
PICO MANUAL

William M. Newman

Robert F. Sproull

July 1974

Xerox Palo Alto Research Center

Pico Manual

TABLE OF CONTENTS

PREFACE

SECTION I: INTRODUCTION

SECTION I I: BASIC GRAPHICS FllNCTIONS

GRAPllICAL OUTPUT -- Scgmcnt-lrnndling functions

OPH:SECi
Cl.O~;ESEG

llEl.E TES!.G
APPl:~.JDSEG
rosTSLG
UNPOSTSrG
RENA~ESEG
CLEAHSEGS

GRAPHICAL OUTPUT -- Updating the display

UPDATE

GRAPHICAL OUTPUT -- Graphical primitives

MOVE TO
[lRAWTO
URAWTEXT
DEG INFILL
F.NllFILL
SETCOLOR
SETllACKGROUND

GRAPllICAL OUTPUT

ORA\./
SET\./ INDO\./

GRAPllICJ\L INPUT

REAOPOSITION
READS TROKE
RECOGNIZE
HJTDETECT
SETRECOGNIZER
CLEAR INK.

HARD COPY

PLOTSEGS

MISCELLANEOUS

Transformations

Page 2

4

5

g

9

9
9
9
9
9
9
9

10

10

10

10

10
10
11
11
11
11
12

12

13
13

16

16
16
17
17
18
18

18

18

18

Pico Manual

SETFONT
CllJ\RJ'ROl'ERTIES
RESETG R/\PllI CS
INITGRAPH ICS
GSHPEFORM

SECTION Ill: USE OF PICO

COMPILING ANO LOADING

GENERATlt\Ci llJ\RD COPY

SECTION IV: ADVANCED FUNCTIONS

CURVE IlRAWING

DRA\.ICllRVE

TRANSfOIUIAT IONS

SEHlJ\TRIX
SJ\VHIJ\TflIX
RESTORE~IJ\ TR IX
TRANSLATE
SCALE
ROTATE
cos
SETVIEWPORT

INPUT

GETEVENT
DEl.ETEVENT
CLEARE VENTS
SETINPUTP/\RAMETERS
SCREENTOPJ\GE

REFERENCES

APPENDICES

Appendix 1: Free Storage Routines

Appendix 2: Floating-point Routines

Appendix 3: Training the Character Recognizer

Appendix 4: Creating .CC Font Files

Appendix 5: The XPLOT file Structure

Page 3

18
18
18
19
19

20

20

21

22

22

22

22

22
23
23
23
23
23
23
23

24

24
25
25
25
25

25

26

26

28

30

32

33

Pico Manual Page 4

PREFACE

Pico is a graphics package for people who wunt to write interactive
graphical programs, and for people who have pro~rams to which they would
like to ndd ~1r<q1hical input/output. At present only BCPL progrnms may

call the Pico pack.a110, hut versions for use with INTERLISP and Smalltalk
are on the way. Pico can be used with the following hardware systems:

(a) Any standard Alto, preferably wth 64K memory;

(b) Den Laws' run-code display and its parent Alto;

(c) Tho color graphics Nova system.

Pico can handle inputs from nice and tablets; it can generate graphic
hanlcopy with the a id of the XGP.

About this manual

You will find that this manual consists of four sections:

I: An introduction, where some of the essential features of Pico are
explained with the aid of examples. Everyone should read this
soc ti. on.

II: A concise description of the basic functions of Pico. This section
should nlso be rnad by every potential user. Once you have read it,
you should be able to write your first program using Pico.

Ill: Instructions on how to use Pico -- where to find the necessary
fi los, what to load with your compiled program, and so forth. You
will need to read this section in order to run your program.

IV: A description of the more advanced features of Pico. You won't need
these unless you wish to manipulate curves, perform special
transformations, or construct special input schemes.

At tho end aro several Appendices, describing the free storage system and
floating point routines that are integral to Pico, the online character
recognizer, and tha formats of font and hard-copy files used by Pico.

We hope this arrangement of the manual is ngreenble to all. Some readers
may need ilddi tionnl background information; if so, they will find some
useful references in the Bihlioqraphy. Comments about Pico and about this
manual will he gratefully received by the authors.

Acknowledgements

Pico was designed and implemented by the following members of the Graphics
Syster.is Grou1l: Patrick Biludclaire, Mike Cole, Bob Flegal, William Newman,
Dick Shoup and Bob Sproull. Fiqures 3, 8 and 9 in this manual were drawn
by Bob Flegal with the aid of sn~lltalk.

Pico tlanual INTRODUCTION Page 5

SECTION I: INTRODUCTION

Pico contains functions both for generating grnphic output on a display

screen or on the XGP, and for handling graphic inputs from a tablet or

mouse. These two classes of function, input and output, are kept almost

completely separate. We believe prograrruncrs will find this separation

convenient. We also think it is easier to explain Pico by treating input

and output separately: we will discuss output first.

Pictures generated by Pico are made up of basic entities of three kinds,

linos, curves and text; areas enclosed by lines and curves may be filled

with a uniform gray level or, if you twve the hardv1are to do so, with a

color. The functions that define those basic entities are called

primi tfvc functions. One can think of these functions almost as if they

add lines, curves and so forth directly to the information on tho screen.

This is not quite true, however. Instead the information is deposited in

a display file; the screen is not updated from the display fi.le except

when the function UPDATE is called. Thus you can obtain a simplified view

of tho organization of tho system by studying Figure 1, ignoring the light

gray boxes.
. , ··1

S(;CJr<:crt '1 h<uid I i liJ •, _____ ...,.

f lll~C ti CliS'
.. l I

p!! !: ii':'::: l!:'i! :: '.1: ·~1·1·t :1
:1 Event' · 1

i npuf
1
;1wndli n·J~
• .i '" 1 proqrari

BCPL DisplC\Y

file

rATErdisplay

Figure 1.

Since we aro dealing with filled areas, it is possible for graphical

eni ties to overlap. Where two or more en ti ties overlap, a simple rule

determines what is seen: the thing most recently added to the display file

is always visible, and may hide things added less recently. Thus to

display text on a gray background, one calls the primitives to generate

the gray area, then calls the text-display function. This is illustrated

in the example that follows.

Tho display file is not just a simple list of graphical primitives: it can

be divided into segments. The use of segments has two major advantages:

it permits individual parts of the picture to be changed independently of

each other, and it allows things to overlay each other independently of

execution sequence. The functions for manipulating segments include

routines to create new sc~iments, replace segments, delete them, add to

them and change the order in which they are overlaid. Note that none of

these functions has any immediate effect on what is visible on the screen:

after the appropriate changes to the display file have been made, the

UPDATE function must be called to cause the screen picture to change.

Pico Manual INTRODUCTION Page 6

Prinitivo functions allow pictures to be defined in .screen coordinates.
On a standi1rd Alto displ<1y, for exariplc, the screen coordinate system
places (0,0) at the botto~ left-hand corner of the screen, and (605,799)
at tho top riqht. This is not alw,1ys convenient. Transformation routines
arc therefore provided so that parts of the picture may be scaled and
rotated, and so that the i-1hole picture m,1y be defined in a coordinate
system indPpendent of the particular display in use. The linht gray boxes
in Figure 1 show how tri1nsformation and seunent-handling functions relate
to tho rest of the systeri.

This cor:ipletcs Mir brief outline of the graphical output facilities for
IlCPL. The following cxanplc illustrates how they may be used. It
ncneriltcs th0. "STOP" siqn sticJ1<n in Firiurc 2. The functions used in this
cxariple arc described in norc detail in Section II.

GET "GSDEFS. SR"

LET MAIN() !JE [
INITCi!V\l'lllCS()
OPENSEG(1)

MOVET0(50,0)

DRA\.IT0(50,200)

SETCOLOR(GRAY)

BEG INFILL()

MOVET0(0,200)
ORA\.ITO(0, 7.75)
l>RA\./TO(100,275)
DRA\.JTO(100, 200)
IlRA\HO(0, 200)

ENDFILL()
SETCOLOR(BLACK)
MOVET0(35,230)

DRA\.ITEXT("STOP")

CLOSESEG()

POSTSEG(1)

UPDATE()

]

Thjs file contains the definitions
needed for the use of Pico.

