

Cross compilation: We maintained an lnterlisp-10 environment in which we could edit, 
compile and examine functions for the Dorado. The function and record definitions for the 
Dorado implementation were kept on property lists instead of defintion cells. This allowed us 
to work on functions such as READ and CONS without destroying the environment in which we 
were working. 

Masterscope: Many of our improvements to Altolisp involved massive changes throughout 
the many system source files. Interlisp's Masterscope program was an essential aid in 
determining what would be affected by a proposed improvement and in actually performing 
the necessary edits. Masterscope is an interactive program for analyzing and cross­
referencing Lisp functions. It constructs a database of which functions call which other 
functions, where variables are bound. used, or set. and where record declarations are 
referenced. Masterscope utilizes the information in the database to interpret a variety of 
English-like commands. Our cross-compilation environment incrementally updated a 
database that was shared among all programmers on the project, so that with very little 
overhead the information in the database was kept consistent with the current state of the 
evolving system. 

Masterscope was most helpful in planning and carrying out modifications to major system 
interfaces, which usually meant changing the numbers and kinds of arguments to various 
functions. We would first ask Masterscope to simply list the callers of those functions to give 
some estimate of the impact of the proposed change, much as one might use a static cross­
reference program. We would then invoke the SHOW command, instructing Masterscope to 
locate in the source-file definitions of all the callers the expressions that actually called the 
interface functions. These expressions were gathered together and displayed as a group, so 
that we could verify our intuitions about what assumptions clients were making about the 
interface. In many cases, the rapid source-code exploration that Masterscope made possible 
revealed flaws in our redesign which otherwise would not have become apparent until much 
more effort had been expended. Having decided that our modification was acceptable, we 
used Masterscope's EDIT command to actually drive the editing. This caused Masterscope to 
load the definitions of all the client functions, call the Interlisp editor on each one, and 
position the editor at each of the expressions that needed to be changed. Masterscope, not 
the programmer, kept track of which functions had been changed and which still needed to 
be edited. When Masterscope finished the editing sequence, the programmer was sure that 
the changes had been made completely and consistently. 

Our redesign of the 1/0 system [Kaplan et al., 1980] is a good illustration of the power of 
this interactive tool. We completely replaced the lowest-level 1/0 interface, which involved 
changes to approximately 40 functions on 15 source files. The major part of the revision 
was accomplished in response to a single EDiT WHERE ANY CALLS '(BIN BOUT ... ) command, 
without ever looking at hard-copy source listings. 

Rapid access to system sources: Our cross-compilation environment maintained a shared 
data base which allows the definition of any Lisp function to be retrieved for viewing or 
editing in a matter of seconds. The microcode and Bcpl could be "browsed" using the 
same interface. This rapid online access to the system sources greatly lessened the need to 
work from listings. 
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Levelling 

One of the original motivations for having a large part of Altolisp in Bcpl was the belief that 
it was important not to provide lisp primitives that gave unrestricted access to the 
implementation data structures. This reasoning fails to discriminate between the system 
implementation and user program levels. Allowing system programs arbitrary access to 
memory locations does not at all imply that user level code has this access. 

Failing to make the system/user distinction hurt Altolisp in three ways. First, it provided one 
motivation for the large Bcpl kernel. Second, most of that part of the system which was 
written in lisp was prohibited from manipulating underlying data structures except through 
overly general functional interfaces. Last, it discouraged the use of higher level structuring 
facilities (such as the record package) so that code that required any knowledge of system 
data structures tended to be written entirely in terms of low level primitives. 

Using lisp as a system implementation language requires very careful consideration of the 
layering of the system into levels of access and knowledge. Further, the precision that is 
needed cannot be obtained by simple binary discriminations but must be carefully 
considered for each piece of code. This presents a considerable challenge to the 
implementors' self restraint, as lisp provides few facilities to enforce such a layering. 
Appropriate use of abstraction is essential if layering is to be preserved under the constant 
revision necessitated by intensive performance debugging. 

Diagnostics 

Development of the lisp microcode was aided by a reasonably complete set of microcode 
diagnostics written in lisp. Diagnostics are difficult because they are most useful when very 
little can be assumed a priori to work. It is also difficult to achieve complete coverage of all 
cases. In addition, extensive knowledge of the Lisp system was required to develop 
diagnostics. For example, every opcode needs to be tested when encountering page faults 
or stack overflows. Setting up a situation which will page fault or overflow the stack in the 
next opcode requires a very intimate knowledge of the implementation. Having undertaken 
several microcode revisions, development of a comprehensive set of diagnostics seems well 
worth the effort. 

Important performance issues 

While not strictly a technique, we feel that it is important to mention the major areas in which 
performance has proved to be crucial. While some of these are undoubtedly specific to 
lnterlisp-0, we feel that they deserve consideration by those who might be building similar 
Lisp systems. 

The earlier intuition that the hardware assist for decoding byte opcodes was important was 
substantiated. Performance improved by nearly a factor of two when this was installed. 
Implementing the decoding and dispatch in microcode is conceding a large performance 
loss. 

There are several parts of the system for which it seems important to have microcode 
support. When written in Lisp. the garbage collector seems to consume between 10-30% of 
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the processor, although the figure varies widely over different computations. Further, in a 
system that uses deep binding, some form of microcode assist for free variable lookup is 
very desirable. A speedup factor of between two and four accompanied the introduction of 
microcode support for this in lnterlisp-0. Statistics show that less than one percent of the 
execution time is now spent in free variable lookup. 

