
i ! lnterpress
i Electronic Printing
en

en Standard
~ n a
:::s -· n
~ -· :::s -· :::s

CQ

en
it
:::s

t a.

>c z
en
en
2 Xerox
I System Integration
~ Standard

XEROX

INTERPRESS
ELECTRONIC PRINTING STANDARD

XNSS 048601
January 1986

Notice

This Xerox System Integration Standard describes the lnterpress Electronic Printing Standard, which defines
the digital representation of material that is to be transmitted to and printed on an electronic printer.

This document is being provided for informational purposes only. Xerox makes no warranties or
representations of any kind relative to this document or its use, including the implied warranties of
merchantability and fitness for a particular purpose. Xerox does not assume any responsibility or liability
for any errors or inaccuracies that may be contained in the document, or in connection with the use of this
document in any way.

The information contained herein is subject to change without any obligation of notice on the part of
Xerox.

This document was produced using the lnterpress 3.0 standard. Text and graphics were created on the
Xerox 8010 and 6085 Professional Computer Systems using the ViewPoint software. The figures in Chapter
4, Imaging Operators, were created using lnterpress 3.0 instructions directly. The camera-ready copy was
produced on a very high-resolution lnterpress laser printer at Xerox.

The document is available in lnterpress, using the Commercial Set, for printing on any of the Xerox
lnterpress network laser printers including the Xerox NS 8000 LaserCP, 8044, 4050, 8700, and 9700.

Copyright© 1986, Xerox Corporation. All rights reserved.

XEROX® and lnterpress are trademarks of XEROX CORPORATION.

Printed in U.S.A.

PREFACE

This publication is one of a family of publications that collectively describe the standards
underlying Xerox Printing Systems.

The lnterpress Electronic Printing Standard defines the digital representation of printed
material for exchange between a creator and printer. A document represented in lnterpress
can be transmitted to a raster printer or other display device for printing, it can be
transmitted across a communication network as a means of exchanging graphic
information, or it can be stored as an archival master copy of the material. A document in
lnterpress is not limited to any particular printing device; it can be printed on any
sufficiently powerful printer that is equipped with lnterpress print software.

This publication defines and explains the lnterpress standard, gives examples of its use,
explains how to create documents in lnterpress, and explains how a raster printer goes
about printing documents that are encoded in the standard. The primary purpose of this
publication is to provide an accurate specification of the lnterpress standard.

This publication supersedes the lnterpress 82 Electronic Printing Standard (XSIS 048201), the
lnterpress Electronic Printing Standard, Version 2.0 (XSIS 048306), and the lnterpress
Electronic Printing Standard, Version 2.1 (XSIS 048404). Significant differences between
these publications and the current standard are summarized in Appendix D.

This publication (XNSS 048601) differs from the previous publication (XNSS 048512) only in
minor details of formatting and editorial improvements.

Comments and suggestions on this publication and its use are encouraged. Please address
communications to:

Xerox Corporation
Printing Systems Division
Printing Systems Administration Office
701 South Aviation Blvd.
El Segundo, California 90245

XEROX SYSTEM INTEGRATION STANDARD iii

PREFACE

iv INTERPRESS ELECTRONIC PRINTING STANDARD

TABLE OF CONTENTS

1. Introduction 1

2. The base language 3

2.1 Introduction 3

2.2 Types and literals 3

2.2.1 Numbers and Cardinals 4

2.2.2 Identifiers 4

2.2.3 Marks 5

2.2.4 Vectors 5

2.2.5 Bodies and Operators 5

2.3 State 6

2.3.1 The stack 7

2.3.2 Frames and contexts 7

2.4 Operators 7

2.4.1 Errors 9

2.4.2 Composed operators 9

2.4.3 Vector operators 10

2.4.4 Frame operators 11

2.4.5 Operator operators 11

2.4.6 Stack operators 11

2.4.7 Control operators 13

2.4.8 Test operators 13

2.4.9 Arithmetic operators 14

2.5 The Xerox encoding 15

2.5.1 Token formats 16

2.5.2 Literal encodings 17

2.5.3 Encoding notations 19

2.5.4 Code assignments 22

3. Global structure and external interface 25

3.1 The skeleton 25

XEROX SYSTEM INTEGRATION STANDARD v

TABLE OF CONTENTS

3.1.1 Operator restrictions 30

3.1.2 Pages 30

3.1.3 Combining and modifying masters 31

3.2 Environments and names 31

3.2.1 Universal names 31

3.2.2 Environment names 32

3.2.3 Universal property vectors 33

3.3 Printing instructions 33

3.3.1 Computing the printing instructions 34

3.3.2 Run vectors 35

3.3.3 Skeleton instructions 35

3.3.4 Content instructions 38

4. Imaging operators 41

4.1 Imaging model 41

4.1.1 Priority 42

4.2 lmager state 43

4.3 Coordinate systems 44

4.3.1 Medium size and orientation 44

4.3.2 lnterpress coordinate system (ICS) 46

4.3.3 Master coordinate system 46

4.3.4 Coordinate precision 47

4.3.5 Device coordinate system (DCS) 47

4.4 Transformations 48

4.4.1 Instances of symbols 49

4.4.2 Notation 50

4.4.3 Transformation operators 50

4.4.4 Applying transformations 51

4.4.5 The current transformation 51

4.5 Current position operators 51

4.6 Pixel arrays 52

4.6.1 Compressing sample vectors 54

4.7 Color 55

4.7.1 Constant color 55

4.7.2 Sampled color 56

4.7.3 Convenience operators 57

vi INTERPRESS ELECTRONIC PRINTING STANDARD

TABLE OF CONTENTS

4.8 Mask operators 58

4.8.1 Geometry: trajectories and outlines 58

4.8.2 Filled outlines 62

4.8.3 Strokes 63

4.8.4 Sampled masks 66

4.8.5 Clipping operators 67

4.9 Characters and fonts 67

4.9.1 Character coordinate system 69

4.9.2 Fonts 69

4.9.3 Character operators 73

4.9.4 Fall back positions for characters 75

4.10 Spacing correction 75

4.10.1 Efficiency 78

4.10.2 Operators 79

5. Pragmatics 81

5.1 Printer capabilities 81

5.2 lnterpress sets 81

5.2.1 Commercial set 83

5.2.2 Publication set 83

5.2.3 Professional graphics set 84

5.3 Environment 85

5.4 Complexity 85

5.4.1 Image complexity 86

5.4.2 Easy net transformations 86

5.4.3 Performance 86

5.5 Document handling and finishing 87

5.6 Numeric precision and size limits 87

5.6.1 Size limits 88

5.7 Error handling 89

Appendices:

A. References 91

B. Types and primitives 93

B.1 Types 93

B.2 Primitive operators, ordered by function 93

XEROX SYSTEM INTEGRATION STANDARD vii

TABLE OF CONTENTS

8.3 Primitive operators, ordered alphabetically 95

C. lnterpress name registry 99

D. Change history 101

E. Printing instructions 105

E.1 The break page 105

E.2 Message strings 106

E.3 Standard instructions 106

E.4 Content instructions 108

Glossary 111

Index 117

viii INTERPRESS ELECTRONIC PRINTING STANDARD

LIST OF FIGURES AND TABLES

Figures:

2.1 Token formats 16

4.1 The imaging model; application of a mask operator 42

4.2 Physical medium 45

4.3 Pixel intensity profiles 53

4.4 Tiling the page with a color parallelogram 57

4.5 Curved trajectory segments 60

4.6 Winding number conventions 61

4.7 Stroke examples 65

4.8 Dashed strokes 66

4.9 Character metrics 70

4.10 Spacing character masks 71

Tables:

2.1 Encoding values for non-primitives 22

2.2 Values for sequence types 23

3.1 Environment name prefixes 32

4.1 lmager variables 44

4.2 Variables used by correction operators 80

5.1 lnterpress sets 82

5.2 Minimum values for size limits 88

XEROX SYSTEM INTEGRATION STANDARD ix

LIST OF FIGURES AND TABLES

x INTERPRESS ELECTRONIC PRINTING STANDARD

1 . INTRODUCTION

This specification is a rather formal description of the Interpress "' electronic printing
standard. Interpress defines a digital representation for documents which can be printed on
a variety of electronically con~rolled printers, most notably on raster printers. A document
in Interpress form is called an Interpress master. Like an offset or mimeograph master, an
lnterpress digital master can be used to produce any number of copies of the document it
represents. An lnterpress master is made by a program called the creator. The master can
then be stored in a file for later demand printing, transmitted to other sites as a means of
communicating complete documents, or printed on different printers at the same site when
there are needs for varying quality and speed.

An Interpress master precisely describes the desired or ideal appearance of a document that
has been completely composed by some other process. All line ending, hyphenation, and line
justification decisions, and in fact all decisions about the shapes and positions of the images,
are made before creating the master. Since Interpress describes a document in a device
independent manner, a master can be printed on a variety of devices, each of which renders
its best approximation to the ideal represented by the master.

The purpose of this specification is to describe precisely, clearly, and concisely the form and
meaning of an lnterpress master. Precision demands a rather formal style of description,
which can be difficult to grasp on first reading. Companion reports contain commentary,
tutorial, and explanatory material intended to help readers in understanding Interpress
(Introduction to Interpress and Interpress Reader's Guide). If you are learning about
Interpress for the first time, start with the commentary. This specification, however,
remains the final authority on the definition oflnterpress.

Here and there throughout this specification there are paragraphs of fine print, like this. Material that is not needed

to specify the standard formally is in fine print. This material may be examples, hints on how to use features,

redundant explanations, or any other information which is auxiliary to the standard itself.

Masters that specify relatively simple images (such as the pages of this document) need only
some of the facilities of Interpress. Sections of the specification flagged with a dagger
character (t) describe facilities which are not needed for such masters.

The specification contains a number of programs which define certain aspects of Interpress
or provide examples of its use. In these programs, comments are enclosed in"--" brackets:

-- This is a comment. --

XEROX SYSTEM INTEGRATION STANDARD

INTRODUCTION

2 INTERPRESS ELECTRONIC PRINTING STANDARD

2. THE BASE LANGUAGE

This chapter defines the base language in which Interpress masters are expressed. The base
language contains no facilities for output. Instead, it provides a framework within which
additional primitive operators can be invoked; using these output primitives and the
facilities of the base language, an Interpress master can specify images, character sets, or
other things. The structure of an Interpress master and the possible interactions between a
master and the external world are described in Chapter 3. Operators and types for image
output are described in Chapter 4.

2.1 Introduction

Interpress can be used to specify a very wide variety of images with a high degree of device
independence. To provide this power without too much special-purpose mechanism requires
a programming language. To make this language both concise and adaptable, there are
general ways to:

• structure data (vectors),

• define procedures (composed operators) with local variables (frames),

• limit the effects of calling a procedure (stack marks, DOSAVE, and DOSAVEALL).

Masters which specify simple images do not need these facilities. They use only the parts of
the base language described in the following sections:

§2.2.1-2
§2.3.1
§2.4
§2.4.1

Numbers and identifiers
The stack
Operator notation, summary of shorthands
Errors

The reader may wish to skip the other sections (marked with at) on first reading.

2.2 Types and literals

The Interpress base language manipulates values. With two exceptions (frame elements and
imager variables), these values are constant and cannot be changed once they are
constructed. Except for the imager variables, there is no sharing of data in Interpress; values
are always transmitted by copying.

XEROX SYSTEM INTEGRATION STANDARD 3

THE BASE LANGUAGE

Of course the implementation need not actually do copying. The elements of a vector, for example, have fixed values
which are determined when the vector is constructed; an Interpress vector is like a Pascal const array in this
respect, and unlike a Pascal var array or a Fortran or Basic array. It differs from an array in most programming
languages in that the elements need not all have the same type.

Every value has a type. There are six types in the base language: Number, Identifier, Mark,
Vector, Body, and Operator. In addition, there are two other types which describe the values
required by certain operators:

• Any is a type which accepts a value of any type except Body or Mark.

• Cardinal values are a subset of Number values.

There are Number, Identifier, Body, and Operator literals which denote certain values of
these types. The set of literals in the language is defined by giving a specific syntax for each
kind of literal, together with a mapping from this syntax into values of the type. The actual
representation of literals in an Interpress master, however, is defined by the encoding
specified in §2.5,

Other types are defined for the imaging operators (Chapter 4); there are no literals of these
types.

The printer may place limits on the sizes of various values. The minimum values of these
limits are defined in §5.6.1.

2.2.1 Numbers and Cardinals

AN umber is an element of a certain subset of the rationals. This subset must contain every
integer in the range of -(224-1) ... (224-1) and must contain elements which can represent
any rational number between l0-30 and 1030 with an accuracy of 1 part in 106. A printer
may represent other rationals as well, but is not required to do so.

Throughout this specification, integer means either a mathematical integer or a Number
which is a mathematical integer. A Cardinal is an integer in the range O .. maxCardinal; the
Cardinals are a subset of the Numbers and not a completely distinct type. A Cardinal literal
is expressed in the usual decimal notation. Examples: 0, 17.

A Number literal is either a sequence of decimal digits, possibly preceded by a minus sign, or
a rational number expressed as a quotient of two such integers, separated by a"/" character.
Examples: -2, 17/1, 7/4, 10/72.

2.2.2 Identifiers

4

An Identifier is a sequence of lower-case letters, digits, and the minus character " - ",
beginning with a letter. The maximum length of the sequence is maxldLength. An Identifier
literal is simply a suitable sequence of characters. Upper-case letters may be included, but
are mapped to the corresponding lower-case letters; i.e., case is not distinguished. Examples:
Helvetica, old-x, z12.

INTERPRESS ELECTRONIC PRINTING STANDARD

2.2.3 Markst

THE BASE LANGUAGE

A Mark is a distinguished value which can only be pushed on the stack by a MARK operator,
and can be removed only by a matching UNMARK operator, i.e., one executed in the same
context (§2.3.2), or during a mark recovery (§2.4.1). Any other attempt to pop a Mark causes
a master error. Marks thus serve to limit the effects of other operators on the stack and as a
left bracket for a group of values (§2.4.6), as well as to direct error recovery (§2.4.1).

2.2.4 Vectorst

A Vector is a set of values called its elements, and some indexing information that allows the
elements to be named unambiguously. The maximum size of a Vector is maxVecSize. The
elements of a Vector form a sequence named by Cardinals. Its indexing information is two
Cardinals called the lower bound land the upper bound u, which are fixed when the Vector
is created; l must be less than or equal to u + 1. There are u -l + 1 elements in the sequence.
The ith element in the Vector is named by the Cardinal l + i-1. A Vector is constructed by
MAKEVEC or MAKEVECLU.

There are no literals of type Vector.

But there are primitive operators to make vectors (§2.4.3). The encoding has a convenient way to express calls on
these primitives with literal arguments (§2.5). Like all values, vectors are constant, i.e., the value of a vector
element cannot be changed, except for the frame (§2.3). Shorthand notations for writing vector constructs are given
in §2.4.

2.2.5 Bodies and Operatorst

An Operator is an Interpress program that can be executed. Executing an Operator causes
state transitions, as described in §2.3.

An operator is either primitive, or composed. A primitive operator is an operator built into
Interpress. The meaning of each primitive operator (i.e., its state transition function) is
explained as part of its definition in this document. The explanation is given informally, in
English and pictures, or sometimes as a sequence of other primitive operators, for which the
one being defined is a convenient abbreviation. A primitive Operator literal is a sequence of
letters in small capitals, e.g., MARK, DO, MAKEVEC. The value of the literal is the primitive
operator with that name, as defined in this document.

Certain special primitive operators are defined in order to make it easy to define the
meaning of other primitives, and cannot actually be written in Interpress masters. These
operators have an * prefixed to their names in this document; they do not have any
corresponding literals.

A composed operator consists of a Body and a Vector called its initial frame; its meaning (i.e.,
how its transition function is determined by the Body and the initial frame) is explained in
§2.4.2. Composed operators can be constructed through the execution of the master or
obtained from the environment by the primitives FINDOPERATOR, FINDDECOMPRESSOR,

FINDCOLOROPERATOR, and FINDCOLORMODELOPERATOR. There are no composed operator
literals.

XEROX SYSTEM INTEGRATION STANDARD 5

THE BASE LANGUAGE

2.3 State

Composed operators which are constructed by the master are constructed by the MAKESIMPLECO operator (§2.4.5). A
composed operator is analogous to an Algol or Pascal procedure: the body is the body of the procedure and the initial
frame is the local variables.

A Body is a sequence of literal values; the maximum length of the sequence is
maxBodyLength. A Body literal is a sequence of values of the literals bracketed by {and}.
The value of the literal is the sequence of values of the literals within the { } brackets. A
Body value can be used only as an operand of an immediately following body operator
(MAKESIMPLECO, DOSAVESIMPLEBODY, IF, IFELSE, IFCOPY, CORRECT) or in the skeleton (see
§3.1). It is a master error to execute any other literal with a Body on top of the stack.

This restriction permits the encoding to facilitate sequential processing by putting the operator before the body in
all cases. This usually allows the body to be executed as it is read unless the operator is MAKESIMPLECO. If the
operator appeared second, the body would have to be stored away until the operator came into view.

Bodies are the only mechanism used in Interpress for grouping parts of a master into larger executable units. Thus:

• Conditional execution is provided by the IF, IFELSE, and IFCOPY operators, which take a Body and a Cardinal as
arguments and execute the Body if the Cardinal is non-zero. For example, the following fragment executes a
conditional body if the value of the second frame variable is greater than 3: < 2 FGET 3 GT {conditional body}
IF>.

• A line of symbols whose positions may require slight corrections (e.g., to accommodate small differences
between the font definitions available to the creator and the printer; see §4.10) is generated by an execution of
the CORRECT operator, whose argument is a single Body which is executed twice, first to compute the correction
parameters, and then to produce the output image for the line.

• The entire master is made of Bodies, held together by a non-executable skeleton structure (§3.1).

In all these cases, the isolation between the operator and its caller makes it easy to compose the master in a modular
fashion.

In principle, it would be sufficient to use bodies only as operands to MAKESIMPLECO. The composed operators thus
generated could then be executed immediately. This would be likely to cause poor performance, however, unless the
implementation recognized the important special cases. To reduce the need for cleverness in the implementation,
Interpress requires a body as the main operand of the other primitives just enumerated; these primitives convert the
body into a composed operator which is then executed once, twice, or conditionally. An existing composed operator o
can be used as the operand of a body operator by applying DO and enclosing it in brackets, i.e., {o DO}.

Examples of bodies:
{--draw a solid box with size given by the top two stack values, width and height-

TRANS
0042ROLL

MASKRECTANGLE

{--draw a hollow box with size given by the top two stack values, width and height --
-- save the box height in frame element 1, the width in element 0 --

1 FSETOFSET

TRANS 0 0 MOVETO

0 FGET LINETOX 1 FGET LINETOY 0 LINETOX 0 LINETOY
MASKSTROKECLOSED

The state of the machine that executes Interpress masters consists of:

• The global variables and the local variables of the DoMaster procedure and of all
instances of the DoBlock procedure in the midst of execution (§3.1),

• The stack (§2.3.1),

• The contexts of composed operators in the midst of execution (§2.3.2),

• The imager variables (§4.2).

6 INTERPRESS ELECTRONIC PRINTING STANDARD

THE BASE LANGUAGE

In addition, there is information outside the machine, such as the image being constructed.
This information, which is called output, is of course the reason for the existence of an
Interpress master. Unlike the state, however, it cannot affect any future state.

The global variables are alterable only by the execution of the DoMaster and DoBlock
procedures. Executing an operator causes changes in the state of the machine, or in the
output, or both. These changes may (and generally do) depend on the current state. Thus the
meaning of an operator can be completely defined by two transition functions:

• a state transition function, which maps a state of the Interpress machine to a new state of
the machine;

• an output transition function, which maps a pair: (state of the Interpress machine,
output) to a new output.

Note that the output does not affect the state of the Interpress machine. In other words,
output is write-only; it cannot be read back to influence later execution.

2.3.1 The stack

The stack is a sequence of values on which the usual push and pop operations are defined;
the maximum length of this sequence is maxStackLength. It is used primarily to pass
arguments to an operator and to obtain results in return. The stack is the only general way
to return values from an operator. Execution modifies the stack as described in §2.4 and the
primitive operator definitions.

2.3.2 Frames and contextst

A composed operator is constructed from a Body and a Vector which is called its initial
frame. Each time the operator is executed, a context is created to represent this execution.
The context contains a return link to the calling operator's context (not directly accessible to
the master) and a vector called the frame, which is initialized to the value of the operator's
initial frame. During execution, elements in the frame can be changed with the FSET

operator and read with the FGET operator. The frame itself is not shared, and can be touched
only by the FGET and FSET operators executed in its context. After the composed operator is
finished, the frame and context are discarded.

Thus an operator can have local variables and can also access (through its initial frame) some global values
available when it is defined. Changes to local variables cannot affect the state after execution of the operator is
complete, however, except by values returned on the stack. The effect is like local and global variables in Algol or
Pascal, except that the global variables are all read-only. Because results can be returned on the stack, an operator
can return an arbitrary amount of information as explicit results (contrast the restriction to a single scalar function
result in Algol or Pascal). On the other hand, it cannot cause side effects by changing global variables or variable
parameters (unless it calls an imager operator, which changes an imager variable).

2.4 Operators

The meaning of an operator is completely defined by its state transition function and its
output transistion function. In the definitions of operators below and in the rest of this
standard, the state transition function of an operator Op is defined by text which begins:

XEROX SYSTEM INTEGRATION STANDARD 7

THE BASE LANGUAGE

8

<a1: T1> ... <an: Tn> Op~ <r1: U1> ... <rm: Um>
where .. .

The symbols ai ... an represent argument values, ri ... rm result values, and T1 ... T n and U1
... Um their types. If a result ri is the same as the argument aj, then the type Ui is the same as
Tj and may be omitted.

This text means that in an error-free execution of the operator:

• First, n argument values are popped off the stack and given the names an (for the first
value popped) through a1 (for the last value popped) for use in the definition. If no
arguments are popped, < > appears to the left of Op.

• Then some function of the ai (specified by text after the where) is used to compute m
result values ri with the indicated types.

• Finally, the results are pushed onto the stack (r1 first, rm last). If no results are pushed,
< > appears to the right of the~ symbol.

The <name: type> sequences give a picture of the top of the stack before and after the operator is executed. Note
that all the values mentioned on the left of the~ are always popped, and hence there is a master error if any turns
out to be a mark. This is true even for operators like COPY which push their arguments back again.

The description following the where is sometimes informal English and sometimes an
Interpress program. The latter means that executing the primitive being defined has the
same effect as executing the defining program. An argument name appearing in the
program means that the corresponding value is pushed onto the stack at that point; the
defining program thus begins executing after the arguments have been popped, but it is
responsible for pushing the results. Sometimes these programs are not true Interpress, but
use a pseudo-Pascal instead, in which Pascal variables are treated as elements of an
Interpress frame. These programs often use familiar Pascal control constructs such as if
then else, for, and while, which do not exist in true Interpress.

It is often convenient to specify a value by giving an Interpress program which computes it
and leaves it on top of the stack. When such a program appears in text it is enclosed in < >
brackets. Thus < 3 4 ADD> stands for the value 7.

Shorthand notation

The following shorthand notations are used in the text. Each is simply a more readable way
of writing an Interpress construct. These shorthands are not part of the encoding. (The < >
and[] with literal numbers can also be considered shorthands for the string and large vector
encoding notations; see §2.5.3.)

[xo, ... , Xk-1] stands for xo ... Xk-1 k MAKEVEC, where the Xi are of type Any. Hence[] stands
for 0 MAKEVEC. This is simply a convenient way of writing certain uses of MAKEVEC;

elements of the vector are separated by commas. The brackets and commas are not part of
Interpress.

<sequence of characters> stands for no, nl ... nk-1 k MAKEVEC, where ni is a Cardinal that
indexes the corresponding character in the font used by SHOW. The brackets are not part of
Interpress.

noln1/ .. ./nk-l stands for no, ni, ... , nk-1 k MAKEVEC, where the ni are Identifiers. This
notation is used for structured names (§3.2). The I character is not part oflnterpress.

INTERPRESS ELECTRONIC PRINTING STANDARD

2.4.1 Errors

THE BASE LANGUAGE

If the value named ai doesn't have the type Ti, there is a master error; note that during
execution of the master there are always marks on the stack which prevent underflow (see
§3.1). The definition may specify further conditions which must be satisfied; if the current
state does not satisfy these conditions there is also a master error. In case of a master error,
unless the operator definition specifies otherwise, there is a mark recovery.

A mark recovery also occurs whenever any attempt is made to pop a mark except by a
matching UNMARK or COUNT (§2.4.6); when this happens, the mark remains on the stack.

On a mark recovery,

a) the stack is popped until a mark is on top;

b) ifthe context that placed the mark on the stack no longer exists, the mark is popped and
there is another mark recovery;

c) otherwise, composed operators in execution are exited until the one which placed the
mark is executing; and

d) literals are skipped in this operator until an UNMARKO literal is found.

The UNMARKO found in step d) is then executed, thus popping the mark from the stack, and
execution proceeds from this point. Note that the rules for executing a master given in §3.1
insure that step d) will eventually succeed. In addition, master errors are logged as specified
in §5.3.

Marks thus serve two major purposes: to protect the stack from damage by an operator, and to indicate possible error
recovery points.

2.4.2 Composed operatorst

Composed operators are of two types: those obtained by FINDOPERATORand those constructed
by the master. A composed operator obtained by FINDOPERATOR is executed by applying its
state transition function to the current state, yielding a new state. A composed operator
constructed by the master is executed by executing the literals of its Body in order.
Executing a Number, Identifier, or Body literal pushes its value onto the stack. Executing a
primitive operator literal executes the corresponding primitive operator, i.e., applies its
state transition function to the current state, yielding a new state.

When execution of the composed operator begins, the frame is initialized to the operator's
initial frame, as discussed in §2.3.2; its contents may then be changed by FSET. These
changes have no effect on the frame of any other context; each context has its own frame.

Not only does execution of the operator not affect the frame afterwards, but the effect of the operator does not depend
on the frame when it is invoked. The effect depends only on its initial frame (established when it was defined) and
the stack.

XEROX SYSTEM INTEGRATION STANDARD 9

THE BASE LANGUAGE

2.4.3 Vector operatorst

10

<v: Vector> <j: Cardinal> GET-'> <x: Any>
where x is the value of the element of v named by j. A master error occurs unless
l:s):::::_u, where l is the lower bound of v and u is the upper bound.

<x1: Any> ... <xn: Any> <l: Cardinal> <u: Cardinal> MAKEVECLU-'> <v: Vector>
where vis a vector with lower bound land upper bound u. Let n=u-l+ 1. After u and l
are popped off the stack, n additional values are popped; call them Xn, ... , x1, where Xn is
the first value popped and x1 is the last value popped. The elements of v have the values
x1, .. ., xn; i.e., < v l + i-1 GET> =xi. A master error occurs unless O<n:::::_maxVecSize.

< x1: Any> ... < Xn: Any> < n: Cardinal> MAKEVEC -'> < v: Vector>
where vis a vector with lower bound 0 and upper bound n-1. The elements ofv have the
values x1, .. ., xn; i.e., <v i-1 GET> =xi. A master error occurs unless n:::::_maxVecSize.
§2.4 describes a notation for writing calls ofMAKEVEC in examples.

< v: Vector> SHAPE-'> < l: Cardinal> < n: Cardinal>
where l is the lower bound of v and the upper bound is u = l + n -1.

A property vector is a vector formatted according to a convention that elements with indices
l, l + 2, l + 4, and so on are property names and elements with indices l + 1, l + 3, l + 5, and so
on are corresponding values. For example, in the vector [widthX, 14, widthY, 21], the
property named widthX has value 14 and the property widthY has value 21. The intent is
that Cardinals, Identifiers, and Vectors of Identifiers be used as property names; other
values are permitted, but may not be found by GETPROP. The following operators are defined
for all vectors but are intended for use with property vectors:

<v: Vector> <propName: Any> GETPROP-'> <value: Any> <1: Cardinal>
or-'> < 0: Cardinal>

where vis searched to find the least i such that l:::::_i:::::_u (l is v's lower bound and u is its
upper bound), (i-l) mod 2=0, and <v i GET propName *EQN> =l. *EQN compares
Identifiers, Numbers, and Vectors for equality; it is defined precisely in §2.4.8. If no
match is found, GETPROP returns 0 on the stack. If a match is found, <vi 1 ADD GET 1 > is
executed to place on the stack the property's value and the Cardinal 1, which indicates
that a match has been found. A master error occurs if (u - l + 1) mod 2 +- 0.

<v: Vector> <propName: Any> GETP-'> <value: Any>
where vis searched to find the value of propName as with GETPROP, except that a match
for propName must be found. When a match is found, <vi 1 ADDGET> is executed to
place the property's value on the stack. A master error occurs if (u -l+ 1) mod 2 +-0 or if
no match is found.

< v1: Vector> < vz: Vector> MERGEPROP-'> < v3: Vector>
where the property vector v3 is created by merging properties and values from v1 and vz,
so that values in vz take priority over values in v1. More precisely, v3 is formed so that,
for any n, < V3 n GETPROP > is equivalent to < Vz n GETPROP DUP NOT {POP v1 n GETPROP}
IF>. A master error occurs if either the number of elements in v1 mod 2 +- 0 or the
number of elements vz mod 2 +- 0.

Note that this definition does not fully specify the number or order of elements in v3 . Consequently, the results of
< v3 SHAPE> and < v3 n GET.> are implementation dependent. The definition does, however, fully define the
behavior of v3 when accessed with GETP or GETPROP.

/

INTERPRESS ELECTRONIC PRINTING STANDARD

THE BASE LANGUAGE

2.4.4 Frame operatorst

<j: Cardinal> FGET --7 <x: Any>

where x is the current value of the jth element of the frame. A master error occurs
unlessj <topFrameSize. The value of topFrameSize may be limited (§5.1.1).

<x: Any> <j: Cardinal> FSET --7 < >
where the value of the frame element named by j, becomes x. A master error occurs

unlessj < topFrameSize.

2.4.5 Operator operatorst

<b: Body> MAKESIMPLEC0--7 <o: Operator>
where o is a composed operator which has Body band initial frame equal to the value of

the frame when MAKESIMPLECO is executed.

< o: Operator> DO --7 -- the effect on the stack depends on o -

where the operator o is executed.

This is the only way to execute a composed operator (other primitives which do this are defined in terms of Do; they
are DOSAVE, DOSAVEALL, DOSAVESIMPLEBODY, the three IF operators, and CORRECT).

< o: Operator> DOSA VE --7 -- the effect on the stack depends on o --

where the effect is equivalent to executing the operator o with DO, and then restoring all
the non-persistent imager variables to their values just before the DOSAVE.

< o: Operator> DOSAVEALL --7 -- the effect on the stack depends on o --

where the effect is equivalent to executing the operator o with DO, and then restoring all

imager variables to their values just before the DOSAVEALL.

An additional operator executes a Body but saves the non-persistent imager variables.

< b: Body> DOSA VESIMPLEBODY --7 -- the effect on the stack depends on b -

where the effect is b MAKESIMPLECO DOSAVE.

The FINDOPERATOR primitive obtains a composed operator from the printer environment.
The effect of executing the operator must be consistent with the model of operator execution
(§2.3) and the imaging model (§4.1).

<v: Vector> FINDOPERATOR --7 <o: Operator>
where vis a Vector ofldentifiers, which is the universal name of the operator o.

The effect of executing such an operator may be anything which could be accomplished by a sequence of Interpress
literals, including a sequence of literals which was constructed at printing time (such as a representation of the
current date and time). Execution of the operator may also produce side effects which are outside of the state of the
Interpress machine and its output, such as invoking the scanning of a document in a recirculating document handler
and storing the resultant scanned image in a known file.

2.4.6 Stack operatorst

<x: Any> POP --7 < >

where the top element of the stack is removed with no other effects.

XEROX SYSTEM INTEGRATION STANDARD 11

THE BASE LANGUAGE

12

<x1: Any> ... <Xdepth: Any> <depth: Cardinal> COPY~ <x1> ... <Xdepth>

<x1> ... <Xdepth>
where the depth values are pushed, leaving the stack in the same state as after depth is
popped, and then the same depth values are pushed again in the same order.

<x: Any> DUP ~ <x> <x>
where the effect is x 1 COPY; i.e., the top element of the stack is duplicated with no other
effects.

< x1: Any> ... < Xdepth: Any> <depth: Cardinal> < moveFirst: Cardinal> ROLL
~ <XmoueFirst+l > ··· <Xdepth> <XI>··· <XmoueFirst>

where moveFirst< depth, the first moveFirst of the depth argument values become the
last moveFirst of the depth result values, and order is otherwise preserved.

<x: Any> <y: Any> EXCH~ <y> <x>
where the effect is x y 2 1 ROLL; i.e., the top two elements on the stack are exchanged.

<x1: Any> ... <xn: Any> <n: Cardinal> MARK~ <m: Mark> <x1> ... <xn>
where m is a Mark unique to the current context. Only an execution of k UNMARK in the
same context with k values above m on the stack can remove m from the stack without
an error. The Xi values are unaffected.

<m: Mark> <x1: Any> ... <xn: Any> <n: Cardinal> UNMARK ~ <x1> ... <xn>
where mis a matching Mark, i.e., one pushed by a MARK in the same context. The only
effect is to remove m from the stack; the Xi values above it are unaffected.

For example, the following sequence executes an operator o which is supposed to take two arguments and return
three results; it ensures that o does not pop additional values from the stack and that it returns exactly three results:
2 MARK o DO 3 UNMARK.

<m: Mark> UNMARKO~ < >
where the effect is 0 UNMARK. UNMARKO also serves as a stopping point for a mark
recovery (§2.4.1).

<m: Mark> <x1: Any> ... <xn: Any> COUNT~ <m: Mark> <x1> ... <xn>
< n: Cardinal>

where mis a matching Mark, i.e., one pushed by a MARK in the same context. The only
effect is to count the number of values above m on the stack and push this count. The
values and m are unaffected.

<>NOP~<>

where execution of this operator has no effect on the state or output.

<message: Vector of Cardinal> <code: Cardinal> ERROR ~ < >
where the Interpress interpreter records that an error has occurred and executes an
error handling procedure appropriate to the severity of the error. The value of code
determines the kind of error (§5.3):

0 master error

10 master warning

50 appearance error

60 appearance warning

100 comment

The vector message specifies an explanatory message by giving the character codes for
characters in the message using the ISO 646 7-bit Code Character Set for Information

INTERPRESS ELECTRONIC PRINTING STANDARD

THE BASE LANGUAGE

Processing Interchange. The message is handled similarly to error messages for other
errors oflike severity.

