
><
00
00
0 ...
00 ...
0 ...

I

Xerox System Integration
Standard

Electronic Printing Standard

XEROX Xerox System Integration
Standard

Interpress
Electronic Printing Standard

Version 2.1
XSIS048404
April 1984

Xerox Corporation
Stamford, Connecticut 06904

Notice

This Xerox System Integration Standard describes the lnterpress Electronic Printing Standard,
which defines the digital representation of material that is to be transmitted to and printed on
an electronic printer.

1. This standard includes subject matter relating to patent(s) of Xerox Corporation. No
license under such patent(s) is granted by implication, estoppel, or otherwise, as a result of
publication of this specification.

2. This standard is furnished for informational purposes only. Xerox does not warrant or
represent that this standard or any products made in conformance with it will work in the
intended manner or be compatible with other products in a network system. Xerox does
not assume any responsibility or liability for any errors or inaccuracies that this document
may contain, nor have any liabilities or obligations for any damages, including but not
limited to special, indirect, or consequential damages, arising out of or in connection with
the use of this document in any way.

3. No representations or warranties are made that this specification, or anything made in ac
cordance with it, is or will be free of any proprietary rights of third parties.

© Copyright 1984 Xerox Corporation
All Rights Reserved

XERox® and lnterpress are trademarks of XEROX CORPORATION

Preface

This publication is one of a family of publicatio~s that collectively describe the standards un
derlying Xerox Printing Systems.

The Interpress Electronic Printing Standard defines the digital representation of printed
material for exchange between a creator and printer. A document represented in Interpress can
be transmitted to a raster printer or other display device for printing, it can be transmitted
across a communication network as a means of exchanging graphic information, or it can be
stored as an archival master copy of the material. A document in Interpress is not limited to
any particular printing device; it can be printed on any sufficiently powerful printer that is
equipped with Interpress print software.

This publication defines and explains the lnterpress standard, gives examples of its use, ex
plains how to create documents in Interpress, and explains how a raster printer goes about
printing documents that are encoded in the standard. The primary purpose of this publication
is to provide an accurate specification of the Interpress standard.

This publication supersedes the Interpress 82 Electronic Printing Standard, XSIS 048201, and
the Interpress Electronic Printing Standard, Version 2.0, XSIS 048306. Significant differences
between these documents and the current standard are summarized in Appendix D.

Comments and suggestions on this publication and its use are encouraged. Please address com
munications to:

Xerox Corporation
Printing Systems Division
Printing Systems Administration Office
701 South Aviation Blvd.
El Segundo, California 90245

iii

iv

Table of contents

1 Introduction 1

2 The base language 3

2.1 Introduction 3
2.2 Types and literals 4

2.2.1 Numbers and Integers 4
2.2.2 Identifiers 5
2.2.3 Marks 5
2.2.4 Vectors. 5
2.2.5 Bodies and Operators 5

2.3 State 7
2.3.1 The stack 7
2.3.2 Frames and contexts 7

2.4 Operators 7
2.4.1 Errors 9
2.4.2 Composed operators 9
2.4.3 Vector operators 9
2.4.4 Frame operators 10
2.4.5 Operator operators 11
2.4.6 Stack operators . 11
2.4.7 Control operators 12
2.4.8 Test operators 13
2.4.9 Arithmetic operators 13

2.5 The Xerox encoding . 14
2.5.1 Token formats 16
2.5.2 Literal encodings 17
2.5.3 Encoding notations 19
2.5.4 Code assignments 21

v

Table of contents

3 Global structure and external interface 23

3.1 The skeleton 23
3.1.1 Operator restrictions 27
3.1.2 Pages 27

3.2 Environments and names 27
3.2.1 Identifiers and structured names 27
3.2.2 Universal names 28
3.2.3 Environment names . 29

3.3 Printing instructions . 29
3.3.1 Computing the printing instructions 29
3.3.2 The break page . 30
3.3.3 Standard instructions 31
3.3.4 Specifying printing instructions on a page . 36

4 Imaging operators 37

4.1 Imaging model . 37
4.1.1 Priority . 38

4.2 Imager state 39
4.3 Coordinate systems 40

4.3.1 Medium size and orientation . 41
4.3.2 Interpress coordinate system (ICS) 42
4.3.3 Master coordinate systems 42
4.3.4 Coordinate precision 42
4.3.5 Device coordinate system (DCS) 43

4.4 Transformations 44
4.4.1 Instances of symbols 45
4.4.2 Notation 45
4.4.3 Transformation operators 46
4.4.4 Applying transformations 47
4.4.5 The current transformation 47
4.4.6 Instancing 47

4.5 Current position operators 48
4.6 Pixel arrays 49

4.6.l Compressing sample vectors . 51
4.7 Color 51

4.7.1 Constant color 52
4.7.2 Sampled color 53
4.7.3 Convenience operators 54

4.8 Mask operators . 54
4.8.1 Geometry: trajectories and outlines 55
4.8.2 Filled outlines and strokes 57
4.8.3 Sampled masks 59

4.9 Character operators . 60
4.9.l Fonts 63
4.9.2 Modifying a character vector. 64
4.9.3 Metrics. 65
4.9.4 Fallback positions for characters 67

vi

4.10

5

5.1

5.2
5.3

Interpress Xerox System Integration Standard

Spacing correction
4.10.1 Efficiency
4.10.2 Operators

Pragmatics

Subsets
5.1.1
5.1.2
5.1.3
5.1.4

Standard subsets
Easy net transformations .
Image complexity
Performance

Numeric precision
Error handling

Appendices

A
B

c
D

References
Types, primitives. and standard vectors
8.1 Types .
B.2 Primitive operators, ordered by function
8.3 Primitive operators, ordered alphabetically
8.4 Non-redundant primitive operators
8.5 Standard vectors
Interpress universal registry
Change history

Glossary

Index

Figures

2.1
4;1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Token formats
The imaging model: application of a mask operator
Physical medium
Pixel intensity profiles
Tiling the page with a color parallelogram .
Examples of wrap-fill conventions
Line types for MASKSTROKE •

Character metrics
Spacing character masks .

68
71
72

73

73
74
75
75
76
76
77

79

79
81
81
82
83
86
88
91
93

95

99

15
38
41
50
53
56
57
61
62

vii

lnterpress Xerox System Integration Standard

viii

1

Introduction

This specification is a rather formal description of the Interpress ™ electronic printing
standard. Interpress defines a digital representation for documents which can be printed on a
variety of electronically controlled printers, most notably on raster printers. A document in
Interpress form is called an Interpress master. Like an offset or mimeograph master, an
Interpress digital master can be used to produce any number of copies of the document it
represents. An lnterpress master is made by a program called the creator. The master can then
be stored in a file for later demand printing, transmitted to other sites as a means of
communicating complete documents, or printed on different printers at the same site when
there are needs for varying quality and speed.

An Interpress master describes precisely the desired appearance of a page that has been com
pletely composed by some other process. All line ending, hyphenation, and line justification deci
sions, and in fact all decisions about the shapes and positions of the images, are made before
creating the master. The only adjustments made by the printer are minor corrections to the
positions of characters on a line, so as to present a line of text which has been adjusted to the
actual font widths and resolution of that printer.

The purpose of this specification is to describe precisely, clearly and concisely the form and
meaning of an Interpress master. Precision demands a rather formal style of description, which
can be difficult to grasp on first reading. Companion reports contain commentary, tutorial, and
explanatory material intended to help readers in understanding lnterpress (Introduction to
Interpress and Interpress Reader's Guide). If you are learning about Interpress for the first time,
start with the commentary. This specification, however, remains the final authority on the
definition of Interpress.

Here and there throughout this specification there are paragraphs of fine print, like this. Material that is not
needed to specify the standard formally is in fine print. This material may be examples, hints on how to use fea
tures, redundant explanations, or any other information which is auxiliary to the standard itself.

Masters that specify relatively simple images (such as the pages of this document) need only
some of the facilities of lnterpress. Sections of the specification flagged with a dagger character
(t) describe facilities which are not needed for such masters.

The specification contains a number of programs which define certain aspects of lnterpress or

1

1

2

Introduction

provide examples of its use. In these programs, comments are enclosed in "--" brackets:
-- This is a comment. --

2

The base language

This chapter defines the base language in which Interpress masters are expressed. The base lan
guage contains no facilities for output. Instead, it provides a framework within which addi
tional primitive operators can be invoked; using these output primitives and the facilities of the
base language, an Interpress master can specify images, character sets, or other things. The
structure of an Interpress master and the possible interactions between a master and the
external world are described in Chapter 3. Operators and types for image output are described
in Chapter 4.

2.1 Introduction

Interpress can be used to specify a very wide variety of images with a high degree of device in
dependence. To provide this power without too much special-purpose mechanism requires a
programming language. To make this language both concise and adaptable, there are general
ways to:

• structure data {vectors),

• define procedures {composed operators) with local variables {frames),

• limit the effects of calling a procedure {stack marks, DOSA VE, and DOSA VEALL).

Masters which specify simple images do not need these facilities. They use only the parts of
the base language described in the following sections:

§ 2.2.1-2
§ 2.3.1
§ 2.4
§ 2.4.1

Numbers and identifiers
The stack
Operator notation, summary of shorthands
Errors

The reader may wish to skip the other sections {marked with at) on first reading.

3

2 The base language

2.2 Types and literals

4

The lnterpress base language manipulates values. With two exceptions (frame elements and im
ager variables), these values are constant and cannot be changed once they are constructed.
Except for the imager variables, there is no sharing of data in lnterpress; values are always
transmitted by copying.

Of course the implementation need not actually do copying. The elements of a vector, for example, have fixed
values which are determined when the vector is constructed; an Interpress vector is like a Pascal const array in this
respect, and unlike a Pascal var array or a Fortran or Basic array. It differs from an array in most programming
languages in that the elements need not all have the same type.

Every value has a type. There are six types in the base language: Number, Identifier, Mark,
Vector, Body, and Operator. In addition, there are two other types which are used to describe
the kinds of values required by certain operators:

• Any is a type which accepts a value of any type except Body or Mark.

• Integer values are a subset of Number values.

There are Number, Identifier, Body, and Operator literals which denote certain values of these
types. The set of literals in the language is defined in § 2.2 by giving a specific syntax for each
kind of literal, together with a mapping from this syntax into values of the type. The actual
representation of literals in an Interpress master, however, is defined by the encoding specified
in§ 2.5.

Other types are defined for the imaging operators (Chapter 4); there are no literals of these
types.

The printer may place limits on the sizes of various values. The minimum values of these
limits are defined in § 5.1.1.

2.2.1 Numbers and Integers

A Number is an element of a certain subset of the mathematical rationals. This subset includes
every rational which can be represented in the form ix 2e, where i is an integer in the range
-(224 -1) .. (224 -1), and e is an integer in the range -100 . .100; a printer may represent other
rationals as well, but is not required to do so.

Throughout this specification, "integer" means either a mathematical integer or a Number
which is a mathematical integer. An Integer (capitalized) is an integer in the range
O .. maxlnteger; the Integers are a subset of the Numbers and not a completely distinct type. An
Integer literal is expressed in the usual decimal notation. Examples: 0, 17.

A Number literal is either a sequence of decimal digits, possibly preceded by a minus sign, or
a rational number expressed as a quotient of two such integers, separated by a "/" character.
Examples: -2, 17/1, 7/4, 10172. The value it represents is the Number value closest to this ra
tional number; if two Numbers are equally close, the smaller is chosen.

Interpress Xerox System Integration Standard 2

2.2.2 Identifiers

An Identifier is a sequence of lower-case letters. digits and the minus character " - ", beginning
with a letter. The maximum length of the sequence is maxldlength. An Identifier literal is
simply a suitable sequence of characters. Upper-case letters may be included, but are mapped
to the corresponding lower-case letters; i.e., case is not distinguished. Examples: Helvetica,
old-x, zl2.

2.2.3 Marks t

A Mark is a distinguished value which can only be pushed on the stack by a MARK operator,
and can be removed only by a matching UNMARK operator, i.e., one executed in the same con
text (§ 2.3.2), or during a mark recovery (§ 2.4.1). Any other attempt to pop a Mark causes a
master error. Marks thus serve to limit the effects of other operators on the stack and as a left
bracket for a group of values (§ 2.4.6), as well as to direct error recovery (§ 2.4.1).

2.2.4 Vectors t

A Vector is a set of values called its elements, and some indexing information that allows the
elements to be named unambiguously. The maximum size of a Vector is maxVecSize. The ele
ments of a Vector form a sequence named by Integers. Its indexing information is two integers
called the lower bound I and the upper bound u, which are fixed when the Vector is created; I
must be less than or equal to u + 1. There are u-1+ 1 elements in the sequence. The 1th ele
ment in the Vector is named by the Integer I+ i-l. A Vector is constructed by MAKEVEC or
MAKEVECLU.

There are no literals of type Vector.

But there are primitive operators to make vectors (§ 2.4.3). The encoding has a convenient way to express calls on
these primitives with literal arguments (§ 2.5). Like all values, vectors are constant, i.e .. the value of a vector ele
ment cannot be changed, except for the frame (§ 2.3). Shorthand notations for writing vector constructs are given in
§ 2.4.

2.2.5 Bodies and Operators t

An Operator is an Interpress program that can be executed. Executing an Operator causes state
transitions, as described in § 2.3.

An operator is either primitive or composed. A primitive operator is an operator built into
Interpress. The meaning of each primitive operator (i.e., its state transition function) is ex
plained as part of its definition in this document. The explanation is given informally, in
English and pictures, or sometimes as a sequence of other primitive operators, for which the
one being defined is a convenient abbreviation. A primitive Operator literal is a sequence of
letters in small capitals, e.g., MARK, oo, MAKEVEC. The value of the literal is the primitive
operator with that name, as defined in this document.

Certain special primitive operators are defined in order to make it easy to define the meaning
of other primitives, and cannot actually be written in Interpress masters. These operators have
a * prefixed to their names in this document; they do not have any corresponding literals.

5

2

6

The base language

A composed operator consists of a Body and a Vector called the initial frame; its meaning (i.e.,
how its transition function is determined by the Body and the initial frame) is explained in
§ 2.4.2. There are no composed operator literals.

Composed operators are constructed by the MAKESIMPLECO operator (§ 2.4.5). A composed operator is analogous to
an Algol or Pascal procedure: the body is the body of the procedure and the initial frame is the local variables.

A Body is a sequence of literal values; the maximum length of the sequence is maxBodylength.
A Body literal is a sequence of literals bracketed by { and }. The value of the literal is the se
quence of values of the literals within the { } brackets. A Body value can be used only as an
operand of an immediately following body operator (MAKESIMPLECO, OOSAVESIMPLEBODY, IF,

IFELSE, IFCOPY, CORRECT) or in the skeleton (see § 3.1). It is a master error to execute any
other literal with a body on top of the stack.

This restriction permits the encoding to facilitate sequential processing by putting the operator before the body in
all cases. This usually allows the body to be executed as it is read unless the operator is MAKESIMPLECO. If the
operator appeared second, the body would have to be stored away until the operator came into view.

Bodies are the only mechanism used in Interpress for grouping parts of a master into larger executable units. Thus:

• Conditional execution is provided by the If and lfELSE operators, which take a Body and an Integer as argu
ments and execute the Body if the Integer is non-zero. For example, 2 fGET 3 GT {conditional body} If.

• A line of symbols whose positions may require slight corrections (e.g., to accommodate small differences be
tween the font definitions available to the creator and the printer: see § 4.10) is generated by an execution of
the CORRECT operator, whose argument is a single Body which is executed twice, first to compute the correc
tion parameters, and then to produce the output image for the line.

• The entire master is made up of Bodies, held together by a non-executable skeleton structure (§ 3.1).

In all these cases the isolation between the operator and its caller makes it easy to compose the master in a
modular fashion.

In principle, it would be sufficient to use bodies only as operands to MAKESIMPLECO. The composed operators thus
generated could then be executed immediately. This would be likely to cause poor performance, however, unless
the implementation recognized the important special cases. To reduce the need for cleverness in the implementa
tion, Interpress requires a body as the main operand of the other primitives just enumerated; these primitives con
vert the body into a composed operator which is then executed once, twice, or conditionally. An existing composed
operator o can be used as the operand of a body operator by applying DO and enclosing it in brackets, i.e., {o
DO}.

Examples of bodies:
{-- draw a solid box with size given by the top two stack values, width and height -

TRANS

0 Q 4 2 ROLL

MASKRECTANGLE

} MAKESIMPLECO

{-- draw a hollow box with size given by the top two stack values, width and height --
-- save the box height in frame element I, the width in element 0 --

1 fSET Q fSET

TRANS 0 0 MOVETO

0 fGET LINETOX 1 FGET LINETOY 0 LINETOX 0 LINETOY

MASKSTROKE

} MAKESIMPLECO

2.3 State

Interpress Xerox System Integration Standard 2

The alterable state of the machine that executes Interpress masters consists of the stack
(§ 2.3.1), the contexts of composed operators in the midst of execution (§ 2.3.2), and the imager
variables (§ 4.2). In addition, there is information outside the machine, such as the image being
constructed. This information, which is called output, is of course the reason for the existence
of an Interpress master. Unlike the state, however, it cannot affect any future state.

Executing an operator causes changes in the state of the machine, or in the output, or both.
These changes may (and generally do) depend on the current state. Thus the meaning of an
operator can be completely defined by two transition functions:

• a state transition function, which maps a state of the Interpress machine to a new state of
the machine;

• an output transition function, which maps a pair: (state of the Interpress machine, output)
to a new output.

Note that the output does not affect the state of the Interpress machine. In other words, out
put is write-only; it cannot be read back to influence later execution.

2.3.1 The stack

The stack is a sequence of values on which the usual push and pop operations are defined; the
maximum length of this sequence is maxStacklength. It is used primarily to pass arguments to
an operator and to obtain results in return. The stack is the only general way to return values
from an operator. Execution modifies the stack as described in § 2.4 and chapter 4.

2.3.2 Frames and contexts t

A composed operator is constructed from a Body and a Vector which is the initial frame. Each
time the operator is executed, a context is created to represent this execution. The context con
tains a return link to the calling operator's context (not directly accessible to the master) and a
vector called the frame. The frame is initialized to the value of the initial frame. During execu
tion, elements in the frame can be changed with the FSET operator and read with the FGET

operator. The frame itself is not shared, and can be touched only by the FGET and FSET

operators executed in its context. After the composed operator is finished, the frame and con
text are discarded.

Thus an operator can have local variables and can also access (through the initial frame) some global values avail
able when it is defined. Changes to locals cannot affect the state after execution of the operator is complete,
however, except by values returned on the stack. The effect is like local and global variables in Algol or Pascal, ex
cept that the global variables are all read-only. Because results can be returned on the stack, an operator can return
an arbitrary amount of information as explicit results (contrast the restriction to a single scalar function result in
Algol or Pascal); on the other hand, it cannot cause side effects by changing global variables or variable parameters
(unless it calls an imager operator which changes an imager variable).

2.4 Operators

The state transition function of an operator Op is defined by text which begins:

<a1: T1> ... <an: Tn > Op -+ <r1: U1> ... <rm: Um>
where ...

7

2

8

The base language

in which the T's and U~ are types. If r; is the same as al then U; is the same as ~ and may be
omitted.

This text means that in an error-free execution of the operator:

• First n argument values are popped off the stack and given the names an (for the first
value popped) through a1 (for the last value popped) for use in the definition. If no argu
ments are popped, < > appears to the left of Op.

• Then some function of the a; (specified by text after the where) is used to compute m
result values r; with the indicated types.

• Finally the results are pushed onto the stack (r1 first, rm last). If no results are pushed, < >
appears to the right of the -+ symbol.

The <name: type> sequences give a picture of the top of the stack before and after the operator is executed. Note
that all the values mentioned on the left of the -+ are always popped, and hence there is a master error if any
turns out to be a mark. This is true even for operators like COPY which push their ~guments back again.

The description following the where is sometimes informal English and sometimes an
lnterpress program. The latter means that executing the primitive being defined has the same
effect as executing the defining program. An argument name appearing in the program means
that the corresponding value is pushed onto the stack at that point; the defining program thus
begins executing after the arguments have been popped, but it is responsible for pushing the
results. Sometimes these programs are not true Interpress, but use a pidgin Pascal instead, in
which Pascal variables are treated as elements of an Interpress frame. These programs often
use familiar Pascal control constructs such as if then else, for, and while, which do not exist in
true Interpress.

It is often convenient to specify a value by giving an Interpress program which computes it
and leaves it on top of the stack. When such a program appears in text it is enclosed in <>
brackets. Thus <3 4 ADD> stands for the value 7.

Shorthand notation

The following shorthand notations are used in the text Each is simply a more readable way of
writing an Interpress construct These shorthands are not part of the encoding. (The < > and []
with literal numbers can also be considered shorthands for the string and large vector encoding
notations; see § 2.5.3.)

[x0, ... , xk_1] stands for x0 ••• xk-I k MAKEVEC; hence[] for 0 MAKEVEC. This is simply a
convenient way of writing certain uses of MAKEVEC; elements of the vector are separated
by commas. The brackets and commas are not part of Interpress.

<sequence of characters> stands for n0 n1 ... nk-I k MAKEVEC, where ni is an Integer that
indexes the corresponding character in the font used by SHOW. The brackets are not part
of Interpress.

n/n/ .. .lnk-I stands for n0, nl' ... , nk-I k MAKEVEC, where the n; are Identifiers. This
notation is used for structured names(§ 3.2). The I character is not part of lnterpress.

Interpress Xerox System Integration Standard 2

2.4.l Errors

If the value named a. doesn't have the type T., there is a master error; note that during execu-
' I

tion of the master there are always marks on the stack which will prevent underflow (see § 3.1).
The definition may specify further conditions which must be satisfied; if the current state does
not satisfy these conditions there is also a master error. In case of a master error, unless the
operator definition specifies otherwise, there is a mark recovery.

A mark recovery also occurs whenever any attempt is made to pop a mark except by a match
ing UNMARK or COUNT(§ 2.4.6); when this happens, the mark remains on the stack.

On a mark recovery, (a) the stack is popped until a mark is on top; (b) if the context that
placed the mark on the stack no longer exists, the mark is popped and there is another mark
recovery; otherwise, composed operators in execution are exited until the one which placed the
mark is executing: and (c) literals are skipped in this operator until an UNMARKO literal is
found. The UNMARKO found in step (c) is executed, thus popping the mark from the stack,
and execution proceeds from this point. Note that the rules for executing a master given in
§ 3.1 insure that step (c) will eventually succeed. In addition, master errors are logged as
specified in § 5.3.

Marks thus serve two major purposes: to protect the stack from damage by an operator, and to indicate possible er
ror recovery points.

2.4.2 Composed operators t

A composed operator is executed by executing the literals of its body in order. Executing a
Number, Identifier or Body literal pushes its value onto the stack. Executing a primitive
operator literal executes the corresponding primitive operator, i.e. applies its state transition
function to the current state, yielding a new state.

When execution of the composed operator begins, the frame is initialized to the initial frame,
as discussed in § 2.3.2; its, contents may then be changed by FSET. These changes have no ef
fect on the frame of any other context: each· context has its own frame.

Not only does execution of the operator not affect the frame afterwards, but the effect of the operator does not
depend on the frame when it is invoked. The effect depends only on its initial frame (established when it was
defined) and the stack.

2.4.3 Vector operators t
<v: Vector> <j: Integer> GET - <x: Any>

where x is the value of the element of v named by j. A master error occurs unless
15:,j<u, where I is the lower bound of v and u is the upper bound.

<x1: Any> ... <xn: Any> <I: Integer> <u: Integer> MAKEVECLU - <v: Vector>
where v is a vector with lower bound I and upper bound u. Let n= u-1+ 1. After u
and I are popped off the stack, n additional values are popped; call them xn' . .. , xl'
where xn is the first value popped and x1 is the last value popped. The elements of v
have the values xl' ... ,xn; i.e., <v l+i-l GET>=xr A master error occurs unless
0 <n <maxVecSize.

9

2

10

The base language

<x1: Any> ... <xn: Any> <n: Integer> MAKEVEC-+ <v: Vector>
where vis a vector with lower bound 0 and upper bound n-1. The elements of v have
the values xI, ... , x ; i.e., < v i-1 GET>= x. A master error occurs unless n <maxVecSize.

n t -

§ 2.4 describes a notation for writing calls of MAKEVEC in examples.

< v: Vector> SHAPE -+ <I: Integer> <n: Integer>
where I is the lower bound of v and the upper bound is u= I+ n-1.

A property vector is a vector fonnatted according to a convention that elements with indices /,
I+ 2, I+ 4, and so on are property names and elements with indices I+ 1, I+ 3, I+ 5, and so on
are corresponding values. For example, in the vector [widthX 14 widthY 21), the property named
widthX has value 14 and the property widthY has value 21. The intent is that identifiers and vec
tors of identifiers be used as property names; other values are pennitted, but are not found by
GETPROP. The following operators are defined for property vectors:

<v: Vector> <propName: Any> GETPROP-+ <value: Any> <1: Integer> or-+ <O: Integer>
where v is searched to find the least i such that t<i<u (I is v's lower bound and u is its
upper bound), (i-1) mod 2=0. and <v i GET propName *EQN>=L *EQN compares
Identifiers, Numbers, and Vectors for equality; it is defined precisely in § 2.4.8. If no
match is found, GETPROP returns 0 on the stack. If a match is found, < v i 1 ADD GET
1> is executed to place on the stack the property's value and the Integer 1, which
indicates that a match has been found. A master error occurs if (u-1+ 1) mod 2:;t:O.

<vI: Vector> <v2: Vector> MERGEPROP-+ <v3: Vector>
where the property vector v3 is created by merging properties and values from vI and
v2, so that values in v2 take priority over values in vI. More precisely, v3 is fanned so
that, for any n, < V3 n GETPROP> is equivalent to < V2 n GETPROP DUP NOT { POP VI n
GETPROP } IF>.

Note that this definition does not fully specify the order of elements in v3, but does fully define the behavior of v3
when accessed with GETPROP.

A universal property vector is a fonn of property vector that may contain both property names
standardized by Interpress and universal names (§ 3.2.2) that allow growth of the name space.
A property name in a universal property vector must be either:

• An Identifier from a set defined by Interpress for this purpose.

• A Vector of Identifiers, which specifies a universal name (§ 3.2.2).

2.4.4 Frame operators t
<j: Integer> FGET -+<x: Any>

where x is the current value of the jth element of the frame. A master error occurs
unless j< topFrameSize. The value of topFrameSize may be limited(§ 5.1.1).

<x: Any> <j: Integer> FSET -+ <>
where the value of the frame element named by j, becomes x. A master error occurs
unless j< topFrameSize.

lnterpress Xerox System Integration Standard 2

2.4.5 Operator operators t
<b: Body> MAKESIMPLECO -+ <o: Operator>

where o is a composed operator which has body b and initial frame equal to the value
of the frame when MAKESIMPLECO is executed.

< o: Operator> DO -+ -- the effect on the stack depends on o -
where the operator o is executed.

This is the only way to execute a composed operator (other primitives which do this are defined in terms of oo;
they are DOSAVE. DOSAVEALL. DOSAVESIMPLEBODY. the three IF operators. and CORRECT).