Initializes the graphics system.
This states our intention to begin
creation of segncnt nunbcr 1.
This sets the current (x,y) position
to the botton of the post.
This adds to the dJsplay file a line
fron (50, 0) to (50, 200). The current
position bccones (50,200).
This function sets the intensity of
tho sign's rectangular area.
This indicates the beginning of a
"filled" area for the stop sign. The
following MOVf.TO and DRA\./TO commands
specify the outline of the sign.

Signals the end of the polygon.
Specifics intensity for the STOP text.
Specifics the starting position of the
text.
Causes a text string to be added to
the display file.
Specifies the end of creation of
segnent 1 of the display file.
Specifics that the contents of segment
1 are to be sho\\'n on the screen the
next tine the screen is updated.
Updates the screen by scan-converting
the infornation in all segments that
have been POSTcd.

Figure 2.

Pico Manual INTRODUCTION Page 7

Tho next example shows the use of one of the graphic input functions of
Pico. use of the LlRA\./ function to pcrforra sir.iple transforoations, and also
shows how to ncnerate graphic hard-copy. It uses Pico's online character
rccoanizcr. Wn assune that the recognizer has previously been "trained"
to rcconnize two symbols, a triannle and the letter "P", and that a file
SYMS.RC has been generated, containinn tho results of this training
session. Now when the user druws a triangle. such as the exar.iple shown in
Figure 3, a looic symbol for an inverter is added to the picture on the
screen. When the user prints "P", a file is generated for producing XGP
hard-copy.

GET "GSllEFS . .SR"
LET MAI~:() GE [
INITGHM'HICS()
SETRECOGNIZER("SYMS.RC")

LET SN=O
[LET V=RECOGNIZE()

SWITCllO~ V»EVENT .CODE
INTO [

CASE $T:

Figure 3.

The rrcognizer tables arc loaded from the file
generated during the previous training
session.
Initialize the segment name sequence.
\-lai t for the user to draw a syr.ibol, then
return a vector containing information about
the s)1:ibol.

The CODE entry in V contains the numeric code
of the recognized symbol.
The user drew a triangle (trained to return
code 11 T11)

Create a new segncnt name.
Start a new scanent.

SN=SN+l
OPENSEG(SN)
DRA\.l(INVERTER, TRANSLATE, V»EVE~H .XLEFT. V»EVENT. YBOTTOM)

CLOSF.SEG()
POSTSEG(SN)
UPflATE()
ENflCASE

CASE SP:

]

PLOTSEGS("INV.XB")
ENDCASE

Draw an inverter, using the procedure given
below; position the symbol with its bottom
lcft·hand corner aligned with the
corresponding corner of the drawn symbol.
Close the new segment.
Add it to the list of posted segments.
Update the screen picture.

The user drew a "P".
Output a file INV.XB for the XGP.

] REPEAT
]

Repeat this loop endlessly.

ANO INVERTER() BE [Define the procedure to draw the inverter

]

symbol.
MOVE TO(0. 0): DRA\.ITO(0, 50); DR/,\.fTO(50. 25)
DRA\HO(51, 23); DRAWTO(53. 23); DRJ\\HO(54, 25)
ORA\.1T0(53,27); DRAWT0(51.27); DRA\.JT0(50,25)
DRAWTO(O,O)

Pico Manual INTRODllCTI ON Page 8

Figure 4 shows a typical plot generated after a sequence of interactions.

C>·

C>·

C>·
C>··

C>·

Figure 4.

C>·

C>C>.

C>

Pico Manual BASIC GRAPHICS FUNCTIONS Page 9

SECTION I I: B.l\SIC GRAPHICS FUNCTIONS

This section describes the basic functions of what may be called the
kernel of Pico. Progr~ms written using this kernel will work on all three
classes of display r.rnntioned al>ove. Each display, however, has certain
characteristics of its own: these are ~entioned as appropriate below.

GRAPHICAL OUTPUT Segment-Handling functions

The display file is divided into scqmcnts; each senment can be thought of
as an or rk r c ti co 11 e c ti o 11 of I' r i 11 it iv c u r il p h i c t11 c n t i t 1 es . To create a

S<)nr.wnt, t.ho pro~Jrar.mcr "opens" a spC'cific S(!f}rwnt, specifics the
prinitivP entities tht1t aro to 1-1(~ tHldcd to the seuncnt, nnd then "closes"
it. Each scm:ient is assiqned a 16-bit "name" by the programmer; this name
is used if later reference to the scuncnt is necessary.

Note well: none of the folloL1i11g .segment-handling functions changes the

image visible on the screen.

OPENSECi (segment-nar.1c). This function creates a new segment with the
specified nmnc. If a SC<Jment of the sar.w name already exists, it
wi 11 be replaced by the new scnr:wnt. All subsequent graphical
pri.mitives arc added to this new "open" scnmcnt. Before opening the
new segment, any other segment still open is closed.

CLOSESEG (). This function closes the currently open segment. Any
cxi~ting segment with this name is deleted. If no segment is open,
CLOSESEG has no cffpct.

DELETESEG (segnent-namc). This function deletes the specified segment.
If the specified scuncnt docs not exist, this function has no effect.
DELETESEG never deletes the "open" segment.

APPWIJ.SEG (segment-nm~e). This function opens the specified segment for
additions. All subsequerit graphical entities are added to the end of
the seg1:1cnt. If the specified segnent does not exist, APPENDSEG is
equivalent to OPENSEG.

POSTSEG (segncnt-nane). This function adds the specified segment to the
list of those that should he displayed on the screen. This list is
called the "posted" list. If the specified segment is still open at
the time of the POSTSEG call, it is closed before posting. Thus the
sequence OPENSEG, <graphical primitives>, POSTSEG is sufficient. If
tho specified segment does not exist, this function has no effect.

UNPOSTSEG (scamcnt-nanc). This function rcnoves the specified segment
from the posted list. The graphical entities within the segment are
unaltered. At sone later time, the same segment may be posted again.
If tho specified segment docs not exist, this function has no effect.

RENA~ESEG (old-segncnt-nanc,ncw-segncnt-nnmc). This function has no
effect on the contents of the display file, but merely changes the

Pico Manual BASIC GRAPHICS FUNCTIONS Pago 10

nur.tc of tho segl'.1ent specifird by "old-senrncnt-nar.ie" to "new-scgment

name." lf a seur:wnt with n<1rrn "new-seqrncnt-name" already P.Xists, it

is deleted. If no seur.icnt naned "old-segment-name" exists, the

RENAMESEG function has no effect.

CLEARSEGS (). Deletes all seunents in the· display file, including any

senncnt currently open. No changes are made to the image on tho

display screen.

UP(JJ\TE (). This is tlw onl11 function that ciluses the screen to be

updated, other than PLOTSUi.S 1·.hich pcrfori:is an UPDATE in the process
of generating a hanl-copy file (sec below). If any segments have

beNl altered (created, unposted, posted, deleted, etc.) since the

previous call to UPDATE, the picture on the screen is changed
appropriutely.

Each graphical object in the displilY file has a "priority" associated with

it. \./hen tho screen is Ul'PJ\Tl:D, it nay hilppen thut two distinct nraphical

objects mily uppcar at the sane spot on the screen. In Figure 3, for

cxur.1ple. the characters "STOP" and pieces of the sinn polygon fall on the

sar.w dots on the scn:-cn. In this case, the graphical object with the

highest priority is displayed. The priority rule is very simple:

- With in a se0nent, the priority order corresponds to the order in
which tho graphical objects were added to the segment; objects added
last have highest priority and thus overlay objects added earli.er.

It is for this reason that the characters STOP take priority over the
sign polyaon.

- Between segments, the signed 16-bit integer name is used to decide

priority; segment A overlays segment B if A > B. The RENAMESEG

function is provided so that inter-segment priorities may be

rearranged.