For example, <[47, 111, 112, 115] 100 ERROR> would record the comment "Oops"

2.4.7 Control operatorst

< i: Cardinal> < b: Body> IF~ -- the effect on the stack depends on i and b -

where the effect is b MAKESIMPLECO DO if i 7- 0, and nothing otherwise.

< i: Cardinal> < b: Body> IFELSE ~.__the effect on the stack depends on i and b --

where the effect is i b IF i 0 EQ; i.e., it is the same as the effect of IF, followed by pushing
1 if i = 0 and 0 otherwise.

Note that i is not on the stack when the body is executed. The effect of "if i then Bl else B2" is obtained with "i Bl
IFELSE B2 IF". The effect of"if il then Bl else if i2 then B2 else B3" is obtained with "il Bl IFELSE { i2 B2 IFELSE B3 IF
} IF". The funny way IFELSE works allows each operator to have exactly one body operand. Because IF executes a Body
conditionally (by turning it into an operator), any changes the Body makes to its frame are discarded when the
execution is complete.

It is often valuable to print several copies from a master which differ in minor details; for
example, each copy might be addressed to a different recipient on the first page. It is

important to ensure that these variations do not require the entire master to be reprocessed
for each copy. The IFCOPY operator serves this purpose.

< > *COPYNUMBERANDNAME ~ <copyNumber: Number> <copyName: Identifier>

where the values returned are the copy number and copy name, obtained in a manner
described in §3.1. This operator cannot be called directly from the master.

<testCopy: Operator> <b: Body> IFCOPY ~ < >
where testCopy is called with the copy number and copy name on the stack, and b is
executed unless testCopy returns 0. The testCopy operator can execute only BASE
operators (§3.1.1). Precisely, the effect is:

<OMARK

*COPYNUMBERANDNAME testCopy DOSAVEALL
{0 MARK b MAKESIMPLECO DOSAVEALL UNMARKO} IF

UNMARKO>.

In other words, the testCopy operator takes two arguments, and must return a single Cardinal; if this is non-zero, the
Body b is executed. Both executions are done with DOSA VEALL; this and the MARK/UNMARK pairs ensure that there are
no side effects. Thus the net result is that testCopy decides whether or not to print the output produced by b. A
different decision can be made for each copy, but either nothing or the same output is produced each time.

2.4.8 Test operatorst

<a: Any> < b: Any> EQ ~ < c: Cardinal>
where c= 1 if a and bare both Numbers or both Identifiers and a= b, c=O otherwise.

<a: Any> < b: Any> *EQN ~ < c: Cardinal>

where c = 1 if <a b EQ > is 1 or if a and b are both Vectors with the same shape and
corresponding elements are EQ; c = 0 otherwise. More precisely, *EQN is equivalent to:
i,n,l: Cardinal;
if a b EQ then { 1 } else {

if a TYPE 3 EQ b TYPE 3 EQ AND then {

a SHAPE n FSET l FSET
if b SHAPE n FGET EQ EXCH l FGET EQ AND then {

XEROX SYSTEM INTEGRATION STANDARD 13

THE BASE LANGUAGE

1 cFSET
for i := lto l+n-1 do {

if a i FGET GET b i FGET GET EQ NOT then { 0 c FSET}
}cFGET

} else { 0}
} else { 0}}

<a: Number> <b: Number> GT~ <c: Cardinal>
where c = 1 if a > b, c = 0 otherwise.

<a: Number> <b: Number> GE~ <c: Cardinal>
where c = 1 if a> b, c = 0 otherwise.

<a: Cardinal> < b: Cardinal> AND ~ < c: Cardinal>
where c = 1 if a 7:- 0 and b 7:- 0, c = 0 otherwise.

<a: Cardinal> < b: Cardinal> OR ~ < c: Cardinal>
where c = 1 if a 7:- 0 or b 7:- 0, c = 0 otherwise.

< b: Cardinal> NOT ~ < c: Cardinal>
where c = 1 if b = 0, c = 0 otherwise.

<a: Any> TYPE ~ < c: Cardinal>
where c is the code for the type of a as specified in Appendix B.1.

2.4.9 Arithmetic operatorst

14

<a: Number> <b: Number> ADD~ <c: Number>
wherec = a+b.

<a: Number> <b: Number> SUB~ <c: Number>
wherec = a-b.

<a: Number> NEG~ <c: Number>
wherec = - a.

<a: Number> ABS~ <c: Number>
where c = lal.

<a: Number> FLOOR~ <c: Number>
where c is the greatest integer ~a.

<a: Number> CEILING~ <c: Number>
where c is the least integer ;::_a.

<a: Number> TRUNC ~ <c: Number>
where c is the integer part ofa. Thus <7/2TRUNC> = 3 and< -7/2TRUNC> = -3.

<a: Number> ROUND~ <c: Number>
where the effect is a 1/2 ADD FLOOR; i.e., c is the rounded value of a.

<a: Number> <b: Number> MUL ~ <c: Number>
wherec =a X b.

<a: Number> <b: Number> DIV~ <c: Number>
where c = alb; b 7:- 0 is required. Note that this is rational division, not integer division.
(The Pascal operator div, written in lower case and bold face, denotes integer divison,
which is distinct from DIV.)

INTERPRESS ELECTRONIC PRINTING STANDARD

THE BASE LANGUAGE

<a: Number> <b: Number> MOD~ <c: Number>
where c = a-b X FLOOR(a/b); b-:t:. 0 is required. (The Pascal operator mod, written in
lower case and bold face, is distinct from MOD.)

<a: Number> <b: Number> REM~ <c: Number>
where c = a- b X TRUNC(a/b); b-:t:. 0 is required.

2.5 The Xerox encoding

This section gives the rules for encoding an lnterpress master. The principal job of an
encoding is to specify how every legal sequence of Interpress literals can be represented
concretely by a collection of bits that may be stored or transmitted. In addition, the encoding
introduces some shorthand notations that can be used in place of more bulky notations for
sequences oflnterpress literals; these are termed encoding notations (§2.5.3).

Many computer file systems use a short file-name "extension" that serves to indicate the type of the file. Extensions
are sometimes two or three characters long, e.g., LST for listing, BIN for binary, EXE for executable. Programs that
create Interpress masters and store them on disk files are urged to use the extension "Interpress'', or, if extensions
must have fewer than ten characters, "IP".

The master is encoded by a header which identifies the encoding, followed by a sequence of
tokens. Each token corresponds to:

A single lnterpress literal (not a Body). Each such literal can be encoded by a single
token.

One of the symbols BEGIN, END, CONTENTINSTRUCTIONS, "{",or"}".

An encoding notation, which stands for some sequence oflnterpress literals.

The tokens appear in the same order as the corresponding literals or symbols, except that a
body operator token precedes its body.

The tokens are of different sizes; each one is a sequence of bytes. A byte is an integer in the
range 0 .. 255 inclusive, and is represented by eight bits. The encoding is defined below by
giving Pascal-like programs that invoke the function AppendByte(n) to append a byte with
value n to the sequence being created to encode the master; the programs use infinite
precision integer arithmetic. It is also convenient to draw diagrams of the encoding. In these
diagrams, bytes are shown juxtaposed so as to be read from left to right, i.e., the byte at the
far left appears first in the sequence, followed by the byte to its right, etc. The diagram of a
single byte shows its 8 bits, with the most significant bit (corresponding to 27) at the left and
the least significant (corresponding to 2°) at the right.

The first bytes of a master in the Xerox encoding are the header that identifies the encoding
and version number. These bytes are an encoding of the string
"In te rp res s/Xe rox/3. OD" using character codes from the ISO 646 7-bit Coded Character
Set for Information Processing Interchange. The symbol "D" is used in this section to
represent the space character, which has code 32 in ISO 646. It is the space character that
terminates the header. The header can be created by a sequence of calls to AppendByte:

AppendByte(73);
AppendByte(lOl);

XEROX SYSTEM INTEGRATION STANDARD

-- I -- AppendByte(llO); -- n --

-- e -- AppendByte(ll4); -- r --
AppendByte(ll6); -- t --

15

THE BASE LANGUAGE

AppendByte(120);
AppendByte(46);

-- x -- AppendByte(47); -- I -
AppendByte(48); _ -- 0 --

AppendByte(51);
AppendByte(32);

Following the header come encodings of the parts of the skeleton (§3.1).

Short
Op

Long
Op

Short
Number

Short
Sequence

MSB LSB

I+ H I i·: : I
HH:::;.r

I ~'~l.1.l0.1 :_;~yp~: :.1 __ le_n_g-th ______ 1~~J
, ... descriptor ... ,

-- 3 --
-- D--

Long
Sequence 1_,~1-'1_,~1~:-t~~'~; __ :~1 _________ :~--le-ng_t_h ____ :~------~I .. :~,]

1------------ descriptor ..,,

Figure 2.1 Token formats

2.5.1 Token formats

16

E17ch token uses one of five formats: Short Op, Long Op, Short Number, Short Sequence, and
Lpng Sequence (see Figure 2.1). The token formats are described in this section, and the
r/1les for encoding literals in tokens are described in §2.5.2.

Each primitive operator or symbol is assigned an integer in the range 0 .. 8191 called its
encoding-value, and is represented in the master by a two-byte Long Op token, or optionally
by a one-byte Short Op token if its encoding-value is less than 32; the details are given
below.

An integer in the range -4000 .. 28767 may be represented by a two-byte Short Number
token as described below.

Everything else is represented by variable-length Short Sequence and Long Sequence
tokens. These begin with a two or four byte descriptor which includes a length field that
gives the number of data bytes used to represent the value, and a type field that indicates

INTERPRESS ELECTRONIC PRINTING STANDARD

THE BASE LANGUAGE

what kind of literal or encoding notation the data bytes represent. The length field gives the
number of data bytes; it does not count the bytes that are part of the descriptor.

The following AppendSequenceDescriptor procedure generates the descriptor for a sequence
oflength length and type seq Type:

procedure ExtractByte(n, byte: integer): integer;
-- Extract from a positive integer n the byteth byte required to represent it, counting low
order byte as 0. --
begin for i : = 1 to byte do num : = num div 256; ExtractByte : = num mod 256 end;

procedure Appendlnt(num, length: integer);
-- Encode an integer in (-25131""gth div 2) .. (256/e"g'" div 2 -1) in twos-complement --
-- using length bytes, high-order byte first. --
begin
if num < 0 then num : = 2561ength + num;
if num < 0 or num > 2561"'gth then error·

- '
for i: = 1 to length do AppendByte(ExtractByte(num, length- i))
end

procedure AppendSequenceDescriptor(seqType, length: integer);
begin
if seqType <0 or seqType >31 then error
else if length < 0 or length > 16777215 then error
else if length < 256 then begin

-- Short Sequence, with one byte of length-
AppendByte(192 +seq Type); AppendByte(length) end

else begin
-- Long Sequence, with three bytes of length -

AppendByte(224 + seqType); Appendlnt(length, 3) end
end

Any sequence token can be continued by one or more immediately following sequence tokens
(either Short or Long) with the type sequenceContinued. A sequence token with seqType=t
and length=l followed by a sequenceContinued token with length=m is equivalent to a
single sequence token with seqType = t, length= l + m, and data bytes which are the l data
bytes of the first token followed by the m data bytes of the second. If there are several
consecutive continuations, this merging may be repeated until they have all been merged
into the initial non-continuation sequence token.

Continuations make it convenient for a creator to break a long sequence into several shorter pieces, e.g., to fit into
its limited buffers. The total length of a continued sequence may exceed 16777215 bytes. A continuation token may
have length=O.

2.5.2 Literal encodings

Number. A number may be encoded in one of three ways, all of which result in the same
Interpress Number value; any of these ways may be used to create a legal master. Since
Cardinals are a subset of Numbers and not a totally distinct type, it is not compulsory to
encode a Cardinal using one of the encodings which works only for integer values. In
general, however, a master will be smaller and will also be interpreted more efficiently ifthe
shortest encoding is chosen. Although the encoding can represent Numbers with great range
and precision, a printer is required to represent only a subset of these (§2.2.1).

XEROX SYSTEM INTEGRATION STANDARD 17

THE BASE LANGUAGE

18

• If the number is an integer and lies in the range -4000 .. 28767, it may be encoded in a
Short Number token, with a bias of 4000. The Appendlnteger procedure below generates
this encoding or the next as appropriate.

• If it is an integer it may be encoded in a sequence token of type sequencelnteger, and at
least enough data bytes to represent it as a signed two's complement binary integer. The
Appendlnteger procedure below generates this encoding for an integer which cannot be
encoded as a Short Number, using a minimum number of data bytes. Note the treatment
of negative numbers by Appendlnt to produce a two's complement encoding.

• A number may be encoded as a rational, a quotient of two integers. The two integers are
encoded in a sequence token of type sequenceRational, numerator first, both using the
same number of bytes. The AppendRational procedure below generates this encoding,
using a minimum number of data bytes.

function Byteslnlnt(n: Number): integer;
var done: boolean : = false; i: integer:= O;
begin
until done do begin

i : = i + 1; if -(256i div 2) .:S. n and n < (256i div 2) then done:= true end;
Byteslnlnt: = i
end;

procedure Appendlnteger(n: Number);
const i = Byteslnlnt(n);
begin
if -4000 .:S. n and n < 28767 then Appendlnt(n+4000, 2)
else begin AppendSequenceDescriptor(sequencelnteger, i); Appendlnt(n, i) end
end;

procedure AppendRational(n, d: Number);
const i = Max(Byteslnlnt(n), Byteslnlnt(d));
begin AppendSequenceDescriptor(sequenceRational, 2*i); Appendlnt(n, i);
Appendlnt(d, i) end

Identifier: An identifier is encoded using a sequence of character codes that represent the
charpcters of the identifier, which are limited to letters, digits, and"-". Note that case is not
distinguished in identifiers; hence a letter may be encoded in either upper or lower case.
Each character in the identifier is represented by a single byte whose value is the ISO 646
code for the character. The first character in the identifier appears first in the sequence, then
the second, and so on. The sequence of codes is placed in a sequence token of type
sequenceldentifier. Thus the following program would encode the identifier Xerox:

AppendSequenceDescriptor(sequenceldentifier, 5);
AppendByte(88); -- X -- AppendByte(lOl); -- e -- AppendByte(l 14); -- r --
AppendByte(ll 1); -- o -- AppendByte(120); -- x --

Primitive operator: A primitive operator is encoded by placing its encoding value in a Short
Op or Long Op token; the AppendOp procedure below generates a suitable Op token from a
numeric value. A table giving the numeric code for each operator appears in Appendix B.3.
Thus the LINETO operator is encoded by Append0p(23).

INTERPRESS ELECTRONIC PRINTING STANDARD

THE BASE LANGUAGE

The body operators (MAKESIMPLECO, DOSAVESIMPLEBODY, IF, IFELSE, IFCOPY, CORRECT) are
encoded slightly differently: they are placed before the encoding of the body that is their final
argument. Thus each of these operators must be followed immediately by a body encoding.

If the encoding value is less than 32, it can be encoded using a Short Op token; otherwise it
must use a Long Op token. Thus the following program encodes a primitive:

procedure AppendOp(n: integer)
begin
if n<O or n>8191 then error
else if n .:S_ 31 thenAppendByte(128+ n)
else begin AppendByte(160 + n div 256); AppendByte(n mod 256) end
end

Body: A body literal is encoded in the obvious way; note that it is preceded by its body
operator ifthere is one:

The encoding begins with a token which encodes the "{" symbol, generated with
Append0p(106).

Then comes the sequence ofliterals that form the body.

Finally there is a token which encodes the"}" symbol, generated with Append0p(l07).

BEGIN, END, and CONTENTINSTRUCTIONS. These symbols, which are part of the skeleton
(§3.1), are encoded with Op tokens.

Comment: An arbitrary sequence of bytes may be embedded in a sequence of type
sequenceComment. An Interpress printer will ignore this token.

2.5.3 Encoding notations

The encoding includes some notations that do not correspond to individual Interpress
literals, but rather to sequences ofliterals.

String: It is often necessary to encode vectors of small Cardinals used to represent character
codes; these vectors occur especially frequently as arguments to the SHOW operator (§4.4.6).
These vectors may be encoded compactly using a sequence token with type sequenceString.
The data bytes within the token are encoded using a scheme defined in the Xerox Character
Code Standard. It is important to note, however, that the encoding simply defines a run-length
encoding of numbers and does not associate characters with numbers.

Although the Xerox Character Code Standard defines the encoding scheme, it is summarized here. Loosely, the
encoding scheme provides a run-length encoding for a sequence of integers that differ mostly in the low-order 8 bits
and an extended encoding that represents each integer with two bytes. An escape byte with value 255 is used to
switch modes. The scheme can represent only integers i in the range 0.S,i.S,65278 and such that (i mod 256) :;t: 255.

We describe first the way the data bytes are decoded sequentially to obtain the vector of integers they represent.
Decoding begins in simple mode, and proceeds according to the following rules:

1. Simple. If the numeric value b of the byte lies in the range 0.S,b.S,254, a Cardinal with value bis added to the
vector, and the subsequent bytes are interpreted similarly. If b =255, the next byte n is examined to determine
whether to enter the run or extended modes.

2. Run, entered ifO<n.S,254. If the numeric value b of the byte lies in the range 0..:S,b.S,254, a Cardinal with value
n*256 +bis added to the vector, and the subsequent bytes are interpreted similarly. If b = 255, the next byte n
is examined to determine whether to enter the run or extended modes.

3. Extended, entered if n=255. The immediately following byte must be 0. Subsequent bytes are interpreted as
follows: the next byte b1 is examined; if b1 :;t:255, then the next byte b2 is obtained, and a Cardinal with value

XEROX SYSTEM INTEGRATION STANDARD 19

THE BASE LANGUAGE

20

b1 *256 + b2 is added to the vector. If b1 =255, the next byte n is examined to determine whether to enter the run
or extended modes.

The decoding scheme is illustrated in the following examples:

1. Simple only.
Data bytes: 65, 83, 67, 73, 73, 32, 98, 97, 115, 101, 100
Vector of integers: [65, 83, 67, 73, 73, 32, 98, 97, 115, 101, 100]

2. Simple and run.
Data bytes: 102, 111, 255, 239, 48, 255, 0, 111, 116, 110, 111, 116, 101
Vector of integers: 102, 111, 61232, 111, 116, 110, 111, 116, 101

3. Simple and extended.
Data bytes: 255, 255, 0, 1, 97, 0, 32, 33, 98, 4, 32, 38, 97
Vector of integers: 353, 32, 8546, 1056, 9825

The DecodeString procedure below makes the decoding descriptions precise. The procedure is provided with an
argument data, which are the data bytes of the token, and an argument length, which is the number of data bytes.
The procedure AddJnt is called to add an integer to a vector result that is built up.

procedureDecodeString(data: Vector; length: Cardinal);
type mode={run, escape, escape2, extended, extended2};
var i, b, offset: Cardinal; state: mode;
begin
offset : = O; state : = run;
for i : = 0 to length-1 do begin

b: = data [i];
case state of

run:
escape:
escape2:
extended:
exended2:

if b :;t: 255 then Addlnt(offset*256 + b) else state:= escape;

end;

if b :;t: 255 then begin offset:= b; state : = run end else state : = escape2;
if b = 0 then state : = extended else error;
if b :;t: 255 then begin offset:= b; state:= extended2 end else state : = escape;
beginAddJnt (offset*256+ b); state:= extended end
end;

if not (state= run or state=extended) then error
end

The AppendString procedure shows how a vector might be encoded using only the run mode. It performs two passes
so that it can compute the total length of the encoding, including escape bytes, during the first pass, while actually
constructing the encoding during the second pass.

procedure AppendString (v: Vector; numElements: Cardinal);
var byteCount: Cardinal : = O; offset: Cardinal;
begin
for pass : = 1 to 2 do begin

end

if pass= 2 then AppendSequenceDescriptor(sequenceString, byteCount);
offset:= O;
for i: = 0 to numElements-1 do begin

end

ifv [i] <0 or v [i] >65278 or v [i] mod 256=255 then error;
if v [i] div 256:;t:offset then begin

offset:= v [i] div 256;
if pass= 1 then byteCount: = byteCount+ 2
else begin AppendByte(255); AppendByte(offset) end
end;

if pass= 1 then byteCount: = byteCount+ 1 elseAppendByte(v [i] mod 256)

end

Large vectors: Image data is often recorded as a large vector of compressed or packed data.
For this reason, it is convenient to have a compact representation for large vectors of
integers. Sequence type sequenceLargeVector is a sequence of bytes that is formed into a
vector of integers. The first data byte is equal to the number of bytes which represent each
number; call this b. The remaining data bytes are grouped into b byte parts, and each part is
a two's-complement representation of an integer. The length of the vector is (length-1)/b; it
is required that (length-1) mod b = 0. Thus the first b bytes after the initial byte represent
a number that will become the vector element with index 0, the next b bytes represent the
vector element with index 1, and so on, up to the last b bytes, which represent the vector
element with index (length-1)/b- l.

INTERPRESS ELECTRONIC PRINTING STANDARD

THE BASE LANGUAGE

The following AppendLargeVector procedure generates this encoding, using a minimum
number of data bytes.

procedure AppendLarge Vector(v: Vector, numElements: Cardinal);
var b: integer : = O;
begin
for i: = 0 to numElements- l do b: = Max(b, Byteslnlnt(v [i]));
AppendSequenceDescriptor(sequenceLarge Vector, b*numElements + 1);
AppendByte(b);
for i: = 0 to numElements- l do Appendlnt(v [i], b)
end

Pixel vectors: There are several types of sequence tokens which abbreviate a large vector, a
call ofFINDDECOMPRESSOR, and application of the resulting operator.

A sequence token with type sequencePackedPixelVector is equivalent to pushing onto
the stack a Vector of Cardinals v formed from the data bytes and executing <[Xerox,
packed] FINDDECOMPRESSOR DO>.

A sequence token with type sequenceCCJTT-4PixelVector is equivalent to pushing onto
the stack a Vector of Cardinals v formed from the data bytes and executing <[Xerox,
CCITT-4] FINDDECOMPRESSOR DO>.

A sequence token with type sequenceCompressedPixelVector is equivalent to pushing
onto the stack a Vector of Cardinals v formed from the data bytes and executing
<[Xerox, compressed] FINDDECOMPRESSOR DO>.

A sequence token with type sequenceAdaptivePixelVector is equivalent to pushing onto
the stack a Vector of Cardinals v formed from the data bytes and executing <[Xerox,
adaptive] FINDDECOMPRESSORDO >.

These sequence types require that the printer obtain the specified decompression operator from the environment.

In all cases, the vector vis obtained from the data bytes in the encoding by using two bytes to
represent each integer. More precisely, if v has numElements elements, it is encoded with
AppendSequenceDescriptor(seqType, 2*numElements); for i : = 0 to numElements- l do
Appendlnt(v[i], 2), where seqType is one of sequencePackedPixelVector, sequenceCCITT-
4PixelVector, sequenceCompressedPixelVector, or sequenceCompressedPixelVector.

Inserting from a file: There are two encoding-notations which take a file name as a
parameter and whose effect is to replace the sequence token with a sequence of tokens from
the named file. Sequence types sequencelnsertMaster and sequencelnsertFile contain data
bytes which are interpreted as the name of a file in the syntax and encoding used in the
printer's environment. They differ in where they can occur in the master and in the way in
which the tokens are extracted from the named file. File insertions may nest to a depth of
maxFileN esting.

A sequence token with type sequencelnsertMaster references a file which contains a single
complete Interpress master. The sequencelnsertMaster token is replaced by the tokens of the
master's top level block (§3.1), including the enclosing BEGIN and END tokens.

A master error occurs if a sequencelnsertMaster token appears within a body.

XEROX SYSTEM INTEGRATION STANDARD 21

THE BASE LANGUAGE

A sequence token with type sequencelnsertFile references a file which contains a sequence of
literals or some representation of the effect of executing a sequence of literals. The effect of
the sequencelnsertFile token is the insertion of this sequence of literals into the master in
place of the sequencelnsertFile token. A sequencelnsertFile token may only appear within a
body; a master error occurs ifit appears elsewhere. There is one type of file, calledlnterpress
fragment, from which the sequence of literals is extracted in a standard manner. Files of
other types may be referenced, but the method of replacing the sequencelnsertFile token by
literals from the named file is not specified by this standard.

An Interpress fragment consists of a standard header followed by a sequence of tokens in the
Xerox encoding. The header encodes the string "I n t e r p res s IX e r ox I a . b I filetypel n. mD"
using character codes from the ISO 646 7-bit Coded Character Set for Information Processing
Exchange, where "a. b" is a valid Interpress version number, "filetypeln.m" is a string of
characters describing the type of the Interpress fragment contained in this file and "D" is
the space character. The method of replacing the sequencelnsertFile token with literals from
the file is to skip any tokens preceding the first BEGIN token, and to insert the sequence of
tokens following the BEGIN token up to but not including the next END token. A master error
occurs if either the BEGIN token or the END token is missing.

One example of an Interpress fragment is the Image File described in the Xerox Raster Encoding Standard, XNSS
178506. The header of such a file might be "Interpress/Xerox/3.0/RasterEncoding/l.OO".

The requirement that the replacement tokens represent a sequence of literals ensures that "{" and "}" tokens are
balanced. The effect of a sequencelnsertFile token is therefore confined to the body in which the token occurs.

The standard does not specify how the printer determines the type of the named file or the replacement method. In
fact, the named file need not actually contain tokens which directly represent a sequence ofliterals: it might instead
contain some representation compiled for a particular printer, as long as the net effect is the same as including some
sequence ofliterals in the master.

It is recommended that all files which use a private encoding, and are referenced by the sequencelnsertFile encoding,
contain an identifying header. The header should be composed ofISO 646 character codes and should follow the form
"Interpress/universalID!a.bl filetypeln.m#" where universalID is a universal identifier, "a.b" is a valid Interpress
version number, and "filetypeln.m "is a string of characters describing the type of the private encoding.

2.5.4 Code assignments

22

All the encoding values except the ones for primitive operators are summarized below;
encoding values for primitives are given in Appendix B.3.

Table 2.1 Encoding values for non-primitives

Name

BEGIN

END

CONTENTINSTRUCTIONS
"{"
"}"

Value (decimal)

102
103
105
106
107

INTERPRESS ELECTRONIC PRINTING STANDARD

Table 2.2 Values for sequence types

Name

sequenceAdaptivePixelVector
sequenceCCITT-4PixelVector
sequenceComment
sequenceCompressedPixelVector
sequenceContinued
seq ue nee! de ntifie r
sequence! nsertFile
seq ue nee! nsertM aster
sequencelnteger
sequenceLarge Vector
sequencePackedPixelVector
sequenceRational
sequenceString

XEROX SYSTEM INTEGRATION STANDARD

Value (decimal)

12
13
6

10
7
5

11
3
2
8
9
4
1

THE BASE LANGUAGE

23

THE BASE LANGUAGE

24 INTERPRESS ELECTRONIC PRINTING STANDARD

3. GLOBAL STRUCTURE AND EXTERNAL INTERFACE

This chapter describes how an lnterpress master is constructed from a sequence of bodies
called its skeleton. It also explains the mechanisms for interaction with the printer's
environment.

3.1 The skeleton

A master has a hierarchical structure. At the top is a body called the instructions body and a
single block. A block consists of a preamble body and a sequence of content nodes enclosed
between BEGIN and END tokens. Each node is either another block or simply a body; either
may optionally be preceded by a content instructions body. Within bodies, the rules of the
base language prevail. The collection of nodes and their hierarchical arrangement is called
the skeleton of the master. The way in which the parts of the skeleton are executed to
determine the effects of the master is first outlined and then described in detail.

If an instructions body is present, it is executed first, with the external instructions vector on
the.stack. The external instructions vector is a property vector that encodes printing instruc
tions obtained from a source other than the master. For example, the external instructions
might come from the communications protocol used to transmit the master to the printer.
The execution of the instructions body must leave on the stack one or more property vectors
that will be combined using MERGEPROP to obtain the master's printing instructions. These
are merged with external instructions, content instructions, default values, and printer
overrides to produce the final instructions vector. The details of printing instructions are
given in §3.3 and in Appendix E.

After the instructions body, if any, is executed, the top level block is executed. First, the
block's preamble is executed with an initial frame containing topFrameSize zeros, and no ar
guments on the stack. The preamble returns no result, but the value of its frame after
execution is used as an initial frame for each content node.

After the preamble is executed, each node of the block is executed in turn. If the node is a
block, the execution scheme described here recurs. If the node is a body, it is executed with
the initial frame supplied by the preamble of its block, and no arguments.

Bodies which are not instructions bodies, content instructions bodies, or preambles are page
image bodies. A fresh printing surface is supplied for the image produced by each page image
body.

Each page is produced by a distinct node in the skeleton. Hence an arbitrary number of pages cannot be printed by a
loop; instead, each page must be represented separately in the master. This requirement is imposed to allow
printing of selected pages and to allow the pages to be processed in an order that is convenient for the printer.

The skeleton structure allows the printer to reorder the actual printing of the individual page images for its
convenience. Inside a body, anything can happen and no analysis is possible, in general, without executing the body
in the proper state. In the skeleton, on the other hand, the relations among the parts are highly constrained, and
analysis is easy. The skeleton is also useful for:

XEROX SYSTEM INTEGRATION STANDARD 25

GLOBAL STRUCTURE AND EXTERNAL INTERFACE

26

• simplifying the merging of masters (in many common cases);

• identifying parts of masters for printing, or for taking masters apart in ways not defined by Interpress;

• allowing definitions common to part of a master to be made local to that part.

The rules for executing nodes make it easy to merge masters, or to embed one master in another. A master A can be
embedded as a node in another master B, simply by stripping off the instructionsBody. Its preamble will presumably
make no use of the non-null initial frame it is given. More complex merging must be done by building new bodies.
This can always be done by embedding existing bodies in new ones, and does not require going inside the existing
bodies.

Note that an encoding can allow a node to have an external reference to a master so as to embed the contents of the
master being referenced at that point (e.g., sequencelnsertMaster).

All the bodies in the skeleton are executed by DOSAVEALL, with a mark protecting the stack.
Thus every body in the skeleton is executed with the imager variables in their initial state.
This guarantees that executing a body cannot have side effects, and thus page image bodies
can be executed in any order without affecting the output or each other. A consequence is
that the preamble cannot set up imager variables for the page image bodies. Each body must
do this for itself, perhaps by calling a composed operator constructed by the preamble.

No results may be returned by a page image body; its entire effect is captured in the image it produces.

The formal definition of the skeleton is given in the following Backus-Naur Form:

skeleton
instructionsBody
block
preamble
node list
node

content
contentlnstructionsBody
body

:: = instructionsBody block I block
::=body
:: = BEGIN preamble nodelist END
::=body
: : = node I node nodelist
:: = content I CONTENTINSTRUCTIONS

contentinstructionsBody content
:: = block I body
::=body
:: = a body literal as defined in §2.2.5

An example of a skeleton for a two-page master is {instructionsBody} BEGIN {preambleBody} {pagelmageBody}
CONTENT!NSTRUCTIONS {contentlnstructionsBody} {pagelmageBody} END.

The meaning of a master (i.e., the output generated from it) is defined by the following
pseudo-Pascal program which executes the skeleton. This program defines the effect of
executing a master, not necessarily the implementation that a printer must use. In
particular, Interpress is defined so that the master need not be executed n times in order to
print n copies. The program intermixes Interpress operators with Pascal in an obvious way
and treats Pascal local variables as elements of an Interpress frame, which it references with
FGET and sets with FSET. It assumes a collection of global variables which may be accessed by
the operators *PGET and *PSET.

It also uses several other special operators which do not exist m true Interpress. A
description of these special operators follows:

<j:Cardinal > *PGET ~ <value: Any>
where the value ofthejth global variable is placed on the stack.

<x: Any> <j: Cardinal> *PSET ~ < >
where the value ofthejth global variable is set to x.

< x: Any> *ISBODY ~ < i: Cardinal>
where i is true (1) if xis a body, false (0) otherwise.

INTERPRESS ELECTRONIC PRINTING STANDARD

GLOBAL STRUCTURE AND EXTERNAL INTERFACE

< f Vector> < b: Body> *MAKECOWITHFRAME ~ < o: Operator>
where o is a composed operator with body band initial frame f.

< > *LASTFRAME ~ <frame: Vector>
where frame is the final value of the frame for the most recently executed composed
operator.

<m: Vector> <pageNumber: Cardinal> <duplex: Cardinal> <xlmageShift: Number>
*SETMEDIUM ~ < >

where the effect is to start a new page. This operator is defined fully in §4.2.

< > *OBTAINEXTERNALINSTRUCTIONS ~ <externallnstructions: Vector>
where externallnstructions is a property vector representing printing instructions
supplied to the printer from outside.

<masterlnstructions: Vector> <externallnstructions: Vector> *ADDINSTRUCTIONDEFAULTS
~ < finall nstructions: Vector>

where finallnstructions is a property vector containing the printing instructions for the
document. Generally, the effect is to provide default values for instructions which are
not specified, to resolve conflicts between instruction values in masterlnstructions and
externallnstructions, and to impose printer overrides for those instructions for which the
printer can support only specific values. The behavior of the operator is described in
§3.3.1 and in the descriptions of the individual instructions in §3.3.3 and Appendix E.

*RUNSIZE and *RUNGETare defined in §3.3.2.

< newContentlnstructions: Vector> < oldl nstructions: Vector> < externallnstructions:
Vector> *MERGECONTENTINSTRUCTIONS ~ <new! nstructions: Vector>

where newlnstructions is a property vector containing the printing instructions to be
used for printing the associated content. Generally, the effect is to merge new content
instructions with instructions from enclosing blocks and to revolve conflicts between
content instruction values and instruction values found in the external instructions. The
behavior of the operator is described for each content instruction in §3.3.4.

The execution of a master is defined by two procedures, DoMaster and DoBlock. These
procedures share the global variables outputOK, lastFrame, copyNumber, copyName, and
pageNumber. Operators that generate output (those with MASK in their names) check the
value of outputOK and cause an error if it is zero. DoBlock saves in lastFrame the final value
of a preamble body's frame (or the initial frame of a block node). These programs treat a
block as a property vector with two elements: preamble, the preamble; and nodes, a Vector of
nodes. A node is a property vector with two elements: contentlnstructionsBody, which is null
if no CONTENTINSTRUCTIONS token appears; and blockOrBody, the content of the node.

