
Inter-Office Memorandum 

To Mesa Users Date May 31, 1978 

From Dave Redell, Dick Sweet Location Palo Alto 

Subject Mesa 4.0 Process Update Organization SO~/SO 

XEROX 

Filed on: [IRIS]<MESA)DOC)PROCESS40.BRAVO 

Mesa provides language support for concurrent execution of mUltiple processes. This allows 
programs that are inherently parallel in nature to be clearly expressed. The language also 
provides facilities for synchronizing such processes by means of entry to monitors and 
waiting on condition variables. 

The next section discusses the forking and joining of concurrent process. Later sections deal 
with monitors, how their locks are specified, and how they are entered and exited. Condition 
variables are discussed, along with their associated operations. 

10.1. Concurent execution, FORK and JOIN. 

The FORK and JOIN statements allow parallel execution of two procedures. Their use also 
requires the new data type PROCESS. Since the Mesa process facilities provide considerable 
flexibility, it is easiest to understand them by first looking at a simple example. 

10.1.1. A Process Example 

Consider an application with a front-end routine providing interactive composition and 
editing of input lines: 

ReadLine: PROCEDURE [s: STRING] RETURNS [CARDINAL] = 
BEGIN 

c: CHARACTER; 

s.length +- 0; 
DO 

c +- ReadChar[]; 
IF ControICharaCler[c] THEN DoAclion[c] 
ELSE AppendChar[s,c]; 
IF c = CR THEN RETURN [s.length]; 
END LOOP; 

END; 

The call 

n +- ReadLine[buffer]; 

will collect a line of user type-in up to a CR and put it in some string named buffer. Of 
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course, the caller cannot get anything else accomplished during the type-in of the line. If 
there is anything else that needs doing, it can be done concurrently with the type-in by 
forking to ReadLine instead of calling it: 

P .. FORK ReadLine[buffer]; 

<concurrent computation) 

n .. JOIN p; 

This allows the statements labeled <concurrent computation) to proceed in parallel with 
user typing (clearly, the concurrent computation should not reference the string buffer). 
The FORK construct spawns a new process whose result type matches that of ReadLine. 
(ReadLine is referred to as the "root procedure" of the new process.) 

p: PROCESS RETURNS [CARDINAL]; 

Later, the results are retrieved by the JOIN statement, which also deletes the spawned process. 
Obviously, this must not occur until both processes are ready (Le. have reached the JOIN and 
the RETURN, respectively); this rendevous is synchronized automatically by the process 
facility. 

Note that the types of the arguments and results of ReadLine are always checked at compile 
time, whether it is called or forked. 

The one major difference between calling a procedure and forking to it is in the handling of 
signals; see section 10.5.1 for details. 

10.1.2. Process Language Constructs 

The declaration of a PROCESS is similar to the declaration of a PROCEDURE, except that only 
the return record is specified. The syntax is formally specified as follows: 

TypeConstructor .. -... I ProcessTC 

ProcessTC ::= PROCESS ReturnsClause 

ReturnsClause 

ResultList 

.. - empty I RETURNS ResultList 

.. - FieldList 

-- from sec. 5.1. 
-- from sec. 5.1. 

Suppose that f is a procedure and p a process. In order to fork f and assign the resulting 
process to p, the ReturnClause of f and that of p must be compatible, as described in sec 5.2. 

The syntax for the 

Statement 

Expression 

ForkCall 

JoinCall 

Call 

FORK and JOIN statements is straightforward: 

.. - ... I JoinCall 

::= ... I ForkCall I JoinCall 

.. - FORK Call 

::= JOIN Call 

.. - (see sections 5.4 and 8.2.1) 

The ForkCall always returns a value (of type PROCESS) and thus a FORK cannot stand alone as 
a statement. Unlike a procedure call, which returns a RECORD, the value of the FORK cannot 
be discarded by writing an empty extractor. The action specified by the FORK is to spawn a 
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process parallel to the current one, and to begin it executing the named procedure. 

The JoinCali appears as either a statement or an expression, depending upon whether or not 
the process being joined has an empty ReturnsClause. It has the following meaning: When 
the forked procedure has executed a RETURN and the JOIN is executed (in either order), 

the returning process is deleted, and 

the joining process receives the results, and continues execution. 

A catchphrase can be attached to either a FORK or JOIN by specifying it in the Call. Note, 
nowever, that such a catchphrase does not catch signals incurred during the execution of the 
procedure; see section 10.5.1 for further details. 

There are several other important similarities with normal procedure calls which are worth 
noting: . 

The types of all arguments and results are checked at compile time. 