GRAPHICAL OUTPUT -- Gr<1phical Primitives

Graphical primitives ore used to specify straight and curved lines,

polygons, filled curves (figures whose outlines are curves), and text.

These entities are transformed, clipped, and then added to the currently

open seoment. The color or intensity of entities is defined with the

SETCOLOR function.

MOVETO (x,y)
DRA\.JTO (x,y)

These functions specify the coordinates of line endpoints; MOVETO

sots tho "current position" to (x,y). DRAWTO draws a vector from the

current position to (x,y) and then sets the current position to

(x,y). Tho coordinates are signed 16-bit quantities; since they will

typically be tronsforned (see below), the coordinate system can be

chosen by tho progranner.

rico Manual BASIC GRAPHICS FUNCTIONS Page 11

DRAWTEXT (11 text-!itring 11)

The specified text string is displayed, starting at the current
position, and then in subsequent Horizontal character positions. Note
that no transformations are performed on characters, other than th~

translation implied by setting the starting position with a MOVETO.
A standard font is used unless the program indicates otherwise with
the SETFONT function (see below).

BEGINFILL ()
ENOFILL ()

These functions permit MOVETO and DRJ\\.ITO functions to be used to
specify a filled polygon. A simple example of polygon specification
is BEGINFILL MOVETO, DRA\..ITO, DRJ\\.JTO, DRA\.ITO, ENDFILL. This would
normally produce n three-sided polygon. If the locations specified
by the initial MOVETO and the final DRJ\\.ITO do not coincide, however,
Pico automatically inserts a DRAWTO to close the polygon. The
examples below de~onstrate this.

11 lloles 11 may be specified inside polygons by means of scverai MOVETO,
DRAWTO, DRAWTO, DRAWTO... sequences with in one BEG INFILL, ENDFil.L
pair. Thus we can produce figure 5 with the following statements:

BEG INFILL()
MOVE TO(0, 0); DRAWTO(20, 40); DRA\ITO(40, 0);
MOVE TO(10, 10); DRJ\WTO(20, 30); .DRAWTO(30, 10);

ENDFILL()

Figure 5. figure 6.

The closed curves specified within one BEGINFILL, ENDFILL pair may
cross, producing effects such as figure 6, in which the inner
triangle of Figure 5 has been displaced.

SETCOLOR fgray-level)
SETCOLOR (red-componcnt,green-component,blue-component)

The SETCOLOR function may be used with a single argument to set gray
levels between 0 (the default value, representing black) and 255
(representing white). Three manifest constants, BLACK. GRAY (=127)
and WHITE, may be used where appropriate. The effect of . SETCOLOR
will vary somewhat with different output devices: the color graphics
system, if used in black-and-white mode, will generate 256 different

Pico Manual BASIC GRAPHICS FUNCTIONS Page 12

nray lovols, the run-code display produces 32, but the XGP and the
standard Alto clispl<1y produce only eight dot patterns of differing
densities. Note that largo black areas do not reproduce on the XGP.

\.11th threo argur.rnnts, Sf.TCOLOR may be used to gonerato colors on the
color graphics system. Components must be in the range 0 to 255.

SETBACKGROVNO (gray-level).
SETl3ACKGROUNr> (rcd-conponcnt.11recn-conponent,bluc-component)

Thi'.". function s11cc1fies the intensity of the bncknround, i.e. the
intensity that 1s displa:>ed '1-.herc no uraphical entity is visible.
Values havt• the s,1:1e ri1nr10 tind intt•r-pretation as in the SETCOLOR
function. Eitlwr \..'HITE (the default. value) or BLACK should bo used
with the sta11d1u·d Alto displny, to save r.lCnory.

SETCOLOR and SETl1ACKGROliND nay be cal led at ;iny point in the program. In
certain situations their effect is deferred, however: SETCOLOR, if called
after n BEGI\!FILI., 1-dll L1ke effect only nft!'r the corresponding ENDFILL;
the nffoct of SETBACKGROU~D is seen only hhen UPDATE is next executed.

Q.RAT~llJ_~-~I: OUTl'tLI - - Trans forr.ia t ions

The fir-st exi'lr:1ple of Section I defined a picture entirely in the screen
coordinate system. This system is always in effect unless the program
specifics otherwise. There arc three Milin reasons why you may wish not to
use screen coordinates:

1. You may wish to use SYttllols that are defined in local coordinates,
and· that arc to be scaled, rotated or translated before they are
displayed, like the 'inverter' in our second example.

Z. You may wish to define pictures too big to fit on the screen, and
then to select parts of such pictures to be displayed at various
enlargements.

3. You may wish to wri tc pro9rans that are not affected by the
different screen characteristics of the different displays.

Pico includes a number of transfornation functions that cater to these
needs. To understand them, it is ir.iportant to realize that Pico in fact
allows you to look through a conceptual window at a large page of
graphical information. This paqe, and the rectangular window onto it, may
use a coordinate system quite different fron the screen's. Normally one
will define the window sizn with the SET\.IINDO\.I function, before opening
the scnraents on which this window operates. \./hen Pico constructs a
segnnnt of display file, it transforns everything into the page coordinate
system; then it 'clips' nway everything lying outside the window, and
transforms the rest into screen coordinates. If, as in our earlier
exaraples, SET\.IIr.;now is not callnd, Pico uses default values that equate
the page and screen coordinate systens.

Symbols included in the pago information must be transformed from their
local coordinate system into page coordinates, and Pico provides a DRAW

Pico Manual BASIC GRAPHICS FUNCTIONS Page 13

function to do this: DRAW usC!s the! notion of describing symbols as di.splay
proccclurcs (see Reference 1). f.sscntially, every time a symbol is to be
added to tho currently open segnent, a call is r:1aclc to DRAW, specifying
(a) the nllno of the procedure defining the synbol, and (b) the
transfor~ations to be applied to the s~1bol in order to place it correctly
in tho page space.

Tho full forr.i of the DRAW function's calling sequence is as follows:

DRA\./(proccdurn-nar.H!, proccdurc-argt, proccdurc-arg2, •••
SCALE,sx, [[sy,) sw,]
ROT/\ TE, thnta,
TRANSLATE,translation-x,translation-y)

where:

'procedure-nano' is the nano of the display procedure, and
'proccdure-argl' etc., are its arauncnts, if any;

sx/sw and sy/sw are the scale factors in the x- and y- direction;
if sy is 01:ii tt0d, the procedure is scaled by sx/sw in both
directions, \o:hilc if !Joth sy and sw are onitted, sx is used as
an integral enlargcr.icnl factor in both directions:

theta is the anti-clockwise rotation in degrees:

translation-x and translation-y are translations in the x-and y
dircctions.

The DRAW function assembles all the transformations together into a
sinr1lc matrix, coribines this with any existing transformation, and
th<'n calls tho naned procedure. The rcslllting transformation is
applied to all the primitives called by this procedure. \./hen the
procedure returns, DRAW restores whatever transformation was
previously in effect, and then itself returns. This mechanism
pormits display procedures to include calls to other such procedures
via the DRAW function.

Tho full forrn of the DRAW calling sequence is rarely necessary. Any
identity transformations nay be omitted, and tho display procedure
need not have argur.icnts. If two or more transformations are given,
they will effectively he pcrforr.icd jn the order specified. The order
given above, SCALE-ROTATE-TRANSLATE, is the normal sequence to use in
transforr.iing syr.ibols.

The SET\.llNDO\.I function is called as follows:

SEN rnnow (xl cft, ybot torn, xr i gh t, ytop).
This function defines a rectangular window onto the page information,
using page coordinates. The bottom left-hand corner of this
rectangle is at (xleft,ybottorn), and the top right-hand corner is at
(xright,ytop). All infornation lying outside this window is excluded
from the displayed picture.

Pico Manual BASIC GRAPHICS FUNCTIONS Pago 14

The fol lowing proQrur:l illustrates the use of SETWINDOW and DRAW. It

generutcs tho output shown in Finure 7 overleaf.