< o: Operator> DOSA VE -+ -- the effect on the stack depends on o --
where the effect is equivalent to executing the operator o with DO, and then restoring
all the imager variables which are not persistent to their values just before the DOSA VE.

< o: Operator> DOSA VEA LL -+ -- the effect on the stack depends on o --
where the effect is equivalent to executing the operator o with DO, and then restoring
all the imager variables to their values just before the DOSA VEALL.

(b: Body> DOSAVESIMPLEBODY -+ -- the effect on the stack depends on b --

where the effect is b MAKESIMPLECO DOSA VE.

. 2.4.6 Stack operators t
<x: Any> POP -+ <>

where the top element of the stack is removed with no other effects.

<x1: Any> ... <xdepth: Any> <depth: Integer> COPY-+ <x1> ... <xdepth> <x1> ... <xdepth>
where the depth values are pushed, leaving the stack in the same state as after depth is
popped, and then the same depth values are pushed again in the same order.

<x: Any> DUP -+ <x> <x>
where the effect is x 1 COPY; i.e., the top element of the stack is duplicated with no
other effects.

<x1: Any> ... <xdepth: Any> <depth: Integer> <moveFirst: Integer> ROLL

-+ <xmoveFirst+ 1> ... <xdepth> <x1> ... <xmoveFirst>
where moveFirst<depth, the first moveFirst of the depth argument values are the last
moveFirst of the depth result values, and order is otherwise preserved.

<x: Any> <y: Any> EXCH -+ <y> <x>
where the effect is x y 2 1 ROLL; i.e., the top two elements on the stack are exchanged.

<x1: Any> ... <xn: Any> <n: Integer> MARK-+ <m: Mark> <x1> ... <xn>
where m is a Mark unique to the current context Only an execution of k UNMARK in
the same context with k values above m on the stack can remove m from the stack
without an error. The xi values are unaffected.

<m: Mark> <x1: Any> ... <xn: Any> <n: Integer> UNMARK-+ <x1> ... <xn>
where m is a matching Mark, i.e., one pushed by a MARK in the same context. The
only effect is to remove m from the stack; the x. values above it are unaffected.

I

The following sequence executes an operator o which is supposed to take two arguments and return three results;
it ensures that o does not pop additional values from the stack and that it returns exactly three results: 2 MARK o
DO 3 UNMARK .

11

2

12

The base language

<m: Mark> UNMARKO-+ <>
where the effect is 0 UNMARK .. UNMARKO also serves as 'a 'stopping point for a mark
recovery (§ 2.4.1).

<m: Mark> <x1: Any> ... <xn: AnY,> COUNT-i> <m~ Mark> <~1·> .. ,<.xn> <n: Integer>
where m is a matching Mark, i.e., one pushed by a MARK in the same context. The
only effect is to ·count the number of values above rri on the stack and push this count.
The values and m are unaffected;

<>NOP-+ <>
where execution of this operator has· no effect on the state or output.

<message: Vector ofJnteger> <code: Integer> ERROR -+ <>
where the Interpress interpreter records that an error has occured. The value of code
determines the kind of error (§ 5.3): code=O for a master error: code= 10 for a master
warning, code= 50 for an appearance· error: code= 60 for· an appearance warning, and
code= 100 for a comment The vector message specifies an explanatory message by
giving the integer codes for characters in the message, using the ISO 646 7-bit Code
Character Set for Information Processing Interchange.

For example, <[47, 111, 112. 115) 100 ERROR> would record the comment "Oops".

2.4.7 Control operators t
<i: Integer> <b: Body> IF -+ -- the effect on the stack depends on i and b --

where the effect is b MAKESIMPLECO DO if i:;1!:0, and nothing otherwise.

<i: Integer> <b: Body> IFELSE -+ -- the effect on the stack depends on i and b --
where the effect is i b IF i 0 EQ: i.e., it is the same as the effect of IF, followed by push
ing 1 if i=O and 0 otherwise.

Note that i is not on the stack when the body is executed. The effect of "if i then Bl else B2" is obtained with "i
Bl IFELSE B2 IF". The effect of "if il then Bl else if a then B2 else B3" is obtained with "il Bl IFELSE { 12 B2
IFELSE B3 IF } IF". The funny way IFELSE works allows each operator to have exactly one body operand. Because
IF executes a body conditionally (by turning it into an operator). any changes the body makes to its frame are
discarded when the execution is complete .

. It is often valuable to print several copies from a master which differ in minor details; for ex
ample, each copy might be addressed to a different recipient on the first page. It is important
to ensure that these variations do not require the entire master to be reprocessed for each
copy. The IFCOPY operator serves this purpose.

<> *COPYNUMBERANDNAME-+ <copyNumber: Number> <copyName: Identifier>
where the values returned are the copy number and copy name, obtained in a manner
described in § 3.1. This operator cannot be called directly from the master.

<testCopy: Operator> <b: Body> IFCOPY -+ <>
where testCopy is called wiih the copy number and copy name, and b is executed unless
testCopy returns 0. Precisely, the effect is:

<OMARK
*COPYNUMBERANDNAME testCopy DOSA VEALL
{0 MARK b MAKESIMPLECO DOSA VEALL UNMARKO} IF

UNMARKO>.

In other words.. the testCopy operator takes two arguments. and must return a single Integer, if this is non-zero, the

lnterpress Xerox System Integration Standard 2

Body b is executed. Both executions are done with DOSAVEALL; this and the MARK/UNMARK pairs ensure that there
are no side effects. Thus the net result is that testCopy decides whether or not to print the output produced by b. A
different decision can be made for each copy, but either nothing or the same output is produced each time.

2.4.8 Test operators t
<a: Any> <b: Any> EQ - <c: Integer>

where c=l if a and bare both Numbers or both Identifiers and a=b, c=O otherwise.

<a: Any> <b: Any> *EQN - <c: Integer>
where c= 1 if <a b EQ> is 1 or if a and bare both Vectors with the same shape and cor
responding elements are EQ; c=O otherwise. More precisely, *EQN is equivalent to:
ln.l: Integer;
if a b EQ then { 1 } else {
if a TYPE 3 EQ b TYPE 3 EQ AND then {

a SHAPE n FSET l FSET
if h SHAPE n FGET EQ EXCH l FGET EQ AND then {

1 c FSET
for i : = l to l+ n-1 do {

if a i FGET GET h i FGET GET EQ NOT then { 0 c FSET }
} c FGET

} else { 0}
} else { 0}}

<a: Number> <b: Number> GT - <c: Integer>
where c=l if a>b, c=O otherwise.

<a: Number> <b: Number> GE - <c: Integer>
where c=l if a>b, c=O otherwise.

<a: Integer> <b: Integer> AND - <c: Integer>
where c=l if a:;i!:Q and b:;i!:Q, c=O otherwise.

<a: Integer> <b: Integer> OR - <c: Integer>
where c= 1 if a:;i!:Q or b:;i!:Q, c=O otherwise.

<b: Integer> NOT - <c: Integer>
where c=l if b=O, c=O otherwise.

<a: Any> TYPE - <c: Integer>
where c is the code for the type of a as specified in Appendix 8.1.

2.4.9 Arithmetic operators t
<a: Number> <b: Number> ADD - <c: Number>

where c = a+ b.

<a: Number> <b: Number> SUB - <c: Number>
where c = a-b.

<a: Number> NEG - <c: Number>
where c = -a.

<a: Number> ABS - <c: Number>
where c = Jal.

13

2 The base language

<a: Number> FLOOR -+ <c: Number>
where c is the greatest (mathematical) integer <a.

<a: Number> CEILING -+ <c: Number>
wllere c is the least (mathematical) integer >a.

<a: Number> TRUNC -+ <c: Number>
where c is the (mathematical) integer part of a. Thus <712 TRUNc> = 3 and < - 712
TRUNC}::::: -3.

<a: Number> ROUND -+ <c: Number>
where the effect is a 112 ADD FLOOR; i.e .• c is the rounded value of a.

<a: Number> <b: Number> MUL -+ <c: Number>
where c = a X b.

<a: Number> <b: Number> DIV -+ <c: Number>
where c = alb; b;tO is required. Note that this is rational division, not integer division.
(The Pascal operator div, written in lower case and bold face, denotes integer divison,
which is distinct from DIV.)

<a: Number> <b: Number> MOD -+ <c: Number>
where c = a-bXFLOOR(alb); b;tO is required. (The Pascal operator mod, written in
lower case and bold face, is distinct from MOD.)

<a: Number> <b: Number> REM -+ <c: Number>
where c = a- b X TRUNC(a/ b); b;t0 is required.

2.5 The Xerox encoding

14

This section gives the rules for encoding an lnterpress master. The principal job of an encod
ing is to specify how every legal sequence of lnterpress literals can be represented concretely
by a collection of bits that may be stored or transmitted. In addition, the encoding introduces
some shorthand notations that can be used in place of more bulky notations for sequences of
Interpress literals; these are termed encoding-notations (§ 2.5.3).

Many computer file systems use a short file-name "extension"' that serves to indicate the type of the tile.
Extensions are sometimes two or three characters long, e.g., LST for listing, BIN for binary, EXE for executable.
Programs that create Interpress masters and store them on disk files are urged to use the extension "'Interpress"', or,
if extensions must have fewer than ten characters. "IP"'.

The master is encoded by a header which identifies the encoding, followed by a sequence of
tokens. Each token corresponds to:

A single lnterpress literal (not a Body). Each such literal can be encoded by a single token.

One of the symbols BEGIN, END, PAGEINSTRUCTIONS, "{", or"}".

An encoding-notation, which stands for some sequence of Interpress literals.

The tokens appear in the same order as the corresponding literals or symbols, except that a
body operator token precedes its body.

The tokens are of different sizes; each one is a sequence of bytes. A byte is an integer in the
range 0 .. 255 inclusive, and is represented by eight bits. The encoding is defined below by
giving Pascal-like programs that invoke the function AppendByte(n) to append a byte with value

lnterpress Xerox System Integration Standard 2

n to the sequence being created to encode the master: the programs use infinite-precision in
teger arithmetic. It is also convenient to draw diagrams of the encoding. In these diagrams,
bytes are shown juxtaposed so as to be read from left to right, i.e., the byte at the far left ap
pears first in the sequence, followed by the byte to its right, etc. The diagram of a single byte
shows its 8 bits, with the most significant bit (corresponding to 27) at the left and the least sig
nificant (corresponding to 2°) at the right.

The first bytes of a master in the Xerox encoding are the header that identifies the encoding
and version number. These bytes are an encoding of the string
"Interpress/Xerox/2 .10" using character codes from the ISO 646 7-bit Coded Character
Set for Information Processing Interchange. The symbol "D" is used in this section to
represent the space character, which has code (2/0) in ISO 646. It is the space character that ter
minates the header. The header can be created by a sequence of calls to AppendByte:

AppendByte(73); -- I -- AppendByte(llO); -- n -- AppendByte(l16); -- t --
AppendByte(lOl); -- e -- AppendByte(ll 4); -- r --
AppendByte(l20); -- x -- AppendByte(47); -- I -- AppendByte(50); -- 2 --
Append Byte(46); -- -- AppendByte(49); --1-- AppendByte(32); -- D --

Following the header come encodings of the parts of the skeleton (§ 3.1).

MSB LSB

Short H0l0l : ~: : I Op

H0H::: :+ Long

Op

1°1 : : : :+~+-Short

Number

=.re H1l0I : H : I length 1;;J
1 ... descriptor •I

:::-H1l1I : H : I length 1;~]
1---- descriptor ----1

Figure 2.1 Token formats.

15

2

16

The base language

2.5.1 Token formats

Each token uses one of five formats: Short Op, Long Op, Short Number, Short Sequence, and
Long Sequence (see Figure 2.1). The token formats are described in this section, and the rules
for encoding literals in tokens are described in § 2.5.2.

Each primitive operator or symbol is assigned an integer in the range 0 .. 8191 called its
encoding-value, and is represented in the master by a two-byte Long Op token, or optionally
by a one-byte Short Op token if its encoding-value is less than 32: the details are given below.

An integer in the range -4000 .. 28767 may be represented by a two-byte Short Number token
as described below.

Everything else is represented by variable-length Short Sequence and Long Sequence tokens.
These begin with a two or four byte descriptor which includes a length field that gives the num
ber of data bytes used to represent the value, and a type field that indicates what kind of literal
or encoding-notation the data bytes represent. The length field gives the number of data bytes;
it does not count the bytes that are part of the descriptor.

The following AppendSequenceDescriptor procedure generates the descriptor for a sequence of
length length and type seqType:

procedure ExtractByte(n, byte: integer): integer;
-- Extract from a positive integer n the byteth byte required to represent it, counting low-order byte as 0. -
begin for i : = 1 to byte do num : = num div 256; Extract Byte : = num mod 256 end;

procedure Appendlnt(num. length: integer);
-- Encode an integer in (-256/ength div 2) .. (256/ength div 2-1) in twos-complement --
-- using length bytes. high-order byte first. --
begin
if num < 0 then num : = 256/ength + num;
if num < 0 or num > 256/ength then error - '
for i: = 1 to length do AppendByte(ExtractByte(num, length- i))
end

procedure AppendSequenceDescriptor(seqType, length: integer);
begin
if seqType < 0 or seqType > 31 then error
else if length< 0 or length> 16777215 then error
else if length< 256 then begin

-- Short Sequence, with one byte of length -
AppendByte(l92 + seqType); AppendByte(length) end

else begin
-- Long Sequence, with three bytes of length -
AppendByte(224+ seqType); Appendlnt(length, 3) end

end

Any sequence token can be continued by one or more immediately following sequence tokens
(either Short or Long) with the type sequenceContinued. A sequence token with seqType= t and
length= l followed by a sequenceContinued token with length= m is equivalent to a single sequence

lnterpress Xerox System Integration Standard 2

token with seq Type= t, length= l+ m, and data bytes which are the I data bytes of the first token
followed by the m data bytes of the second. If there are several consecutive continuations, this
merging may be repeated until they have all been merged into the initial non-continuation se
quence token.

Continuations make it convenient for a creator to break up a long sequence into several shorter pieces. e.g., to fit
into its limited buffers. The total length of a continued sequence may exceed 16777215 bytes. A continuation token
may have length=O.

2.5.2 Literal encodings

Number. A number may be encoded in one of three ways, all of which result in the same
Interpress Number value; any of these ways may be used to create a legal master. Since
Integers are a subset of Numbers and not a totally distinct type, it is not compulsory to encode
an Integer using one of the encodings which works only for integer values. In general,
however, a master will be smaller and will also be interpreted more efficiently if the shortest
encoding is chosen. Although the encoding can represent Numbers with great range and
precision, a printer is required to represent only a subset of these (§ 2.2.1).

• If the number is an integer and lies in the range -4000 .. 28767, it may be encoded in a
Short Number token, with a bias of 4000. The Appendlnteger procedure below generates
this encoding or the next as appropriate.

• If it is an integer it may be encoded in a sequence token of type sequencelnteger, and at
least enough data bytes to represent it as a signed two's complement binary integer. The
Appendlnteger procedure below generates this encoding for an integer which cannot be en
coded as a Short Number, using a minimum number of data bytes. Note the treatment of
negative numbers by Appendlnt to produce a two's complement encoding.

• A number may be encoded as a rational, a quotient of two integers. The two integers are
encoded in a sequence token of type sequenceRational, numerator first, both using the same
number of bytes. The AppendRational procedure below generates this encoding, using a min
imum number of data bytes.

function Byteslnlnt(n: Number): integer;
var done: boolean : = false; i: integer : = 0:
begin
until done do begin

i: = i+ 1; if -(256i div 2) < n and n < (256i div 2) then done:= true end;
Byteslnlnt: = i
end;

procedure Appendlnteger(n: Number);
const i = Byteslnlnt(n);
begin
if -4000 < n and n < 28767 then Appendlnt(n + 4000, 2)
else begin AppendSequenceDescriptor(sequencelnteger, i); Appendlnt(n, i) end
end;

procedure AppendRational(n, d: Number);
const i = Max(Byteslnlnt(n), Byteslnlnt(d));
begin AppendSequenceDescriptor(sequenceRational, 2* i); Appendlnt(n, i); Appendlnt(d, i) end

17

2

18

The base language

Identifier. An identifier is encoded using a sequence of character codes that represent the
characters of the identifier, which are limited to letters, digits and " - ''. Note that case is not
distinguished in identifiers: hence a letter may be encoded in either upper or lower case. Each
character in the identifier is represented by a single byte whose value is the ISO 646 code for
the character. The first character in the identifier appears first in the sequence, then the
second, and so on. The sequence of codes is placed in a sequence token of type
sequenceldentifier. Thus the following program would encode the identifier Xerox:

AppendSequenceDescriptor(sequence! dentifier, 5);
AppendByte(88); -- X -- AppendByte(lOl); -- e -- AppendByte(ll 4); -- r --
AppendByte(lll); -- o -- AppendByte(l20); -- x --

Primitive operator. A primitive operator is encoded by placing its encoding value in a Short Op
or Long Op token; the AppendOp procedure below generates a suitable Op token from a
numeric value. A table giving the numeric code for each operator appears in Appendix 8.3.
Thus the LINETO operator is encoded by Append0p(23).

The body operators (MAKESIMPLECO, DOSAVESIMPLEBODY, IF, IFELSE, IFCOPY, CORRECT) are
encoded slightly differently: they are placed before the encoding of the body that is their final
argument Thus each of these operators must be followed immediately by a body encoding.

If the encoding value is less than 32, it can be encoded using a Short Op token: otherwise it
must use a Long Op token. Thus the following program encodes a primitive:

procedure AppendOp(n: integer)
begin
if n < 0 or n > 8191 then error
else if n ~ 31 then AppendByte(l28 + n)
else begin AppendByte(l60+ n div 256); AppendByte(n mod 256) end
end

Body. A body literal is encoded in the obvious way; note that it is preceded by its body
operator if there is one:

The encoding begins with a token which encodes the "{" symbol, generated with
Append0p(l06).

Then comes the sequence of literals that form the body.

Finally is a token which encodes the "}" symbol, generated with Append0p(l07).

BEGIN, END, and PAGEINSTRUCTIONS. These symbols, which are part of the skeleton (§ 3.1), are
encoded with Op tokens.

Comment. An arbitrary sequence of bytes may be embedded in a sequence of type
sequenceComment. An lnterpress printer will ignore this token.

lnterpress Xerox System Integration Standard 2

2.5.3 Encoding notations

The encoding includes some notations that do not correspond to individual Interpress literals,
but rather to sequences of literals.

String. It is often necessary to encode vectors of small Integers used to represent character
codes; these vectors occur especially frequently as arguments to the SHOW operator (§ 4.4.6).
These vectors may be encoded compactly using a sequence token with type sequenceString. The
data bytes within the token are encoded using a scheme defined in the Xerox Character Code
Standard. It is important to note, however, that the encoding simply defines a run-length encod
ing of numbers and does not associate characters with numbers.

Although the Xerox Character Code Standard defines the encoding scheme. it is summarized here. Loosely, the en
coding scheme provides a run-length encoding for a sequence of integers that differ mostly in the low-order 8 bits
and an extended encoding that represents each integer with two bytes. An escape byte with value 255 is used to
switch modes. The scheme can represent only integers i in the range 0:$i:$65278 and such that (i mod 256)*255.

We describe first the way the data bytes are decoded sequentially to obtain the vector of integers they represent.
Decoding begins in simple mode, and proceeds according to the following rules:

1. Simple. If the numeric value b of the byte lies in the range 0:$b:$254, an Integer with value b is added to
the vector, and the subsequent bytes are interpreted similarly. If b=255, the next byte n is examined to deter
mine whether to enter the run or extended modes.

2. Run. entered if 0::5n::5254. If the numeric value b of the byte lies in the range 0::5b:$254, an Integer with
value n*256+b is added to the vector, and the subsequent bytes are interpreted similarly. If b=255, the next
byte n is examined to determine whether to enter the run or extended modes.

3. Extended, entered if n=255. The immediately following byte must be 0. Subsequent bytes are interpreted as
follows: the next byte b1 is examined; if b1 *255, then the next byte b2 is obtained, and an Integer with value
b1 *256+ b2 is added to the vector. If b1 =255, the next byte n is examined to determine whether to enter the
run or extended modes.

The decoding scheme is illustrated in the following examples:

1. Simple only.
Data bytes: 65, 83, 67, 73, 73, 32, 98, 97, 115, 101, 100
Vector of integers: (65, 83, 67, 73, 73, 32, 98, 97, 115, 101, 100]

2. Simple and run.
Data bytes: 102, 111. 255, 239, 48, 255, O. 111, 116, 110, 111, 116, 101
Vector of integers: 102, 111, 61232, 111, 116, 110, 111, 116, 101

3. Simple and extended,
Data bytes: 255, 255, 0, 1, 97, 0, 32, 33, 98, 4, 32, 38, 97
Vector of integers: 353, 32, 8546, 1056, 9825

The DecodeString procedure below makes the decoding descriptions precise. The procedure is provided with an argu
ment data, which are the data bytes of the token, and an argument length, which is the number of data bytes. The
procedure Addlnt is called to add an integer to a vector result that is built up.

procedure DecodeString(data: Vector; length: Integer);
type mode= { 1Un. escape. escape2, extended. extended2};
var l b. offset: Integer; state: mode;
begin
offset : = O; state : = 1Un;
for i : = 0 to length- I do begin

b : = data[i];
case state of

1Un: if b*255 then Addlnt(offset*256+ b) else state : = escape;
escape: if b*255 then begin offset : = b; state : = 1Un end else state : = escape2:
escape2: if b= 0 then state : = extended else error;
extended: if b* 255 then begin offset : = b; state : = extended2 end else state : = escape;

19

2

20

The base language

exended2: begin Addlnt(offset*256+b); state:= extended end
end;

end;
if not (state= run or state= extended) then error
end

The AppendString procedure shows how a vector might be encoded using only the run mode. It performs two passes
so that it can compute the total length of the encoding, including escape bytes, during the first pass, while actually
constructing the encoding during the second pass.

procedure AppendString(v: Vector; numElements: Integer);
var byteCount: Integer : = O; offset: Integer;
begin
for pass : = 1 to 2 do begin

end

if pass= 2 then AppendSequenceDescriptor(sequenceString. byteCount);
offset:= O;
for i : = 0 to numElements-1 do begin

end

if v[i]<O or v[t]>65278 or v[i] mod 256=255 then error;
if v[i] div 256-:l:offset then begin

offset : = v[i] div 256;
if pass= 1 then byteCount : = byteCount+ 2
else begin AppendByte(255); AppendByte(offset) end
end;

if pass= 1 then byteCount : = byteCount+ 1 else AppendByte(v[i] mod 256)
end

Large vectors. Image data is often recorded as a large vector of compressed or packed data.
For this reason, it is convenient to have a compact representation for large vectors of integers.
Sequence type sequencelargeVector is a sequence of bytes that is formed into a vector of in
tegers. The first data byte is equal to the number of bytes used to represent each number; call
this b. The remaining data bytes are grouped into b byte parts, and each of these parts is a
twos-complement representation of an integer. The length of the vector is (length- l)lb; it is re
quired that (length- I) mod b=O. Thus the first b bytes after the initial byte represent a num
ber that will become the vector element with index 0, the next b bytes represent the vector ele
ment with index 1, and SO on, up to the last b bytes, which represent the vector element with
index (length-l)lb-l.

The following AppendLargeVector procedure generates this encoding, using a minimum number
of data bytes.

procedure AppendlargeVectot{.v: Vector, n~mElements: Integer);
var b.~ integer:= O;
begin
for i: = 0 to numElements- l do b : = Max(b, Byteslnlnt(v[i]));
AppendSequenceDescriptor(sequencelargeV ector, b* numElements+ l);
AppendByte(b);
for i: = 0 to numElements-l do Appendlnt(v[i], b)
end

Pixel vectors. There are two types of sequence which abbreviate a large vector, a call of
FINDDECOMPRESSOR, and application of the resulting operator.

A sequence token with type sequencePackedPixe/Vector is equivalent to pushing onto the
stack a Vector of Integers v formed from the data bytes and executing <[Xerox, packed]
FINDDECOMPRESSOR DO}.

Interpress Xerox System Integration Standard 2

A sequence token with type sequenceCompressedPixe/Vector is equivalent to pushing onto the
stack a Vector of Integers v fo1TI1ed from the data bytes and executing <[Xerox, compressed]
FINDDECOMPRESSOR oo>.
A sequence token with type sequenceAdaptivePixe/V ector is equivalent to pushing onto the
stack a Vector of Integers v fo1TI1ed from the data bytes and executing <[Xerox, adaptive]
FINDDECOMPRESSOR DO>.

In all three cases, the vector v is obtained from the data bytes in the encoding by using two
bytes to represent each integer. More precisely, if v has numE/ements elements, it is encoded
with AppendSequenceDescriptor(seqType, 2*numE/ements); for i : = 0 to numE/ements-1 do
Appendlnt(v[i], 2), where seqType is one of sequencePackedPixe/Vector, sequenceCompressedPixe/
Vector, or sequenceAdaptivePixe/Vector.

Inserting from a file. There is a special encoding-notation which takes a file name as parameter,
and is equivalent to inserting the contents of the file in the master, in place of the encoding
notation. Sequence type sequencelnsertFile has data bytes which are interpreted as character
codes for the name of a file, in a printer-dependent character set. The sequencelnsertFile token is
replaced by the tokens in the specified file. File insertions may nest to a depth of 16.

Any kind of printer-dependent processing may be done on the tile to obtain a sequence of tokens; e.g., if an en
coding header is present, that header and the BEGIN and END tokens might be stripped off, so that a tile represent
ing a complete master can also be inserted into another master. In fact, the inserted tile need not actually contain
tokens in the encoding; it might contain some representation compiled for a particular printer, as long as the net
effect is the same as that produced by some sequence of tokens.

2.5.4 Code assignments

All the encoding values except the ones for primitive operators are summarized below; encod
ing values for primitives are given in Appendix 8.3.

Name

BEGIN

END

PAGEINSTRUCTIONS
"{"
"}"

Table 2.1 Encoding values for non-primitives

Value (decimal)

102
103
105
106
107

21

2

22

The base language

Table 2.2 Values for sequence types

Name

sequenceAdaptivePixe/Vector
sequenceComment
sequenceCompressedPixe/Vector
sequenceContinued
sequenceldentifi,er
sequence/ nsertFile
sequence/ nteger
sequence Large Vector
sequencePackedPixe/V ector
sequenceRational
sequenceString

Value (decimal)

12
6

10
7
5

11
2
8
9
4
1

3

Global structure and external interface

This chapter describes how an Interpress master is constructed out of a sequence of bodies
called its skeleton. It also explains the conventions for naming external objects such as fonts
and for passing special instructions to an Interpress printer.

3.1 The skeleton

A master consists of a sequence of Bodies (§ 2.2.5) called the skeleton. Within each body, the
rules of the base language prevail. The way in which the bodies are executed is outlined first
and then described in precise detail.

The master contains:

• An optional instructions body that is executed to tell the printer how the master is to be
printed.

• A body called the preamble, which establishes the initial frame for all the remaining
bodies.

• An arbitrary number of page descriptions. A page description may be a single page image
body, which is executed to generate the image for the corresponding page. Alternatively, a
page description may contain two bodies, a page instructions body followed by a page
image body. The page instructions body determines any special printing instructions that
are to apply to this page only. A special token in the skeleton distinguishes between the
two kinds of page descriptions.