There is no intrinsic rule against multiple activations (calls and/or forks) of the 
same procedure coexisting at once. Of course, it is always possible to write 
procedures which will work incorrectly if used in this way, but the mechanism itself 
does not prohibit such use. 

One expected pattern of usage of the above mechanism is to place a matching FORK/JOIN pair 
at the beginning and end of a single textual unit (Le. procedure, compound statement, etc.) so 
that the computation within the textual unit occurs in parallel with that of the spawned 
process. This style is encouraged, but is not mandatory; in fact, the matching FORK and JOIN 

need not even be done by the same process. Care must be taken, of course, to insure that 
each spawned process is joined only once, since the result of joining an already deleted 
process is undefined. Note that the spawned process always begins and ends its life in the 
same textual unit (Le. the target procedure of the FORK). 

While many processes will tend to follow the FORK/JOIN paradigm, there will be others whose 
role is better cast as continuing provision of services, rather than one-time calculation of 
results. Such a "detached" process is never joined. If its lifetime is bounded at all, its 
deletion is a private matter, since it involves neither synchronization nor delivery of results. 
No language features are required for this operation; see the runtime documentation for the 
description of the system procedure provided for detaching a process. 

10.2. Monitors 

Generally, when two or more processes are cooperating, they need to interact in more 
complicated ways than simply forking and joining. Some more general mechanism is needed 
to allow orderly, synchronized interaction among processes. The interprocess synchronization 
mechanism provided in Mesa is a variant of monitors adapted from the work of Hoare, 
Brinch Hansen, and Dijkstra. The underlying view is that interaction among processes always 
reduces to carefully synchronized access to shared data, and that a proper vehicle for this 
interaction is one which unifies: 

- the synchronization 

- the shared data 

- the body of code which performs the accesses 
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The Mesa monitor facility allows considerable flexibility in its use. Before getting into the 
details, let us first look at a slightly over-simplified description of the mechanism and a 
simple example. The remainder of this section deals with the basics of monitors (more 
complex uses are described in section lOA); WAIT and NOTIFY are described in section 10.3. 

10.2.1. An overview of Monitors 

A monitor is a module instance. It thus has its own data in its global frame, and its own 
procedures for accessing that data. Some of the procedures are public, allowing calls into the 
monitor from outside. Obviously, conflicts could arise if two processes were executing in the 
same monitor at the same time. To prevent this, a monitor lock is used for mutual exclusion 
(i.e. to insure that only one process may be in each monitor at anyone time). A call into a 
monitor (to an entry procedure) implicitly acquires its lock (waiting if necessary), and 
returning from the monitor releases it. The monitor lock serves to guarantee the integrity of 
the global data, which is expressed as the monitor invariant -- i.e an assertion defining what 
constitutes a "good state" of the data for that particular monitor. It is the responsibility of 
every entry procedure to restore the monitor invariant before returning, for the benefit of 
the next process entering the monitor. 

Tpings are complicated slightly by the possibility that one process may enter the monitor and 
find that the monitor data, while in a good state, nevertheless indicates that that process 
cannot continue until some other process enters the monitor and improves the situation. The 
WAIT operation allows the first process to release the monitor lock and await the desired 
condition. The WAIT is performed on a condition variable, which is associated by agreement 
with the actual condition needed. When another process makes that condition true, it will 
perform a NOTIFY on the condition variable, and the waiting process will continue from 
where it left off (after reacquiring the lock, of course.) 

For example, consider a fixed block storage allocator providing two entry procedures: 
Allocate and Free. A caller of Allocate may find the free storage exhausted and be obliged 
to wait until some caller of Free returns a block of storage. 

StorageAllocator: MONITOR = 
BEGIN 

StorageAvail abl e: CONDITION; 

FreeList: POINTER; 

Allocate: ENTRY PROCEDURE RETURNS [p: POINTER] = 
BEGIN 

WHILE FreeList = NIL DO 

WAIT StorageAvail abl e 
END LOOP; 

p ... FreeList; FreeList ... p.next; 
END; 

Free: ENTRY PROCEDURE [p: POINTER] = 
BEGIN 

p.next ... FreeList; FreeList ... p; 
NOTIFY StorageAvailable 
END; 

END. 
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Note that it is clearly undesirable for two asynchonous processes to be executing in the 
StorageAllocator at the same time. The use of entry procedures for Allocate and Free 
assures mutual exclusion. The monitor lock is released while wAITing in All ocate in order to 
allow Free to be called (this also allows other processes to call Allocate as well, leading to 
several processes waiting on the queue for StorageAvaiiable). 