Their heavy use in implementing system code almost mandates that the arithmetic functions 
have complete microcode support. Further, we found it to be critical to have a large range 
of small numbers (numbers without boxes), so that the performance critical, low level system 
code did not invoke Lisp's storage management. 

WHY IS AN INTERLISP IMPLEMENTATION SO HARD? 

The Dolphin/Dorado implementation of Interlisp took many times the expected effort to 
complete. Given the widespread intuition. to the contrary, it is perhaps worthwhile to reflect 
on why it has proved so difficult. The answer is painfully simple: Interlisp is a very large 
software system and large software systems are not easy to construct. lnterlisp-D has (in 

June, 1980, Ed.) on the order of 17,000 lines of Lisp code, 6,000 lines of Bcpl, and 4,000 

lines of microcode. In many ways, the more interesting question is why does it look so 
straightforward? 

Without a doubt, the perceived ease of implementing Interlisp springs from the existence of 
the virtual machine (VM) specification. This admirable document purports to give a complete 
description of the facilities that are assumed by the higher level Interlisp software, and does 
a remarkable job of laying out the foundations of this very large software confederation. It is 
difficult to resist the implication that a straightforward implementation of this mere 120 pages 
of specification, much of which is already described in programmatic form, will constitute a 
new implementation of Interlisp. The issue is rather more complicated than that. 

The VM specification looks small, but it is not. There is no simple correspondence between 
the size of a specification and the volume of code required to implement it. Many of the 
major problems of an Interlisp implementation (e.g., performance, the garbage collector, the 
compiler) are simply not addressed at all. We caution Interlisp implementers that the 
slimness of that document is misleading. 

Further, while the virtual machine specification is an excellent first pass, it is far from 
complete. Many "incidental" functions and variables were left out (e.g. HOSTNAME). It is 
occasionally ambiguous in places where the system code relies on a specific interpretation. 
Even though once complete, changes in the higher level code required that the VM be 
extended to support new facilities. Finding all these variations is an exhausting task. It is 
substantially easier to get 95% compatibility than 99.9%, and amazing how many programs 
are sensitive to the difference. 

One way to look at the Lisp kernel that was written for lnterlisp-D is as the definition of a 
new VM specification in Lisp code. While much of the code is specific to the Dorado 
environment, a great deal of it simply extends the virtual machine downwards by providing a 
much lower level treatment of functions such as PRINT and READ. We hope our work will 
provide other new implementations with a firmer foundation than the VM document alone. 
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Another problem for any very large software system is the existence of a long development 
tail. A version of lnterlisp-D was "sort of running" years ago. Several other implementations 
of Interlisp have "sort of run" but have never reached production status. One of the key 
problems here is performance. The success of the PDP-10 implementation of Interlisp is due 
to a lot of hand tuning. Any straightforward. clean implementation will prove to be slow, and 
finding performance problems is difficult, even with good measurement tools. A large 
number of design decisions have to be made and a large amount of code has to be written. 
While not all of the decisions have to be optimal, none of them can be pessimal. While the 
lnterlisp-D experience can provide some guidance, many of these decisions will be 
environment specific. 

Finally, an important issue has been compatability with the PDP-10 implementation of 
Interlisp. In some ways our determination to remain compatible has helped. Ambiguities and 
omissions from the VM specification could always be resolved by copying the PDP-1 O 
implementation. However, this compatibility requirement was also a burden. Complete 
compatibility with another implementation is hard. This is particularly so when the new 
implementation is in a quite different environment (a personal rather than a time-shared 
machine). The tension between remaining compatible versus exploring the possibilities of a 
personal machine environment is a continuing issue, which will probably be a focus of our 
further efforts on the lnterlisp-D system. 
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lnterlisp-D: Further steps in the flight from time-sharing 

B. A. Sheil 

Abstract 

The lnterlisp-D project was formed to develop a personal machine implementation of the 
Interlisp programming environment to support research in artificial intelligence and cognitive 
science [Burton et al., 80b). This note describes the principal developments since our last 
report [Burton et al., 80a]. 

INTERLISP·D 

lnterlisp-D is an implementation of the Interlisp programming environment [Teitelman & 
Masinter, 81] for the Dolphin and Dorado personal computers. Both the Dolphin and Dorado 
are microprogrammed personal computers, with 16-bit data paths and relatively large main 
memories (-1 megabyte) and virtual address spaces (4M-16M 16 bit words). Both machines 
have a medium sized local disk, Ethernet controller, a large raster scanned display and a 
standard Alto keyboard and "mouse" pointing device. 