A master is executed by the DoMaster procedure, which takes the instructions body and the
top-level block as arguments. It executes the instructionsBody with the externallnstructions
vector of the environment as its argument. This leaves on the stack an instructions vector
which is the master's estimate of the most appropriate instructions. There may be, however,
external instructions which should take priority. This is accomplished by placing the
external instructions on the stack once again, and executing the internal procedure
*ADDINSTRUCTIONDEFAULTS. This operator is described in §3.3.1. The final instructions are
recorded in the instructions variable. After all instructions processing, DoMaster calls
DoBlock for each copy to execute the block with an initial frame with topFrameSize zero
elements, and with the instructions.

global variables.
outputOK: Cardinal; lastFrame: Vector; copyN umber: Cardinal;
copyN ame: Any; pageN umber: Cardinal;

XEROX SYSTEM INTEGRATION STANDARD 27

GLOBAL STRUCTURE AND EXTERNAL INTERFACE

28

procedure DoMaster (instructionsBody: Body; topBlock: Block); begin
instructions: Vector;
iFrame: Vector [O ... topFrameSize-1] of Any;
i, copyNumber: Cardinal;
-- initialize the initial frame --
for i := 0 to topFrameSize-1 do iFrame[i] := 0
-- compute printing instructions --
0 MAKEVEC instructions FSET-- null instructions in case mark recovery occurs --
0 MARK -- protect against error while executing instructions body --
0 outputOK *PSET

*OBTAINEXTERNALINSTRUCTIONS -- get external instructions -
iFrame FGET instructionsBody FGET

*MAKECOWITHFRAME DOSA VEALL -- execute instructions body --
while COUNT> 1 do { MERGEPROP} -- merge all instructions for all elements on stack -
instructions FSET

UNMARKO

instructions FGET

*OBTAINEXTERNALINSTRUCTIONS-- get external instructions -
* ADDINSTRUCTIONDEFAULTS -- install overrides and defaults -
instructions FSET -- and save as final printing instructions --
-- make the required number of copies --
0 MARK -- protect against error anywhere in master, e.g., preamble --
for copyN umber:= 1 to instructions FGET copySelect GETP *RUNSIZE do

{ copyN umber FGET copyN umber *PSET-- set copyN umber --
--set copyName --
instructions FGET copyN ame GETP copyN umber FGET *RUNG ET copyN ame *PSET

0 pageN umber *PSET

if instructions FGET copySelect GETP copyN umber FGET *RUNG ET then
-- call DoBlock to execute the Block and print the copy --
{ DoBlock (topBlock FGET, iFrame FGET, instructions FGET)}

}
UNMARKO

end

A block is executed by the DoBlock procedure, which takes three arguments: the block, the
initial frame, and the instructions vector. If the block argument is a body, DoBlock executes
it with the given initial frame. If it is a block, DoBlock first executes the block's preamble
using the initial frame argument. DoBlock calls itselfrecursively to execute the nodes of the
block, this time using the initial frame determined by the preamble. For each new imaging
surface, the DoMediumSet procedure is called to establish the medium values.

procedure DoB lock (block: Any; iFrame: Vector; instructions: Vector); begin
i, numNodes: Cardinal; node: Any; templnstruction: Vector;
if block FGET *ISBODY then

{ 1 outputOK *PSET

-- put body on proper page --
pageN umber *PGET 1 ADD pageN umber *PSET

if instructions FGET contentPlex GETPROP NOT

{ instructions FGET plex GETP} IF

duplex EQ -- determine if duplex --
instructions FGET pageOnSimplex GETPROP NOT -- see if pageOnSimplex
instruction --
{instructions FGET onSimplex GETP pageNumber *PGET *RUNGET} IF-- if not, just
use onSimplex --

INTERPRESS ELECTRONIC PRINTING STANDARD

GLOBAL STRUCTURE AND EXTERNAL INTERFACE

OR-- the duplex and onSimplex tests -
instructions FGET contentPageSelect GETPROP

{ copyN umber *PGET *RUNG ET} IFELSE

{ instructions FGET pageSelect GETP copyNumber *PGET *RUNGET pageNumber
*PGET *RUNGET} IF

AND

then
{ DoMediumSet(instructions FGET)

iFrame FGET block FGET *MAKECOWITHFRAME DOSA VEALL}

else

}
end

{ -- case of a block --
-- execute the preamble --
0 MARK

0 outputOK *PSET

iFrame FGET block FGET preamble GETP *MAKECOWITHFRAME DOSAVEALL

*LASTFRAME iFrame FSET -- set initial frame --
UNMARKO

-- execute the nodes, one at a time --
--calculate the number of nodes --
block FGET nodes GETPSHAPE numNodes FSETPOP

for i: = 0 to numNodes - 1 do
{ -- loop to execute each node -
-- save ith node in "node" --
block FGET nodes GETP i FGET GET node FSET

0 MARK -- protect against error while executing the node --
0 MAKEVEC templnstructions FSET

0 MARK -- separate mark recovery for content instructions --
0 outputOK *PSET

iFrameFGET
node FGET content! nstructionsB ody GETP

*MAKECOWITHFRAME DOSA VEALL

while COUNT> 1 do {MERGEPROP}

templnstructions FSET

UNMARKO

templnstructions FGET

*OBT AINEXTERN ALINSTRUCTIONS *MERGECONTENTINSTRUCTIONS

templnstructions FSET

DoBlock (node FGET blockOrBody GETP, iFrame FGET, templnstructions FGET)

UNMARKO

}
UNMARKO

The internal operator *MERGECONTENTINSTRUCTIONS merges new content instruction values
with the instructions vector of the block in which the content occurs. This operator is
described in §3.3.4.

XEROX SYSTEM INTEGRATION STANDARD 29

GLOBAL STRUCTURE AND EXTERNAL INTERFACE

The procedure DoMediumSet prepares a new instance of the media.

procedure DoMediumSet (instructions: Vector);
-- set medium for this page --

begin
instructions FGET media GETP-- obtain media vector --
instructions FGET pageMediaSelect GETPROP NOT-- and the pageMediaSelect-
{ instructions FGET mediaSelect GETPcopyNumber *PGET *RUNGET

pageNumber *PGET *RUNG ET} IF-- if no pageMediaSelect, use mediaSelect-
GET -- medium description --
pageN umber *PGET-- page number -
instructions FGET contentPlex GETPROP NOT

{ instructions FGET plex GETP} IF

duplex EQ -- true if duplex --
instructions FGET xlmageShift GETP-- value of xlmageShift-
*SETMEDIUM -- prepare a new image surface --

end

3.1.1 Operator restrictionst

3.1.2 Pagest

30

Some parts of a master do not allow certain operators to be executed. There are three classes
of primitive operators:

BASE Any operator in the base language (defined in Chapter 2).

IMAGE Any imaging operator (defined in Chapter 4).

WEAKIMAGE Any IMAGE operator that does not have MASK in its name and is not defined
in terms of operators that have MASK in their names; i.e., WEAKIMAGE

operators are those that generate no output.

The instructions and content instructions bodies may execute only BASE operators excluding
IFCOPY. The preamble body may execute only BASE and WEAKIMAGE operators. A page
image body may execute any operator. Note that the restrictions apply only to the execution
of operators; for instance, the preamble can make composed operators which contain
arbitrary IMAGE operators, although it cannot execute them.

The Interpress skeleton is a hierarchical structure which allows blocks to be nested within
blocks. The model for mapping this structure onto printing surfaces traverses the skeleton
from left to right in a depth-first fashion. Each page-image body maps onto a new printing
surface.

The printer must arrange the printing sequence so that a stack of pages has the page with
pageNumber= 1 "on top," pageNumber=2 underneath page 1, etc. The value ofpageNumber
is defined in the program in §3.1.

Depending on the way the printer handles the media, the order in which images are printed may be the same as the
order in the stack, the reverse, or some more complex function.

INTERPRESS ELECTRONIC PRINTING STANDARD

GLOBAL STRUCTURE AND EXTERNAL INTERFACE

3.1.3 Combining and modifying masterst

There are many ways to combine masters into a single larger master. At one extreme are
simple concatenations of two masters, so that the combination produces all the pages of the
first, followed by all the pages of the second. Another simple operation is to convert a master
A into another master B in which each page of B contains two pages of A rotated 90 degrees
and placed side by side; this is sometimes called "two-up" printing. At the other extreme are
combinations that depend on elaborate conventions, such as how illustrations contained in
one master are merged onto pages contained in another master.

In many common cases, masters can be combined simply by combining the skeletons. For ex
ample, to make a master C which consists of all the pages of A followed by all the pages of B,
simply construct a new top-level block.

BEGIN{} topA topB END

where topA and topB are the top-level blocks of A and B. Printing instructions for C must be
derived from instructions associated with A and B; in particular, it is desirable to retain
media-selection information.

3.2 Environments and names

Although it is possible for an Interpress master to be completely self-contained, most
masters refer to objects that are outside of the master itself. These objects are contained in
the environment furnished by the printer. They are obtained by the primitive operators
FINDOPERATOR (§2.4.5), FINDDECOMPRESSOR (§4.6), FINDCOLOR (§4.7.1),

FINDCOLOROPERATOR (§4.7.l),FINDCOLORMODELOPERATOR(§4.7.l),andFINDFONT(§4.9).

It is desirable for a master to obtain the objects used repeatedly by its page bodies in the preamble and save them in
the initial frame, since an implementation is likely to handle FGET much more efficiently than the FIND-style
operators.

3.2.1 Universal names

A master obtains an object from a printer's environment using a universal name, which is a
Vector of Identifiers such that the first identifier in the name is a universal identifier. A
universal identifier is an identifier which some organization has registered in the lnterpress
Universal Registry; the organization thereby obtains authority to determine the structure
and meaning of all universal names having that first, universal identifier. Because the first
identifier is registered, the organization can choose the remaining identifiers without
danger of conflicting with names chosen by other organizations.

Although universal names can be structured in arbitrary ways subject to the constraint that
the first identifier be a registered universal identifier, it is intended that a hierarchical
naming system be used for objects in the environment, much like the hierarchical file
directory system of many computer operating systems. This naming convention provides for
hierarchical distribution of naming authority, and thus allows for unlimited growth of the
name space without any name conflicts and without the need for any central authority to
assign names.

Orderly invention of hierarchical names requires the notion of a registry , an administrative entity with authority
over a particular point in the hierarchical name space, operated by some organization or person with an interest in

XEROX SYSTEM INTEGRATION STANDARD 31

GLOBAL STRUCTURE AND EXTERNAL INTERFACE

keeping order at that point in the space. Such points themselves of course have hierarchical names. The lnterpress
Universal Registry is responsible for assigning universal identifiers. The registry for point n is responsible for
assigning names which begin with n so that conflicts do not arise. The registry can delegate part of its authority to a
sub-registry, e.g., for the point nlm; in doing so, it assigns its own authority to invent names which begin nlm, since
it cannot be sure that the sub-registry has not already chosen such a name.

By way of example, consider how Xerox might name fonts. The organization obtains the universal identifier Xerox
from the universal registry. A registry for Xerox is established, responsible for assigning names that begin Xerox!
The registry might choose to use character-set names at the next level, and invent the names Ascii, Ebcdic, xc2-0-0,
etc. At the next level, type-family names might be used, e.g., Xerox!xc2-0-0!Times. Note that because the first
identifier is registered, any names the Xerox registry invents are distinct from names assigned to other
organizations, e.g., Xerox!Asciil . .. is distinct from Mergenthaler!Asciil

An organization wishing to name objects in the environment so that they can be referenced
reliably from any Interpress master should obtain an identifier in the Interpress Universal
Registry, and thus establish a name space within which to invent names for these objects.
(See Appendix C.)

One of the identifiers registered in the Interpress Universal Registry is the identifier standard. This identifier is
used to create universal names for objects which are commonly in the environment and for naming additional
printing instructions and printing instruction values which will be widely used. Individuals or organizations
wishing to have standard universal names assigned should contact the Interpress Registry. (See Appendix C.)

3.2.2 Environment names

32

The objects within the printer's environment may be organized according to their type in
order to aid the FIND-style operators. The organization can be described by extending the
object naming. There is a unique environment name for each object in the printer's
environment that may be returned by a FIND-style operator. The environment name is
obtained by prefixing the universal name with an identifier that describes its type. For
example, the font with universal name Xerox/Ascii/Times has fonts/Xerox!Ascii!Times as its
environment name. The prefixes are shown in Table 3.1.

Type of object

operator
decompression operator
constant color
color operator
color model operator
font

Table 3.1 Environment name prefixes

Operator that finds it

FINDOPERATOR

FINDDECOMPRESSOR

FINDCOLOR

FINDCOLOROPERATOR

FINDCOLORMODELOPERATOR

FIND FONT

Prefix

ops
decompressionOps
colors
colorOps
colorModelOps
fonts

INTERPRESS ELECTRONIC PRINTING STANDARD

GLOBAL STRUCTURE AND. EXTERNAL INTERFACE

3.2.3 Universal property vectors

Property vectors are often formed from a set of standard properties (e.g., for printing
instructions). This is done in cases where it is important that the printer "understand" the
properties in the vector. A limitation on possible property names is useful for this purpose. A
universal property vector is a form of property vector with property names that are standard
property names or universal names (§3.2.2) that allow growth of the name space. That is, a
property name in a universal property vector must be either:

• an Identifier from a set defined by Interpress or other defining authority for this
purpose, or

• a Vector ofldentifiers, which specifies a universal name.

3.3 Printing instructions

In addition to the preamble bodies and page image bodies which define the page images
which constitute a document, an Interpress master may also contain printing instructions
which describe how the document should be printed. Printing instructions provide:

• specification of which pages are part of which copies,

• selection of which copies to print,

• finishing specifications,

• a description of supplemental pages such as the break page,

• information regarding resources required to print the master, and

• administrative information.

There are normally two sources for printing instructions: the execution of the master's
instructionsBody and contentlnstructions bodies, and external to the master by means such
as the printing protocol. For example, if a master is stored and later printed on demand,
some of the printing instructions, such as the number of copies to print, may be generated
when the demand is made. Other instructions, such as the name of the document, are
attached to the master when it is created. lnterpress provides a flexible way of combining
externally supplied instructions with those contained within the master.

Printing instructions are represented as a universal property vector in which property
names denote particular printing instructions. The standard instructions are defined in this
document, but printing instructions may also include printer-dependent or private
instructions with universal names. With this generality, it is likely that not every
instruction is understood by every printer. If a printer does not recognize a printing
instruction, it simply ignores it.

As an example, the instructions vector [docName, <Report>, [Xerox, offsetStacking], docOffset] contains a
standard instruction (docName) and an instruction that has been defined by Xerox, whose name is
Xerox/offsetStacking and whose value is the identifier docOffset.

The Interpress Universal Registry contains the universal identifier standard which may be used to create universal
names for additional printing instructions and printing instruction values which will be widely used. Individuals or

XEROX SYSTEM INTEGRATION STANDARD 33

GLOBAL STRUCTURE AND EXTERNAL INTERFACE

organizations wishing to have standard universal names assigned should contact the Interpress Registry. (See
Appendix C.l

This section describes how printing instructions are computed and how a final set of
instructions is resolved from instruction requests coming from the master, external sources,
and the printer. It also describes the printing instructions which are directly involved in
processing the Interpress skeleton, and which influence the appearance of the document.
These are instructions recognized by all Interpress printers. The remaining instructions
provide administrative and finishing information and are described in Appendix E.

It is not necessary to specify the value of every instruction because default values are provided by
*ADDINSTRUCTIONDEFAULTS if needed. A value supplied by the master serves as a default to be used in the absence of a
value from the external instructions. If a value is present in the external instructions, then it takes priority over a
value in the instructions body. This means that one should not send "default" values in the external instructions.

3.3.1 Computing the printing instructions

34

When a master is executed, a property vector of external instructions is supplied by the
printer to the master. Interpress does not define how the external instructions vector is
obtained. The vector may contain instructions supplied as printer defaults, instructions
obtained via the protocol used to trasmit the master to the printer, instructions supplied by
the printer operator, or the vector may be empty.

A second set of printing instructions is obtained by executing the master's instructions body
(if any). This body is executed with the external instructions vector on the stack. After the
instructions body is executed, the contents of the stack are merged, using MERGEPROP, to
obtain a single instructions vector.

After this instructions vector is obtained from the master, the *ADDINSTRUCTIONDEFAULTS

operator is executed to compute the printing instructions which apply to the printing of the
job as a whole and to establish the instructions vector used for the printing of the top level
block of the master. (The effect of content instructions is described in §3.3.4). This step:

• provides default values for any needed instructions which are not specified by either the
master's instructions vector or the external instructions vector,

• resolves values for instructions which occur in both the master's instructions vector and
the external instructions vector, and

• imposes printer overrides for those instructions for which the printer can support only
specific values.

With the exception of pageSelect, conflicts between instructions defined in this standard
which occur in both the master's instructions vector and the external instructions vector are
resolved by giving precedence to either the master or the external instructions. This
precedence is specified with the instruction descriptions in §3.3.3 and Appendix E.

In the simplest case, instructionsBody simply pushes a single property vector on the stack, which is merged with the
external instructions vector. For example, the external instructions vector specifies the number of copies, while the
instructionsBody specifies the document name.

The instructionsBody can manipulate the external instructions vector in arbitrary ways. It may examine elements
using GETPROP or GET. It may pop the external instructions vector off the stack and construct an entirely new set of
instructions. Although instructions body is free to compute arbitrary instructions, *ADDINSTRUCTIONDEFAULTS has
ultimate control, and may for example reinstate critical external instructions that instructions body deletes.

INTERPRESS ELECTRONIC PRINTING STANDARD

GLOBAL STRUCTURE AND EXTERNAL INTERFACE

3.3.2 Run vectors

Some printing instruction values are vectors which may contain a great many elements. In
order to keep these vectors compact, a run-length encoding scheme is used. The term "Run of
X" refers to a vector that contains alternate values of type Cardinal and type X. The
Cardinal specifies the number of times the value of X is repeated in the fully-decoded vector;
the fully-decoded vector has a lower bound of 1. It is a master error if any of these vectors has
an odd number of elements or has a non-zero lower bound. Except for copySelect, it is not an
error if the fully decoded vector has more elements than are required to represent the
information for a particular document or printing request, but a master error occurs if the
vector has too few elements to represent the information.

For example, a Run of Identifiers vector might look like [2, archive, 3, distribute], which represents the full vector
<archive archive distribute distribute distribute 1 5 MAKEVECLU >. The Run of Cardinals [1, 1, 6, 0, 1, 1] represents
the full vector < 1 0 0 0 0 0 0 11 8 MAKEVECLU >.

The precise treatment ofrun encoded vectors is described by two operators:

<r: Vector> *RUNSIZE "°' <s: Cardinal>
wheres is the number of elements in the fully decoded form of the Run ofX vector r.
The effect of this operator is defined by the following program:
begin l,nj,s: Cardinal; c: Any;

r FGET SHAPE n FSET l FSET -- get lower bound and size of r -
if l7:.0 or n mod 27:.0 then error;

0 sFSET

forj := 0 to n-1 by2 do

{ r FGETj GET c FSET -- c: = r{j] --
if c FGET is not a Cardinal then error;

s FGET c FGET ADD s FSET -- s : = s + c --
}

sFGET

end

< r: Vector> < i: Cardinal> *RUNGET "" <value: Any>
where value is the ith element of the fully decoded form of the Run of X vector r,
1:::;; i:::;; (r *RUNSIZE). The effect of this operator is defined by the following program:
beginj: Cardinal; c: Any;

if i = 0 or i ~ (r *RUNSIZE) then error;

for j : = 0 by 2 do

{ r FGET j FGET GET c FSET -- c : = r[j] -
if c FGET is not a Cardinal then error;

if c FGET ~ i then goto done;
i FGET c FGET SUB iFSET; -- i: = i - c -
} error;

done: r FGETj FGET 1 ADD -- value:= r{j + 1] -
end

3.3.3 Skeleton instructions

The following printing instructions are directly involved in the processing of the Interpress
skeleton and influence document appearance. They are supplied either in the external
instructions or in the master's instructionsBody. Each instruction description gives the
instruction's name (i.e., the property name to use in an instructions vector), followed by its
type (i.e., the type which the value corresponding to the instruction must have). If the type is

XEROX SYSTEM INTEGRATION STANDARD 3S

GLOBAL STRUCTURE AND EXTERNAL INTERFACE

36

not correct, a master error results. In the text describing each instruction, the symbol value
denotes the value associated with the instruction property.

With the exception of pageSelect, if an instruction's value is specified in both the master's
instructions body and the external instructions *ADDINSTRUCTIONDEFAULTS establishes the
value which is used by precedence. In the following definitions, the parenthesized note after
the definition of the value's type specifies whether the value computed in the master
(Master) or the value supplied by external instructions (External) is given precedence. The
computation for pageSelect is given with the description of that instruction.

insertFileMapping: Vector of Mapping. (External)
This instruction gives mappings from names given in the master to names that should
be used instead. Each Mapping is a Vector [master, actual], where both master and
actual are Vectors of Cardinals. This requires any sequencelnsertFile token or
sequencelnsertMaster token whose data bytes (as 8 bit binary numbers) are equal to the
values of the elements of master to be replaced by a sequence of bytes which are the
values of the elements of actual (mod 256).

media: Vector of Property Vector. (External)
This instruction describes each medium used to print the master. Each element of the
media vector is a MediumDescription, which is a universal Property Vector. The media
vector is indexed by a Mediumlndex to select a MediumDescription. The property names
for MediumDescription are:

mediumName: Identifier or Vector of Identifier. The mediumName property normally
identifies a standard medium or a form which can be completely specified by a single
name. In this case, the other properties of the medium are inferred from it. The identifier
value for mediumName is defaultMedium, which designates a default medium chosen by
the printer.

mediumXSize, mediumYSize: Number. The size of the medium in meters, as defined in
§4.3.1.

mediumMessage: MessageString. A message which may describe the medium, to be
delivered to the operator prior to and as close as possible t~ master imaging.
MessageStrings are described in Appendix E.2.

Vector ofldentifier. Additional properties may be designated by universal names.

Default: [[mediumName, defaultMedium]].

plex: Identifier. (External)
This instruction specifies how the page images are placed on instances of the media (e.g.,
sheets of paper). The identifiers that may appear as values for this instruction are:

simplex: One page image is placed on each instance of the medium.

duplex: Two page images are placed on each instance of the medium using printing
surfaces on both sides of the medium. The orientation of the printing surface used for the
second page image is obtained by rotating the medium about they axis of the Interpress
coordinate system.

Default: Either simplex or duplex, as chosen by the printer.

INTERPRESS ELECTRONIC PRINTING STANDARD

GLOBAL STRUCTURE AND EXTERNAL INTERFACE

xl mageS hift: Number. (External)
The value specifies the distance (in meters) that each page's image is to be shifted in the
x direction. On odd (pageN umber mod2 = 1) pages, the shift is to the right if value> 0 or
to the left ifvalue<O. On even (pageNumber mod2=0) pages, the shift is to the left if
value> 0 or to the right if value< 0. This effect is stated precisely in §4.2. Default: 0.

The following printing instructions specify the configuration of pages and copies to print.
Each page number p of each copy number c may receive different treatment. The page (c,p):

• is printed only if copySelect[c] :;t: 0 and pageSelect[c,p] :;t: 0 and (printing duplex or
onSimplex[p] :;t: 0);

• uses the medium identjfied by the Mediumlndex equal to mediaSelect[c,p];

• has a copy name equal to copyName[c]; the copy name is used in conjunction with IFCOPY,

§2.4.7.

The first two decisions may be altered by the use of content instructions (§3.3.4).

The arrays copySelect, pageSelect, onSimplex, mediaSelect, and copyName are provided in
their respective printing instructions using the run encoding scheme. They are used to
define the treatment of all pages and copies:

copySelect: Run of Cardinal. (External)
Default: [1, 1], which selects a single copy.

copyName: Run of Identifier. (External)
Default: [107, null], which provides the default name of null for every copy.

mediaSelect: Run of (Run of Cardinal). (External)
The outside vector is indexed by copy number, the embedded vector by page number. The
Cardinal value is a Mediumlndex which selects a MediumDescription from the media
vector.

Default: [107, [107, 1]], which selects the medium with index = 1 in the value of the
media instruction for all pages and all copies.

onSimplex: Run of Cardinal. (External)
Default: [107, 1], which prints all pages when printing simplex.

pageSelect: Run of(Run of Cardinal).
The outside vector is indexed by copy number, the embedded vector by page number.

Default: [107, [107, 1]], which selects all pages for all copies.

If pageSelect= masterPageSelect in the master's instructions vector and pageSelect
= externalPageSelect in the external instructions vector, the resultant value is

page Select(c.p) = masterPageSelect(c.p) AND external PageSelect(c.p)

The copySelect instruction requests both the number of copies and the copy numbers for those copies. For example,
the instruction [copySelect, [5, 1]] prints copy 1, copy 2, copy 3, copy 4, and copy 5. Note that copy 1 and copy 2 may
differ because of the way pageSelect and mediaSelect instructions are given or because of the action of IFCOPY. As
another example, the instruction [copySelect, [2, 0, 1, 1]] causes only copy 3 to be printed.

XEROX SYSTEM INTEGRATION STANDARD 37

GLOBAL STRUCTURE AND EXTERNAL INTERFACE

The normal convention for copyName, pageSelect, and mediaSelect is to use a run representation that provides
instructions for a great many copies (e.g., 107), far more than will ever be selected for printing by copySelect. For
example, the instruction [pageSelect, [107, [5, 1]]] selects pages 1through5 for printing on all (conceivable) copies.

If the instructionsBody is constructed before the total number of pages in the document is known, the run
representation for pages may also be chosen to exceed the actual number of page image bodies in the master. Thus
[onSimplex, [107, 1]] prints all pages when printing simplex, even though the document will not have 107 pages.

3.3.4 Content instructions

38

Certain printing instructions may be specified within a contentlnstructions body rather
than in the master's instructionsBody. These instructions augment or override the
instructions found in the master's instructionsBody and do not have default values; if
absent, the default behavior is described by the master's instructionsBody. Since contents
may be nested within a master, a mechanism is needed to determine the net effect of
contentlnstructions for nested contents. This is done by *MERGECONTENTINSTRUCTIONS. The
effect of the *MERGECONTENTINSTRUCTIONS on the instructions vector which is used for
printing the content of the contentlnstructions body's node is to:

• concatenate file names mappings as specified in the contentlnsertFileMapping
instruction,

• impose the instruction values speeified by the content instructions body on the current
instructions vector,

• to reimpose values specified in the external instructions which have precedence over the
content instruction as specified in the content instructions description, and

• to reimpose printer overrides for those instructions for which the printer can support
only specific values.

The resulting instructions vector is used for printing the content's page image body if the
content consists of a single body or as the argument to DoBlock if the content is a block. The
execution of the contentlnstructions body places on the stack a property vector that may
contain the following content instructions:

contentlnsertFileMapping: Vector of Mapping.
A Mapping is a two element vector of the form [master, actual] where both master and
actual are Vectors of Cardinals representing strings. They provide a mapping between a
"master" name for the data bytes in a sequencelnsertFile or sequencelnsertMaster, and
an "actual" name which is used outside of the content, as described previously for
insertFileM apping.

A file name contained in a sequencelnsertFile or sequencelnsertMaster token undergoes
consecutive mappings via all containing contentlnsertFileMapping instructions, and the
insertFileMapping instruction, in order to determine the final file name. The
*MERGECONTENTINSTRUCTIONS procedure appends the value of this instruction to a
vector of values of contentlnsertFileMapping for containing contents. If an
insertFileMapping instruction is present in the external instructions, it has no effect
over the contentlnsertFileMapping values, and only takes precedence over an
insertFileMapping instruction in the master's instructionsBody.

contentPageSelect: Run of Cardinal. (External)
This instruction augments the pageSelect specification from the master's
instructionsBody. The run vector is indexed by copy number and indicates whether the
pages within the scope of the content should be printed for that copy. A non-zero value

INTERPRESS ELECTRONIC PRINTING STANDARD

GLOBAL STRUCTURE AND EXTERNAL INTERFACE

means that the pages should be printed. The contentPageSelect can reselect pages which
have been deselected by the pageSelect instruction or contentPageSelect instructions
from enclosing contents.

If a pageSelect instruction is specified in the external instructions and a
contentPageSelect instruction is present, then the page selection criteria for the content
is:

pageSelect(c.p) = contentPageSelect(c) AND external PageSelect(c.p)

On *MERGECONTENTINSTRUCTIONS, the new value for this instruction is the value
supplied by the contentlnstructionsBody. The new value applies for the scope of the
content.

contentPlex: Identifier. (External)
This instruction tells the printer whether the page image bodies within the scope of the
content are printed simplex or duplex. The possible values are simplex and duplex. The
value takes precedence over the master's plex instruction for the pages within the scope
of the content.

If a plex value is supplied by the external instructions, it takes precedence over both the
plex and the contentPlex values. In *MERGECONTENTINSTRUCTIONS, the new value of this
instruction replaces any previous value for the scope of the content.

The following instructions are intended to apply to single page image bodies and normally
precede contents which are bodies.

pageMediaSelect: Cardinal. (Master)
The value is a Mediumlndex, which selects the MediumDescription from the media
vector for use in printing the pages in the content. This value takes precedence over the
value specified by mediaSelect(c,p) for the scope of the content, whether or not
mediaSelect is specified in the external instructions. In *MERGECONTENTINSTRUCTIONS,

the new value of this instruction replaces any previous value for the scope of the content.

pageOnSimplex: Cardinal. (Master)
The value is used as the onSimplex value for this content. This value takes precedence
over the value specified by onSimplex(p) for the pages in the content whether or not
onSimplex is specified in the external instructions. In *MERGECONTENTINSTRUCTIONS,

the new value of this instruction replaces any previous value for the scope of the content.

The details of the processing of content instructions are shown in the program in §3.1.

Further content instructions are presented in Appendix E.4.

Note that content instructions may be used in conjunction with IFCOPY to obtain different
effects on different copies.

As an example of content instructions, consider a master that is to print invoices using two pre-printed forms, one for
the first page of every invoice and a second for continuation pages, if any. The creator cannot anticipate, when the
instructions body is generated, precisely which pages in the master require which forms. Instead, the creator uses
{[pageMediaSelect, ll} or {[pageMediaSelect, 2]} as a content instructions body to select an appropriate medium for
each page. Of course, the instructions body must contain an appropriate media entry, such as [media, [[name,
[Xerox, invoice-first]], [name, [Xerox, invoice-continuation]]]].

XEROX SYSTEM INTEGRATION STANDARD 39

GLOBAL STRUCTURE AND EXTERNAL INTERFACE

40 INTERPRESS ELECTRONIC PRINTING STANDARD

4. IMAGING OPERATORS

Interpress operators which create images are called imaging operators; the operators are
typically invoked when a page image body (§3.1) is executed. These operators are
implemented by an imager program, which is called to produce the desired images. The
discussion begins with several sections that outline general concepts of the operators, such
as the imaging model and coordinate systems. These sections are followed by complete
descriptions of the operators.

4.1 Imaging model

Interpress synthesizes a complex image by repeatedly laying down simple primitive images.
For example, a single Interpress operator might place an image of a specific character at a
specific position on the page. A subsequent operator might place another character
somewhere else, and so on until a complex image is built up. A painter performs a very
similar set of operations to create a complex image: he selects a brush, dips it in paint, and
lays down a stroke of color. Complex images are created by a series of these simple actions.

The Interpress imaging model, illustrated in Figure 4.1, involves three objects:

• The page image. The two-dimensional page image accumulates the primitive images
being laid down. It plays the role of the painter's canvas.

• The mask. The mask specifies the shape and position of a primitive image to be added to
the page image; it determines exactly where the page image will be modified. The
illustration shows a character 'b' whose shape and position are described by the mask. In
effect, the mask specifies an opening through which ink can be pressed onto the page
image. The mask thus plays the role of the painter's brush stroke.

• The color. The color specifies the ink to be pushed through the mask onto the page image
in order to add the primitive image to the page image; it may take on many colors,
various shades of gray (including white and solid black), and transparent. To continue
the painting analogy, the color specifies the color of paint in which to dip the brush.

Interpress makes complicated images, then, by specifying a sequence of (mask, color) pairs
to be applied to the page image. Invocations of mask operators actually cause the page image
to be altered. The color is held in a state variable in the imager; it applies to all masks until
changed.

At the beginning of each page, a new page image is initialized to "paper-white," or the
natural color of the material on which the image is being formed. The imaging operators
control the ink deposited on the material. In other imaging applications, the initial state of
the page image is chosen to achieve as nearly as possible the same effect. If images are being
made on a television display, the initial state of the entire display is white. If positive images
are being made on film, the initial state of the film is transparent, which corresponds to

XEROX SYSTEM INTEGRATION STANDARD 41

IMAGING OPERATORS

white if the film is projected with a white light. Although the discussion of Interpress
frequently refers to "pages" and "ink" for convenience, Interpress imagers can be used to
create images on any two-dimensional medium.

Previous
page image

Figure 4.1 The imaging model; application of a mask operator

4.1.1 Priority

42

The repeated generation of primitive images raises an important question: when two
primitive images overlap on the page image, which one is visible? The answer is the
intuitive answer used by the painter: laying down an object obscures any overlapping parts
of objects that have been previously placed on the page image, unless the color is
transparent. This phenomenon is called priority: objects laid down later have priority over
objects laid down earlier. The order of specification of the objects (i.e., the order of execution
of the mask operators) determines the priority order.

There are times when priority order does not matter. For example, if all objects are the same
color, reordering their priority does not change the image: objects that overlap simply
appear to merge. Priority is also unimportant when objects do not overlap, regardless of
their colors. In fact, priority order is important only when objects of different colors overlap.

If a master wishes the imaging operators to preserve the priority order of objects, it must set
the imager variable prioritylmportant to a non-zero value (§4.2). A change to the page image
induced by a mask operator is said to be ordered if the mask operator is executed when

INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

prioritylmportant is not 0, and unordered if prioritylmportant is 0. The rule is that the
priority order of all ordered page-image changes must be preserved. The imager is allowed to
alter priority order among unordered changes, or between ordered and unordered changes.
Because preserving priority order may require more computation than allowing arbitrary
reordering of objects, creators should leave prioritylmportant 0 if possible.

4.2 lmager state

The state of the imager is contained in two places: (1) the page image itself, which is
inaccessible to operators specified in the Interpress master, and (2) two sets of variables: the
persistent imager variables and the non-persistent imager variables. Operators are provided
for reading or writing these variables; in examples they are called with the name of the
variable, but the master must call them with the variable's Cardinal index.

<j: Cardinal> IGET~ <x: Any>
where x is the value of the variable with index j in Table 4.1. A master error occurs
unless) appears in the Index column of the table.