10.2.2. Monitor Locks 

The most basic component of a monitor is its monitor lock. A monitor lock is a predefined 
type, which can be thought of as a small record: 

MONITORLOCK: TYPE = PRIVATE RECORD [locked: BOOLEAN, queue: Queue]; 

The monitor lock is private; its fields are never accessed explicitly by the Mesa programmer. 
Instead, it is used implicitly to synchronize entry into the monitor code, thereby authorizing 
access to the monitor data (and in some cases, other resources, such as I/O devices, etc.) The 
next section describes several kinds of monitors which can be constructed from this basic 
mechanism. In all of these. the idea is the same: during entry to a monitor, it is necessary to 
acquire the monitor lock by: 

1. waiting (in the queue) until: locked = FALSE, 

2. setting: locked'" TRUE. 

10.2.3. Declaring monitor modules, ENTRY and INTERNAL procedures 

In addition to a collection of data and an associated lock, a monitor contains a set of 
procedure that do operations on the data. Monitor modules are declared much like program 
or definitions modules; for example: 

M: MONITOR [arguments] = 
BEGIN 

END. 

The procedures in a monitor module are of three kinds: 

Entry procedures 

Internal procedures 

External procedures 

Every monitor has one or more entry procedures; these acquire the monitor lock when called, 
and are declared as: 

P: ENTRY PROCEDURE [arguments] = ... 

The entry procedures will usually comprise the set of public procedures visible to clients of 
the monitor module. (There are some situations in which this is not the case; see external 
procedures, below). The usual Mesa default rules for PUBLIC and PRIVATE procedures apply. 

Many monitors will also have internal procedures: common routines shared among the 
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several entry procedures. These execute with the monitor lock held, and may thus freely 
access the monitor data (including condition variables) as necessary. Internal procedures 
should be private, since direct calls to them from outside the monitor would bypass the 
acquisition of the lock (for monitors implemented as multiple modules, this is not quite 
right; see section 10.4, below). internal procedures can be called only from an entry 
procedure or another internal procedure. They are declared as follows: 

Q: INTERNAL PROCEDURE [arguments] = .•• 

The attributes ENTRY or INTERNAL may be specified on a procedure only in a monitor module. 
Section 10.2.4 describes how one declares an interface for a monitor. 

Some monitor modules may wish to have external procedures. These are declared as normal 
non-monitor procedures: 

R: INTERNAL PROCEDURE [arguments] = .•. 

Such procedures are logically outside the monitor, but are declared within the same module 
for reasons of logical packaging. For example, a public external procedure might do some 
preliminary processing and then make repeated calls into the monitor proper (via a private 
entry procedure) before returning to its client. Being outside the monitor, an external 
procedure must not reference any monitor data (including condition variables), nor call any 
internal procedures. The compiler checks for calls to internal procedures and usage of the 
condition variable operations (WAIT, NOTIFY, etc.) within external procedures, but does not 
check for accesses to monitor data. 

A fine point: 

Actually. unchanging read-only global variables may be accessed by external procedures: it is changeable 
monitor data that is strictly off-limits. 

Generally speaking, a chain of procedure calls involving a monitor module has the general 
form: 

Client procedure -- outside module 
~ 

External procedure(s) -- inside module but outside monitor 
~ 

Entry procedure -- inside monitor 
~ 

Internal procedure(s) -- inside monitor 

Any deviation from this pattern is likely to be a mistake. A useful technique to avoid bugs 
and increase the readibility of a monitor module is to structure the source text in the 
corresponding order: 

M: MONITOR = 
. BEGIN 

<External procedures> 
<Entry procedures> 
<Internal procedures) 
< Initialization (main-body) code> 
END. 
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10.2.4. Interfaces to monitors 

In Mesa, the attributes ENTRY and INTERNAL are associated with a procedure's body, not with 
its type. Thus they cannot be specified in a DEFINITIONS module. Typically, internal 
procedures are not exported anyway, although they may be for a multi-module monitor (see 
section 10.4.4). In fact, the compiler will issue a warning when the combination PUBLIC 
INTERNAL occurs. 

From the client side of an interface, a monitor appears to be a normal program module, 
hence the keywords MONITOR and ENTRY do not appear. For example, a monitor M with entry 
procedures P and Q might appear as: 

M Defs: DEFINITIONS = 
BEGIN 
M: PROGRAM [arguments]: 
P, Q: PROCEDURE [arguments] RETURNS [results]: 

END. 

10.2.5. Interactions of processes and monitors 

One interaction should be noted between the process spawning and monitor mechanisms as 
defined so far. If a process executing within a monitor forked to an internal procedure of 
the same mon\tor, the result would be two processes inside the monitor at the same time, 
which is the exact situation that monitors are supp()sed to avoid. The following rule is 
therefore enforced: 

A FORK may have as its target any procedure except an internal procedure of a 
monitor. 