Both the internal structure of lnterlisp-D and an account of its development are presented in 
[Burton et al, 80b]. Briefly, lnterlisp-D uses a byte-coded instruction set, deep binding, CDR 

encoding (in a 32 bit CONS cell) and incremental, reference counted garbage collection. The 
use of deep binding, together with a complete implementation of spaghetti stacks, allows 
very rapid context switching for both system and user processes. Virtually all of the . 
lnterlisp-D system is written in Lisp. A relatively small amount of microcode implements the 
lnterlisp-D instruction set and provides support for a small set of other performance critical 
operations. The at one time quite large Bcpl kernel has been all but completely absorbed 
into Lisp, for the reasons outlined in [Burton et al, 80b]. 

lnterlisp-D is completely upward compatible with the widely used PDP-10 version. All the 
Interlisp system software documented in the Interlisp Reference Manual [Teitelman et al., 78) 
runs under lnterlisp-D, excepting only a few capabilities explicitly indicated in that manual as 
applicable only to lnterlisp-10. The completeness of the implementation has been 
demonstrated by the fact that several very large, independently developed, application 
systems, such as the KLONE knowledge representation language [Brachman, 78), have been 
brought up in lnterlisp-D with little or no modification. lnterlisp-D is in active use by 
researchers (other than its implementors) at several different research sites and is now 
approaching the level of stability and reliability of lnterlisp-10. 

CURRENT PERFORMANCE 

The performance engineering of a large Lisp system is distinctly non-trivial. We have 
invested considerable effort, including the development of several performance analysis 
tools. on the performance of lnterlisp-D and, as a result, seen its performance improve by 
nearly a factor of five over the last year. Although relative performance estimates can be 
misleading, because of variation due to choice of benchmarks and compilation strategy, the 

A revised version of a paper originally published in SIGART Newsletter, No. 77. August 1981. 
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overall performance of lnterlisp-D on the Dolphin currently (in June 1981. Ed.) seems to be 
about twice that of lnterlisp-1 O on an otherwise unloaded PDP KA-1 O. Although this level of 
performance makes the Dolphin a comfortable personal working environment, we have 
already identified a number of improvements which we anticipate will further improve 
execution speed by between 20% and 100%. Furthermore, we believe that we are nowhere 
near the point of diminishing returns for this kind of performance engineering. 

MACHINE INDEPENDENCE 

Another major thrust has been to reduce the dependencies on specific features of the 
present environment, so as to facilitate Interlisp-D's implementation on other hardware. 
Dependencies on the operating system have been removed by absorbing most of the higher 
(generally machine independent) facilities provided by the operating system into Lisp code. 
Gratuitous dependencies on attributes of the hardware, such as the 16-bit word size. have 
been removed and inherent ones isolated. In addition to an abstract desire for 
transportability, our sharing of code with other Interlisp implementation projects provides an 
on-going motivation for this effort. 

EXTENDED FUNCTIONALITY 

The principal innovations in lnterlisp-D, with respect to previous implementations of Interlisp, 
involve the extensions required to allow the Interlisp user access to a personal machine 
computing environment. 

Network facilities 

While network access is a valuable facility in any computing environment, it is of particular 
importance to the user of a personal machine, as it is the means by which the shared 
resources of the community are accessed. Over the last year, lnterlisp-D has incorporated 
both low level Ethernet access and a collection of various higher level protocols used to 
communicate with the printing and file servers in use at PARC. It is now straightforward to 
conduct all file operations directly with remote file servers. This both allows the sharing of 
common files (e.g., for multi-person projects, such as the construction of lnterlisp-D itself), 
permits a user to move easily from one machine to another, and eliminates any constraints 
of local disk size. We have also begun to investigate the possibility of paging from a remote 
virtual memory elsewhere on the network. This would not only allow completely transparent 
relocation of a user's environment from one machine to another, but would open up a variety 
of interesting schemes for distributing a computation across a set of machines. 

High level graphics facilities 

lnterlisp-D has always had a complete set of raster scan graphics operations (documented in 
[Burton. 80b]). More recent developments include a collection of higher level user graphics 
facilities, akin to those found in other personal computing environments. The most important 
of these is the lnterlisp-D window package. This facility differs in spirit from most other 
window systems in that. rather than imposing an elaborate structure on programs that use it. 
it is a self consciously minimal collection of facilities which allow multiple programs to share 
the same display. Although some mechanism is necessary to adjudicate a harmonious 
sharing of the display, we feel that higher level display structuring conventions are still an 



Further steps in the flight from time-sharing 41 

open research question and therefore should not yet be incorporated into a mandatory 
system facility. The window package does provide both interactive and programatic 
constructs for creating, moving, reshaping, overlapping and destroying windows, in such a 
way that a program can be embedded in a window in a completely transparent (to that 
program) fashion. This allows existing programs to continue to be used without change, 
while providing a base for experimentation with more complex window semantics in the 
context of individual applications. 

One such existing application is the display based, structural program editor. This editor, in 
contrast to the character orientation of most modern display based program editors, is the 
result of marrying display techniques (selection and command specification by pointing, 
incremental reprinting, etc) with the structure orientation of the existing Interlisp editor. 
Indeed, the two editors are interfaced so that the considerable symbolic editing power of the 
existing editor remains available under the display based one. Although our initial 
experience has been positive, the user interface is under continuing revision as we gain 
further experience with this style of editing. 

FUTURE PLANS 

The area in which we anticipate most future development of lnterlisp-D is the personal 
computing facilities, such as graphics and networking, and their integration into Interlisp's 
rich collection of programming support tools. While radical changes to the underlying 
language structures are made difficult by our desire to preserve exact Interlisp compatibility, 
we also expect some language extensions, including some form of object oriented procedure 
invocation. 