If an instructions body is present, it is executed first, with the external instructions vector on
the stack. The external instructions vector is a property vector that encodes printing instruc
tions obtained from a source other than the master, for example, from the communications
protocol used to transmit the master to the printer. The execution of the instructions body
must leave on the stack one or more property vectors that will be combined using MERGEPROP

to obtain a complete set of instructions. The details of printing instructions are given in § 3.3.

After the instructions body, if any, is executed, the preamble is executed with an initial frame
containing topFrameSize zeros, and no arguments on the stack. The preamble returns no results,
but the value of its frame after its execution is used as the initial frame for each page body.

23

3

24

Global structure and external interface

Thus the preamble can set up fonts, define composed operators, establish various parameters,
etc., and leave all this information in the frame for the use of the page bodies.

Then each page description is processed in turn. If a page instructions body is present, it is ex
ecuted to obtain an instructions vector that will apply for this page only. Then the page image
body is executed, with the initial frame supplied by the preamble, and no arguments. A fresh
printing surface is supplied to hold the image produced by each page body.

All the bodies in the skeleton are executed by DOSA VEALL, with a mark protecting the stack.
Thus every body in the skeleton is executed with the imager variables in their initial state. This
guarantees that executing a body cannot have side effects, so that page image bodies can be ex
ecuted in any order without affecting the output or each other. A consequence is that the
preamble cannot set up imager variables for the page image bodies. Each body must do this
for itself, perhaps by calling a composed operator constructed by the preamble.

No results may be returned by a page image body, and its entire effect is therefore captured in the output it
produces.

The formal definition of the skeleton is given in the following Backus-Naur Form:

skeleton
block
pages
page

instructionsBody
preamble Body
pagelmageBody
pagelnstructionsBody
body

: : = instructionsBody block I block
: : = BEGIN preamble Body pages END

: : = page I page pages
: : = page Image Body I

PAGEINSTRUCTIONS pageinstructionsBody pagelmageBody
::=body
::=body
::=body
::=body
: : = as defined in § 2.2.5

An example of a skeleton for a two-page master is { instructionsBody } BEGIN { preambleBody } { pagelmageBody
} PAGEINSTRUCTIONS { pagelnstructionsBody } { pagelmageBody } END.

The meaning of a master (i.e., the output it generates) is defined by the following pidgin
Pascal program which executes the skeleton. The program intermixes Interpress operators with
Pascal in an obvious way; it treats the Pascal variables as elements of an Interpress frame,
which it can reference with FGET and set with FSET. It also uses several special operators which
do not exist in true Interpress.

<!" Vector> <b: Body> *MAKECOWITHFRAME returns a composed operator with body band
initial frame f.

*LASTFRAME returns the final value of the frame for the most recently completed execu
tion of a composed operator.

<m: Vector> <pageNumber: Integer> <duplex: Integer> <xlmageShifl: Number> *SETMEDIUM

starts a new page. This operator is defined fully in § 4.2.

*OBTAINEXTERNALINSTRUCTIONS returns a property vector representing printing instruc
tions supplied to the printer from outside.

<computedlnstructions: Vector> <externallnstructions: Vector> *ADDINSTRUCTIONDEFAULTS

returns a single property vector in which computedlnstructions has been altered to include

Interpress Xerox System Integration Standard 3

defaults specified by Interpress and printer-dependent defaults or constraints. A printer
may implement *ADDINSTRUCTIONDEFAULTS in such a way that certain instructions
present in external!nstructions will also be present in the result (e.g., passwords).

*RUNSIZE and *RUNG ET are defined in § 3.3.3.

In the following program, the instructionsBody variable contains the instructions body or a null
body, { }, if the master has no instructions body. The preambleBody variable contains the
preamble. The pagelmageBodies variable is assumed to contain a vector of page image bodies
contained between the bracketing BEGIN and END. The pagelnstructionsBodies variable contains a
corresponding vector of page instruction bodies, with null bodies for those pages that do not
have instructions. The program clears the initial frame vector iFrame to 0 and executes the
preamble with DOSA VEA LL, saving the final value of the frame in iFrame, Then it executes each
page body, after executing *SETMEDIUM to set up the page.

instructionsBody, preambleBody: Body;
pagelmageBodies, pagelnstructionsBodies: Vector [l .. numPages] of Body;
instructions: Vector of Any; -- final printing instructions --
medial. copySelectl, pageSelectl, onSimplexl, mediaSelectl, copyNamel: Vector of Any;
copyName: Identifier; copyNumber, pageNumber, i: Integer;
iFrame: Vector [O .. topFrameSize-1] of Any;
-- initialize the initial frame --
for i: = 0 to topFrameSize-1 do iFrame[i] : = 0
-- compute printing instructions --
0 MAKEVEC instructions FSET -- null instructions in case mark recovery occurs --
0 MARK -- protect against error while executing instructions body --

*OBT AINEXTERNALINSTRUCTIONS -- push property vector on stack -
iFrame FGET

instructionsBody FGET

*MAKECOWTTHFRAME DOSA VEALL -- execute instrnctions~body -
while COUNT> 1 do { MERGEPROP } -- merge all instructions -
instructions FSET

UNMARKO

instructions FGET

*OBT AINEXTERNALINSTRUCTIONS

* ADDINSTRUCTIONDEFAULTS -- install lnterpress and printer-dependent defaults-
instructions FSET -- and save as final printing instructions --
instructions FGET media GETPROP POP medial FSET -- obtain 'media' instruction -
instructions FGET copySe/ect GETPROP POP copySelect/ FSET -- and others -
instructions FGET pageSelect GETPROP POP pageSelectl FSET

instructions FGET onSimplex GETPROP POP onSimplexl FSET

instructions FGET mediaSelect GETPROP POP mediaSelectl FSET

instructions FGET copy Name GETPROP POP copy Name! FSET

0 MARK -- any error in the preamble will terminate execution --
iFrame FGET preambleBody FGET

*MAKECOWITHFRAME DOSA VEALL -- execute the preamble -
*LASTFRAME iFrame FSET -- save frame created by preamble -
-- make the required number of copies --
for copy Number:= 1 to copySelectl FGET *RUNSIZE do {

-- execute the page bodies --

25

3

26

Global structure and external interface

copyNamel FGET copyNumber FGET *RUNG ET copyName FSET -- set copyName -
if copySelectl FGET copyNumber FGET *RUNGET then
for pageNumber : = 1 to numPages do {

0 MARK -- protect against error while executing the page body -
-- execute the page instructions body --
0 MAKEVEC pagelnstructions FSET-- null instructions in case of mark recovery--
0 MARK -- separate mark recovery for printing instructions --

0 MAKEVEC -- null vector is argument -
iFrame FGET

pagelnstructionsBodies FGET pageNumber FGET GET

*MAKECOWITHFRAME DOSAVEALL

while COUNT> 1 do { MERGEPROP }

pagelnstructions FSET

UNMARKO
-- decide whether to print this page for this copy --
if instructions FGET plex GETPROP POP duplex EQ

pagelnstructions FGET pageOnSimplex GETPROP NOT

{ onSimplexl FGET pageNumber FGET *RUNGET } IF OR

pageSelectl FGET copyNumber FGET *RUNG ET pageNumber FGET *RUNG ET AND then {
-- set medium for this page --

}

medial FG ET -- obtain media vector --
pagel nstructions FGET pageMediaSelect GETPROP NOT

{ mediaSelectl FGET copyNumber FGET *RUNGET pageNumber FGET *RUNGET } IF

GET -- medium description --
pageNumberFGET -- page number--
instructions FGET plex GETPROP POP duplex EQ -- true if duplex -
instructions FGET xlmageShift GETPROP POP -- value of xlmageShift -
*SETMEDIUM -- prepare a new image surface --
--during execution of the page image body, --
-- *COPYNUMBERANDNAME will return <copyNumbercopyName> --
iFrame FGET

page/mageBodies FGET pageNumber FGET GET

*MAKECOWITHFRAME OOSA VEA LL -- call page image body --

UNMARKO

}}
UNMARKO

This program defines the effect of executing a master, not necessary the implementation that a
printer must use. In particular, Interpress is defined so that the master need not be executed n
times in order to print n copies.

3.1.1 Operator restrictions t

Some parts of a master do not allow certain operators to be executed. There are three classes
of primitive operators:

BASE

IMAGE

Any operator in the base language (defined in § 2).

Any imaging operator (defined in § 4).

Interpress Xerox System Integration Standard 3

WEAK IMAGE Any IMAGE operator that does not have MASK in its name and is not defined
in terms of operators that have MASK in their names; i.e., WEAKIMAGE

operators are those that generate no output.

The instructions and page instructions bodies may execute only BASE operators. The preamble
body may execute only BASE and WEAKIMAGE operators. A page image body may execute any
operator. Note that the restrictions apply only to the execution of operators; for instance, the
preamble can make composed operators which contain arbitrary IMAGE operators, although it
cannot execute them.

3.1.2 Pages t

The printer must arrange the printing sequence so that a stack of pages has the page with
pageNumber=l "on top," pageNumber=2 underneath page 1, etc. The value of pageNumber is
defined in the program in § 3.1.

Depending on the way the printer handles the media, the order in which images are printed may be the same as
the order in the stack, the reverse, or some more complex function.

3.2 Environments and names

The fonts, decompressors, and colors which exist outside _a master are made accessible through
the FINDFONT (§ 4.9), FINDDECOMPRESSOR (§ 4.6.1). FINDCOLOR, FINDCOLOROPERATOR, and
FINDCOLORMODELOPERATOR (§ 4.7) operators. These, and the sequencelnsertFile encoding
notation (§ 2.5.3), are the only links from a master to the outside world. The operation of
sequencelnsertFile is installation-specific, but it usually names the file to be included with a
string which is interpreted as some kind of file name in the installation's file system. The FIND

style operators use Vectors of Identifiers to name the external objects to be obtained. This
naming scheme is open-ended so that a growing set of objects can be named in an orderly and
decentralized way.

It is desirable for a preamble to extract the objects needed by its page bodies and save them in the initial frame,
since an implementation is likely to handle FGET much more efficiently than the FIND-style operators.

3.2.1 Identifiers and structured names

Identifiers in lnterpress provide a general mechanism for naming values which are external to
the master, such as fonts supplied by the printer. For external access, identifiers are a necessity
in all but the simplest situations. The use of numbers to name fonts, for example, would re
quire a separately maintained list of all the assigned numbers and the font associated with each
number. Without this list, a master would not make sense. But maintaining such a list is ad
ministratively impractical except in a small community or in one with a single supplier.
Identifiers are not only nearly indispensable for font names, they are also quite cheap, since
only one external font name needs to appear for each different font used in a master. Hence
neither the space occupied by the identifier nor the time required to look it up is a significant
consideration.

Names with structure are represented as Vectors of Identifiers, e.g., Xerox/TimesRoman/bold be
comes [Xerox, TimesRoman, bold]. This representation for structured names uses a separate iden
tifier for each element of the structure so as to make the structure explicit and remove the
temptation to devise ad-hoc conventions for parsing strings to establish structure.

27

3

28

Global structure and external interface

3.2.2 Universal na~es

Objects in a printer's environment are obtained using universal names, which are structured
names such that the first identifier in the name is registered in the Interpress universal registry.
The first identifier in a universal name is called a universal identifier. Because the universal
identifier is registered, the remaining identifiers in a universal name can be chosen at will by
the organization that has obtained the universal identifier, without danger of conflicting with
names chosen by other organizations. In this way, the name space of external objects can grow
very large with little central control. An organization wishing to create permanent values which
can be referenced reliably from any lnterpress master should obtain an identifier in the univer
sal registry and thus establish a name space within which to invent names for these objects (see
Appendix C).

Although universal names can be structured in arbitrary ways, subject to the constraint that the
first identifier be registered, it is intended that a hierarchical naming system be used for exter
nal objects, much like the hierarchical file directory system of many operating systems. This
naming convention allows for unlimited growth of the name space without any name conflicts
and without the need for any central authority to assign names.

Orderly invention of hierarchical names requires the notion of a registry, a set of identifiers
which controls a particular point in the hierarchical name space. Such points themselves of
course have hierarchical names. A registry is an administrative entity, maintained by some or
ganization or person with an interest in keeping order in some part of the name space. The
lnterpress universal registry is responsible for assigning universal identifiers, the first identifier
in a hierarchical name. The registry for point n is responsible for assigning names which begin
with n so that conflicts do not arise. The registry can delegate part of its power to a sub
registry, e.g., for the point nlm. In doing so, it resigns its own right to invent names which
begin n/m, since it cannot be sure that the sub-registry has not already chosen such a name.

By way of example, consider a way Xerox might name fonts. The organization obtains the
universal identifier Xerox from the universal registry. A registry for Xerox is established, respon
sible for assigning names that begin Xerox/ . .. The registry might choose to use character-set
names at the next level, and invent the names Asci~ Ebcdic, xc2-0-0, etc. At the next level, type
family names might be used, e.g. Xerox/xc2-0-0/times. Note that because the first identifier is
registered, any names the Xerox registry invents are distinct from names assigned to other
manufacturers, e.g., Xerox/ Asciil ... is distinct from Mergenthaler/ Ascii/ ...

3.2.3 Environment names

For each universal name there is a corresponding environment name that is unique for each dis
tinct object in the printer's environment The environment name is obtained by prefixing the
universal name with an identifier that describes its type. For example, the font with universal
name Xerox/asciVtimes has fonts/Xerox/ascii/times as its environment name. The prefixes are
shown in Table 3.1.

Interpress Xerox System Integration Standard 3

Table 3.1 Environment name prefixes

Type of object Operator that finds it Prefix

font FINDFONT fonts
decompression operator FINDDECOMPRESSOR decompresslonOps
color FINDCOLOR colors
color operator FINDCOLOROPERATOR colorOps
color model operator FINDCOLORMODELOPERATOR colorMode/Ops

3.3 Printing instructions

When a printer is presented with an Interpress master, it must also be given additional informa
tion that governs how the master will be printed: the number of copies, what account to
charge, an identifying name for the document, etc. These printing instructions are not neces
sarily part of the master itself, because they may be generated separately. For example, if a
master is stored and later printed on demand, some of the printing instructions, such as the
number of copies to print, will be generated when the demand is made, while other instruc
tions, such as the name of the document, are attached to the master when it is created.
Interpress provides a flexible way of combining externally supplied instructions with those in
the master.

Printing instructions are represented as a universal property vector in which property names
denote particular printing instructions. For example, the vector [docName, <Sales report>, media,
[[p/ainPaper. 0.2159, 0.2794]]] indicates that the printing instruction docName is to have the
value <Sales report> and the printing instruction media has value [[p/ainPaper. 0.2159, 0.2794]].
The standard instructions are described in § 3.3.3.

Because printing instructions are represented in a universal property vector, the instructions vector may contain
printer-dependent instructions. For example, the instructions vector [docName. <Report>, [Xerox. offsetStacking],

docOffset] contains a standard instruction (docName) and an instruction that has been defined by Xerox, whose name
is Xerox/offsetStacking and whose value is docOjfseL

3.3.1 Computing the printing instructions

A single printing instructions vector is computed by merging information obtained from
several sources.

When a master is executed, a property vector of external instructions is supplied by the printer
to the master. Interpress does not define how the external instructions vector is obtained. The
vector may contain instructions supplied as printer defaults, obtained from the protocol used to
submit the master for printing, or supplied by the operator of the printer; or it may be empty.

Printing instructions are also obtained by executing the master's instructionsBody. This body is
executed with the external instructions vector on the stack. After instructionsBody is executed,
the contents of the stack are merged, using MERGEPROP, to obtain a single instructions vector.
Finally, the printer passes this vector and the external instructions to the

29

3

30

Global structure and external interface

*ADDINSTRUCTIONDEFAULTS operator, which may alter the instructions vector in order to en
force printer-dependent defaults, overrides, or operational policies. Interpress does not define
all actions of *ADDINSTRUCTIONDEFAULTS, although it does insist on certain default values in
dicated below.

In normal usage, some instructions will be provided by the external instructions vector and others by the
instructionsBody. In the simplest case. instructionsBody simply pushes a single property vector on the stack, which will
be merged with the external instructions vector after the execution of instructionsBody is complete. For example. the
external instructions will specify the number of copies and the name of the recipient, while the instructionsBody will
specify the name of the document and the size of paper required.

If instructionsBody is null. the external instructions become the instructions because of the way execution of the

master is defined.

The instructionsBody can control whether its instructions will override external instructions or will function as
defaults. Suppose that the execution of instructionsBody leaves the stack containing <vi externallnstructions v2>. where vi

and v2 are property vectors constructed by instructionsBody and externallnstructions is the original external instructions
vector passed as an argument to instructionsBody. The act of merging these three property vectors will insure that in
structions in v2 dominate those in externallnstructions, which in turn dominate those in v1.

The instructionsBody can manipulate the external instructions vector in arbitrary ways. It may examine elements using
GETPROP or GET. It may pop the external instructions vector off the stack and construct an entirely new set of in
structions. Although instructions Body is free to compute arbitrary instructions, * ADDINSTRUCTIONDEFAULTS has ultimate
control. and may for example reinstate critical external instructions that instructionsBody deletes.

3.3.2 The break page

Some of the instructions are used to fill in a break page which the printer may provide as a
cover sheet for the document being printed and to separate the output from printing of succes
sive masters. The break page gives the document name, creation date, printing date, person
who is to receive the output, messages describing errors encountered during printing, etc. Its
detailed layout is controlled by the printer.

Information to be printed on the break page and supplied in instructions is contained in vec
tors of type BreakPageString. A BreakPageString is a Vector of Integers suitable for indexing
the font specified by the breakPageFont instruction. The main purpose of this font is to indi
cate the character set of BreakPageStrings. The printer is not required to use this font, but it
must print the strings in a font with similar symbols, so that they are readable. Thus if charac
ter code 23 corresponds to "A" in this font, whenever 23 is encountered in a BreakPageString,
some sort of "A" must be printed. If the printer has no font with a character set that matches
that of the font specified in the breakPageFont instruction, it may use a printer-dependent
mechanism to print break page information.

3.3.3 Standard instructions

The following instruction names and meanings are standard. A printer capable of carrying out
one of these instructions should interpret the standard instruction as specified here. It is not
necessary to specify the value of every instruction; the list below shows default values that will
be substituted by *ADDINSTRUCTIONDEFAULTS if certain instructions are missing. The descrip
tion of each instruction gives the name of the instruction (i.e., the property name to use in an
instructions vector), followed by its type (i.e., the type which the value corresponding to the in
struction must have). If the type is not correct, a master error is caused. In the text describing
each instruction, the symbol value is used to denote the value associated with the instruction
property.

Interpress Xerox System Integration Standard

The parenthesized note in front of the meaning suggests that this instruction is likely to be supplied:

(M) by the instructionsBody in the master:

(E) in the external instructions:

(EM) in the external instructions, with a default value supplied by the master:

3

This is simply a comment to indicate the intended use of each instruction: there are no restrictions on where an in
struction may appear.

breakPageFont Vector of Identifiers (EM). The name of a font that may be used to print
BreakPageStrings. The font will be obtained by <value FINDFONT>.

docName BreakPageString (M). An identifying name for the document.

docCreator BreakPageString (M). The name of the person who created the document.

docComment BreakPageString (EM). The string is printed prominently on the break page.

docCreationDate BreakPageString (M). A string that shows the date and time when the docu-
ment was created.

docPassword Vector of Integer (M). If value:;f:<O MAKEVEC>, the document should not be
printed until the operator enters a password string such that Authenticate
Function(passwordString) =value. The definition of AuthenticateFunction is printer
dependent. Default: <O MAKEVEC>.

subset Identifier or Vector of Identifiers (M). This instruction identifies the subset
(§ 5) of Interpress used to prepare the master. The identifiers that may appear
as values of this instruction are:

none. The master is assumed to use any of the facilities of Interpress.

text. The master is restricted to the text subset.

reference. The master is restricted to the reference subset.

Default: none.

A Vector of Identifiers representing a universal name (§ 3.2.2) may also appear
as the subset definition, e.g., [xerox, performance].

environmentUses Vector of Vector of Identifiers (M). This instruction gives the environment
names (§ 3.2.3) of all objects in the environment that the master uses. This in
formation is useful for routing masters to printers with the necessary environ
ments. For example, the value [[colors, xerox, highlight], [fonts, xerox, xc2-0-0,
times]] indicates that the master will need a color obtained by calling <[xerox,
highlight] FINDCOLOR> and a font by calling <[xerox, xc2-0-0, times] FINDFONT>.

insertFileUses Vector of Request (M). This instruction gives the names of objects requested
using sequencelnsertFile in the master(§ 2.5.3), or a mapping to be applied from
names given in the master to names that should be used instead. Each Request
is either (1) a Vector of Integers that is a copy of the data bytes of a
sequencelnsertFile token that appears in the master, thus specifying in the
printing instructions the name of an object that will be used in the master; or
(2) a Vector [master, actual], where both master and actual are Vectors of
Integers. This second form requires any sequencelnsertFile token whose data
bytes match master to be mapped into a sequencelnsertFile token with data bytes
actual.

31

3

32

Global structure and external interface

jobSender

job Recipient

BreakPageString (E). The name of the person who requested the document to
be printed.

BreakPageString (E). The name of the person who is to receive the printed out
put

jobStartMessage BreakPageString (E). A message to be displayed to the operator prior to job ex
ecution.

jobEndMessage BreakPageString (E). A message to be displayed to the operator after job ex
ecution.

jobStartWait Integer (E). If value is non-zero, the job should not be printed until an
operator at the printer instructs the printer to proceed. Default: 0.

jobEndWait Integer (E). If value is non-zero, the printer should not print subsequent jobs
until an operator at the printer instructs the printer to proceed. Default: 0.

jobAccount Any (E). The value specifies the account to be charged for printing services;
the interpretation is printer-dependent.

jobPriority Identifier (E). The identifier selects one of three printing priorities for this job:
low, normal, or high. Default: normal.

jobErrorAbort Identifier (E). This instruction suggests whether a printing job should be
aborted when errors occur in the execution of the master. The values may be:

jobSummary

job Password

on Warning. If an error or warning is encountered (§ 5.3), the entire job is
aborted. This option is useful if you are printing a final copy of a long job
and want to be sure that no errors, such as appearance errors or warnings,
will distort the result.

onError. If an error is encountered (§ 5.3), the entire job is aborted.

struggleOn. The printer will struggle to print as much as possible of the job,
even if many errors are generated.

default. The printer will apply a printer-dependent criterion, such as aborting
after a certain number of errors of a certain severity have occurred.

Default: default.

Identifier (E). This instruction controls the printing of summary accounting
and/or performance information. It can take on four values:

none. No information is printed.

withDocument. The summary is printed with the document, e.g., on the break
page.

separate. The summary is printed separately from the document, and may be
placed in a separate output bin.

both. Has the effect of withDocument and separate.

default. A printer-dependent action is taken.

Default: default.

Vector of Integer (E). If value;e:<O MAKEVEC>, the job should not be printed
until the operator enters a password string such that Authenticate-

Interpress Xerox System Integration Standard 3

finishing

stacking

plex

xlmageShift

media

Function(passwordString) =value. AuthenticateFunction is defined as for the
jobPassword instruction. If both jobPassword and docPassword instructions are
present, two passwords must be supplied. Default: <O MAKEVEC>.

Identifier or Vector of Identifiers (EM). This instruction specifies the name of
a document-finishing technique to be applied, if any. The identifiers that may
appear as values of this instruction are:

none. No finishing is done.

default. A printer-dependent default action is taken.

cornerStaple. A single staple is inserted in each copy of the document in the
upper-left corner, i.e., near the x=O, y=mediumYSize point of the
Interpress coordinate system of the page with pageNumber= 1 (§ 4.3.1,
§ 3.1). The break page, if any, may be stapled to a copy.

A Vector of Identifiers representing a universal name (§ 3.2.2) may also appear
as the value of a finishing instruction to define printer-dependent finish
ing, e.g., [exxon. bind].

Default: default.

Identifier or Vector of Identifiers (EM). This instruction specifies the way
copies are to be stacked. The identifiers that may appear as values of this
instruction are:

default. A printer-dependent default action is taken.

copyOjfset. Each copy is offset from the previous copy.

jobOffset. The entire job is to be offset from the previous job.

Default: default.

Identifier (EM). This instruction tells the printer whether the document is to
be printed using only one side of each piece of paper (value= simplex) or using
both sides of each piece of paper (value= duplex). Default: either simplex or
duplex, as chosen by the printer.

Number (EM). The value of this instruction specifies the distance (in meters)
that each page's image is to be shifted in the x direction. On odd pages, the
shift is to the right if value> 0 or to the left if value< 0. On even pages, the
shift is to the left if value> 0 or to the right if value< 0. This effect is stated
precisely in § 4.2. Default: 0.

Vector of MediumDescription (EM). This instruction specifies the name and
size of each medium that is used to print the master. A MediumDescription is
itself a vector, with the following entries:

name: Identifier or Vector of Identifiers (index=O). An Identifier to name the
printing medium desired. The name default invokes a printer-dependent
default medium. Interpress does not define other media identifiers. A
universal name (§ 3.2.2) may also appear in this element of a
M ediumDescription.

mediumXSize, mediumYSize: Number, Number (indices= 1, 2). The size of the
medium in meters. mediumXSize and mediumYSize are defined in § 4.3.1.

33

3

34

Global structure and external interface

A Mediumlndex is an index into the media vector that selects a particular
medium. The printer may assume that media identified by smaller
Mediumlndex values are used more frequently than those with larger values.
Default: [[default, 0.2159, 0.2794]].

For example, the instruction [[default, 0.2159, 0.2794), [coverStock, 0.2159, 0.2794)] establishes that a Mediumindex of
0 identifies default 81h X 11 inch paper, and a Mediumindex of 1 identifies cover stock, also 81h X 11 inches. In
this example, the cover stock is assumed to be used less frequently than the default paper when printing the docu
ment

The remaining printing instructions deal with selecting the configuration of pages and copies to
print Each page number p of each copy number c may receive different treatment. The page
(c, p) will:

• be printed if and only if copySelect[c]¢0 and pageSelect[c,p)¢0 and (printing duplex or
01.1Simplex[p)¢O);

• use the medium identified by the Mediumlndex equal to mediaSelect[c,p];

• and have a copy name equal to copyName[c]; the copy name is used in conjunction with IF

COPY, § 2.4.7.

The first two decisions may be altered by the use of page instructions (§ 3.3.4).

The arrays copySelect, pageSe/ect, onSimp/ex, mediaSe/ect, and copyName referred to are all en
coded in the printing instructions. However, in order to keep these arrays compact, a run
length encoding scheme is used. The term "Run of X" refers to a vector that contains alternate
values of type Integer and type X. The Integer specifies the number of times the value of X
should be repeated in the fully-decoded vector; the fully-decoded vector has a lower bound of
1. It is a master error if any of these vectors has an odd number of elements or has a non-zero
lower bound. Except for copySelect, it is not an error if the fully decoded vector has more
elements than are required to represent the information for a particular document or printing
request; but a master error is generated if the vector has too few elements to represent the
information.