<x: Any> <j: Cardinal> ISET~ < >
where the value of the variable with index) in Table 4.1 is replaced by x. A master error
occurs unless j appears in the Index column of the table. The type of x must match the
type of the imager variable indexed by j, as given in Table 4.1.

Each variable is assigned an initial value (see Table 4.1) when the interpretation of an
Interpress master begins. The imaging operators make frequent use of the variables; some
operators change their values.

The *SETMEDIUM operator, called at the beginning of a page, alters the imager state to
establish the imaging medium. Specifically, its actions are:

<m: Vector> <pageNumber: Cardinal> <duplex: Cardinal> <xlmageShift: Number>
*SETMEDIUM ~ < >

where an instance of the available physical medium which most closely approximates
the medium specified by the MediumDescription m (§3.3.3) is selected and certain
imager variables are set:

• Set mediumXSize and mediumYSize appropriately for the physical medium
selected. Set fieldXMin, fieldXMax, fieldYMin, and fieldYMax as well (§4.3.1).

• Set T : = <S Tm CONCAT>, where Tm is the ICS-to-DCS transformation for this
page (see §4.3 and §4.4, especially §4.4.5). The transformation S is a translation
transformation determined by the xi mageS hi ft printing instruction. S : = if duplex
andpageNumber mod 2=0 then <-xlmageShift 0 TRANSLATE> else <xlmageShift
0 TRANSLATE>.

If xlmageShift is used, the imager variables mediumXSize, fieldXMin, and fieldXMax specify a smaller useful x
dimension than normal. That is, the x size is reduced by the absolute value of the image shift. These details are
omitted in the description above.

XEROX SYSTEM INTEGRATION STANDARD 43

IMAGING OPERATORS

Table 4.1 Imager variables

Name Index Type Section Initial value

Persistent:
DCScpx, DCScpy 0,1 Number 4.5 0,0
correctMX,correctMY 2,3 Number 4.10 0,0

Non-persistent:
T 4 Transformation 4.4 < 1 SCALE> (identity)
priority! mportant ·5 Cardinal 4.1.1 0
mediumXSize, mediumYSize 6, 7 Number 4.3 0,0
fieldXMin, fieldYMin 8,9 Number 4.3 0,0
fieldXMax, fieldYMax 10,11 Number 4.3 0,0
font 12 Font 4.9 < [] MAKE FONT>

color 13 Color 4.7 < 1 MAKEGRA y > (black)
nolmage 14 Cardinal 4.8 0
stroke Width 15 Number 4.8 0
strokeEnd 16 Cardinal 4.8 0 (square)
strokeJ oint 23 Cardinal 4.8 0 (miter)
underlineStart 17 Number 4.8 0
amplifySpace 18 Number 4.9 1
correctPass 19 Cardinal 4.10 0
corrects hrink 20 Number 4.10 1

2

correctTX, correctTY 21,22 Number 4.10 0,0
clipper 24 Clipper 4.8 full field

The variables differ in their treatment by the DOSAVE operator. None are restored at the completion of the DO

operator; the non-persistent variables are restored by DOSAVE; all are restored by DOSA VEALL.

4.3 Coordinate systems

Locations on the page image are denoted by (x, y) coordinates in a corresponding coordinate
system. Ultimately, all locations must be converted into the device coordinate system (DCS),
the coordinate system used by the imaging device producing the page image. However, ifthe
master were to specify coordinates directly in the device coordinate system, the master
would not be device-independent, and could not be used for other devices with different
coordinate systems. A device-independent Interpress coordinate system (ICS) is introduced in
order to establish positions and sizes of objects on a page image independent of the resolution
of the printing device. The imager operators convert from the ICS to the DCS as an image is
formed.

4.3.1 Medium size and orientation

44

The medium used to print a page is chosen by printing instructions (§3.3). The orientation of
the ICS on the medium is such that they axis points up and the x axis to the right in the
normal viewing orientation as defined below; see Figure 4.2. The physical size of the
medium (in meters) is made available in the imager variables mediumXSize and
mediumYSize; the choice of normal viewing orientation defines which is which. The
*SETMEDIUM operator (which cannot be called from the master) sets the medium ... and field ...

INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

variables before a page body is executed. The master can read these six variables with IGET;

any attempt to set them with ISET causes a master error.

y

1

1
medium

field

..... x

(0,0) --- mediumXSize ---

Figure 4.2 Physical medium

The normal viewing orientation is a property of the medium, not of the image. If the creator
knows the orientation, it can orient the image on the medium as it likes by supplying a
suitable transformation. To enhance device-independence, it is desirable for printers to
choose the normal viewing orientation consistently. Often the choice is somewhat arbitrary
(e.g., cut sheet paper which is not square can have either portrait or landscape orientation).
In case of doubt it is recommended that the choice be made so that mediumYSize is greater
than mediumXSize (portrait orientation). Creators can adapt to this convention by
supplying a 90° rotation for images which are normally viewed with the long axis horizontal.

A conventional sheet of 8-!X 11 inch paper could have either mediumXSize=0.0254X8.5=0.2159 and
medium YSize = 0.0254 X 11=0.2794, or mediumXSize = 0.2794 and mediumYSize = 0.2159. In addition, for each of
these choices there are two possible orientations of the axes on the sheet as it emerges from the printer. If the
medium consists of separate sheets of paper, a sheet can always be rotated by the reader to assume the desired
orientation. If the sheets are bound or stapled, however, or ifthe image is being displayed on an immovable display
surface, rotation is impractical. For these reasons, a consistent choice of normal viewing orientation is quite
important. However, it cannot be enforced by the lnterpress standard because of the wide variation in the physical
characteristics of printers and media. The rule given above yields mediumXSize=0.2159 and
mediumYSize=0.2794. The choice between the two orientations which remain may be arbitrary, or it may be
strongly suggested by the finishing method or other physical properties of the printer.

The two modes of placing page images onto two-sided media are simplex printing and duplex
printing. In simplex printing one page image is placed on each instance of the medium (e.g.,
on each piece of paper). The side on which the image is placed is referred to as the front side
of the page of the finished document. The (unbound) printed document is presented with the
pages in the order presented in the Interpress master when viewed from the front side.
Medium changes have no effect on on image placement or presentation order. In some cases,
as for example with a pre-printed form, the medium itself may be considered to have a front
side and a back side. In this case the side on which the image is placed may be either the
front side or the back side of the unprinted medium as specified by printing instructions.
Whichever side is used, the side on which the Interpress page image is placed is considered
the front side for document assembly.

XEROX SYSTEM INTEGRATION STANDARD 45

IMAGING OPERATORS

In duplex printing, the placement of page images on the media depends on the the medium
selection as well as the sequence of page images. To determine the image placement, the
page images in the document are first separated into runs based on the mediaSelect vector.
Each run of page images is then placed on the medium as follows: the first page image of the
run is placed on that side of the medium designated by the printing instructions as for
simplex printing; the second page image is placed on the back of the same instance of the
medium; the third page image is placed on the front of the second instance of the medium;
and so on. If there are an odd number of page images in any run, no image is placed on the
back of the last instance of the medium on which the page images in that run are being
placed and the placement of images in the next run (if any) proceeds on a new instance of the
appropriate medium. The (unbound) printed document is presented with the first, third,
fifth, etc., page images of each run to the front of the printed document.

Each medium has an associated rectangular field, a portion of the medium in which imagery
may lie. Ideally, the field would contain the entire medium, but some imaging hardware
cannot place imagery along borders of the medium. The field in which imagery may lie is
described by four numbers: fieldXMin<xg'ieldXMax, fieldYMin:::;yg'ieldYMax. These
values are available as imager variables, set by *SETMEDIUM. Conventions, printing
hardware, and imagers should strive to make the border areas as small as possible. For
example, the field of an image on a television screen would fill the entire medium (i.e., the
medium and field sizes would be identical).

4.3.2 lnterpress coordinate system (ICS)

The ICS is a standard way to specify positions on the image, using the coordinate system
origin and directions established for an image. The two coordinate axes of the ICS are named
x and y. The rectangular image includes the origin and lies in the first quadrant. The units of
measurement in the ICS are meters; coordinates in the ICS are represented by Numbers.
The coordinate system is chosen so that the y axis points "up" in the normal viewing
orientation. Coordinates in the ICS that are transformed to device coordinates must obey the
restrictions specified in §5.2.

4.3.3 Master coordinate systems

46

Using transformation operators described in §4.4, the master may establish any number of
coordinate systems in which it can express locations of objects. To establish such a
coordinate system, the master specifies a transformation that converts from the master
coordinate system into the ICS. The term master coordinates refers to coordinates that
appear in the master, which will be transformed into the ICS by a transformation also
specified in the master.

Master coordinate systems may be chosen so that all coordinates in .the master can be
conveniently represented as integers. Then a transformation is specified to convert to
lnterpress coordinates.

For example, the creator might choose to represent all coordinates in units of 1/10 printer's point, or 11720 inch. For
an 8-!X 11 inch page, coordinates would lie in the range 0..S,x<6120, 0..:S.,y..S,7920. The transformation from master to
res would scale by 0.0254/720.

INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

4.3.4 Coordinate precisiont

The precision with which an image can be created depends on the precision of the arithmetic
used in the master and in the printer to describe shapes on the image. The precision also
depends on the resolution of the imaging hardware. This section describes how Interpress
controls the imaging precision. Informally, the precision must be at least as good as the
precision of the imaging device, but is not required to be much better.

A master specifies an image by executing a sequence of primitive mask operators. Each of
these has one or more coordinates as arguments; a transformation is applied to these
coordinates. The mask operator arguments, once transformed, specify the shape and location
of the mask on the image. The ideal image is the result of applying ideal mask operators, as
defined in this document, to ideal coordinate arguments, computed by ideal arithmetic from
the literal numbers included in the master. An image is a good image for a particular device
if it is as close to the ideal image as any image that can be produced by executing the same
sequence of mask primitives, subject to limitations imposed by the precision of mask
operators and of the device resolution.

In order to describe the precision of the imaging computations, a grid is imposed on the
Interpress coordinate system. It is a rectangular lattice of points, aligned with the x and y
JCS axes, such that the JCS origin is at a grid point. The printer chooses values for gx, the
grid spacing along the x axis, and gy, the (possibly different) grid spacing along the y axis;
both are measured in meters. Grid points are thus located at all points (ngx, mgy), where n
and m are Cardinals. A spot is the rectangular region bounded by adjacent grid lines; it has
width gx and height gy.

The grid must have just enough grid points to match the spatial resolution of the imaging
device. The idea is that a good image will be produced if each coordinate is rounded to the
nearest grid point to determine where a mask should lie on the image.

If a raster-scanned device can present only bi-level images (e.g., black and white only), the grid spacing will be
identical to the pixel spacing on the device. However, a device capable of showing several intensities at each point
has an effective spatial resolution that is higher than the device's pixel resolution if images are properly filtered and
sampled. In this case, the grid spacing may be smaller than the device's pixel spacing.

Interpress places no precise requirements on how masks are scan-converted, i.e., how the shape of a mask is
converted into signals to control the pixels on the imaging device. The role of the grid in Interpress is to allow
images to be aligned with the grid to be sure they have the same spatial configuration in all cases (see TRANS).

Interpress guarantees that coordinate arithmetic errors will never exceed a fraction of a spot
dimension, provided the master obeys certain rules (§5.6).

4.3.5 Device coordinate system (DCS)t

The device coordinate system (DCS) is a transformation of the Interpress coordinate system
chosen for the convenience of the printer. A transformation Tm converts coordinates
measured in the ICS to coordinates measured in the DCS. Device coordinates must have
sufficient precision to represent grid points.

The ICS-to-DCS transformation Tm is restricted to be of the form

xncs=a(xJCslgx+y)
Ynes= fHYicslgy+B)

subject to the following constraints:

XEROX SYSTEM INTEGRATION STANDARD 47

IMAGING OPERATORS

• lvl, IBI are Cardinals

• There is some ICS point (x,y), OsxsmediumXSize, OsysmediumYSize, that is mapped
to the DCS point (0, 0).

The first constraint requires that (0, 0) in the DCS be a grid point. The second constraint ensures that no more
precise arithmetic is required to represent the DCS than to represent the ICS (see §5.6).

It is often convenient if the device coordinate system is the same as the pixel addressing conventions for the printing
device, i.e., lal = 1131=1. Thus grid points will have integer coordinates; this choice simplifies rounding to the nearest
grid point when scan-converting masks.

All of the properties of a pixel addressing system for a device are captured in the lnterpress-to-device transformation
that converts ICS coordinates into DCS coordinates. Although the device coordinate system will have its axes
aligned with those of the ICS, axis directions may vary. For example, a device coordinate system for a raster
scanned display might choose (0, 0) to be in the upper left-hand corner, with y increasing downward and x increasing
toward the right in order to correspond to pixel-addressing hardware in the display. The ICS-to-DCS transformation
can perform these conversions as well as the scaling of units.

A single specia1 operator is associated with device coordinates:

<x:Number> <y:Number> *DROUND~ <X:Number> <Y:Number>
where (X, Y) are the device coordinates of the grid point best representing the point
with device coordinates (x, y).

4.4 Transformations

48

Linear transformations are used to map coordinates from one coordinate system to
coordinates in another system. A transformation is used to map from the Interpress
coordinate system to the device coordinate system, and one may also be used to map from a
master coordinate system to the Interpress coordinate system. Transformations may be used
freely in the master to establish master coordinate systems that are convenient for
representing parts of the image.

A coordinate specified in the master may need to be subjected to several transformations in
order to map it all the way into the device coordinate system. Fortunately, the effect of
several transformations applied in sequence can be expressed as a single, combined,
transformation. The lnterpress imaging operators map every coordinate they are presented
using the current transformation T, an imager variable. This transformation expresses the
combination of all transformations that must be applied, including the ICS-to-DCS
transformation. Operators are provided for changing the value of T.

A coordinate transformation Mis represented as a 3 X 3 matrix M, interpreted as follows:

[Xto' Yto• 1] = [Xfrom• Yfrom• 1] M

We speak of this transformation mapping coordinates in the from coordinate system to those
in the to coordinate system. The matrix M has the form:

a d 0
M= b e 0

c f 1

INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

The last column of a transformation is always 0, 0, 1, and need not be explicitly stored.
Moreover, in the computation of Xto and Yto' only the following computations are required:

Xto=aXfrom + bYfrom +c

Yto=dXfrom +eyfrom +f

A transformation of this sort can represent scaling, rotation, translation, or combinations of
these primitive transformations.

Often two transformations are concatenated to form a single composed transformation that
achieves the same effect as applying the two in sequence. For example, suppose that the
transformation T represents the transformation from the Interpress coordinate system to
the device coordinate system:

[Xncs, Ynes, 1] = [X1cs' Y1cs' 1] T

Now suppose coordinates are specified in a more convenient master coordinate system (c)
and transformed by a transformation C from this system to the Interpress system:

By substituting the second equation into the first, the two steps become:

where C and T have been multiplied together to form a single matrix. By concatenating
pairs of transformations, a sequence of transformations can be represented as a single
matrix. In this way an arbitrary coordinate system may be mapped directly to the device
coordinate system.

Some printers may restrict the transformations which can be used with character operators
and pixel arrays, as described in §5.4.2.

4.4.1 Instances of symbols

The operators for modifying the current transformation are designed to help make instances

of symbols. For example, the graphical shape of a character is defined by a composed
operator: this composed operator represents the character symbol. To cause a particular
occurrence, or instance, of the character to appear on the page, the coordinates contained in
the symbol definition must be transformed into the ICS: this transformation governs the
size, orientation, and location of the instance. Then the coordinates in the ICS must be
transformed by the Interpress-to-device transformation as well. Both steps are accomplished
by replacing the current transformation matrix T, which initially contains the Interpress-to
device transformation, with a concatenated transformation CT, where C expresses the
symbol-to-Interpress transformation; the new T achieves the combined effect of both
transformations. The imaging operators in the symbol definition are now interpreted; all
coordinate arguments are transformed by the new T. When the execution of the symbol is
over, the value of T must be restored to the value in effect before the call. The primitive
operator SHOW (§4.9) performs instancing of this sort; the saving and restoring of T is
performed by DOSA VESIMPLEBODY.

XEROX SYSTEM INTEGRATION STANDARD 49

IMAGING OPERATORS

4.4.2 Notation

Coordinate transformations are used extensively in the remainder of this section. The
following notation is used for the two common kinds of transformation:

"Point" transformation: Tp(x, y, m) =(X, Y), where [X, Y, 1] =[x, y, 1] m.

"Vector" transformation: Tu(x,y, m)=(X, Y), where [X, Y, O]=[x,y, O] m.

4.4.3 Transformation operators

so

<a: Number> <b: Number> <c: Number> <d: Number> <e: Number> <f Number>
MAKET ~ < m: Transformation>

where the transformation mis defined by the matrix:

a
m= b

c

d
e
f

0
0
1

<x: Number> <y: Number> TRANSLATE~ <m: Transformation>
where the effect is 10x0 1 y MAKET. <x y TRANSLATE> will map the origin to the point
(x, y). The transformation mis defined by the matrix:

1
m= 0

x

0
1
y

0
0
1

<a: Number> ROTATE~ <m: Transformation>
where the effect is cos(a) -sin(a) 0 sin(a) cos(a) 0 MAKET. The angle a is measured in
degrees. The rotation transformation can be viewed in two ways: it rotates coordinate
axes clockwise by the angle a; or it rotates geometrical figures counterclockwise by the
angle a. The transformation m is defined by the matrix:

m=
cos (a)

-sin(a)

0

sin(a)

cos (a)

0

0
0
1

< s: Number> SCALE~ < m: Transformation>
where the effect is s 0 0 0 s 0 MAKET. The transformation mis defined by the matrix:

s
m= 0

0

0
s
0

0
0
1

<sx: Number> <sy: Number> SCALE2~ <m: Transformation>
where the effect is sx 0 0 0 sy 0 MAKET. The transformation mis defined by the matrix:

sx
m= 0

0

0
sy
0

0
0
1

The image can be reflected about the y axis by < -1 1 SCALE2 >, or about the x axis by < 1 -1 SCALE2 >. If lsxl-:t:. lsyl
the transformation is not orthogonal; SCALE2 and MAKET are the only ways to generate a non-orthogonal
transformation.

< m: Transformation> < n: Transformation> CONCAT ~ <p: Transformation>

INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

where p= mn, i.e., it is the composition of the two transformations m and n formed by
multiplying the matrices .. Small numeric errors may occur with each concatenation;
care must be exercised to avoid error accumulation (see §5.6).

4.4.4 Applying transformations

Interpress has no primitives which apply the Tp or Tv function and return a result on the
stack. The current transformation is applied automatically to coordinates by mask and
current position operators, and several other primitives.

4.4.5 The current transformation

Several imaging operators work in conjunction with the current transformation, which is
the value of the imager variable T; since T is a non-persistent imager variable, it is saved
and restored by DOSA VE and DOSA VEALL. When the interpretation of an Interpress master
begins, Tis set to the identity transformation (i.e., < 1 SCALE>). The *SETMEDIUM operator
(§4.2) alters T to establish the Interpress coordinate system.

The intention is that the Interpress coordinate system, or some more convenient system based on it, be used to
describe the entire page, often supplemented by master coordinate systems used within instances that will be
related to the Interpress coordinate system by an incremental transformation. For this reason, the operators shown
below all make incremental changes to Tin order always to incorporate the Interpress-to-device transformation as
part of any current transformation.

< m: Transformation> CONCATT-+ < >
where the effect is TIGETCONCAT TISET; i.e., Tis set to <m T CONCAT>.

<>MOVE-+<>
where the effect is GETCPTRANSLATE CONCATT; i.e., Tis modified so that the origin (0, 0)
maps to the current position. GETCP and the current position are defined in §4.5.

<>TRANS-+<>
where Tis modified so that the origin (0, 0) maps to the rounded current position. More
precisely, the effect is equivalent to { DCScpx IGET DCScpy IGET *DROUND DCScpy !SET
DCScpx !SET GETCP} MAKESIMPLECO DOSAVEALLTRANSLATE CONCATT.

The rounding operation in TRANS implies that any coordinates to which Tis subsequently applied will be translated
by an integral number of grid points. This convention allows often-used instances such as characters to be scan
converted once and then translated at will. TRANS is designed together with SETXYREL (§4.5) to achieve positioning
precision, while still letting each instance of a character be scan-converted identically.

4.5 Current position operators

The Interpress imaging operators make it easy to locate a graphical object such as a
character at the current position, a location on the page image. The current position is
measured in the device coordinate system, and is recorded in two persistent imager
variables DCScpx and DCScpy. Several operators are available for changing the current
position. It is by altering the current position that an operator displaying a character
specifies where the next character on the text line should usually lie.

The operators for changing the current position take arguments in a coordinate system
defined by the master and convert them to the device coordinate system using the current
transformation T.

XEROX SYSTEM INTEGRATION STANDARD 51

IMAGING OPERATORS

<x: Number> <y: Number> SETXY~ < >
where the current position is set to the coordinate determined by transforming x and y.
Precisely, (DCScpx,DCScpy) := Tp(x,y, T).

<x: Number> <y: Number> SETXYREL~ < >
where a relative displacement is added to the current position. Precisely, (DCScpx,
DCScpy) := Tv(x,y, T)+(DCScpx,DCScpy).

< x: Number> SETXREL ~ < >
where the effect is x 0 SETXYREL; i.e., a relative displacement in the x direction is added
to the current position.

<y: Number> SETYREL~ < >
where the effect is 0 y SETXYREL; i.e., a relative displacement in they direction is added
to the current J>OSition.

< > GETCP~ <x: Number> <y: Number>
where Tp(x, y, T) = (DCScpx, DCScpy). It is a master error if the matrix Tis too poorly
conditioned to invert.

4.6 Pixel arrays

S2

Interpress allows both masks and colors to be described by pixel arrays, arrays of numeric
samples of pixels on a two-dimensional grid. This section explains the conventions behind
the PixelArray type, which represents these arrays.

A PixelArray is constructed with the following primitive:

< xPixels: Cardinal> < yPixels: Cardinal> < samplesPerPixel: Cardinal>
< maxSample Value: Cardinal or Vector of Cardinal>
<samples! nterleaved; Cardinal> < m: Transformation>
<samples: Vector> MAKEPIXELARRAY ~<pa: PixelArray >

where the effect is complex, and is explained in the rest of this section.

The definition of a pixel array proceeds in two stages. First, a rectangular array of pixels is
defined in the pixel array coordinate system. The rectangular array defines an image in the
region O<x<xPixels, O::s_y::s_yPixels. Each pixel is defined by samplesPerPixel separate
samples, denoted by so, s1, ... , SsamplesPerPixel-1· If maxSampleValue is a Cardinal, all
sample values lie between 0 and maxSample Value inclusive; otherwise, maxSample Value is
a Vector that gives the maximum sample value for each sample. More precisely, each sample
value Si is a Cardinal in the range 0.:S.si.:S.(if <maxSampleValue TYPE> =1 then
maxSampleValue else <maxSampleValue i GET>). A master error occurs if
maxSample Value is a Vector and < maxSample Value SHAPE> is not < 0 samplesPerPixel >.
The interpretation of sample values depends on how the PixelArray is used; it is described in
§4. 7 for sampled color, and in §4.8.4 for masks.

A pixel said to be located at (px, Py) describes a region of the image centered about the point
(px+t, Py+t), and extending a distance slightly more than tin all directions. The pixel
intensity profile is not defined in detail, but may be assumed to be roughly as shown in
Figure 4.3.

INTERPRESS ELECTRONIC PRINTING STANDARD

Intensity

0 1 2 3 4

Distance (coordinate in standard coordinate system)

Example shows an image 5 pixels wide, i.e., xPixels=5.

Figure 4.3 Pixel intensity profiles

IMAGING OPERATORS

5

The samples vector must contain xPixelsXyPixelsXsamplesPerPixel samples, each recorded
in a separate element in the vector. The pixel located at (x, y) is defined by samples so, si, . .. ,
SsamplesPerPixez-1, where Si= <samples j GET> and j=(if sampleslnterleaved then
(x X yPixels + y) X samplesPerPixel + i else xPixels XyPixels Xi+ (x XyPixels + y)).

Informally, the sequence of samples in the vector is such that a rectangular grid is scanned out in a series of scan
lines. The first pixel in the vector is located at (0, 0), the next pixel at (0, 1), and so forth up to (0, yPixels -1),
defining the first scan-line. Then the next scan-line is described: the next pixel is at (1, 0), followed by (1, 1) up to (1,
yPixels- l). The final scan-line defines pixels at locations (xPixels -1.0) to (xPixels- l, yPixels -1).

If sampleslnterleaved is non-zero, all samplesPerPixel samples for a pixel are located together in the samples vector.
Thus the first samplesPerPixel samples in the vector are the samples for the pixel located at (0,0). If
sampleslnterleaved is zero, then the samples vector is conceptually divided into samplesPerPixel separate sequences,
each containing xPixelsXyPixels samples. The first sequence describes the values of the first sample over the entire
grid, the second the values of the second sample, etc.

The second stage in the definition of a PixelArray is a coordinate transformation, which
describes how to transform pixel locations in the pixel array coordinate system into positions
that will appear meaningful when printed. The intent of the transformation is to capture
different scanning orders under which the samples vector may have been recorded. The
normal convention is that this transformation converts the rectangle defined in the pixel
array coordinate system into a new rectangle with the (0, 0) point of the rectangle at the
lower-left corner when the image is "upright," they axis pointing up and ranging from 0 to
some positive value, and the x axis pointing to the right and ranging from 0 to some positive
value.

If, for example, an image were scanned using vertical scan-lines scanned bottom-to-top with scan lines appearing in
left-to-right order when the image is held upright, then the transformation might be < 1 SCALE>, the identity. If the
scan-lines are scanned top-to-bottom, the transformation would be < 1 -1 SCALE2 0 yPixels TRANSLATE CON CAT>. If
the image is scanned using horizontal scan-lines scanned left-to-right with scan lines appearing in top-to-bottom
order when the image is held upright, then the transformation would be < -90 ROTATE 0 xPixels TRANSLATE
CONCAT>.

It is the intention of the standard that a scanned image retained by a printer to be used as a form will be recorded in
the file system using these conventions. A master will then incorporate the PixelArray definition from the file
system using the sequencelnsertFile encoding notation (§2.5.3) and pass it on to a mask operator.

When a pixel array is used to define a mask (§4.8.4) or sampled color (§4.7), another
transformation um is supplied which maps the pixel array to device coordinates. Because um

must map to device coordinates, it will usually be Tor some transformation derived from T.
For a mask, um is T when MASKPIXEL is executed; for a sampled color, it is the um argument
to MAKESAMPLEDBLACK or MAKESAMPLEDCOLOR. The net transformation for the pixel array
<xPixels yPixels 1 1 1 m samples MAKEPIXELARRAY> is nm= <m um CONCAT Tm- 1

CONCAT>, where Tm- 1 is the inverse of the ICS-to-DCS transformation (§4.3.4); nm takes
the pixel array coordinate system into the Interpress coordinate system. Some printers may

XEROX SYSTEM INTEGRATION STANDARD 53

IMAGING OPERATORS

specify a set of easy values of nm which they handle efficiently, and may be unable to handle
a pixel array at all unless nm is easy (§5.4.2).

The EXTRACTPIXELARRA Y operator selects certain samples from a pixel array and constructs
a new pixel array:

< p: PixelArray > <select: Vector of Cardinal> EXTRACTPIXELARRA Y ~ <pa: PixelArray >
where pa is formed from p by extracting certain samples from every pixel. The
properties xPixels, yPixels, and mare the same for pa and for p. The Vector select gives
the indices, in the range from 0 to p's samplesPerPixel-1 inclusive, of the samples to
include in pa. For each pixel in pa, the value of a sample Si is the same as the value of
sample Sj for the corresponding pixel in p, where i= <select j GET>. The value of
samplesPerPixel for pa will be n, the number of elements in the Vector select, i.e.,
n = <select SHAPE EXCH POP>. The maximum sample values for a sample in pa will be
the same as for the corresponding sample in p.

Suppose, for example, that a pixel array stored in frame element 1 has four samples per pixel. Samples 0, 1, and 2 are
part of a three-color image, while sample 3 is a binary value used as a mask. Since Interpress requires that the color
and mask be used separately, EXTRACTP!XELARRAY is used to separate them from the original pixel array. The
sequence < 1 FGET [0 1 2] EXTRACTPIXELARRA Y > yields the three-color pixel array, while < 1 FGET [3 l
EXTRACTPIXELARRA y > obtains the mask.

4.6.1 Compressing sample vectors

54

When an Interpress master includes a large pixel array, its samples vector is often
compressed. The compressed samples are expressed as a single vector, plus an operator that
can "decompress" the data in the vector into the expanded form of the samples vector. The
decompression operator is obtained from the environment, then called with some form of DO;
the following illustrates the form of a decompression operator:

< v: Vector> decompress DO~ <samples: Vector>
where v contains the compressed pixel data and any additional parameters the
decompress operator may need.

A decompression operator is obtained by the FINDDECOMPRESSOR primitive:

< v: Vector> FINDDECOMPRESSOR ~ < o: Operator>
where v is a Vector of Identifiers which is the universal name of a decompression
operator. The operator is returned as o. If o is applied to a vector containing pixel data
compressed in the proper way, it returns the uncompressed vector.

Note that decompression operators are intended to be used only in making PixelArrays: e.g.,
300600111
1 scale
[-- compressed pixel vector --1 [Xerox, packed] FINDDECOMPRESSOR DO

MAKEPIXELARRA Y.

If they are executed in other contexts, limits of the implementation may be exceeded or poor performance may
result.

Note that decompression operators may reorder data arbitrarily so as to conform to the format of the samples vector
required by MAKEPIXELARRAY. Also, decompression operators can be defined that convert non-rectangular scanning
regimes (e.g., hexagonal) into samples on a rectangular grid.

INTERPRESS ELECTRONIC PRINTING STANDARD

4.7 Color

IMAGING OPERATORS

The color that will be deposited on the page image is determined by the value of the color
variable when a mask operator is invoked. Wherever the mask allows it, the color specified
by the imager variable color is deposited on the page image, obliterating (or modifying) any
color previously laid down at the same position on the page. There are two ways to specify
the color that will be deposited on the page image where the mask allows: a constant color,
and color sampled on a raster. A value of type Color fully specifies a color; a subtype
ConstantColor is used for constant colors.

The color variable, which determines the color deposited on the page by a mask operator, is
initialized to < 1 MAKEGRA Y >, or full black. It can be set with ISET. There are also
convenience operators for setting it to a constant gray or a sampled color.

4.7.1 Constant color

A constant color deposits the same color at each point of the mask. Constant colors may be
obtained with MAKEGRA Y or FINDCOLOR and used to set the color imager variable:

<f Number> MAKEGRAY~<col: ConstantColor>
where col represents a shade of gray specified by f, 09'_< 1. Informally, f=O corresponds
to white, and f = 1 to black. More formally, f= 0 corresponds to the maximum intensity,
and f= 1 to the minimum intensity achievable with the imaging medium under normal
viewing conditions. Intermediate values of f produce intermediate intensities:
Ir= Io-/Uo- 11), where Iris the intensity oflight energy corresponding to f.

MAKEGRAY is intended to yield neutral colors linearly spaced in the range of intensities achievable with the imaging
medium. For a printer depositing black ink on white paper, r=o corresponds to the paper color, and r= 1 to the color
of black ink on the paper; r =t might be implemented with a checkerboard pattern of ink. For a negative image on
film, r=o corresponds to minimum transmittance, and r=l to maximum transmittance. For a video display, r=o
corresponds to maximum emitted intensity, and r= 1 to minimum intensity.

< v: Vector> FINDCOLOR ~ <col: ConstantColor >
where vis a Vector ofldentifiers which is the universal name of the desired color. If the
specified color cannot be found, an appearance error is generated, and an approximation
to the color is returned. Examples of color names might be Xerox/highlight or
nbs/cns/bluegreen.

Sometimes rather than naming each color separately, it is useful to parameterize colors
using a color coordinate system. A color operator is an Operator that behaves in the
following way:

< coords: Vector of Number> colorOperator DO~ <col: ConstantColor >
where col represents the color whose coordinates are coords in the color coordinate
system used by colorOperator. For example, a colorOperator might be designed to
interpret measurements in the CIE system, in which case coords would be a three
element vector giving the X, Y, and Z coordinates of the desired color.

Normally, color operators will not be specified in a master, but will rather be obtained from
the environment with the following operator:

<u: Vector> FINDCOLOROPERATOR~ <colorOperator: Operator>
where v is a Vector of Identifiers which is the universal name of the desired color
operator.

XEROX SYSTEM INTEGRATION STANDARD SS

IMAGING OPERATORS

Sometimes a color operator is part of a family of color operators that all have certain
similarities. A color model operator is an Operator that, when called, returns a color
operator. It behaves in the following way:

<parameters: Vector> colorModelOperatorDO-+ <colorOperator: Operator>
where parameters is a Vector that determines exactly what kind of colorOperator is
desired.

For example, consider a class of operators that accept gray-scale pixel arrays, in which each pixel is defin!Jd by a
single sample in the range Swhite• .. . , sblack· These operators scale each sample so that a sample whose value is Swhite

will correspond to paper color and a sample whose value is sblack will correspond to the blackest ink achievable, and
samples in between will scale linearly between white and black. All of these operators can be described by a single
color model operator, which takes the argument [swhite• sblackl and returns a color operator, which in turn will map
an argument [s0] to the appropriate shade of gray, equivalent to <f SETGRAY>, where
f=min(max((so-swhite)!(sblack-swhite), 0), 1).

Color model operators are usually obtained from the environment with the following
operator:

<v: Vector> FINDCOLORMODELOPERATOR-+ <colorModelOperator: Operator>
where vis a Vector ofldentifiers which is the universal name of the desired color model
operator.

4. 7 .2 Sampled color

56

A sampled color allows the presentation of stipple patterns, photographs, and other images
with rapidly varying colors. The idea is to specify the color at each point in a two
dimensional array; the array is then transformed to appear on the page at an arbitrary
position. Large areas can be tiled by repeating the sample array.

<pa: PixelArray > <um: Transformation> < colorOperator: Operator>
MAKESAMPLEDCOLOR--+ <col: Color>

where pa provides color samples, um is a transformation that maps the region defined
by pa to device coordinates, and colorOperator is an operator that maps each pixel's
samples into the appropriate color.