A fine point: 

In the case of a multi-module monitor (see section 10.4.4) calls to other monitor procedures through an 
interface cannot be checked for the INTERNAL attribute, since this information is not available in the 
interface (see section 10.2.4). 

10.3. Condition Variables 

Condition variables are declared as: 

c: CONDITION; 

The content of a condition variable is private to the process mechanism; condition variables 
may be accessed only via the operations defined below. It is important to note that it is the 
condition variable which is the basic construct; a condition (Le. the contents of a condition 
variable) should not itself be thought of as a meaningful object; it may not be assigned to a 
condition variable, passed as a parameter, etc. 

10.3.1. Wait, Notify, and Broadcast 

A process executing in a monitor may find some condition of the monitor data which forces 
it to wait until another process enters the monitor and improves the situation. This can be 
accomplished using a condition variable, and the three basic operations: WAIT, NOTIFY, and 
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BROADCAST, defined by the following syntax: 

Statement 

WaitStmt 

NotifyStmt 

::= ... I WaitStmt I NotifyStmt 

::= WAIT Variable OptCatchPhrase 

::= NOTIFY Variable I BROADCAST Variable 

8 

A condition variable c is always associated with some Boolean expression describing a desired 
state of the monitor data, yielding the general pattern: 

Process waiting for condition: 

WHILE ~BooleanExpression DO 

WAIT C 

END LOOP; 

Process making condition true: 

make BooleanExpression true; 
NOTIFY c; 

i.e. as side effect of modifying global data 

Consider the storage allocator example from section 10.2.1. In this case, the desired 
BooleanExpression is "FreeList # NIL". There are several important points regarding WAIT 

and NOTIFY, some of which are illustrated by that example: 

WAIT always releases the lock while waiting, in order to allow entry by other processes, 
including the process which will do the NOTIFY (e.g. Allocate must not lock out the 
caller of Free while waiting, or a deadlock will result). Thus, the programmer is 
always obliged to restore the monitor invariant (return the monitor data to a "good 
state") before doing a WAIT. 

NOTIFY, on the other hand, retains the lock, and may thus be invoked without restoring 
the invariant; the monitor data may be left in in an arbitrary state, so long as the 
invariant is restored before the next time the lock is released (by exiting an entry 
procedure, for example). 

A NOTIFY directed to a condition variable on which no one is waiting is simply 
discarded. Moreover, the built-in test for this case is more efficient than any explicit 
test that the programmer could make to avoid doing the extra NOTIFY. (Thus, in the 
example above, Free always does a NOTIFY, without attempting to determine if it was 
actually needed.) 

Each WAIT must be embedded in a loop checking the corresponding condition. (E.g. 
Allocate, upon being notified of. the StorageAvailable condition, still loops back and 
tests again to insure that the freelist is actually non-empty.) This rechecking is 
necessary because the condition, even if true when the NOTIFY is done, may become 
false again by the time the awakened process gets to run. (Even though the freelist is 
always non-empty when Free does its NOTIFY, a third process could have caIled 
Allocate and emptied the freelist before the waiting process got a chance to inspect 
it.) 

Given that a process awakening from a WAIT must be careful to recheck its desired 
condition, the process doing the NOTIFY can be somewhat more casual about insuring 
that the condition is actually true when it does the NOTIFY. This leads to the notion 
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of a covering condition variable, which is notified whenever the condition desired by 
the waiting process is likely to be true; this approach is useful if the expected cost of 
false alarms (Le. extra wakeups that test the condition and wait again) is lower than 
the cost of having the notifier always know precisely what the waiter is waiting for. 

The last two points are somewhat subtle, but quite important; condition variables in Mesa act 
as suggestions that their associated Boolean expressions are likely to be true and should 
therefore be rechecked. They do not guarantee that a process, upon awakening from a WAIT, 

will necessarily find the condition it expects. The programmer should never write code 
which implicitly assumes the truth of some condition simply because a NOTIFY has occurred. 

It is often the case that the user will yvish to notify all processes waiting on a condition 
variable. This can be done using: 

BROADCAST' c; 

This operation can be used when several of the waiting processes should run, or when some 
waiting process should run, but not necessarily the head of the queue. 

Consider a variation of the StorageAllocator example: 

StorageAllocator: MONITOR = 
BEGIN 

StorageAvailable: CONDITION; 

I 

Allocate: ENTRY PROCEDURE [size: CARDINAL] RETURNS [p: POINTER] = 
BEGIN 

UNTIL <storage chunk of size words is available> DO 

WAIT StorageAvailable 
ENDLOOP; 

p ... <remove chunk of size words>; 
END; 

Free: ENTRY PROCEDURE [p: POINTER, size: CARDINAL] = 
BEGIN 

<put back storage chunk of size words> 

BROADCAST StorageAvailable 
END; 

END. 