For example, a Run of Identifiers vector might look like [2, archive, 3, distribute], which represents the full vector
<archive archive distribute distribute distribute 1 5 MAKEVECLU>. The Run of Integers [l, 1, 6, 0, 1, 1) represents the full
vector <l 0 0 0 0 0 0 1 1 8 MAKEVECLU>.

The precise treatment of run encoded vectors is described by two operators:

<r: Vector> *RUNSIZE -+ <s: Integer>
where s is the number of elements in the fully decoded form of the Run of X vector r.
The effect of this operator is defined by the following program:
ln.j,s: Integer; c: Any;
rFGET SHAPE n FSET I FSET-- get lower bound and size ofr-
if /::1:0 or n mod 2¢0 then error;
0 sFSET

for j : = 0 to n- l by 2 do {
r FGET j FGEf GET c FSET -- c : = r[i) -

if c FGEf is not an Integer then error;
s FGET c FGET ADD s FSET -- s : = s+ c -

} sFGET

lnterpress Xerox System Integration Standard 3

<r: Vector> <i: Integer> *RUNGET-+ <value: Any>
where value is the Ith element of the fully decoded form of the Run of X vector r,
l.::;;i~ <r *RUNSIZE>. The effect of this operator is defined by the following program:
}: Integer; c: Any;
if i= 0 or i > r *RUNSIZE then error;
for J : = 0 by 2 do {

r FGET j FGET GET c FSET-- c: = r[i) -
if c FGET is not an Integer then error;
if c FGET > i then goto done;
i FGET c FGET SUB i FSET; -- i: = i-c -

} error;
done: r j FGET 1 ADD GET -- value:= r[i+ 1) --

The following printing instructions are used to define the treatment of all pages and copies:

copySelect

copy Name

onSimplex

pageSelect

mediaSelect

Run of Integer (EM). Default: [l, l], which requests a single copy.

Run of Identifier (EM). Default: [107, null].

Run of Integer (EM). Default: [107, l], which prints all pages when printing
simplex.

Run of (Run of Integer) (EM). The outside vector is indexed by copy number,
the embedded vector by page number. Default: [107, [107, l]], which will select
all pages for printing on all copies.

Run of (Run of Integer) (EM). The outside vector is indexed by copy number,
the embedded vector by page number. The Integer value is a Mediumlndex.
Default: [107, [107, O]], which will select the medium with index 0 in the value
of the media instruction for all pages and all copies.

The copySelect instruction requests that multiple copies be printed. For example, the instruction [copySelect, [5, l]]
will print 5 copies. More precisely, it will print copy 1, copy 2, copy 3, copy 4, and copy 5. Note that copy 1 and
copy 2 may differ because of the way pageSelect and mediaSelect instructions are given or because of the action of
IFCOPY. As another example, the instruction [copySelect, [2, 0, 1, l]] will cause only copy 3 to be printed.

The normal convention for copyName, pageSelect, and mediaSelect is to use a run representation that provides instruc
tions for a great many copies (e.g., 107), far more than will ever be selected for printing by copySelecL For example,
the instruction [pageSelect, [107, (5, llll will select pages 1 through 5 for printing on all (conceivable) copies.

If the instructionsBody is constructed before the total number of pages in the document is known, the run representa
tion for pages may also be chosen to exceed the actual number of page bodies in the master. Thus [onSimplex. [107,

l]] will print all pages when printing simplex, even though the document will not have 107 pages.

3.3.4 Specifying printing instructions on a page

Certain printing instructions may be specified within a page instructions body rather than com
puted at the outset. The execution of the page instructions may place on the stack a property
vector that contains the following printing instructions:

pageMediaSelect: The value is a Mediumlndex (§ 3.3.3), which selects the medium to use to
print this page. This value takes precedence over the value specified by
mediaSelect[c,p] for this page.

pageOnSimplex: The value is an Integer that is used as the onSimplex value for this page. This
value takes precedence over the value specified by onSimplex[p] for this page.

35

3

36

Global structure and external interface

The details of the processing of page instructions are shown in the program in § 3.1.

Note that page instructions may be used in conjunction with IFCOPY to obtain different effects on different copies.

As an example of the use of page instructions, consider a master that is to print invoices using two pre-printed
forms, one for the first page of every invoice and a second for continuation pages, if any. The creator eannot an
ticipate, at the outset when the instructionsBody is generated, precisely which pages in the master will require which
forms. Instead, the creator uses {(pageMediaSelec~ OJ} or {(pageMediaSelec~ l]} as a page instructions body to select
an appropriate medium for each page. Of course, the instructionsBody must contain an appropriate media entry, such
as [media, [[[Xerox. invoice-first], 0.2159, 0.2794], [[Xerox. invoice-continuation], 0.2159, 0.2794])].

4

Imaging operators

Interpress operators used to create images are called imaging operators: the operators are typi
cally invoked when a page image body (§ 3.1) is executed. These operators are implemented by
an imager program, which is called to produce the desired images. The discussion begins with
several sections that outline general concepts of the operators, such as the imaging model and
coordinate systems. These sections are followed by complete descriptions of the operators.

4.1 Imaging model

Interpress synthesizes a complex image on a page by repeatedly laying down simple primitive
images. For example, a single Interpress operator might place an image of a specific character
at a specific position on the page. A subsequent operator might place another character some
where else, and so on until a complex image is built up. A painter performs a very similar set
of operations to create a complex image: he selects a brush, dips it in paint, and lays down a
stroke of color. Complex images are created by a series of these simple actions.

The Interpress imaging model, illustrated in Figure 4.1, involves three objects:

• The page image. The page image is a two-dimensional image that accumulates results from
primitive images being laid down. It plays the role of the painter's canvas.

• The mask. The mask, specified for each primitive image to be added to the page image,
determines exactly where the page image will be modified. The illustration shows a charac
ter 'b' whose shape and position are described by the mask. In effect, the mask specifies an
opening through which ink can be pressed onto the page image. The mask thus plays the
role of the painter's brush stroke.

• The color. The color specifies the color of the ink to be pushed through the mask onto the
page image in order to add the primitive image to the page image; it may take on many
colors, various shades of gray (including white and solid black), and transparent. To con
tinue the painting analogy, the color specifies the color of paint in which to dip the brush.

Interpress makes complicated images, then, by specifying a sequence of (mask, color) pairs to
be laid down on the page image. Invocations of mask operators actually cause the page image
to be altered. The color to be used is held in a state variable in the imager; it applies to all
masks until the color is changed.

37

4

38

Imaging operators

At the beginning of each page, a new page image is initialized to "paper-white," or the natural
color of the material on which the image is being formed. The imaging operators, then, will
control the ink deposited on the material. In other imaging applications, the initial state of the
page image is chosen to achieve as nearly as possible the same effect. If images are being made
on a television display, the initial state of the entire display is white. If images are being made
on film, the initial state of the film is transparent, which would correspond to white if the film
were projected with a white light. Although the discussion of Interpress frequently refers to
"pages" for convenience, Interpress imagers can be used to create images on any two-dimen
sional medium.

4.1.1 Priority

Color Mask

Previous
page
image

Page image

Figure 4.1 The imaging model; application of a mask operator.

The repeated generation of primitive images opens an important question: when two primitive
images overlap on the page image, which one is visible? The answer is the intuitive answer
used by the painter: laying down an object obscures any overlapping parts of objects that have
been previously placed on the page image, unless the color is transparent. This phenomenon is
called priority: objects laid down later have priority over objects laid down earlier. The order
of specification of the objects (i.e., the order of execution of the mask operators) determines
the priority order.

Interpress Xerox System Integration Standard 4

There are times when priority order does not matter. For example, if all objects are painted
using the same color, reordering the priority of objects will not change the image: objects that
overlap will simply appear to merge. Priority order is also unimportant when no two objects on
the page image overlap, regardless of the colors used to show the objects. In fact, priority order
is important only when objects of different colors overlap.

If a master wishes the imaging operators to preserve the priority order of objects, it must set
the imager variable prioritylmportant to a non-zero value (§ 4.2). A change to the page image in
duced by a mask operator is said to be ordered if the mask operator is executed when
prioritylmportant is not 0, and unordered if prioritylmportant is 0. The rule is that the priority or
der of all ordered page-image changes must be preserved. The imager is allowed to alter
priority order among unordered changes, or between ordered and unordered changes. Because
preserving priority order may require more computation than allowing arbitrary reordering of
objects, creators should leave prioritylmportant 0 if possible.

4.2 Imager state

The state of the imager is contained in two places: (1) the page image itself, which is in
accessible to operators specified in the Interpress master, and (2) the state of two sets of vari
ables: the persistent imager variables and the non-persistent imager variables. Operators are
provided for reading or writing these variables; in examples they are called with the name of
the variable, but the master must call them with the variable's Integer index.

<J: Integer> IGET - <x: Any>
where x is the value of the variable with index j in Table 4.1. A master error occurs
unless J appears in the Index column of the table.

<x: Any> <J: Integer> ISET - <>
where the value of the variable with index J in Table 4.1 is replaced by x. A master
error occurs unless J appears in the Index column of the table. The type of x must
match the type of the imager variable indexed by}. as given in Table 4.1.

Each variable is assigned an initial value when the interpretation of an Interpress master
begins. The imaging operators make frequent use of the variables; some operators change their
values.

The *SETMEDIUM operator, called at the beginning of a page, alters the imager state to reflect
the details of the medium selected for printing the page. Specifically, its actions are:

<m: Vector> <pageNumber: Integer> <duplex: Integer> <ximageShift: Number> *SETMEDIUM

- <>
where certain imager variables are set:

• Set mediumXSize and mediumYSize appropriately for the physical medium
specified by the medium description m (§ 3.3.3). Set fieldXMin, fieldXMax,
fieldYMin, and fieldYMax as well (§ 4.3.1).

• Set T : = <s TID CONCAT>, where TID is the ICS-to-DCS transformation for
this page (see § 4.3 and § 4.4, especially § 4.4.5). The transformation S is a
translation transformation determined by the xlmageShift printing instruction.
S : = if duplex and pageNumber mod 2 = 0 then < - xlmageShift 0 TRANSLATE>
else <ximageShift 0 TRANSLATE>.

39

4 Imaging operators

If xlmageShift is used, the imager variables mediumXSize, fie/dXMin and fieldXMax will specify a smaller use
ful x dimension than normally. That is, the x size will be reduced by the absolute value of the image
shi~ These details are omitted in the description above.

Table 4.1 Imager variables

Name Index Type Section Initial value

Persistent:

DCScpx, DCScpy 0,1 Number 4.5 0,0
correctMX,correctMY 2,3 Number 4.10 0,0

Non-persistent:

T 4 Transformation 4.4 <l SCALE> (identity)
priority Important 5 Integer 4.1.1 0
mediumXSize, mediumYSize 6, 7 Number 4.3 0,0
fieldXMin, fieldYMin 8,9 Number 4.3 0,0
fieldXMax, fieldYMax 10, 11 Number 4.3 0,0
show Vee 12 Vector 4.4 [1
color 13 Color 4.7 <l MAKEGRA Y> (black)
no Image 14 Integer 4.8 0
stroke Width 15 Number 4.8 0
strokeEnd 16 Integer 4.8 0 (square)
underlines tart 17 Number 4.8 0
amplifySpace 18 Number 4.9 1
correctPass 19 Integer 4.10 0
correctShrink 20 Number 4.10 lh
correctTX, correctTY 21,22 Number 4.10 0,0

The variables differ in their treatment by the OOSAVE operator. None are restored at the completion of the oo
operator; the non-persistent variables are restored by DOSAVE; all are restored by OOSAVEALL.

4.3 Coordinate systems

40

Locations on the page image are denoted by a pair of (x, y) coordinates in a corresponding
coordinate system. Ultimately, all locations must be converted into the device coordinate system
(DCS), the coordinate system used by the imaging device to produce the page image.
However, if the master were to specify coordinates directly in the device coordinate system, the
master would not be device-independent, and could not be used to control printing on devices
with different coordinate systems. A device-independent Interpress coordinate system (ICS) is in
troduced in order to establish positions and sizes of objects on a page image independent of
the resolution of the printing device. The imager operators convert from the JCS to the DCS
as an image is formed.

Interpress Xerox System Integration Standard 4

4.3.1 Medium size and orientation

The medium used to print a page is chosen by printing instructions (§ 3.3). The orientation of
the JCS on the medium is defined so that the y axis points up and the x axis to the right, in
the normal viewing orientation of the medium as defined below; see Figure 4.2. The physical
size of the medium (in meters) is made available in the imager variables mediumXSize and
medium YSize; the choice of normal viewing orientation defines which is which. The
*SETMEDIUM operator (which cannot be called from the master) sets the medium ... and field ...
variables before a page body is executed. While these six variables can be changed by the
master using ISET, the imager is insensitive to the changes.

y

~

~ - me di um

"- fie Id

medium YSize

.... x
(0,0)

mediumXSize

Figure 4.2 Physical medium.

The normal viewing orientation is a property of the medium, not of the image. If the creator
knows the orientation, it can orient the image on the medium as it likes by supplying a
suitable transformation. To enhance device-independence, it is desirable for printers to choose
the normal viewing orientation consistently. Often the choice may be somewhat arbitrary (e.g.,
cut sheet paper which is not square can have either portrait or landscape orientation). In case
of doubt it is recommended that the choice be made so that mediumYSize is greater than
mediumXSize (portrait orientation). Creators can adapt to this convention by supplying a 90°
rotation for images which are normally viewed with the long axis horizontal.

A conventional sheet of 81h X 11 inch paper could have either mediumXSize=0.0254X8.5=0.2l59 and
mediumYSize=0.0254Xll=0.2794, or mediumXSize=0.2794 and mediumYSize=0.2159. In addition, for each of these
choices there are two possible orientations of the axes on the sheet as it emerges from the printer. If the medium
consists of separate sheets of paper, a sheet can always be rotated by the reader to assume the desired orientation.
If the sheets are bound or stapled, however, or if the image is being displayed on an immovable display surface,
rotation is impractical. For these reasons, a consistent choice of normal viewing orientation is quite important.
However, it cannot be enforced by the Interpress standard because of the wide variation in the physical characteris
tics of printers and media The rule given above yields mediumXSize=0.2159 and mediumYSize=0.2794. The choice

41

4

42

Imaging operators

between the two orientations which remain may be arbitrary. or it may be strongly suggested by the finishing
method or other physical properties of the printer.

For two-sided media, the convention is that to switch from one side to the other, the reader
rotates. the medium about its y axis.

Each medium has an associated rectangular field, a portion of the medium in which imagery
may lie. Ideally, the field would contain the entire medium. but some imaging hardware can
not place imagery along borders of the medium. The field in which imagery may lie is
described by four numbers: fieklXMin<xgle/dXMax, fieldYMin<ygle/dYMax. These values are
available as imager variables, set by *SETMEDIUM. Conventions, printing hardware and imagers
should strive to make the border areas as small as possible. For example, the field of an image
on a television screen would fill the entire medium (i.e., the medium and field sizes would be
identical).

4.3.2 Interpress coordinate system OCS)

The ICS is a standard way to record positions on the image, using the coordinate system origin
and directions established for an image. The two coordinate axes of the ICS are named x and
y. The rectangular image includes the origin and lies in the first quadrant The units of
measurement in the ICS are meters: coordinates in the ICS are represented by Numbers. The
coordinate system is chosen so that the y axis points "up" in the normal viewing orientation.
Coordinates in the ICS that are transformed to device coordinates must obey the restrictions
specified in § 5.2.

4.3.3 Master coordinate systems

Using transformation operators described in § 4.4, the master may establish any number of
coordinate systems in which it can express locations of objects. To establish such a coordinate
system, the master specifies a transformation that converts from the master coordinate system
into the ICS. The term master coordinates refers to coordinates that appear in the master,
which will be transformed into the ICS by a transformation also specified in the master.

Master coordinate systems may be chosen so that all coordinates in the master can be con
veniently represented as integers. Then a transformation is specified to convert to Interpress
coordinates.

For example, the creator might choose to represent all coordinates in units of 1/10 printer's point. or 1/720 inch.
For an 81h X 11 inch page. coordinates would lie in the range 05x56120, 05y57920. The transformation from
master to ICS would scale by 0.0254/720.

A particularly convenient unit for master coordinates is the mica. equal to .10-5 meter. For an 81h X 11 page, coor
dinates lie in the range 05x521590. 05y527940, which can be represented by a Short Number (§ 2.5.2). The
mica offers sufficient precision for most routine typographic needs.

4.3.4 Coordinate precision t

The precision with which an image can be created depends on the precision of the arithmetic
used in the master and in the printer to describe shapes on the image. The precision also
depends on the resolution of the imaging hardware. This section describes how Interpress con
trols the imaging precision. Informally, the precision must be at least as good as the precision
of the imaging device, but is not required to be much better.

Interpress Xerox System Integration Standard 4

A master specifies an image by executing a sequence of primitive mask operators. Each of
these has one or more coordinates as arguments; a linear transformation is applied to these
coordinates. The mask operator arguments, once transformed, specify the shape and location of
the mask on the image. The ideal image is the result of applying ideal mask operators, as
defined in this document, to ideal coordinate arguments, computed by ideal arithmetic from
the literal numbers included in the master. An image is a good image for a particular d~vice if
it is as close to the ideal image as any image that can be produced by executing the same se
quence of mask primitives, subject to limitations imposed by the precision of mask operators
and of the device resolution.

In order to describe the precision of the imaging computations, a grid is imposed on the
Interpress coordinate system. It is a rectangular lattice of points, aligned with the x and y ICS
axes, such that the ICS origin is at a grid point. The printer chooses values for gx, the grid
spacing along the x axis, and gy, the (possibly different) grid spacing along the y axis; both are
measured in meters. Grid points are thus located at all points (ngx, mgy), where n and m are
Integers. A spot is the rectangular region bounded by adjacent grid lines; it has width gx and
height gy

The grid must have just enough grid points to match the spatial resolution of the imaging
device. The idea is that a good image will be produced if each coordinate is rounded to the
nearest grid point to determine where a mask should lie on the image.

If a raster-scanned device can present only bi-level images (e.g .. black and white only), the grid spacing will be
identical to the pixel spacing on the device. However, a device capable of showing several intensities at each point
has an effective spatial resolution that is higher than the device's pixel resolution if images are properly filtered
and sampled. In this case, the grid spacing will be smaller than the device's pixel spacing.

Interpress places no precise requirements on how masks are scan-converted, i.e., how the shape of a mask is con
verted into signals to control the pixels on the imaging device. The role of the grid in Interpress is to allow images
to be aligned with the grid to be sure they have the same spatial configuration in all cases (see TRANS).

Interpress guarantees that coordinate arithmetic errors will never exceed a fraction of a spot
dimension, provided the master obeys certain rules (§ 5.2).

4.3.5 Device coordinate system (DCS) t

The device coordinate system (DCS) is a transformation of the Interpress coordinate system
that may be chosen for the convenience of the printer. A transformation TID converts coor
dinates measured in the ICS to coordinates measured in the DCS. Device coordinates must
have sufficient precision to represent grid points.

The ICS-to-DCS transformation TID is restricted to be of the form

Xncs=a(x1cs 1gx +y)
Yncs=f3(y1cslgY +8)

subject to the following constraints:

• IYI. 181 are Integers

• There is some ICS point (x, y), O<x5:mediumXSize, O< y<mediumYSize, that is mapped to
the DCS point (0, 0).

43

4 Imaging operators

The first constraint requires that (0. 0) in the DCS be a grid point. The second constraint ensures that no more
precise arithmetic is required to represent the DCS than to represent the ICS (see § 5.2).

lt is often convenient if the device coordinate system is the same as the pixel addressing conventions for the print
ing device, i.e., la!= I.Bl= 1. Thus grid points will have integer coordinates; this choice simplifies rounding to the
nearest grid point when scan-converting masks.

All of the properties of a pixel addressing system for a device are captured in the Jnterpress-to-device transforma
tion that converts JCS coordinates into DCS coordinates. Although the device coordinate system will have its axes
aligned with those of the JCS, axis directions may vary. For example, a device coordinate system for a raster
scanned display might choose (0, 0) to be in the upper left-hand corner. with y increasing downward and x increas
ing toward the right in order to correspond to pixel-addressing hardware in the display. The ICS-to-DCS transfor
mation can perform these conversions as well as the scaling of units.

A single special operator is associated with device coordinates:

<x: Number> <y: Number> *DROUND - <X: Number> < Y: Number>
where (X, Y) are the device coordinates of the grid point best representing the point
with device coordinates (x, y).

4.4 Transformations

44

Linear transformations are used to map coordinates measured in one coordinate system into
coordinates in another system. A transformation is used to map from the Interpress coordinate
system to the device coordinate system, and one may also be used to map from a master coor
dinate system to the lnterpress coordinate system. Transformations may be used freely in the
master to establish master coordinate systems that are convenient for representing parts of the
image.

A coordinate specified in the master may need to be subjected to several transformations in or
der to map it all the way into the device coordinate system. Fortunately, however, the effect of
several transformations applied in sequence can be expressed as a single, combined, transforma
tion. The Interpress imaging operators map every coordinate they are presented using the cur
rent transformation T, an imager variable. This transformation expresses the combination of all
transformations that must be applied, including the ICS-to-DCS transformation. Operators are
provided for changing the value of T.

A coordinate transformation Mis represented as a 3X3 matrix M, interpreted as follows:

[xto' Yto' l]=[xfrom' Yjrom' 1] M

We speak of this transformation mapping coordinates in the from coordinate system to those in
the to coordinate system. The matrix M has the form:

M=
a

b
c

d

e
f

0
0
1

The last column of a transformation is always 0, 0, 1, and need not be explicitly stored.
Moreover, in the computation of x10 and y10, only the following computations are required:

xto = axfrom +by from+ c

Yro=dxfrom +eyfrom + f

Interpress Xerox System Integration Standard 4

A transformation of this sort can represent scaling, rotation, translation, or combinations of
these primitive transformations.

Often two transformations are multiplied together to form a single concatenated transformation
that achieves the same effect as applying the two in sequence. For example, suppose that the
transformation T represents the transformation from the lnterpress coordinate system to the
device coordinate system:

[x DCS' y DCS' 1) = [X /CS' y !CS' 1) T

Now suppose coordinates are to be specified in a more convenient master coordinate system
(c) and transformed by a transformation C from this system to the Interpress system:

[X1cs• Y1cs 1]=[xe, Ye. I JC

By substituting the second equation into the first, the two steps become one:

[XDCS' Yves· 1]=[Xe, Ye· 1] (CT)

where C and T have been multiplied together to form a single matrix. By concatenating pairs
of transformations, an arbitrary sequence of transformations can be represented as a single
matrix. In this way an arbitrary coordinate system may be mapped directly to the device coor
dinate system.

The printer may restrict the transformations which can be used with character operators and
pixel arrays, as described in § 5.1.2.

4.4.1 Instances of symbols

The operators for modifying the current transformation are designed to help make instances of
symbols. For example, the graphical shape of a character is defined by a composed operator:
this composed operator represents the character symbol. To cause a particular occurrence, or in
stance, of the character to appear on the page, the coordinates contained in the symbol defini
tion must be transformed into the JCS: this transformation governs the size, orientation, and
location of the instance. Then the coordinates in the ICS must be transformed by the
Interpress-to-device transformation as well. Both steps are accomplished by replacing the cur
rent transformation matrix T, which initially contains the Interpress-to-device transformation,
with a concatenated transformation CT. where C expresses the symbol-to-Interpress transforma
tion; the new T achieves the combined effect of both transformations. The imaging operators
in the symbol definition are now interpreted; all coordinate arguments are transformed by the
new T. When the execution of the symbol is over, the value of T must be restored to the value
in effect before the call. The primitive operator SHOW is designed for convenient instancing of
this sort; the saving and restoring of Tis performed by OOSAVESIMPLEBODY.

4.4.2 Notation

Coordinate transformations are used extensively in the remainder of this section. The following
notation is used for the two common kinds of transformation:

"Point" transformation: TP(x. y, m)=(X, Y), where [X. Y. 1]=[x, y, 1] m.

45

4

46

Imaging operators

"Vector" transformation: Tv(x. y. m)=(X. Y). where [X. Y. 0]=[x. y, 0] m.

4.4.3 Transformation operators

<a: Number> <h: Number> <c: Number> <d: Number> <e: Number> <J: Number> *MAKET
- <m: Transformation>

where the transformation m is defined by the matrix:

m=
a
b

c

d

e
I

0
0
1

Note that this operator cannot be called by the master, and is defined only to simplify
the definition of the transformation operators which can be called.

<x: Number> <y: Number> TRANSLATE - <m: Transformation>
where the effect is 1 0 x 0 1 y *MAKET. <x y TRANSLATE> will map the origin to the
point (x. y). The transformation m is defined by the matrix:

m=
1
0
x

0
1
y

0
0
1

<a: Number> ROTATE - <m: Transformation>
where the effect is co.s(a) - sin(a) 0 sin(a) co.s(a) 0 *MA KET. The angle a is measured in
degrees. The rotation transformation can be viewed in two ways: it will rotate coor
dinate axes clockwise by the angle a, while it will rotate geometrical figures coun
terclockwise by the angle a. The transformation m is defined by the matrix:

m=
cos(a)
-sin(a)
0

sin(a)
cos(a)
0

0
0
1

<s: Number> SCALE - <m: Transformation>
where the effect is s 0 0 0 s 0 *MAKET. The transformation m is defined by the matrix:

m=
s
0
0

0
s
0

0
0
1

<sx: Number> <sy: Number> SCALE2 - <m: Transformation>
where the effect is sx 0 0 0 sy 0 *MAKET. The transformation m is defined by the
matrix:

m=
sx
0
0

0
sy
0

0
0
1

The image can be reflected about they axis by <-1 1 SCALE2>. or about the x axis by <l -1 SCALE2>. If
lsxl:itlsyl the transformation is not orthogonal; this is the only way to generate a non-orthogonal transforma
tion.

<m: Transformation> <n: Transformation> CONCAT - <p: Transformation>
where p = mn, i.e., it is the concatenation of the two transformations m and n formed by
multiplying the matrices. Small numeric errors may occur with each concatenation;
care must be exercised to avoid error accumulation (see § 5.2).

Interpress Xerox System Integration Standard 4

4.4.4 Applying transformations

Interpress has no primitives which apply the TP or Tv function and return a result on the stack.
The current transfonnation is applied automatically to coordinates by mask and current posi
tion operators. and several other primitives.

4.4.5 The current transformation

Several operators work in conjunction with the current transfonnation, which is the value of
the imager variable T, and consequently is saved and restored by DOSA VE and DOSA VEALL
operators. When the interpretation of an Interpress master begins, Tis set to the identity trans
fonnation (i.e., <l SCALE>). The *SETMEDIUM operator (§ 4.2) alters T to establish the
Interpress coordinate system.

The intention is that the Interpress coordinate system, or some more convenient system based on it, be used to
describe the entire page, often supplemented by master coordinate systems used within instances that will be re
lated to the Interpress coordinate system by an incremental transformation. For this reason, the operators shown
below all make incremental changes to T in order always to incorporate the I nterpress-to-device transformation as
part of any current transformation.

<m: Transfonnation> CONCATT - <>
where the effect is T JGET CONCAT T ISET; i.e., T is set to <m T CONCAT>.