One of the great strengths of Interlisp has been the many contributions made by its active, 
critical user community. We are hopeful that the recent commercial availability of lnterlisp-D 
to other sites, and the consequent growth of its user community, will be a similar source of 
long term strength and, in the short term, significantly accelerate the pace with which 
Interlisp evolves away from its time-shared origins into a personal computing environment. 
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Local Optimization in a Compiler for Stack-based Lisp Machines 

Larry M. Masinter and L. Peter Deutsch 

Abstract 

We describe the local optimization phase of a compiler for translating the Interlisp dialect of 
Lisp into stack-architecture (0-address) instruction sets. We discuss the general organization 
of the compiler, and then describe the set of optimization techniques found most useful, 
based on empirical results gathered by compiling a large set of programs. The compiler and 
optimization phase are machine independent, in that they generate a stream of instructions 
for an abstract stack machine, which an assembler subsequently turns into the actual 
machine instructions. The compiler has been in successful use for several years, producing 
code for two different instruction sets. 

INTRODUCTION 

This paper describes the local optimization phase of a compiler for translating the Interlisp 
dialect of Lisp [Teitelman et al., 1978] into stack-architecture (0-address) instruction sets 
[Deutsch, 1973]. We discuss the general organization of the compiler, and then the set of 
optimization techniques we have found most useful. The compiler and optimization phase are 
machine independent, in that they generate a stream of instructions for an abstract stack 
machine, which an assembler subsequently turns into the actual machine instructions. The 
compiler has been used for several years, producing code both for an 8-bit Lisp instruction 
set for several personal computers [Deutsch, 1978, 1980; Burton et al., 1980], and a 9-bit · 
instruction set for Maxc, a time-shared machine running the Tenex operating sytem [Fiala, 

1978]. 

There are always tradeoffs in designing a compiler. Each additional optimization usually 
increases the running time of the compiler as well as its complexity. The improvement in the 
code generated must be weighed against the benefit gained, measured by the amount of 
code improvement weighted by the frequency with which the optimization is applicable. 
Rather than provide a multiplicity of compiler controls, which most users would not want to 
know about, the compiler designer should use empirical knowledge of "average" user 
programs and make appropriate design choices. One of the major purposes of this paper is 
to publish some empirical results on the relative utility of different code transformations, 
which can aid designers in making such choices. 

Why this compiler is different 

Compiling Lisp for a 0-address architecture differs from compiling other languages such as 
PASCAL or ALGOL for several reasons. Procedures are independently compiled, so that global 
optimization techniques are not relevant. Compiling for a stack-based instruction set is 
different from compiling for more conventional machine architectures, in that register 
allocation is not relevant, and randomly addressable compiler-generated temporary variables 
other than top-of-stack are difficult to access. 

A revised version of a paper originally presented at the 1980 Lisp Conference, Stanford, Ca. 



44 Papers on lnterlisp-0 

In systems which provide interactive, symbolic debugging of compiled code, a compiler must 
not manipulate source programs too freely, since even common optimizations like tail 
recursion removal make it difficult or impossible to explain the dynamic state of the program 
in terms of the original source. However, Lisp also provides an interpreter which can be 
used for debugging purposes when strict faithfulness is needed; interpreted and compiled 
code can be mixed freely. Thus, we take the view that the compiler can rearrange the 
implementation of an individual function in any manner consistent with the semantics of the 
original program, even if fine-grained debugging information may be lost or altered (e.g., if 
variables that appeared in the source get eliminated). 

What we did not handle 

The compiler concentrates on local optimizations. More global transformations such as 
pulling invariants out of loops or duplicate expression elimination would probably pay off 
often enough to be worth the additional complication in an environment where speed was of 
great concern and the individual functions were large. 

Related work 

A few of our compiler's transformations, such as cross jumping and tail recursion removal, 
have been part of the literature for some time. We know of three other Lisp compilers that 
both compile into a machine-independent intermediate language and do substantial 
optimization. 

The Standard Lisp project at the University of Utah has produced a transportable compiler 
similar to ours [Griss & Hearn, 1979]. Their intermediate language is register, rather than 
stack, oriented. Their report mentions a number of the optimizations in our list, plus others 
only applicable to register machines, but their list is shorter and not accompanied by 
empirical data. 

Another similar compiler was the subject of a Ph.D. dissertation [Urmi, 1978]. The author in 
this case was more concerned with the design of instruction sets than with optimizing the 
use of a given architecture. His report contains extensive statistics on the opcode 
frequencies, and interesting suggestions for instruction set design, including a consideration 
of both stack- and direct-address architectures; however, his optimizations are all in the 
"peephole" category, being limited to a few adjacent instructions, except for the usual 
optimization of ANOs and ORs. 

The RABBIT compiler [Steele, 1978] translates an unusual lexically scoped Lisp dialect into 
code for a register machine. Its optimization techniques are extremely sophisticated with 
regard to removal of recursions and variable bindings. However, the differences in coding 
style resulting from lexical scoping are so large that a comparison between RABBIT'S goals 
and those of our compiler would not be meaningful. 