If pa is made by <xPixels yPixels samplesPerPixel maxSampleValue sampleslnterleaved pm
samples MAKEPIXELARRAY>, then <pa um colorOperator MAKESAMPLEDCOLOR> defines a
region in the lnterpress coordinate system which is the rectangle with corners at (0, 0) and

(xPixels, yPixels), transformed by the net transformation nm= <pm um CONCAT T1 - 1

CONCAT> (§4.6). This region is used as a tile to build an arbitrarily large pattern of ccfior
which encompasses the entire page image-see Figure 4.4.

The color of a pixel in pa with sample values so, s1, ... , SsamplesPerPixel-1 is obtained by

<[so, s1, ... , SsamplesPerPixez-1] 1 MARK color0perator DOSA VEALL 1 UNMARK >.

Note that execution of the color operator cannot have any side effects.

It is not expected that an Interpress implementation will actually call colorOperator once for every pixel in the pixel
array. If colorOperator is obtained with FINDCOLOROPERATOR or FINDCOLORMODELOPERATOR, the imager probably has a
highly efficient implementation of the color computation, perhaps even performed in special hardware. Creators
should in general not compose their own colorOperators to use with MAKESAMPLEDCOLOR, because the performance
penalty may be intolerable.

To fill in an outline with some repetitive pattern, such as a cross-hatch, find the smallest image which can be
replicated by tiling to produce the pattern. Construct a PixelArray which specifies this image, apply
MAKESAMPLEDCOLOR to obtain a color, and store it into the color variable. Then construct the desired outline, and use
MASKFILL to apply the pattern to the region defined by the outline.

INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

Normally the tile is a rectangle, as in the left-hand picture.
The right-hand picture illustrates a pathological case of
non-rectangular tiles. The darker parallelogram in both
pictures is the one specified by the PixelArray.

Figure 4.4 Tiling the page with a color parallelogram

A special form of sampled color, limited to binary black-and-white images, is constructed
with the following operator:

<pa: PixelArray > < um: Transformation> <clear: Cardinal> MAKESAMPLEDBLACK
~ <col: Color>

where pa provides binary samples, um is a transformation that maps the region defined
by pa to device coordinates, and clear is 0 or 1. The samplesPerPixel, maxSampleValue,
and sampleslnterleaved parameters of pa must all be 1. In all respects except the
determination of the color to deposit, the effect of MAKESAMPLEDBLACK is like that of
MAKESAMPLEDCOLOR.

The color deposited through the mask on an image pixel corresponding in position to a pixel
array sample value of x depends on x. If x = 1, the color is black, i.e., < 1 MAKEGRAY >. If
x=O, the effect depends on clear: for clear=O the color is white, i.e., <0 MAKEGRAY>; for
clear= 1 no ink is deposited, i.e., the color is clear.

4.7.3 Convenience operators

The following convenience operator sets the color variable to a constant gray:

<{:Number> SETGRAY~ < >
where the effect is fMAKEGRAY color ISET.

The following convenience operators set the color variable to a sampled color:

<pa: PixelArray> < m: Transformation> <colorOperator: Operator> SETSAMPLEDCOLOR
~<>

where the effect is pa m T IGET CONCATcolorOperator MAKESAMPLEDCOLOR color ISET.

<pa: PixelArray > < m: Transformation> <clear: Cardinal> SETSAMPLEDBLACK ~ < >
where the effect is pa m T IGET CONCAT clear MAKESAMPLEDBLACK color ISET.

Note that these operators concatenate the current transformation T to their transformation argument before calling
MAKESAMPLEDCOLOR or MAKESAMPLEDBLACK.

XEROX SYSTEM INTEGRATION STANDARD 57

IMAGING OPERATORS

4.8 Mask operators

The mask operators are the central focus of the Interpress master, for they determine the
shapes of images that are laid down on the page image. The most common shapes are those
used to make images of characters; these masks are specified in pre-defined sets of character
definitions called fonts (§4.9). Mask operators are also available to make images of
rectangles, line drawings, or filled outlines, and to use a pixel array to specify samples of the
mask.

When a mask operator is executed, the page image is altered. The operation of a mask
operator is controlled in part by its arguments and in part by imager variables. The
following variables affect all mask operators:

• T, the current transformation. The mask commands all require sizes and coordinates,
which will be transformed by the current transformation to determine the coordinates of
the mask on the page image.

• color. The color variable governs the color of the object that will be placed on the page
image by a mask operator (§4.7).

• prioritylmportant. The priority order of objects laid down when prioritylmportant=t::O is
preserved (§4.1.1).

• nolmage. If nolmage is non-zero, a mask operator will have no effect on the page image,
although it will have the proper effect on the stack and imager variables. If nolmage is
zero, the operator will alter the image as explained below. When the interpretation of an
Interpress master begins, nolmage is set to zero. The purpose of nolmage is explained in
§4.10.

• clipper. The clipper variable defines the region on the page in which mask operators will
be able to alter the page image. Modifications to the page image that lie outside this
region are inhibited (§4.8.5).

4.8.1 Geometry: trajectories and outlines

58

Shapes are defined geometrically in terms of segments, trajectories, and outlines. A segment
is a directed line or curve segment; it has a start point and an end point. A trajectory is a
sequence of connected segments; the end point of a segment coincides with the start point of
the next one. A closed trajectory is a trajectory that closes upon itself, that is, the end point of
the last segment in the trajectory coincides with the start point of the first segment. An
outline is a collection of trajectories; each trajectory in an outline is implicitly closed by a
straight-line segment linking the end point of the last segment with the start point of the
first segment.

Trajectories and outlines are represented by two corresponding Interpress types. Values of
these types are data structures that are built by constructor operators described in this
section. There are no operators for decomposing trajectories or outlines into their constituent
parts, because values of these types are used simply as a way to pass a description of a
complex shape to an imaging operator.

Trajectories and outlines are given a geometrical interpretation only when they are used to
specify a mask or clipping outline. At this point, the numbers describing the trajectory or

INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

outline are interpreted as defining geometry in the master coordinate system; imaging
operators such as MASKFILL and MASKSTROKE convert this geometry to the device coordinate
system by applying the current transformation T. Thus the value of T while the trajectory is
constructed is ignored; only the value of T when the mask operator is executed is important.

Trajectories may be constructed with primitive operators. A trajectory is started with
MOVETO, which places on the stack a trajectory value describing the trajectory. Then the
trajectory is extended by operators such as LINETO or CURVETO, which add a segment to a
trajectory. A last point (lp) is always associated with a trajectory: it is the end point of the
last segment in the trajectory.

<x: Number> <y: Number> MOVETO~ <t: Trajectory>
where t describes a new trajectory; t's lp is (x, y).

<ti: Trajectory> <x: Number> <y: Number> LINETO~ <t2: Trajectory>
where t2 is formed by extending ti with a straight-line segment from t1's lp to the point
(x, y); t2's lp is (x, y).

<ti: Trajectory> < x: Number> LINETOX---> < t2: Trajectory>
where the effect is <ti x Yo LINETO >,where (xo, yo) is ti's lp.

<ti: Trajectory> <y: Number> LINETOY~ <t2: Trajectory>
where the effect is <ti xo y LINETO >,where (xo, yo) is ti's lp.

<ti: Trajectory> <xi: Number> <yi: Number> <x2: Number> <yz: Number>
<x3: Number> <y3: Number> CURVETO~ <t2: Trajectory>

where tz is formed by extending ti with a cubic curve segment. Let Po= (xo, Yo)= ti's lp,
Pi =(xi, Yi), P2=(x2, yz), and P3=(x3, y3). The curve is determined by Bezier control
points Po, Pi, P2, P3 in order; it starts at Po, tangent to and pointed in the direction of the
line from Po to Pi; it ends at P3, tangent to and pointed in the direction of the line from
P2 to P3; tz's lp is P3.

The Bezier control points represent the parametric curve

x = axt3 + bxt2 + Cxt + dx, y=ayt3 + byt2 + cyt + dy, O..'.S_t< 1, where

ax = X3 - 3xz + 3xi - XO, bx = 3xz - 6xi + 3xo, Cx = 3xi - 3xo, dx = XO,
ay = y3 - 3yz + 3yi -yo, by = 3yz - 6yi + 3yo, cy = 3yi - 3yo, dy = YO·

Bezier curves are extremely versatile: any parametric cubic curve can be expressed as a Bezier curve; a simple
computation converts coefficients of the parametric cubic equations into Bezier control points. A wide range of
curves can be generated by fitting several Bezier curves together so as to preserve continuity at the joints. Because
the x and y components of a Bezier curve are defined by independent parametric equations, the same curve results
whether the curve is drawn in master coordinates and then transformed into device coordinates, or the control
points are first transformed to device coordinates and then used to draw the Bezier curve defined by them.

<ti: Trajectory> <xi: Number> <yi: Number> <x2: Number> <yz: Number>
<s: Number> CONICTO~ <t2: Trajectory>

where t2 is formed by extending ti with a conic curve segment. Let Po= (xo, yo)= ti's lp,
Pi= (xi, Yi), and P2 = (xz, yz). The curve is a piece of a conic section; it starts at Po,
tangent to and pointed in the direction of the line from Po to Pi; it ends at P2, tangent to
and pointed in the direction of the line from Pi to P2; tz's lp is P2. The shape parameters,
O..'.S_s..'.S_l, is the ratio of the distances PmPs and PmP1, where Pm is the midpoint of PoP2,
and P 8 is the point at which the curve intersects P mP1.

The segment is a piece of an ellipse if s<t, a piece of a parabola if s=t, and a piece of a hyperbola ifs >t. Note that
three or more CONICTO calls are required to construct a closed trajectory such as an ellipse or circle. As with Bezier
curves, the same curve results whether the curve is drawn in master coordinates and then transformed into device
coordinates, or the control points are first transformed to device coordinates (leavings unchanged) and then used to
draw the conic section defined by them.

XEROX SYSTEM INTEGRATION STANDARD S9

IMAGING OPERATORS

60

The convenience operator ARCTO appends a circular arc to a trajectory; the effect of the
operator is equivalent to one or more invocations of CONICTO. Note that non-uniform scaling
in the current transformation may distort circles defined in master coordinates into ellipses
on the page image.

<t1: Trajectory> <x1: Number> <y1: Number> <x2: Number> <y2: Number>
ARCTO ~ < t2: Trajectory>

where t2 is formed by extending t1 with an arc of a circle. Let Po= (xo, Yo)= t1 's lp,
P1 =(xi, Y1), and P2 = (x2, Y2); the arc starts at Po, passes through Pi, and ends at P2; t2's
lp is P2. It is recommended that P1 lie near the halfway point along the arc. If P2 is
coincident with Po, the arc is a counterclockwise full circle with diameter PoP2.
Otherwise, if the three points are collinear, the effect is equivalent to <x1 YI LINETO x2
Y2 LINETO>.

(a) CURVETO examples

(b) CONICTO examples

(c) ARCTO examples

Figure 4.5 Curved trajectory segments

An outline is represented by a separate type, built using the one of the following operators:

<t1: Trajectory> <t2: Trajectory> ... <tn: Trajectory> <n: Cardinal> MAKEOUTLINE
~ < o: Outline>

where the trajectories t1, t2, ... , tn together form an outline. Each of the trajectories will
be closed if necessary. The outline comprises all points with non-zero winding number.

INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

<t1: Trajectory> <t2: Trajectory> ... <tn: Trajectory> <n: Cardinal> MAKEOUTLINEODD

~ < o: Outline>
where the effect is like that of MAKEOUTLINE, except that the outline comprises all
points with odd winding number.

Primitives that take an Outline argument need to decide which points lie "inside" the
outline. To decide if a point lies inside an outline, it is necessary to compute the point's
winding number. The winding number counts the number of times the point is surrounded
by an outline. The winding number of a point with respect to an outline o is the net number
of times a point traversing the (closed) trajectories which form the outline wraps around the
given point in a counterclockwise direction. MAKEOUTLINE uses the convention that points
with a non-zero winding number lie inside the outline.

Figure 4.6 illustrates several outlines and shows their "insides" according to these two
conventions. Note that for multi-trajectory outlines, the order in which points on a trajectory
are specified is important.

Trajectory 1 MAKEOUTLINE MASKFILL 1 MAKEOUTLINEODD MASKFILL

D
D D

Trajectories 2 MAKEOUTLINE MASKFILL 2 MAKEOUTLINEODD MASKFILL

a
a a

Figure 4.6 Winding number conventions

XEROX SYSTEM INTEGRATION STANDARD 61

IMAGING OPERATORS

4.8.2 Filled outlines

62

There is one operator for creating a mask from an outline. It defines a mask to be the
"inside" of an outline:

< o: Outline> MASKFILL ~ < >
where the mask is defined as the region inside the outline o', where o' is obtained by
transforming o into device coordinates using the current transformation T.

There is a specialized variant of MASKFILL for imaging an arbitrary rectangle with its sides
parallel to the coordinate axes:

< x: Number> <y: Number> < w: Number> < h: Number> MASKRECTANGLE ~ < >
where the effect is

x y MO VETO x w ADD LINETOX y h ADD LINETOY x LINETOX
1 MAKEOUTLINE MASKFILL

i.e., the mask is a rectangle of width wand height h with corners at (x, y), (x+ w, y), (x,
y+ h), and (x+ w, y+ h).

Note that the coordinates of the corners are first computed and then transformed to device coordinates using the
current value of T; for this reason, the mask on the page image may not be rectangular.

Character strings can be underlined by placing a rectangle of appropriate width and height
just below the string. The width of the rectangle will be determined by the width of the
character string. The position of the underline along the baseline will be determined by the
current position, but because of possible spacing corrections the current position cannot be
anticipated accurately when the master is created. The operators STARTUNDERLINE and
MASKUNDERLINE are provided to help position underlines accurately. They assume a master
coordinate system in which the baseline is oriented in the positive x direction.

< > STARTUNDERLINE~< >
where the effect is GETCP POP underlineStart ISET; i.e., the x component of the current
position is remembered as the starting point for an underline.

<dy: Number> <h: Number> MASKUNDERLINE~< >
where the effect is
{2FSET1 FSET
GETCP 4 FSET 3 FSET

underlineStart IGET
4 FGET 1 FGET SUB 2 FGET SUB
SETXY TRANS 0 0
3 FGET underlineStart IGET SUB
2 FGET MASKRECTANGLE

} MAKESIMPLECO DOSA VEALL

-- now dy= <1 FGET>, h= <2 FGET> --
-- current position X = < 3 FGET >, Y = < 4 FGET > --
-- underlineStart --
-- Y -dy-h --
-- set origin to (underlineStart, Y-dy-h) --
-- X-underlineStart --
-- h --
-- don i clobber the frame, current position, or T--

That is, the text starting at the point previously identified by STARTUNDERLINE and ending at the current position
will be underlined with a rectangle of height h and top a distance dy below the current position. For example, to
underline the word Hello, the master might use STARTUNDERLINE <Hello> SHOW 4 1 MASKUNDERLINE.

The following two convenience operators are provided to specify masks that are filled
trapezoids aligned with the coordinate axes:

<x1: Number> <y1: Number> <x2: Number> <x3: Number> <y3: Number>
< x4: Number> MASKTRAPEZOIDX ~ < >

where the effect is x1 YI MOVETO x2 LINETOX X3 Y3 LINETO X4 LINETOX 1 MAKEOUTLINE
MASKFILL.

INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

<x1: Number> <y1: Number> <y2: Number> <x3: Number> <y3: Number>
<y4: Number> MASKTRAPEZOIDY~< >

4.8.3 Strokes

where the effect is X1 Yl MOVETO Y2 LINETOY X3 Y3 LINETO Y4 LINETOY 1 MAKEOUTLINE

MASKFILL.

Several mask operators create a mask from a trajectory which defines the center-line of a
stroke to be drawn on the page image. The imager variables strokeWidth, strokeJoint, and
strokeEnd control the width of strokes, the shape of joints between stroke segments, and the
shape of stroke ends.

< t: Trajectory> MASKSTROKE ~ < >
where the mask is a stroke along trajectory t. Each segment oft is broadened to have
uniform width strokeWidth; joint features specified by strokeJoint are added between
segments; endpoint features specified by strokeEnd are added at the ends; and the
resulting shape is transformed into device coordinates by the current transformation T,
and used as a mask to alter the page image.

< t: Trajectory> MASKSTROKECLOSED ~ < >
where tis first closed with a straight line segment if necessary, and the mask is a stroke
along the resulting closed trajectory. Each segment is broadened to have uniform width
stroke Width; joint features specified by strokeJ oint are added between segments; and the
resulting shape is transformed into device coordinates by the current transformation T,
and used as a mask to alter the page image.

The shape of the stroke in the master coordinate system is the union of the broadened
trajectory segments, the joint features, and the endpoint features if any. The precise shape of
each of these components is described below.

The broadened shape of a trajectory segment s is determined as follows: for each point p on s,
construct a line segment of length stroke Width, perpendicular to s, with midpoint at p. The
broadened shape is the union of all such line segments.

A joint feature fills the gap between broadened segments that occurs on the convex side of
the joint if the trajectory slope is discontinuous. There are three options:

strokeJ oint = 0 (miter). Sides of the broadened segments are extended by straight lines in
the direction of their respective slopes until they meet, and the resulting quadrilateral is
filled. Segments meeting at an acute angle will thus generate long, sharp spikes.

strokeJoint= 1 (bevel). The corners of the gap are joined by a straight line, and the
resulting triangle is filled.

strokeJoint= 2 (round). The corners of the gap are joined by an arc of a circle of diameter
stroke Width centered at the joint, and the resulting sector is filled.

An endpoint feature caps each end of a trajectory. There are three options:

strokeEnd = 0 (square). A butt end is formed after extending the stroke a distance of half
its width in the direction in which the trajectory was pointed at its endpoint.

strokeEnd= 1 (butt). Ends are simply squared off: no endpoint feature is added.

XEROX SYSTEM INTEGRATION STANDARD 63

IMAGING OPERATORS

64

strokeEnd=2 (round). The end is capped with a semicircle whose diameter is
stroke Width and whose center coincides with the trajectory endpoint.

If square end geometry is undetermined because the trajectory is a single point, an
appearance error is generated instead of a mask.

Figure 4. 7 illustrates various combinations of end and joint treatment.

The convenience operator MASKVECTOR may be used to draw strokes whose trajectories are a
single line segment:

<x1: Number> <y1: Number> <x2: Number> <y2: Number> MASKVECTOR~ < >
where the effect is X1 YI MOVETO x2 Y2 LINETO MASKSTROKE.

The following operator uses a trajectory and a repeating pattern to define a dashed stroke:

<t: Trajectory> <pattern: Vector of Number> <offset: Number> <length: Number>
MASKDASHEDSTROKE ~ < >

where trajectory t is the centerline of the dashed stroke; pattern specifies a repeating
dash pattern, offset specifies a starting position in the pattern, and length, if positive,
specifies how much of the pattern is to be mapped onto the total length oft. The effect is

to+d MASKSTROKE t2+d MASKSTROKE t4+d MASKSTROKE ... t2e+d MASKSTROKE
where trajectories to, ti, t2, .. . , tm are defined as follows:

The last point of ti coincides with the initial point of ti+ 1 (0 < i:S_m; m defined below).
to, ti, t2, .. . , tmjoined together in order are equivalent to the original trajectory t.
n = <pattern SHAPE EXCH POP> (number of elements in pattern; require n >O).
l = <pattern SHAPE POP> (lower bound of pattern).
Qi = <pattern i l SUB n MOD GET> (elements .of.pattern, used cyclically; require
Qi>O).
L =total arc length of trajectory t, in master coordinates.
g = 1 if length<O, L/length if length>O.
Q = Qo +QI+ Q2 + ... + Qn-1 (total length of pattern; require Q>O).
f = offset mod (2Q) (in case offset is negative or larger than Q; the 2 is in case n is
odd).
k = smallest nonnegative integer such that qo + QI + Q2 + ... + Qk;::f,
d = k mod 2 (d will be 0 if to is a dash, 1 if it is a gap).
m = smallestnonnegativeintegersuchthatqo +QI+ Q2 + ... + Qk+m:2:.f+Llg.
e = L(m-d)/2J (largest integer such that2e+d<m).
Po= Qo + Q1 + Q2 + ... + Qk -f(ifm>O;ifm=Othenpo=Pm=Llg).
Pi= Qi+k (O<i<m).
Pm= L/g-(po +PI+···+ Pm-1).
The arc length of ti in master coordinates is equal to gXPi·

The elements of pattern specify the lengths of the dashes and the gaps between them; the
first element of pattern corresponds to a dash. The pattern is repeated as often as necessary.
Thus pattern = [10] produces alternating 10-unit dashes and 10-unit gaps, while pattern =
[15, 5] produces 15-unit dashes and 5-unit gaps.

The offset specifies the position in the pattern that corresponds to the beginning of the
trajectory. Consider pattern = [10]. If offset = 0, the dashed stroke begins with a 10-unit
dash. If offset = 6, the dashed stroke begins with a 4-unit dash, since the starting point in
the pattern is 6 units into the first dash. If offset = 12 (or -8), the dashed stroke begins with
an 8-unit gap, followed by a 10-unit dash, a 10-unit gap, and so on.

INTERPRESS ELECTRONIC PRINTING STANDARD

strokeEnd

=round

strokeEnd

=butt

strokeEnd

=square

Closed
strokes

strokeJoint =miter

IMAGING OPERATORS

strokeJ oint =bevel strokeJoint=round

Figure 4. 7 Stroke examples

The length, if positive, specifies how much of the pattern will be stretched or shrunk to fit the
entire length of the trajectory. Consider pattern = [10] and offset= 0, with a trajectory 110
units long. If length = 90, 90 units of pattern will be stretched to 110 units in master
coordinates; thus there will be exactly 5 dashes and 4 gaps, each lOX(ll0/90) units long. If
length = 130, 130 units worth of pattern will be shrunk to 110 units in master coordinates;
thus there will be exactly 7 dashes and 6 gaps, each lOX(ll0/130) units long. If length is not
positive, it defaults to the actual length of the trajectory in master coordinates.

XEROX SYSTEM INTEGRATION STANDARD 65

IMAGING OPERATORS

Figure 4.8 shows several examples of dashed strokes.

pattern = [10]

pattern = [5]

pattern = [15, 5]

pattern = [15, 5, 10]

offset= 0

offset= 6

offset= 12

strokeEnd = butt

strokeEnd = round

strokeEnd = square

length= 110

length= 90

length= 130

- - - - - -••••••••••• -- • - •
-----·---------· ------
- - - - - -
- - - - - - -

pattern = [0, 5, 0, 5, 0, 20], ••• ••• ••• •• offset = 0, strokeEnd = round

pattern = [10, 20], - - -offset = 15, strokeEnd = butt

Combined ••• - ••• - ••• - ••
Figure 4.8 Dashed strokes

4.8.4 Sampled masks

66

Some masks are conveniently specified by a two-dimensional array of pixels that describe
where the mask lies and where it does not. Such a mask might be obtained by scanning a
complicated shape with a raster input scanner.

<pa: PixelArray> MASKPIXEL~ < >
where the region defined by pa's pixel array coordinate system is transformed by < m T
CONCAT> (mis the transformation used to make pa), thereby defining a region of the
page image to be altered. The samplesPerPixel and maxSample Value parameters of pa
must be 1. A sample value of 0 identifies a pixel that is not part of the mask (i.e., where
color will not be deposited), while a sample value of 1 identifies a pixel that is completely
covered by the mask.

INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

4.8.5 Clipping operators

The region of the page image within which mask operators are allowed to have an effect is
called the clipping region. The Clipper type represents a clipping region; this type is used
only by the clipper imager variable, which saves the clipping region in device coordinates.
When a page body is started, the *SETMEDIUM operator (which cannot be called explicitly by
the master) sets the clipping region to a rectangular outline that fills the useable field of the
page image.

The only operations on the clipping region further restrict it by intersecting the current
clipping region with an outline supplied by the master:

< o: Outline> CLIPOUTLINE ~ < >
where outline o' is obtained by transforming o into device coordinates using the current
transformation T, then the current clipping region is set to the intersection of the
previous clipping region and o'. A point will be inside the new clipping region if and only
if it lies inside the previous clipping region and inside o'.

<x: Number> <y: Number> <w: Number> <h: Number> CLIPRECTANGLE~< >
where the effect is

x y MOVETO x w ADD LINETOX y h ADD LINETOY x LINETOX

1 MAKEOUTLINE CLIPOUTLINE.

Note that the coordinates of the corners are first computed and then transformed to device coordinates using
the current value of T; for this reason, the clipping outline on the page image may not be rectangular.

A creator should do as much clipping as possible as the master is constructed, eliminating objects that lie wholly off
the page. Clipping by the printer is required to clip character shapes, which are not accessible to the creator and can
therefore not be clipped as the master is constructed.

4.9 Characters and fonts

It is possible to make an image of any character using the mask commands already
introduced: pixel arrays and filled outlines are especially well suited to describing character
shapes. Unfortunately, an Interpress master that described each character shape each time
it was used would be unreasonably long. The master could be shortened considerably by
defining a composed operator corresponding to each character; the operator could then be
invoked in order to generate a mask of the character. But even a single shape definition of
each character would require substantial storage and threaten device-independence.

Instead of requiring that each lnterpress master define character shapes in terms of more
primitive mask operators, an Interpress printer will generally have a library of character
definitions that will provide an operator for each character to be printed. These definitions
may even involve device-dependent properties that cannot be specified in an lnterpress
master itself. For example, a phototypesetter might have optical masters of the characters
and a zoom lens to control the size.

Character definitions come in collections called fonts. All the characters in a font are
designed to appear consistent when printed in words and lines; their widths are chosen so
that they juxtapose pleasantly; and they are drawn consistently: their size, style, blackness,
and so forth are all compatible.

A font describes the geometry of each character in a character coordinate system, in which
characters have a standard size and orientation. For each character, there is a corresponding

XEROX SYSTEM INTEGRATION STANDARD 67

IMAGING OPERATORS

character operator. Instances of characters are placed on the page by invoking character
operators with suitable transformations. A character operator performs three operations:

1. Generates masks. It invokes mask operators to specify the mask or masks that define the
shape of the character, thus causing an image of the character to be added to the page
image. The placement, size, and orientation of the mask are controlled by the current
transformation.

2. Moves to next character position. It alters the current position so as to prepare for the
next character in a sequence. Informally, it adds the "width" of the character to the
current position. More precisely, it specifies where the origin of the next character
should (usually) be placed. This displacement of the current position is called the
character's escapement.

3. Corrects spacing. It may make small adjustments to the current position to compensate
for inaccuracies in character escapements. This may happen, for example, if a printer
substitutes a different font because it cannot find the requested font in its library.

Generating masks: Figure 4.9 shows examples of character masks defined in the character
coordinate system. The masks have an origin, shown as (0, 0) in the figures. When a
character operator is invoked with SHOW (§4.9.3), an image of the character will be placed on
the page so that this origin coincides with the current position at the time the character
operator is invoked. Consequently, the origin is chosen for convenience in placement. The
orientation of they axis is such that it points upward from the origin when the character is
viewed in the normal reading orientation.

Moving to the next character position: The character's escapement is represented by the
distances escapementX and escapementY, illustrated in Figure 4.9. After the character's
mask is imaged, the current position is altered by executing escapementX escapementY
SETXYREL.

For most western languages, characters are read horizontally, so normally escapementY is zero and escapementX is
positive. This yields left-to-right spacing as shown in Figure 4.lOa. Traditional Chinese characters, which are set
top-to-bottom, might have a zero escapementX and a negative escapementY to establish a current position for a
character immediately below the present one; this is illustrated in Figure 4.lOb. Hebrew characters, which are set
right-to-left, may have negative escapementX values, as shown in Figure 4.lOc.

When text is justified between fixed margins, the width of "spaceband" characters is
adjusted so that the words on the line appear evenly spaced. Such characters, termed
amplifying characters, achieve the effect of a spaceband by using a slightly different spacing
computation, namely escapementX*amplifySpace escapementY*amplifySpace SETXYREL,

where amplifySpace is an imager variable. The width of an amplifying character is
determined in part by the font designer, who specifies escapementX and escapementY, and in
part by the master, which sets amplifySpace.

Correcting spacing: Character operators work with the CORRECT operator to adjust spacing
slightly to compensate for inaccurate character escapements (see §4.10). To provide an
opportunity to alter the character spacing slightly, each character operator may call
CORRECTSPACE or CORRECTMASK. The type of call is determined by the font designer, but is
suggested by the following conventions:

• If the character's width can be adjusted to remedy spacing problems, the operator calls
CORRECTSPACE.

68 INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

• If the character's width should not be adjusted (e.g., a character which deposits ink, or a
"figure space" designed to equal precisely the widths of the figures 0 to 9), the operator
calls CORRECTMASK.

• A very few character operators may call neither of the correction operators. This will be
the case ifthe spacing after the character must not be altered.

For example, suppose a font contains a character definition for an acute accent, with
escapementX =escapementY =0. The accent character operator will be called just before the operator for the
character to be accented. The font is designed so that the accent is correctly positioned with respect to the
character shape. In this case, even small adjustments to mask positions might make the accented character
illegible.

4.9.1 Character coordinate system

4.9.2 Fonts

The actual size and orientation of a character placed in the image is controlled by the
transformation that is current when the character operator is invoked. In order to predict
the size of characters on the page, an Interpress creator must know in what units the
characters in a font are specified. The character coordinate system serves this purpose.

The character coordinate system for a font in the environment is established by the font
designer, according to the universal naming scheme and registry described in §3.2.2. Font
designers are strongly encouraged to adopt the following convention whenever possible: in
the character coordinate system, characters are defined in portrait orientation, with a scale
such that the body size of the font is one unit.

The recommended convention follows naturally for fonts, including most typographic fonts, whose sizes are
normally given in terms of body height, e.g., in printer's points; thus for a "10 point" font, a distance of 10 points
equals one unit in the character coordinate system. For fonts whose sizes are not normally given in terms of body
height, e.g., office fonts whose size is usually given in terms of horizontal pitch, some reasonable body size must be
chosen; for example, the font Titan 10 pitch might be assigned a body size of 116 inch. In all cases, font designers are
encouraged to record any non-obvious scaling and orientation information in the registry.

The Font type represents a font. Fonts are commonly retrieved from a library of fonts in the
printer's environment; but an Interpress master may also create a font from character
definitions supplied in a vector called a FontDescription. A Font obtained in either of these
ways describes its characters in the character coordinate system. A Font may also carry a
Transformation that transforms all its characters from the character coordinate system into
some other convenient coordinate system.

A FontDescription is a universal property vector with the following property names:

transformation: Transformation. Character masks and metrics in the FontDescription
may be specified in any coordinate system convenient for the font
designer. This transformation converts such FontDescription
coordinates into the character coordinate system.

characterMasks: Property vector of character mask operators. Each property name in this
vector is a Cardinal, called the character index; each corresponding
property value is an Operator which generates the character's mask.
Interpress establishes no conventions for the correspondence between
character shapes and character indices. Thus a font may represent an
arbitrary "character set," i.e., an arbitrary mapping from character
indices to shapes.

XEROX SYSTEM INTEGRATION STANDARD 69

IMAGING OPERATORS

70

(0,1) (0,1)

.~
"'
i

(0,0)

(escapementX, escapementY)

(a) Metrics for left-to-right horizontal spacing

(0,0) bodysize------'•(1,0) ___. _

--- (escapementX, escapementY)

(b) Metrics for top-to-bottom vertical spacing

------base line

t
(escapementX, escapementY)

base line-+....;-=

t
(escapementX, escapementY)

(c) Metrics for right-to-left horizontal spacing

Figure 4.9 Character metrics

In Latin alphabets, such as the italic font shown in Figure 4.9a, the origin is on the baseline of a line of characters.
For other styles, the origin may be in different locations. The Chinese character in Figure 4.9b has its origin at the
upper left; it is intended to be used for setting characters vertically top-to-bottom. The Hebrew character in Figure
4.9c has its origin at the lower right; it is intended to be used for setting characters horizontally right-to-left.

INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

~originof~

• -- -

t.,. of i (o=P'~n<X, "'""'~"'Y) nf i •nd nrig;n nf J
: .
I •
I 6
I p (o) Leflo-to-right hmiront•hpa<ing of Engli.i. oh•m""'

i ____ '""""~""'· .,ro,.~n<Y) nf 1tf" ~d n,;gin nf lJ:

:~~
I
I
I
I 1--
1
I
~
I
I
I
I
I
I
I
I
I
I

I --------------r--
(escapementX. escapement¥) of C and origin of~ origin of C

(c) Right-to-left horizontal spacing of Hebrew characters

(b) Top-to-bottom vertical spacing of Chinese characters

Figure 4.10 Spacing character masks

XEROX SYSTEM INTEGRATION STANDARD 71

IMAGING OPERATORS

72

characterMetrics: Property vector of Character Metrics vectors. Each property name in this
vector is a Cardinal character index; each corresponding property value
is a Character Metrics vector.

substitutelndex: Cardinal. This is the index of a character to be substituted for any
character not present in the characterMetrics vector.

A CharacterMetrics vector is a universal property vector of metric information about a
single character, containing the following properties. Each property specifies a default value
to be used ifthe property is absent.

escapementX: Number. The x-component of the character's escapement. If the escapementX
property is not present, its value may be assumed to be zero.

escapementY: Number. They-component of the character's escapement. If the escapementY
property is not present, its value may be assumed to be zero.

amplified:

correction:

Cardinal. If this value is nonzero, the character is an amplifying character. If
the amplified property is not present, its value may be assumed to be zero.

Cardinal. The value indicates what operator, if any, is called to correct
spacing: O=CORRECTMASK, 1 =CORRECTSPACE, 2=none. If the correction
property is not present, its value may be assumed to be zero (i.e.,
CORRECTMASK).

The FontDescription and CharacterMetrics properties defined above are the only ones used by the imager, and the
only ones that need be supplied to MAKEFONT. FontDescription and Character Metrics vectors may also include other
properties that specify font and character metric information of interest to Interpress creators. Such additional
properties are defined by the Xerox Font Interchange Standard.

A Font value is composed of a FontDescription and a Transformation. The FontDescription
defines mask operators and metrics in the character coordinate system; the transformation
may transform the character coordinate system into another more convenient coordinate
system. The following special operators, which cannot be called from the master, assemble a
font from a FontDescription and a Transformation, and recover those values from a Font:

< fd: Vector> < m: Transformation> *MAKEFONTM ~ < f: Font>
where a font is constructed from FontDescription fd and Transformation m.

< f: Font> *OPENFONT ~ < fd: Vector> < m: Transformation>
where fd and mare the FontDescription and Transformation associated with the font.

Note that the Transformation component of a Font is distinct from the transformation property of a FontDescription.
The FontDescription's transformation converts FontDescription coordinates to character coordinates; the Font's
transformation converts character coordinates to master coordinates.