GET "CiSDEFS.SR"
/

LET MAW(1) BE [
INITGRAPllICS()
SE TIJI N llO\I (- 7 5 0 , - 100 0 , 7 5 0 , 100 0)

OPFNSHi (1)

Set up a window 1500 x 2000 units, centered at
the origin of the page coordinate space.

LlR/\ \~ (T IZI A~;G L [.. II 1 ti • TRA~~ s LATE ' - 100 • 100)
llr-.iw the TR. lt\\\1LE synbol, positioned at (-
100, 100) ;rnd ldl1Pl•~d with tile fioure "1".

DR/\\./ (TR l J\~G L[. II 2 .. ' SCALE.?.. 3. ·1 FN: .\LA 1E,1.0 0. ?. 0 0)
Dr,w th<) trian']lc at (200,200) at 2/3 full size,
10 h I; h>{l II 2 IJ •

DRJ\W(TR IA:\GLE. II 3 II. SCALE.(;. •1, 3 ,r:OT,\TE. 30. TRA'~SLA 1 E. 50. -600)

POSTSEG(1)
llPDATE ()
]

AND TRIMJGLE(STR) BE [
MOVETO(O,O)
DR.!\\HO(100,'100)
DR/\\./TO(7.00, 0)
DR/\\HO(0, 0)
MOVET0(100,120)
DRAWTEXT(STR)
]

Draw tlw tri<lll(Jle, scaled by 2 t1nd 4/3 in the x
and y-directions, rotated anti-clockwise through
30 de:1rces, and positioned at (50,-600). Label
this triangle "3".

Now define the TRIANGLE display procedure.

Position the labol.

I~
D

3

Pico Manual BASIC GRAPHICS FUNCTIONS Page 16

Three basic functions are provided by Pico for 9raphic input. Tho first
accopts an {x,y) position fror.i tho tablet stylus or mouse; the socond
accepts a stroke generated in a s1n~le sweep of the stylus or mouse; the
third accepts one or more strokes and attenpts to recognize the character
or synbol they represent. Al 1 three return x and y values converted to
page coordinates.

\.:llcnever one of these functions is called, the prouran waits until the
stylus s1~itch, or one of the r.iouse s.,.,.itches, is dqiressf'cl and released by

the user-. The RECOCi~~IZE runction Wdits c1n additional interval in case the
us<:r wishes to udd nore strokc-s. The 1nrut data is then returned as a

pointer· to a vector, 1-.hich rny be ;1ccessed with the uid of a BCPL

stn1ctt1r(! pr·ovid!'d for the riur-pnse. Thus 110 input is ever received from
thos() functions until the stylus or r.ouse switch hns been pressed and
released.

Tho three basic functions are as follows:

REA!H'OSITION (). After the stylus or mouse switch is released, this
function returns a pointer to a vector (V, say), containing:

in V»EVPJT .X
V»EVENT. Y

in V>>EVENT.SYITCH

the page coordinates of the cursor
when the switch was pressed.

switch nunber (tablet always returns 1).

READSTROKE (). \.fhile the stylus or r:wusc switch is depressed, a trail
of 'ink' records tho path followed; after tho switch is released, the
function returns a pointer to a vector V containing:

in V>>EVENT.XLEFT
V>>EVENT.YROTTOM

in V»EVENT.XRIGllT
V»EVENT. YTOP

in V>>EVENT.STROKE

figure 8.

The pane coordinates of tho bottom
left and top right corners of the
rectangle enclosing the stroke.

A poi~ter to another vector, containing in
its first word il count N of the number of
recorded points, and then N pairs of x and
y coordinates recording in puge coordinates
the path of the stylus or mouse (see Figure
8). V>>EVENT.STROKE is zero if tho stylus
or ~ouse did not move while the switch was
depressed.

V» E \I[NT. S TPOKE y2 ---•
•
•

Pico Manual BASIC GRAPUICS FUNCTIONS Pago 17

RECOGNIZE (). This f11ncUon continues to collect strokes until the
switch rcnains released for at least one second (a parameter that may
be altered, see Section IV). An attcnpt is then made to recognize
the stroke or strokes by natching them against somo predefined
descriptions. RECOG~IZE returns a pointer to a vector V containing:

in V>>EVENT.XLEFT
V>>EVENT.YBOTTO~

V»F:VDJT .XRICiflT
V»EVENT. \'TOP

in V»F.VU4T .COllE

in V>>EVENT.CONF

The page coordinates of tho
corners of tho rectangle
enclosing the character
(see Fiuurc 9).

The mmeric code of the recognized symbol
(nor-r1illly tho ASCII code in the case of a
char<1ctcr).
TtH! confjdcncn, in the rnnnc 0 to 100, with
which the s~1bol was recognized.

The vectors in \<.'hich input lllfnrn,1tion is returned arc provided by Pico,
and t.lwrefore should not be di!Clan!d by the user program. Note that those
vcctnrs are r<'-used the next tinn. an input function is called, so the
relevant. infon:iation must be extracted l.Jefore another input function is
called.

- I

~------V->>E\1:~
V» EV[NT. YTOP ,

V>>EVENT.YSOlTOM

\/»EVENT .XRIGHT

Figure 9.

Three other functions arc useful for input:

HlTDETECT (x,y [,x-tolcrance,y-tolerance]). This function is useful for
determining what the user is µointing at. It checks each displayed
entity for overlap with the rectangle whose center is at (x,y) in
screen coordinates, nnd whose "half-size" is x-tolerance by y
tolcrancc. Ir any entity ovcrldps, lfITDETECT returns a pointer to a
vector, V say, containing the following infor~ation:

in V>>HIT.SEGNAME

in V»HlT. DX)

The namo of the segment nearest to (x,y). In
a~biguous cases, the highest name is returned.

The ho~izontal ~nd vertical distance from

Pico tlanual BASIC GRAPHICS FUNCTIONS Page 18

V»llIT.DY) (x,y) to this nearest segment.

If tolerance values arc o~ittcd, HITDETECT uses the larnest positivo
intt.~gor. If there is no overlappin~J entity, llITDETECT returns zero.

SETRECOG~lZER ("filen<mc"). This function sets up the tablos used by
the RECOC~IZE function, by re<Hling in a file of the given nar:ie.
Previously a fi la of this nur.io should have been created by using a
traininq proar«in (S('(' Ap111'1Hl1x 3). ;\n arnuncnt of zero will clear
tho tablas. This function returns FALSE if no file was found, TRUE
otherwise.

CLEARHJK (). Clears th(! ink fror.i th0 screen, by performing an UPDATE.

!!1\RD COPY

PLOT.'.;u;s ("filPn<m0") This function 1-:rit.es out a file for the XGP, using
the current contt!nts of the disrlay file. !lard-copy riay be produced
by send i lFJ ttn s fi lo to any XGf' t\nva, and t.hf'n running the XPLOT
pr·oru-<m U;ep Section II I). If no file nanc is oivcn, uniquC; nomcs in
the sequence i'OO.XB, 1101.XB, P99.XB ilrc used. PLOTSEGS always
updotcs the screen contents ilS it gcncriltcs the file.

MI SCEU . .1VJEOUS --------·---
Several miscellaneous furictions complete the kernel facilities of Pico:

SETFONT (11 font-n<iric 11). This specifies the character font to use in all
subsequent DRA\./TEXT calls. Tho font-name is tho na!71e of a disk file
in "CC" format (standard "CU" fonts may be converted to this format
with a progrilm descr-HJcd in Appendix 4). Several standard "CC" fonts
can ho found on tho M:\XC <GRAf'llICS> directory. SETFONT returns FALSE
if tho specified font file could not be found; otherwise it returns
TRUE.

CHARPROPERTIES (churactcr-code). This function is used to furnish
details about any character in the current font. It returns zero if
the character is undefined in the font; otherwise it returns a
pointer to a vector containing:

in V»Cl!AR. \./IDTll The l-li dth of the character in screen
coordinates.

in V»Cl!AR. HEIGIH The height of the character above the base
line.

in V »CHAR. DESCENT The descent of the character below the base
line.