Results 

Optimization in the byte compiler provides an average 5-10% speed improvement and a 10-
15% space improvement over completely unoptimized code. While significant, this does not 
make it one of the more significant factors affecting the performance of our Lisp systems 
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[Burton et al., 1980). The most significant effect that a reasonable optimizing compiler has 
for its users is a certain amount of unconcern for vagaries of syntax. Programmers can write 
their routines for clarity, without concern for purely syntactic devices which might otherwise 
affect performance. For example, while inserting assignments inside expressions is allowed 
and occasionally perspicuous, it generally is more readable to perform variable assignments 
in separate statements, and to subsequently use the variables in an unnested manner. 
Knowing that the compiler will do an adequate job of optimization means that a program 
author can make choices based on legibility, even in the most time-critical routines. 

ABOUT THE COMPILER AND THE OBJECT LANGUAGE 

The compiler operates in several passes. The first pass takes the S-expression definition of 
the function being compiled, and walks down it recursively, generating a simple intermediate 
code, called Bytelap, analogous to assembly code. During this first pass, the compiler 
expands all macros, CUSP, record accesses and iterative statements. A few optimizations are 
performed during this pass, but most of the optimization work is saved for later. The next 
pass of the compiler is a "post-optimization" phase, which performs transformations on the 
Bytelap to improve it. Transformations are tried repeatedly, until no further improvement is 
possible. 

After the post-optimization phase is done, the results are passed to an assembler, which 
transforms the Bytelap into the actual machine instructions. We currently have two different 
assemblers in use, which generate code for two different instruction sets: one for the Maxc 
9-bit instruction set and one for the personal machine 8-bit instruction set. The Maxc and . 
personal machine implementations of Interlisp differ considerably; for example, the Maxc 
system employs shallow variable binding, while the personal machine systems employ deep 
binding. The translation· from Bytelap to machine code is straightforward. 

The structure of Bytelap 

The Bytelap intermediate code generated by the compiler can be viewed as the instruction 
set for an abstract stack machine. The format of Bytelap is described here to simplify 
subsequent discussion of optimizations. There are 15 opcodes, each of which has some 
effect on the state of the linear temporary value stack. The instruction set is: 

(VAR var) 

(SETQvar) 

{POP) 

{COPY) 

{CONST val) 

{JUMP tag) 

Push the value of the variable var on the stack. 

Store the top of the stack into the variable var. 

Pop the stack (i.e., throw away the top value and decrement 
stack depth by one). 

Duplicate (push again) the top of the stack. 

Push the constant val on the stack (va 1 may be of any lisp 
data type, e.g., an atom or a number.) 

Jump to the location tag. 
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{ FJUMP tag) 

{TJUMP tag) 

{NT JUMP tag) 

{NF JUMP tag) 

(FNnfn) 
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Jump to the indicated location if top-of-stack is NIL, otherwise 
continue. In either case, pop the stack. 

Similar to FJUMP, but jump if top-of-stack is non-NIL. 

Similar to T JUMP, but do not pop if it jumps. This is useful when 
a value is tested and then subsequently used. 

Analogous to NT JUMP. 

Call the function fn with n arguments. 

{BIND (v1 ... v0 ){n1 ... nk)} Bind the variables v 1, ... ,v0 to the n values on the top of the 
stack. Also bind the variables n1 , ... ,nk to NIL. All bindings are 
done in parallel. Remember the current stack location. 

(UNBIND) 

(DUNBIND) 

{RETURN) 

Save the current top of stack. Throw away any other values on 
the stack since the last (stacked) BIND, and undo the bindings of 
that BIND. Re-push on the stack the saved value. This is used at 
the· end of PROG or LAMBDA expressions whose value is used. 

Similar to UNBIND, but do not restore the value. 

Return top-of-stack as the value of the current function, throwing 
away any other values on the stack. 

Note that a given Bytelap opcode could have one pf several different translations in the 
actual code executed. For example, both the personal machine and Maxc implementations 
have a separate opcode for pushing NIL, in addition to a more general constant opcode. 
The final code generation phase transforms the {CONST NIL) Bytelap instruction into the 
appropriate opcode. Operations such as arithmetic or CAR are encoded as FN calls, even 
though the instruction sets have specialized instructions to perform those operations. The 
assemblers distinguish between the built-in operations and those that must actually perform 
external calls; the compiler and the optimization phase do not care. Furthermore, a sequence 
of Bytelap instructions can assemble into a single machine instruction; for example, both 
instruction sets have instructions which can do a SETQ and a POP in the same instruction. 
These are easily detected with a short look-ahead during code generation. 

COMPILER OPTIMIZATIONS 

One of the most important ground rules for the optimization phase has been that all 
optimizations are conservative: they must not increase either code size or running time. 
Only optimizations which experience has shown to be useful are described here. 

The statistics given in the text below were obtained as a result of compiling a total of about 
2200 functions, producing 65000 bytes of object code. Numbers in <angle brackets> indicate 
the number of times that a given optimizing transformation or technique was applicable. 

Optimizations du ring code generation 

A few optimizations are performed during the initial code generation phase. In particular. the 
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compiler keeps track of the execution context of any given expression (similar to many other 
Lisp compilers we know of). Thus, in the recursive descent of the S-expression definition, the 
flag effect is set if the current expression is being compiled for effect only, and the flag 
return if the value is being returned as the value of the entire function. 

Remove no-effect constructs when compiling for effect <162> 

Compiling a variable or constant for effect results in no code generated. A call to a function 
with no side effects merely causes its arguments to be evaluated for effect: for example, a 
macro might expand into (CAR (RP LAC A X Y)), which if executed for effect only performs 
the RPLACA, but if the value is used will return the value stored. 