In this example, there may be several processes waiting on the queue of StorageAvailable, 
each with a different size requirement. It is not sufficient to simply NOTIFY the head of the 
queue, since that process may not be satisfied with the newly available storage while another 
waiting process might be. This is a case in which BROADCAST is needed instead of NOTIFY. 

An important rule of thumb: it is always correct to use a BROADCAST. NOTIFY should be used 
instead of BROADCAST if both of the following conditions hold: 

It is expected that there will typically be several processes waiting in the condition 
variable queue (making it expensive to notify all of them with a BROADCAST). and 
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It is known that the process at the head of the condition variable queue will always 
be the right one to respond to the situation (making the multiple notification 
unnecessary); 

If both of these conditions are met, a NOTIFY is sufficient, and may represent a significant 
efficiency improvement over a BROADCAST. The allocator example in section 10.2.1 is a 
situation in which NOTIFY is preferrable to BROADCAST. 

As described above, the condition variable mechanism, and the programs using it, are 
intended to be robust in the face of "extra" NOTIFYS. The next section explores the opposite 
problem: "missing" NOTIFYS. 

10.3.2. Timeouts 

One potential problem with waiting on a condition variable is the possibility that one may 
wait "too long." There are several ways this could happen, including: 

- Hardware error (e.g. "lost interrupt") 

- Software error (e.g. failure to do a NOTIFY) 

- Communication error (e.g. lost packet) 

To handle such situations, waits on condition variables are allowed to time out. This is done 
by associating a timeout interval with each condition variable, which limits the delay that a 
process can experience on a given WAIT operation. If no NOTIFY has arrived within this time 
interval, one will be generated automatically. The Mesa language does not currently have a 
facility for setting the timeout field of a CONDITION variable. See the runtime documentation 
for the description of the system procedure provided for this operation. 

The waiting process will perceive this event as a normal NOTIFY. (Some programs may wish to 
distinguish timeouts from normal NOTIFYS; this requires checking the time as well as the 
desired condition on each iteration of the loop.) 

No facility is provided to time out waits for monitor locks. This is because there would be, 
in general, no way to recover from such a timeout. I 

10.4. More about Monitors 

The next few sections deal with the full generality of monitor locks and monitors. 

10.4.1. The LOCKS Clause 

Normally, a monitor's data comprises its global variables, protected by the special global 
variable LOCK: • 

LOCK: MONITORLOCK; 

This implicit variable is declared automatically in the global frame of any module whose 
heading is of the form: 

M: MONITOR [arguments] IMPORTS ••• EXPORTS ••• = 
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In such a monitor it is generally not necessary to mention LOCK explicitly at all. For more 
general use of the monitor mechanism, it is necessary to declare at the beginning of the 
monitor module exactly which MONITORLOCK is to be acquired by entry procedures. This 
declaration appears as part of the program type constructor that is at the head of the module. 
The syntax is as follows: 

ProgramTC .. -... I MONITOR ParameterList ReturnsClause LocksClause 

LocksClause ::= empty I LOCKS Expression I 
LOCKS Expression USING identifier : TypeSpecification 

If the LocksClause is empty, entry to the monitor is controlled by the distinguished variable 
LOCK (automatically supplied by the compiler). Otherwise, the LocksClause must designate 
a variable of type MONITORLOCK, a record containing a distinguished lock field (see section 
10.4.2), or a pointer that can be dereferenced (perhaps several times) to yield one of the 
preceding. If a LocksClause is present, the compiler does not generate the variable LOCK. 

If the USING clause is absent, the lock is located by evaluating the LOCKS expression in the 
context of the monitor's main body; i.e., the monitor's parameters, imports, and global 
variables are visible, as are any identifiers made accessible by a global OPEN. Evaluation 
occurs upon entry to, and again upon exit from, the entry procedures (and for any WAITS in 
entry or internal procedures). The location of the designated lock can thus be affected by 
assignments within the procedure to variables in the LOCKS expression. To avoid disaster, it 
is essential that each reevaluation yield a designator of the same MONITORLOCK. This case is 
described further in section 10.4.4. 

If the USING clause is present, the Jock is located in the following way: every entry or internal 
procedure must have a parameter with the same identifier and a compatible type as that 
specified in the USING clause. The occurrences of that identifier in the LOCKS clause are 
bound to that procedure parameter in every entry procedure (and internal procedure doing a 
WAIT). The same care is necessary with respect to reevaluation; to emphasize this, the 
distinguished argument is treated as a read-only value within the body of the procedure. See 
section 10.4.5 for further details. 