The MAKEFONT operator constructs a new font from a FontDescription:

<fd: Vector> MAKEFONT~ <f: Font>
where the effect is fd 1 SCALE *MAKEFONTM.

A typical Interpress master will refer to fonts by name, rather than constructing them. The
full universal name of a font serves to identify the font unambiguously. The following
operator looks up fonts in a printer's font library; it does the best it can to find a suitable
font, approximating if necessary.

< v: Vector> FIND FONT~ < f: Font>
where v is a Vector of Identifiers, which is the universal name of the desired font. The
result is the best approximation to this font which the printer can find in its

INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

environment. If the result differs from the named font, an appearance warning or
appearance error occurs, depending on the closeness of the approximation.

There are numerous properties of a font that can be encoded in its name. For example:

• Character set mapping. The correspondence between character indices and shapes is encoded in the font name.
For example, in the name Xeroxlxc2-0-0!TimesRoman, the identifier xc2-0-0 might be used to identify a
particular mapping. If all Xerox products were to use standard mappings, then the mapping property would be
associated with the part of the name Xerox rather than with a separate identifier.

• Typeface. Typeface names in the printing industry have no guaranteed structure. We find names such as
"Times Roman," "Times Italic," "Helvetica Light," "Bodoni Condensed." Although it is tempting to organize
these names into a rigid framework, there will always be exceptions. As a consequence, Interpress allows the
font name to capture these properties in an arbitrary way.

• Design size. It is often desirable to use slightly different character shapes for character sizes that subtend a
different angle at normal viewing distances. Characters that will be extremely small when viewed normally,
such as in footnotes, often use thicker strokes than normal "body" fonts. Characters that will be unusually
large, such as titles or headlines, often use narrower strokes than body fonts. These properties are quite
separate from the physical size of the characters-a billboard may use "body" font characters that are 50 cm
high! The font name can encode the "design size" as three discrete values \footnote, body, headline) or in a more
continuous way (DesignSize-9pt). The physical size of the mask created by a character operator is determined
not by its name, but rather by the transformation in effect when it is invoked.

• Version. Font libraries will be constantly maintained and updated. A truly unique name of a font, therefore,
will include a version number, probably as the last element of the universal name. So an identifier like
uersionl 02 might be appended to the example above to indicate the version.

Fonts returned by MAKEFONT or FINDFONT contain the identity transformation; that is, they
express characters in the character coordinate system. For imaging purposes, the master
usually wants to transform the character coordinate system into a more convenient
coordinate system. The MODIFYFONT operator allows all characters to be scaled to a
particular size.

<f1: Font> <m: Transformation> MODIFYFONT- <fr Font>
where the effect is fi *OPENFONT m CONCAT *MAKEFONTM

Usually the master saves fonts in a frame for future reference. The SETFONT operator sets
the font imager variable from an element of the frame. SHOW (§4.9.3) can then image
characters from this font.

< n: Cardinal> SETFONT - < >
where the effect is FGET font ISET; i.e., the current font is set to the nth element of the
current frame.

The net transformation applied to characters in a font when they are imaged by SHOW is
nm=< m T CONCAT TID- 1 CONCAT >, where TIO -l is the inverse of the ICS-to-DCS
transformation (§4.3.5) and mis the transformation result of *OPENFONT; nm transforms the
character coordinate system into the Interpress coordinate system. The imager may specify
for each font a set of easy values for nm which it handles efficiently, and it may be unable to
image a font at all unless nm is easy (§5.4.2).

4.9.3 Character operators

For each character in a font, there is a corresponding character operator. The following
operators precisely define the effect of a character operator.

<fd: Vector> <i: Cardinal> MASKCHAR- <fd>
where fd is a FontDescription, and i is a character index. If a mask operator is defined
for character i, it is executed with fd on the stack. The effect is:

0 MARK fd DUP characterM asks GETP i GETPROP { DOSA VEALL} IF

COUNT MAKEVEC POP UNMARKO fd

XEROX SYSTEM INTEGRATION STANDARD 73

IMAGING OPERATORS

74

MASKCHAR is provided so that a composite character mask can be assembled from other character masks in the same
font-for example, to form an accented character. It is expected that only character mask operators in a
FontDescription will explicitly call MASK CHAR. Note that the current transformation when MASKCHAR is called must
transform FontDescription coordinates to device coordinates; this is the case when *DOCHAR invokes MASKCHAR.

<f Font> <i: Cardinal> *DOCHAR~ < >

where the character operator for the character with index i in font fis executed.

We say that character i is in font fif f*OPENFONT POP characterMetrics GETP i GETP succeeds.

If character i is inf, the effect off i *DOC HAR is:

{
--Apply the character-to-master transformation; save the FontDescription. -
f *OPENFONT CONCATT 0 FSET -- FontDescription vector --
--Apply the FontDescription-to-character transformation. --
0 FGET transformation GETP CONCATT

-- Fetch metrics for character i. --
0 FGET characterMetrics GETP i GETP 1 FSET-- CharacterMetrics vector --
1 FGET escapementX GETPROP NOT { 0 } IF 2 FSET -- escapementX, default 0 --
1 FGET escapementY GETPROP NOT { 0} IF 3 FSET-- escapementY, default 0 --
1 FGET amplified GETPROP NOT { 0 } IF 4 FSET -- amplified, default 0 --
1 FGET correction GETPROP NOT { 0 } IF 5 FSET-- correction, default 0 -
--Image the mask for character i. --
0 FGET i MASKCHAR POP

-- If it is an amplifying character, multiply escapements by amplifySpace. --
4 FGET{

2 FGET amplifySpace IGET MUL 2 FSET-- escapementX*amplifySpace --
3 FGET amplifySpace IGET MUL 3 FSET-- escapementY*amplifySpace -
} IF

--Adjust the current position. --
2 FGET 3 FGET SETXYREL

-- Perform spacing correction. --
5 FGET 0 EQ { CORRECTMASK} IF-- if correction =0 --
5 FGET 1 EQ { 2 FGET 3 FGET CORRECTSPACE} IF -- if correction= 1 -
} DOSA VESIMPLEBODY

If character i is not in f, the effect off i *DOCHAR is f substitute *DOCHAR, where substitute is

the value of the font's substituteindex property. If substitute is not inf, a master error occurs.

The SHOW operator images a string of characters in the current font, an imager variable, by

invoking their character operators in sequence.

<v: Vector> SHOW~<>

where for each i, l:s._i:s._u, beginning with v's lower bound l and ending with v's upper

bound u, the effect is

{TRANS font !GET v i GET *DOCHAR} DOSA VESIMPLEBODY

SHOW uses the current position to establish the origins for successive character instances. Because each character
operator is executed with DOSAVE, only changes to persistent variables will be visible after each step of SHOW; thus
the current position does change, as it must if successive characters are to be laid down in the proper places, but any
changes to the current transformation, the color, etc., are forgotten. Thus each character mask operator can use all
the facilities oflnterpress to make its image, without interfering with the rest of the imaging in the master.

Sometimes it is necessary to insert a positioning operation between each pair of characters,

e.g., when kerning. For this purpose, the following operator is useful:

< v: Vector> SHOWANDXREL ~ < >

where alternate elements of v are taken as character indices and as distances to move

the x-coordinate of the current position. SHOWANDXREL treats the first element of v just

as SHOW would. It takes the next element modulo 256 and then biases it by 128 to yield

INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

an argument for SETXREL. The next element is shown, and so forth. More precisely, for
each i, l:5:._i:5:._u, beginning with v's lower bound land ending with v's upper bound u, the
effect is

i l SUB 2 MOD 0 EQ { [v i GET] SHOW} IFELSE
{viGET256MOD128SUBSETXREL}IB

The reason for taking the distances modulo 256 is to discard the offset which might be in force if vis generated
by the sequenceString encoding notation. The reason for the bias by 128 is to make positive and negative
kerning equally convenient.

A variant of this scheme is convenient when the intercharacter spaces are all the same:

<v: Vector> <x: Number> SHOWANDFIXEDXREL~ < >
where for each i, l < i < u, beginning with v's lower bound l and ending with v's upper
bound u, the effect is

[v i GET] SHOW i u EQ NOT { x SETXREL} IF

4.9.4 Fallback positions for characters

The chief difficulty that an imager may encounter when printing characters is that the exact
character geometry specified by the current transformation cannot be achieved. This will
occur when device dependencies limit the size of characters, prevent certain rotations, etc.
When this occurs, the imager should:

• Use a mask that approximates the one requested. Interpress does not specify how
approximations are to be selected.

• Perform the width and correction calculations accurately, using the transformation
specified. In other words, although the mask will only approximate the character shape,
positioning will remain accurate.

• Generate an appearance error.

4.10 Spacing correction

Sometimes the exact positioning of a mask must be computed when the master is printed
rather than when it is created. This is the case if positioning depends in detail on the widths
of characters, because the imager may not be able to use a character font that has widths
that are identical to those available when the master was generated. Such width differences
can arise when the imager can only approximate the font requested by the master, or if a
new version of a font with slightly different widths has superseded the font in effect when
the master was created. Of course, if the creator knows the properties of the imager's font
exactly, no new computation by the imager will be necessary-the creator will make a
master that specifies the exact position of each mask.

Interpress provides a mechanism to correct the spacing of a set of masks, which is used most
frequently to insure that lines of characters intended to appear uniformly justified between
margins are in fact justified. Correction is achieved by expanding or contracting some
"correction space" until the characters fit in the desired space. The Interpress mechanism is
not specific to characters, but will correct the spacing of any kind of mask.

Note that the correction mechanism is not intended to be used to achieve line justification. The amplifySpace
mechanism described in §4.9 will handle simple justification needs. More complex justification must be computed by

XEROX SYSTEM INTEGRATION STANDARD 75

IMAGING OPERATORS

76

the creator and reflected in the master as precise character positioning. The purpose of correction is to insure that a
line of text ends in the right place even when approximations have been made for the fonts used in it.

Mask correction is achieved with the CORRECT operator, which takes as its only argument a
body containing the operators that invoke all the masks whose positions are to be corrected.
CORRECT will generally execute the body twice, first to compute how much correction is
required, and then a second time to actually create the image. When CORRECT is entered, the
current position is noted, and the body is executed, but mask operators are not allowed to
alter the page image (the variable nolmage is set to 1). As masks are invoked, calls to
CORRECTSPACE and CORRECTMASK (typically performed by *DOCHAR) record the number of
opportunities for spacing correction. When execution of the body is finished, CORRECT
computes the difference between the current position and the current position desired by the
master. Then the current position is reset to the value noted at the beginning of the
operation. The body is executed again, with mask operators allowed to change the page
image, and with the CORRECTSPACE and CORRECTMASK operators instructed to change the
current position incrementally so as to achieve proper mask spacing.

The discussion below presents detailed definitions of CORRECT, CORRECTMASK, and
CORRECTSPACE. The overall effect of CORRECT, the interfaces to the operators, and the
meanings of the imager variables correctMX, correctMY, correctPass, correctShrink,
correctTX, and correctTY must be observed by an Interpress printer. However, the printer is
free to use a printer-dependent algorithm for adjusting character positions to meet the
required line length. Lines in the definitions that might be modified in printer-dependent
ways are marked--*--.

The definitions below do, however, present one consistent method for achieving correction.
The way the corrections are accomplished depends on whether the line of text must be
lengthened or shortened. If it is to be lengthened, extra space will be inserted by each
CORRECTSPACE operator in proportion to the size of the original (uncorrected) space. If the
line must be shortened, CORRECT fits the line by shrinking the spaces (identified by
CORRECTSPACE); however, a space is never allowed to shrink to less than (1 -correctShrink)
times its former size. Any additional squeezing required is accomplished by removing space
between all masks equally (CORRECTMASK).

Detailed definitions of the operators follow:

< > CORRECTMASK ~ < >
where the function is defined by the following informal code:

if correctPass= 1 then correctMaskCount: = correctMaskCount+ 1--*-
else if correctPass=2 and correctMaskCount>O then begin

spx: = correctMaskX!correctMaskCount; --*--
spy:= correctMaskY!correctMaskCount; --*--
correctMaskX: = correctMaskX -spx; correctMaskY: = correctMaskY -spy;--*-
correctMaskCount: = correctMaskCount-1; --*--
DCScpx: = DCScpx+spx; DCScpy := DCScpy+spy;--*--
end

<x: Number> <y: Number> CORRECTSPACE~ < >
where the function is defined by the following informal code:

-- obtain device coordinates of space --
dx, dy := Tu(x,y, T)
if correctPass = 1 then begin

correctSumX: = correctSumX + dx; correctSumY: = correctSumY + dy--*-- end
else if correctPass = 2 then begin

-- define 010 =O in the next line --
spx: = dx*correctSpaceX!correctSumX; spy:= dy*correctSpace Y!correctSumY; --*--

INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

correctSumX: = correctSumX -dx; correctSumY: = correctSum Y -dy; --*-
correctSpaceX: = correctSpaceX -spx; correctSpace Y: = correctSpace Y - spy; --*-
DCScpx : = DCScpx + spx; DCScpy: = DCScpy +spy--*--
end

< b: Body> CORRECT~ < >
where the function is defined by the following informal code:

-- save the starting position --
correctcpx: = DCScpx; correctcpy: = DCScpy;
nolmage: = 1;
correctMaskCount: = O; correctSumX: = O; correctSum Y: = O; --*-

correctPass: = 1;
-- Interpret all operators to compute required corrections --
0 MARK; b DOSAVESIMPLEBODY; UNMARKO;

correctTargetX: = correctcpx + correctMX; correctTargetY: = correctcpy + correctMY;
-- *COMPUTECORRECTIONS determines how to allocate space. See below. -
*COMPUTECORRECTIONS;

DCScpx: = correctcpx; DCScpy: = correctcpy;
no! mage : = O;
correctPass : = 2;
-- Interpret all operators, emit masks --
0 MARK; b DOSA VESIMPLEBODY; UNMARKO;

correctPass: = O;
if distance(correctTargetX, correctTargetY, DCScpx, DCScpy) > length(correctTX,
correctTY)

then error; -- CORRECT did not properly adjust the mask positions -
DCScpx: = correctTargetX; DCScpy: = correctTargetY;

The MARK, UNMARK pairs require that the operators in the body must leave the interpreter
operand stack in the same state they find it. The bodies are called with DOSAVESIMPLEBODY,

which saves all non-persistent variables. (DOSAVEALL cannot be used because the side-effect
on current position, saved in a persistent variable, is required.) The body b should not
change nolmage.

The variables used to control spacing corrections are imager variables and some (persistent)
variables shared by the CORRECT, CORRECTMASK, and CORRECTSPACE operators. These
variables are summarized in Table 4.2. Note that calls on CORRECT cannot nest because only
a single set of persistent variables is used to save CORRECT state.

The mask-correcting mechanism can be disabled simply by setting correctPass to 0. This variable is initialized to 0
when Interpress interpretation begins. Correction may be disabled in part of a sequence of masks by setting
correctPass to 0 while generating their masks; since correctPass is an imager variable, it is saved and restored by
DOSA VE and the like.

Note that proper operation of CORRECT depends on the operators CORRECTSPACE and CORRECTMASK being called at
appropriate times. Character operators will normally make these calls. If, however, a master uses masks or spaces
that are not provided by character operators, CORRECTSPACE and/or CORRECTMASK must be called explicitly. This is
often the case for spaces when SETXYREL and the like are used to alter inter-character or inter-word spacing. The
SPACE operator (§4.10.2) conveniently performs these calls.

The *COMPUTECORRECTIONS step mentioned above is responsible for computing the
corrections that should be made to the current position during the second pass:

• The target position (correctTargetX, correctTargetY) is computed as the current position
atthe beginning of the CORRECT body plus the measure, as specified by correctMX and
correctMY.

'This is the position where the current position should have ended up after the first pass. Note that correctMX
and correctMY are saved in persistent variables so that an operator inside the body b can set them. This allows

XEROX SYSTEM INTEGRATION STANDARD 77

IMAGING OPERATORS

a creator that generates a master in a single sequential stream to specify the target after creating the mask
operators that comprise the body, as illustrated in the following example:

{ 3/2 amplifySpace !SET

<This is a string.> SHOW
133 0 SETCORRECTMEASURE

}CORRECT

• If the current position is short of the target position, the mask adjustments are set to
zero, and the space adjustments are set so that all adjustments will sum to the difference
between the target and the current position. In this way, during pass 2 the current
position will end up at the target.

• If the current position lies beyond the target position, the line is compressed by first
adjusting spaces until the ratio of the space adjustment to the available space exceeds
the imager variable correctShrink, and then adjusting masks to achieve the proper
length.

This calculation is stated more precisely below. First, we define some functions that measure
distances on the page:

distance(x1, Y1, xz, yz) =the distance in meters between device coordinates (x1, Y1) and (xz,

yz).
length(dx, dy) = distance(O, 0, dx, dy).

The *COMPUTECORRECTIONS calculation itself is:
correctMaskX: = O; correctMaskY: = O; --*-
correctMaskCount: = correctMaskCount- l; --*-
correctSpaceX: = correctTargetX -DCScpx; --*-
correctSpace Y: = correctTargetY - DCScpy; --*--
-- Test if line too long and space-correction threshold is exceeded -
if length(correctSpaceX, correctSpaceY) > --*--

correctShrink*length(correctSumX, correctSumY) and--*--
distance(correctcpx, correctcpy, correctTargetX, correctTargetY) < --*-

distance(correctcpx, correctcpy, DCScpx, DCScpy) then begin--*-
-- Must reposition masks too --
correctMaskX: = correctSpaceX + correctShrink*correctSumX; --*-
correctM ask Y : = corrects pace Y +corrects hrink* corrects um Y; --*-
correctS paceX: = correctSpaceX - correctMaskX; --*--
correctSpace Y: = correctSpace Y - correctMask Y; --*--
if corrects umX = 0 and corrects paceX ':t:. 0 then --*--

begin correctMaskX: = correctSpaceX; correctSpaceX: = 0 end;--*-
if correctSumY=O and correctSpaceY":t:.0 then--*--

begin correctMaskY: = correctSpaceY; correctSpaceY: = 0 end;--*-
end

The reason for subtracting 1 from correctMaskCount is that there are only n-1 opportunities to correct the spacing
between n masks. Note that the *COMPUTECORRECTIONS calculations handle x and y symmetrically. They will correct
lines running at any angle.

4.10.1 Efficiency

78

Creators are urged to use the CORRECT operator freely in order to minimize distortions
caused by printing a master on a printer that cannot match exactly the font escapements
assumed by the creator. However, in the cases where creator and printer are in exact
agreement about escapements, the two-pass CORRECT operator seems wasteful. Interpress
provides a mechanism to avoid two passes in those cases where the target position is
achieved within a distance tolerance. After the first pass, if the distance between the target
and the current position is less than a tolerance, i.e.,

INTERPRESS ELECTRONIC PRINTING STANDARD

IMAGING OPERATORS

distance(correctTargetX, correctTargetY, DCScpx, DCScpy):5:_length(correctTX, correctTY)

then the second pass need not be undertaken. Of course, if the second pass is omitted, the
imager must in fact emit the masks specified, i.e., must act as if nolmage had been false
during the first pass. The tolerance is set by the imager variables correctTX and correctTY,
which are initialized to printer-dependent values.

An Interpress program showing the one-pass version of CORRECT cannot be stated precisely using only imager
primitives. However, the behavior of this program must match that given for CORRECT, above. The idea behind the
one-pass algorithm is that the imager would save, during the first pass, a list of all page image modifications
specified, but would not actually make the modifications. If, at the end of the first pass, the correction required is
less than the threshold, the image modifications saved in the list can be made safely.

4.10.2 Operators

Two operators set the coordinate parameters of the CORRECT operator. Note that they are
transformed as "vectors":

<x: Number> <y: Number> SETCORRECTMEASURE~ < >
where (correctMX, correctMY): = Tv(x, y, T).

<x: Number> <y: Number> SETCORRECTTOLERANCE~ < >
where (correctTX, correctTY): = T vCx, y, T).

The following operator should be used instead of SETXREL when the creator explicitly
computes the width of the spaces needed to justify a line, instead of using the amplifySpace
mechanism.

<x: Number> SPACE~<>
where the effect is DUP SETXREL 0 CORRECTSPACE; i.e., the current position is changed by
SETXREL and the proper call to CORRECTSP ACE is made.

XEROX SYSTEM INTEGRATION STANDARD 79

IMAGING OPERATORS

80

Table 4.2 Variables used by correction operators

Name

Imager variables (persistent):

correc{fll.l)(,correctMY"

Imager variables (non-persistent):

correctPass
correctShrink
correctT)(, correctTY"

Type Use

Number Line measure

Cardinal
Number Allowable space shrink
Number Line tolerance

CORRECT variables (persistent), not directly available to the master:

correctMaskCount
correctMask)(, correctMaskY"
correctSum)(, correctSumY"

correctSpace)(, correctSpace Y"
correctcpx, correctcpy
correctTarget)(, correctTargetY"

Cardinal Tally CORRECTMASK calls
Number Space to be taken up by CORRECTMASK calls
Number Tally adjustable space from CORRECTSPACE

calls
Number Space to be taken up by CORRECTSPACE calls
Number Current position at start of CORRECT

Number Where corrected text should end up

INTERPRESS ELECTRONIC PRINTING STANDARD

5. PRAGMATICS

This chapter deals with various practical issues connected with the implementation and
operation of creators and imagers.

5.1 Printer capabilities

An Interpress master describes precisely the ideal appearance of a document in a device
independent manner. Each image output device renders its best approximation to the ideal
represented by the master. Actual renditions of a document on different output devices
might look different due to the capabilities of the output devices themselves.

For example, a bi-level raster device such as a laser printer must adjust the positions of characters and other graphic
objects to align with its raster grid, and must use a spatially dispersed pattern of black and white pixels to produce
the effect of a constant gray color.

Interpress provides extensive facilities for describing images such that many printers are
not able to produce all the images which can be specified. There are three factors which
determine what images a printer can produce:

• The set of types and primitives that it supports (§5.2).

• The operators, fonts, and colors that can be obtained from its environment (§5.3).

• The complexity of the images it can handle (§5.4).

A printer's document handling and finishing capabilities (§5.5) also constrain what
documents it can produce. It is beyond the scope of this standard to specify how each printer
should process every Interpress master in the face of these constraints, but the objective
should be to render the best possible approximation to the effect defined by the master for as
much of the document content as possible, even if this entails severe appearance errors on
parts of the document content which are beyond the capability of the printer.

If a printer does not support all of the types and primitives of the language, it should nonetheless attempt to process
any master it receives by stepping past those operations which it does not support. The ideal is for any Interpress
printer to be able to process any master, even though the resulting output may not contain everything that was
described in the master.

5.2 lnterpress sets

One measure of a printer's imaging capability is the set of types and primitives that it
supports together with any restrictions it places on the state of the machine when these
primitives are executed. There are three standard Interpress sets to meet the requirements
of different printing applications which the printer may serve.

XEROX SYSTEM INTEGRATION STANDARD 81

PRAGMATICS

82

• The commercial set supports applications requiring text, forms, and scanned images. It
includes text at 90° rotations, horizontal and vertical lines, filled rectangles, and binary
pixel arrays.

• The publication set includes all of the facilities of the commercial set, plus synthetic
graphics and rectangular clipping. It includes trajectories composed of straight and/or
curved lines, solid and dashed strokes, filled outlines,rectangular clipping, and solid
gray scale color.

• The professional graphics set contains all of the imaging facilities in the language. To
the facilities of the publication set it adds arbitrary rotations of text and graphics, gray
scale pixels (for process color) and full color (with the appropriate environment), and
arbitrary clipping.

Table 5.1 provides a general definition of these sets: they are defined precisely in the
sections which follow. Printers which do not support the entire language are not restricted to
one of the standard sets, but their functionality is characterized to creators by the set they
support. Further capabilities, such as the types of image decompression and color which the
printer can support, depend on the printer's environment (§5.3).

Base Language

Text

Graphics

Pixel Arrays

Color

Table 5.1 Interpress sets

Commercial Set

all facilities

all facilities
at 90° rotations

horizontal
and vertical

filled rectangles
no clipping

binary pixel arrays

solid and
sampled black

Publication Set Professio,nal Graphics Set

all facilities

all facilities
at 90° rotations

strokes and curves
dashed lines

filled outlines
rectangular clipping

binary pixel arrays

gray scale and
constant color

all facilities

all facilities
at all rotations

strokes and curves
dashed lines
filled outlines

arbitrary clipping

gray scale pixel arrays

all colors and
color operators

Some operators in set S are defined in this document in terms of more general operators not available in S, usually
because they represent special cases of the more general operators. For example, MASKRECTANGLE, in the commercial
set, is defined in terms ofMASKFILL, which is not in that set.

INTERPRESS ELECTRONIC PRINTING STANDARD

PRAGMATICS

5.2.1 Commercial set

The commercial set consists of the following facilities:

• All the types, literals, and operators of the base language (§2.2-4), and all of the facilities
of the Xerox encoding (§2.5).

The use of sequence types which specify decompression operators is subject to the constraints of the printer's
environment (§5.3).

• Skeleton processing for single-level skeletons (i.e., content::= body) (§3.1) and printing
instructions (§3.3 and Appendix E).

Support for document handling and finishing instructions is subject to the printer's capabilities (§5.5).

• All of the facilities for imager variables, transformations whose rotation components are
multiples of 90°, and current position (§4.2-5).

The restrictions below allow certain imager variables to be ignored: restrictions on color ensure that
prioritylmportant is always unimportant; restrictions on MASK operators ensure that strokeJoint is
unimportant; and restrictions on clipping ensure that clipper must always be the full field.

• Sample decompression and the construction of binary pixel arrays by MAKEPIXELARRA Y

with samplesPerPixel = 1, maxSample Value= 1, and sampleslnterleaved = 1 (§4.6).

The use of FINDDECOMPRESSOR is subject to the constraints of the printer's environment (§5.3).

• Solid black color and sampled colors generated by MAKESAMPLEDBLACK with clear= 1
(§4.7). Only the mask operators listed below can be called when a sampled color is in
effect. FINDCOLOR subject to the constraint that the "best approximation" to any constant
color may be black.

•

These restrictions ensure that priority is unimportant and that the only output transition function required for
a bilevel raster printer is to "OR" the pixels from a mask operation with the image pixels.

Horizontal and vertical rectangles masked by the operators
STARTUNDERLINE, MASKUNDERLINE, and MASKVECTOR with
strokeEnd= 1 and either x1 =x2 or YI =yz (§4.8).

MASKRECTANGLE,

strokeEnd=O or

The Outline and Trajectory types and the operators which generate them are not included.

• Pixel arrays imaged via MASKPIXEL with color= < 1 MAKEGRAY> (black) (§4.8).

• All of the text imaging operations of §4.9-10 (characters and correction) with the
exception of MAKE FONT and MASKCHAR.

5.2.2 Publication set

The publication set consists of all of the facilities of the commercial set plus facilities for
trajectories composed of straight and/or curved lines, solid and dashed strokes, filled
outlines, and rectangular clipping.

• All the types, literals, and operators of the base language (§2.2-4), and all of the facilities
of the Xerox encoding (§2.5).

The use of sequence types which specify decompression operators is subject to the constraints of the printer's
environment (§5.3).

• All the facilities for skeleton processing (§3.1) and printing instructions (§3.1 and
Appendix E).

XEROX SYSTEM INTEGRATION STANDARD 83

PRAGMATICS

Support for document handling and finishing instructions is subject to the printer's capabilities (§5.5).

• All of the facilities for imager variables, transformations whose rotation components are
multiples of 90°, and current position (§4.2-5).

The restrictions on transformations and clipping operators ensure that clipper is either the full field or a
rectangle whose edges are parallel to the axes of the Interpress coordinate system.

• Sample decompression and the construction of binary pixel arrays by MAKEPIXELARRA Y

with samplesPerPixel = 1, maxSample Value= 1, and sampleslnterleaved = 1 (§4.6).

The use of FINDDECOMPRESSOR is subject to the constraints of the printer's environment (§ 5.3).

• The color operators MAKEGRAY, FINDCOLOR, MAKESAMPLEDBLACK, SETGRAY, and
SETSAMPLEDBLACK (§4.7). All mask operators except MASKPIXEL can be called with any
color in effect.

Constant colors which may be found by FINDCOLOR are subject to the constraints of the environment. The
FINDCOLOROPERATOR, FINDCOLORMODELOPERATOR, MAKESAMPLEDCOLOR, and SETSAMPLEDCOLOR operators are not
included.

• Trajectories composed of straight and/or curved line segments; solid and dashed strokes
with all joint and end types; filled outlines; and CLIPRECTANGLE (§4.8).

• Pixel arrays imaged via MASKPIXEL with a constant color in effect (§4.8).

• All of the text imaging operations of §4.9-10 (characters and correction) with the
exception of MAKEFONT and MASK CHAR.

5.2.3 Professional graphics set

84

The professional graphics set consists of all of the imaging facilities of the language.

• All the types, literals, and operators of the base language (§2.2-4), and all of the facilities
of the Xerox encoding (§2.5).

The use of sequence types which specify decompression operators is subject to the constraints of the printer's
environment (§5.3).

• All the facilities for skeleton processing (§3.1) and printing instructions (§3.3 and
Appendix E).

Support for document handling and finishing instructions is subject to the printer's capabilities (§5.5).

• All of the facilities ofimager variables, transformations, and current position (§4.2-5).

• All facilities for sample decompression and pixel array construction (§4.6). Sample
vectors may have multiple samples per pixel, scaled (halftone) sample values, and
samples interleaved or not.

• All constant colors and the ability to make sampled colors using gray scale or full color
pixels. Sampled colors may be used with any mask operator or for printing text or
graphics (§4.7).

Constant colors which may be found by FINDCOLOR and color operators found by FINDCOLOROPERATOR and
FINDCOLORMODELOPERATOR are subject to the constraints of the environment. Some printers may support only
gray scale colors and possibly highlight colors.

INTERPRESS ELECTRONIC PRINTING STANDARD

PRAGMATICS

• Trajectories composed of straight and/or curved line segments; solid and dashed strokes
with all joint and end types; filled outlines with any color; and arbitrary clipping (§4.8).

• Pixel arrays imaged via MASKPIXEL with any color in effect (§4.8).

• All of the text imaging operations of §4.9-10 (characters and correction), including the
ability to build and image fonts at run time using MAKEFONT and MASKCHAR.

5.3 Environment

Interpress imposes no requirements on a printer's environment. Each printer must
determine what its environment contains.

Other standards may specify these requirements. For example, the Xerox printing environment is specified by the
Xerox Print Service Integration Standard. This standard also specifies font naming conventions, the file name
encoding and syntax used for sequencelnsertMaster and sequencelnsertFile tokens, and the protocols used for
transmitting and printing documents.

References to the environment are of two types: by the execution of the primitives
FINDOPERATOR, FINDFONT, FINDCOLOR, FINDCOLOROPERATOR, FINDCOLORMODELOPERATOR,

or FINDDECOMPRESSOR, and by means of the sequencelnsertMaster or sequencelnsertFile
encoding-notations. The result of an attempt to FIND an object which cannot be obtained
from the printer's environment depends on the effect on the Interpress interpreter's ability
to produce the desired page image and to continue to correctly interpret the master. The
execution of a FINDFONT or a FINDCOLOR primitive is guaranteed to be successful in the
sense that the printer is required to provide an approximation to the named object if it
cannot obtain the object itself. The effect of a FINDFONT or a FINDCOLOR primitive which
names an object which cannot be obtained is therefore either an appearance error or an
appearance warning, depending on the closeness of the approximation.

The result of an unsuccessful attempt to find an operator with a FINDOPERATOR.

FINDCOLOROPERATOR, FINDCOLORMODELOPERATOR, or FINDDECOMPRESSOR primitive is a
master error. Mark recovery occurs unless the lnterpress interpreter is able to continue
processing the master despite its inability to obtain the missing operator.

The result of a sequencelnsertMaster or a sequencelnsertFile token which names a file which
cannot be obtained is a master error. Since the effect of a sequencelnsertMaster token is to
insert complete pages, mark recovery does not occur. A sequencelnsertFile which names a
file which cannot be obtained results in mark recovery.

5.4 Complexity

This section addresses issues related to the complexity of the page images which a printer
can render.

• The number of characters or other graphic objects that can be rendered on a page, and
the limitations on local complexity (§5.4.1).

XEROX SYSTEM INTEGRATION STANDARD 85

PRAGMATICS

• The pixel arrays which can be converted to sampled colors or use as masks (§5.4.2).

• The effect of image complexity on printer performance (§5.4.3).

5.4.1 Image complexity

The Interpress standard does not limit the complexity of the images to be printed. From a
user perspective it is desirable to have printers which can print images of "unlimited"
complexity, even if performance is greatly degraded on complex images. This is because even
if most pages of a master are of moderate complexity, only one very complex page is needed
to render the entire master unprintable. But there is actually no such thing as truly
"unlimited" printing: practical limits of memory size or processor speed impose limitations
on the complexity of the images which a particular printer can print, and for every printer
there is some page image which is too complex to be properly rendered. What can be
accomplished is to build printers whose limits are so high that they are able to render
"practically" all of the images that they are asked to print.

Many physical printing devices operate synchronously for some unit of output, called a block; that is, once output of
a block has started, it must continue at a fixed or minimum rate. An asynchronous device has no such requirement,
and can normally be used to print images of unlimited complexity. To make a printer with a synchronous device
which can print images of unlimited complexity, however, the printer must contain enough buffering to construct
and store all the output for a block, For example, xerographic devices typically have one-page blocks, and the output
to the device is in raster form; when such a device is used in an unlimited printer, a buffer which can store all the
bits in a one-page raster is required. At 300 pixels/in. about 13X106 bits of buffering are required for a 9X14 inch
page.

To use a printer which is relatively limited in the images it can handle, one must have some useful characterization
of its maximum image complexity. Unfortunately, this characterization usually involves complex local properties of
the image which are not easy to state even for a particular printer, much less in general.

5.4.2 Easy net transformations

A printer may specify the net transformations of pixel arrays (§4.6) or fonts (§4.9) from their
standard coordinate systems to the Interpress coordinate system that the printer can handle
efficiently; these are the easy net transformations, which typically contain only scaling and
rotation components. While a printer is assumed to be able to handle arbitrary translations,
it may refuse to handle a sampled color, pixel array mask, or font operator which has a net
transformation not in the easy set.

Interpress does not define how easy transformations are specified. For fonts, the Xerox Font Interchange Standard
describes how to specify easy transformations in a FontDescription.