Remove extraneous POP <2035> 

Knowledge of return context is used to omit extraneous POP instructions, since unused 
values can be left on the stack to be swept away when the frame is released by a (RE TURN). 
For example, in the function 

(LAMBDA (X) (PRINT X) (TERPRI)) 
the first pass emits 

(VAR X) (FN 1 PRINT) (FN 0 TERPRI) (RETURN) 
rather than 

(VAR X) ( F N 1 PRINT ) ( POP) ( F N 0 TERP RI ) ( RETURN). 

The compiler also uses return context to eliminate extraneous JUMPs after arms of a 
conditional to the end of the conditional code (each arm of the conditional is compiled in 
return context, which will cause it to be terminated by a (RE TURN) opcode). 

The compiler also removes tail recursion in return context <36>. In addition, constant 
folding is done in the first pass for functions which are constant on constant arguments (e.g. 
EQ and arithmetic opcodes) <34>. Constant folding is done after the code for each argument 
is generated, so that constant detection can be achieved by looking for CONST opcodes, 
rather than pre-expansion of macros. 

Post-optimizations 

The second pass of the compiler consists of several local transformations on the generated 
Bytelap code which are tried repeatedly in turn until no further improvement can be made 
<6461 passes total, including the final unsuccessful pass on each function>. While the 
compiler contains many transformations, empirical results of compiling a large number of 
files show that the following transformations are the most useful-we have excluded 
transformations which were rarely effective. For each transformation we give its name, a 
symbolic version of it, a brief discussion, and an example in which the optimization would be 
effective. 

COPY introduction <1018) 

val val =>val (COPY) 

This transformation reduces neither code size nor execution time; however, it often enables 
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other optimizations. The val opcodes can be two identical CONST or VAR opcodes, or a 
SE TQ followed by a VAR with the same variable. For example, the expression 

(FOO (SETQ X (FUM)) X) 
compiles to 

(FN 0 FUM) (SETQ X) (VAR X) (FN 2 FOO) 
which gets transformed to 

(FN 0 FUM) (SETQ X) (COPY) (FN 2 FOO). 

Variable duplication (1137> 

( SETQ var) (POP) (VAR var) => ( SETQ var) 

This transformation occurs frequently after assignments. For example, the expressions 
(SETQ X Y) (COND (X (FN))) 

compiles to 
(VARY) (SETQ X) (POP) (VAR X) (TJUMP Ll) (FN 0 FN) Lt: 

which transforms into 
(VAR Y) (SETQ X) (TJUMP Ll) (FN 0 FN) Ll: 

Dead assignment <661 > 
(SETQ var) {nosubsequentuseofvarJ => 

The compiler scans ahead a short distance for either a (RETURN) or subsequent ( SETQ 
var) with no intervening instruction which either us~s (VAR var) or else calls a function 
which might see the binding of var. For example, after the examples in both COPY 
introduction and Variable duplication, the assignment to X might well be "dead", and the 
( SETQ X) removed. 

Unvsed push <734> 

val (POP) => 

Although the first pass avoids generating values followed by POP by the eff act mechanism, 
enough instances arise where subsequent optimizations uncover unused. values to make this 
transformation worthwhile dl;lring the post-optimization phase. val can be a CONST, VAR, or 
COPY. In addition, if val is a (FN n fn), where fn is a side-effect free function, it is 
replaced by n (POP )s. 

Merge POP with DUNBIND (105> 

(POP) (OUNBINO) => (DUNBINO) 

This simple transformation takes advantage of the fact that the DUNBIND opcode implicitly 
pops any values left on the stack since the last BI ND. 

JUMP OPTIMIZATIONS 

Vacuous Jump <1033> 

(JUMP tag) tag: => 
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(cJUMP tag) tag: ~ (POP) 

While the first pass Bytelap generation explicitly deletes these <265 occurrences>, this 
transformation is useful to clean up after others. In the pattern, cJUMP is either T JUMP or 
FJUMP. 

Invert sense of jump <488> 

(FJUMP tag1) (JUMP tag2) tag1: => (TJUMP tag2) 

This transformation can occur, for example, when there are explicit GO's in the source. For 
example, the expression 

(COND (X (GO LABEL!))) 
compiles to 

(VAR X) (FJUMP Lt) (JUMP LABEL!) Lt: 
which transforms into 

(VAR X) (TJUMP LABEL!) Lt: 

COPY introduction for T JUMP <241> 

val (NTJUMP tag) val => val (COPY) (TJUMP tag) 

This transformation notes that, whether or not the JUMP is taken, the value val will remain 
on the stack. The transformation is effective for both NT JUMP and NF JUMP. Note that val will 
be NIL in one of the cases. 

JUMP code in-line (457> 

(JUMP tag) ..• tag: (code}=> (code} ••• 

This transformation moves the entire segment (code} in line only in the situation where the 
JUMP is the only way of reaching tag. 