RESETGRAPllICS (). This function should be called before returning to
the operating system to ensure that the display is returned to its
normal stute.

INITGRAPHICS ([frar:rn-space]). This function initializes Pico. Its

Pico Manual BASIC GRAPHICS FUNCTIONS Page 19

single optional argument nny he used to crnato a larncr or smaller

run-tir.w frane space for BC:Pl. (default value is 1000 dccinal). The
functio1l returns a pointer to a tahle of device-dependent parameters.

These may be accessed with the aid of a BCl'L structure definition and

sor:1e m«nifust constilnt definitions, provided for tho purpose.

V»PICO. TYPE

V»f'ICO. TABLET

V»P1CO.Xi!~FT

V >>I' I CO.\' !'.OT TO~!
V»!'IC0.\1\iGHT
V»I'ICO. \'TOf'

Type of display device that this version of the
grtiphics systcr:i will drive. This will be equal
to STDALTO if confinured for a standard Alto,
gci~:/d.TO if confir;:1r·rr1 for nn Alto with a run
lrnqth cnd<'d display device, or COLOR~OVA if
co11fi!;11n~d for the color video system (~OVA).
This is rnUE if ,1 talilr~t is available on the
ri<1chine in use, F/IL.SE otherwise.
Linits of the screen coordinate system.

GSTYPEFOI~M (fornat 1, i ten1, fonBt?., i ten?., ... fon1atn, i t1'r1n).
This nrntitH~ r:1:1y be usPcl for ~·~ncral-purposc string output to the

CO!lsole. It c1cct>pts fr-on one to cinht it.cm:;, each preceded by a

forrwt. in the shap0 of an intcqcr fron 0 to 10. The format number

indi.co.tPs how the it('n is to be displayed. Formats 0 and 1 treat the

i.tc•n as il strinn pointer und as a character code, respectively.

Fornats from 2 to 10 n<1y bo used to print integers to any radix in
that range. For exanplo,

GSTYPEFORM(O,"The octal value of ",10,100,1,S~N,O,"is ",8,100)

would generate:

Tho octal value of 100
is 144

On tho Nova, tho output of GSTYPEFORM is sent to the console; on any

Alto, it is sent to tho system area of the standard display.

Various pieces of ancillary software are included in the graphics system.

Those consist of some BCPL packages that Pico uses, and that the user may

also find useful:

Free storage allocation. The INITGRAPHICS call "grabs" a substantial
amount of avail«blc r.wnory for use in building display files, font

tables, etc. Tho user n.w r.iakc use of the free storage functions at

nny tir:ic after tho INITGR/\PHICS call has been issued. See Appendix 1

for docur.ientation on these subroutines.

floHtinfJ point routines. These routines, described in Appendix 2, are

available for users. Pico takes care to r:iakc all of its functions

transparent to tho contents of the floating-point accumulators.

Pico Manual USE OF PICO Page 20

SECTIO~ III: USE OF PICO

COMPILING AND LOADlNG

Before a grllphics pronran cun be successfully conpiled, loaded and run.

two vital files must ba on tho user's disk-puck. Those are:

GSOEFS.SR. This is the source file containing definitions of external
procedure nancs, structures and constants used by Pico
progr0n~,.

and one of tho followjng:

J\PICO.l\R.
BPlCO.l:R.
Cl'ICO.BR.

The vcrsi.on of Pico for use with tho standard Alto display;
Tito vr-r-sic'n for ll\C 1,1ith Bc·n Liiws' run-code display;
Tho version for use on the Color Graphics Nova.

A thjrd file is generally essential:

DEFO:-JT. CC. This is the st;111d.1rrl Alto font in .CC forr.iat. A font file
such ns DEFO:,iT wi 11 be needed if uny text displny is
attcrapted. Additional font files are available.

Thcso files, and all others relatiwJ to Pico, arc stored on the <GRAPlllCS>

directory on r!t'\XC. They 1;1ily bf> copied to disk-packs usinu NL\,'MC/\, MINX or
any other path. To s1r:iplify the tn1nsfcr process, three Dump files are

kept on the <GRAPHICS> directory, containing the essential files for the

throe different displays. These three files, and their contents, are:

AP I CO. n~I:
BPICO.ll~l:

CPI CO. mt:

/\PICO.RR, GSDEFS.SR and DEFONT.CC
Bl'ICO.BR, G.Sllf:F.S.SR ilncl DEfO\iT.CC
CPICO.BR, GSllEFS.SR i11Hl DEFONT.CC.

The procedure for conpiling and loading a Pico program is as follows:•

1. Make sure that the three essential files are on your disk-pack. If
they arc not, copy (in binary r.iode) the appropriate . DM file from

<GRAPHICS> and type:

LOAD/V xPICO.DM

where x is A, B or C as appropriate.

* Due to a tonporary anonaly, tho fllcs /\PICO.BR and BPICO.BR cannot

presently be loaded by the Alto !1UlR. You rn1st therefore substitute in
their place about th'Plve separate .BR files. These files arc for tho timo

being incluc1ed in APICO.DM and BPICO.D:1, together with a .CM command file

for use in louding. The ccinnund filP.s are called APICL.nl and BPICL.CM.
After completing steps 1 und 2, you should edit the command file to

includa tho nano of your program or programs, and then type @APICL.CM@ or

@L\PICL.CW to invoke loadinn. ~:hen this anor.wly is eradicated, APICO.DM
and BPICO.DM will be modified to rn~tch tho description,above.

Pico Manual USE OF PICO Page 21

2. Conpile your source progran. This program should include the
statement GET "GSDEFS.SR" at its head.

3. Load the progran with one of tho fol lowing cor.unands:

On tho standard Alto:
BLDR 600/U <your program> APICO INITALTOIO

On the run-code display Alto:
BLDR 600/W <your prouran> Bi'ICO INITALTOIO

On the Color Graphics ~ovd:
Bl.DR GOO/\./ <your prooran> Cl'ICO 101 102

ThP. GOO/\! S\~i tch set ti nn is necessary to increase the space for
static variahlcs.

GENf.RATP~G HARD COPY
-----------~ -··--- -----

Aft<'r the pronrar.1 has generated a hard-copy fi ln, the file must he copied
over to nn XGP and printed. The copyinn process should be performed with
the aid of tht: Ethernet or MCA, wh3chcvr!r is appropriate. To print the
file (let us say it is called POO .xrq, typo the following conunand to the
XGP Nova: .

XPLOT POO.XB

After the usual preamble. the XGP will produce a one-page printout.
Several file-names may l>e included in the one XPLOT command in order to
print more than one hard-copy file:

XPl.OT POO .XB PO 1 .XB P02 .XB

Switches may be used to vary some of tho plotting parameters: a number may
be given in placo of the filo-namc argument, followed by a slash, followed
by a switch:

n/E Sets enlargement ton (1,2,3,4; default 1)
n/L Sets left margin to n (0-1200; default 100)
n/T Sets top margin to n (0-2000; default 100)
n/S Sets number of scan-lines per page (default 2000/enlargement)

Pico Manual ADVANCED FUNCTIONS Page 22

SECTION JV: ADVANCED FUNCTIONS

The functions dcscrihcd in this section are not particularly difficult to

use, but arc proh<1tily likely to be used less frequently than those

described in Section II. They fall into four categories: those for

perforning special transformations, thoso for handling input events, the

DRA\..ICURVE function for drawing curves, and some miscollaneous other

functions.