<>MOVE - <>
where the effect is GETCP TRANSLATE CONCATT; i.e., Tis modified so that the origin
(0, 0) maps to the current position. GETCP and the current position are defined in
§ 4.5.

<>TRANS - <>
where T is modified so that the origin (0, 0) maps to the rounded current position.
More precisely, the effect is equivalent to { DCScpx IGET DCScpy IGET *DROUND
DCScpy ISET DCScpx ISET GETCP} MAKESIMPLECO DOSAVEALL TRANSLATE CONCATT.

The rounding operations in TRANS imply that any coordinates to which T is subsequently applied will be translated
by an integral number of grid points. This convention allows often-used instances such as characters to be scan-con
verted once and then translated at will. TRANS is designed together with SETXYREL (§ 4.5) to achieve positioning
precision, while still letting each instance of a character be scan-converted identically.

4.4.6 Instancing

Instances of symbols may be placed on the page image by calling composed operators after ap
plying an incremental transfonnation to T. For example, {m CONCATT o DO}
DOSAVESIMPLEBODY will first set the current transfonnation to <m T CONCAT> and then call
the operator o. Note that because the current transformation is an imager variable, its original
value will be restored when DOSAVESIMPLEBODY tenninates. Variations on this schema modify
the current transformation in other ways before calling the composed operator. A particularly
useful form is SHOW:

< v: Vector> SHOW - -- the effect on the stack depends on the operators called --
where for each i, t<i5:,u. beginning with v's lower bound I and ending with v's upper
bound U, perfonn {TRANS showVec IGET v i GET GET DO} DOSAVESIMPLEBODY. In
other words, each element of the vector is used as an index into the vector show Vee, an
imager variable. The element extracted from v is an operator, which is then called after
translating the origin to the current position.

47

4 Imaging operators

SHOW is useful for generating strings of characters. The value of showVec should be a vector of operators. each of
which generates a mask for a character in the font. Because each operator is executed with OOSA VE, only changes
to persistent variables will be visible after each step of SHOW; thus the current position does change. as it must if
successive characters are to be laid down in the proper places, but any changes to the current transformation. the
color. etc. are forgotten. Thus each character operator in showVec can use all the facilities of lnterpress to make its
image. without interfering with the rest of the imaging in the master.

Sometimes it is necessary to insert a positioning operation between each pair of characters, e.g.,
when kerning. For this purpose the following operator is useful:

< v: Vector> SHOWANDXREL - -- the effect on the stack depends on the operators called --

where alternate elements of v are taken as indexes into showVec and as distances to
move the x-coordinate of the current position. SHOWANDXREL treats the first element
of v just as SHOW would. It takes the next element modulo 256 and then biases it by
128 to yield an argument for SETXREL. The next element is shown, and so forth. The
precise effect (if I is the lower bound of v) is

[v I GET) SHOW

v 11 ADD GET 256 MOD 128 SUB SETXREL

[v 12 ADD GET) SHOW

v 13 ADD GET 256 MOD 128 SUB SETXREL

continuing up to the last element of v.

The reason for taking the distances modulo 256 is to discard the offset which might be in force if v is
generated by the sequenceString encoding notation. The reason for the bias by 128 is to make positive and
negative kerning equally convenient

4.5 Current position operators

48

The Interpress imaging operators make it easy to locate a graphical object such as a character
at the current position, a location on the page image. The current position is measured in the
device coordinate system, and is recorded in two persistent imager variables DCScpx and
DCScpy. Several operators are available for changing the current position. It is by altering the
current position that an operator displaying a character specifies where the next character on
the text line should usually lie.

The operators for changing the current position take arguments in a coordinate system defined
by the master and convert them to the device coordinate system using the current transforma
tion T.

<x: Number> <y: Number> SETXY - <>
where the current position is set to the coordinate determined by transforming x and y.
Precisely, (DCScpx, DCScpy) : = TP(x, y, T).

<x: Number> <y: Number> SETXYREL - <>
where a relative displacement is added to the current position. Precisely, (DCScpx,
DCScpy) : = Tv(x, y, T)+(DCScpx, DCScpy).

<x: Number> SETXREL - <>
where the effect is x 0 SETXYREL; i.e., a relative displacement in the x direction is ad
ded to the current position.

lnterpress Xerox System Integration Standard 4

<y: Number> SETYREL - < >
where the effect is 0 y SETXYREL; i.e., a relative displacement in the y direction is ad
ded to the current position.

<> GETCP - <x: Number> <y: Number>
where Tix. y, T)=(DCScpx, DCScpy). It is a master error if the matrix Tis too poorly
conditioned to invert.

4.6 Pixel arrays

Interpress allows masks to be defined by pixel arrays, arrays of numeric samples of pixels that
describe the value of the mask on a two-dimensional grid. This section explains the conven
tions behind a type named PixelArray that is used to represent these arrays.

A PixelArray is constructed with the following primitives:

<xPixels: Integer> <yPixels: Integer> <samplesPerPixel: Integer>
<maxSampleValue: Integer or Vector of Integer> <samp/eslnter/eaved: Integer>
<m: Transformation> <samples: Vector>
MAKEPIXELARRA y - <pa: PixelArray>

where the effect is complex, and is explained in the rest of this section.

The definition of a pixel array proceeds in two stages. First. a rectangular array of pixels is
defined in the pixel array coordinate system. The rectangular array defines an image in the
region O<x<xPixels. O<y<yPixels. Each pixel is defined by samp/esPerPixel separate samples,
denoted by s0, sl' ... , ssamplesPerPixel-l' If maxSampleVa/ue is an Integer, all sample values lie
between 0 and maxSampleValue inclusive; otherwise, maxSampleVa/ue is a Vector that gives the
maximum sample value for each sample. More precisely, each sample value s; is an Integer in
the range O<s;<(if <maxSampleVa/ue TYPE>= 1 then maxSamp/eVa/ue else <maxSamp/eVa/ue i

GET>). A master error occurs if maxSampleVa/ue is a Vector and <maxSampleValue SHAPE> is not
<O samplesPerPixel>. The interpretation of sample values depends on how the PixelArray is
used; it is described in § 4.7 for sampled color, and in § 4.8 for masks.

A pixel said to be located at (p:.t P) describes a region of the image centered about the point
(px + 1h, Py+ 1h), and extending a distance slightly more than 1h in all directions. The pixel in
tensity profile is not defined in detail, but may be assumed to be roughly as shown in Figure
4.3.

The samples vector must contain xPixe/s XyPixe/s Xsamp/esPerPixe/ samples, each recorded in a
separate element in the vector. The pixel located at (x, y) is defined by samples s0, sl'

ssamplesPerPixel-l' where s;=<samp/es j GET> and j=(if sampleslnter/eaved then
(xXyPixels+ y)Xsamp/esPerPixel+ i else xPixe/sXyPixe/sXi+(xXyPixels+ y)).

lnfonnally, the sequence of samples in the vector is such that a rectangular grid is scanned out in a series of scan
lines. The first pixel in the vector is located at (0, 0), the next pixel at (O, l), and so forth up to (0, yPixels-1),
defining the first scan-line. Then the next scan-line is described: the next pixel is at (1, 0), followed by (1.1) up· to
(1. yPixels-1). The final scan-line defines pixeJs at locations (xPixels-1, 0) to (xPixe/s-1, yPixels-1).

If sampleslnterleaved is non-zero, all samplesPerPixel samples for a pixel are located together in the samples vector.
Thus the first samplesPerPixel samples in the vector are the samples for the pixel located at (0,0). If sampleslnterleaved
is zero, then the samples vector is conceptually divided into samplesPerPixel separate sequences, each containing
xPixels XyPixels samples. The first sequence describes the values of the first sample over the entire grid, the second
the values of the second sample, etc.

49

4

50

Imaging operators

The second stage in the definition of a . PixelArray is a coordinate transformation, which
describes how to transform pixel locations in the pixel array coordinate system into positions
that will appear meaningful when printed. The intent of the transformation is to capture
different scanning orders under which the samples vector may have been recorded. The normal
convention is that this transformation converts the rectangle defined in the pixel array
coordinate system into a new rectangle with the (0, 0) point of the rectangle at the lower-left
comer when the image is "upright," the y axis pointing up and ranging from 0 to some
positive value, and the x axis pointing to the right and ranging from 0 to some positive value.

If. for example, an image were scanned using vertical scan-lines scanned bottom-to-top with scan lines appearing in
left-to-right order when the image is held upright, then the transformation might be <l SCALE>. the identity. If the
scan-lines are scanned top-to-bottom, the transformation would be <l -1 SCALE2 0 yPixels TRANSLATE CONCAT>. If
the image is scanned using horizontal scan-lines scanned left·to·right with scan lines appearing in top-to-bottom or
der when the image is held upright, then the transformation would be <-90 ROTATE 0 xPixe/s TRANSLATE CONCAT>.

It is the intention of the standard that a scanned image retained by a printer to be used as a form will be
recorded in the tile system using these conventions. A master will then incorporate the PixelArray definition from
the tile system using the sequencelnsertFile encoding notation (§ 2.5.3) and pass it on to a mask operator.

When a pixel array is used as a mask (§ 4.8.4) or to define sampled color (§ 4.7), another trans
formation um is supplied which maps the pixel array to device coordinates. Because um must
map to device coordinates, it will usually be T or some transformation obtained from T by con
catenation. For a mask, um is T when MASKPIXEL is executed: for a sampled color, it is the um
argument to MAKESAMPLEDBLACK or MAKESAMPLEDCOLOR. The net transformation for the
pixel array <xPixels yPixels 111 m samples MAKEPIXELARRAY> is nm=<m um CONCAT T,D-I

CONCAT>, where T10 -I is the inverse of the ICS-to-DCS transformation (§ 4.3.4): nm takes the
pixel array coordinate system into the Interpress coordinate system. The imager may specify a
set of easy values of nm which it handles efficiently, and it may be unable to handle a pixel
array at all unless nm is easy (§ 5.1.2).

0 1 2 3 4

Distance (coordinate in standard coordinate system)
Example shows an image 5 pixels wide. i.e., xPixels = 5.

Figure 4.3 Pixel Intensity profiles.

5

The EXTRACTPIXELARRA Y operator may be used to select certain samples from a pixel array
and construct a new pixel array:

<p: PixelArray> <select: Vector of Integer> EXTRACTPIXELARRA y - <pa: PixelArray>
where pa is formed from p by extracting certain samples from every pixel. The
properties xPixels. yPixels. and m are the same for pa and for p. The Vector select gives
the indices, in the range from 0 to p's samplesPerPixel-1 inclusive, of the samples to in-

Interpress Xerox System Integration Standard 4

elude in pa. For each pixel in pa. the value of a sample s. is the same as the value of
I

sample s. for the corresponding pixel in p, where i= <select J GET>. The value of
J

samplesPerPixel for pa will be n. the number of elements in the Vector select, i.e.,
n= <select SHAPE EXCH POP>. The maximum sample values for a sample in pa will be
the same as for the corresponding sample in p.

Suppose. for example. that a pixel array stored in frame element 1 has four samples per pixel. Samples O. L and 2
are intended to . be part of a three-color image, while sample 3 is a binary value that is to be used as a mask.
Since Interpress requires that the color and mask information be used separately. EXTRACTPIXELARRA Y may be
used to separate them from the original pixel array. The sequence <l FGET [0 1 2] EXTRACTPIXELARRAY> will
yield the three-color pixel array. while <l FGET [3] EXTRACTPIXELARRAY> will obtain the mask.

4.6.1 Compressing sample vectors

4.7 Color

When a large pixel array is included in an Interpress master, its samples vector must usually be
compressed in some way. The compressed data is expressed as a single vector, together with an
operator that can be called to "decompress" the data in the vector into the expanded form of
the samples vector. A decompression operator is called as though it were a primitive operator
with the definition:

< v: Vector> decompress -+ <samples: Vector>
where v contains the compressed pixel data and any additional parameters the
decompress operator may need.

Note: decompress is not in fact a primitive operator supplied by the imager. It is used here only to
illustrate the form of a decompression operator. In practice. the operator will be called with
some form of oo.

A decompression operator is obtained by the FINDDECOMPRESSOR primitive:

<v: Vector> FINDDECOMPRESSOR - <o: Operator>
where v is a Vector of Identifiers which is the universal name of a decompression
operator. The operator is returned as o. If o is applied to a vector containing pixel data
compressed in the proper way, it returns the uncompressed vector.

Note that decompression operators are intended to be used only in making PixelArrays: e.g.,
300600111
1 SCALE

[-- compressed pixel vector --] [Xerox, packea'.J FINDDECOMPRESSOR DO

MAKEPIXELARRA Y.

If they are executed in other contexts, limits of the implementation may be exceeded or poor performance may
result.

Note that decompression operators may reorder data arbitrarily so as to conform to the format of the samples vector
required by MAKEPIXELARRAY. Also, decompression operators can be defined that convert non-rectangular scanning
regimes (e.g., hexagonal) into samples on a rectangular grid.

The color that will be deposited on the page image is determined by the value of the color vari
able when a mask operator is invoked. Wherever the mask allows it, the color specified by the
imager variable color is deposited on the page image, obliterating any color previously laid
down at the same position on the page. There are two ways to specify the color that will be
deposited on the page image where the mask allows: a constant color, and color sampled on a

51

4

S2

Imaging operators

raster. A value of type Color fully specifies a color; a subtype ConstantColor is used for
constant colors.

The color variable, which determines the color deposited on the page by a mask operator, is ini
tialized to <l MAKEGRA v>, or full black. It can be set with ISET. There is also a convenience
operator SETO RAY for setting it to a constant gray.

4.7.1 Constant color

A constant color deposits the same intensity of ink at each point of the mask. Constant colors
may be obtained with MAKEGRA Y or FINDCOLOR and used to set the color imager variable:

<!" Number> MAKEGRA y--. <col: ConstantColor>
where col represents a shade of gray specified by f. the fraction of incident light energy
absorbed by the ink. Thus /=0 will yield the paper color and/= 1 will print black.

<v: Vector> FINDCOLOR --. <col: ConstantColor>
where v is a Vector of Identifiers which is the universal name of the desired color. If
the specified color cannot be found, an approximation to it is returned. Examples of
color names might be Xerox/highlight or nbs/cns/bluegreen.

Sometimes rather than naming each color separately, it is useful to parameterize colors using a
color coordinate system. A color operator is an Operator that behaves as if it were a primitive
operator with the following definition:

<coords: Vector of Number> colorOperator--. <col: ConstantColor>
where col represents the color whose coordinates are coords in the color coordinate sys
tem used by colorOperator. For example, a colorOperator might be designed to interpret
measurements in the CIE system, in which case coordinates would be a three-element
vector giving the X, Y, and Z coordinates of the desired color.

Normally, color operators will not be specified in a master, but will rather be obtained from
the environment with the following operator:

<v: Vector> FINDCOLOROPERATOR __. <colorOperator: Operator>
where v is a Vector of Identifiers which is the universal name of the desired color
operator.

Sometimes a color operator is part of a family of color operators that all have certain
similarities. A color model operator is an Operator that, when called, returns a color operator. It
behaves as if it were a primitive operator with the following definition:

<parameters: Vector> co/orModelOperator--. <co/orOperator: Operator>
where parameters is a Vector that determines exactly what kind of colorOperator is
desired.

For example. consider a class of operators that accept gray-scale pixel arrays, in which each pixel is defined by a
single sample in the range swhite' •• sbtack' These operators scale each sample so that a sample whose value is swhile

will correspond to paper color and a sample whose value is sblack will correspond to the blackest ink achievable,
and samples in between will scale linearly between white and black. All of these operators can be described by a
single color model operator, which takes the argument [swhite sblack1 and returns a color operator. which in tum will
map an argument (so] to the appropriate shade of gray. equivalent to <J SETGRAY>, where

f= min(ma.\((50- 5whi,)l(sblack - 5whiie). 0), 1).

Interpress Xerox System Integration Standard 4

Color model operators are usually obtained from the environment with the following operator:

<v: Vector> FINDCOLORMODELOPERATOR - <colorModelOperator: Operator>
where v is a Vector of Identifiers which is the universal name of the desired color
model operator.

4.7.2 Sampled color

A sampled color allows the presentation of stipple patterns. photographs. and other images with
rapidly varying colors. The idea is to specify the color at each point in a two-dimensional ar
ray: the array is then transformed to appear on the page at an arbitrary position. Large areas
can be tiled by repeating the sample array.

<pa: PixelArray> <um: Transformation> <colorOperator: Operator> MAKESAMPLEDCOLOR
- <col: Color>

where pa provides color samples. um is a transformation that maps the region defined
by pa to device coordinates. and colorOperator is an operator that maps each pixel's
samples into the appropriate color.

If pa was made by <xPixels yPixels samplesPerPixel maxSampleValue sampleslnterleaved pm samples
MAKEPIXELARRAY>. then <pa um colorOperator MAKESAMPLEDCOLOR> defines a region in the
Interpress coordinate system which is the rectangle with corners at (0. 0) and (xPixels, yPixels).
transformed by the net transformation nm=<pm um CONCAT T1D -I CONCAT> (§4.6). This
region is used as a tile to build an arbitrarily large pattern of color which encompasses the
entire page image-see Figure 4.4.

Nonnally the tile is a rectangle. as in the lefthand picture.
The righthand illustrates a pathological case of non-rectangular
tiles. The darker parallelogram in both pictures is the one
specified by the PixelArray.

Figure 4.4 Tiling the page with a color parallelogram.

The color of a pixel in pa with sample values s0, sl' ... ssamplesPerPixel- l is obtained by <[So, sl' ...•
ssamplesPerPixeJ- l) colorOperator DOSA VEALL>. Note that execution of the color operator cannot
have any side effects.

53

4 Imaging operators

It is not expected that an lnterpress implementation will actually call colorOperator once for every pixel in the pixel
array. If colorOperator is obtained with FINDCOLOROPERATOR or FINOCOLORMODELOPERATOR. the imager probably has
a highly efficient implementation of the color computation. perhaps even performed in special hardware. Creators
should in general not compose their own colorOperators to use with MAKESAMPLEDCOLOR, because the performance
penalty may be intolerable.

To fill in an outline with some repetitive pattern. such as a cross-hatch. find the smallest image which can be repli
cated by tiling to produce the pattern. Construct a PixelArray which specifies this image. apply MAKESAMPLEDCOLOR

to obtain a color. and store it into the color variable. Then construct the desired outline. and use MASKFILL to apply
the pattern to the region defined by the outline.

A special form of sampled color. limited to binary black-and-white images. is constructed with
the following operator:

<pa: PixelArray> <um: Transformation> <clear: Integer> MAKESAMPLEDBLACK
- <col: Color>

where pa provides binary samples. um is a transformation that maps the region defined
by pa to device coordinates, and clear is 0 or 1. The samp/esPerPixel, maxSampleVal, and
sampleslnter/eaved parameters of pa must all be 1. In all respects except the determina
tion of the color to deposit, the effect of MAKESAMPLEDBLACK is like that of
MAKESAMPLEDCOLOR.

The color deposited through the mask on an image pixel corresponding in position to a pixel
array sample value of x depends on x. If x=l. the color is black. i.e .• <l MAKEGRAY>. If x=O.
the effect depends on clear: for clear=O the color is white, i.e., <O MAKEGRAY>; for clear= 1 no
ink is deposited. i.e .• the color is clear.

4.7.3 Convenience operators

The following convenience operator sets the color variable to a constant gray:

<J: Number> SETGRAY - <>
where the effect is f MAKEGRA Y color ISET.

4.8 Mask operators

54

The mask operators are the central focus of the lnterpress master. for they determine the
shapes of images that are laid down on the page image. The most common shapes are those
used to make images of characters; these masks are specified in sets of pre-defined operators
called fonts (§ 4.9). Mask operators are also available to make images of rectangles. line draw
ings. or filled polygons. and to use a pixel array to specify samples of the mask.

When a mask operator is executed, the page image is altered. The operation of a mask
operator is controlled in part by its arguments and in . part by imager variables. The variables
are:

• T. the current transformation. The mask commands all require sizes and coordinates. which
will be transformed by the current transformation to determine the coordinates of the
mask on the page image.

• color. The color variable governs the color of the object that will be placed on the page
image by a mask operator(§ 4.7).

Interpress Xerox System Integration Standard 4

• prioritylmportant. The priority order of objects laid down when prioritylmportant"*-0 is
preserved {§ 4.1.1).

• nolmage. If nolmage is non-zero, any operator with MASK in its name will have no effect on
the page image, although it will have the proper effect on the stack and imager variables.
If nolmage is zero, the operator will alter the image as explained below. When the inter
pretation of an lnterpress master begins, nolmage is set to zero. The purpose of nolmage is
explained in § 4.10.

4.8.l Geometry: trajectories and outlines

Shapes are defined geometrically in terms of segments. trajectories and outlines. A segment is a
directed line segment: it has a start point and an end point. A trajectory is a sequence of con
nected segments: the end point of a segment coincides with the start point of the next one. A
closed trajectory is a trajectory that closes upon itself. that is, the end point of the last segment
in the trajectory coincides with the start point of the first segment. An outline is a collection of
trajectories: each trajectory in an outline is implicitly closed by a straight-line segment linking
the end point of the last segment with the start point of the first segment.

Trajectories and outlines are represented by two corresponding Interpress types. Values of
these types are data structures that are built by constructor operators described in this section.
There are no operators for decomposing trajectories or outlines into their constituent parts, be
cause values of these types are used simply as a way to pass a description of a complex shape
to an imaging operator.

Trajectories and outlines are given a geometrical interpretation only when they are used as a
mask. At this point, the numbers describing the trajectory or outline are interpreted as defining
geometry in the master coordinate system, which the imager operators MASKFILL and
MASKSTROKE convert to the device coordinate system by applying the current transformation
T. Thus the value of T while the trajectory is constructed is ignored: only the value of T when
the mask operator is executed is important.

Trajectories may be constructed with primitive operators. A trajectory is started with MOVETO,
placing on the stack a trajectory value describing the trajectory. Then the trajectory is extended
by LINETO, which adds a segment to a trajectory. A last point (Ip) is always associated with a
trajectory: it is the end point of the last segment in the trajectory.

<x: Number> <y: Number> MOVETO -+ <t: Trajectory>
where t describes a new trajectory: ts Ip is (x. y).

<ti: Trajectory> <x: Number> <y: Number> LINETO -+ <12: Trajectory>
where t2 is formed by extending 'i with a straight-line segment from 'i's Ip to the point
(x. y); t2 's Ip is (x. y).

<ti: Trajectory> <x: Number> LINETOX -+ <t2: Trajectory>
where the effect is <ti x yP LINETo>. where (xP, Y) is ti's Ip.

<ti: Trajectory> <y: Number> LINETOY -+ <12: Trajectory>
where the effect is <ti xPy LINETO>. where (xP, Y) is ti's Ip.

55

4

56

Imaging operators

Outline * MASKFILLrewlt

I!
Figure 4.5 Examples of winding number conventions.

An outline is represented by a separate type, built using the operator:

<11: Trajectory> <12: Trajectory> ... <tn: Trajectory> <n: Integer> MAKEOUTLINE

- <o: Outline>
where the trajectories ti' 12' ••• tn together form an outline. Each of the trajectories will
be closed if necessary.

The MASKFILL primitiv~that takes an outline as its argument needs to decide which points lie
"inside" the outline. If o trajectory in the outline intersects itself or another trajectory, the
inside of the outline is u ambiguous. In other cases, to decide if a point lies inside an outline,
it is necessary to compute the point's winding number. The winding number counts the number
of times the point is surrounded by an outline: it is the number of closed trajectories in the
outline that are wound anti-clockwise around the point, minus the number of closed trajec
tories in the outline that are wound clockwise around the point. lnterpress uses the convention
that points with non-zero winding number lie inside the outline. Figure 4.5 illustrates several
outlines and shows their "insides" according to this convention. Note that for multi-trajectory
outlines, the order in which points on a trajectory are specified is important.

lnterpress Xerox System Integration Standard 4

A creator may prefer to use another convention for determining the inside of an outline, but must convert this con
vention to the lnterpress one when making a master. Two other popular conventions are "odd winding number is
inside" and "positive winding number is inside."

4.8.2 Filled outlines and strokes

There is one operator for creating a mask from an outline. It defines a mask to be the "inside"
of an outline:

<o: Outline> MASKFILL-+ <>

round

butt

square

where the mask is defined as the region inside the outline o', where o' is obtained by
transforming o into device coordinates using the current transformation T.

trajectory

'cndprnnt

(a)

-
r-

(g)

Line end detail Mid-stroke mitering End-stroke joining

Figure 4.6 Line types for MASKSTROKE.

Another operator creates a mask from a trajectory, which it uses to define the center-line of a
stroke to be drawn on the page image:

<t: Trajectory> MASKSTROKE -+ <>
where the trajectory t is first broadened to have uniform width specified by the imager
variable stroke Width, fitted with the endpoints specified by the imager variable

57

4

58

Imaging operators

strokeEnd, then transformed into device coordinates by the current transformation T.
and used as a mask to alter the page image.

The stroke is created from the trajectory by building a stroke of width strokeWidth, an imager
variable, using the trajectory as the center-line. Joints between segments of the trajectory are
mitered, i.e .. sides of the stroke are extended until they meet. Segments of a trajectory meeting
at an acute angle will thus generate long, sharp corners.

The treatment of the two ends of the trajectory is controlled by the value of strokeEnd, another
imager variable. Figure 4.6 illustrates the three options:

strokeEnd=O (square). A butt end is formed after extending the line a distance of half its
width in the direction in which the trajectory was pointed at its endpoint.

strokeEnd= 1 (butt). Ends are simply squared off at the specified endpoint.

strokeEnd= 2 (round). Ends are capped with a semicircle whose diameter is the same as the
line width and whose center coincides with the trajectory endpoint.

If butt or square end geometry is undetermined because the trajectory starts or ends with a seg
ment whose start and end points coincide, an appearance error is generated instead of a mask.

To generate strokes with rounded joints between segments. rather than mitered joints, MASKSTROKE should be called
separately for each segment. using strokeEnd= 2 (round).

The convenience operator MASKVECTOR may be used to draw strokes whose trajectories are a
single line segment:

<x1: Number> <y1: Number> <x2: Number> <y2: Number> MASKVECTOR -+ <>
where the effect is xl Y1 MOVETO X2 Y2 LINETO MASKSTROKE.

There is a specialized variant of MASKFJLL for imaging an arbitrary rectangle with its sides
parallel to the coordinate axes:

<x: Number> <y: Number> <w: Number> <h: Number> MASKRECTANGLE-+ <>
where the effect is

x y MOVETO x w ADD LINETOX y h ADD LINETOY x LINETOX

1 MAKEOUTLINE MASKFILL

i.e., a rectangle of width w and height h is drawn with corners at (x, y), (x+ w, y),
(x. y+ h), and (x+ w, y+ h).

Note that the coordinates of the corners are first computed and then transformed to device coordinates
using the current value of T: for this reason. the mask on the page image may not be rectangular.

Character strings can be underlined by placing a rectangle of appropriate width and height just
below . the string. The width of the rectangle will be determined by the width of the character
string. The position of the underline along the baseline will be determined by the current posi
tion, but because of spacing corrections the current position cannot be anticipated accurately
when the master is created. The operators STARTUNDERLJNE and MASKUNDERLINE are
provided to help position underlines accurately. They assume a master coordinate system in
which the baseline is oriented in the positive x direction.