10.4.2. Monitored Records 

For situations in which the monitor data cannot simply be the global variables of the 
monitor module, a monitored record can be used: 

r: MONITORED RECORD [x: INTEGER, • • • ]; 

A monitored record is a normal Mesa record, except that it contains an automatically 
declared field of type MONITORLOCK. As usual, the monitor lock is used implicitly to 
synchronize entry into the monitor code, which may then access the other fields in the 
monitored record. The fields of the monitored record must not be accessed except from 
within a monitor which first acquires its lock. In analogy with the global variable case, the 
monitor lock field in a monitored record is given the special name LOCK; generally, it need 
not be referred to explicitly (except during initialization; see section 10.6). 

A fine point: 

A more general form of monitor lock declaration is discllssed in section 10.4.6 

CAUTION: If a monitored record is to be passed around (e.g. as an argument to a procedure) 
this should always be done by reference using a POINTER TO MONITORED RECORD. Copying a 
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monitored record (e.g. passing it by value) will generally lead to chaos. 

10.4.3. Monitors and module instances 

Even when all the procedures of a monitor are in one module, it is not quite correct to think 
of the module and the monitor as identical. For one thing, a monitor module, like an 
ordinary program module, may have several instances. In the most straightforward case, each 
instance constitutes a separate monitor. More generally, through the use of monitored 
records, the number of monitors may be larger or smaller than the number of instances of 
the corresponding module(s). The crucial observation is that in all cases: 

There is a one-to-one correspondence between monitors and monitor locks. 
. . 

The generalization of monitors through the use of monitored records tends to follow one of 
two patterns: 

Multi-module monitors, in which several module instances implement a single 
monitor. 

Object monitors, in which a single module instance implements several monitors. 

A fine point: 

These two patterns are not mutually exclusive; multi·module object monitors are possible, and may 
occasionally prove necessary. 

10.4.4. Multi-module monitors 

In implementing a monitor, the most obvious approach is to package all the data and 
procedures of the monitor within a single module instance (if there are multiple instances of 
such a module, they constitute separate monitors and share nothing except code.) While this 
will doubtless be the most common technique, the monitor may grow too large to be treated 
as a single module. 

Typically, this leads to multiple modules. In this case the mechanics of constructing the 
monitor are changed somewhat. There must be a central location that contains the monitor 
lock for the monitor implemented by the multiple modules. This can be done either by 
using a MONITORED RECORD or by choosing one of the modules to be the "root" of the 
monitor. Consider the following example: 

BigM onRoot: MONITOR IMPORTS ••• EXPORTS • • • = 
BEGIN 
monitorDatuml: .. . 
monitor Datum2: .. . 

pi: PUBLIC ENTRY PROCEDURE • • • 

END. 

BigM onA: MONITOR 
LOCKS root -- could equivalently say root.LOCK 
IMPORTS root: BigM onRoot ... EXPORTS ••• = 
BEGIN 
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p2: PUBLIC ENTRY PROCEDURE ••• 

x +- root.monitor Datuml; access the protected data of the monitor 

END. 

BigMonB: MONITOR 

LOCKS root 
IMPORTS root: BigM onRoot ... EXPORTS ••• = 
BEGIN OPEN root; 

p3: PUBLIC ENTRY PROCEDURE ••• 

monitor Datum2 +- ••• ; - - access the protected data via an OPEN 

END. 

The monitor BigMon is implemented by three modules. The modules BigMonA and 
BigMonB have a LOCKS clause to specify the location of the monitor lock: in this case, the 
distinguished variable LOCK in BigMonRoot. When any of the entry procedures pI, p2, or p3 
is called, this lock is acquired (waiting if necessary), and is released upon returning. The 
reader can verify that no two independent processes can be in the monitor at the same time. 

Another means of implementing multi-module monitors is by means of a MONITORED 

RECORD. Use of OPEN allows the fields of the record to be referenced without qualification. 
Such a monitor is written as: 

MonitorData: TYPE = MONITORED RECORD [x: INTEGER, ••• ]; 

MonA: MONITOR [pm: POINTER TO MonitorData] 
LOCKS pm 
IMPORTS ••• 

EXPORTS ••• = 
BEGIN OPEN pm; 
P: ENTRY PROCEDURE [ ••• ] = 

BEGIN 

x +- x+l; -- access to a monitor variable 

END; 

END. 

The LOCKS clause in the heading of this module (and each other module of this monitor) 
leads to a MONITORED RECORD. Of course, in all such multi-module monitors, the LOCi<S 

clause will involve one or more levels of indirection (POINTER TO MONITORED RECORD, etc.) 
since passing a monitor lock by value is not meaningful. As usual, Mesa will provide one or 
more levels of automatic deref erencing as needed. 