CllR\'E DRA\Jl ~Cr --·- - --- --- -- -

nRA\.!CtrlWE < x, • Y, • x, ' • Y' ' • x' , • . Y' ' ' >

This ft111r:lin11 MilY tie us1'd in conjunction with MOVETO to draw

Jl ;ir· •H·1n tr· i c c 11 IJ i c cur· v es . llf\;\~.'Cl!!{\'E draws a curve from the pres on t

(x,y) position t.hrounh a loctJs specifiPd hy the first, second, nnd

third dPrivatives of thP curve at the point (x,y). Tho curve traced

out is Uw locus of (X, Y) defined parilnotrical ly by values of t

bo tween 0 <HHI 1 in the Pqu;1 ti on:

X = x'' 't~IG + x' •t 2tz + x't + x
Y = y' '•t 3 !G + y' 1 t 2 12 + y't + y

whf'ro (x,y) is the current position. V<1l11es of X and Y are

tr.1nsforr1Pd by h'hatcver transformation is 1n effect, before the curve

is displayed. lhe six p,1r;u:i~ters are pointers to packed floating

point nllmhers (two-\'1ord forr:iat).

Ilob Fleqal 's knot-selrction and spline-solvinu software is available

(althou~Jh not wi.thin Pico) for calculating clcr·jvative values from knot

lists and othPr repn~sentations such as hand-drawn input, or points and

boundary conditions.

Note that filled curves can be specified by calling BEGINrILL, following

this with calls to MOVETO and DRAWCl!RVE, and terminating with ENDFILL.

TR/\NSFORMAT JONS

This section describes the primitive transformation functions used to

implement the lJRA\.J function. Pico maintains a "current transformation

matrix," n 3x3 homonC'neous tr,1nsfon:1ation applied to each coordinate pair;

it nlso maintains the pane-to-screen tra11sform;1tion parilmcters, and a

"clipping re11ion," a region of the screen that describes the limits of the

visible display. Internally, Pico also keeps a temporary matrix (TM) that

accunuliltes the effects of a set of transforrnations specified with

TRANSLATE, SCALE nnd ROTATE. \.!hen a graphicill primitive is called, the Ht

is postmultiplied by the current trnnsforrnation matrix and the result

replaces the current transfornation matrix.

SETHJ\TRIX (pointcr-to-3x3-natrix). Sets tho current transformation

matrix from the matrix specified by the pointer. \.lhonever a new

seoncnt is opened, the niltrix is automatically set to the identity

matrix. Tho matrix is stored in packed floating-point format.

SAVEMATRIX (). Savos the current transformation matrix on a stack, and

sets the TM matrix to the identity matrix.

Pico Manual ADVANCED FUNCTIONS Page 23

RESTORF.MJ\TRIX (). Restores the current transfornation matrix from the
stnck.

TRANSLATE (trnnslation-x, translntion-y). Postr:iul ti ply the TM by the
matrix specifying translation through (translation-x.translation-y).

SCALE (sx [[,sy],sw]). Postmultiply the TM by the matrix specifying
scalinq f1y factors (sx/sw,sy/sw). If sy is omitted, the scale
factors nrn sx/sw in both dir£'ct.ions; if sy and sw are omitted, the
scale factor is sx in !10th directions.

ROTATE (rotation-in-de~1rres). l'ostrlllltiply the TM by a matrix
specifyinq roti\tion throuqh the specified illl'Jle about the origin.

COS (inteqcr-cleqrecs). This function returns, in floating-point
accurmlatnr 1. the vi\lt1e of the cosine of the nnglc specified in the
call.

The nhovc functions are usC'd in transforminr1 information into page
coordinat.os. As explainrd in Snction 11, tho SEH./HJDOW function may be
usnd to :,(dcct ;1 rect..innular re1ion of the paqe for display on the screen.
Pico jn fact allo\o.·s control not only over this window, but also over the
vic111por-t, o rcc:tilnq11lar ri~qion on the screen onto which is mapped all the
information lyinu within the window:

SETVIEHPORT (xleft,ybottom,xri~iht,ytop). This function specifies the
limits, in screen coordinates, of the viewport within ·which
subsoqunnt graphical informiltion is to be displayed on the screen.

Thus SETWINDOW effectively says, "show mo this much of the page", and
SETVlE\.Jl'OllT says, "show it to me in this renion of the screen". The
SETWINOO\./ and SElVlEWPORT functions should be call{!d before creatinq the
display file scqments on whjch they arc to operate, much as SETWJNDOW is
called at the start of the example on page 14. Several different
vicwports may be used in generating one display, thus:

LET MJ\IN() BE [
IN I Hi IV\ I' 11 I CS ()
SETWHJllO\-/(wxl 1,wybt .wxrt ,wytt)
SETVIEWl'ORT(vxlt.vyb1.vxrt,vyt1)
OPENSECi(k.)

POSTSECi(l)
SEHi I ~llO\.l(wxl2, wyb2, wxr2, wyt2)
SETVJE\.IPORT(vxl2,vyb2,vxr2,vyt2)
OPENSEG(m)

POSTSECi(n)
UPDATE()

II
II

II

II
II

II

II

set first window
and first viewport

define first part of picture

set second window
and second viewport

define second part of picture

update screen

Pico Manual ADVANCED FUNCTIONS P_age 24

INPUT

It is not alwi\ys possible to predict which dcvico will next ncncrato an

input t.o nn intl'ri\ctiv0 prour.i1'l. The us<?r 11,1y type on the keyboard, point

with the stylus or llrnw a stroke. The KE/\lll'OSITION, KE/\DSTROKE and

RECOGNIZE functions described in Section I l iln! designed for applications

where one can predict the order in which inputs occur. In casns whore tho
on!Pr of inputs is not known, it is n<'cessary to use a more ncncral set of

input routin,~s thilt hnndlP f'Prnt.s. lhr-sP. routinr>.s collect C'Vents from the

input devices ;rnd 5tcire thPr:i in a q11P11P. in their- chronological ord1!r of

occurT0ncn. The pronra11 rHy c.111 functions to Wilit for the next event to

arrivn in the queue, to detl'rr1inc hhilt sort of ('vent it was, to read the

input data, and to delete the event. fron the queue.

An cvnnt is any one of the following:

1. A krystrokc>;
2. A str-okc, gl'.'nN·nted hy pressing and releasing the stylus or mouse

switch; the device may or r:My not ho moved whi lo the switch is

dcpn:!.SS!~d.

3. A tir:1eout event: the tir:i<?r is alw.tys started on conpletion of a

stroke, nnd stops either when it tines out, or when another stroke is
completed, whichevPr hilJll'('llS first. In the latter case, no event is

gnnf'ratf'd. On complntion of tint•o11t, tho character recognizer

attempts Lo recognize all tho strokes iri the queue. If the queue is

empty of strokes (i.e. stroke events have been deleted as they
happen), no event is generated; otherwise the recognizer's best guess

is returned in the cvnnt data.

Whenever an event occurs, all events of other types are automatically

deleted from the queue. It is therefore unnecessary to delote evonts

except to prevent invocation of the recognizer.

The following functions arc provided for event-handling:

GETEVENT (). This functinn waits until the next event occurs, and then

returns to the program a vector, V say, containing in V>>EVENT.TYPE
the type of cvC'nt (1, 2 or 3 as above). Ac.cording to this value, the

rost of V contains:

if V>>EVENT.TYPE equals 1 (keystroke):

V •. EVENT. CODE
V»EVENT .KF.YS

the ASCII code of the character;
four words containing the status of the
keyboard, in Alto format.

if V>>EVENT.TYPE equals 2 (s~roke) or 3 (timeout):

V»f.VENT. CODE th~ code of the recognized charilcter, an
eight-bit integer on which the recognizer
has previously been trained (see Appendix
3); zero in type-2 events.

Pico Manual

V»EVf.NT .XLF.FT
V>>rYl.NT. HOTTON
V»LVfNT . .\E IrdlT
V»EVENT. YTOI'
V»LVENT. IW~ED

V»EVENT .CONF

V»EVENT .STROKE

V»EVENT .S\.JITCll

ADVANCED FUNCTIONS Page 25

the coordinates of tho bottom loft and
top ri:Jht cor11crs of the rectangle
surro11ndinu tile stroke or strok.os;
these arc in screen coordinates.

TRUf. in tho case of an inkod stroke, FALSE
o t h <' rw i s I' ;
Cnnfidcncc (0 to 100) with which the
character was rcco~nized;
Pointer to stroke vector, in screen
coordinate:;, stored as in Finuro 8; typo-3
cvP.nts return ii vector, in identical
forT1<1t, cnntilininn tho coordlnatcs of the
strok<' CPllU~rs.
Switch nuriher (t.1hlct always returns t).