< > ST ARTUNDERLINE --+ < >
where the effect is GETCP POP underlineStart ISET; i.e., the x component of the current
position is remembered as the starting point for an underline.

Interpress Xerox Sy!•tem Integration Standard

<dy: Number> <h: Number> MASKUNDERLINE-+ <>
where the effect is

--nowdy=<l FGET>, h=<2 FGET>--

4

{2 FSET 1 FSET
GETCP 4 FSET 3 FSET -- current position X = <3 FGET>, Y = <4 FGET> --

underlineStart !GET
4 FGET 1 FGET SUB 2 FGET SUB
SETXY TRANS 0 0
3 FGET underlineStart !GET SUB
2 FGET MASKRECTANGLE

} MAKESIMPLECO DOSAVEALL

-- underlineStart--
-- Y-dy-h--
-- set origin to (underlineStart, Y-dy-h) --
-- X - underlineStart --
-- h --
-- don't clobber the frame. current position, or T--

That is. the text starting at the point previously identified by STARTUNDERLINE and ending at the current position
will be underlined with a rectangle of height h and top a distance dy below the current position. For example, to
underline the word Hello, the master might use <sTARTUNDERLINE <Hello> SHOW 4 1 MASKUNDERLINE>.

The following two convenience operators are provided to specify masks that are filled
trapezoids aligned with the coordinate axes:

<x1: Number> <y1: Number> <x2: Number> <x3: Number> <y3: Number> <x4: Number>
MASKTRAPEZOIDX -+ <>
where the effect is X1 Y1 MOVETO X2 LINETOX X3 Y3 LINETO X4 LINETOX 1 MAKEOUT
LINE MASKFILL.

<x1: Number> <y1: Number> <y2: Number> <x3: Number> <y3: Number> <y4: Number>
MASKTRAPEZOIDY-+ <>
where the effect is xl Y1 MOVETO Y2 LINETOY X3 Y3 LINETO Y4 LINETOY 1 MAKEOUTLINE
MASKFILL.

4.8.3 Sampled masks

Some masks are conveniently specified by a two-dimensional array of pixels that describe
where the mask lies and where it does not. Such a mask might be obtained by scanning a com
plicated shape with a raster input scanner.

<pa: PixelArray> MASKPIXEL -+ <>
where the region defined by pa's pixel array coordinate system is transformed by <m T
CONCAT> (m is the transformation used to make pa), thereby defining a region of the
page image to be altered.

A sample value of 0 identifies a pixel that is not part of the mask (i.e., where color will not be
deposited), while a sample value of 1 identifies a pixel that is completely covered by the mask.

59

4 Imaging operators

4.9 Character operators

60

It is possible to make an image of any character using the mask commands already introduced:
pixel arrays or filled polygons are especially well suited to describing character shapes.
Unfortunately, an Interpress master that described each character shape each time it was used
would be unreasonably long. The master could be shortened considerably by defining a com
posed operator corresponding to each character; the operator could then be invoked in order
to generate a mask of the character. But even a single shape definition of each character would
require substantial storage and threaten device-independence.

Instead of requiring that each lnterpress master define character shapes in terms of more primi
tive mask operators, an Interpress printer will generally have a library of operator definitions
that will provide an operator for each character to be printed. These definitions may even in
volve device-dependent properties that cannot be specified in an Interpress master itself. For
example~ a phototypesetter might have optical masters of the characters and a zoom lens to con
trol the size.

Each character is represented by a composed operator called a character operator. Instances of
characters are then placed on the page by invoking these character operators with suitable trans
operators observe common conventions. This section defines these conventions.

A character operator performs three operations:

1. Generates masks. It invokes mask operators to specify the mask or masks that define the
shape of the character, thus causing an image of the character to be added to the page
image. The placement, size and orientation of the mask are controlled by the current trans
formation.

2. Moves to next character position. It alters the current position so as to prepare for the next
character in a sequence. Informally, it adds the "width" of the character to the current posi
tion.

3. Corrects spacing. Small adjustments to the current position may be made to compensate
for inaccuracies in character widths.

Generally, character operators have the simple form outlined above. In principle, however, a
character operator may be an arbitrary composed operator that executes arbitrary computa
tions; such operators are still subject to the constraint that each operator must alter the current
position in a standard way (see below). The detailed design of character operators is not dic
tated by lnterpress, but is left to font and character-set designers.

Generating masks. Figure 4.7 shows examples of the masks defined by various character
operators and the various measurements that are made on them. A character is defined in the
character coordinate system The masks have an origin, shown as (0, 0) in the figures. If the
character operator is invoked with SHOW, an image of the character will be placed on the page
so that this origin coincides with the current position at the time the character operator is
invoked. Consequently, the origin is chosen for convenience in placement. The orientation of
the y axis is such that it points upward from the origin when the character is viewed in the
normal reading orientation.

Interpress Xerox System Integration Standard

_____________ previous
base line

ascent

origin
(0,0)

descen

p9int
size

left extent

(widthX,widthY)
------base line

.r
right extent

__ .__ ________ previous

''°'"' I ~tze
ascent

(0,0

descen

base line

(widthX,widthY)
----base line

.r
left extent right extent

(a) Metrics for left-to-right Roman characters

left extent
origin
(0,0)

(widthX,widthY) •

right extent

(b) Metrics for top-to-bottom vertical spacing

ascent

(0,0)
origin

(c) Metrics for right-to-left horizontal spacing

Figure 4.7 Character metrics.

4

61

4

62

Imaging operators

origin of"i"

(widthX, width Y) of "i" and origin of "f'

origin of It (a) Horizontal (left-to-right) spacing of Roman characters

• •

p
(widthX,widthY) of ft and origin of1i

•
(widthX, widthY) of Q and origin of ;

(c) Right-to-left horizontal spacing of Hebrew characters

(b) Vertical spacing of Chinese characters

Figure 4.8 Spacing character masks.

In Latin alphabets, such as the italic font shown in Figure 4.7a, the origin is on the baseline of a line of charac
ters. For other styles, the origin may be in different locations. The Chinese character in Figure 4.7b has its origin
at the top center; it is intended to be used for setting characters vertically top-to-bottom. The Hebrew character in
Figure 4.7c has its origin at the lower right; it is intended to be used for setting characters horizontally right-to
left.

The units of measurement are defined to correspond to the "size" of the character, as specified
in the printing industry: a distance of I unit is defined as the "point size" (or "body size'') of the
character. This convention is illustrated in Figure 4.7a: the point (0, 1) is the origin of a charac
ter on a line above this one, spaced above this one by the "point size" of the character. The ac-

Interpress Xerox System Integration Standard 4

tual size of the character that will be placed in the image is controlled by the transformation
that is current when the character operator is invoked.

Moving to the next character position. After the mask is defined by the character operator, the
current position is altered by executing widthX width Y SETXYREL. The parameters widthX and
width Y are part of the character operator definition. Informally, they determine the "width" of
the character mask just imaged, as shown in Figure 4.7. More precisely, they determine where
the origin of the next character should (usually) be placed.

For most western languages. characters are read horizontally. so width Y will normally be zero and widthX will be
positive. This will yield left-to-right spacing as shown in Figure 4.8a. Traditional Chinese characters, which are set
top-to-bottom. might have a zero widthX and a negative width Y to establish a current position for a character im
mediately below the present one; this is illustrated in Figure 4.8b. Masks intended to represent Hebrew characters,
which are set right-to-left. may have negative widthX values. as shown in Figure 4.8c.

When text is justified between fixed margins, the width of "spaceband" characters is adjusted
so that the words on the line appear evenly spaced. A character operator can achieve the effect
of a spaceband by using a slightly different spacing computation, namely widthX*amplifySpace

width Y*amplifySpace SETXYREL, where amplifySpace is an imager variable. Characters using this
convention are termed amplifying characters, as their width is determined in part by the font
designer, who specifies widthX and widthY, and in part by the master, which sets amplifySpace.

Correcting spacing. Character operators work with the CORRECT operator to adjust spacing
slightly to compensate for inaccurate character widths (see § 4.10). To provide an opportunity
to alter the character spacing slightly, each character operator may call CORRECTSPACE or
CORRECTMASK. The type of call is determined by the font designer, but is suggested by the fol
lowing conventions. If the character's width can be adjusted to remedy spacing problems, the
operator calls widthX widthY CORRECTSPACE if the character is not amplifying, or
widthX*amplifySpace widthY*amplifySpace CORRECTSPACE if it is. If the character's width should
not be adjusted (e.g., a character which deposits ink, or a "figure space" designed to equal
precisely the widths of the figures 0 .. 9), the operator calls CORRECTMASK.

A very few character operators may call neither of the correction operators. This will be the
case if the spacing after the character must not be altered.

For example, suppose a font contains a character operator for an acute accent, with widthX=widthY=O. The accent
character operator will be called just before the operator for the character to be accented. The font is designed so
that the accent is correctly positioned with respect to the character shape. In this case, even small adjustments to
mask positions might make the accented character illegible.

4.9.1 Fonts

Character definitions come in collections called fonts. All the characters in a font are designed
to appear consistent when printed in words and lines; the widths of characters are chosen so
that they juxtapose pleasantly; and they are drawn consistently: their size, style, blackness, and
so forth are all compatible.

A FontDescription is a property vector with the following property names:

operators: Vector of composed character operators. This vector is called a font. An
individual character operator is thus identified by a font and a character index

within the font vector. lnterpress establishes no conventions for the
correspondence between character shapes and character indices. In this way, a

63

4

64

Imaging operators

font may represent an arbitrary "character set," i.e., an arbitrary mapping from
character indices to shapes.

characterMetrics: Property vector of CharacterMetrics. Corresponding to each character operator
in operators is a. name, value pair in characterMetrics in which the property name
is the character index and the property value is a CharacterMetrics vector,
metric information for each character (§ 4.9.3).

metrics: Property vector. This Metrics vector contains important metric information
about the font as a whole (§ 4.9.3).

name: Vector of Identifiers. The universal name of the font

Metric information is described more fully in § 4.9.3. Only the operators vector of a font stored in the printer is ac
cessible to the master.

There are numerous properties of a font that can be encoded in its name. For example:

• Character set mapping. The correspondence between character indices and shapes is encoded in the font name.
For example, in the name Xerox/xc2·0-0/TimesRoman. the identifier xc2·0·0 might be used to identify a particular
mapping. If all Xerox products were to use standard mappings, then the mapping property would be as
sociated with the part of the name Xerox rather than with a separate identifier.

• Typeface. Typeface names in the printing industry have no guaranteed structure. We find names such as
"Times Roman," 'Times Italic," "Helvetica Light," "Bodoni Condensed." Although it is tempting to organize
these names into a rigid framework, there will always be exceptions. As a consequence, Interpress allows the
font name to capture these properties in an arbitrary way.

• Viewing size. It is often desirable to use slightly different character shapes for character sizes that subtend a
different angle at normal viewing distances. Characters that will be extremely small when viewed normally,
such as in footnotes, often use thicker strokes than normal, or "body," fonts. Characters that will be unusually
large, such as titles or headlines, often use narrower strokes than body fonts. These properties are quite
separate from the physical size of the characters-a billboard may use "body" font characters that are 50 cm.
high! The font name can encode the "viewing size" as three discrete values (footnote, body, headline) or in a
more continuous way (ViewingSize-9pt). The physical size of the mask created by a character operator is deter
mined not by its name, but rather by the transformation in effect when it is .invoked.

• Version. Font libraries will be constantly maintained and updated. A truly unique name of a font, therefore,
will include a version number, probably as the last element of the universal name. So an identifier like
version/02 might be appended to the example above to indicate the version.

The name element of a FontDescription contains its full universal name and thus serves to
identify the font unambiguously. When a master presents a font name to be looked up in the
printer's font library, that font should be supplied if the printer has it. Otherwise, the closest
available approximation should be supplied. The FINDFONT operator, which looks up fonts,
does the best it can to find a suitable font, giving an appearance error if it has to approximate.

<v: Vector> FINDFONT-+ <w: Vector>
where vis a Vector of Identifiers, which is the universal name of the font. The result w
is the operators element of the best approximation to this font which the printer can
find in its environment.

4.9.2 Modifying a character vector

For imaging purposes, the master usually wants to modify the operators of a font in certain
ways. The MODIFYFONT operator applies a transformation to each operator in the operators vec
tor, intended to allow all characters to be scaled to a particular size.

lnterpress Xerox System Integration Standard 4

<v: Vector> <m: Transformation> MODIFYFONT - <w: Vector>
where v is a vector of operators, usually a result of FINDFONT. The result w has the
same SHAPE as v, and is obtained from v by replacing each element e by {m CONCATT
e DO} MAKESIMPLECO.

Usually the master saves the vector w in a frame for future reference. The SETFONT operator
sets the show Vee imager variable from an element of the frame. SHOW (§ 4.4.6) can then be
used to image characters using this font.

<n: Integer> SETFONT - <>
where the effect is FGET showVec ISET; i.e., the current font (showVec) is set to the nth
element of the current frame.

The net transformation applied to a font operator when it is imaged by SHOW is nm= <m T
CONCAT T,D -l CONCAT>, where TID -l is the inverse of the ICS-to-DCS transformation
(§ 4.3.5) and m is the transformation supplied to MODIFYFONT; nm transforms the character
coordinate system into the lnterpress coordinate system. The imager may specify for each font
a set of easy values for nm which it handles efficiently, and it may be unable to image a font at
all unless nm is easy (§ 5.1.2).

4.9.3 Metrics

Because the creator must make numerous formatting decisions when creating a master, it needs
to know various metric information about font characters in order to build an Interpress
master that will produce the desired image. It needs to know the width of each character and
whether the width is scaled by amplifySpace, since incremental positioning computations are
made by the imager (i.e., by altering the current position within a character operator) that must
be correctly anticipated by the creator. The creator may also need to know how to place sub
scripts, superscripts, or accents with respect to a particular character. It may wish to kern
character pairs by changing the spacing between them slightly. For formatting mathematical ex
pressions, it may wish to choose sizes of brackets or parentheses that match the size of a built
up expression.

This metric information is communicated to creators through an Interpress master whose
preamble, when executed, leaves on the stack one or more of the FontDescription vectors
described in § 4.9.l; the operators property need not be specified. The only literals in this
master are Numbers, Identifiers, and the primitive operators MAKEVEC, MAKEVECLU, ROTATE,
SCALE, SCALE2, and CONCAT. No encoding notations are used.

The characterMetrics element of a FontDescription is a property vector of character metric
information. Corresponding to each character index i that represents a character in the font
whose FontDescription is fd is a CharacterMetrics vector obtained by <Jd characterMetrics
GETPROP POP i GETPROP POP>. A CharacterMetrics vector is a property vector of metric
information about a single character. The property names and corresponding meanings of
elements are given below. All dimensions are recorded in the standard character coordinate
system described in Figure 4.7. While it is not necessary that all properties of a character be
recorded, the widthX. widthY, and amplified properties must be present for each character (unless
the default values given for these properties are correct).

65

4

66

Imaging operators

widthX: Number.
If the widthX property is not present in a character metrics vector, the value of
widthX may be assumed to be zero.

widthY: Number.
If the widthY property is not present in a character metrics vector, the value of
width Y may be assumed to be zero.

amplified: Integer.
1 if the character operator executes widthX*amplifySpace widthY*amplifySpace SET
XYREL, and 0 if it executes widthX widthY SETXYREL. If the amplified property is
not present in a character metrics vector, the value of amplified may be as
sumed to be zero.

correction: Integer.
Indicates what operator, if any. is called to correct spacing: 0 =none,
l=CORRECTSPACE, 2=CORRECTMASK.

leftExtent, rightExtent, descent. ascent: Number
These four numbers describe the bounding box of the character mask, as
measured from the character origin. The numbers are all signed, and represent
distances to the left, right, bottom and top respectively; see Figure 4.7a. For
example, the descent of a single quote character (') will usually be negative. All
four numbers are zero if the character contains no mask (i.e., if it is a space).

centerX. centerY: Number.
The coordinates of the optical center of the character.

kerns: Vector.
This value suggests spacing adjustments to use, based upon various successor
characters in the same font. Each element of the kerns vector is itself a three
element Vector that specifies:

successor (index 0): Integer. The index of a successor character.

kernX (index 1). kernY (index 2): Number.

ligatures: Vector.

The amount to add to the character's width (in the character coor
dinate system) to kern this character to the successor character.

This value suggests ligature substitutions based upon various successor charac
ters in the same font. Each element of the ligatures vector is itself a two-ele
ment Vector that specifies:

successor (index 0): Integer. The index of a successor character.

ligatureCharacter (index 1): Integer. The index of a ligature character to use in
place of the two-character sequence comprising this character and
the successor character. Note that the ligature character can also
have a ligature, thus allowing arbitrarily long ligature sequences to
be specified.

superscriptX, superscriptY. subscriptX, subscriptY: Number.
These values suggest locations relative to the character's origin at which to
place superscripts and/or subscripts.

Interpress Xerox System Integration Standard 4

The metrics element of a font is a property vector. The names and meanings of the elements
are given below:

easy: Vector of Transformations.
This vector describes the sizes and rotations of the font that the imager can
handle easily. Although Interpress allows character operators to be called with
arbitrary transformations, device limitations may prevent precise rendition of
characters in all cases (see § 4.9.4). The easy vector suggests character sizes and
orientations that will be printed with greatest fidelity. Each element in the vec
tor is a transformation from the character coordinate system to the JCS that
describes a combination of rotation and scaling that the printer can accom
modate easily; for example, the transformation <352778/100000000 SCALE>

describes a 10-point size oriented to point up in the normal viewing orienta
tion. A transformation <O SCALE> indicates that the font may be used easily
with an arbitrary transformation.

xHeight: Number.
Pertains only to Latin alphabets. The height of lower-case characters in the
font.

slant: Number.
Given in degrees, this is the slant (to the right of the vertical) of the characters
defined by the character operators. This value can be used to position accent
marks. For example, the slant of a Times Roman font would be 0 degrees; the
slant of a Times Italic font might be 7 degrees.

underlineO!fset: Number.
Distance below baseline where the top of an underline bar should appear.

underlineThickness: Number.
Thickness of desirable underline bar.

Creators may wish to retain additional information about fonts, such as the maximum bounding box of all charac
ters in the font, or the maximum width, or whether all characters in the font have the same widths. This informa
tion need not be represented explicitly in the font-wide metric information, as it can be derived by inspecting all
the character metrics for the font.

4.9.4 Fallback positions for characters

The chief difficulty that an imager may encounter when printing characters is the exact charac
ter geometry specified by the current transformation cannot be achieved. This will occur when
device dependencies limit the size of characters, prevent certain rotations, etc. When this oc
curs, the imager should:

• Use a mask that approximates the one requested. Interpress does not specify how ap
proximations are to be selected.

• Perform the width and correction calculations accurately, using the transformation
specified. In other words, although the mask will only approximate the character shape,
positioning will remain accurate.

• Generate an appearance error.

67

4 Imaging operators

4.10 Spacing correction

68

Sometimes the exact positioning of a mask must be computed when the master is printed
rather than when it is created. This is the case if positioning depends in detail on the widths of
characters. because the imager may not be able to use a character font that has widths that are
identical to those available when the master was generated. Such width differences can arise
when the imager can only approximate the font requested by the master, or if a new version of
a font with slightly different widths has superseded the font in effect when the master was
created. Of course. if the creator knows the properties of the imager's font exactly, no new com
putation by the imager will be necessary-the creator will make a master that specifies the ex
act position of each mask.

Interpress provides a mechanism to correct the spacing of a set of masks. which is used most
frequently to insure that lines of characters intended to appear uniformly justified between mar
gins are in fact justified. Correction is achieved by expanding or contracting some "correction
space" until the characters fit in the desired space. The Interpress mechanism is not specific to
characters, but will correct the spacing of any kind of mask.

Note that the correction mechanism is not intended to be used to achieve line justification. The amplifySpace
mechanism described in § 4.9 will handle simple justification needs. More complex justification must be computed
by the creator· and reflected in the master as precise character positioning. The purpose of correction is to insure
that a line of text ends in the right place even when approximations have been made for the fonts used in it.

Mask correction is achieved with the CORRECT operator. which takes as its only argument a
body containing the operators that invoke all the masks whose positions are to be corrected.
CORRECT will generally execute the body twice. first to compute how much correction is re
quired, and then a second time to actually create the image. When CORRECT is entered. the
current position is noted, and the body is executed, but mask operators are not allowed to alter
the page image (the variable nolmage is set to 1). As masks are invoked, calls to CORRECTSPACE

and CORRECTMASK record the number of opportunities for spacing correction. When execution
of the body is finished, CORRECT computes the difference between the current position and the
current position desired by the master. Then the current position is reset to the value noted at
the beginning of the operation. The body is executed again, with mask operators allowed to
change the page image, and with the CORRECTSPACE and CORRECTMASK operators instructed
to change the current position incrementally so as to achieve proper mask spacing.

The discussion below presents detailed definitions of CORRECT, CORRECTMASK, and COR

RECTSPACE. The overall effect of CORRECT, the interfaces to the operators, and the meanings
of the imager variables correctMX. correctMY. correctPass. correctShrink, correctTX, and correctTY
must be observed by an Interpress printer. However. the printer is free to use a printer-depen
dent algorithm for adjusting character positions to meet the required line length. Lines in the
definitions that might be modified in printer-dependent ways are marked --•--.

The definitions below do, however. present one consistent method for achieving correction.
The way the corrections are accomplished depends on whether the line of text must be
lengthened or shortened. If it is to be lengthened, extra space will be inserted by each COR

RECTSPACE operator in proportion to the size of the original (uncorrected) space. If the line
must be shortened, CORRECT fits the line by. shrinking the spaces (identified by coR

RECTSPACE); however a space is never allowed to shrink to less than (1- correctShrink) times its
former size. Any additional squeezing required is accomplished by removing space between all
masks equally (CORRECTMASK).

lnterpress Xerox System Integration Standard

Detailed definitions of the operators follow:

<> CORRECTMASK - <>
where the function is defined by the following informal code:

if correctPass= 1 then correctMaskCount: = correctMaskCount+ 1 --*-
else if correct Pass= 2 and correctMaskCount>O then begin

spx : = correctMaskXI correctMaskCount; --*--
spy : = correct Mask YI correctMaskCount; --*--
correctMaskX: = correctMaskX-spx; correctMaskY: = correctMaskY-spy;--*-
correctMaskCount : = correctMaskCount-1: --*--
DCScpx : = DCScpx+ spx; DCScpy : = DCScpy+ spy;--*-
end

<x: Number> <y: Number> CORRECTSPACE - <>
where the function is defined by the following informal code:

-- obtain device coordinates of space --
dx, dy : = Tv(x, y, T)
if correctPass= 1 then begin

correctSumX : = correctSumX + dx; correctSum Y: = correctSum Y + dy --*-- end
else if correctPass= 2 then begin

-- define 0/0 = 0 in the next line --
spx: = dx*correctSpaceX/correctSumX; spy:= dy*correctSpaceY/correctSumY; --*-
correctSumX : = correctSumX - dx; correctSum Y : = correctSum Y - dy; --*-
correctSpaceX: = correctSpaceX - spx; correctSpace Y : = correctSpace Y- spy;--*-
DCScpx : = DCScpx+ spx; DCScpy : = DCScpy+ spy--*--
end

<b: Body> CORRECT - <>
where the function is defined by the following informal code:

-- save the starting position --
correctcpx : = DCScpx; correctcpy : = DCScpy;
nolmage : = l;
correctMaskCount: = 0; correctSumX: = O; correctSumY: = O; --*-
correctPass : = l;
-- Interpret all operators to compute required corrections --
0 MARK; b OOSA VESIMPLEBODY; UNMARKO;

correctTargetX: = correctcpx+ correctMX; correctTargetY: = correctcpy+ correctMY;
-- *COMPUTECORRECTIONS determines how to allocate space. See below. -
*COMPUTECORRECTIONS;

DCScpx : = correctcpx; DCScpy : = correctcpy;
nolmage : = O;
correctPass: = 2;
-- Interpret all operators. emit masks --
0 MARK; b OOSA VESIMPLEBODY; UNMARKO;

correctPass : = O;

4

if distance(correctTargetX, correctTarget Y. DCScpx, DCScpy)> length(correctTX, correctTY)
then error; -- CORRECT did not properly adjust the mask positions --

DCScpx: = correctTargetX; DCScpy: = correctTargetY;

69

4

70

Imaging operators

The MARK. UNMARK pairs require that the operators in the body must leave the interpreter
operand stack in the same state they find it. The bodies are called with DOSA VESfMPLEBODY.

which saves all non-persistent variables. (OOSA VEALL cannot be used because the side-effect on
current position, saved in a persistent variable, is required.) The body b should not change
no Image.

The variables used to control spacing corrections are imager variables and some (persistent)
variables shared by the CORRECT, CORRECTMASK, and CORRECTSPACE operators. These vari
ables are summarized in Table 4.2. Note that calls on CORRECT cannot nest because only a
single set of persistent variables is used to save CORRECT state.

The mask-correcting mechanism can be disabled simply by setting correctPass to 0. This variable is initialized to 0
when fnterpress interpretation begins. Correction may be disabled in part of a sequence of masks by setting
correctPass to 0 while generating their masks: since correctPass is an imager variable, it is saved and restored by
DOSA VE and the like.

Note that proper operation of CORRECT depends on the operators CORRECTSPACE and CORRECTMASK being called at
appropriate times. Character operators will normally make these calls. ff. however, a master uses masks or spaces
that are not provided by character operators. CORRECTSPACE and/or CORRECTMASK must be called explicitly. This is
often the case for spaces when SETXYREL and the like are used to alter inter-character or inter-word spacing. The
SPACE operator (§ 4.10.2) conveniently performs these calls.

The *COMPUTECORRECTfONS step mentioned above is responsible for computing the correc
tions that should be made to the current position during the second pass:

• The target position (correctTargetX, correctTargetY) is computed as the current position at the
beginning of the CORRECT body plus the measure, as specified by correctMX and correctMY.

This is the position where the current position should have ended up after the first pass. Note that correctMX
and correctM Y are saved in persistent variables so that an operator inside the body b can set them. This allows
a creator that generates a master in a single sequential stream to specify the target after creating the mask
operators that comprise the body, as illustrated in the following example:

{ 312 amplifyspace !SET

<This is a string.> SHOW

133 0 SETCORRECTMEASURE

} CORRECT

• If the current position is short of the target position, the mask adjustments are set to zero,
and the space adjustments are set so that all adjustments will sum to the difference bet
ween the target and the current position. In this way, during pass 2 the current position
will end up at the target.

• If the current position lies beyond the target position, the line is compressed by first adjust
ing spaces until the ratio of the space adjustment to the available space exceeds the imager
variable correctShrink, and then adjusting masks to achieve the proper length.

This calculation is stated more precisely below. First, we define some functions that measure
distances on the page:

distance(x1, Yp x2, y2)= the distance in meters between device coordinates(xl' y1) and(Xi, y2).

length(dx, dy)=distance(O, 0, dx, dy).