More generally, the target of the LOCKS clause can evaluate to a MONITORLOCK (Le. the 
example above is equivalent to writing "LOCKS pm.LOCK"). 

CAUTION: The meaning of the target expression of the LOCKS clause must not change between 
the call to the entry procedure and the subsequent return (Le. in the above example, changing 
pm would invariably be an error) since this would lead to a different monitor lock being 
released than was acquired, reSUlting in total chaos. 
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There are a few other issues regarding multi -module monitors which arise any time a tightly 
coupled piece of Mesa code must be split into multiple module instances and then spliced 
back together. For. example: 

If the lock is in a MONITORED RECORD, the monitor data will probably need to be in 
the record also. While the global variables of such a multi-module monitor are 
covered by the monitor lock, they do not constitute monitor data in the normal sense 
of the term, since they are not uniformly visible to all the module instances. 

Making the internal procedures of a multi-instance monitor PRIVATE will not work if 
one instance wishes to call an internal procedure in another instance. (Such a call is 
perfectly acceptable so long as the caller already holds the monitor lock). Instead, a 
second interface (hidden from the clients) is needed as part of the "glue" holding the 
monitor together. Note however, that Mesa cannot currently check that the procedure 
being called through the interface is an internal one (see section 10.2.4). 

A fine point: 

The compiler will complain about the PUBLIC INTERNAL procedures, but this is just a warning. 

1004.5. Object monitors 

Some applications deal with objects, implemented, say, as records named by pointers. Often 
it is necessary to insure that operations on these objects are atomic, i.e., once the operation 
has begun, the object will not be otherwise referenced until the operation is finished. If a 
module instance provides operations on some class of objects, the simplest way of 
guaranteeing such atomicity is to make the module instance a monitor. This is logically 
correct, but if a high degree of concurrency is expected, it may create a bottleneck; it will 
serialize the operations on all objects in the class, rather than on each of them individually. 
If this problem is deemed serious, it can be solved by implementing the objects as monitored 
records, thus effectively creating a separate monitor for each object. A single module 
instance can implement the operations on all the objects as entry procedures, each taking as a 
parameter the object to be locked. The locking of the parameter is specified in the module 
heading via a LocksClause with a USING clause. For example: 

ObjectRecord: TYPE = MONITORED RECORD [. ]; 

ObjectHandle: TYPE = POINTER TO ObjectRecord; 

ObjectManager: MONITOR [arguments] 
LOCKS object USING object: ObjectHandle 
IMPORTS. 

EXPORTS ••• -

BEGIN 

Operation: PUBLIC ENTRY PROCEDURE [object: ObjecfHandle, ... ] = 
BEGIN 

END; 

END. 

Note that the argument of USING is evaluated in the scope of the arguments to the entry 
procedures, rather than the global scope of the module. In order for this to make sense, each 
entry procedure, and each internal procedure that does a WAIT, must have an argument which 
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matches exactly the name and type specified in the USING subclause. All other components of 
the argument of LOCKS are evaluated in the global scope, as usual. 

As with the simpler form of LOCKS clause, the target may be a more complicated expression 
and/or may evaluate to a monitor lock rather than a monitored record. For example: 

LOCKS p.q.LOCK USING p: POINTER TO ComplexRecord ... 

CAUTION: Again, the meaning of the target expression of the LOCKS clause must not change 
bet)'Veen the call to the entry procedure and the subsequent return. (I.e. in the above example, 
changing p or p.q would almost surely be an error.) 

CAUTION: It is important to note that global variables of object monitors are very dangerous; 
they are not covered by a monitor lock, and thus do not constitute monitor data. If used at 
all, they must 'be set only at module initialization time and must be read-only thereafter. 

10.4.6. Explicit declaration of monitor locks 

It is possible ,to declare monitor locks explicitly: 

myLock: MONITORLOCKj 

The normal cases of monitors and monitored records are essentially stylized uses of this 
facility via the automatic declaration of LOCK, and should cover all but the most obscure 
situations. For example, explicit delarations are useful in defining MACHINE DEPENDENT 

monitored records. (Note that the LOCKS clause becomes mandatory when an explicitly 
declared monitor lock is used.) More generally, explicit declarations allow the programmer 
to declare records with several monitor locks, declare locks in local frames, and so on; this 
flexibility can lead to a wide variety of subtle bugs, hence use of the standard constructs 
whenever possible is strongly advised. 