DELETLVUJT (). This function d('letcs the nost recent event. If no ev0nts renain in the evrnt queue, this function has no effect.

CLEJ\IU.\'ENTS (). This function clears tho event queue of all events.

SE TI ~ !' U Tl' Ml 1\ ~l E TE RS (tl n P (111 t - i n t I' r v a I , i n k - to l c r .111 cc , s i111 p 1 e - i n t e r v i1 1)
This function r.iay In~ usPd to modify p.ir·arieters controJ11nrJ eventhandl inq. lt spPcifies the tirieout interval for character recoqnit.ion, in r.iillisPcorHls (default is 1000), the distunce to be rnnved l•y t.lw stylus or nouse before inkinq begins (default is 4 screen units), nnd the ninir:ium dist;111cc bP.tween points recorded in the stroke vector (default is 4 screen units). If any of these arguments arc negutive, the default Vulucs are i.nserted in their place.

SCREENTOl'AGE (screenx,scrc<'ny,point<'r-to-pauex,pointer-to-pagey).
This routine may be us<'d to convert coordinates back from screen coordinatPs to page coordinates; it uses the most recent window and vie\·1port setlin~1s. The thi.rd and fourth ar9unents should be pointers to two locations where the puqe-coordinate equivalents of the first two arguments are to be stored.

REFERENCES

[N&S]. W.M. Newmon and R.F. Spr-oull, Principles of Interactive Computer Graphics, McGruw Hill, 1973.

[TENGR]. W.M. Newnan and R.F. Sprou11, HAn Approach to Grnphics System llesi!ln," Proceedings of IEEE, April 1974. (Available as CSL Graphics nrch).ve 3GR-013)

(NCC]. W.M. Newman, "An Informal Graphics System Based on the LOGO Language," Proceedings 1973 National Computer Conference.

Pico Manual APPENDICES Pago 26

Appendix 1: Free Storage Routines

A free-storage irnck«go is provided as an int.cqrnl part of Pico. Tho
packnno providas tho fol lowing procedures for allocating and releasing
variablo size blocks:

INITFREESTORE (S).
Or\l<llliZ('S tho free storage srncc as ono larrre block of size r.J, such
that frMir: space of S \':ords is if possible mado availablo.
IN 1 T FR U. ~; 1 0 R L s c ts up tho il p 11 r op r i u t c g lob a 1 s :

FH:STl\IOCK:point.Pr to first bl<1ck,
Lt\:-; n l Lo ct~ : r o i n t P r t. o l ;1 s t. b l o ck ,
AV/\JU11\X: naxinuri size or avail<llile block (see GETBLOCK),
A\11\ l l.TOTAL: total s i 7P of fn'c sp;1cc.

The last two varinblos arc declared external in GSDEFS.SR.

INITFIU:r:no1u: returns the ilctual size of free storage, i.e. the
initial SPt.ting of AVAILTOTAL.

GE TB LOCI~ (N).
GETBLOCK.X (N).

Returns o pointer to the fir:s~J_r::_~Q_ h1ord of a hlock of size N.
th<~ actunl nunber of usilble 1-wrds. The actual size of the block
ho l>otwfi<'n N and N+E, so that. no blocks of size smaller than£
small number -- will exist (if N<f, N is set to£).

N is
will
-- a

GETBLOCK and GETRLOCKX di ff er in the way error returns arc handled.
CiETBLOCK returns 0 (i.e. ftll,5£) if no block of size N is available.
Ttrn qlob<ll /\VA I UlJ\X wi l 1 then con ta 1 n the size of the larncr
available block. Notice that the content of this location is only
mc;n1in!1ful in this context. It is up to tho caller to verify the
value returned and dr!cidn whether to call afwin with a smaller value
(smaller than AVAILMAX). GETBLOCKX will instead print a message and
exit.

GETl1JGBLOCK OJ)
GETBHiBLOCKX (N)

Returns tho biggest block of size greater than N. Error returns are
as explained above.

PUTBL.OCK(BLOCK-POINTER)
Retun1s a block to free storage, merging it into a larger block if
possible. Also checks that tho boundary tags are correct. The
<irq11nent should be a pointer previously returned by GETBLOCK or
GETBIGBLOCK.

TRIMBLOCK(BLOCK-POINTER,FREE-Yorn-roINTER)
Returns to free storilqe the unused words at the end of a block if
there are more th on f of thrr1). nnd resets the boundary tags. The
first ar!JUr:icnt is the usual block pointer; the second argument is a
pointer to the first unused word of the block.

Pico Manual APPENDICES Page 27

Tho fr-co s toraqo allocation procodurns use tho "boundary tan" tochn ique
(Knuth, vol. #1, p.1435). A froo block. of storage is structured as
follows:

A resorved block looks like:

~ddress_,

- (f·:+2)

r c·r~t1r:;:rr.C.Tn tcr
bilck r;(;fl1ter

(N-2)

>------------
- (N+2)

N+2

N i.:cirds

N+2

Figure 11.

Pico Manual APPENDICES Page 28

Appendix 2: Floating-point Routines

The floiltinq-point routines clPscribed below wi 11 run on a standard Alto

(<GRAPllICS>FLOATAL TO. BR) or on a NOVA (<GRAJ•HICS>FLOATNOVA. BR).

Thero arc 16 floc1tinq-point nccur.mlators, numbered 0-15. Each stores a

16-hit binary exponent and a 32-bit mantissa. These accumulntors mny be
loilded, stored, operated on, and tested with the operations descri.bed

below.

ConvPntions for the description: 'C1cn1111her' rf'ff!rs to iln ilccuriulator

numtior (0-15); '«rq 1 is cithnr .in accunuJ,1tor number (if 'arg' < 16) or a
pointer to a p;ickNI (?.-\omrcl forn;1t) floating point nu11bP.r; 'ptr-to-fp

nurilior' is a pointPr to a pi1ckNI (?.-\·:onl rorrrnt) floating point number.

If n function rl:'t.11r·11s a valuP, the synhol "==>" is used to show the

result; fur1ctiuns that do not hove the"==>" following them return their

first an1ur:ient as a result.

FLD (acnur:ilu~r, arri)
Load thn specified ac:c111:i11lntor from source specified by arg.

FST (acnumhPr, ptr-to-fp-nurnher)
Store thn contents of the accumulator into a 2-word packed floating

point fon1at. Error if exponent is too large or small to fit into

the packed representation.

FTR (acnumher) ==> intcgf!r
Truncate the floating point number in the accumulator and return the

intcner value. Error if number in ac cannot fit in an integer

representation.

FLDI (acnurnhcr,integer)
Load-imrnndiate of an accur.mlator with the integer contents (signed

2's complement).

FNECi (acnumber)
Negate the contents of the accumulator.

FAD (acnumhcr,ar!l)
Add the number in the accumulator to the number specified by arg and
lcnvc the result in the accumulator.

FSB (ncnunbcr,arg)
Subtract the number specified by 'arg' from the number in the

accumulator, and leave the result in tho accumulator.

FML (acnumhnr,arg) [also called FMP]
Multiply the number spPcificd hy 'arg' by the number in the

accumulator, and leave the result in the ac.

FDV (acnumbcr,arg)
Divide the contents of the accumulator by the number specified by

arn, nnd leave the result in the ac. Error if attempt to divide by

zero.

Pico Manual APPEIJDICES Page zg

FCM (acnunbcr,arg) ==> integer
Conparn tho number in the ac with the number spocified by 'arg'.
Return

-1 IF ARG1 < ARG2
0 IF ARGt = ARG2
1 IF ARG t > ARG 2

FSN (ucnunbcr) ==> intencr
Rotun1 thn sinn of tho

-1
0
1

flna t.inri point 1111nbcr.
if ~i<Jll rH•qativo
if value is f'xactly 0 (quick test!)
if si9n positive <rnd nur:iber non-zero

FLDV (0c1111nher, ptr·-tn-vector)
l{P;id the '1-elcr:-irnt v0ctor into t.h(~ internal representation of a

flo<1ti!l<J poi11t llll!1l1er·. Th<' '1-1-.·ord vector is arranged as follows: a
wor·d for siqn (-1 nr~ans llPOilt.ive; 0 positive), a word of signed
CXPOIH'l1l; two Wl•r·ds of' r1<1ntissa.