Interpress Xerox System Integration Standard

The *COMPUTECORRECTIONS calculation itself is:
correctMaskX: = O: correctMask Y: = O; --*-
correctMaskCount: = correctMaskCount-1; --*-
correctSpaceX: = correctTargetX - DCScpx; --*-
correctSpace Y : = correctTargel Y- DCScpy; --*--
-- Test if line too long and space-correction threshold is exceeded -
if length(correctSpaceX, correctSpace Y) > --*--

correctShrink* length(correctSumX, correctSum Y) and --*--
dislance(correclcpx. correctcpy, correctTargetX. correctTargel Y) < --*-

dislance(correclcpx. correclcpy. DCScpx. DCScpy) then begin--*-
-- Must reposition masks too --

correctMaskX: = correctSpaceX + correctShrink*correctSumX: --*-
correctMask Y : = correctSpace Y + correctShrink* correctSum Y; -- *-

correctSpaceX: = correctSpaceX - correctMaskX; --*--
correctSpace Y: = correctSpace Y- correct Mask Y: --*--
if correctSumX = 0 and correctSpaceX:F-0 then --*--

begin correctMaskX: = correctSpaceX; correctSpaceX: = 0 end; --*-
if correctSum Y = 0 and correctSpace Y::;t:O then --*--

begin correctMask Y: = correctSpace Y; correctSpace Y: = 0 end; --*-
end

4

The reason for subtracting l from correc1MaskCoun1 is that there are only n-1 opportunities to correct the spacing
between n masks. Note that the *coMPUTECORRECTIONS calculations handle x and y symmetrically. They will correct
lines running at any angle.

4.10.1 Efficiency

Creators are urged to use the CORRECT operator freely in order to minimize distortions caused
by printing a master on a printer that cannot match exactly the font widths assumed by the
creator. However, in the cases where creator and printer are in exact agreement about widths,
the two-pass CORRECT operator seems wasteful. Interpress provides a mechanism to avoid two
passes in those cases where the target position is achieved within a distance tolerance. After the
first pass, if the distance between the target and the current position is less than a tolerance,
i.e.,

distance(correctTargetX, correctTargetY. DCScpx, DCScpy)-5:,length(correctTX, correctTY)

then the second pass need not be undertaken. Of course, if the second pass is omitted, the im
ager must in fact emit the masks specified, i.e., must act as if nolmage had been false during
the first pass. The tolerance is set by the imager variables correctTX and correctTY, which are ini
tialized to printer-dependent values.

An lnterpress program showing the one-pass version of CORRECT cannot be stated precisely using only imager primi
tives. However, the behavior of this program must match that given for CORRECT, above. The idea behind the one
pass algorithm is that the imager would save, during the first pass, a list of all page image modifications specified,
but would not actually make the modifications. If, at the end of the first pass, the correction required is less than
the threshold, the image modifications saved in the list can be made safely.

71

4

72

Imaging operators

4.10.2 Operators

Two operators set the coordinate parameters of the CORRECT operator. Note that they are trans
formed as "vectors":

<x: Number> <y: Number> SETCORRECTMEASURE - <>
where (correctMX, correctMY) : = Tv(x. y, T).

<x: Number> <y: Number> SETCORRECTIOLERANCE - <>
where (correctTX. correctTY) : = Tv(x, y, T).

The following operator should be used instead of SETXREL when the creator explicitly com
putes the width of the spaces needed to justify a line, instead of using the amplifySpace
mechanism.

<x: Number> SPACE - <>
where the effect is DUP SETXREL 0 CORRECTSPACE; i.e., the current position is changed
by SETXREL and the proper call to CORRECTSPACE is made.

Table 4.2 Variables used by correction operators

Name Type Use

Imager variables (persistent):

correctMX. correctMY Number Line measure

lmager variables (non-persistent):

correctPass Integer
correctShrink Number Allowable space shrink
correctTX. correctTY Number Line tolerance

CORRECT variables (persistent), not directly available to the master:

correctMaskCount
correctMaskX. correctMask Y
correctSumX. correctSum Y
correctSpaceX, correctSpace Y

Integer
Number
Number
Number

correctcpx. correctcpy Number
correctTargetX, correctTargetY Number

Tally CORRECTMASK calls
Space to be taken up by CORRECTMASK calls
Tally adjustable space from CORRECTSPACE calls
Space to be taken up by CORRECTSPACE calls
Current position at start of CORRECT

Where corrected text should end up

5.1 Subsets

5

Pragmatics

This chapter deals with various important practical issues connected with the implementation
and operation of creators and imagers.

lnterpress provides an extensive set of facilities for describing images. Many printers are not
able to produce all the images which can be specified in Interpress. There are three factors
which determine the set of images a printer can produce:

• Its subset: roughly, the set of types and primitives that it supports. The standard subsets of
Interpress are defined in § 5.1.1. The subsets provide a rough characterization of the power
of a printer, as well as some guidance to the designer about what facilities it is desirable to
include or omit as a whole.

• Its environment: the fonts, colors, and decompression operators that it makes available to a
master through the FINDFONT, FINDCOLOR, FINDCOLOROPERATOR, FINDCOLORMODEL

OPERATOR, and FINDDECOMPRESSOR primitives, and the list of easy net transformations
(§ 5.1.2). lnterpress imposes no requirements on the contents of a printer's environment.
Each printer must specify what fonts, colors, color models, color model operators.
decompressors and easy transformations it offers. Interpress does not define how this is
done. (But see § 4.9.3.)

• The complexity of the images it can handle. This difficult question is discussed in § 5.1.3.

Section 5.1.1 defines two Interpress subsets. The Text subset is the minimum set of facilities
that every Interpress printer will support. The Reference subset supports graphics as well as
text. Table 5.1 provides an informal definition of these subsets.

Some operators in subset s are defined in this document in terms of more general operators not available in subset
s. usually because they represent special cases of the more general operators. For example, MASKRECTANGLE, in the
text subset, is defined in terms of MASKFILL, which is not in the text subset.

73

5

74

Pragmatics

Table 5.1 Informal lnterpress subset definitions

Text subset Reference subset
enhancements to text subset

Language No control, test Computation: IF etc ..
or arithmetic primitives EQ etc., ADD etc.

Graphics Horizontal and vertical Trapezoids
scaling, 90° rotation round stroke ends

Pixel Arrays None Binary pixel arrays

Color Black Certain colors

Limits As in Table 5.2 As in Table 5.2

5.1.l Standard subsets

The Text subset consists of the following facilities:

• All the types and literals of the base language, and all the operators of§§ 2.4.3-6 (vectors,
frames, operators and the stack). Nothing from §§ 2.4.7-9 (control, test and arithmetic).

• All the facilities of Chapter 3.

• All the types and operators of § 4.2 (imager variables), § 4.4 (transformations), and § 4.5
(current position). Nothing from § 4.6 (pixel arrays) or § 4.7 (color). Arguments to ROTATE

must be integer multiples of 90.

• From § 4.8 (masks) only MASKRECTANGLE, STARTUNDERLINE, MASK UNDERLINE, and
MASKVECTOR. The Outline and Trajectory types are excluded. When MASKVECTOR is ex
ecuted, strokeEnd must be 0 or 1 (no rounded ends), and either x1 = x2 or y1 = y2 (horizontal
or vertical strokes only).

• All the operators of§ 4.9 (characters) and § 4.10 (correction).

• The minimum limits specified in Table 5.2.

Note that the Text subset provides, in addition to character imaging operators, the ability to
make horizontal and vertical strokes and rectangles. Moreover, text may be oriented
horizontally or vertically, subject to the easy net transformations available (§ 5.1.2).

The Reference subset consists of all of the facilities of the Text subset, with the following addi
tional facilities:

• All of the operators of§§ 2.4.7-9 (control, test and arithmetic).

• The operators MASKTRAPEZOIDX and MASKTRAPEZOIDY, and the ability to handle any
value for strokeEnd when MASK VECTOR is executed.

Interpress Xerox System Integration Standard 5

• The MAKEPIXELARRA Y operator, subject to the restriction that samplesPerPixel= I and
maxSampleValue= 1.

• The operators MAKEGRA Y, SETGRA Y, FINDCOLOR, and MAKESAMPLEDBLACK from § 4.7.
subject to the restriction that MASKPIXEL cannot be called when a sampled color is in ef
fect.

Table 5.2 Minimum values for size limits

Name Where defined Minimum limit

maxlnteger (§ 2.2.1) 224_1
maxldlength (§ 2.2.2) 100 characters
max Body Length (§ 2.2.5) 10000 literals
maxStacklength (§ 2.3.1) 1000 values
maxVecSize (§ 2.2.4) 1000 elements
topFrameSize (§ 3.1) 50 elements

5.1.2 Easy net transformations

A printer may specify the net transformations of pixel arrays (§ 4.6) or fonts (§ 4.9) from their
standard coordinate systems to the JCS that the printer can handle efficiently; these are the
easy net transformations. which contain only scaling and rotation components. A printer is as
sumed to be able to handle arbitrary translations. A printer may refuse to handle a sampled
color, PixelArray mask, or font operator which has a net transformation not in the easy set.
For a font. the easy transformations are specified in the easy element of the metrics vector
(§ 4.9.3). Interpress does not define how easy pixel array transformations are specified.

5.1.3 Image complexity

It would be nice if a subset S printer (i.e., one that supports all the features of subset S
Interpress) could guarantee to print any subset S master. A printer that can do this is called un
limited; other printers are limited. It is highly recommended that printers should be unlimited,
even if performance is greatly degraded on complex images. The reason is that most pages of a
master are typically of uniform complexity, but only one very complex page is needed to
render the entire master unprintable.

Many physical printing devices operate synchronously for some unit of output. called a block; that is. once output
of a block has started. it must continue at a fixed or minimum rate. or else the image is spoiled. An asynchronous
device has no such requirement. and can normally be used in an unlimited printer without further ado. To make
an unlimited printer with a synchronous device, however, the printer must contain enough buffering to construct
and store all the output for a block. For example, xerographic devices typically have one-page blocks. and the out
put to the device is in raster form; when such a device is used in an unlimited printer. a buffer which can store
all the bits in a one-page raster is required. At 300 pixels/in, about 13Xl06 bits of buffering are required for a
9Xl4 inch page.

To use a limited printer. one must have some characterization of the complexity of the images it can handle.
Unfortunately, this characterization usually involves complex local properties of the image which are not easy to
state even for a particular printer, much less in general. The lack of decent lower bounds, however. has serious im
plications for clients, since if only one page in a 50 page document cannot be printed on a particular printer. that

75

5 Pragmatics

printer is much less useful (of course it will still print the master, with an appearance error for the troublesome
page).

5.1.4 Performance

Not all masters are equally easy to execute because different lnterpress operators and con
structs entail different amounts of computing. Moreover. certain printers may be able to
process certain masters quickly, while slowing down for others. Documentation for a printer
may specify the properties that a master should have to be executed efficiently. A printer of a
particular subset is required to support all facilities defined for that subset in § 5.1.1. but is free
to support only some of these facilities efficiently.

5.2 Numeric precision t

76

Numbers in Interpress are used mainly for computing device coordinates from master coor
dinates and transformations (§ 4.3). This section gives the rules which text lnterpress masters
must observe to ensure that device coordinates are computed accurately enough to produce
good images. If the rules are violated. it is possible that bad images will be produced because
the wrong device coordinate values may be used. In most cases, however, there will be no
detected error, and it is possible that the image will still be acceptable. If the rules are ob
served, however. it is guaranteed that device coordinates will be computed accurately, in the
sense defined below. The limits on the size of device coordinates and Numbers do not have
this fail-soft property, since the numbers may overflow the representation if they are too big.

Limits on Numbers:

The absolute value of a Number must not be larger than 1020•

Limits on the size of device coordinates:

When the current transformation Tis applied to a pair of coordinates (ex. c) to produce a
pair of absolute device coordinates (dx. d). the magnitude of the d's must be less than the
largest field dimension (§ 4.3.1) plus 10%. Furthermore, the magnitude of the relative
device coordinates produced by TJcx. cy. T) must be within this range.

limits on sequences of relative moves:

The total path length, in device coordinates. of a sequence of relative moves must be
within this range. A sequence of relative moves must be limited to 250 moves.

Limits on transformations:

Let T' be the upper left 2X2 part of a transformation T. smin the singular value of T' with
smallest magnitude, and smax the other one (the singular values of a matrix M are the posi

tive square roots of the eigenvalues of MMT). Then sma/smin <16, smax <lo2°. and
smin> io- 20• A transformation must not be computed by concatenating more than 8
primitive transformations obtained from TRANSLATE, ROTATE, SCALE. and SCALE2. The
product of smal smin for the primitive transformations concatenated together must be less
than 16.

The restrictions on numbers and device coordinates prevent overflow. The restrictions on rela
tive moves and transformations allow the loss of precision in computing device coordinates to
be bounded. If these restrictions are observed, the imager guarantees that a computed device

lnterpress Xerox System Integration Standard 5

coordinate will not differ from its ideal value by more than 114 of a grid unit (§ 4.3.4).
Furthermore, the Number value resulting from a literal will be as close to the rational number
represented by the literal as the nearest IEEE floating point number. and each primitive opera
tion on Numbers will produce a result which is as close to the ideal result as the nearest IEEE

floating point number.

5.3 Error handling

The effect of an error on the execution of an Interpress master is defined in § 2.4.1. In addi
tion, however, a printer should provide some indication of what errors have occurred, and how
severe they are. This section offers guidance in this matter.

As an Interpress master is printed, various errors may be encountered. The first few errors
should be reported by printing an explanatory message. This message should indicate at least:

• the page number;

• the current position;

• the composed operator being executed if it is not a page image body;

• the severity of the error, as defined below;

• some indication of the nature of the error.

If there is not enough space to report all the errors, this fact should be reported. If possible,
each page on which an error occurs should be identified.

Errors are classified according to their severity:

Appearance warning:

These errors mean that the imager had to make an approximation to the ideal image
represented in the Interpress master, but has been able to preserve the content of the
image. For example, if the entire image is reduced in size compared to the size specified,
an appearance warning is issued.

Appearance error:

These errors mean that the imager had to make an approximation to the ideal image
represented in the Interpress master in such a way that the resulting image will not appear
to be correct. For example, if an imager cannot display a filled mask that is represented in
the master, an appearance error is generated.

Master warning:

These errors mean that something is amiss in the specification of the master, but the error
is not severe. For example, arithmetic overflow will cause a master warning.

Master error:

These errors signal severe problems in interpreting the master. It may be necessary to aban
don further interpretation of the master and to simply print a page that describes the error.

77

5 Pragmatics

78

A

Appendix A
References

A Proposed Standard for Binary Floating-Point Arithmetic. Computer. 14, 3, March 1981. p 51.

A draft of the reference document for the proposed IEEE standard. The same issue of Computer also contains
other articles about the standard.

Coonen. J.T. An implementation guide to a proposed standard for floating-point arithmetic.
Computer. 13, I. January 1980, p 68.

A discussion of the proposed IEEE floating-point standard. A list of errata for this article appears in the
preceding reference.

International Standards Organization. 7-Bit Coded Character Set for Information Processing
Interchange. ISO 646-1973 (E).

This document defines a limited character set for information interchange. It is almost compatible with ASCII.

(next reference). The Interpress uses of 1so 646 are restricted to a subset that is compatible with ASCII.

Newman. W.M. and Sproull, R.F., Principles of Interactive Computer Graphics, 2nd edition.
McGraw-Hill, 1979.

Introduction to computer graphics. geometric representations and transformations. and raster graphics.

Xerox Corporation. Character Code Standard. Xerox System Integration Standard. Stamford.
Connecticut; 1984 April; xsrs 058404.

An enumeration of characters and their numeric codes. Also describes a mechanism for a compact encoding of
strings of character codes.

Xerox Corporation. lnterpress 82 Reader's Guide. Xerox System Integration Guide. Stamford,
Connecticut; 1984 April; XSIG 018204.

An overview of lnterpress. including a paragraph-by-paragraph commentary on portions of the standard. XSIG
018205 corresponds to an earlier version of the standard; most of its contents. however. apply to I nterpress 2.1
as well.

Xerox Corporation. Introduction to lnterpress. Xerox System Integration Guide. Stamford,
Connecticut; 1984 April; XSIG 038304.

Comprehensive tutorial on Interpress. intended for system designers and programmers writing creator software.

79

A References

80

B

Appendix B
Types, primitives, and standard vectors

B.1 Types

The following types are defined in Interpress. A - indicates that the type has no code.

Name TYPE code Section Comments

Any 2.2 any type except Body or Mark
Body 2.2.5 can only be the immediate argument of a body operator
Color 7 4.7
ConstantColor 4.7.1 subtype of Color
Identifier 2 2.2.2
Integer 2.2.1 subtype of Number
Mark 2.2.3 can only be the argument of UNMARK or COUNT

Number 1 2.2.1
Operator 4 2.2.5
Outline 9 4.8
PixelArray 6 4.6
Trajectory 8 4.8
Transformation 5 4.4
Vector 3 2.2.4

81

B Types, primitives, and standard vectors

B.2 Primitive operators, ordered by function

82

A prefixed • means that the operator is special: it cannot be called from an lnterpress master.

Vectors (§ 2.4.3):
GET MAKEVECLU MAKEVEC SHAPE GETPROP MERGEPROP

Frames (§ 2.4.4):
FGET FSET

Operators (§ 2.4.5):
MAKESIMPLECO DO DOSAVE DOSAVEALL DOSAVESIMPLEBODY

Stack (§ 2.4.6):
POP COPY DUP ROLL EXCH MARK UNMARK UNMARKO COUNT NOP ERROR

Control (§ 2.4.7)
IF IFELSE IFCOPY *COPYNUMBERANDNAME

Test (§ 2.4.8):
EQ *EQN GT GE AND OR NOT TYPE

Arithmetic (§ 2.4.9):
ADD SUB NEG ABS FLOOR CEILING TRUNC ROUND MUL DIV MOD REM

Skeleton (§ 3.1)
*MAKECOWITHFRAME *LASTFRAME *OBTAINEXTERNALINSTRUCTIONS * ADDINSTRUCTION

DEFAULTS *RUNSIZE "'RUNGET

Imager state (§ 4.2):
IGET !SET *SETMEDIUM

Coordinate systems (§ 4.3):
*DROUND

Transformations (§ 4.4)
Making: *MAKET TRANSLATE ROTATE SCALE SCALE2 CONCAT
Current transformation and instancing: CONCATT MOVE TRANS SHOW SHOWANDXREL

Current position (§ 4.5):
SETXY SETXYREL SETXREL SETYREL GETCP

Pixel arrays (§ 4.6):
MAKEPIXELARRA Y EXTRACTPIXELARRA Y FINDDECOMPRESSOR

Color(§ 4.7):
MAKEGRA Y FINDCOLOR FINDCOLOROPERATOR FINDCOLORMODELOPERATOR MAKE-
SAMPLEDCOLOR MAKESAMPLEDBLACK S.ETGRA Y

Masks (§ 4.8):
MOVETO LINETO LINETOX LINETOY MAKEOUTLINE MASKFILL MASKSTROKE MASKVECTOR
MASKRECTANGLE STARTUNDERLINE MASKUNDERLINE MASKTRAPEZOIDX MASK-

TRAPEZOIDY MASKPIXEL

Characters (§ 4.9):
FINDFONT MODIFYFONT SETFONT

Corrected masks (§ 4.10):
CORRECTMASK. CORRECTSPACE CORRECT *COMPUTECORRECTIONS SETCORRECTMEASURE

SETCORRECTTOLERANCESPACE

lnterpress Xerox Sy:\tem Integration Standard B

B.3 Primitive operators, ordered alphabetically

The last five columns of the table summarize useful information about each operator:

SECTION: the section in which the operator is defined.

ENCODING VALUE: the decimal integer value used to represent the operator in the encoding.

VARIABLE STACK: the operator takes a variable number of arguments or returns a variable
number of results.

BODY OPERATOR: the operator takes a body as its last argument.

REDUNDANT: the operator is an abbreviation for a simple Interpress program.

OPERATOR SECTION ENCODING VARIABLE BoDY RED UN-
VALUE STACK OPERATOR DANT

ABS 2.4.9 200 •
ADD 2.4.9 201
* ADDINSTRUCTION-

DEFAULTS 3.1
AND 2.4.8 202 •
CEILING 2.4.9 203 •
*COMPUTECORRECTIONS 4.10
CONCAT 4.4.3 165
CONCATT 4.4.5 168 •
COPY 2.4.6 183 •
*COPYNUMBERANDNAME 2.4.7
CORRECT 4.10 110 •
CORRECTMASK 4.10 156
CORRECTSPACE 4.10 157
COUNT 2.4.6 188 •
DIV 2.4.9 204
DO 2.4.5 231 •
DOSAVE 2.4.5 232 •
DOSAVEALL 2.4.5 233 •
DOSA VESIMPLEBODY 2.4.5 120 • • •
*DROUND 4.3.5
DUP 2.4.6 181 •
EQ 2.4.8 205
*EQN 2.4.8
ERROR 2.4.6 600
EXCH 2.4.6 185 •
EXTRACTPIXELARRA Y 4.6 451
FGET 2.4.4 20
FINDCOLOR 4.7.1 423
FINDCOLORMODELOPERATOR 4.7 .1 422
FINDCOLOROPERATOR 4.7.1 421
FINDDECOMPRESSOR 4.6.1 149
FINDFONT 4.9.1 147
FLOOR 2.4.9 206 •
FSET 2.4.4 21
GE 2.4.8 207 •
GET 2.4.3 17
GETCP 4.5 159
GETPROP 2.4.3 287 •

B Types, primitives, and standard vectors

OPERATOR SECTION ENCODING VARIABLE BODY REDUN-
VALUE STACK OPERATOR DANT

GT 2.4.8 208
IF 2.4.7 239 • •
IFCOPY 2.4.7 240 •
lFELSE 2.4.7 241 • • •
IGET 4.2 18
ISET 4.2 19
*LASTFRAME 3.1
LINETO 4.8.1 23
LINETOX 4.8.1 14 •
LINETOY 4.8.1 15 •
*MAKECOWITHFRAME 3.1
MAKEGRAY 4.7.1 425
MAKEOUTLINE 4.8.1 417 •
MAKEPIXELARRA Y 4.6 450
MAKESAMPLEDBLACK 4.7.2 426 •
MAKESAMPLEDCOLOR 4.7.2 427
MAKESIMPLECO 2.4.5 114 •
*MAK ET 4.4.3
MAKEVEC 2.4.3 283 •
MAKEVECLU 2.4.3 282 •
MARK 2.4.6 186 •
MASKFILL 4.8.2 409
MASK PIXEL 4.8.3 452
MASKRECTANGLE 4.8.2 410 •
MASKSTROKE 4.8.2 24
MASKTRAPEZOIDX 4.8.2 411 •
MASKTRAPEZOIDY 4.8.2 412 •
MASK UNDERLINE 4.8.2 414 •
MASK VECTOR 4.8.2 441 •
MERGEPROP 2.4.3 288
MOD 2.4.9 209 •
MODIFYFONT 4.9.2 148
MOVE 4.4.5 169 •
MO VETO 4.8.1 25
MUL 2.4.9 210
NEG 2.4.9 211 •
NOP 2.4.6 1 •
NOT 2.4.8 212 •
*OBTAINEXTERNAL-

INSTRUCTIONS 3.1
OR 2.4.8 213 •
POP 2.4.6 180
REM 2.4.9 216 •
ROLL 2.4.6 184 •
ROTATE 4.4.3 163
ROUND 2.4.9 217 •
*RUNG ET 3.3.3
*RUNSIZE 3.3.3
SCALE 4.4.3 164 •
SCALE2 4.4.3 166 •
SETCORRECTMEASURE 4.10.2 154 •
SETCORRECTTOLERANCE 4.10.2 155 •

84

lnterpress Xerox System Integration Standard B

OPERATOR SECTION ENCODING VARIABLE BODY REDUN-
VALUE STACK OPERATOR DANT

SETFONT 4.9.2 151 •
SETGRAY 4.7.3 424 •
*SETMEDIUM 4.2
SETXREL 4.5 12 •
SETXY 4.5 10 •
SETXYREL 4.5 11 •
SETYREL 4.5 13 •
SHAPE 2.4.3 285
SHOW 4.4.6 22 • •
SHOWANDXREL 4.4.6 146 • •
SPACE 4.10.2 16 •
STARTUNDERLINE 4.8.2 413 •
SUB 2.4.9 214
TRANS 4.4.5 170 •
TRANSLATE 4.4.3 162 •
TRUNC 2.4.9 215
TYPE 2.4.8 220
UNMARK 2.4.6 187 •
UNMARKO 2.4.6 192 •

85

B Types, primitives, and standard vectors

B.4 Non-redundant primitive operators

Name Section

GET 2.4.3
MAKEVECLU 2.4.3
SHAPE 2.4.3
MERGEPROP 2.4.3
FGET 2.4.4
FSET 2.4.4
DO 2.4.5
DOSAVE 2.4.5
DOSAVEALL 2.4.5
MAKESIMPLECO 2.4.5
POP 2.4.6
COPY 2.4.6
ROLL 2.4.6
MARK 2.4.6
UNMARK 2.4.6
COUNT 2.4.6
ERROR 2.4.6
IF 2.4.7
IFCOPY 2.4.7
*COPYNUMBERANDNAME 2.4.7
EQ 2.4.8
GT 2.4.8
TYPE 2.4.8
ADD 2.4.9
SUB 2.4.9
MUL 2.4.9
DIV 2.4.9
TRUNC 2.4.9
*LASTFRAME 3.1
*MAKECOWITHFRAME 3.1
*OBTAINEXTERNALINSTRUCTIONS 3.1
*A DDINSTRUCTIONDEFA UL TS 3.1
IGET 4.2
ISET 4.2
*SETMEDIUM 4.2
*DROUND 4.3.4
CONCAT 4.4.3
*MAK ET 4.4.3
ROTATE 4.4.3
GETCP 4.5
MAKEPIXELARRA Y 4.6
EXTRACTPIXELARRA Y 4.6
FINDDECOMPRESSOR 4.6
MAKEGRAY 4.7.1

86

Interpress Xerox System Integration Standard B

Name Section

FINOCOLOR 4.7.1
FINOCOLOROPERATOR 4.7.1
FINOCOLORMODELOPERATOR 4.7.1
MAKESAMPLEDCOLOR 4.7.2
MO VETO 4.8.1
LINETO 4.8.1
MAKEOUTLINE 4.8.1
MASKSTROKE 4.8.2
MASKFILL 4.8.2
MASKPIXEL 4.8.3
FINDFONT 4.9.1
MODIFYFONT 4.9.2
CORRECT 4.10
CORRECTMASK 4.10
CORRECTSPACE 4.10

87

B Types, primitives, and standard vectors

B.5 Standard vectors

The following vectors and property vectors in Interpress have defined meanings of their
elements.