5.4.3 Performance

86

Not all masters are equally easy to execute because different operators and contructs entail
different amounts of computing. Moreover, certain printers may process certain masters
efficiently, while slowing down for others. Interpress does not specify performance
requirements: documentation for a printer may specify its performance and the properties
that a master should have to be executed efficiently. A printer must support all facilities
defined for its set, but is free to support only some of these facilities efficiently.

INTERPRESS ELECTRONIC PRINTING STANDARD

PRAGMATICS

5.5 Document handling and finishing

Interpress provides a means of specifying a variety of document handling and finishing
options which many printers will be unable to provide. The following comments deal with
document handling and finishing capabilities.

• An Interpress master describes a document as consisting of (possibly a large number of)
copies which may differ in the pages which are part of each copy (pageSelect, §3.1) and in
minor ways in the content of certain of these pages (IFCOPY, §2.4.7). Limitations on
internal storage may restrict the size of documents for which multiple copies may be
printed in collated sets.

!fa multiple copy job is too large to be spooled in its entirety, the printer may print it as collated page sets or in
uncollated form. Some printers will be unable to provide collation on any multiple copy jobs, and may even be
unable to print multiple copy jobs at all. Selection of copy number by copySelect, selection of pages by
contentSelect, and pageSelect, and selection of page content by IFCOPY would still be supported.

• A printer which can only print simplex would impose plex =simplex as a printer override
in * ADDINSTRUCTIONDEFAULTS.

Values for onSimplex and pageOnSimplex would still be supported.

• The number of different media which may be used to print a single document depends on
the printer's media handling facilities.

A printer might reasonably accept only as many values of mediumDescription in the media property vector as
it could reasonably handle. Additional values would then be ignored and values of mediaSelect,
contentMediaSelect, and pageMediaSelect which refer to these media mapped to 1.

• A printer which does not have separate output bins or an offset stacker will ignore the
outputPosition and contentOutputPosition instructions.

Even a printer which does have these facilities will be limited in the number of distinct output positions which
it can provide.

• Support for the various values of finishing depends in general on the availability of the
appropriate finishing hardware. A printer which does not have the requisite capabilities
would ignore those values.

5.6 Numeric precision and size limitst

Numbers in Interpress are used mainly for computing device coordinates from master
coordinates and transformations (§4.3). This section gives the rules which text Interpress
masters must observe to ensure that device coordinates are computed accurately enough to
produce good images. If the rules are violated, it is possible that bad images will be produced
because the wrong device coordinate values may be used. In most cases, however, there will
be no detected error, and it is possible that the image will still be acceptable. If the rules are
observed, however, it is guaranteed that device coordinates will be computed accurately, in
the sense defined below. The limits on the size of device coordinates and Numbers do not
have this fail-soft property, since the numbers may overflow the representation if they are
too big.

Limits on Numbers:

The absolute value of a Number must not be larger than 1020 •

XEROX SYSTEM INTEGRATION STANDARD 87

PRAGMATICS

Limits on the size of device coordinates:

When the current transformation Tis applied to a pair of coordinates (ex, cy) to produce a
pair of absolute device coordinates (dx, dy), the magnitude of the di;; must be less than
the largest field dimension (§4.3.1) plus 10%. Furthermore, the magnitude of the
relative device coordinates produced by T vCcx, cy, T) must be within this range.

Limits on sequences of relative moves:

The total path length, in device coordinates, of a sequence of relative moves must be
within this range. A sequence of relative moves must be limited to 250 moves.

Limits on transformations:

Let T be the upper left 2X2 part of a transformation T, Smin the singular value of T'
with smallest magnitude, and Smax the other one (the singular values of a matrix Mare
the positive square roots of the eigenvalues of MW). Then Smax!Smin < 16, Smax< 1020,

and Smin>10·20• A transformation must not be computed by concatenating more than 8
primitive transformations obtained from TRANSLATE, ROTATE, SCALE, and SCALE2. The
product of Smaxlsmin for the primitive transformations concatenated together must be
less than 16.

The restrictions on numbers and device coordinates prevent overflow. The restrictions on
relative moves and transformations allow the loss of precision in computing device
coordinates to be bounded. If these restrictions are observed, the imager guarantees that a
computed device coordinate will not differ from its ideal value by more than 1/4 of a grid unit
(§4.3.4).' Furthermore, the Number value resulting from a literal will be as close to the
rational number represented by the literal as the nearest IEEE floating point number, and
each primitive operation on Numbers will produce a result which is as close to the ideal
result as the nearest IEEE floating point number.

5.6.1 Size limits

88

Printers are also limited in the size of the objects and values they can manipulate. The
following table gives minimum values for the size limits defined in this standard.

Table 5.2 Minimum values for size limits

Name Where defined Minimum limit

maxCardinal (§2.2.1) 224_1

max! dLength (§2.2.2) 100 characters
maxBodyLength (§2.2.5) 10000 literal
maxStackLength (§2.3.1) 1000 values
maxVecSize (§2.2.4) 1000 elements
maxFileN es ting (§2.5.3) 8 files
topFrameSize (§3.1) 50 elements

INTERPRESS ELECTRONIC PRINTING STANDARD

PRAGMATICS

5.7 Error handling

The effect of a master error on the execution of an Interpress master is defined in §2.4.1. In
addition, however, a printer should provide some indication of what errors have occurred,
and how severe they are. This section offers guidance in this matter.

As an Interpress master is printed, various errors may be encountered. The first few errors
should be reported by printing an explanatory message. This message should indicate at
least:

• the page number;

• the current position;

• the composed operator being executed ifit is not a page image body;

• the severity of the error, as defined below;

• some indication of the nature of the error.

If there is not enough space to report all the errors, this fact should be reported. If possible,
each page on which an error occurs should be identified.

Errors are classified according to their severity:

Appearance warning:

These errors mean that the imager had to make an approximation to the ideal image
represented in the Interpress master, but has been able to preserve the content of the
image.

Examples are the substitution of a font which is a close approximation to that called for
in the master, or reduction in size of the entire image compared to the size specified.

Appearance error:

These errors mean that the imager had to make an approximation to the ideal image
represented in the Interpress master in such a way that the resulting image will not
appear to be correct.

An example is failure of the imager to display a filled mask or a pixel array that is
represented in the master.

Master warning:

These errors mean that something is amiss in the specification of the master, but the
error is not severe and the interpreter is able to continue processing the master properly.

For example, arithmetic overflow will cause a master warning. Another example would
be the attempt to use a decompressor which cannot be obtained, provided that the
interpreter is able to provide a "substitute" decompressed pixel array and to continue to
interpret the master.

XEROX SYSTEM INTEGRATION STANDARD 89

PRAGMATICS

90

Master error:

These errors signal severe problems in interpreting the master. In case of a master error
in executing an operator, unless the operator definition specifies otherwise, there is a
mark recovery (§2.4.1). In some cases, it may be necessary to abandon further
interpretation of the master and simply to print a page that describes the error.

lNTERPRESS ELECTRONIC PRINTING STANDARD

A. REFERENCES

A Proposed Standard for Binary Floating-Point Arithmetic. Computer, 14, 3, March 1981, p
51.

A draft of the reference document for the proposed IEEE standard. The same issue of
Computer also contains other articles about the standard.

Coonen, J.T. An implementation guide to a proposed standard for floating-point arithmetic.
Computer, 13, 1, January 1980, p 68.

A discussion of the proposed IEEE floating-point standard. A list of errata for this article
appears in the preceding reference.

International Standards Organization. 7-Bit Coded Character Set for Information Processing
Interchange. ISO 646-1983 (E).

This document defines a limited character set for information interchange. It is almost
compatible with ASCII. The Interpress uses of ISO 646 are restricted to a subset that is
compatible with ASCII.

Newman, W.M. and Sproull, R.F., Principles of Interactive Computer Graphics, 2nd edition,
McGraw-Hill, 1979.

Introduction to computer graphics, geometric representations and transformations, and
raster graphics.

Xerox Corporation. Character Code Standard. Xerox System Integration Standard.
Stamford, Connecticut; 1984 April; XNSS 058404 (XSIS 058404).

An enumeration of characters and their numeric codes. Also describes a mechanism for
a compact encoding of strings of character codes.

Xerox Corporation. Interpress 82 Reader's Guide. Xerox System Integration Guide.
Stamford, Connecticut; 1984 April; XNSG 018404 (XSIG 018404).

An overview of Interpress, including a paragraph-by-paragraph commentary on
portions of the standard. XNSG 018404 corresponds to an earlier version of the
standard; most of its contents, however, apply to Interpress 3.0 as well.

Xerox Corporation. Introduction to Interpress. Xerox System Integration Guide. Stamford,
Connecticut; 1984 April; XNSG 038404 (XSIG 038404).

Comprehensive tutorial on Interpress, intended for system designers and programmers
writing creator software.

Xerox Corporation. Raster Encoding Standard. Xerox System Integration Standard.
Stamford, Connecticut; 1985 June; XNSS 178506.

Describes a standard form of encoding for sampled images, plus several Xerox
decompression operators and color model operators.

Xerox Corporation. Print Service Integration Standard. Xerox System Integration Standard.
Stamford, Connecticut; version 2.0, in process.

Defines the Xerox printing environment, including file name encoding and syntax, font
naming syntax, and standard objects in the environment.

XEROX SYSTEM INTEGRATION STANDARD 91

A. REFERENCES

92· INTERPRESS ELECTRONIC PRINTING STANDARD

8. TYPES AND PRIMITIVES

8.1 Types

The following types are defined in Interpress. A-indicates that the type has no code.

Name TYPE code Section Comments

Any 2.2 any type except Body or Mark
Body 2.2.5 can only be the immediate argument of a body operator
Cardinal 2.2.1 Subtype of Number
Clipper 11 4.8
Color 7 4.7
ConstantColor 4.7.1 subtype of Color
Font 10 4.9
Identifier 2 2.2.2
Mark 2.2.3 can only be the argument of UNMARK or COUNT

Number 1 2.2.1
Operator 4 2.2.5
Outline 9 4.8
PixelArray 6 4.6
Trajectory 8 4.8
Transformation 5 4.4
Vector 3 2.2.4

8.2 Primitive operators, ordered by function

A prefixed * means that the operator is special; it cannot be called from an Interpress
master.

Vectors (§2.4.3):
GET MAKEVECLU MAKEVEC SHAPE GETPROP GETP MERGEPROP

Frames (§2.4.4):
FGETFSET

Operators (§2.4.5):
MAKESIMPLECO DO DOSA VE DOSA VEALL DOSA VESIMPLEBODY FINDOPERATOR

Stack (§2.4.6):
POP COPY DUP ROLL EXCH MARK UNMARK UNMARKO COUNT NOP ERROR

XEROX SYSTEM INTEGRATION STANDARD 93

B. TYPES AND PRIMITIVES

94

Control (§2.4.7)
IF IFELSE *COPYNUMBERANDNAME IFCOPY

Test (§2.4.8):
EQ *EQN GT GE AND OR NOT TYPE

Arithmetic (§2.4.9):
ADD SUB NEG ABS FLOOR CEILING TRUNC ROUND MUL DIV MOD REM

Skeleton (§3.1)
*PGET *PSET *ISBODY *MAKECOWITHFRAME *LASTFRAME *OBTAINEXTERNALINSTRUCTIONS

* ADDINSTRUCTIONDEF AUL TS *RUNSIZE *RUNG ET *MERGECONTENTINSTRUCTIONS

Imager state (§4.2):
IGET ISET *SETMEDIUM

Coordinate systems (§4.3):
*DROUND

Transformations (§4.4)
MAKETTRANSLATEROTATESCALESCALE2CONCAT

CONCATT MOVE TRANS

Current position (§4.5):
SETXYSETXYRELSETXRELSETYRELGETCP

Pixel arrays (§4.6):
MAKEPIXELARRA Y EXTRACTPIXELARRA Y FINDDECOMPRESSOR

Color (§4.7):
MAKEGRAY FINDCOLOR FINDCOLOROPERATOR FINDCOLORMODELOPERATOR

MAKESAMPLEDCOLOR

SETSAMPLEDBLACK

Masks (§4.8):

MAKESAMPLEDBLACK SETGRAY SETSAMPLEDCOLOR

MOVETO LINETO LINETOX LINETOY CURVETO CONICTO ARCTO MAKEOUTLINE

MAKEOUTLINEODD MASKFILL MASKRECTANGLE STARTUNDERLINE MASKUNDERLINE

MASKTRAPEZOIDX MASKTRAPEZOIDY MASKSTROKE MASKSTROKECLOSED MASKVECTOR

MASKDASHEDSTROKE MASKPIXEL CLIPOUTLINE CLIPRECTANGLE

Characters (§4.9):
*MAKEFONTM *OPENFONT MAKEFONT FINDFONT MODIFYFONT SETFONT MASKCHAR

*DOCHAR SHOW SHOWANDXREL SHOWANDFIXEDXREL

Corrected masks (§4.10):
CORRECTMASK CORRECTSPACE CORRECT *COMPUTECORRECTIONS SETCORRECTMEASURE

SETCORRECTTOLERANCESPACE

INTERPRESS ELECTRONIC PRINTING STANDARD

8. TYPES AND PRIMITIVES

B.3 Primitive operators, ordered alphabetically

The last five columns of the table summarize useful information about each operator:

SECTION: the section in which the operator is defined.

ENCODING VALUE: the decimal integer value used to represent the operator in the encoding.

VARIABLE STACK: the operator takes a variable number of arguments or returns a variable
number ofresults.

BODY OPERATOR: the operator takes a body as its last argument.

REDUNDANT: the operator is an abbreviation for a simple Interpress program.

OPERATOR SECTION ENCODING VARIABLE BODY REDUN-

VALUE STACK OPERATOR DANT

ABS 2.4.9 200 •
ADD 2.4.9 201
* ADDINSTRUCTIONDEF A ULTS 3.1
AND 2.4.8 202 •
ARC TO 4.8.1 403 •
CEILING 2.4.9 203 •
CLIPOUTLINE 4.8.5 418
CLIPRECTANGLE 4.8.5 419 •
*COMPUTECORRECTIONS 4.10
CONCAT 4.4.3 165
CONCATT 4.4.5 168 •
CONICTO 4.8.1 404
COPY 2.4.6 183 •
*COPYNUMBERANDNAME 2.4.7
CORRECT 4.10 110 •
CORRECTMASK 4.10 156
CORRECTSP ACE 4.10 157
COUNT 2.4.6 188 •
CURVE TO 4.8.1 402
DIV 2.4.9 204
DO 2.4.5 231 •
*DOC HAR 4.9.3
DOSAVE 2.4.5 232 •
DOSAVEALL 2.4.5 233 •
DOSA VESIMPLEBODY 2.4.5 120 • • •
*DROUND 4.3.5
DUP 2.4.6 181 •
EQ 2.4.8 205
*EQN 2.4.8
ERROR 2.4.6 600
EXCH 2.4.6 185 •
EXTRACTPIXELARRA Y 4.6 451
FGET 2.4.4 20
FINDCOLOR 4.7.1 423
FINDCOLORMODELOPERATOR 4.7.1 422

XEROX SYSTEM INTEGRATION STANDARD 95

B. TYPES AND PRIMITIVES

OPERATOR SECTION ENCODING VARIABLE BODY RED UN-

VALUE STACK OPERATOR DANT

FINDCOLOROPERATOR 4.7.1 421
FINDDECOMPRESSOR 4.6.1 149
FIND FONT 4.9.1 147
FINDOPERATOR 2.4.5 116 •
FLOOR 2.4.9 206 •
FSET 2.4.4 21
GE 2.4.8 207 •
GET 2.4.3 17
GETCP 4.5 159
GETP 2.4.3 286 •
GETPROP 2.4.3 287 •
GT 2.4.8 208
IF 2.4.7 239 • •
IFCOPY 2.4.7 240 •
IFELSE 2.4.7 241 • • •
IGET 4.2 18
*ISBODY 3.1
ISET 4.2 19
*LASTFRAME 3.1
LINE TO 4.8.1 23
LINETOX 4.8.1 14 •
LINE TOY 4.8.1 15 •
*MAKECOWITHFRAME 3.1
MAKE FONT 4.9.2 150
*MAKEFONTM 4.9.2
MAKEGRAY 4.7.1 425
MAKE OUTLINE 4.8.1 417 •
MAKEOUTLINEODD 4.8.1 416 •
MAKEPIXELARRA Y 4.6 450
MAKESAMPLEDBLACK 4.7.2 426 •
MAKESAMPLEDCOLOR 4.7.2 427
MAKESIMPLECO 2.4.5 114 •
MAKET 4.4.3 160
MAKEVEC 2.4.3 283 •
MAKEVECLU 2.4.3 282 •
MARK 2.4.6 186 •
MASK CHAR 4.9.3 140
MASKDASHEDSTROKE 4.8.3 442
MASKFILL 4.8.2 409
MASKPIXEL 4.8.4 452
MASKRECTANGLE 4.8.2 410 •
MASKSTROKE 4.8.3 24
MASKSTROKECLOSED 4.8.3 440
MASKTRAPEZOIDX 4.8.2 411 •
MASKTRAPEZOIDY 4.8.2 412 •
MASKUNDERLINE 4.8.2 414 •
MASK VECTOR 4.8.3 441 •
MERGECONTENTINSTRUCTIONS 3.1
MERGEPROP 2.4.3 288

96 INTERPRESS ELECTRONIC PRINTING STANDARD

B. TYPES AND PRIMITIVES

OPERATOR SECTION ENCODING VARIABLE BODY REDUN-

VALUE STACK OPERATOR DANT

MOD 2.4.9 209 •
MODIFYFONT 4.9.2 148
MOVE 4.4.5 169 •
MOVE TO 4.8.1 25
MUL 2.4.9 210
NEG 2.4.9 211 •
NOP 2.4.6 1 •
NOT 2.4.8 212 •
*OBTAINEXTERNALINSTRUCTIONS 3.1
*OPENFONT 4.9.2
OR 2.4.8 213 •
*PGET 3.1
POP 2.4.6 180
*PSET 3.1
REM 2.4.9 216 •
ROLL 2.4.6 184 •
ROTATE 4.4.3 163
ROUND 2.4.9 217 •
*RUNG ET 3.3.2
*RUNSIZE 3.3.2
SCALE 4.4.3 164 •
SCALE2 4.4.3 166 •
SETCORRECTMEASURE 4.10.2 154 •
SETCORRECTTOLERANCE 4.10.2 155 •
SETFONT 4.9.2 151 •
SETGRAY 4.7.3 424 •
*SETMEDIUM 4.2
SETSAMPLEDBLACK 4.7.3 428 •
SETSAMPLEDCOLOR 4.7.3 429 •
SETXREL 4.5 12 •
SETXY 4.5 10 •
SETXYREL 4.5 11 •
SETYREL 4.5 13 •
SHAPE 2.4.3 285
SHOW 4.9.3 22
SHOWANDFIXEDXREL 4.9.3 145 •
SHOWANDXREL 4.9.3 146 •
SPACE 4.10.2 16 •
STARTUNDERLINE 4.8.2 413 •
SUB 2.4.9 214
TRANS 4.4.5 170 •
TRANSLATE 4.4.3 162 •
TRUNC 2.4.9 215
TYPE 2.4.8 220
UNMARK 2.4.6 187 •
UNMARKO 2.4.6 192 •

XEROX SYSTEM INTEGRATION STANDARD 97

B. TYPES AND PRIMITIVES

98 INTERPRESS ELECTRONIC PRINTING STANDARD

c. INTERPRESS NAME REGISTRY

Organizations wishing to construct universal names that can be referenced reliably from
any Interpress master should apply for a universal identifier in the Interpress Universal
Registry by contacting:

Xerox Corporation
Printing Systems Division
Printing Systems Administration Office
701 South Aviation Boulevard
El Segundo, California 90245

There is also a registry for universal names whose first identifier is the universal identifier
standard. Individuals and organizations wishing to have "standard" universal names
assigned should contact the Interpress Registry at the above address.

XEROX SYSTEM INTEGRATION STANDARD 99

C. INTERPRESS NAME REGISTRY

100 INTERPRESS ELECTRONIC PRINTING STANDARD

D. CHANGE HISTORY

This appendix presents a brief description of the principal changes that have been made in
the lnterpress standard.

The following changes convert Interpress version 1.0 to version 2.0:

§2.4.1. Error recovery is simplified and mark recovery defined more precisely.

§2.4.3. The operators GET, SHAPE, GETPROP, and MERGEPROP are added; the operator *GET is superseded by GET. The
definitions of property vectors and universal property vectors are added.

§2.4.8. The operator *EQN is added.

§2.5. The version number in the header is changed from 1.0 to 2.0.

§2.5.3. The specification of the encoding of sequencePackedPixelVector and sequenceCompressedPixelVector is
changed slightly.

§3. Printing instructions are added, resulting in a new section §3.3 and numerous small changes elsewhere in §3.

§4.2. The type of the value passed to !SET must match the type of the corresponding imager variable. The type of
correctPass is changed to Integer.

§4.3.1. An interpretation is given to printing on the back side of a page when printing on both sides.

§4.4.3. An inconsistency in the definition of ROTATE is repaired.

§4.6. The scaling convention for pixel arrays is relaxed.

§4. 7. The operator FINDCOLOR is added.

§4.8.1. Errors in the definitions of LINETOX and LINETOY are repaired.

§4.8.2. The operators MASKVECTOR, MASKTRAPEZOIDX, and MASKTRAPEZOIDY are added. The action of MASKSTROKE is
defined for degenerate trajectories.

§4.9.1. The font vector is changed to be a property vector.

§4.9.3. The operators MAKEVECLU and CONCAT are also allowed to appear in a metric master. The characterMetrics
and metrics vectors are changed to be property vectors.

§4.10. The definition of correction operators is changed to allow printers more flexibility in implementation.

§5.1.1. "Levels" are renamed to "subsets." The subset structure is updated to reflect the new operators and the
definition of the Gray enhancement is changed slightly.

Appendix B. Encoding values for REM, ROUND, and new operators are specified.

The following changes convert Interpress version 2.0 to version 2.1:

§2.4.6. The ERROR operator is added; MERGEPROP can be called from the master.

§2.5. The version number in the header is changed from 2.0 to 2.1.

§2.5.3. The encoding-notation for sequenceString is generalized and subordinated to the definition in the Xerox
Character Code Standard.

§3.2. The notion of hierarchical name is replaced by more precise definitions of universal identifier, universal name,
and environment name.

§3.3.3. Instructions subset, environmentUses, insertFileUses, and stacking are added.

§4.6. The definition of MAKEPIXELARRA y is generalized and the operator EXTRACTPIXELARRA y is defined.

§4.7. The notions of color operators and color model operators are introduced, as well as the operators
FINDCOLOROPERATOR, FINDCOLORMODELOPERATOR, and MAKESAMPLEDCOLOR.

§4.10. The suggested implementation of *COMPUTECORRECTIONS is altered slightly.

§5.1. The set of enhancement modules is replaced by a second subset, the reference subset.

XEROX SYSTEM INTEGRATION STANDARD 101

D. CHANGE HISTORY

102

The following changes convert Interpress version 2.1 to version 3.0:

§2.2.1. Integer is renamed Cardinal and maxlnteger is renamed maxCardinal.

§2.2.5. Operators obtained from the environment are identified as composed operators.

§2.3. Variables used by DoMaster and DoBlock are identified as part of the state.

§2.4. GETP is defined; the universal property vector definition is moved to §3.2.4.

§2.4.5. FINDOPERATOR is defined.

§2.4. 7. The IFCOPY testCopy operator is restricted to BASE operators.

§2.5. PAGEINSTRUCTIONS are renamed CONTENTINSTRUCTIONS; the version number in the header is
changed from 2.1 to 3.0.

§2.5.3. Sequence types sequenceCCITT-4PixelVector and sequencelnsertMaster are defined. sequencelnsertFile is
restricted to Bodies and precisely defined for a standard type of file.

§3.1. The skeleton structure is extended to include contents: page instructions are replaced by content instructions.
*PGET, *PSET, *ISBODY, and *MERGECONTENTINSTRUCTIONS are defined. The skeleton processing program is replaced by
DoMaster, DoBlock, and DoMediumSet.

§3.2. References to FINDOPERATOR and sequencelnsertMaster are added.

§3.2.1. Revised to describe both structured names and universal names.

§3.2.2. Operators are added to environment objects.

§3.2.3. Universal property vectors are defined (previously in §2.4.3).

§3.3. The policy of ignoring unrecognized printing instructions is stated.

§3.3.2. The break page discussion is moved to Appendix E.1.

§3.3.3. Special default identifiers are removed from instruction definitions. The discussion ofrun vectors is moved to
§3.3.2. Printing instructions breakPageFont, docComment, docCreation Date, docCreator, docName,
enuironmentUses, finishing, and subset are moved to Appendix E.3. Printing instructions docPasswrod,jobSender,
jobRecipient, jobStartMessage, jobEndMessage, jobStartWait, jobEndWait, jobAccount, jobPriority, jobSummary,
jobErrorAbort, andjobPassword are removed. Explicit default and priority behavior is given for instructions. The
rotation for duplex is described in the plex instruction. The definition of the media instruction is revised. The
insertFileUses instruction is split into insertFileMapping and insertFileNames. The stacking instruction is replaced
by outPosition and moved to Appendix E.3.

§3.4. Page instructions are generalized to content instructions. The content instructions contentlnsertFileMapping,
contentPageSelect, and contentPlex are added.

§4.2. The imager variable showVec is renamed font, and its type is changed from Vector to Font. The imager
variables strokeJoint and clipper are added.

§4.3.1. Setting the medium- or field- imager variables is prohibited. Conventions for placement of page images on
two-sided media are specified.

§4.4.3. MAKET can be called from the master.

§4.4.6. is deleted; SHOW and SHOWANDXREL are moved to §4.9.

§4. 7 .1. The definition ofMAKEGRA Y is generalized.

§4.7.3. The operators SETSAMPLEDCOLOR and SETSAMPLEDBLACK are added.

§4.8. The clipper variable is added to the list of variables that control the operation of mask operators. Strokes are
moved to a separate subsection, and the subsections are renumbered.

§4.8.1. The operators CURVETO, CONICTO, ARCTO, and MAKEOUTLINEODD are added.

§4.8.3. The action ofMASKSTROKE is defined more precisely, and the effect of the strokeJoint variable is specified:
MASKSTROKECLOSED is added. Dashed strokes are introduced: the operator MASKDASHEDSTROKE is added.

§4.8.5. Clipping is introduced; the operators CLIPOUTLINE and CLIPRECTANGLE are added.

§4.9. Character "widths" are renamed "escapements". The Font type is introduced, and the MAKEFONT operator is
added. In a FontDescription, the operators property is replaced by the characterMasks property, and the
transformation and substitutelndex properties are added; in a Character Metrics vector, the values of the correction
property are rearranged. FontDescription and Character Metrics properties not needed by the imager are removed
to the Xerox Font Interchange Standard. Conventions for the character coordinate system are clarified. Character
operators are defined explicitly in terms of the information in a FontDescription. The MASKCHAR and *DOCHAR

operators are added. SHOW and SHOW ANDXREL are moved to this section, and SHOWANDFIXEDXREL is added.

§5.1. The subsets discussion is generalized to printer constraints. §5.1.1 is moved to §5.2.1-3, and §5.1.2-4 moved to
§5.4.

§5.2. "Subsets" are renamed to "Sets". The Text subset is expanded to become the "Commercial set", the Reference
subset is expanded to become the "Publication set", and a "Professional Graphics set" is defined.

§5.3. Accessing the environment is discussed.

INTERPRESS ELECTRONIC PRINTING STANDARD

D. CHANGE HISTORY

§5.4. Complexity issues are discussed (previously §5.1.2-4).

§5.5. Document handling and finishing is discussed.

§5.6. Numeric precision is discussed (previously §5.3). Minimum limits are defined. (Table 5.2).

§5.7. Error handling is discussed (previously §5.4).

§B.4 and §B.5 are removed.

§E. This appendix for printing instructions is added.

§E.2. Messages to the operator console are described and type messageString is defined.

§E.3. Explicit default and priority behavior are given for instructions. The breakPageType, docStartMessage, and
docEndMessage instructions are added.

§E.4. The contentOutputPosition instruction is added.

XEROX SYSTEM INTEGRATION STANDARD 103

D. CHANGE HISTORY

104 INTERPRESS ELECTRONIC PRINTING STANDARD

E. PRINTING INSTRUCTIONS

Printing instructions provide a place to give information about the document and describe
how the document should be printed. Printing instructions provide

• selection of which copies to print,

• specification of which pages are part of which copies,

• document finishing specifications,

• a description of supplemental pages such as the break page,

• information regarding resources required to print the master, and

• administrative information.

This appendix lists printing instructions which specify document finishing, specify
information to be printed on supplemental pages such as the break page, and provide
administrative information. Instructions which are involved in processing the skeleton are
presented in §3.3 along with the general prescription for printing instruction management.

E.1 The break page

Several instructions provide specifications for and information to be printed on a break page
which the printer may provide as a cover sheet and as a separator between successive
documents. The break page may give the document name, creation date, printing date,
recipient name, and messages describing errors, etc. Its layout is controlled by the printer.

Information that is supplied in instructions to be printed on the break page is contained in
vectors of type BreakPageString. A BreakPageString is a Vector of Cardinal suitable for
indexing the font specified by the breakPageFont instruction. This font indicates the
character set of BreakPageStrings. The printer is not required to use this font, but is
expected to print the strings in a font with similar symbols, so they are readable. Thus if
character code 23 corresponds to "A" in this font, whenever 23 is encountered in
BreakPageString, some sort of "A" must be printed. If the printer has no font with a
character set that matches that of the font specified in the breakPageFont instruction, it may
use a printer-dependent mechanism to print break page information.

Information for the break page may also be supplied by external sources. The character set
appropriate to strings from external sources may depend upon the source and the printer,
and is not specified by Interpress.

XEROX SYSTEM INTEGRATION STANDARD 105

E. PRINTING INSTRUCTIONS

E.2 Message strings

Some instructions provide messages intended for a printer operator. Such messages can
inform the operator of special handling required by the document (e.g., loading of special
media). A message value is a vector of type MessageString. A MessageString is a Vector of
Cardinal which encodes a message using character codes from the ISO 646 7-bit Coded
Character Set for Information Processing Interchange.

Printers should print messages as soon as possible before (or in the case of docEndMessage
after) imaging of the master. The actual method of message delivery is printer-dependent.
Message instructions may be overriden by the printer if for some reason the message cannot
be delivered (e.g., the printer does not provide an operator interface).

E.3 Standard instructions

106

The following instruction names and meanings are defined in this standard. It is not
necessary for either the master or the external instructions to specify all of these
instructions; default values are provided by *ADDINSTRUCTIONDEFAULTS. Each instruction
description gives its name (i.e., the property name used in an instructions vector), followed
by its type (i.e., the type which the value corresponding to the instruction must have). A
master error results if the value specified for any of these instructions is not of the correct
type. In the text describing each instruction, the symbol value denotes the value associated
with the instruction property.

If an instruction value is specified both in the master and in external instructions,
*ADDINSTRUCTIONDEFAULTS or *MERGECONTENTINSTRUCTIONS establishes the value which is
used by precedence. In the following definitions, the parenthesized note after the definition
of the value's type specifies whether the value computed in the master (Master) or the value
supplied by external instruction (External) is given precedence.

breakPageFont: Vector of Identifier. (Master)
The universal name of a font to be used to print BreakPageStrings. The font will be
obtained by <value FIND FONT>. Default: a font chosen by the printer.

breakPageType: Identifier or Vector ofldentifier. (External)
This instruction identifies the form of the break page. The printer may override this
instruction if a particular break page type is required. The possible values of this
instruction are:

none. No break page is printed.

terse. A short form for the break page which contains only minimal information.

verbose. A break page containing maximal information about the job.

Vector ofldentifier. A universal name (§3.2.2) specifies a special break page format.

Default: a break page form chosen by the printer.

INTERPRESS ELECTRONIC PRINTING STANDARD

E. PRINTING INSTRUCTIONS

docComment: BreakPageString. (Master)
A comment to be printed on the break page.

docCreation Date: BreakPageString. (Master)
A string to be printed on the break page that shows the date and time when the
document was created.

docCreator: BreakPageString. (Master)
A string to be printed on the break page that shows the name of the person who created
the document.

docName: BreakPageString. (Master)
A string to be printed on the break page containing an identifying name for the
document.

docEndMessage: MessageString. (Master)
A message to be delivered to the operator as soon as possible after master imaging.

docStartMessage: MessageString, (Master)
A message to be delivered to the operator prior to and as close as possible to the time of
imaging the master.

finishing: Identifier or Vector of Identifier. (External)
This instruction specifies the name of a document-finishing technique to be applied. The
values of this instruction are:

none: No finishing is done.

cornerStaple: A single staple is inserted in each copy in the upper-left corner, i.e., near
the x=O, y=mediumYSize point of the Interpress coordinate system of the page with
pageNumber= 1 (§4.3.1, §3.1). The break page, ifany, may be stapled to a copy.

Vector of Identifier: A universal name (§3.2.2) may also appear as the value of a
finishing instruction to define printer-dependent finishing, e.g., [exxon, bind].

Default: a printer-dependent default action is taken.

outputPosition: Run of Cardinal (External)
The run vector is indexed by copy number and the value is a positive integer indicating
the output position for the copy. The printer makes its best effort at implementing
output positions by means such as stacking offsets or sorting bins. Default: [107,1].

set: Identifier or Vector of Identifier. (External)
This instruction provides an indication of the set of Interpress types and primitives
required to execute the master (§5.1). This set includes all types and primitives used by
composed operators created by the master, regardless of whether the operators are
executed by the master itself. The scope of this instruction includes bodies inserted
directly or indirectly by sequencelnsertFile tokens and masters included by means of
sequencelnsertMaster tokens. The printer is entitled to provide only the capabilities of
the specified set for processing the master. The possible values of this instruction are:

professionalGraphics: The master is assumed to use any of the facilities of the
professional graphics set.

XEROX SYSTEM INTEG.RATION STANDARD 107

E. PRINTING INSTRUCTIONS

publication: The master is assumed to use only the facilities of the publication set.

commercial: The master is assumed to use only the facilities of the commercial set.

Vector ofidentifier: A universal name (§3.2.2) may also appear as the subset definition,
e.g., [xerox, performance].

Default: the master is presumed to use all of the facilities of the language.