10.5. Signals 

10.5.1. Signals and Processes 

Each process has its own call stack, down which signals propagate. If the signaller scans to 
the bottom of the stack and finds no catch phrase, the signal is propagated to the debugger. 
The important point to note is that forking to a procedure is different from calling it, in 
that the forking creates a gap across which signals cannot propagate. This implies that in 
practice, one cannot casually fork to any arbitrary procedure. The only suitable targets for 
forks are procedures which catch any signals they incur, and which never generate any signals 
of their own. 

10.5.2. Signals and Monitors 

Signals require special attention within the body of an entry procedure. A signal raised with 
the monitor lock held will propagate without releasing the lock and possibly invoke arbitrary 
computations. For errors, this can be avoided by llsing the RETURN WITH ERROR construct. 

RETURN WITH ERROR NoSuchObject; 
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Recall from Chapter 8 that this statement has the effect of removing the currently executing 
frame from the call chain before issuing the ERROR. If the statement appears within an entry 
procedure, the monitor lock is released before the error is started as well. Naturally, the 
monitor invariant must be restored before this operation is performed. 

For example, consider the following program segment: 

Failure: ERROR [kind: CARDINAL] = CODE; 

Proc: ENTRY PROCEDURE [ ••• ] RETURNS [el, c2: CHARACTER] = 
BEGIN 

ENABLE UNWIND = > . 

IF condl THEN ERROR Failure[l]: 
IF cond2 THEN RETURN WITH ERROR Failure[2]; 

END; 

Execution of the construct ERROR Failure[l] raises a signal that propagates until some catch 
phrase specifies an exit. At that time, unwinding begins; the catch phrase for UNWIND in Proc 
is executed and then Proc's frame is destroyed. Within an entry procedure such as Proc, the 
lock is held until the unwind (and thus through unpredictable computation performed by 
catch phrases). 

Execution of the construct RETURN WITH ERROR Failure[2] releases the monitor lock and 
destroys the frl;lme of Proc before propaga~ion of the signal begins. Note that the argument 
list in this construct is determined by the declaration of Failure (not by Proc's RETURNS 

clause). The catch phrase for UNWIND is not executed in this case. The signal Failure is 
actually raised by the system, after which Failure propagates as an ordinary error (beginning 
with Proc's caller). 

When the RETURN WITH ERROR construct is used from within an internal procedure, the 
monitor lock is not released; RETURN WITH ERROR will release the monitor lock in precisely 
those cases that RETURN will. 

Another important issue regarding signals is the handling of UNWINDS; any entry procedure 
that may experience an UNWIND must catch it and clean up the monitor data (restore the 
monitor invariant): 

P: ENTRY PROCEDURE [ ... ] = 
BEGIN ENABLE UNWIND => BEGIN <restore invariant> END; 

END; 

At the end of the UNWIND catchphrase, the compiler will append code to release the'monitor 
lock before the frame is unwound. It is important to note that a monitor always has at least 
one cleanup task to perform when catching an UNWIND signal: the monitor lock must be 
released. To this end, the programmer should be sure to place an enable-clause on the body 
of every entry procedure that might evoke an UNWIND (directly or indirectly). If the monitor 
invariant is already satisfied, no further cleanup need be specified, but the null catch-phrase 
must be written so that the compiler will generate the code to unlock the monitor: 

BEGIN ENABLE UNWIND = > NULL; 
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This should be omitted only when it is certain that no UNWINDS can occur. 

Another point is that signals caught by the OptCatchPhrase of a WAIT operation should be 
thought of as occurring after reacquisition of the monitor lock. Thus, like all other monitor 
code, catch phrases within a monitor are always executed with the monitor lock held. 

10.6. Initialization 

When a new monitor comes into existence, its monitor data will generally need to be set to 
some appropriate initial values; in particular, the monitor lock and any condition variables 
must be initialized. As usual, Mesa takes responsibility for initializing the simple common 
cases; for the cases not handled automatically, it is the responsibility of the programmer to 
provide appropriate initialization code, and to arrange that it be executed at the proper time. 
The two types of initialization apply in the following situations: 

Monitor data in global variables can be initialized using the normal Mesa initial 
value constructs in declarations. Monitor locks and condition variables in the global 
frame will also be initialized automatically (although in this case, the programmer 
does not write any explicit initial value in the declaration). 

Monitor data in records must be initialized by the programmer. System procedures 
must be used to initialize the monitor lock and condition variables. See the runtime 
documentation for the descriptions of appropriate procedures. 

A fine point: 

If a variable containing a record is declared in a frame, it is normally possible to initialize it 
in the declaration (Le. using a constructor as the initial value); however, this does not apply if 
the record contains monitor locks or condition variables, which must be initialized via calls to 
system procedures. 

Since initialization code modifies the monitor data, it must have exclusive access to it. The 
programmer should insure this by arranging that the monitor not be called by its client 
processes until it is ready for use. 