FSTV (acnm:itwr, ptr-to-vec tor·)
\.Jr-i to the accumulator into the 4-elemcnt vector in internal
represontiltion.

The 2-word packed fon:1at is:

Tho first wore! is:
siqn -- 1 hit
exponent -- excess 12B fornat (8 bits)

will be complPn0nt.ed if sign negative
mantissa -- first 7 bits

Tho seconrl word is:
mantissa -- 16 more bits

Noto this format pcr·mits pack0d numbers to be tested for sign, to be
compored (by comp11ring first words first), to be tested for zero (first

word zo1·0 i.s s11ffici1~nt), ond (with so1:10 care) to be complc)mented.

If you wish to capture errors, put tho address of a BCPL subroutine in the

static Fl'errprint. The routine will be called with one parameter:

0 Exponent too large -- FTR
1 Exponent too largo -- FST
2 Dividinq hy zero -- Ff>V
3 Ac number out of range (any routine)

Tho floating-point routines use a work area, pointed to by the static

FPwork, for storaqc of all accunulators, etc. Tho first word of that area

is its lenqth. If FPwork 1 s chilll')ed to point to another work table of

adequate lennth, tho subroutines will use it for working area. This

permits subroutines to save and restore the contents of tho floating-point
accumulators.

Pico Manual APPENDICES Page JO

Appendix 3: Training the Character Recognizer

A program called TRAINER has been written to enable users to sot up files

for tho reconnizer·. The cnnpilccl version of this pr·onram, suitable for

uso on a standard Alto, is TRAJNLR.0:1 (a dump file) on <GRAPHICS>.

To start the progrilm, typo TRAINER. You will be asked if you want to add

to <m existing file: if so, type the file name, followed by <roturn>; if

not, just type <return>. lhrn "display will appear similar to the one

ovorle,1f, <ind you will be askPrl t.o dr-.1w a ch<H'ilctcr.

Ever·y time yn11 draw a charact0r, TRAI~F.R will try to recognize it. If it

filils, it \.;jl] sily Stl, and ynu ~.ltnuld point to the letter that corresponds

to the synhol you dn•w. Ir i L ~,ucc:Pcrls, you nay pn int anywhere to confirm

corr('Ctll<''.->S. Jf ynu wish t.o u·;1in toil character other than nn uppar-cnse

1 et t er , poi n t to t. h c C1 ch a r il ct 1•1· il n rJ th r) 11 give the r c q 11 ired o ct i\ 1 v a 1 u e .

If you dr;iw nn inaccurate symbol, you m;iy reject it by pointing to the

"re j" synlii.11. ·

The three t.nrgets nt tho tap of the screen are to he used to clear the

sc:rel'n nf ink, to file tho rasult.s of a trainin\J session, and to exit from

TRAINER.

As traininq proceeds, lurqr. ano11nts of r~r.mory may be used up. You can

compact by writ inn out a ti le, then startinq TRAINER aqain nnd reading in

the file. You sho11ld do this if areas of the screen become unreceptive to

ink.

\.IR IT I NG YOllR O\.JN TRI\ INER ----.. -·- --··------~ --··-·- --····- "-·-----·-

Three spncial functions exist, in a file called CiSTRJ\IN.BR on <GRAPHICS>,

that may be used in tho construction of training programs. These three

functions i\re:

INSERT!'ROPS (). If called after calling RECOGNIZE or after receiving a
typc-3 event, this function saves the properties used by the

recoqnizer. They mny later be inserted in the tables by means of the

INSERTCODE function.

INSERTCODE (code). This function enters into the recognizer tables the

properties saved by INSERTPROPS, identifying them with the specified

eight-bit code.

WR ITEl'ROl'TJ\B (filename). This function writes out the recognizer tables

onto a filo of the specified nilmc.

Pico Manual APPENDICES Page 31

exit clean f 11e

@ A B c D E F G H I J K l M N 0 p Q R s T u v w x v z rej

figure 12.

Pico Manual APPENDICES Pago 32

Appendix 4: Creating .CC Font Files

Font descriptions in n forr.i.1t accrqitablc to tho graphics system (hereafter
cnllcd CC fonni\t) can bn crc.ited from <lily font in ".CU" format. /\11 fonts
currently creiltcd at PARC nre available in this format (consult Ben Laws,
or the <LMJS> directory on tl1\XC, for avililable styles). A LISP pronram is
used to crcnte CC files from this. fornat. Tho dialog below illustrates
the uso of tl1is program (characters typed by tho user arc underlined):

@I.I SP

INTERLISP-10 xxxx

Good nfternoCln, faithful.

Clll\INFNS .
--co~~\'I n~u.
Filpn,11w in
GACILI\. CU; 1
Fi 1 en;u.w for
{i/\CllA. CC; l
Bnsoline for

.CU format to be converted •... CiA<JIA:...~.~!....

.CC version GAlllA.CC

this font 4

•. <prints each character code in decimal as it is processed>

If error messages are generated, consult the Graphics Gr6up.

Pico Manual APPENDICES Page 33

Appendix 5: The XPLOT file Structure·

An .XB file consists of a hf'nrlr-r, followed by a tP.xture table, followed by

any numtrnr of sciln-line-stre-•iris~ Each scan-linc--Ts-pr-occss"<i"d in ordor of

its appoaronce-Ii1-tiic .. {fYc:--fr·on top to bottom of the page.

The header is a 4-word hlocK that specifies:

word 0:
word 1:
word 2:
word 3:

on lar~:wnent
left 1aan1in
top n<lrqin
s c an-1i11 e - st reams /pu!JO

(t)
(100) .
(100)
(2000/cnlurgemont)

/E
/L
/T
/S

Ttwso spoc:ify the c0onlirwtrs (in X(iP rrsolution units) of tho urpor lnft

h,111d corner t1f the picttlr'P, t.hP (•nlarqP1H·nt (intPqer from 1 to 4), and the

nunbor of sciln-lino spccificilt.ions in the file that should fall on one the

XCiP paq(~. - If illl entry is zero, it is rrplilcN.I by .the dofnult listed in

pa1·011tlinses. Tho antrius m.iy also I.Jo ovl~rridden l>y switches specified in

tho comnand line.

A toxtun:! table is a count, n, foJ lowcrl by Zn words. The first n are
called the T table, ttrn second n the W talllo.

A scun-lino-strenm is a count, n, followed by ahs(n) words of either run

or hit-mnp data. If n 0, the words are interpreted as bits to be uiven

to tho the XGP (high order bit of a word appears left-most on the page).

If n > 0, the words are interpreted as runs: each word specifies a pattern

(H) and a run (R). The high order 8 hits are fl, the low order R. The

idea is· that the pattern s1wcifiPd by II will be repeated for R bit

positions on the scan-line. Tho 1wxt (H,R) pair will pick up whore the

previous loft off.

A run is specified by H and R as follows: H is an index into the T and W
tables. T[ll] is a bit sequence to send to the the XGP; W[H] is the width

(or modulus) of the bit sequence (must be between 9 and 16 inclusive).

The aluorithm for displaying runs (at enlargomont 1) is:

while R W[ll] do begin
show the high-order W[H] bits of the pattern T[H].
R .. R-W[ll]
end;

if R neq 0 then show the first R bits of the pattern T(H]

Note: for increased efficiency, H=O always corresponds to the blank

sequence (i.e. white space on the the XGP).

Handy constants: nn tho XGP page is about 1300 dots across and 2100 scan-

1 inos long. Horizontal and verticnl resolutions are thus about 200 dots

per inch.