The following instructions provide hints about printer capabilities and objects in the
printer's environment required to execute the master, in the sense that the information
provided is not required to be complete or accurate. The scope of these instructions includes
bodies inserted directly or indirectly by sequencelnsertFile tokens and masters included by
:means of sequencelnsertMaster tokens. It also includes composed operators created by the
master, regardless of whether the operators are executed by the master itself. If these hints
are not provided, it is assumed that the master may use any of the objects in the printer's
environment.

environmentNames: Vector of Vector Identifier (External)
Each Vector of Identifiers is an environment name (§3.2.3). This instruction provides a
hint as to the names of objects in the environment that the master uses.

For example, the value [[colors, xerox, highlight], [fonts, xerox, xc2-0-0, times], [fonts, xerox, xc2-0-0, helvetica]]
indicates that the master obtains a color by calling <[xerox, highlight]] FINDCOLOR>, and two fonts by
calling <[xerox,xc2-0-0, times] FINDFONT> and <[xerox,xc2-0-0, heluetica]FINDFONT>.

insertFileNames: Identifier or Vector of Vector of Cardinal. (Master)
This instruction provides a hint as to the names of files used with the sequencelnsertFile
or sequencelnsertMaster encoding-notations (§2.5.3). Each element is a Vector of
Cardinal that is a copy of the data bytes of a sequencelnsertFile or sequencelnsertMaster
token that appears in the master. Default: the master is presumed to access any files in
the printer's environment.

pixelArrayTransformationU ses: Vector of Transformation. (External)
This vector provides a hint as to the resolution and orientation of the pixel arrays that
this master images. Each element in the vector is a transformation from the pixel array
coordinate system to the Interpress coordinate system. Default: the master is presumed
to use any pixel array transformations.

E.4 Content instructions

108

Content instructions which provide administrative and finishing information are presented
below. Other content instructions which are involved in processing the skeleton are
described in §3.3.4. Content instructions do not have default values; if they are absent, the
default behavior is described by the master's instructionsBody. Integration of a content
instruction into the current instructions set is done by *MERGECONTENTINSTRUCTIONS

according to the prescription provided in the instruction's description. Further information
on content instruction handling is provided in §3.3.4 and in the program in §3.1.

INTERPRESS ELECTRONIC PRINTING STANDARD

E. PRINTING INSTRUCTIONS

contentOutputPosition: Run of Cardinal. (External)
This instruction selects an output position for pages generated by the current content.
The run vector is indexed by copy number and the value is a positive integer indicating
the output position. The printer will make its best effort at implementing output
positions by means such as stacking offsets or sorting bins. The value takes precedence
over the master's outputPosition instruction. If an outputPosition instruction is present
in the external instructions, it takes precedence over both the master's outputPosition
and contentOutputPosition. In *MERGECONTENTINSTRUCTIONS, the new value of this
instruction replaces any previous value for the scope of the content.

XEROX SYSTEM INTEGRATION STANDARD 109

E. PRINTING INSTRUCTIONS

110 INTERPRESS ELECTRONIC PRINTING STANDARD

An italicized word in a definition is indexed
and defined in this glossary. The parenthesized
number at the end of each definition is the
section in which the term is introduced.

amplifying characters: characters whose
escapement can be easily modified to achieve
justification (4.9)

appearance error: an error in the appearance
of the page image, usually because the master
invokes a function that the imager cannot
accommodate (5.7)

approximation: finding an external color or
font which is close to the one requested, but not
necessarily identical (4.7.1, 4.9.2)

argument: a value popped from the stack by
the execution of an operator (2.4)

base language: the syntax and semantic
framework of Interpress, without any primitive
operators whose primary use is to generate
output (2)

baseline: in Latin alphabets, a horizontal line
just under the "bottom" of non-descending
characters (4.9)

body: a sequence of literals bracketed by { and
}, which can be used to form the executable part
of a composed operator (2.2.5)

body operator: a primitive operator which
takes a body as its last argument (2.2.5)

break page: a page automatically printed at
the beginning of a job to identify the output of
the job and to separate it from that of adjacent
jobs (E.1)

cardinal: a nonnegative mathematical integer
in a limited range: one of the types of the base
language (2.2.1)

char: abbreviation for character

character coordinate system: a standard
coordinate system in which each character
operator is defined (4.9)

XEROX SYSTEM INTEGRATION STANDARD

GLOSSARY

character index: a Cardinal, sometimes called
a "character code," that identifies a particular
character: used to index a font (4. 9)

character operator: a composed operator
which, when executed, defines a character's
mask, escapement, and spacing correction (4,9)

co: abbreviation for composed operator

color: the specification of the color with which
to show a primitve stage (4.1, 4.7)

color operator: an operator that converts color
coordinates into an Interpress color (4.7 .1)

color model operator: an operator that
constructs a color operator according to a
particular color model (4.7.1)

composed operator: an operator defined m
the master (2.2.5)

compression: a computation that reduces the
number of bits required to specify some data,
usually a pixel array (4.6)

context: a particular execution of a composed
operator (2.4.2)

convenience operator: a redundant operator,
usually introduced to reduce the number of
steps in a frequently-occurring sequence

coordinate system: conventions used to
describe locations on a two-dimensional surface
(4.3)

correct: to compensate for differences between
the actual escapements of character operators
used by the printer and those assumed by the
creator (4.10)

creator: the person or program
constructs an Interpress master (1)

which

current position: a point on the page image,
often used to indicate where the origin of the
next character should be placed (4.5)

111

GLOSSARY

current transformation: a transformation
that converts from master coordinates to device
coordinates (4.4)

DCS: abbreviation for device coordinate system

decompression: expanding compressed data
into its original form (4.6)

device coordinate system: a device
dependent coordinate system suitable for
driving the printing device (4.3)

device-independent: does not depend on
properties of the printing device (4.3)

duplex: a mode of printing in which images are
placed on both sides of a sheet of paper: also a
printing instruction (3.3.3)

element: one of the values which make up a
vector (2.2.4)

encoding: a particular representation of
Interpress masters (2.5)

environment: the set of objects made available
to a master by a printer, e.g., fonts, colors,
decompresssion operators (3.2)

environment name: the unique name of an
object in the printer's environment; a vector of
identifiers in which the first identifier defines
the type of the object and the remaining
identifiers are the universal name of the object
(3.2.2)

escapement: of a character, the spacing from
one character to the next (4.9)

external instructions: those printing
instructions that are supplied by mechanisms
outside an Interpress master (3)

external value: a value not defined in the
master, but obtained from the printer by a FIND
operator (3.2)

f: abbreviation for frame

font: a collection of character definitions (4.9)

frame: a vector associated with an execution of
a composed operator (2.3.2)

good image: an image specified with just
sufficient precision to match the ideal image
(4.3.4)

112

grid points: a grid overlaid on the device
coordinate system for describing the spatial
resolution of the printing device (4.3.4)

header: an identifying string at the beginning
of an encoded Interpress master (2.5)

hierarchical: a tree-structured naming
system, in which each name is a sequence of
simple names which traces out a path from the
root of the tree (3.2.1)

hierarchical name: a vector of identifiers that
represent a structured name (3.2.1)

ICS: abbreviation for Interpress coordinate
system

id: abbreviation for identifier

ideal image: an image that results from ideal
(infinite) precision interpretation of arithmetic
and imaging operators (4.3.4)

identifier: a sequence of characters normally
used to name an external value: one of the
types of the base language (2.2.2)

imager: the software module that interprets
imaging operators to build page images (4.1)

imager state: twenty-three variables that
control the functioning of many imager
operators (4.2)

imaging model: the process whereby primitive
images specified by a color and a mask are built
up on a page image (4.1)

initial frame: a vector which is part of a
composed operator and used to initialize the
frame for each execution of the operator (2.4.2)

ins: abbreviation for instructions

instance: usually refers to an image on the
page of standard symbol. For example, the word
SHIPS when printed, contains two instances of
the symbols (4.4.1)

instructions: abbreviation for printing
instructions

instuctions body: an optional body in a master
that contains printing instructions (3)

Interpress coordinate system: a device
independent coordinate system for specifying
locations on the page iniage (4.3)

INTERPRESS ELECTRONIC PRINTING STANDARD

justify: to space characters out so that they
completely fill a pre-determined region, such as
the space between margins (4.9)

kern: the portion of a typeface that projects
beyond the body or shank of a character

ligature: a character or type combining two or
more letters, such as fi

limit: a restriction on the size of some object
(5.6.1)

limited imager: an imager that cannot handle
pages of arbitrary complexity (5.4)

literal: a representation in a master of value
(2.2)

lower bound: the integer which names the
first element of a vector (2.2.4)

mark: a special value which can only be popped
from the stack by certain operators (2.2.3)

mark recovery: an error recovery procedure
which pops the stack to the topmost mark and
finds a matching point in operator execution
(2.4.1)

mask: a description of the shape of a primitive
image that will be added to the page image (4.1,
4.8)

master: an Interpress program (1)

master coordinates: coordinate information
specified by the master as arguments to
imaging operators (4.3)

master error: the result of executing a
primitive without meeting the conditions stated
in its definition (2.4.1, 5.3)

matching: an UNMARK or COUNT operator
executed in the same context as the MARK
which pushed a particular mark value onto the
stack (2.2.3)

matrix: a representation of a transformation
(4.4)

medium: the identity of the material on which
a page image is printed (3, 4.2)

metrics: of a character or font, the
measurements of its critical dimensions (4.9)

name: a cardinal or identifier used to specify
an element of a vector (2.2.4, 3.2)

XEROX SYSTEM INTEGRATION STANDARD

GLOSSARY

net transformation: the total transformation
from a pixel array's or font operator's standard
coordinate system to the Interpress coordinate
system (4.6)

normal viewing orientation: the standard
orientation of a page (or other form of image
output) (4.3)

number: a rational number in a particular
subset: one of the types of the base language
(2.2.1)

op: abbreviation for operator

operator: a value which can be executed to
cause state changes and output (2.2.5)

operator restrictions: rules limiting the
primitives which can be executed in various
parts of the master (3.1.1)

origin: a reference point on a character mask
(4.9)

outline: a set of closed trajectories, usually
used to define the outline ofa region (4.8.1)

output: result of executing a master (2.3)

page: a unit of output (3)

page image body: the portion of a master
which generates the output for a page (3.1)

page image: the image built by a page image
body, which will be printed (4.1)

page instructions body: an optional portion
of a master which specifies printing
instructions for a particular page (3.3)

persistent: a variable whose value is not reset
by a DOSAVE (2.3.3)

pixel: an element of a pixel array (4.6)

pixel array: a two-dimensional array of
samples that define the color everywhere in a
rectangular region (4.6)

pixel array coordinate system: a standard
coordinate system in which a rectangular array
of samples is defined (4.6)

point: a printer's unit of distance, roughly 1172
inch

preamble: a part of the skeleton which
establishes the initial frame for execution of the
page bodies (3.1)

113

GLOSSARY

primitive: an operator built into Interpress and
defined in the standard (2.2.5)

printer: a device which accepts Interpress
masters and produces the corresponding images

printer-dependent: a part of Interpress whose
detailed interpretation is not standardized, but
instead left to individual printer
manufacturers or operators to specify

printing instructions: commands that control
the printing of an lnterpress master (3.3)

priority: the property that determines which
of two overlapping primitive images will
appear to be "on top" (4.1)

property name: an identifier used in a
property vector to name a corresponding value
(2.4.3)

property vector: a vector formatted so as to
describe (property name, value) pairs (2.4.3)

raster, raster-scan: a two-dimensional array
of pixels that covers an image, and the process
of methodically scanning past each pixel on the
image

redundant operator: a primitive operator that
is an abbreviation for a simple lnterpress
program

result: a value pushed onto the stack and left
there by the execution of an operator (2 .4)

registry: a set of identifiers which controls a
particular point in a hierarchical name space
(3.2)

rounding: usually, finding the grid point
closest to a device coordinate (4.3, 4.12)

sample: a record of the color at a pixel, i.e., a
point in an image (4.6)

scan-conversion: the act of converting
geometric or sampled intensity information
into a raster-scanned image (4.8)

scanned-image: see pixel array

set: a characterization of the capabilities of an
Interpress printer (5.2)

simplex: a mode of printing in which an image
is placed on only one side of each sheet of paper;
also a printing instruction (3.3.3)

114

skeleton: the global structure of a master,
down to the level of the outermost bodies (3.1)

spaceband character: a character whose
width is expanded by the factor amplifySpace
(4.9)

spot: a small region of the output image whose
color can be controlled by the printing device
independently of all other regions (4.3, 4.6)

stack: a last-in first-out sequence of values
used to communicate information between
operator executions (2.3.1)

standard coordinate system: the system in
which a pixel array or font is defined (4.6, 4.9)

state: the information which can affect further
execution of a master (2.3)

stroke: a mask obtained by broadening a
trajectory or outline to have uniform width
(4.8.3)

symbol: a graphical shape; several instances of
a symbol may appear in a page image (4.4.1)

Tw: the transformation from the Interpress
coordinate system to the device coordinate
system (4.3.5)

token: a primitive element of an Interpress
master (2.5)

trajectory: a set of cohnected lines used to
determine where strokes should be drawn
(4.8.1)

transformation: a conversion of coordinate
information from one coordinate system to
another (4.4)

transition function: a mapping from states
into states and output, which defines the
meaning of an operator (2.2.5)

type: one of the classes of values (2.2)

universal identifier: an identifier defined in
the Interpress universal registry (3.2.1)

universal name: a vector of identifiers in
which the first identifier is a universal
identifier (3.2.1)

universal property vector: a property vector
that can be extended using property names
that are universal names (3.2.3)

universal registry: a registry of unique
identifiers assigned to organizations that wish

INTERPRESS ELECTRONIC PRINTING STANDARD

to create structured names of objects in a
printer's environment (3.2.1, C)

unlimited imager: an imager that can print
pages of arbitrary complexity (5.4)

upper bound: the integer name of the last
element of a vector (2.2.4)

variable: part of the imager state (4.2)

vec: abbreviation for vector

vector: a sequence of values named by Integers
(2.2.4)

XEROX SYSTEM INTEGRATION STANDARD

GLOSSARY

115

GLOSSARY

116 INTERPRESS ELECTRONIC PRINTING STANDARD

INDEX

1 AppendSequenceDescription 17-18, 20-21
--*-- 76-79 AppendString 20
[. ..] 8 approximation 55,72,75,76,83,85,89
< ... > 8 ARC TO 60,61
.. ./ .. ./ ... 8 arguments 7,8,25,57
{} 6,15,19,22 arithmetic operators 14,15
*prefix 5 ASCII 91
* ADDINSTRUCTIONDEFAULTS 27, 28, 34, 35, base language 13-15, 81-85

36,87,106 BASE operators 13,30,31
*coMPUTECORRECTIONS 77-78 baseline 62, 70
*coPYNUMBERANDNAME 13 BEGIN 15,19,22,25,26,31
*DOC HAR 74-76 beuelstrokejoint 63
*DROUND 48,51 Bezier curve 59
*EQN 10, 13 bias, of Short Number 18
*ISBODY 27,28 binary pixel arrays 57, 82-84
*LASTFRAME 27,29 bind 107
*MAKECOWITHFRAME 27,29 black 55, 56, 57' 83
*MAKEFONTM 72-73 block, in skeleton 22-23, 25-31, 34
*MERGECONTENTINSTRUCTIONS 27, 30 38-39, block, of output 86

106,109 blockOrBody 27,30
*OBTAINEXTERNALINSTRUCTIONS 27-29 body 4,6, 7,9, 11,19,25, 76
*OPENFONT 73-75 bodyfont 73
*PGET 26, 29-30 body literal 6,19,26
*PSET 28-29 body operator 6, 15,19
*RUNGET 27-30, 35 body size 69
*RUNSIZE 27-28, 35 Body type 6~7

*SETMEDIUM 27,30,43,45-46,51,67 break page 105,106,107
ABS 14 breakPageFont 105-106
adaptive 21 BreakPageString 105
ADD 14 breakPageType 106
Addint 20 butt stroke end 63
Algol 5,7 byte 15
amplified 72-74 Byteslnlnt 18,21
amplifying characters 71-72 capabilities 81-87' 107' 108
amplifySpace variable 44,68,74,75,79 Cardinal type 4,18
AND 14 case 4-5, 18
Any type 4,93 CCITT-4 21
appearance error 81,85,89 CEILING 14
appearance warning 85,89 character 52, 58, 67-75
AppendByte 15,21 Character Code Standard 19,93
Appendlnt 17-21 character coordinate system 67-69, 72-73
Append! nteger 18 character index 19, 69, 72-7 4
AppendLarge Vector 21 character mask 66,67,68,69, 73
AppendOp 19 character operator 49, 68-74
AppendRational 18 character set 73,69

XEROX SYSTEM INTEGRATION STANDARD 117

INDEX

character Masks
characterM etrics
Character Metrics
CIE

circle
clear
CLIPOUTLINE

Clipper type
clipper variable
clipping
CLIPRECTANGLE

closed trajectory
color
color coordinate system
color model operator
color operator
Color type
color variable
colorModelOps prefix
colorOps prefix
colors prefix
comment, in encoding
comment, in program
commercial
commercial set
complexity
composed operator

compressed
compressed samples
CONCAT

concatenation
CONCATT

Conditional execution
conic section
CONICTO

constant color
constant values
ConstantColor type
content instructions
content node
content! nsertFileM apping
CONTENTINSTRUCTIONS

content! nstructionsB ody
contentMediaSelect
contentOutputPostion
contentPageSelect
contentPlex
continued sequence
control operators
context
coordinate systems
copies

118

69,73
72, 74
70,72

56
59

57,83
67

67,93
44,58,67,68,86

58,67,82,83,84,85
67

58,60 63,67
41, 52-58, 82-86

56
56

56, 57 ,58, 84, 86
55,93

44, 55, 57-58
33
33
33
19

1
108

82-83, 108
81, 85-86

3, 5-11, 26, 27, 30,49-50,
67,89,107,108

21
54

43,51,56,73
49,51,88

51,73
6,13

59
59

55,82,83,84
4

55
25-31, 34, 37-39, 108

25
38,39

15,19,22,26,27
25,26,27,29,38

87
87,109

29,39,87
29,30,39

17
13

5,6, 7,9, 12
41, 44-50

13,33,35,37,39,
87,105

COPY

copy name
copy number
copy Name
copyNumber
copySelect
cornerStaple
CORRECT

correctpcx, correctcpy
correction property
correction, of spacing
CORRECTMASK

correctMaskCount

8, 11, 12
13,37

13,29,37,38,39,87,107
27,28,37,38

27,28,30
28,35,37,38,87

107
6, 11,19, 72, 76-80

77, 78, 79, 80
72, 75

68, 75-80, 83-85
68,69, 72, 74, 76-79

correct Maskx, correctMaskY
76, 77,78, 80

76,78,80
44, 76-79
44, 76-79
44, 76-79
44, 76-79
44, 76-79
44, 76-79

correctMX variable
correct MY variable
correctPass variable

78-79
78-79

correct Shrink variable
correctSpaceX variable
correctSpaceY variable
correctSumX, correctSumY
correct TargetX. correct TargetY
correctTX variable 44, 76-79

44, 76-79
72-75, 76-79

9,12,28,29,73
1,45,67,69,72,75,78

79,81-82
59

correctTY variable
CORRECTSPACE

COUNT

creator

cubic curve
current position 51-52, 62, 68, 79,

89,94
current transformation, see T variable
curves 58-60, 82-85

59
64-66, 82-85

17,20,21,108
11, 107

CURVE TO

dashed strokes
data, of sequence
date
DCS, see device coordinate system
DCScpx. DCScpy 44, 51, 52, 76, 77,78, 79
DecodeString 20
decompress 54-55
decompression 54-55, 82-84, 89
decompressionOps prefix 33
defaultMedium 36, 37
descriptor, of sequence 17
design size, of font 73
device coordinate system (DCS) 44, 4 7, 48

device dependence
device independence
distance
div
DIV

DO

76,87
67, 75

1,3,44,45,67,81
76-79

15
15

5,6,11,13,14,21,44,55,56

INTERPRESS ELECTRONIC PRINTING STANDARD

DoBlock
docComment
docCreation Date
docCreator
docEndMessage
docName
docOffset
docStartMessage
document handling
DoMaster
DoMediumSet
DOSAVE

DOSAVEALL

51'57, 62, 73, 77
DOSA VESIMPLEBODY

DUP

duplex
duplex
easy transformations
efficiency
element, of stack
element, of vector
ellipse
encoding
encoding notation
encoding value
END

end point, of segment
endpoint, of stroke
environment

environment name
environmentNames
EQ

errors
escapement

7,27,28,29,30
108
107
107
107

34,107
34

107
81,83,84,87

6,27,28
29,30

3,11,44,51
3,11,13,26,28,29,44,

6,11,19,50,74,77
10,12,73,79

43,46
27,29,30,37,39,45

54,72-75, 86
18,31,73,85,86

11, 12
5,10

60
15-16, 83, 84, 85

7-9,15, 16,17,85
16,19,22

15,19,21,22,25,26,31
58

63,64,84
11, 22, 25, 27-28, 31-32,

54,56,69,82-85,108
32,108

108
13,14,29,30,74,75

3, 5, 12, 13, 87, 89, 90, 105

escapementX, escapement¥
EXCH

68, 71,72,74
68,71,72,74
12,14,54,64

7-13, 27, 89
15

25-40

execution
extension, file name
external instructions
external! nstructions
externalPageSelect
ExtractByte
EXTRACTPIXELARRAY

FGET

27
38
17
54

6,7,11,14,26,28,29,30,
31,35,36,54,62,73,74

field 44, 46, 67, 83, 84, 88
fieldXMax, fieldYMax variables 43, 44, 45,46
fieldXMin, fieldYMin variables 43, 44, 45, 46
file name 15, 21, 36, 38, 39, 85, 107
filled outline 62, 63, 67, 82, 83, 84, 85
film 41-42, 55
finallnstructions 27

XEROX SYSTEM INTEGRATION STANDARD

INDEX

FIND- operators 31, 32, 36, 85
FINDCOLOR 31, 33, 55-56, 83-85, 108
FINDCOLORMODELOPERATOR 5, 31, 33, 56, 57, 84-85
FINDCOLOROPERATOR 5, 31, 33, 56, 57, 84-85
FINDDECOMPRESSOR 5, 21, 31, 33, 55, 83-85
FINDFONT 31,33,72,85,106,108
FINDOPERATOR 5, 9, 11, 31, 33, 85
finishing 33, 34, 46, 81, 83, 84, 87
finishing 107
FLOOR 14
font naming 72, 85, 93
Font type 69,93
font variable 44, 73, 74
FontDescription 69, 72-73, 74
FontDescription coordinates 69, 72
fonts 58, 67, 69-73, 85-86, 105
fonts prefix 32, 33
forms 54, 82
frame
front, of medium
FSET

GE

GET

GETCP

GETP

GETPROP

global variables
good image
gray
grid
GT

header

3,4,7,9,ll,13,27,73
45

6,7,9,ll,14,26,28,
29,30,35,36,63,74

14
10,14,29,30,35,36,53,54,64,75

51,52,62
10,28,29,30,73,74
10,11,29,30,73,74

6, 7,27,28
47,87

41, 55-58, 82, 84
4 7 -48, 52, 88

14
15

hierarchical naming 32
highlight color 84
hints 108
hyperbola 59
hyphenation 1
ICS, see Interpress coordinate system
ideal image 1, 47, 81, 89
Identifier type 4, 93
identity transformation 44, 51, 54, 73
IEEE floating point standard 88, 91
IF 6,8,ll,13,14,19,29,30,73,74,75
IFCOPY 6, 13, 19, 37, 38, 40
IFELSE 6,13,19,29,75
iFrame 28, 29
IGET 43,45,51,58,62, 74
image 20, 22
IMAGE operators 30
imager
imager variables
imaging medium
imaging model

41,81
3,6,7,811,26,41,43,52,83,84

55
11,41

119

INDEX

imaging operators
indexing a vector
initial frame
ink
insertFileM apping
insertFileN a mes
inserting from a file
inside, of outline
instance, of medium
instance,ofsymbol

4, 30, 41,58-59
5

6, 7, 11, 25-30
41,42
36,39

108
21

61,62
37

49,52,68, 76
instructions, see printing instructions
instructionsB ody 26,27,28

55 intensity,
Interpress coordinate system (ICS) 37, 43-56, 73

85,86
Interpress fragment 22
Interpress master 1, 3, 15, 21, 22, 23, 67, 81
Interpress Universal Registry 32, 34, 99
Introduction to Interpress 1, 91
ISET 43,45,51,55,58,62, 73, 78
ISO 646 13, 15, 18, 22, 91, 106
joint, of stroke 63, 84, 85, 86
justification 1, 72, 75-76
kerning 74
landscape orientation
large vector
last point, of trajectory
lastFrame
limits
LINE TO

LINETOX

LINE TOY

literals
local variables
Long Op
Long Sequence
lower bound
lp, of trajectory
MAKE FONT

MAKEGRAY

MAKE OUTLINE

MAKEOUTLINEODD

MAKEPIXELARRA Y

MAKESAMPLEDBLACK

MAKESAMPLEDCOLOR

MAKE SIMPLECO

MAKET

MAKEVEC

MAKEVECLU

Mapping
MARK

mark recovery
Mark type
marks

120

45
8,21

58
27,28

4, 11, 55, 86-88
19,59,60,62,63,64

59,62, 67
59,63,67

4,5,69,15-22,83-84,88
7

16,19
16,17

5,10,35
59,60

44,72,73,84,85
44,55,58,83,84
60, 61,62,63,67

61
52.54.55.56,85,86

54,57,58,83,84
54, 56, 57' 58 84
6,11,13,19,51

50,51
5,8,10,28,29,36

5,10,35
36,38

5,12,13,28,29,57,77
5,9,12,85,90

5
4,5,9,12,13,26,28,29

mask
mask operators

MASK CHAR

MASKDASHEDSTROKE

MASK FILL

MASKPIXEL

MASKRECTANGLE

MASKSTROKE

MASKSTROKECLOSED

MASKTRAPEZOIDX

MASKTRAPEZOIDY

MASKUNDERLINE

MASKVECTOR

master

41,52-54,59,62-79,84,86
27,30,41,43,47,55,58,
62,63,72, 73,74,83,84

74,83,84
64

57,59,62,63
54,66,83,84,85

62,82,83
59,64,63

63
62
63

62,83
64,83

master coordinate system
25,36,38

46,47,51,59
62,63,64,87

5, 6, 9, 11, 36, 85,, 89 90, 106 master error
master warning
master! nstructions
masterPageSelect
matching mark
matrix
maxBodyLength
maxCardinal
maxFileN esting
maxldLength
maxSample Value
maxStackLength
maxVecSize
measure

89
27
38

5,9,12
49,50,51

5,88
4,88

22,88
4,88

52,53,56,66,83,84
7,88

5,10,88
78

media 30, 36, 37, 39, 40, 87
mediaSelect 30, 37, 38, 39, 46
medium 29, 30, 36-40, 43-46
MediumDescription 36, 37, 39
mediumDescription 36, 87
mediumMessage 36
mediumXSize, mediumYSize variables 36, 43-45, 48
MERGEPROP 10, 25, 28, 29, 34
MessageString 3 7
messageString 106
metrics 69
miter stroke joint 44, 63
MOD 15, 66, 75
MODIFYFONT 73
MOVE, 51
MOVETO 59, 62, 63, 64, 67
MUL 14
name
naming authority
NEG

net transformation
node
nolmage variable

39,37,40
32
14

54,73,86
25,26,27,29,30
44,58,76,77,79

INTERPRESS ELECTRONIC PRINTING STANDARD

non-persistent variables
none
NOP
NOT
null
Number type
numbers
numeric errors
numeric precision
numNodes
offsetStacking
onSimplex
Operator type
operators
ops prefix
OR

ordered image change
origin
Outline type
outlines
output
output transition function
outputoK
outputPosition
overflow

11,43,51,77
106,107

12
14
37

4,17, 18,93
3,4,9,18,46,87-88

51
87-88

29
34

29, 37-39, 87
5,95

3,4,5, 7-15,43,82-84
33
14
43

49, 50, 51, 68, 70, 74
60,61,93

58-63, 67, 83, 84
7,27

7,8,83
27,28,29

87,107,109
87,88,89

21 packed
page image

page image body

page! mageBody
pageMediaSelect
pageNumber
pageOn Simplex
pageSelect

37,41,44,52,55,58,66, 67,68,
85,86

25, 26, 31, 38, 39,
40,41

25

paper color
parabola
Pascal
performance
persistent variables
PGET
pixel array

pixel array coordinate system
pixel vectors

30,39,40,87
27-31, 107
29,39,87

29, 35-39, 87
41-42, 55-56

59
5,7,8,15,26

86,87,
43,52,74, 77

26,29,30
49, 52-55, 56-58,

66,67,82-86,89,108
53,54,67,108

21
52,95

108
PixelArray type
pixelArrayTransformationU ses
pixels 52-58, 66, 84, 86

29,30,37,39,87
11,12,29,54,62,64,73

45,69
25-31

plex
POP
portrait orientation
preamble
preambleBody
precision

XEROX SYSTEM INTEGRATION STANDARD

26
18,87,88

INDEX

primitve images 41
primitive operator 3, 5, 7, 9, 16, 19,81, 93, 107
Print Service Integration Standard 91
printer overrides 25, 27, 34, 38, 87, 106
printing instructions 25-38, 43, 44-45,

priority
priority! mportant
private instructions
procedure
professional graphics set
professionalGraphics
property name
property vector
publication set
publishing
publishing set
Raster Encoding Standard
rational numbers
rectangle
registry
relative moves
REM
resources
restrictions
results
ROLL

ROTATE
rotation
ROUND
round stroke end
round stroke joint
run encoding of strings
Run of ...
runs, of pages
sampled black
sampled color
sampled images
samples
samples vector
samples! nterleaved
samplesPerPix_el
SCALE

SCALE2

scaling
scan conversion
scanned image
segment,oftrajectory

89-90, 105-109
42-43, 58, 83
43,44,58,83

34
6

82,107
107

10,33,34,36,106
10,25,33,34,35,36,38

82,83
107
107

91
4, 15, 17-18, 88

62,67,82,83,84
31-32,33,34,69,99

88
15

33,107
30-31, 82-85, 87-90

6-7, 8, 25, 26
6,12

50,53,88
49, 50, 81-85

14
64
63

19-20
35-36, 107, 108

46
57,58,85

52-57, 83-85
91

52-57, 65, 84
52-54

52,53,56,57,83,84
52,53,54,56,66, 83,84

44,51,53,55,72,88
51,54,88

49,51,69,86
52

11,53,54,66,82
58-61, 62, 63, 64

sequence
sequenceAdaptivePixelVector
sequenceCCITT-4PixelVector
sequenceComment
sequenceCompressedPixelVector
sequenceContinued

15-23, 84, 85
21,23
21,23
19,23
21,23
17,23

121

INDEX

sequenceldentifier
sequence! nsertFile
sequencelnsertMaster

'sequencelnteger
sequenceLarge Vector
sequencePackedPixelVector
sequenceRational
sequenceString

18,19,23
21,22,23,36,39,54,85

22, 23, 26, 36, 39,
85,107,108

18,23
20,23

21,22,23
18,23

20,23,75
81,82,86,107

107
78,79

79
73

set
set instruction
SETCORRECTMEASURE

SETCORRECTTOLERANCE

SETFONT

SETGRAY 56,57,84
SETSAMPLEDBLACK 57, 84
SET SAMPLECOLOR 57, 84
SETXREL 52, 74, 75, 77, 79
SETXY 52,61
SETXYREL 52,68,74,77
SETYREL 52
severity, of errors 12, 89, 90
SHAPE 10,ll,13-14,28-29,35,52,53,54,63
shape parameter 59
sharing 3
Short Number 16, 17, 18
ShortOp 16, 19
Short Sequence 16, 17
SHOW 8, 19, 50, 62, 68-69, 73-75
SHOWANDFIXEDXREL 75
SHOWANDXREL

side effects
simplex
simplex
skeleton
SPACE

space character
space band
spacing correction
spatial resolution
special operators
spot
square stroke end
stack
stack operators
standard
start point, of segment
STARTUNDERLINE

state

74
8,11,13,25,26,27,77-78

45,87
37,38,39,45,83, 87

6,16,19,25-31,94,105,l08
77,79
15,22

68
62,68-69,71,72, 74, 75-80

47
5, 26, 93-97

47
44,64

3, 7,8,9, 11-13,26, 76
11-13, 93
32,34,99

58
62,83

state transition function
stipple patterns

6, 7,9
5,7,9

56
string
stroke
strokeEnd variable

122

8,19,38,62,74,107
63-66, 82
44,66,83

strokejoint variable
stroke Width variable
SUB

substitute character
substitutelndex
symbol, in encoding
symbol, instance of
Tvariable
target position
temp! nstructions
terse
test operators
tiling

44,66,83
44,63

14
74

72,74
15,16,19

49
43, 44, 51-52

77-79
29,30

106
13-14
56-57

time 11, 107
tokens 15-17
topBlock 28
topFrameSize 11, 25, 28, 88
trajectories 58-66, 81-85
Trajectory type 59, 93
TRANS 48,51,62,74
Transformation type 50-51, 93
transformation, in Font Description 69-75
transformations 43, 48-52, 83, 88
transition function
TRANSLATE

translation
transmittance
transparent
trapezoid
TRUNC

two-up printing
TYPE

typeface
types
underflow
underline
underlineStart variable
universal identifier
universal name
72,99,107,108

5,7,9,83
43,50,51,53,88

49,86
55

41,42
63

14,15
31
53
73

4,14,81-85,93,106, 108
9

62
44,62
32,99

32, 33, 34, 55, 56,

universal property vector
unlimited

33,34,72
86

UNMARK

UNMARKO

unordered image change
upper bound

5,9,12,13,28,29,56,73,77
9,12,13,28,29,30,77

43
5,10

4,5,10
10,31,107,108

5,93
3-6, 10-11, 19-22

106

values
Vector of Identifier
Vector type
vectors
verbose
version number
version, of font
video display

15
73

41-42, 55

INTERPRESS ELECTRONIC PRINTING STANDARD

viewing orientation
WEAKIMAGE operators
white
width, of stroke
winding number
write-only
Xerox Character Code Standard
Xerox encoding
Xerox Font Interchange Standard

45
30

55,57
63
61

7
19,91
15-23

Xerox Print Service Integration Standard
72,86
85,91
22,91 Xerox Raster Encoding Standard

xlmageShift
xPixels, yPixels

XEROX SYSTEM INTEGRATION STANDARD

27,30,37,43
52,53,54,56

INDEX

123

INDEX

124 INTERPRESS ELECTRONIC PRINTING STANDARD

Xerox Corporation
Stamford, Connecticut 06904

XEROX® is a trademark of
XEROX CORPORATION

Printed in U.S.A. 610P72582A