Name Section

instructions 3.3.3

MediumDescription 3.3.3

FontDescription 4.9

88

Structure

[breakPageFont, Vector, docName, BreakPageString,
docCreator. BreakPageString,
docComment, BreakPageString,
docCreationDate. BreakPageString,
docPassword. Vector,
subset, Identifier or Vector of Identifiers,
environmentUses. Vector of Vector of Identifiers.
insertFileUses. Vector of Request.
jobSender. BreakPageString,
jobRecipient. BreakPageString,
jobStartM essage. BreakPageString,
jobEndMessage. BreakPageString,
jobStartWait, Integer,
jobEndWait. Integer,
jobAccount, Any,
jobPriority. Identifier,
job Error Abort, Identifier,
jobSummary, Identifier,
jobPassword. Vector,
finishing, Identifier or Vector of Identifiers.
stacking, Identifier or Vector of Identifiers,
plex. Identifier,
media. Vector of MediumDescription,
copySelect, Run of Integer,
copy Name, Run of Integer,
onSimplex, Run of Integer,
pageSelect, Run of Run of Integer,
mediaSelect. Run of Run of Integer]

[O: Identifier or Vector of Identifiers (name),
1: Number (mediumXSize),
2: Number (mediumYSize}]

[operators, Vector,
characterMetrics, Vector,
metrics, Vector (Metrics),
name, Vector of Identifiers]

Interpress Xerox System Integration Standard B

Name Section

CharacterM etrics 4.9

Metrics 4.9

Structure

[widthX, Number,
widthY, Number,
amplified, Integer,
correction, Integer,
leftExtent, Number. rightExtent, Number.

descent, Number. ascent, Number,
centerX, Number, centerY, Number,
kerns, Vector of [O: Integer, 1: Number, 2: Number],
ligatures, Vector of [O: Integer, 1: Integer],
superscriptX, Number, superscriptY, Number,

subscriptX, Number, subscriptY, Number]

[easy, Vector of Transformations,
xHeight, Number,
slant, Number,
underlineO!fset, Number.
underlineThickness, Number]

Although imager variables are not represented as a vector, they are accessed with Integer in
dices. These indices are summarized in Table 4.1, § 4.2.

89

B Types, primitives, and standard vectors

90

c

Appendix C
Interpress universal registry

Organizations wishing to construct universal names that can be referenced reliably from any
Interpress master should apply for a universal identifier in the Interpress universal registry by
contacting:

Xerox Corporation
Printing Systems Division
Printing Systems Administration Office
701 South Aviation Boulevard
El Segundo, California 90245

91

c Interpress name registry

92

D

Appendix D
Change history

This appendix presents a brief description of the principal changes that have been made in the
lnterpress standard.

The following changes convert Interpress version 1.0 to version 2.0:

§ 2.4.1. Error recovery is simplified and mark recovery defined more precisely.

§ 2.4.3. The operators GET. SHAPE. GETPROP, and MERGEPROP are added; the operator *GET is superseded by GET.

The definitions of property vectors and universal property vectors are added.

§ 2.4.8. The operator *EQN is added.

§ 2.5. The version number in the header is changed from 1.0 to 2.0.

§ 2.5.3. The specification of the encoding of sequencePackedPixe/Vector and sequenceCompressedPixe/Vector is changed
slightly.

§ 3. Printing instructions are added, resulting in a new section § 3.3 and numerous small changes elsewhere in § 3.

§ 4.2. The type of the value passed to ISET must match the type of the corresponding imager variable. The type of
correctPass is changed to Integer.

§ 4.3.1. An interpretation is given to printing on the back side of a page when printing on both sides.

§ 4.4.3. An inconsistency in the definition of ROTATE is repaired.

§ 4.6. The scaling convention for pixel arrays is relaxed.

§ 4.7. The operator FINDCOLOR is added.

§ 4.8.1. Errors in the definitions of LINETOX and LINETOY are repaired.

§ 4.8.2. The operators MASK VECTOR, MASKTRAPEZOIDX, and MASKTRAPEZOIDY are added. The action of MASKSTROKE is
defined for degenerate trajectories.

§ 4.9.1. The font vector is changed to be a property vector.

§ 4.9.3. The operators MAKEVECLU and CONCAT are also allowed to appear in a metric master. The characterMetrics
and metrics vectors are changed to be property vectors.

§ 4.10. The definition of correction operators is changed to allow printers more flexibility in implementation.

§ 5.1.1. "Levels" are renamed to "subsets." The subset structure is updated to reflect the new operators and the
definition of the Gray enhancement is changed slightly.

Appendix B. Encoding values for REM, ROUND, and new operators are specified.

93

D

94

Change history

The following changes convert lnterpress version 2.0 to version 2.1:
§ 2.4.6. The ERROR operator is added; MERGEPROP can be called from the master.

§ 2.5. The version number in the header is changed from 2.0 to 2.1.

§ 2.5.3. The encoding-notation for sequenceString is generalized and subordinated to the definition in the Xerox
Character Code Standard.

§ 3.2. The notion of hierarchical name is replaced by more precise definitions of universal identifier. universal
name. and environment name.

§ 3.3.3. Instructions subse1. environmentUses. insertFileUses. and stacking are added.

§ 4.6. The definition of MAKEPIXELARRAY is generalized and the operator EXTRACTPIXELARRAY is defined.

§ 4. 7. The notions of color operators and color model operators are introduced. as well as the operators
FlNDCOLOROPERATOR. FINDCOLORMODELOPERATOR, and MAKESAMPLEDCOLOR.

§ 4.10. The suggested implementation of *coMPUTECORRECTlONS is altered slightly.

§ 5.1. The set of enhancement modules is replaced by a second subset. the reference subset.

Glossary

An italicized word in a definition is indexed and
defined in this glossary. The parenthesized number at
the end of each definition is the section in which the
term is introduced.

amplifying characters: characters whose width can
be easily modified to achieve justification (4.9)

appearance error: an error in the appearance of
the page image. usually because the master invokes a
function that the imager cannot accommodate (5.3)

approximation: finding an external font which is
close to the one requested. but not necessarily identi
cal (4.9.1)

argument: a value popped from the stack by the ex
ecution of an operator (2.4)

base language: the syntax and semantic framework
of Interpress. without any primitive operators whose
primary use is to generate output (2.)

baseline: in Latin alphabets. a horizontal line just
under the "bottom" of non-descending characters (4.9)

body: a sequence of literals bracketed by { and }.
which can be used to form the executable part of a
composed operator (2.2.5)

body operator: a primitive operator which takes a
body as its last argument (2.2.5)

break page: a page automatically printed at the
beginning of a job to identify the output of the job
and to separate it from that of adjacent jobs (3.3.2)

char: abbr. for character

character index: an Integer. sometimes called a
"character code." that identifies a particular character;
used to index a font (4.9)

character coordinate system: a standard
coordinate system in which each character operator is
defined (4.9)

character operator: a composed operator which,
when executed. defines a character's mask (4.9)

co: abbr. for composed operator

color: the specification of the color (absorption coeffi
cient of the ink) with which to show a primitive
image (4.1. 4.7)

color operator: an operator that converts color coor
dinates into an lnterpress color (4.7.1)

color model operator: an operator that constructs
a color operator according to a particular color model
(4.7.1)

composed operator: an operator defined in the
master (2.2.5)

compression: a computation that reduces the num
ber of bits required to specify some data. usually a
pixel array (4.6)

context: a particular execution of a composed
operator (2.4.2)

convenience operator: a redundant operator.
usually introduced to reduce the number of steps in a
frequently-occurring sequence.

coordinate system: conventions used to describe
locations on a two-dimensional surface (4.3)

correct: to compensate for differences between the
actual widths of character operators used by the printer
and those assumed by the creator (4.10)

creator: the person or program which constructs an
Interpress master (1.)

current position: a point on the page image, often
used to indicate where the origin of the next character
should be placed (4.5)

current transformation: a transformation that con
verts from master coordinates to device coordinates
(4.4)

DCS: abbr. for device coordinate system

decompression: expanding compressed data into its
original form (4.6)

device coordinate system: a device-dependent
coordinate system suitable for driving the printing
device (4.3)

device-independent: does not depend on properties
of the printing device (4.3)

duplex: a mode of printing in which images are
placed on both sides of a sheet of paper; also a print
ing instruction (3.3.3)

element: one of the values which make up a vector
(2.2.4)

95

96

Glossary

encoding: a particular representation of Interpress
masters (2.5)

environment: the set of objects made available to a
master by a printer. e.g .. fonts. colors. decompression
operators (3)

environment name: the unique name of an object
in the printer's environment: a vector of identifiers in
which the first identifier defines the type of the object
and the remaining identifiers are the universal name
of the object (3.2.3)

external instructions: those printing instructions
that are supplied by mechanisms outside an Interpress
master (3.)

external value: a value not defined in the master.
but obtained from the printer by a FIND operator
(3.2)

f: abbr. for frame

font: a vector of operators designed to produce
images of symbols (4.9)

frame: a vector associated with an execution of a
composed operator (2.3.2)

good image: an image specified with just sufficient
precision to match the ideal image (4.3.4)

grid points: a grid overlaid on the device coordinate
system for describing the spatial resolution of the
printing device (4.3.4)

header: an identifying string at the beginning of an
encoded Interpress master (2.5)

hierarchical: a tree-structured naming system. in
which each name is a sequence of simple names
which traces out a path from the root of the tree
(3.2.2)

hierarchical name: a vector of identifiers that
represent a structured name (3.2.2)

JCS: abbr. for lnterpress coordinate system

id: abbr. for identifier

ideal image: an image that results from ideal (in
finite) precision interpretation of arithmetic and imag
ing operators (4.3.4)

identifier: a sequence of characters normally used to
name an external value; one of the types of the base
language (2.2.2)

imager: the software module that interprets imaging
operators to build page images (4.1)

imager state: twenty-three variables that control the
functioning of many imager operators (4.2)

imaging model: the process whereby primitive
images specified by a color and a mask are built up
on a page image (4.1)

initial frame: a vector which is part of a composed
operator and used to initialize the frame for each ex
ecution of the operator (2.4.2)

ins: abbr. for instructions.

instance: usually refers to an image on the page of
a standard symbol. For example, the word SHIPS
when printed, contains two instances of the symbol S
(4.4)

instructions: abbr. for printing instructions

instructions body: an optional body in a master
that contains printing instructions (3.)

int: abbr. for integer

integer: a mathematical integer in a limited range:
one of the types of the base language (2.2.1)

Interpress coordinate system: a device-indepen
dent coordinate system for specifying locations on the
page image (4.3)

justify: to space characters out so that they com
pletely fill a pre-determined region. such as the space
between margins (4.9)

kern: the portion of a typeface that projects beyond
the body or shank of a character.

ligature: a character or type combining two or more
letters, such as fl.
limit: a restriction on the size of some object (5.1)

limited imager: an imager that cannot handle pages
of arbitrary complexity (5.1.3)

literal: a representation in a master of a value (2.2)

lower bound: the integer which names the first ele
ment of a vector (2.2.4)

mark: a special value which can only be popped
from the stack by certain operators (2.2.3)

mark recovery: an error recovery procedure which
pops the stack to the topmost mark and finds a
matching point in operator execution (2.4.1)

mask: a description of the shape of a primitive
image that will be added to the page image (4.1. 4.8)

master: an Interpress program (1.)

master coordinates: coordinate
specified by the master as arguments
operators (4.3)

information
to imaging

master error: the result of executing a primitive
without meeting the conditions stated in its definition
(2.4.1. 5.3)

matching: an UNMARK or COUNT operator executed
in the same context as the MARK which pushed a par
ticular mark value onto the stack (2.2.3)

matrix: a representation of a transformation (4.4)

medium: the identity of the material on which a
page image is printed (3.. 4.2)

metric master: an encoding of all of a printer's
font metrics, used by a creator to prepare a master
(4.9)

metrics: of a character or font, the measurements of
its critical dimensions (4.9)

mica: a unit of distance equal to 10-5 meter (4.3)

name: an integer or identifier used to specify an ele
ment of a vector (2.2.4, 3.2)

net transformation: the total transformation from
a pixel array's or font operator's standard coordinate
system to the lnterpress coordinate system (4.6)

normal viewing orientation: the standard orienta
tion of a page (or other form of image output) (4.3)

number: a rational number in a particular subset;
one of the types of the base language (2.2.1)

op: abbr. for operator

operator: a value which can be executed to cause
state changes and output (2.2.5)

operator restrictions: rules limiting the primitives
which can be executed in various parts of the master
(3.1.1)

Interpress Xerox System Integration Standard

origin: a reference point on a character mask (4.9)

outline: a set of closed trajectories, usually used to
define the outline of a region (4.8.1)

output: result of executing a master (2.3)

page: a unit of output (3.)

page image body: the portion of a master which
generates the output for a page (3.1.2)

page image: the image built by a page image body,
which will be printed (4.1)

page instructions body: an optional portion of a
master which specifies printing instructions for a par
ticular page (3.3.4)

persistent: a variable whose value is not reset by a
DOSA VE (2.JJ)

pixel: an element of a pixel array (4.6)

pixel array: a two-dimensional array of samples that
define the color everywhere in a rectangular region
(4.6)

pixel array coordinate system: a standard
coordinate system in which a rectangular array of
samples is defined (4.6)

point: a printer's unit of distance, roughly 1/72 inch

point size: when referring to the size of a character,
the normal spacing between lines of type of that size,
e.g., 10-point type is sized so that it will be most
legible when printed in lines spaced 10 points apart
(4.9)

preamble: a part of the skeleton which establishes
the initial frame for execution of the page bodies (3.1)

primitive: an operator built into Interpress and
defined in the standard (2.2.5)

printer: a device which accepts Interpress masters
and produces the corresponding images

printer-dependent: a part of Interpress whose
detailed interpretation is not standardized, but instead
left to individual printer manufacturers or operators to
specify

printing instructions: commands that control the
printing of an Interpress master (3.3)

priority: the property that determines which of two
overlapping primitive images will appear to be "on
top" (4.1)

property name: an identifier used in a property
vector to name a corresponding value (2.4.3)

property vector: a vector formatted so as to
describe (property name, value) pairs (2.4.3)

raster, raster·scan: a two-dimensional array of
pixels that covers an image, and the process of
methodically scanning past each pixel on the image

redundant operator: a primitive operator that is an
abbreviation for a simple Interpress program

reference: one of two subsets of Interpress; the
other is the text subset (5.1)

result: a value pushed onto the stack and left there
by the execution of an operator (2.4)

registry: a set of identifiers which controls a par
ticular point in a hierarchical name space (3.2)

rounding: usually, finding the grid point closest to a
device coordinate (4.3, 4.12)

sample: a record of the color at a pixel, i.e., a point
in an image (4.6)

scan-conversion: the act of converting geometric or
sampled intensity information into a raster-scanned
image (4.8)

scanned·image: see pixel array

simplex: a mode of printing in which an image is
placed on only one side of each sheet of paper; also
a printing instruction (3.3.3)

skeleton: the global structure of a master, down to
the level of the outermost bodies (3.1)

spaceband character: a character whose width is
expanded by the factor amp/ifySpace (4.9)

spot: a small region of the output image whose color
can be controlled by the printing device indepen
dently of all other regions (4.3, 4.6)

stack: a last-in first-out sequence of values used to
communicate information between operator executions
(2.3.1)

standard coordinate system: the system in which
a pixel array or font is defined (4.6, 4.9)

state: the information which can affect further ex<::cu
tion of a master (2.3)

stroke: a mask obtained by broadening a trajectory
or outline to have uniform width (4.8.3)

structured name: a vector of identifiers that denotes
the name of some object (3.2.1)

subset: a rough characterization of the capabilities of
an Interpress printer (5.1)

symbol: a graphical shape; several instances of a sym
bol may appear in a page image (4.4.1)

text: the lowest subset of Interpress, which every
printer is required to implement (5.1)

T ID: the transformation from the lnterpress coordinate
system to the device coordinate system (4.3.5)

token: a primitive element of an Interpress master
~~ .

trajectory: a set of connected lines used to deter
mine where strokes should be drawn (4.8.1)

transformation: a conversion of coordinate informa
tion from one coordinate system to another (4.4)

transition function: a mapping from states into
states and output, which defines the meaning of an
operator (2.2.5)

type: one of the classes of values (2.2)

universal identifier: an identifier defined in the
Interpress_ universal registry (3.2.2)

universal name: a vector of identifiers in which the
first identifier is a universal identifier (3.2.2)

universal property vector: a property vector that
can be extended using property names that are univer
sal names (2.4.3)

universal registry: a registry of unique identifiers
assigned to organizations that wish to create structured
names of objects in a printer's environment (3.2.2, C)

unlimited imager: an imager' that can print pages
of arbitrary complexity (5.1.3)

upper bound: the integer name of the last element
of a vector (2.2.4)

97

98

Glossary

variable: part of the imager state (4.2)

vec: abbr. for vector

vector: a sequence of values named by Integers
(2.2.4)

width: of a character. the spacing from one character
to the next (4.9)

Index

[...] 8 AppendRational 17
<...> 8 AppendSequenceDescriptor 16-21
name/name/ ... 8 AppendString 20
*prefix 5 arguments 7,8
*ADDINSTRUCTIONDEFAULTS 25, 30, 31 arithmetic operators 13-14
*COMPUTECORRECTIONS 70, 71 ascent metric 61,66
*COPYNUMBERANDNAME 12,26 AuthenticateFunction 31,33
*DROUND 44,47 base language 3,27
*EQN 10, 13 baseline 61,62
*LASTFRAME 24,25 BASE operators 27
*MAKECOWITHFRAME 24-26 BEGIN 14,18,21
*MA KET 46 Body type 6, 7,9,18
*OBTAINEXTERNALINSTRUCTIONS body operator 6

24,25 bounding box 66
*RUNG ET 26,35 break page 30
*RUNSIZE 26,34 breakPageFont printing instruction
*SETMEDIUM 24-26, 39, 41, 30,31

42,47 BreakPageString 30,31
--*-- 68,69, 71 butt stroke end 57,58
ABS 13 Byteslnlnt 17,20
ADD 13 CEILING 14
amplified metric 66 center X metric 66
amplifying characters 63 center Y metric 66
amplifySpace variable 40, 63, 66, 68, character index 63,64

70, 72 CharacterMetrics 64-66, 89
AND 13 characterM etrics metric 64,65
Any type 4 character operators 60-67
appearance error 77 character set 30,64
appearance warning 77 character shapes 60
AppendByte 14-20 clear color 54
Appendlnt 16-20 closed trajectory 55
Appendlnteger 17 color 37,51-54
Appendlarge Vector 20 color operator 52
AppendOp 18 color model operator 52

99

Index

Color type 52 decompression operators 20,51
color variable 40, 51-54 descent metric 61. 66
comment, in encoding 18 device coordinate system 40,43,44
composed operator 5-7, 9, 11, 27 device coordinate system, limits
CONCAT 46,47,50,65 76
concatenated 45 DIV 14
CONCATT 47 DO 5, 6, 11-13, 40,
ConstantColor type 52 47,48,51
context 5, 7,11 doc . .. printing instructions 31
control operators 12 DOSAVE 3,11,40,47,48
coordinate systems 40-44 DOSAVEALL 3, ll, 12,
coordinate transformations 44-48 24-26, 40, 47,
COPY 8, 11 70
copySelect printing instruction 34, 35 DOSA VESIMPLEBODY 6, 11, 18, 45, 47,
correcting spacing 60, 63, 68 - 72 70
CORRECT 6, 11, 18, 63, DUP 10, ll

68-72 duplex 33,35,36,39
correctcpx 69-72 easy metric 67, 75
correctcpy 69-72 easy net transformation 50, 65, 73, 74,
correction metric 66 75
CORRECTMASK 63, 66, 68- 72 element, of vector 5
correctM askC ount 69-72 encoding, of master 14-22
correctMaskX 69-72 encoding-notations 14.19-21
correctMaskY 69-72 encoding value 16, 18, 21,
correctMX variable 40, 69-72 83-85
correctMYvariable 40, 69-72 end point, of segment 55
correctPass variable 40, 68-72 environment 27-29, 73
correctShrink variable 40, 68-72 environment name 29
CORRECTSPACE 63, 66, 68-72 environmentUses printing instruction
correctSpaceX 69-72 31
correctSpace Y 69-72 EQ 12, 13
correctSumX 69-72 ERROR 12
correctSum Y 69-72 error, in master 5,9, 77
correctTargetX 69-72 error recovery 5,9
correctTarget Y 69-72 EXCH 11
correctTX variable 40,69, 71, 72 execution 7, 9, 11
correctTY variable 40, 68, 69, 71, external instructions 23,24,29,30

72 ExtractByte 16
COUNT 9,12,25,26 EXTRACTPIXELARRA Y 50
coversheet 30 FGET 10
creator 1 field 41, 42
current position 48-49, 60 fieldXMax variable 40-42
current state 7 fieldXMin variable 40-42
current transformation, see Tvariable fieldYMax variable 40-42
DCS, see device coordinate system fieldYMin variable 40-42
DCScpx variable 40, 47, 48, 69, FINDCOLOR 27,52, 73

71 FINDCOLOROPERATOR 27,52, 73
DCScpy variable 40, 47, 48, 69, FINDCOLORMODELOPERATOR 27, 52, 73

71 FINDDECOMPRESSOR 20, 21, 27' 51,
73

100

lnterpress Xerox System Integration Standard

FINDFONT 27, 31, 64, 73 literals 4
finishing printing instruction 33 lower bound, of vector 5
FLOOR 14 MAKEGRAY 52, 75
font 63-67 MAKEOUTLINE 56
font approximation 64,68 MAKEPIXELARRA Y 49-51,75
Fon tDescri pti on 63,64,88 MAKESAMPLEDBLACK 54, 75
frame 7,9,10,12 MAKESAMPLEDCOLOR 53
FSET 10 MAKESIMPLECO 11, 12, 18
GE 13 MAKEVEC 5,8, 10
GET 9 MAKEVECLU 5, 10, 65
GETCP 47,49,59 Mark type 5, 10, ll, 12
GETPROP 10 MARK 10, ll, 12
grid spacing 43 mark recovery 5, 10
GT 13 mask 37,38
header, encoding 14 mask operators 54-59
hierarchical name 28 MASK FILL 56,57
JCS, see Interpress coordinate system MASKPIXEL 59, 75
Identifier type 5,9,18 MASKRECTANGLE 58, 74
IF 12 MASKSTROKE 57,58
IFCOPY 12 MASKTRAPEZOIDX 59, 74
IFELSE 12 MASKTRAPEZOIDY 59, 74
!GET 39 MASK UNDERLINE 59, 74
IMAGE operators 27 MASK VECTOR 58, 74
imager 37 master 1
imager variables 7,39,40 master coordinate systems 42
imaging model 37-39 master error 9, 77
imaging operators 37 master warning 77
indexing, vectors 5 max Body Length 6, 75
initial frame 6, 7,9 maxldlength 5, 75
insertjileUses printing instruction maxlnteger 4, 75

32 maxStacklength 7, 75
inserting from a file 21 maxVecSize 5,9, 75
instances of symbols 45,47 media printing instruction 34
instructions body 23,30 mediaSelect printing instruction
Integer type 4 34-36
lnterpress coordinate system 40,42 medium 41
!SET 39 MediumDescription 33,88
job . .. printing instructions 32,33 Mediumlndex 33-35
kerns metric 66 mediumXSize variable 40-43
large vectors, encoding 20 medium YSize variable 40-43
last point, of segment 55 MERGEPROP 10, 23, 25, 26,
leftExtent metric 61,66 30
ligatures metric 66 metrics 64-67, 89
limited printer 75 metrics metric 64,67
limits 74, 75 mica 42
line segment 55 mitered stroke joints 57,58
LINETO 55 MOD 14
LINETOX 55 MODIFYFONT 65
LINETOY 55 MOVE 47

101

Index

MOVETO 55 registry 28,91
MUL 14 REM 14
naming objects 27-29 results 7,8
NEG 13 rightExtent metric 61, 66
net transformation 50,65 ROLL 6, 11
no/mage variable 40, 55, 68- 71 ROTATE 46, 74
non-persistent 39 ROUND 14
NOP 12 round stroke end 57,58
NOT 13 Run 34
Number type 5,17 SCALE 46,50,67
number, limits 76 SCALE2 46,50
offset, in encoding 19,20,48 segment 55
Operator type 5, 7,11 seq Type 16,22
operator restrictions 27 sequenceAdaptivePixe/V ector 21,22
optical center 66 sequenceComment 18,22
OR 13 sequenceCompressedPixe/Vector 21, 22
ordered masks 39 sequenceContinued 16,22
origin, of character masks 60 sequence Identifier 18,22
Outline type 55 sequence/ nsertji/e 21,22,27,33
output transition function 8 sequencelnteger 17,22
pages 26 sequencelarge Vector 20,22
page image 37,38 sequencePackedPixe/V ector 21,23
page image body 23-25 sequenceRational 17,22
page instructions body 23-25 sequenceString 19,22,48
PAGEINSTRUCTIONS 14,18,21,24 SETCORRECTMEASURE 72
pageMediaSe/ect printing instruction SETCORRECTTOLERANCE 72

36 SETFONT 65
pageOnSimp/ex printing instruction SETGRAY 53, 75

36 SETXREL 45, 72
pageSe/ect printing instruction 34, 35 SETXY 48
password, in printing instructions SETXYREL 48,63,65, 70

31,33 SETYREL 49
persistent 11,39 SHAPE 10, 13
PixelArray type 49-51 SHOW 47,60,65, 70
p/ex printing instruction 33 SHOWANDXREL 48
POP 7, 11 showVec variable 40,47,65
pragmatics 73-77 side effects 24
preamble 23,27 simplex 33
precision, coordinates 42-43 skeleton 6,23
precision, numbers 76 slant metric 67,89
primitive operator 5, 9, 18 SPACE 72, 70
printing instructions 29-36, 88 spaceband 63
printing sequence 27 square stroke end 57,58,40
priority 38 stack 7,8
prioritylmportant variable 39,40,55 stack operators 11-12
property name 10 stacking printing instruction 33
property vector 10 standard instructions 31-35
rational 3, 17 start point, of segment 55
Reference subset 73, 74-75 STARTUNDERLINE 58

102

lnterpress Xerox System Integration Standard

state transition 5, 7 widthX metric 61. 63, 65, 66
string, encoding 19 width Y metric 61. 63, 65, 66
strokeEnd variable 40,58, 74 winding number 56
stroke Width variable 40,57,58 xHeight metric 67
structured name 27 xlmageShift printing instruction
SUB 13 33,39,26
subscriptX metric 66
subscript Y metric 66
subsets 73-75
subset printing instruction 31
superscriptX metric 66
superscript Y metric 66
Tvariable 40, 47-49
T,D 43,39,50,65

T
p

45

T v 46

test operators 12
text subset 73, 74
tokens, in encoding 14
topFrameSize 23, 75
Trajectory type 55
TRANS 47,59
Transformation type 44-48
transformations 44-48
transformations, limits 76
transition function 6, 7, 9
TRANSLATE 46
TRUNC 13, 14
type 4,8
TYPE 13,16,81
underflow 9
underlineO!fset metric 67
underlineStart variable 40,58,59
underlineThickness metric 67
universal identifier 28
universal names 28
universal property vector 10
universal registry 28,91
unlimited printer 75
UNMARK 5,9,11,12
UNMARKO 9,12
unordered masks 39
upperbound,ofvector 5
values 4
variables 39,40
Vector type 5,9
viewing size 64
WEAKIMAGE operators 27

103

Index

104

Xerox Corporation
Stamford , Connecticut 06904

XEROX®is a trademark of
XEROX CORPORATION.

Printed in U.S.A. 610P72582