Jump-through <2259> 

(jump tag) ••• tag: (JUMP tag2) => (jump tag2) .•• 

One of the most common transformations in the compiler occurs when the target of a jump 
is itself a jump instruction. For example, the code generated for 

(COND (A B) (T C)) 
is: 

·(VAR A) (FJUMP Lt) (VAR B) (JUMP L2) Lt: (VAR C) L2: 
If the variable B is replaced by a COND clause, the target of the jump at the end of that 
CONDs second clause would itself be a jump instruction. The jump in the pattern above can 
be any of the four jump opcodes. For examp!e, 

(COND (A B) (T (GO TAG)) 
would result in the fragment: 

(VAR A) (FJUMP L2) ••• L2: (JUMP TAG) 
which can be transformed into 

(VAR A) (FJUMP TAG) ••• 
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Unreachable code (1670, removed 1784 instructions> 

(JUMP tag) { code.J => (JUMP tag) 

The code after a JUMP or RETURN which is not itself jumped to can be deleted. The first pass 
avoids generating any constructs of this form, but such situations can be generated by other 
transformations. For example, in both preceding examples, the code at L2 might well be 
unreachable and deleted. 

NT JUMP introduction <610> 

val (TJUMP tag) •.• tag: val=> val (NTJUMP tag+t) ••. 

This optimization is essentially COPY introduction across jumps. For example, 
(PROG NIL LP (FOO X) (CONO ((SETQ X (CDR X)) (GO LP))) •.• ) 

results in 
LP: (VAR X) (FN t FOO) (POP) (VAR X) (FN t CDR) (SETQ X) (TJUMP LP) 

which is then transformed to 
(VAR X) LPt: (FN t FOO) (POP) (VAR X) (FN t CDR) (SETQ X) (NTJUMP LPt) 

N.T JUMP introduction with code movement <506> 

val (FJUMP tag) val {code1J ... tag: {code2J 
=> val (NT JUMP tag2) {code2J tag2: {code1 J 

This transformation is a variation of NT JUMP introduction where it is necessary to move code 
around. The two code sequences {code1 J and {code2} must end with a JUMP or a RETURN. 
Note that this transformation moves the entire segment of code { code2 J inline. For example, 
the expressions 

{COND {X {FNt X)) (T (FN2) (GO LAB)) 
compile to 

(VAR X) {FJUMP Lt) (VAR X) (FN t FNt) {JUMP L2) 
Lt: (FN 0 FN2) (JUMP LAB) L2: 

which gets transformed to 
(VAR X) (NTJUMP L3) (FN 0 FN2) {JUMP LAB) L3: (FN t FNt) {JUMP L2) L2: 

Jump to NIL/POP <834> 
(FJUMP tag) ••• tag: (CONST NIL) => (NFJUMP tag+t) 
(NcJUMP tag) .•• tag: {POP)=> {cJUMP tag+t) 

The pattern NcJUMP stand for either flavor of N-conditional jump. In the first situation, the 
NIL which is being found by the F JUMP may be logically distinct from the NIL after tag. For 

example, the expression 
(COND (A •.• ) (T (MYFN NIL)) 

compiles as 
(VAR A) (FJUMP Lt) •.. Lt: (CONST NIL) {FN t MYFN) 

which is transformed into 
(VAR A) {NFJUMP L2) ... L2: (FN t MYFN). 

The second form normally occurs only after other transformations, where a conditional. 
originally thought to be executed for value. does not need the value being preserved. 



Local Optimization for Stack· based Lisp Machines 

Removal of loop variables <679> 

(SETQ var) (POP) (JUMP tag) ... tag: (VAR var) 

:::::> (SETQ var) (JUMP tag+t) 

This transformation is common in loops. For example, 
(PROG NIL LP (PROCESS X) {SETQ X (NEXT X)) (GO LP)) 

compiles as 
LP: (VAR X) (FN 1 PROCESS) (POP) (VAR X) (FN 1 NEXT) (SETQ X) (POP) 

(JUMP LP) 

This transforms to: 
LP: (VAR X) LPl: (FN 1 PROCESS) (POP) (VAR X) (FN 1 NEXT) (SETQ X) 

(JUMP LPl) 

Cross jumping <1721 > 
{code} (JUMP tag) ... {code} tag: :::::> (JUMP tag2) ... tag2: {code} 
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This frequent transformation improves code space with no effect on running time. For 
example, the expression 

(COND (A (FOO X)) (T (FOO Y)) 

compiles as 
(VAR A) {FJUMP Ll) (VAR X) (FN 1 FOO) (JUMP L2) 

L1: {VAR Y) ( FN 1 FOO) L2: 

The instruction before {JUMP L2) is identical to the instruction before the label L2, and so 
this can be transformed into 

{VAR A) (FJUMP Ll) (VAR X) (JUMP L3) Ll: (VARY) L3: (FN 1 FOO) 

Jump copy test <733> 

val fnt (jump tag) val ••• tag: val :::::>val (COPY) fnt (jump tag+t) 

In this transformation, fnt is a "clean" function of one argument, e.g., ( FN 1 LISTP) or 
( FN 1 CDR), or even (CONST va 1) { FN 2 EQ). In this case, "clean" means that the function 
cannot change the value of val. For example, the expression: 

(COND ((LISTP X) (CAR X)) ((NUMBERP X) (ADDl X))) 

results in the fragments 
(VAR X) (FN 1 LISTP) (FJUMP Ll) (VAR X) ... Ll: (VAR X) (FN 1 NUMBERP) ... 

which transforms into 
(VAR X) (COPY) (FN 1 LISTP) (FJUMP L2) ... L2: (FN 1 NUMBERP) ... 

Return optimizations 

Return merge 

( T JUMP tag) {code} (RETURN) ... tag2: {code} (RETURN) 

:::::> ( F JUMP tag2) ... tag2: {code} (RETURN) 

This is an effective code transformation which can merge completely unrelated (with regard 
to flow-of-control) return sequences. It does not affect speed. only space. Return merge is 
unique in not preserving the normal invarient that stack-depth is constant at any location in 



52 Papers on lnterlisp-D 

the code. Normal code generation only creates sequences of instructions where the stack­
depth at any location is static; all other transformations preserve that property. However, the 
two occurrences of {code} in the pattern need not be at the same stack-depth, and thus, 
stack-depth would be ambiguous after tag2. This is important if the target machine 
language is dependent upon stack depth in the translation from Bytelap, as is the case with 
the Maxc instruction set. Return merging must be disabled if the two {code} sequences 
occur at different stack depths, and if {code} contains any stack-level-sensitive operations. 

Needless POP before RETURN <590> 

(POP) val (RETURN)=> val (RETURN) 

This transformation is attempted only after it is known that there is no opportunity for 
Unused push. In addition to removing POP opcodes, this transformation also removes 
OUNBINO and UNBIND opcodes in the same position (except when val is a variable which 
was bound in the frame corresponding to the UNBIND or OUNBINO). 

Unused variable in BIND <580> 

(BIND ..• ( •. var .. )) {var not used} => (BIND ... ( .... )) 
(BIND( •• var) ... ) {varnotused} =>(POP) (BIND( .. ) ... ) 

This transformation eliminates binds of local variables which are not used. Only the last 
variable bound to a value can be so removed, because of the difficulty of inserting a POP at 
the appropriate place back in the instruction stream. (This is an example where source level 
transformation might be better way of doing optimization. Unfortunately, the last use of a 
variable is often removed by COPY introduction, which has no analogue in source code 
transformations.) To detect unused variables, the compiler scans the code linearly for uses 
of each variable in every BIND. For example, the expression 

(PROG (X) (SETQ X (FUM)) (FOO X X)) 

compiles into 
(BIND () (X)) (FN 0 FUM) (SETQ X) (POP) (VAR X) (VAR X) (FN 2 FOO) 

which, after several transformations, turns into 
(BIND () (X)) (FN 0 FUM} {COPY) (FN 2 FOO). 

Since X is no longer used, it can be eliminated. Note that this transformation is not 
applicable to special variables (variables which can be referenced freely by functions called 
from this one, e.g., FUM and FOO). 

Unused BIND <2035> 

(BIND (vt ... vm) (vm+t ... vn)) (VAR vt) ... (VAR vm) {lastmentionofvt...vm} 
=> (CONST NIL) {n-mtimes} 

<Of the 2035 occurrences. 440 eliminated BI NDs which were generated in the compilation of 
mapping functions.> This transformation eliminates BI NOs when the variable list is empty or 
when the variables bound are only mentioned, in order, immediately following the BIND. 
When this transformation is made. the compiler must also find all corresponding OUNB I ND's 
for this frame and turn them into the appropriate number of POP's. In addition. for every 
UNBIND the stack level must be exactly one greater than it was at the BIND. If so, the 
UNB I NO can simply be deleted; if not, this transformation cannot be made. Note, however, 
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that where a PROG or LAMBDA expression is the value returned by a function, no UNBIND or 
DUNB I ND opcodes are generated. For example, the expression 

((LAMBDA (X) (FOO X X)) (FUM)) 
compiles into 

(FN 0 FUM) (BIND (X) ()) (VAR X) (VAR X) (FN 2 FOO) 
which, after COPY introduction and Unused 8 IND can be transformed into 

(FN 0 FUM) (COPY) (FN 2 FOO). 

CONCLUSIONS 

Because our instruction sets are so well suited to the Lisp language, it is possible to write 
quite simple non-optimizing compilers for our Lisp machines. In fact, we have written a 
simple but usable compiler in less than three pages of Lisp code. However, local 
transformations can have an important impact on code space and running time. 

As in production systems, the choice of order of application of transformations can affect the 
results. Without effectively trying all possible orderings, one transformation can prevent a 
better one from being used. In successive transformations made on a sample of user Lisp 
programs, however, we have not observed this to be a major problem. 

The programs our compiler generates are still not optimized, in the strict sense of that term. 
A sample of user Lisp programs which were "hand optimized" show that code size could be 
compressed by as much as an additional 15% in some cases, with no speed penalty. 
However, the transformations involved seem to require either much special-case pattern 
matching or else transformations which temporarily reduce either space or speed. As usual 
when employing "hill-climbing" algorithms, by requiring that all transformations we employ 
are strict improvements, we occasionally find local optima which prevent better solutions 
from being found. 

Optimizing on a simple intermediate language is quite effective. Many of the transformations 
made are not expressible as source language transformations (e.g., the COPY operator has 
no direct counterpart in the Lisp language). Those that would be easier to express as source 
transformations are often enabled by transformations which have no direct analogue. 
Peephole optimizers working on more complex assembly languages must be aware of more 
special cases, because there are many more kinds of operations. 
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